
Andrea Bracciali · Jeremy Clark ·
Federico Pintore · Peter B. Rønne ·
Massimiliano Sala (Eds.)

LN
CS

 1
15

99

FC 2019 International Workshops, VOTING and WTSC
St. Kitts, St. Kitts and Nevis, February 18–22, 2019
Revised Selected Papers

Financial Cryptography
and Data Security

Lecture Notes in Computer Science 11599

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Andrea Bracciali • Jeremy Clark •

Federico Pintore • Peter B. Rønne •

Massimiliano Sala (Eds.)

Financial Cryptography
and Data Security
FC 2019 International Workshops, VOTING and WTSC
St. Kitts, St. Kitts and Nevis, February 18–22, 2019
Revised Selected Papers

123

Editors
Andrea Bracciali
Stirling University
Stirling, UK

Jeremy Clark
Concordia University
Montréal, QC, Canada

Federico Pintore
University of Oxford
Oxford, UK

Peter B. Rønne
University of Luxembourg
Esch-sur-Alzette, Luxembourg

Massimiliano Sala
University of Trento
Trento, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-43724-4 ISBN 978-3-030-43725-1 (eBook)
https://doi.org/10.1007/978-3-030-43725-1

LNCS Sublibrary: SL4 – Security and Cryptology

© International Financial Cryptography Association 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-1451-9260
https://orcid.org/0000-0002-3533-5965
https://orcid.org/0000-0002-7985-3131
https://orcid.org/0000-0002-7266-5146
https://doi.org/10.1007/978-3-030-43725-1

WTSC 2019 Preface

These proceedings collect the papers accepted at the Third Workshop on Trusted Smart
Contracts (WTSC 2019, http://fc19.ifca.ai/wtsc/) associated with the Financial
Cryptography and Data Security 2019 (FC 2019) conference held in St. Kitts on
February 22, 2019.

The WTSC series focuses on smart contracts, i.e., self-enforcing agreements in the
form of executable programs and other decentralized applications that are deployed to
and run on top of (specialized) blockchains. These technologies introduce a novel
programming framework and execution environment, which, together with the sup-
porting blockchain technologies, carry unanswered and challenging research questions.
Multidisciplinary and multifactorial aspects affect correctness, safety, privacy,
authentication, efficiency, sustainability, resilience, and trust in smart contracts and
decentralized applications. WTSC aims to address the scientific foundations of trusted
smart contract engineering, i.e., the development of contracts that enjoy some verifiable
“correctness” properties and to discuss open problems, proposed solutions, and the
vision on future developments among a research community that is growing around
these themes and brings together users, practitioners, industry, institutions, and
academia.

This was reflected in the multidisciplinary Program Committee of this third edition
of WTSC, comprising members from companies, universities, and research institutions
from several countries worldwide, who kindly accepted to support the event. The
association with FC 2019 provided an ideal context for our workshop to be run in.
WTSC 2019 was partially supported by the University of Stirling, UK, the University
of Trento, Italy, and Quadrans (https://quadrans.io/). This third edition of WTSC 2019
received 17 submissions by about 40 authors, of which, after peer review, 9 were
accepted as full papers, 3 as short papers, and 2 as SoK (systematisaztion of knowl-
edge) papers. The accepted papers are collected in the present volume. These works
analyzed state and side channels, incentives, and payment schemes, as well as
addressed aspects of verification, security, and privacy.

WTSC 2019 enjoyed Ian Grigg (https://iang.org/) and Igor Artamonov (ETCDEV
Founder) as keynote speakers. Ian gave a talk on trust and its implication within
blockchain and smart contracts applications, while Igor discussed models for smart
contracts and their present and future perspectives.

The WTSC 2019 chairs would like to thank all those who supported the workshop
for their valuable contributions: authors, Program Committee members and reviewers,
and participants. WTSC 2019 also enjoyed the support of IFCA, FC 2019, and Ray
Hirschfeld in the organization of the event.

June 2019 Andrea Bracciali
Federico Pintore

Massimiliano Sala

http://fc19.ifca.ai/wtsc/
https://quadrans.io/
https://iang.org/

WTSC 2019 Organization

General Chairs

Andrea Bracciali University of Stirling, UK
Federico Pintore University of Oxford, UK
Massimiliano Sala University of Trento, Italy

Keynote Speakers

Igor Artamonov Ethereum Classic Dev
Ian Grigg https://iang.org/

Program Committee

Igor Artamonov Ethereum Classic Dev
Bob Atkey Strathclyde University, UK
Marcella Atzori UCL, UK, and IFIN, Italy
Daniel Augot Inria, France
Massimo Bartoletti University of Cagliari, Italy
Devraj Basu Strathclyde University, UK
Stefano Bistarelli University of Perugia, Italy
Christina Boura Versailles SQT University, France
Andrea Bracciali University of Stirling, UK
Daniel Broby Strathclyde University, UK
Bill Buchanan Napier University, UK
James Chapman IOHK, Hong Kong
Martin Chapman King’s College London, UK
Tiziana Cimoli University of Cagliari, Italy
Nicola Dimitri University of Siena, Italy
Nadia Fabrizio Cefriel, Italy
Jamie Gabbay Heriot-Watt University, UK
Laetitia Gauvin ISI Foundation, Italy
Neil Ghani Strathclyde University, UK
Oliver Giudice Banca d’Italia, Italy
Davide Grossi University of Groningen, The Netherlands
Yoichi Hirai Brainbot Technologies AG, Germany
Lars R. Knudsen Technical University of Denmark, Denmark
Ioannis Kounelis Joint Research Centre, European Commission, Italy
Victoria Lemieux The University of British Columbia, Canada
Loi Luu National University of Singapore, Singapore
Carsten Maple Warwick University, UK
Michele Marchesi University of Cagliari, Italy

https://iang.org/

Fabio Martinelli IIT-CNR, Italy
Patrick McCorry King’s College London, UK
Neil McLaren ConsenSys, UK
Sihem Mesnager University of Paris VIII, France
Philippe Meyer Avaloq, Switzerland
Bud Mishra NYU, USA
Carlos Molina-Jimenez University of Cambridge, UK
Massimo Morini Banca IMI, Italy
Immaculate Motsi University of Warwick, UK
Alex Norta Tallin University of Technology, Estonia
Federico Pintore University of Oxford, UK
Massimiliano Sala University of Trento, Italy
Jason Teutsch Truebit, USA
Roberto Tonelli University of Cagliari, Italy
Luca Vigano’ University of Verona, Italy
Philip Wadler University of Edinburgh, UK
Yilei Wang Hong Kong Polytechnic University, Hong Kong
Ales Zamuda University of Maribor, Slovenia
Santiago Zanella-Beguelin Microsoft, UK

WTSC 2019 Sponsors

http://www.cs.stir.ac.uk/

https://www.unitn.it/

https://quadrans.io/it/

This conference was organized with the support of EasyChair conference system.

viii WTSC 2019 Organization

http://www.cs.stir.ac.uk/
https://www.unitn.it/
https://quadrans.io/it/

VOTING 2019 Preface

These proceedings collect the papers accepted at the 4th Workshop on Advances in
Secure Electronic Voting (VOTING 2019) associated with the Financial Cryptography
and Data Security 2019 (FC 2019) conference held in St. Kitts on February 22, 2019.

This year’s workshop covered a variety of different themes, all related to election
integrity, security, and privacy. In particular, papers covered election auditing, voting
system efficiency, voting system usability, and new technical designs for cryptographic
protocols for voting systems.

An important discussion was held with our panel titled “Real World Verifiable
Elections: Future or Fata Morgana?” The premise of the panel was that verifiable
voting systems have crossed over from research into real world pilots, and yet we also
seem stuck in the pilot stage with no wide commercial deployment of this technology
on the horizon. To help discuss this, we recruited researchers with experience
deploying systems like Scantegrity, Helios, vVote, Pret a Voter, and Remotegrity in
real world elections. The panelists were Olivier Pereira, Peter Y. A. Ryan, Vanessa
Teague, and Filip Zagórski.

We received 17 papers and accepted 9 for publication. While increasing the
popularity of our workshop is an important future challenge, each accepted paper
received a lot of attention from our expert reviewers and improvements were discussed
in-depth within the Program Committee (PC). In the spirit of a workshop, we felt the
peer-review process was not merely a gatekeeping exercise but resulted in improved
and polished final papers.

As chairs, we are grateful to our PC for their time and effort, the authors of all
submitted papers, Ray Hirschfield and IFCA for organizing all the logistics of the
event, and the FC 2019 workshop chairs for their continued support of VOTING.
VOTING 2020 will be held in Malaysia, with Matt Bernhard and Peter B. Rønne
serving as Program Chairs.

June 2019 Jeremy Clark
Peter B. Rønne

VOTING 2019 Organization

Program Chairs

Jeremy Clark Concordia University, Canada
Peter B. Rønne University of Luxembourg, Luxembourg

Program Committee

Roberto Araujo Universidade Federal do Pará, Brazil
Chris Culnane The University of Melbourne, Australia
Jeremy Clark Concordia University, Canada
Jeremy Epstein SRI
Aleksander Essex Western University, Canada
David Galindo University of Birmingham, UK
Kristian Gjøsteen Norwegian University of Science and Technology,

Norway
Rajeev Gore The Australian National University, Australia
Rolf Haenni Bern University of Applied Sciences, Switzerland
Oksana Kulyk Karlsruhe Institute of Technology, Germany
Steve Kremer Inria Nancy, France
Robert Krimmer Tallinn University of Technology, Estonia
Olivier Pereira Université catholique de Louvain, Belgium
Peter B. Rønne University of Luxembourg, Luxembourg
Peter Ryan University of Luxembourg, Luxembourg
Steve Schneider University of Surrey, UK
Carsten Schuermann IT University of Copenhagen, Denmark
Philip Stark University of California, Berkeley, USA
Vanessa Teague The University of Melbourne, Australia

Contents

Trusted Smart Contracts

Two-Party State Channels with Assertions . 3
Chris Buckland and Patrick McCorry

Short Paper: Secure Offline Payments in Bitcoin. 12
Taisei Takahashi and Akira Otsuka

Proof-of-Work Sidechains . 21
Aggelos Kiayias and Dionysis Zindros

You Sank My Battleship! A Case Study to Evaluate State Channels
as a Scaling Solution for Cryptocurrencies . 35

Patrick McCorry, Chris Buckland, Surya Bakshi, Karl Wüst,
and Andrew Miller

Game-Theoretic Analysis of an Incentivized Verifiable
Computation System . 50

Mahmudun Nabi, Sepideh Avizheh,
Muni Venkateswarlu Kumaramangalam, and Reihaneh Safavi-Naini

Sluggish Mining: Profiting from the Verifier’s Dilemma 67
Beltrán Borja Fiz Pontiveros, Christof Ferreira Torres, and Radu State

Short Paper: Deploying PayWord on Ethereum. 82
Muhammad Elsheikh, Jeremy Clark, and Amr M. Youssef

SoK: Development of Secure Smart Contracts – Lessons
from a Graduate Course . 91

Monika di Angelo, Christian Sack, and Gernot Salzer

Verification-Led Smart Contracts . 106
Richard Banach

A Java Framework for Smart Contracts . 122
Fausto Spoto

Is Solidity Solid Enough?. 138
Silvia Crafa, Matteo Di Pirro, and Elena Zucca

Building Executable Secure Design Models for Smart Contracts
with Formal Methods . 154

Weifeng Xu and Glenn A. Fink

SoK: Transparent Dishonesty: Front-Running Attacks on Blockchain. 170
Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark

Trustee: Full Privacy Preserving Vickrey Auction on Top of Ethereum 190
Hisham S. Galal and Amr M. Youssef

Advances in Secure Electronic Voting Schemes

Election Manipulation 100 . 211
Michelle Blom, Peter J. Stuckey, and Vanessa J. Teague

Bernoulli Ballot Polling: A Manifest Improvement
for Risk-Limiting Audits . 226

Kellie Ottoboni, Matthew Bernhard, J. Alex Halderman,
Ronald L. Rivest, and Philip B. Stark

k-Cut: A Simple Approximately-Uniform Method for Sampling Ballots
in Post-election Audits. 242

Mayuri Sridhar and Ronald L. Rivest

How to Assess the Usability Metrics of E-Voting Schemes 257
Karola Marky, Marie-Laure Zollinger, Markus Funk, Peter Y. A. Ryan,
and Max Mühlhäuser

Improving the Performance of Cryptographic Voting Protocols 272
Rolf Haenni, Philipp Locher, and Nicolas Gailly

Short Paper: Coercion-Resistant Voting in Linear Time via Fully
Homomorphic Encryption: Towards a Quantum-Safe Scheme. 289

Peter B. Rønne, Arash Atashpendar, Kristian Gjøsteen,
and Peter Y. A. Ryan

PrivApollo – Secret Ballot E2E-V Internet Voting. 299
Hua Wu, Poorvi L. Vora, and Filip Zagórski

End-to-End Verifiable Quadratic Voting with Everlasting Privacy 314
Olivier Pereira and Peter B. Rønne

Lattice-Based Proof of a Shuffle . 330
Nuria Costa, Ramiro Martínez, and Paz Morillo

Author Index . 347

xiv Contents

Trusted Smart Contracts

Two-Party State Channels
with Assertions

Chris Buckland(B) and Patrick McCorry

Kings College London, London, UK
cpbuckland88@gmail.com, patrick.mccorry@kcl.ac.uk

Abstract. An empirical case study to evaluate state channels as a scal-
ing solution for cryptocurrencies demonstrated that providing an appli-
cation’s full state during the dispute process for a state channel is finan-
cially costly (i.e. $0.24 to $8.83 for a battleship game) which can hamper
their real-world use. To overcome this issue, we present State Assertion
Channels, the first state channel to guarantee an honest party is always
refunded the cost if it becomes necessary to send an application’s full
state during the dispute process. Furthermore it ensures an honest party
will pay an approximate fixed cost to continue an application’s execution
via the dispute process. We provide a proof of concept implementation
in Ethereum which demonstrates it costs approximately $0.02 to submit
evidence regardless of the smart contract’s application.

1 Introduction

Blockchain-based cryptocurrencies do not scale. The community is pursing three
approaches to alleviate the scalability issue. These are: new blockchain protocols
[2,8,19], sharding transactions into distinct processing areas [1,12,13] and off-
chain protocols [5,10,11,15,17,18,20]. While the first two approaches can strictly
increase the network’s throughput, they harm the network’s public verifiability as
they reduce the diversity of peers with the computational, bandwidth or storage
requirements to validate all transactions on the network and ultimately hold the
miners accountable. [4,9] This paper focuses on the off-chain (or so-called Layer
2) approach that simply aims to reduce the network’s load.

One promiment off-chain approach are state channels that lets a group of par-
ties process transactions (and execute a smart contract) locally amongst them-
selves instead of on the global network. In the best case, the application is no
longer restricted by the underlying blockchain’s latency and all execution is free
as it remains local between the parties. If there is a disagreement about the lat-
est state of the smart contact, then any party can trigger a dispute and rely on
the underlying blockchain to arbitrate the dispute’s outcome. To arbitrate, the
blockchain provides a fixed time period to collect evidence from all online par-
ties before using this evidence to decide the off-chain smart contract’s new state.
So far, there are two types of dispute processes for a state channel. The first
is called closure dispute [6,15,20] as the dispute process is responsible for clos-
ing the channel, re-deploying the smart contract with the new state and letting
c© International Financial Cryptography Association 2020
A. Bracciali et al. (Eds.): FC 2019 Workshops, LNCS 11599, pp. 3–11, 2020.
https://doi.org/10.1007/978-3-030-43725-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43725-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-43725-1_1

4 C. Buckland and P. McCorry

parties continue its execution via the blockchain. The second is called command-
issuance dispute [3,10,14,16] as the dispute process collects commands from each
party and then executes the command to compute the new state.

A recent case study empirically evaluated state channels as a scaling solution
by building the two player game battleship [15]. It highlights that sending the
application’s full state during the dispute process can be financially expensive
which may deter real-world use of state channels. For example, the case study
claimed that sending the full game state approximately costs $0.24 when the
blockchain is not congested, but it can potentially sky-rocket to $8.83 if the
blockchain is congested. The above can clearly hamper real-world use of state
channels as an honest party will not use the dispute process if it is too costly (and
thus they cannot self-enforce the application’s correct execution). The case study
also highlights the need to preserve liveness of an application. If one party is no
longer co-operating off-chain, then a state channel should ensure the application’s
progress can continue via the blockchain. Again, this can be costly if progressing
the application is computationally expensive or if it requires a significant number
of transactions.

To alleivate the above issues, we propose State Assertion Channels. It builds
upon state channels with command-issuance disputes and relies on the concept of
an optimistic Combined, honest parties can always assert the hash of a new state
(and thus progress an application’s execution) without the blockchain computing
the state transition directly. Our contributions:

– We propose the first state channel that ensures an honest party never pays
the cost to send the application’s full state during the dispute process.

– Our state channel is also the first to ensure the cost of progressing an applica-
tion is based only on the number of transactions required to reach a terminal
state, thus it is independent of the application’s computational cost.

– We provide a proof of concept implementation and experimentally demon-
strate that it is cost-effective to deploy.

2 Background

Optimistic Smart Contracts. An optimistic smart contract trades the cost
of computation for time. This lets a smart contract accept an application’s
new state if no one has proved it is invalid within a fixed challenge period.
Briefly, one party submits to the optimistic smart contract the application’s
statei, a command cmd, its inputs, the next statei+1 and a financial bond. This
asserts that statei+1 is the next state if the smart contract were to compute
statei+1 = Transition(statei, cmd, inputs). Other interested parties can compute
the transition locally to verify its validity. If the asserted state is invalid, then
anyone can issue a challenge by notifying the smart contract to compute the
transition. If the challenge is successful, then a bond is used to refund the chal-
lenger. Eigenmann, Moore and Johnson provided the first demo implementation
of an optimistic contract for the Ethereum Name Service [7], but so far this
technique has alluded real-world use.

Two-Party State Channels with Assertions 5

Command Issuance State Channels. Sprites proposed the concept of a command-
issuance state channel, and since then it has been extended by PISA [14], Coun-
terfactual [10] and Magmo [3]. At a high level, one party can submit the latest
statei agreed by all parties before triggering the dispute process. The smart
contract provides a fixed time period for all parties to submit commands and
the contract is responsible for computing every command (i.e. state transition).
In Sprites (and PISA), all commands are executed after the dispute process has
expired. Whereas in Counterfactual and Magmo, the command is executed when
it is submited and the dispute period’s expiry time is reset (i.e. it dispute period
is extended for every command). The dispute process can be cancelled if one
party submits a later state agreed by all parties, or after the expiry time.

3 State Assertion Channels

The state assertion contract SC and the application contract AC must be
deployed on the blockchain. Each party must lock coins into the state assertion
contract before the state channel is activated. Both parties can co-operatively
execute the application off-chain amongst themselves by executing every state
transition for AC locally and exchanging signatures for every new state. If there
is a disagreement off-chain, then both parties can continue its progression via
the dispute process.

Our contribution involves changing the dispute process to avoid sending the
full application’s state, and to avoid computing the next states on-chain. Instead
parties will assert an application’s new state by submitting a hash of the previous
state hstatei, the command cmd, its inputs, a hash of the next state hstatei+1

and a financial bond. The dispute process provides a fixed time period for the
counterparty to verify the assertion by computing the state transition locally.
To challenge an assertion, the party submits the previous statei−1 which lets SC
verify the assertion was indeed correct by executing the transition via AC. If the
honest party successfully challenges an assertion and proves it is invalid, then
they are sent the bond as a refund.

Thus an honest party can always continue an application’s execution via the
blockchain’s dispute process by asserting a hash of the next state. As well, they
are always refunded the cost of sending the application’s full state in order to
challenge an invalid state assertion.

3.1 Application Contract Assumptions

Turn-Based Application. We assume that the parties execute a turn-based appli-
cation where each party performs their state transition in turn until a terminal
state is reached. As well, AC must be instantiated on the blockchain to ensure
its address is provided to the state assertion contract SC.

Single Transition Function. The application contract implements a transition
function which accepts the full state, a command and a list of inputs. The appli-
cation contract is responsible for computing a state transition and returning

6 C. Buckland and P. McCorry

a hash of the new state via hstatei+1 := Transition(statei, cmd, inputs);. The
application contract is stateless consequently the state must be supplied to com-
pute a state transition.

No Exceptions or Out-of-Gas Errors. In Ethereum, an entire transaction’s exe-
cution can be reverted if a smart contract throws an exception (i.e. out of gas).
If the application AC can throw an exception, then it can be used to revert the
execution of an honest party’s challenge. Thus the application’s transition func-
tion should not permit exceptions. We propose the transition function should
return hstate and if the command doesn’t exist or its execution simply fails,
then it should return hstate = 0. This ensures an honest party can always issue
a challenge via SC.challenge() as the state transition (and the verification) will
always complete its execution.

3.2 Assertion Channel Overview

Figure 1 presents the state channel assertion contract. We’ll use it to aid the
following overview on how to instantiate the contract, authorise states off-chain,
how to trigger a dispute, how to submit and challenge assertions, and finally
how to close the channel.

Channel Status. The channel has three flags Status = {DEPOSIT, ON, DISPUTE}.
Both parties must deposit coins in SC before it will transition from DEPOSIT →
ON. While the channel’s status is set as ON both parties can co-operatively con-
tinue the application’s progression off-chain by exchanging signatures for new
states. If there is a disagreement about a state transition, then one party can
trigger a dispute which changes the status from ON → DISPUTE.

Instantiating Contract. One party must deploy SC to the blockchain and initalise
it with the address of both parties P1,P2, the application’s address AC, the fixed
dispute period Δ and the required security bond bond. Both parties must review
the contracts SC,AC and the intialisation values before sending their deposit via
SC.deposit(). After SC has received both deposits (and before turning on the
channel), it will compute the initial state stateinitial = (⊥,balance1,balance2)
and declare the first turn will be taken by P1.1

Progressing Application Off-Chain. Both parties can begin exchanging signa-
tures to execute the application off-chain when the channel is ON. In each round,
one party is responsible for proposing a state transition, and the other party
is responsible for verifying the state transition before co-operatively authorising
it. To propose, the party computes statei+1 = Transition(statei, inputs, cmd),
they hash the state hstatei+1 = hash(statei+1) and they sign its hash σP1 =
Sign(hstatei+1, i+ 1,SC,Pturn), where Pturn specifies the next party’s turn. The
proposer must send hstatei+1, i + 1, σP to the counterparty. To verify, the coun-
terparty computes state transition and the state hash hstate′

i+1 before checking

1 We highlight a subtle difference between the initial state (⊥, balance1, balance2)
and the terminal state (balance1, balance2).

Two-Party State Channels with Assertions 7

Fig. 1. Example of the state assertion contract

8 C. Buckland and P. McCorry

if hstate′
i+1 == hstatei+1. If this condition is satisified (and i + 1 is the largest

counter so far), then the counterparty signs σP2 = Sign(hstatei+1, i+1,SC,Pturn)
and sends their signature σP1 to the proposer.

Triggering a Dispute. In general, a dispute must be triggered if the counterparty
stops responding in the state channel (i.e. they do not agree with the state
update and they refuse to sign it). There are two cases to consider. Either the
proposer is waiting on a signature from the verifier to authorise the new state, or
the verifier is waiting on the proposer to propose a new state transition. In both
cases, each party waits for a local time-out before submiting the most recently
hstatei via SC.setstate() and triggering a dispute via SC.triggerDispute().
The signed state hash includes Pturn and thus SC waits for a new state assertion
from the named party before deadline = now + Δ. To continue off-chain and
cancel the dispute, one party must submit a co-operatively signed hstate (with
a larger counter i) via SC.setstate.

Submitting a State Assertion. The named party Pturn must send an asserted
hstatei+1, the command cmd and its inputs inputs using SC.assertState() before
the dispute process expiry time deadline. Every time a state assertion hstatei+1

is submitted, the contract resets the deadline deadline = now + Δ and stores
the previous state assertion hstatei as accepted. Furthermore the contract records
that it is the counterparty’s turn to respond. In terms of the financial bond, the
contract only needs to store a single bond per party which can be collected when
the party asserts a new state or when the parties send their initial deposit.

Responding to a State Assertion. The counterparty is responsible for verifying if a
state assertion is correct by computing statei+1 = Transition(statei, cmd, inputs)
locally and checking if the asserted hstatei+1 represents statei+1. If the state
assertion is valid, then the counterparty can continue the application’s exe-
cution by responding with a new state assertion using SC.assertState(). By
continuing the application’s execution, the counterparty is agreeing that the
previous state assertion is valid. If the state assertion is invalid, then the coun-
terparty can challenge it by supplying the plaintext state statei to the contract
using SC.challenge(). The contract will compute the transition and confirm
if hstatei+1 represents the new state statei+1. If the challenger is successful and
proves the state assertion as invalid, they are sent all coins in the channel (includ-
ing the counterparty’s bond to refund the cost of this transaction).

Reaching the Terminal State. In Sect. 3.1, we assumed an application’s execution
will always reach a terminal state which is simply the final balance of both parties
statefinal = (balance1,balance2). The final hstatefinal must be accepted by
the assertion contract SC before both parties are sent their final balance by
supplying statefinal to SC.resolve(). It is clear if both parties continue the
application’s execution co-operatively off-chain, then they can simply send the
terminal state hash via SC.setstate() before resolving the channel. On the other
hand, the dispute process enforces turn-based state assertions to ensure that one
party will eventually propose the terminal state hash via SC.assertState().

Two-Party State Channels with Assertions 9

When the terminal state hash is reached, the counterparty’s only option is to
submit statefinal before the deadline using SC.resolve().

4 Discussion and Future Work

Proof of Concept Implementation. We developed a proof of concept for the
Ethereum blockchain. Our smart contract is written in Solidity2, and gas costs
were measured using a private network. The assertions contract costs 2,943,664
gas to deploy, approximately $0.97 using the gas price of 2.6 Gwei and the
conversion rate of 1 ether = $127 which was the real world rate in January
2019. The cost to make a state assertion is only 59,774 + 39.5n gas ($0.02 at 2.6
Gwei and $0.77 on a congested network at 96 Gwei) where n corresponds to the
number of bytes supplied as inputs to the assertion. Compared to the 725,508
gas ($0.24 at 2.6 Gwei and $8.83 at 96 Gwei) required to send the full battleship
state.

Honest Party Can Always Verify State Assertions. To issue a challenge or con-
tinue the application’s execution, an honest party must have the statei which
corresponding to the contract’s accepted hstatei. There are only two situations
when a new hstatei can be accepted by SC. In the first situation, hstatei will be
accepted by SC if it is submitted using SC.setstate(), but this requires both
parties to have already signed it (and thus acknowledge they know statei). In
the second situation, a new hstatei will be accepted by SC if the counterparty
has asserted it using SC.assertState() and if the honest party continues the
application’s execution by asserting the next hstatei+1 via SC.assertState().
We highlight the contract accepts hstatei as the honest party has countinued its
execution instead of challenging it. As the above demonstrates, an honest party
will always have a copy of statei if the corresponding hstatei is accepted by the
contract. Thus they can always verify state transitions and issue challenges.

Motivation for Turn-Based Commands. There are two motivations for the turn-
based channel. First each party can submit a state assertion and the counterparty
is always provided an opportunity to accept or challenge it. Second, each state
assertion must strictly build upon a previously accepted state hash. If there are
two or more state assertions that reference the same previous state hash, then
SC can only accept one state assertion. Because of the requirement to strictly
order state assertions and the need to ‘accept the first received state assertion’,
this lets an attacker simply pay a higher fee and front-run an honest party to
ensure their state assertion is always accepted first (i.e. front-running ensures
an honest party’s state assertion is never accepted by SC). Thus the turn-based
nature of this state channel prevents the above front-running attack.

Enforcing Time-Based Events. The assertion channel is responsible for enforc-
ing time-based events with the dispute period Δ. When the application is co-
operatively progressing off-chain, an honest party will wait for a local timeout

2 Our PoC is an optimised for Solidity https://pastebin.com/UBVvZ0FU.

https://pastebin.com/UBVvZ0FU

10 C. Buckland and P. McCorry

before triggering a dispute via the blockchain. For every new state assertion,
the dispute process is reset to ensure each party has a time period of Δ to take
their next move. If a party doesn’t assert a new state before the deadline, then
the honest party will notify the contract via SC.timeout(). This terminates the
application and sends all coins (including the bonds) to the honest party.

Bond Requirement. Each party must deposit a bond to cover the cost of a suc-
cessful challenge to their assertion. A bond’s value must consider the worst-case
when a transaction fee spikes due to network congestion. For example, in the
battleship empirical case study it was highlighted that submitting the game’s
state can sky rocket from $0.24 to approximately $8.83 during network conges-
tion. If the security bond isn’t sufficient to challenge a state assertion, then the
counterparty may not challenge it.

Offline Parties and PISA. If the honest party is offline, then the counterparty
can trigger a dispute with the latest agreed hash and then assert an invalid state
hash (i.e. sends the counterparty all the coins in the channel). If the offline party
relies on a watching service, like PISA [14], then the watching service must have
a copy of the latest state in plaintext to verify the invalid state transition and
issue a challenge. This hinders state privacy as the watching service can view the
channel’s internal state. As well, a watching service cannot perform a valid state
transition on the offline party’s behalf, so the offline party must ensure the only
valid state transition for the counterparty is the application’s terminal state.

Extending to N-parties. Future work should investigate how the state assertion
paradigm could be extended to n-party state channels. Channels could progress
in a round-robin fashion and store the last n state assertions. This is so that a
party can be sure that a state assertion will not be accepted unless they explicitly
apply their own state assertion after it.

Acknowledgements. Chris Buckland and Patrick McCorry are supported by an
Ethereum Foundation scaling grant, Ethereum Community Fund grant and a Research
Institute grant.

References

1. Al-Bassam, M., Sonnino, A., Bano, S., Hrycyszyn, D., Danezis, G.: Chainspace: a
sharded smart contracts platform. arXiv preprint arXiv:1708.03778 (2017)

2. Bano, S., et al.: Consensus in the age of blockchains. arXiv preprint
arXiv:1711.03936 (2017)

3. Close, T., Stewart, A.: Force-move games (2018). https://magmo.com/force-move-
games.pdf

4. Croman, K., et al.: On scaling decentralized blockchains. In: Clark, J., Meiklejohn,
S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS,
vol. 9604, pp. 106–125. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53357-4 8

http://arxiv.org/abs/1708.03778
http://arxiv.org/abs/1711.03936
https://magmo.com/force-move-games.pdf
https://magmo.com/force-move-games.pdf
https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1007/978-3-662-53357-4_8

Two-Party State Channels with Assertions 11

5. Decker, C., Wattenhofer, R.: A fast and scalable payment network with Bitcoin
duplex micropayment channels. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015.
LNCS, vol. 9212, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21741-3 1

6. Dziembowski, S., Faust, S., Hostáková, K.: General state channel networks. Cryp-
tology ePrint Archive, Report 2018/320 (2018). https://eprint.iacr.org/2018/320

7. Eigenmann, D.: Optimistic contracts. https://medium.com/@decanus/optimistic-
contracts-fb75efa7ca84. Accessed 10 Jan 2019

8. Eyal, I., Gencer, A.E., Sirer, E.G., Van Renesse, R.: Bitcoin-NG: a scalable
blockchain protocol. In: NSDI, pp. 45–59 (2016)

9. Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S.:
On the security and performance of proof of work blockchains. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pp. 3–16. ACM (2016)

10. Horne, L., Coleman, J., Xuanji, L.: Counterfactual: generalized state channels
(2018). https://l4.ventures/papers/statechannels.pdf

11. Khalil, R., Gervais, A., Felley, G.: NOCUST-A non-custodial 2 nd-layer finan-
cial intermediary. Technical report, Cryptology ePrint Archive, Report 2018/642.
https://eprint.iacr.org/2018/642 (2018)

12. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.:
OmniLedger: a secure, scale-out, decentralized ledger via sharding. In: 2018 IEEE
Symposium on Security and Privacy (SP), pp. 583–598. IEEE (2018)

13. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure
sharding protocol for open blockchains. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pp. 17–30. ACM (2016)

14. McCorry, P., Bakshi, S., Bentov, I., Miller, A., Meiklejohn, S.: Pisa: arbitration
outsourcing for state channels. IACR Cryptology ePrint Archive (2018)

15. McCorry, P., Buckland, C., Bakshi, S., Wüst, K., Miller, A.: You sank my battle-
ship! a case study to evaluate state channels as a scaling solution for cryptocur-
rencies

16. Miller, A., Bentov, I., Kumaresan, R., Bakshi, S., McCorry, P.: Sprites: payment
channels that go faster than lightning. CoRR abs/1702.05812 (2017)

17. Poon, J., Buterin, V.: Plasma: scalable autonomous smart contracts. White paper
(2017)

18. Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant pay-
ments. Draft version 0.5, 9:14 (2016)

19. Sompolinsky, Y., Lewenberg, Y., Zohar, A.: Spectre: a fast and scalable cryptocur-
rency protocol. IACR Cryptology ePrint Archive, 2016:1159 (2016)

20. ScaleSphere Foundation Ltd. (“Foundation”): Celer network: bring internet
scale to every blockchain. Technical report. https://www.celer.network/doc/
CelerNetwork-Whitepaper.pdf. Accessed 10 Jan 2019

https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-319-21741-3_1
https://eprint.iacr.org/2018/320
https://medium.com/@decanus/optimistic-contracts-fb75efa7ca84
https://medium.com/@decanus/optimistic-contracts-fb75efa7ca84
https://l4.ventures/papers/statechannels.pdf
https://eprint.iacr.org/2018/642
https://www.celer.network/doc/CelerNetwork-Whitepaper.pdf
https://www.celer.network/doc/CelerNetwork-Whitepaper.pdf

Short Paper: Secure Offline
Payments in Bitcoin

Taisei Takahashi(B) and Akira Otsuka

Institute of Information Security, Yokohama, Japan
{mgs174503,otsuka}@iisec.ac.jp

Abstract. Double-spending attacks on fast payments are one of the
fatal architectural problems in Cryptocurrencies. Dmitrienko et al. pro-
posed an offline fast payment scheme that relies on tamper-proof wal-
lets produced by trustworthy manufacturers. With the wallets, the
payee can immediately trust the transactions generated by the wallets
without waiting for their registration to the blockchain. Secure coin-
preloading to the wallet is important, while illegal coin-preloading can
cause over/double-spending by the trusted wallets. For this, they pro-
posed an interesting protocol that makes use of a fragment of the main
blockchain to prove to the wallets the legitimacy of preloaded coins. One
drawback is that, in proving that the fragment are from honest miners,
their protocol requires a trusted online time-stamp server so that the
wallets can verify the timestamps to see if the blocks in the fragment is
mined with sufficiently large amount of computing resources. Otherwise,
it sacrifices usability. In order to eliminate such an online trustee, in this
paper we took the opposite approach that the payee (not the wallets)
verifies the legitimacy of preloaded coins at the time of offline payment.
As a consequence, our result shows that, with light-weight tamper-proof
wallets, completely decentralized offline payment is possible without any
modification to the existing Bitcoin network.

Keywords: Blockchain · Offline payment · Tamper-proof wallet

1 Introduction

Double-spending attacks on fast payments [4] are the one of the fatal archi-
tectural problems in Cryptocurrencies. Double spending refers to the payment
where the same coin is spent twice in a way that the receiving party cannot
notice the invalidity of the payment. We study an offline immediate payment
scheme based on blockchain secure against the double-spending attacks on fast
payment assuming the security of tamper-proof wallet. Dmitrienko et al. [1]
pointed out that Bitcoin requires clients to be online to perform transactions
and a certain amount of time to verify them, and also offline payments raise
non-trivial challenges, as the payee has no means to verify transactions. Even
online, fast payments are shown to be vulnerable to double-spending attacks [4].

c© International Financial Cryptography Association 2020
A. Bracciali et al. (Eds.): FC 2019 Workshops, LNCS 11599, pp. 12–20, 2020.
https://doi.org/10.1007/978-3-030-43725-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43725-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-43725-1_2

Short Paper: Secure Offline Payments in Bitcoin 13

Offline immediate payments is long demanding in cryptocurrencies. In practice,
without changing the ongoing systems, “fast payment” is widely used such that
the payee could accept the transaction immediately by checking the signature,
and the payer’s balance for confirming that the payer has enough money to
spend. Karame et al. [4] pointed out that, for such a fast payment scheme,
double-spending attack is possible if a malicious payer makes use of the race
condition of the double-spending transactions that reach the payees with dif-
ferent timing in the peer-to-peer network. Dmitrienko proposed a solution for
immediate payment and offline payments that relies on tamper-proof wallets
manufactured by trustworthy manufacturer and deploys time-based transaction
confirmation verification mechanism. They make use of a fragment of the main
blockchain to prove the legitimacy of preloaded coins to the wallets. Their scheme
solved the double-spending problem as Karame et al. suggested. The wallet loses
their credibility if a malicious user succeeds to pre-load illegal coins by inten-
tion. Thus, it is enormously important to establish secure coin preloading to
the wallet. In order to achieve this, Dmitrienko propose an interesting protocol
that proves the fact that a pre-loading payment to the wallet existed using a
subchain, a fragment of the main blockchain. They considered that a subchain
is a part of the mainchain if and only if the total PoW to mine the blocks in
the subchain is greater than some predetermined lower-bound and the average
time to produce the subchain is less than some constant time period. Thus, to
verify the proof inside the tamper-proof wallet, it is necessary to measure the
total computation time consumed to generate the subchain objectively. (A) A
trivial solution to this is to assume a trusted time-stamp server, which sup-
plies a time-stamp to a block everytime the corresponding block is created. (B)
Another solution proposed in [1] is to set the expiration time of the pre-loading
coins. This also convinces the wallet that the subchain is produced within some
bounded time period. Apparently, the construction (A) with the trusted time-
stamp server requires the additional trusted third party. The construction (B)
is decentralized, but it sacrifices the usability to the great extent.

Other studies of interest include Teechan, an offline payment channel, pro-
posed by Lind et al. [5]. It assumes tamper-proof wallets in both side and achieves
offline payments. However, it has to deposit some fund, which corresponds to
our preloading, into the 2-of-2 multisig address between the payee and the payer
sufficiently before the offline payment occurs. Thus, the setting differs from ours.
In the theoretical aspect, Garay et al. [3] formulated the basic properties of the
blockchain in Bitcoin [6] such as “common prefix” and “chain quality”, assuming
that the hashing power of an adversary controlling a fraction of the parties is
strictly less than 1/2. Further extensions are made for variable difficulty [2], a
security analysis in the “semi-synchronous” network model [7].

We propose a novel offline payment scheme alternative to the Dmitrienko’s
protocol. The advantage of our scheme is its fully decentralization, that is, it
does not assume any external trusted time-stamp server. Further, we do not
need to set any expiration time to the pre-loaded coins.

14 T. Takahashi and A. Otsuka

2 Preliminaries

– C: a blockchain.
– Bi: i-th block in C is a triple 〈hash(Bi−1),xi, nonce〉.
– τ : a transaction of a form Sign(skA;A → B, value).
– xi: a root of Merkle Tree for a set of transactions {τ1, τ2, . . .} in Bi.
– U : a set of users.
– H: a set of honest users, H ⊆ U .
– X,Y ∈ U : (typically, X as a payer, Y as a payee).

To analyze the security of our scheme, we follow the notions introduced by
Garay et al. [3]. All players are bounded interactive Turing machines and are all
synchronized and message are exchanged in a discrete time frame called round.
{EXEC t,n

Π,A,Z(z)}z∈{0,1}∗ denotes the random variable ensemble that determines
the output of the environment Z on input z for a protocol Π with adversary A.
VIEW t,n

Π,A,Z(z) denotes the concatenated view of all parties after the completion
of an execution EXEC t,n

Π,A,Z(z). A “flat” model is assumed where all parties
executes exactly q mining trials (hash queries) per round. Then, each mining
trials by various players are modeled as a Bernoulli distribution with different
parameters and the deviation from the expected probability is estimated. We
denoted by κ the length of hash function output, by η parameter determining
block to round translation and by f probability at least one honest party succeeds
in finding a POW in a round. Garay et al. [3] showed that any consecutive rounds
S of length |S| > ηκ in the blockchain protocol is a “typical execution” with
probability 1 − e−Ω(κ) where honest and adversarial mining trials succeed as
expected within a bounded probability fluctuation of at most ε. Then, we have
the followings.

Lemma 1 (Common-Prefix Lemma [3]). Assume a typical execution and con-
sider two chains C1 and C2 such that len(C2) ≥ len(C1). If C1 is adopted by an
honest party at round r, and C2 is either adopted by an honest party or diffused
at round r, then C

�k
1 ≤ C2 and C

�k
2 	 C1, for k ≥ 2ηκf .

3 Secure Offline Bitcoin Payments

Our immediate payment protocol construction basically follows the Dmitrienko’s
protocol [1] but without the existence of the time-stamp server. The main dif-
ference of the protocol is that the correctness of the coin-preloading to the
tamper-proof wallet is verified by the payee in our construction, not the payer
as in the Dmitrienko’s protocol. Similarly to their scheme [1], our construction
also assumes the tamper-resistant wallet to incorporate overspending prevention.
Tamper-resistant wallet has a secret key skT which was created by the wallet
manufacturer T . The wallet also has a variable balance (≥0). It increases in coin
preloading phase and decreases in offline payment phase. Our construction has 3
phases: (i) online coin preloading, (ii) offline payment, and (iii) coin redemption
and wallet revocation. The details are as follows (Fig. 1).

Short Paper: Secure Offline Payments in Bitcoin 15

Fig. 1. Coin Pre-loading protocol

Coin Preloading. In the coin-preloading phase, the payer X requests a new
account w from the wallet (Step 1), then create the preloading transaction τl

transferring bl bitcoins from her account x to w and commit it to the networks
(Step 2). As soon as τl is verified and integrated into the Bitcoin network in
a block, say Bi, X takes Bi (Step 3), and provides τl and the witness of the
membership proof τ̃l

1 to W (Step 4). W sets its balance to bl and stores τl, τ̃l,
and replies status (Step 5)2. For simplicity, we assume one-time coin preloading
for every account w such that once an amount bl is preloaded to w, the wallet W
never accepts preloading transaction to w any more and only makes payments
while balance ≥ 0. It is not hard to extend it to multiple coin preloading.

Secure Offline Transaction. In the offline transaction phase, the payee Y
sends the public key PKY and the requested amount bo to the payer X which are
immediately forwarded to W (Step 1). W checks the balance and if balance ≥ bo,
it decreases balance by bo and generates a transaction τo = Sign(skw;w → y, bo).
Further, W generates a proof = Sign(skT ; τo, τl, τ̃l) that shows τo was created
within the tamper-proof wallet by signing with skT . The resulting τo, proof and
certT , a trustworthy vendor certificate, are sent to Y (Step 3). Y accepts the
transaction if τl is confirmed and τo is valid and issued by a tamper-proof wallet.
More formally, Y accepts τo and proof if and only if

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

certT is trustworthy
Verify(PKT ; proof) = 1
τo ∈ (VCY

∩ Sign(skW ;w → ·, bo))

τl ∈
(

C
�k
Y ∩ Sign(·; · → w, bl)

)

If all checks succeed, Y stores τo, proof and replies to W with status (Step 4)
(Figs. 2 and 3) .

1 τ̃l is a set of hash values such that member(B, τ, τ̃) = 1.
2 The wallet does not check the validity of coin preloading transaction τl. Payments

made from unconfirmed τl will be rejected by payees.

16 T. Takahashi and A. Otsuka

Fig. 2. Offline transaction protocol

Fig. 3. Coin redemption and double-spending wallet revocation protocol

Coin Redemption and Wallet Revocation. When Y gets online, Y proceeds
to the coin redemption and wallet revocation phase. Y broadcasts τo to the
Bitcoin network in order to redeem the coins received from W (Step 1). Next,
the Bitcoin network verifies τo and integrates it to the blockchain. The payee
Y observes the Bitcoin network and periodically updates its local chain C

′
Y

reflecting the newly mined blocks (Step 2). Y waits until τo is confirmed or τo

becomes invalid, τo /∈ VC′
Y
. If τo is invalid, Y initiates revocation by creating a

revocation transaction τr = Sign(skY ; proof, cancel τo) and send it to Insurer Z
(Step 3). Z investigate τr and in order to compensate Y for the damage of bo,
issues τZ then committed to the Bitcoin network (Step 4).

Short Paper: Secure Offline Payments in Bitcoin 17

4 Security Model

Definition 1. τ is said to be valid with respect to a blockchain C if and only
if τ satisfies3 all the pre-agreed requirements4 with respect to the blockchain C.
Further, we denote by VC a set of all possible valid transactions with respect to
C such that

VC = {τ | τ is valid with respect to C}.

valid transactions are correctly formed and not over-spent more than the
balance of the payer’s account as far as regarding the given blockchain C as the
mainchain. Once valid transactions are broadcasted to Bitcoin network by peers,
they may be integrated into the mainchain if the given chain C is shared by
honest miners, and thus the transaction is valid for those honest miners. Note
that this is not guaranteed. Because the given chain C may contradicts with the
localchains of other honest miners. Furthermore, the set of valid transactions will
change as chains evolve.

Definition 2. A transaction τ is said to be confirmed5 if and only if for every
honest player X ∈ H the transaction τ can be found on his localchain CX , that
is, τ ∈ CX for all X ∈ H.

Once a transaction τ is confirmed, the transaction must be in the mainchain
C where C is the longest prefix of all localchains held by honest players such that
C 	 CX for all X ∈ H. Where 	 is a prefix relation [3]. We consider confirmed
transactions are valid. That is, τ is confirmed =⇒ τ ∈ VCX

for all X ∈ H.

Definition 3. Given a security parameter k, τo is said to be verified by a proof
of a form Sign(skT ; τo, τl) with respect to a localchain C if and only if

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

certT is issued by a trustworthy provider
Verify(PKT ; proof) = 1
τo is a transaction of a form Sign(skW ;w → ·, bo)
τl is a transaction of a form Sign(·; · → w, bl)
τo ∈ VC

τl ∈ C
�k

(1)

3 Dmitrienko [1] have introduced a slightly different term CheckSyntaxT for transaction
validation. CheckSyntaxT refers to the syntactical conformance of transactions to the
requirements in the blockchain. On the other hand, valid refers to all the require-
ments for integrating into the blockchain. Those are the syntactical conformance of
transactions, correctness of payer’s signature and further requirements such as “the
payer’s account must exist”, “balance after the transaction must not be negative”.

4 In Bitcoin, the requirements (e.g., Bitcoin Improvement Proposals) are subject to
change. New proposals will be incorporated in the requirements after agreed among
majority of miners through voting process in the blockchain.

5 In practice, a transaction is confirmed after the block that contains the transaction
has at least 6 blocks built on top. This is the situation where our notion of confirmed
is satisfied with high probability.

18 T. Takahashi and A. Otsuka

where certT is a certificate issued to a public key PKT which is generated within
a tamper-proof wallet W at the production time. (PKW , skW) is a key pair gen-
erated by W, and w is an account related to PKW .

In the offline payment, a payee Y verifies the received transaction τo by a
proof Sign(skT ; τo, τl) with his localchain CY . If all of the above conditions are
satisfied, Y is convinced that the coin-preloading transaction to the payer’s wallet
τl is confirmed by all honest players with overwhelming probability in k. As far
as the tamper-proof wallet honestly produces the payment transaction τo, Y can
believe that τo is not an overspending transaction and will be confirmed later on.
To see whether τl satisfies the last condition τl ∈ C

�k, in a naive construction,
the payee must keep the whole set of transactions previously registered in the
blockchain C. For efficiency purposes, we assume that all transactions in a block
B are kept in a form of a Merkle Tree and B only keeps the root hash value of
the tree. Let τ̃l be a witness of the membership proof, or a set of all sibling hash
values in every branch in the path from the root to the leaf τl. Using the witness
τ̃l, the membership proof can be efficiently proved since there exists a function
member(·) such that

member(B, τ, τ̃) =

{

1 if τ ∈ B

0 otherwise

We replace the proof with Sign(skT ; τo, τl, τ̃l) where offline payee needs efficiency.

Theorem 1. We assume there exists a tamper-proof wallet W . Given a security
parameter k and an offline transaction τo accepted by a payee Y such that τo is
verified by a proof = Sign(skw; τo, τl) with respect to the payee’s localchain CY ,
the probability that the transaction τo, later on, changes its state to invalid is
negligible in k. That is, with C

�k
Y 	 C

′
Y , we have

Pr[τo /∈ V�k
C′

Y
| τo is verified by proof with respect to CY] < negl(k).

Proof. Given τo is verified by proof with respect to CY , Eq. (1) holds. Under
the tamper-proof assumption, the tamper-proof wallet W never overspends
exceeding the preloaded balance bl. Therefore, if the preloading transaction τl is
confirmed, that is, τl ∈ CX for all X ∈ H, then the offline transaction τo cannot
become invalid with respect to C

′
Y .

Since τl is already in a localchain of Y , that is, τl ∈ C
�k
Y , for τl not to be

confirmed, there must exist an honest player Z with a localchain CZ such that
τl /∈ CZ . The common-prefix property states that all localchain C held by honest
players must satisfy C

�k 	 CZ with negligible error probability in k. Substituting
C → CY , τl ∈ C

�k
Y contradicts with τl /∈ CZ . Thus, τl must be confirmed with

arbitrarily high probability 1−negl(k) with the security parameter k. Hence the
theorem. �

In the case τo /∈ V
C

′�k
Y

where the offline transaction τo is turned out to

be invalid later on with respect to the payee’s evolved localchain C
′
Y (� C

�k
Y),

Short Paper: Secure Offline Payments in Bitcoin 19

this must be the case where the tamper-proof wallet assumption is broken and
τo is found to be an overspent transaction. Even in this case, the preload-
ing transaction τl must still be confirmed with 1 − negl(k). Therefore, the
proof = Sign(skw; τo, τl) still satisfies the following 5 of all 6 conditions in (1) for
all honest player X ∈ H with 1 − negl(k).

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

certT is issued by a trustworthy provider
Verify(PKT ; proof) = 1
τo is a transaction of a form Sign(skW ;w → ·, bo)
τl is a transaction of a form Sign(·; · → w, bl)
τl ∈ CX

�k

This fact convinces all honest players. Given τo is invalid with respect to C
′
Y , that

is, τo /∈ V
C

′�k
Y

, the redeeming transaction τr = Sign(skY ; proof, cancel τo) becomes

valid with respect to CX � C
′�k
Y for all X ∈ H with arbitrarily high probability

1−negl(k). The trustworthy provider of the tamper-proof wallet or an insurance
company might compensate Y for the damage of bo after τr is confirmed.

5 Conclusion

In this paper, we have shown that, with light-weight tamper-proof wallets, com-
pletely decentralized offline payment is possible without any modification to the
existing Bitcoin network. Our protocol requires the coin pre-loading transaction
is confirmed and its block is delivered to every possible payee before the first
offline payment is made. This should be the best possible for Bitcoin network.

Lastly, we thank anonymous reviewers for their valuable comments.

References

1. Dmitrienko, A., Noack, D., Yung, M.: Secure wallet-assisted offline Bitcoin payments
with double-spender revocation. In: ASIACCS (2017)

2. Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin backbone protocol with chains of
variable difficulty. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 291–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 10

3. Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin backbone protocol: analysis and
applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46803-6 10

4. Karame, G.O., Androulaki, E., Capkun, S.: Double-spending fast payments in Bit-
coin. In: CCS, pp. 906–917. ACM (2012)

5. Lind, J., Eyal, I., Pietzuch, P.R., Sirer, E.G.: Teechan: payment channels using
trusted execution environments. https://arxiv.org/abs/1612.07766 (2016), https://
arxiv.org/pdf/1612.07766.pdf. Accessed 9 Mar 2017

https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://arxiv.org/abs/1612.07766
https://arxiv.org/pdf/1612.07766.pdf
https://arxiv.org/pdf/1612.07766.pdf

20 T. Takahashi and A. Otsuka

6. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash systems, November 2008.
https://bitcoin.org/bitcoin.pdf

7. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asynchronous
networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol.
10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56614-6 22

https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22

Proof-of-Work Sidechains

Aggelos Kiayias1,3 and Dionysis Zindros2,3(B)

1 University of Edinburgh, Edinburgh, UK
akiayias@inf.ed.ac.uk

2 National and Kapodistrian University of Athens, Athens, Greece
dionyziz@di.uoa.gr

3 IOHK, Hong Kong, China

Abstract. During the last decade, the blockchain space has exploded
with a plethora of new cryptocurrencies, covering a wide array of dif-
ferent features, performance and security characteristics. Nevertheless,
each of these coins functions in a stand-alone manner, independently.
Sidechains have been envisioned as a mechanism to allow blockchains to
communicate with one another and, among other applications, allow the
transfer of value from one chain to another, but so far there have been
no decentralized constructions. In this paper, we put forth the first side
chains construction that allows communication between proof-of-work
blockchains without trusted intermediaries. Our construction is generic
in that it allows the passing of any information between blockchains.
Using this construction, two blockchains can be connected in a “two-way
peg” in which an asset can be transferred from one chain to another and
back. We pinpoint the features needed for two chains to communicate:
On the source side, a proof-of-work blockchain that has been interlinked,
potentially with a velvet fork; on the destination side, a blockchain with
smart contract support. We put forth the smart contracts needed to
implement these sidechains and explain them in detail. In the heart of
our construction, we use a recently introduced cryptographic primitive,
Non-Interactive Proofs of Proof-of-Work (NIPoPoWs).

1 Introduction

Bitcoin [13] is the most successful cryptocurrency to date. It introduced block-
chains, a of cryptographic consensus protocol in which transactions are organized
into blocks which are put in a mutually agreed sequence despite the presence of
adversaries. Consensus is achieved via proof-of-work [4] which is the precondi-
tion for block validity. Transactions moving value within blockchains have been
proven to be secure and that consensus is eventually achieved, cf. [5,6,14].

Ethereum [3] extends Bitcoin’s functionality introducing Turing-complete
smart contracts programmed in languages like Solidity which run on top of
the Ethereum Virtual Machine [18]. These contracts execute autonomously. The
smart contracts are confined to access data only within the blockchain itself, such
as previous transactions and blocks. Access to external data requires a trusted
third party or group thereof to vouch for the data validity [23].

Research partially supported by H2020 project PRIVILEDGE # 780477.

c© International Financial Cryptography Association 2020
A. Bracciali et al. (Eds.): FC 2019 Workshops, LNCS 11599, pp. 21–34, 2020.
https://doi.org/10.1007/978-3-030-43725-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43725-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-43725-1_3

22 A. Kiayias and D. Zindros

Sidechains [1] are a mechanism for cross-chain communication in blockchains.
They allow smart contracts on one blockchain to receive and react to events
taking place on another blockchain without the need of trusted parties. Despite
their widely agreed usefulness there exist no constructions that are decentralised
and efficient at the same time.

Our Contributions. In this paper, we introduce the first trustless construction
for proof-of-work sidechains. We describe how to build generic communication
between blockchains. As one application, we give the construction of a two-way
pegged asset which can be moved from one blockchain to another while retaining
its nature. We provide a high-level construction in Solidity. Our construction
works across a broad range of blockchains requiring only two underlying proper-
ties. First, that the source blockchain is a proof-of-work blockchain supporting
Non-Interactive Proofs of Proof-of-Work (NIPoPoWs), a cryptographic primi-
tive which allows constructing succinct proofs about events which occur in a
proof-of-work blockchain and which was recently introduced in [12]. Support for
NIPoPoWs can be introduced to practically any work-based cryptocurrency such
as Bitcoin and Ethereum without a hard or soft fork. Second, that the target
blockchain is able to validate such proofs through smart contracts such as, e.g.,
Ethereum or Ethereum Classic. To our knowledge, we are the first to provide
such a construction in full.

Related Work. Sidechains were introduced as a Bitcoin upgrade mechanism
by Back et al. [1]. They proposed introducing a new child blockchain which
implements a new protocol version, with which assets are 2-way pegged. The
firewall property was articulated. No complete construction of the protocol was
given. Their paper hints at the need for “efficient SPV proofs” (Appendix B) in
future work, which we implemented here. We use the term sidechains in a more
general notion than in their work. Our sidechains allow communication between
stand alone blockchains and also convey any information, not just transfers of
value. In our work, a blockchain is a sidechain of another chain if it can react to
events on that chain, and so the relationship can be symmetric.

Polkadot [19], Tendermint, Cosmos [2], Liquid and Interledger [7] also build
cross-chain transfers. Their validation relies on a trusted committees, federations
or is left unspecified. Drivechains and rootstock are sidechain proposals which
require miners of both chains to be aware of both networks. In our scheme,
miners remain agnostic to the existence of other chains and connect only to
one network. BTCRelay is a trustless mechanism relaying information one-way
from Bitcoin to Ethereum, in which miners are connected to their network only.
BTCRelay requires the transmission of the entirety of the source blockchain
headers into the target blockchain. Our proposal only requires data logarithmic
in size of the source blockchain. This stems from the succinctness property of
the NIPoPoW scheme. Other related work includes Plasma [15], XCLAIM [21],
PeaceRelay, COMIT [9], and NOCUST [10] and Dogethereum.

Proof-of-Work Sidechains 23

2 Overview

We wish to transfer assets from one blockchain to another and then back. When
assets can be transferred from one blockchain to another but not back, we call
it a one-way peg. If assets can also be moved back, we call it a two-way peg. In
each individual transfer of an asset, we have a particular source blockchain, from
which the asset is moved, and a particular target blockchain, to which the asset
is moved. In a sidechain setting of two blockchains that are two-way pegged,
both blockchains can function as a source and a target blockchain for different
transfers.

Fig. 1. Basic information transfer between two blockchains

While the motivation for the construction is to be able to move assets from
one blockchain to another, we generalize the notion of sidechains from this strict
setting. In general, we would like the target blockchain to be able to react to any
event that occurs on the source blockchain. Such events can be the fact that a
transaction with a particular txid took place, that a certain account was paid a
certain amount of money, or that a particular smart contract was instantiated.
Our sidechain construction allows the target blockchain to react to events that
took place on the source blockchain. This reaction can be implemented in its
target blockchain smart contracts. We describe our construction in pseudocode
similar to Ethereum’ Solidity. In Solidity, events can be fired arbitrarily from
within a smart contract and do not have a semantic interpretation. In this set-
ting, events are defined by Solidity using the event type and have an event name,
a contract address which fired them, as well as certain parameter values. A con-
tract can elect to fire an event with any name and any parameters of its choice
by invoking the emit command.

A high-level overview of cross-chain event transmission is shown in Fig. 1.
The process is as follows. First, an event is fired in the source blockchain, shown
at the top. This could be any event that can be emitted using Ethereum’s emit
command. This event firing is caused by a certain transaction which is included
at a certain block, indicated in black at the top. This block is then buried under
k1 subsequent blocks within the source blockchain, where the k1 parameter is
a security parameter of the scheme depending on the specific parameters of the

24 A. Kiayias and D. Zindros

source blockchain [5]. As soon as this confirmation occurs, the target blockchain
can react to the event, shown at the bottom. This reaction occurs in a transaction
which is included in a block within the target blockchain, illustrated in white. As
usual, the block needs to be confirmed by waiting for k2 blocks to be mined on
top of it. It is possible that k1 �= k2 because of different blockchain parameters
such as a difference in block generation time or network synchrony.

Using this basic functionality of event information exchange between block-
chains, we can construct two-way pegged sidechains. In such a construction, an
asset that exists on one blockchain will gain the ability to be moved to a different
blockchain and back. We will use the example of moving ether, the native asset
of the Ethereum blockchain, from the Ethereum blockchain into the Ethereum
Classic blockchain and back. Such an action is different from exchanging ether
(ETH), the native token of the Ethereum blockchain, with ether classic (ETC),
the native token of the Ethereum Classic blockchain. Instead, the asset retains
its nature; it maintains its price and its ability to be used for the same purposes,
while being governed by the rules of the new blockchain, such as different per-
formance, fees, features, or security guarantees. Furthermore, no counterparty
or market is required to perform the exchange; the transfer is something a party
can do on its own.

3 Construction

Cross-Chain Certificates

For our construction, we use a primitive called Non-Interactive Proofs of Proof-
of-Work recently introduced in [12]. Non-Interactive Proofs of Proofs-of-Work are
cryptographic protocols which implement a prover and a verifier. The prover is
a full node on the source blockchain. The verifier does not have access to that
blockchain, but knows the source genesis block G. The prover wants to convince
the verifier that an event took place in the source blockchain; for instance, a
smart contract method was called with certain parameters or that a payment
was made into a particular address. Whether such an event took place can easily
be determined if one inspects the whole blockchain. However, the prover wishes
to convince the verifier by only sending a succinct proof, a short string which
does not grow linearly with the size of the source blockchain, but, rather, polylog-
arithmically. The verifier must not be fooled by adversarial provers who provide
incorrect proofs claiming that an event happened while in fact it didn’t, or that
it didn’t while in fact it did. These adversaries can also mine blocks, but the
honest parties are assumed to control the majority of computational power on
both the source and the target blockchain networks. To withstand such attacks,
the verifier accepts multiple proofs, at least one of which is assumed to have been
honestly generated (this assumption is necessary in standard blockchain proto-
cols in general [8,20]). Comparing these proofs against each other, the verifier
extracts a reliable truth value corresponding to the same value it would deduce
if it were to be running a full node on the blockchain itself. This property is the
security of NIPoPoWs proven in [12].

Proof-of-Work Sidechains 25

The NIPoPoWs construction talks about predicates evaluated on block-
chains, but we are interested in events. We can translate from events to predi-
cates provable with NIPoPoWs. Specifically, given a genesis block G, a smart
contract address addr, an event name Event, and a series of event parame-
ter values (param1, param2, · · · , paramn), the predicate e we wish to check for
truth is the following: Has the event named Event been fired with parameters
(param1, param2, · · · , paramn) by the smart contract residing in address addr on
the blockchain with genesis block G at least k blocks ago? This predicate is (1)
monotonic, meaning that it starts with the value false and, if it ever becomes true,
it cannot ever change its value back as the blockchain grows; (2) infix-sensitive,
meaning that its truth value can be deduced by inspecting a polylogarithmically-
bound number of blocks on the blockchain (in our case one block, within which
the event firing was confirmed); and (3) stable, meaning that, if one party deduces
that its value is true, then soon enough all parties will deduce that its value is
true. This last property stems from the requirement that the event be buried
under k blocks ensuring a blockchain reorganization up to k blocks ago cannot
affect the predicate’s value.

In order to determine whether an event took place, the NIPoPoW verifier
function verifyG,e

k,m(P) accepts the event description in the form of a blockchain
predicate e, which we gave above, the genesis block of the remote chain G, as
well as two security parameters k and m. These security parameters can be
constants specified when the sidechain system is created (concrete values for
these are given in [12]). Subsequently, the NIPoPoW verifier accepts a set of
proofs P = {π1, π2, · · · , πn} which it compares and extracts a truth value for
the predicate: Whether the event has taken place in the remote blockchain or
not. As long as at least one honestly generated proof πi is provided, the verifier’s
security ensures that the output will correspond to whether the event actually
occurred.

Our protocol works as follows. Whenever an event of interest occurs on the
source blockchain, the occurence of this event is observed by a source blockchain
honest node, who generates a NIPoPoW about it. The target blockchain contains
a smart contract with a method to accept and verify the veracity of this proof.
The node can then submit the proof to the smart contract by broadcasting a
transaction on the target blockchain. As soon as the proof is validated by the
smart contract, the target blockchain can elect to react to the event as desired.

Adoption Considerations. Our construction has certain prerequisites for
both the source and the target blockchain before it can be adopted. In the case
of bidirectionally connected blockchains, both of them must satisfy the source
and the target blockchain prerequisites.

– The source blockchain needs to support proofs about it, which requires
augmenting it with an interlink vector, the details of which can be found
in [11]. This interlink vector can be added to a blockchain using a user-
activated velvet fork [12,22], which is performed without miner awareness
and does not require a hard or soft fork. However, only events occuring after
the velvet fork can be proven. New blockchains can adopt this from genesis.

26 A. Kiayias and D. Zindros

– The target blockchain needs to be able to run the above verify function.
This function can be programmed in a Turing-complete language such as
Solidity. If the source blockchain proof-of-work hash function is available as
an opcode or pre-compiled smart contract within the target blockchain’s VM
the way, e.g., Bitcoin’s SHA256 hash function is available in Solidity, the
implementation can be more gas-efficient.

Blockchain Agnosticism. We underline the remarkable property that miners
and full nodes of the target blockchain do not need to be aware of the source
blockchain at all. To them, all information about the source blockchain is simply
a string which is passed as a parameter to a smart contract and can remain
agnostic to its semantics as a proof. Additionally, miners and full nodes of the
source blockchain do not need to be aware of the target blockchain. Only the
parties interested in facilitating cross-chain events must be aware of both. Those
untrusted facilitators need to maintain an SPV node on the source blockchain
about which they generate their NIPoPoW. To broadcast their proof on the
target blockchain, they connect to target blockchain nodes and send the trans-
action containing the NIPoPoW. Blockchain agnosticism allows users to initiate
cross-chain relationships between different blockchains dynamically, as long as
the blockchains in question satisfy the above prerequisites.

Cross-Chain Events

We give our crosschain construction in Algorithm 1. Initially, our communication
will be unidirectional. In the next section, we use two unidirectional channels to
establish bidirectional communication. This smart contract runs on the target
blockchain and informs it about events that took place in the source blockchain.
It is parameterized by three parameters: k and m are the underlying security
parameters of the NIPoPoW protocol. The value z is a collateral parameter,
denominated in ether (or the native currency of the blockchain in which the
execution takes place) and is used to incentivize honest participants to inter-
vene in cases of false claims. The contract utilizes the NIPoPoW verify function
parameterized by the event e, the remote genesis block G and the security param-
eters k and m. We do not give an explicit implementation of verify, as it can be
implemented in a straightforward manner by translating the pseudocode listing
of [12]. For our purposes, it suffices to treat it as a black box which, given a set
of proofs, at least one of which is honestly generated, returns the truth value of
the respective predicate.

The contract allows detecting remote blockchain events and can be inherited
by other contracts that wish to adopt its functionality. It works as follows. First,
the initialize method is called exactly once to configure the contract, passing the
hash of the genesis block of the remote chain which this contract will handle.
This method is internal and can only be called by the contract inheriting from it.

Proof-of-Work Sidechains 27

Users of the contract can check it has been configured with the correct genesis
block prior to using it. We note that, while our algorithm does not reflect this
to keep complexity low, it is possible to have a contract interact with multiple
remote chains by extending it to include multiple geneses.

Algorithm 1. The smart contract skeleton that enables checking cross-chain
proofs about events.
1: contract crosschaink,m,z

2: finalized-events ← ∅; events ← ∅
3: internal function initialize(Gremote)
4: G ← Gremote

5: end function
6: payable function submit-event-proof(π, e)
7: if msg.value < z then � Ensure sufficient collateral
8: return ⊥
9: end if

10: if events[e] = ⊥ ∧ verifye,Gk,m({π}) then
11: events[e] ← {expire: block.number + k, proof: π, author: msg.sender}
12: end if
13: end function
14: function finalize-event(e)
15: if events[e] = ⊥ ∨ block.number < events[e].expire then
16: return ⊥
17: end if
18: finalized-events ← finalized-events ∪ {e}
19: author ← events[e].author
20: events[e] ← ⊥
21: author.send(z) � Return collateral
22: end function
23: function submit-contesting-proof(π∗, e)
24: if events[e] = ⊥ ∨ block.number ≥ events[e].expire then
25: return ⊥
26: end if
27: if ¬verifye,Gk,m({events[e].proof, π∗}) then � Original proof was fraudulent
28: events[e] ← ⊥
29: msg.sender.send(z) � Pay collateral to contester
30: end if
31: end function
32: function event-exists(e)
33: return e ∈ finalized-events
34: end function
35: end contract

28 A. Kiayias and D. Zindros

The lifecycle of an event submission is illustrated in Fig. 2. When an event has
taken place in the source blockchain, any source blockchain SPV node, the author,
can inform the crosschain contract about this fact by generating a NIPoPoW π
claiming that the event took place based on their current view of the source block-
chain. This proof can then be submitted to the target blockchain by calling the
submit-event-proof function and passing it the proof π and the event predicate e.
The submission is accompanied by a collateral payment z. If the author is honest,
this collateral will be returned to her later. The submit-event-proof function runs
the NIPoPoW verify algorithm to check that the proof π is well-formed and that
it claims that the predicate is true. It then stores the proof for later use. It also
stores the address of the author and an expiration block number.

Fig. 2. A sequence diagram showing the actions of the untrusted SPV node when
communicating with both blockchain networks and the lifecycle of an event submission

Upon submission of a proof to the submit-event-proof function, the event is
tentatively accepted for a contestation period of k blocks, during which any other
party, the contester, can provide a counter-proof showing that the original proof
was fraudulent. The contester can call the submit-contesting-proof function pass-
ing it the contesting proof π∗ and the event predicate e. The function runs the
NIPoPoW verify algorithm to compare the original proof events[e].proof against
the contesting proof π∗. If the verification algorithm concludes that the origi-
nal proof was fraudulent, the tentatively accepted event is abandoned and the
collateral is paid to the contester.

Otherwise, when the contestation period has expired without any valid con-
testations, the author can call the finalize-event function. This function changes
the acceptance of the event from tentative to permanent by including it in the
finalized-events set and returns the collateral to the author. Finally, the event-
exists function can be used by the inheriting contract to check if an event has

Proof-of-Work Sidechains 29

been permanently accepted. The target blockchain state during this execution is
shown in Fig. 3. The source blockchain’s event included in the black box, upon
sufficient confirmation by k1 blocks (not shown), is transmitted to the target
blockchain at the bottom. The target blockchain includes the event tentatively
in block 1 until a contestation period of k2 has passed; the event is included per-
manently in block 2; subsequently, permanent inclusion needs to be confirmed
with k2 further blocks.

Fig. 3. The target blockchain state during event submission

Two-Way Pegged Sidechains

Having created the generic crosschain contract, we now build two-way pegged
sidechains on top. For concreteness, we use the example of transferring ether
(ETH), the native currency of the Ethereum blockchain, to the Ethereum Classic
blockchain, and back. We note that this example is arbitrary and for illustration.
Our construction can be used between any work-based blockchains satisfying the
prerequisites detailed above.

When ether is moved to the Ethereum Classic blockchain, it will be repre-
sented as an ERC20 token1 within Ethereum Classic. Let this custom token be
called ETH20. The asset retains its nature as it moves from one blockchain to
another if it is always possible to move ETH into ETH20 and back at a one-
to-one rate. The economic reason is that the price of ETH and ETH20 on the
market will necessarily be the same. If the price of ETH were to ever be sig-
nificantly above the price of ETH20 in the market, then a rational participant
would exchange their ETH20 for ETH using sidechains and sell their ETH on
the market instead, and vice versa. There can be a small discrepancy in the two
prices which stems from two different factors: First, the fees needed for a cross-
chain transfer; and second, the temporary market fluctuations that can occur
during the limited time needed to perform the cross chain transfer (k1 + 2k2).
If we assume the price fluctuation (of ETH20 denominated in ETH) per unit of
time is bounded, then the market price difference between ETH and ETH20 at
any moment in time can be bounded by the sum of these two factors.

1 The ERC20 standard [17] defines an interface implementable by smart contracts
that enables holding and transferring custom fungible tokens such as ICO tokens.

30 A. Kiayias and D. Zindros

The sidechain smart contracts are presented in Algorithm 2. These smart
contracts both extend the crosschain smart contract of Algorithm 1. Furthermore,
sidechain2 also inherits basic ERC20 functionality which allows token owners to
transfer the token [16]. The sidechain1 contract will be instantiated on Ethereum,
while the sidechain2 contract will be instantiated on Ethereum Classic. Suppose
the genesis block hash of Ethereum is G1 and of Ethereum Classic is G2. We will
use the genesis block hash of each blockchain as its unique identifier.

The two smart contracts both contain an initialize method which accepts the
hash of the remote blockchain as well as the address of the remote smart contract
it will interface with. Note that, while the two genesis hashes can be hard-coded
into the respective smart contract code itself, the remote contract address cannot
be built-in as a constant into the smart contract, but must be later specified by
calling the initialize function. The reason is that, if sidechain1 were to be created
on G1, it would require the address of sidechain2 to exist prior to its creation,
and vice versa in a circular dependency. Therefore, the two contracts must first
be created on their respective blockchain to obtain addresses, and then their
initialize methods can be called to inform each contract about the address of
the other. Specifically, first the contract sidechain1 is created on G1 to obtain
its instance address which we also denote sidechain1. Then the second contract,
sidechain2, is created on G2 to obtain its address sidechain2. Subsequently, the
initialize function of sidechain1 is called, passing it G2 and the address sidechain2.
Finally, initialize is called on sidechain2, passing it G1 and the address sidechain1.
These initialization parameters are stored by the respective smart contracts for
future use. As the crosschain contract requires, the initialize method can only be
called once. Any user wishing to utilize this sidechain is expected to validate
that the contracts have been set up correctly and that initialize has been called
with the appropriate parameters.

sidechain1 contains a deposit function which is payable in the native asset of
Ethereum, ETH. When a user pays ETH into the deposit function, the funds
are held by the smart contract and can later be used to pay parties who wish
to withdraw, an operation performed by calling the withdraw function. sidechain2
contains similar deposit and withdraw functions which, however, do not pay in the
native currency of Ethereum Classic, but instead maintain a balance mapping
akin to a typical ERC20 implementation. The balance is updated when a user
deposits or withdraws.

Proof-of-Work Sidechains 31

Algorithm 2. An asset transferring contract between G1 and G2

1: contract sidechain1 extends crosschaink,m,z

2: initialized ← false; ctr ← 0
3: function initialize(G2, sidechain2)
4: if ¬initialized then
5: crosschain.initialize(G2) � Initialize with the remote chain genesis block
6: initialized ← true
7: this.sidechain2 ← sidechain2
8: end if
9: end function

10: payable function deposit(target)
11: � Emit an event to be picked up by remote contract
12: ctr += 1
13: emit Deposited1(target, msg.value, ctr)
14: end function
15: function withdraw(amount, target, ctr)
16: � Validate that event took place on remote chain
17: if ¬event-exists((sidechain2,Deposited2, (amount, target, ctr))) then
18: return ⊥
19: end if
20: msg.sender.send(amount)
21: end function
22: end contract
23: contract sidechain2 extends crosschaink,m,z; ERC20
24: mapping(address ⇒ int) balances
25: initialized ← false; ctr ← 0
26: function initialize(G1, sidechain1)
27: if ¬initialized then
28: crosschain.initialize(G1)
29: initialized ← true
30: this.sidechain1 ← sidechain1
31: end if
32: end function
33: function deposit(target, amount)
34: if balances[msg.sender] < amount then
35: return ⊥
36: end if
37: balances[msg.sender] −= amount � Charge account of sender
38: ctr += 1
39: emit Deposited2(target, amount, ctr)
40: end function
41: function withdraw(amount, target, ctr)
42: if ¬event-exists((sidechain1,Deposited1, (amount, target, ctr))) then
43: return ⊥
44: end if
45: balances[target] += amount � Credit target account
46: end function
47: end contract

32 A. Kiayias and D. Zindros

Moving funds from the Ethereum blockchain into the Ethereum Classic block-
chain works as follows. First, the user pays with ETH to call the deposit function
of sidechain1 which resides on G1, passing the target parameter which indicates
their address in the Ethereum Classic blockchain that they wish to receive the
money into. This call emits an event, Deposited1 which contains the necessary
data: the target, the amount paid, as well as a nonce ctr to allow for future pay-
ments of the same amount to the same target. When the event has been emitted
and buried under k1 blocks within the Ethereum blockchain, the user produces
an Ethereum NIPoPoW π1 about the predicate e1 which claims that the event
Deposited1 has been emitted in blockchain G1 with the particular parameters by
the contract residing at address sidechain1.

Subsequently, the user calls the submit-event-proof function of sidechain2
(which is inherited from the crosschain contract), passing the NIPoPoW π1 and
the event predicate e1 and paying collateral z, which registers e1 on sidechain2
as tentative. Because the user is honest, no adversary can produce a π∗

1 which
disproves their claim during the dispute period, and therefore the user waits for
k2 blocks for the contestation period to expire without any successful contes-
tations. She then calls the finalize-event function for e1 and receives back the
collateral z, marking the event permanent. Finally, she calls the function with-
draw of sidechain2, passing it the same parameters that e1 was issued with. The
withdraw function checks that e1 exists using the event-exists method, which will
return true. The user is then credited with amount in their ETH20 balance stored
in balances[target]. This increment in balance creates brand new ETH20 tokens.
The withdraw function also stores the signature of the event parameters that
have been spent to avoid replay attacks, which is not shown here for algorithm
brevity.

The user can then transfer their ETH20 tokens by utilizing the functional-
ity inherited from the ERC20 contract. When some (not necessarily the same)
user is ready to move some (not necessarily the same) amount of ETH20 from
the Ethereum Classic blockchain back into ETH on the Ethereum blockchain,
they follow the reverse procedure: They call the withdraw function of sidechain2
which ensures their ERC20 balance is sufficient, deduces the requested amount,
and fires an event e2 as before. At this point, these particular ETH20 tokens
are destroyed by the balance deduction. Once e2 is confirmed in G2, the user
produces the NIPoPoW π2 about e2 which claims a payment was made within
G2. That proof is then submitted to sidechain1 by calling the submit-event-proof
and finalize-event functions as before. Last, the user calls the withdraw function
of sidechain1, which uses the event-exists function which will return true, finally
paying back the user the respective amount of ETH. Because the only way to
create ETH20 tokens in sidechain2 is by depositing ETH into sidechain1, there
will always exist a sufficient balance of ETH owned by the sidechains1 smart
contract to pay for any requested withdrawals.

Suppose now that an adversarial user makes a false claim that an event e
took place in G1 and posts a relevant NIPoPoW π in G2. If an honest party is
monitoring the chain G2 for the appearance of NIPoPoWs and the chain G1 for

Proof-of-Work Sidechains 33

the firing of events, the fraudulence of π will be immediately obvious to them.
They can subsequently generate a contesting NIPoPoW π∗ providing a counter-
claim that e did not occur. The honest party will broadcast this transaction at
the beginning of the contestation period. Due to the liveness property of G2,
the honest party will manage to include this transaction into G2 within one of
the blocks before the end of the contestation period. The collateral z must be
sufficient to incentivize an honest party to monitor G1 and G2 simultaneously,
pay for transaction fees and ensure the time needed to generate a NIPoPoW π∗

is small as compared to block generation time. The argument for G2 is analogous.

Conclusion. We gave the first trustless Proof-of-Work sidechain construction
based on the NIPoPoWs primitive. We detailed the implementation of the verifier
in the form of a Solidity smart contract. We described how cross-chain events can
be used to give rise to two-way pegging, the original sidechains vision, and argued
for the need of cryptoeconomic collateral to disincentivise dishonest behavior.
Finally, we argued about the feasibility of our proposal and gave the prerequisites
for its adoption.

References

1. Back, A., et al.: Enabling blockchain innovations with pegged sidechains (2014).
http://www.opensciencereview.com/papers/123/enablingblockchain-innovations-
with-pegged-sidechains

2. Buchman, E.: Tendermint: Byzantine fault tolerance in the age of blockchains.
Ph.D. thesis (2016)

3. Buterin, V., et al.: A next-generation smart contract and decentralized application
platform. White paper (2014)

4. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-48071-4 10

5. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10. Updated version at http://eprint.iacr.org/2014/765

6. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains
of variable difficulty. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 291–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 10

7. The Interledger Payments Community Group: Interledger protocol v4. https://
interledger.org/rfcs/0027-interledger-protocol-4/draft-5.html

8. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s
peer-to-peer network. Cryptology ePrint Archive, Report 2015/263 (2015). http://
eprint.iacr.org/2015/263

9. Hosp, J., Hoenisch, T., Kittiwongsunthorn, P.: COMIT: cryptographically-secure
off-chain multi-asset instant transaction network. https://www.comit.network/
doc/COMIT%20white%20paper%20v1.0.2.pdf, 2017

10. Khalil, R., Gervais, A.: Nocust-a non-custodial 2nd-layer financial intermediary.
Technical report, Cryptology ePrint Archive, Report 2018/642 (2018). https://
eprint.iacr.org/2018/642

http://www.opensciencereview.com/papers/123/enablingblockchain-innovations-with-pegged-sidechains
http://www.opensciencereview.com/papers/123/enablingblockchain-innovations-with-pegged-sidechains
https://doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
http://eprint.iacr.org/2014/765
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://interledger.org/rfcs/0027-interledger-protocol-4/draft-5.html
https://interledger.org/rfcs/0027-interledger-protocol-4/draft-5.html
http://eprint.iacr.org/2015/263
http://eprint.iacr.org/2015/263
https://www.comit.network/doc/COMIT%20white%20paper%20v1.0.2.pdf
https://www.comit.network/doc/COMIT%20white%20paper%20v1.0.2.pdf
https://eprint.iacr.org/2018/642
https://eprint.iacr.org/2018/642

34 A. Kiayias and D. Zindros

11. Kiayias, A., Lamprou, N., Stouka, A.-P.: Proofs of proofs of work with sublinear
complexity. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner,
M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 61–78. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53357-4 5

12. Kiayias, A., Miller, A., Zindros, D.: Non-interactive proofs of proof-of-work (2017)
13. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
14. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-

chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 22

15. Poon, J., Buterin, V.: Plasma: scalable autonomous smart contracts. White paper
(2017)

16. Inc Smart Contract Solutions: Openzeppelin crowdsale contract (2017). https://
github.com/OpenZeppelin/openzeppelin-solidity/blob/v2.0.0-rc.1/contracts/
token/ERC20/ERC20.sol

17. Vogelsteller, F., Buterin, V.: Erc 20 token standard (2015). https://github.com/
ethereum/EIPs/blob/master/EIPS/eip-20.md

18. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper 151, 1–32 (2014)

19. Wood, G.: Polkadot: vision for a heterogeneous multi-chain framework (2016)
20. Karl, W., Arthur, G.: Ethereum eclipse attacks. Technical report, ETH Zurich

(2016)
21. Zamyatin, A., Harz, D., Lind, J., Panayiotou, P., Arthur, G., Knottenbelt, W.J.:

Xclaim: interoperability with cryptocurrency-backed tokens
22. Zamyatin, A., Stifter, N., Judmayer, A., Schindler, P., Weippl, E., Knottenbelt,

W.J.: A wild velvet fork appears! Inclusive blockchain protocol changes in prac-
tice. In: Zohar, A., et al. (eds.) FC 2018. LNCS, vol. 10958, pp. 31–42. Springer,
Heidelberg (2019). https://doi.org/10.1007/978-3-662-58820-8 3

23. Zhang, F., Cecchetti, E., Croman, K., Juels, A., Shi, E.: Town crier: an authenti-
cated data feed for smart contracts. In: Edgar, R.W, Stefan, K., Christopher, K.,
Andrew C.M., Shai, H. (eds.) ACM CCS 2016, pp. 270–282. ACM Press (2016)

https://doi.org/10.1007/978-3-662-53357-4_5
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/v2.0.0-rc.1/contracts/token/ERC20/ERC20.sol
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/v2.0.0-rc.1/contracts/token/ERC20/ERC20.sol
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/v2.0.0-rc.1/contracts/token/ERC20/ERC20.sol
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://doi.org/10.1007/978-3-662-58820-8_3

You Sank My Battleship! A Case Study
to Evaluate State Channels as a Scaling

Solution for Cryptocurrencies

Patrick McCorry1(B), Chris Buckland1, Surya Bakshi2, Karl Wüst3,
and Andrew Miller2

1 King’s College London, London, UK
stonecoldpat@gmail.com

2 University of Illinois at Urbana Champaign, Champaign, USA
3 ETH Zurich, Zurich, Switzerland

Abstract. Off-chain protocols (or so-called Layer 2) are heralded as
a scaling solution for cryptocurrencies. One prominent approach, state
channels, allows a group of parties to transact amongst themselves and
the global blockchain is only used as a last resort to self-enforce any dis-
puted transactions. To evaluate state channels as a scaling solution, we
provide a proof of concept implementation for a two-player battleship
game. It fits a category of applications that are not considered reason-
able to execute on the blockchain, but it is widely perceived as an ideal
application for off-chain protocols. We explore the minimal modifications
required to deploy the battleship game as a state channel and propose a
new state channel construction, Kitsune, which combines features from
existing constructions. While in the optimistic case we demonstrate the
battleship game can be played efficiently in a state channel, the require-
ment for unanimous off-chain agreement introduces new economic and
time-based attacks that can render the game as unreasonable to play.

1 Introduction

Since 2009, we have witnessed the rise of cryptocurrencies as the market capi-
talisation for all cryptocurrencies peaked to $1 trillion US dollars in December
2017. While Bitcoin was the first cryptocurrency designed to support financial
transactions, another promiment cryptocurrency called Ethereum has emerged
for executing programs called smart contracts. The promise of smart contracts
is to support the execution of applications without human oversight or a central
operator. Some applications proposed include decentralised (and non-custodial)
token exchanges, publicly verifiable gambling games without dealers, auctions for
digital goods without auctioneers, boardroom electronic voting without tallying
authorities, etc.

Cryptocurrencies do not yet scale. Bitcoin can support approximately 7 trans-
actions per second and Ethereum can support around 13 transactions per second.
The lack of scalability is one of the primary hurdles preventing global adoption
c© International Financial Cryptography Association 2020
A. Bracciali et al. (Eds.): FC 2019 Workshops, LNCS 11599, pp. 35–49, 2020.
https://doi.org/10.1007/978-3-030-43725-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43725-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-43725-1_4

36 P. McCorry et al.

of cryptocurrencies as the network’s transaction fee typically become unafford-
able for most users whenever the transaction throughput ceiling is reached (i.e.
the average fee in Bitcoin reached $20 in December 2017). The community is
pursuing three approaches to scale the network which include new blockchain
protocols, sharding the blockchain and off-chain protocols. New blockchain pro-
tocols can strictly increase the network’s throughput [13,26,27], whereas shard-
ing can be used to distribute transactions into processing areas such that peers
only validate transactions that interest them [1,18,20]. However there is a trade-
off between increasing the network’s transaction throughput to support a larger
userbase in terms of affordable fees, and the number of validators with the nec-
essary computational resources to validate every transaction [16].

An alternative scaling approach consists of off-chain solutions to reduce the
number of transactions processed by the blockchain. It lets a group of parties
deposit coins in the blockchain for use within an off-chain application. Afterwards
all parties can transact amongst themselves without interacting with the global
network and the deposited coins are re-distributed depending on the applica-
tion’s outcome. Two proposals include an alternative blockchain (i.e. a sidechain)
or a channel. A sidechain has block producers (i.e. miners or a single operator)
for deciding the order of transactions and users who publish transactions for
inclusion. There are several sidechain protocols [2,9] which bootstrap from Bit-
coin (including a live network by RSK), whereas Plasma [23] and NOCUST [17]
are non-custodial sidechains which bootstrap from Ethereum for financial trans-
actions. While sidechains are a promising off-chain solution, they still require a
blockchain protocol which has a transaction throughput ceiling.

On the other hand, a channel can be considered an n of n consensus pro-
tocol as all parties collectively authorise the state of an application amongst
themselves. There is no blockchain protocol and all parties only store the most
recently authorised state of the application. Channels first emerged in Bitcoin to
support one-way payments between two parties [8,28], but has since evolved in
Bitcoin towards the development of an off-chain payment network [24] by several
companies including Blockstream, LND and ACINQ. At the same time, several
proposals [4,5,10,11,19,21,22] collectively extend the capability of a channel to
support a group of parties to execute a smart contract (i.e. a program) amongst
themselves as opposed to simply payments. A state channel promises instant
finality for every transaction and no transaction fees as there is no operator to
reward. Channels are also self-enforcing as each party is protected against a full
collusion of all other parties and in terms of scalability the throughput is only
restricted by the network latency between the parties. The Ethereum Foundation
has donated over $2.7 m [14] and the Ethereum Community Fund has donated
$275k [15] to further explore state channels as a scaling solution.

In this paper, we present an empirical evaluation in the form of a case study
for a single-application state channel which must be a viable scaling option
before a network of state channels is conceivable. To aid this evaluation we have
designed a two-player battleship game as a smart contract. An application like
battleship is not typically considered viable to execute via the blockchain due
to the quantity of transactions required and in our experiment we confirm this
perception as the financial cost is between $16.27 and $24.05. However, state

You Sank My Battleship! 37

channels are perceived as a potential scaling solution to allow applications like
battleship to be executed over the blockchain. Our contributions are as follows:

– We explore the minimal modifications required to deploy a single-application
smart contract as a state channel and propose a template of modifications
that can be adopted by others deploying state channels.

– We present a new state channel construction, Kitsune, which is application-
agonostic, supports n parties and allows the channel to be turned off such
that the application’s progress can continue via the blockchain. This combines
the constructions from [6,10,21,22].

– We provide a proof of concept implementation to evaluate deploying appli-
cations within a state channel. This experiment highlights the worst-case
scenario of state channels and how it potentially renders applications like
battleship as unreasonable to deploy within a state channel.

2 Background

In this section, we provide background information about smart contracts and
how the concept of a channel has evolved.

2.1 Smart Contracts

A smart contract can be viewed as a trusted third party with public state. It has
a unique address on the network, it is instantiated based on the code supplied at
the time of its creation, and all execution can be modelled as a state machine.
Every transaction executes a command and this transitions the state machine
statei+1 = transition(statei, cmd). All parties must replicate the program’s entire
execution in order to verify the blockchain and join the network. This mass-
replication self-enforces a smart contract’s correct execution and also implies
that all data for the smart contract must be publicly accessible. Finally all
computation by a smart contract is measured using a metric called gas and the
sender of a transaction sets a desired gas price. The amount of gas used by
a contract invocation multiplied by the gas price sets the transaction fee for
incentivising a miner to include this transaction in their block.

2.2 Evolution of Channel Constructions

We present a high-level overview of a channel before exploring the evolution of
channel constructions from Bitcoin for financial transactions to Ethereum for
executing arbitary smart contracts.

High Level Overview. A channel lets n parties agree, via unanimous consent, to
new states that could be published to the blockchain. As a result parties can
transact amongst themselves instead of interacting via the global network. To
set up, each party in the group must lock coins in the underlying blockchain

38 P. McCorry et al.

for the channel. Afterwards all parties collectively execute state transitions and
exchange signatures to authorise every new state (i.e. the balance of all parties,
the state of a smart contract, etc.). If a single party does not co-operate to
authorise a valid state transition, then the underlying blockchain is trusted to
resolve disputed transactions and self-enforce the state transition. In the case
of Bitcoin, the blockchain gurantees the safety of coins for the online parties,
whereas in the case of a smart contract in Ethereum it also guarantees liveness
such that an application will always progress and eventually terminate.

Payment Channels. Spilman proposed replace by incentive which is the first
state replacement technique for a channel. It is designed for one-way payments
from a sender to receiver [28] and the receiver is responsible for publishing the
state that pays them the most coins. To support bi-directional payments, Decker
proposed replace by time lock which decrements the channel’s expiry time when-
ever the payment direction changes [8]. However both state replacement tech-
niques require an expiry time which restricts the total number of transactions
that can occur. Poon and Dryja proposed a third state replacement technique
called replace by revocation for Lightning Channels [24]. It requires both parties
to authorise each other’s copy of the new state before sharing secrets to revoke
the previously authorised state. Crucially, it introduced the concept of a dispute
process where one party publishes an authorised state to close the channel and
the blockchain provides a fixed dispute period for the counterparty to prove the
published state is invalid. Raiden proposed the first payment channel construc-
tion for Ethereum which is effectively a pair of replace by incentive channels [25].
Unlike in Bitcoin, this construction has no expiry time and does not restrict the
total number of payments within the channel, but it is still restricted to two
parties and the channel’s state only considers the balance of both parties.

State Channels. Both Sprites and Perun independently proposed a new state
replacement technique called replace-by-version [10,22], but there is a subtle dif-
ference. Sprites introduced a command transition state channel which supports n
parties and it always remains open. Its dispute process lets one party trigger a dis-
pute by submitting a state, its version and a list of signatures to prove this state
was authorised by every party. All parties are provided a fixed time period to sub-
mit commands and every accepted command is simply executed via the blockchain
after the dispute process has expired. Perun introduced a closure state channel
which supports 2 parties. It lets the channel close and for the application’s exe-
cution to continue via the blockchain. Its dispute process can be triggered if one
party submits a fully authorised state. All parties are provided a fixed time period
to submit states with larger versions and after the dispute process the state with
the largest version is considered the final off-chain agreed state. Pisa modified the
Sprites construction such that a commitment (i.e. hash) of the new state is signed
instead of the plaintext state, but the state channel is still responsible for accept-
ing commands in plaintext. Perun andCounterfactual extend the concept of a state
channel in two ways [5,10] First, they proposed the state within a channel can be
organised in a hierarchy to support multiple-applications and the dispute process

You Sank My Battleship! 39

for one application does not impact other applications in the channel. Second, they
proposed virtual channels which allow two parties without a direct and established
channel to connect with each other using a network of channels. This requires all
channels along the route to lock up collateral while the virtual channel is open.

3 Kitsune State Channel Construction

We propose, Kitsune, the first application-agnostic state channel construction
SC. Kitsune focuses on the dispute process and it only considers the list of parties,
signatures, a hash of the final state, and the version number. Like Sprites, it is
designed to support n parties and follows the same dispute model of triggering a
dispute, submitting evidence and then finally resolving the dispute. Like Perun,
it simply focuses on deciding the final agreed off-chain state to close the channel.
Finally we also propose an application template AC which will lock and unlock
an application into a state channel upon the approval of all parties.

3.1 Overview of Kitsune

Briefly, all parties must approve to lock the application using AC.lock which
disables all functionality and instantiates the state channel contract. All parties
continue the application’s execution off-chain by collectively signing the hash
of every new state alongside an incremented version. The channel can be co-
operatively turned off using SC.close, or any party can trigger the dispute process
using SC.trigger. If triggered, all parties have a fixed time period to publish
the state hash with the largest version using SC.setstatehash. After the dispute
process has expired, any party can resolve the dispute using SC.resolve which
stores the final state hash with the largest version. Any party can unlock the
application by submitting the entire state in plaintext using AC.unlock. The
application will hash the enite state, fetch the final state hash from the state
channel contract using SC.getstatehash, and compares both hashes. If satisified,
the full state is stored and all functionality in the application contract is re-
enabled to permit executing it via the blockchain.

3.2 Kitsune State Channel Contract

We provide an overview of the state channel contract for Kitsune before discussing
how to instantiate it, how parties collectively authorise new states off-chain and
how the dispute process is used to confirm the final state hash.

Overview of the State Channel Contract. The state channel can be in one of
three states which are status := {ON,DISPUTE,OFF}. All parties can collectively
authorise new states for the application when the state channel is set as status :=
ON. Any party can trigger a dispute which sets the state as status := DISPUTE
and this provides a fixed time period for all parties to submit an authorised

40 P. McCorry et al.

state hash (and its corresponding version). Once the dispute is resolved or if the
channel is closed co-operatively, then the state is set to status := OFF and this
determines the final state hash for the application. If the channel is closed due to
the dispute process, then a dispute record is stored which includes the starting
time and finishing time for the dispute tstart, tend and the final version i.

Creating the Channel. The application contract AC is responsible for instan-
tiating the state channel contract with the list of participants P1, ...,Pn and
the dispute timer Δdispute. The state channel is set as status := ON and the
application contract’s functionality is disabled.

Authorising Off-Chain State Hashes. A command cmd is a function call within
the application contract. Any party P can select a command cmd and pro-
pose a new state transition statei+1 := transition(statei, cmd). The new state
is hashed with a blinding nonce1 hstatei+1 := H(statei+1, ri+1) and signed
σP := Sign(hstatei+1, i + 1). To complete the state transition, the party sends
cmd, hstatei+1, statei+1, ri+1 and σP to all other parties for their approval. All
other parties in the channel verify the state transition before authorising it. To
verify, each party re-computes the transition state′

i+1 := transition(statei, cmd)
and state hash hstate′

i+1 := H(state′
i+1, ri+1). Then each party verifies the signa-

ture VerifySig(P, (hstate′
i+1, i+1), σP) and that the version is the largest received

so far. If satisfied, each party signs the state hash σk := Sign(hstatei+1, i +
1,SC,AC) and sends this signature to all other parties. A new state hash is only
considered valid when each party has received a signature from every other party.
If one party does not receive all signatures by a local time-out, then this party
can trigger the dispute process to turn off the channel, unlock the application
and continue its execution via the blockchain.

Dispute Process. Any party can trigger the dispute process using SC.trigger. This
self-enforces the dispute time period tstart := tnow, tend := tnow + Δdispute and sets
status := DISPUTE. All parties can submit the latest state hash, its version and
the list of signatures to prove it was authorised using SC.setstatehash. The state
channel contract SC only stores hstatei if it is signed by all parties and it has the
largest version i received so far. After the dispute period has expired, any party
can resolve it using SC.resolve. This sets status := OFF, stores a dispute record
(tstart, tend, i) and allows the application contract AC to fetch the final state hash
hstatei.

Co-operative Close. All parties can sign σP := SignP(′close′, hstatei, i,SC) and
submit it to the state channel using SC.close. This stores the state hash hstatei,
its version i and sets status := OFF. No dispute is recorded in the contract.

1 The blinding nonce is used for state privacy if resolving disputes is outsourced to an
accountable third party as proposed by Pisa [21].

You Sank My Battleship! 41

3.3 Application Contract Template

We present an application template that can be applied to easily add state
channel support to an existing smart contract. It demonstrates how to lock all
functionality in the application for use in the state channel and how to unlock all
functionality to permit the application’s execution to continue via the blockchain.

Overview of Template. After modifications, the application contract must explic-
itly record a list of participants P1, ...,Pn, a dispute timer Δdispute, whether the
state channel has been instantiated instantiated := {YES,NO} and if so it also
stores the state channel’s address SC. All functions within the application require
a new pre-condition to check whether the state channel is instantiated and should
only permit execution if instantiated = NO. Finally the application must include
two new functions AC.lock that instantiates the state channel upon approval of
all parties and AC.unlock that verifies a copy of the full state before re-enabling
the application.

Lock Application Contract. All parties must agree to create the state channel
by signing (ON,AC,Δdispute, lockno), where ON signals turning on the channel,
lockno is an incremented counter to ensure freshness of the signed message and
Δdispute is the fixed time period for the dispute process. Any party can call AC.lock
with the list of signatures ΣP , Δdispute and lockno to turn on the state channel.
The application contract AC verifies all signatures and that lockno represents
the largest counter received so far. If satisfied, AC sets instantiated := YES and
this disables all functionality within the application. Next AC creates the state
channel contract SC which sets the list of participants P1, ...,Pn and the dispute
timer Δdispute. Finally AC stores the state channel address SC.

Unlock Application Contract. After the dispute process has concluded in SC,
one party must send state′

i , r
′
i using AC.unlock before the functionality can be re-

enabled. The application contract verifies that state′
i indeed represents the final

state by computing hstate′
i := H(state′

i , r
′
i), fetching the final state hash hstatei

from SC using SC.getstatehash and checking hstate′
i = hstatei. If satisfied, AC

stores state′
i and re-enables all functionality by setting instantiated := NO. Of

course, if there is no activity within the state channel, then the state channel
contract’s dispute process can expiry without a submitted hstatei. In this case,
the application contract verifies the state channel returns ∅ and re-enables all
functionality without modifying the existing state.

4 Applying the Application Template for Battleship

We explore how to apply the application template from Sect. 3.3 to a contract like
battleship2 such that it can be deployed within a state channel. Next we discuss
workarounds (and pitfalls) discovered while building our proof of concept.

2 Our battleship contract will be presented in an online version of this paper.

42 P. McCorry et al.

4.1 Minimal Modifications for a State Channel

We present how to modify the battleship contract before deployment in order to
support state channels. This tracks whether a state channel was instantiated, the
lock/unlock functionality to instantiate the state channel, a new pre-condition
for every function in the game and how to handle functionality with side-effects
in the off-chain contract.

Applying the Application Template. The application contract stores the dispute
timer and a counter instance to track the number of times the state channel
is turned on. It sets instantiated := NO and both players P1,P2 for use by
the state channel. The pre-condition discard if instantiated = YES is included
in every function except BS.unlock. If the pre-condition is satisfied, then all
future transactions that interact with this function will fail. This disables all
functionality within the application contract if it is locked and the state channel
is turned on.

Lock and Unlock Functions. The lock function BS.lock requires a signature from
both parties P1,P2 to authorise creating the state channel which is denoted as
σlock

P := SignP(′lock′, chanctr, round,BS). Once the state channel is turned on,
the battleship contract sets instantiated := YES, it creates a new state channel
contract SC with the list of participants P1,P2 and the dispute timer Δdispute.
The unlock function BS.unlock allows any party to submit the final game statei
alongside the nonce r after the dispute process is resolved in the state channel
contract. The battleship contract verifies if it corresponds to the final state hash
accepted by the state channel contract using H(state, r) == SC.getstatehash. If
successful, the full state is stored and the flag instantiated is set as NO. This
re-enables all functionality in the battleship contract.

4.2 Workarounds for State Channel

Off-chain Contract. Our proof of concept requires each player to deploy an
off-chain version of the battleship contract to a local blockchain to replicate
(and verify) the execution of all state transitions. Without modifying the local
blockchain instance, both the off-chain and on-chain battleship contracts have
different addresses. This poses problems for our fraud proofs if a message is
signed for the off-chain contract address as it will not be valid when the on-chain
contract is re-activated. To alleviate this issue, we sign two messages for the on-
chain and off-chain contract. However there is an upcoming new consensus rule
[3] to deterministically derive the contract’s address which simplifies deploying
an off-chain contract with the same address.

Loss of a Global Clock. Both parties no longer share a global clock within the
channel to self-enforce time-based events. We propose two approaches to handle
time-dependent events. First, the time tchallenge can be set by the player proposing
a new state and the counterparty must verify the proposed time is within a range

You Sank My Battleship! 43

(i.e. a few minutes, or n blocks) before mutually authorising it. It must take into
account the time required to turn off the channel via the dispute process and
the time to initiate/settle the dispute such that tchallenge := tnow + Δchallenge +
Δdispute + Δextra. An alternative approach is to set tchallenge as ⊥ for all updates
within the state channel. Instead the time tchallenge is set by battleship contract
when it is re-activated in the blockchain using BS.unlock and if the game is in a
relevant phase.

No External Interaction or Side-Effects. We define a side-effect as a state update
that relies on an environmental variable or external interaction with another
contract. This is because the side-effects will not persist when the application
is re-activated on the blockchain. Some examples in Ethereum include the envi-
ronment variables msg, block, tx, and transfering coins to another contract. All
functions with side-effects should be deleted or disabled in the off-chain contract
which for battleship includes the auxiliary functions BS.deposit and BS.withdraw.

Authenticating Transaction Signer and Replay Protection. The battleship con-
tract relies on msg.sender to authenticate the immediate caller as the transaction
signer. This requires the party to sign a transaction for execution in the coun-
terparty’s local blockchain. Ethereum transactions have a chain id to prevent
transactions signed for one blockchain being replayed to another blockchain.
The counterparty can verify the transaction has set chain id and it is destined
for the off-chain contract address before executing it in their local blockchain.
Finally the off-chain contract can also include a new BS.getstate to return the
full state and the corresponding hstate, i.

Persistent Race Conditions. The gameplay for battleship is turn-based and it
is clear which player is responsible for proposing every new state. Setting up
the game using BS.select or BS.begingame has no order and both players may
concurrently propose a state transition for the same version. In our case, both
players can use a deterministic rule to resolve the race condition (i.e. P1 proposed
state has priority) as the order of execution has no impact on the game’s outcome.
This highlights that race conditions in the underlying application are reflected
in the state channel and can result in the state channel being turned off if the
order of execution has an impact on the application’s outcome.

Limitations Due to the EVM. The mapping data structure in Solidity for the
Ethereum contract environment poses problems for the state channel as it cannot
simply delete all key-value pairs. If a key-value pair is set to ⊥ within the state
channel, then this over-write must also occur when the full state is sent to the
contract. Otherwise, the key-value pair will persist in the application contract
after the state channel is turned off. For example, if a party’s balance is set to
⊥ off-chain, but this isn’t reflected in the on-chain contract, then this party can
withdraw more coins than they deserve.

44 P. McCorry et al.

Table 1. Costs of running the battleship game within the state channel. We have
approximated the cost in USD ($) using the conversion rate of 1 ether = $306 and the
gas price of 2.6 Gwei which are the real world costs in September 2018.

Step Purpose Gas Cost $$

Battleship game

1 Create BattleshipCon without State Channel 10,020,170 7.97

2 Deposit (BS.deposit) 44,247 0.04

3 Place bet (BS.placebet) 34,687 0.03

4 Select counterparty’s ships (BS.select) 422,894 0.34

5a Ready to play (BS.begingame) 47,651 0.04

5b Do not play (BS.quitgame) 388,805 0.31

6 Attack (BS.attackcell) 69,260 0.06

7a Reveal cell (BS.opencell) 73,252 0.06

7b Reveal ship (BS.sunk) 111,372 0.09

8 Open ships (BS.openships) 159,748 0.13

9 Finish game (BS.finish) 275,521 0.22

10 Withdraw (BS.withdraw) 36,674 0.03

11 Fraud: Ships at same cell (BS.celltwoships) 280,766 0.22

12 Fraud: Declared not hit (BS.declarednothit) 284,261 0.23

13 Fraud: Declared not miss (BS.declarednothit) 284,654 0.23

14 Fraud: Declared not sunk (BS.declarednotsunk) 312,481 0.25

15 Fraud: Attack same cell (BS.attacksamecell) 100,861 0.08

16 Challenge period expired (BS.expiredchallenge) 75,349 0.06

State channel

17 Create BattleshipCon with State Channel 13,607,0695 10.83

18 Lock (BS.lock) 991,617 0.79

19 Trigger dispute (SC.trigger) 84,106 0.07

20 Set state hash (SC.setstatehash) 70,035 0.06

21 Resolve (SC.resolve) 89,745 0.07

21 Co-operative turnoff (SC.close) 90,354 0.07

22a Unlock (BS.unlock) 725,508 0.6

22b Unlock (No Activity) (BS.unlock) 51,454 0.04

Aggregated statistics

Turn state channel on and off 1,961,011 1.56

Average case for game 20,451,633 16.27

Worst case for game 30,237,372 24.05

You Sank My Battleship! 45

Table 2. Time taken to propose, verify and acknowledge new state transitions, mea-
sured in milliseconds (ms) and calculated as an average over 100 runs.

Purpose Propose Verify Acknowledge

Place bet (BS.placebet) 232.18 212.23 0.44

Select counterparty’s ships (BS.select) 330.59 304.70 0.44

Ready to play (BS.begingame) 243.70 224.51 0.44

Attack (BS.attackcell) 267.09 243.69 0.35

Reveal cell (BS.opencell) 268.93 248.51 0.40

Reveal ship (BS.sunk) 291.25 276.97 0.38

Open ships (BS.openships) 288.75 258.70 0.35

Finish game (BS.finish) 376.05 349.20 0.30

5 Proof of Concept Implementation

We present a proof of concept implementation for our battleship game within
a state channel3. The experiment was performed using a Dell XPS 13 with
Intel Core i5-7200U CPU @ 2.50 GHz processor and 8GB LPDDR3 on a private
Ethereum node using Ganache. In the following we discuss Table 1 which outlines
the gas costs for our proposed modifications and Table 2 which presents a timing
analysis to propose, verify and acknowledge a state transition within the channel.

Our experiment involves three contracts which includes the unmodified bat-
tleship contract (Step 1), the battleship contract after applying the application
template (Step 15) and the state channel contract (Step 16). Deploying both the
modified and unmodified battleship contract highlights the cost for modifying an
application contract to support a state channel is approximately 1 million gas.
A single game of battleship (Steps 4–9) via the blockchain costs $16.27 (approx
20 million gas) where each player takes 65 shots4. In the worst case, the game
requires one player to take 99 shots, and the counterparty to take 100 shots.
This worst-case costs $24.05 (approx 30 million gas) to finish the game. Locking
the battleship game, creating the state channel, performing the dispute process
costs and unlocking the battleship game costs $1.56 (approx 1 million gas). The
cost for each fraud proof is presented in Steps 11–14 and only one fraud proof
is required per game to prove the counterparty has cheated.

All timings in Table 2 are approximations. We focus on the time taken to
propose a new state transition, the time required for the counterparty to verify
a state transition and for the initial proposer to verify the signed new state
which is an acknowledgement from the counterparty that the state transition
is complete. Proposing a new state takes between 232–376 ms. This includes
creating and signing a transaction at 12 ms, executing the transaction within

3 Anonymous code: https://www.dropbox.com/s/o5s5k662h9lqlk4/Battleship.zip?
dl=0.

4 This number of shots is based on the better than random algorithm in [7].

https://www.dropbox.com/s/o5s5k662h9lqlk4/Battleship.zip?dl=0
https://www.dropbox.com/s/o5s5k662h9lqlk4/Battleship.zip?dl=0

46 P. McCorry et al.

a local blockchain which is between 35–179 ms (i.e. it depends on the function
executed), retrieving the full new state from the local blockchain at 172 ms,
preparing a transaction for the counterparty and signing the full state’s hash
at 15 ms. The state hash and signature is sent to the counterparty which incurs
typical network latency. The counterparty takes between 212–349 ms to verify a
state transition which includes verifying the received transaction’s signature (and
checking it is destined for the off-chain contract) at 8 ms, executing the received
transaction within the local blockchain which is between 34–163 ms, retrieving
the full new state from the local blockchain at 171 ms, verifying the signature for
the received state hash and verifying it matches the newly computed state hash at
0.4 ms, and finally signing the new state hash at 4 ms. The counterparty sends the
corresponding signature for the new state hash back to the proposer which incurs
typical network latency. Finally the proposer must verify the signature from
the counterparty which takes 0.4 ms. Overall, while the timings are reasonable
for real-world use, the most expensive operations involve interacting with the
Ganache client.

6 Discussion and Future Work

Supporting Third Party Watching Services. To alleviate the security assumption
that all parties must remain online and synchronised with the blockchain to
watch for disputes, PISA [21] proposed that parties can hire an accountable third
party to watch the channel on their behalf. The application-agnostic design of the
new state channel construction Kitsune is beneficial to PISA as the accountable
third party is only required to verify the state channel contract’s bytecode (and
not the application) before accepting a job from the customer. Tthe accountable
third party only requires a signature from every party in the channel ΣP , the
state hash hstate and the version i to resolve disputes on the customer’s behalf.

Funfair Dilemma. There is a chicken-and-egg problem on whether state channels
should create and destroy applications off-chain, or if the state channel should
first require an application to already exist on the blockchain. Perun and Coun-
terfactual advocate for the former to minimise the up front cost of creating the
channel, whereas Funfair are pursing the latter to minimise cost of resolving
a dispute as only the application’s state is kept off-chain. Fundamentally both
approaches have a different trust assumption on the likelihood one party will
trigger a dispute and whether the financial cost to resolve a dispute can interfere
with the application. This dilemma can be summed up in a single question:

If the player is about to win a $10 bet, but the counterparty has stopped
responding in the channel, then is it worthwhile for the player to turn off the
channel, complete the dispute process, re-activate the application and win the

bet via the blockchain if this process costs $100?

You Sank My Battleship! 47

To evaluate this dilemma, our case study highlights that it costs $1.56 to
resolve the dispute and submit the full game state to the contract which is an
affordable (and reasonable) cost. However it does not consider the cost to deploy
and instantiate the battleship game at $7.97, the continued cost for both players
to play battleship or the remaining time required to finish playing it.

Dominant Strategy to Force-Close. Let’s consider the worst-case for battleship.
Both players set up the game with an expectation to play it within the state
channel, but afterwards one player triggers a dispute to turn off the channel and
the game must be finished via the blockchain. To play the entire game costs
between $16.27 to $24.05 and every move requires a reasonable time period for
moves to be accepted into the blockchain. If it is set to 5 min per move and
the game requires 200 transactions, then the game may take several hours (i.e.
16 h) to complete. This can be considered a dominant strategy by an adversarial
player as it is likely rational players will simply forfeit their deposit (and bet) to
quit the game early.

Inducing Cooperative Behaviour. There is no mechanism to distinguish why
a channel broke down, i.e. a blockchain cannot distinguish if Alice refused to
sign and send Bob the latest state, or if Bob claims that he did not received a
signed update. This makes it non-trivial to build a reputation system as it is
unclear which party was at fault for the channel’s failure and if any reasonable
action can be taken to penalise the party at fault. To workaround the inability
to identify the misbehaving party, future work must focus on how to induce
cooperative behaviour amongst all parties in the channel. Any mechanism should
not let an adversarial player to force-close a channel to their advantage (i.e.
expecting rational players to simply give up). On the other hand, it must be
careful not to discourage honest parties from closing the channel and continuing
the application’s execution via the blockchain.

Self-inspection of Blockchain Congestion. On 6th January 2018, we witnessed the
network’s transaction fee spike to 95,788,574,583 wei [12]5 as the network became
congested due to a significant increase in transaction throughput. Congestion
impacts state channels as it increases the cost for resolving disputes (i.e. $57.58
for battleship) and continuing the application’s execution (between $599 and
$886 for battleship). If the increased transaction fees are not paid, then it is
probable that a transaction will not be accepted into the blockchain within the
dispute time period. Future work should focus on a new operation code (i.e.
CheckCongestion()) that can retrospectively self-inspect the previous k of n
blocks to determine if it was affordable for an honest party’s transaction to be
accepted into the blockchain. This could be used to extend the time period for
resolving disputes and let players wait until the network is no longer congested
before continuing the application’s execution.

5 The congestion was caused by a popular game called Cryptokitties.

48 P. McCorry et al.

What to Consider Before Deploying a State Channel. State channels require
unanimous consent for an application’s execution to progress off-chain. This
implies an all parties should be involved throughout the entire application’s exe-
cution or permit parties to leave via the blockchain without closing the channel.
The developer must take care to ensure the application can gracefully handle
(or remove) all race conditions. As well, they must be mindful the off-chain
state size does not grow significantly which may prevent its publication to the
blockchain. The application should be self-contained, not rely on any side-effects,
and explicitly consider how to handle time-based events. Finally to guarantee
liveness, it must always be reasonable to continue an application’s execution via
the blockchain.

Applicable Applications. Our case study demonstrates that applications like bat-
tleship are not suitable for state channels due to the liveness requirement. Instead
it appears that state channels are only useful for applications that are already
suitable for execution via the blockchain and it only involves a small number of
parties who can remain online throughout the application’s life-time. It is also
beneficial if all parties want to repeat the application’s execution more than once
such that the additional overhead to set up the channel costs less than simply
executing it via the blockchain. Some potential applications include payments,
casino games, boardroom elections and auctions. We conclude that a state chan-
nel should be viewed as an optimistic scaling approach only if all parties are
willing to cooperate.

References

1. Al-Bassam, M., Sonnino, A., Bano, S., Hrycyszyn, D., Danezis, G.: Chainspace: a
sharded smart contracts platform. arXiv preprint arXiv:1708.03778 (2017)

2. Back, A., et al.: Enabling blockchain innovations with pegged sidechains (2014)
3. Buterin, V.: EIP 1014: Skinny CREATE2. https://eips.ethereum.org/EIPS/eip-

1014. Accessed 08 Sept 2018
4. Close, T., Stewart, A.: Force move games. https://magmo.com/force-move-games.

pdf. Accessed 08 Sept 2018
5. Coleman, J., Horne, L., Xuanji, L.: Counterfactual: generalized state channels

(2018)
6. Croman, K.: On scaling decentralized blockchains. In: Clark, J., Meiklejohn, S.,

Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol.
9604, pp. 106–125. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53357-4 8

7. DataGenetics: Battleship. http://www.datagenetics.com/blog/december32011/.
Accessed 08 Sept 2018

8. Decker, C., Wattenhofer, R.: A fast and scalable payment network with Bitcoin
duplex micropayment channels. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015.
LNCS, vol. 9212, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21741-3 1

9. Dilley, J., Poelstra, A., Wilkins, J., Piekarska, M., Gorlick, B., Friedenbach, M.:
Strong federations: an interoperable blockchain solution to centralized third-party
risks. arXiv preprint arXiv:1612.05491 (2016)

http://arxiv.org/abs/1708.03778
https://eips.ethereum.org/EIPS/eip-1014
https://eips.ethereum.org/EIPS/eip-1014
https://magmo.com/force-move-games.pdf
https://magmo.com/force-move-games.pdf
https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1007/978-3-662-53357-4_8
http://www.datagenetics.com/blog/december32011/
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-319-21741-3_1
http://arxiv.org/abs/1612.05491

You Sank My Battleship! 49

10. Dziembowski, S., Eckey, L., Faust, S., Malinowski, D.: PERUN: virtual payment
channels over cryptographic currencies. Technical report, IACR Cryptology ePrint
Archive, 2017: 635 (2017)

11. Dziembowski, S., Faust, S., Hostáková, K.: General state channel networks. Cryp-
tology ePrint Archive, Report 2018/320 (2018). https://eprint.iacr.org/2018/320

12. Etherscan. Ethereum gas price.: https://etherscan.io/chart/gasprice. Accessed 08
Sept 2018

13. Eyal, I., Gencer, A.E., Sirer, E.G., Van Renesse, R.: Bitcoin-NG: a scalable
blockchain protocol. In: NSDI, pp. 45–59 (2016)

14. Ethereum Foundation: Ethereum foundation grants update - wave III. https://
blog.ethereum.org/2018/08/17/ethereum-foundation-grants-update-wave-3/.
Accessed 08 Sept 2018

15. Ethereum Community Fund: Meet the grantees ECF class of 2018 Part II.
https://medium.com/ecf-review/meet-the-grantees-ecf-class-of-2018-part-ii-
ff46a284a0b1. Accessed 08 Sept 2018

16. Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S.:
On the security and performance of proof of work blockchains. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pp. 3–16. ACM (2016)

17. Khalil, R., Gervais, A.: Nocust-a non-custodial 2nd-layer financial intermediary
18. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.:

OmniLedger: a secure, scale-out, decentralized ledger via sharding. In: 2018 IEEE
Symposium on Security and Privacy (SP), pp. 583–598. IEEE (2018)

19. ScaleSphere Foundation Ltd.: Celer network: bring internet scale to every
blockchain. https://www.celer.network/doc/CelerNetwork-Whitepaper.pdf.
Accessed 08 Sept 2018

20. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure
sharding protocol for open blockchains. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pp. 17–30. ACM (2016)

21. McCorry, P., Bakshi, S., Bentov, I., Miller, A., Meiklejohn, S.: Pisa: arbitration
outsourcing for state channels. IACR Cryptology ePrint Archive, 2018:582 (2018)

22. Miller, A., Bentov, I., Kumaresan, R., McCorry, P.: Sprites: payment channels that
go faster than lightning. CoRR abs/1702.05812 (2017)

23. Joseph P., Buterin, V.: Plasma: scalable autonomous smart contracts. White paper
(2017)

24. Poon, J., Dryja, T.: The Bitcoin lightning network: scalable off-chain instant pay-
ments. Draft version 0.5, 9:14 (2016)

25. Raiden: Raiden network. https://github.com/raiden-network/raiden-contracts/
blob/d3c30e6d081ac3ed8fbf3f16381889baa3963ea7/raiden contracts/contracts/
TokenNetwork.sol. Accessed 08 Sept 2018

26. Sompolinsky, Y., Lewenberg, Y., Zohar, A.: SPECTRE: a fast and scalable cryp-
tocurrency protocol. IACR Cryptology ePrint Archive, 2016:1159 (2016)

27. Sompolinsky, Y., Zohar, A.: Secure high-rate transaction processing in Bitcoin. In:
Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 507–527. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7 32

28. Spilman, J.: [Bitcoin-development] anti Dos for tx replacement. https://lists.
linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html. Accessed 08
Sept 2018

https://eprint.iacr.org/2018/320
https://etherscan.io/chart/gasprice
https://blog.ethereum.org/2018/08/17/ethereum-foundation-grants-update-wave-3/
https://blog.ethereum.org/2018/08/17/ethereum-foundation-grants-update-wave-3/
https://medium.com/ecf-review/meet-the-grantees-ecf-class-of-2018-part-ii-ff46a284a0b1
https://medium.com/ecf-review/meet-the-grantees-ecf-class-of-2018-part-ii-ff46a284a0b1
https://www.celer.network/doc/CelerNetwork-Whitepaper.pdf
https://github.com/raiden-network/raiden-contracts/blob/d3c30e6d081ac3ed8fbf3f16381889baa3963ea7/raiden_contracts/contracts/TokenNetwork.sol
https://github.com/raiden-network/raiden-contracts/blob/d3c30e6d081ac3ed8fbf3f16381889baa3963ea7/raiden_contracts/contracts/TokenNetwork.sol
https://github.com/raiden-network/raiden-contracts/blob/d3c30e6d081ac3ed8fbf3f16381889baa3963ea7/raiden_contracts/contracts/TokenNetwork.sol
https://doi.org/10.1007/978-3-662-47854-7_32
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html

Game-Theoretic Analysis
of an Incentivized Verifiable

Computation System

Mahmudun Nabi(B), Sepideh Avizheh,
Muni Venkateswarlu Kumaramangalam, and Reihaneh Safavi-Naini

University of Calgary, Calgary, AB, Canada
{mahmudun.nabi1,sepideh.avizheh1,munivenkateswarlu.ku,rei}@ucalgary.ca

Abstract. Outsourcing computation allows a weak client to outsource
its computation to a powerful server and receive the result of the compu-
tation. Verifiable outsourcing enables clients to verify the computation
result of untrusted servers. Permissionless distributed outsourcing sys-
tems provide an attractive marketplace for users to participate in the
system as a problem-giver who needs solution to a problem, or problem-
solver who is willing to sell its computational resources. Verification of
computation in these systems, that do not assume trusted computational
nodes, is a challenging task. In this paper we provide a game-theoretic
analysis of an incentivized outsourcing computation system, proposed
by Harz and Boman [Harz et al. 2018] (HB), at WTSC 2018 (FC Work-
shop), and show that the system is vulnerable to collusion and Sybil
attacks, that result in incorrect solutions to be accepted by the sys-
tem. We also show that malicious computational node can succeed in
polluting the blockchain. We propose modifications to the system that
incentivizes honest behavior, and improve the system’s correctness guar-
antee. We provide a high-level analysis of the modified system using
our game theoretic approach, and show the effectiveness of the proposed
modifications.

Keywords: Outsourcing computation · Verifiable distributed
computation · Rational adversaries · Incentivized security

1 Introduction

Outsourcing computation is an intriguing concept that enables clients to expand
their computational power when needed. The rise of cloud computing in recent
years has been the driving force of outsourcing computation in a variety of set-
tings. Outsourcing to cloud has made computationally expensive applications,
such as complex analytics, available to small mobile devices, and has enabled
clients to run resource intensive applications by purchasing the required compu-
tational resources from cloud providers. In both these cases the user interacts

c© International Financial Cryptography Association 2020
A. Bracciali et al. (Eds.): FC 2019 Workshops, LNCS 11599, pp. 50–66, 2020.
https://doi.org/10.1007/978-3-030-43725-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43725-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-43725-1_5

Game-Theoretic Analysis of an Incentivized Verifiable Computation System 51

with a single cloud provider, and the service is paid for indirectly (e.g. through
purchase of a device), or directly, from the cloud. The idea of computation as
a commodity that can be bought and sold in a market-place has gained attrac-
tion with the development of cryptocurrencies that enable payment for services
using blockchains. Outsourcing however has many security and privacy challenges.
The outsourcer (O) and the computational nodes (contractors) in general are not
mutually trusting, and each party may attempt to subvert the system for their
own goals. The most basic security goal of the outsourcer is the correctness of the
computation. Verifiable computation enables the outsourcer to verify the correct-
ness of the result using efficient verification algorithms. Cryptographic schemes for
verifiable computation [5,10,13] guarantee high level of security but are inflexible
and incur heavy computational cost. A second approach is by assuming rational
adversaries and designing mechanisms to incentivize honest behavior, and guar-
antee correctness of the results [2,7,9,12]. These systems however need complex
management processes (e.g. managing rewards, punishments, auditing) to arrive
at the correct result, and so may not be appealing to average user.

Two recently proposed systems, TrueBit [8,14], and a system proposed by
Harz and Boman (HB) [6], attempt to remove this complexity introducing an
intermediate layer between the outsourcer and the contractors. The intermediate
layer receives a request from the outsourcer, recruits contractors, and runs a
public protocol with the guarantee that correct results will be delivered to the
outsourcer, and that the contractors are paid for their services. Both systems
are implemented in Ethereum platform, and use the trustable computation of
Ethereum as the ultimate truth in arriving at the correct result. The goal is
to achieve the same correctness guarantee of Ethereum while minimizing the
actual request from computation Ethereum. This can be seen as performing
computation “off-chain”, and use Ethereum to verify the results.

The correctness guarantee in both systems relies on rewards, bounties, jack-
pots and similar incentives, and assumes rational entities. TrueBit has a detailed
white paper that discusses possible attacks, which are further discussed in blog
posts, and other platforms. HB paper provides a high level argument about pos-
sible attacks and security of the system. None of the systems have formal game
theoretic analysis in part due to the complexity of modelling the range of attack
goals and colluding strategies in a highly distributed and permissionless systems.

Our Work. Our motivation is to provide game a theoretic framework for analy-
sis of non-permissioned incentivized verifiable computation systems that use an
intermediate layer. The variety of attack goals and possible collusions, make this
analysis a daunting task. We start with HB, which compared to TrueBit, uses
stronger trust assumptions which makes in more amenable to analysis. The HB
system, is implemented as the Arbiter, an Ethereum smart contract that enforces
the execution of the required steps of the verifiable computation process.

In HB, there is an outsourcer, called problem-giver, who outsources a compu-
tation. Following [2,9], we assume that the outsourced computation is composed
of a finite number of atomic operations. Also, we define the inner state of an
algorithm as the concatenation of all the input/outputs of the atomic operations

52 M. Nabi et al.

of the algorithm. Computational nodes (contractors) are problem-solvers and
verifiers, the former providing a solution to the outsourced computation, and
the latter verifying the solution.

Our game theoretic analysis of HB system, although primarily focuses on the
rational contractors (solver and verifiers) that have well-defined utilities, will
also allow us to evaluate security against irrational behaviour where contractors
are not driven by their utilities. This approach was first considered in [2,9] in
which each contractor may behave rationally (diligent or lazy), or be honest
or malicious irrespective of their utilities. In Sect. 6 we also consider goal driven
contractors (irrational and malicious) who are not bounded by a utility function.
The goal of these malicious contractors is to corrupt the blockchain.

For rational behaviors, we first derive a payoff matrix for the HB system when
each contractor behaves independently (chooses to be diligent or lazy on its own),
assuming the same q-algorithm is used by all lazy contractors. Table 2 shows the
payoff of a solver and verifier when the set of other verifiers consist of all lazy,
all diligent, or a combination of the two. The analysis shows that, depending
on the system parameters, for an independent contractor (solver/verifier) being
diligent results in the highest utility. To analyze the system, we consider all
possible scenario in the system, for instance, one contractor (solver/verifier)
being diligent or lazy against the rest of the system that is lazy and, show that
being diligent is better for an independent contractor (see Sect. 4.1).

We then consider collusions where the colluding contractors agree to follow
a single behavior (diligent or lazy), and share the reward equally. We obtain the
system’s payoff matrix when the set of N contractors, that are chosen by the
Arbiter, consists of a colluding set, and two sets of contractors that are work-
ing lazily and diligently, but without any coordination (independently choosing
their behaviour). Our analysis shows that, being part of a collusion maximizes a
contractor’s utility. We also analyze the system for Sybil attacks where a single
contractor participate in the system using multiple identities (see Sect. 4.2). Our
analysis shows that existing incentive structure of HB system cannot guarantee
correct result.

In Sect. 5 we propose modifications to the HB system with the goal of improv-
ing the correctness guarantee. These consists of modifications that are necessary
to ensure the incentives for diligent behavior to guarantee correct result, and
make the system robust against the lazy behavior in both collusion and Sybil
attacks. In HB, if all the contractors (independently or colluding) return the
same incorrect results, the Arbiter accepts this as a correct result. We propose
changes to HB system and show that the modified system alleviates such vul-
nerabilities and, guarantees high correctness (see Sect. 5). These modifications
although improve the correctness of HB system but does not prevent collusion
and Sybil attacks. We also propose modifications that would intuitively make the
system more socially fair. In particular using the deposits of the lazy contractors
to encourage diligent behavior.

Paper Organization: Sect. 2 gives an overview of the HB system, and Sect. 3
presents its game analysis. In Sect. 4, two attacks (collusion and Sybil) using

Game-Theoretic Analysis of an Incentivized Verifiable Computation System 53

different attack strategies are analyzed. Our modifications of HB system and
their analysis are in Sects. 5 and 6, respectively. Section 7 is the related work,
and Sect. 8 concludes the paper.

2 HB System

Ethereum is a permissionless blockchain that is known as consensus computer,
meaning that a computation that is sent to Ethereum will be executed by all
agents and as long as more than 50% of agents are honest, the computation result
will be correct. To prevent attacks such as denial of service however, Ethereum
introduces a gas limit to put a bound on the complexity of the requested com-
putation, and so larger computations must be performed off-chain. HB [6] aims
to extend correctness guarantee of Ethereum to off-chain computations.

Table 1. HB incentive structure for different behaviors of a solver and verifier

Verifier V Solver S

Incorrect Correct

Challenge S: receives nothing, loses Ds

V : receives vfee + sfee + fee shares of

all accepting verifiers

(accepting verifiers receives nothing,

loses Dv)

S: receives sfee + fee shares of all

challenging verifiers

V : receives nothing, loses Dv

(accepting verifiers receives vfee)

Accept S: receives sfee

V : receives vfee

S receives sfee

V : receives vfee

The entities of the HB system are: Problem-giver, Problem-solver, Verifier,
Arbiter and the Judge. Problem-givers are Ethereum users who outsource their
computations for rewards. The solver is a computational contractor who provides
computation power to solve computation problems in exchange for receiving
a reward, sfee. Verifiers are computational contractors who are contracted to
provide computation power to correctly verify the solver’s solutions for a reward,
vfee, by redoing the computation. Both these types of contractors must pay a
deposit to participate in the computation. Arbiter is an Ethereum smart contract
that enforces the execution of the required steps of the verifiable computation
process. Arbiter acts as an intermediary between the problem-giver and the
other entities. For each computation request that it receives from problem-giver,
Arbiter randomly selects N contractors from the pool of registered contractors,
and randomly chooses one as the problem-solver and the remaining (N − 1)
as verifiers V = {v1, . . . , vN−1}. The solver publishes a solution together with
a hashed trace of computation in the form of a Merkle tree to allow efficient
checking of the results. The assumption is that the computational steps run
by different contractors will produce the same values and so the same hashes.
Verifiers also perform the computation and construct their own local hash tree,
and publish the solution. The solution that is provided by the solver will be

54 M. Nabi et al.

challenged by the verifiers who find inconsistencies between solver’s solution
and their own. Arbiter compares the provided solutions and initiate a dispute
resolution if the solutions do not match, in which case a step-by-step comparison
of the hash tree of the solver and a verifier is performed, and inconsistencies will
be resolved by sending a random computational step to the Ethereum (Judge).
Judge resolves the dispute and find whether the solver’s computation is correct
or not. If it is correct, the process continues as long as a verifier challenges the
solver’s solution. After all challenges are resolved, the problem-giver receives
the results of the computation. If the solver is found incorrect the computation
terminates.HB assumes that Arbiter, judges and problem-givers are trusted and
correctly follow the protocol. Table 1 shows the distribution of rewards in HB for
different behaviors of a solver and verifier.

3 Game-Theoretic Analysis of HB

In HB, a problem-giver outsources its computation to a registered subset of
contractors who are randomly selected by Arbiter. The registration fee of the
contractors will be returned if they are not caught violating the verifiable com-
putation algorithm. The deposits of the selected contractors will be used as part
of rewards and fines that will be applied to the contractors, in addition to the
fee which will be paid by the problem-giver to the contractors whose work have
not been challenged. We assume a contractor will participate in a computation
when the received reward is higher than the cost of performing the task. A ratio-
nal contractor, solver or verifier, perform the computation honestly as long as
the utility of performing the task correctly is greater than doing it otherwise. A
diligent rational contractor performs the task honestly, and returns the correct
result. A lazy contractor uses a tricky algorithm that can return the correct
result with probability q (see Definition 1).

Definition 1 (q-algorithm). An algorithm, composed of a finite number of
atomic operations, is called a q-algorithm if it generates the correct solution with
probability q, and such that 0 ≤ cost(q) < cost(1). Here, cost(q) denotes the cost
of employing a q-algorithm and cost(1) is the cost of the honest computation.

We assume that the chance of a guessed solution being correct is nearly zero.
In HB a solution will be accompanied with the hash tree of the computation
steps. Thus even if the q-algorithm can find the solution, the chance of generating
the same inner state hashes as the original algorithm, will be negligible (i.e.,
q ≈ 0). The inner state of an algorithm can be captures at different granularity
and will include the computational module input and output. We also assume
all lazy nodes use the same (best) q-algorithm.

Payoffs When Contractors Behave Independently. We consider a multi-
contractor game with one solver s and N−1 verifiers V = {v1, . . . , vN−1}, N > 1,
and assume each contractor chooses its behaviour independently. The fee for a

Game-Theoretic Analysis of an Incentivized Verifiable Computation System 55

solver’s correct solution is sfee and so a diligent solver will always receive this
fee. The fee for a verifier whose result is accepted by the Arbiter is vfee. If a
lazy contractor is caught (with probability 1 − q), his reward is distributed to
contractors who have challenged it.

We first analyze the system assuming contractors work independently. Let
ux,y
z (q) denotes the utility function of a contractor of type x, whose behavior is

of type y, when there are total z lazy contractors (among the selected contractors)
for the given computation. We use x ∈ {s, v, c}, where s denotes the solver, v
denotes the verifier and c denotes the colluder, y ∈ {d, �} where d and � denote
the diligent and lazy behaviors, respectively, and z ∈ {0, 1, . . . , N}. For diligent
contractors, q = 1, otherwise q < 1. Also, the utility of any contractor ux,y

z (q) is
linear in the reward and losses. Table 2 shows the utility of contractors.

If a contractor of type x behaves diligently, and challenges a lazy contractor’s
incorrect solution, its utility will be, ux,d

z (1) = r + b(1 − q) − cost(1), where r
denotes the reward for honest computation, r = sfee if x = s or r = vfee if x = v,
and b will be the additional reward (reward share of the lazy contractor) that a
diligent contractor receive by challenging the lazy contractor. A lazy contractor
cannot win a challenge against a diligent contractor because Ethereum will be
used as the ultimate truth. In HB, a solver can challenge the verifiers, and
the verifiers can challenge the solver. But, a verifier cannot challenge the other
verifier. If a contractor x is lazy its utility is, ux,l

z (q) = rq − f(1 − q) − cost(q),
where f is the fine that a lazy contractor, who is caught, pays for providing an
incorrect solution. As long as there is one diligent contractor, the system’s final
result will be correct and all the lazy contractor will be caught. Table 2 gives
the payoff matrix of the game. Using the Table 2, in Sect. 4 we analyze the HB
system for collusion and Sybil attacks.

Table 2. The payoff table of a solver against all verifiers, when each contractor (s and
v) choose their behaviour (diligent or lazy) independently, assuming all lazy contractors
use the same q-algorithm.

Verifiers Solver

Diligent Lazy

k2 lazy

(k3 =

N − 1 − k2
diligent)

u
s,d
k2

(1) = sfee + k2vfee(1 − q) − cost(1)

u
v,d
k2

(1) = vfee − cost(1)

u
v,l
k2

(q) = vfeeq − Dv(1 − q) − cost(q)

u
s,l
k2+1(q) = sfeeq − Ds(1 − q) − cost(q)

u
v,d
k2+1(1) = vfee +

sfee+k2.vfee
k3

(1 − q) − cost(1)

u
v,l
k2+1(q) = vfeeq − Dv(1 − q) − cost(q)

All diligent

(k2 = 0,

k3 =

N − 1)

u
s,d
0 (1) = sfee − cost(1)

u
v,d
0 (1) = vfee − cost(1)

u
s,l
1 (q) = sfeeq − Ds(1 − q) − cost(q)

u
v,d
1 (1) = vfee +

sfee
k3

(1 − q) − cost(1)

All lazy

(k2 =

N − 1,

k3 = 0)

u
s,d
N−1(1) = sfee + k2vfee(1 − q) − cost(1)

u
v,l
N−1(q) = vfeeq − Dv(1 − q) − cost(q)

u
s,l
N

(q) = sfee − cost(q)

u
v,l
N

(q) = vfee − cost(q)

56 M. Nabi et al.

In Table 2, k2 and k3 represents the number of independent lazy and inde-
pendent diligent verifiers, respectively. Note that, row 2 and row 3 in the Table 2
can be obtained by substituting the respective k2 and k3 values in row 1. We
presented them separately here to show the utilities of all the involved parties
in all the possible scenarios.

4 Attacks on HB System

We consider two attacks: (i) Collusion attack where multiple contractors who
have been selected by the Arbiter, form a collusion. The colluders divide the
computation task among themselves, each performing a fraction of the compu-
tation and sharing the results to construct a common output. They also share
the payment from the system. And, (ii) Sybil attack where a single contractor
registers under multiple identities in the hope of being selected multiple times
in the set chosen by the Arbiter to increase their utility.

4.1 Collusion Attack in HB System

Let k1 be the collusion group size where 1 < k1 ≤ N . When k1 �= N , we
also assume that the system may have two other sets of contractors, say k2,
0 ≤ k2 < N who are independently lazy and k3 = N − (k1 + k2), 0 ≤ k2 < N ,
who are independently diligent. Note that, for a computation task, the values of
k2 and k3 are unknown to the collusion group k1. We consider the following two
cases to analyze the collusion attack.

The Solver is in the Collusion. The colluder’s set consists of a solver and a
set of verifiers. The remaining verifiers may be independently lazy or diligent.
The k1 colluders can either act diligently (i.e. share the computation of the
correct algorithm) or lazily (i.e., by sharing the computation cost of the same
q-algorithm). Let δc be an indicator value, δc ∈ {0, 1} defined as, δc = 1 if the
solution of lazy participant is challenged, and δc = 0, if it is not. Table 3 shows
the utilities in the game between the colluding contractors (solver and verifiers)
and the remaining independent contractors.

Table 3. Utility table for solver-verifier collusion game.

Verifiers Colluders

Diligent Lazy

k2 lazy

verifiers

u
c,d
k2

(1) = r +
k2.vfee

k1
(1 − q) − cost(1)

k1
u

v,l
k2

(q) = rq − Dv(1 − q) − cost(q)

u
c,l
k1+k2

(q) = rq + r(1 − q)(1 − δc) − D(1 − q)δc − cost(q)
k1

u
v,l
k1+k2

(q) = rq + r(1 − q)(1 − δc) − D(1 − q)δc − cost(q)

k3
diligent

verifiers

u
v,d
k2

(1) = r − cost(1) u
v,d
k1+k2

(1) = r +
(k1+k2).vfee

k3
(1 − q) − cost(1)

Game-Theoretic Analysis of an Incentivized Verifiable Computation System 57

We use the table to evaluate stability of a collusion. That is, a member of
the colluding group will have a higher utility to stay in the collusion. Note that
the colluding group also have two behaviour, diligent and lazy. If the colluders
behave diligently, the collusion will be stable if the colluders have higher utility
than being independent contractors. That is,

– Case 1: uc,d
k2

(1) > uv,l
k2

(q) (when k2 verifiers are independently lazy), and
– Case 2: uc,d

k2
(1) > uv,d

k2
(1) (when k3 verifiers are independently diligent).

For a given set of system parameters, we will have uv,l
k2

(q) > uv,d
k2

(1), or the
reverse. So, we choose uc,d

k2
(1) > max{uv,l

k2
(q), uv,d

k2
(1)}. This gives the following

results (using Table 3):

– if uc,d
k2

(1) > uv,l
k2

(q), we get k1 > cost(1)
(r+Dv)(1−q)+cost(q) , and

– if uc,d
k2

(1) > uv,d
k2

(1), we get k1 > 1.

This implies that for a given set of system parameters as long as the collusion
size is higher than the corresponding k1, the diligent colluding strategy will have
higher pay-off than working independently (diligent or lazy), and so the collusion
will be stable.

Similarly, if the colluders behave lazily, to have higher utility than indepen-
dent contractors, the following should be true:

– Case 3: uc,l
k1+k2

(q) > uv,l
k1+k2

(q) (when k2 verifiers are independently lazy), &
– Case 4: uc,l

k1+k2
(q) > uv,d

k1+k2
(1) (when k3 verifiers are independently diligent).

Using a similar argument as above, a collusion remains stable if the follow-
ing is satisfied: uc,l

k1+k2
(q) > max{uv,l

k1+k2
(q), uv,d

k1+k2
(1)}. Using the utilities from

Table 3 we get the following results:

– if uc,l
k1+k2

(q) > uv,l
k1+k2

(q), then k1 > 1, and
– if uc,l

k1+k2
(q) > uv,d

k1+k2
(1), k1 > cost(q)

cost(1)−(1−q)[(N−1)Vfee+r+D] .

Note that the bounds only depend on the system parameters and so can be
computed by a contractor. In other words, a contractor can decide to be inde-
pendent, or stay in the collusion based on the size of the colluding set. The above
analysis leads to the following theorem.

Theorem 1. (a) For a given set of system parameters, there are values for the
colluding set size k1, for which being diligent, or being lazy has higher utility
than being an independent contractor.

(b) For values of k1 for which both collusion behaviours (diligent and lazy) allow
stable collusion, one can find the best strategy (the strategy with the highest
utility) of colluders (diligent or lazy) that maximizes their utility.

58 M. Nabi et al.

Note that based on the system parameters of HB, solver-verifier collusion is
possible as long as the collusion size is higher than the corresponding k1.

In HB, if colluders act diligently when k1 < N , we get k1 > cost(1)− cost(q)
(r+D)(1− q) .

Since cost(q) < cost(1) ≤ r and q ≈ 0 (e.g. by using inner state hash [2]),
r + D > cost(1) − cost(q). So, cost(1)− cost(q)

(r+D)(1− q) < max{1, cost(1)
(r+D)(1− q)+cost(q)}.

So, in this case, the best strategy is to act diligently. However, when k1 = N ,
since δc = 0 and q = 0 (in HB), from Table 3 we get r − cost(q)

k1
> r − cost(1)

k1
. So,

in this case being lazy is the best strategy.

Collusion of Verifiers Only. Assume that k1 verifiers are colluding and doing
the computation jointly. The colluders may act diligently, or lazily. The remain-
ing contractors, consist of k2 lazy, and k3 = N − (k1 + k2) diligent, contractors.
As the solver is an independent contractor, it may be in the diligent, or in the
lazy group. Table 4 shows the payoff of a colluding verifier against the payoff of
an independent verifier in each case.

Table 4. Pay-off matrix for verifiers collusion game

Remaining contractorsColluding verifiers (k1)

Solver Verifiers Diligent Lazy

Diligentk2 Lazy u
(c,d)(s,d)
k2

(1) = vfee − cost(1)
k1

u
(c,l)(s,d)
k1+k2

(q) =

vfeeq − Dv(1 − q) − cost(q)
k1

k3 − 1

Diligent

u
(v,l)(s,d)
k2

(q) =

vfeeq − Dv(1 − q) − cost(q)

u
(v,l)(s,d)
k1+k2

(q) =

vfeeq − Dv(1 − q) − cost(q)

u
(v,d)(s,d)
k2

(1) = vfee − cost(1) u
(v,d)(s,d)
k1+k2

(1) = vfee − cost(1)

Lazy k2 − 1

Lazy

u
(c,d)(s,l)
k2

(1) =

vfee +
sfee+(k2−1)vfee

k1+k3
(1−q)− cost(1)

k1

u
(c,l)(s,l)
k1+k2

(q) = vfeeq + vfee(1 − q)(1 −
δc) − Dv(1 − q)δc − cost(q)

k1

k3
Diligent

u
(v,l)(s,l)
k2

(q) =

vfeeq − Dv(1 − q) − cost(q)

u
(v,l)(s,l)
k1+k2

(q) = vfeeq + vfee(1 − q)(1 −
δc) − Dv(1 − q)δc − cost(q)

u
(v,d)(s,l)
k2

(1) =

vfee +
sfee+(k2−1)vfee

k1+k3
(1−q)−cost(1)

u
(v,l)(s,l)
k1+k2

(1) = vfee +

sfee+(k1+k2−1)vfee
k3

(1 − q) − cost(1)

Using an argument similar to the above case (solver is in the collusion),
we will have: u

(c,d)(s,d)
k2

(1) > max(u(v,l)(s,d)
k2

(q), u(v,d)(s,d)
k2

(1)) and u
(c,d)(s,l)
k2

(1) >

max(u(v,l)(s,l)
k2

(q), u(v,d)(s,l)
k2

(1)).
For colluders behaving lazily a collusion remains stable if the followings

are satisfied: u
(c,l)(s,d)
k1+k2

(1) > max(u(v,l)(s,d)
k1+k2

(q), u(v,d)(s,d)
k1+k2

(1)) and u
(c,l)(s,l)
k1+k2

(1) >

max(u(v,l)(s,l)
k1+k2

(q), u(v,d)(s,l)
k1+k2

(1)).
These give lower bounds on collusion sizes for which colluders will have higher

utility with their corresponding strategies, compared to playing independently.
From the above analysis it is proved that HB system cannot protect against
colluding attacks.

Game-Theoretic Analysis of an Incentivized Verifiable Computation System 59

4.2 Sybil Attack in HB System

Consider an attacker who creates K Sybil identities hoping that k1 of them are
selected. Additionally, consider n identities in the system and N of them are
selected for a given task. Then K can be estimated as follow: If n and N are
large, then the proportion of identities that belongs to the attacker, K

n , is equal
to the proportion of identities chosen for the given task, k1

N . In another way,
k1
N = K

n . So, attacker should create K = k1
N n identities in order to gets k1 of

them accepted for a given task. Sybil attack can happen when all the selected
identities of the Sybil node are verifiers, or it also includes the solver.

We consider two cases: k1 < N and k1 = N . If k1 < N , we consider k2 inde-
pendently lazy verifiers and k3(= N − k1 − k2) independently diligent verifiers.
Otherwise, if k1 = N , k2 = k3 = 0. Sybil attack can be seen as a realization of
collusion attack with the difference that the Sybil attacker must provides deposit
for all k1 identities and will receive all the rewards, and so instead of considering
the utility of a member of the collusion, we will consider the utility of the whole
colluding. Using the analysis similar to previous section we have the following.

Sybil Identities Includes the Solver. Let U(a, b) represents the total utility
of the Sybil attacker for strategy a ∈ {d, l}, when b ∈ {0, 1, . . . , N} is the number
of identities that are selected by the Arbiter. If the solver is in k1, then,

– when k1 < N the total utility for the diligent strategy is: U(d, k1) = k1.[r +
k2.vfee

k1
(1 − q)] − cost(1).

– when k1 = N the total utility for the lazy strategy is: U(l, N) = N.r−cost(q)

Here, r = sfee for solver (or vfee for verifier), and D is the registration cost (i.e.,
deposit) by contractor. As these utilities are greater than one diligent identity,
Theorem 1 holds, Sybil attack of solver-verifiers is possible.

We note that the probability of k1 = N will be very small for large values of
N , the registration cost of registered identities would become formidable.

Sybil Attack of Verifiers. Analysis of collusion attack showed that for a given
k1, being diligent is the better strategy. Where as a Sybil attacker does not know
how the solver would act, so we have two cases:

– If solver is diligent, the total utility for the attacker is: U(d, k1) = k1(vfee) −
cost(1).

– If solver is lazy, the total expected utility for the attacker is: U(l, k1) =
k1[vfee + sfee +(k2 − 1)vfee

k1 + k3
(1 − q)] − cost(q).

These utilities are higher than the utility of a single diligent identity and
using the similar analysis we can show that Sybil attack of verifiers is possible.

60 M. Nabi et al.

4.3 Shortcoming of HB

The above analysis of HB showed that it is vulnerable to both collusion and
Sybil attacks. Below are additional shortcoming of the system.

– In HB, when a contractor is lazy and is caught, the diligent contractors who
catch the lazy contractor gets its reward shares (additional reward) that is
committed by the problem-giver prior to the computation. We suggest that
the additional reward should be harvested from the fine that the lazy con-
tractor pays rather than charging the problem-giver.

– In HB, the deposit (D) amount is set by the Arbiter and the contractors
pay this amount before the problem-giver requests for a computation to the
Arbiter. This deposit works as a commitment to the system and will not be
returned to the contractor if it gets caught by cheating. However, as the task
difficulty is unknown to the Arbiter, the deposit value set might be so little
to ensure the honest computation. The deposit value should be fixed based
on the task difficulty.

5 HB+ System

The analysis in of HB showed that it is vulnerable to both collusion and Sybil
attacks. In this section, to improve the correctness guarantee of HB system, for
the attacks presented in Sect. 4, we propose the following modifications to the
original HB system, and we call it HB+. Finally, we analyze the effectiveness of
these modifications on the HB system.

Random Audit. We propose the following changes to HB system to alleviate
the Sybil attack discussed in Sect. 4.2. The idea is, when all the contractors return
same result, Arbiter randomly audits (i.e., probabilistic auditing) the results
using the Judge (Ethereum). The random auditing involves of two parties: the
Arbiter, who triggers this auditing by sending an intermediary result of a step
stored in a Merkle tree and input, if any, to Judge for the given computation.
The Judges, who are the set of miners in Ethereum, returns a boolean value to
Arbiter: If the judge returns true, the solver and the verifiers get their reward.
Otherwise, the Arbiter penalize the solver and the verifiers by taking away their
deposits and reassign the computation to another group of contractors.

Operational Flow of HB+ System. In HB, each contractor commits a
deposit to Arbiter for participating in the system that is independent of problem-
giver’s computation. It may so happen that the deposit amount is much smaller
than the reward (that is calculated based on the complexity of the computa-
tion) for computing results. Because of this, the system is vulnerable to attacks
such as Sybil. For example, within its financial limits, a rational contractor
(Sybil attacker) may create multiple identities to increase its chances of being
selected for the computation expecting huge rewards. This causes questioning

Game-Theoretic Analysis of an Incentivized Verifiable Computation System 61

the correctness guarantee of the system. To avoid such scenarios, we propose
that the Arbiter should determine the deposit amount independently for each
computation requested based on computation complexity. In more detail, the
deposit amount should be fixed after receiving the computation request from
the problem-giver. Then, the interested contractors commit this fixed deposit
and register to the Arbiter for the computation.

HB+ Incentive Structure. In HB, when a diligent contractor challenges an
incorrect solution published by a lazy contractor, the diligent contractor receive
an additional reward (bonus) for helping the system to catch the cheating con-
tractor and the lazy contractor loses his deposit. The bonus given to the diligent
contractor is actually the reward that is originally committed by the problem-
giver (when the computation is requested) for the contractor who has been
caught for his lazy behavior. Since HB assumes that the problem-givers are
rational, they always try to optimize (minimize) their cost (payment) for their
requested computation. Therefore, to encourage the problem-givers to use the
system often and for social good, we propose to use the deposits paid by the
cheating contractors to reward diligent contractors instead of using problem-
givers payment.

Based on the proposed idea of using lazy contractors deposits to reward dili-
gent contractors and the probabilistic auditing mechanism presented in Sect. 5,
we modify the HB incentive structure (given in Table 1) and present a modified
incentive structure in Table 5. To be consistent, in Table 5 we use the notations
that are defined already (see Sect. 2) and, with an additional one, β to denote
the probability of an Arbiter performing random auditing.

Table 5. New incentive structure of a solver and verifier with different behaviors in
the modified HB system

Verifier V Solver S

Incorrect Correct

Challenge S losses Ds S receives sfee + Dv

V receives vfee + Ds V losses Dv

Accept S receives sfee(1 − β) S receives sfee

S losses Dsβ

V receives vfee(1 − β) V receives vfee

V losses Dvβ

In Table 5, when a solver’s incorrect solution is challenged by a verifier, S
does not receive reward (sfee) and losses his deposit Ds and (each) challenger
(verifier) receives its reward (vfee) with an additional reward, a share of Ds,
as a bonus (for example, if there are Nc challengers, then each challenger will
get vfee + Ds/Nc. If a verifier challenges correct solution of a solver, it losses
Dv and does not receive any reward and, S gets his reward and deposits of all

62 M. Nabi et al.

the challengers as a bonus. When the results are same, using the Judge, Arbiter
verifies the results randomly with probability β. For example, in the Table 5,
when the solver’s solution is incorrect and the verifier accepts it (i.e., the results
are same), both S and V either loss their deposits with probability β or receive
their rewards with (1 − β) probability.

5.1 Analysis of HB+

Let β ∈ [0, 1] be the probability of auditing by the Arbiter when the returned
results are same. We assume that Arbiter sets the deposit D based on the task
difficulty. Although each contractor provides the same amount of deposit for
participation, we use Ds (solver’s deposit) and Dv (verifier’s deposit) same as
before (in Sect. 3) to distinguish them, where D = Ds = Dv. However, in this
modified model the usage of the deposit is different than the original HB system.
That is instead of burning the deposits of the cheating parties they will be
distributed among the honest parties as a bonus. Based on these assumptions
and changes, the game pay-off Table 2 of original HB updated and new utilities
are shown in Table 6.

Table 6. Pay-off matrix of the modified HB

Verifiers Solver

Diligent Lazy

All diligent u
s,d
0 (1) = sfee − cost(1) u

s,l
0 (q) = sfeeq − Ds(1 − q) − cost(q)

u
v,d
0 (1) = vfee − cost(1) u

v,d
0 (1) = vfee + Ds

N−1 (1 − q) − cost(1)

k lazy N − 1 − k

diligent

u
s,d
k

(1) = sfee + kDv
N−k

(1 − q) − cost(1) u
s,l
k

(q) = sfeeq − Ds(1 − q) − cost(q)

u
v,d
k

(1) = vfee + kDv
N−k

(1 − q) − cost(1) u
v,d
k

(1) = vfee+
Ds+kDv
N−1−k

(1−q)−cost(1)

u
v,l
k

(q) = vfeeq − Dv(1 − q) − cost(q) u
v,l
k

(q) = vfeeq − Dv(1 − q) − cost(q)

All lazy u
s,d
N−1(1) =

sfee + (N − 1)Dv(1 − q) − cost(1)

u
s,l
N−1(q) = sfeeq + sfee(1 − q)(1 − β)

−Ds(1 − q)β − cost(q)

u
v,l
N−1(q) = vfeeq − Dv(1 − q) − cost(q)

u
v,l
N−1(q) = vfeeq + vfee(1 − q)(1 − β)

−Dv(1 − q)β − cost(q)

Using the above utilities, and the analysis presented in Sect. 4, it can be
shown that with the modified utilities presented in Table 6, collusion attack
is still possible. But, the possibility of Sybil attack is reduced, because of the
probabilistic auditing, even if all sybil identities output the same solution.

5.2 Malicious Contractors

Malicious contractors aim at polluting the blockchain by making the Arbiter
accept an incorrect solution. They will collude and share their budgets to harm
the system. To have enough, non-negative, balance to participate in the tasks
they will act honestly time to time. The following theorem shows the best strat-
egy for malicious contractors.

Game-Theoretic Analysis of an Incentivized Verifiable Computation System 63

Theorem 2. The best strategy for malicious contractors is to all collude when
they are selected for a given task.

Proof. As we have previously shown in Table 6, whenever all contractors reveal
the same incorrect solution and when there is no auditing by judges, β = 0,
Arbiter accepts the incorrect solution and the utility of each contractor is,
ux,m
z (0) = r(1 − β) = r.

Theorem 3 shows the bound for the expected false rate which is the number
of incorrect solutions broadcasted to blockchain if malicious contractors follow
strategy given in Theorem 2.

Theorem 3. The expected false rate in the system is pN (1−β), where N is the
number of computation services, p, is the prior probability that a contractors is
malicious in the system, and β is probability of auditing by the judges.

Proof. If all the N chosen contractors are malicious they can collude and reveal
an incorrect solution. The probability of this case is pN . However, they may
be challenged by judges with probability β if all reveal the same solution. The
probability that they are not challenged is 1−β, therefore the attackers succeed
with probability pN (1 − β).

According to Theorem 3, we gain a reduction on the expected false rate
proportional to 1 − β compared to HB. In the next section we compare our
result with HB assuming some values for p, N and β.

6 Evaluation and Comparison

Table 7 shows the expected false solutions broadcasted to blockchain in HB+
versus HB. The prior probability of being lazy is selected to be 0.3, 0.5 and
0.7 to facilitate the comparison to HB. According to HB, if solver reveals a
wrong solution and verifiers accept it then false solution goes to blockchain; if
the probability that a computation service be lazy and output a wrong solution
is p, and the number of verifiers is n, then the probability of false solution to be
accepted is pn+1 (N = n + 1). In our scheme, however, the expected false rate
also depends on the probability of auditing; if a task is audited by judges with
probability β then the probability of false solution accepted will be pn+1(1−β).
For comparison, we have considered β to be 0.1, 0.5, and 0.9. According to table,
the probabilistic auditing reduces the expected false percentage proportional to
1 − β. We expect to see more reductions in practice as the auditing time is
unknown to computation services.

7 Related Work

In blockchain, transactions must be validated and processed at every node in the
network. So, any blockchain system experiences limitations in scalability. Out-
sourcing computation techniques have been proposed in various papers address-
ing the scalability and security challenges of a blockchain [6,8,14]. Trust models

64 M. Nabi et al.

Table 7. Comparison between expected false in our scheme and HB.

Prior p Verifiers n Expected false [%] Expected false HB [%]

β = 0.1 β = 0.5 β = 0.9

0.3 1 8.1 4.5 0.9 9.0

2 2.43 1.35 0.27 2.7

3 0.729 0.405 0.081 0.81

4 0.2187 0.1215 0.0243 0.243

5 0.06561 0.03645 0.00729 0.0729

6 0.019683 0.010935 0.002187 0.02187

0.5 1 22.5 12.5 2.5 25.0

2 11.25 6.25 1.25 12.5

3 5.625 3.125 0.625 6.25

4 2.8125 1.5625 0.3125 3.125

5 1.40625 0.78125 0.15625 1.5625

6 0.703125 0.390625 0.078125 0.78125

0.7 1 44.1 24.5 4.9 49.0

2 30.87 17.15 3.43 34.3

3 21.609 12.005 2.401 24.01

4 15.1263 8.4035 1.6807 16.807

5 10.58841 5.88245 1.17649 11.7649

6 7.411887 4.117715 0.823543 8.23543

(based on incentive mechanism) [6,8,14] are proposed to off-chain the compu-
tations to third parties to inherit transparency and particular trust for imple-
menting smart contracts in permission-less blockchains. ZoKrates [4], shares the
same spirit of off-chaining computations to third parties by supplying a non-
interactive zero-knowledge proof with the results. Moreover, several works have
been proposed to incorporate multiparty computation onto blockchains [1,11].
In addition, Dong et al. [3] provide a game theoretical analysis for verifiable out-
sourced computation in cloud computing that involves blockchain technology.
The authors assume only two rational clouds who can collude and later one can
secretly deviate from the collusive agreement to maximize their own profit. The
authors design smart contracts to sabotage collusion. In case of our analysis,
we assume that once collusion is formed, colluders do not deviate from their
agreement and the goal is to prevent collusion from happening. Moreover, we
have considered both rational and malicious adversaries for our analysis. Finally,
their system needs a trusted third party to resolve conflicts where the HB system
resolves the dispute through the distributed consensus algorithms (i.e., by using
Ethereum as Judge) and removes the need of a trusted third party. In [12] the
authors researched the outsourced verification computation from an economics
aspect. They provided a general approach based on game theory for optimal

Game-Theoretic Analysis of an Incentivized Verifiable Computation System 65

contract design for outsourcing computation. They considered the cheating or
lazy behavior of the service providers and analyzed it with one and multiple
server settings. In the follow up work [7], they identified the optimal settings for
the multi-server case when collusion is allowed.

8 Conclusion

Security of incentivized verifiable computation system is an intriguing challenge
because of the range of possible attacks and possible collusions. Our goal was to
examine the security claims of such an incentivised outsourcing system proposed
by Harz and Boman [Harz et al. 2018] (HB), at FC WTSC 2018. We analyse the
system, considering rational contractors, using a game-theoretic approach and
discuss its correctness guarantee considering two attacks, collusion and Sybil.
Interestingly, our analysis shows that the incentive structure of HB can not pro-
tect the system against these attacks. We propose modifications for HB (HB+)
that helps the system to improve its correctness guarantee by motivating dili-
gent behavior in contractors by incentivizing contractors with bonus rewards.
We analyse HB+ and show that the modifications alleviates vulnerabilities of
the attacks and, guarantee high correctness in results, however it can not pre-
vent the attacks. We also propose to utilize the deposits of lazy contractors to
encourage diligent behavior in rational contractors for social fair. Fixing the HB
system from collusion and Sybil attacks for any behaviors (diligent and lazy) is
however our future work. Finally, we extend our analysis to malicious contrac-
tors whose goal is to corrupt the blockchain. We show that HB+ alleviates the
expected false rate compared to the original HB system.

References

1. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on bitcoin. In: IEEE Symposium on Security and Privacy, pp.
443–458 (2014)

2. Belenkiy, M., Chase, M., Erway, C.C., Jannotti, J., Küpçü, A., Lysyanskaya, A.:
Incentivizing outsourced computation. In: Proceedings of International workshop
on Economics of networked systems, pp. 85–90. ACM (2008)

3. Dong, C., Wang, Y., Aldweesh, A., McCorry, P., van Moorsel, A.: Betrayal, dis-
trust, and rationality. In: Proceedings of ACM SIGSAC Conference on Computer
and Communications Security, pp. 211–227 (2017)

4. Eberhardt, J., Tai, S.: ZoKrates-scalable privacy-preserving off-chain computa-
tions. In: IEEE International Conference on Blockchain (2018)

5. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourc-
ing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 465–482. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14623-7 25

6. Harz, D., Boman, M.: The scalability of trustless trust. In: Zohar, A., et al. (eds.)
FC 2018. LNCS, vol. 10958, pp. 279–293. Springer, Heidelberg (2019). https://doi.
org/10.1007/978-3-662-58820-8 19

https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-662-58820-8_19
https://doi.org/10.1007/978-3-662-58820-8_19

66 M. Nabi et al.

7. Khouzani, M., Pham, V., Cid, C.: Incentive engineering for outsourced computa-
tion in the face of collusion. In: Proceedings of WEIS (2014)

8. Koch, J., Reitwiessner, C.: A predictable incentive mechanism for TrueBit. arXiv
preprint arXiv:1806.11476 (2018)

9. Küpçü, A.: Incentivized outsourced computation resistant to malicious contractors.
IEEE Trans. Dependable Secure Comput. 14(6), 633–649 (2017)

10. Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public:
verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-28914-9 24

11. Paul, S., Shrivastava, A.: Robust multiparty computation with faster verification
time. In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 114–131.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93638-3 8

12. Pham, V., Khouzani, M.H.R., Cid, C.: Optimal contracts for outsourced compu-
tation. In: Poovendran, R., Saad, W. (eds.) GameSec 2014. LNCS, vol. 8840, pp.
79–98. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12601-2 5

13. Setty, S.T., McPherson, R., Blumberg, A.J., Walfish, M.: Making argument systems
for outsourced computation practical (sometimes). In: NDSS, vol. 1, p. 17 (2012)

14. Teutsch, J., Reitwießner, C.: A scalable verification solution for blockchains (2017).
https://people.cs.uchicago.edu/teutsch/papers/truebitpdf

http://arxiv.org/abs/1806.11476
https://doi.org/10.1007/978-3-642-28914-9_24
https://doi.org/10.1007/978-3-642-28914-9_24
https://doi.org/10.1007/978-3-319-93638-3_8
https://doi.org/10.1007/978-3-319-12601-2_5
https://people.cs.uchicago.edu/teutsch/papers/truebitpdf

Sluggish Mining: Profiting
from the Verifier’s Dilemma

Beltrán Borja Fiz Pontiveros(B), Christof Ferreira Torres(B),
and Radu State(B)

Center for Security, Reliability and Trust, University of Luxembourg,
Luxembourg City, Luxembourg

{beltran.fiz,christof.torres,radu.state}@uni.lu

Abstract. Miners in Ethereum need to make a choice when they receive
a block: they can fully validate the block by executing every transaction
in order to validate the new state, but this consumes precious time that
could be used on mining the next block. Alternatively, miners could skip
some of the verification stages and proceed with the mining, taking the
risk of building on top of a potentially invalid block. This is referred to
as the verifier’s dilemma.

Although the gas limit imposed on Ethereum blocks mitigates this
attack by forcing an upper bound on the time spent during verification,
the slowdown that can be achieved within a block can still be enough to
have an impact on profitability.

In this paper we present a mining strategy based around sluggish con-
tracts; these computationally intensive contracts are purposely designed
to have a slow execution time in the Ethereum Virtual Machine to pro-
vide an advantage over other miners by slowing their contract verification
time.

We validate our proposed mining strategy by designing and evaluating
a set of candidate sluggish smart contracts. Furthermore, we provide a
detailed analysis that shows under which conditions our strategy becomes
profitable alongside a series of suggestions to detect this type of strategy
in the future.

Keywords: Ethereum · Smart contracts · Mining strategy · Security ·
Cryptocurrencies

1 Introduction

Ethereum is a blockchain protocol which keeps a record of state transition trans-
actions and the state of the Ethereum Virtual Machine (EVM): a stack-based
run-time environment designed for smart contracts, programs that are executed
in a distributed and decentralised fashion across the Ethereum network [23]. This
turned the Ethereum blockchain into a global decentralised computing platform.
As of December 2018 its market capitalisation is evaluated at over $10 Billion,
making it third in volume after Bitcoin and Ripple.
c© International Financial Cryptography Association 2020
A. Bracciali et al. (Eds.): FC 2019 Workshops, LNCS 11599, pp. 67–81, 2020.
https://doi.org/10.1007/978-3-030-43725-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43725-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-43725-1_6

68 B. B. Fiz Pontiveros et al.

The EVM currently supports over 150 instructions, commonly referred to as
opcodes. Each of these opcodes performs a different operation on the stack of the
EVM. Smart contracts are usually developed using a dedicated high-level pro-
gramming language such as Solidity [19], which afterwards gets translated into
a sequence of opcodes. Each opcode has an assigned gas cost, which represents
the amount of resources required to use this operation. Although ideally each
operation should take a similar amount of time per gas consumed, due to the
need of having cheap, yet CPU intensive operations such as hash calculations,
means some opcodes are considered to be under-priced.

At the time of writing, Ethereum achieves consensus through a proof-of-work
algorithm similar to Bitcoin. However, one of the reasons why Ethereum became
so popular among casual miners, was thanks to their choice of a memory-hard
proof-of-work algorithm: Ethash [10]. The algorithm was designed to be ASIC-
resistant and thus to only be run using commodity hardware such as CPUs or
graphics cards. During block validation, miners are expected to execute each
transaction to calculate the new state and validate the block. This however
poses a problem: if they choose to validate a block upon receipt, they need to
spend time running the transactions that could be used to create the next block;
however if they do not validate the block and proceed mining on top of it, they
have a risk of building on top of an incorrect block. This is known as the verifier’s
dilemma [14]. If however a miner were to gain an edge by being able to execute
the validation faster than other miners, they would be able to begin work ahead
of other miners and thus gain a competitive advantage. In this paper we present a
mining strategy for the Ethereum network, built around this verification process
of blocks by miners.

We propose a strategy that deploys a sluggish smart contract: a purposely
designed slow execution contract for which we have a simplified, faster version
available. We then create a new block with a transaction executing this sluggish
contract in order to slow down other miners during block validation. The differ-
ence here is that we run the optimised version to create our block, while other
miners will run the under-optimised version. This will gain us time and increase
our chances to build the next block by having additional time over other miners
in the network. The paper is structured as follows: In Sect. 2, we present a sum-
mary of some of the related work currently available. In Sect. 3, we present the
methodology of our proposed mining strategy, with a step-by-step description.
In Sect. 4, we evaluate our mining strategy as a Markov Decision Process and
extract the viability conditions. In Sect. 5, we proceed to evaluate our strategy
by extracting and evaluating past and current Ethereum settings and show that
our strategy is viable under certain conditions. Finally in Sect. 6, we present
some conclusions of our work with some suggestions on potential future work.

2 Related Work

Since its release in 2015 [23], a lot of research has been produced around
Ethereum, spanning across multiple rapidly developing areas, as shown in the
work performed in [21].

Sluggish Mining: Profiting from the Verifier’s Dilemma 69

The evaluation of different mining strategies and the game theory behind it
is a very active domain within the Bitcoin research community [12]. Modelling
the mining process as a Markov Decision Process was performed in [9], where
the authors simulated a selfish mining strategy and assessed its efficiency with
respect to the standard behaviour. Additional work continued along these lines,
modelling additional strategies and assessing their viability [16].

The verifier’s dilemma was first introduced in [14]; the authors suggest a
‘divide and conquer’ solution by dividing computationally intensive transac-
tions into multiple smaller transactions, spread across multiple blocks. In [20]
the authors proposed a system named TrueBit. It provides an alternative to
Ethereum’s need to replicate calculations in every node by reducing it to a small
set of entities. This would prevent computationally intensive contracts to slow
down the network. In [7] the authors suggest moving some of the work off-chain
while providing guarantees under a threat model that includes selfish nodes.

In addition to computationally intensive transactions that may cause denial-
of-service attacks (DoS), there are also numerous vulnerabilities that are caused
due to developers programming bad code. These vulnerabilities range from smart
contract specific ones such as reentrancy and transaction order dependence
(TOD)[13] to classic vulnerabilities such as integer overflows [22]. Finally, several
attacks on the peer-to-peer network of Bitcoin and Ethereum have been proposed
in order to reduce the computational power required to reach the majority vote
in the consensus algorithm [11].

3 Methodology

In this section, we describe how our mining strategy works, the preparation steps
required to deploy it and finally an evaluation of when this strategy becomes
more profitable than the default mining strategy.

3.1 Sluggish Mining Strategy

In Ethereum the final block reward obtained by miners can be divided into three
sub rewards:

– Block creation reward (Rblck): A static reward initially set to 5 Ether, which
has been lowered in October 2017 [1] to 3 Ether and is expected to be lowered
once again to 2 Ether with the release of [17].

– Gas reward (Rgas): This includes the transaction fees, consisting of all the gas
that has been spent during execution of the transactions in the block. This
is to outset the time and effort spent on validating the block, as defined in
the consensus protocol. The overall reward obtained depends on the gas price
offered by the transactions, and the transaction load of the network. Like in
the Bitcoin protocol, it is expected to have this reward eventually replace the
block creation reward entirely.

70 B. B. Fiz Pontiveros et al.

– Uncle reward (Runcle): If any uncles (stale blocks) are included in the created
block, providing an additional reward of 1

32 of the current block creation
reward. A maximum of 2 uncles are allowed per block.

The main idea behind the sluggish mining strategy is to forfeit the gas
reward obtained from executing and including other users transactions (Rgas),
and instead create a transaction designed to use all the gas available in a block
and send it to a smart contract purposefully designed to be as slow as possible
to execute. In addition to being slow, the state change caused to the Ethereum
blockchain must be predictable or basically unchanged, such that the attacker
does not require to run the contract himself. In order to ensure we do not waste
time validating our transaction, we simply replace the pointer in our database
from our sluggish smart contract (SSC) to an identical optimised smart contract
(OSC) with an identical state transition function while being optimised for a
negligible execution time. This can be seen in Fig. 1.

Fig. 1. Using OSC allows for a faster state transition than using SSC.

The purpose of this sluggish contract is to gain an advantage over other
miners by having them execute this slow contract during the block validation
phase. This will allow the attacker to gain an advantage in terms of time as
compared to other miners on the next block, at the expense of the fee rewards not
taken to accommodate for our transaction. This strategy makes the assumption
that other nodes validate a received block before starting work on the next
block although it is possible that miners simply skip the validation stage and
proceed to the block creation stage of the next block without wasting time on
our contract. As discussed before, this is part of the verifier’s dilemma.

The following assumptions are made in our mining strategy:

– Executions times are similar between different architectures. With the rise of
specialised hardware such as FPGAs and ASICs purposely built for specific
tasks, this condition might not hold in the future.

– We assume that miners will validate a block before beginning the mining
process on top of it. However, in practice the validation could be simpli-
fied by verifying soley the previous hash without executing the transactions.
This would mean that no slow down effect would be caused by our sluggish
contract.

Sluggish Mining: Profiting from the Verifier’s Dilemma 71

– We treat miners as purely rational agents wanting to maximise their revenue
given the current mining conditions. We do not investigate on any effects such
a mining strategy could have on the value of Ethereum. This could be seen
as an attack (and thus trust in the system lowered).

– We do not take into consideration the network delays in block propagation.
However, it should be noted that our strategy could yield blocks with only one
single transaction, hence producing small size blocks and therefore susceptible
for faster propagation.

The steps required to deploy this strategy are as follows:

1. The design of a sluggish smart contract i.e. a contract that shows a dreadful
execution time.

2. The deployment of the sluggish smart contract and modification to the client
in order to avoid or replace the execution of our sluggish smart contract.

3. The mining and broadcast of a block which includes a transaction executing
our sluggish smart contract.

In the following subsections we will explain the design and deployment of sluggish
smart contracts in greater detail.

Sluggish Contract Design. The first step is to design a sluggish smart con-
tract. The purpose of this contract is to maximise the time taken to execute,
given a fixed amount of gas. Although the Ethereum community goes to great
lengths to ensure that the gas cost of each opcode reflects its computational
time expense, there are always exceptions or opcodes that fail to reflect their
real cost, leading to attacks such as the one that took place in mid 2017, leading
to a hard fork [3], which caused the following opcodes to change their gasprice:
EXTCODESIZE and EXTCODECOPY from 20 to 700, BALANCE from
20 to 400, SLOAD from 50 to 200, CALL, DELEGATECALL, CALLCODE
from 40 to 700 and finally SEFLDESTRUCT from 0 to 5000. Despite these
readjustments to the opcode pricing we show in this work that our strategy
remains viable. In summary, we want our sluggish contract to satisfy the follow-
ing criteria:

1. We need to be able to precompute the state change that our contract has on
the EVM world state, without actually executing it.

2. The contract needs to be as slow as possible given the maximum amount of
gas that can be consumed inside a block, known as the gaslimit. This limit is
currently set to about 8 million.

Algorithm 1 provides a very simple and generic design, where OPCODE may
be replaced by any particular opcode that has a major impact on the execution
time. The algorithm takes as input an opcode and the opcode’s input values. As
described in Sect. 2, there have already been numerous studies and benchmarks
regarding the under-pricing of several EVM opcodes [5,6] and based on the
literature we selected the following opcodes in order to affect either the CPU or
the access to I/O:

72 B. B. Fiz Pontiveros et al.

Algorithm 1. Sluggish Smart Contract
Input: (OPCODE, INPUT)
Output: 0
1: Push INPUT onto the stack
2: Execute OPCODE
3: if gas left > 0 then
4: Jump to line 1
5: end if
6: return 0

1. CPU Bound: The goal of CPU bound sluggish contracts is to ensure that the
CPU remains busy as possible during the contract execution. Two opcodes
were selected:

– SHA3 (0 × 20): This opcode computes the Keccak-256 hash [23] and has
a gas cost of 30 + 6 * (size of input in words). It pops two values from the
stack, the memory offset p and the size n, and finally pushes the result
onto the stack.

– EXP (0 × 0a): This opcode computes the exponential on two values
popped from the stack, the base b and the exponent e. If e is 0 then the
gas used is 0. If e is greater than 0, then the gas used is 10 + 50 * a factor
related to the size of the log of the exponent. It should be noted that the
factor gas cost of EXP has already been increased from 10 to 50 [2].

2. I/O Bound: As described in the previous section, operations dealing with
peristent storage have always been tricky to price. We test two of the most
common opcodes:

– SLOAD (0 × 54): This opcode loads a value from storage. Storage in
Ethereum is implemented as a key-value store. The opcode takes as input
the storage location (key) and returns the value associated to this loca-
tion. It has a cost of 200 gas.

– SSTORE (0 × 55): This opcode stores a value into storage. The gas cost
is 20,000, if the storage value is set from a zero value to a non-zero value.
Otherwise, the gas cost amounts to 5,000.

The sluggish smart contracts used during our experiments were formed using
the layout defined in Algorithm 1 and the opcodes listed above. Given that some
EVM client implementations have optimisations for simple input values such as
0 and 1, we decided to use input values of 15 instead (0xe); these contracts can
be seen in Figs. 2, 3, 4, 5, alongside their corresponding sequence of opcodes and
bytecode. The evaluation of the total delay obtained can be seen in Sect. 5.

Contract Deployment. Smart contracts are deployed on the blockchain via
transactions. A transaction has a base fee of 21,000 gas. The cost of deploying
our sluggish smart contract has a minimum fee of 32,000 gas for the CREATE
opcode. This is meant to cover the cost of performing an elliptic curve oper-
ation to recover the sender address from the signature in addition to the cost

Sluggish Mining: Profiting from the Verifier’s Dilemma 73

Fig. 2. SHA3 (CPU) Fig. 3. EXP (CPU) Fig. 4. SLOAD (I/O) Fig. 5. SSTORE (I/O)

of the disk and bandwidth space of storing the transaction. In addition to the
contract creation, we also must pay another 200 gas per byte of the contract’s
bytecode [23]. The largest contract in our test set had a size of 14 bytes, meaning
that the cost of deploying our largest contract would haven been in total 54,800
gas. Considering an average gas limit of 8 million per blocks, the deployment
costs solely represent 0.68% of the total amount of gas that can be used by a
block.

4 Mining Strategy Evaluation

In order to evaluate our proposed mining strategy, we use a Markov Decision
Process to model the mining process using a similar notation to the models
proposed in [9] and [15]. As in the other models, we do not take the block
propagation time into consideration. Figure 6 shows that once we have created
a block (state M1), we gain a slight advantage of γ · α over the other miners.
This is due to the slow execution time of the sluggish smart contract that get
executed by the other miners during validation.

We can now calculate the steady-state distribution of our Markov Process to
determine the overall gain in computational power obtained in the long run by
our strategy. The steady-state distribution can be calculated using:

π · P = π (1)

74 B. B. Fiz Pontiveros et al.

Fig. 6. Markov decision process for sluggish mining

And substituting the values from our model we have that:

[
π0 π1

]
[

1 − α α
1 − α · (γ + 1) α · (γ + 1)

]
=

[
π0 π1

]
(2)

⎧
⎪⎨

⎪⎩

π0 = π0 · (1 − α) + π1(1 − α · (γ + 1))
π1 = π0 · α + π1 · α · (γ + 1)
π0 + π1 = 1

(3)

π =
[
1 − α

1−α·γ
α

1−α·γ
]

(4)

As a result of our sluggish contract, our overall ratio of the total hashing
power of the system has increased from α to α

1−α·γ . This gain in hashing power
however comes at the cost of forfeiting the reward obtained through transaction
fees. Every time a block is successfully mined, a transition into state M1 occurs.
In order to determine when our sluggish mining strategy is more lucrative than
honest mining, we solve the inequality shown below:

α

1 − αγ
· Rblck

tblck
≥ α

tblck
· (Rblck + Rfees) (5)

where Rblck is the block reward, Rfees is the transaction fees (average) and
γ = timedelay

blocktime . Once the inequality is solved we can isolate the variables such that
we can determine the requirements needed for our strategy to become profitable:

transactionfees ≤ Rb · α · γ

1 − (α · γ)
(6)

So given a miner with 15% of the total hashing power, a sluggish contract
execution of about 3 s (γ ≈ 0.2) and using the current static block reward of 3
Ether, we find that if the average transaction reward fees obtained from a block
are below 0.0963 Ether, our strategy becomes viable.

Sluggish Mining: Profiting from the Verifier’s Dilemma 75

5 Experimental Results

In this section we describe the experiments that we performed and the evaluation
of the results. The experiments were conducted using a MacBook Pro (13-inch,
2016) with a 2.9 GHz Intel Core i5 Processor and 8 GB 2133 MHz LPDDR3 of
Memory. Although the results might vary slightly between different machines,
as mentioned in Sect. 3, we expect similar slowdowns on other machines as well.
The average block time in Ethereum is 14.5 s.

5.1 Ethereum Clients

In order to ensure that our slow down is as effective as possible, we executed
our contracts using the EVM implementation of the two most popular Ethereum
clients at the time of writing: Geth and Parity. In particular we tested our con-
tracts on the following two client versions: geth v1.8.17 and parity v2.0.9.

Fig. 7. Distribution of Ethereum clients, versions and OS.

While there are other clients and versions in use, as can be seen in Fig. 7,
without selection we cover over 88% of the clients based on the data collected
in [8].

5.2 Transaction Fees

The average transaction fees per block can vary quite drastically from day to
day based on the current transaction backlog in the system, as can be seen in
Fig. 8. For the purposes of our work, we calculated the average transaction fee
for the blocks published during the month of January and November:

– January 2018: μ = 0.15 Ether/block
– November 2018: μ = 0.08 Ether/block

76 B. B. Fiz Pontiveros et al.

Fig. 8. Average transaction fees based on Etherscan [8]

5.3 Block Reward

Initially the Ethereum block reward was 5 Ether. With the release of the
Metropolis hard fork [1] this reward was lowered to 3 Ether, where it currently
stands. This value is expected to be further reduced to 2 Ether with the release
of the planned Constantinople hard fork in 2019 [18]. Although the trend seems
to be to have mining rewards be lowered, there are some EIP proposals advocat-
ing a raise in incentives for miners, such as the EIP1227 which seeks to restore
the reward to 5 Ether. Therefore for the purposes of our tests we will take these
three possible block reward values into consideration: 2, 3 and 5 Ether.

5.4 Sluggish Contract Execution Times

In order to calculate the slow down caused by our contracts we used the EVM
stand-alone implementations: evm available in Geth and parity-evm available
in Parity. This allows us to test and measure the execution time of our contracts
without the need to deploy them on a test network. The commands used in our
tests are:

$ time evm −−gas 8000000 −−code 5 b60f f60 f f2050603c5a1160005700 r0un
$ time evm −−gas 8000000 −−code 5 b60f f60 f f0a50603c5a1160005700 run
$ time evm −−gas 8000000 −−code 60005 b5460de5a1160025700 run
$ time evm −−gas 8000000 −−code 5b6001600055614e3c5a1160005700 run

$ time par i ty−evm −−gas 8000000 −−code 5 b60f f60 f f2050603c5a1160005700
$ time par i ty−evm −−gas 8000000 −−code 5 b60fe60fe0a50603c5a1160005700
$ time par i ty−evm −−gas 8000000 −−code 60005 b5460de5a1160025700
$ time par i ty−evm −−gas 8000000 −−code 5b6001600055614e3c5a1160005700

Listing 1.1. CMDs used for experiments

Sluggish Mining: Profiting from the Verifier’s Dilemma 77

We ran each command 100 times and then averaged the results, obtaining
the following average slow downs in seconds:

Geth Parity

SHA3 0.15 s 2.52 s

EXP 1.21 s 3.42 s

SLOAD 0.03 s 1.13 s

SSTORE 0.02 s 0.29 s

The slowest contract, given a maximum of 8 million gas to run, appears to be
the contract based on the EXP opcode, by quite a large margin for both Geth
and Parity. This seems to suggest that the opcode is under-priced, as already
explored in [4]. The difference between the execution times in Geth and Parity
might indicate some issue in the implementation of the exponentiation function
in Parity. An inspection of their code shows that both clients include shortcuts
for specific values of the base and exponent (x0 = 1, for example). Interestingly
enough, both appear to implement the same technique, namely exponentiation
by squaring, by using a left to right binary representation.

5.5 Evaluation

We would need to know the distribution of computational power of every sin-
gle Ethereum client, in order to determine the overall slow down on the entire
Ethereum network caused by our sluggish smart contract execution. Since we
lack this information, we can only provide the lower and upper bounds of our
attack. In the best case scenario for our strategy, all our nodes will be using Par-
ity, while in the worst case, all will be using Geth. This can be seen in Figs. 10
and 11, by the vertical delimiters.

Fig. 9. Mining pools hashing power distribution [8] as of December 2018.

If we use the number of blocks mined to estimate the total hashing power
of a mining pool and their names as given in Etherscan [8], we can extract the
values shown in Fig. 9 for the first week of December 2018.

78 B. B. Fiz Pontiveros et al.

Fig. 10. Sluggish mining inequality for a transaction fee of 0.08 Ether/block.

Given the Ethereum settings described above, we can now define the con-
ditions under which our strategy becomes viable using the equations shown in
Sect. 4.

With an average transaction fee of 0.08 Ether we find that our strategy
becomes viable under the conditions shown in Fig. 10. Each of the vertical lines
represent the boundaries for our strategy to become viable (as described before,
depending on the composition of mining clients), and any value above the block
reward curve. This means that with a block reward of 3 Ether, any computational
power above 10% and 24% would benefit from a switch to sluggish mining. These
margins rise to 15%–35% for a block reward of 2 Ether, and become as low as 8%
to 15% in the case of a 5 Ether block reward. Given the data shown in Fig. 9, this
suggests that the top 4 mining pools could currently benefit from our approach.

Fig. 11. Sluggish mining inequality for a transaction fee of 0.15 Ether/block.

Sluggish Mining: Profiting from the Verifier’s Dilemma 79

However, if we assume a higher average transaction fee of 0.15 Ether, as seen
in Fig. 11, then the strategy only becomes viable for mining pools with a hashing
power between 20% and 45%, and hence only becoming viable for the Ethermine
mining pool.

Moreover, once Constantinople is released and assuming the block reward
does indeed drop, it would further reduce the viability of our strategy for mining
pools with a hashing power within the range of 15% to 35%. However, it serves
to highlight how a change in incentives for miners at the reward level can have
such a drastic effect on their optimal strategy.

Although this strategy could be interpreted as a type of resource exhaustion
attack, it is not significant enough to become apparent by miners. In order
to ensure this strategy is not implemented to the potential detriment of the
Ethereum community the best way is to ensure that the economic incentive is
never there. We propose four ways to ensure this:

1. Reduce the block reward and therefore force mining pools to include trans-
actions if they wish to continue make profit.

2. Increase the transaction fees by including a fee that compensates the mining
pool.

3. A safeguard for this strategy would be to simply add these conditions to the
benchmarking process of EVM opcodes, to ensure it never becomes a viable
mining strategy for any mining pool by adequately pricing their opcodes.

4. Shift to another consensus mechanism such as proof-of-stake (PoS), in which
having a delay in the execution time does not have such a tremendous impact
as in PoW based mining. This is because there is no arms race with regard
to who gets to mine the next block.

A scan of all transactions for each block would have to be done in order
to determine if this type of mining strategy is already being used by mining
pools. If at every block there is a transaction sent to a contract which fills
up the remainder of that blocks remaining gas (and this same address is used
across multiple blocks) then this could be an indicator for the deployment of our
strategy.

6 Conclusions

In this work we have shown that sluggish smart contracts that aim at gaining an
advantage over other miners who are validating received blocks before starting
to create a new block, is a viable mining strategy provided certain conditions are
met. We evaluated our strategy given current Ethereum conditions and shown
that it would be a viable strategy for the top mining pools. Given that no
user transactions are added to these ‘sluggish blocks’, the overall usefulness of
the Ethereum network lowers, meaning that it might not be in a miners best
interest to implement this strategy.

We have also shown that given the expected Ethereum changes in the
pipeline, this type of strategy will be less useful in the future. In addition, we

80 B. B. Fiz Pontiveros et al.

also provided a series of mechanisms for detecting this behaviour and how to
ensure that this strategy does not become a profitable strategy in the future.

In this work we have shown that our mining strategy is viable by creating a
block that is composed of one transaction sent to the sluggish contract. However
a mining pool could instead include a series of normal pending transactions as
the standard behaviour and make use of the remaining block gas by injecting a
transaction that invokes a sluggish contract.

In future work it would be interesting to see if this type of strategy could be
applied with different consensus mechanisms. For example the delay caused by
computationally intensive contracts could be used in a proof-of-stake mechanism
as an attack: given that miners have a certain time frame to create and broadcast
a block, a long enough delay caused by the validation of the previous block could
cause them to miss the window and therefore effectively to lose money.

References

1. Schoedon, A., Buterin, V.: Metropolis Difficulty Bomb Delay and Block Reward
Reduction (2017). https://github.com/ethereum/EIPs/blob/master/EIPS/eip-
649.md. Accessed December 2018

2. Buterin, V.: EXP cost increase (2016). https://github.com/ethereum/EIPs/blob/
master/EIPS/eip-160.md. Accessed November 2018

3. Buterin, V.: Ethereum Improvement Proposal: Gas cost changes for IO-heavy opera-
tions (2017). https://github.com/ethereum/EIPs/blob/master/EIPS/eip-150.md.
Accessed December 2018

4. Buterin, V.: Blockchain resource pricing (2018)
5. Chen, T., Li, X., Luo, X., Zhang, X.: Under-optimized smart contracts devour

your money. In: 2017 IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pp. 442–446. IEEE (2017)

6. Chen, T., et al.: An adaptive gas cost mechanism for ethereum to defend against
under-priced DoS attacks. In: Liu, J.K., Samarati, P. (eds.) ISPEC 2017. LNCS,
vol. 10701, pp. 3–24. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
72359-4 1

7. Das, S., Ribeiro, V.J., Anand, A.: Yoda: enabling computationally intensive
contracts on blockchains with byzantine and selfish nodes. arXiv preprint
arXiv:1811.03265 (2018)

8. Etherscan: Etherscan, the Ethereum Block Explorer (2018). https://etherscan.io/.
Accessed December 2018

9. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. Commun.
ACM 61(7), 95–102 (2018)

10. Foundation, E.: Ethash, December 2018. https://github.com/ethereum/wiki/wiki/
Ethash

11. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s
peer-to-peer network. In: USENIX Security Symposium, pp. 129–144 (2015)

12. Kiayias, A., Koutsoupias, E., Kyropoulou, M., Tselekounis, Y.: Blockchain mining
games. In: Proceedings of the 2016 ACM Conference on Economics and Compu-
tation, pp. 365–382. ACM (2016)

13. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 254–269. ACM (2016)

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-649.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-649.md
https://github.com/ethereum/EIPs/blob/master/ EIPS/eip-160.md
https://github.com/ethereum/EIPs/blob/master/ EIPS/eip-160.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-150.md
https://doi.org/10.1007/978-3-319-72359-4_1
https://doi.org/10.1007/978-3-319-72359-4_1
http://arxiv.org/abs/1811.03265
https://etherscan.io/
https://github.com/ethereum/wiki/wiki/Ethash
https://github.com/ethereum/wiki/wiki/Ethash

Sluggish Mining: Profiting from the Verifier’s Dilemma 81

14. Luu, L., Teutsch, J., Kulkarni, R., Saxena, P.: Demystifying incentives in the con-
sensus computer. In: Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security, pp. 706–719. ACM (2015)

15. Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: generalizing selfish
mining and combining with an eclipse attack. In: 2016 IEEE European Symposium
on Security and Privacy (EuroS&P), pp. 305–320. IEEE (2016)

16. Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in
bitcoin. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 515–
532. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4 30

17. Savers, N.: Hardfork Meta: Constantinople (2018). https://eips.ethereum.org/
EIPS/eip-1013. Accessed December 2018

18. Schoedon, A.: Constantinople Difficulty Bomb Delay and Block Reward Adjustment
(2017). https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1234.md.
Accessed December 2018

19. Solidity: Solidity 0.5.1 documentation, December 2018. https://solidity.readthe
docs.io/en/v0.5.1/

20. Teutsch, J., Reitwießner, C.: A scalable verification solution for blockchains (2017)
21. Tikhomirov, S.: Ethereum: state of knowledge and research perspectives. In: Imine,

A., Fernandez, J.M., Marion, J.-Y., Logrippo, L., Garcia-Alfaro, J. (eds.) FPS 2017.
LNCS, vol. 10723, pp. 206–221. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-75650-9 14

22. Torres, C.F., Schütte, J., State, R.: Osiris: hunting for integer bugs in ethereum
smart contracts. In: Proceedings of the 34th Annual Computer Security Applica-
tions Conference, pp. 664–676. ACSAC 2018, ACM, New York (2018). https://doi.
org/10.1145/3274694.3274737, http://doi.acm.org/10.1145/3274694.3274737

23. Wood, G.: Ethereum yellow paper (2014)

https://doi.org/10.1007/978-3-662-54970-4_30
https://eips.ethereum.org/EIPS/eip-1013
https://eips.ethereum.org/EIPS/eip-1013
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1234.md
https://solidity.readthedocs.io/en/v0.5.1/
https://solidity.readthedocs.io/en/v0.5.1/
https://doi.org/10.1007/978-3-319-75650-9_14
https://doi.org/10.1007/978-3-319-75650-9_14
https://doi.org/10.1145/3274694.3274737
https://doi.org/10.1145/3274694.3274737
http://doi.acm.org/10.1145/3274694.3274737

Short Paper: Deploying PayWord
on Ethereum

Muhammad Elsheikh, Jeremy Clark(B), and Amr M. Youssef

Concordia University, Montreal, Canada
pulpspy@gmail.com

Abstract. We revisit the 1997 PayWord credit-based micropayment
scheme from Rivest and Shamir. We observe that smart contracts can
be used to augment this system, apply to ‘claim or refund’ paradigm of
cryptocurrencies to remove the counter-party risk inherent in PayWorld,
and use a smart contract to ‘staple’ real value (in Ether) to payments in
the system. Our implementation is more concise than any Ethereum pay-
ment channel we are aware of and the offline payments are very compact
values (264 bits). It only uses hash functions and not digital signatures.
EthWord becomes cheaper than standard Ethereum transfers when more
than 16 payments between the same participants are made and appears
to maintain its advantage for up to 1000+ transactions, at which point
signature-based payments become cheapest. The main drawback of Eth-
Word is the moderate gas price of using the system—despite dropping
signatures, it is still priced out of the micropayments use-case. Like any
payment channel, requires only two on-blockchain function calls to open
and close the channel, while allowing the rest to be made off-blockchain.

1 Introduction

PayWord is a credit-based payment system, envisioned for small payments pro-
posed by Rivest and Shamir [22]. The mechanics we will turn to later, but for
now, the reader can think of tokens being issued that have some value. The key
advantage of PayWord is its efficiency and succinctness drawn from using only
hash functions. A limitation of PayWord is that tokens do not have inherent
value; their value is based on the trust assumption that a counter-party will
honour the value ascribed to them. With Ethereum, we can fix this issue by sta-
pling cryptocurrency to the token through the use of a smart contract. Finally,
while Ethereum already has internal functionality for payments, EthWord enables
payments to be made off-blockchain and settled once on-blockchain.

This transformation turns PayWord from a trust-based credit system to an
escrow-based payment system; not unlike offline payment channels and networks
being proposed for Bitcoin (e.g., the Lightning Network [20]). It is known that
an Ethereum-based payment channel will be less complex than a Bitcoin one,
since most of the complexity of Bitcoin-based payments channels comes from
Bitcoin’s limited scripting language [13]. EthWord is a uni-directional payment
channel that can be chained into a payment network and has very compact
c© International Financial Cryptography Association 2020
A. Bracciali et al. (Eds.): FC 2019 Workshops, LNCS 11599, pp. 82–90, 2020.
https://doi.org/10.1007/978-3-030-43725-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43725-1_7&domain=pdf
https://doi.org/10.1007/978-3-030-43725-1_7

Short Paper: Deploying PayWord on Ethereum 83

(e.g., 256-bit) payments. It thus might be an interesting primitive to enhance in
the same ways other payment channels [4,20] have been: adding features [10],
increasing efficiency [6,15], and adding transactional privacy [7,8,12,23].

2 Background

Beginning in the 1980s, a significant amount of the cryptographic literature
has been devoted to the design of e-cash systems. In the 1990s, many startups
worked toward deployment of this technology but most ultimately failed [17].
By late 2008, when Bitcoin was first proposed [16], innovation on both the aca-
demic and commercial side of digital cash had dried up. Now Bitcoin’s success
has breathed new life into the field: cryptocurrencies have billion dollar market
capitalizations and academic conferences like Financial Cryptography are again
publishing papers on financial cryptography.

At first glance, Bitcoin seems like a major departure from the e-cash systems
from the 80s and 90s. In reality, its ‘academic pedigree’ is a novel combination
of pre-existing ideas [18]. Similarly, researchers are re-discovering long lost ideas
from the e-cash literature and finding new ways to apply them in a blockchain
world. For example, blinded coins were a staple of e-cash [3] that re-emerge,
along with accumulators [24], in post-Bitcoin systems like zcash [14,25]. Enabling
micropayments through lottery-based probablistic payments of macropayments
was explored in the 90s [9,21,27] and re-emerged for Bitcoin [19]. In this paper,
we ‘re-discover’ the 1997 payment system PayWord from Rivest and Shamir [22].

3 Preliminaries

Hash Chains. A hash chain [11] is constructed by iteratively applying a public
one-way hash function H() on a random value s. Let the notation Hi+1(s) =
H(Hi(s)). A hash chain of length n + 1 is:

〈
s,H(s),H2(s),H3(s), . . . ,Hn−1(s),Hn(s)

〉

where s (technically equivalent to H0(s)) is called the seed and Hn(s) is called
the tip. Given the hash is preimage resistant against a computationally bounded
adversary, knowing some value in the chain Hx(s) does not reveal any values
‘up’ the chain from it, including the seed:

〈
s, . . . ,Hx−1(s)

〉
. Conversely the value

Hx(s) can be iteratively hashed to produce the rest of the values ‘down’ the
chain ending up producing the tip value.

Recognition. If Alice meets Bob at a party, Bob can give the tip of a chain to
Alice as a token [1]. Later when Bob meets Alice again, he can provide Hn−1(s)
as proof he is the same person that gave her the token. On the subsequent visit,
he provides Hn−2(s) and so on for n visits. Of course, Bob could more directly
provide Alice with his public key and sign messages each visit, however hash
chains avoid the relatively expensive public key operations of a signature.

84 M. Elsheikh et al.

Payments. In PayWord, recognition is used for credit-based payments. A Pay-
Maker generates a length n + 1 hash chain and provides a signed1 tip to a
PayTaker. They agree that each preceding value in the hash chain has a speci-
fied unit of value owed to the PayTaker by the PayMaker. For example, say n is
100 and the value of each hash in the chain is a $1 debt owed to the PayTaker. To
expense $27, the PayMaker provides Hn−27(s) to the PayTaker who will verify
that hashing it 27 times produces the signed tip. The PayMaker can increase
the amount by sending further hashes, up to $100 (the capacity), after which,
the payment channel is exhausted and must be reinitiated.

Payment Channels. Payment channels were reconceived for Bitcoin [4,20] to
offer offline payments between Alice, Bob, and possibly with some intermediaries
relaying transactions. In Bitcoin, payment channels work the same as EthWord
(in other words, EthWord is a payment channel) but involve setting up a number
signed transactions (some pushed to the blockchain and others held in reserve)
and the payments themselves are one or more full and signed Bitcoin transac-
tion. While EthWord is a payment channel, it is a simple one. It can only send
payments from the PayMaker to the PayTaker (thus it is unidirectional) and it
can only send payments in increasing amounts (thus it is monotonic). Making
a bidirectional payment channel, where payment values can be increased and
decreased arbitrarily, is interesting future work.

Pay50. A recent blog post by Di Ferrante argues for the simplicity of Ethereum-
based payment channels (relative to Bitcoin) and he offers a ‘50 lines of code’
Solidity implementation of a uni-directional, monotonic channel we will name
Pay50 for the purposes of this paper [5]. As a deliberate barebones implementa-
tion, it is simple and it relies on offline payments to be signed by the sender. We
describe it further in the next section.

4 EthWord Implementation

EthWord is a line-by-line replication of Pay50, replacing the use of digital sig-
natures with hash functions as described in the original PayWord proposal. We
slightly modernize Pay50 to make it compliant with changes introduced in the
Solidity language.2 We replicate Pay50 to enable an isolated comparison between
a signature-based approach (Pay50) and hash-based (EthWord) approach.

The primary issue with PayWord is that payments have no actual value and
only represent an agreement to pay. In EthWord, we staple Ethereum’s internal
currency ether (ETH) to the payments through a smart contract to give them
real value. Thus EthWord eliminates the counter-party risk in accepting payments
that is inherent in PayWord, and this is only possible because payments are
backed by both a digital currency and a decentralized execution environment.

Both Pay50 and EthWord follow the standard paradigm used in the literature
to eliminate counterparty risk (sometimes called claim-or-refund [2]). If Bob
1 The signature is only for non-repudiation, not for future authentication.
2 Source code: https://github.com/MadibaGroup/2017-EthWords.

https://github.com/MadibaGroup/2017-EthWords

Short Paper: Deploying PayWord on Ethereum 85

1. The PayMaker runs the constructor of EthWord.
2. The PayMaker opens the contract by specifying the identity of PayTaker, the

validity period of the channel, how much each hash is worth, and funds the
contract. The PayMaker will send the contract address to PayTaker.

3. The PayTaker will check the parameters of the contract to ensure it is funded,
how long she has to settle the account before the PayMaker can withdraw his
deposited funds, and the total amount of the deposited funds. When satisfied,
she stores the hashchain tip offline.

4. Offline, the PayMaker will make payments by sending hash values. The Pay-
Taker will check that the value iteratively hashes to the tip for a correct
number of iterations corresponding to amount of payment she expects. If
PayMaker wants to make successive payments, they send a new hash that
represents the new total amount to be paid to the PayTaker.

5. At any time while the contract is open, PayTaker can submit a hash value and
receive the appropriate payment. If the PayTaker has not run this function
and the validity period expires, the PayMaker can withdraw all the money in
the contract and close it.

Protocol 1: The on-blockchain and off-blockchain steps in EthWord payments

(the PayMaker) wants to send up to X ETH to Alice (the PayTaker), he prepays
by loading X ETH into a smart contract that the PayTaker can withdraw from
when specified conditions are met. The PayMaker also sets a deadline for the
PayTaker to withdraw, after which he can release the escrowed funds back to
himself. The PayTaker checks that the contract is properly formed and funded;
only then will she accept payments from the PayMaker.

4.1 EthWord Code Design

As EthWord is a modification of Pay50, we will discuss the design of both in
parallel. Both use the constructor to initially setup the contract. In addition,
they have two functions that both close the channel: one is used by the PayTaker
to claim a payment and other is used by the PayMaker to dissolve the contract
after it has timed out. EthWord is summerized in Protocol 1. The constructor
for both Pay50 and EthWord establishes the core components of the contract:

• PayTaker: msg.sender for the contract creation.
• PayMaker: an address passed into the constructor.
• Total available funds: the constructor allows an amount of Ether to be trans-

ferred to the payment channel contract (the constructor is marked payable).
• Timeout: a validity period passed into the constructor. The contract also

stores the block timestamp of when the constructor was run. These values
are added together and when they exceed any future block timestamp, the
self-destruct function is permitted to run allowing the PayMaker a refund.

86 M. Elsheikh et al.

Table 1. Function cost. Since closeChannel is dependent on how long the hash chain
is for the claimed payment, we shows costs for length 50 and length 100.

EthWord Function Gas ETH USD

Channel 318 953 0.00539 $0.689

closeChannel (50) 18 757 0.00033 $0.042

closeChannel (100) 21 907 0.00038 $0.049

Note that as implemented, the timeout functionality in both is timestamp
dependent which could enable the PayMaker to refund earlier than allowed, or
alternatively be locked out from refunding, as a result of miner manipulation of
the timestamps. This is feasible for adjustments of approximately 900 s. There-
fore, the contract timeout should be considered ‘fuzzy’ or imprecise.

For EthWord specifically (not Pay50), the constructor also establishes the
payword tip and the amount of Ether each payword is worth. Consider a contract
that holds 1.00 ETH in escrow and the PayTaker supplies proof that they are
entitled to, say, 0.45 of the 1.00 ETH by invoking this function. For Pay50, the
proof is the claimed amount as signed by PayMaker and the contract validates
the signature. For EthWord, it is a payword (i.e., the output of a hash function).
In this case, the PayMaker might make a hash-chain of length 100, construct the
contract with the tip, specify the value of each hash as 0.01 ETH, and funds the
contract with 1.00 ETH.

Note that the contract does not care about the length of the hash chain
because there is no simple way (nor reason) for the PayTaker to actually verify
the length of the hash-chain. If it is too short, then PayMaker cannot make
payments after a certain point. If it is longer, than PayTaker needs to stop
accepting payments in excess of what she has verified to the contract to hold.
Similarly, since the length of the hashchain is unknown to PayTaker, the contract
does not require a specific amount to be funded. The PayTaker will just treat
this amount as the maximum.

The PayMaker can make an offline payment to the PayTaker by sending a
hash (again see Protocol 1). Note that the hash is in no way bound to the identity
of the PayTaker—the smart contract binds the use of the hash to the PayTaker.
Next, note that technically the PayTaker can compute the chain and submit
any hash from this chain to claim(), however they are incentivized to send the
most valuable hash. For this same reason, the PayMaker can then later ‘up the
payment’ by sending a more valuable hash to the PayTaker. This can be repeated
until the PayMaker runs out of hashes or PayTaker wants to run claim(). This
is called replace-by-incentive [13] in the payment channel literature.

4.2 Evaluation

Footprint. Relative to Pay50, EthWord does not add to the lines of code; in
fact, it even shaves a few off. The more important property is the size of the

Short Paper: Deploying PayWord on Ethereum 87

Fig. 1. The total gas cost of running the payment channels EthWord, Pay50, and the
internal Ether Transfer as a function of the number of payments. Internal transfers
are most economical up to 16 transactions, then EthWord is most economical, and
we extrapolate that Pay50 (at a gas cost of around 460 000) will only become more
economical when the transactions exceed 1000.

payment sent to the receiver; this is reduced from a digital signature to a hash
or from 776 bits to 264 bits. Note that it is even possible to reduce EthWord to
256-bits; an extra 8 bit value representing the length of the hash from the tip is
included for a more convenient loop.

Gas Costs. As of January 15th, 2019, the weighted average price of 1 gas is
17.26×10−9 ETH3 and the exchange rate of 1 ETH to USD is $127.85.4 Table 1
shows the gas costs of each function in EthWord if run successfully. The cost
of the claim function includes checking if the provided payment (hash) is part
of the hash chain (if when iteratively hashed, it results in the tip value). Thus
the cost of claiming will vary on how many times the hash must be iterated.
For example, consider a channel with 100 payment values worth 0.01 ETH each.
Running claim on the payment value representing 0.05 ETH will require hashing
the value 5 times. The payment value of 0.95 ETH will require 95 hashes.

Figure 1 shows the total gas cost of running the payment channels EthWord,
Pay50, and the internal ether transfer as a function of the number of payments
(from 1 to 100). At 100, the cost by EthWord is 334 236 which is still about 30%
less than the cost of running Pay50 that must verify a digital signature (i.e.,
Pay50 uses Solidity’s ecrecover with some additional processing logic).

Contract Security. As mentioned above, the contract depends on timestamps
for allowing a refund after an elapsed time. Further, once the contract is refund-
able, the PayTaker can still close the contract and receive payment assuming
they have a payment proof. If PayTaker and PayMaker try to close the contract

3 https://ethgasstation.info/.
4 https://coinmarketcap.com/.

https://ethgasstation.info/
https://coinmarketcap.com/

88 M. Elsheikh et al.

at the same time, transaction ordering will be arbitrary, subject to a gas auc-
tion, and subject to miner manipulation. For both of these issues, the PayTaker
simply needs to be aware. Well before the timeout, the PayTaker has exclusive
control over closing the contract.

Last, consider a case where the PayTaker is given a payment of 0.45 ETH
from a contract holding 1.00 ETH. After receiving the 0.45 ETH at the address
of the PayTaker (call it T), note that T may be a contract address and if so,
it’s fallback function will be allowed to run. Logically, this function could recall
close and result in an addition 0.45 ETH—a reentrancy attack. The mitigation
is the standard one: using send which does provide enough gas to T’s fallback
function to make an additional function call.

5 Discussion

Forming payment networks. Consider a third party, in addition to the Pay-
Maker and the PayTaker, called an intermediary. If PayMaker establishes an
EthWord channel with the intermediary and the intermediary establishes an Eth-
Word channel with PayTaker, and both channels use the same tip, then payments
can be routed through the intermediary without trusting it. This requires one
small modification: PayTaker can run closeChannel() in both contracts. It can
also admit further modifications: for example, the intermediary might modify
closeChannel() so that it keeps some fraction of the total payout as a fee.

Porting to Bitcoin. Bitcoin’s scripting language is purposely limited, com-
pared to Ethereum, to ensure scripts execute efficiently and support Bitcoin’s
core functionality of digital money. Many PayWord components are supported
in Bitcoin script, including but not limited to locking transactions with a hash
image that requires a pre-image to spend; and the ability to iteratively hash
elements. However it does support looping nor dynamically changing how an
output can be split. A moderate extension to Bitcoin’s scripting language could
enable PayWord on Bitcoin; one proposal is MicroBTC [26].

Micropayments. With a total gas cost (to construct, open, and claim within
a contract) of $0.75 or more, EthWord (or other Ethereum-based payment net-
works) are not suitable for true micropayments. Even to send $100 of value, it
represents a 0.75% fee. The simplest internal Ethereum transaction costs 21 000
gas so EthWord will have to replace 16 transactions to pay for itself.

Prepaying. A limitation that underlies almost all payment channels is the
fact that payments have to be prepaid. Without some broader economic infras-
tructure, payment channels are similar to using prepaid cards, something we
expect compensation for (generally, customers pay for credit; preloading a card
or account is giving the merchant credit which the merchant should pay for5). If
Alice were to pay all her bills for a single year using EthWord (or other payment

5 For example, a $50 Apple Store prepaid card might sell for $40 or using a preloaded
Starbucks app might result in rewards that can be redeemed for future purchases.

Short Paper: Deploying PayWord on Ethereum 89

channel), she would have to have enough Ether for an entire year on the first
day of the year. For many people, this would be a cash flow issue.

Trickling. One issue in payments is fairness or fair exchange. When the pay-
ment is made on-blockchain for a token that is already on-blockchain, the swap
of payment for token can be made atomic. However when the purchase is off-
blockchain, either the purchased good or the payment has to be released first,
leading to counter-party risk. Some purchases are divisible (e.g., electricity pur-
chased to charge an electric car) and in these cases, payment channels like Eth-
Word are useful for trickling small payments in exchange for small divisions of the
purchased good. If one party unfairly aborts, the value that is forfeited is small
and bounded. Trickling can also be used for sending funds via an untrusted inter-
mediary when the payment network approach cannot be used—e.g., if the inter-
mediary is a mixing service that is anonymizing the payment stream amongst
other indistinguishable output payment streams.

References

1. Anderson, R., Bergadano, F., Crispo, B., Lee, J.-H., Manifavas, C., Needham, R.:
A new family of authentication protocols. SIGOPS Oper. Syst. Rev. 32(4), 9–20
(1998)

2. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In:
CRYPTO (2014)

3. Chaum, D.: Blind signatures for untraceable payments. In: CRYPTO (1982)
4. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin

duplex micropayment channels. In: SSS (2015)
5. Di Ferrante, M.: Ethereum payment channel in 50 lines of code. Medium (2017)
6. Dziembowski, S., Eckey, L., Faust, S., Malinowski, D.: Perun: virtual payment

channels over cryptographic currencies. IACR ePrint (2017)
7. Green, M., Miers, I.: Bolt: anonymous payment channels for decentralized curren-

cies. In CCS (2017)
8. Heilman, E., Alshenibr, L., Baldimtsi, F., Scafuro, A., Goldberg, S.: Tumblebit: an

untrusted bitcoin-compatible anonymous payment hub. In: NDSS (2017)
9. Jarecki, S., Odlyzko, A.: An efficient micropayment system based on probabilistic

polling. In: Financial Cryptography (1997)
10. Khalil, R., Gervais, A.: Revive: rebalancing off-blockchain payment networks. In:

CCS (2017)
11. Lamport, L.: Password authentication with insecure communication. CACM

24(11), 770–772 (1981)
12. Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M., Ravi, S.: Concurrency

and privacy with payment-channel networks. In: CCS (2017)
13. McCorry, P., Möser, M., Shahandasti, S.F., Hao, F.: Towards bitcoin payment

networks. In: Information Security and Privacy (2016)
14. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed

e-cash from bitcoin. In: IEEE Symposium on Security and Privacy (2013)
15. Miller, A., Bentov, I., Kumaresan, R., McCorry, P.: Sprites: payment channels that

go faster than lightning. CoRR, abs/1702.05812 (2017)
16. Nakamoto, S.: Bitcoin: a peer-to-peer electionic cash system. Unpublished (2008)

90 M. Elsheikh et al.

17. Narayanan, A., Bonneau, J., Felten, E.W., Miller, A., Goldfeder, S.: Bitcoin and
Cryptocurrency Technologies. Princeton (2016)

18. Narayanan, A., Clark, J.: Bitcoin’s academic pedigree. CACM 60(12), 770–772
(2017)

19. Pass, R., Shelat, A.: Micropayments for decentralized currencies. In: CCS (2015)
20. Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant pay-

ments (2015)
21. Rivest, R.L.: Electronic lottery tickets as micropayments. In: FC (1997)
22. Rivest, R.L., Shamir, A.: PayWord and MicroMint: two simple micropayment

schemes. In: Security Protocols (1996)
23. Roos, S., Moreno-Sanchez, P., Kate, A., Goldberg, I.: Settling payments fast and

private: efficient decentralized routing for path-based transactions. In: NDSS (2018)
24. Sander, T., Ta-Shma, A.: Auditable, anonymous electronic cash. In: CRYPTO

(1999)
25. Sasson, E.B., et al.: decentralized anonymous payments from bitcoin. In: IEEE

Symposium on Security and Privacy (2014)
26. Wan, Z., Deng, R.H., Lee, D., et al.: MicroBTC: efficient, flexible and fair micropay-

ment for bitcoin using hash chains. J. Comput. Sci. Technol. 34, 403–415 (2019).
https://doi.org/10.1007/s11390-019-1916-x

27. Wheeler, D.: Transactions using bets. In: Security Protocols (1997)

https://doi.org/10.1007/s11390-019-1916-x

SoK: Development of Secure Smart
Contracts – Lessons from a Graduate

Course

Monika di Angelo1,2(B) , Christian Sack1, and Gernot Salzer1,2

1 Technische Universität Wien, Vienna, Austria
{monika.diangelo,christian.sack,gernot.salzer}@tuwien.ac.at

2 Eurecom, Biot, France

Abstract. Smart contracts are programs on top of blockchains and
cryptocurrencies. This new technology allows parties to exchange valu-
able assets without mutual trust, with smart contracts controlling the
interaction between the parties. Developing smart contracts, or more
generally decentralized applications, is challenging. First, they run in
a concurrent environment that admits race conditions; adversaries may
attack smart contracts by influencing the order of transactions. Second,
the required functionality is often based on roles and states. This proves
to be difficult to implement in current smart contract languages. Third,
as a distinctive feature, smart contracts are immutable, hence bugs can-
not be corrected easily. At the same time, bugs may cause (and have
already caused) tremendous losses; they are to be avoided by all means.

This paper discusses our approach of teaching the development of
secure smart contracts on the Ethereum platform at university level.
This is a challenging task in many respects. The underlying technolo-
gies evolve rapidly and documentation lags behind. Available tools are
in different stages of development, and even the most mature ones are
still difficult to use. The development of secure smart contracts is not
yet a well-established discipline. Our aim is to share our ideas, didactic
concept, materials, insights, and lessons learned.

Keywords: Smart contract · Secure development · University course ·
Ethereum · Solidity

1 Introduction

Smart contracts were envisioned by Nick Szabo about 20 years ago [27,28] as
computer programs automating the exchange of digital assets, which may be
linked to non-digital objects or values. Smart contracts became effectively alive
with the advent of cryptocurrencies. While playing only a limited role in Bitcoin,
they are an essential ingredient of platforms like Ethereum [12].

Cryptocurrency-based smart contracts run on peer-to-peer networks that
consist of mutually distrusting nodes (so-called miners) ideally operating in a
decentralized manner. There is no need for an external trusted authority, miners
execute smart contracts in an autonomous fashion.
c© International Financial Cryptography Association 2020
A. Bracciali et al. (Eds.): FC 2019 Workshops, LNCS 11599, pp. 91–105, 2020.
https://doi.org/10.1007/978-3-030-43725-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43725-1_8&domain=pdf
http://orcid.org/0000-0002-4217-4530
http://orcid.org/0000-0002-8950-1551
https://doi.org/10.1007/978-3-030-43725-1_8

92 M. di Angelo et al.

1.1 Characteristics of Smart Contracts

The main characteristics of smart contracts are: immutability (as long as the
community does not decide otherwise), transparency (when the ledger is open),
provisioning of a digital service (or the digital mapping of a service), an interface
to the outside world to enable interaction with it, no central control/supervision
of transactions and contract execution, and for the contracting parties no neces-
sity to reveal their identities to anyone.

Because of these properties smart contracts promise to be of use for applica-
tions requiring trustless computation, observability, tamper evidence, and decen-
tralization. Trustless computation means autonomous execution of the program
as well as no need for a trusted (third) party. Instead, trust is put in the ledger
that keeps track of the exchange of assets. Smart contracts draw from the trans-
parency technology of the underlying cryptocurrency, providing observability and
tamper evidence as a trust base. Decentralization means that the system as a
whole should not suffer from a single point of failure, and again should not rely
on anything that needs to be trusted.

Application areas where such requirements may be desirable and useful are
for example notary services, open government, insurance services, supply chain
management, copyright management, and FinTech. Applications based on smart
contracts are still in their infancy, with the most successful ones being initial coin
offerings (ICOs) and collectibles like CryptoKitties [6].

1.2 Reasons for a University Course

Distributed applications (Dapps) use smart contract as backend to implement
part of the business logic and to store critical data. Developing such Dapps is
not just about learning another script language for smart contracts, but brings
in considerable complexities that result e.g. from the concurrency, transparency,
and immutability of transactions. Failing to acknowledge these complexities led
to a situation where smart contracts are more famous for bugs and money losses
than for success stories.

At the same time start-ups and traditional companies (like financial insti-
tutions and energy providers) jump on the bandwagon and urgently search for
programmers able to develop Dapps that handle valuable assets reliably. This
need is complemented by a massive interest of computer science students in
this apparently hot topic. From a didactic point of view, smart contracts and
blockchains are a worthwhile subject as they relate to many topics in com-
puter science, like security, concurrency, cryptographic protocols, randomness,
advanced algorithms, data structures, and formal verification.

1.3 Interesting Courses Online and at Other Universities

Among the available university based courses on Bitcoin, blockchains, and cryp-
tocurrencies, the most prominent one is [19], a highly recommended book with
a great accompanying online course.

Development of Secure Smart Contracts 93

For smart contracts in particular, information on held or available courses
is scarce. The authors of [7] were the first to document the teaching of smart
contracts as a university course. They report “several typical classes of mis-
takes [undergraduate] students made, suggest ways to fix/avoid them, and advo-
cate best practices for programming smart contracts.” The main problems were
failure to encode the state machine properly, failure to use cryptography, mis-
aligned incentives, and Ethereum specifics. This can be regarded as a reference
course. For their lab they used Serpent, a high level programming language in
the Ethereum world. Their pedagogical approach of “build, break, and amend
your own program” seemed to be beneficial to teach adversarial thinking. As a
conclusion about smart contracts, they arrived at “designing and implementing
them correctly was a highly non-trivial task”.

Outside academia and free to use on the internet, there are two projects which
we consider well done and worthwhile. Ethernaut [20] is a war game, where vul-
nerabilities of smart contracts need to be exploited to advance. The instructive
challenges have different levels of difficulty that are indicated accordingly. To
succeed one has to understand known vulnerabilities and to apply the gained
insights when using the provided tools. The online tutorial CryptoZombies [15]
provides a nice gamification of how to develop smart contracts. It introduces the
programming language Solidity in several steps, while jumping right into mat-
ters. By forming an army of zombies, one learns to program a suite of contracts
similar to the popular CryptoKitties [6]. Finally, one is instructed on how to
build a Dapp around the zombie contracts.

1.4 Added Value of This Paper

Teaching a subject like smart contracts that is new and in flux poses several
challenges. There are no reference courses that may serve as a blue-print; the
essence of secure smart contract programming has to be distilled from many
sources. Moreover, the tools and techniques for the development of Dapps are
still evolving and need to be evaluated regarding their suitability for teaching.
When preparing the course, we came across a single report about a similar
endeavor [7], which was helpful but at the same time already partly outdated.

The purpose of this report is to pass on our findings and experience in order to
inspire and aid teachers designing similar courses as well as to identify difficulties
encountered during the development of smart contracts. To this end, we present
an analysis of the students’ development efforts, a discussion of useful resources
and tools, and a critical reflection of our experiences.

Furthermore, we contribute to defining the need for specific and qualifying
university courses on blockchain and smart contracts programming. Based on
the students’ answers and feedback, we present insights into problems faced by
researchers and developers when dealing with smart contracts. We elaborate on
the issues encountered and provide several suggestions.

94 M. di Angelo et al.

1.5 Roadmap

In the next section we present our course design in detail and the course setup.
The lessons learned including an analysis of the students’ development efforts is
provided in Sect. 3. In Sect. 4 we discuss our approach, and in Sect. 5 we draw
our conclusions about smart contract development and note further challenges.

2 Course Design

For the course design, we first define basic details like learning outcomes and
content. Subsequently, we summarize the considered body of knowledge on which
we base the learning activities. Then we present the assignments in detail.

2.1 Characteristics

Learning Outcomes. The aim of the course is that students gain knowledge
and skills in the following areas.

Technological foundations: Understand the technological basis of smart con-
tracts, like the blockchain, the Ethereum virtual machine (EVM), and the exe-
cution of smart contracts by miners.

Programming languages and tools: Use the languages, tools, and technologies for
developing smart contracts and for interacting with them, like Solidity, Remix,
Truffle, Geth, and Web3.js.

Security and privacy issues: Recognize and avoid security and privacy issues
resulting either from the technology or from poor programming practices.

Smart contracts and Dapps: Develop secure smart contracts and Dapps involving
tokens and cryptocurrencies.

Course Contents. In the lectures we recap the cryptographic basics as needed
to understand cryptocurrencies and blockchain mechanics, explain the basic con-
cepts of smart contracts, describe Ethereum in detail, highlight the peculiarities
of scripting in Solidity, present the basics of the EVM as well as its relation
to Solidity, and discuss current approaches to verification of smart contracts.
The workshops cover tools and introductory exercises. The challenges address
known vulnerabilities. Tokens and their usage as well as specific programming
techniques are essential parts of the two projects.

Target Audience. Smart contracts and Dapps constitute advanced topics in
computer science that presuppose knowledge in areas like algorithms, program-
ming, web computing, and security. Therefore we devised Smart Contracts as an
elective course in the master programmes of computer science and business infor-
matics. Students without a background in Bitcoin and blockchain technology are
referred to [19] and the accompanying video lectures.

Development of Secure Smart Contracts 95

2.2 Body of Knowledge

Smart Contracts. We start with Nick Szabo’s ground breaking ideas on smart
contracts [27,28] and Princeton’s great introductory book and online course on
cryptocurrencies [19]. The research perspectives and challenges for cryptocurren-
cies in [4] are worth considering, too. Regarding the Ethereum world, we refer to
the Ethereum basics [12,31] and Buterin’s blockchain and smart contract mecha-
nism design challenges [29], as well as the overview of scripting languages in [24].
Furthermore, the article [26] with a legal perspective and the presentation [14]
with a programming point of view offer additional perspectives on the topic.
For platforms and use cases, [2] provides an interesting empirical analysis of
smart contracts regarding platforms, applications, and design patterns, whereas
[23] discusses decentralized applications. The challenges and new directions for
blockchain-oriented software engineering in [22] provided useful insights, as did
[17] with their elaboration on validation and verification of smart contracts.

Security Issues. [1] presents a useful survey of attacks on Ethereum smart con-
tracts, whereas [16] not only investigates the security of smart contracts deployed
on the Ethereum main chain, but also proposes to use symbolic execution (as
implemented in the tool Oyente) to make contracts less vulnerable. [3] presents a
declarative domain-specific language (Findel) to add security to financial agree-
ments handled by smart contracts. The blog post [13] provides a guide to auditing
smart contracts and reviews relevant attacks.

Last Minute Contributions. As smart contracts are a lively field, interesting
work kept appearing throughout the course. This includes the collection of coding
patterns [30] with proposals how to mitigate typical attacks. The authors of [8]
encourage best practices to mitigate detrimental software behavior and argue
for specific “Blockchain Software Engineering” since existing approaches seem
insufficient for the particular needs of smart contract development.

2.3 Learning Activities

The course activities comprised lectures, workshops, and assignments, accompa-
nied by a moderated discussion forum and email support.

Lectures. The main intention of the lectures was to cover new material deemed
necessary to achieve the learning outcomes. While the usual course format is
lectures with accompanying assignments, we deliberately added a workshop
component.

Workshops. The intent of the workshops was to alleviate the frustration asso-
ciated with using a range of new tools, and to close gaps in the understand-
ing of the presented material. The students brought their own laptops to gain
hands-on experience. We first demonstrated the handling of selected tools and
assisted with initial problems arising from the partly unstable tool chain and the
incomplete documentation. Then, we focused on small ad-hoc tasks to make sure

96 M. di Angelo et al.

everyone was familiar with the operations and concepts required for the upcom-
ing assignments. The workshops also served the purpose of discussing sample
solutions after the submission deadlines.

Assignments. The assignments were intended to provide students with prac-
tical experience regarding the implementation of smart contract, to let the stu-
dents apply the newly gained skills and knowledge, and for us to get feedback on
the progress of students regarding their understanding of the essential concepts.

The assignments started with the online tutorial CryptoZombies [15] (see
Sect. 1.3) in order to provide an entertaining introduction into programming
in Solidity. Subsequently, eight security challenges had to be solved, with the
intention to get the students to understand known vulnerabilities and to motivate
the need for secure smart contract development.

Finally, there were two constructive tasks. For the guided project “beer bar”
we provided a clear specification and an abstract Solidity contract including
comments for the parts to be implemented by the students. The final project
had a free topic and just a few constraints.

Ether was only available in limited quantities to raise awareness that it is a
costly resource. Next to a regular supply of Ether which was sufficient to solve
the assignments, it was also handed out as a reward for participation in the
workshop tasks, and upon request.

2.4 Assignments in Detail

Challenges. The eight security challenges (inspired by Ethernaut [20]) are
packed into a story in which the main character is a software developer. For
each challenge the task is to deplete the provided contract by finding and suc-
cessfully exploiting one or more security issues. The challenges address known
vulnerabilities concerning the fallback function, a misnamed constructor, math
issues like overflow, forced transfer of Ether, reentrancy, hidden variables, dele-
gatecall, insecure contract interaction, failing transactions, and randomness.

Beer Bar. This assignment consists of four constructive sub-tasks.

Task 1. The students implement a bar token that is not divisible, but mintable
and burnable. Furthermore, they make sure that tokens cannot get lost by send-
ing them accidentally to contracts that are not set up for accepting them. The
concept of tokens as well as standard token contracts [21] were introduced in the
workshop. To solve this task the students customize an ERC223 token.

Task 2. The students implement a beer bar that uses the bar token from Task 1.
We provide the interface as well as a skeleton contract with in-line comments
that describe the functionality to be implemented, like opening and closing the
bar, setting the beer price and the bar token to be accepted, and the processing
of beer orders. For modeling the roles of bar owners and bar keepers, the students
use the RBAC contract [21].

Task 3. The students extend the bar to a song voting bar where customers can
vote for the songs to be added to the playlist, with an additional role DJ.

Development of Secure Smart Contracts 97

Task 4. We provide a simple web interface in Javascript that uses web3.js to
communicate with the contract of the beer bar. The students extend the interface
to interact with their song voting bar.

Final Project. For the final project, the students are encouraged to choose a
topic of their own. If lacking inspiration, they may extend the beer bar. The
final project is graded with respect to the following criteria.

– Use of mappings, RBAC-roles, modifiers, Ether, tokens, correct math.
– Some (minimalistic) web interface for interacting with the contract.
– The contracts should not make any Ether or tokens inaccessible.
– The contracts should not exhibit any of the vulnerabilities discussed in the

security challenges before.
– Quality of the documentation specifying the contract and the web interface.

The following aspects give an additional bonus: original choice of topic, com-
mitment schemes for guarding secrets (like bids or game moves), deposits to
prevent aborts or reverts of games, timeouts to ensure the termination of moves
or games, and good randomness.

2.5 Technical Setup

The technical setup of the course consists of a Linux server providing an
Ethereum blockchain and a block explorer, as well as a separate client for the
lecturers and the students (Linux, MacOS, and Windows). As implementation
languages we use Bash, Javascript, Solidity, and Html.

Ethereum Blockchain. Geth [11] runs a private chain with proof of authority
(POA). The geth client (miner) has to be configured such that it can handle
sufficiently many concurrent connections to give all students access in parallel.
Moreover, it turned out that we need a high block gas limit for publishing the
challenges (see below).

Block Explorer. We developed our own block explorer consisting of a single
Html page and some programs in Javascript. When the user opens the block
explorer in a browser it connects to the local geth instance to load the chain data.
As a result, the user sees the local synchronized state of the blockchain, reducing
the network load on our server. A filter allows the students to restrict their view
to the transactions they are actually involved in. This helps in situations where
several students are active at the same time (like during workshops).

Administration of Students and Assignments via the Blockchain. We
deployed several contracts on our blockchain to manage the submission of assign-
ments and the interaction with and between students.

The address book provides a unique mapping between student ids and
Ethereum addresses (one public address per student); moreover, it maintains
a list of several private Ethereum addresses per student. The public address
is used e.g. for interactions between students and for transferring Ether.

98 M. di Angelo et al.

The addresses of personalized copies of challenges and of contracts submitted by
a student are stored as private addresses, only known to a single student and to
the lecturers.

The Ether tap regularly transfers small amounts of Ether to all public
addresses. Moreover, in case of mishaps (like transferring accidentally all Ether
to the zero address) students may request limited amounts of Ether from this
contract.

The alias directory allows the students to specify a string to be used in place
of their name. This alias is later used for displaying live progress visualizations
and feedback (e.g. who has already solved a task) and rankings (like the time
needed to solve a challenge).

A base contract is inherited by each personalized copy of a challenge. It adds
private variables that ensure that the students can only interact with their own
copy, and that the challenge can be turned off after the deadline.

Client for Lecturers. The client for lecturers is a geth client with console
scripts attached to it. It automatically prints each transaction as it occurs,
improving readability by translating the involved addresses to names. The scripts
provide functions for easy maintenance and observation during the course. As
an example, the function balances identifies students who have spent most of
their Ether. Other scripts deploy a challenge for a single student or groups of
addresses, whereby certain values in each instance can be varied randomly to
personalize the challenge for each student.

Client for Students. The client for the students is a geth client connecting
automatically to the private course chain. It includes the abstract binary inter-
face (ABI) and the deployment address of the address book such that students
can access their private and public addresses in a symbolic way.

3 Lessons Learned from the Students’ Submissions

3.1 Beer Bar

It turned out to be difficult for some students (25%) to accept only their own
tokens (and not arbitrary ones). After the submission deadline, we addressed this
issue in the workshop. We reopened the submission for the beer bar to admit
corrections, because we felt this token aspect was too important to miss.

3.2 Final Project

After teaching known vulnerabilities by means of security challenges to moti-
vate secure smart contracts, and after showing best practice examples, we were
interested to see which topics the students would choose for their final project
and how they would implement them.

The final project was handed in by 44 students. Most students addressed the
homo ludens by implementing some sort of game (14), gambling (13), betting (5),

Development of Secure Smart Contracts 99

or lottery (3). Three students opted for a shop. The remaining six students came
up with extra-ordinary topics, namely cash register functionality that conforms
to local law, untraceable and unlinkable voting (using a ring signature), smart
marketplace, data saver, trusted recommender, and betterSpotify.

The effort put into the final project varied. 14 students pragmatically
extended their implementation of the beer bar or transformed it into a shop
of similar structure. Several students skipped the web interface (10) or docu-
mented their project poorly (6). At the other end, about half of the students
went at great lengths to provide a rounded-off project, paying also attention to
details.

The students encountered several difficulties in their implementation efforts.
Our insights are broken down with respect to the requirements for the project.

Roles, Modifiers, Require Statements. These elements posed no problems.
They are mentioned first in the initial tutorial on Solidity, CrytoZombies, and
then are repeatedly used throughout the challenges and in the guided project.

Data Structures. Many students wanted to iterate over arrays. We explained
during the course that loops over potentially growing ranges should be avoided as
the execution may eventually exceed the gas limit and fail (apart from becoming
more and more expensive). Not being able to iterate over mappings required
time to get used to. Deciding which part of the data and the program logic
should be put on-chain and which one off-chain remained an issue.

Correct Math. It was easy for the students to understand the problems of
overflows and wrap-arounds and to take precautions.

Token Usage. Even though we put an emphasis on tokens and their correct
usage, some students had troubles. This was particularly true for ERC223 tokens
and the idea of the token fallback function. These concepts presumably need
more time, explanations, and exercises.

Commitments. The correct usage of commitments needs basic security knowl-
edge that we did not teach, just briefly summarized. Most students did not
require commitments for their final project. Several students (13) employed them
correctly, a few tried but failed.

Stages/Phases. The usage of stages or phases in order to ensure the correct
ordering of transactions did not pose any problems.

Randomness. Good randomness within smart contracts is generally tricky. We
only covered it superficially. Most projects did not require (good) randomness.
Some students made serious attempts, most of them (9) succeeded.

Private Variables. Even though we covered private variables in the workshops
and the challenges, quite a few students had problems with them. The keyword
private and the missing getter function seemed to make them blind to the fact
that the variables could still be inspected from the outside. Apparently, pri-
vate variables represent new and unexpected material that needs more exercises.

100 M. di Angelo et al.

It might also be worthwhile to modify the syntax of Solidity by replacing the
misleading keyword by another one, maybe local or internal.

Deposits/Timeouts. The usage of deposits or timeouts to handle unfair game
aborts or stalling did not pose any problems.

Web User Interface. Students with little prior knowledge of web scripting
had a difficult time implementing a basic web interface for their contracts, even
though we provided an exemplary one for the bar contract. If this is to be an
integral part of the course, it definitely needs more coverage or prior knowledge.

3.3 Tools

All students initially used Remix, and most of them stayed with this browser
IDE. Some additionally tried Remixd to access the local file system; this add-on,
however, did not prove stable and lead to the destruction of files in two cases.

Some students switched to the Truffle framework because of its promise of
more structured testing and better handling of multi-contract projects. Testing
is generally an issue with little or unstable support by the tools. A problem with
Truffle was that a new version became available during the course that was not
fully compatible with the old one.

4 Discussion

The choice of Ethereum as a platform for smart contracts was determined by the
wealth of available materials that is unparalleled compared to any alternative
platform.

4.1 Distinctive Aspects

Our approach differs from [7] in the following aspects.

Focus. We teach how to develop secure smart contracts. In their final assignment
the students were asked to implement a project of their choice, after experiencing
lectures, workshops, security challenges, and a guided project.

Technological Environment. There is more practical knowledge on smart
contracts now. Security issues related to the programming language shifted. The
tool chain is improving, but still leaves much to be desired.

Didactic Design. We worked with graduate students, security challenges based
on known vulnerabilities, workshops with ad hoc tasks and live feedback, a
guided project using tokens, and a final project with an open topic.

Development of Secure Smart Contracts 101

4.2 Course Feedback

The university provides a non-obligatory course questionnaire for the students
to fill in at the end of each term. In this questionnaire, students are asked to
answer a bit over 20 questions, rating their satisfaction from 1 (very content)
to 5 (not at all content). Questions concern the preparation, implementation,
interaction, and knowledge gain of a course.

16 out of the initially 53 students took the opportunity to give a feedback on
our course. This is a high percentage (30%) compared to the usual less than 10%.
Our course yielded an average graduation between 1.0 and 1.56 on the questions
with a median value of 1. In comparison, the typical median for courses of the
faculty is 2. These numbers indicate a high satisfaction with the course.

Verbal feedback included statements like: “One of the best courses I’ve
attended so far.” “Previously, I had about 0 interest and prior knowledge of
blockchain and cryptocurrencies and just attended the course to learn more. It
definitely caught my interest.” “Knowledge growth is still understated. It has
opened a gateway to a new world!” “Really good and above all entertaining
course.”

Students especially liked: “The workshops and the course chain. That every-
thing happens on the chain is pretty cool :) The exercises were always fun and
well prepared.” “The whole course was really great. Please do a continuation
course.” “Workshops, panel discussion” “Security challenges, course chain setup,
general format with course + workshop” “Challenges were nicely designed. Also
given creative freedom, because you can make the final project completely your-
self.” “The workshops were absolutely great. Originally I did not want to attend
because of time constraints, but they were just too good to omit (100% atten-
dance). The challenges were a lot of fun and were just at the right level of
difficulty. 1–2 a bit too heavy for me on my own, but with tiny hints from others
they were no problem.” “The format with 1 hour lecture + 2 hours workshops +
the plenary discussion in the last lecture. The course environment with its own
chain is great.”

Potential for improvement was seen in: “The pace was a bit high.” “The
effort was too high, even if it’s fun . . . ” “The web part needs more introduction
and support.” “More time for the final project.” “A recording of the lectures
would be helpful.” “I would have liked a model solution of the guided project.”

5 Conclusions

Smart contracts are an interesting topic to teach in computer science, since
they combine areas like distributed systems, security, data structures, software
engineering, algorithms, and formal verification. There are connections to finance
(values at stake) and law (legal aspects of the usage of smart contracts).

Secure smart contracts are still avant-garde. Even though there are coding
patterns and best practice collections for most known (security) bugs (like [21]),
the development of secure smart contracts is not yet a well-established discipline.

102 M. di Angelo et al.

5.1 Differences to Conventional Development

Summarizing our experience from the course on smart contracts, we identified
the following issues in developing secure smart contracts. We started to address
them and raised awareness in these regards. For smart contracts to become a
reliable technology, these issues should be addressed further.

Security is an Issue. Developing secure smart contracts needs ‘adversarial
thinking’. A key feature of smart contracts is their immutability once deployed
on the blockchain, because this feature is part of the trust base. So, smart con-
tracts have to be designed and implemented correctly right from the start with
little chances for updates. Even though an update strategy is possible, it dete-
riorates the trust base. Moreover, smart contracts usually have values at stake.
As they are intended to work autonomously once they are released, there is a
non-negligible incentive for adversaries to exploit potential vulnerabilities.

Underspecification is an Issue. In general, it is difficult for developers to
consider all possible program states and transitions and to fully specify the
behavior of the program, especially if there is little or no tool support for it. A
full specification (with the aid of a suitable tool) seems still a long way to go,
but would be a prerequisite for the verification of smart contracts. There are
currently only few approaches [5,13,16,18] that help developers find overlooked
states. This goes hand in hand with security issues as underspecification readily
leads to a vulnerability. Again, there is an economic incentive to exploit potential
gaps, and the immutability requires to close the gaps beforehand. Maybe a game
theoretic approach would help to explicitly balance the incentives that smart
contracts (implicitly) create.

Concurrency is an Issue. Smart contracts are decentralized pieces of trust-
less computer code. Although they essentially run on the hardware of a miner,
and some advocate considering the miner network as a large linear ‘world com-
puter’, there are some concurrent aspects in smart contracts. Some program
sequences require more than one transaction. Even though a single transaction
is an atomic operation, multiple transactions cannot be bundled to a single
atomic operation. Once a transaction is on the blockchain, it cannot be reversed
by a following transaction. There can be race conditions, transaction ordering
makes a difference. It can be influenced (by transaction fees), but not relied upon
within a smart contract (without special handling like stages). Understanding
the concurrency aspects of smart contracts is still a research topic [9,25].

Novelty is an Issue. Blockchains and cryptocurrencies are still evolving, and
so are the programming languages for smart contracts (such as Solidity). Tools in
this domain are developed for a moving target, and thus barely develop beyond
beta status before becoming obsolete. Best practice and coding patterns are
gradually emerging (e.g. OpenZeppelin [21]). Working with new technologies is
quite a challenge, even more when they keep changing.

Development of Secure Smart Contracts 103

Separation is an Issue. Some of the involved data and logic have to stay on the
chain (via transactions) in order to maintain their security and integrity, while
others do not need the costly features of a blockchain. All parts with no need to
be handled on-chain should be handled off-chain, in order to reduce (transaction)
costs and execution time as well as capacity issues. It may be necessary to provide
validation (in terms of integrity and security) for some of the off-chain processes
and data (e.g. authenticity proofs). E.g. [10] discusses such off-chain patterns.
Also, a static (or perhaps even dynamic) analysis is required to decide which
pieces of data and logic are best handled on-chain.

5.2 Further Challenges

For the development of secure smart contracts there are several areas with poten-
tial for improvement.

Platforms. Besides Ethereum, there are current and planned platforms, which
intend to solve several issues (e.g. consensus, performance). It will remain inter-
esting to observe, evaluate, and contribute to ongoing developments that provide
a suitable basis for secure smart contracts.

Scalability. The number of transactions per second is still an open issue, as
well as the growing size of the chain. Moreover, the execution speed of smart
contracts may constitute a bottleneck.

Development Frameworks. Currently there are a few tools with basic develop-
ment support. Even though they are rapidly evolving, there is still insufficient
support for secure implementations. Especially, support for correct and complete
specifications would be of great help.

Programming Languages. The currently prevalent language Solidity is still evolv-
ing with incomplete documentation lagging behind. Other languages exist or are
being developed. Again, support for correct and complete specifications would
be of great help. Programming languages for smart contracts are an interesting
field of ongoing research.

Verification. Because of the high value at stake paired with the immutability of
deployed code, (formal) verification of smart contracts is desirable. This is also
an interesting area of ongoing research.

Acknowledgments. We are grateful to our students who made the course a worth-
while experience with their enthusiastic participation and high quality assignments. We
would like to extend our sincere thanks to our student assistants for their commitment
and dedication in the preparation phase as well as during the course. A special thanks
goes to our two guest lecturers from the Vienna based security research company SBA.

104 M. di Angelo et al.

References

1. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on Ethereum smart con-
tracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp.
164–186. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-
6 8

2. Bartoletti, M., Pompianu, L.: An empirical analysis of smart contracts: platforms,
applications, and design patterns. In: Brenner, M., et al. (eds.) FC 2017. LNCS,
vol. 10323, pp. 494–509. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70278-0 31

3. Biryukov, A., Khovratovich, D., Tikhomirov, S.: Findel: secure derivative contracts
for ethereum. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 453–467.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70278-0 28

4. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK:
research perspectives and challenges for bitcoin and cryptocurrencies. In: IEEE
Symposium on Security and Privacy (SP 2015), pp. 104–121. IEEE Computer
Society (2015). https://doi.org/10.1109/SP.2015.14

5. Bragagnolo, S., Rocha, H., Denker, M., Ducasse, S.: SmartInspect: smart contract
inspection Technical report. Ph.D. thesis, Inria Lille (2017). https://hal.inria.fr/
hal-01671196/document

6. Dapper Labs Inc: CryptoKitties. https://www.cryptokitties.co. Accessed 07 Aug
2018

7. Delmolino, K., Arnett, M., Kosba, A., Miller, A., Shi, E.: Step by step towards
creating a safe smart contract: lessons and insights from a cryptocurrency lab.
In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K.
(eds.) FC 2016. LNCS, vol. 9604, pp. 79–94. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53357-4 6

8. Destefanis, G., Marchesi, M., Ortu, M., Tonelli, R., Bracciali, A., Hierons, R.M.:
Smart contracts vulnerabilities: a call for blockchain software engineering? In: 2018
International Workshop on Blockchain Oriented Software Engineering, pp. 19–25.
IEEE Computer Society (2018). https://doi.org/10.1109/IWBOSE.2018.8327567

9. Dickerson, T., Gazzillo, P., Herlihy, M., Koskinen, E.: Adding concurrency to smart
contracts. In: ACM Symposium on Principles of Distributed Computing (PODC
2017), pp. 303–312. ACM, New York (2017). https://doi.org/10.1145/3087801.
3087835

10. Eberhardt, J., Tai, S.: On or off the blockchain? Insights on off-chaining computa-
tion and data. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds.) ESOCC 2017.
LNCS, vol. 10465, pp. 3–15. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-67262-5 1

11. Ethereum Foundation: Go Ethereum - the Ethereum protocol implemented in Go.
https://geth.ethereum.org. Accessed 11 Sept 2018

12. Ethereum Wiki: A next-generation smart contract and decentralized application
platform. https://github.com/ethereum/wiki/wiki/White-Paper. Accessed 29 July
2018

13. Grincalaitis, M.: The ultimate guide to audit a smart contract and the most
dangerous attacks in Solidity (2017). https://medium.com/@merunasgrincalaitis/
how-to-audit-a-smart-contract-most-dangerous-attacks-in-solidity-ae402a7e7868.
Accessed 09 Aug 2018

14. Henglein, F.: Smart contracts are neither smart nor contracts (slides) (2017).
http://hjemmesider.diku.dk/∼henglein/smart-contracts-are-neither.pdf. Accessed
09 Aug 2018

https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-319-70278-0_31
https://doi.org/10.1007/978-3-319-70278-0_31
https://doi.org/10.1007/978-3-319-70278-0_28
https://doi.org/10.1109/SP.2015.14
https://hal.inria.fr/hal-01671196/document
https://hal.inria.fr/hal-01671196/document
https://www.cryptokitties.co
https://doi.org/10.1007/978-3-662-53357-4_6
https://doi.org/10.1007/978-3-662-53357-4_6
https://doi.org/10.1109/IWBOSE.2018.8327567
https://doi.org/10.1145/3087801.3087835
https://doi.org/10.1145/3087801.3087835
https://doi.org/10.1007/978-3-319-67262-5_1
https://doi.org/10.1007/978-3-319-67262-5_1
https://geth.ethereum.org
https://github.com/ethereum/wiki/wiki/White-Paper
https://medium.com/@merunasgrincalaitis/how-to-audit-a-smart-contract-most-dangerous-attacks-in-solidity-ae402a7e7868
https://medium.com/@merunasgrincalaitis/how-to-audit-a-smart-contract-most-dangerous-attacks-in-solidity-ae402a7e7868
http://hjemmesider.diku.dk/~henglein/smart-contracts-are-neither.pdf

Development of Secure Smart Contracts 105

15. Loom Network: CryptoZombies. https://cryptozombies.io. Accessed 07 Aug 2018
16. Luu, L., Chu, D., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts

smarter. In: Weippl, E.R., et al. (ed.) 2016 ACM SIGSAC Conference on Computer
and Communications Security, pp. 254–269. ACM (2016). https://doi.org/10.1145/
2976749.2978309

17. Magazzeni, D., McBurney, P., Nash, W.: Validation and verification of smart con-
tracts: a research agenda. IEEE Comput. 50(9), 50–57 (2017). https://doi.org/10.
1109/MC.2017.3571045

18. Mavridou, A., Laszka, A.: Tool demonstration: FSolidM for designing secure
ethereum smart contracts. In: Bauer, L., Küsters, R. (eds.) POST 2018. LNCS,
vol. 10804, pp. 270–277. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89722-6 11

19. Narayanan, A., Bonneau, J., Felten, E., Miller, A., Goldfeder, S.: Bitcoin and
Cryptocurrency Technologies: A Comprehensive Introduction. Princeton Univer-
sity Press, Princeton (2016)

20. OpenZeppelin: Ethernaut - Solidity security challenges. https://github.com/
OpenZeppelin/ethernaut. Accessed 07 Aug 2018

21. OpenZeppelin: Solidity contract library. https://github.com/OpenZeppelin/
openzeppelin-solidity. Accessed 07 Aug 2018

22. Porru, S., Pinna, A., Marchesi, M., Tonelli, R.: Blockchain-oriented software engi-
neering: challenges and new directions. In: Uchitel, S., et al. (ed.) 39th International
Conference on Software Engineering (ICSE 2017), pp. 169–171. IEEE Computer
Society (2017). https://doi.org/10.1109/ICSE-C.2017.142

23. Raval, S.: Decentralized Applications: Harnessing Bitcoin’s Blockchain Technology.
O’Reilly Media, Newton (2016)

24. Seijas, P.L., Thompson, S.J., McAdams, D.: Scripting smart contracts for dis-
tributed ledger technology. IACR Cryptol. ePrint Archive 2016/1156 (2016).
http://eprint.iacr.org/2016/1156

25. Sergey, I., Hobor, A.: A concurrent perspective on smart contracts. In: Brenner,
M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 478–493. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70278-0 30

26. Sreehari, P., Nandakishore, M., Krishna, G., Jacob, J., Shibu, V.S.: Smart will con-
verting the legal testament into a smart contract. In: 2017 International Conference
on Networks Advances in Computational Technologies (NetACT), pp. 203–207,
July 2017. https://doi.org/10.1109/NETACT.2017.8076767

27. Szabo, N.: Formalizing and securing relationships on public networks. First Monday
2(9), 28 (1997). https://doi.org/10.5210/fm.v2i9.548

28. Szabo, N.: Secure Property Titles with Owner Authority (1998). http://
nakamotoinstitute.org/secure-property-titles/. Accessed 09 Aug 2018

29. Vitalik, B.: Blockchain and smart contract mechanism design challenges (slides)
(2017). http://fc17.ifca.ai/wtsc/Vitalik%20Malta.pdf. Accessed 09 Aug 2018

30. Wöhrer, M., Zdun, U.: Smart contracts: security patterns in the Ethereum ecosys-
tem and Solidity. In: 2018 International Workshop on Blockchain Oriented Soft-
ware Engineering, pp. 2–8. IEEE Computer Society (2018). https://doi.org/10.
1109/IWBOSE.2018.8327565

31. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Tech-
nical report, Ethereum Project Yellow Paper (2014). https://ethereum.github.io/
yellowpaper/paper.pdf. Accessed 09 Aug 2018

https://cryptozombies.io
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1109/MC.2017.3571045
https://doi.org/10.1109/MC.2017.3571045
https://doi.org/10.1007/978-3-319-89722-6_11
https://doi.org/10.1007/978-3-319-89722-6_11
https://github.com/OpenZeppelin/ethernaut
https://github.com/OpenZeppelin/ethernaut
https://github.com/OpenZeppelin/openzeppelin-solidity
https://github.com/OpenZeppelin/openzeppelin-solidity
https://doi.org/10.1109/ICSE-C.2017.142
http://eprint.iacr.org/2016/1156
https://doi.org/10.1007/978-3-319-70278-0_30
https://doi.org/10.1109/NETACT.2017.8076767
https://doi.org/10.5210/fm.v2i9.548
http://nakamotoinstitute.org/secure-property-titles/
http://nakamotoinstitute.org/secure-property-titles/
http://fc17.ifca.ai/wtsc/Vitalik%20Malta.pdf
https://doi.org/10.1109/IWBOSE.2018.8327565
https://doi.org/10.1109/IWBOSE.2018.8327565
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

Verification-Led Smart Contracts

Richard Banach(B)

School of Computer Science, University of Manchester, Oxford Road,
Manchester M13 9PL, UK

richard.banach@manchester.ac.uk

Abstract. Turing complete smart contract formalisms (e.g. Solidity)
are conceptually appealing, but leave the door open to the problems of
verifying completely arbitrary code, a task which can be of arbitrarily
high complexity or can be undecidable. We argue that a more structured
approach, in which smart contract families are designed ab initio with
efficient verifiability in mind, provide a much more practical way for-
ward. We emphasis that the boundary between on-chain and off-chain
information, which must always be determined in an application specific
manner, is crucial in determining the practicability of smart contract
verification. We discuss the role of refinement technologies in breaking
down the complexity of smart contract verification, and illustrate the
argument using the Event-B formal modelling framework and Solidity
as implementation vehicle.

Keywords: Blockchain · Smart contract · Solidity · Verification ·
Event-B · Refinement · Rodin

1 Introduction

The introduction of Turing complete smart contract formalisms, the prime exam-
ple being Solidity [34–36], made the use of distributed applications and smart
contracts running on the blockchain much more appealing than hitherto. How-
ever, Turing completeness, taken literally, brings with it a host of difficulties. Not
the least of these is the familiar fact that deducing anything non-trivial about
arbitrary programs is undecidable, as enunciated for example in Rice’s theorem
[18,23,33], a textbook result.

In the present author’s opinion, the popularity of smart contracts that grew
markedly after the introduction of Solidity had a lot more to do with the conve-
nience and expressivity of the source language and with the intuitive and familiar
nature of its execution model in the Etherium Virtual machine [20] than with
Turing completeness per se.

Of course, Solidity can keep the potential complexity of verification under
control by charging enough gas for transactions that turn out to be difficult
to verify. Such an approach is feasible and is fail-safe (insofar as questionable
transaction features could simply cause the pre-deposited gas supply to run out),

c© International Financial Cryptography Association 2020
A. Bracciali et al. (Eds.): FC 2019 Workshops, LNCS 11599, pp. 106–121, 2020.
https://doi.org/10.1007/978-3-030-43725-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43725-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-43725-1_9

Verification-Led Smart Contracts 107

though it forces decisions to be made at runtime, i.e. at the time that con-
tracts/transactions are created/executed.

In this paper, we promote an approach to smart contracts that starts with
abstract formal models, and proceeds through formal refinement stages, to a con-
crete level that can be implemented in a smart contract execution environment.
Such an approach automatically keeps verification complexity within bounds,
because each model in the process has to be proved sound and consistent, and has
to be proved to be a valid refinement of its predecessor. Moreover, the approach
opens the door to formulating smart contracts using simpler formal frameworks,
such as finite state machines or pushdown automata, potentially enhanced by
measured amounts of parameterisation and more general computation (such as
limited amounts of arithmetic performed at the individual automaton states).
The significant amount of static verification that such an approach involves,
implies that significantly less verification would need to be applied at runtime,
and would be sufficient for assurance. We illustrate our proposal using the Event-
B formalism, with Solidity as target on-chain implementation vehicle.

The rest of the paper is as follows. Section 2 briefly overviews some key ele-
ments of Event-B. Section 3 looks at Event-B refinement. Section 4 reviews essen-
tial elements of Solidity. We point out the similarities and differences between
the two formalisms. Section 5 introduces a small example based on a payment
scenario. It is first presented at an abstract level, and then Event-B refinement
develops the details to a more concrete model. Section 6 then outlines the imple-
mentation of the concrete model in Solidity. Section 7 looks back, and consid-
ers variations and generalisations that the presented example suggests. Section 8
reviews related work and places the present work in context. Section 9 concludes.

Although, in this paper we focus on Solidity and Event-B for specificity
and simplicity, it is clear that the same ideas can be explored in many other
formalisms for smart contracts and for formal development.

2 An Overview of Event-B

In this section we recall a few essential features of Event-B, omitting a large
number of facts not needed for our exposition. See [4,5,30,31,37] for a fuller
exposition. The Rodin toolkit [5,30] provides extensive mechanised support.

Event-B is a formalism for defining, refining and reasoning about discrete
event systems. Its relatively uncluttered design makes it useful in many kinds
of application. The syntactic unit that expresses self-contained behaviour is the
MACHINE. A machine can refer to a static CONTEXT which contains arbitrary
mathematical constructs to be used in the machine1. It declares the VARIABLES
of the machine, which embody the dynamical behaviour of the machine, and cru-
cially, it contains the INVARIANTS, which are predicates in the state variables

1 In practice, the mathematics needs to be capable of being reasoned about by the
reasoning tools within the Rodin toolset [30], which curtails the usable expressivity
quite firmly.

108 R. Banach

that must remain true during all runs of the machine. Machine runs are specified
implicitly via successions of EVENTS, each being of the syntactic form:

EvName =̂ WHEN grd THEN xs := es END

In this syntactic form, grd is a guard, i.e. a boolean expression in the variables
and constants, the truth of which enables the event to execute. (If the guard is
false, then the event cannot execute, and then some other event can be selected
to execute; if no event’s guard is true, the machine deadlocks.) Provided the
guard is true, the THEN clause defines a set of parallel updates xs := es to
the variables, all executed in a single atomic action. Of course, there are many
additional forms of event syntax in the more definitive [4].

For machine M to be correct, the following proof obligation (PO) schemas
must be provable:

Init(u′) ⇒ Inv(u′)

Inv(u) ∧ grdEv (u) ⇒ ∃u′ • BApredEv (u, u′)

Inv(u) ∧ grdEv (u) ∧ BApredEv (u, u′) ⇒ Inv(u′)

Event-B treats Initialisation as an event (with arbitrary initial state) and so
the first schema demands that its after-value (indicated by priming the state
variable(s) u) must establish the machine invariants, denoted by Inv . The second
schema is the feasibility of event Ev . It says that if the guard grdEv of event
Ev and the invariants hold, then there is a well defined after-state that the
event can establish, where BApredEv is the before-after predicate of the event
(i.e. specifying in logical form, the relation that captures the pairing between
before-states and after-states of Ev). The third schema states that if a feasible
update of Ev is actually executed, any after-state it might establish must satisfy
the invariants Inv . When these schemas are proved to hold for all events of the
machine, it follows by a straightforward induction that Inv is true in all states
reachable by the machine.

3 Event-B Refinement

In Event-B, refinement is the technique by which additional detail, of both
behaviour and of the state the new behaviour requires for its expression, can
be added to a more abstract system model. In this manner, an early abstract
view of the desired system evolves towards implementation in a provably correct
way. Of course, the phrase ‘provably correct’ needs to be precisely defined. The
details are as follows.

The Event-B notion of refinement is based on the action refinement concept
[7–9,11]. Suppose then that a(n abstract) machine M , of the form described
above, is refined to a (concrete) machine MR, of a similar form. Let M have
variables u and MR have variables v. Suppose the u and v state spaces are
related by a refinement invariant R(u, v) (also referred to as a joint invariant or

Verification-Led Smart Contracts 109

gluing invariant). Suppose abstract event EvA of M is refined to concrete event
EvC of MR. Then correct refinement requires the following PO schemas to hold:

InitC(v′) ⇒ ∃u′ • InitA(u′) ∧ R(u′, v′)

R(u, v) ∧ grdEvC
(v) ⇒ grdEvA

(u)

R(u, v)∧ grdEvC
(v)∧BApredEvC

(v, v′) ⇒ ∃u′ •BApredEvA
(u, u′)∧R(u′, v′)

In the first of these, initialisation is refined. For each concrete initial state v′,
there must be an abstract initial state u′ related to v′ via the joint invariant.
The second PO is guard strengthening. If a concrete event EvC is feasible, which
means that its guard grdEvC

holds for a concrete state v that is the joint invariant
image of an abstract state u, i.e. R(u, v) holds, then u itself enables the abstract
counterpart EvA of EvC . The third PO is the simulation property of refinement.
If a concrete event EvC , enabled as just described, makes a step to an after-
state v′, then the abstract counterpart EvA of EvC can also make a step to an
after-state u′ such that the joint invariant holds for the two after-states R(u′, v′).

The PO just described covers the 1-1 case of refinement, in which abstract
steps and concrete steps are forced to correspond in the manner described. To
allow greater flexibility for the introduction of detail via refinement, Event-B
refinement also permits the presence of ‘new’ events in the refining machine
MR. These are events whose steps have no abstract counterpart. For this to
make sense, such events have to refine ‘skip’, i.e. the null abstract state update,
and this in turn forces the joint invariant to be, in essence, a projection from
concrete states to abstract states. The PO that formalises this is the following:

R(u, v) ∧ grdNewEvC
(v) ∧ BApredNewEvC

(v, v′) ⇒ R(u, v′)

We see in this that because no change in u is envisaged, R must project away
any difference between v and v′, as stated.

If all of the above are provable for a pair of machines M and MR, then
an inductive proof of simulation of any concrete execution by some abstract
execution follows relatively easily.

4 A Bare Outline of Solidity

In this section we give an outline of Solidity, with a scope similar to that of the
Event-B outline above. Solidity has many of the features of a typical stack +
heap + inheritance based programming language, enriched with a collection of
facilities for operating on the Ethereum blockchain. We structure the account
in a way that parallels Sect. 2, since otherwise, confusion of terminology can,
unfortunately, arise. (We use teletype font to emphasis Solidity meanings.)

The Solidity construct that corresponds to the machine is the contract,
intentionally similar to a class in object-oriented languages. This contains the
usual declarations of state variables and of constructors (the analogues of intial-
isation in Event-B). There are also declarations of user-designed structured and
enumerated types. The inception of a contract also refers to any pragmatic infor-
mation and imported constructs.

110 R. Banach

Corresponding to the Event-B event is the Solidity function. (There are
also Solidity events, which should not be confused with the Event-B usage;
we say more about them below.) A function defines a change of state of the
contract. Analogously to an event’s guard in Event-B, the function has one or
more require clauses, which stipulate preconditions that must hold when the
function executes. With these considerations, a function appears thus:

function name(i-params) visibilitySpecifier (o-params) {
require(

predicate
)
body

}
The body of a Solidity function permits a relatively standard range of sequen-
tial programming constructs to be used. Ethereum specific facilities are also pro-
vided. These permit, for example, the interaction with other contracts via exter-
nal calls (accompanied by the gas to pay for their execution), and provisions for
the sending and receiving of ether between addresses or other contracts. And
as well as the preconditions expressed in the require clauses, assert clauses
can enforce the checking of state predicates in the interior of a body.

Solidity also allows a contract to declare one or more modifiers, which are
consulted during function execution. These are a bit like a function without
a body, the missing body being replaced by ‘ ;’. When a function stipulates
a modifier, its text replaces the ‘ ;’ in the modifier, thereby redefining the
function. In particular, the require clauses of the modifier become conjoined
to those of the function. This technique permits, for example, the consistent
imposition of a collection of restrictions on when a family of functions might
be permitted to execute.

Returning to Solidity events, they are events in the style of concurrent lan-
guages, in that they have a name (and may contain some parameters). When
they are emitted during the course of executing a function body, the name
(and its parameter collection, if any) is posted to the contract’s log for the
transition executing the body, and listeners who have subscribed to the event
can be informed of its presence. So, unlike Event-B events, Solidity events do
not change the contract state.

4.1 On Guards and Preconditions

The alert reader will have noted that when we spoke of Event-B events, we talked
about guards, whereas for Solidity functions, we talked about preconditions.
The distinction is not ephemeral, and hinges on the detailed formal semantics
of these two concepts; see e.g. [10] for a good textbook discussion. Both con-
cepts check a condition on entry to a state changing action, and if the condition
evaluates to true, the action takes place. The distinction arises if the condition
evaluates to false. For a guard, the semantics is as if the action had not been
invoked at all—nothing changes, and the semantics only speaks of actions ‘at

Verification-Led Smart Contracts 111

runtime’ whose guards are true. For mechanised reasoning systems, being able
to simply ignore action occurrences whose guards are not true is an enormous
convenience and leads to great efficiency.

For an action’s precondition which evaluates to false for some runtime occur-
rence, the conventional semantics of the execution abort s, because the precon-
dition expresses assumptions that are necessary for the action to make sense,
and they have been found to fail. In Solidity, whose functions can be called
within externally invoked transactions, there is no guarantee that any neces-
sary assumptions are bound to hold for any runtime function invocation, so
a precondition semantics is at first sight appropriate. In practice, failure of a
require check throws an exception, and the exception implements a revert,
which restores the state to its value before the function execution. Thus the
semantics is close to that of a guard after all, albeit that the null action of a
function execution that fails a require check is visible externally via a return
code, etc.

The preceding might be viewed as something of a meandering detour, were
it not for the fact that the current Solidity documentation contains the sen-
tence: “Catching exceptions is not yet possible.” which carries with it at least
the suggestion that exception catching might be available in future and would
be regarded as desirable. From our standpoint, of aiming to align formal devel-
opment with practical implementation in systems like Solidity, being able to
implement anything less trivial than skip on a failing require check would
be regarded as retrogressive, as it would severely complicate establishing for-
mal correspondence between a formal model of a contract and its Solidity
implementation.

5 A Simple Payment Contract in Event-B

We illustrate the ideas above with a simple payment protocol case study. A sup-
plier S agrees with a customer C to supply some goods or services, in exchange
for payment. Upon completion of the work, S is due payment by C. They have
agreed that if C pays by a given deadline, there is a discount of 10%. If the
deadline is not met, but a later one is, the discount decreases to 5%. If payment
is still missed, the full price becomes due, to be resolved by conventional means.

We create an abstract Event-B model as follows. Some parts appear in blue,
which we discuss in Sect. 7.

INITIALISATIONA =̂
BEGIN stA := WorkingA || discsA := {0 . . . 10} END

The INITIALISATIONA launches the model. There are two abstract variables,
the state variable stA initialised to WorkingA and the permitted range of dis-
counts discsA initialised to the set {0 . . . 10}.

Event SignalA indicates the completion of the work and the demand for
payment. The state becomes CompletedA and the discounts are unaltered.

112 R. Banach

SignalA =̂
WHEN stA = WorkingA
THEN stA := CompletedA || discsA := {0 . . . 10}
END

The contract is completed in one of two ways. Either it completes as intended,
via event CollectY A, and a non-zero discount in the range {5 . . . 10} is applied,
or the demand for payment times out, and the available discounts are narrowed
to {0} in event CollectNA.

CollectYA =̂
WHEN stA = CompletedA
THEN stA := DoneA || discsA := {5 . . . 10}
END

CollectNA =̂
WHEN stA = CompletedA
THEN stA := ForfeitA || discsA := {0}
END

In Event-B we would expect to increase the trust in the model by adding
invariants that express correctness properties of the model. In our case, we can
write invariants that express the expected coupling between stA and discsA
under correct operation. An example of such an invariant is:

stA = CompletedA ⇒ discsA = {0 . . . 10}

which is evidently provable given the definition of the model.

Fig. 1. State machine for the payment
smart contract at the concrete level.

Once satisfied that the abstract
model is correct and consistent with
the requirements addressed at that
level, the model is refined to include
more of the originally described detail.
This, more concrete model, is sub-
scripted with C , and its state machine
appears in Fig. 1. The model itself is
as follows.

The INITIALISATIONC event
is quite routine. Notice though, that
the concrete variable discC is an indi-
vidual value, and not a range, as in the
abstract model.

INITIALISATIONC =̂
BEGIN stC := WorkingC || discC := 0 END

In accordance with the more detailed requirements at this level, the concrete
model contains more detail in its states, and in its structure.

Verification-Led Smart Contracts 113

SignalC =̂
WHEN stC = WorkingC
THEN stC := CompletedC || discC := 10
END

As before, SignalC indicates the completion of the work and the demand for
payment. The state becomes CompletedC and the full discount is still available.

Collect 1 YC =̂
WHEN stC = CompletedC
THEN stC := Done 1C || discC := 10
END

Collect 1 NC =̂
WHEN stC = CompletedC
THEN stC := DelayC || discC := 5
END

This time, the model is more sensitive to the individual deadlines, so expiry of
the first does not prompt the end of the contract. Instead, the discount reduces
and a further delay is permitted.

Collect 2 YC =̂
WHEN stC = DelayC
THEN stC := Done 2C || discC := 5
END

Collect 2 NC =̂
WHEN stC = DelayC
THEN stC := ForfeitC || discC := 0
END

We claim that the concrete machine just defined is a refinement of the
abstract one. Without listing all the details exhaustively, we indicate the essen-
tial points. The refinement relation is a function that maps (stC , discC) pairs to
(stA, discsA) pairs, mapping individual stC values to individual stA values, and
demanding membership of discC in the set discA. Most stC values map to iden-
tically (or almost identically) named stA values in the obvious way, except for
DelayC , which maps to CompletedA. The latter enables the Collect 1 NC event
to be a ‘new’ event as described in Sect. 2. It changes the concrete state—thus
stC changes from CompletedC to DelayC , and discC changes from 10 to 5—but
in a way that is not visible to the abstract state through the refinement relation.

With this understood, checking the various simulation POs becomes
fairly routine. So, INITIALISATIONC is simulated by INITIALISATIONA;
SignalC is simulated by SignalA; Collect 1 YC and Collect 2 YC are simulated
by CollectY A; and Collect 2 NC is simulated by CollectNA.

These simulations ensure that the invariants proved to hold for the abstract
model, continue to hold in the concrete model, provided that they are suitably
interpreted through the refinement relation. For example, our abstract invariant
stA = CompletedA ⇒ discsA = {0 . . . 10} becomes (taking the model properties

114 R. Banach

appropriately into account) stC = CompletedC ⇒ discC ∈ {0, 5, 10}. Also, we
can add extra invariants pertaining to the concrete model alone, such as stC =
DelayC ⇒ discC = 5. Verifying all such properties can be done using Rodin.

6 Implementation in Solidity

On the assumption that all the necessary detail, along with the verification
that corroborates it, has been included in the final concrete Event-B model
and in the development path to it, the final implementation step in our app-
roach is to translate it into a Solidity contract, which we now sketch. Thus,
INITIALISATIONC translates into a constructor:

constructor() public {
st = Working;
disc = 0;

}
The other events of the concrete model translate in like fashion:

function signal() external {
require(st == Working);
st = Completed;
disc = 10;

}
function collect 1 Y() external {

require(st == Completed);
st = Done 1;
disc = 10;

}
function collect 1 N() external {

require(st == Completed);
st = Delay;
disc = 5;

}
function collect 2 Y() external {

require(st == Delay);
st = Done 2;
disc = 5;

}
function collect 2 N() external {

require(st == Delay);
st = Forfeit;
disc = 0;

}

Verification-Led Smart Contracts 115

It is clear that the translation just given is predicated on a number of
assumptions (for instance, that the states are encoded as an enumerated type).
We discuss such issues more fully in the next section.

7 Variations and Generalisations

The above small example raises a number of issues which we take some space to
discus now.

We concede immediately, that for the sake of expository simplicity, we omit-
ted any checks on the identities of the participants in the contract and on all
other matters connected with security, things which in reality, do of course have
the highest importance. Adding these, could be viewed as another refinement of
the models we gave above.

We observe that nowhere in the contract is the actual value to be transacted
mentioned (neither the currency to be used, whether ether or other). We are
assuming, for the sake of the example, that such details are kept off-chain, for the
sake of confidentiality. This alludes to a perennial tension in the smart contracts
ecosphere, namely that while the contract code is ‘public’ (i.e. visible at least
to any full nodes that might need to execute its code, and usually, more widely
than that), the parties engaging in a contract usually prefer to keep their business
confidential. In the present author’s opinion, squaring this circle will prove to be
a fertile ground for future innovation in the smart contracts world, particularly
as smart contracts and conventional legally enforceable contracts begin to merge.

Continuing in the same vein, if, for the sake of argument, we regarded the
numerical values of the discounts involved in the example above as already dis-
closing too much, we could remove all the blue parts from the Event-B models
and the Solidity code, to yield a terser smart contract scheme. If such a view
were adopted, restoring the blue parts (for example, in the off-chain part of the
whole system) would again be a refinement of the terser models.

Noting that, in even the most concrete of our models the states are finite in
number, as are the allowed discounts, we observe that our whole system consists
of finite state machines and their refinements, much as discussed in [26]. In a non-
Solidity, more bespoke and more special purpose private blockchain ecosystem,
such more simply structured contracts could be encoded in much simpler ways,
adapted to the application specific purpose.

Evidently, the positioning of the boundary between the on-chain and off-
chain parts of a smart contract can have a significant effect on the efficiency of
the runtime verification and execution of its functions. Our simple finite state
example provides the most trivial instance of verification, but in a more elab-
orate scenario, the finite states could be connected to off-chain computations
of arbitrary complexity. The fact that they would be off-chain, means that the
complexity does not impact blockchain performance (provided it is executed by
non-chain computational resources). The integrity of the connection between
on-chain and off-chain components can be ensured, for example, by recording
suitable hashes generated from the two computations in the on-chain elements.

116 R. Banach

Of course, doing that in a distributed system will not be possible in a single
atomic action in the general case. Achieving this properly can be formulated as
another level of refinement. The techniques for refining abstract atomic actions
into protocols that implement them in a distributed manner are relatively well
known [12].

A contract is normally an arrangement between more than one agent. How-
ever, the Event-B models and the Solidity code above were monolithic, in the
sense that there was no indication which agent (customer or supplier) was
expected to execute which event/function (though this is relatively evident
from context). This is connected with the absence of checks on identity and
security details in our example, that we have mentioned already. Event-B and
Rodin [4,30] provide facilities for decomposing a monolithic refinement develop-
ment into separate machines, relevant to the separate agents in a system, again
engineered using refinement. This provides a principled way of integrating such
concerns into the formally verified development.

For the sake of simplicity, the Solidity code given above assumed that the
various functions would be called by the appropriate agents at the appropri-
ate time. In particular, monitoring of the timeouts mentioned in the informal
description of the contract is assumed to be delegated to the customer, being
the agent in whose interest it is to receive early payment. To aid this app-
roach, suitable events could additionally be emitted by the Solidity functions
to assist in the monitoring of the progress of the contract by the various agents
involved. Looking to the future, and to increasingly sophisticated smart/legal
contract schemes, a much tighter integration of external oracles working entirely
autonomously can be built into blockchain architectures. The Oraclize service
[28] contributes substantially to this already.

Another source of complication, even in seemingly deterministic contracts like
our example, is the potential nondeterminism that arises due to the inevitably
unpredictable nature of distributed systems working, such as the PoW scheme
that underpins Ethereum, Bitcoin and other blockchain architectures.

Considering the increasingly sophisticated smart/legal contract schemes just
mentioned, it is not realistic to presume that in all cases, all possible playouts of
the contract scheme can be foreseen in advance. So, to cope with unanticipated
eventualities, the automated contract schemes will need to make provision for a
number of tidy exit points that allow for termination of automated working and
resolution of the contract by conventional human-mediated means.

These observations lead to an architectural model for verified smart contract
development which is schematically illustrated in Fig. 2. A contract scheme is
developed through a series of refinements M → MR → . . . etc. The various
levels elaborate more complex but more implementable representations of the
goals of the contract, as well as catering for a variety of successive concerns, as
indicated above. In particular, representing the decomposition of the monolithic
version of the contract (which enables correctness concerns to be expressed in
the most direct way possible) into a version in which the various agents and their
individual roles are clearly identified, should form part of this development. At

Verification-Led Smart Contracts 117

Fig. 2. A schematic illustration of a refinement chain for a formally developed smart
contract. Machine M is refined to MR, which is further refined to MRR. These develop
the on-chain elements of the contract, along with their correctness properties, up to the
point that they capture all the required on-chain information in a sufficiently imple-
mentable way. Machine MRR can then be implemented as a contract in a practical
system such as Solidity. Beyond the dashed line, MRR can be further refined to incor-
porate off-chain information relevant to the smart contract. The off-chain elements of
machine MR4 can then be implemented too.

a certain point, a level of detail suitable for on-chain implementation is reached,
at which juncture an implementation in Solidity or other system can be built.
The implementation on-chain may only represent part of what is needed, so
further refinement can encompass the off-chain part of the contract, which, at
an appropriate point, may itself be implemented.

It is worth observing that a lot of the issues to be brought into the refinement
chain are independent from each other. In such cases, the relevant refinements
can usually be performed in any order, and this gives rise, conceptually, to a
multidimensional grid of models connected by refinements, which may be nav-
igated in many ways. However, tools do not support such structures well, due
to the syntactic complexity of capturing the multitude of ways that entities are
connected together. So, for practical purposes, a linear refinement organisation
is normally demanded in practice.

8 Related Work

After an early recognition that the smart contract world would profitably lend
itself to, and would benefit from, formal verification approaches, the last two
years have seen a vigorous grown of interest in the area, witnessed by an increas-
ing number of publications. Many papers have appeared in the WTSC proceed-
ings [2] and in the FC proceedings [1] since their inception, as well as a variety
of other places.

Verification of the Ethereum Virtual Machine (EVM) and programs for it
has been one of the key topics of interest from the beginning. The attention is
warranted, since, for example, in [21] there is a table of financially significant
losses (> 400 USD in value) in the Ethereum smart contract system due to
flaws in the implementation of the ERC20 API. The paper [21] gives a formal
semantics of the EVM via the K system. In [29], the work in [21] is leveraged
to create a verification tool for EVM bytecode. In [22] there is an account of a
formal definition of the EVM in the Lem [27] language, which translates easily

118 R. Banach

into a range of standard theorem provers. The range of work indicated promises
to bring much needed precision to the implementation level of smart contracts,
since without that, little reliance can be placed on how the execution of a contract
might pan out.

Verification of smart contracts has attracted predictable attention, for rea-
sons similar to those motivating [21]. In [19], an approach to verified smart
contracts using runtime verification techniques is described. In [14], an approach
via the F* functional language and targeted at not only runtime behaviour but
also functional correctness, is perhaps closest to our approach (if in ours, all
modelling were to be restricted to what we called the concrete level). In [32] it
is argued that smart contracts are just concurrent systems, which is of course
true, which pulls in all the verification ideas from the concurrent systems world.
Also, we have already noted the approach to simpler contract structure via finite
state machines, etc. [26].

An aspect not present in our simple example, but that arises in problems that
are commonly treated via blockchains is the game theoretic one. Various kinds
of gambling problem, auctions, elections etc., open the door to the invention of
strategies to ensure the correct functioning of a contract, or to subvert its correct
functioning; [16] is representative.

We cite also the interaction between on-chain and off-chain working, mediated
by Oraclize [28] or otherwise, alluded to above, [13,32], which is a developing
topic. Finally, different dimensions of the interplay between smart contracts and
conventional legally enforceable contracts, which we also have discussed above,
attract the interest of various other authors, e.g. [6],

9 Conclusions

In the preceding sections we have outlined an essentially top-down approach
to smart contracts. Of course the approach is overkill for the toy example we
showed, but as contracts become more complex, and fuse with the legally enforce-
able kind, the dependability that formal development techniques can bring to
the whole process will become needed more and more. The table of exploited
Solidity and EVM vulnerabilities in [21] only strengthens this view.

The proposed approach brings to the fore a number of tensions which are
worth exploring—the B-Method provides a suitable allegory. Originally, the clas-
sical B-Method [3] pioneered the formal and automated production of safety
critical code, and nowadays the Atelier B tool [24,25], maintained by Clearsy
[17], is certified for such use. Certification is a sufficiently painful process that it
has precluded the evolution of the underlying formalism and the adoption of new
technologies in the core tool. To some extent this is circumvented by surrounding
the core tool with helper tools that work with newer ideas and translate them
into the older core formalism, although this is a bit ungainly [15]. One example of
this is the development by Clearsy of a dialect of Event-B that can be interfaced
to the core Atelier B tool.

Verification-Led Smart Contracts 119

Formalisms for dependable smart contracts face the same dilemmas. On the
one hand, the desire for greater usability and acceptance create a strong pres-
sure to evolve and improve the basic languages and frameworks used, which
militates for rapid language change and enrichment, with the evident risk that
unanticipated feature interaction can introduce vulnerabilities that undermine
dependabilirevert On the other hand, the desire for dependability of the system
creates a pressure to not evolve or change the languages and frameworks used,
precisely to avoid such problems.

Such issues aside, there would be no barrier to creating a dialect of a for-
malism such as Event-B that was aligned specifically to the formal development
of smart contracts. This could include facilities for directly generating code at
implementation level in a system such as Solidity (or at a lower level in the
EVM). However, what this requires is stability of the underlying system, and
confidence that it is sufficiently watertight. At the least, it requires precision
in the semantics of any underlying system relied on, so that the precision built
in to the formal layer is not undermined lower down the stack. We have noted
above the ongoing evolution of the Solidity language, which prompts caution in
our proposed approach. In particular, from our standpoint, catching exceptions
and dealing with them in any more elaborate way other than skip (i.e., doing
anything more than reverting to the starting state of a transaction), would
be considered harmful, as mentioned earlier. Nevertheless the graduated but
rigorously controlled proposed approach to the development of large complex
contracts could certainly yield benefits as the scale of automated contracts gets
bigger in future years.

References

1. Conference on Financial Cryptography and Data Security (FC). Springer, LNCS
(1997 onwards)

2. Workshop on Trustworthy Smart Contracts (WTSC). Springer, LNCS (2016
onwards)

3. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. CUP (1996)
4. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. CUP (2010)
5. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T., Mehta, F., Voisin, L.: Rodin:

an open toolset for modelling and reasoning in event-B. Int. J. Soft. Tools Tech.
Trans. 12, 447–466 (2010)

6. Al Khalil, F., Butler, T., O’Brien, L., Ceci, M.: Trust in smart contracts is a process
as well. In: Brenner, M., et al. (eds.) Proceedings of WTSC 2017, vol. 10323, pp.
510–519. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70278-0 32

7. Back, R., Kurki-Suonio, R.: Decentralisation of process nets with centralised con-
trol. In: Proceedings of PODC 1983, pp. 131–142. ACM (1983)

8. Back, R.J.R., Sere, K.: Stepwise refinement of action systems. In: van de Snep-
scheut, J.L.A. (ed.) MPC 1989. LNCS, vol. 375, pp. 115–138. Springer, Heidelberg
(1989). https://doi.org/10.1007/3-540-51305-1 7

9. Back, R.J.R., von Wright, J.: Trace refinement of action systems. In: Jonsson, B.,
Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 367–384. Springer, Heidel-
berg (1994). https://doi.org/10.1007/978-3-540-48654-1 28

https://doi.org/10.1007/978-3-319-70278-0_32
https://doi.org/10.1007/3-540-51305-1_7
https://doi.org/10.1007/978-3-540-48654-1_28

120 R. Banach

10. Back, R., von Wright, J.: Refinement Calculus. Springer, New York (1998). https://
doi.org/10.1007/978-1-4612-1674-2

11. Back, R., Sere, K.: Superposition refinement of reactive systems. Form. Asp. Comp.
8(3), 324–346 (1996)

12. Banach, R., Schellhorn, G.: Atomic actions and their refinements to isolated pro-
tocols. Form. Asp. Comp. 22, 33–61 (2010)

13. Bartoletti, M., Pompianu, L.: An empirical analysis of smart contracts: platforms,
applications, and design patterns. In: Brenner, M., et al. (eds.) FC 2017. LNCS,
vol. 10323, pp. 494–509. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70278-0 31

14. Bhargavan, K., et al.: Formal verification of smart contracts. In: Proceedings of
PLAS 2016, pp. 91–96. ACM (2016)

15. Burdy, L., Deharbe, D.: Teaching an old dog new tricks. In: Butler, M., Raschke, A.,
Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 415–419. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-91271-4 33

16. Chen, L., Xu, L., Shah, N., Gao, Z., Lu, Y., Shi, W.: Decentralized execution of
smart contracts: agent model perspective and its implications. In: Brenner, M.,
et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 468–477. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70278-0 29

17. ClearSy. http://www.clearsy.com/
18. Davis, M., Weyuker, E.: Computability, Complexity and Languages. Academic

Press, New York (1983)
19. Ellul, J., Pace, G.: Runtime verification of ethereum smart contracts. In: Proceed-

ings of EDCC 2018, Workshop on Blockchain Dependability, pp. 158–163. IEEE
(2018)

20. Ethereum. https://www.ethereum.org/
21. Hildenbrandt, E., et al.: KEVM: a complete formal semantics of the ethereum

virtual machine. In: Proceedings of CSFS 2018, pp. 204–217. IEEE (2018)
22. Hirai, Y.: Defining the ethereum virtual machine for interactive theorem provers.

In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 520–535. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70278-0 33

23. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages and Com-
putation. Addison Wesley, Boston (1983)

24. Lecomte, T.: Atelier B has Turned 20. In: Proceedings of ABZ 2016, vol. 9675, p.
XVI. Springer, Cham (2016)

25. Lecomte, T., Deharbe, D., Prun, E., Mottin, E.: Applying a formal method in
industry: a 25-year trajectory. In: Cavalheiro, S., Fiadeiro, J. (eds.) SBMF 2017.
LNCS, vol. 10623, pp. 70–87. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-70848-5 6

26. Mavridou, A., Laszka, A.: Designing secure ethereum smart contracts: a finite state
machine based approach. In: Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS, vol.
10957, pp. 523–540. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-
662-58387-6 28

27. Mulligan, D., Owens, S., Gray, K., Ridge, T., Sewell, P.: Lem: reusable engineering
of real-world semantics. SIGPLAN Not. 49, 175–188 (2014)

28. Oraclize. http://www.oraclize.it
29. Park, Y., Zhang, Y., Saxena, M., Daian, P., Rosu, G.: A formal verification tool

for ethereum VM bytecode. In: Proceedings of ESEC/FSE-18, pp. 912–915. ACM
(2018)

30. RODIN Tool. http://www.event-b.org/sourceforge.net/projects/rodin-b-sharp/

https://doi.org/10.1007/978-1-4612-1674-2
https://doi.org/10.1007/978-1-4612-1674-2
https://doi.org/10.1007/978-3-319-70278-0_31
https://doi.org/10.1007/978-3-319-70278-0_31
https://doi.org/10.1007/978-3-319-91271-4_33
https://doi.org/10.1007/978-3-319-70278-0_29
http://www.clearsy.com/
https://www.ethereum.org/
https://doi.org/10.1007/978-3-319-70278-0_33
https://doi.org/10.1007/978-3-319-70848-5_6
https://doi.org/10.1007/978-3-319-70848-5_6
https://doi.org/10.1007/978-3-662-58387-6_28
https://doi.org/10.1007/978-3-662-58387-6_28
http://www.oraclize.it
http://www.event-b.org/sourceforge.net/projects/rodin-b-sharp/

Verification-Led Smart Contracts 121

31. Sekerinski, E., Sere, K.: Program Development by Refinement: Case Studies
Using the B-Method. Springer, London (1998). https://doi.org/10.1007/978-1-
4471-0585-5

32. Sergey, I., Hobor, A.: A concurrent perspective on smart contracts. In: Brenner,
M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 478–493. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70278-0 30

33. Sipser, M.: Introduction to the Theory of Computation. Thomson (2006)
34. Solidity. https://en.wikipedia.org/wiki/Solidity
35. Solidity Documentation. https://solidity.readthedocs.io
36. Solidity Github. https://github.com/ethereum/solidity
37. Voisin, L., Abrial, J.R.: The rodin platform has turned ten. In: Ait Ameur, Y.,

Schewe, K.D. (eds.) Proceedings of ABZ 2014. LNCS, vol. 8477. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-662-43652-3 1

https://doi.org/10.1007/978-1-4471-0585-5
https://doi.org/10.1007/978-1-4471-0585-5
https://doi.org/10.1007/978-3-319-70278-0_30
https://en.wikipedia.org/wiki/Solidity
https://solidity.readthedocs.io
https://github.com/ethereum/solidity
https://doi.org/10.1007/978-3-662-43652-3_1

A Java Framework for Smart Contracts

Fausto Spoto(B)

Department of Computer Science, Università di Verona, Verona, Italy
fausto.spoto@univr.it

Abstract. This article defines a framework for programming, in Java,
smart contracts over blockchain. The framework consists of a restricted
runtime and of an instrumentation procedure for classes that need to
be persisted to blockchain, for payable contract methods and for gas
metering. This instrumentation abstracts away any difference between
storage and memory data location, which is at the origin of tricky seman-
tical issues and bugs in Solidity. Moreover, this framework allows one to
leverage, in a transparent way, existing expertise and tools from the Java
world, in order to build smart contracts in a simple and comfortable way.
The resulting contracts are strongly-typed and work over a shared stor-
age, that allows simple intercontract communication. This makes it easy
to install libraries or microservices in blockchain.

1 Introduction

The blockchain can be seen as a distributed, decentralized collection of trans-
actions. These can be monetary transfers, as in Bitcoin [16], or much more
involved state transitions of a sort of world computer, as in Ethereum. In the lat-
ter case, data structures, that form the state of contracts, are held in blockchain
in successive versions, stored after each transaction. In both cases, the seman-
tics of transactions is given in a programming language that specifies prereq-
uisites and outcome. Bitcoin uses a limited, low-level, Turing incomplete byte-
code language that focus on cryptographic primitives, has no loops and no heap
memory [12]. Instead, Ethereum uses a more involved, Turing-complete byte-
code language for the Ethereum Virtual Machine (EVM), with loops and heap-
allocated objects [13]. A few high-level programming languages compile into
the EVM bytecode. In particular, Solidity [9] is the reference programming lan-
guage for Ethereum, focused on smart contracts. These are objects in blockchain
whose methods specify the semantics of blockchain transactions. Their execution
requires to pay an amount of money (gas) proportional to the number of steps
that they will execute.

Solidity was revolutionary, as it showed that the blockchain can store much
more than monetary transfers. However, its semantics has issues reflecting the
fact that the state of contracts is stored (persisted) in blockchain (storage).
Hence, assignments have a by-value semantics on storage and a by-reference
semantics and cheaper cost on RAM-allocated data (memory). Programmers
find this confusing, also because the classification into storage and memory
c© International Financial Cryptography Association 2020
A. Bracciali et al. (Eds.): FC 2019 Workshops, LNCS 11599, pp. 122–137, 2020.
https://doi.org/10.1007/978-3-030-43725-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43725-1_10&domain=pdf
http://orcid.org/0000-0003-2973-0384
https://doi.org/10.1007/978-3-030-43725-1_10

A Java Framework for Smart Contracts 123

depends on the variable (locals tend to live in memory, while contract fields
in storage), on the size of the data (larger locals are held in storage) and
on the explicit storage modifier. This confusion makes learning Solidity hard
and leads to unsettling bugs [15]. Moreover, the by-value semantics introduces
inefficiencies.

Solidity has a weak type-system: contracts are just untyped blockchain
addresses, with no possibility of compile-time or run-time check of their class. It
has a very limited notion of library, that is just a collection of static methods,
a sort of global, memoryless singleton. It misses every high-level treat of mod-
ern object-oriented languages, such as exception handling, inner classes, lambda
expressions, method references and generics. It ships with a very limited support
library, in comparison for instance to Java. It does not have the large toolbelt
of other programming languages (IDEs, debuggers, profilers, static analysers).
It cannot even be said that such semantical issues and the relative simplicity
of Solidity guarantee security: Solidity does allow the definition of dangerous
contracts, for instance because of its re-entrancy issue, that led to the infamous
DAO attack of 2016 [17], draining $50M from an Ethereum smart contract.

This article presents a framework for smart contracts, with these advantages:

– it allows one to use the Java programming language, its large toolbelt and its
features (exception handling, inner classes, lambda expressions, method refer-
ences, generics. . .) for writing smart contracts. Java is a well-known language,
which reduces the learning curve for new programmers of smart contracts;

– it minimizes the difference between storage and memory variables, by always
using the standard by-reference semantics of Java for reference type variables
and by lazily loading data from storage;

– it allows one to create smart contracts that share objects in a global heap,
persisted to blockchain. This allows new forms of communication between
contracts and the development of real libraries in blockchain;

– it allows clients to run smart contracts in the Java Virtual Machine (JVM),
a reliable and highly optimised tool, implementing the most advanced tech-
niques for fast execution of bytecode and for garbage collection [14].

This article describes the working principles of what can be described as a Java
framework since it uses Java and its toolbelt as development language for smart
contracts. Instead, its actual implementation is starting now and will be sub-
ject of future work, together with the evaluation of its actual usefulness and
scalability.

Section 2 introduces the framework, with an example of a Java smart con-
tract, and describes how jars are stored in blockchain. Section 3 presents storage
references, transactions and the primitives that the blockchain must provide for
them. Section 4 presents storage classes and their instrumentation that allows
one to use them as normal Java classes in RAM. Section 5 shows the imple-
mentation and instrumentation of contract classes. Section 6 describes how gas
metering works. Section 7 discusses how code instrumentation can be performed.
Section 8 concludes.

124 F. Spoto

2 Takamaka: A Java Framework for Smart Contracts

Takamaka1 is a Java framework for programming smart contracts. It is a subset
of Java, whose runtime takamaka.jar includes classes for storage and contracts
(Sects. 4 and 5). It uses white-listed deterministic methods from the standard
Java library. Hence, for instance, methods for collections are white-listed, but
System.currentTimeMillis is not, as well as most methods from the reflection
API that could be used to circumvent the white-list. Methods for concurrency are
not white-listed since they could lead to non-determinism. Methods that access
files or network are not white-listed, since their behaviour is client-dependent
and might hang. Currently, programmers cannot use static fields nor put arrays
in storage classes.

Takamaka software is written, verified and executed as follows:

Development: Takamaka applications are developed as normal Java applica-
tions, including takamaka.jar in their build path, with no special devel-
opment environment: any IDE or command-line compiler can be used. The
result, in any case, is the app.jar archive of the application.

Verification: The classes in app.jar get verified, in order, for instance, to check
that they only refer to white-listed methods. Moreover, this step verifies that
storage classes have components of an allowed type (Sect. 4) and other struc-
tural constraints of contracts.

Installation: The archive app.jar gets installed in blockchain, by triggering a
transaction that installs a jar.

Instrumentation: The classes in app.jar get instrumented (Sects. 4, 5 and 6).
In particular, storage classes undergo a transformation (at bytecode level)
that allows their objects to be lazily loaded in RAM during the execution
of a transaction and their updates to be persisted to blockchain at its end.
Moreover, a gas metering aspect is injected in code.

Execution: Classes in app.jar, including contract classes, get instantiated by
transactions that execute their constructors. The resulting storage references
can then be used as receivers or parameters of other transactions.

As we will see later (Sect. 7), the instrumentation can be static (before installing
the jar in the blockchain) or dynamic (before the execution of every transaction).

What follows is an example of a crowdfunding contract written in Takamaka,
literally translated from a Solidity example [8], for comparison. It allows funders
to support a campaign. Once a threshold has been reached, funds can be unlocked
for that campaign.

Its implementation consists of two Java classes. The first is Funder.java:
import takamaka.lang.Contract; // this is inside takamaka.jar
import takamaka.lang.Storage; // this as well

public class Funder extends Storage {

1 Takamaka is a valley in French Réunion island, where a network of waterfalls con-
verge into a river. This is similar to Takamaka’s smart contracts, that is, distinct
objects that collaborate over a shared global heap in blockchain.

A Java Framework for Smart Contracts 125

private final Contract who;
private final int amount;

public Funder(Contract who, int amount) {
this.who = who;
this.amount = amount;

}
}

It is a funder for a campaign, i.e., a contract and the amount of money that it
devotes to the campaign. Since its instances must be persisted to blockchain, it
extends takamaka.lang.Storage. The second class is CrowdFunding.java:
1 import takamaka.lang.Contract; // all these are in takamaka.jar
2 import takamaka.lang.Payable;
3 import takamaka.lang.Storage;
4 import takamaka.util.StorageList;
5
6 public class CrowdFunding extends Contract {
7 private final StorageList<Campaign> campaigns = new StorageList<>();
8
9 public int newCampaign(Contract beneficiary, int goal) {

10 int campaignId = campaigns.size();
11 campaigns.add(new Campaign(beneficiary, goal));
12 return campaignId;
13 }
14
15 public @Payable @Entry void contribute(int amount, int campaignID) {
16 campaigns.elementAt(campaignID).addFunder(caller(), amount);
17 }
18
19 public boolean checkGoalReached(int campaignID) {
20 return campaigns.elementAt(campaignID).payIfGoalReached();
21 }
22
23 private class Campaign extends Storage { // inner class
24 private final Contract beneficiary;
25 private final int fundingGoal;
26 private final StorageList<Funder> funders = new StorageList<>();
27 private int amount;
28
29 private Campaign(Contract beneficiary, int fundingGoal) {
30 this.beneficiary = beneficiary;
31 this.fundingGoal = fundingGoal;
32 }
33
34 private void addFunder(Contract who, int amount) {
35 funders.add(new Funder(who, amount)); this.amount += amount;
36 }
37
38 private boolean payIfGoalReached() {
39 if (amount >= fundingGoal) {
40 pay(beneficiary, amount);
41 amount = 0;
42 return true;
43 }
44 else
45 return false;
46 }
47 }
48 }

It implements the crowdfunding coordinator contract. It guarantees that funds
for a campaign cannot be denied once its goal is reached. It allows one to start a
new campaign (method newCampaign), that keeps in its list of campaigns (line 7).
That list uses Takamaka’s StorageList generic class, that extends Storage

126 F. Spoto

and can then be persisted to blockchain. One can contribute to a campaign
(contribute), by specifying its progressive identifier, and can check if the goal
of a campaign has been reached (checkGoalReached). A Campaign is an instance
of an inner class (line 23), so that it can reference the wrapping contract. This
allows Campaign to call method pay of the contract (line 40) to transfer a given
amount of money to a given beneficiary. That method of class Contract is
final and consequently cannot be redefined, which avoids any risk of reentrancy.
Class Campaign extends Storage (line 23) since its instances are held inside the
campaigns list (line 7) and are consequently persisted to blockchain.

Line 15 shows a @Payable @Entry contract method. When a contract calls an
@Entry method or constructor of another contract, it becomes its caller and can
send money along. Takamaka checks (statically) that @Entry methods belong
to classes that extend takamaka.lang.Contract and (dynamically, see method
entry in Sect. 5) that they are only called from a distinct contract object.
Inside @Entry methods or constructors, it is possible to call method caller,
that returns the calling contract. In general, a programmer will use @Entry
when she needs to identify the calling contract of a method, or when she wants
to receive money from it. Namely, the annotation @Payable can only be added
to an @Entry method or constructor. It means that the contract receives money
from the caller contract. In our example, if another contract calls contribute,
it must specify an amount of money for the crowdfunding contract, through
the int first parameter of contribute. Takamaka automatically transfers that
money from caller to the destination contract, at call time.

Takamaka applications, in jar format, are stored in blockchain. Namely, a
transaction can store a jar with references to its dependencies, if any. The
mechanism is reminiscent of what Ivy or Ant do: in order to store a jar j, a
transaction t adds j to blockchain, together with references to other transac-
tions where its dependencies d1, . . . , dn, if any, have been previously stored in
blockchain. A reference to t can then be used to store other jars that depend
on j. Recursive dependencies are not allowed. Dependencies can be transitively
or non-transitively resolved. This is related to the construction of the classpath
for the execution of a contract transaction (Sect. 3). Takamaka stores j in the
blockchain as a tuple 〈j, ∗d1, t1, . . . , ∗dn, tn〉, where ∗di is a reference to the ith jar
on which j depends (for instance, a reference to the transaction that stored the
ith jar in the blockchain) and ti is a Boolean that holds true if the dependency
is transitive.

3 Storage and Transactions

The state of a smart contract consists of the values of its fields and of the objects
reachable from them, recursively. Such state is persisted to blockchain, after con-
tract creation and after the execution of a contract transaction, i.e., after the
execution of a public constructor or method of a contract. For efficiency, only the
updated portion of the state is persisted, not the full state. Distinct contracts can
share part of their state, hence a transaction on a contract can modify objects

A Java Framework for Smart Contracts 127

Fig. 1. The deserialisation of a storage object from blockchain and the serialisation of
its updates at the end of a transaction.

visible by another contract. This is expected and standard in Java and can be
used as a form of communication between contracts on blockchain. The states
of all contracts installed on blockchain form a heap-like structure, persisted to
blockchain, called storage. References between storage objects are called storage
references and have the form: 〈block number , transaction number , progressive〉,
meaning that it refers to the progressiveth object instantiated during the execu-
tion of the transaction numberth transaction inside the block numberth block.

A transaction needs the blockchain reference ∗j to a jar that provides the
classpath for its execution (Sect. 3) and a Boolean t that specifies if this jar’s
dependencies must be included; moreover, it needs the signature sig of the
constructor or method and its actual parameters pars, including the receiver
for methods. Hence, a client receives the request of a transaction as a tuple
〈∗j, t, sig , pars〉. Parameters can be primitive values or storage references to stor-
age objects. The execution of the transaction results in state updates to reach-
able objects including, for constructors, those to the brand new object. At its
end, the transaction stores in blockchain a tuple 〈∗j, t, sig , pars, result , updates〉,
where result is the result for non-void methods or the brand new object for
constructors. If the transaction ends in exception, result is a description of that
exception.

When a contract transaction is run, the state of the involved objects, such
as the target contract itself, is loaded in RAM, with fields that hold values
that reflect their persisted values. Figure 1 shows how an object of class C is
deserialised from blockchain, given its storage reference r. Namely, Takamaka

128 F. Spoto

looks for the latest update of a pseudofield @class, held in blockchain as a
triple 〈r, @class, C〉 that reports the name of the class C of the object. Then
it instantiates in RAM a new object of class C that corresponds to an object
serialised in blockchain at storage reference r. Hence its field inStorage holds
true and its field storageReference holds r. Then Takamaka looks for the latest
updates of the fields of C. Figure 1 assumes there are two: f1 of reference type
and f2 of primitive type int. They are treated differently. Namely, the value of
primitive fields, such as f2, is immediately reflected in RAM in the deserialised
object. Note that, in Fig. 1, there are two updates for field f2 of r, reflecting the
history of the object, but only the latest update 〈r, f2, 42〉 is used. Reference
fields, such as f1, are lazily loaded, instead. Hence, f1 initially holds null in
RAM. As the transaction proceeds, in RAM and inside the JVM, and as soon
as the computation needs f1, it gets assigned a heap reference h′ corresponding
to the storage reference r′, since the triple 〈r, f1, r′〉 is the latest update in
blockchain for f1. To implement this lazy loading mechanism, Takamaka uses
a Boolean field f1AlreadyLoaded. Figure 1 assumes that the execution of the
transaction has updated f1 to a heap reference h′′. At the end of its execution,
all heap updates to the state of the objects in RAM get persisted to blockchain,
in an automatic way, fully transparent to the programmer. In Fig. 1, field f2
still holds 42 but field f1 has been updated to h′′. A method extractUpdates
concludes that it is enough to serialise the update to f1 in blockchain, in a triple
〈r, f1, r′′〉 where r′′ is the storage reference corresponding to the heap reference
h′′. Method extractUpdates needs the previous value of each field to work,
which is held in oldF1 and oldF2.

Fields inStorage, storageReference, oldF1, oldF2 and f1AlreadyLoaded
are not written by the programmer. Instead, Takamaka instruments storage
classes (and hence contracts) so that they can be persisted to blockchain and
have the ability to identify updates to their fields, in an efficient way (Sect. 4). For
that, Takamaka requires storage classes to extend the takamaka.lang.Storage
class: only such classes are instrumented and their instances persisted. All
updates are stored in blockchain as storage updates, i.e., triples 〈r , f ,new value〉,
meaning that the field with signature f of the object whose storage reference is
r has been updated to new value. The latter can be a Java primitive value or
a storage reference, for reference fields. Updates can be compacted, to reduce
their size in storage. Namely, updates to more fields of the same object could
use a single update entry, referring to more fields and reporting a new value for
each field. This optimization is irrelevant here and we do not discuss it further.

To support this persistence mechanism, clients must expose the blockchain as
an object accessible as Blockchain.getInstance(), with the following methods.

getCurrentTransaction() yields the current transaction being executed.

getTopmostBlock() yields the topmost block of the blockchain.
deserialize(r) yields an object o that is the deserialisation from blockchain of
storage reference r, as follows:

A Java Framework for Smart Contracts 129

1. if r is null, this method yields null;
2. otherwise, it looks in blockchain for the latest update of a pseudofield @class

for r to a class name C. If it is not found, an exception is thrown;
3. it looks for the most recent updates of the non-transient primitive fields

defined by C and by its superclasses. Let f1, . . . , fn be their values (ordered
by placing first the values of the fields of the superclasses). If the latest value
of any such field is not found, an exception is thrown;

4. it yields new C(r, f1, . . . , fn)

The constructor invoked at step 4. is not written by the programmer. As shown
in Sect. 4, it is instrumented after compilation and initializes all primitive fields
of o. The fields of reference type, instead, are initialized later, on-demand.

deserializeLastUpdateFor(r, "C.f:D") yields the object o′ held inside the
(fully-qualified) reference field C.f:D (i.e., field f defined in class C and having
reference type D) of a container object whose storage reference is r, as follows:

1. it verifies that C is a storage class and throws an exception otherwise;
2. it looks in blockchain for the latest update of a pseudofield @class for r to a

class name E. That class must coincide with C or be a subtype of C; otherwise,
an exception is thrown;

3. it looks for the latest update of field C.f:D for r to a storage reference r′; if
it is not found, an exception if thrown;

4. it yields deserialize(r′).

4 Storage Classes and Their Instrumentation

Storage classes extend class takamaka.lang.Storage. Since only such classes
can be persisted to blockchain, it follows that the their instance fields must be
primitive or have storage class, recursively2, or class java.lang.Object. The
latter is used to support Java generics, that are erased into java.lang.Object.
However, Takamaka will check at run time that such objects actually have stor-
age class (see later, method recursiveExtract). Class takamaka.lang.Storage
implements the basic machinery for keeping track of the storage reference of its
instances. Namely, a storage object o, when in RAM, can be the deserialisation
of an object o′ already persisted to blockchain, in which case its inStorage
field holds true and its storageReference field holds the storage reference to o′

(Fig. 1). But o might instead be a brand new storage object, instantiated during
the transaction being executed, and might at its end be persisted to blockchain,
if reachable. In that case, inStorage holds false and storageReference is the
storage reference that would be used for it, if ever persisted to blockchain. Hence,
takamaka.lang.Storage has two constructors, for those two alternatives:

2 The actual implementation of Takamaka allows storage objects to have fields that
hold instances of type java.lang.String and java.math.BigInteger as well, but
this is not explained in this article, for simplicity.

130 F. Spoto

1 public abstract class Storage {
2 protected final StorageReference storageReference;
3 protected final boolean inStorage;
4 protected final static Blockchain blockchain = Blockchain.getInstance();
5 private static long nextProgressive;
6
7 // constructor used by the programmer to build objects not yet in storage
8 protected C() {
9 this.inStorage = false;

10 this.storageReference = new StorageReference(
11 blockchain.getTopmostBlock().getNumber(),
12 blockchain.getCurrentTransaction().getNumber(),
13 nextProgressive++);
14 }
15
16 // constructor used by Takamaka for deserialisation from blockchain
17 protected C(StorageReference storageReference) {
18 this.inStorage = true;
19 this.storageReference = storageReference;
20 }
21
22 // Takamaka calls this to collect the updates to this object;
23 // it yields the storage reference used for this object in blockchain
24 protected StorageReference extractUpdates(Updates updates) {
25 if (!inStorage)
26 updates.add(<storageReference, "@class", getClass().getName()>);
27 // subclasses will override and add updates to their instance fields
28 return storageReference;
29 }
30
31 // utility method that will be used in subclasses to implement
32 // method extractUpdates to recur on fields of reference type
33 protected final StorageReference recursiveExtract(Object s, Updates updates) {
34 if (s == null)
35 return null;
36 else if (s instanceof Storage)
37 return s.extractUpdates(updates);
38 else
39 throw new RuntimeException("storage objects must implement Storage");
40 }
41 }

Takamaka calls o.extractUpdates(updates) at the end of a contract trans-
action, on all objects o reachable from the contract or from the parameters of
the transaction. It collects into updates the updates to o that must be per-
sisted to blockchain and yields the storage reference used for o in blockchain.
Class takamaka.lang.Storage does not define fields that belong to the state
of a storage object: subclasses will (automatically) redefine extractUpdates to
build their updates. Instead, the superclass only stores the class tag of the object,
if it is not yet in storage (line 26). This class tag will be used later, if the object
will ever be deserialised (Sect. 3). Note that subsequent uses will use the previ-
ous stored class tag and that programmers have no primitive to store updates
in the blockchain. Hence, objects cannot change class overtime.

Programmers write storage classes as perfectly normal Java classes that
extend takamaka.lang.Storage. But the code of such classes undergo an auto-
matic program instrumentation before execution, to allow:

1. the generation of updates (Sect. 3) at the end of a transaction: storage objects
have instrumented fields that allow Takamaka to identify the updated portion
of their state;

A Java Framework for Smart Contracts 131

2. on-demand deserialisation of storage objects accessed during a transaction.
Namely, it is theoretically possible to load in RAM the whole state of a
contract, recursively, before a transaction. But that would be impractical
and slow, since it could be very large.

To exemplify the transformation, assume that a programmer writes:
public class C extends Storage {
private D f1;
private int f2;

public C(pars) {
// implicit call to super() here
body

}

methods
}

That class gets compiled into Java bytecode. Before its execution, Takamaka
automatically transforms it into bytecode corresponding to the following source
(this source is never explicitly defined; we report it here since it is easier to read)
that corresponds to an object whose memory layout in shown in Fig. 1:
1 public class C extends Storage {
2 private D f1, oldF1;
3 private boolean f1AlreadyLoaded;
4 private int f2, oldF2;
5
6 public C(pars) {
7 // implicit call to super() here
8 instrumented body
9 }

10
11 // constructor added for deserialisation from storage
12 public C(StorageReference storageReference, int _f2) {
13 super(storageReference);
14 f2 = oldF2 = _f2;
15 }
16
17 // method that replaces f1 read operations
18 private D getF1() {
19 ensureLoadedF1();
20 return f1;
21 }
22
23 // method that replaces f1 write operations
24 private void putF1(D _f1) {
25 ensureLoadedF1();
26 f1 = _f1;
27 }
28
29 private void ensureLoadedF1() {
30 if (inStorage && !f1AlreadyLoaded) {
31 f1 = oldF1 = (D) blockchain.deserializeLastUpdateFor
32 (storageReference, "C.f1:D");
33 f1AlreadyLoaded = true;
34 }
35 }
36
37 public StorageReference extractUpdates(Updates updates) {
38 StorageReference _this = super.extractUpdates(updates);
39 if (!inStorage || f1 != oldF1)
40 updates.add(<_this, "C.f1:D", recursiveExtract(f1, updates)>);
41 recursiveExtract(oldF1, updates);

132 F. Spoto

42 if (!inStorage || f2 != oldF2)
43 updates.add(<_this, "C.f2:int", f2>);
44
45 return _this;
46 }
47
48 instrumented methods
49 }

When a storage object is deserialised from storage (Fig. 1), its primitive
fields get initialized by the synthetic constructor added at line 12. Reference
fields, instead, hold null after deserialisation and are lazily set later, if accessed
(lines 19 and 25). Consequently, accesses to reference fields, such as f1, get
replaced by calls to accessor methods, in this example to getF1/putF1, that
ensure that the field has already been loaded from blockchain. Namely, the
transformation replaces, at lines 8 and 48 bytecodes getfield C.f1:D with
invokevirtual C.getF1():D, and putfield C.f1:D with invokevirtual
C.putF1():void [14]. After the transformation, the only accesses to f1 occur
inside getF1/putF1. Note that putF1 must call ensureLoadedF1, or otherwise
the previous value oldF1 will not be set and updates to reachable locations will
not be serialised later and will be lost.

The synthetic method extractUpdates collects fields of this updated after
its creation and recurs on their value. If this was created during the transaction,
then it was not inStorage and the values of all its fields are persisted. Otherwise,
only its fields that changed their value since deserialisation must be persisted.
Note that Java does not allow programmers to redefine the semantics of ==,
hence extractUpdates will identify all updates. Method extractUpdates recurs
on both the current value of reference fields (line 40) and their original value
in blockchain (line 41). This second recursion is important since the previous
value might reach objects that became unreachable from the contract whose
transaction is being executed, but that are still reachable from other contracts
in blockchain. Their updates must be persisted or otherwise such contracts will
not see the changes.

Fields declared as transient are treated specially, since they are not part of
the persisted state of an object. Hence, the synthetic constructor for deserialisa-
tion does not receive their value and extractUpdates skips them. There is no
old version for them, since it would not be used. Hence their value gets lost at
the end of a transaction: when a subsequent transaction starts, they will appear
to have been reset.

The introduction of fields, constructor and methods to storage classes might
lead to name clashes if, for instance, a field named oldF1 already existed. To
avoid this, the actual instrumentation uses names that are illegal as Java iden-
tifiers but legal as Java bytecode identifiers. The details are irrelevant here.

The transformation is extended to storage classes C that extend a superclass S
distinct from takamaka.lang.Storage. Storage classes can only extend another
storage class (or takamaka.lang.Storage) hence S is also a storage class. The
only difference is that the constructor for deserialisation (line 12) will not only
receive f2, but also the other primitive fields fs defined in the superclasses.
Such fs will be passed to the superclass’ constructor for deserialisation:

A Java Framework for Smart Contracts 133

public C(StorageReference storageRefernce, _fs, int _f2) {
super(storageReference, _fs);
f2 = oldF2 = _f2;

}

5 Class takamaka.lang.Contract and Its Instrumentation

The superclass of all contracts tracks its balance and supports logging:
1 public abstract class Contract extends Storage {
2 private BigInteger balance;
3 private transient Contract caller; // not kept in blockchain
4 private final StorageList<String> logs = new StorageList<>();
5
6 protected final void require(boolean condition, String message) {
7 if (!condition)
8 throw new RuntimeException(message);
9 }

10
11 protected final void pay(Contract whom, int amount) {
12 require(whom != null, "destination contract cannot be null");
13 require(amount >= 0, "payed amount cannot be negative");
14 BigInteger amountAsBI = BigInteger.valueOf(amount);
15 require(balance.compareTo(amountAsBI) < 0, "insufficient funds");
16 balance = balance.subtract(amountAsBI);
17 whom.balance = whom.balance.add(amountAsBI);
18 }
19
20 protected final void entry(Contract caller) {
21 require(this != caller, "@Entry must be called by a distinct object");
22 this.caller = caller;
23 }
24
25 protected final void payableEntry(Contract caller, int amount) {
26 entry(caller);
27 caller.pay(this, amount);
28 }
29
30 protected final Contract caller() {
31 return caller;
32 }
33
34 protected final void log(String tag, Object... objects) {
35 logs.add(tag + ": " + Arrays.toString(objects));
36 }
37
38 protected final BigInteger balance() {
39 return balance;
40 }
41 }

The balance of a contract (line 2) can be accessed through method balance
(line 38) and updated by pay (line 11), that implements intercontractual money
transfers. Field balance is persisted to blockchain by the serialisation mechanism
of Sect. 4. The same happens for field logs (line 4), that stores a list of logs
populated by method log (line 34). Method require can be used to check for
specific conditions from inside a contract.

Takamaka calls method entry (line 20) when an @Entry of a contract is
called from another contract object. Similarly, Takamaka calls payableEntry
(line 25) when a @Payable @Entry method is called. Method entry checks that

134 F. Spoto

the callee (this) and the caller (caller) are distinct contract objects, then
records the caller of the callee. Method payableEntry does the same and,
moreover, transfers the given amount of money from caller to callee. Takamaka
enforces that the programmer does not call these two methods directly. Instead,
they are automatically called by code instrumentation. Namely, if a contract
Caller calls an @Entry method Callee.m(pars), Takamaka recognizes that m
is annotated as @Entry and instruments the call into Callee.m(pars, this)
that is, it passes the caller contract this as an extra parameter to m. The same
transformation occurs for calls to @Payable @Entry methods, for which Taka-
maka verifies that pars begins with a formal parameter of type int. Let us con-
sider the code of the callee now. Takamaka instruments every @Entry method
public @Entry T m(args) { body } into:
public @Entry T m(args, Contract caller) {
entry(caller); body

}

A similar instrumentation occurs for ¡@Payable @Entry¿ methods, for which
Takamaka verifies that they actually have a first formal parameter of type int
(the amount of transferred money) and then instruments it into
public @Payable @Entry T m(int amount, args, Contract caller) {
payableEntry(caller, amount); body

}

6 Gas

A transaction starts when a paying contract calls an entry of another con-
tract. The caller must specify an amount of gas for the transaction. Taka-
maka will run the code of the entry, withdrawing money from the paying con-
tract, on the basis of the actual gas consumed during the execution of the
code. If all gas is consumed before the end of the transaction, an unchecked
takamaka.lang.OutOfGasError is thrown. This mechanism is implemented
by code instrumentation. Namely, before each bytecode instruction, Takamaka
adds a call to the static method takamaka.lang.Gas.tick(int amount), that
decreases, by amount, the gas available for the transaction. If the gas becomes
negative, tick throws an OutOfGasError. The chosen amount depends on the
instruction being instrumented, so that instructions of different execution cost
can have different gas cost.

OutOfGasErrors cannot be caught: Takamaka extends every exception table
in the code with an extra, initial handler for OutOfGasError, that simply
rethrows it. This prevents possible DOS attacks, that catch the OutOfGasError
and lead into an infinite loop when the gas expires.

7 Instrumentation and Code Verification

Most features of Takamaka are implemented by automatic code instrumentation:
persistence of storage objects, @Entry and @Payable methods and gas metering.
This can be performed in two ways.

A Java Framework for Smart Contracts 135

1. After compilation, code written for Takamaka gets instrumented, statically,
by using a bytecode manipulation library such as asm [11] or bcel [10]. The
advantage is that instrumentation is performed only once. However, either
the client itself performs the instrumentation, or an external subject provides
already instrumented code. In the latter case, the client must check that the
jars stored in blockchain have been correctly instrumented, to prevent cheat-
ing. For instance, Takamaka should verify that all instructions are preceded
by a call to Gas.tick(int amount) for the correct amount (Sect. 6). If that
is not the case, the installation of a jar should be rejected.

2. Every time a class is loaded from a jar in blockchain, its code gets dynam-
ically instrumented by using the Java instrumentation API [6]. The advan-
tage is that a client needn’t trust the instrumentation by an external subject.
Moreover, jars in blockchain are smaller, since they are not instrumented.
However, the cost of instrumentation must be payed repeatedly.

Some light code verification is needed in both cases. For instance, Takamaka
must check that only white-listed methods of the standard Java library are called
in the jars being installed in blockchain.

8 Conclusion

The framework described in this article allows programmers to use a well-
known and modern programming language for developing smart contracts for
blockchain. It allows one to use the large and well-known toolbelt available for
Java. It hides the distinction between storage and memory objects: the program-
mer must only extend the Storage class for the former (Sect. 4). The use of Java
for distributed objects, particularly in the web, was at the same origin of the
language and of its security primitives. Takamaka exploits the dynamic linking
of jars and the verification guarantees of the JVM. However, it does not use the
security capabilities of Java for web development, such as the sandbox approach
for applets: white-listed methods are much more restrictive than the same sand-
box. Moreover, Java provided object serialization from its very beginning. This
is not used (and black-listed) in Takamaka. Instead, Takamaka uses a specialized
technique that serializes object updates only, to support blockchain scalability.

What this article does is completely different from the use of Java to interact
with an Ethereum node, which is already well possible with suitable libraries [7];
or from the use of Java to write an Ethereum node [2]. Instead, our work pushes
Java inside the blockchain, as its programming language. NEO [5] performs a
similar task. NEO’s smart contracts can be written in Java, C# or Python and
can only use library calls to the NEO’s library, while Takamaka allows the use of
a white-listed set of Java library methods. NEO’s Java contracts are a collection
of static methods that return Object or byte[] only [4]. Operations on storage
must be coded explicitly through calls to NEO’s library method Storage.Put,
while Takamaka makes this transparent to the programmer. That is, NEO uses
Java only syntactically. Aion [1] has also support for smart contracts written in

136 F. Spoto

Java. The only example we could find [3] does not allow us to understand the
real features of such contracts, but Aion’s technology is evolving quickly.

Takamaka has been devised to provide the standard security guarantees of
a smart contract: determinism, since only white-listed library methods can be
executed; termination, since gas is metered and the OutOfGasError cannot be
caught; and isolation, since the JVM enforces that Java’s visibility modifiers are
honored. Public data can instead be read with a blockchain explorer, since it is
not natively encrypted. As in Ethereum, privacy can only be enforced by writing
smart contracts that explicitly encrypt data.

Scalability is a crucial aspect of blockchains. Compared to the Ethereum
blockchain, Takamaka uses the JVM, that is more optimised than the EVM, but
is also more heavy-weight at start-up. It is not sensible to start a JVM for each
transaction. Instead, a single JVM must execute all transactions, sequentially or
concurrently, as already proved possible by Aion. Another aspect of scalability
is the size of the blockchain itself. A distinguishing feature of Takamaka is that
it stores only the updates to storage objects. This should reduce the size of the
blockchain, compared to solutions, such as Ethereum, that store the whole state
resulting at the end of a transaction.

The implementation of the framework requires the blockchain to be equipped
with primitives to serialise and deserialise storage objects (Sect. 3). Hence, it
cannot be immediately implemented on the Ethereum blockchain. Our project
continues now with the implementation of a blockchain that provides such prim-
itives and with the actual evaluation of the framework.

References

1. Aion Foundation. https://aion.network
2. EthereumJ. https://github.com/ethereum/ethereumj
3. Hello World ... from the Aion Virtual Machine! https://blog.aion.network/hello-

world-from-the-aion-virtual-machine-25038ac62f17
4. Java Examples for NEO. https://github.com/neo-project/examples-java
5. NEO - An Open Network for Smart Economy. https://neo.org
6. Package java.lang.instrument. https://docs.oracle.com/javase/8/docs/api/java/

lang/instrument/package-summary.html
7. Web3j. https://github.com/web3j/web3j
8. Solidity Crowdfunding Example (2016–2019). https://solidity.readthedocs.io/en/

v0.5.4/types.html
9. Solidity Documentation (2016–2019). https://solidity.readthedocs.io

10. BCEL, December 2017. https://commons.apache.org/proper/commons-bcel
11. ASM, October 2018. https://asm.ow2.io
12. Antonopoulos, A.M.: Mastering Bitcoin: Programming the Open Blockchain, 2nd

edn. O’Reilly & Associates Inc., Sebastopol (2017)
13. Antonopoulos, A.M., Wood, G.: Mastering Ethereum: Building Smart Contracts

and Dapps, 1st edn. O’Reilly & Associates Inc., Sebastopol (2018)
14. Lindholm, T., Yellin, F., Bracha, G., Buckley, A.: The Java Virtual Machine Spec-

ification, Java SE 8 edn. Addison-Wesley Professional, Boston (2014)

https://aion.network
https://github.com/ethereum/ethereumj
https://blog.aion.network/hello-world-from-the-aion-virtual-machine-25038ac62f17
https://blog.aion.network/hello-world-from-the-aion-virtual-machine-25038ac62f17
https://github.com/neo-project/examples-java
https://neo.org
https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html
https://github.com/web3j/web3j
https://solidity.readthedocs.io/en/v0.5.4/types.html
https://solidity.readthedocs.io/en/v0.5.4/types.html
https://solidity.readthedocs.io
https://commons.apache.org/proper/commons-bcel
https://asm.ow2.io

A Java Framework for Smart Contracts 137

15. Manning, A.: Uninitialised Storage Pointers, October 2018. https://github.com/
sigp/solidity-security-blog#storage

16. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System, October 2008.
https://bitcoin.org/bitcoin.pdf

17. Siegel, D.: Understanding the DAO Attack, June 2016. https://www.coindesk.
com/understanding-dao-hack-journalists

https://github.com/sigp/solidity-security-blog#storage
https://github.com/sigp/solidity-security-blog#storage
https://bitcoin.org/bitcoin.pdf
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.coindesk.com/understanding-dao-hack-journalists

Is Solidity Solid Enough?

Silvia Crafa1(B), Matteo Di Pirro1, and Elena Zucca2

1 University of Padova, Padua, Italy
crafa@math.unipd.it

2 DIBRIS, University of Genova, Genoa, Italy
elena.zucca@unige.it

Abstract. We introduce Featherweight Solidity, a calculus formalizing
the core features of the Solidity language, thus providing a fundamental
step to reason about safety properties of smart contracts’ source code.
The formalization includes a static type system that represents the foun-
dation of the Solidity compiler. We show that it prevents some errors
whereas many others, such as accesses to a non existing function or state
variable, are only detected at runtime and cause interruption and rolling-
back of transactions. We then propose a refinement of the type system
that is retro-compatible with original Solidity code, and statically cap-
tures more errors, such as unsafe casts and unsafe call-back expressions.

Keywords: Type soundness · Operational semantics · Smart contracts

1 Introduction

Smart contracts and their decentralized algorithmic validation are emerging as
a successful technology to implement agreements between mutually untrusted
parties without relying on a centralized third authority. They are currently used
in many critical domains, such as infrastructural systems and financial applica-
tions, therefore it is of paramount importance to study their correctness. In this
work, we address this problem at the programming language abstraction level,
so to statically rule out harmful patterns appearing in smart contracts code and
support a safer programming discipline. More precisely, we focus on Solidity, the
most widely used programming language in Ethereum’s ecosystem, and its type
system, that is integrated in the language so to let the compiler statically enforce
basic safety properties of smart contracts.

Our first contribution is the formalization of the semantics of the core of the
Solidity language, that we call Featherweight Solidity (FS). The FS calculus
focuses on contract instantiation, typed interaction among deployed contracts
and money transfers. Even if important features like gas fees are omitted, the
calculus provides a rather compact and clean model of key aspects of smart con-
tract programming. Such a formalization indeed allows one to precisely define
the behavior of many Solidity programs, so to describe undesired behaviors and
investigate on a way to prevent them. This is a fundamental step for the devel-
opment of analysis techniques that take advantage of formal methods to verify
c© International Financial Cryptography Association 2020
A. Bracciali et al. (Eds.): FC 2019 Workshops, LNCS 11599, pp. 138–153, 2020.
https://doi.org/10.1007/978-3-030-43725-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43725-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-43725-1_11

Is Solidity Solid Enough? 139

and reason about the safety properties of smart contracts’ source code, rather
than acting at the level of EVM bytecode. Moreover, the formalization style of
FS intentionally highlights the connection between objects and smart contracts,
opening the way to adapt the rich theory of OOLs in the context of Solidity.

As a second contribution, we study the type system of FS, in order to clarify,
precisely state and, most importantly, prove, Solidity’s claim to be a type-safe
language. In particular, we show that the Solidity static type system only detects
a class of errors, whereas others are detected at runtime, such as accesses to a non
existing function or state variable, or transfers to contracts that cannot accept
money. That is, well-typed FS programs, hence also compiled Solidity contracts,
may reach specific exceptional states that cause the current transaction to be
interrupted and rolled-back, possibly leading to Ether indefinitely locked into a
contract’s balance. Reverting an unsafe transaction guarantees the consistency
of the blockchain, but the account that issued the transaction is not reimbursed
for the money it paid to the miner node. Thus, it is of interest of anyone to issue
a transaction only when there is a static guarantee that such a transaction will
not evolve to a revert.

The main reason for the weakness of Solidity’s type safety lies in the fact that
the code of contract functions can refer to contract instances through their public
addresses, but the Solidity address type is essentially an untyped pointer, which
is notoriously a very flexible but subtle feature. The newly released Solidity 5.0
version splits the address type so to distinguish contracts that can safely accept
money transfers from those that would raise an exception. However, the new
compiler is not able to statically prevent subtle workarounds, thus it is not type-
safer than its previous version.

Our third contribution is a proposal for a safer refinement of the Solidity type
system. We show that the enriched type system enjoys a stronger soundness
property, so that the only possible runtime errors in FS remain those due to
a negative account balance. In particular, cast expressions or money transfers
that would lead to unsafe usage of contract members or calls to an undefined
fallback function are now ruled out at compile-time. Moreover, we show that
such a refinement can be actually made retro-compatible with original Solidity
code, both 5.0 and previous versions. Hence, it is possible for contracts written in
the extended safer language to interact with already deployed smart contracts.

The key idea is twofold: first, we refine the address type with type informa-
tion about the contract it refers to. Secondly, we enrich the functions’ signatures
so to allow functions to be called only by contracts whose address has an expected
(super-)type. This additional information is particularly useful within contracts
code to typecheck the implicit sender parameter, therefore, besides statically pre-
venting runtime errors, the refined compiler statically prevents unsafe callback
expressions, that are notoriously vulnerable Solidity programming patterns. To
take advantage of the full power of the refined typing, the major effort required to
Solidity programmers is to explicitly express the type constraint they require on
contracts callers. However, this requirement actually supports a safer program-
ming discipline, and we put forward a number of convenient function modifiers,
in line with Solidity language style, so to enhance the use of its compiler as a
convenient building tool.

140 S. Crafa et al.

Fig. 1. A simple Bank contract in Solidity

2 Background

Ethereum [5] is a decentralized platform that runs programs called smart con-
tracts. Contract instances deployed on the Etherum blockchain are autonomous
agents reminiscent of class-based objects in distributed OOLs. They are iden-
tified by a unique public address, hold an amount of virtual coins called Ether
(balance), are given a persistent area in the blockchain where their state is stored,
and are associated with their immutable executable code. Besides contracts, the
blockchain also hosts Externally Owned Accounts (EOAs), that correspond to
human agents registered to the Ethereum platform. Analogously to smart con-
tracts, EOAs are identified by a unique address and hold an amount of Ether as
their balance, but they have no associated code. EOAs start programs by issuing
a transaction, which either deploys a new contract instance, or invokes a function
by sending a message to a contract stored at a given address. Typically, trans-
actions include input data for the invocation, the address of the sender EOA, an
amount of virtual money to be transferred to the contract as a sort of payment,
and a fee (gas) to reward the miner node that executes the transaction.

While EOA’s initial transactions are written using one of the many API
available in Ethereum ecosystem, smart contracts code is commonly written
using the Solidity programming language [1], and it is compiled into bytecode
running on the Ethereum Virtual Machine (EVM) [14]. As in OOLs, Solidity
contracts contain state variables and functions that, as objects methods, can
refer to the currently executing contract instance through the variable this.
Contract functions can send messages to other (or to the current) contracts,
possibly also specifying an amount of virtual money and the gas fee to be paid.
Therefore, besides this, in Solidity the contract functions have access to the
implicit variable msg, which stores various information about the current call,
such as the address of the caller (msg.sender) and the amount of money sent
along with the call (msg.value).

As an example, Fig. 1 shows a Solidity smart contract that implements a very
simple bank. The amounts state variable is a mapping that records the amounts
of money deposited by clients, either EOAs or smart contracts, indexed by their

Is Solidity Solid Enough? 141

Ethereum addresses. To withdraw money from a Bank instance b, the invocation
of the corresponding function should have the standard shape b.withdraw(n).
The function body first of all checks whether the caller’s bank account contains
enough money. If not, an exception (revert) is thrown by the runtime and
the current transaction is rolled-back, leaving the blockchain as if it had never
run. If the caller has enough money, then its bank account is decremented by
n, and, moreover, n Wei’s (Ether’s smallest sub-currency) are transferred from
the balance of b to the balance of the caller by explicitly using the transfer
primitive. Whenever the caller is a contract, the EVM requires that contract
to contain a definition for the so-called fallback function, otherwise a revert is
thrown and the transaction is reverted. The typical purpose of such function is
either to track the reception of Ether or to refuse it by throwing an exception. On
the contrary, when the recipient of the transfer is an EOA, no fallback function
is needed.

The invocation of the deposit function, instead, can have the special shape
b.deposit.value(n)(), binding n to the implicit parameter msg.value. If not
specified, n is assumed to be 0. As a consequence, n Wei’s are transferred from
the balance of the caller (msg.sender) to the balance of the Bank instance; in this
case, no explicit invocation of transfer is needed. The state variable amounts is
updated accordingly. Analogously to the case above, the caller must hold enough
money in its balance. The additional value argument can only be specified for a
function with the payable modifier, meaning that it is allowed to receive Ether
as part of the invocation, otherwise a revert would be thrown at invocation
time.

3 The Featherweight Solidity Calculus

In this section we introduce Featherweight Solidity (FS), a calculus formalizing
the core of the Solidity programming language. Many features are omitted, like
low level calls (using the primitives send, call, delegatecall), expressive
value types like mappings and first-class function values, function modifiers and
multiple inheritance. Furthermore, FS models single transactions, thus it does
not deal with the concepts of blocks, distributed block validation, and roll-back
of the changes to the blockchain caused by a reverted transaction. We also do
not model the concept of gas fees, which is a mechanism Ethereum uses to make
sure that every transaction eventually terminates and to prevent denial of service
attacks.

In such way, we can focus on key aspects of smart contract programming, such
as contract instantiation, interactions among deployed contracts, and money
transfers, providing a rather compact and clean model of such features. In par-
ticular, the definition of FS is inspired by Featherweight Java (FJ) [9], the refer-
ence calculus for Java-like languages, exploiting the similarities and highlighting
the differences between the notions of object and smart contract. Therefore it
opens the way to reuse and adapt the rich and well-known theory of OOLs in
the context of smart contracts.

142 S. Crafa et al.

Fig. 2. FS: syntax

Syntax and types are given in Fig. 2. We assume sets of variables x , y , contract
names C , D , state variable names s, function names f , addresses a. We assume
three special variables this, msg.value, msg.sender, a special contract name
Top, and a special function name fb, all explained below. We let a metavariable
ending by s to be implicitly defined as a (possibly empty) sequence, for example
cds is defined by cds ::= ε | cd cds, where ε denotes the empty sequence.

A contract table is a sequence of contract declarations, consisting of con-
tract name, parent contract’s name, a sequence of state variable declarations
and a sequence of function declarations. We only model single inheritance and
assume a distinguished contract name Top with no state variable and function
declarations. A function declaration consists of a return type, a function name,
a list of typed parameters, and a body which is an expression. Since FS does not
model Solidity’s function modifiers, every function is implicitly marked payable
and external, that is, can receive Wei and can be invoked by EOAs’ transac-
tions. We assume a special function name fb, which models the fallback function,
implicitly invoked whenever money is transferred by means of a transfer call.
Therefore, if present in a contract definition, the function fb must be necessar-
ily declared as unit fb (){return e;}. As in FJ, we assume for each contract
declaration a canonical constructor.

Expressions includes variables, the only constant u of type unit, natural con-
stants n of type uint, addresses, used to refer to EOAs and contracts already
deployed in the blockchain, access and assignment to a state variable, and block
consisting of a local variable declaration and a body. We use e;e ′ as an abbre-
viation for {T x=e;e ′} with x not free in e ′.

The expression e.f .value(ev).sender(es)(es) invokes the function
f on the contract instance denoted by e, specifying the address es of
the contract instance (or the EOA) that invoked the function, and the
amount ev of Wei sent along with the call. In the instantiation expression
new C.value(ev).sender(es)(es), the two additional arguments have an anal-
ogous meaning.

Assuming that e evaluates to a contract instance, address(e) returns its
address, while, assuming that e evaluates to an address, balance(e) returns
its current balance, and the cast expression C (e) returns the corresponding

Is Solidity Solid Enough? 143

Fig. 3. A simple Bank contract in FS

contract instance. The expression e.transfer(ev).sender(es), assuming that
e evaluates to an address, transfers the amount of Wei denoted by ev from the
balance of es to its balance. Finally, the revert expression aborts the current
transaction. For the aims of our formalization, we add a label λ describing the
specific error (neg when a money transfer would make an account’s balance
negative, rte for a runtime type error), omitted when not significant.

For simplicity, FS expressions model both Solidity code, that is, smart con-
tracts code, and external code issuing the initial transactions. However, only the
latter requires an explicit sender argument in function calls, contract instantia-
tion and money transfer, whereas, in contracts code (that is, in function bodies
rather than at top level), the (implicit) sender is always the currently executing
contract instance. Formally, we assume that function calls occurring in function
bodies have shape e.f .value(ev).sender(address(this))(es), abbreviated
e.f .value(ev)(es), and analogously for constructor invocations and transfer.

The syntax of types includes contract names, the unit type, the type
uint of unsigned integers, and the type of addresses. In the definition
of FS we privileged uniformity, therefore a FS program is not an exe-
cutable Solidity program, for instance, Solidity has no unit type. How-
ever, the correspondence is very close. In Fig. 3 we show1 the FS code
corresponding to the Solidity smart contract in Fig. 1. As an example,
Bank(’0x84b’).deposit.value(500).sender(’0xu7e’)() denotes a transac-
tion issued by the EOA with address ’0xu7e’ to interact with an instance of
the Bank contract stored at address ’0x84b’.

Operational Semantics. Runtime expressions include, besides source-level con-
structs in Fig. 2, contract references ιCD , where C ,D are contract names. We
write ιD as abbreviation for ιDD , and omit both when not relevant. When a con-
tract D is instantiated, a new reference ιD is created with its contract’s name

1 In the examples, we use additional constructs, such as loops, booleans and key-value
mappings (for the standard formalization see [6]).

144 S. Crafa et al.

Fig. 4. FS: operational semantics

built in (as subscript). When a cast to type C occurs at runtime, no type check
is performed by the EVM, but the execution proceeds by recording the target
type (as superscript) in the contract reference. That is, ιCD is a reference to an

Is Solidity Solid Enough? 145

instance of contract D (for “dynamic type”) that has been cast (that is, stati-
cally typed) to type C (for “cast type”). Note that a contract reference keeps
its dynamic type forever, whereas it can be used with different cast types.

Configurations, ranged over by c, are pairs 〈e, β〉, where e is the expression
to be evaluated and β the blockchain, that stores the global state of the system.
Formally, β is finite map from contract instances of shape 〈ι, a〉 to pairs 〈vs, n〉,
where n and vs are the contract’s balance and state, respectively, the latter
being the tuple of the current values of the state variables. Note that, while the
reference records type information, the public address provides an “untyped”
way to access a contract instance. As in Ethereum, we assume a one-to-one
correspondence between references and addresses in the domain of β, so we
can safely use the notations β(ι) and β(a) as abbreviations for β(〈ι, a〉). Since
Ethereum blockchain records also EOAs addresses and balances, in order to let
the map β uniformly deal with both smart contracts and EOAs, we assume that
each EOA has a corresponding reference to an instance of a dummy contract
EOContract whose code only contains a fallback function fb with empty body
(i.e., unit fb {return u;}). Values are contract references and constants of
the other types.

Evaluation contexts formalize standard left-to-right evaluation (for brevity
we do not explicitly list all cases).

The small-step reduction relation over configurations −→CT is parameterized
by a contract table, omitted to lighten the notation. Reduction rules are collected
in Fig. 4, where we use the following notations, whose trivial formal definition is
omitted. Given a blockchain β: in β[ι.i=v], the value of the i-th state variable of
the contract instance ι has been replaced by v ; in β[〈ι, a〉←vs], a new contract
instance 〈ι, a〉 has been added with state vs and balance 0; in β[a.v

n� a ′.v], an
amount of n Wei has been transferred from the balance of the contract instance
at address a to that at a ′. If β(〈ι, a〉) = 〈v1 . . . vn, n〉, then we write β(ι).i
to denote vi, for i ∈ 1..n, and we write β(a).v to denote n. The expression
e[v/x] is obtained from e by replacing all occurrences of x by v . The following
auxiliary functions are implicitly parameterized on the contract table: svar(C , s)
and svartype(C , s) return the index and type, respectively, of the state variable s
in C , if any; svars(C) returns the sequence of all (inherited and directly declared)
state variables of C ; ftype(C , f) and fbody(C , f) return the function type, of
shape 〈T ,T1 . . .Tn〉, and the pair parameters-body, respectively, of the function
f in C , if any, looked for in C first, then in its parent contract. Finally, the
subtyping relation C ≤ D is the reflexive and transitive closure of the inheritance
relation. Subtyping is extended to function types as usual: 〈T ,T1 . . .Tn〉 ≤
〈T ′,T ′

1 . . .T ′
n〉 if T ′

i ≤ Ti, for i ∈ 1..n, and T ≤ T ′.
Rules (ctx) and (ctx-revert) are straightforward. In rule (access) the semantics

is as expected, with an additional check that the state variable s exists in both
contracts C and D and that the type obtained at runtime is a subtype of that
statically computed from the cast type. Otherwise, a revert[rte] is raised, see
rule (access-rte), whose side condition is intended to cover also the case where s
is not defined in both contracts. A symmetric check is performed in rules (assign)

146 S. Crafa et al.

and (assign-rte). Indeed, as mentioned above, in Solidity no runtime checks are
performed in a cast, but they are postponed when the reference is actually used.2

This is modeled in rule (cast), where an address is converted to the corresponding
reference. The runtime effect is just to tag the reference with the static type
for future usage checks; in particular no subtyping constraint, like D ≤ C , is
enforced. In rule (dec), local variable declarations have the standard substitution
semantics. Rules (get-addr) and (get-bal) are straightforward. In rule (new), a fresh
instance of C is added in the blockchain, with state and balance initialized to the
tuple of values and amount provided as arguments of the constructor invocation.
Furthermore, the balance of the contract instance at address as is decremented
of the same amount, provided that this would not make the balance negative,
otherwise a revert[neg] is raised, see rule (new-neg).

In rule (invk), the parameters and body of the function f defined in the con-
tract of the receiver are retrieved from the contract table, through the auxiliary
function fbody. Analogously to rules (access) and (assign), a check is performed
that the function f exists in both contracts C and D and the function type
obtained at runtime is a subtype of that statically computed from the cast type,
otherwise a revert[rte] is raised, see rule (invk-rte). The invocation is reduced to
the function body where this and formal parameters have been replaced by the
receiver and the arguments vs, as in standard FJ, and, moreover, msg.sender
and msg.value have been replaced by address as and amount n, respectively.
Finally, the balance of the contract instance at address as is decremented of the
same amount, provided that this would not make the balance negative, otherwise
a revert[neg] is raised, see rule (invk-neg). While functions are invoked on con-
tract references, the transfer construct is used with addresses. In rule (transfer),
an amount of n Wei is transferred from the balance of the contract instance at
address as to that at a, provided that this would not make the sender balance
negative, otherwise, a revert[neg] is raised, see rule (transfer-neg). Moreover, the
fallback function is implicitly invoked, if any, otherwise a revert[rte] is raised,
see rule (transfer-fb).

4 Type System

The typing judgment has shape Γ ; I;A � e : T , where Γ is a finite map from
variables to types, I and A are sets of references and addresses, respectively. As
for the reduction relation, it is implicitly parameterized by a contract table.

Typing rules are given in Fig. 5; they are mostly straightforward. Note that
rule (t-ref) assigns the static type of a contract reference by looking at its super-
script. According to the semantics of cast, rule (t-cast) just checks that the expres-
sion to be cast has type address without performing any additional type check.
The typing judgment is extended to configurations in rule (t-conf), requiring that
both the expression to be evaluated and the blockchain are well-typed according

2 In some cases Solidity tries to convert values from the provided to the expected type,
but no documentation about the precise behavior is available.

Is Solidity Solid Enough? 147

Fig. 5. FS: typing rules for expressions and configurations

to the same sets of addresses and contract references. Moreover, the expression
should contain no free variables. The judgment I;A � β holds if:

a ∈A iff a ∈ dom(β), ι ∈I iff ι ∈ dom(β), and β(ιC) = 〈v1, ..., vn, n〉 implies
svars(C) = T1 s1...Tn sn and, for all i ∈1..n, ∅; I;A � vi : T ′

i with T ′
i ≤ Ti.

Finally, the judgment I;A � CT means that the contract table is well-
formed w.r.t. existing contract references and addresses. We omit the complete
formal definition, reported in [6], since it is essentially as in FJ. Informally,
it ensures that all used contract names are declared, the inheritance relation
is acyclic, there is no state variable hiding, no function overloading and safe
function overriding. Moreover, each function definition should be well-typed in
the following sense: if ftype(C , f) = 〈T ,T1 . . .Tn〉 and fbody(C , f) = 〈x1...xn, e〉
then this:C , msg.sender:address, msg.value:uint, x1 : T1, .., xn : Tn; ∅;A �
e : T ′ with T ′ ≤ T . Notice that the previous judgment assumes an empty set
of references since the code of contract functions can refer to contract instances
and EOAs only by means of (public) addresses.

148 S. Crafa et al.

We write −→� for the reflexive and transitive closure of −→ and c
→ if there
is no c′ s.t. c −→ c′. In the theorem we implicitly assume that the underlying
class table is well-formed w.r.t. I and A.

Theorem 1 (Soundness). If I;A � c : T, c −→� c′, and c′
→, where c′ =
〈e′, β′〉, then either e ′ is a value or e ′ = revert[λ] for some λ.

This soundness theorem states that the Solidity type system prevents stuck
execution, but not runtime type errors. This is quite dangerous and can lead to
Ether indefinitely locked into a contract or to unexpected runtime reverts.

For instance, consider a blockchain storing at address aB an instance of the
Bank contract in Fig. 3, and at address aD an instance of a contract D that
does not define a fallback function. Assume that the contract at aD successfully
deposited 100 Wei in the bank, and now wants to withdraw part of them. The
function call Bank(aB).withdraw.value(0).sender(aD)(50) successfully com-
piles, but reduces to aD.transfer(50) that raises a revert[rte] exception since
aD refers to a contract that does not define a valid fallback function. Therefore,
the withdrawal transaction aborts, causing loss of gas fee in the real Ethereum
scenario. Moreover, since deployed contract code cannot be updated, the money
already deposited by aD in the bank aB is indefinitely locked.

The whole problem lies in the way the address type is handled: neither
Solidity nor the EVM provides additional information on the contract stored
at that address. Solidity addresses represent an untyped way to access contract
instances, much as void * pointers in C. Such pointers allow extreme flexibility,
but they are really difficult to deal with, since programmers have to know what
they are doing and how to do so, in order to avoid subtle bugs.

5 Refined Type System

This section refines the type system of FS in order to more safely access con-
tract instances through their address. Indeed, the resulting type system enjoys a
more powerful soundness property, that is, well-typed programs never reduce to
a revert[rte] exception. The key idea is to enrich the address type so to type
information about the contracts the addresses refer to. That is, address〈C 〉
is the type of the addresses of instances of the contract C . This richer type
is mostly useful when typing the implicit msg.sender variable, used in func-
tion bodies to refer to the address of the caller. Indeed, well-typed expressions
such as C (msg.sender).f .value(n)() or msg.sender.transfer(n) reduce to
a revert[rte] exception if msg.sender is bound to the address of a contract that
has not type C or has no fallback function. Moreover, by enriching the contract
functions’ signatures with the address type of the implicit sender parameter, we
can let the compiler check the safety of callbacks expressions similar to the ones
above, that are notoriously vulnerable Solidity programming patterns.

Formally, the refined calculus, called FS+, is obtained by applying the
changes in Fig. 6 to the syntax of FS. In function declarations, the metavari-
able S (for “sender”) ranges over contract names, and the meaning is that the

Is Solidity Solid Enough? 149

function f can be called only by contracts or EOAs whose address has (a sub-
type of) type address〈S 〉. The subtyping relation is extended to address types
in covariant way, that is, address〈C 〉 ≤ address〈D〉 holds if C ≤ D .

Fig. 6. FS+: changes to syntax and typing rules

The typing rules of FS+ are obtained by applying the changes in Fig. 6.
Moreover, in the typing judgement, A is no longer a set, but a map from
addresses to contract names. The judgment I;A � β must additionally require
that if 〈ιC , a〉 ∈ dom(β) then A(a) = C . Finally, function types become
triples, 〈T ,S ,T1 . . .Tn〉 ≤ 〈T ′,S ′,T ′

1 . . .T ′
n〉 additionally requires S ′ ≤ S ,

and the requirement on well-formedness of function bodies becomes the fol-
lowing: if ftype(C , f) = 〈T ,S ,T1 . . .Tn〉 and fbody(C , f) = 〈x1...xn, e〉 then
this:C , msg.sender:address〈S 〉, msg.value:uint, x1 : T1, .., xn : Tn; ∅;A � e :
T ′ with T ′ ≤ T . The refined rule (t-cast) now statically checks that the expres-
sion to be cast evaluates to the address of an instance of contract D which is a
subtype of the target of the cast. In rules (t-invk) and (t-transfer), the additional
side condition requires the type of the sender es to be a subtype of the type S
of the expected caller of the function f and fb, respectively, as specified in their
refined signature.

The type system of FS+ enjoys a stronger soundness property: revert[rte]
errors are statically prevented, so the only possible runtime errors remain those
due to a negative account balance. In other terms, cast expressions or money
transfers that would lead to unsafe usage of contract members or calls to an
undefined fallback function are now ruled out at compile-time.

Theorem 2 (Soundness). If I;A � c : T, c −→� c′, and c′
→, where c′ =
〈e ′, β′〉, then either e ′ is a value or e ′ = revert[neg].

150 S. Crafa et al.

By taking advantage of this more powerful typing, the Bank contract in Fig. 3
can be refined into the following safer smart contract:

contract Bank {

mapping(address <Topfb> => uint) amounts;

unit deposit <Topfb >() {...}

unit withdraw <Topfb >(uint n) {...}

}

We assume a contract Topfb which only contains a fb function with empty
body and Top sender parameter. Address types used in the mapping to index
the banks’ clients refer to such contract name. This type is also used in the
refined signature of the two contract functions, so to (statically) ensure that
their caller contract actually provides a fallback function. Therefore, com-
ing back to the example discussed in Sect. 4, if aB : address〈Bank〉 and
aD : address〈D〉 where the contract D has no fallback function, the func-
tion call Bank(aB).withdraw.value(0).sender(aD)(50) does not compile any-
more, since the new rule (t-invk) requires D ≤ Topfb, which is not true. The
runtime error occurring when trying to tranfer money to aD is then statically
prevented. Similarly, the contract stored at aD cannot even call the deposit
function, thus preventing also the deposit of money that cannot be withdrawn
anymore. We remark that the type address〈Topfb〉 has the same meaning of
Solidity 5.0’s new type address payable, that is the (super)type of every con-
tract that can safely accept money transfers. However, in Solidity 5.0 the variable
msg.sender is always assumed to be of type address payable, and no check is
performed at compile time to ensure that the actual sender has a fallback func-
tion. Therefore, differently form FS+, the Solidity compiler 5.0 does not enjoy
a better soundness property that of Sect. 4.

The introduction of the type address〈C 〉 and the corresponding typing
rules, are of course incompatible with the legacy Solidity code, that would not
be accepted anymore by the new compiler. Nonetheless, a direct default map-
ping is easily definable by mapping each occurrence of the type address to
address〈Top〉 and by refining each function signature so to use Top as supertype
of the function’s sender. We shall also provide a flag (--notopcast) in the new
compiler to disable the refined rule (t-cast) when D = Top and use the standard
rule (t-cast) of Sect. 4. Indeed, the refined rule would rule out any cast having
address〈Top〉 as actual type of e, since for all type C, Top
≤ C. Cleary, by using
such a default mapping, no additional guarantees can be statically checked on
the contracts code, however, retro-compatibility with Solidity contracts already
deployed on the blockchain, whose code cannot be updated, is guaranteed.

To take advantage of the full power of the refined typing, the major effort
required to Solidity programmers is to annotate each function with the required
(super)type of the caller. We then put forward a couple of new convenient anno-
tations, in line with the Solidity programming style, that provides a number
of modifiers to annotate functions, e.g., the payable marker in Fig. 1. Since
it is often the case that type constraints refer to contracts that provide (at
least) a fallback function, the keyword payableaddress can be introduced as a

Is Solidity Solid Enough? 151

syntactic sugar for the type address〈Topfb〉, and the function marker payback
can be used to indicate that the function potentially sends Ether back to its
caller. Therefore, the Solidity Bank contract given in Fig. 1 could be simply
rewritten into the following code, where function bodies are as in Fig. 1:

contract Bank {

mapping (payableaddress => uint) private amounts;

function deposit () payable payback {...}

function withdraw () payback {...}

}

Instead, to enforce type-safe callbacks in functions code, programmers
are required to explicitly express the type constraint they require on con-
tracts callers. However, this requirement actually supports a safer programming
discipline.

6 Conclusions and Related Work

We developed semantic foundations of smart contract programming, by formal-
izing the core of the Solidity language and type system. The FS calculus allows
one to precisely define the behavior of smart contract programs and clarifies the
type soundness of the Solidity compiler, pointing out its limitations. Thus it
represents a fundamental building block to develop automatic program analysis
tools. We then put forward a refined type discipline that statically captures a
larger class of errors, such as unsafe casts, unsafe callbacks and unsafe money
transfers. We discussed how such extension provides a safer programming dis-
cipline that is retrocompatibile with smart contracts already deployed on the
blockchain. Finally, the FS calculus highlights the connection between objects
and smart contracts, thus opening the way to reuse the type theory of OOLs
in the context of Solidity, and dually to adapt the refined typing of FS+ to the
case of distributed objects.

A number of proposals have been developed to improve the security and cor-
rectness of Ethereum smart contracts. A stream of works, e.g., [3,7,8], addresses
the problem at the bytecode level: the semantics of EVM bytecode is formalized
and smart contracts properties are verified by means of static analysis tools oper-
ating on the corresponding bytecode. Among the ones addressing the problem at
the programming language level, Zeus [10] translates Solidity code into LLVM
bytecode [11], leveraging abstract interpretation and symbolic model checking
analysis techniques. SmartCheck [13], instead, attempts to detect vulnerabilities
representing Solidity code as an XML tree, and then running XPath queries on
it. Contracts code is fully covered, but the use of XPath leads to a higher rate
of false positives. However, these tools are based on limited formal foundations
of the language they operate on, and they come into play when a contract is
fully defined. We rather think that by enhancing the Solidity compiler’s ability
to statically rule out harmful code, we support a safer programming discipline,
where programmers can write smart contracts that are (more) correct by con-
struction. The work presented in [2] operates in this direction, and provides

152 S. Crafa et al.

a preliminary compiler extension encoding Solidity code into SMT formulas to
check simple properties, such as the division by zero. Similarly, the tool developed
in [12] encodes a subset of Solidity into SMT formulas and uses symbolic model
checking to verify some properties about smart contracts behaviour, including
temporal ones. The first attempt to formalize Solidity is presented in [4]. In this
work a small subset of Solidity is translated into F*, whose type system is after-
wards used to detect vulnerable patterns, such as reentrancy. Even though the
results are encouraging, the subset of Solidity is too small (neither transfer or
cast expressions are considered), and an external language, F*, is used. To the
best of our knowledge, this paper, together with its preliminary version [6], is the
first work aiming at directly formalizing the semantics and the type soundness
of the Solidity source code, so to enhance the use of its compiler as a convenient
building tool.

References

1. Solidity. https://solidity.readthedocs.io/en/develop/index.html. Release 0.4.25
2. Alt, L., Reitwiessner, C.: SMT-based verification of solidity smart contracts. In:

Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11247, pp. 376–388.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03427-6 28

3. Amani, S., Bégel, M., Bortin, M., Staples, M.: Towards verifying Ethereum smart
contract bytecode in Isabelle/HOL. In: Certified Programs and Proofs, pp. 66–77.
ACM (2018)

4. Bhargavan, K., et al.: Formal verification of smart contracts: short paper. In: ACM
Workshop on Programming Languages and Analysis for Security, pp. 91–96. ACM
(2016)

5. Buterin, V.: A next-generation smart contract and decentralized application plat-
form (white paper). Technical report (2014)

6. Di Pirro, M.: How solid is Solidity? An in-dept study of solidity’s type safety.
Master’s thesis, Università di Padova, September 2018. http://tesi.cab.unipd.it/
61297/

7. Grishchenko, I., Maffei, M., Schneidewind, C.: A semantic framework for the secu-
rity analysis of Ethereum smart contracts. In: Bauer, L., Küsters, R. (eds.) POST
2018. LNCS, vol. 10804, pp. 243–269. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89722-6 10

8. Hildenbrandt, E., et al.: KEVM: a complete formal semantics of the Ethereum
virtual machine. In: Computer Security Foundations Symposium, CSF, pp. 204–
217 (2018)

9. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus
for Java and GJ. ACM TOPLAS 23(3), 396–450 (2001)

10. Kalra, S., Goel, S., Dhawan, M., Sharma, S.: ZEUS: analyzing safety of smart
contracts. In: Network and Distributed System Security Symposium (2018)

11. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program analy-
sis & transformation. In: Code generation and optimization: feedback-directed and
runtime optimization, p. 75. IEEE (2004)

12. Shishkin, E.: Debugging smart contract’s business logic using symbolic model-
checking. arXiv preprint arXiv:1812.00619 (2018)

https://solidity.readthedocs.io/en/develop/index.html
https://doi.org/10.1007/978-3-030-03427-6_28
http://tesi.cab.unipd.it/61297/
http://tesi.cab.unipd.it/61297/
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1007/978-3-319-89722-6_10
http://arxiv.org/abs/1812.00619

Is Solidity Solid Enough? 153

13. Tikhomirov, S., Voskresenskaya, E., Ivanitskiy, I., Takhaviev, R., Marchenko, E.,
Alexandrov, Y.: SmartCheck: static analysis of Ethereum smart contracts. In:
Workshop on Emerging Trends in Software Engineering for Blockchain, pp. 9–16
(2018)

14. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Proj. Yellow Pap. 151, 1–32 (2014)

Building Executable Secure Design Models
for Smart Contracts with Formal Methods

Weifeng Xu1 and Glenn A. Fink2(B)

1 College of Public Affairs, University of Baltimore, 1420 N. Charles Street, Baltimore,
MD 21201, USA
wxu@ubalt.edu

2 Cyber Security Group, Pacific Northwest National Laboratory, 902 Battelle Blvd,
Richland, WA, USA

Glenn.Fink@pnnl.gov

Abstract. Smart contracts are appealing because they are self-executing business
agreements between parties with the predefined and immutable obligations and
rights. However, as with all software, smart contracts may contain vulnerabilities
because of design flaws, which may be exploited by one of the parties to defraud
the others. In this paper, we demonstrate a systematic approach to building secure
design models for smart contracts using formal methods. To build the secure
models, we first model the behaviors of participating parties as state machines, and
then, we model the predefined obligations and rights of contracts, which specify
the interactions among state machines for achieving the business goal. After that,
we illustrate executable secure model design patterns in TLA+ (Temporal Logic
of Actions) to against well-known smart contract vulnerabilities in terms of state
machines and obligations and rights at the design level. These vulnerabilities
are found in Ethereum contracts, including Call to the unknown, Gasless send,
Reentrancy, Lost in the transfer, and Unpredictable state. The resultant TLA+
specifications are called secure models. We illustrate our approach to detect the
vulnerabilities using a real-estate contract example at the design level.

1 Introduction

Smart contracts are self-executing contracts with the terms of the agreement between
parties being directly written into lines of code. Smart contracts have interesting prop-
erties: (1) they are unbreakable agreements with predefined rules, (2) they exist across
a distributed, decentralized blockchain network, and (3) they permit trusted transac-
tions and agreements to be carried out among disparate, anonymous parties without
the need for a central authority, legal system, or external enforcement mechanism [1].
Regardless of their appeal, smart contracts are software, and therefore, they may contain
potential defects common to software, such as those arising from the complexity of the
modeled system. These defects are either design flaws or implementation bugs. Smart
contract design flaws are often inherited from business contracts or introduced during
smart contract design. Smart contract software defects are introduced during implemen-
tation. After defective smart contracts been deployed to a production blockchain, they
become very expensive to fix because they are unchangeable and decentralized. There is

© International Financial Cryptography Association 2020
A. Bracciali et al. (Eds.): FC 2019 Workshops, LNCS 11599, pp. 154–169, 2020.
https://doi.org/10.1007/978-3-030-43725-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43725-1_12&domain=pdf
https://doi.org/10.1007/978-3-030-43725-1_12

Building Executable Secure Design Models for Smart Contracts with Formal Methods 155

a well-known recent incident that is related to the both technical and business issues of
smart contracts [2]. On June 17, 2016, a hacker discovered a smart contract error in the
Ethereum Distributed Autonomous Organization (DAO), eventually forcing the entire
currency to do a “hard fork” to erase the fraudulent transactions from the ledger, costing
tens of millions of dollars in losses. The DAO hack was the first well-known incident
caused by defects in smart contracts and exploited bymalicious users. It is legally unclear
how other blockchain communities will agree to resolve similar incidents in the future.

The goal of this research is to build secure models for smart contracts to detect
security vulnerabilities at the design level. Specifically, we (1) employ state machines to
model the behaviors of business contracts, (2) analyzewell-known smart contract vulner-
abilities in terms of state machines, and (3) propose and build vulnerability discovering
mechanisms while formalizing state machines using formal methods. The contributions
of the paper include (1) separated design concerns: using state machines to model the
obligations and rights of business contracts in two levels: the capabilities of participat-
ing parties and the constraints of these capabilities defined by contracts, (2) building
smart contract vulnerability resistance capabilities. The capabilities are built based on
the well-known design by contract principle [3, 4] and the well-known low level attacked
captured in state machines [5], (3) facilitating vulnerability detecting automation: the
proposed design patterns and approach facilitate the vulnerability detecting automation
by formalizing behavioral models in TLA+ [6].

The rest of the paper is outlined as follows: Sect. 2 describes the overall approach.
Section 3 presents the secure model design for smart contracts. Section 4 reviews the
related work. Finally, Sect. 5 concludes this paper.

2 Background and Approach Overview

In this section, we briefly discuss the life cycle of smart contracts, review several well-
known smart contract vulnerabilities, and then show the overall approach to building
secure design models for smart contracts.

Smart contracts are software, and therefore, we should manage the software devel-
opment lifecycle to minimize the chance of introducing defects. The key activities in the
life cycle include (1) specifying business contracts, (2) designing smart contracts, (3)
implementing smart contracts, (4) auditing smart contracts, and (5) deploying and exe-
cuting smart contracts. Mistakes can be made in each activity caused by problems like
the ambiguity of business contracts, software specification and design flaws, implemen-
tation errors in smart contract code, incomplete auditing, and environmental errors from
the smart contract execution platform. We focus on the second activity of the smart con-
tract development life cycle and aim at discovering the design flaws of smart contracts.
As examples to guide the development of our approach, we are interested in discovering
the following system behavior-related vulnerabilities mentioned in [7, 8]:

• Call to the unknown (CTU). Some of the primitives used in Solidity [9] to invoke
functions and to transfer ether may have the side effect of invoking an undesirable
behavior of the recipient.

• Gasless send (GS). When using the function send to transfer ether to a contract, it is
possible to incur in an out-of-gas exception.

156 W. Xu and G. A. Fink

• Reentrancy (RE). A behavior may be unintentionally executed more than once. This
class of flaw was the cause of the DAO’s problems.

• Lost in transfer (LIT). If some ether is sent to an orphan address, it is lost forever.

The main idea of securing smart contract design is to build security models around
business contracts against the vulnerabilities of smart contracts including those men-
tioned. Specifically, we aim at designing and specifying the countermeasure mecha-
nisms, i.e., secure design patterns, in TLA+ based on behaviors of the contracts. The
newly created models are called Temporal Logic of Actions (TLA) security models,
and they are the formal specification of state machines with the integrated vulnerability
detection ability. TLA is a shorthand for referring to the TLA+ specification language
[6]. The rich language has well-defined semantics and was designed for expressiveness
and ease of formal reasoning. The center of Fig. 1 represents secure models of smart
contracts in TLA+. The creation of the secure models are the results of a sequence of
modeling activities. The dashed links indicate the modeling activities are not enforced.
However, each activity results in a partial TLA model. The activities are:

• Eliciting business needs. This step captures business requirements and agreements
in contractual use-case templates. The basic elements required for the agreement
to be a legally enforceable contract include the offer, parties, consideration, terms
and conditions, and acceptance. This step also highlights the relations among these
elements.

• Modeling participating party behaviors. This step describes the behaviors of each
party involved in the business contracts in the corresponding state machines.

• Modeling contractual rights and obligations. This step models the interactions among
participating parties. These interactions are enforced by the mutual agreements.

• Secure smart contract design. This step secures smart contract design by implementing
secure designpatterns to againstwell-known smart contract vulnerabilities. Thedesign
process focuses on what the smart contract should do rather than on how it should do

Fig. 1. The systematic approach to build secure design models for smart contracts

Building Executable Secure Design Models for Smart Contracts with Formal Methods 157

it. For example, a specification may say that a vending machine must dispense a soda
if took a one-dollar bill (the what), without specifying the mechanism used to take
dollar bills and vend soda cans (the how). Note that the TLA security models can be
verified using a Temporal Logic model Checker (TLC). TLC is a model checker for
debugging a TLA model by checking invariance properties of a finite-state model of
the specification.

3 Modeling Business Contracts

In this section,wediscuss the elicitation of the business contracts andmodel the behaviors
of participating parties, including the obligations and rights of the participating parties
in state machines.

A. Eliciting Business Contracts

To demonstrate the approach, we use the example where an owner wants to sell
his/her house and a potential buyer wants to purchase it. A property manager, such as a
city where the house is located, will coordinate the transaction. An offer is the beginning
of a contract. One party must propose an arrangement to the other, including definite
terms. The parties of a contract are the entities involved in the agreement. For simplicity,
we conflate the buyer/seller parties with their respective agents. The consideration of
a contract specifies what each party stands to gain from the business arrangement. For
example, if a house owner wants to sell his house to a buyer, the offer is the house, the
seller’s consideration is the payment for the sold house, and the buyer’s consideration
is ownership of the house. The terms and conditions of a business contract specify the
rights and obligations of each party. These can vary widely depending on the nature of
the business arrangement. Common examples can include the amount of payment, when
payment is due, the specific nature of the work involved and how long the agreement will
remain in effect. Terms and conditions may cover complex situations such as failure of
one party to accomplish something required in a timely manner or dissatisfaction with
the outcome of the contract resolution. Acceptance of the contract is the expression of
assent to its considerations.

Business contract elicitation is the practice of collecting the contractual require-
ments from participating parties and other stakeholders. The contractual requirements
are captured in contractual use-case specifications, which are an extension of use case
specifications [10]. Specifically, a contractual use case’s specification is a textual model
that organizes and describes key components of business contract requirements. Table 1
shows a contractual use case specification based on the real-estate property-selling con-
tract. It contains the key elements of business contracts, including a short description of
the contract, an offer, the participating parties in the contract, the terms and conditions
specified in the contract, the consideration of the contract, and the acceptance of the
contract.

158 W. Xu and G. A. Fink

Table 1. A business contractual use case

Name Real estate property selling

Description A buyer and a seller want to exchange the ownership of a building after the
buyer bought the building from the seller

Offer A house

Parties A buyer, a seller, and a property manager

Legality 1. The seller owns the house
2. The buyer has the ability to pay

Consideration 1. The seller: payment for the sold house
2. The buyer: title deed to the house

Acceptance 1. The seller: receipt of payment of the sold house
2. The buyer: receipt of ownership of the house
3. Property manager: the record of changed ownership

Rejection 1. The seller: keep the house
2. The buyer: keep the money

Rights See Table 2

Obligations See Table 2

Note that:

• The property manager acts as a contract manager. It specifies the business process and
coordinates the behaviors of the both buyer and seller. The purpose of the property
manager is to get rid of the middle man in the business process, which is one of the
advantages of smart contracts. Each contract needs to define the contract manager.

• Theuse case template also includes the item“rejection”of acceptance,whichdescribes
a scenario that occurs when a participating party does not agree to the terms of the
contract.

• Rights and obligationsmust be specified in terms and conditions of a business contract.
Contractual rights are the set of rights guaranteed whenever people enter into a valid
contract. For example, both parties have the rights to join the business negotiation
process. After joining, both parties have obligations to inform the property manager
regarding their status.

• The rights and obligations in the modeling process are considered as the interface
among all parties in a contract. The interactions occurred in the interface.

B. Modeling Contractual Rights and Obligations

Rights and obligations are the key elements of business contracts. We use state
machines [11] to model the essential element. A state machine is an implementation-
independent model of the dynamic behavior of the system. It is an abstract program
representing a business contract that can be in exactly one of a finite number of states at
any given time, involving all parties.A statemachine can change fromone state to another

Building Executable Secure Design Models for Smart Contracts with Formal Methods 159

in response to some external inputs. The event-response features of the state machine
represent the nature of obligations and rights between and among parties. Figure 2 shows
the state machine of the rights and obligations defined in business contracts. The state
machine models the behavior of the rights and obligations at two levels: The capabilities
of each participating party expressed in state machines and the constraints of these
capabilities.

Fig. 2. Rights and obligations between participating parties

Modeling the Capabilities of Each Party. These parties include the seller, the buyer,
and the property manager. The capabilities of a party describe what the party is capa-
ble of doing regardless of external constraints and stimulates. For example, the state
machines of the seller and buyer show both parties are in the initial “Waiting” state,
i.e., waiting for a contract. Both parties can abort the business process anytime. Once
they have an intention to create a legal relationship, they can enter the “Joined” state
indicating they have joined the business negotiation. Both seller and buyer have two
options after joining the business negotiation either decide to sign the property selling
contract or abort the business negotiation process. The outcome of each party is either
“Signed” or “Aborted”. For the purpose of demonstration, the buyer and seller have
separate instances of the same state machine. When the property manager changes his
state from “Init” to “Done” he finishes preparing contractual documents and asking
both seller and buyer to sign the contract. Note that the capabilities may have optional
internal constraints. For example, to join the real-estate business, the buyer may need
to show his/her bank account balance is greater than $10K. The internal constraint for
that capability may be expressed as . The property manager is
often called the third-party beneficiary in business contracts.

Modeling the Constraints of These Capabilities. Although state machines capture
each individual participatingparty’s capabilities in a business setting, theydonot describe
the constraints of capabilities to achieve a business goal of a contract. Such constraints
need to be specified as the rights and the obligations of each party. Rights are the
fundamental normative rules about what parties are allowed to do. A contractual obli-
gation means that a person must comply with the directives stated or given due to the

160 W. Xu and G. A. Fink

agreement, promise, or verbal/written contract that is in place between the individuals
involved. In the modeling process, the performance of obligations is formed from a
party’s responses (i.e., capabilities) to external events under the predefined terms and
conditions (i.e., external constraints). The external events are the events generated by
the status-changing information shared between the parties. The changes of such statues
often have impacts on the offer or the process of making and accepting the offer. For
example, if the offer of the contract is a house, then external events can be a price-change
event, a time-change event, and message-receive event. An external event flow refers to
the associate and the direction between the parties who generate and receive the events.
The external event flows between the parties, and they are represented by red lines in
Fig. 2.

Figure 3 shows an example model of how an obligation is performed and a right
is requested by the property manager. The model views the obligations and their
corresponding rights as a three-step process:

• Obligation request. An obligation is requested by a smart contract. The dashed lines
indicate the requested obligation process.

• Obligation performance. When an obligation is performed, the capability of a
corresponding party is invoked.

• Right request. After an obligation is performed, the party can request his rights based
on the contract. The solid links represent the rights requesting process.

Fig. 3. The model of performing an obligation

When modeling and integrating contractual rights and obligations of a party into
state machines, we need to answer the following questions that are related to the
obligations and rights: (1) who requested the services, (2) who provides the ser-
vices or performs obligations, and (3) which obligation should be performed. We
define the obligations of a party as the capabilities of the participating party invoked
by predefined external events, where the capabilities are the behaviors captured by
state machines. The external events can be generated by either receiving a message,
a timer, or the changed states of globally shared variables by all participating par-
ties. In other words, the obligations enable response to external enabling events. The
rights of a party are obligation request events generated by the party. The requesting

Building Executable Secure Design Models for Smart Contracts with Formal Methods 161

events ask other parties to provide pre-defined services in contracts in exchange for
the party’s services. We call these requesting events. The complete obligation-request
and right-requestmessages are expressed as event_sender/enabling_event/capability and
event_recipient/requesting_event/capability, respectively. The obligation performance is
expressed as obligation_request/capability/rights_request. It indicates the capability is
invoked if an obligation request is received and the rights request will be fired. These
expressions answer the three questions mentioned earlier.

Table 2 shows the rights and obligations of the seller and buyer. For example, once the
property manager receives “joined_msg” messages (i.e., an enabling event) from both
the buyer and the seller, the property manager is obligated to prepare the signing process
(i.e., “prepare_sign”), and then sends a sign message “sign_msg” (a requesting event)
to both the buyer and seller to sign the contract. It worth noting that we model shared
attributes among parties, and the external events are generated based on the predefined
rules consisting of the shared attributes.

Table 2. The rights and obligations of each party

ID Parties Obligations Rights
Event
Sender

Enabling
Events

Capability Request
ing

Events

Event
RecipientCurrent

State
Activities Next

State
1 Buyer

/Seller
n/a n/a Waiting Join the real estate process

(join)
Joined joined_

msg
property
manager

2 Buyer
/Seller

n/a n/a Waiting
or Joined

Abort the transferring
process any time before
signing the transferring
documentation (abort)

Aborte
d

3 Buyer
/Seller

property
manager

sign_msg Joined sign the selling/buying
agreement

Signed

4 Property
manager

buyer/seller a message
joined_msg

Init Record the received
messages (record_msg)

Init

5 Property
manager

buyer and
seller

joined_msg Init Prepare to sign
(prepare_sign)

Done sign_ms
g

buyer and
seller

4 Secure Smart Contract Design

Wewill discuss the design by contract principle and how the design patterns use the prin-
ciple to detect vulnerabilities at a design level, including the misbehaviors of individual
participant party, and the obligations and rights vulnerabilities among parties.

A. Design by Contract and TLA+

The statemachine captures the capabilities of parties and contractual relations among
parties at the design level, however, it doesn’t enforce prevention of potential vulnerabil-
ities.We secure the statemachines by adding logic for secure design patterns that address
well-known attacks on state machines, including extra states, sneak paths, trap doors,
and the hidden activities [5]. Secure smart contract design is based on the well-known
design-by-contract principle [3, 4]. The principle suggests that a software component
must specify formal, precise, and verifiable interfaces by defining the component’s pre-
conditions, postconditions, and invariants. These specifications are also referred to as

162 W. Xu and G. A. Fink

“contracts”, in accordance with a conceptual metaphor with the terms and conditions and
obligations of business contracts, but they must not be confused with the smart contract
we are implementing.

We use TLA+ to secure smart contract design because TLA+ uses mathematics in
a simple, native way to specify state machines [12]; it facilitates the implementation of
secure design patterns and automates vulnerability detection. TLA+ has demonstrated
the value of formal methods for Real-world Systems. Since 2011, engineers at Ama-
zon have been using TLA+ to help solve difficult design problems in critical systems
[13, 14].

B. TLA+ Secure Design Patterns for Each Party’s Behaviors

Extra State Checking Design Pattern. The existence of extra states indicates the abil-
ity of parties to enter a situation unanticipated by the design. To prevent extra states,
TLA+ allows us to define predicate logic formulas to check the type-correctness invari-
ant. The formula creates a “positive” security model (also known as “whitelist”) that
defines what is allowed, and rejects everything else [15]. For example, lines 5, 6 and
7 of the TLA+ snippet below defines a formula named “ checkExtraStateVul”, which
requires that the resultant state in the buyer/seller state machines must be one in the
set {"Wai ng", "Joined", "Signed", "Aborted"}. Similarly, any property manager state
must in the set . The symbol /\ in TLA+ is the propositional logic
andoperator and the symbol \inis a set operator ∈. In addition, the symbol [] defines
a function to be a set of ordered pairs. The expression [S -> T]is the set of all functions
fwhose domain is Ssuch that f [x]is in the set Tfor all xin S. In our example, SBis the
domain. The expression [SB -> { "Wai ng", "Joined", "Signed", "Aborted" }]at line 6 is
the mathematically way of listing all possible states of the buyer and the seller using
functions, e.g., one of the ordered pairs can be , where the symbol
 |-> separates the function domain and the range.

1. CONSTANT SB * The par cipa ng par es, i.e., seller and buyer
2. VARIABLE
3. sbState, * The state of the seller and the buyer
4. pmState * The state of the property manager
5. checkExtraStateVul ==
6. /\sbState \in [SB -> { "Wai ng", "Joined", "Signed", "Aborted" }]
7. /\ pmState \in {"Init", "Done"}

Sneak Path & Trap Door Checking Design Pattern. Once we eliminate unknown
states we must secure the transitions between the legal states. A sneak path is an activity
or an event that causes a transition out of a legal state under conditions that are not
allowed. A sneak path may be triggered by incorrect conditions of the activity or when
the current state of an instance is out of synchronization with the rest of the model.
For instance, a sneak path might cause the property manager to enter its “ Done” state
prematurely by fooling it into erroneously believing that both the seller and buyer have
signed. While all the instances are in legal states, the sneak path produces a system that
is in an illegal meta-state.

Building Executable Secure Design Models for Smart Contracts with Formal Methods 163

A trap door is when a legal state of an implementation accepts an event that is not
defined in the specification,which causes the instance to enter that state under unspecified
conditions. To prevent sneak paths and trap doors, we whitelist the activities by adding
additional constrains. Specifically, the secure design pattern specifies four constraints
for each activity: (a) the current state, (b) the conditions of the activity, (c) the resultant
state, and (d) the states of other participating parties, where the constraints (a), (b), and
(c) addresses sneak paths, and constraint (d) addresses the trap doors. The following
TLA+ design pattern specifies the constrained activities, and therefore, prevents the
sneak paths.

1. activity ==
2. /\ current_state (a)
3. /\ conditions (b)
4. /\ next_state (c)
5. /\ states_of_other_parties (d)

The following TLA+ snippet defines a sign formula. Lines 2 and 3 check sneak
paths, which implement the constraints (a) and (b). Line 4 checks any violations of trap
doors, which implements the constraints (c) and (d). Line 4 means that the current state
of the participating party must be “Signed” and states of other participating parties must
remain unchanged. For the purpose of designing secure models, we do not implement
the “sign” activity, and the formula is only to specify what the valid “sign” behavior
is. If we want to model whether a buyer can sign the contract, we can introduce a
balancevariable and simplify assert the buyer’s bank account has enough balance use
the formula canSign ==balance >= propertyPrice.

1. sign(sb) ==
22. /\ sbState[sb] = "joined"
3. /\ canSign
4. /\ sbState' = [sbState EXCEPT ![sb] = "signed"]

Hidden Activity Checking Design Pattern. Hidden activities are illegal activities that
should not be allowed by the parties. To prevent the existence of hidden activities, we can
simply useTLA+ to list only specific activities are allowed in the contracts. The following
TLA+ snippet defines only three activities “join”, “sign”, and “abort” allowed for the
seller and buyer. The symbol \/ in TLA+ is the propositional logic oroperator

1. Next == \E sb \in SB : join(sb) \/ sign(sb) \/ abort(sb)

C. TLA+ Secure Design Patterns for Obligations and Rights

The secure design pattern (shown below) for obligations and rights requires the
following formulas: the attributes shared by the parties, shared_a ributes, the allowed
external_events, an obliga on, a right, a term_condi on, a post_status, and an instance
of each state machine SM_inst .

164 W. Xu and G. A. Fink

shared_attributes

external_events==[?] * enabling events and requesting events

Term_condition ==
 /\ obligation
 /\ right
 /\ post_status

obligation ==
 /\ event_sender
 /\ enabling_events
 /\ current_state
 /\ next_state

right ==
 /\ event_recipient
 /\ requesting_event

post_status==?

SM_inst == INSTANCE partyStateMachines

The secure design pattern has two purposes: (a) mapping key elements of business
models, particularly the rights and obligations, and (b) detecting the aforementioned
vulnerabilities, including GS, RE, LIT, and CTU:

• Detecting GS vulnerability. GS vulnerability is essentially a sneak path. The vul-
nerability is related to each party’s behaviors rather than obligations and rights. The
formula SM_instindicates that the behaviors of each individual party described in the
previous section must be verified when checking the rights and obligations of parties.
SM_inst has defined the formula conditions to enforce the conditions before carrying
out any activities, and therefore, it prevents any sneak paths activated by incorrect
conditions.

• Detecting RE vulnerability. RE vulnerability is often caused by a sneak path or a
trap door between parties. To detect RE vulnerability at the design level, the secure
design pattern adds additional constraints, including current_state, next_stateand
event_sender, in the enabling_eventsformula. The obligationsformula indicates
that (1) the first entry needs to reach the correct obligation, (2) the second entry
needs to meet the current_state, and (3) an obligation is valid only if the required
enabling_eventsare generated by the predefined event_senderparty and the events
are predefined in the external events set external_events. It prevents sneak paths
from unspecified scenarios and trap doors between participating parties because
of undefined external events or incorrect event senders. Note that the formula
external_eventsincludes both types of external events: enabling events and requesting
events. The formula asserts that any events that are not in the set are invalid. These
external events are generated based on the shared attributes or by other parties directly.
In addition, if the RE vulnerability involves two parties, we use the secure design for
contract considerations patterns (discussed in next section) to enforce the integrity of
the contract.

Building Executable Secure Design Models for Smart Contracts with Formal Methods 165

• Detecting LIT vulnerability. SM_instdefines CONSTANT SB, which specifies the par-
ties in the contracts. It only allows transferring assets between parties. Furthermore,
the vulnerability can be detected by verifying both considerations of the seller and
buyer, e.g., the formula ContractConsistentCheck, which models the mutual states
between two parties.

• DetectingCTUvulnerability. CTU triggers side effectswhile fulfilling obligations and
claiming rights. Twomechanisms are proposed to reduce the vulnerability: preventing
the incorrect invocations and post-statues checking. For example, to prevent claiming
unknown rights, the secure design pattern has two formulas: (a) use a rightformula
to prevent generating incorrect events, and (b) use a post_statusformula to detect
the side effect of claiming incorrect rights. The rights of a participating party can
be claimed only if a requesting event requesting_event is generated and the right
event_recipientis defined. The post_statusformula asserts what states must remain
unchanged to prevent side effects.

The following TLA+ design snippet specifies the fifth right and obligation listed in
Table 2. Each formula is described as follows:

We first define an event set (line 1). This specifies two types of messages that are
allowed to pass between the seller and the buyer: a “joined_msg” message (line 2)
sent by the seller or the buyer and a “sign_msg” message (line 3) sent by the property
manager. Other events are not in the set may lead to GS vulnerability. Note that the
special function in line 2 [type : {"joined_msg"}, sb : SB] represents a set of records
with a domain named as and a range named as . The symbol indicates the
union operation.

Lines 12–15 specify obligations. It indicates that the obligation is valid only if the
propertymanager receives joinedmessages from the buyer and seller (line 13) the current
state of the property manager, “pmState”, is “Init” (line 14), and the next state of the
property manager is “Done” (line 15).

1. events ==
2. [type : {"joined_msg"}, sb : SB] \cup
3. [type : {"sign_msg"}]
4.
55. VARIABLES msgs_passing, pmJoinedMsgsReceived
6.
77. pmSign ==
8. /\ obligation
9. /\ right
10. /\ post_status
11.
112. obligation ==
13. /\ pmJoinedMsgsReceived = SB
14. /\ pmState = "Init"
15. /\ pmState' = "Done"
16.
17. right == msgs_passing '
18. = msgs_passing \cup {[type |-> "sign_msg"]}
19.
20. post_status == UNCHANGED <<sbState, pmJoinedMsgsReceived >>

166 W. Xu and G. A. Fink

Lines 17–18 specify rights of the property manager. It changes the states of the
shared attributes “message_passing” by adding a “sign_msg” to the attributes. The added
messagewill trigger the third obligation of both buyer and seller that is defined in Table 2.
Line 20 specifies that the obligation and right should not change the states of both the
buyer and the seller as well as the variable that the property manager used to hold the
received messages from the buyer and the seller. This prevents exploitation of the CTU
vulnerability.

C. TLA+ Secure Design for Contract Considerations

Considerations are the benefits that each party receives, or expects to receive when
entering into a contract. For a business contract to be considered valid and enforceable
by the courts, three elements of consideration must be met: (a) there is a bargain for
the terms of the exchange, (b) the bargain includes a mutual exchange between the
parties, and (c) the exchange is something of value. Secure design patterns for contract
considerations include a model of each party’s considerations and a model of the mutual
exchange.

Each party’s consideration can be modeled in terms of value consideration changes
shown below:

1. considerCheck (party)==
2. /\current_state
3. /\valueConsider’=valueConsider+ consideration
4. /\next_state

For example, if the seller’s consideration is the payment received, the secure design
pattern needs to verify the payment has been received in the state model. The third line
in the activity “sign” verifies that if the seller sold his property, his/her bank account
balance will be increased by the payment of the property.

1. sign(seller) ==
22. /\ sbState[seller] = "joined"
3. /\ balance’= balance + payment
4. /\ sbState' = [sbState EXCEPT ![seller] = "signed"]

Modeling the mutual exchanges between two parties. It takes both parties’ consid-
erations together as a whole. It often models the final states of both parties and verify a
value flow between two parties after mutual exchange of a consideration. The following
formula asserts that the seller and the buyer should not have arrived at conflicting deci-
sions. It guarantees that either both parties sign the contract or both of them abort the
business process.

1. ContractConsistentCheck ==
22. \A sb1, sb2 \in SB :
3. ~ /\ sbState[sb1] = "aborted"
4. /\ sbState[sb2] = "signed"

Building Executable Secure Design Models for Smart Contracts with Formal Methods 167

The following formula ContractPaymentConsistentCheck asserts that the payment
transfers from the buyer to the seller. Similarly, we can verify the ownership transferring.

1. ContractPaymentConsistentCheck ==
22. \A sb1, sb2 \in SB :
3. /\ seller_sign(sb1)
4. /\ buyer_sign(sb2)
5.
66. seller_sign1(seller) ==
7. /\ balance[seller]’= balance[seller] + payment
8.
99. buyer_sign(buyer) ==
10. /\ balance[buyer]’= balance[buyer] - payment

5 Related Work

Smart contract verification concepts are not new. One of the early works is done in 1997
by Szabo [16]. Szabo described the basic idea behind smart contracts as different kinds
of contractual clauses (such as collateral, bonding, delineation of property rights, etc.).
These contractual clauses can be embedded in the hardware and software we deal with,
in such a way as to make a breach of contract expensive for the cheater. Szabo used
protocols and user interfaces to formulate all steps of the contracting process. This work
provides new primitives to formalize and secure digital relationships. Grosof et al. [17,
18] built a rule-based approach to the representation of business contracts that enables
software agents to create, evaluate, negotiate, and execute contracts with substantial
automation and modularity. It builds upon the situated courteous logic programs knowl-
edge representation in RuleML. Similarly, Governator [19] presented an approach for
the specification and implementation of e-contracts for Web monitoring. This is done
in the setting of RuleML. He argued that monitoring contract execution requires also a
logical account of deontic (rule-based) concepts and of violations.

Smart contract verification for blockchains is relatively new, however, there is a large
body of similar work on formal software verification. Bhargavan et al. [20] outlined a
framework to analyze and verify both the runtime safety and the functional correct-
ness of Ethereum contracts by translation to F*, a functional programming language
aimed at program verification. Their approach is based on shallow embeddings and
type-checking within an existing verification framework. It does not address specific
smart contract vulnerabilities. Delmolino et al. [21] documented several typical classes
of mistakes students made, suggest ways to fix/avoid them and advocate best practices
for programming smart contracts. Their work mainly focused on discovering bugs at
the code level. Bigi et al. [22] combine game theory and formal models to tackle the
new challenges posed by the validation of such systems. They extends Markov Decision
Process to model the behaviors of the participants.

The proposed approach is rooted in two concepts in software engineering: design by
contract and TLA+ formal methods. The central idea of design by contract is a metaphor
on how elements of a software system collaborate with each other on the basis of mutual
obligations and benefits.

168 W. Xu and G. A. Fink

6 Conclusion

The design of smart contracts needs to be checked and verified to minimize the design
flaws and detect security vulnerabilities. We have presented a systematic approach to
build secure models for smart contracts in TLA+ to verify the smart contract design.
We have applied the approach to a property sale sample contract. Specifically, we have
demonstrated how TLA secure models are generated to address some well-known smart
contract vulnerabilities, including GS, RE, LIT, and CTU. This approach models the
elements of business contracts in state machines and propose secure design patterns in
TLA to detect smart contract vulnerabilities at the design level.

For future work, we plan to (1) extend the case study by increasing more states and
behaviors to approximate a real-world scenario, (2) implant vulnerabilities in the property
sale contracts and evaluate the vulnerability detection rates of the secure models, and (3)
develop secure smart contract design templates so that the templates can be generated
automatically to detect smart contract vulnerabilities. In addition, the template can help
developers to cover general business informal contracts. These informal contracts exist
in business contracts and do not require a specified form or method of formation in
order to be valid. However, they may be required in smart contracts to reduce malicious
behaviors.

Acknowledgment. This work is supported in part by the Department of Energy and the National
Science Foundation under Grant Numbers 1714261.

References

1. Mohanty, D.: BlockChain: From Concept to Execution. Independently published (2018)
2. Finley, K.: A 50million hack just showed that the dao was all too human (2016). https://www.

wired.com/2016/06/50-million-hack-just-showed-dao-human/
3. Meyer, B.: Object-Oriented Software Construction, vol. 2. Prentice Hall, New York (1988)
4. Meyer, B.: Applying design by contract. J. Comput. 25(10), 40–51 (1992). https://doi.org/10.

1109/2.161279
5. Binder, R.V.: TestingObject-OrientedSystems:Models, Patterns, andTools.Addison-Wesley,

Boston (2000)
6. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware and Software

Engineers. Addison-Wesley Longman Publishing Co., Inc., Boston (2002)
7. Sirer, E.G.: Reentrancy woes in smart contracts (2016). http://hackingdistributed.com/2016/

07/13/reentrancy-woes/
8. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on Ethereum smart contracts (SoK).

In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp. 164–186. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-6_8

9. Buterin, V., et al.: A next-generation smart contract and decentralized application platform.
White paper (2014)

10. Jacobson, I.: Object-Oriented Software Engineering: A Use Case Driven Approach. Pearson
Education, London (1993)

11. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Program. 8(3),
231–274 (1987)

https://www.wired.com/2016/06/50-million-hack-just-showed-dao-human/
https://doi.org/10.1109/2.161279
http://hackingdistributed.com/2016/07/13/reentrancy-woes/
https://doi.org/10.1007/978-3-662-54455-6_8

Building Executable Secure Design Models for Smart Contracts with Formal Methods 169

12. Lamport, L.: Computation and state machines, April 2008. https://www.microsoft.com/en-
us/research/publication/computation-state-machines/

13. Newcombe, C.:Why amazon chose TLA+. In: Ait Ameur, Y., Schewe, K.D. (eds.) ABZ 2014.
LNCS, vol. 8477, pp. 25–39. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
43652-3_3

14. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.: How amazon
web services uses formal methods. Commun. ACM 58(4), 66–73 (2015)

15. Mansfield-Devine, S.: The promise of whitelisting. Netw. Secur. 2009(7), 4–6 (2009)
16. Szabo, N.: Formalizing and securing relationships on public networks. First Monday 2(9)

(1997)
17. Grosof, B.N., Poon, T.C.: SweetDeal: representing agent contracts with exceptions using

XML rules, ontologies, and process descriptions. In: Proceedings of the 12th International
Conference on World Wide Web, pp. 340–349. ACM (2003)

18. Grosof, B., Poon, T.: SweetDeal: representing agent contracts with exceptions using semantic
web rules, ontologies, and process descriptions. Int. J. Electron. Commer. 8(4), 61–97 (2004)

19. Governatori, G.: Representing business contracts in RuleML. Int. J. Coop. Inf. Syst.
14(02n03), 181–216 (2005)

20. Bhargavan, K., et al.: Formal verification of smart contracts: short paper. In: Proceedings
of the 2016 ACM Workshop on Programming Languages and Analysis for Security, PLAS
2016, pp. 91–96. ACM, New York (2016). https://doi.org/10.1145/2993600.2993611

21. Delmolino, K., Arnett, M., Kosba, A., Miller, A., Shi, E.: Step by step towards creating a
safe smart contract: lessons and insights from a cryptocurrency lab. In: Clark, J., Meiklejohn,
S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604,
pp. 79–94. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4_6

22. Bigi, G., Bracciali, A., Meacci, G., Tuosto, E.: Validation of decentralised smart contracts
through game theory and formal methods. In: Bodei, C., Ferrari, G.-L., Priami, C. (eds.)
Programming Languages with Applications to Biology and Security. LNCS, vol. 9465,
pp. 142–161. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25527-9_11

https://www.microsoft.com/en-us/research/publication/computation-state-machines/
https://doi.org/10.1007/978-3-662-43652-3_3
https://doi.org/10.1145/2993600.2993611
https://doi.org/10.1007/978-3-662-53357-4_6
https://doi.org/10.1007/978-3-319-25527-9_11

SoK: Transparent Dishonesty:
Front-Running Attacks on Blockchain

Shayan Eskandari1,2(B), Seyedehmahsa Moosavi1, and Jeremy Clark1(B)

1 Gina Cody School of Engineering and Computer Science, Concordia University,
Montreal, Canada

s eskand@encs.concordia.ca, j.clark@concordia.ca
2 ConsenSys Diligence, Montreal, Canada

Abstract. We consider front-running to be a course of action where an
entity benefits from prior access to privileged market information about
upcoming transactions and trades. Front-running has been an issue in
financial instrument markets since the 1970s. With the advent of the
blockchain technology, front-running has resurfaced in new forms we
explore here, instigated by blockchain’s decentralized and transparent
nature. In this paper, we draw from a scattered body of knowledge and
instances of front-running across the top 25 most active decentral applica-
tions (DApps) deployed on Ethereum blockchain. Additionally, we carry
out a detailed analysis of Status.im initial coin offering (ICO) and show
evidence of abnormal miner’s behavior indicative of front-running token
purchases. Finally, we map the proposed solutions to front-running into
useful categories.

1 Introduction

Blockchain technology enables decentralized applications (DApps) or smart con-
tracts. Function calls (or transactions) to the DApp are processed by a decen-
tralized network. Transactions are finalized in stages: they (generally) first relay
around the network, then are selected by a miner and put into a valid block, and
finally, the block is well-enough incorporated that is unlikely to be reorganized.
Front-running is an attack where a malicious node observes a transaction after it
is broadcast but before it is finalized, and attempts to have its own transaction
confirmed before or instead of the observed transaction.

The mechanics of front-running work on all DApps but front-running is not
necessarily beneficial, depending on the DApp’s internal logic and/or as any mit-
igations it might implement. Therefore, DApps need to be studied individually
or in categories. In this paper, we draw from a scattered body of knowledge
regarding front-running attacks on blockchain applications and the proposed
solutions, with a series of case studies of DApps deployed on Ethereum (a popu-
lar blockchain supporting DApps). We do case studies on decentralized exchanges
(e.g., Bancor), crypto-collectibles (e.g., CryptoKitties), gambling services (e.g.,
Fomo3D), and decentralized name services (e.g., Ethereum Name Service).

c© International Financial Cryptography Association 2020
A. Bracciali et al. (Eds.): FC 2019 Workshops, LNCS 11599, pp. 170–189, 2020.
https://doi.org/10.1007/978-3-030-43725-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43725-1_13&domain=pdf
https://doi.org/10.1007/978-3-030-43725-1_13

SoK: Transparent Dishonesty: Front-Running Attacks on Blockchain 171

We also study initial coin offerings (ICOs). Finally, we provide a categoriza-
tion of techniques to eliminate or mitigate front-running including transaction
sequencing, cryptographic techniques like commit/reveal, and redesigning the
functioning of the DApp to provide the same utility while removing time depen-
dencies.

2 Preliminaries and Related Work

2.1 Traditional Front-Running

Front-running is a course of action where someone benefits from early access to
market information about upcoming transactions and trades, typically because
of a privileged position along the transmission of this information and is applica-
ble to both financial and non-financial systems. Historically, floor traders might
have overheard a broker’s negotiation with her client over a large purchase, and
literally race the broker to buy first, potentially profiting when the large pur-
chase temporarily reduces the supply of the stock. Alternatively, a malicious
broker might front-run their own client’s orders by purchasing stock for them-
selves between receiving the instruction to purchase from the client and actually
executing the purchase (similar techniques can be used for large sell orders).
Front-running is illegal in jurisdictions with established securities regulation.

Cases of front-running are sometimes difficult to distinguish from related
concepts like insider trading and arbitrage. In front-running, a person sees a
concrete transaction that is set to execute and reacts to it before it actually gets
executed. If the person instead has access to more general privileged information
that might predict future transactions but is not reacting at the actual pending
trades, we would classify this activity as insider trading. If the person reacts after
the trade is executed, or information is made public, and profits from being the
fastest to react, this is considered arbitrage and is legal and encouraged because
it helps markets integrate new information into prices quickly.

2.2 Literature on Traditional Front-Running

Front-running originates on the Chicago Board Options Exchange (CBoE) [41].
The Securities Exchange Commission (SEC) in 1977 defined it as: “The practice
of effecting an options transaction based upon non-public information regarding
an impending block transaction1 in the underlying stock, in order to obtain a
profit when the options market adjusts to the price at which the block trades. [2]”
Self-regulating exchanges (e.g., CBoE) and the SEC spent the ensuing years
planning how to detect and outlaw front-running practices [41]. The SEC stated:
“It seems evident that such behaviour on the part of persons with knowledge of
imminent transactions which will likely affect the price of the derivative security

1 A block in the stock market is a large number of shares, 10 000 or more, to sell which
will heavily change the price.

172 S. Eskandari et al.

constitutes an unfair use of such knowledge.2” The CBoE tried to educate their
members on existing rules, however, differences in opinion regarding the unfair-
ness of front-running activities, insufficient exchange rules and lack of a precise
definition in this area resulted in no action [2] until the SEC began the regu-
lation. We refer the reader interested in further details on this early regulatory
history to Markham [41]. The first front-running policies applied only to certain
option markets. In 2002, the rule was expanded to cover all security futures [3].
In 2012, it was expanded further with the new amendment, FINRA Rule 5270,
to cover trading in options, derivatives, or other financial instruments overlying
a security with only a few exceptions [5,6]. Similar issues have been seen with
domain names [4,25] as well.

Fig. 1. The front-runner upon spotting the profitable transaction Buy(1000) sends his
own transaction with higher gas price to bribe the miners to prioritize his transaction
over initial transaction.

2.3 Background on Blockchain Front-Running

Blockchain technology (introduced via Bitcoin in 2008 [48]) strives to disinter-
mediate central parties that participate in a transaction. However, blockchains
also introduce new participants in the process of relaying and finalizing trans-
actions. Miners are in the best position to conduct these attacks as they hold
fine-grained control over the exact set of transactions that will execute and in
what order and can mix in their own (late) transactions without broadcasting
them. Miners do however have to commit to what their own transactions will be
before beginning the proof of work required to solve a block.

Any user monitoring network transactions (e.g., running a full node) can see
unconfirmed transactions. On the Ethereum blockchain, users have to pay for
the computations in a small amount of Ether called gas [1]. The price that users
pay for transactions, gasPrice, can increase or decrease how quickly miners will
execute them and include them within the blocks they mine. A profit-motivated
miner who sees identical transactions with different transaction fees will prior-
itize the transaction that pays a higher gas price due to limited space in the
2 Securities Exchange Act Release No. 14156, November 19, 1977, (Letter from George

A. Fitzsimmons, Secretary, Securities, and Exchange Commission to Joseph W. Sul-
livan, President CBoE).

SoK: Transparent Dishonesty: Front-Running Attacks on Blockchain 173

blocks. This has been called a gas auction [32]. Therefore, any regular user who
runs a full-node Ethereum client can front-run pending transactions by sending
adaptive transactions with a higher gas price (see Fig. 1).

Finally, well-positioned relaying nodes on the network (or part of the broader
internet backbone) can attempt to influence how transactions are propagated
through the network, which can influence the order miners receive transactions,
or if they receive them at all [30,40].

2.4 Literature on Blockchain Front-Running

Given the purpose of this entire paper is systemizing the existing literature, we
do not re-enumerate the literature here. However, we note two points. First,
we are not aware of any other systematic study of this issue. Second, front-
running is related to two well-studied concepts: double-spending and rushing
adversaries [38].

Double-spending attacks in Bitcoin are related to front-running [11,36]. In
this attack, a user broadcasts a transaction and is able to obtain some off-
blockchain good or service before the transaction has actually been (fully) con-
firmed. The user can then broadcast a competing transaction that sends the same
unspent coins to herself, perhaps using higher transaction fees, arrangements
with miners or artifacts of the network topology to have the second transaction
confirmed instead of the first. This can be considered a form of self-front-running.
In the cryptographic literature, front-running attacks are modeled by allowing
a so called ‘rushing’ adversary to interact with the protocol [12]. In particu-
lar, ideal functionalities of blockchains (such as those used in simulation-based
proofs) need to capture this adversarial capability, assuming the real blockchain
does not address front-running. See e.g., Bitcoin backbone [29] and Hawk [38].

3 A Taxonomy of Front-Running Attacks

As we will illustrate with examples through-out the paper, front-running attacks
can often be reduced to one of a few basic templates. We emphasize what the
adversary is trying to accomplish (without worrying about how) and we distin-
guish three cases: displacement, insertion, and suppression attacks. In all three
cases, Alice is trying to invoke a function on a contract that is in a particular
state, and Mallory will try to invoke her own function call on the same contract
in the same state before Alice.

In the first type of attack, a displacement attack, it is not important to
the adversary for Alice’s function call to run after Mallory runs her function.
Alice’s can be orphaned or run with no meaningful effect. Examples of displace-
ment include: Alice trying to register a domain name and Mallory registering it
first [35]; Alice trying to submit a bug to receive a bounty and Mallory stealing
it and submitting it first [16]; and Alice trying to submit a bid in an auction and
Mallory copying it.

174 S. Eskandari et al.

In an insertion attack, after Mallory runs her function, the state of the con-
tract is changed and she needs Alice’s original function to run on this modified
state. For example, if Alice places a purchase order on a blockchain asset at a
higher price than the best offer, Mallory will insert two transactions: she will
purchase at the best offer price and then offer the same asset for sale at Alice’s
slightly higher purchase price. If Alice’s transaction is then run after, Mallory
will profit on the price difference without having to hold the asset.

In a suppression attack, after Mallory runs her function, she tries to delay
Alice from running her function. After the delay, she is indifferent to whether
Alice’s function runs or not. We only observe this attack pattern in one DApp
and the details are quite specific to it, so we defer discussion until Sect. 4.3.

Each of these attacks have two variants, asymmetric and bulk. In some cases,
Alice and Mallory are performing different operations. For example, Alice is
trying to cancel an offer, and Mallory is trying to fulfill it first. We call this
asymmetric displacement. In other cases, Mallory is trying to run a large set of
functions: for example Alice and others are trying to buy a limited set of shares
offered by a firm on a blockchain. We call this bulk displacement.

4 Cases of Front-Running in DApps

To find example DApps to study, we used the top 25 DApps based on recent user
activity from DAppradar.com in September 2018.3 User activity is admittedly
an imperfect metric for finding the ‘most significant’ DApps: significant DApps
might be lower volume overall or for extended periods of time (e.g., ICOs, which
we remedy by studying independently in Sect. 5). However, user activity is an
objective criteria, data on it is available, and the list captures our intuition
about which DApps are significant. It suffices for a first study in this area, and
is preferable over an ad hoc approach. Using the dataset, we categorized the top
25 applications into 4 principal use cases. The details are given in Table 1.

4.1 Markets and Exchanges

The first category of DApp in Table 1 are financial exchanges for trading ether
and Ethereum-based tokens. Exchanges such as EtherDelta4, purport to imple-
ment a decentralized exchange, however, their order books are stored on a central
server they control and shown to their users with a website interface. Central
exchanges can front-run orders in the traditional sense, as well as re-order or
block orders on their servers. 0xProtocol [65] uses Relayers which act as the
order book holders and could front-run the orders they relay.

As seen in traditional financial markets, one method to manipulate the spot
price of an asset, is to flood the market with orders and cancel them when there
are filling orders (“taker’s griefing” [7]). Placing an order in a partially centralized

3 List of decentralized applications https://DAppradar.com/DApps.
4 Also known as ForkDelta for the user interface: https://forkdelta.app/.

https://DAppradar.com/DApps
https://forkdelta.app/

SoK: Transparent Dishonesty: Front-Running Attacks on Blockchain 175

Table 1. Top 25 DApps based on recent user activity from DAppRadar.com on Septem-
ber 4th, 2018. The DApps that are in bold are discussed in this paper.

DApp category Names Rank

Exchanges IDEX 1

ForkDelta, EtherDelta 2

Bancor 7

The Token Store 13

LocalEthereum 14

Kyber 22

0x Protocol 23

Crypto-collectible games (ERC-721 [26]) CryptoKitties 3

Ethermon 4

Cryptogirl 9

Gods Unchained TCG 12

Blockchain Cuties 15

ETH.TOWN! 16

0xUniverse 18

MLBCrypto Baseball 19

HyperDragons 25

Gambling Fomo3D 5

DailyDivs 6

PoWH 3D 8

FomoWar 10

FairDapp 11

Zethr 17

dice2.win 20

Ether Shrimp Farm 21

Name services Ethereum Name Service 24

exchange is free, but to prevent taker’s griefing attacks, the user needs to send
an Ethereum transaction to cancel each of his orders. Cancelling orders is most
important when prices change faster than order execution. In this case, when an
adversarial actor sees a pending cancellation transaction, he sends a fill order
transaction with higher gasPrice to get in front of the cancellation order and
take the order before it is canceled (this is known as cancellation grief). This
attack follows the asymmetric displacement template and is illustrated in Fig. 2.

Designing truly decentralized exchanges, where the order book is imple-
mented directly on a public blockchain, is being pursued by a number of
projects [24]. These designs are generally vulnerable to front-running attacks
following a displacement or insertion template. For example, a front-running full

http://www.DAppRadar.com

176 S. Eskandari et al.

Fig. 2. The adversarial miner monitors the Ethereum mempool for decentralized
exchange transactions. Upon spotting a profitable cancellation transaction, he puts
his buy order prior to the cancel transaction in the block he mines. Doing so, the
miner can profit from the underlying trade and also get the gas included in the cancel
transaction.

node or miner might gauge the demand for trades at a given price by the num-
ber of pending orders, and try to displace them at the same price assuming the
demand is the result of the accurate new information about the asset. Alterna-
tively, the front-runner might observe a large market order (i.e., it will execute
at any price). The adversary can try to insert a pair of limit orders that will bid
near the best offer price and offer at a higher price. If the pair executes ahead
of the market order, the front-runner profits by scalping the price of the shares.
Finally, if adversary has pre-existing offers likely to be reached by the market
order, she could insert cancellations and new offers at a higher price.

Bancor is an exchange DApp that allows users to exchange their tokens with-
out any counter-party risk. The protocol aims to solve the cryptocurrency liquid-
ity issue by introducing Smart Tokens [31]. Smart tokens are ERC20-compatible
that can be bought or sold through a DApp-based dealer that is always available
and implements a market scoring rule to manage its prices. Bancor provides con-
tinuous liquidity for digital assets without relying on brokers to match buyers
with sellers. Implemented on the Ethereum blockchain, when transactions are
broadcast to the network, they sit in a pending transaction pool known as mem-
pool waiting for the miners to mine them. Since Bancor handles all the trades
and exchanges on the chain (unlike other existing decentralized exchanges), these
transactions are all visible to the public for some time before being included
within a block. This leaves Bancor vulnerable to the blockchain race condition
attack as attackers are given enough time to front-run other transactions, in
which they can gain favourable profits by buying before the order and fill the

SoK: Transparent Dishonesty: Front-Running Attacks on Blockchain 177

original order with slightly higher price [58]. Researchers have shown and imple-
mented a proof of concept code to front-run Bancor as a non-miner user [13].

4.2 Crypto-Collectibles Games

The second category of DApp in Table 1 is crypto-collectables. Consider Cryp-
tokitties [9], the most active DApp in this category and third most active overall.
Each kitty is a cartoon kitten with a set of unique features to distinguish it from
other cryptokitties, some features are rarer and harder to obtain. They can be
bought, sold, or bred with other cryptokitties. At the Ethereum level, the kitty
is a token implemented with ERC-721: Non-Fungible Token Standard [26]. Kit-
ties are generally bought and sold on-chain through auction smart contracts. See
Sects. 4.1 and 4.4 for more details on auction-based front-running attacks.

Specific to Cryptokitties protocol, they can breed and give birth. When cryp-
tokitties breed, the smart contract sets from which future block the pregnancy
of the cat can be completed. Anyone can complete the pregnancy by calling
giveBirth() after the birthing block and they will receive a reward in ether5.
Even though front-running these calls would not affect the protocol workflow, but
this displacement attack could result in financial profit for front-runners [37,68].

4.3 Gambling

The third category of DApp in Table 1 is gambling services. While a large cat-
egory of gambling games are based on random outcomes, DApps do not have
unique access to an unpredictable data stream to harvest for randomness [51].
Any candidate source of randomness (such as block headers) is accessible to all
DApp functions and can also be manipulated to an extent by miners.

Fomo3D is an example of a game style (known as Exit Scam6) not based on
random outcomes, and it is the most active game on Ethereum in our sample.
The aim of this game is to be the last person to have purchased a ticket when a
timer goes to zero in a scenario where anyone can buy a ticket and each purchase
increases the timer by 30 s. Many speculated such a game would never end but
on August 22, 2018, the first round of the game ended with the winner collecting
10,469 Ether7 equivalent to $2.1M USD at the time. Blockchain forensics indicate
a sophisticated winning strategy to displace any new ticket purchases [10,57] that
would reset the counter. The winner appears to have started by deploying many
high gas consumption DApps unrelated to the game. When the timer of the
game reached about 3 min, the winner bought 1 ticket and then sent multiple
high gasPrice transactions to her own DApps. These transactions congested the
network and bribed miners to prioritize them ahead of any new ticket purchases

5 As there are no automated function calls in Ethereum, this incentive model –known
as Action Callback [52]– is used to encourage users to call these functions.

6 https://exitscam.me/play.
7 The first winner of Fomo3D, won 10,469 Ether https://etherscan.io/tx/

0xe08a519c03cb0aed0e04b33104112d65fa1d3a48cd3aeab65f047b2abce9d508.

https://exitscam.me/play
https://etherscan.io/tx/0xe08a519c03cb0aed0e04b33104112d65fa1d3a48cd3aeab65f047b2abce9d508
https://etherscan.io/tx/0xe08a519c03cb0aed0e04b33104112d65fa1d3a48cd3aeab65f047b2abce9d508

178 S. Eskandari et al.

in Fomo3D. Recall this basic form of bribery is called a Gas Auction; See related
work [14,43] for more sophisticated bribery contracts.

We classify this in the unique category of a suppression attack in our tax-
onomy (see Sect. 3). At first glance, it seemed like an extreme version of an
asymmetric/bulk displacement attack on any new ticket purchase transactions.
However the key difference is that the front-runner does not care at all about the
execution of her transactions—if miners mined empty blocks for three minutes,
that would also be acceptable. Thus, bulk displacement8 is simply a means-to-
an-end and not the actual end goal of the adversary.

4.4 Name Services

The final category in Table 1 is name services, which are primarily aimed at dis-
intermediating central parties involved in web domain registration (e.g., ICAAN
and registrars) and resolution (e.g., DNS). For simple name services (such as
some academic work like Ghazal [47]), domains purchases are transactions and
front-runners can displace other users attempting to register domains. This par-
allels front-running attacks seen in regular (non-blockchain) domain registra-
tion [4]. Ethereum Name Service (ENS) [34] is the most active naming service
on Ethereum. Instead of allowing new .eth domain names to be purchased
directly, they are put up for a sealed bid auction which seals the domain name
in a bid, but not the bid amount. Most implementations use the more user
friendly but less confidential method for starting and bidding on a domain name:
startAuctionsAndBid(). This method leaks the hash of the domain and the ini-
tial bid amount in the auction. Original names can be guessed from the hashes
(e.g., rainbow tables, used in ENS Twitter bot9) or people can bid on domains
even though they do not know what they are because of speculation on its value.

Users are allowed to bid for 3 days before the 2-day reveal phase begins
(see 6.2), in which all bidders (winners and losers) must send a transaction to
reveal their bids for a specific domain or sacrifice their bid amount. Also note
that if two bidders bid the same price, the first to reveal wins it [23]. Using the
leaked information, the domain squatter can win the auction with the same price
of the original bidder by revealing it first. This is similar to front-running as it
relies on inserting an action before the user, however we do not consider this
specific action as front-running attack.

5 Cases of Front-Running in ICOs

Initial coin offerings (ICOs) have changed how blockchain firms raise capital.
More than 3000 ICOs have been held on Ethereum, and the market capitaliza-
tion of these tokens appears to exceed $75B USD in the first half of 2018 [67].
At the DApp level, tokens are offered in short-term sales that see high trans-
action activity while the sale is on-going and then the activity tapers off to
8 Also known as Block Stuffing Attack [59].
9 https://twitter.com/ensbot.

https://twitter.com/ensbot

SoK: Transparent Dishonesty: Front-Running Attacks on Blockchain 179

occasional owner transfers. When we collected the top 25 most active DApps
on DAppRadar.com, no significant ICOs were being sold. The ICO category slips
through our sampling method, but we identify it as a major category of DApp
and study it here.

5.1 Status.im ICO

To deal with demand, ICOs cap sales in a variety of ways to mitigate front-
running attacks. In June 2017, Status.im [8] started its ICO and reached the
predefined cap within 16 h, collecting close to 300,000 Ether. In order to pre-
vent wealthy investors purchasing all the tokens and limit the amount of Ether
deposited in each investment, they used a fair token distribution method called
Dynamic Ceiling as an attempt to increase the opportunity for smaller investors.
They implemented multiple caps (ceilings) in which, each had a maximum
amount that could be deposited in. In this case, every deposit was checked by
the smart contract and the exceeding amount was refunded to the sender while
the accepted amount was sent to their multi-signature wallet address [50].

During the time frame the ICO was open for participation, there were reports
of Ethereum network being unusable and transactions were not confirming. Fur-
ther study showed that some mining pools might have been manipulating the
network for their own profit. In addition, there were many transactions sent with
a higher gas price to front-run other transactions, however, these transactions
were failing due to the restriction in the ICO smart contract to reject transactions
with higher than 50 GWei gas price (as a mitigation against front-running).

5.2 Data Collection and Analysis

According to the analysis we carried out, we discovered that the F2Pool—an
Ethereum mining pool that had around 23% of the mining hash rate at the time
(Fig. 3)—sent 100 Ether to 30 new Ethereum addresses before the Status.im ICO

Fig. 3. The percentage of Ethereum blocks mined between block 3903900 and 3908029,
this is the time frame in which Status.im ICO was running. This percentage roughly
shows the hashing power ratio each miner had at that time.

180 S. Eskandari et al.

started. When the ICO opened, F2Pool constructed 31 transactions to the ICO
smart contract from their addresses, without broadcasting the transactions to the
network10. They used their entire mining power to mine their own transactions
and some other potentially failing high gas price transactions.

Ethereum’s blockchain contains all transaction ever made on Ethereum.
While the default client and online blockchain explorers offer some limited query
capabilities, in order to analyze this case, we built our own database. Specifi-
cally, we used open source projects such as Go Ethereum implementation11 for
the full node, a python script for extracting, transforming and loading Ethereum
blocks, named ethereum-etl [45] and Google BigQuery.12 Using this software
stack, we were able to isolate transactions within the Status.im ICO. We used
data analysis tool Tableau.13 A copy of this dataset and the initial findings can
be found in our Github repository14.

As shown in Fig. 4, most of the top miners in the mentioned time frame, have
mined almost the same number of failed and successful transactions which were
directed toward Status.im token sale, however F2Pool’s transactions indicate
their successful transactions were equivalent to 10% of the failed transactions,
hence maximizing the mining rewards on gas, while censoring other transactions
to the token sale smart contract. The terminology used here is specific to smart
contract transactions on Ethereum, by “failed transaction” we mean the trans-
actions in which the smart contract code rejected and threw an exception and
by “successful transaction” we mean the transactions that went through and
received tokens from the smart contract.

By tracing the transactions from these 30 addresses, we found explicit inter-
ference by F2Pool15 in this scenario. As shown in Fig. 5, the funds deposited by
F2Pool in these addresses were sent to Status.im ICO and mined by F2Pool
themselves, where the dynamic ceiling algorithm refunded a portion of the
deposited funds. A few days after these funds were sent back to F2Pool main
address and the tokens were aggregated later in one single address. Although
this incident does not involve transaction reordering in the blocks, it shows how
miners can modify their mining software to behave in a certain way to front-run
other transactions by bulk displacement to gain monetary profit.

10 Note that we do not have an authoritative copy of the mempool over time, how-
ever, the probability of these transactions being broadcasted to the network and
exclusively get mined by the same pool as the sender is low.

11 Official Go implementation https://github.com/ethereum/go-ethereum.
12 https://cloud.google.com/bigquery/.
13 https://www.tableau.com/.
14 http://bit.ly/madibaFrontrunning.
15 F2Pool address was identified by their mining reward deposit address https://

etherscan.io/address/0x61c808d82a3ac53231750dadc13c777b59310bd9.

https://github.com/ethereum/go-ethereum
https://cloud.google.com/bigquery/
https://www.tableau.com/
http://bit.ly/madibaFrontrunning
https://etherscan.io/address/0x61c808d82a3ac53231750dadc13c777b59310bd9
https://etherscan.io/address/0x61c808d82a3ac53231750dadc13c777b59310bd9

SoK: Transparent Dishonesty: Front-Running Attacks on Blockchain 181

Fig. 4. This chart shows the miners behaviour on the time frame that Status.im ICO
was running. It is clear that the number of successful transactions mined by F2Pool
do not follow the random homogeneous pattern of the rest of the network.

Fig. 5. Prior to Status.im ICO F2Pool deposited 100 Ether in multiple new Ethereum
addresses. On the time of the ICO, transactions sent from these addresses to Status ICO
smart contract were prioritized in their mining pool, resulting in purchasing ERC20
tokens. This method was used to overcome the dynamic ceiling algorithm of the ICO
smart contract. Later on they sent the refunded Ether back to their own address.
(Graph was made using Blockseer.com blockchain explorer.)

6 Key Mitigations

As we studied front-running attacks on the blockchain, we also encountered a
number of ways of preventing, detecting or mitigating front-running attacks.
Instead of providing the details of exact solutions which will change over time,
we extract the main principles or primitives that address the attack. A particular
system may implement more than one in a layered mitigation approach.

http://www.Blockseer.com

182 S. Eskandari et al.

We classify the mitigations into three main categories. In the first category,
the blockchain removes the miner’s ability to arbitrarily order transactions and
tries to enforce some ordering, or queue, for the transactions. In the second
category, cryptographic techniques are used to limit the visibility of transactions,
giving the potential front-running less information to base their strategy on.
In the final category, DApps are designed from the bottom-up to remove the
importance of transaction ordering or time in their operations. We also note
that for DApps that are legally well-formed (e.g., with identified parties and
a clear jurisdiction), front-running attacks can violate laws, which is its own
deterrent.

Traditional Front-Running Prevention Methods. There are debates in traditional
markets regarding the fact that front-running is considered to be a form of insider
trading which deemed to be illegal. Traditional methods to prevent front-running
mainly involves after the fact investigation and legal action against the front-
runners [28]. As mentioned in Sect. 2.2, defining front-running and educating the
employees were the first step taken to prevent such issues in traditional markets,
however, front-running became less likely to happen mainly because of the high
fine and lawsuits against firms who behaved in an unethical way. Other methods
such as dark pools [20,69] and sealed bids [53] were discussed and implemented in
a variety of regulated trading systems. The traditional methods to prevent front-
running does not apply to blockchain applications, as mainly they are based on
central enforcement and limitations, also in case of blockchains the actors who
are front-running could be anonymous and the fear of lawsuits would not apply.

6.1 Transaction Sequencing

Ethereum miners store pending transactions in pools and draw from them when
forming blocks. As the term ‘pool’ implies, there is no intrinsic order to how
transactions are drawn and miners are free to sequence them arbitrarily.16 The
vanilla Go-Ethereum (geth) implementation prioritizes transactions based on
their gas price and nonce [27]. Because no rule is enforced, miners can sequence
transactions in advantageous ways. A number of proposals attempt to thwart
this attack by enforcing a rule about how to sequence transactions.

First-in-first-out (FIFO) is generally not possible on a distributed network
because transactions can reach different nodes in a different order. While the
network could theoretically form a consensus based on locally observed FIFO,
this would increase the rate of orphaned blocks, as well as adding complexity to
the protocol. A trusted third party can be used to assign sequential numbers to
transactions (and sign them), but this is contrary to blockchain’s core innovation
of distributed trust. Nonetheless, some exchanges do centralize time-sensitive
functionalities (e.g., EtherDelta and 0xProject) in off-chain order books [64,65].

One alternative is to sequence transactions pseudorandomly. This can be
seen in proposals like Canonical Transaction Ordering Rule (CTOR) by Bitcoin
16 Sometimes the pool is called a ‘queue.’ It is important to note is a misnomer as

queues enforce a first-in-first-out sequence.

SoK: Transparent Dishonesty: Front-Running Attacks on Blockchain 183

Cash ABC [60] which adds transactions in lexicographical order according to
their hash [61]. Note that Bitcoin does not have a front-running problem for
standard transactions. While this could be used by Ethereum to make front-
running statistically difficult, the protection is marginal at best and might even
exacerbate attacks. A front-runner can construct multiple equivalent transac-
tions, with slightly different values, until she finds a candidate that positions her
transaction a desirable location in the resulting sequence. She broadcasts only
this transaction and now miners that include her transaction will position it in
front of transactions they heard about much earlier.

Finally, transactions themselves could enforce order. For example, they could
specify the current state of the contract as the only state to execute on. This
transaction chaining only prevents certain types of front-running; i.e., it prevents
insertion attacks but not displacement attacks (recall our taxonomy in Sect. 3).
As transaction chaining only allows one state-changing transaction per state, at
most one of a set of concurrent transactions can be confirmed; a drawback for
active DApps.

6.2 Confidentiality

Privacy-Preserving Blockchains. All transaction details in Bitcoin are made pub-
lic and participant identities are only lightly protected. A number of techniques
increase confidentiality [19,42] and anonymity [46,49,56] for cryptocurrencies.
A current research direction is extending these protections to DApps [55,66]. It
is tempting to think that a confidential DApp would not permit front-running,
as the front-runner would not know the details of the transaction she is front-
running. However, there are some nuances here to explore.

A DApp interaction includes the following components: (1) the code of the
DApp, (2) the current state of the DApp, (3) the name of the function being
invoked, (4) the parameters supplied to the function, (5) the address of the
contract the function is being invoked on, and (6) the identity of the sender.
Confidentiality applied to a DApp could mean different levels of protection for
each of these. For front-running, function calls (3,4) are the most important,
however, function calls could be inferred from state changes (2). Hawk [38] and
Ekiden [21] are examples of (2, 3, 4)-confidentiality (with limitations we are
glossing over).

The applicability of privacy-preserving blockchains needs to be evaluated
on a case-by-case basis. For example, one method used by traditional finan-
cial exchanges in dealing with front-running from high frequency traders is
a dark pool: essentially a (2, 3, 4)-confidential order book maintained by a
trusted party. A DApp could disintermediate this trusted party. Users whose
balances are affected by changes in the contract’s state would need to be able
to learn this information. Further, if the contract addresses are known (i.e., no
5-confidentiality), front-runners can know about the traffic pattern of calls to
contracts which could be sufficient grounds for attack; for example, if each asset
on an exchange has its own market contract, this leaks trade volume informa-
tion. As a contrasting example, consider again decentralized domain registration:

184 S. Eskandari et al.

Fig. 6. Commit and Reveal. User sends a commitment transaction with the hash of
the data, After the commitment period is over, user sends her reveal transaction to the
DApp revealing the information that matches the commitment.

hiding state changes (2-confidentiality) defeats the entire purpose of the DApp,
and protecting function calls is ineffective with a public state change since the
state itself reveals the domain being registered.

Commit/Reveal. While confidentiality appears insufficient for solving domain
name front-running alone, a hybrid approach of sequencing and confidentiality
can be effective and is, in fact, an example of an older cryptographic trick known
as commit/reveal. The essence of the approach is to protect the function call
(e.g., (3, 4)- or (4)-confidentiality) until the function is enqueued in a sequence
of functions to be executed. Once the sequence is established, the confidentiality
is lifted and the function can only be executed in the order it was enqueued (or,
generally speaking, not at all).

Recall that a commitment scheme enables one to commit to a digital value
(e.g., a statement, transaction, data, etc.) while keeping it a secret (hiding), and
then open it (and only it: binding) at a later time of the committer’s choos-
ing [15]. A common approach (conjectured to be hiding) is to submit the crypto-
graphic hash of the value with a random nonce (for low entropy data) to a smart
contract, and later reveal the original value and nonce which can be verified by
the contract to correctly hash to the commitment (see Fig. 6).

An early application of this scheme to blockchain is Namecoin, a Bitcoin-
forked DApp for name services [35]. In Namecoin, a user sends a commit trans-
action which registers a new hidden domain name, similar to a sealed bid. Once
this first transaction is confirmed, a time delay begins. After the delay, a second
transaction reveals the details of the requested domain. This prevents front-
running if the reveal transaction is confirmed faster than an adversarial node or
miner can redo the entire process.

Commit/reveal is a two-round protocol, and aborting after the first round
(early aborts) could be an issue for this (along with most multi-round cryp-
tographic protocols). For example, in a financial exchange where the number
of other orders might be in a predictable interval, an adversary can spray the

SoK: Transparent Dishonesty: Front-Running Attacks on Blockchain 185

sequence (i.e., a price-time priority queue) with multiple committed transac-
tions and no intention of executing them all. She then only reveal the ones that
result in an advantageous trade.17 There are other ways of aborting; if payments
are required but not collateralized, the aborting party can ensure that payment
is not available for transfer. One mitigation to early aborts that blockchain is
uniquely positioned to make is having users post a fidelity bond of a certain
amount of cryptocurrency that can be automatically dispensed if they fail to
fully execute committed transactions (this is used in multi-round blockchain
voting [44]). Finally, we note that any multiple round protocol will have usabil-
ity challenges: users must be aware that participating in the first round is not
sufficient for completing their intention.

Fig. 7. Submarine Send [18]. User generates an Unlock transaction from which the
commitment address is retrieved using ECDSA ECRecover. 1. by funding the commit-
ment address, user is committed to the transaction. 2. User sends the reveal transaction
to the DApp, revealing the nature of the commitment transaction. 3. She broadcasts
the unlock transaction to unlock the funds in the commitment address. 4. After the
“Auction” is over, anyone can call Finalize function to finalize the process.

Enhanced Commit/Reveal. Submarine Commitments [17,18] extend the con-
fidentiality of the commit and reveal, so that the commitment transaction is
identical to a transaction to a newly generated Ethereum address. They initially
hide the contract address being invoked, providing (3, 4, 5)-confidentiality during
the commit phase; and they ensure that if a revealed transaction sent funds, the
funds were fully collateralized at commit time and are available to the receiving
smart contract. See Fig. 7.

17 This is analogous to behavior in traditional financial markets where high-frequency
traders will make and cancel orders at many price points (flash orders or pinging).
If they can cancel faster than someone can execute it—someone who has only seen
the order and not the cancellation—then the victim reveals their price information.

186 S. Eskandari et al.

6.3 Design Practices

The final main category of mitigation is to assume front-running is unpreventable
and to thus responsively redesign the functionality of the DApp to remove any
benefit from it. For example, when designing a decentralized exchange, one can
use a call market design instead of a time-sensitive order book [22] to side-
step and disincentivize front-running. In a call market design, the arrival time
of orders does not matter as they are executed in batches18. The call market
solution pivots profitable gains that front-running miners stand to gain into fees
that they collect [22], removing the financial incentive to front-run.

In the finance literature, Malinova and Park discuss front-running mitiga-
tions for blockchain-based trading platforms [39]. Instead of studying DApps,
they develop an economic model where transactions, asset holdings, and traders’
identities have greater transparency than in standard economic models—
transparency they argue that could be accomplished by blockchain technology.
However, in their model, they assume entities can interact directly over private
channels to arrange trades. They define front-running in the context of private
offers, where parties might adjust their position before accepting or countering
a received offer. This model is quite different than the DApp-based model we
study here.

Another example in the design of ERC20 standard [62] is the allowance func-
tionality. approve() function in the specification allows a second entity to be able
to spend N tokens from the sender’s balance. In order to change the allowance,
sender must send a transaction to set the new allowance value. Using the inser-
tion attack, attacker could front-run the new allowance transaction and spend the
old value before the new value is set [33,54], and then additionally spend the new
amount at a later time. Solutions such as decreaseApproval()/increaseApproval()
were added in updated implementations.

7 Concluding Remarks

Front-running is a pervasive issue in Ethereum DApps. DApp developers don’t
necessarily have the mindset to design DApps with front-running in mind. This
is an attempt to bring forward the subject and increase awareness of these type
of attacks. While some DApp-level application logic could be built to mitigate
these attacks, its ubiquity across different DApp categories suggests mitigations
at the blockchain-level would perhaps be more effective. We highlight this as an
important research area.

Acknowledgements. The authors thank the Autorité des Marchés Financiers (AMF)
for sponsoring this research through the Education and Good Governance Fund
(EGGF), as well as NSERC through a Discovery Grant.

18 Also known as batch auctions [63].

SoK: Transparent Dishonesty: Front-Running Attacks on Blockchain 187

References

1. Account types, gas, and transactions. Ethereum homestead 0.1 documenta-
tion. http://ethdocs.org/en/latest/contracts-and-transactions/account-types-gas-
and-transactions.html#what-is-gas. Accessed 14 June 2018

2. 96th Congress 1st Session, report of the special study of the options markets to
the securities and exchange commission (1978)

3. Im-2110-3. Front running policy. Financial Industry Regulatory Authority (2002)
4. SSAC advisory on domain name front running. ICANN Advisory Committee, 10

2007. Accessed 15 Aug 2018
5. Front running of block transactions. Financial Industry Regulatory Authority

(2012)
6. Notice of filing of proposed rule change to adopt FINRA rule 5270 (front running of

block transactions) in the consolidated FINRA rulebook. Securities and Exchange
Commission (2012)

7. Security review of 0x smart contracts. ConsenSys-Diligence (2017)
8. The status network, a strategy towards mass adoption of Ethereum. Status Team

(2017). Accessed 10 June 2018
9. Cryptokitties. Cryptokitties team (2018). Accessed 31 Aug 2018

10. Anonymous. How the first winner of Fomo3D won the jackpot? (2018). https://
winnerfomo3d.home.blog/. Accessed 9 Sept 2018

11. Bamert, T., Decker, C., Elsen, L., Wattenhofer, R., Welten, S.: Have a snack, pay
with bitcoins. In: 2013 IEEE Thirteenth International Conference on Peer-to-Peer
Computing (P2P), pp. 1–5. IEEE (2013)

12. Beaver, D., Haber, S.: Cryptographic protocols provably secure against dynamic
adversaries. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 307–
323. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-47555-9 26

13. Bogatyy, I.: Implementing Ethereum trading front-runs on the Bancor exchange
in Python (2017). https://hackernoon.com/front-running-bancor-in-150-lines-of-
python-with-ethereum-api-d5e2bfd0d798. Accessed 13 Aug 2018

14. Bonneau, J., Felten, E.W., Goldfeder, S., Kroll, J.A., Narayanan, A.: Why buy
when you can rent? Bribery attacks on bitcoin consensus (2016)

15. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci. 37(2), 156–189 (1988)

16. Breidenbach, L., Daian, P., Tramer, F., Juels, A.: Enter the hydra: towards princi-
pled bug bounties and exploit-resistant smart contracts. In: 27th USENIX Security
Symposium (USENIX Security 18). USENIX Association (2018)

17. Breidenbach, L., Daian, P., Juels, A., Tramer, F.: To sink frontrunners, send
in the submarines (2017). http://hackingdistributed.com/2017/08/28/submarine-
sends/. Accessed 28 Aug 2018

18. Breidenbach, L., Kell, T., Gosselin, S., Eskandari, S.: Libsubmarine: defeat front-
running on Ethereum (2018). https://libsubmarine.org/. Accessed 7 Dec 2018

19. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy (SP), vol. 00, pp. 319–338 (2018)

20. Buti, S., Rindi, B., Werner, I.M.: Diving into dark pools (2011)
21. Cheng, R., et al.: Ekiden: a platform for confidentiality-preserving, trustworthy,

and performant smart contract execution. arXiv preprint arXiv:1804.05141 (2018)
22. Clark, J., Bonneau, J., Felten, E.W., Kroll, J.A., Miller, A., Narayanan, A.: On

decentralizing prediction markets and order books. In: Workshop on the Economics
of Information Security, State College, Pennsylvania (2014)

http://ethdocs.org/en/latest/contracts-and-transactions/account-types-gas-and-transactions.html#what-is-gas
http://ethdocs.org/en/latest/contracts-and-transactions/account-types-gas-and-transactions.html#what-is-gas
https://winnerfomo3d.home.blog/
https://winnerfomo3d.home.blog/
https://doi.org/10.1007/3-540-47555-9_26
https://hackernoon.com/front-running-bancor-in-150-lines-of-python-with-ethereum-api-d5e2bfd0d798
https://hackernoon.com/front-running-bancor-in-150-lines-of-python-with-ethereum-api-d5e2bfd0d798
http://hackingdistributed.com/2017/08/28/submarine-sends/
http://hackingdistributed.com/2017/08/28/submarine-sends/
https://libsubmarine.org/
http://arxiv.org/abs/1804.05141

188 S. Eskandari et al.

23. E. Discussion: Handling frontrunning in the permanent registrar (2018)
24. distribuyed: A comprehensive list of decentralized exchanges (DEX) of cryp-

tocurrencies, tokens, derivatives and futures, and their protocols (2018). https://
distribuyed.github.io/index/. Accessed 24 Sept 2018

25. Edelman, B.: Front-running study: testing report (2009)
26. Entriken, W., Shirley, D., Evans, J., Sachs, N.: ERC-721 non-fungible token stan-

dard (2018). https://github.com/ethereum/EIPs/blob/master/EIPS/eip-721.md.
Accessed 31 Aug 2018

27. Ethereum: worker.go - commitnewwork() (2018). Accessed 7 Dec 2018
28. Financial Times: Barclays trader charged with front-running by us authorities

(2018)
29. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis

and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

30. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoins
peer-to-peer network. In: USENIX Security, pp. 129–144. USENIX Association,
Washington, D.C. (2015)

31. Hertzog, E., Benartzi, G., Benartzi, G.: Bancor protocol (2017)
32. initc3.org: Frontrun me (2018). http://frontrun.me/
33. G. Issue: Method ‘decreaseapproval’ in unsafe (2017)
34. Johnson, N.: Ethereum domain name service - specification (2016)
35. Kalodner, H.A., Carlsten, M., Ellenbogen, P., Bonneau, J., Narayanan, A.: An

empirical study of Namecoin and lessons for decentralized namespace design. In:
WEIS. Citeseer (2015)

36. Karame, G.O., Androulaki, E., Capkun, S.: Double-spending fast payments in bit-
coin. In: Proceedings of the 2012 ACM Conference on Computer and Communica-
tions Security, pp. 906–917. ACM (2012)

37. Koch, M.B.: Exploring CryptoKitties - part 2: the CryptoMidwives (2018)
38. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain

model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE
Symposium on Security and Privacy (SP), pp. 839–858. IEEE (2016)

39. Malinova, K., Park, A.: Market design with blockchain technology (2017)
40. Marcus, Y., Heilman, E., Goldberg, S.: Low-resource eclipse attacks on Ethereum’s

peer-to-peer network. Cryptology ePrint Archive, Report 2018/236 (2018). https://
eprint.iacr.org/2018/236

41. Markham, J.W.: Front-running-insider trading under the commodity exchange act.
Cath. UL Rev. 38, 69 (1988)

42. Maxwell, G.: Confidential transactions (2015). https://people.xiph.org/∼greg/
confidential values.txt. Accessed 9 May 2016

43. McCorry, P., Hicks, A., Meiklejohn, S.: Smart contracts for bribing miners. IACR
Cryptology ePrint Archive, 2018:581 (2018)

44. McCorry, P., Shahandashti, S.F., Hao, F.: A smart contract for boardroom voting
with maximum voter privacy. In: Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322, pp.
357–375. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70972-7 20

45. Medvedev, E.: Python scripts for ETL (extract, transform and load) jobs for
Ethereum blocks (2018). https://github.com/medvedev1088/ethereum-etl

46. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed
e-cash from bitcoin. In: 2013 IEEE Symposium on Security and Privacy (SP), pp.
397–411. IEEE (2013)

https://distribuyed.github.io/index/
https://distribuyed.github.io/index/
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-721.md
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
http://frontrun.me/
https://eprint.iacr.org/2018/236
https://eprint.iacr.org/2018/236
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
https://doi.org/10.1007/978-3-319-70972-7_20
https://github.com/medvedev1088/ethereum-etl

SoK: Transparent Dishonesty: Front-Running Attacks on Blockchain 189

47. Moosavi, S., Clark, J.: Ghazal: toward truly authoritative web certificates using
ethereum. In: Zohar, A., et al. (eds.) FC 2018. LNCS, vol. 10958, pp. 352–366.
Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-58820-8 24

48. Nakamoto, S.: Bitcoin: A Peer-to-peer Electronic Cash System (2008)
49. Noether, S.: Ring signature confidential transactions for Monero. Cryptology ePrint

Archive, Report 2015/1098 (2015). https://eprint.iacr.org/2015/1098
50. Petty, C.: A look at the Status.im ICO token distribution (2017). https://medium.

com/the-bitcoin-podcast-blog/a-look-at-the-status-im-ico-token-distribution-
f5bcf7f00907. Accessed 10 June 2018

51. Pierrot, C., Wesolowski, B.: Malleability of the blockchain’s entropy. Crypt. Com-
mun. 10(1), 211–233 (2018)

52. Piqueras, E.: Generalized Ethereum frontrunners, an implementation and a cheat
(2019)

53. Radner, R., Schotter, A.: The sealed-bid mechanism: an experimental study. J.
Econ. Theor. 48(1), 179–220 (1989)

54. Rahimian, R.: Multiple withdrawal attack (2018)
55. Reitwiessner, C.: An update on integrating Zcash on Ethereum (ZoE) (2017).

https://blog.ethereum.org/2017/01/19/update-integrating-zcash-ethereum/
56. Sasson, E.B., et al.: Zerocash: decentralized anonymous payments from bitcoin. In:

2014 IEEE Symposium on Security and Privacy (SP), pp. 459–474. IEEE (2014)
57. SECBIT: How the winner got Fomo3D prize – a detailed explana-

tion (2018). https://medium.com/coinmonks/how-the-winner-got-fomo3d-prize-
a-detailed-explanation-b30a69b7813f. Accessed 9 Dec 2018

58. Sirer, E.G., Daian, P.: Bancor is flawed (2017). http://hackingdistributed.com/
2017/06/19/bancor-is-flawed/. Accessed 14 June 2018

59. Solmaz, O.: The anatomy of a block stuffing attack (2018). https://osolmaz.com/
2018/10/18/anatomy-block-stuffing/

60. Ver, R., Wu, J.: Bitcoin cash planned network upgrade is complete (2018). Accessed
7 Dec 2018

61. Vermorel, J., Séchet, A., Chancellor, S., van der Wansem, T.: Canonical transaction
ordering for bitcoin (2018). Accessed 7 Dec 2018

62. Vogelsteller, F., Buterin, V.: ERC-20 token standard (2015). https://github.com/
ethereum/EIPs/blob/master/EIPS/eip-20.md. Accessed 31 Aug 2018

63. Walther, T.: Multi-token batch auctions with uniform clearing prices (2018)
64. Warren, W.: Front-running, griefing and the perils of virtual settle-

ment (2017). https://blog.0xproject.com/front-running-griefing-and-the-perils-of-
virtual-settlement-part-1-8554ab283e97. Accessed 14 Aug 2018

65. Warren, W., Bandeali, A.: 0x: an open protocol for decentralized exchange on the
Ethereum blockchain (2017). https://github.com/0xProject/whitepaper

66. Williamson, D.Z.J.: The AZTEC protocol (2018). https://github.com/
AztecProtocol/AZTEC/

67. Zetzsche, D.A., Buckley, R.P., Arner, D.W., Föhr, L.: The ICO gold rush: it’s a
scam, it’s a bubble, it’s a super challenge for regulators (2018)

68. Zhou, Y., Kumar, D., Bakshi, S., Mason, J., Miller, A., Bailey, M.: Erays: reverse
engineering Ethereums opaque smart contracts. In: USENIX Security (2018)

69. Zhu, H.: Do dark pools harm price discovery? Rev. Financ. Stud. 27(3), 747–789
(2014)

https://doi.org/10.1007/978-3-662-58820-8_24
https://eprint.iacr.org/2015/1098
https://medium.com/the-bitcoin-podcast-blog/a-look-at-the-status-im-ico-token-distribution-f5bcf7f00907
https://medium.com/the-bitcoin-podcast-blog/a-look-at-the-status-im-ico-token-distribution-f5bcf7f00907
https://medium.com/the-bitcoin-podcast-blog/a-look-at-the-status-im-ico-token-distribution-f5bcf7f00907
https://blog.ethereum.org/2017/01/19/update-integrating-zcash-ethereum/
https://medium.com/coinmonks/how-the-winner-got-fomo3d-prize-a-detailed-explanation-b30a69b7813f
https://medium.com/coinmonks/how-the-winner-got-fomo3d-prize-a-detailed-explanation-b30a69b7813f
http://hackingdistributed.com/2017/06/19/bancor-is-flawed/
http://hackingdistributed.com/2017/06/19/bancor-is-flawed/
https://osolmaz.com/2018/10/18/anatomy-block-stuffing/
https://osolmaz.com/2018/10/18/anatomy-block-stuffing/
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://blog.0xproject.com/front-running-griefing-and-the-perils-of-virtual-settlement-part-1-8554ab283e97
https://blog.0xproject.com/front-running-griefing-and-the-perils-of-virtual-settlement-part-1-8554ab283e97
https://github.com/0xProject/whitepaper
https://github.com/AztecProtocol/AZTEC/
https://github.com/AztecProtocol/AZTEC/

Trustee: Full Privacy Preserving Vickrey
Auction on Top of Ethereum

Hisham S. Galal and Amr M. Youssef(B)

Concordia Institute for Information Systems Engineering, Concordia University,
Montréal, QC, Canada

{h galal,youssef}@ciise.concordia.ca

Abstract. The wide deployment of tokens for digital assets on top of
Ethereum implies the need for powerful trading platforms. Vickrey auc-
tions have been known to determine the real market price of items as
bidders are motivated to submit their own monetary valuations without
leaking their information to the competitors. Recent constructions have
utilized various cryptographic protocols such as ZKP and MPC, however,
these approaches either are partially privacy-preserving or require com-
plex computations with several rounds. In this paper, we overcome these
limits by presenting Trustee as a Vickrey auction on Ethereum which
fully preserves bids’ privacy at relatively much lower fees. Trustee consists
of three components: a front-end smart contract deployed on Ethereum,
an Intel SGX enclave, and a relay to redirect messages between them.
Initially, the enclave generates an Ethereum account and ECDH key-
pair. Subsequently, the relay publishes the account’s address and ECDH
public key on the smart contract. As a prerequisite, bidders are encour-
aged to verify the authenticity and security of Trustee by using the SGX
remote attestation service. To participate in the auction, bidders uti-
lize the ECDH public key to encrypt their bids and submit them to the
smart contract. Once the bidding interval is closed, the relay retrieves the
encrypted bids and feeds them to the enclave that autonomously gener-
ates a signed transaction indicating the auction winner. Finally, the relay
submits the transaction to the smart contract which verifies the transac-
tion’s authenticity and the parameters’ consistency before accepting the
claimed auction winner. As part of our contributions, we have made a
prototype for Trustee available on Github for the community to review
and inspect it. Additionally, we analyze the security features of Trustee
and report on the transactions’ gas cost incurred on Trustee smart con-
tract.

Keywords: Sealed-bid auction · Trusted Execution Environment ·
Intel SGX · Ethereum · Blockchain

1 Introduction

The wide success of Ethereum [30] with a market capitalization around 10 bil-
lion USD at the time of the writing [2] has led to the deployment of thousands
c© International Financial Cryptography Association 2020
A. Bracciali et al. (Eds.): FC 2019 Workshops, LNCS 11599, pp. 190–207, 2020.
https://doi.org/10.1007/978-3-030-43725-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43725-1_14&domain=pdf
https://doi.org/10.1007/978-3-030-43725-1_14

Trustee: Full Privacy Preserving Vickrey Auction on Top of Ethereum 191

of asset-specific tokens [1]. Such a large-volume market demands powerful trad-
ing platforms. Auctions have been known to be an effective and efficient way to
trade highly-valuable goods. Additionally, sealed-bid auctions have an important
advantage compared to their open-cry counterparts. Precisely, given an honest
auctioneer, bidders are assured that their competitors will not gain any informa-
tion about their bids. Moreover, in a Vickrey auction which is a particular type
of sealed-bid auctions, the auction winner pays the second highest-price. Con-
sequently, Vickrey auctions motivate bidders to submit bids based on their own
monetary valuation which essentially helps in determining the real market price
of the auctioned items. Nonetheless, a corrupt auctioneer can easily compromise
the aforementioned advantages. For instance, the auctioneer can (i) expose the
bids’ information to a colluding bidder, (ii) declare a false auction winner, (iii)
set a fake second-highest price that is slightly lower than the highest price in
order to gain an advantage. Consequently, the major challenges in constructing
a Vickrey auction are maintaining bids’ privacy and verifying the correctness of
the auction winner and the amount of the second-highest price.

Building a Vickrey auction on top of Ethereum to trade the deployed tokens
essentially involves writing a smart contract that adheres to a predefined proto-
col. A smart contract is an autonomous agent that resides at a specific address
in the Ethereum blockchain. It contains functions to make decisions, and per-
sistent storage to save state. The execution model of a smart contract is to
lie passive and dormant until it is poked. More specifically, a smart contract
only becomes active once any of its designated functions is invoked due to the
receipt of either a message from another smart contract, or a transaction from
an externally-owned account (i.e., informally called a wallet). The lifetime of a
smart contract is to exist as long as the whole Ethereum network exists unless
it was programmed to self destruct which essentially renders it completely inac-
tive. With the help of the consensus protocol in Ethereum, a smart contract
gains control flow integrity. In other words, it executes as its code dictates to
the extent that even its creator cannot modify or patch it. The consensus pro-
tocol requires miners to do an expensive operation (proof of work) in addition
to processing and validating the transactions. Therefore, miners are compen-
sated by a block reward in addition to transaction fees. Essentially, the more
complex the transaction, the higher fees are incurred. Additionally, processing
and validating transactions imply that miners have a fully transparent access to
smart contract’s state. Therefore, the lack of privacy in addition to the expensive
transaction fees are the main challenging issues in building a secure and efficient
Vickrey auction on top of Ethereum.

To address the above issues, various constructions for sealed-bid auctions in
general utilize different cryptographic protocols such as Zero-Knowledge Proofs
(ZKP) and secure Multi-Party Computations (MPC) to ensure the verifiability
of the auction winner without sacrificing bids’ privacy. However, in the former,
the auctioneer is an entity that learns bids’ values and proves the correctness of
the auction winner to the bidders. This approach is partial privacy-preserving
since the bids’ values are exposed to the auctioneer who may maliciously exploit

192 H. S. Galal and A. M. Youssef

this information in future auctions. In addition to the inherent high transaction
fees in Ethereum, the verification of the auctioneer’s proof is executed inside a
smart contract which significantly incurs a high cost (e.g., zkSNARK verifica-
tion roughly takes 3 million gas [15]) that renders the whole approach to be an
expensive option. In contrast, the MPC approach can offer full bids’ privacy at
the cost of higher transactions fees since it requires several of complex computa-
tions between the bidders and using a smart contract as a public bulletin board
in addition to an escrow of funds.

We present Trustee as a trusted and efficient Vickrey auction on top of Ethe-
reum that substantially overcomes the limitations of ZKP and MPC approaches.
Trustee utilizes Intel Software Guard Extensions (SGX) [4] as a Trusted Execu-
tion Environment (TEE) to fully preserve bids’ privacy at a significantly cheaper
transaction fee to verify the auction winner correctness compared to the afore-
mentioned approaches. Intel SGX is a hardware architecture that provides an
isolated and tamper-proof environment called enclave. In essence, the control
flow integrity of the code and the confidentiality of the data inside an enclave
are well protected from the host operating system and other running processes.
Therefore, Intel SGX technology can complement smart contracts with confi-
dential data processing, a highly desirable property that Ethereum lacks.

Similar to other TEE technologies, Intel SGX has a poor availability, and
its operation can be easily terminated at any point of time. Hence, a stateful
application utilizing Intel SGX requires a storage with high availability such as
the blockchain or IPFS [6] to persist sensitive state (e.g., the sealed-bids and
sealed private keys). We are also aware that several side-channel attacks on
Intel SGX have been reported recently to leak information about the sensitive
data inside enclaves such as private keys (more details in Sect. 4). Therefore,
we do strongly note that rather than building Trustee using only Intel SGX,
we utilize a smart contract on Ethereum for two purposes. First, it acts as an
escrow to hold the initial deposits of bidders during the bidding phase for a
specific time interval. As a result, bidders are not exposed to the theft of funds
in the case they were sending their payments to an account controlled by the
enclave which might get compromised. Secondly, it acts as a trusted judge that
verifies on-behalf of the bidders the consistency of the inputs used by the enclave
to determine the auction winner. Hence, it allows bidders with low-processing
mobile devices to easily join the auction. Consequently, by integrating a smart
contract on Ethereum with Intel SGX technology, Trustee becomes a robust
Vickrey auction solution that inherits the best properties from the two worlds
of blockchain and TEEs.

Our contribution, we present the design and implementation of Trustee
that provides the following properties:

1. Full privacy preserving. The only information about bids that any bidder
can learn besides to their own is the winning bid.

2. Cheap correctness verification cost. Compared to other alternatives,
Trustee achieves significantly cheaper verification cost of the auction winner
correctness.

Trustee: Full Privacy Preserving Vickrey Auction on Top of Ethereum 193

3. Rational fairness. Malicious participants gain no advantage over honest
parties. In fact, they are obligated to follow the proposed protocol to avoid
being financially penalized.

4. Efficiency. The core computations of sealing bids, decrypting them, and
selecting the auction winner are carried out in native environments off the
blockchain which are more efficient than the Ethereum Virtual Machine
(EVM).

We also provide an open-source prototype for Trustee on Github (https://
github.com/hsg88/Trustee) for the community to review it. The rest of this
paper is organized as follows. Section 2 provides a review of current construc-
tions of sealed-bid auctions on top of blockchains and the integration of TEEs
with blockchain. In Sect. 3, we present the cryptographic primitives utilized in
Trustee’s design. Then, in Sect. 4, we provide the protocol design behind Trustee,
analyze its security features, and report the gas cost of the relevant transactions.
Finally, we present our conclusions in Sect. 5.

2 Related Work

In this section, we provide a review of state-of-the-art constructions that utilize
a variety of cryptographic protocols such as ZKP and MPC to build sealed-
bid auction on top of blockchains. Then, we briefly present recent works that
integrate blockchain with TEE to provide elegant solutions.

2.1 Sealed-Bid Auctions on Blockchain

Blass and Kerschbaum [9] proposed Strain as a protocol to build a sealed-bid
auction on top of the blockchain technology. Strain utilizes a two-party com-
putation protocol to compare pairs of bids, and the outcome is stored on a
blockchain. Additionally, Strain utilizes ZKP to prove that the outcome is cor-
rect with respect to the compared pairs of bids. Strain fully preserve bids’ privacy.
However, its complexity scales proportionally to the number of bidders. More-
over, as reported by its authors, it reveals the order of the bids as it behaves
similar to Order-Preserving Encryption (OPE) schemes.

Galal and Youssef [16] proposed a protocol that utilizes Pedersen commit-
ment and Honest-Verifier Zero-Knowledge (HVZK) range proof to build a public
verifiable sealed-bid auction on top of Ethereum. During the bidding phase, the
bidders submit Pedersen commitments of their bids to the auction smart con-
tract. Then at the reveal phase, they open their commitments individually to
the auctioneer using RSA public-key encryption. Finally, the auctioneer declares
the auction winner and utilizes HVZK range proof with the auction smart con-
tract as a verifier to prove the correctness of the auction winner. However, the
protocol has the following issues: (i) running an interactive HVZK with a smart
contract as a verifier is not secure due to the possible influence of miners on the
challenge step, (ii) the proof size and verification cost scales proportionally with

https://github.com/hsg88/Trustee
https://github.com/hsg88/Trustee

194 H. S. Galal and A. M. Youssef

the number of bidders, and (iii) the protocol is partial privacy-preserving as the
auctioneer gains knowledge of all bids values.

Motivated to improve on their latest work, Galal and Youssef [15] utilized
Zero-Knowledge Succinct Non-interactive Argument of Knowledge (zkSNARK)
[5] which is an innovative cryptographic method in the field of Verifiable Compu-
tation. In contrast to their previous work [16], this protocol has several desirable
properties that synergies with the blockchain technology: (i) a constant short-
size proof, (ii) a constant verification cost, (iii) a non-interactive protocol that
takes one message to convince the verifier (i.e., the smart contract). However,
generating a zkSNARK proof scales proportionally with the number of mul-
tiplication gates in the arithmetic circuit of their computation problem which
further depends on the number of bidders. Moreover, the protocol assumes a
trusted setup of the proving and verification keys. Finally, the protocol is a par-
tial privacy-preserving where bidders have to trust the auctioneer to not exploit
their bids values in future auctions.

2.2 SGX with Blockchain Solutions

Several recent constructions utilized TEE technologies such as Intel SGX to solve
privacy and performance issues on the blockchain, (e.g., see [3,7,14,20,22,27,33]).
In here, we provide a brief review of the works that Trustee shares some similar-
ities with. In [33] Zhang et al. proposed Town Crier (TC): an authenticated data
feed that gives smart contracts on Ethereum the ability to request data from exist-
ing HTTPS-enabled data sources. TC consists of three components: a front-end
smart contract, a back-end Intel SGX enclave, and a relay to redirect messages
between them. Initially, the TC’s front-end receives a request from a smart con-
tract on Ethereum. The relay monitors the Ethereum blockchain for such a request
and forwards it to TC’s back-end. Then, the TC’s back-end resolves this request
and outputs a transaction containing the response. Finally, the relay submits the
transaction to TC’s front-end where it triggers the execution of a callback on the
relying smart contract.

Cheng et al. [14] proposed Ekiden: a platform for confidentiality-preserving,
trustworthy, and performant smart contract execution to solve the inherent lack
of privacy and poor performance in blockchains. Ekiden’s architecture separates
smart contract execution from the consensus protocol. It preserves the confiden-
tiality of a smart contract’s states, besides to, achieving high throughput and
scalability. The authors evaluated a prototype (with Tendermint as the consen-
sus layer) and reported a performance of 600× more throughput and 400× less
latency at 1000× less cost than the Ethereum mainnet.

Tran et al. [27] proposed Obscuro: an Intel SGX-backed mixer to address
the anonymity issue on Bitcoin. Due to the pseudo-anonymity offered by Bit-
coin, the link between the transaction’s sender and receiver can be exploited to
cluster and track users which defeats the goal of anonymous payment. Obscuro
utilizes Intel SGX to preserve the privacy of the mixer’s participants and per-
form a secure shuffle of bitcoins. Users post their deposits indirectly on Bitcoin

Trustee: Full Privacy Preserving Vickrey Auction on Top of Ethereum 195

blockchain rather than directly interacting with Obscuro. Consequently, mali-
cious operators cannot prevent benign users from mixing their bitcoins. Further-
more, Obscuro does not store any operation states outside of the TEE to counter
the possibility of state-rewind in conjunction with eclipse attacks. The authors
evaluated Obscuro on Bitcoin testnet and reported that they were able to mix
1000 inputs in just 6.49 s.

3 Preliminaries

In this section, we briefly introduce the cryptographic primitives that are utilized
in our design for Trustee.

Ethereum utilizes Elliptic Curve Digital Signature Algorithm (ECDSA) to
verify the authenticity of transactions. To create an account on Ethereum, one
has to statistically randomly generate a unique ECDSA key-pair (pk, sk) on the
curve secp256k1 [10,12]. Keeping the private key secure is essential because it is
used to sign transactions originating from the associated account. The address of
an account is the rightmost 20-bytes of the Keccak256 [8] hash of the public key.
This results in a more compact address size compared to the 64-bytes public key.
When a transaction is sent to the network, miners are tasked with verifying the
transaction’s signature with respect to the sender’s address. Precisely, ECDSA
consists of the following three algorithms:

1. (pk, sk) ← Gen(1λ) which generates the public key pk and the associated
private key sk based on the security parameter λ.

2. σ ← Sign(H(m),sk) which generates the signature σ for the hash of the
message m under a designated hash function H and the private key sk.

3. (�/⊥) ← Verify(σ,H(m), pk) which verifies the signature σ on the hash of
message m under the public key pk.

The second cryptographic protocol we utilize is Elliptic Curve Integrated
Encryption Scheme (ECIES) [17]. It enables two parties to communicate authen-
ticated confidential messages. As its name indicates, ECIES integrates the fol-
lowing functions:

1. (sk, pk) ← KGen(params): a key generation function that takes elliptic curve
parameters params to produce a random private key sk and the associated
public key pk.

2. ss ← KA(ski, pkj): a key agreement function to generate a shared secret ss
based on the private key of party i and the public key of party j.

3. (k1, k2) ← KDF(ss): a key derivation function to produce keys k1 and k2 from
the shared secret ss.

4. ct ← Enck1(m): a symmetric encryption function to encrypt a message m
using the symmetric key k1.

5. tag ← MACk2(m): a message authentication code function to generate a tag
based on the key k2 and the message m.

196 H. S. Galal and A. M. Youssef

To demonstrate how ECIES works, assume that Alice wants to encrypt a mes-
sage m and send it to Bob. They initially agree on common ECIES parameters
params. Then, Alice and Bob individually generate the ephemeral key pairs
(skA, pkA), (skB , pkB), respectively. Subsequently, Alice does the following steps:

1. Create a shared secret ss ← KA(skA, pkB)
2. Derive two keys (k1, k2) ← KDF(ss).
3. Obtain the ciphertext of her message ct ← Enck1(m).
4. Authenticate the ciphertext by creating a tag ← MACk2(ct).
5. Send the tuple (pkA, ct, tag) to Bob.

Once Bob receives the tuple (pkA, ct, tag), he can decrypt the ciphertext and
verify its authenticity by doing the following:

1. Create a shared secret ss ← KA(skB , pkA)
2. Derive two keys (k1, k2) ← KDF(ss).
3. Assert that tag = MACk2(ct), otherwise, he rejects.
4. Obtain the message m ← Enc−1

k1
(ct, k1).

4 Trustee’s Design and Analysis

In this section, we briefly present the architecture of Trustee and illustrate the
interaction flow between its components. Then, we explain the protocol in details.
Next, we mention the threat model, security assumptions, and elaborate by ana-
lyzing various possible adversary attacks. Finally, we provide the implementation
details of Trustee’s prototype and evaluate the transactions gas costs.

4.1 Trustee’s Architecture

Trustee consists of three components: a smart contract C which resides on top
of Ethereum, a back-end Intel SGX enclave E and a relay R which both run
off-chain on a server. We refer to the user who deploys C and controls R as the
auctioneer. Furthermore, E is only accessible through R, and R interacts with
C on behalf of the auctioneer and E. The general flow of interactions between
Trustee’s components, and bidders is depicted in Fig. 1.

Initially, the auctioneer deploys C on Ethereum and publishes its address so
that interested sellers and buyers can learn about it. To start an auction, the auc-
tioneer sends a request to R which loads E and calls the function Initialize().
As a response, E generates an externally owned Ethereum account with the pri-
vate key Tsk and the associated address Tadr, and an ECDH key-pair (Tdh, Tpk)
where Tdh is the private key and Tpk is the associated public key. Then, it returns
the values of Tadr and Tpk to R. Subsequently, the auctioneer instructs R to set
the stage for a new auction on C by calling the function StartAuction which
takes Tadr and Tpk. Next, assume a bidder Bob is interested in the auction,
then he utilizes ECIES protocol with Tpk as the public key of the recipient (i.e.,
Trustee’s enclave E) to seal his bid. Subsequently, he submits his sealed bid Bct

Trustee: Full Privacy Preserving Vickrey Auction on Top of Ethereum 197

Fig. 1. Interactions between Trustee’s components and bidders. The green components
are trusted (Color figure online)

along with his ECDH public key Bpk to C. Once the bidding interval is closed, R
retrieves the sealed bids stored on the C, then it forwards them to E by calling
the function RevealWinner. As a result, E opens the sealed bids and determines
the winner and second-highest price. Then, it returns a transaction Twin signed
by the private key Tsk to R. Finally, R sends Twin to C which is essentially a
call to the smart contract function SetWinner that declares the auction winner
and second-highest price.

Initializing an Auction. The initialization process starts with the auction-
eer requesting R to load E inside Intel SGX enclave and invoke the function
Initialize() which is implemented as shown in Algorithm 1.

Algorithm 1. Initializing State of Trustee’s Enclave
1: function Initialize
2: (Tpk, Tdh) ←GenerateECDHKeys()

3: (Tadr, Tsk) ←GenerateAccount()

4: sealedState ← Seal(Tsk, Tdh)
5: return (sealedState, Tadr, Tpk)
6: end function

The Initialize() function generates two key-pairs. More precisely, one key-
pair (Tpk, Tdh) that enables bidders to seal their bids such that only E can open
them, and the second one to authenticate the result (i.e., auction winner and

198 H. S. Galal and A. M. Youssef

second-highest price) generated by E. The former is an ECDH key-pair used
as part of ECIES protocol between E and each bidder to securely transmit the
sealed bids through C and R. The later is an ECDSA key-pair used to sign
the result. Verifying the signature on the result by C is a relatively expensive
operation (i.e., roughly 120,000 gas for using ecrecover). Therefore, in Trustee, we
utilize an intrinsic operation that happens on every transaction in Ethereum (i.e.,
transaction’s signature verification) to indirectly verify the authenticity of the
result for us. Hence, E generates an ECDSA key-pair on curve secp256k1 which
essentially creates an external owned Ethereum account with the private key
Tsk and the associated address Tadr. Then, whenever E determines the auction
winner and the second-highest price, it outputs a transaction Twin signed by
Tsk. Later, R sends Twin to the Ethereum network, where the miners verify its
signature. Finally, C only has to assert that the sender of Twin is the Tadr. As
a result, this approach yields a much cheaper transaction fee compared to the
explicit signature verification by calling ecrecover.

Intel SGX enclaves are designed to be stateless. In other words, once an
enclave is destroyed, its whole state is lost. However, in Trustee, we have to
persist the generated keys as long as the current auction is running. Therefore,
we utilize Intel SGX feature known as Sealing [4] to properly save the generated
private keys. Sealing is the process of encrypting enclave secrets in order to
persist them on a permanent storage such as a disk. This effectively allows us to
retrieve the private keys (Tsk, Tdh) even if the enclave was brought down for any
reason. The encryption is performed using a private Seal Key that is unique to
the platform and enclave, and is not accessible by any other entity.

Upon the return from Initialize, R saves the values of sealedState on a
disk besides to having a backup. Furthermore, R publishes the values Tadr and
Tpk by calling the function StartAuction on C as shown in Fig. 2. The function
StartAuction also takes extra parameters that control the different intervals of
the current auctions. More precisely, T1, T2, and T3 which define the numbers
of the blocks before which: (i) bidders submit their sealed bids, (ii) R submits
Twin, (iii) honest participants (i.e., auctioneer and non-winning bidders) reclaim
the initially deposited fund D, respectively. The initial deposit D is paid by all
participants to penalize malicious behavior.

Provisioning of Bids. Once the new auction has been initialized, an interested
bidder Bob can seal his bid x by utilizing ECIES as shown in Algorithm2. It
starts with retrieving the public key Tpk from C. Then, it generates an ephemeral
ECDH key-pair (Bpk, Bsk) on curve25519 where Bsk is the private key and Bpk

is the associated public key. Then, it computes the shared secret s based on Tpk

and Bsk. After that, it derives two symmetric keys k1 and k2 in order to perform
an authenticated encryption on the bid value x. Finally, it returns the sealed-bid
Bct and the associated public key Bpk. Subsequently, Bob sends the values Bct

and Bpk to the function SubmitBid on C as shown in Fig. 2.

Trustee: Full Privacy Preserving Vickrey Auction on Top of Ethereum 199

Fig. 2. Pseudocode for the Trustee’s smart contract C

The function SubmitBid first asserts that: (i) the current state is set to
Bidding, and (ii) the call is invoked before the end of the bidding interval. After

200 H. S. Galal and A. M. Youssef

Algorithm 2. Sealing of Bids using ECIES
1: function SealBid(x)
2: Tpk ←GetTrusteePublicKey()
3: (Bpk, Bsk) ← GenerateECDHKeys()
4: s ←ComputeSharedSecret(KA(Bsk, Tpk)
5: (k1, k2) ← DeriveKeys(s)
6: iv ← InitRandomIV()
7: ct ← Encrypt(x, iv,K1)
8: tag ← MAC(ct,K2)
9: Bct ← ct||iv||tag

10: return (Bct, Bpk)
11: end function

that, it deducts the initial deposit D from Bob and stores the Bct and Bpk into
the array bidders. Note that the size of the Bct is 32 bytes. Moreover, we utilize
the Curve25519 for generating ECDH key-pairs due to two reasons: (i) it only
uses compressed elliptic point (i.e., X coordinate), so it provides fast and efficient
ECDH, (ii) the public-key size becomes 32-bytes rather than 64-bytes, therefore,
both the Bct and Bpk synergies effectively with Ethereum native variable type
uint256.

Revelation of the Auction Winner. Once the bidding interval is over,
R retrieves the submitted array of sealed bids Bct and their associate pub-
lic keys Bpk from C. Then, it passes them along with sealedState (previously
generated by the function Initalize) to the function RevealWinner on E as
shown in Algorithm 3. In this function, E initially unseals the private keys from
sealedState. Then, for every bidder i, it runs the decryption part of ECIES
protocol based on the sealed-bid Bct[i], the public key Bpk[i], and the private
key Tdh to extract the bid value and find the winner. Once all sealed-bids Bct

are decrypted, the winner’s index and second-highest bid are set accordingly in
the variables index and second. Subsequently, E binds the auction winner to
the inputs it received by computing the Keccak256 hash value of Bct and Bpk.
Finally, E creates a raw transaction Twin with the destination address as C and
signs it with the private key Tsk. For the sake of simplicity, we defer explaining
the details of Reset() and Unseal() to Subsect. 4.2.

Subsequently, the auctioneer has to send some funds to Tadr in order to
pay the transaction fees to be incurred by Twin. Next, the auctioneer requests
R to send the transaction Twin to C which is essentially a call to the func-
tion SetWinner shown in the Fig. 2. It takes the following parameters: (i) H as
Keccak256 hash value of the inputs Bct and Bpk, (ii) as the index of the winner
in the array Bidders which is further used by C to determine the address of the
auction winner, and (iii) P as the second-highest price. On its call, it asserts
that: (i) Twin’s origin is the address Tadr, the call happens within the auction
winner revelation interval, and (iii) the state is set to Bidding. Then, it checks
if H is equal to the Keccak256 hash value of the sealed bids and their associated

Trustee: Full Privacy Preserving Vickrey Auction on Top of Ethereum 201

Algorithm 3. Revelation of the Auction Winner
1: function RevealWinner(Bct[], Bpk[], sealedState)
2: max ← 0
3: second ← 0
4: index ← −1
5: N ←Length(Bct)
6: (Tsk, Tdh, success) = Unseal(sealedState)
7: if success = 0 then
8: return
9: end if

10: for i ← 1 to N do
11: bid ← Decrypt(Bct[i], Bpk[i], Tdh)
12: if max < bid then
13: second ← max
14: max ← bid
15: index ← i
16: end if
17: end for
18: hash ← Keccak256(Bct||Bpk)
19: Twin ←CreateTransaction(C, hash, index, second, Tsk)
20: sealedState ← Reset()

21: return (Twin, sealedState)
22: end function

public keys submitted by bidders. Accordingly, it decides whether to accept the
submitted values or reject them. Eventually, it reflects the decision on its state.

Honest participants can reclaim their initial deposits within the withdraw
interval by calling the function Withdraw shown in Fig. 2. Additionally, in the
case of a successful winner revelation, then the winner’s initial deposit is locked
to set the stage for payment of the winning bid. Eventually, after the withdraw
interval, the auctioneer calls the function Reset in order to set the state of C to
Init so that new auctions can be started later by calling StartAuction.

4.2 Threat Model

In Trustee threat model, we assume the following:

1. The smart contract C is deployed on the mainnet of Ethereum with an open-
source code that is available for all bidders. Moreover, the functions on C
process the input parameters of transactions as their code dictate which is
essentially enforced by Ethereum. Furthermore, all transactions in Ethereum
are authenticated such that C can precisely determine the sender address.

2. The enclave E is loaded inside a properly implemented and manufactured
Intel SGX platform. Additionally, the source code of E is available for all
bidders. Finally, E is properly programmed such that it does not have a bug
that compromises the confidentiality of sealed-bids and private keys.

202 H. S. Galal and A. M. Youssef

3. The relay R is the only interface to E and is controllable by the auctioneer.
The bidders have a black-box view of R (i.e., closed-source code). Further-
more, R is potentially untrusted component that can behave maliciously to
compromise the security of Trustee.

4. The Adversary is financially rational and powerful enough to have access
to the host running E and R. Hence, the adversary is able to control the
execution of privileged software such as the operating system and the network-
stack driver. However, the adversary cannot compromise the security model
of Ethereum in order to maliciously change the state of C.

We acknowledge that several recent studies have uncovered side-channel attacks
to compromise the confidentiality of Intel SGX [13,19,23,28,29,31]. Also, mul-
tiple mitigation techniques have been proposed to address attack-specific issues
[18,24–26]. Resolving side-channel attacks on Intel SGX enclave is beyond the
scope of this paper and is left for future work.

4.3 Security Analysis

We discuss the security of Trustee against possible scenarios including Intel SGX
masquerade, eclipse, fork, and replay attacks [11].

Intel SGX Masquerade. Since bidders do not have direct access to Trustee’s
enclave E, a corrupt auctioneer might generate the private keys and post the
corresponding public key Tpk and address Tdh on the smart contract C. Incau-
tious bidders would seal their bids by Tpk which effectively gives the corrupt
auctioneer access to the underlying bids. To counter this attack, we show how a
wary bidder Bob can verify that the private keys (Tsk, Tdh) were generated by
E inside a genuine Intel SGX enclave. Essentially, Bob has to do the verification
before submitting his sealed-bid. Therefore, once a new auction is started by the
function StartAuction, Bob and Trustee engage in a protocol that utilizes the
Remote Attestation [4] feature of Intel SGX as shown in Fig. 3. Initially, Bob
challenges E through R by calling the function Challenge and passes a nonce
to it. Then, R forwards the nonce to E by calling the function GetQuote. Inside
GetQuote, E binds Tadr, Tpk, and nonce by hashing their concatenation and cre-
ating a digest h ← SHA256(Tadr||Tpk||nonce). Then, it embeds h as a user data
into a report r by calling an Intel SGX supplied function sgx create report.
Finally, R passes r to an Intel provided enclave known as the Quoting Enclave
(QE) which verifies r then signs it with Intel Enhanced Privacy ID (EPID) secret
key to yield a quote. The Intel EPID is device-specific and is only accessible by
the QE. Subsequently, R returns the quote to Bob who in turn contacts Intel
Attestation Service (IAS) to verify the quote’s signature. On a successful verifi-
cation, Bob has to check the following: (i) the quote’s user data is equivalent to
h, and (ii) the source code of E when compiled produces the same measurement
(i.e., a digest of code and data of E) included in the quote. Assuming IAS to
behave honestly, then it is computationally infeasible for the adversary to gen-
erate a quote that asserts the authenticity of E on a fake Intel SGX enclave to
Bob.

Trustee: Full Privacy Preserving Vickrey Auction on Top of Ethereum 203

Bidder

1. Call Challenge(nonce)
2. Call GetQuote(nonce)

Trustee EnclaveRelay
Intel Attestation

Service

4. Return quote
3. Return quote

5. Call Verify(quote)

6. Return result

Fig. 3. Remote attestation of Trustee’s Enclave

Eclipse Attack. Generally, Intel SGX enclaves do not have trusted access to
the network; therefore, Trustee’s enclave E is oblivious of the current state (i.e,
sealed bids) on the smart contract C. Consequently, a corrupt auctioneer can
provide an arbitrary subset of the sealed bids to E in order to give advantage
to a cartel of colluding bidders. A trivial solution to this challenge is to embed
a full-node Ethereum client inside E such that it can verify the PoW (Proof of
Work) of Ethereum blocks and determine the correct state of the smart contract
C. This solution is computationally secure against an adversary who controls
less than 51% of the hash rate power of the network. However, the TCB of E
becomes bloated with and susceptible to bugs founds in the client source code.
Alternatively, in Trustee, we bind the output (i.e., winner’s index and second-
highest price) to the input (i.e., the set of sealed-bids and associated public
keys) by including the hash of the input as a parameter in the transaction Twin

as shown in Algorithm 3. Therefore, the smart contract C can determine whether
all or a subset of the sealed bids were provided to E by comparing hash parameter
of Twin to the hash of all bids and associated public keys in its state as shown
in the function SetWinner in Fig. 2.

Replay and Fork Attack. We assess the possibility of a corrupt auctioneer
Eve trying to compromise the privacy of the sealed-bids without being noticed
and penalized. Recall that in the design of Trustee, R initially calls the function
Initialize, then at a later point in time, it calls the function RevealWinner to
finalize the auction. The idea behind this attack is that Eve can launch multiple
instances of E and replay the same sealedState to all instances but provide
different subsets of the sealed-bids. Obviously, Eve gives one of the instances the
correct number of sealed-bids and its output is forwarded to C to avoid penalty as
discussed above. However, for the other instances she simply learns the outputs
and discard them which effectively gives her access to all the underlying bids
values.

To counter this attack, we enforce Trustee’s design of using fresh sealedState
for every call to the function RevealWinner by utilizing Intel SGX non-volatile
hardware monotonic counters. Simply, the function Seal called inside the func-
tion Initialize increments and reads the monotonic counter ctr, then it com-
bines ctr, Tsk, and Tdh and seals them into sealedState. Later, when the func-
tion RevealWinner is called, it invokes the function Unseal which unseals
sealedState, then it reads the current monotonic counter and compares it

204 H. S. Galal and A. M. Youssef

with the unsealed ctr. Hence, if the equality check passes, then the function
RevealWinner increments the counter as well and proceeds to the next steps,
otherwise, it aborts without determining the auction winner (i.e., returning an
empty Twin that does not indicate the auction winner.) Consequently, Eve can
get valid output from RevealWinner only one time per a single auction regard-
less of how many instances of E are launched. Alternatively, to avoid the low
performance of using monotonic counters which takes approximately 80 to 200
ms for read/write operation, we can utilize a distributed system of Intel SGX
enclaves to manage the state freshness as explained in [21].

4.4 Prototype Implementation and Gas Cost Analysis

Intel SGX cryptographic library does not support the curves secp256k1 and
curve25519, so we utilize an Intel SGX compatible port of mebdtls library [32]
as a static enclave library linked to Trustee’s enclave. Mbedtls library is mainly
used in ECDH and ECDSA key generation, ECDH shared secret derivation, and
ECDSA signing. We evaluate Trustee on a Dell Inspiron 7577 laptop that is SGX-
enabled with the 6th Generation Intel Core i5 CPU and 8-GB of memory. We
enable Intel SGX feature on the laptop’s BIOS and allocate maximum allowed
128-MB memory for individual SGX enclave. Also, we implement Trustee’s smart
contract in Solidity which is the de-facto programming language for developing
smart contracts in Ethereum. Furthermore, we utilize Ganache to set up a per-
sonal Ethereum blockchain in order to run tests, execute commands, and inspect
state while controlling how the chain operates.

We report on the gas cost of transactions in Trustee for a Vickrey auction
with N = 100 bidders and compares it with approaches in [15,16] in Table 1. At
the time of writing, December 14th, 2018, the median gas price is 3.3 GWei and
the average exchange rate for 1 ether = $83 USD. In other words, 1 million gas
incurs transaction fees ≈$0.27 USD.

Table 1. Gas cost of transactions in Trustee and auctions [15,16]

Function Trustee Auction [16] Auction [15]

Deployment 1173779 3131261 1346611

StartAuction 188201 – –

SubmitBid 123350 262933 159759

SetWinner 82847 2872047 3487439

Withdraw 20370 47112 –

Reset 402351 – –

Compared to other sealed-bid auction constructions on top of Ethereum
[15,16], Trustee achieves a significantly low and constant gas cost on the reve-
lation of auction winner. The reason behind this is because most of the compu-
tations happen off-chain. Therefore, it costs the auctioneer less than 1 USD to

Trustee: Full Privacy Preserving Vickrey Auction on Top of Ethereum 205

deploy Trustee’s smart contract C, start an auction, set the winner, and with-
draw initial deposit. It has to be noted that, the initial deposit must be large
enough to penalize malicious participants such as an auctioneer who corrupts R
to redirect inconsistent messages between E and C, and a malicious winner who
refuses to pay the second-highest price. Certainly, the value of the initial deposit
should be proportional to the estimated value of the auctioned item.

5 Conclusion

In this paper, we presented Trustee, an efficient and full privacy preserving Vick-
rey auction on top of Ethereum. In Trustee, we utilize Intel SGX to complement
a smart contract in Ethereum with confidential data processing, a desirable
property they lack. As a result, Trustee does not inherit the complexities of
heavy cryptographic protocols such as ZKP and MPC. More precisely, Trustee
fully preserves bids’ privacy and maintains the auction winner correctness at
a relatively cheap transaction fee. Furthermore, in Trustee, auctions take only
two-rounds to finalize, where the first round is the provision of bids and the
second one is the revelation of the winner. As a result, it is one round less than
the (commit - reveal - prove) approach. Moreover, the major computations in
Trustee happen on off-chain hosts, hence, it can be ported with minimum efforts
to blockchains with inflexible scripting capabilities such as Bitcoin.

References

1. Digital assets in Ethereum blockchain. https://tokenmarket.net/blockchain/
Ethereum/assets/

2. Top 100 cryptocurrencies by market capitalization (2018). https://coinmarketcap.
com

3. Al-Bassam, M., Sonnino, A., Król, M., Psaras, I.: Airtnt: fair exchange payment for
outsourced secure enclave computations. arXiv preprint arXiv:1805.06411 (2018)

4. Anati, I., Gueron, S., Johnson, S., Scarlata, V.: Innovative technology for CPU
based attestation and sealing. In: Proceedings of the 2nd International Workshop
on Hardware and Architectural Support for Security and Privacy, vol. 13. ACM
New York (2013)

5. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von Neumann architecture. In: USENIX Security Symposium, pp.
781–796 (2014)

6. Benet, J.: IPFS-content addressed, versioned, P2P file system. arXiv preprint
arXiv:1407.3561 (2014)

7. Bentov, I., et al.: Tesseract: real-time cryptocurrency exchange using trusted hard-
ware. IACR Cryptology ePrint Archive, 2017:1153 (2017)

8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 313–314. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 19

9. Blass, E.-O., Kerschbaum, F.: Strain: a secure auction for blockchains. In: Lopez,
J., Zhou, J., Soriano, M. (eds.) ESORICS 2018. LNCS, vol. 11098, pp. 87–110.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99073-6 5

https://tokenmarket.net/blockchain/Ethereum/assets/
https://tokenmarket.net/blockchain/Ethereum/assets/
https://coinmarketcap.com
https://coinmarketcap.com
http://arxiv.org/abs/1805.06411
http://arxiv.org/abs/1407.3561
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1007/978-3-319-99073-6_5

206 H. S. Galal and A. M. Youssef

10. Bos, J.W., Halderman, J.A., Heninger, N., Moore, J., Naehrig, M., Wustrow, E.:
Elliptic curve cryptography in practice. In: Christin, N., Safavi-Naini, R. (eds.) FC
2014. LNCS, vol. 8437, pp. 157–175. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-45472-5 11

11. Brandenburger, M., Cachin, C., Kapitza, R., Sorniotti, A.: Blockchain and trusted
computing: problems, pitfalls, and a solution for Hyperledger fabric. arXiv preprint
arXiv:1805.08541 (2018)

12. Brown, D.R.L.: Standards for efficient cryptography sec 2: recommended elliptic
curve domain parameters (2010). http://www.secg.org/sec2-v2.pdf

13. Chen, G., Chen, S., Xiao, Y., Zhang, Y., Lin, Z., Lai, T.H.: SGXPECTREattacks:
leaking enclave secrets via speculative execution. arXiv preprint arXiv:1802.09085
(2018)

14. Cheng, R., et al.: Ekiden: a platform for confidentiality-preserving, trustworthy,
and performant smart contract execution. arXiv preprint arXiv:1804.05141 (2018)

15. Galal, H.S., Youssef, A.M.: Succinctly verifiable sealed-bid auction smart con-
tract. In: Garcia-Alfaro, J., Herrera-Joancomart́ı, J., Livraga, G., Rios, R. (eds.)
DPM/CBT -2018. LNCS, vol. 11025, pp. 3–19. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-00305-0 1

16. Galal, H.S., Youssef, A.M.: Verifiable sealed-bid auction on the ethereum
blockchain. In: Zohar, A., et al. (eds.) FC 2018. LNCS, vol. 10958, pp. 265–278.
Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-58820-8 18

17. Mart́ınez, V.G., Encinas, L.H., Ávila, C.S.: A survey of the elliptic curve integrated
encryption scheme. J. Comput. Sci. Eng. 2, 7–13 (2010)

18. Gruss, D., Lettner, J., Schuster, F., Ohrimenko, O., Haller, I., Costa, M.: Strong
and efficient cache side-channel protection using hardware transactional memory.
In: USENIX Security Symposium, pp. 217–233 (2017)

19. Lee, S., Shih, M.-W., Gera, P., Kim, T., Kim, H., Peinado, M.: Inferring fine-
grained control flow inside SGX enclaves with branch shadowing. In: 26th USENIX
Security Symposium, USENIX Security, pp. 16–18 (2017)

20. Lind, J., Eyal, I., Pietzuch, P., Sirer, E.G.: Teechan: payment channels using trusted
execution environments. arXiv preprint arXiv:1612.07766 (2016)

21. Matetic, S., et al.: ROTE: rollback protection for trusted execution. IACR Cryp-
tology ePrint Archive, 2017:48 (2017)

22. Milutinovic, M., He, W., Wu, H., Kanwal, M.: Proof of luck: an efficient blockchain
consensus protocol. In: Proceedings of the 1st Workshop on System Software for
Trusted Execution, p. 2. ACM (2016)

23. Schwarz, M., Weiser, S., Gruss, D., Maurice, C., Mangard, S.: Malware guard
extension: using SGX to conceal cache attacks. In: Polychronakis, M., Meier, M.
(eds.) DIMVA 2017. LNCS, vol. 10327, pp. 3–24. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-60876-1 1

24. Seo, J.: SGX-shield: enabling address space layout randomization for SGX pro-
grams. In: NDSS (2017)

25. Shih, M.-W., Lee, S., Kim, T., Peinado, M.: T-SGX: eradicating controlled-channel
attacks against enclave programs. In: Proceedings of the Annual Network and
Distributed System Security Symposium (NDSS), San Diego, CA (2017)

26. Shinde, S., Chua, Z.L., Narayanan, V., Saxena, P.: Preventing page faults from
telling your secrets. In: Proceedings of the 11th ACM on Asia Conference on Com-
puter and Communications Security, pp. 317–328. ACM (2016)

27. Tran, M., Luu, L., Kang, M.S., Bentov, I., Saxena, P.: Obscuro: a bitcoin mixer
using trusted execution environments. IACR Cryptology ePrint Archive, 2017:974
(2017)

https://doi.org/10.1007/978-3-662-45472-5_11
https://doi.org/10.1007/978-3-662-45472-5_11
http://arxiv.org/abs/1805.08541
http://www.secg.org/sec2-v2.pdf
http://arxiv.org/abs/1802.09085
http://arxiv.org/abs/1804.05141
https://doi.org/10.1007/978-3-030-00305-0_1
https://doi.org/10.1007/978-3-030-00305-0_1
https://doi.org/10.1007/978-3-662-58820-8_18
http://arxiv.org/abs/1612.07766
https://doi.org/10.1007/978-3-319-60876-1_1
https://doi.org/10.1007/978-3-319-60876-1_1

Trustee: Full Privacy Preserving Vickrey Auction on Top of Ethereum 207

28. Bulck, J.V., et al.: Foreshadow: extracting the keys to the Intel SGX kingdom with
transient out-of-order execution. In: Proceedings of the 27th USENIX Security
Symposium. USENIX Association, August 2018

29. Weisse, O., et al.: Breaking the virtual memory abstraction with transient out-of-
order execution. Technical report, Foreshadow-NG (2018)

30. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Proj. Yellow Pap. 151, 1–32 (2014)

31. Xu, Y., Cui, W., Peinado, M.: Controlled-channel attacks: deterministic side chan-
nels for untrusted operating systems. In: 2015 IEEE Symposium on Security and
Privacy (SP), pp. 640–656. IEEE (2015)

32. Zhang, F.: mbedtls-sgx: a TLS stack in SGX (2016). https://github.com/bl4ck5un/
mbedtls-SGX

33. Zhang, F., Cecchetti, E., Croman, K., Juels, A., Shi, E.: Town crier: an authen-
ticated data feed for smart contracts. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pp. 270–282. ACM (2016)

https://github.com/bl4ck5un/mbedtls-SGX
https://github.com/bl4ck5un/mbedtls-SGX

Advances in Secure Electronic Voting
Schemes

Election Manipulation 100

Michelle Blom1(B), Peter J. Stuckey2, and Vanessa J. Teague1

1 School of Computing and Information Systems, The University of Melbourne,
Parkville, Australia

{michelle.blom,vjteague}@unimelb.edu.au
2 Faculty of Information Technology, Monash University, Clayton, Australia

peter.stuckey@monash.edu.au

Abstract. The true election margin for an Instant Runoff Voting (IRV)
election can be hard to compute, because a small modification early in
the elimination sequence can alter the outcome and result in a candidate
winning the last round by a large margin. It is often assumed that the
true margin is the last-round margin, that is half the difference between
the two candidates who remain when everyone else is eliminated, though
it is well known that this need not be the case. Perceptions of confidence
in the outcome, and even formal policies about recounts, often depend
on the last-round margin. There is already some prior work on how to
compute the true election margin efficiently for IRV, and hence how to
find the minimal manipulation. In this work we show how to manipulate
an election efficiently while also producing a large last-round margin. This
would allow a successful manipulation to evade detection against naive
methods of assessing the confidence of the election result. This serves
as further evidence for accurate computations of the exact margin, or
for rigorous Risk Limiting Audits which would detect a close or wrong
election result (respectively) regardless of the last-round margin.

1 Introduction

Instant Runoff Voting (IRV), also known as Alternative Vote (AV), is a system
of preferential voting in which voters rank candidates in order of preference.
Given candidates a, b, and c, each vote cast in an IRV election is a (possibly
partial) ranking over the candidates. A vote with the ranking [a, c, b] expresses
a first preference for candidate a, a second for c, and a third for b. The tal-
lying of votes proceeds by distributing each vote to its first ranked candidate.
The candidate with the smallest number of votes is eliminated, with their votes
redistributed to subsequent, less preferred candidates. Elimination proceeds in
this fashion, until a single candidate w remains, who is declared the winner. IRV
is used for all lower house parliamentary elections across Australia, parliamen-
tary elections in Fiji and Papua New Guinea, presidential elections in Ireland
and Bosnia/Herzogovinia, and local elections in numerous locations world-wide,
including the UK and United States [9].

The last round margin (LRM) of an IRV election – the difference in tallies of
the final two remaining candidates, divided by two and rounded up – is commonly
c© International Financial Cryptography Association 2020
A. Bracciali et al. (Eds.): FC 2019 Workshops, LNCS 11599, pp. 211–225, 2020.
https://doi.org/10.1007/978-3-030-43725-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43725-1_15&domain=pdf
https://doi.org/10.1007/978-3-030-43725-1_15

212 M. Blom et al.

used as an indicator of how close the election was. Blom et al. [4] have shown that
the true margin of victory (MOV) of the election – the smallest number of votes
one would have to alter to change who won the election – is generally equal to the
last round margin, but not always. In some cases, the MOV can be much smaller
than the last round margin. The Australian Electoral Commission (AEC) use
the “margin between the two leading candidates” after all remaining candidates
have been eliminated, and their preferences distributed, to determine whether
an automatic recount of cast votes should be performed.1 The AEC definition
of a “margin”, in this context, is the difference in tallies of two candidates (not
divided by two). When this margin is less than 100 votes, an automatic recount is
triggered. In traditional paper-based elections, where counting proceeds by hand
and scrutineers are present to oversee the counting of ballots, these margins play
a major role in determining whether further scrutiny of the outcome is warranted.

In this paper, we put ourselves in the shoes of a potential adversary seeking
to change the outcome of an IRV election – an election in which voters have cast
paper ballots, and these ballots have been consequently scanned and counted
using software. We assume that this adversary has sufficient access to the systems
used to execute the IRV counting algorithm, complete knowledge of the election
profile (the rankings present on each vote), and the ability to change each ballot’s
electronic record. The adversary wants to alter the smallest number of these
electronic records so that their desire of changing the outcome is realised, while
at the same time ensuring that the last round margin of the manipulated election
is larger than a given threshold. Our adversary does not want to change too many
votes, as the more votes that are modified, the greater the likelihood that the
manipulation will be discovered. To realise this adversary, we adapt the margin
computation algorithm of Blom et al. [4] to compute the smallest number of votes
that it must change to both alter an election outcome, and create a manipulated
election with desirable properties (such as a large last round margin). Note that
throughout this paper we use the terms vote and ballot interchangeably – each
ballot is equivalent to a single vote in the context of IRV.

Using the Australian New South Wales (NSW) 2015 Legislative Assembly
election as a case study, we report the number of votes that this adversary
would have needed to modify in each seat to change the candidate who won,
while controlling the margin by which they won. Here, as a running example, we
consider the smallest manipulation in order to achieve a last round margin of
victory of at least 100 votes, in order to prevent an automatic recount, election
manipulation 100.

It is obvious that it is always possible to achieve a last-round margin of at least
x by finding the Margin of Victory MOV, making those minimal changes, and
then altering an extra x ballots in favour of the desired candidate. The interest-
ing cases are those in which a last-round margin of x can be achieved by manipu-
lating fewer than MOV + x votes. We find that this is possible in a small number
of examples—these seats would make natural targets for manipulation. We find
empirically that in natural elections it’s very often the case that LRM = MOV.

1 https://www.aec.gov.au/Elections/candidates/files/hor-recount-policy.pdf.

https://www.aec.gov.au/Elections/candidates/files/hor-recount-policy.pdf

Election Manipulation 100 213

After manipulation, however, we find that the MOV of the manipulated election is
often much smaller than its LRM. The effect of this declines when the manipula-
tion is small rather than large, but could be considered a genuine indication that
someone is manipulating the results.

The assumption of complete knowledge of the election profile, and the ability
to change any vote, is a strong one. We consider, in our concluding discussion,
how we can analyse the likelihood of election-changing manipulations in a context
where our adversary does not have knowledge of the complete election profile. In
this setting, the adversary may have seen a portion of cast votes, after scanning,
and is able to modify the rankings of future scanned votes as they are scanned
and their electronic record created. How likely is it that such an adversary can
choose appropriate manipulations, in this context, and achieve the election of
a desired candidate with an appropriate margin? We consider how we might
design a series of experiments to answer this question.

The remainder of this paper is structured as follows. We discuss related
work on margin computation for IRV, manipulation, and auditing in Sect. 2.
Preliminaries and definitions are provided in Sect. 3. Section 4 summarises the
margin computation algorithm of Blom et al. [4] and how it can be adapted to
add side constraints – such as ensuring a last round margin of at least a given
threshold – on the nature of any acceptable manipulation of an election. We
demonstrate this adapted algorithm on case study – the 2015 NSW Legislative
Assembly election – in Sect. 5. We conclude in Sects. 6 and 7 with a discussion
of how to model and analyse a weaker adversary, without complete knowledge
of the rankings on every ballot.

2 Related Work

Blom et al. [4] present a branch-and-bound algorithm (denoted margin-irv) for
efficiently computing the margin of victory in an IRV election, improving upon an
existing method by Magrino et al. [8]. Blom et al. [3] extend this work to compute
the margin of victory over candidates (MOVC) for an IRV election. That work
computes the smallest number of votes that must be changed in order to change
the winner of the election to one of a given subset of candidates. In this paper,
we extend the margin-irv algorithm of Blom et al. [4] to compute the smallest
number of vote changes required to yield an election with desired properties,
such as a last round margin of at least a certain size. We then demonstrate
this extended algorithm on the New South Wales 2015 Legislative Assembly
Parliamentary Election.

Since the MOV is the minimum number of vote changes necessary to suc-
cessfully manipulate the election result, the election result can be shown to be
correct if there are fewer than MOV manipulations.

A number of methods have been developed for auditing various kinds of elec-
tions [1], and for first past the post (FPTP) elections in particular. Risk Limiting
Audits (RLAs) [7,10] have been applied to a number of such elections, including
four 2008 elections in California [6] and elections in over 50 Colorado counties

214 M. Blom et al.

Initially, all candidates remain standing (are not eliminated)
While there is more than one candidate standing

For every candidate c standing
Tally (count) the votes in which c is the highest-ranked
candidate of those standing

Eliminate the candidate with the smallest tally
The winner is the one candidate not eliminated

Fig. 1. The IRV counting algorithm: the candidate with the smallest tally is repeat-
edly eliminated, with the ballots in their tally redistributed to remaining candidates
according to their next preference.

in 2017. RLAs provide strong statistical evidence that the reported outcome of
an election is correct, or revert to a manual recount if it is wrong. The proba-
bility that the audit fails to detect a wrong outcome is bounded by a risk limit.
Lindeman et al. [7] present a ballot-polling RLA for FPTP elections, which has
consequently been adapted by Blom et al. [2] for IRV. Several approaches for
designing a risk-limiting comparison audit of an IRV election have also been
proposed [10]. A genuine RLA would defeat the attack described in this paper,
because it would detect a wrong election result with high probability. Our pro-
posed variety of manipulation works only against naive recount triggers based
on last-round margins.

3 Preliminaries

Votes are tallied in an IRV election in a series of rounds (see Fig. 1). In each
round, the candidate with the smallest number of votes (their tally) is eliminated,
with the last remaining candidate declared the winner of the election. All votes
in an eliminated candidate’s tally are distributed to the next most-preferred
(remaining) candidate in their ranking.

Let C be the set of candidates in an IRV election B. We refer to sequences
of candidates π in list notation (e.g., π = [c1, c2, c3, c4]), and use such sequences
to represent both votes and the order in which candidates are eliminated. An
election B is defined as a multiset2 of votes, each vote b ∈ B a sequence of
candidates in C, with no duplicates, listed in order of preference (most preferred
to least preferred). Let first(π) denote the first candidate appearing in sequence
π (e.g., first([c2, c3]) = c2). In each round of vote counting, there are a current
set of eliminated candidates E and a current set of candidates still standing
S = C \ E . The winner cw of the election is the last standing candidate.

Each candidate c ∈ C has a tally of votes. Votes are added to this tally upon
the elimination of a candidate c′ ∈ C \ {c}, and are redistributed from this tally
upon the elimination of c.

2 A multiset allows for the inclusion of duplicate items.

Election Manipulation 100 215

Table 1. IRV example, with (a) the number of votes cast with each listed ranking over
candidates a, b, c, and (b) tallies after each round of vote counting (c) the number of
votes recorded after manipulation, and (d) the tallies after each round of vote counting
in the manipulated election

Ranking Count

[a] 55

[c, a] 30

[b, c] 36

[c] 15

(a)

Candidate Round 1 Round 2

a 55 55

b 36 —

c 45 81

(b)

Ranking Count

[a] 55

[c, a] 25

[b, c] 41

[c] 15

(c)

Candidate Round 1 Round 2

a 55 80

b 41 41

c 40 —

(d)

Definition 1. Tally tS(c). Given candidates S ⊆ C are still standing in an
election B, the tally for candidate c ∈ C, denoted tS(c), is defined as the number
of votes b ∈ B for which c is the most-preferred candidate of those remaining.
Let pS(b) denote the sequence of candidates mentioned in b that are also in S.

tS(c) = | [b | b ∈ B, c = first(pS(b))] | (1)

Definition 2. Margin of Victory (MOV). The MOV in an election with
candidates C and winner cw ∈ C, is the smallest number of votes whose ranking
must be modified (by an adversary) so that a candidate c′ ∈ C \ {cw} is elected.

Definition 3. Last Round Margin (LRM). The LRM of an election, in
which two candidates S = {c, c′} remain with tS(c) and tS(c′) votes in their
tallies, is equal to half the difference between the tallies of c and c′ rounded up.

LRM =
⌈ |tS(c) − tS(c′)|

2

⌉
(2)

Example 1. Consider the example election shown in Table 1 between candidates
a, b and c. Their initial tallies are 55, 36, and 45 votes, respectively, and b
is eliminated first. Candidates a and c subsequently have tallies of 55 and 81
votes, giving c the victory with a last round margin of 13 votes. A seemingly
comfortable victory.

216 M. Blom et al.

But lets examine what occurs if we change 5 of the [c, a] votes to [b, c] votes.
Now the initial tallies are 55, 41, and 40 votes, respectively, and c is eliminated
first. Candidates a and b subsequently have tallies of 80 and 41 votes, giving a
the victory with a last round margin of 20 votes.

Note that the apparent comfortable victory of c originally is an illusion, the
actual MOV for this election is 5, as the manipulation illustrates. Interestingly
even though we only manipulate 5 votes, now a wins the election with a last
round margin of 20 votes! The actual margin of victory in the manipulated
election is 1, demonstrated by the fact that if we change 1 of the [b, c] votes to
a [c] vote, the first round tallies of each candidate are {a : 55, b : 40, c : 41}, and
c is eliminated.

4 Computing the MOV for an IRV Election

A description of both the margin-irv algorithm, and the original branch-and-
bound method of Magrino et al. [8], can be found in Blom et al. [3,4]. We
summarise this algorithm in this section, and describe how it can be modified to
compute the smallest number of vote changes required to both (i) bring about a
change in the outcome of the election, and (ii) produce a manipulated election
profile with certain properties, modelled as side constraints. We consider the
following two side constraints in this paper:

– The LRM of the manipulated election must be at least TLRM votes;
– The eliminated candidate e in each round must have Δ fewer votes in their

tally than the candidate with the next smallest tally.

Consider an IRV election B with candidates C and winner w ∈ C. The margin-
irv algorithm starts by adding |C| − 1 partial elimination sequences to a search
tree, one for each of alternate winner c ∈ C \ {w}. These partial sequences form
a frontier F , with each sequence containing a single candidate – an alternate
winner. Note that a partial sequence [a, b, c] represents an election outcome in
which a and b are the last two candidates eliminated, and c the winner. All other
candidates are assumed to have been eliminated in some prior round.

For each partial sequence π ∈ F , we compute a lower bound on the number
of vote changes required to realise an elimination sequence that ends in π. These
lower bounds are used to guide construction of the search tree, and are computed
by both solving an Integer Linear Program (ILP), and applying several rules for
lower bound computation. These rules are described in Blom et al. [4]. The ILP,
denoted DistanceTo, computes a lower bound on the smallest number of vote
changes required to transform the election B, with an elimination sequence π′,
to one with an elimination sequence that ends in π. When applied to a complete
order π, containing all candidates, DistanceTo exactly computes the smallest
number of votes changes required to realise the outcome π. The largest of the
lower bounds computed by the rules of Blom et al. [4] and the DistanceTo
ILP is assigned to each partial sequence π as it is added to F . The DistanceTo
ILP is defined in Sect. 4.1. To enforce additional constraints on the nature of any
manipulated election, we add these constraints to each ILP solved.

Election Manipulation 100 217

The partial sequence π ∈ F with the smallest assigned lower bound is selected
and expanded. For each candidate c ∈ C that is not already present in π, we
create a new sequence with c appended to the front. For example, given a set of
candidates e, f, and g, with winning candidate g, the partial sequence π = [f]
will be expanded to create two new sequences [e, f] and [g, f]. We evaluate each
new sequence π′ created by assigning it a lower bound on the number of votes
required to realise any elimination order ending in π′.

While exploring and building elimination sequences, margin-irv maintains a
running upper bound on the value of the true margin. Without any side con-
straints designed to inject desirable properties into a manipulated election, this
upper bound is initialised to the last round margin of the original election. To
enforce additional constraints on the properties of any manipulated election, we
need to manipulate at least as many, and often more, votes than required to sim-
ply change the original outcome. Consequently, we must set the upper bound
maintained by margin-irv to a higher value. In this context, we set the initial
upper bound to the total number of votes cast in the election. This is clearly
always a correct upper bound on any manipulation.

When a sequence π containing all candidates is constructed, the DistanceTo
ILP computes the exact number of vote manipulations required to realise it, while
satisfying all desired side constraints. If this number is lower than our current upper
bound, the upper bound is revised, and all orders in F with a lower bound greater
than or equal to it are pruned from consideration (removed from F). This process
continues until F is empty (we have considered or pruned all possible alternate
elimination sequences). The value of the running upper bound is the true margin
of victory (with side constraints) of the election.

4.1 DistanceTo with Side Constraints

We now present the DistanceTo Integer Linear Program (ILP) used to com-
pute lower bounds on the degree of manipulation required to realise an election
outcome ending in a given candidate sequence, and the (exact) smallest num-
ber of vote changes required to realise a given (complete) alternate elimination
sequence. This ILP, without added side constraints, was originally presented by
Magrino et al. [8].

Let R denote the set of possible (partial and total) rankings R of candidates
C that could appear on a vote, NR the number of votes cast with ranking R ∈ R,
and N the total number of votes cast. Let Rj,i denote the subset of rankings
in R (Rj,i ⊂ R) in which cj is the most preferred candidate still standing (i.e.,
that will count toward cj ’s tally) at the start of round i (in which candidate ci
is eliminated). For each R ∈ R, we define variables:

qR integer number of votes to be changed into R;
mR integer number of votes with ranking R in the unmodified

election to be changed into something other than R; and
yR number of votes in the modified election with ranking R.

218 M. Blom et al.

Given a partial or complete order π, the DistanceTo ILP is:

min
∑
R∈R

qR

NR + qR − mR = yR ∀R ∈ R (3)∑
R∈R

qR =
∑
R∈R

mR (4)

∑
R∈Ri,i

yR ≤
∑

R∈Rj,i

yR ∀ci, cj ∈ π . i < j (5)

n ≥ yR ≥ 0, NR ≥ mR ≥ 0, qR ≥ 0 ∀R ∈ R (6)

Constraint (3) states that the number of votes with ranking R ∈ R in the
new election is equal to the sum of those with this ranking in the unmodified
election and those whose ranking has changed to R, minus the number of votes
whose ranking has been changed from R. Constraint (5) defines a set of special
elimination constraints which force the candidates in π to be eliminated in the
stated order. Constraint (4) ensures that the total number of votes cast in the
election does not change as a result of the manipulation.

The above ILP does not include any additional side constraints – properties
that we want the manipulated election to satisfy besides resulting in a different
winner to that of the original election. We show, in Sect. 5, that manipulated
elections found by margin-irv in this setting are almost always evidently close,
with a last round margin of 0 or 1 vote. This makes sense as the algorithm
is trying to manipulate as few votes as possible, breaking any ties in favour
of an alternate outcome. An adversary with the ability to modify electronic
records of cast votes, however, will want to create a manipulated election that
is not evidently close. An election with a tie in the final round of counting, or
a difference of several votes in the tallies of the final two remaining candidates,
is likely to be closely scrutinised. Australian IRV elections with a last round
margin of less than 100 votes, for example, trigger an automatic recount.

Given the widespread use of the last round margin as the indicator of how
close an IRV election is, rather than the true MOV of the election, our adversary
can use this to their advantage. Consider a candidate elimination sequence π,
containing at least two candidates from a set C. Let the last two candidates
in the sequence π be denoted by ck and ck+1, with |C| = k + 1. Adding the
following side constraint to DistanceTo ensures that the last round margin of
any manipulated election is greater than or equal to TLRM votes.

∑
R∈Rk,k

yR ≤
∑

R∈Rk+1,k

yR + 2TLRM (7)

We can add any number of desired side constraints to this ILP to inject
desirable properties into any manipulated election. In this paper we consider two
side constraints: requiring the last round margin of the manipulated election to
be equal to or greater than a given threshold TLRM ; and ensuring no ties arise

Election Manipulation 100 219

in the manipulated election when determining which candidate to eliminate in
each round. The latter constraint can be modelled by requiring the tally of the
eliminated candidate e in each round i to contain Δ fewer votes than that of the
candidate with the next smallest tally in round i.

Δ +
∑

R∈Ri,i

yR ≤
∑

R∈Rj,i

yR ∀ci, cj ∈ π . i < j (8)

Constraint (8) modifies the set of special elimination constraints (Constraint
5) with the addition of the Δ constant on the left hand side.

4.2 Selecting a Desired Winner

An adversary is likely to have a goal of electing a specific candidate, or one
of a set of specific candidates, in place of the original winner. Blom et al. [3]
show that we can compute the smallest number of vote changes necessary to
elect a specific alternate winner – a candidate from a given set C′ – by adjusting
the way we construct our initial frontier F in the branch-and-bound algorithm
described above. Consider an election with candidates C and winner w ∈ C. If
we are interested in simply changing the candidate who wins to any candidate
that is not w, we add |C| − 1 partial sequences to our frontier, one for each
alternate winner. As described above, each of these sequences contains just one
candidate – the alternate winner in question. In the setting where we want to
elect a candidate from the set C′, we create, and add to our frontier, a partial
candidate sequence for each of the candidates in C′. The remainder of the algo-
rithm remains unchanged. The use of this restricted frontier, in conjunction with
a DistanceTo ILP containing side constraints, allows us to compute a minimal
manipulation of votes required to elect a specific candidate with, for example, a
large last round margin. In the case study below, we consider an adversary that
simply wants to change the election winner to any alternate candidate.

5 Case Study: The NSW 2015 State Election

In the 2015 NSW State Election, 4.56 million votes were cast across 93 IRV elec-
tions, one in each of 93 different electorates. Table 2 considers these 93 elections,
recording the number of votes cast, the last round margin, the true margin of vic-
tory, and the last round margin of the manipulated election found by margin-irv
without the addition of side constraints. In all but five elections (Ballina, Heffron,
Lismore, Maitland, and Willoughby) the MOV is the LRM, showing that they
are almost always equal. In all but one election (Ballina), minimal manipulation
results in an evidently close election. Ballina shows that, while uncommon, an
adversary can achieve a large last round margin without performing any more
manipulation than necessary to alter the winner of the seat.

220 M. Blom et al.

We now add our side constraints (7, 8) to each DistanceTo ILP solved by
margin-irv, with TLRM chosen such that the difference between the tallies of the
last two remaining candidates, in each election, is at least 100 votes (TLRM = 50),
and Δ = 1. This would avoid an automatic recount, and ties when determin-
ing which candidate to eliminate. Table 3 reports, for all 93 seats, the minimal
manipulation MAN (i.e. number of ballots changed) required to change the win-
ner of each election while ensuring these constraints hold, the original last round
margin of the election (LRM), the last round margin of the manipulated election
(LRM*), and the margin of victory of the manipulated election (MOV*). MOV*
represents the smallest number of vote changes required to change the winner
of the manipulated election (to any alternate winner, not necessarily back to its
original winner).

In many cases, we can create a manipulated election where the LRM* is
not only at least 50 votes (leading to a difference in the tallies of the last two
remaining candidates of 100 votes), but has a MOV equal to it. This is reflective
of most IRV elections – the MOV is generally equal to the LRM. In others, the
manipulated elections are much closer than the LRM suggests.

To ensure a LRM* of at least TLRM votes, we often have to manipulate
a further TLRM votes on top of those we must change to simply change the
winning candidate. For TLRM = 50, this is the case for all of the 93 seats with
the exception of Ballina and Lismore – we can find a minimal manipulation, just
enough to change the winning candidate, that also has an LRM of at least 50.

In some cases we can perform a small amount of additional manipulation,
beyond that required to simply change the election outcome, and receive a much
larger increase in the LRM*. Imagine that our adversary desired an even larger
LRM* – say, 5% of the total votes cast. Table 4 reports the new number of votes
changes (MAN) required to manipulate the 93 NSW elections to ensure that
both the LRM* is at least 5% of the total number of votes cast, and eliminated
candidates do not appear in any ties (with Δ = 1).

We have boldened the elections in which the apparent change in the election
outcome is much greater than the degree of manipulation performed. In Heffron,
for example, just changing the winner requires 5825 vote changes (12.6% of the
total votes cast). The LRM for Heffron is 5835. If we only change 5825 votes,
our manipulated election will have a LRM* of 1 vote. By changing a further 117
votes, we can create an election with both a different winner and a LRM* of
2319 votes. In Ballina, performing an additional 133 vote manipulations yields
an increase in the LRM* of 1145 votes (from 1229 to 2374).

When performing just enough manipulation to ensure a LRM* of 50 votes
(and a change in winner), the MOV* and LRM* of the manipulated elections
substantially differ in 19 of the 93 elections. When performing substantially more
manipulation, to ensure a LRM* of 5% of the total votes cast, the MOV* and
LRM* of the manipulated elections substantially differ in 50 of the 93 elections.

These results demonstrate that, in the presence of manipulation, the LRM
of an election is generally not a good indicator of how close the election was or
whether its result should be audited or not. Then again, neither is its MOV.

Election Manipulation 100 221

Table 2. LRM, MOV, and LRM of the manipulated election (denoted LRM*), for
each seat in the 2015 NSW lower house election (no added side constraints).

Seat |C| |B| MOV LRM LRM* Seat |C| |B| MOV LRM LRM*

Albury 5 46335 5840 5840 0 M–Fields 7 47183 3519 3519 0

Auburn 6 43781 2265 2265 0 Maitland 6 47826 4012 5446 0

Ballina 7 47454 1130 1267 1248 Manly 5 47287 10806 10806 0

Balmain 7 46952 1731 1731 0 Maroubra 5 46492 4717 4717 1

Bankstown 6 42899 5542 5542 0 Miranda 6 49454 5881 5881 0

Barwon 6 47707 5229 5229 0 Monaro 5 46202 1122 1122 0

Bathurst 5 48632 7267 7267 1 M–Druitt 5 44948 6343 6343 0

B–Hills 5 49266 10023 10023 0 Mulgoa 5 48257 4336 4336 0

Bega 5 47658 3663 3663 1 Murray 8 46387 8574 8574 0

Blacktown 5 46262 5565 5565 0 M–Lakes 6 48252 3627 3627 0

B–Mntns 6 47608 3614 3614 1 Newcastle 7 48136 3132 3132 0

Cabramatta 5 47691 7613 7613 0 Newtown 7 45392 3536 3536 0

Camden 5 48152 8217 8217 0 N–Shore 7 46247 8517 8517 0

C–belltown 5 45124 3096 3096 0 N–lands 6 48340 11969 11969 0

Canterbury 5 47631 6610 6610 0 Oatley 5 48119 3006 3006 0

Castle Hill 5 48092 13160 13160 0 Orange 5 48784 10048 10048 0

Cessnock 5 45822 9187 9187 0 Oxley 5 46514 4591 4591 0

Charlestown 7 48919 5532 5532 0 Parramatta 7 47447 5509 5509 0

Clarence 8 47181 4069 4069 0 Penrith 8 47577 2576 2576 0

C–Harbour 5 45162 5824 5824 1 Pittwater 5 48345 11430 11430 1

Coogee 5 46322 1243 1243 0 P–M.quarie 5 49231 8715 8715 0

C–mundra 5 47160 9247 9247 0 P–Stephens 5 47037 2088 2088 0

Cronulla 5 50333 9674 9674 0 Prospect 5 47195 1458 1458 0

Davidson 5 49147 12960 12960 0 Riverstone 5 46945 5324 5324 0

Drummoyne 6 46818 8099 8099 0 Rockdale 6 46240 2004 2004 0

Dubbo 7 46582 8680 8680 0 Ryde 5 48286 5153 5153 0

East Hills 5 47449 189 189 0 S–Hills 7 47874 3774 3774 0

Epping 6 49532 7156 7156 0 S–harbour 7 50995 7519 7519 0

Fairfield 5 45921 6998 6998 0 S–Coast 5 45788 4054 4054 1

Gosford 6 48259 102 102 0 Strathfield 5 46559 770 770 0

Goulburn 6 48663 2945 2945 0 S–Hill 7 47073 3854 3854 0

Granville 6 45212 837 837 0 Swansea 8 48200 4974 4974 0

Hawkesbury 8 46856 7311 7311 1 Sydney 8 42747 2864 2864 1

Heathcote 6 51128 3560 3560 0 Tamworth 7 49004 4643 4643 0

Heffron 5 46367 5824 5835 0 Terrigal 5 48871 4053 4053 0

Holsworthy 6 47126 2902 2902 1 T–Entrance 5 47953 171 171 0

Hornsby 6 49834 8577 8577 1 Tweed 5 44185 1291 1291 0

Keira 5 50599 8164 8164 0 U–Hunter 6 47296 866 866 0

Kiama 5 47686 3856 3856 0 Vaucluse 5 46145 9783 9783 0

Kogarah 6 46421 2782 2782 0 W–Wagga 6 46610 5475 5475 0

Ku-ring-gai 5 48436 10061 10061 0 Wakehurst 6 47894 10770 10770 0

L–M.quarie 7 47698 4253 4253 0 Wallsend 5 49631 9418 9418 0

Lakemba 5 44728 8235 8235 0 Willoughby 6 47302 10160 10247 0

Lane Cove 6 48622 7740 7740 1 Wollondilly 6 47182 7401 7401 1

Lismore 6 47046 209 1173 1 Wollongong 7 49702 3367 3367 0

Liverpool 5 45291 8495 8495 1 Wyong 7 46070 3720 3720 0

L–derry 5 45928 3736 3736 0

222 M. Blom et al.

Table 3. Minimal MANipulation compared to LRM of the original election and MOV
and LRM of the manipulated (*) election, for each seat in the 2015 NSW lower house
election (side constraints requiring LRM* to be at least 50 votes, and tie breaking with
Δ = 1, added).

Seat MAN LRM LRM* MOV* Seat MAN LRM LRM* MOV*

Albury 5890 5840 50 50 M–Fields 3569 3519 50 50

Auburn 2315 2265 50 50 Maitland 4062 5446 50 1

Ballina 1130 1267 1229 1 Manly 10856 10806 50 1

Balmain 1781 1731 50 50 Maroubra 4767 4717 51 51

Bankstown 5592 5542 50 50 Miranda 5931 5881 50 50

Barwon 5279 5229 50 50 Monaro 1172 1122 51 51

Bathurst 7317 7267 51 51 M–Druitt 6393 6343 50 50

B–Hills 10073 10023 50 50 Mulgoa 4386 4336 51 51

Bega 3713 3663 51 51 Murray 8624 8574 50 1

Blacktown 5615 5565 50 50 M–Lakes 3677 3627 50 50

B–Mntns 3664 3614 51 51 Newcastle 3182 3132 50 50

Cabramatta 7663 7613 50 50 Newtown 3586 3536 50 50

Camden 8267 8217 50 50 N–Shore 8567 8517 50 1

C–belltown 3146 3096 50 50 N–Tablelands 12019 11969 50 1

Canterbury 6660 6610 50 50 Oatley 3056 3006 51 51

Castle Hill 13210 13160 50 1 Orange 10098 10048 50 1

Cessnock 9237 9187 50 50 Oxley 4641 4591 50 50

Charlestown 5582 5532 50 51 Parramatta 5559 5509 50 50

Clarence 4119 4069 50 50 Penrith 2626 2576 50 50

C–Harbour 5874 5824 51 51 Pittwater 11480 11430 50 50

Coogee 1293 1243 50 50 P–Macquarie 8765 8715 50 50

C–mundra 9297 9247 50 50 P–Stephens 2138 2088 50 50

Cronulla 9724 9674 50 1 Prospect 1508 1458 50 50

Davidson 13010 12960 50 50 Riverstone 5374 5324 50 50

Drummoyne 8149 8099 50 50 Rockdale 2054 2004 50 50

Dubbo 8730 8680 50 50 Ryde 5203 5153 51 51

East Hills 239 189 50 50 S–Hills 3824 3774 50 50

Epping 7206 7156 50 1 S–harbour 7569 7519 50 50

Fairfield 7048 6998 50 50 S–Coast 4104 4054 51 51

Gosford 152 102 50 50 Strathfield 820 770 50 50

Goulburn 2995 2945 50 50 S–Hill 3904 3854 50 1

Granville 887 837 50 50 Swansea 5024 4974 50 52

Hawkesbury 7361 7311 50 50 Sydney 2914 2864 51 51

Heathcote 3610 3560 50 50 Tamworth 4693 4643 51 51

Heffron 5874 5835 50 1 Terrigal 4103 4053 50 50

Holsworthy 2952 2902 51 51 T–Entrance 221 171 51 51

Hornsby 8627 8577 50 1 Tweed 1341 1291 51 51

Keira 8214 8164 50 50 U–Hunter 916 866 50 50

Kiama 3906 3856 50 50 Vaucluse 9833 9783 50 1

Kogarah 2832 2782 50 50 W–Wagga 5525 5475 50 50

Ku-ring-gai 10111 10061 50 1 Wakehurst 10820 10770 50 50

L–M.quarie 4303 4253 50 50 Wallsend 9468 9418 50 50

Lakemba 8285 8235 50 1 Willoughby 10210 10247 51 2

Lane Cove 7790 7740 50 50 Wollondilly 7451 7401 50 51

Lismore 209 1173 50 1 Wollongong 3417 3367 50 50

Liverpool 8545 8495 50 1 Wyong 3770 3720 50 50

L–derry 3786 3736 50 50

Election Manipulation 100 223

Table 4. Minimal MANipulation and LRM the original election and LRM and MOV
of the manipulated (*) election, for each seat in the 2015 NSW lower house election
(side constraints requiring LRM* to be at least 5% of the total cast votes, and tie
breaking with Δ = 1, added).

Seat MAN LRM LRM* MOV* Seat MAN LRM LRM* MOV*

Albury 8157 5840 2317 2317 M–Fields 5878 3519 2360 2360

Auburn 4454 2265 2190 2190 Maitland 6278 5446 2462 1

Ballina 1263 1267 2374 1 Manly 13171 10806 2365 1

Balmain 3075 1731 3196 1 Maroubra 7042 4717 2326 2326

Bankstown 7687 5542 2145 1989 Miranda 8354 5881 2473 1449

Barwon 7615 5229 2386 633 Monaro 3432 1122 2311 2311

Bathurst 9699 7267 2433 2235 M–Druitt 8591 6343 2248 1679

B–Hills 12487 10023 2464 2080 Mulgoa 6749 4336 2414 2414

Bega 6046 3663 2384 2384 Murray 10893 8574 2320 1

Blacktown 7879 5565 2314 2314 M–Lakes 6040 3627 2413 675

B–Mntns 5947 3614 2381 1 Newcastle 5278 3132 2407 2

Cabramatta 9998 7613 2385 669 Newtown 5806 3536 2270 131

Camden 10625 8217 2408 2408 N–Shore 10830 8517 2313 1

C–belltown 5353 3096 2257 2257 N–Tablelands 14386 11969 2417 1

Canterbury 8992 6610 2382 1 Oatley 5412 3006 2407 2407

Castle Hill 15565 13160 2405 1 Orange 12487 10048 2440 1

Cessnock 11479 9187 2292 1401 Oxley 6917 4591 2326 2326

Charlestown 7978 5532 2446 1990 Parramatta 7881 5509 2373 1747

Clarence 6428 4069 2360 2360 Penrith 4955 2576 2379 2379

C–Harbour 8082 5824 2259 2259 Pittwater 13847 11430 2418 1353

Coogee 3560 1243 2317 1461 P–Macquarie 11177 8715 2462 2462

C–mundra 11605 9247 2358 9 P–Stephens 4440 2088 2352 2352

Cronulla 12191 9674 2517 1 Prospect 3818 1458 2360 2360

Davidson 15418 12960 2458 290 Riverstone 7672 5324 2348 2348

Drummoyne 10440 8099 2341 680 Rockdale 4316 2004 2312 2312

Dubbo 11009 8680 2330 1 Ryde 7567 5153 2415 2415

East Hills 2562 189 2373 2373 S–Hills 6168 3774 2394 2394

Epping 9633 7156 2477 1 S–harbour 10069 7519 2550 1

Fairfield 9295 6998 2297 1 S–Coast 6343 4054 2290 860

Gosford 2515 102 2413 2413 Strathfield 3098 770 2328 2328

Goulburn 5379 2945 2434 2434 S–Hill 5487 3854 2354 1

Granville 3098 837 2261 2261 Swansea 7384 4974 2410 2370

Hawkesbury 9654 7311 2343 2343 Sydney 5001 2864 2138 1934

Heathcote 6116 3560 2557 2557 Tamworth 7093 4643 2451 2451

Heffron 5942 5835 2319 1 Terrigal 6497 4053 2444 2444

Holsworthy 5258 2902 2357 2357 T–Entrance 2569 171 2399 2399

Hornsby 11069 8577 2492 1 Tweed 3500 1291 2210 2210

Keira 10694 8164 2530 970 U–Hunter 3231 866 2365 1748

Kiama 6241 3856 2385 2385 Vaucluse 12091 9783 2308 1

Kogarah 5104 2782 2322 2322 W–Wagga 7806 5475 2331 2331

Ku-ring-gai 12483 10061 2422 621 Wakehurst 13165 10770 2395 1329

L–M.quarie 6638 4253 2385 2385 Wallsend 11900 9418 2482 1939

Lakemba 10472 8235 2237 1 Willoughby 12525 10247 2366 1

Lane Cove 10171 7740 2432 42 Wollondilly 9760 7401 2360 1062

Lismore 2449 1173 2353 1 Wollongong 5852 3367 2486 330

Liverpool 10760 8495 2265 2265 Wyong 6024 3720 2304 2304

L–derry 6033 3736 2297 2297

224 M. Blom et al.

A clever adversary with sufficient access to change electronic records of cast
votes will be able to design a manipulation that results in both a sizable LRM
and MOV. To ensure that both the LRM and MOV of an election is sufficiently
large, however, requires more manipulation than just desiring a large LRM, or
just desiring a change in winner.

6 Modelling a Weaker Adversary

A likely practical scenario for election manipulation is one in which the adversary
has partial knowledge of the ballot profiles and the opportunity to manipulate
(some of) the rest. This would be the case, for example, if a corrupt scanner
were able to modify ballot images or interpretations without the paper record
being subsequently audited. There are various models for an adversary with the
power to manipulate a restricted number of votes, which is particularly relevant
in contexts in which a small manipulation can change the outcome [5].

An interesting question to address in this context is whether a manipulation
computed for, say, the first half of the ballots, could then be simply doubled and
applied successfully to the second half. Obviously this is not true in general, if
there is some systematic difference between earlier and later votes (for example,
if later votes come from a geographically distinct area from the earlier ones). It
is an interesting practical question to understand how to extrapolate successful
manipulations from a subset of ballots to the whole election, given reasonable
assumptions about the information contained in the initial sample. Of course,
other data, such as from past elections, could also be available to an attacker.

7 Concluding Remarks

We show how to compute successful manipulations that are designed specifically
to avoid triggering a recount based on last-round margin, an inaccurate but
commonly used assessment of the closeness of an IRV election.

The attack shown in this paper would be detected (with high probability)
by a genuine Risk Limiting Audit, or by a recount triggered from the properly-
computed true Margin of Victory rather than the last-round margin.

References

1. Antonyan, T., et al.: State-wide elections, optical scan voting systems, and the
pursuit of integrity. IEEE Trans. Inf. Forensics Secur. 4(4), 597–610 (2009)

2. Blom, M., Stuckey, P.J., Teague, V.J.: Ballot-polling risk limiting audits for IRV
elections. In: Krimmer, R., et al. (eds.) E-Vote-ID 2018. LNCS, vol. 11143, pp.
17–34. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00419-4 2

3. Blom, M., Stuckey, P.J., Teague, V.J.: Computing the margin of victory in pref-
erential parliamentary elections. In: Krimmer, R., et al. (eds.) E-Vote-ID 2018.
LNCS, vol. 11143, pp. 1–16. Springer, Cham (2018). https://doi.org/10.1007/978-
3-030-00419-4 1

https://doi.org/10.1007/978-3-030-00419-4_2
https://doi.org/10.1007/978-3-030-00419-4_1
https://doi.org/10.1007/978-3-030-00419-4_1

Election Manipulation 100 225

4. Blom, M., Stuckey, P.J., Teague, V., Tidhar, R.: Efficient computation of exact
IRV margins. In: European Conference on AI (ECAI), pp. 480–487 (2016)

5. Di Franco, A., Petro, A., Shear, E., Vladimirov, V.: Small vote manipulations can
swing elections. Commun. ACM 47(10), 43–45 (2004)

6. Hall, J.L., et al.: Implementing risk-limiting post-election audits in California.
In: Electronic Voting Technology Workshop/Workshop on Trustworthy Elections
(EVT/WOTE 2009), Montreal, Canada, August 2009. USENIX (2009)

7. Lindeman, M., Stark, P.B., Yates, V.: BRAVO: ballot-polling risk-limiting audits to
verify outcomes. In: Electronic Voting Technology Workshop/Workshop on Trust-
worthy Elections (EVT/WOTE 2011). USENIX (2011)

8. Magrino, T.R., Rivest, R.L., Shen, E., Wagner, D.A.: Computing the margin of vic-
tory in IRV elections. In: USENIX Accurate Electronic Voting Technology Work-
shop. USENIX Association, Berkeley (2011)

9. Richie, R.: Instant runoff voting: what Mexico (and others) could learn. Election
Law J. 3, 501–512 (2004)

10. Sarwate, A.D., Checkoway, S., Shacham, H.: Risk-limiting audits and the margin
of victory in nonplurality elections. Polit. Policy 3(3), 29–64 (2013)

Bernoulli Ballot Polling: A Manifest
Improvement for Risk-Limiting Audits

Kellie Ottoboni1, Matthew Bernhard2, J. Alex Halderman2, Ronald L. Rivest3,
and Philip B. Stark1(B)

1 Department of Statistics, University of California, Berkeley, CA, USA
stark@stat.berkeley.edu

2 Department of Computer Science and Engineering,
University of Michigan, Ann Arbor, MI, USA

3 CSAIL, Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract. We present a method and software for ballot-polling risk-
limiting audits (RLAs) based on Bernoulli sampling: ballots are included
in the sample with probability p, independently. Bernoulli sampling has
several advantages: (1) it does not require a ballot manifest; (2) it can be
conducted independently at different locations, rather than requiring a
central authority to select the sample from the whole population of cast
ballots or requiring stratified sampling; (3) it can start in polling places
on election night, before margins are known. If the reported margins for
the 2016 U.S. Presidential election are correct, a Bernoulli ballot-polling
audit with a risk limit of 5% and a sampling rate of p0 = 1% would have
had at least a 99% probability of confirming the outcome in 42 states.
(The other states were more likely to have needed to examine additional
ballots). Logistical and security advantages that auditing in the polling
place affords may outweigh the cost of examining more ballots than some
other methods might require.

1 Introduction

No method for counting votes is perfect, and methods that rely on computers
are particularly fragile: errors, bugs, and deliberate attacks can alter results.
The vulnerability of electronic voting was confirmed in two major state-funded
studies, California’s Top-to-Bottom Review (Bowen 2007) and Ohio’s EVEREST
study (McDaniel et al. 2007). More recently, at the 2017 and 2018 DEFCON
hacking conferences, attendees with little or no knowledge of election systems
were able to penetrate a wide range of U.S. voting machines (Blaze et al. 2017,
2018). Given that Russia interfered with the 2016 U.S. Presidential election
through an “unprecedented coordinated cyber campaign against state election
infrastructure” (U.S. Senate Select Committee on Intelligence 2018), national
security demands we protect our elections from nation states and other advanced
persistent threats.

Risk-limiting audits (RLAs) were introduced in 2007 (Stark 2008) as a mech-
anism for detecting and correcting outcome-changing errors in vote tabulation,
c© International Financial Cryptography Association 2020
A. Bracciali et al. (Eds.): FC 2019 Workshops, LNCS 11599, pp. 226–241, 2020.
https://doi.org/10.1007/978-3-030-43725-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43725-1_16&domain=pdf
https://doi.org/10.1007/978-3-030-43725-1_16

Bernoulli Ballot-Polling: A Manifest Improvement 227

whatever their cause—including hacking, misconfiguration, and human error.
RLAs have been tested in practice in California, Colorado, Indiana, Virginia,
Ohio, and Denmark. Colorado started conducting routine statewide RLAs in
2017 (Lindeman et al. 2018), and Rhode Island passed a law in 2017 requiring
routine statewide RLAs starting in 2020 (RI Gen L § 17-19-37.4). RLA legis-
lation is under consideration in a number of other states, and bills to require
RLAs have been introduced in Congress.

In this paper, we present an RLA method based on Bernoulli random sam-
pling. With simple random sampling, the number of ballots to sample is fixed;
with Bernoulli sampling, the expected sampling rate is fixed but the sample size
is not. Conceptually, Bernoulli ballot polling (BBP) decides whether to include
the jth ballot in the sample by tossing a biased coin that has probability p of
landing heads. The ballot is included if and only if the coin lands heads. Coin
tosses for different ballots are independent, but have the same chance of landing
heads. (Rather than toss a coin for each ballot, it more efficient to implement
Bernoulli sampling in practice using geometric skipping, described in Sect. 6.3.)

The logistical simplicity of Bernoulli sampling may make it useful for election
audits. Like all RLAs, BBP RLAs require a voter-verifiable paper record. Like
other ballot-polling RLAs (Lindeman et al. 2012; Lindeman and Stark 2012),
BBP makes no other technical demands on the voting system. It requires no
special equipment, and only a minimal amount of software to select and analyze
the sample—in principle, it could be carried out with dice and a pencil and
paper. In contrast to extant ballot-polling RLAs, BBP does not require a ballot
manifest (although it does require knowing where all the ballots are, and access
to the ballots). BBP is inherently local and parallelizable, because the decision of
whether to include any particular ballot in the sample does not depend on which
other ballots are selected, nor on how many other ballots have been selected,
nor even on how many ballots were cast. We shall see that this has practical
advantages.

Bernoulli sampling is well-known in the survey sampling literature, but it
is used less often than simple random sampling for a number of reasons. The
variance of estimates based on Bernoulli samples tends to be larger than for
simple random samples (Särndal et al. 2003), due to the fact that both the sam-
ple and the sample size are random. This added randomness complicates rigor-
ous inferences. A common estimator of the population mean from a Bernoulli
sample is the Horvitz-Thompson estimator, which has a high variance when
the sampling rate p is small. Often, P -values and confidence intervals for the
Horvitz-Thompson estimator are approximated using the normal distribution
(Lohr 2009; Cochran 1977; Thompson 1997), which may be inaccurate if the
population distribution is skewed—as it often is in auditing problems (Panel on
Nonstandard Mixtures of Distributions 1998).

Instead of relying on parametric approximations, we develop a test based on
Wald’s sequential probability ratio test (Wald 1945). The test is akin to that in
extant ballot polling RLA methods (Lindeman et al. 2012; Lindeman and Stark
2012), but the mathematics are modified to work with Bernoulli random samples,

228 K. Ottoboni et al.

including the fact that Bernoulli samples are drawn without replacement. (Pre-
vious ballot-polling RLAs relied on sampling with replacement.) Conditional
on the attained sample size n, a Bernoulli sample of ballots is a simple ran-
dom sample. We maximize the conditional P -value of the null hypothesis (that
the reported winner did not win) over a nuisance parameter, the total number
of ballots with valid votes for either of a given pair of candidates, excluding
invalid ballots or ballots for other candidates. A martingale argument shows
that the resulting test is sequential: if the test does not reject, the sample can
be expanded using additional rounds of Bernoulli sampling (with the same or
different expected sampling rates) and the resulting P -values will still be con-
servative.

A BBP RLA can begin in polling places on election night. Given an initial
sampling rate to be used across all precincts and vote centers, poll workers in each
location determine which ballots will be examined in the audit, independently
from each other and independently across ballots, and record the votes cast
on each ballot selected. (Vote-by-mail and provisional ballots can be audited
similarly; see Sect. 6.2.) Once the election results are reported, the sequential
probability ratio test can be applied to the sample vote tallies to determine
whether there is sufficient evidence that the reported outcome is correct.1 If the
sample does not provide sufficiently strong evidence to attain the risk limit, the
sample can be expanded using subsequent rounds of Bernoulli sampling until
either the risk limit is attained or all ballots are inspected. Figure 1 summarizes
the procedure.

BBP has a number of practical advantages, with little additional workload
in terms of the number of ballots examined. Workload simulations show that
the number of ballots needed to confirm a correctly reported outcome is sim-
ilar for BBP and the BRAVO RLA (Lindeman et al. 2012). If the choice of
initial sampling rate (and thus, the initial sample size) is larger than necessary,
the added efficiency of conducting the audit “in parallel” across the entire elec-
tion may outweigh the cost of examining extra ballots. Using statewide results
from the 2016 United States presidential election, BBP with a 1% initial sam-
pling rate would have had at least a 99% chance of confirming the results in
42 states at risk limit 5% (assuming the reported results were in fact correct).
A Python implementation of BBP is available at https://github.com/pbstark/
BernoulliBallotPolling.

2 Notation and Mathematical Background

We consider social choice functions that are variants of majority and plurality
voting: the winners are the k ≥ 1 candidates who receive the most votes. This
includes ordinary “first-past-the-post” contests, as well as “vote for k” contests.2

1 The current method uses the reported results to construct the alternative hypothesis.
A variant of the method does not require the reported results. We do not present
that method here; it is related to ClipAudit (Rivest 2017).

2 The same general approach works for some preferential voting schemes, such as
Borda count and range voting, and for proportional representation schemes such as
D’Hondt (Stark and Teague 2014). We do not consider instant-runoff voting (IRV).

https://github.com/pbstark/BernoulliBallotPolling
https://github.com/pbstark/BernoulliBallotPolling

Bernoulli Ballot-Polling: A Manifest Improvement 229

Fig. 1. Bernoulli ballot-polling audit step-by-step procedures.

As explained in Lindeman et al. (2012), it suffices to consider one (winner, loser)
pair at a time: the contest outcome is correct if every reported winner actually
received more votes than every reported loser. Auditing majority and super-
majority contests requires only minor modifications.3 Sect. 3.2 addresses auditing
multiple contests simultaneously.

Let w denote a reported winning candidate and � denote a reported losing
candidate. Suppose that the population contains Nw ballots with a valid vote
for w but not �, N� ballots with a valid vote for � but not w, and Nu ballots
with votes for both w and � or for neither w nor �. The total number of ballots
is N = Nw + N� + Nu. Let Nw� ≡ Nw + N� be the number of ballots in the
population with a valid vote for w or � but not both. For Bernoulli sampling,
N may be unknown; in any event, Nw, N�, and Nu are unknown, or the audit
would not be necessary.

3 For instance, for a majority contest, one simply pools the votes for all the reported
losers into a single “pseudo-candidate” who reportedly lost.

230 K. Ottoboni et al.

If we can reject the null hypothesis that N� ≥ Nw at significance level α,
we have statistically confirmed that w got more votes than �. Section 3 presents
a test for this hypothesis that accounts for the nuisance parameter Nw�. We
assume that ties are settled in a deterministic way and that if the audit is unable
to confirm the contest outcome, a full manual tally resulting in a tie would be
settled in the same deterministic way.

2.1 Multi-round Bernoulli Sampling

A Bernoulli(p) random variable I is a random variable that takes the value 1
with probability p and the value 0 with probability 1 − p. BBP uses Bernoulli
sampling, which involves independent selection of different ballots with the same
probability p of selecting each ballot: Ij = 1 if and only if ballot j is selected to
be in the sample, where {Ij}N

j=1 are independent, identically distributed (IID)
Bernoulli(p) random variables.

Suppose that after tossing a coin with probability p0 of landing heads for
every item in the population, we toss a coin with probability p1 for every item
(again, independently), and include an item in the sample if the first or second
toss for that item landed heads. That amounts to drawing a Bernoulli sample
using selection probability 1 − (1 − p0)(1 − p1): an item is in the sample unless
its coin landed tails on both tosses, which has probability (1 − p0)(1 − p1). This
extends to making any integral number K of passes through the population
of ballots, with pass k using a coin that has chance pk of landing heads: such
“K-round” Bernoulli sampling is still Bernoulli sampling, with P{I = 1} = p =
1 −

∏K−1
k=0 (1 − pk).

2.2 Exchangeability and Conditional Simple Random Sampling

Because the N variables {Ij} are IID, they are exchangeable, meaning their joint
distribution is invariant under the action of the symmetric group (relabelings).
Consider a collection of indices S ⊂ {1, . . . , N} of size k, 0 ≤ k ≤ N . Define the
event

IS ≡ {Ij = 1,∀j ∈ S, and Ij = 0,∀j /∈ S}.
Because {Ij} are exchangeable, PIS = PIT for every set T ⊂ {1, . . . , N} of size
k, since every such set T can be mapped to S by a one-to-one relabeling of the
indices.

It follows that, conditional on the attained size of the sample, n =
∑N

j=1 Ij ,
all

(
N
n

)
subsets of size n drawn from the N items are equally likely: the sample

is conditionally a simple random sample (SRS) of size n. This is foundational
for applying the SPRT to Bernoulli samples.

3 Tests

Suppose we draw a Bernoulli sample of ballots. The random variable B is the
number of ballots in the sample. Let Bw denote the number of ballots in the

Bernoulli Ballot-Polling: A Manifest Improvement 231

sample with a vote for w but not �; let B� denote the number of ballots in the
sample with a vote for � but not w; and let Bu denote the number of ballots in the
sample with a vote for both w and � or neither w nor �, so B = Bw + B� + Bu.

3.1 Wald’s SPRT with a Nuisance Parameter

We want to test the compound hypothesis that Nw ≤ N� against the alternative
that Nw = Vw, N� = V�, and Nu = Vu, with Vw − V� > 0.4 We present a test
based on Wald’s sequential probability ratio test (SPRT) (Wald 1945).

The values Vw, V�, and Vu are the reported results (or values related to those
reported results; see Lindeman et al. (2012)). In this problem, Nu (equivalently,
Nw� ≡ Nw + N�) is a nuisance parameter: we care about Nw − N�, the margin
of the reported winner over the reported loser.

Conditional on B = n, the sample is a simple random sample. The conditional
probability that the sample will yield counts (Bw, B�, Bu) under the alternative
hypothesis is

∏Bw−1
i=0 (Vw − i)

∏B�−1
i=0 (V� − i)

∏Bu−1
i=0 (Vu − i)

∏n−1
i=0 (N − i)

.

If B� ≥ Bw, the data obviously do not provide evidence against the null, so we
suppose that B� < Bw, in which case, the element of the null that will maximize
the probability of the observed data has Nw = N�. Under the null hypothesis,
the conditional probability of observing (Bw, B�, Bu) is

∏Bw−1
i=0 (Nw − i)

∏B�−1
i=0 (Nw − i)

∏Bu−1
i=0 (Nu − i)

∏n
i=0(N − i)

,

for some value Nw and the corresponding Nu = N − 2Nw. How large can that
probability be if the null hypothesis is true? The probability under the null is
maximized by any integer x ∈ {max(Bw, B�), . . . , (N − Bu)/2} that maximizes

Bw−1∏

i=0

(x − i)
B�−1∏

i=0

(x − i)
Bu−1∏

i=0

(N − 2x − i).

The logarithm is monotonic, so any maximizer x∗ also maximizes

f(x) =
Bw−1∑

i=0

ln(x − i) +
B�−1∑

i=0

ln(x − i) +
Bu−1∑

i=0

ln(N − 2x − i).

4 The alternative hypothesis is that the reported results are correct; as mentioned
above, there are other approaches one could use that do not involve the reported
results, but we do not present them here.

232 K. Ottoboni et al.

The second derivative of f is everywhere negative, so f is convex and has
a unique real-valued maximizer on [max(Bw, B�), (N − Bu)/2], either at one of
the endpoints or somewhere in the interval. The derivative f ′(x) is

f ′(x) =
Bw−1∑

i=0

1
x − i

+
B�−1∑

i=0

1
x − i

− 2
Bu−1∑

i=0

1
N − 2x − i

.

If f ′(x) does not change signs, then the maximum is at one of the end-
points, in which case x∗ is the endpoint for which f is larger. Otherwise, the
real maximizer occurs at a stationary point. If the real-valued maximizer is not
an integer, convexity guarantees that the integer maximizer x∗ is one of the two
integer values that bracket the real maximizer: either �x	 or
x�.

A conservative P -value for the null hypothesis after n items have been drawn
is thus

Pn =
∏Bw−1

i=0 (x∗ − i)
∏B�−1

i=0 (x∗ − i)
∏Bu−1

i=0 (N − 2x∗ − i)
∏Bw−1

i=0 (Vw − i)
∏B�−1

i=0 (V� − i)
∏Bu−1

i=0 (Vu − i)
.

Wald’s SPRT Wald (1945) leads to an elegant escalation method if the first
round of Bernoulli sampling does not attain the risk limit: simply make another
round of Bernoulli sampling, as described in Sect. 4. If the null hypothesis is true,
then Pr{infk Pk < α} ≤ α, where k counts the rounds of Bernoulli sampling.
That is, the risk limit remains conservative for any number of rounds of Bernoulli
sampling.

3.2 Auditing Multiple Contests

The math extends to audits of multiple contests; we omit the derivation, but
see, e.g., Lindeman and Stark (2012). The same sample can be used to audit
any number of contests simultaneously. The audit proceeds to a full hand count
unless every null hypothesis is rejected, that is, unless we conclude that every
winner beat every loser in every audited contest. The chance of rejecting all
those null hypotheses cannot be larger than the smallest chance of rejecting
any of the individual hypotheses, because the probability of an intersection of
events cannot be larger than the probability of any one of the events. The chance
of rejecting any individual null hypothesis is at most the risk limit, α, if that
hypothesis is true. Therefore the chance of the intersection is not larger than α
if any contest outcome is incorrect: the overall risk limit is α, with no need to
adjust for multiplicity.

4 Escalation

If the first round of Bernoulli sampling with rate p0 does not generate strong
evidence that the election outcome is correct, we have several options:

Bernoulli Ballot-Polling: A Manifest Improvement 233

1. Conduct a full hand count.
2. Augment the sample with additional ballots selected in some manner, for

instance, making additional rounds of Bernoulli sampling, possibly with dif-
ferent values of p.

3. Draw a new sample and use a different auditing method, e.g., ballot-level
comparison auditing.

The first approach is always conservative. Both the second and third
approaches require some statistical care, as repeated testing introduces addi-
tional opportunities to wrongly conclude that an incorrect election outcome is
correct.

To make additional rounds of Bernoulli sampling, it may help to keep track
of which ballots have been inspected.5 That might involve stamping audited
ballots with “audited” in red ink, for example.

Section 2.1 shows that if we make an integral number of passes through the
population of ballots, tossing a pk-coin for each as-yet-unselected item (we only
toss the coin for an item on the Kth pass if the coin has not landed heads for
that item in any previous pass), then the resulting sample is a Bernoulli random
sample with selection probability p = 1 −

∏K−1
k=0 (1 − pk). Conditional on the

sample size n attained after K passes, every subset of size n is equally likely to
be selected. Hence, the sample is conditionally a simple random sample of size
n from the N ballots.

The SPRT applied to multi-round Bernoulli sampling is conservative: the
unconditional chance of rejecting the null hypothesis if it is true is at most α,
because, if the null is true, the chance that the SPRT exceeds 1/α for any K is
at most α.

The third approach allows us to follow BBP with a different, more efficient
approach, such as ballot-level comparison auditing (Lindeman and Stark 2012).
This may require steps to ensure that multiplicity does not make the risk larger
than the nominal risk limit, e.g., by adjusting the risk limit using Bonferroni’s
inequality.

5 Initial Sampling Rate

We would like to choose the initial sampling rate p0 sufficiently large that a
test of the hypothesis Nw ≤ N� will have high power against the alternative
Nw = Vw, N� = V�, with Vw − V� = c for modest margins c > 0, but not so large
that we waste effort.

There is no analytical formula for the power of the sequential hypothesis test
under this sampling procedure, but we can use simulation to estimate the sam-
pling rates needed to have a high probability of confirming correctly reported
election results. Table 1 gives the sampling rate p0 needed to attain 80%, 90%,
and 99% power for a 2-candidate race in which there are no undervotes or invalid
5 Once ballots are aggregated in a precinct or scanned centrally, it is unlikely that

they will stay in the same order.

234 K. Ottoboni et al.

votes, for a 5% risk limit and a variety of margins and contest sizes. The sim-
ulations assume that the reported vote totals are correct. The required p0 may
be prohibitively large for small races and tight margins; Sect. 7 shows that with
high probability, even a 1% sampling rate would be sufficient to confirm the
outcomes of the vast majority of U.S. federal races without further escalation.

The sequential probability ratio test in Sect. 3 is similar to the BRAVO RLA
presented in Lindeman and Stark (2012) when the sampling rate is small relative
to the population size. There are two differences between BRAVO and BBP:
BBP incorporates information about the number of undervotes, invalid votes,
or votes for candidates other than w and �, and Bernoulli sampling is done
without (as opposed to with) replacement. If every ballot has a valid vote either
for w or for � and the sampling rate is small relative to the population size,
the expected workload of these two procedures is similar. The average sample
number (ASN) (Wald 1945), the expected number of draws required either to
accept or to reject the null hypothesis, for BRAVO using a risk limit α and
margin m is approximately

ASN ≈ 2 ln(1/α)
m2

.

This formula is valid when the sampling rate is low and the actual margin is
not substantially smaller than the (reported) margin used as the alternative
hypothesis.

The ASN gives a rule of thumb for choosing the initial sampling rate for
BBP. For a risk limit of 5% and a margin of 5%, the ASN is about 2,400 ballots.
For a margin of 10%, the ASN is about 600 ballots. These values are lower
than the sample sizes implied by Table 1: the sampling rates in the table have a
higher probability that the initial sample will be sufficient to conclude the audit,
while a sampling rate based on the ASN will suffice a bit more than half of the
time.6 The ASN multiplied by 2–4 is a rough approximation to initial sample size
needed to have roughly a 90% chance that the audit can stop without additional
sampling, if the reported results are correct.

The ASN formula assumes that Nu is 0; value of p0 should be adjusted to
account for ballots that have votes for neither w nor � (or for both w and �).
If r = Nu

N is the fraction of such ballots, the initial sampling rate p0 should be
inflated by a factor of 1

1−r . For example, if half of the ballots were undervotes
or invalid votes, then double the sampling rate would be needed to achieve the
same power as if all of the ballots were valid votes for either w or �.

6 Implementation

6.1 Election Night Auditing

Previous approaches to auditing require a sampling frame (possibly stratified,
e.g., by mode of voting or county). That requires knowing how many ballots
6 The distribution of the sample size is skewed to the right: the expected sample size

is generally larger than the median sample size.

Bernoulli Ballot-Polling: A Manifest Improvement 235

were cast and their locations. In contrast, Bernoulli sampling makes it possible
to start the audit at polling places immediately after the last vote has been cast
in that polling place, without even having to count the ballots cast in the polling
place. This has several advantages:

1. It parallelizes the auditing task and can take advantage of staff (and
observers) who are already on site at polling places.

2. It takes place earlier in the chain of custody of the physical ballots, before the
ballots are exposed to some risks of loss, addition, substitution, or alteration.

3. It may add confidence to election-night result reporting.

The benefit is largest if p0 is large enough to allow the audit to complete
without escalating. Since reported margins will not be known on election night,
p0 might be based on pre-election polls, or set to a fixed value. There is, of
course, a chance that the initial sample will not suffice to confirm outcomes,
either because the true margins are smaller than anticipated, or because the
election outcome is in fact incorrect.

Table 1. Estimated sampling rates needed for Bernoulli ballot polling for a
2-candidate race with a 5% risk limit. These simulations assume the reported margins
were correct.

True margin Ballots cast Sampling rate p to achieve . . .

80% power 90% power 99% power

1% 100,000 55% 62% 77%

2% 100,000 23% 30% 46%

5% 100,000 5% 7% 12%

10% 100,000 2% 2% 4%

20% 100,000 1% 1% 1%

1% 1,000,000 10.4% 14.2% 24.2%

2% 1,000,000 2.9% 4.0% 7.5%

5% 1,000,000 0.5% 0.7% 1.3%

10% 1,000,000 0.2% 0.2% 0.4%

20% 1,000,000 0.1% 0.1% 0.1%

1% 10,000,000 1.15% 1.66% 3.11%

2% 10,000,000 0.30% 0.42% 0.84%

5% 10,000,000 0.05% 0.07% 0.13%

10% 10,000,000 0.02% 0.02% 0.04%

20% 10,000,000 0.01% 0.01% 0.01%

236 K. Ottoboni et al.

There are reasons polling-place BBP audits might not be desirable.

1. Pollworkers, election judges, and observers are likely to be tired and ready to
go home when polls close.

2. The training required to conduct and to observe the audit goes beyond what
poll workers and poll watchers usually receive.

3. Audit data need to be captured and communicated reliably to a central
authority to compute the risk (and possibly escalate the audit) after elec-
tion results are reported.

6.2 Vote-By-Mail and Provisional Ballots

The fact that Bernoulli sampling is a “streaming” algorithm may help sim-
plify logistics compared with other sampling methods. For instance, Bernoulli
sampling can be used with vote-by-mail (VBM) ballots and provisional ballots.
Bernoulli sampling can also be used with provisional ballots. VBM and pro-
visional ballots can be sampled as they arrive (after signature verification), or
aggregated, e.g., daily or weekly. Ballots do not need to be opened or examined
immediately in order to be included in the sample: they can be set aside and
inspected after election day or after their provisional status has been adjudi-
cated. Any of these approaches yields a Bernoulli sample of all ballots cast in
the election, provided the same value(s) of p are used throughout.

6.3 Geometric Skipping

In principle, one can implement Bernoulli sampling by actually rolling dice, or by
assigning a U [0, 1] random number to each ballot, independently across ballots.
A ballot is in the sample if and only if its associated random number is less than
or equal to p.

However, that places an unnecessarily high burden on the quality of the pseu-
dorandom number generator—or on the patience of the people responsible for
selecting ballots by mechanical means, such as by rolling dice. If the ballots are
in physical groups (e.g., all ballots cast in a precinct), it can be more efficient to
put the ballots into some canonical order (for instance, the order in which they
are bundled or stacked) and to rely on the fact that the waiting times between
successes in independent Bernoulli(p) trials are independent Geometric(p) ran-
dom variables: the chance that the next time the coin lands heads will be kth
tosses after the current toss is p(1 − p)k−1.

To select the sample, instead of generating a Bernoulli random variable for
every ballot, we suggest generating a sequence of geometric random variables
Y1, Y2, . . . The first ballot in the sample is the one in position Y1 in the group,
the second is the one in position Y1+Y2, and so on. We continue in this way until
Y1 + . . . + Yj is larger than the number of ballots in the group. This geometric
skipping method is implemented in the software we provide.

Bernoulli Ballot-Polling: A Manifest Improvement 237

6.4 Pseudorandom Number Generation

To draw the sample, we propose using a cryptographically secure PRNG based
on the SHA-256 hash function, setting the seed using 20 rolls of 10-sided dice, in
a public ceremony. This is the method that the State of Colorado uses to select
the sample for risk-limiting audits.

This is a good choice for election audits for several reasons. First, given the
initial seed, anyone can verify that the sequence of ballots audited is correct.
Second, unless the seed is known, the ballots to be audited are unpredictable,
making it difficult for an adversary to “game” the audit. Finally, this family of
PRNGs produces high-quality pseudorandomness.

Implementations of SHA-256-based PRNGs are available in many languages,
including Python and Javascript. The code we provide for geometric skipping
relies on the cryptorandom Python library, which implements such a PRNG.

While Colorado sets the seed for the entire state in a public ceremony, it
may be more secure to generate seeds for polling-place audits locally, after the
ballots have been collated into stacks that determine their order for the purpose

Fig. 2. Simulated quantiles of sample sizes by fraction of votes for the winner
for a two candidate race in elections with 10,000 ballots and 1 million ballots, for
BRAVO ballot-polling audits (BPA) and Bernoulli ballot polling audits (BBP), for
various risk limits. The simulations assume every ballot has a valid vote for one of the
two candidates.

238 K. Ottoboni et al.

of the audit. If the seed were known before the order of the ballots was fixed, an
adversary might be able to arrange that the ballots selected for auditing reflect
a dishonest outcome.

While the sequence of ballots selected by this method is verifiable, there is
no obvious way to verify post facto that the ballots examined were the correct
ones. Only observers of the audit can verify that. Observers’ job would be easier
if ballots were pre-stamped with (known) unique identifiers, but that might
compromise vote anonymity.

7 Evaluation

As discussed in Sect. 5, we expect that workload (total number of ballots exam-
ined) for Bernoulli ballot polling to be approximately the same as BRAVO ballot
polling. Figure 2 compares the fraction of ballots examined for BRAVO audits
and BBP for a 2-candidate contest, estimated by simulation. The simulations
use contest sizes of 10,000 and 1,000,000 ballots, each of which has either a valid
vote for the winner or a valid vote for the loser. The percentage of votes for
the winner ranges from 99% (almost all the votes go to the winner) to 50% (a
tie). The methods produce similarly shaped curves; BBP requires slightly more
ballots than BRAVO.

As the workload of BRAVO and BBP are similar, the cost of running a
Bernoulli audit should be similar to BRAVO. There are likely other efficiencies to
Bernoulli audits, e.g., if the first stage of the audit can be completed on election
night in parallel, it might result in lower cost as election workers and observers
would not have to assemble in a different place and time for the audit. Even if
the cost were somewhat higher, that might be offset by advantages discussed in
Sect. 8.

7.1 Empirical Data

We evaluate BBP using precinct-level data from the 2016 U.S. presidential elec-
tion, collected from OpenElections7 or by hand where that dataset was incom-
plete. If the reported margins are correct, BBP with a sampling rate of p0 = 1%
and a risk-limit of 5% would have a 99% or higher chance of confirming the out-
come in 42 states. The mean sample size per precinct for this method is about 10
ballots, indicating that if the audit is conducted in-precinct the workload will be
fairly minute. There is thus a large probability that if the election outcomes in
those states are correct, they would not have to audit additional ballots beyond
the initial sample.

8 Discussion

Bernoulli ballot polling has a number of practical advantages. We have discussed
several throughout the paper, but we review all of them here:
7 http://openelections.net/, last visited 8/5/19.

http://openelections.net/

Bernoulli Ballot-Polling: A Manifest Improvement 239

– It reduces the need for a ballot manifest: ballots can be stored in any order,
and the number of ballots in a given container or bundle does not need to be
known to draw the sample.

– The work can be conducted in parallel across polling places, and can be
performed by workers (and observed by members of the public) already in
place on election day.

– The same sampling method can be used for polling places, vote centers, VBM,
and provisional ballots, without the need to stratify the sample explicitly.

– If the initial sampling rate is adequate, the winners can be confirmed
shortly after voting finishes—perhaps even at the same time that results are
announced—possibly increasing voter confidence.

– When a predetermined expected sampling rate is used, the labor required can
be estimated in advance, assuming escalation is not required. With appropri-
ate parameter choices, escalation can be avoided except in unusually close
races, or when the reported outcome is wrong. This helps election officials
plan.

– If the sampling rate is selected after the reported margin is known, officials
can choose a rate that makes escalation unlikely unless the reported electoral
outcome is incorrect.

– The sampling approach is conceptually easy to grasp: toss a coin for each
ballot. The audit stops when the sample shows a sufficiently large margin
for every winner over every loser, where “sufficiently large” depends on the
sample size.

– The approach may have security advantages, since waiting longer to audit
would leave more opportunity for the paper ballots to be compromised or
misplaced. Workers will need to handle the ballot papers in any case to move
them from the ballot boxes into long-term storage.

Officials selecting an auditing method should weigh these advantages against
some potential downsides of our approach, particularly when applied in polling
places on election night. Poll workers are already very busy, and they may be
too tired at the end of the night to conduct the sampling procedure or to do
it accurately. When audits are conducted in parallel at local polling places, it
is impossible for an individual observer to witness all the simultaneous steps.
Moreover, estimating the sample size before margins are known makes it likely
that workers will end up sampling more (or fewer) ballots than necessary to
achieve the risk limit. While sampling too little can be overcome with escalation,
the desire to avoid escalation may make officials err on the side of caution and
sample more than predicted to be necessary, further reducing expected efficiency.

8.1 Previous Work

Bernoulli sampling is a special case of Poisson sampling, where sampling units
are selected independently, but not necessarily with equal probability. Aslam
et al. (2008) propose a Poisson sampling method in which the probability of
selecting a given unit is related to a bound on the error that unit could hide.

240 K. Ottoboni et al.

Their method is not an RLA: it is designed to have a large chance of detecting
at least one error if the outcome is incorrect, rather than to limit the risk of
certifying an incorrect outcome per se.

8.2 Stratified Audits

Independent Bernoulli samples from different populations using the same rate
still yields a Bernoulli sample of the overall population, so the math presented
here can be used without modification to audit contests that cross jurisdictional
boundaries. Bernoulli samples from different strata using different rates can be
combined using SUITE (Ottoboni et al. 2018), which can be applied to stratum-
wise P -values from any method, including BBP. (This requires minor modifica-
tions to the P -value calculations, to test arbitrary hypotheses about the margin
in each stratum rather than to test for ties; the derivations in Ottoboni et al.
(2018) apply, mutatis mutandis.) If some ballots are tabulated using technology
that makes a more efficient auditing approach possible, such as a ballot-level
comparison audit, it may be advantageous to stratify the ballots into groups,
sample using Bernoulli sampling in some and a different method in others, and
use SUITE to combine the results into an overall RLA.

9 Conclusion

We presented a new ballot-polling RLA based on Bernoulli sampling, relying
on Wald’s sequential probability ratio test to calculate the risk limit. The new
method performs similarly to the BRAVO ballot-polling audit but has several
logistical advantages, including that it can be parallelized and conducted on
election night, which may reduce cost and increase security. The method easily
incorporates VBM and provisional ballots, and may eliminate the need for strat-
ification in many circumstances. Bernoulli ballot-polling with just a 1% sampling
rate would have sufficed to confirm the 2016 U.S. Presidential election results
in the vast majority of states, if the reported results were correct. The practi-
cal benefits and conceptual simplicity of Bernoulli ballot polling may make it
simpler to conduct risk-limiting audits in real elections.

References

Aslam, J.A., Popa, R.A., Rivest, R.L.: On auditing elections when precincts have differ-
ent sizes. In: 2008 USENIX/ACCURATE Electronic Voting Technology Workshop,
San Jose, CA, 28–29 July 2008

Blaze, M., Braun, J., Hursti, H., Lorenzo Hall, J., MacAlpine, M., Moss, J.: DEFCON
25 Voting Village Report, September 2017. https://www.defcon.org/images/defcon-
25/DEF%20CON%2025%20voting%20village%20report.pdf

Blaze, M., Braun, J., Hursti, H., Jefferson, D., MacAlpine, M., Moss, J.: DEFCON
26 Voting Village Report, September 2018. https://www.defcon.org/images/defcon-
26/DEF%20CON%2026%20voting%20village%20report.pdf

https://www.defcon.org/images/defcon-25/DEF%20CON%2025%20voting%20village%20report.pdf
https://www.defcon.org/images/defcon-25/DEF%20CON%2025%20voting%20village%20report.pdf
https://www.defcon.org/images/defcon-26/DEF%20CON%2026%20voting%20village%20report.pdf
https://www.defcon.org/images/defcon-26/DEF%20CON%2026%20voting%20village%20report.pdf

Bernoulli Ballot-Polling: A Manifest Improvement 241

Bowen, D.: Top-to-bottom review of voting machines certified for use in Califor-
nia. Technical report, California Secretary of State (2007). https://www.sos.ca.gov/
elections/voting-systems/oversight/top-bottom-review/

Cochran, W.G.: Sampling Techniques, 3rd edn. Wiley, Hoboken (1977)
Lindeman, M., Stark, P.B.: A gentle introduction to risk-limiting audits. IEEE Secur.

Priv. 10, 42–49 (2012)
Lindeman, M., Stark, P.B., Yates, V.: BRAVO: ballot-polling risk-limiting audits to

verify outcomes. In: 2011 Electronic Voting Technology Workshop/Workshop on
Trustworthy Elections (EVT/WOTE 2012). USENIX (2012)

Lindeman, M., McBurnett, N., Ottoboni, K., Stark, P.B.: Next steps for the col-
orado risk-limiting audit (CORLA) program, March 2018. https://arxiv.org/pdf/
1803.00698.pdf

Lohr, S.: Sampling: Design and Analysis. Nelson Education, Toronto (2009)
McDaniel, P., Blaze, M., Vigna, G.: EVEREST: evaluation and validation of election-

related equipment, standards and testing. Technical report, Ohio Secretary of State
(2007). http://siis.cse.psu.edu/everest.html

Ottoboni, K., Stark, P.B., Lindeman, M., McBurnett, N.: Risk-limiting audits by strat-
ified union-intersection tests of elections (SUITE). In: Krimmer, R., et al. (eds.) E-
Vote-ID 2018. LNCS, vol. 11143, pp. 174–188. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-00419-4 12

Panel on Nonstandard Mixtures of Distributions: Statistical Models and Analysis in
Auditing: A Study of Statistical Models and Methods for Analyzing Nonstandard
Mixtures of Distributions in Auditing. National Academy Press, Washington, D.C.
(1988)

Rivest, R.L.: ClipAudit: a simple risk-limiting post-election audit (2017). https://arxiv.
org/abs/1701.08312

Särndal, C.-E., Swensson, B., Wretman, J.: Model Assisted Survey Sampling. Springer
Series in Statistics. Springer, New York (2003)

Stark, P.B.: Conservative statistical post-election audits. Ann. Appl. Stat. 2(2), 550–
581 (2008)

Stark, P.B., Teague, V.: Verifiable European elections: risk-limiting audits for D’Hondt
and its relatives. JETS USENIX J. Election Technol. Syst. 3(1), 18–39 (2014)

Thompson, M.: Theory of Sample Surveys, Monographs on Statistics and Applied
Probability, vol. 74. Chapman & Hall, London (1997)

U.S. Senate Select Committee on Intelligence: Russian targeting of election infras-
tructure during the 2016 election: Summary of initial findings and recom-
mendations, May 2018. www.burr.senate.gov/imo/media/doc/RussRptInstlmt1-
%20ElecSec%20Findings,Recs2.pdf

Wald, A.: Sequential tests of statistical hypotheses. Ann. Math. Stat. 16, 117–186
(1945)

https://www.sos.ca.gov/elections/voting-systems/oversight/top-bottom-review/
https://www.sos.ca.gov/elections/voting-systems/oversight/top-bottom-review/
https://arxiv.org/pdf/1803.00698.pdf
https://arxiv.org/pdf/1803.00698.pdf
http://siis.cse.psu.edu/everest.html
https://doi.org/10.1007/978-3-030-00419-4_12
https://doi.org/10.1007/978-3-030-00419-4_12
https://arxiv.org/abs/1701.08312
https://arxiv.org/abs/1701.08312
www.burr.senate.gov/imo/media/doc/RussRptInstlmt1-%20ElecSec%20Findings,Recs2.pdf
www.burr.senate.gov/imo/media/doc/RussRptInstlmt1-%20ElecSec%20Findings,Recs2.pdf

k-Cut: A Simple Approximately-Uniform
Method for Sampling Ballots

in Post-election Audits

Mayuri Sridhar(B) and Ronald L. Rivest

Massachusetts Institute of Technology, Cambridge, MA 02139, USA
mayuri@mit.edu, rivest@csail.mit.edu

Abstract. We present an approximate sampling framework and discuss
how risk-limiting audits can compensate for these approximations, while
maintaining their “risk-limiting” properties. Our framework is general
and can compensate for counting mistakes made during audits.

Moreover, we present and analyze a simple approximate sampling
method, “k-cut”, for picking a ballot randomly from a stack, without
counting. Our method involves doing k “cuts,” each involving moving
a random portion of ballots from the top to the bottom of the stack,
and then picking the ballot on top. Unlike conventional methods of pick-
ing a ballot at random, k-cut does not require identification numbers on
the ballots or counting many ballots per draw. We analyze how close
the distribution of chosen ballots is to the uniform distribution, and
design mitigation procedures. We show that k = 6 cuts is enough for
a risk-limiting election audit, based on empirical data, which provides
a significant increase in sampling efficiency. This method has been used
in pilot RLAs in Indiana and is scheduled to be used in Michigan pilot
audits in December 2018.

Keywords: Sampling · Elections · Auditing · Post-election audits ·
Risk-limiting audit · Bayesian audit

1 Introduction

The goal of post-election tabulation audits is to provide assurance that the
reported results of the contest are correct; that is, they agree with the results
that a full hand-count would reveal. To do this, the auditor draws ballots uni-
formly at random one at a time from the set of all cast paper ballots, until
the sample of ballots provides enough assurance that the reported outcomes are
correct.

The most popular post-election audit method is known as a “risk-limiting
audit” (or RLA), invented by Stark (see his web page [13]). See also [3,5–7,11,12]

Supported by Center for Science of Information (CSoI), an NSF Science and Technology
Center, under grant agreement CCF-0939370.

c© International Financial Cryptography Association 2020
A. Bracciali et al. (Eds.): FC 2019 Workshops, LNCS 11599, pp. 242–256, 2020.
https://doi.org/10.1007/978-3-030-43725-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43725-1_17&domain=pdf
https://doi.org/10.1007/978-3-030-43725-1_17

k-Cut: Simple Approximate Sampling 243

for explanations, details, and related papers. An RLA takes as input a “risk-
limit” α (like 0.05), and ensures that if a reported contest outcome is incorrect,
then this error will be detected and corrected with probability at least 1 − α.

This paper provides a novel method for drawing a random sample of the
cast paper ballots. The new method may often be more efficient than stan-
dard methods. However, it has a cost: ballots are drawn in a way that is only
“approximately uniform”. This paper provides ways of compensating for such
non-uniformity.

There are two standard approaches for drawing a random sample of cast
paper ballots:

1. [ID-based sampling]. Print on each scanned cast paper ballot a unique
identifying number (ballot ID numbers). Draw a random sample of ballot ID
numbers, and retrieve the corresponding ballots.

2. [Position-based sampling]. Give each ballot an implicit ballot ID equal to
its position, then proceed as with method (1).

These methods work well, and are guaranteed to produce random samples.
In practice, auditors use software, like [14], which takes in a ballot manifest as
input and produces the random sample of ballot ID numbers. In this software,
it is typically assumed that sampling is done without replacement.

However, finding even a single ballot using these sampling methods can be
tedious and awkward in practice. For example, given a random sample of ID
numbers, one may need to count or search through a stack of ballots to find
the desired ballot with the right ID or at the right position. Moreover, typical
auditing procedures assume that there are no mistakes when finding the ballots
for the sample. Yet, this seems to be an unreasonable assumption - a study by
Goggin et al. shows that when counting 120 ballots, human teams miscount the
number of votes for a given candidate at an average rate of 1.4% [4]. In the
literature about RLAs, there is no way to correct for these mistakes.

Our Goal Is to Simplify the Sampling Process
In particular, we define a general framework for compensating for “approximate
sampling” in RLAs. Our framework of approximate sampling can be used to
measure and compensate for human error rate while using the counting meth-
ods outlined above. Moreover, we also define a simpler approach for drawing a
random sample of ballots, which does not rely on counting at all. Our technique
is simple and easy to iterate on and may be of particular interest when the stack
of ballots to be drawn from is large. We define mitigation procedures to account
for the fact that the sampling technique is no longer uniformly random.

Overview of This Paper. Section 2 introduces the relevant notation that we use
throughout the paper.

Section 3 presents our proposed sampling method, called “k-cut.”
Section 4 studies the distribution of single cut sizes, and provides experimen-

tal data. We then show how iterating a single cut provides improved uniformity
for ballot selection.

244 M. Sridhar and R. L. Rivest

Section 5 discusses the major questions that are brought up when using
“approximate” sampling in a post-election audit.

Section 6 proves a very general result: that any general statistical auditing
procedure for an arbitrary election can be adapted to work with approximate
sampling, with simple mitigation procedures.

Section 7 discusses how to adapt the k-cut method for sampling when the
ballots are organized into multiple stacks or boxes.

Section 8 provides some guidance for using k-cut in practice.
Section 9 gives some further discussion, lists some open problems, and makes

some suggestions for further research.
Section 10 summarizes our contributions.

2 Notation and Election Terminology

Notation. We let [n] denote the set {0, 1, . . . , n − 1}, and we let [a, b] denote the
set {a, a + 1, . . . , b − 1}.

We let U [n] denote the uniform distribution over the set [n]. In U [n], the
“[n]” may be omitted when it is understood to be [n], where n is the number of
ballots in the stack. We let U [a, b] denote the uniform distribution over the set
[a, b].

We let V D(p, q) denote the variation distance between probability distribu-
tions p and q; this is the maximum, over all events E, of

Prp[E] − Prq[E].

Election Terminology. The term “ballot” here means to a single piece of paper
on which the voter has recorded a choice for each contest for which the voter is
eligible to vote. One may refer to a ballot as a “card.” Multi-card ballots are not
discussed in this paper.

Audit Types. There are two kinds of post-election audits: ballot-polling audits,
and ballot-comparison audits, as described in [7]. For our purposes, these types
of audits are equivalent, since they both need to sample paper ballots at random,
and can make use of the k-cut method proposed here. However, if one wishes
to use k-cut sampling in a comparison audit, one would need to ensure that
each paper ballot contains a printed ID number that could be used to locate the
associated electronic CVR.

3 The k-Cut Method

The problem to be solved is:

How can one select a single ballot (approximately) at random from a given
stack of n ballots?

k-Cut: Simple Approximate Sampling 245

This section presents the “k-cut” sampling procedure for doing such sam-
pling. The k-cut procedure does not need to know the size n of the stack, nor
does it need any auxiliary random number generators or technology.

We assume that the collection of ballots to be sampled from is in the form of a
stack. These may be ballots stored in a single box or envelope after scanning. One
may think of the stack of ballots as being similar to a deck of cards. When the
ballots are organized into multiple stacks, sampling is slightly more complex—see
Sect. 7.

The basic operation for drawing a single ballot is called “k-cut and pick,” or
just “k-cut.” This method does k cuts then draws the ballot at the top of the
stack.

To make a single cut of a given stack of n paper ballots:
– Cut the stack into two parts: a “top” part and a “bottom” part.
– Switch the order of the parts, so what was the bottom part now sits above

the top part. The relative order of the ballots within each part is preserved.

We let t denote the size of the top part. The size t of the top part should be
chosen “fairly randomly” from the set [n] = {0, 1, 2, . . . , n− 1}1. In practice, cut
sizes are probably not chosen so uniformly; so in this paper we study ways to
compensate for non-uniformity. We can also view the cut operation as one that
“rotates” the stack of ballots by t positions.

An Example of a Single Cut. As a simple example, if the given stack has n = 5
ballots:

A B C D E ,

where ballot A is on top and ballot E is at the bottom, then a cut of size t = 2
separates the stack into a top part of size 2 and a bottom part of size 3:

A B C D E

whose order is then switched:

C D E A B .

Finally, the two parts are then placed together to form the final stack:

C D E A B .

having ballot C on top.

Iteration for k cuts. The k-cut procedure makes k successive cuts then picks the
ballot at the top of the stack.

If we let ti denote the size of the i-th cut, then the net rotation amount after
k cuts is

rk = t1 + t2 + · · · + tk (mod n). (1)
The ballot originally in position rk (where the top ballot position is position 0)
is now at the top of the stack. We show that even for small values of k (like
k = 6) the distribution of rk is close to U .
1 A cut of size n is excluded, as it is equivalent to a cut of size 0.

246 M. Sridhar and R. L. Rivest

Drawing a Sample of Multiple Ballots. To draw a sample of s ballots, our k-cut
procedure repeats s times the operation of drawing without replacement a single
ballot “at random.” The s ballots so drawn form the desired sample.

Efficiency. Suppose a person can make six (“fairly random”) cuts in approxi-
mately 15 s, and can count 2.5 ballots per second2. Then k-cut (with k = 6)
is more efficient when the number of ballots that needs to be counted is 37.5
or more. Since batch sizes in audits are often large, k-cut has the potential to
increase sampling speed.

For instance, assume that ballots are organized into boxes, each of which
contains at least 500 ballots. Then, when the counting method is used, 85% of
the time a ballot between ballot #38 and ballot #462 will be chosen. In such
cases, one must count at least 38 ballots from the bottom or from the top to
retrieve a single ballot. This implies that k-cut is more efficient 85% of the time.

As the number of ballots per box increases, the expected time taken by
standard methods to retrieve a single ballot increases. With k-cut, the time it
takes to select a ballot is constant, independent of the number of ballots in the
box, assuming that each cut takes constant time.

Security. We assume that the value of k is fixed in advance; you can not allow
the cutter to stop cutting once a “ballot they like” is sitting on top.

4 (Non)-Uniformity of Single Ballot Selection

We begin by observing that if an auditor could perform “perfect” cuts, we would
be done. That is, if the auditor could pick the size t of a cut in a perfectly uni-
form manner from [n], then one cut would suffice to provide a perfectly uniform
distribution of the ballot selected from the stack of size n. However, there is no
a priori reason to believe that, even with sincere effort, an auditor could pick t
in a perfectly uniform manner.

So, we start by studying the properties of the k-cut procedure for single-
ballot selection, beginning with a study of the non-uniformity of selection for
the case k = 1 and extending our analysis to multiple cuts.

4.1 Empirical Data for Single Cuts

This section presents our experimental data on single-cut sizes. We find that in
practice, single cut sizes (that is, for k = 1) are “somewhat uniform.” We then
show that the approximation to uniformity improves dramatically as k increases.

We had two subjects, the authors. Each author had a stack of 150 sequentially
numbered ballots to cut, provided by Marion County, Indiana. The authors made
1680 cuts in total. Figure 1 shows the observed cut size frequency distribution.
The complete data tables are provided in the longer version of this paper3.
2 These assumptions are based on observations during the Indiana pilot audits.
3 The longer version is available at https://arxiv.org/abs/1811.08811.

https://arxiv.org/abs/1811.08811

k-Cut: Simple Approximate Sampling 247

Fig. 1. Probability Density of empirical distribution of sizes of single cuts, using com-
bined data from both authors, with 1680 cuts total. The model that best fit the empir-
ical data was an exponential model, shown in blue. The extended paper provides more
details about this and other models for our data. (Color figure online)

If the cuts were truly random, we would expect a uniform distribution of the
number of cuts observed as a function of cut size. In practice, the frequency of
cuts was not evenly distributed; there were few or no very large or very small
cuts, and smaller cuts were more common than larger cuts.

4.2 Making k Successive Cuts to Select a Single Ballot

As noted, the distribution of cut sizes for a single cut is noticeably non-uniform.
Our proposed k-cut procedure addresses this by iterating the single-cut operation
k times, for some small fixed integer k.

We assume for now that cut sizes are distributed as in our experiments,
as described in Fig. 1, and that successive cuts are independent. Moreover, we
assume that sampling is done with replacement, for simplicity.

We give computational results showing that as the number of cuts increases,
the k-cut procedure selects ballots with a distribution that approaches the uni-
form distribution. We compare by computing the variation distance of the k-cut
distribution from U for various k. We also computed ε, the maximum ratio of
the probability of drawing any particular ballot under the empirical distribution,
to the probability of drawing that ballot under the uniform distribution, minus
one4. Our results are summarized in Table 1.

We can see that, after six cuts, we get a variation distance of about 7.19 ×
10−4, for the empirical distribution, which is often small enough to justify our
recommendation that six cuts being “close enough” in practice, for any RLA.

4 In Sect. 6.4, we discuss why this value of ε is relevant.

248 M. Sridhar and R. L. Rivest

Table 1. Convergence of k-cut to uniform with increasing k. Variation distance from
uniform and ε-values for k cuts, as a function of k, for n = 150, where ε is one less
than the maximum ratio of the probability of selecting a ballot under the assumed
distribution to the probability of selecting that ballot under the uniform distribution.

k Variation distance Max ratio minus one

1 0.247 1.5

2 0.0669 0.206

3 0.0215 0.0687

4 0.0069 0.0224

5 0.00223 0.00699

6 0.000719 0.00225

7 0.000232 0.000729

8 7.49e−05 0.000235

4.3 Asymptotic Convergence to Uniform with k

As k increases, the distribution of cut sizes provably approaches the uniform
distribution, under mild assumptions about the distribution of cut sizes for a
single cut and the assumption of independence of successive cuts.

This claim is plausible, given the analysis of similar situations for contin-
uous random variables. For example, Miller and Nigrini [9] have analyzed the
summation of independent random variables modulo 1, and given necessary and
sufficient conditions for this sum to converge to the uniform distribution.

For the discrete case, one can show that if once k is large enough that every
ballot is selected by k-cut with some positive probability, then as k increases
the distribution of cut sizes for k-cut approaches U . Furthermore, the rate of
convergence is exponential. The proof details are omitted here; however, the
second claim uses Markov-chain arguments, where each rotation amount is a
state, and the fact that the transition matrix is doubly stochastic.

5 Approximate Sampling

We have shown in the previous section that as we iterate our k-cut procedure,
our distribution becomes quite close to the uniform distribution. However, our
sampling still is not exactly uniform.

The literature on post-election audits generally assumes that sampling is
perfect. One exception is the paper by Banuelos and Stark [2], which suggests
dealing conservatively with the situation when one can not find a ballot in an
audit, by treating the missing ballot as if it were a vote for the runner-up. Our
proposed mitigation procedures are similar in flavor.

In practice, sampling for election audits is often done using software such
as that by Stark [14] or Rivest [10]. Given a random seed and a number n of
ballots to sample from, they can generate a pseudo-random sequence of integers

k-Cut: Simple Approximate Sampling 249

from [n], indexing into a list of ballot positions or ballot IDs. It is reasonable to
treat such cryptographic sampling methods as “indistinguishable from sampling
uniformly,” given the strength of the underlying cryptographic primitives.

However, in this paper we deal with sampling that is not perfect; the k-cut
method with k = 1 is obviously non-uniform, and even with modest k values, as
one might use in practice, there will be some small deviations from uniformity.

Thus, we address the following question:

How can one effectively use an approximate sampling procedure in a post-
election audit?

We let G denote the actual (“approximate”) probability distribution over [n]
from the sampling method chosen for the audit. Our analyses assume that we
have some bound on how close G is to U , like variation distance. Furthermore,
the quality of the approximation may be controllable, as it is with k-cut: one
can improve the closeness to uniform by increasing k. We let Gs denote the
distribution on s-tuples of ballots from [n] chosen with replacement according
to the distribution G for each draw.

6 Auditing Arbitrary Contests

This section proves a general result: for auditing an arbitrary contest, we show
that any risk-limiting audit can be adapted to work with approximate sampling,
if the approximate sampling is close enough to uniform. In particular, any RLA
can work with the k-cut method, if k is large enough.

We show that if k is sufficiently large, the resulting distribution of k-cut
sizes will be so close to uniform that any statistical procedure cannot efficiently
distinguish between the two. That is, we want to choose k to guarantee that U
and G are close enough, so that any statistical procedure behaves similarly on
samples from each.

Previous work done by Baignères in [1] shows that, there is an optimal dis-
tinguisher between two finite probability distributions, which depends on the
KL-Divergence between the two distributions.

We follow a similar model to this work, however, we develop a bound based
on the variation distance between U and G.

6.1 General Statistical Audit Model

We construct the following model, summarized in Fig. 2.
We define δ to be the variation distance between G and U . We can find an

upper bound for δ empirically, as seen in Table 1. If G is the distribution of k-cut,
then by increasing k we can make δ arbitrarily small.

The audit procedure requires a sample of some given size s, from Us or Gs.
We assume that all audits behave deterministically. We do not assume that suc-
cessive draws are independent, although we assume that each cut is independent.

Given the size s sample, the audit procedure can make a decision on whether
to accept the reported contest result, escalate the audit, or declare an upset.

250 M. Sridhar and R. L. Rivest

Fig. 2. Overview of uniform vs. approximate sampling effects, for any statistical audit-
ing procedure. The audit procedure can be viewed as a distinguisher between the two
underlying distributions. If it gives significantly different results for the two distribu-
tions, it can thereby distinguish between them. However, if p and p′ are extremely
close, then the audit cannot be used as a distinguisher.

6.2 Mitigation Strategy

When we use approximate sampling, instead of uniform, we need to ensure that
the “risk-limiting” properties of the RLAs are maintained. In particular, as
described in [7], an RLA with a risk limit of α guarantees that with proba-
bility at least (1 − α) the audit will find and correct the reported outcome if it
is incorrect. We want to maintain this property, while introducing approximate
sampling.

Without loss of generality, we focus on the probability that the audit accepts
the reported result, since it is the case where approximate sampling may affect
the risk-limiting properties. We show that G and U are sufficiently close when k
is large, that the difference between p and p′, as seen in Fig. 2, is small.

We show a simple mitigation procedure, for RLA plurality elections, to com-
pensate for this non-uniformity, that we denote as risk-limit adjustment. For
RLAs, we can simply decrease the risk limit α by |p′ − p| (or an upper bound on
this) to account for the difference. This decrease in the risk limit can accommo-
date the risk that the audit behaves incorrectly due to approximate sampling.

6.3 How Much Adjustment Is Required?

We assume we have an auditing procedure A, which accepts samples and outputs
“accept” or “reject”. We model approximate sampling with providing A samples
from a distribution G. For our analysis, we look at the empirical distribution of
cuts. For uniform sampling, we provide A samples from U .

We would like to show that the probability that A accepts an outcome incor-
rectly, given samples from G is not much higher than the probability that A

k-Cut: Simple Approximate Sampling 251

accepts an incorrect outcome, given samples from U . We denote B as the set of
ballots that we are sampling from.

Theorem 1. Given a fixed sample size s and the variation distance δ, the max-
imum change in probability that A returns “accept” due to approximate sampling
is at most

ε1 + (1 + nδ)s′ − 1,

where s′ is the maximum number of “successes” seen in s Bernoulli trials, where
each has a success probability of δ, with probability at least 1 − ε1.

Proof. We define s as the number of ballots that we pull from the set of cast
ballots, before deciding whether or not to accept the outcome of the election.
Given a sample size s, based on our sampling technique, we draw s ballots, one
at a time, from G or from U .

We model drawing a ballot from G as first drawing a ballot from U ; however,
with probability δ, we replace the ballot we draw from U with a new ballot from
B following a distribution F. We make no further assumptions about the distri-
bution F, which aligns with our definition of variation distance. When drawing
from G, for any ballot b ∈ B, we have probability at most 1

n + δ of drawing b.
When we sample sequentially, we get a length-s sequence of ballot IDs, S,

for each of G and U . Throughout this model, we assume that we sample with
replacement, although similar bounds should hold for sampling without replace-
ment, as well. We define X as the list of indices in the sequence S where both G
and U draw the same ballot, in order. We define Z as the list of indices where G
has “switched” a ballot after the initial draw. That is, for a fixed draw, U might
produce the sample sequence [1, 5, 29]. Meanwhile, G might produce the sample
sequence [1, 5, 30]. For this example, X = [0, 1] and Z = [2].

We define the set of possible size-s samples as the set D. We choose s′ such
that for any given value ε1, the probability that |Z| is larger than s′ is at most
ε1. Using this set up, we can calculate an upper bound on the probability that A
returns “accept”. In particular, given the empirical distribution, the probability
that A returns “accept” for a deterministic auditing procedure becomes

Pr[A accepts | G] =
∑

S∈D

Pr[A accepts | S] ∗ Pr[draw S | G].

Now, we note that we can split up the probability that we can draw a specific
sample S from the distribution G. We know that with high probability, there are
at most s′ ballots being “switched”. Thus,

Pr[A accepts | G] =
∑

S∈D

Pr[A accepts | S] ∗ Pr[draw S | G, S has ≤ s
′
“switched” ballots]

∗ Pr[S has ≤ s
′
“switched” ballots] +

∑

S∈D

Pr[A accepts | S] ∗ Pr[draw

S | G, S has > s
′
“switched” ballots] ∗ Pr[S has > s

′
“switched” ballots] .

252 M. Sridhar and R. L. Rivest

Now, we note that the second term is upper bounded by

Pr[any size-s sample has more than s′ switched ballots].

We define the probability that any size-s sample contains more than s′ switched
ballots as ε1.

We note that, although the draws aren’t independent, from the definition
of variation distance, this is upper bounded by the probability that a binomial
distribution, with s draws and δ probability of success.

Now, we can focus on bounding the first term. We know that

Pr[A accepts | G, any sample has at most s′ switched ballots]

=
∑

S∈D

Pr[A accepts | S] ∗ Pr[draw S | G, S has ≤ s′ “switched” ballots]

For the uniform distribution, we know that the probability of accepting becomes

Pr[A accepts | U] =
∑

S∈D

Pr[A accepts | S] ∗ Pr[draw S | U] .

Thus, we know that the change in probability becomes

Pr[A accepts | G] − Pr[A accepts | U] ≤ ε1 +
∑

S∈D

Pr[A accepts | S](Pr[draw S | G, S has

≤ s
′
“switched” ballots] − Pr[draw S | U]).

However, for any fixed sample S, we know that we can produce S from E in
many possible ways. That is, we know that we have to draw at least s−s′ ballots
that are from U . Then, we have to draw the compatible s′ ballots from G. In
general, we define the possible length s − s′ compatible shared list of indices as
the set X. That is, by conditioning on X, we are now defining the exact indices in
the sample tally where the uniform and empirical sampling can differ. We note
that |X| =

(
s
s′
)

and each possible set happens with equal probability. Then, for
any specific x ∈ X, we can define z as the remaining indices, which are allowed
to differ from uniform and approximate sampling. That is, if there are 3 ballots
in the sample, and x = [0, 1], then z = [2].

We can now calculate the probability that we draw some specific size-s sample
S, given the empirical distribution, and a fixed value of s′.

Pr[draw S | G] =
∑

x∈X

Pr[draw x | U]

∗ Pr[draw z | G] ∗ Pr[switched ballots are at indices in z]

However, we know that for each ballot b in z, we draw ballot b with probability
at most 1

n +δ. That is, for any ballot in x, we know that we draw it with uniform
probability exactly. However, for a ballot b in z, we know that this a ballot that
may have been “switched”. In particular, with probability 1

n , we draw the correct
ballot from U . However, in addition to this, with probability δ, we replace it

k-Cut: Simple Approximate Sampling 253

with a new ballot - we assume that we replace it with the correct ballot with
probability 1. Thus, with probability at most 1

n + δ, we draw the correct ballot
for this particular slot. Thus, we get

Pr[draw S | G]
=

∑

x∈X

Pr[draw x | U] ∗ Pr[draw z | G] ∗ Pr[switched ballots are at indices in z]

≤
∑

x∈X

Pr[draw x | U] ∗ (
1 + nδ

n
)s

′ ∗ Pr[switched ballots are at indices in z]

≤ (1 + nδ)s
′ ∑

x∈X

Pr[draw x | U] ∗ Pr[draw z | U] ∗ Pr[switched ballots are at indices in z].

Now, we note that there are
(

s
s′
)

possible sequences x ∈ X, where the
“switched” ballots could be. Each of these possible sequences occurs with equal
probability, this becomes

Pr[draw S | G]
≤ (1 + nδ)s

′ ∑

x∈X

Pr[draw x | U] ∗ Pr[draw z | U] ∗ Pr[switched ballots are at indices in z] .

= (1 + nδ)s
′ ∑

x∈X

Pr[draw x | U] ∗ Pr[draw z | U] ∗ 1(s
s′

)

= (1 + nδ)s
′
Pr[draw S | U] .

Using this bound we can calculate our total change in acceptance probability
as:

Pr[A accepts | G] − Pr[A accepts | U]

≤ ε1 +
∑

S∈D

Pr[A accepts | S](Pr[draw S | G, S has ≤ s
′
“switched” ballots] − Pr[draw S | U])

≤ ε1 + ((1 + nδ)
s′ − 1)

∑

S∈D

Pr[A accepts | S] Pr[draw S | U]

≤ ε1 + (1 + nδ)
s′ − 1,

which provides us the required bound.

6.4 Empirical Support

Our previous theorem gives us a total bound of our change in risk limit, which
depends on our value of s′ and δ. We note that, for each ballot b, we provide
a general bound of a multiplicative factor increase of (1 + nδ), which is based
off the variation distance of δ. However, we note that in practice, the exact
bound we are looking for depends on the multiplicative increase in probability
of a single ballot being chosen. That is, we can calculate the max increase in
multiplicative ratio for a single ballot, compared to the uniform distribution.

254 M. Sridhar and R. L. Rivest

Thus, if a ballot is chosen with probability at most (1+ε2)
n , then our bound on

the change in probability becomes

ε1 + (1 + ε2)s′ − 1.

The values of ε2 are recorded, for varying number of cuts in Table 1.
We can calculate the maximum change in probability for a varying number of

cuts using this bound. Here, we analyze the case of 6 cuts. To get a bound on s′,
we can model how often we switch ballots. In particular, this follows a binomial
distribution, with s independent trials, where each trial has a δ6 probability of
success. Using the binomial survival function, we see at most 4 “switched ballots”
in 1,000 draws, with probability (1− 8.78× 10−4). From our previous argument,
we know that our change in acceptance probability is at most (1+ε2)4−1. Using
our value of ε2 for k = 6, this causes a change in probability of at most 0.0090.

Thus, the maximum possible change in probability of incorrectly accepting
this outcome is 0.0090 + 8.78 × 10−4, which is approximately 9.88 × 10−3. We
can compensate for this by adjusting our risk limit by less than 1%.

7 Multi-stack Sampling

Our discussion so far presumes that all cast paper ballots constitute a single
“stack,” and suggest using our proposed k-cut procedure is used to sample ballots
from that stack. In practice, however, stacks have limited size, since large stacks
are physically awkward to deal with. The collection of cast paper ballots is
therefore often arranged into multiple stacks of some limited size.

The ballot manifest describes this arrangement of ballots into stacks, giving
the number of such stacks and the number of ballots contained in each one. We
assume that the ballot manifest is accurate. A tool like Stark’s Tools for Risk-
Limiting Audits5 takes the ballot manifest (together with a random seed and
the desired sample size) as input and produces a sampling plan.

A sampling plan describes exactly which ballots to pick from which stacks.
That is, the sampling plan consists of a sequence of pairs, each of the form:
(stack-number, ballot-id), where ballot-id may be either an id imprinted on the
ballot or the position of the ballot in the stack (if imprinted was not done).

Modifying the sampling procedure to use k-cut is straightforward. We ignore
the ballot-ids, and note only how many ballots are to be sampled from each
stack. That number of ballots are then selected using k-cut rather than using
the provided ballot-ids. For example, if the sampling plan says that 2 ballots are
to be drawn from stack 5, then we ignore the ballot-ids for those specific ballots,
and return 2 ballots drawn approximately uniformly at random using k-cut.

Thus, the fact that cast paper ballots may be arranged into multiple stacks
(or boxes) does not affect the usability of k-cut for performing audits.

5 https://www.stat.berkeley.edu/∼stark/Vote/auditTools.htm.

https://www.stat.berkeley.edu/~stark/Vote/auditTools.htm

k-Cut: Simple Approximate Sampling 255

8 Approximate Sampling in Practice

The major question when using the approximate sampling procedure is how
to choose k. Choosing a small value of k makes the overall auditing procedure
more efficient, since you save more time in each sample you choose. However, it
requires more risk limit adjustment.

The risk limit mitigation procedure requires knowledge of the maximum sam-
ple size, which we denote as s∗, beforehand. We assume that the auditors have
a reasonable procedure for estimating s∗ for a given contest. One procedure to
estimate s∗ is to draw an initial sample, s, using uniform random sampling.
Then, we can use a statistical procedure to approximate how many additional
ballots we would need to finish the audit, assuming the rest of the ballots in the
pool are similar to the sample. Possible statistical procedures include replicating
the votes on the ballots, or using sample size estimates defined in [8].

Let us assume that we use one of these techniques and calculate that the
audit is complete after an extension of size d. To be safe, we can assume that at
most 3d additional samples will be needed. Thus, our final bound on s∗ would
be s + 3d. Given this upper bound, we can perform our mitigation procedures,
assuming that we are drawing a sample of size s∗. Ballots after the first s∗ ballots
in our sample should be sampled uniformly at random.

9 Discussion and Open Problems

We would like to do more experimentation on the variation between individuals
on their cut-size distributions. The current empirical results in this paper are
based off of the cut distributions of just the two authors in the paper. We would
like to test a larger group of people to better understand a variety of empirical
distributions. After investigating this, we would like to develop “best practices”
for using the k-cut procedure. That is, we’d like to develop a set of techniques
that auditors can use to produce nearly-uniform single-cut-size distributions,
which will make k-cut more efficient.

We would also like to run some experiments to test our assumptions for k-
cut, in practice. For instance, we would like to test whether each cut is truly
made independently.

In the longer version of the paper, we provide the full details of our empirical
data, for full reproducibility. We also discuss possible models for our empirical
data and the convergence rates of our models.

10 Conclusions

We have presented an approximate sampling procedure, k-cut, for use in post-
election audits. We expect the use of k-cut will save time since it eliminates the
need to count many ballots in a stack to find the desired one.

256 M. Sridhar and R. L. Rivest

We showed that even for small values of k, our procedure provides a sample
that is close to being chosen uniformly at random. We designed a simple mit-
igation procedure for RLAs that accounts for any remnant non-uniformity, by
adjusting the risk limit. Finally, we provided a recommendation of k = 6 cuts
to use in practice, for sample sizes up to 1,000 ballots, based on our empirical
data, with a 1% risk limit adjustment.

An earlier version of k-cut was used in pilot audits in Marion County, Indiana
to increase audit efficiency. This paper provides theoretical justification for this
technique, which is also scheduled to be used in Michigan in December 2018.

References

1. Baignères, T., Vaudenay, S.: The complexity of distinguishing distributions. Ph.D.
thesis (2008). results also in Baigneères’

2. Banuelos, J.H., Stark, P.B.: Limiting risk by turning manifest phantoms into evil
zombies (2012). https://arxiv.org/abs/1207.3413

3. Bretschneider, J., et al.: Risk-limiting post-election audits: why and how? (ver.
1.1), October 2012. http://people.csail.mit.edu/rivest/pubs.html#RLAWG12

4. Goggin, S.N., Byrne, M.D., Gilbert, J.E.: Post-election auditing effects of procedure
and ballot type on manual counting accuracy, efficiency, and auditor satisfaction
and confidence. Election Law J. 11, 36–51 (2012)

5. Johnson, K.: Election verification by statistical audit of voter-verified paper ballots,
31 October 2004. http://ssrn.com/abstract=640943

6. Lindeman, M., Halvorseon, M., Smith, P., Garland, L., Addona, V., McCrea, D.:
Principle and best practices for post-election audits (2008). www.electionaudits.
org/files/best%20practices%20final 0.pdf

7. Lindeman, M., Stark, P.B.: A gentle introduction to risk-limiting audits. IEEE
Secur. Priv. 10, 42–49 (2012)

8. Lindeman, M., Stark, P.B., Yates, V.S.: BRAVO: ballot-polling risk-limiting
audits to verify outcomes. In: Halderman, A., Pereira, O. (eds.) Proceedings 2012
EVT/WOTE Conference (2012)

9. Miller, S.J., Nigrini, M.J.: The modulo 1 Central Limit Theorem and Benford’s
law for products (2007). https://arxiv.org/abs/math/0607686

10. Rivest, R.L.: Reference implementation code for pseudo-random sampler (2011).
http://people.csail.mit.edu/rivest/sampler.py

11. Rivest, R.L.: Bayesian tabulation audits: explained and extended, 1 January 2018.
https://arxiv.org/abs/1801.00528

12. Rivest, R.L., Shen, E.: A Bayesian method for auditing elections. In: Halderman,
J.A., Pereira, O. (eds.) Proceedings 2012 EVT/WOTE Conference (2012). https://
www.usenix.org/system/files/conference/evtwote12/rivest bayes rev 073112.pdf.
https://www.usenix.org/conference/evtwote12/workshop-program/presentation/
rivest

13. Stark, P.B.: Papers, talks, video, legislation, software, and other documents on
voting and election auditing. https://www.stat.berkeley.edu/∼stark/Vote/index.
htm

14. Stark, P.B.: Tools for ballot-polling risk-limiting election audits (2017). https://
www.stat.berkeley.edu/∼stark/Vote/ballotPollTools.htm

https://arxiv.org/abs/1207.3413
http://people.csail.mit.edu/rivest/pubs.html#RLAWG12
http://ssrn.com/abstract=640943
www.electionaudits.org/files/best%20practices%20final_0.pdf
www.electionaudits.org/files/best%20practices%20final_0.pdf
https://arxiv.org/abs/math/0607686
http://people.csail.mit.edu/rivest/sampler.py
https://arxiv.org/abs/1801.00528
https://www.usenix.org/system/files/conference/evtwote12/rivest_bayes_rev_073112.pdf
https://www.usenix.org/system/files/conference/evtwote12/rivest_bayes_rev_073112.pdf
https://www.usenix.org/conference/evtwote12/workshop-program/presentation/rivest
https://www.usenix.org/conference/evtwote12/workshop-program/presentation/rivest
https://www.stat.berkeley.edu/~stark/Vote/index.htm
https://www.stat.berkeley.edu/~stark/Vote/index.htm
https://www.stat.berkeley.edu/~stark/Vote/ballotPollTools.htm
https://www.stat.berkeley.edu/~stark/Vote/ballotPollTools.htm

How to Assess the Usability
Metrics of E-Voting Schemes

Karola Marky1(B) , Marie-Laure Zollinger2, Markus Funk1 ,
Peter Y. A. Ryan2, and Max Mühlhäuser1

1 Telecooperation Lab, Technische Universität Darmstadt, Darmstadt, Germany
{marky,funk,max}@tk.tu-darmstadt.de

2 University of Luxembourg, Luxembourg City, Luxembourg
{marie-laure.zollinger,peter.ryan}@uni.lu

Abstract. Voters play an important role in end-to-end verifiable
e-voting schemes because the schemes encourage them to carry out
several security-critical tasks by themselves. If the voters cannot com-
plete the tasks by themselves or experience bad usability while execut-
ing them, vote manipulations by either a faulty software or deliberate
attacks cannot be detected which renders verification useless. Therefore,
the scheme’s usability is of crucial importance and demands an early
investigation of human factors when implementing e-voting systems. In
this paper, we give an overview of user study design challenges when
investigating end-to-end verifiable e-voting schemes. We provide guide-
lines that address these challenges and support researchers in the design
of user studies. The guidelines are based on the literature and the authors’
experiences.

Keywords: E-voting · Usability evaluation · End-to-end verifiability

1 Introduction

Vote integrity means that an election’s result must accurately reflect the vot-
ers’ true intentions. End-to-end verifiability [12] is a measure for vote integrity
and provides means for the voters to verify that their intentions are accurately
represented in the election’s result. Implementing end-to-end verifiable e-voting
schemes constitutes a particular challenge due to competing security require-
ments that have to be assured simultaneously. A particular opponent of verifi-
ability is vote privacy meaning that the voting system does not provide more
evidence about the intention of specific voters than the election result does [38].

To maintain the vote privacy in an end-to-end verifiable e-voting scheme, the
voters have to carry out several tasks by themselves. Furthermore, they have to
determine the result of the verification, i.e. whether a vote is manipulated or
not, by themselves. Therefore, the voters play an active role in the security of
the e-voting scheme, and the scheme’s usability becomes of crucial importance.

c© International Financial Cryptography Association 2020
A. Bracciali et al. (Eds.): FC 2019 Workshops, LNCS 11599, pp. 257–271, 2020.
https://doi.org/10.1007/978-3-030-43725-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43725-1_18&domain=pdf
http://orcid.org/0000-0001-7129-9642
http://orcid.org/0000-0002-8127-0592
http://orcid.org/0000-0003-4713-5327
https://doi.org/10.1007/978-3-030-43725-1_18

258 K. Marky et al.

Vote verification typically is not present in traditional paper-based voting
schemes, therefore, voters are likely not familiar with the tasks that are asso-
ciated with it. Furthermore, voting is no everyday activity and any election
includes a share of new voters. Hence, we cannot expect that training and learn-
ing can mitigate usability issues. As a consequence, the usability of any e-voting
system has to be studied thoroughly before its usage in real elections.

In this paper, we present and discuss methods for assessing the usability met-
rics of end-to-end verifiable e-voting systems via user studies. Hereby, we focus
on the tasks of vote casting and verification. We discuss quantitative metrics,
demographic data and the user study setting based on past usability studies
that we carried out and a detailed literature review. We show that determining
the effectiveness of a verification constitutes a particular challenge and has to
be considered from early on when planning and designing the user study. We
deliberately exclude expert evaluations, such as walkthroughs [35], because they
do not entail voters as study participants.

2 End-to-End Verifiable E-Voting Schemes

E-voting schemes are based on cryptographic protocols to provide security prop-
erties such as vote privacy or eligibility. Voters interacting with the e-voting
scheme have no means to verify, that the scheme processed their votes correctly
and therefore have to trust that correct processing occurs. End-to-end verifiable
e-voting schemes [12] enable individual voters to verify that their votes have been
processed correctly. Hereby, no trust in the voting scheme, the voters’ personal
computers, election officials, or external observers is required [6]. End-to-end
verifiability can be subdivided1 into the following components:

Cast-as-intended: the cast vote corresponds to the voter’s intent.
Recorded-as-cast: the recorded vote matches the cast vote.
Tallied-as-recorded: that all recorded votes are correctly included in the tally.
Eligibility: that only the votes of eligible voters are tallied.

The tallied-as-recorded, as well as the eligibility verifiability, can be executed
by observers and technically-adept users for all voters, because the information
that is required to perform these verification types is publicly available, and only
a certain share of voters or observers is required to do this. The recorded-as-cast
verifiability has to be initiated by the voters since solely the voters know about
their participation in the election. Therefore, they play an active part in this com-
ponent. The most challenging component from the voters’ perspective is given
by the cast-as-intended verifiability. Because the voters’ intents are protected by
vote privacy, only the voters themselves can perform verification2. Furthermore,
1 We use the subdivision for usability investigation purposes. Note, that the compo-

nents alone do not replace end-to-end verifiability [14].
2 A scheme for delegation has been proposed [17] whereby the complexity is shifted

towards vote casting indicating that even if delegation is possible, human factors are
still important.

How to Assess the Usability Metrics in E-Voting Schemes 259

they have to determine the outcome of the verification by themselves and act
properly in case they uncover an incorrect vote.

3 The Impact of Usability

E-voting systems have been investigated in several works which confirm that
the usability of the e-voting scheme is crucial. Errors rooted in a poor voting
client usability can propagate to the tallying result and negatively impact the
election’s integrity. Therefore, poor usability renders all verification useless.

The usability of vote casting on early e-voting schemes, which are paper
punch cards and lever machines, has been studied in several works [10,11,18,23].
Although paper ballots are superior in terms of usability, compared to paper
punch cards and lever machines and have lower error rates than punch pards,
lever machines and even Direct Recording Electronics (DREs) [10]. An investi-
gation of different DREs, which are the computers used for voting in polling
stations, reveals that between 1% and 8% of cast votes do not match the vot-
ers’ true intentions [13,19] which could flip the outcome of a first-past-the-post
election.

Several verifiable e-voting schemes have been investigated in the literature.
Not all of the investigated themes offer end-to-end verifiability, but some degree
of verifiability. Participants in a user study of the Norwegian e-voting scheme
[22] could not determine whether their votes were submitted [20]. The usability
of the BenalohChallenge was perceived as very poor [1], only between 10% and
43% of participants were able to complete verification [1,34,48] and the Benalo-
hChallenge was proven to be ineffective from a game-theory perspective [15].
A comparative usability evaluation of three Internet voting schemes by Kulyk
et al. [28], each of which had a different level of system security, revealed that
participants were willing to sacrifice 26 points on the System Usability Scale
[8] when they were informed about the different degrees of system security. The
first scheme was a simple click form (the least secure), the second a return code
scheme, and the third used a combination of voting and return codes (being the
most secure).

4 Study Design Challenges

In this section, we describe study design challenges in the scope of e-voting
systems, based on our study design experiences and the literature we provide
guidelines to cope with these challenges. Since not all challenges can be addressed
by a generic guideline, we use the challenges in the following section to derive
guidelines for specific usability metrics.

4.1 Election Setting

The election setting is the specific election scenario that is provided to the par-
ticipants within the study. It encompasses the election that the participant par-
ticipates in, e.g., a university council or parliament election, the number of races
and all aspects that concern the election and the participants’ role in it.

260 K. Marky et al.

Elections can have various stakes; governmental elections are high-stake
whereas university council elections are usually low-stake. Simple polls, e.g., ask-
ing for food preferences, have an even lower stake. The stake of the election, how-
ever, can impact the participants’ behaviors and the study’s ecological validity,
which refers to the extent to which the results of an experiment can be applied to
real-world conditions [40]. Therefore, the setting can influence attitudes towards
the usage of provided e-voting system features, such as verification.

Selker et al. [42] recommend, based on an analysis of previous voting user
studies, that the study setting should be closely related to a real-world election
to strengthen the ecological validity.

4.2 Participant Vote Privacy

Any user study collects data of the participants to assess the investigated
scheme’s usability. While some data collection methods target very specific data
types (e.g., the time stamping of actions), others such as screen recording collect
a plethora of data that might also be privacy-sensitive. The voting options that
the study participants mark, can be part of these data and therefore the partici-
pants’ vote privacy can be compromised depending on the study design and the
measurements that are taken. Vote privacy, however, is a quite delicate aspect
and the disclosure of voting preferences is forbidden by the law (e.g., [46]) and
should, therefore, be also preserved in user studies. Participants are not aware
of the vote privacy aspect and tend to vote for the same candidate as in a real
election [47]. This introduces a trade-off between maintaining the participants’
vote privacy and measurements. The examiners have to decide whether they wish
to either maintain vote privacy by measurements that do not compromise it or
adjust the study design to take the compromising measures. We will emphasize
on vote privacy when we discuss different measurement methods in Sect. 5.

4.3 Social Acceptability Bias

The social acceptability bias [24,37] is the tendency of participants to give socially
acceptable answers rather than answering in a way that reflects their true opin-
ions. Therefore, participants might act differently as they would act in a real
election. This introduces a challenge in designing e-voting user studies, since
the social acceptability bias could impact the user study results, especially in
the scope of verification. A possibility to offset the social acceptability bias is
the introduction of a fictitious research goal. Budurushi et al. [9] used a cover
story and told participants in the study briefing that their goal was to investi-
gate democracy development, the general acceptability of e-voting and usability.
During the debriefing, the participants were told the actual research goal.

4.4 Mental Tasks

In any usability study, the researchers require knowledge about the correct exe-
cution of required tasks in order to able to measure deviations from the correct

How to Assess the Usability Metrics in E-Voting Schemes 261

execution. The correct execution might contain specific tasks that cannot be mea-
sured directly. Particularly challenging are tasks that the participants perform
mentally. For instance, the Benaloh Challenge requires the comparison of hash
values and voting options. If both match, the verified vote was cast-as-intended,
therefore, a user study needs to confirm whether participants indeed perform
these tasks.

4.5 Demographic Data

Demographic data is data regarding the study participants and is necessary for
the determination of whether the individuals in a particular study are a represen-
tative sample of the target population for generalization purposes. Demographic
data, in general, include age, gender, occupation and education level. In e-voting
specific studies the general demographic data is not sufficient since opinions and
previous voting experiences can impact the study outcome.

Furthermore, the participants’ attitudes regarding the usage of e-voting, in
general, could impact their performance and answers in the user study. There-
fore, the demographics questionnaire should include questions that ask for the
participants’ general attitudes towards e-voting.

4.6 Motivation Interference

For the usage of any feature in any kind of system, a study participant has to be
motivated to do so. The construct of usability does not encompass the motivation
to attempt a task in the first place. Instead of not being able to complete a task,
participants might lack the motivation to attempt it. Verification in e-voting
schemes is a not anticipated extra task that is not present in most traditional
paper-based voting solutions. Furthermore, there are neither media campaigns
that advertise verification as “positive” nor are there other incentives for the
participants to verify. The investigation of usability, however, requires that the
participants at least attempt to verify. Therefore, examiners need to make sure
that the participants attempt verification.

5 Usability Metrics

According to ISO 9241-11 [44] the construct usability is defined as the effec-
tiveness, efficiency and satisfaction with which specified users achieve specified
goals in particular environments. ISO 9241-11 is also used by the NIST [29] for
investigating voting systems. In particular, the criteria are defined as:

Effectiveness The accuracy and completeness with which specified users can
achieve specified goals in particular environments.

Efficiency The resources expended in relation to the accuracy and completeness
of goals achieved.

Satisfaction The comfort and acceptability of the work system to its users and
other people affected by its use.

262 K. Marky et al.

5.1 Effectiveness

Effectiveness means either the accuracy and completeness with which voters cast
votes or the accuracy and completeness with which voters verify votes. Based
on this definition, it is crucial to determine whether participants indeed cast
and/or verified a vote successfully - the binary success [3] - or the process that
participants made - the level of success [3].

At first, the examiners need to determine the sequence of actions that are
required to cast and/or verify a vote. The progress in this sequence has to be
captured accurately to determine the effectiveness. Capturing the progress, how-
ever, constitutes a particular challenge when investigating end-to-end verifiable
e-voting schemes for two reasons: (1) the participants’ vote privacy might have
to be preserved and (2) not each task within the action sequence can be assessed
directly. Since the participants vote, process capturing might break their vote
privacy. If vote privacy is important in the user study, proxy measurements that
do not interfere with vote privacy are required. In the following we discuss several
progress capturing methods as well as their relation to the challenges.

Observation. The examiner could observe the participants to determine their
progress [3]. If a real election is investigated, observation is not possible since
many countries demand vote privacy in the voting booth [5]. Vote privacy is also
compromized in the lab setting, because the examiner could see what the par-
ticipants vote for. It furthermore introduces a social acceptability bias, because
the participants might alter their behavior to match the examiner’s expectations.
Finally, mental tasks cannot be assessed reliably by an examiner. Several stud-
ies address these problems by an unobtrusive observation [34,43] in which the
examiner is present in the lab and administers the study, but cannot observe
the participants interactions with the e-voting system while voting and verifica-
tion. In case the study scenario does not demand a real vote, the participants
can be provided with voting instructions. Several studies use intent cards to
provide written voting instructions [18,28,34]. Participants in an e-voting study
by De Jong et al. struggled in remembering their verbal voting instructions [26],
therefore the instructions should be written.

Visual Recording. Visual Recording [3] captures the participants’ screens and
renders a video from it or films the participants’ interactions with a camera, such
that the resulting video can be analyzed after the user study. This capturing
method is objective and there is no influence by the examiner’s behavior. Since
the entire interaction is recorded, the voting options that the participants choose,
are part of the recordings which breaks the participants’ vote privacy. Thus, the
same aspects regarding vote privacy related to observation apply here. If the
study scenario demands that the participants cast votes that match their real
intents visual recordings cannot be used. Furthermore, as shown by Conrad
et al. [13] video recording might be unreliable, since 0.5% of the contests the
participants voted in were not visible on the video.

How to Assess the Usability Metrics in E-Voting Schemes 263

Self Reporting. Another possibility to access the progress is asking the partic-
ipants directly whether they performed the required actions [3]. In doing so no
recordings are required and vote privacy is maintained as long as the participants
are not asked for the voting option. Self-reported answers however suffer from
a few drawbacks. Since self-reporting is reactive, the participants influence the
given answer. They might lie to the examiner or in the questionnaire because of
the social acceptability bias [24] or because of misperceptions. For example, in a
study of Helios about 25% of participants thought they successfully cast a vote
although they did not [1]. 25.8% of participants in a user study by Marky et al.
[34] stated in a questionnaire that they did verify their votes whereas in reality,
they failed.

Thinking Aloud. In the thinking aloud method [7], the participants are encour-
aged to verbally express thoughts during the interaction with the investigated
scheme. Therefore, one might assume that the participant will also comment on
the tasks that they are performing. While thinking aloud can provide important
insights into the participants’ interactions, it is not reliable in determining the
effectiveness and the fulfillment of tasks since each participant follows a differ-
ent strategy while commenting. Furthermore, the thinking aloud method might
impact other metrics (e.g., completion time).

Eye Tracking. Eye-tracking can be used to investigate the participants’ gazes
[3]. However, while looking at a certain display area, e.g., the one displaying a
verification code, it can not be assured, that the user indeed executes the required
mental action, e.g., comparing the code to another. Therefore, eye tracking can
only be employed in settings without mental tasks. Eye-tracking has been used
in completed user studies to identify eye movements and gazes [27,41].

Proxy Measurements. Often it is not possible to capture whether the par-
ticipants have been successful. In the e-voting setting, this might be because
maintaining vote privacy interferes with performance capturing, but also if the
task is performed mentally. To be able to capture the process accurately in such
a situation, proxy measurements [3] can be used. This refers to a measure that
helps to measure the task, but requires setup adjustments.

A common proxy measurement when investigating e-voting schemes is delib-
erate manipulations [42]. In end-to-end verifiable schemes, the voters frequently
have to compare data, e.g., verification codes. To capture whether the partic-
ipants have indeed compared the data, the data could be manipulated. Fur-
thermore, the voters have to be instructed on how to act if they uncover a
manipulation.

Deliberate manipulations can impact other metrics in the experiment. Par-
ticipants might be less satisfied if they experienced a manipulation. Therefore,
other parameters of the usability study have to be adjusted to account for that:

264 K. Marky et al.

(1) the participants could interact with the system with and without a manip-
ulation or (2) the study is in between-subjects design, such that one group is
confronted with a manipulation and the other group is not.

Error Rates. Error rates are an alternative to completion rates to assess effec-
tiveness. In the scope of e-voting systems, this refers to the relationship between
the voter’s intention and the real outcome [13,32]. MacNamara et al. [32] inves-
tigate in the usability of the DualVote VVPAT system and measured an error
rate of 11.4%. However, this was not rooted in usability issues, the reason was a
technical problem of the voting machine. Voter performance might be worse in
real elections since there might be pressure by other waiting voters [13].

5.2 Efficiency

According to the ISO standardization, efficiency refers to the resources expended
in relation to the accuracy and completeness of goals achieved [44].

The most commonly used method in the literature to assess the efficiency is
the completion time, referring to the time that a participant required in order
to complete all actions that are required to cast or to verify a vote. Two types
of completion times have been assessed in user studies in the literature: (1) the
ballot completion time which refers to the time required by participants to mark
a ballot and (2) the verification completion time which is the time participants
required to successfully complete verification.

Ballot Completion Time. The ballot completion time has been investigated
in several works [1,10,19,32].

The average completion time is dependent on the ballot and therefore, is sim-
ilar when comparing different e-voting systems. Byrne et al. [10] discovered that
identical ballots in different representations and voting systems require the same
completion time. In particular, they investigated arrow ballots, bubble ballots,
punch cards, and lever machines which all required roughly 231 seconds for com-
pletion. Everett et al. [19] could not find significant differences between bubble
ballots, punch cards, lever machines and DREs, confirming that the completion
times are ballot-dependent. Studies of Prêt á Voter implementations, which use
a very specific ballot design, show that participants require more time to mark
their votes [1].

Verification Completion Time. The time required for verification has been
investigated in several user studies [1,34]. Marky et al. [34] investigated three
different interfaces of the Benaloh Challenge and found significant differences in
the usage of a mobile verification device and a verification website. This shows
that an interface can well impact the duration of verification.

How to Assess the Usability Metrics in E-Voting Schemes 265

5.3 Satisfaction

Satisfaction refers to the comfort and acceptability of the system to its users
and other people affected by its use [44]. It can be assessed by standardized
questionnaires or non-standardized ones created by the experimenter.

System Usability Scale. The System Usability Scale (SUS) [8] has been used
extensively in e-voting studies [1,2,10,18,21,28,31,33,34,36,49]. Therefore, it
can be used to compare the subjective usability of a new e-voting scheme to a
range of different existing e-voting ones.

Acemyan et al. [1] measured a SUS score of 20.0 when investigating the
usability of the Helios implementation of the Benaloh Challenge. Marky et al.
[34] investigated the same process, but measured 76.5. The difference results
from the different scopes in both studies: While Acemyan et al. measured the
verification task only, while Marky et al. accessed the SUS score of the voting
client, including ballot marking and vote casting. Acemyan et al. also measured
the SUS score of the voting client which resulted in a similar SUS score to the one
obtained by Marky et al. Therefore, it is likely that the subjective assessments
from the verification significantly differs from the satisfaction related to the
voting client.

The first SUS question is I think that I would like to use this system frequently.
When conducting the user study published in [34] we discovered that the answer
to this question can correlate with the participants’ general attitudes towards
e-voting. In case participants express a negative attitude, their answers could
not be affirmative and vice versa. This might distort the SUS measurement -
and possibly others - since the question aims to investigate the usability and
not the participants’ attitudes. Therefore, it is important to access the attitude
towards e-voting in the demographics. Since there is no possibility to correct the
participants’ answers, correlations should be reported as a limitation.

User Experience Questionnaire. According to ISO 9241-210 [45] User expe-
rience is defined as a person’s perceptions and responses that result from the
use or anticipated use of a product, system or service.

The User Experience Questionnaire (UEQ) [30] can be used to measure the
overall experience of the participants with the e-voting system they interact with.
It covers attractiveness as well as usability aspects by measuring perspicuity,
efficiency, dependability, but also the hedonic aspects of stimulation and novelty.
Therefore, it broadens the investigation. The UEQ has been used in many user
experiments, but to our knowledge so far only in two voting experiments [16,
36]. Considering the complete user experience helps to design usable protocols
that bring satisfaction and meet the voters’ expectations during the voting and
verification phases.

Non-standardized Questionnaires. Voter satisfaction can also be assessed
by non-standardized questionnaires developed by the examiners depending on

266 K. Marky et al.

the study’s specific purpose. Those questionnaires have been used in several e-
voting studies [5,27,32,34]. It is, however, encouraged by related works [1,10,39]
to use standardized questionnaires in addition to self-developed ones to have
comparability to previous studies.

6 Usability Study Guidelines

In this section, we provide study design guidelines for coping with the challenges,
metric-based guidelines and general guidelines that were derived from the liter-
ature and our own experiences.

6.1 Challenge-Based Guidelines

In this section we provide guidelines for coping with e-voting study challenges of
the election setting, vote privacy, social acceptability bias, mental tasks, demo-
graphic data, and motivation interference.

G1 Provide a ballot with recognizable candidates from a past or upcoming elec-
tion and use a setting that is close to a real-world election to strengthen
ecological validity.

G2 The usage of a cover story can offset the social acceptability bias. But the
cover story should be explained to the participants during the debrief.

G3 The collection of written post-test data instead of direct communication with
the examiner can offset the social acceptability bias.

G4 Mental tasks should be identified by the examiners before the measurement
methods are determined.

G5 Participants should be asked in the demographic questionnaire whether they
have already participated in an election that matches the setting from the
study to capture if participants have consistent voting experiences.

G6 Participants should be asked about their general attitude towards e-voting
in the demographic questionnaire because it could distort user study results.

G7 Written instructions to attempt verification ensure that participants try to
carry out the required tasks. The instructions should not contain detailed
instructions on how to verify a vote and solely should instruct participants
to do it. The instructions should be tested in a pre-study to ensure their
understandability.

G8 Make sure that the motivation of participants to cast or verify their votes
does not impact the usability metrics.

6.2 Metric-Based Guidelines

In the following, we provide guidelines regarding the assessment of the usability
metrics. Hereby, we focus on process capturing for assessing effectiveness, error
rates, efficiency, and questionnaires.

How to Assess the Usability Metrics in E-Voting Schemes 267

G9 The methods of observation, visual recording and think aloud break the
participants’ vote privacy and should not be used in studies with real votes.

G10 The methods of observation, visual recording, self-reporting, think aloud
break and eye tracking should not be used for assessing the completion of
mental tasks.

G11 Thinking aloud should not be used in conjunction with completion time.
G10 Self-reporting should be used if no other measurements are possible, e.g.,

participant opinions.
G12 Self-reporting should be used as an addition to objective measurements.
G13 Written voting instructions should be used to maintain vote secrecy when

visual recording or observation is used.
G14 If the participants are videotaped, actions of them might not be visible on

the video, therefore, the video positioning should be refined in a pre-study.
G15 If vote privacy is important throughout the study, examiners should be

positioned in an unobtrusive way, such that they cannot see the participants’
interactions and interfere with them.

G16 Deliberate manipulations can used as a proxy measurement to capture
effectiveness.

G17 Errors can be rooted in the voting system’s malfunctioning. Therefore, the
malfunctioning of the e-voting system has to be ruled out.

6.3 General Guidelines

Besides the specific guidelines stated above, we derived general guidelines that
concern the user study overall.

G18 The participants should be informed clearly which part of the voting scheme
should be considered when answering questionnaires.

G19 A plethora of baseline data for several e-voting systems is available in
the literature. The usage of the same metrics provides the opportunity to
compare the investigated system to those that have already been investigated.
Therefore, the SUS, ballot/verification completion time and completion rates
should be measured.

G20 The assessed metrics should not be limited to usability, the bigger picture
of User Experience can provide valuable insights.

7 Related Work

The usability of voting systems has been investigated in many studies and some
publications focus on investigation methodologies. In the following, we describe
existing guidelines and recommendations for e-voting studies that are presented
in related work. Our paper aims to provide guidelines related to the challenges
and usability metrics while related work provides additional guidelines for the
overall protocol design.

Selker et al. [42] analyze three studies of polling station based voting systems
and provide guidelines for future work. They compare realistic and laboratory

268 K. Marky et al.

experiments for testing voting technologies. The results reveal that real-world
tests are more valuable as they add a considerable workload to the process,
which uncovers additional issues related to the environment and the procedure
in polling stations (distraction, confusion, the importance of poll workers assis-
tance). However, the collected data is consistent in both test environments and
the aspects of a real-world setting do not influence ballot understanding or ver-
ification results. Providing a voting card to the participants in a mock election
where they know the candidates can be inefficient: participants could vote for
a different candidate, which impacts error tracking. Furthermore, the authors
recommend testing as close as possible to a real-world setting to strengthen
ecological validity.

Olembo and Volkamer [39] conduct a literature review focusing on usability
studies of e-voting systems. They review different designs and methodologies
and provide a list of recommendations for user studies. They stress that expert
evaluations are faster and more cost-effective and bring more data compared to
user studies. They describe a methodology for future tests: at first an iteration of
the tested protocol must be done with HCI experts and users must be involved
in a second iteration with a pilot study. The final design must be re-tested with
users and field studies can be considered.

Herrnson et al. [25] study the importance of usability by investigating six
voting schemes that are already in use, with different voting procedures, with
four research methodologies. In their recommendation, they do not discuss the
different aspects related to the methodology in use but focus on usability find-
ings and impacts for next studies. They notice that demography impacts the
voters’ needs, in particular, the need for assistance was at least 18%. Therefore,
accessibility must be taken into consideration and proper assistance should be
available.

Taha Ali and Murray [4] discuss the impact of usability on voting systems.
In particular, they stress that the long intervals between elections confirm the
importance of usability because voters have little or no voting experience. This
lack of experience can be extended to poll workers and election officials, and
concerns are on whether voters will be able to cast a vote successfully, but also
able to go through the verification process. Therefore, the authors state that a
trainee at an early stage for voters and poll workers must be done to increase
usability results.

8 Conclusion

The usability of end-to-end verifiable e-voting schemes is equally important as
their security and directly impacts it. Therefore, human factors should be con-
sidered early on when designing usable end-to-end verifiable e-voting systems
that are intended to be put into practice. In this paper, we provide 20 guidelines
for investigating vote casting and vote verification in e-voting schemes in user
studies. The guidelines are derived from the literature and based on our experi-
ences and aim to inform future user studies of e-voting schemes. In this paper,

How to Assess the Usability Metrics in E-Voting Schemes 269

we focus on quantitative metrics as well as demographics and the study setting.
It would be beneficial to see guidelines for qualitative research as a part of future
work.

Acknowledgements. This work has been co-funded by the DFG as part of project
“Area D.1” within the RTG 2050 “Privacy and Trust for Mobile Users” and by the Horst
Görtz Foundation. We acknowledge support from the Luxembourg National Research
Fund (FNR) for funding, in particular Marie-Laure Zollinger was supported by the
FNR-INTER-VoteVerif project and FNR-INTER-SeVoTe project.

References

1. Acemyan, C.Z., Kortum, P., Byrne, M.D., Wallach, D.S.: Usability of voter verifi-
able, end-to-end voting systems: Baseline data for helios, prêt à voter, and scant-
egrity ii. USENIX J. Election Technol. Syst. (JETS) 2(3), 26–56 (2014)

2. Acemyan, C.Z., Kortum, P., Byrne, M.D., Wallach, D.S.: Summative usability
assessments of STAR-Vote: a cryptographically secure e2e voting system that has
been empirically proven to be easy to use. Hum. factors, 1–24 (2018)

3. Albert, W., Tullis, T.: Measuring the User Experience: Collecting, Analyzing, and
Presenting Usability Metrics. Newnes, Boston (2013)

4. Ali, S.T., Murray, J.: An overview of end-to-end verifiable voting systems. In: Real-
World Electronic Voting: Design, Analysis and Deployment, pp. 171–218. CRC
Press (2016)

5. Bederson, B.B., Lee, B., Sherman, R.M., Herrnson, P.S., Niemi, R.G.: Electronic
voting system usability issues. In: SIGCHI Conference on Human Factors in Com-
puting Systems (CHI), pp. 145–152. ACM (2003)

6. Benaloh, J., Rivest, R., Ryan, P.Y., Stark, P., Teague, V., Vora, P.: End-to-end
verifiability, pp. 1–7 (2015). https://arxiv.org/pdf/1504.03778.pdf

7. Boren, T., Ramey, J.: Thinking aloud: reconciling theory and practice. IEEE Trans.
Prof. Commun. 43(3), 261–278 (2000)

8. Brooke, J.: SUS - a quick and dirty usability scale. Usability Eval. Ind. 189(194),
4–7 (1996)

9. Budurushi, J., Renaud, K., Volkamer, M., Woide, M.: An investigation into the
usability of electronic voting systems for complex elections. Ann. Telecommun.
71(7), 309–322 (2016). https://doi.org/10.1007/s12243-016-0510-2

10. Byrne, M.D., Greene, K.K., Everett, S.P.: Usability of voting systems: baseline
data for paper, punch cards, and lever machines. In: SIGCHI Conference on Human
Factors in Computing Systems (CHI), pp. 171–180. ACM (2007)

11. Campbell, B.A., Byrne, M.D.: Now do voters notice review screen anomalies?
A look at voting system usability. In: Conference on Electronic Voting Technol-
ogy/Workshop on Trustworthy Elections (EVT/WOTE). USENIX Association
(2009)

12. Chaum, D.: Secret-ballot receipts: true voter-verifiable elections. IEEE Secur. Priv.
2(1), 38–47 (2004)

13. Conrad, F.G., et al.: Electronic voting eliminates hanging chads but introduces
new usability challenges. Int. J. Hum.-Comput. Stud. 67(1), 111–124 (2009)

14. Cortier, V., Galindo, D., Küsters, R., Mueller, J., Truderung, T.: SoK: verifiability
notions for e-voting protocols. In: Symposium on Security and Privacy (S&P), pp.
779–798. IEEE (2016)

https://arxiv.org/pdf/1504.03778.pdf
https://doi.org/10.1007/s12243-016-0510-2

270 K. Marky et al.

15. Culnane, C., Teague, V.: Strategies for voter-initiated election audits. In: Zhu,
Q., Alpcan, T., Panaousis, E., Tambe, M., Casey, W. (eds.) GameSec 2016. LNCS,
vol. 9996, pp. 235–247. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
47413-7 14

16. Distler, V., Zollinger, M.L., Lallemand, C., Rønne, P.B., Ryan, P.Y., Koenig, V.:
Security-visible, yet unseen? How displaying security mechanisms impacts user
experience and perceived security. In: CHI Conference on Human Factors in Com-
puting Systems, CHI 2019. ACM (2019)

17. Escala, A., Guasch, S., Herranz, J., Morillo, P.: Universal cast-as-intended veri-
fiability. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M.,
Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 233–250. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53357-4 16

18. Everett, S.P., Byrne, M.D., Greene, K.K.: Measuring the usability of paper ballots:
efficiency, effectiveness, and satisfaction. In: Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, vol. 50, no. 24, pp. 2547–2551 (2006)

19. Everett, S.P., et al.: Electronic voting machines versus traditional methods:
improved preference, similar performance. In: SIGCHI Conference on Human Fac-
tors in Computing Systems (CHI), pp. 883–892. ACM (2008)

20. Fuglerud, K.S., Røssvoll, T.H.: An evaluation of web-based voting usability and
accessibility. Univ. Access Inf. Soc. 11(4), 359–373 (2012). https://doi.org/10.1007/
s10209-011-0253-9

21. Gibson, J.P., MacNamara, D., Oakley, K.: Just like paper and the 3-colour proto-
col: a voting interface requirements engineering case study. In: International Work-
shop on Requirements Engineering for Electronic Voting Systems, pp. 66–75. IEEE
(2011)

22. Gjøsteen, K.: The Norwegian internet voting protocol. In: Kiayias, A., Lipmaa,
H. (eds.) Vote-ID 2011. LNCS, vol. 7187, pp. 1–18. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32747-6 1

23. Greene, K.K., Byrne, M.D., Everett, S.P.: A comparison of usability between voting
methods. In: Electronic Voting Technology Workshop (EVT). USENIX Association
(2006)

24. Grimm, P.: Social desirability bias. Wiley International Encyclopedia of Marketing.
Wiley, Hoboken (2010)

25. Herrnson, P.S., Niemi, R.G., Hanmer, M.J., Bederson, B.B., Conrad, F.G., Trau-
gott, M.: The importance of usability testing of voting systems. In: Electronic
Voting Technology Workshop (EVT) (2006)

26. de Jong, M., van Hoof, J., Gosselt, J.: User research of a voting machine: Prelimi-
nary findings and experiences. J. Usability Stud. 2(4), 180–189 (2007)

27. Karayumak, F., Kauer, M., Olembo, M.M., Volk, T., Volkamer, M.: User study
of the improved Helios voting system interfaces. In: Workshop on Socio-Technical
Aspects in Security and Trust (STAST), pp. 37–44. IEEE (2011)

28. Kulyk, O., Neumann, S., Budurushi, J., Volkamer, M.: Nothing comes for free:
How much usability can you sacrifice for security? IEEE Secur. Priv. 15(3), 24–29
(2017)

29. Laskowski, S.J., Autry, M., Cugini, J., Killam, W., Yen, J.: Improving the usability
and accessibility of voting systems and products. NIST Spec. Publ. 500, 256 (2004)

30. Laugwitz, B., Held, T., Schrepp, M.: Construction and evaluation of a user experi-
ence questionnaire. In: Holzinger, A. (ed.) USAB 2008. LNCS, vol. 5298, pp. 63–76.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89350-9 6

https://doi.org/10.1007/978-3-319-47413-7_14
https://doi.org/10.1007/978-3-319-47413-7_14
https://doi.org/10.1007/978-3-662-53357-4_16
https://doi.org/10.1007/s10209-011-0253-9
https://doi.org/10.1007/s10209-011-0253-9
https://doi.org/10.1007/978-3-642-32747-6_1
https://doi.org/10.1007/978-3-540-89350-9_6

How to Assess the Usability Metrics in E-Voting Schemes 271

31. Mac Namara, D., Scully, T., Gibson, P.: Dualvote addressing usability and ver-
ifiability issues in electronic voting systems (2011). http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.399.7284

32. MacNamara, D., Carmody, F., Scully, T., Oakley, K., Quane, E., Gibson, J.P.:
Dual vote: a novel user interface for e-voting systems. In: International Conference
on Interfaces and Human Computer Interaction, pp. 129–138. IADIS (2010)

33. MacNamara, D., Gibson, P., Oakley, K.: A preliminary study on a dualvote and
Prêt à Voter hybrid system. In: Conference for E-Democracy and Open Govern-
ment, p. 77. Edition-Donau-Univ. Krems (2012)

34. Marky, K., Kulyk, O., Renaud, K., Volkamer, M.: What did I really vote for? On
the usability of verifiable e-voting schemes. In: CHI Conference on Human Factors
in Computing Systems (CHI), pp. 176:1–176:13. ACM (2018)

35. Marky, K., Kulyk, O., Volkamer, M.: Comparative usability evaluation of cast-as-
intended verification approaches in internet voting. In: SICHERHEIT 2018, pp.
197–208. Lecture Notes in Informatics (LNI), Gesellschaft für Informatik (2018)

36. Marky, K., Schmitz, M., Lange, F., Mühlhäuser, M.: Usability of code voting modal-
ities. In: Extended Abstracts of the 2019 CHI Conference on Human Factors in
Computing Systems, CHI EA 2019, pp. LBW2221:1–LBW2221:6. ACM (2019)

37. Nancarrow, C., Brace, I.: Saying the “right thing”: coping with social desirability
bias in marketing research. Bristol Bus. Sch. Teach. Res. Rev. 3(11), 1–11 (2000)

38. Neumann, S.: Evaluation and improvement of internet voting schemes based on
legally-founded security requirements. Ph.D. thesis, Technische Universität Darm-
stadt (2016)

39. Olembo, M.M., Volkamer, M.: E-voting system usability: Lessons for interface
design, user studies, and usability criteria. In: Human-Centered System Design
for Electronic Governance, pp. 172–201. IGI Global (2013)

40. Patrick, A.: Ecological validity in studies of security and human behaviour. In:
Symposium on Usable Privacy and Security (SOUPS) (2009)

41. Realpe-Muñoz, P., Collazos, C.A., Hurtado, J., Granollers, T., Muñoz-Arteaga, J.,
Velasco-Medina, J.: Eye tracking-based behavioral study of users using e-voting
systems. Comput. Stan. Interfaces 55, 182–195 (2017)

42. Selker, T., Rosenzweig, E., Pandolfo, A.: A methodology for testing voting systems.
J. Usability Stud. 2(1), 7–21 (2006)

43. Sherman, A.T., et al.: Scantegrity mock election at Takoma Park. In: International
Conference on Electronic Voting (EVOTE), pp. 45–61. LNI, Gesellschaft für Infor-
matik (2010)

44. Standardization, I.O.F.: ISO 9241–11: Ergonomics of human system interaction -
part 11: Guidance on usability (1998)

45. Standardization, I.O.F.: ISO 9241–210: Part 210: Human-centred design for inter-
active systems (2015)

46. Strafgesetzbuch (StGB): §107c Verletzung des Wahlgeheimnisses. https://www.
gesetze-im-internet.de/stgb/ 107c.html

47. Van Hoof, J.J., Gosselt, J.F., de Jong, M.D.: The reliability and usability of the
NEDAP voting machine: a pilot study. University of Twente Faculty of Behavioural
Sciences Department of Technical and Professional Communication (2007)

48. Weber, J.L., Hengartner, U.: Usability study of the open audit voting system Helios.
http://www.jannaweber.com/wp-content/uploads/2009/09/858Helios.pdf (2009)

49. Winckler, M., et al.: Assessing the usability of open verifiable e-voting systems:
a trial with the system prêt à voter. In: International Conference on Theory and
Practice of Electronic Governance (ICEGOV), pp. 281–296. ACM (2009)

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.399.7284
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.399.7284
https://www.gesetze-im-internet.de/stgb/__107c.html
https://www.gesetze-im-internet.de/stgb/__107c.html
http://www.jannaweber.com/wp-content/uploads/2009/09/858Helios.pdf

Improving the Performance
of Cryptographic Voting Protocols

Rolf Haenni1(B), Philipp Locher1, and Nicolas Gailly2

1 Bern University of Applied Sciences, 2501 Biel, Switzerland
{rolf.haenni,philipp.locher}@bfh.ch

2 École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
nicolas.gailly@epfl.ch

Abstract. Cryptographic voting protocols often rely on methods that
require a large number of modular exponentiations. Corresponding per-
formance bottlenecks may appear both on the server and the client side.
Applying existing optimization techniques is often mentioned and rec-
ommended in the literature, but their potential has never been analyzed
in depth. In this paper, we investigate existing algorithms for computing
fixed-base exponentiations and product exponentiations. Both of them
appear frequently in voting protocols. We also explore the potential of
applying small-exponent techniques. It turns out that using these tech-
niques in combination, the overall computation time can be reduced by
two or more orders of magnitude.

1 Introduction

Parties involved in cryptographic protocols often need to calculate a large num-
ber of modular exponentiations z = be mod p (modexp) with large numbers b, e,
and p.1 With regard to performance, other computational tasks are often negligi-
ble. This is why optimizing modexp computations is the most promising option
for improving the overall performance of an online voting system. Often, par-
ticular attention must be given to the client side, especially if it is implemented
as a web application in JavaScript, which is known for its limited performance
relative to native-code applications. Clearly, computational bottlenecks on the
client may lead to critical usability problems and should therefore be avoided.

1.1 Problem Description and Context

In this paper, we consider the common setup of an ElGamal encryption scheme,
which is often used for encrypting votes in cryptographic voting protocols. Let
p denote a safe prime and Z

∗
p = {1, . . . , p − 1} the corresponding multiplicative

1 Exponentiations in groups such as elliptic curves, where the potential of applying
the same type of optimizations is exactly the same, are less frequently used in voting
protocols. Here we focus on multiplicative groups of integers modulo p, but our
theoretical results are all applicable to the general case.

c© International Financial Cryptography Association 2020
A. Bracciali et al. (Eds.): FC 2019 Workshops, LNCS 11599, pp. 272–288, 2020.
https://doi.org/10.1007/978-3-030-43725-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43725-1_19&domain=pdf
https://doi.org/10.1007/978-3-030-43725-1_19

Improving the Performance of Cryptographic Voting Protocols 273

group of integers modulo p. This group has a sub-group Gq ⊂ Z
∗
p of prime order

q = p−1
2 , for which the decisional Diffie-Hellman (DDH) problem is believed

to be hard. Since q is prime, all elements of Gq \ {1} are generators of Gq.
For such a generator b ∈ Gq and an exponent e ∈ Zq, computing the modular
exponentiation z = Exp(b, e, p) = be mod p ∈ Gq is the basic computational task
considered in this paper. According to current recommendations [3], we have to
deal with numbers of following bit lengths:

2048 ≤ |p|, 2 ≤ |b| ≤ |p|, 112 ≤ |e| ≤ |p| − 1, |z| = |p|.
In our theoretical analysis of different modexp algorithms, we will see that � = |e|
is one of the main parameters that determines the running time. If � is equal
or close to the above lower bound, we call e a short exponent.2 Similarly, b is a
short base, if |b| is equal or close to 2. In all cases, we assume that b and e are
drawn from a random uniform distribution.

The computational task considered in this paper consists of N different mod-
exp instances for the same modulo p. Therefore, let b = (b1, . . . , bN) ∈ G

N
q and

e = (e1, . . . , eN) ∈ Z
N
q denote the given vectors of values bi and ei. In the most

general case, we need to compute values zi = Exp(bi, ei, p) independently. The
corresponding multiple exponentiation problem is denoted by

z = MultiExp(b,e, p) ∈ G
N
q ,

where z = (z1, . . . , zN) is the vector of output values. We use MultiExp as ref-
erence point for judging the benefits of optimization algorithms, which can be
applied to the following two special cases:

– Product Exponentiation. Compute the product z =
∏N

i=1 zi mod p of values
zi = Exp(bi, ei, p) for inputs b = (b1, . . . , bN) and e = (e1, . . . , eN):

z = ProductExp(b,e, p) ∈ Gq.

– Fixed-Base Exponentiation. Compute z = (z1, . . . , zN) of values zi =
Exp(b, ei, p) for inputs b = (b, . . . , b) and e = (e1, . . . , eN):

z = FixedBaseExp(b,e, p) ∈ G
N
q .

A similar special case arises for e = (e, . . . , e). However, since the benefits of
algorithms for solving such fixed-exponent exponentiation problems are rather
limited (see [10, Section 14.6.2]), we do not consider them in this paper.
2 There are multiple reasons for working with short exponents. In certain applications

of some cryptographic schemes, a much smaller subgroup Gq ⊂ Z
∗
p is sufficient. To

resist against the best available DL algorithms, the minimal bit length of q in such
cases is 2λ, where λ denotes the security strength, for example |q| = 224 for λ = 112.
Corresponding exponents e ∈ Zq are then inherently restricted to |q| bits. In larger
groups, smaller exponents are sometimes selected on purpose, for example in the case
of a challenge c ∈ Z2λ in a zero-knowledge proof or in systems relying on the short-
exponent discrete logarithm (DLSE) assumption, in which short exponents e ∈ Z22λ

deliver the same provable security under a slightly stronger intractability assumption.
For example, using the ElGamal encryption scheme with short randomizations has
been proven IND-CPA secure under the DLSE assumption [7].

274 R. Haenni et al.

1.2 Contribution and Paper Overview

The goal of this paper is to increase public awareness of the potential perfor-
mance benefits that results from applying the most appropriate modexp algo-
rithms to a particular given computational task in a cryptographic voting pro-
tocol. The state-of-the-art algorithms for solving MultiExp, FixedBaseExp, and
ProductExp most efficiently are presented in Sect. 2. We summarize the algo-
rithmic and theoretical background of the available methods and provide an
analysis of the expected computational costs. Since all algorithms are parame-
terized, we give instructions for finding optimal algorithm parameters in a given
cryptographic setup. The maximal performance benefits when running the algo-
rithms with optimal parameters are analyzed for FixedBaseExp and ProductExp.
For some of the presented algorithms, we are not aware of any references in the
literature. One of the presented algorithm turns out to be equivalent to the well-
known comb method [9], but we believe that our description is more intuitive.

A more practical perspective of this topic is given in Sect. 3. The target audi-
ence of this section are practitioners and developers of online voting systems
designed for real-world elections. We performed different performance tests for
various algorithms and measured their effective running times on different plat-
forms. A special focus is given to the client side, in which performance bottlenecks
are more likely to appear.

2 Performance Analysis of Exponentiation Algorithms

Most programming languages or mathematical libraries providing large num-
ber arithmetic have a built-in support for modexp computations. They usually
implement general-purpose modexp algorithms from [10], for example Alg. 14.82,
Alg. 14.83, or Alg. 14.85, which we will later call HAC14.82, HAC14.83, and
HAC14.85. Using such algorithms, the average time for solving MultiExp is
exactly N times the average time for solving Exp. General algorithms for Exp
are discussed in Sect. 2.2. We will use them as reference points for evaluating
the performance of several optimization algorithms. The results obtained for
ProductExp and FixedBaseExp are discussed in Sects. 2.3 and 2.4.

2.1 Measurement Methodology

In our theoretical analysis of an algorithm Alg for solving Exp(b, e, p), we count
the number MAlg(�) of multiplications needed for exponents of length � = |e|.
For reasons of simplicity, we do not distinguish between squaring and multiplica-
tion operations, i.e., we assume that they are equally expensive, which may not
necessarily be true in every library. In case of ProductExp and FixedBaseExp algo-
rithms for �-bit exponents, we count the total number MAlg(�,N) of multiplica-
tions needed to solve the entire problem. To compare them with general-purpose
algorithms, we compute the average number of multiplications per modexp,

M̃Alg(�,N) =
MAlg(�,N)

N
,

Improving the Performance of Cryptographic Voting Protocols 275

and call it relative (theoretical) running time of Alg. Both MAlg(�) and M̃Alg(�,N)
may depend on algorithm parameters κ1, . . . , κr. We either include them explic-
itly in our notation as Mκ1,...,κr

Alg (�) and M̃κ1,...,κr

Alg (�,N), or we skip them to
indicate that optimal parameters κopt

i have been chosen:

Mopt
Alg (�) := M

κopt
1 ,...,κopt

r

Alg (�) and M̃opt
Alg (�,N) := M̃

κopt
1 ,...,κopt

r

Alg (�,N).

If we take Mopt
Alg∗(�) of a general-purpose modexp algorithm Alg∗ as reference

point for evaluating the performance of an optimization algorithm Alg, both
of them instantiated with optimal algorithm parameters, we can measure the
benefit of Alg relative to Alg∗ by computing the fraction

μAlg(�,N) = Mopt
Alg∗(�) / M̃opt

Alg (�,N).

This number will be called (theoretical) impact factor of algorithm Alg in problem
instances of size N and exponents of size �. To measure the benefit of combining
an optimization algorithm Alg with short-exponent techniques, for example in a
setting with �long = 2047 and �short = 224, we compute the fraction

μ∗
Alg(�long, �short, N) = Mopt

Alg∗(�long) / M̃opt
Alg (�short, N).

All modexp algorithms described in this section can benefit more or less equally
from techniques known as Montgomery or Barrett reduction as described as
Alg. 14.32 and Alg. 14.42 in [10]. We do not study their potential in this paper.

2.2 General-Purpose Exponentiation Algorithms

The most fundamental problem considered in this paper is the computation of
a single value z = Exp(b, e, p). A widely implemented algorithm is the window
method as described in HAC14.82, in which the �-bits exponent is written as
e = (et−1 · · · e1e0)B in base B = 2k. The parameter k is called window size and
t = � �

k � denotes the number of windows ei ∈ Z2k . The algorithm processes the
bits of each window en bloc by decomposing be using Horner’s method:

be = b
∑t−1

i=0 eiB
i

= be0(be1(be2 · · · (bet−2(bet−1)B)B · · ·)B)B .

This expression can be evaluated from inside to outside starting with the left-
most window et−1. The resulting iteration corresponds to HAC14.82. If all values
bei have been precomputed and stored in a table, then the iteration requires
k(t − 1) squarings and t − 1 = � �−1

k � multiplications. The precomputation table
may contain up to 2k entries, which can be computed using 2k−2 multiplications.

To reduce the size of this table and therefore to improve the overall compu-
tation time, consider the decomposition of each ei 	= 0 into ei = ui2vi such that
ui is odd (et−1 remains untouched). For ei = 0, let ui = vi = 0. This leads to

be = (bu0((bu1(· · · ((but−2(bet−1)2
k−vt−2)2

vt−2) · · ·)2k−v1)2
v1)2

k−v0)2
v0

,

276 R. Haenni et al.

from which the improved window algorithm HAC14.83 follows. Here, the pre-
computation table of all possible odd values ui ∈ Z2k contains at most 2k−1

entries, which can be generated using the same amount of multiplications.
To compute the running time of HAC14.83 as precisely as possible, we have

to take into account that e may contain some windows ei = 0. We assume
that such cases, in which one multiplication is saved, appear with probability
Pk = 2k−1

2k ∈ [0.5, 1). This leads to

Mk
HAC14.83(�) = 2k−1 + (k + Pk)

⌊
� − 1

k

⌋

+ 1 < 2k−1 + � · k + 1
k

,

which we will later use as reference point for evaluating the performance of
several optimization algorithms.3

The remaining question regarding the window method is the selection of the
optimal parameter kopt that minimizes MHAC14.83(k, �). To get the desired value
for a given �, we can either solve d

dk [Mk
HAC14.83(�)] = 0 numerically, for example

using Newton’s method, or perform an exhaustive search over 1 ≤ k ≤ �. The
results for 80 ≤ � ≤ 15360 are summarized in Table 1. The mapping from � to
kopt is unique within the ranges given in Table 1, but not in the areas between
these ranges, where kopt jumps forth an back between two adjacent values.

Table 1. Optimal window sizes kopt in HAC14.83 for different exponent lengths �.

� 82–184 217–545 566–1434 1465–3759 3802–9368 >9425

kopt 4 5 6 7 8 9

An even better performance offers the sliding window method as implemented
in HAC14.85, in which one multiplication can be saved in the average after pro-
cessing k

2 windows, i.e., 2t
k multiplications can be saved in total. Since this is

a non-negligible quantity, HAC14.85 is the recommended method in [10]. Nev-
ertheless, HAC14.82 and HAC14.83 (and even HAC14.79) are implemented in
some arithmetic libraries for large integers.

As a numerical example, consider the common cryptographic setting with
|p| = 2048 and exponents of length � = |e| = 2047. In this case, we select
kopt = 7 for getting the best possible running time Mopt

HAC14.83(2047) = 2401.
This is about 22% faster than standard square-and-multiply, which corresponds
to M1

HAC14.83(2047) = 3071 for windows of size k = 1. Using the sliding window
method, the performance improves by another 3% to Mopt

HAC14.85(2047) = 2318.

3 The precomputation of HAC14.82, HAC14.83, and HAC14.85 gets much faster for a
small base. For values such as b = 2 or b = 4, multiplication during precomputation
corresponds to shifting the bits a few positions to the left (modulo p), which is
obviously much faster than regular multiplications. In such a case, our theoretical
analysis based on counting modular multiplications gets inaccurate.

Improving the Performance of Cryptographic Voting Protocols 277

2.3 Algorithms for Product Exponentiations

Product exponentiation problems ProductExp(b,e, p) can be solved in a näıve
way by computing the product z =

∏N
i=1 zi mod p of the results zi obtained

from calling an algorithm from the previous section separately for all N pairs
(bi, ei). As we will see in this section, this is far from being an optimal solution.
A special-purpose algorithm for this problem is HAC14.88, but it only performs
well for small N . The reasons for this is the size of the precomputation table,
which grows exponentially with N . The total relative running time is as follows:

M̃HAC14.88(�,N) =
(2N − N − 1) + (� − 1)(1 + PN)

N
<

2N + 2�

N
.

If � is fixed in this expression, we can derive the problem size N for which
the algorithm performs best. For � = 2047, the best relative running time is
M̃HAC14.88(2047, 9) = 510, which we get for N = 9. For this particular case, the
algorithm performs almost five times better than HAC14.83, but it quickly starts
to perform (much) worse when N gets larger. In the light of these considerations,
applying HAC14.88 directly for solving ProductExp is only possible for very small
problem instances. However, it can be used as a building block for algorithms
that perform well in general. The most obvious way is to split the full task into
s = �N

m� sub-tasks of size m and one sub-task of size r = N mod m.
To formalize this idea, let Ij = {jm + 1, . . . , jm + m} be the indices of sub-

task 0 ≤ j ≤ s − 1 and Is = {sm + 1, . . . , N} the set of indices of sub-task s.
The problem can then be decomposed into

z =
N∏

i=1

aei
i mod p =

s∏

j=0

∏

i∈Ij

aei
i mod p =

s∏

j=0

ProductExp(bj ,ej , p),

where bj and ej denote corresponding sub-vectors from b = b0|| · · · ||bs and
e = e0|| · · · ||es. The relative running time of the resulting Algorithm 1 is as
follows:

M̃m
Alg.1(�,N) =

sm · M̃HAC14.88(�,m) + r · M̃HAC14.88(�, r) + s

N
≈ M̃HAC14.88(�,m).

It follows that this algorithm performs best by selecting the parameter m accord-
ing to the above discussion of the optimal value N in HAC14.88. As an example,
we select mopt = 9 for � = 2047, which leads to M̃opt

Alg.1(2047, N) = 510 and
μAlg.1(2047, N) = 4.7 for large input sizes N . For a setting with �long = 2047 and
�short = 224, we get mopt = 7 and μ∗

Alg.1(2047, 224, N) = 29.99.
The benefit of Algorithm 1 is already appealing, but it can be improved

even further. For this, we need to drill a hole into HAC14.88, by placing the
squaring operation in Step 3 outside the brackets over all sub-tasks of Algorithm
1. In Algorithm 2, we assume that N is a multiple of m, which we can always
achieve by filling up the inputs with m − r additional values bi = 1 and ei = 0.

278 R. Haenni et al.

Algorithm: ProductExpm(b, e, p)

Input: Bases b = b0|| · · · ||bs
Exponents e = e0|| · · · ||es

Modulus p
Sub-task size 1 ≤ m ≤ N

z ← 1
for j = 0, . . . , s do

zj ← HAC14.88(bj , ej , p)
z ← z · zj mod p

return z

Algorithm 1. Simple product

exponentiation algorithm based on

HAC14.88.

Algorithm: ProductExpm(b, e, p)

Input: Bases b = b0|| · · · ||bs−1

Exponents e = e0|| · · · ||es−1

Modulus p
Sub-task size 1 ≤ m ≤ N

for i = 0, . . . , 2m − 1 do
(im−1, . . . , i0)2 ← i
for j = 0, . . . , s − 1 do

(b0, . . . , bm−1) ← bj

Bij ← ∏m−1
l=0 bill mod p

z ← 1
for l = 0, . . . , � − 1 do

z ← z2 mod p
for j = 0, . . . , s − 1 do

i ← Ej [l]
z ← z · Bij mod p

return z

Algorithm 2. Improved product expo-

nentiation algorithm based on HAC14.88

and Algorithm 1.

Furthermore, let Ej ∈ {0, 1}m×� be the binary exponent array of ej , whose rows
are the binary representations of the exponents from ej [10]. Let Ej [l] denote
the l-th column of Ej .

In the resulting Algorithm 2, which is a synthesis of Algorithm 1 and
HAC14.88, we initially perform the precomputation for all s sub-tasks. In the
main loop of the algorithm, we see that the loop over the sub-tasks only per-
forms one multiplication in each step, but no squarings. This reduces the total
number of squarings from s · (�−1) to �−1. Therefore, the relative running time
of Algorithm 2 is strictly smaller than the relative running time of Algorithm 1:

M̃m
Alg.2(�,N) =

s · (2m − m − 1) + (� − 1) + (�s − 1) · Pm

N
<

2m + �

m
+

�

N
.

To compare this result with the numbers from above, we select mopt = 9 for � =
2047 (see Table 2), which leads to M̃opt

Alg.2(2047, N) = 282 and μAlg.2(2047, N) =
8.51 for large input sizes N . For �long = 2047 and �short = 224, we select mopt = 6
to get μ∗

Alg.2(2047, 224, N) = 52.15. In both settings, Algorithm 2 is therefore
approximately 45% more efficient than Algorithm 1. Note that we are not aware
of any published document, in which Algorithm 2 is described and analyzed in
this way.

Improving the Performance of Cryptographic Voting Protocols 279

To conclude our analysis of product exponentiation algorithms, we show in
Table 2 the mapping from 80 ≤ � ≤ 15360 to mopt in a similar way as for kopt in
Table 1, i.e., with some fuzzy areas between the ranges of two adjacent values. It
shows that for Algorithm 2 the optimal parameter mopt is usually smaller than for
Algorithm 1. This implies that Algorithm 2 benefits from smaller precomputation
tables.

Table 2. Optimal sub-task size mopt for different exponent lengths � in Algorithm 1
and Algorithm 2.

Algorithm 1 � 80–168 180–397 415–914 939–2068 2101–4625 4666–10270 >10321

mopt 6 7 8 9 10 11 12

Algorithm 2 � 80–147 174–349 380–802 845–1839 1896–4148 4231–9284 >9285

mopt 5 6 7 8 9 10 11

2.4 Algorithms for Fixed-Base Exponentiations

Two of the most common and frequently cited fixed-base exponentiation algo-
rithms are the fixed-base windowing method by Brickell et al. [2] and the comb
method by Lim and Lee [8,9]. Brickell’s method is strictly less efficient than the
comb method, which itself can be seen as a generalization of the following idea.
Let z = FixedBaseExp(b,e, p) be the problem instance to solve for given inputs
b, e = (e1, . . . , eN), and p. Similar to the window method of Sect. 2.2, we define
a bit length 1 ≤ k ≤ �, into which the exponents are decomposed. If we consider
a single exponent e, we write it as e = (et−1 · · · e1e0)B in base B = 2k, where
t = � �

k � denotes the resulting number of sub-exponents ei of length k.
This decomposition of the exponent allows us to transform the computation

of be into a product exponentiation problem of size t, which can be solved using
HAC14.88, Algorithm 1, or Algorithm 2:

be = b
∑t−1

i=0 eiB
i

=
t−1∏

i=0

beiB
i

=
t−1∏

i=0

(bBi

)ei =
t−1∏

i=0

(b2
ik

)ei

= ProductExp((b0, . . . , bt−1), (e0, . . . , et−1)), p), for bi = b2
ik

.

The crucial point to observe here is that b = (b0, . . . , bt−1), which only depends
on b, will be the same for all N computations zi = bei with base b. This implies
that the precomputation of the ProductExp algorithm only needs to be conducted
once for solving a full FixedBaseExp problem of size N .

To describe and analyze the algorithm resulting from this idea, let’s assume
that the selected ProductExp algorithm memoizes the precomputation tables
from previous calls, for example by storing them in a dictionary. Therefore,
whenever the same vector b is used more than once, the precomputation table is

280 R. Haenni et al.

already available. Clearly, the performance of the resulting Algorithm 3 depends
strongly on this assumption, because then the precomputation table can be
amortized over the N modexps. In the same way, the values b = (b0, . . . , bt−1)
precomputed in Algorithm 3 must stored for later use.

Algorithm: FixedBaseExpk,m(b, e, p)

Input: Base b
Exponents e = (e1, . . . , eN), ei = (ei,t−1 · · · , ei,1ei,0)B
Modulus p
Block size 1 ≤ k ≤ �, B = 2k

Sub-task size 1 ≤ m ≤ t
for i = 0, . . . , t − 1 do

bi ← b
if i < t − 1 then

for j = 1, . . . , k do
b ← b2 mod p

b = (b0, . . . , bt−1)
for i = 1, . . . , N do

zi ← ProductExpm(b, (ei,0, . . . , ei,t−1), p) // using HAC14.88, Alg.1, or Alg.2

z ← (z1, . . . , zN)
return z

Algorithm 3. Fixed-base exponentiation algorithm based on HAC14.88, Algorithm 1,

or Algorithm 2. In case of HAC14.88, the parameter m is irrelevant.

Let Algorithm 3.1 and Algorithm 3.2 denote the algorithms obtained from
combining Algorithm 3 with HAC14.88 and Algorithm 2, respectively. While Algo-
rithm 3.1 is strictly inferior to Algorithm 3.2, it is the combination we found in
some libraries (see Sect. 3.1). Note that we are not aware of any description of
Algorithm 3.2 in this form in a published document, nor of any existing imple-
mentation. The relative running times of the algorithms, which depend on both
� and N , are as follows (using E(x) = 2x − x − 1):

˜Mk
Alg.3.1(�, N) =

E(t) + (t − 1)k

N
+ (k − 1)(1 + Pt) <

2t + �

N
+ 2k,

˜Mk,m
Alg.3.2(�, N) =

sE(m) + (t − 1)k

N
+ (k − 1) + (ks − 1)Pm <

s·2m + �

N
+ ks + k.

Both versions of the algorithm have the same main parameter 1 ≤ k ≤ �. As
soon as k is fixed in Algorithm 3.2 and N is sufficiently large, we can select
1 ≤ mopt ≤ t deterministically from Table 2. The selection of kopt for a given pair
(�,N) is therefore the main optimization problem to solve in both algorithms. We
have computed optimal parameters for � = 2047 and problem sizes 1 ≤ N ≤ 107.
Figure 1 shows the resulting impact factors μAlg(2047, N) and μ∗

Alg(2047, 224, N).

Improving the Performance of Cryptographic Voting Protocols 281

The aforementioned comb method by Lim and Lee also has two parameters
1 ≤ b ≤ a ≤ �. Here, we refer to its description in [10] as HAC14.117. For
h = ��/a�, v = �a/b�, its running time

M̃a,b
HAC14.117(�,N) =

vE(h) + (h − 1)a + (v − 1)b
N

+ (b − 1) + (bv − 1)Ph

is exactly the running time of M̃k,m
Alg.3.2(�,N) for a = ks and b = k (and therefore

h = m and v = s). This implies that Algorithm 3.2 and HAC14.117 are essentially
the same algorithms. Note that by setting a = b = k (or v = s = 1), they contain
the strictly inferior Algorithm 3.1 as a special case.

2.5 Use Case: Cryptographic Shuffle

A particular use case for applying the algorithms presented in this paper is the
shuffling of a list E = 〈e1, . . . , en〉 of ElGamal encrypted votes ei = (gri ,mipkri)
in a verifiable re-encryption mix-net. This is one of the most time-consuming
components in many voting protocols. Note that n is of the same order of mag-
nitude as the size of the electorate, i.e., possibly several millions in a large elec-
tion context. Two instances of FixedBaseExp are needed for re-encrypting the
encrypted votes in a single mixing step.

The particular shuffle proof system by Wikström and Terelius [13,14] requires
a total number of 8n+5 modexps for generating the proof and 9n+11 modexps
for verifying the proof. In Table 3, we derived from [5] a more detailed overview
of the necessary number of modexps of this particular approach. Note that some
of the involved exponents play the role of a challenge in the proof protocol, i.e.,

Fig. 1. Impact factors μAlg(2047, N) and μ∗
Alg(2047, 224, N) of different algorithms. The

plotted curves show that ProductExp algorithms (Algorithm 1 and Algorithm 2) con-
verge quickly to a constant speedup, whereas FixedBaseExp algorithms (Algorithm 3.1
and Algorithm 3.2) increase their speedup with increasing problem sizes. The curves
also show that the benefit of short exponent-techniques multiplies the benefit of the
optimization algorithms.

282 R. Haenni et al.

Table 3. Number of exponentiations for shuffling n votes in a verifiable mix-net.

Shuffle Generate proof Verify proof

�long �long �long �short

Exp – – n + 7 n

ProductExp – 3n 3n 3n

FixedBaseExp g n 4n + 4 n + 4 –

h – n – –

pk n 1 – –

Total 2n 8n + 5 5n + 11 4n

Table 4. Relative running times (1st column) and impact factors (2nd column) of
different shuffle algorithms in a setting with �long = 2047 and �short = 112.

n = 10 n = 100 n = 1000 n = 104 n = 105 n = 106

Shuffle 1216 3.95 626 7.66 450 10.66 352 13.63 286 16.78 240 19.99

Generate proof 2563 7.08 1884 9.06 1623 10.44 1463 11.58 1359 12.46 1283 13.20

Verify proof 5132 2.96 3486 3.68 3306 3.81 3276 3.84 3265 3.85 3262 3.85

their lengths are restricted to the security strength λ. Therefore, we make a
distinction between exponents of length �long = |q| = |p| − 1 and �short = λ.

To evaluate the usage of Algorithm 2 and Algorithm 3.2 in a verifiable mix-
net, we calculated relative running times (number of modular multiplications per
encrypted vote) and impact factors (benefit relative to HAC14.83) of the shuffle
algorithms for �long = 2047, �short = 112, and n ∈ {10, 100, . . . , 106}. Table 4
shows that all shuffle algorithms benefit considerably from optimized modexp
algorithms. Shuffling itself is up to 20 times and generating the proof up to 13
times more efficient. The smallest benefit results for the proof verification, which
is between 3–4 times more efficient. These numbers can be improved even further
by applying short-exponent techniques to the ElGamal encryptions.

3 Experimental Results

To confirm the theoretical results from Sect. 2, we performed various tests on
different platforms. Generally, client-side performance is more critical as neither
the hardware nor the runtime environment can be influenced directly.

3.1 Technologies

On both the client and the server side, we focused on testing popular open-
source libraries that implement the algorithms analyzed in Sect. 2. On the server
side, the choice is limited as GMP can be regarded as a de facto standard for
multiple precision arithmetic. On the other hand, there are a number of potential
JavaScript libraries available to be used in browser applications.

Improving the Performance of Cryptographic Voting Protocols 283

Server. The GNU Multiple Precision Arithmetic Library (GMP) is a C library
that aims to be the fastest arbitrary-precision arithmetic library [4]. The most
critical inner loops are written in optimized assembly code, specialized for differ-
ent processors. There exist wrappers to many other programming language, such
as C++, Java, or Python, increasing the scope of GMP remarkably. Modular
exponentiation is implemented based on the sliding-window method (HAC14.85)
with Montgomery reduction. Unfortunately, GMP does not offer algorithms for
fixed-base or product exponentiations. However, the GMP Modular Exponenti-
ation Extension (MEE) by Douglas Wikström offers them both [16].

Client. Below we list the JavaScript libraries considered in our analysis. Their
particularities relative to modular exponentiation is summarized in Table 5.

– JSBN is a lightweight implementation of large number arithmetic mainly
developed by Tom Wu between 2009 and 2013 [18]. A few minor bugs have
been fixed in recent years, but otherwise the project seems to be inactive
today [12]. Modexp computations are based on the sliding-window technique
in combination with Barret and Montgomery reductions.

– Leemon is another lightweight implementation of large number arithmetic
developed by Leemon C. Baird between 2000 and 2013. Bug fixes to the code
available on GitHub have been made until 2016 [1]. Modexps are computed
with the square-and-multiply algorithm and Montgomery reduction.

– VJSC is a cryptographic library especially tailored for application in elec-
tronic voting protocols developed by Douglas Wikström [15,17]. The library
is available on GitHub since February 2018. Modexp computations are per-
formed by the improved window method. As a unique feature, VJSC offers
integrated support for product and fixed-base exponentiation.

– MiniGMP provides a subset of the features of the GMP library [11]. Since
it consists of pure C code, i.e., without any assembly optimization, it can
be compiled into the WebAssembly format and used for web applications.
Modexp computations are based on the square-and-multiply method.

Independently of the actual modexp performance, VJSC and MiniGMP are cur-
rently the best maintained libraries. Both of them are well tested and docu-
mented. The disadvantage of using MiniGMP in a web application is its depen-
dency to the WebAssembly technology, which has been introduced only recently.
In addition to the libraries listed above, there is also the bn.js JavaScript library
for big numbers [6]. Its main target are elliptic curves and hence it is optimized
for calculations with 256-bit numbers. For example, the window size within the
modular exponentiation algorithm is hard-coded to k = 4.

Parallelism. A natural strategy to speed-up computations on a multi-core CPU
is to execute certain tasks in parallel. On the server side, defining and executing
tasks in parallel is well supported and easy to implement in many programming
languages. On the client side, the situation is slightly different. Although current
personal devices (notebooks, tablet computers, mobile phones) have all multi-core
CPUs and hence, parallelism is possible from a hardware perspective, JavaScript

284 R. Haenni et al.

Table 5. JavaScript and C libraries for large integer arithmetic. Algorithm marked
with a star (∗) use Montgomery reduction.

Library JSBN Leemon VJSC MiniGMP GMP/MEE

Language JavaScript JavaScript JavaScript C C

Author(s) T. Wu L. C. Baird D. Wikström N. Möller T. Granlund
D. Wikström

Exp HAC14.85∗ HAC14.79∗ HAC14.83 HAC14.79 HAC14.85∗

ProductExp unsupported unsupported HAC14.88 unsupported Algorithm 2

FixedBaseExp unsupported unsupported Algorithm 3.1 unsupported Algorithm 3.1

code is intended to be executed in a single thread. Only recent advancements in
the area of so-called web workers bring concurrency also to JavaScript by allowing
web pages to run scripts in background threads. Once created, a web worker runs
completely independent of the main script without any shared memory. Commu-
nication from and to the web workers goes via an asynchronous event bus. Web
workers are already supported by all major web browsers, so performance benefits
can be expected on all up-to-date platforms.

The remaining problem is to find a strategy that optimizes the overall benefit
of using parallel computing in combination with other optimization techniques.
For example, to circumvent the lack of shared memory, passing large precompu-
tation tables for fixed-base exponentiations to different web workers might not
be the best strategy. On the other hand, if multiple fixed-base exponentiations
for different bases must be computed, a web worker could be created for each
base. The overall computation time would then be decreased by several factors
depending on the number of available cores. As the benefit of parallelism strongly
relies on the underlying hardware and on the concrete computations to perform,
we have excluded this aspect in the following performance analysis.

3.2 Performance Analysis

We are now going to present the results from our experiments of computing
modular exponentiations with different optimizations, different libraries, and
different runtime environments. All experiments were conducted on the same
computer (MacBook Pro 2.9 GHz Intel Core i7) and the same web browser (Fire-
fox v63.0.3).4 The goal of this subsection is to present the magnitude of what can
be expected in practice and to demonstrate that this magnitude corresponds to
the theoretical results from Sect. 2. All results can be reproduced reliably with
deviations in a range of about ±5%.

Evaluation of Libraries. We first conducted an experiment to evaluate the
performance of the different libraries for large number arithmetic. We computed
4 Using the same testbed, we performed further experiments on different platforms

such as tablet computers and mobile phones. We obtained very similar test results
on all platforms, but for reasons of brevity, we do not include them in our discussion.

Improving the Performance of Cryptographic Voting Protocols 285

with each library a series of 100 modular exponentiations. Table 6 shows the
resulting average running times for a single exponentiation. On the server side,
the results are somewhat surprising regarding the time difference between GMP
and MiniGMP. There are two main reasons for that. First, GMP implements bet-
ter algorithms than MiniGMP (see Table 5), and second, GMP provides highly
optimized assembly code. In our test environment, turning off assembly opti-
mizations makes GMP approximately three times less efficient.

Regarding the results obtained for JavaScript, we conclude that none of the
JavaScript libraries can keep up with native GMP. The comparison of the dif-
ferent JavaScript libraries also points out the impact of selecting the best algo-
rithm, which explains that VJSC and JSBN offer a better performance than Lee-
man and MiniGMP/WASM.5 Interestingly, VJSC without Montgomery reduc-
tion performs better than JSBN with Montgomery reduction. This shows the
importance of other (hidden) factors such as an optimized implementation for
the given environment.

Product and Fixed-Base Exponentiation. To analyze the benefits of the
optimization techniques from Sect. 2, we decided to conduct server-side experi-
ments with GMP/MEE and client-side experiments with VJSC. It was required
to adjust VJSC slightly, as VJSC selects the parameter k of Algorithm 3.1 based
on |p| instead of � = |ei|, which is sub-optimal for small exponents. The exper-
iments were conducted for problems of size N ∈ {102, 103, . . . , 106} and two
different security strengths λ = 112 and λ = 128. The absolute running times
were measured over the whole experiment and then divided by the problem size
N . We also computed corresponding impact factors to demonstrate the benefit
of the optimization algorithms over plain modexp computations.

Table 6. Average running times for modular exponentiations in different libraries.

Server Client

� GMP MiniGMP VJSC JSBN Leeman MiniGMP/WASM

2048 3.05 ms 19.23 ms 81.55 ms 105.68 ms 181.89 ms 133.59 ms

3072 8.97 ms 63.14 ms 248.69 ms 332.81 ms 589.74 ms 447.27 ms

Using GMP/MEE (see Table 7), short exponents yield the expected perfor-
mance gain independently of the problem size N (between 7–8 for λ = 112

5 We were surprised to observe that MiniGMP compiled into WASM does not provide
an important advantage over pure JavaScript. We have no explanation for this,
but from the tests that we conducted, we can exclude that this is due to some
communication overhead between WASM and JavaScript. By passing exactly the
same amount of data from JavaScript to WASM, we observed that computing n
modexps in a single call is almost exactly n times more expensive than computing
a single modexp.

286 R. Haenni et al.

Table 7. Relative running times in milliseconds (1st columns) and impact factors (2nd
column) of different algorithms using GMP/MEE.

λ = 112 λ = 128

N Algorithm 2048/2047 2048/224 3072/3071 3072/256

100 HAC14.85 3.049 1 0.435 7.0 8.969 1 0.902 9.9

Algorithm 2 0.637 4.8 0.113 27.0 1.708 5.25 0.196 45.8

Algorithm 3.1 0.799 3.8 0.104 29.3 1.999 4.5 0.213 42.0

1, 000 HAC14.85 2.980 1 0.360 8.0 8.852 1 0.797 11.1

Algorithm 2 0.610 4.9 0.108 27.6 1.508 5.8 0.207 42.8

Algorithm 3.1 0.588 5.1 0.079 37.7 1.556 5.7 0.170 52.1

10, 000 HAC14.85 3.008 1 0.367 8.2 8.831 1 0.816 10.8

Algorithm 2 0.636 4.7 0.100 30.1 1.518 5.8 0.204 43.3

Algorithm 3.1 0.495 6.1 0.066 45.6 1.288 6.9 0.137 64.5

100, 000 Algorithm 3.1 0.422 7.1 0.050 60.2 1.122 7.9 0.111 79.6

1, 000, 000 Algorithm 3.1 0.389 7.7 0.044 68.4 0.983 9.0 0.089 99.2

and 10–11 for λ = 128). Also independent of N is the benefit of Algorithm 2
for product exponentiations, which is between 5–6 times faster than computing
plain modexps. For Algorithm 3.1, the amortization of the precomputation can
be observed by looking at the increasing benefit when N gets larger. The mea-
surements also demonstrate that the benefit of short exponents multiples the
benefit of the optimization algorithm. For λ = 128 and N = 106, for example,
fixed-base exponentiations with short exponents results in an impact factor of
99.2 ≈ 9.0 ∗ 10.8.

Using VJSC in a web browser (see Table 8), the resulting impact factors
are similar to GMP/MEE. However, some of the values are slightly mislead-
ing because of the less optimized plain modexp implementation in VJSC. This
explains that Algorithm 1 for product exponentiation in VJSC has only a slightly
lower impact factor in comparison with Algorithm 2 in GMP/MEE, although the-
ory predicts a difference of approximately 37%.

Overall, the conducted performance analysis shows that in practice the
observed benefits of the optimizations are slightly lower than what could be
expected from theory. Possible reasons are manifold. In the theoretical analysis,
some simplifications have been made, like for example the counting of squarings
and multiplications in the same way. On the other hand, specific optimizations
on an implementation level are manifested to varying degrees depending on
the computation. The plain modexp in GMP is strongly optimized including
Montgomery reduction, straining the theoretical results based on counting mul-
tiplications. Nevertheless, the presented optimization techniques accelerate the
computation of multiple modexps also in practice by orders of magnitude.

Improving the Performance of Cryptographic Voting Protocols 287

Table 8. Relative running times in milliseconds (1st columns) and impact factors (2nd
column) of different algorithms using VJSC.

λ = 112 λ = 128

N Algorithm 2048/2047 2048/224 3072/3071 3072/256

100 HAC14.83 81.55 1 11.73 7.0 248.69 1 25.10 9.9

Algorithm 1 18.69 4.4 3.22 25.3 58.44 4.3 7.52 33.1

Algorithm 3.1 15.16 5.4 2.89 28.2 47.41 5.2 6.14 40.5

1, 000 HAC14.83 81.83 1 11.79 7.0 254.80 1 25.25 10.1

Algorithm 1 17.85 4.6 3.11 26.3 55.49 4.6 7.21 35.3

Algorithm 3.1 10.81 7.6 1.67 49.0 32.71 7.8 3.72 68.5

4 Conclusion

Our analysis of modular exponentiation algorithms in this paper demonstrates
the potential of the available optimized methods for different types of exponenti-
ation problems. While product exponentiation problems can be solved 5–10 times
more efficiently, we can solve large fixed-based exponentiation problems up to
two orders of magnitude more efficiently than with conventional methods. Using
short-exponent techniques, the impact of these methods can be strengthened by
another order of magnitude. The resulting overall benefit is very promising for
making cryptographic protocols more efficient, particularly for web applications
on the client side. On the server side, we also obtain a considerable speedup,
for example for shuffling a list of encryptions in a verifiable mix-net. We expect
similar benefits for other cryptographic tasks.

Regarding the available libraries implementing the algorithms presented in
this paper, we believe that there is some room for future work. For the best
available algorithms for fixed-base exponentiation, Algorithm 3.2 or HAC14.117,
we were surprised not to find an implementation in any of the libraries we looked
at. By looking at the source code of these libraries, we also realized that they
do not always select optimal algorithm parameters. Improving and completing
these libraries is an open task, for which this paper provides a solid starting
point.

References

1. Baird, L.C.: Big Integer Library by Leemon. https://github.com/Evgenus/BigInt
2. Brickell, E.F., Gordon, D.M., McCurley, K.S., Wilson, D.B.: Fast exponentiation

with precomputation. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658,
pp. 200–207. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-47555-
9 18

3. Giry, D.: Cryptographic Key Length Recommendation. https://www.keylength.
com

https://github.com/Evgenus/BigInt
https://doi.org/10.1007/3-540-47555-9_18
https://doi.org/10.1007/3-540-47555-9_18
https://www.keylength.com
https://www.keylength.com

288 R. Haenni et al.

4. Granlund, T.: The GNU Multiple Precision Arithmetic Library - Edition 6.1.2
(2016). https://gmplib.org

5. Haenni, R., Locher, P., Koenig, R., Dubuis, E.: Pseudo-code algorithms for veri-
fiable re-encryption mix-nets. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol.
10323, pp. 370–384. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70278-0 23

6. Indutny, F.: BigNum in Pure Javascript. https://github.com/indutny/bn.js
7. Koshiba, T., Kurosawa, K.: Short exponent Diffie-Hellman problems. In: Bao, F.,

Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 173–186. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24632-9 13

8. Lee, P.J., Lim, C.H.: Method for exponentiation in a public-key cryptosystem.
United States Patent No. 5999627, December 1999

9. Lim, C.H., Lee, P.J.: More flexible exponentiation with precomputation. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 95–107. Springer, Hei-
delberg (1994). https://doi.org/10.1007/3-540-48658-5 11

10. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press, Boca Raton (1996)

11. Möller, N.: Mini-GMP - A Minimalistic Implementation of a GNU GMP Subset.
https://godoc.org/modernc.org/minigmp

12. Perlitch, A.: JSBN - Javascript Big Number. https://github.com/andyperlitch/
jsbn

13. Terelius, B., Wikström, D.: Proofs of restricted shuffles. In: Bernstein, D.J., Lange,
T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 100–113. Springer, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-12678-9 7

14. Wikström, D.: A commitment-consistent proof of a shuffle. In: Boyd, C., González
Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 407–421. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02620-1 28

15. Wikström, D.: User Manual for the Verificatum Mix-Net - VMN Version 3.0.3.
Verificatum AB, Stockholm, Sweden (2018)

16. Wikström, D.: GMP Modular Exponentiation Extension. https://github.com/
verificatum/verificatum-gmpmee

17. Wikström, D.: Verificatum JavaScript Cryptography Library. https://github.com/
verificatum/verificatum-vjsc

18. Wu, T.: RSA and ECC in JavaScript. http://www-cs-students.stanford.edu/∼tjw/
jsbn

https://gmplib.org
https://doi.org/10.1007/978-3-319-70278-0_23
https://doi.org/10.1007/978-3-319-70278-0_23
https://github.com/indutny/bn.js
https://doi.org/10.1007/978-3-540-24632-9_13
https://doi.org/10.1007/3-540-48658-5_11
https://godoc.org/modernc.org/minigmp
https://github.com/andyperlitch/jsbn
https://github.com/andyperlitch/jsbn
https://doi.org/10.1007/978-3-642-12678-9_7
https://doi.org/10.1007/978-3-642-02620-1_28
https://github.com/verificatum/verificatum-gmpmee
https://github.com/verificatum/verificatum-gmpmee
https://github.com/verificatum/verificatum-vjsc
https://github.com/verificatum/verificatum-vjsc
http://www-cs-students.stanford.edu/~tjw/jsbn
http://www-cs-students.stanford.edu/~tjw/jsbn

Short Paper: Coercion-Resistant
Voting in Linear Time via Fully

Homomorphic Encryption
Towards a Quantum-Safe Scheme

Peter B. Rønne1(B), Arash Atashpendar1, Kristian Gjøsteen2,
and Peter Y. A. Ryan1

1 SnT, University of Luxembourg, Luxembourg City, Luxembourg
{peter.roenne,arash.atashpendar,peter.ryan}@uni.lu

2 Norwegian University of Science and Technology, NTNU, Trondheim, Norway
kristian.gjosteen@ntnu.no

Abstract. Wepresent an approach for performing the tallyingwork in the
coercion-resistant JCJ voting protocol, introduced by Juels, Catalano, and
Jakobsson, in linear time using fully homomorphic encryption (FHE). The
suggested enhancement also paves the path towardsmaking JCJ quantum-
resistant, while leaving the underlying structure of JCJ intact. The pair-
wise comparison-based approach of JCJ using plaintext equivalence tests
leads to a quadratic blow-up in the number of votes, which makes the tal-
lying process rather impractical in realistic settings with a large number
of voters. We show how the removal of invalid votes can be done in linear
time via a solution based on recent advances in variousFHEprimitives such
as hashing, zero-knowledge proofs of correct decryption, verifiable shuf-
fles and threshold FHE. We conclude by discussing some of the advantages
and challenges resulting from our proposal, followed by an outline of future
work and possible lines of attack.

1 Introduction

Over the past few decades, we have witnessed significant advances in crypto-
graphic voting protocols. Yet, despite all the progress, see e.g., [1], secure e-
voting is still faced with a plethora of challenges and open questions, which
largely arise as a result of the interplay between intricate properties such as vote
privacy, individual and universal verifiability, receipt-freeness, and a notoriously
difficult requirement, namely that of coercion-resistance. Coercion-resistance can
be viewed as a stronger form of privacy that should hold even against an adver-
sary who may instruct honest parties to carry out certain computations while
potentially requiring that they reveal secrets in order to verify their behavior
and ensure compliance. This property is typically enforced by providing hon-
est parties with a mechanism that allows them to either deceive the coercer or
to deny having performed a particular action. Due to limited space, we do not

c© International Financial Cryptography Association 2020
A. Bracciali et al. (Eds.): FC 2019 Workshops, LNCS 11599, pp. 289–298, 2020.
https://doi.org/10.1007/978-3-030-43725-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43725-1_20&domain=pdf
https://doi.org/10.1007/978-3-030-43725-1_20

290 P. B. Rønne et al.

elaborate on the long series of works in this area and instead refer the reader to
[11,12,21,22] and references therein for more details.

Since the breakthrough work of Gentry [15] on fully homomorphic encryption
(FHE), there has been a surge of interest in this line of research that remains
very active to this day, with a series of recent advances including, but not lim-
ited to, a homomorphic evaluation of AES [16]. Although the use of additively or
multiplicatively homomorphic cryptosystems is common place in the e-voting lit-
erature, the relevance of FHE for potentially quantum-safe secure e-voting, with
better voter verifiability, was only recently discussed by Gjøsteen and Strand
[17]. In our work, instead of designing an FHE-based protocol from scratch,
we apply the machinery of FHE to a well-known, classical voting scheme, in
order to improve its time complexity and to replace its reliance on the hardness
assumption of solving the discrete logarithm problem with a quantum-resistant
solution, namely lattice-based cryptography. So far, no efficient quantum algo-
rithms capable of breaking lattice-based FHE schemes have been discovered.

Although constructions with varying degrees of coercion-resistance do exist,
the voting protocol introduced by Juels, Catalano, and Jakobsson [21], often
referred to as the JCJ protocol, is among the most well-known solutions in the
context of coercion-resistant voting schemes. JCJ provides a reasonable level
of coercion-resistance using a voter credential faking mechanism, and it was
arguably the first proposal with a formal definition of coercion-resistance. How-
ever, JCJ suffers from a complexity problem due to the weeding steps in its tal-
lying phase, which are required for eliminating invalid votes and duplicates. The
exhaustive, pairwise comparison-based approach of JCJ using plaintext equiv-
alence tests (PET) [19] leads to a quadratic blow-up in the number of votes,
which makes the tallying process rather impractical in realistic settings with
a large number of voters or in the face of ballot-box stuffing. For instance, in
the Civitas voting system [10] based on JCJ, voters are grouped into blocks or
virtual precincts to reduce the tallying time.

Here we propose an enhancement of the JCJ protocol aimed at performing its
tallying work in linear time, based on an approach that incorporates primitives
from the realm of fully homomorphic encryption (FHE), which also paves the
path towards making JCJ quantum-safe.

In Sect. 2, we describe the JCJ protocol and cover some related work. Next, in
Sect. 3, we show how the weeding of “bad” votes can be done in linear time, with
minimal change to JCJ, via an approach based on recent advances in various FHE
primitives such as hashing, zero-knowledge (ZK) proofs of correct decryption,
verifiable shuffles and threshold FHE. We also touch upon some of the advantages
and challenges resulting from such an approach in Sect. 3.2 and in Sect. 4, we
conclude with an outline of future work and possible lines of attack.

2 The JCJ Model and Voting Protocol in a Nutshell

Cryptographic Building Blocks. JCJ relies on a modified version of ElGa-
mal, a threshold public-key cryptosystem with re-encryption, secure under the

Coercion-Resistant Linear-Time Voting via Fully Homomorphic Encryption 291

hardness assumption of the Decisional Diffie-Hellman (DDH) problem in a mul-
tiplicative cyclic group G of order q. A ciphertext on message m ∈ G has the form
(α, β, γ) = (mhr, gr1, g

r
2) for r ∈U Zq, with (g1, g2, h) being the public key where

g1, g2, h ∈ G, and the secret key consisting of x1, x2 ∈ Zq such that h = gx1
1 gx2

2 .
The construction allows easy sharing of the secret key in a threshold way. The
weeding steps make use of a plaintext equivalence test (PET), which is carried
out by the secret key holders and takes as input two ciphertexts and outputs
1 if the underlying plaintexts are equal, and 0 otherwise. The PET produces
publicly verifiable evidence with negligible information leakage about plaintexts.
Finally, JCJ uses non-interactive zero-knowledge (NIZK) proofs and mix-nets,
which are aimed at randomly and secretly permuting and re-encrypting input
ciphertexts such that output ciphertexts cannot be traced back to their corre-
sponding ciphertexts. Throughout, it is assumed that the computations of the
talliers and registrars are done in a joint, distributed threshold manner. We use
∈U to denote an element that is sampled uniformly at random.

Agents. JCJ mainly consists of three sets of agents, described as follows.

1. Registrars: A set R = {R1, R2, . . . , RnR
} of nR entities in charge of jointly

generating and distributing credentials to voters.
2. Talliers: A set T = {T1, T2, . . . , TnT

} of authorities in charge of processing
ballots, jointly counting the votes and publishing the final tally.

3. Voters: A set of nV voters, V = {V1, V2, . . . , VnV
}, participating in an elec-

tion, where each voter Vi is publicly identified by an index i.

Bulletin Board and Candidate Slate. A bulletin board, denoted by BB,
is an abstraction representing a publicly accessible, append-only, but otherwise
immutable board, meaning that participants can only add entries to BB without
overwriting or erasing existing items. A candidate slate, C, is an ordered set of
nC distinct identifiers {c1, c2, . . . , cnC

} capturing voter choices. A tally is defined
under slate C, as a vector X = {x1, x2, . . . , xnC

} of nC positive integers, where
each xj indicates the number of votes cast for choice cj .
Main Security Assumptions. The adversary may corrupt only a minority of
agents in T , as otherwise privacy would be lost. In the registration phase, it is
assumed that the distribution of voter credentials is done over an untappable
channel and that no registration transcripts can be obtained, assuming that
secure erasure is possible. Cast votes are transmitted via anonymous channels,
which is a basic requirement for ruling out forced-abstention attacks.

2.1 The JCJ Protocol

Setup and Registration. The key pairs (skR, pkR) and (skT , pkT) are gen-
erated in a trustworthy manner, and the public keys, i.e., pkT and pkR, are
published with other public system parameters. The registrars R generate and
transmit to eligible voter Vi a random string σi ∈U G that serves as the creden-
tial of the voter. R adds an encryption of σi, Si = EpkT (σi), to the voter roll L,
which is maintained on the bulletin board BB and digitally signed by R.

292 P. B. Rønne et al.

Voting. An integrity-protected candidate slate C containing the names and
unique identifiers in G for nC candidates, along with a unique, random elec-
tion identifier ε are published by the authorities. Voter Vi generates a bal-
lot in the form of a variant of ElGamal ciphertexts (E1, E2), for candidate
choice cj and voter credential σi, respectively, e.g., for a1, a2 ∈U Zq, we have
E1 = (ga1

1 , ga1
2 , cjh

a1) and E2 = (ga2
1 , ga2

2 , σih
a2). Vi computes NIZK proofs of

knowledge and correctness of σi and cj ∈ C, collectively denoted by Pf . These
ensure non-malleability of ballots, also across elections by including ε in the hash
of the Fiat-Shamir heuristic. Vi posts Bi = (E1, E2, Pf) to BB via an anony-
mous channel.

Tallying. In order to compute the tally, duplicate votes and those with invalid
credentials will have to be removed. The complexity problem crops up in steps
2 and 4 such that given n votes, the tallying work has a time complexity of
O(n2). To tally the ballots posted to BB, the authority T performs the following
steps:

1. T verifies all proofs on BB and discards any ballots with invalid proofs. Let
A1 and B1 denote the list of remaining E1 candidate choice ciphertexts, and
E2 credential ciphertexts, respectively.

2. T performs pairwise PETs on all ciphertexts in B1 and removes duplicates
according to some fixed criterion such as the order of postings to BB. For
every element removed from B1, the corresponding element with the same
index is also removed from A1, resulting in the “weeded” vectors B′

1 and A′
1.

3. T applies a mix-net to A′
1 and B′

1 using the same, secret permutation, result-
ing in the lists of ciphertexts A2 and B2.

4. T applies a mix-net to the encrypted list L of credentials from the voter
roll and then compares each ciphertext of B2 to the ciphertexts of L using a
PET. T keeps a vector A3 of all ciphertexts of A2 for which the corresponding
elements of B2 match an element of L, thus achieving the weeding of ballots
with invalid voter credentials.

5. T decrypts all ciphertexts in A3 and tallies the final result.

2.2 Properties

Vote privacy is maintained as long as neither a threshold set of talliers nor all
the mixing servers are corrupted. A colluding majority of talliers can obviously
decrypt everything and colluding mixing authorities could trace votes back to L.

Regarding correctness, voters can refer to BB to verify that their vote
has been recorded as intended and that the tally is computed correctly. Similar
attacks become possible in case of collusion by a majority of authorities. As for
verifiability, anyone can refer to BB, Pf and L to verify the correctness of the
tally produced by T .

The coercion-resistance provided by JCJ is essentially achieved by keeping
voter credentials hidden throughout the election. A coerced voter can then choose
a random fake credential σ′ to cast a fake vote and present it as their real vote.

Coercion-Resistant Linear-Time Voting via Fully Homomorphic Encryption 293

Any vote cast with the fake credential will not be counted, and the voter can
anonymously cast their real vote using their real credential.

2.3 Related Work

We focus on the most closely-related works on improving the efficiency problem
of the tallying work in JCJ. Smith [25] and Weber et al. [29,30] follow a similar
approach in that they do away with comparisons using PETs, and instead, they
raise the credentials to a jointly T -shared secret value and store these blinded
terms in a hash table such that collisions can be found in linear time. The use of
a single exponent means that a coercer can test if the voter has provided them
with a fake or a real credential by submitting a ballot with the given credential
and another with the credential raised to a known random value.

In [4,5], Araujo et al. move away from comparing entries in L with terms
in the cast ballots to a setting in which duplicates are publicly identifiable and
a majority of talliers use their private keys to identify legitimate votes, and in
[3] the authors use algebraic MACs. Spycher et al. [26] use the same solution
proposed by Smith and Weber to remove duplicates and apply targeted PETs
only to terms in L and A, identified via additional information provided by voters
linking their vote to the right entry in L. In [18], publicly auditable conditional
blind signatures are used to achieve coercion-resistance in linear time using a
FOO-like [14] architecture, the downsides being the need for extra authorization
requests for participation privacy and a double use of anonymous channels.

3 JCJ in Linear Time via Fully Homomorphic Encryption

Our proposal revolves around replacing the original cryptosystem of JCJ with a
fully homomorphic one, thus allowing us to preserve the original design of JCJ.
The main idea is to homomorphically evaluate hashes of the underlying plaintext
of the FHE-encrypted voter credentials, perform FHE-decryption and post the
hash values of the credentials to the bulletin board BB. Now the elimination of
invalid and duplicate entries can be done in linear time by using a hash table.

FHE Primitives. Constrained by limited space, we only enumerate the cryp-
tographic primitives that will be required for the enhancement suggested below
and refer the reader to the cited sources for further details. Let Epk(m) denote an
FHE-encryption of a message m ∈ {0, 1}n under the public key pk. At its core, for
b0, b1 ∈ {0, 1}, given Epk(b0) and Epk(b1), FHE allows us to compute Epk(b0 ⊕ b1)
and Epk(b0 · b1) by working over ciphertexts alone, without having access to the
secret key, thus enabling the homomorphic evaluation of any boolean circuit, i.e.,
computing Epk(f(m)) from Epk(m) for any computable function f . We make use
of FHE [7,15], fully homomorphic hashing [13], zero-knowledge proofs of correct
decryption for FHE ciphertexts [8], verifiable shuffles [27] and threshold FHE
[6], see Sect. 3.2 for more details on open questions and the state-of-the-art.

294 P. B. Rønne et al.

3.1 Enhancing JCJ with FHE and Weeding in Linear Time

We now describe how FHE primitives can be incorporated into JCJ while inducing
minimal change in the original protocol. We assume threshold FHE throughout.

Setup and Registration. The setup and registration phases remain unchanged
w.r.t. JCJ, except that R now adds an FHE-encryption of σi, Si = EpkT (σi), to
the voter roll L. We adopt the same assumptions mentioned earlier in Sect. 2.

Voting. Instead of using ElGamal encryption, the credentials posted on the BB
are encrypted under some FHE scheme, say BGV [7], with a key pair (pk, sk).
Each voter Vi adds EpkT (σi), along with the required NIZK proofs, to BB.

Tallying. The tallying phase remains largely the same except that for removing
duplicates and invalid votes, we leverage our use of FHE to carry out simple
equality tests between hash digests of credentials. Since the concealed credentials
are now stored in FHE ciphertexts, we can process them using an FHE hashing
circuit. More precisely, for a jointly created T -shared key k, published under
encryption Epk(k), the credentials σi contained in the FHE-encrypted terms
Epk(σi) are homomorphically hashed (see [13] by Fiore, Gennaro and Pastro and
[9] by Catalano et al.), under key k resulting in Epk(hk(σi)), such that upon
decryption we obtain hk(σi). A ZK proof of correct decryption is also posted to
BB for verifiability, see [8] by Carr et al. for an approach to this.

Once the hash values of the credentials are posted on the BB, the weeding
of duplicates can be done in O(n) using a simple hash table look-up, i.e., iterate,
hash and check for collision in constant time, thus an overall linear-time complex-
ity in the number of votes. Next, the registered credentials and the submitted
vote/credential pairs are mixed [27] and the homomorphic hashing procedure is
carried out again using a new secret key on all credential ciphertexts. Comparing
the hashed registered credentials with those from the cast ballots allows us to
remove invalid votes in O(n). Finally, the remaining valid votes are verifiably
decrypted.

3.2 Advantages, Potential Pitfalls and Open Questions

Apart from the linear-time weeding algorithm, as already pointed out by
Gjøsteen and Strand in [17], in addition to being a novel application of FHE
to secure e-voting, obtaining better voter verifiability and a scheme believed to
be quantum-resistant are among the noteworthy benefits of such an approach.

The quantum safety property is conjectured based on the fact that efficient
quantum algorithms for solving certain problems used in lattice-based cryptog-
raphy remain to be discovered. While our solution offers a step towards making
JCJ potentially quantum secure, a thorough analysis aimed at determining if its
various security properties are secure against quantum adversaries is needed.

Coercion-Resistant Linear-Time Voting via Fully Homomorphic Encryption 295

Clearly, in terms of real world FHE implementations, the state-of-the-art still
suffers from efficiency issues. However, some significant progress has already been
made in this area, e.g., the homomorphic evaluation of AES [16] or block ciphers
designed for homomorphic evaluation [2]. Moreover, it should be pointed out
that some of the needed primitives, e.g., turning ZK proofs of correct decryption
for FHE [8,23] into NIZK proofs, are still not satisfactory and remain the subject
of ongoing research and future improvements.

Finally, another study that we leave as future work would focus on the
overhead induced by specific choices of FHE implementations and analyzing
whether or not the resulting solution, despite having linear time complexity,
might become less efficient than the original JCJ scheme beyond a certain point.

4 Future Work and Further Security Remarks

A security analysis aimed at providing proofs of security for various properties
such as correctness, verifiability and coercion-resistance will remain future work.
One possibility would be to investigate whether the required security properties
in our modified variant of JCJ hold against classical adversaries, under the same
oracle access assumptions for mixing, PETs, threshold decryption and hashing.
The post-quantum security aspect will have to be analyzed in an appropriate
framework, e.g., by incorporating the quantum random oracle model.

Eligibility Verifiability. Assuming a majority of colluding authorities, apart
from a compromise of vote privacy, another, perhaps more damaging problem
with JCJ and its improved variants is that of eligibility verifiability. A colluding
majority would be able to retrieve voter credentials and submit valid votes for
non-participating voters, i.e., perform ballot stuffing.

A solution in [24] suggests performing the registration phase in such a way
that only the voter would know the discrete logarithm of their credential. Votes
are then cast with an anonymous signature in the form of a ZK proof of knowl-
edge of the discrete logarithm of the encrypted credential, thus preventing ballot
stuffing. A similar approach could be used here, with the potential downside of
having inefficient proofs and a discrete logarithm hardness assumption, thus not
being quantum secure.

Post-Quantum Considerations. For a relaxation of the trustworthiness
assumption of R, without assuming secure erasure, quantum-resistant desig-
nated verifier proofs [20,28] could replace the classical ones suggested in the
original JCJ [21]. To obtain post-quantum security for eligibility verifiability,
future research will investigate the use of a quantum-resistant signature scheme
that can be evaluated under FHE to preserve ballot anonymity.

As a naive, but illustrative example that is one-time only and non-
distributive, consider that the voter creates their credential as σi = h(x), and

296 P. B. Rønne et al.

that only the voter knows the preimage x. The voter now submits both Epk(x)
and Epk(σi) to BB. Before weeding, the hash is homomorphically evaluated
on the ciphertext of the preimage, i.e., Epk(h(x)), followed by an equality test
against the ciphertext of the credential Epk(σi). A malicious authority can now
cast only a valid ballot with a registered credential after the corresponding voter
has cast a ballot, and an attempt to vote on their behalf is detectable in the
weeding phase.

Acknowledgments. The authors acknowledge support from the Luxembourg
National Research Fund (FNR) and the Research Council of Norway for the joint
project SURCVS. The project was also supported by the FNR INTER-VoteVerif, the
FNR CORE project Q-CoDe, and the European Union’s Horizon 2020 research and
innovation programme under grant agreement No. 779391 (FutureTPM).

References

1. Adida, B.: Helios: web-based open-audit voting. In: USENIX Security Symposium,
vol. 17, pp. 335–348 (2008)

2. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 17

3. Araújo, R., Barki, A., Brunet, S., Traoré, J.: Remote electronic voting can be effi-
cient, verifiable and coercion-resistant. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A.,
Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 224–
232. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4 15

4. Araújo, R., Foulle, S., Traoré, J.: A practical and secure coercion-resistant scheme
for remote elections. In: Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik (2008)

5. Araújo, R., Ben Rajeb, N., Robbana, R., Traoré, J., Youssfi, S.: Towards practical
and secure coercion-resistant electronic elections. In: Heng, S.-H., Wright, R.N.,
Goi, B.-M. (eds.) CANS 2010. LNCS, vol. 6467, pp. 278–297. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17619-7 20

6. Boneh, D., et al.: Threshold cryptosystems from threshold fully homomorphic
encryption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol.
10991, pp. 565–596. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96884-1 19

7. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. ACM Trans. Comput. Theory 6(3), 13 (2014)

8. Carr, C., Costache, A., Davies, G.T., Gjøsteen, K., Strand, M.: Zero-knowledge
proof of decryption for FHE ciphertexts. IACR Cryptology ePrint Archive 2018,
p. 26 (2018). http://eprint.iacr.org/2018/026

9. Catalano, D., Marcedone, A., Puglisi, O.: Authenticating computation on groups:
new homomorphic primitives and applications. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8874, pp. 193–212. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45608-8 11

10. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a secure voting system.
In: IEEE Symposium on Security and Privacy, pp. 354–368. IEEE (2008)

https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-53357-4_15
https://doi.org/10.1007/978-3-642-17619-7_20
https://doi.org/10.1007/978-3-319-96884-1_19
https://doi.org/10.1007/978-3-319-96884-1_19
http://eprint.iacr.org/2018/026
https://doi.org/10.1007/978-3-662-45608-8_11

Coercion-Resistant Linear-Time Voting via Fully Homomorphic Encryption 297

11. Cortier, V., Galindo, D., Küsters, R., Mueller, J., Truderung, T.: SoK: verifiability
notions for e-voting protocols. In: 2016 IEEE Symposium on Security and Privacy
(SP), pp. 779–798. IEEE (2016)

12. Delaune, S., Kremer, S., Ryan, M.: Coercion-resistance and receipt-freeness in elec-
tronic voting. In: 19th IEEE Computer Security Foundations Workshop, p. 12.
IEEE (2006)

13. Fiore, D., Gennaro, R., Pastro, V.: Efficiently verifiable computation on encrypted
data. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, pp. 844–855. ACM (2014)

14. Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale
elections. In: Seberry, J., Zheng, Y. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp.
244–251. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57220-1 66

15. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings
of the 41st Annual ACM Symposium on Symposium on theory of Computing-
STOC\2009, pp. 169–169. ACM Press (2009)

16. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 49

17. Gjøsteen, K., Strand, M.: A roadmap to fully homomorphic elections: stronger
security, better verifiability. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol.
10323, pp. 404–418. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70278-0 25

18. Grontas, P., Pagourtzis, A., Zacharakis, A., Zhang, B.: Towards everlasting privacy
and efficient coercion resistance in remote electronic voting. IACR Cryptology
ePrint Archive 2018, p. 215 (2018)

19. Jakobsson, M., Juels, A.: Mix and match: secure function evaluation via cipher-
texts. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 162–177.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 13

20. Jao, D., Soukharev, V.: Isogeny-based quantum-resistant undeniable signatures. In:
Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 160–179. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11659-4 10

21. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
Proceedings of the 2005 ACM Workshop on Privacy in the Electronic Society, pp.
61–70. ACM (2005)

22. Küsters, R., Truderung, T., Vogt, A.: A game-based definition of coercion resistance
and its applications 1. J. Comput. Secur. 20(6), 709–764 (2012)

23. Luo, F., Wang, K.: Verifiable decryption for fully homomorphic encryption. In:
Chen, L., Manulis, M., Schneider, S. (eds.) ISC 2018. LNCS, vol. 11060, pp. 347–
365. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99136-8 19

24. Roenne, P.B.: JCJ with improved verifiability guarantees. In: The International
Conference on Electronic Voting E-Vote-ID 2016 (2016)

25. Smith, D.: New cryptographic voting schemes with best-known theoretical prop-
erties. In: Workshop on Frontiers in Electronic Elections (2005)

26. Spycher, O., Koenig, R., Haenni, R., Schläpfer, M.: A new approach towards
coercion-resistant remote e-voting in linear time. In: Danezis, G. (ed.) FC 2011.
LNCS, vol. 7035, pp. 182–189. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-27576-0 15

27. Strand, M.: A verifiable shuffle for the GSW cryptosystem. IACR Cryptology
ePrint Archive 2018, p. 27 (2018). http://eprint.iacr.org/2018/027

https://doi.org/10.1007/3-540-57220-1_66
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-319-70278-0_25
https://doi.org/10.1007/978-3-319-70278-0_25
https://doi.org/10.1007/3-540-44448-3_13
https://doi.org/10.1007/978-3-319-11659-4_10
https://doi.org/10.1007/978-3-319-99136-8_19
https://doi.org/10.1007/978-3-642-27576-0_15
https://doi.org/10.1007/978-3-642-27576-0_15
http://eprint.iacr.org/2018/027

298 P. B. Rønne et al.

28. Sun, X., Tian, H., Wang, Y.: Toward quantum-resistant strong designated veri-
fier signature from isogenies. In: 2012 4th International Conference on Intelligent
Networking and Collaborative Systems (INCoS), pp. 292–296. IEEE (2012)

29. Weber, S.G.: Coercion-Resistant Cryptographic Voting: Implementing Free and
Secret Electronic Elections. VDM Publishing, Saarbrücken (2008)

30. Weber, S.G., Araujo, R., Buchmann, J.: On coercion-resistant electronic elections
with linear work. In: The Second International Conference on Availability, Relia-
bility and Security, ARES 2007, pp. 908–916. IEEE (2007)

PrivApollo – Secret Ballot E2E-V
Internet Voting

Hua Wu1(B), Poorvi L. Vora1, and Filip Zagórski2

1 Department of Computer Science, The George Washington University,
Washington, D.C., USA

huawu@gwu.edu
2 Department of Computer Science, Wroclaw University of Science and Technology,

Wroclaw, Poland

Abstract. The Apollo voting protocol improves on the integrity prop-
erties of Helios by enabling voters to communicate to the public the
failure of the cast-as-intended check, in the event that the voting termi-
nal changes the vote on receiving the credential. It also enables the voter
to detect a dishonest registrar and to prove misbehaviour. It provides
an explicit description of the role of one or more computational voting
assistants which help the voter perform the checks without obtaining
information on the vote. Unfortunately, neither Helios nor Apollo pro-
vides ballot secrecy, because the voting terminal knows the vote. We
present PrivApollo, a protocol that improves Apollo by providing ballot
secrecy from the voting terminal.

1 Introduction

Since the first cryptographic protocol for secure voting, the area has grown con-
siderably and has led to a number of protocols that have been used in real
elections. We focus on Internet voting approaches—such as Helios [1] and Apollo
[7]—whose privacy properties are conditional on the security of the cryptographic
techniques used. In proposals of this kind, ballot secrecy is typically protected
through the encryption of the vote by the voting terminal. A malicious entity
on the terminal could leak the vote, which could lead to ballot selling, coercion
or selective denial of service. We propose a voting system, PrivApollo, which
ensures that the vote is private from the voting terminal.

PrivApollo is an extension of Apollo. In Apollo, the voter relies on a number
of voting assistants—computational devices whose role is to assist the voter in
checking the actions of the voting system and the voting terminal. The voting

H. Wu and P. L. Vora—This material is based upon work supported in part by the
Maryland Procurement Office under contract H98230-14-C-0127 and NSF Award CNS
1421373.
F. Zagórski—Author was partially supported by Polish National Science Centre con-
tract number DEC-2013/09/D/ST6/03927 and by Wroclaw University of Science and
Technology [0401/0052/18].

c© International Financial Cryptography Association 2020
A. Bracciali et al. (Eds.): FC 2019 Workshops, LNCS 11599, pp. 299–313, 2020.
https://doi.org/10.1007/978-3-030-43725-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43725-1_21&domain=pdf
https://doi.org/10.1007/978-3-030-43725-1_21

300 H. Wu et al.

assistants do not obtain any information on the vote, while the voting termi-
nal knows the vote. PrivApollo also relies on voting assistants. Additionally, in
PrivApollo, one specific voting assistant is denoted the active voting assistant,
and enables the stronger privacy properties of PrivApollo. It is expected that
software for the voting assistants will be written by citizen interest groups, in
much the same way that tally-verification software is written independently of
the voting system.

The ballot secrecy property of PrivApollo is based on indirection: the active
voting assistant generates one half of the indirection map, and the voting ter-
minal the other half. The actions of the voting terminal and the active voting
assistant can be checked for correctness using a version of what is known as the
Benaloh Challenge, instantiated as Helios. The vote is secret from the voting
terminal and the active voting assistant if at least one of the two is honest. Even
if both are dishonest and collude, the privacy is no worse than that of Helios or
Apollo (in which the voting terminal knows the vote). Integrity in PrivApollo
holds if at least one voting assistant (not necessarily the active voting assistant)
is honest.

Coded voting systems such as Surevote [3], Scantegrity II [4], DEMOS [6] and
Remotegrity [13], as well the voting system Punchscan [10], also use indirection to
provide privacy from the voting terminal. In these other proposals, however, the
indirection map is generated ahead of time by the voting system. Pre-generated
indirection maps need to be delivered to the voter before voting begins and after
the candidate lists are finalized; this is generally a small time window. Delivery
on paper through the postal system can be a challenge, especially for voters
who are abroad or in remote locations. If the indirection map is not delivered
on paper, the electronic entity performing the delivery knows the map, and the
vote is not private from this entity.

In PrivApollo, the indirection map is generated in real time, jointly by the
voting terminal and the active voting assistant. PrivApollo’s splitting of the indi-
rection map into two components is similar to Punchscan’s approach of splitting
it into two ballot halves. With Punchscan too, however, the information on both
ballot halves is pre-generated by a single entity, the voting system. The Du-Vote
protocol [8] also generates the indirection map in real time and splits it into two
halves. However, both privacy and integrity properties of Du-Vote require that
the two entities not collude. In PrivApollo, integrity properties hold even if the
two entities do collude.

In spite of the benefit of ballot secrecy with respect to the voting terminal, the
use of indirection is known to pose usability challenges. We do not study usability
in this paper, and more usability research and improvements are required before
PrivApollo may be deployed in real elections.

This paper is organized as follows. Section 2 presents related work, and Sect. 3
the trust model. Section 4 describes the protocol, Sect. 5 provides a brief descrip-
tion of security and usability properties and Sect. 6 concludes.

PrivApollo – Secret Ballot E2E-V Internet Voting 301

2 Related Work

Helios [1] is perhaps the earliest practical proposal for end-to-end-verifiable vot-
ing without the use of paper. Several elections have been held using it, including
those for the IACR and ACM. In the Helios protocol the voter enters her vote
into the voting terminal, which provides her with an encryption of the vote. The
Apollo protocol improves the verifiability of Helios with a two-step vote-casting
process; voters enter a second credential after the encrypted vote is posted on
the bulletin board, thus confirming it is correct. In both systems, the terminal
encrypts the vote and hence knows it.

Riva and Ta-Shma [11] propose a precinct-based protocol where the voter pre-
pares two ballots at home, each consisting of a list of encrypted votes indexed by
candidate. The terminal in the voting booth re-encrypts all encrypted votes. The
voter challenges one encryption for each candidate and then casts the unchal-
lenged one for her choice. Voter privacy is protected if the voting terminal at the
precinct and the voter’s home computer do not collude.

Code-voting systems, such as Surevote [3], provide voters with a code for
each choice, and the voter casts the code in order to vote. The use of codes
provides ballot secrecy and prevents the voting terminal from replacing the vote
with another valid one. Remotegrity [13] is an extension of code-voting, enabling
remote voting through the use of two credentials: one for casting the vote, and
the other for confirming it.

Paper-based precinct voting system Punchscan [10] splits its indirection map
onto two sheets, which when overlaid form the ballot and reveal the vote. Each
sheet bears a mark, but the mark simply denotes the choice on one half of the
indirection map, and each sheet by itself reveals no information about the vote.
We use a similar idea to construct our electronic ballots; however, our ballots
are constructed at the time of voting without secure communication with the
voting system. While all voting systems, including PrivApollo, require secure
communication with the voter for credential delivery, this may be done many
months or weeks before the candidate lists are finalized, and does not pose the
same challenge as that of delivering indirection maps in the small time window
between finalization of candidates lists and the election.

Our use of indirection is similar to that of Chaum et al. [5]. An important
distinction is that the voting assistant communicates with the voting system
only through the voting terminal in [5]. In PrivApollo Codes the voting assistant
directly posts information on the bulletin board.

In addition to the voting systems described above, there are other proposals
that address the privacy problem, but do so requiring participants or hardware
to be trusted for integrity properties.

The Du-Vote [8] proposal has a voter experience similar to that of PrivApollo,
but differs because it assumes a dedicated hardware token, and verifiability
requires that the token and the voting terminal do not collude.

Backes et al. [2] propose that voters encrypt the vote using a one-time pad,
communicated through a trusted mobile phone using a secure channel.

302 H. Wu et al.

The Pretty Good Democracy (PGD) voting system [12] has a vote casting
phase that is identical to that of a generic code voting system. Its contribution is
in the addition of a back-end: the return code that confirms vote receipt to the
voter is sent only after a group of trustees verify that the corresponding vote is
posted on the bulletin board. Thus the integrity property of PGD relies on the
honesty of the group of trustees.

3 Model

We first introduce PrivApollo participants and then the assumptions.

3.1 Participants

Registrar: A registrar, R, generates, issues and checks credentials, which are
delivered to the voter.
Election Authority: The election authority, EA, includes servers and election
officials, and any software deployed on their behalf.
Voting Terminal: The voting terminal, VB, is the terminal and voting software
used by the voter to cast her vote.
Voter: The human voter, V can read and compare strings, generate a cast or
audit challenge and choose a candidate.
Voting Assistants: V has access to a number of voting assistants after the
voting phase of the protocol is completed. The assistants help check that the
voter’s ballot was cast-as-intended and recorded-as-cast but do not participate
in the protocol. The n additional devices are denoted V A1, V A2, ..., V An.
Active Voting Assistant: In PrivApollo, one of the voting assistants is an
active voting assistant, AVA, which helps the voter generate ballots and check
on VB and EA. AVA is a participant introduced in PrivApollo to protect privacy
from the voting terminal.

3.2 Assumptions, Including Trust Assumptions

First, we begin with the standard assumptions made by all internet voting sys-
tems, also shared by Apollo and PrivApollo.
Bulletin Board: A secure bulletin board, BB—with append-only-
authenticated-write and public-read access—is available to all participants.
Channel Between Registrar and Voter: Credentials cannot be accessed by
anyone and cannot be altered while in the channel.

Additionally, the following trust assumptions are standard regarding partic-
ipants.
Registrar: The registrar is assumed honest1.
1 Apollo relaxes this requirement by using irrepudiable credentials (such as credentials

under scratch-off as in Remotegrity) to thwart a registrar who attempts to use the
voter’s credentials to cast a vote. PrivApollo does not make any changes to Apollo’s
registrar and credentials.

PrivApollo – Secret Ballot E2E-V Internet Voting 303

Election Authority: The EA is not assumed honest for integrity properties,
but is assumed honest for privacy properties. To achieve privacy in this context,
a threshold-encryption scheme may be used.

For other participants, we first describe the standard assumptions, then any
modifications due to Apollo, and, lastly, further modifications due to PrivApollo.
Voting Terminal: In the standard model, the voting terminal and any soft-
ware on it (denoted VB, as in Apollo), like the EA, is not assumed honest for
integrity properties, but is assumed honest for privacy properties. In particular,
this assumption is made by Helios and Apollo. In PrivApollo, the voting terminal
is not assumed honest for integrity or privacy properties.
Voter: The standard model assumes a human voter, V, who can read and com-
pare strings, generate a cast or audit challenge and choose a candidate. V is not
assumed honest, and among other things, may make false complaints against
other participants.

In order to avoid clash attacks, Apollo additionally assumes V can generate
low entropy strings to help create distinct ballots; this approach may be used
in PrivApollo as well. This assumption is not easily satisfied by all voters, and
a random number generator in the form of a token may be used instead, but
the token would need to be trusted not to collude with the voting system or the
voting terminal.

PrivApollo further assumes that V can read, remember and compare short
strings for the purpose of indirection, which is also challenging. Large scale
attacks may be thwarted by a few voters who are capable of checking low entropy
strings and detecting the attack.
Voting Assistants: The standard model assumes that at least one of the assis-
tants does not collude with the voting terminal for integrity properties. The
assistants are not trusted for privacy properties.
Active Voting Assistant: As in Apollo, integrity requires that at least one
voting assistant is honest. (For this purpose, an AVA is like any other voting
assistant.) The privacy properties require that at least one of VB and the AVA
is honest and does not collude with the other to determine the vote.

4 The PrivApollo Protocol

In this section we present the PrivApollo protocol. In the steps outlined below, all
steps except the pre-voting phase and the ballot generation step are exactly as in
Apollo. The pre-voting phase differs slightly, as noted below. Ballot generation is
completely different from Apollo and forms the main contribution of this paper.
It is described in detail in Sects. 4.1 and 4.2.
Credentials: V receives her credentials from R: a set of k casting codes and a
lock-in code. k is the number of times a voter may correct an incorrect vote posted
on BB against one of her casting codes. This would happen if the voting terminal
changed the encrypted vote after receiving the casting code. In such a case, the
voter would change the terminal and try again. k − 1 is thus the maximum

304 H. Wu et al.

number of dishonest terminals (who change the vote, not simply those who deny
service by not posting the vote) the voter may encounter before successfully
casting her vote. There could be another process to request more casting codes.
Pre-voting Phase: Before the voting session begins, V chooses n voting
assistants V A1, V A2, ...V An. Larger values of n improve the robustness of the
integrity properties. New to PrivApollo, she chooses one AVA to be used for the
ballot generation procedure.
Role of Voting Assistants: After each protocol step, VB, every VA and the
AVA each checks BB and provides feedback to V . If V is satisfied with the
outcome of the check, she moves to the next step. If she determines that there is
a problem, she should try to vote again on another terminal. She should always
reuse an old credential unless she hears from the EA that it has been used (which
would imply it had been used to post a vote on BB). This is because the number
of casting codes is limited, and if they were all used up, the voter would have to
make an effort to contact the EA to obtain more.
Initialization: V opens the voting application on VB and provides a short string
for the session title. VB displays the (voting) session ID and a QR-code, and
sends session ID to BB, which displays it. V scans the QR-code into an AV A
and any VAs, and checks that they display the session ID (and) Title. That is,
that they are able to see these on BB. The QR code contains, in addition to
the session-ID, a symmetric key krand shared by VB and VAs, including AVA.
krand can be used to decrypt posted messages related to encryption audits, so
that the voter may choose who sees them. The QR code, and hence krand, are
not posted on BB.
Ballot Generation: Here our protocol differs considerably from Apollo. We
have two approaches to ballot generation: PrivApollo Colors and PrivApollo
Codes, which we describe in Sects. 4.1 and 4.2 respectively.
Lock-in Phase: Once the ballot has been generated and the voter casts it using
her Apollo casting credential, the VAs check the BB and inform the voter what
has been posted for her session. If the voter is satisfied that the string posted is
the one originally represented to her as her encrypted vote, she may return at
any time to lock-in her vote. She may do so from any computer by identifying
her session ID and adding her lock-in code, a second Apollo credential used to
communicate that the encrypted vote has been posted correctly. Finally, she may
check that the lock-in code has been posted, again, from any (other) computer.
If it is not, she may try to lock-in the vote again, from any other computer.

4.1 PrivApollo Colors

In this section we present the simpler protocol for ballot generation, PrivApollo
Colors. Note that colors may be replaced with shapes, for example, or audio
words for audio (as opposed to visual) presentation of the ballot.

1. Candidate-Color Correspondence Display: VB generates a pseudoran-
dom permutation π of the colors, leading to a candidate-color correspondence.

PrivApollo – Secret Ballot E2E-V Internet Voting 305

Fig. 1. Ballot Generation: PrivApollo Colors. VB permutes the colors and displays the
candidate-color pairs. VB posts encryptions (here, the identifier of the encryption is
MRHK). AVA displays that the encryptions were posted. The voter observes that the
color for her candidate, Al Dona, is Green, selects Green on the AVA and confirms this
choice. (Color figure online)

VB publishes, on BB, public-key encryptions of each candidate-color corre-
spondence using the public key of the EA and symmetric-key encryption of
the set of colors used with krand. VB displays candidate-color pairs.

2. Color Display: AVA obtains all the encrypted information from the BB,
informs the voter that it is available, decrypts the list of colors with krand,
generates a pseudo-random permutation γ and displays the corresponding
permuted list of colors, see Fig. 1.

3. Color Choice: V sees the correspondence between candidates and colors
displayed on VB, selects her candidate, observes the corresponding color on
VB, selects the same color on AVA and confirms it.

4. Color Encryption: AVA encrypts the chosen color and posts the encryption
on BB. V checks on VB that, indeed, an encryption has been posted by AVA
(see Fig. 2).

5. Encryption Challenge: V makes a choice: whether to audit or cast the
generated (encrypted) ballot.
cast V enters an unused casting code (Apollo casting credential).
audit V checks if her encrypted ballot represents the candidate she chose.

6. (audit) If the voter chooses to audit, VB and AVA each reveal, on BB, the
randomness required to check the encryption. Each V A checks the encryption
by trial and error over all possibilities, and communicates the result of the
check:

• The correspondence between candidates and assigned colors as generated
by VB.

• Which color was encrypted (and submitted by AV A to the BB).
The voter may repeat the audit step as many times as she wishes. Each time,
a fresh candidate-color correspondence is generated (goto step: 3).

306 H. Wu et al.

7. (cast) If the voter enters a cast code (on either V B or AV A), each V A displays
the code she entered and informs her that her vote is ready for locking.

Fig. 2. Encryption Challenge: PrivApollo Colors. VB informs the voter that a string
purporting to be the encrypted choice (of selected color Green) was published on BB
by the AVA (in this case, the identifier of the encryption is NJQA). The voter may
initiate an audit on either device: VB or AVA. (Color figure online)

4.2 PrivApollo Codes

In this version of the ballot-generation procedure, VB presents to the voter, as
in the PrivApollo Colors procedure, a list of candidate-color pairs, where the
correspondence is pseudorandomly generated (see Fig. 3). The AVA does more
work than in the PrivApollo Colors procedure, generating a list of short codes, a
distinct one for each color, and presenting a correspondence between color and
code.

The two correspondences taken together result in a correspondence between
candidate and code, and neither VB nor AVA can determine any information on
this correspondence without collusion with the other. The voter identifies the
color for her candidate on VB, then the code for the color on the AVA, and
enters the code into VB, see Fig. 3.

4.3 Tallying

Each of N cast ballots consists of several encryptions.

PrivApollo Colors. Protocol 1.1.
• Encryption of the ballot layout (sent by VB to BB in Step 1(c))
• List of encrypted inner codes (sent by VB to BB in step 1c)
• Encryption of inner code (color) selected by the voter (inner code sent by
V to AVA in step 4, encryption sent by AVA to BB in step 5).

PrivApollo – Secret Ballot E2E-V Internet Voting 307

PrivApollo: Colors

1. VB generates an encoded ballot with:
(a) a canonical list of voting options 〈o1, o2, . . . , ok〉,
(b) a random permutation π,
(c) the permuted list of colors

〈
cπ(1), cπ(2), . . . , cπ(k)

〉
(see Figure 1).

VB submits to the bulletin board the following encrypted values:

ballotLayout ←
[〈
EncEA(o1, ro1),EncEA(cπ(1), rc1)

〉
, . . .

. . . ,
〈
EncEA(ok, rok),EncEA(cπ(k), rck)

〉]

innerCodes ← Enckrand(〈c1, . . . , ck〉).

VB displays the ballot to V:

o1 cπ(1)

o2 cπ(2)

. . .
ok cπ(k)

2. Each VA performs the following steps:
(a) downloads encrypted ballotLayout from BB and informs V that encryp-

tions were posted by VB.
(b) decrypts innerCodes with krand to obtain 〈c1, . . . , ck〉.

3. Each VA displays the color options:

c(1)
c(2)
. . .
c(k)

4. V finds her candidate oi and a corresponding color cπ(i) on VB. Then it picks
the same color on AVA – position j such that cπ(i) = c(j) = x.

5. AVA does the following:
(a) computes the encryption of the ballot: c ← EncEA(x, r), where r is the

randomness used during encryption,
(b) sends the encrypted vote to BB: AV A

c−→ BB
6. VB and VAs inform the voter that c is posted on BB in the transcript of her

sessionID
7. V makes a decision about cast/audit:

Audit is selected: Protocol 1.3 is carried out.
Cast is selected:

(a) V is asked to enter: Login and CastCode (these can be combined into
a single long string)

(b) VAs display the Login/CastCode pair; V checks if they are as
expected.

Protocol 1.1. The vote-casting procedure of PrivApollo Colors (simple; see Figs. 1
and 2).

308 H. Wu et al.

PrivApollo: Codes

1. VB generates an encoded ballot with:
(a) a canonical list of voting options 〈o1, o2, . . . , ok〉,
(b) a randomly selected list of inner-codes 〈c1, c2, . . . , ck〉 (see Figure 3 where the

cis are colors).
(c) a permutation π.
VB submits to the bulletin board the following encrypted values:

ballotLayout ← [〈EncEA(o1, ro1),EncEA(c1, rc1)〉 , . . .
. . . , 〈EncEA(ok, rok),EncEA(ck, rck)〉] ,

innerCodes ← Enckrand
(
〈
cπ(1), . . . , cπ(k)

〉
).

VB displays the ballot to V:

o1 c1
o2 c2
. . .
ok ck

2. Each VA performs the following steps:
(a) downloads ballotLayout, innerCodes from BB and informs V that encryptions

were posted by VB.
(b) decrypts innerCodes with krand to obtain

〈
cπ(1), . . . , cπ(k)

〉
.

(c) displays list of decrypted innerCodes.
3. AVA

(a) generates randomly selected list of vote-codes 〈v1, v2, . . . , vk〉.
(b) submits to BB an encryption of the correspondence between inner-codes and

vote-codes:

voteCodes ←
[〈
EncEA(cπ(1), rπ1),EncEA(v1, rv1)

〉
, . . .

. . . ,
〈
EncEA(cπ(k), rπk),EncEA(vk, rvk)

〉]
.

(c) displays the code-sheet:

cπ(1) v1
cπ(2) v2
. . .
cπ(k) vk

4. V who wants to cast a ballot for candidate oi:
(a) finds the corresponding inner code ci (oi ↔ ci) displayed on VB,
(b) finds the corresponding vote code x = vπ−1(i)

sends vote choice to VB: V
x−→ V B

5. VB sends to the bulletin board V B
c−→ BB the encryption of the vote code c ←

EncEA(x, r), where r is the randomness used for encryption
6. VAs inform the voter that x is posted on BB in the transcript of her sessionID.

Moreover AVA higlights color ci corresponding to x.
7. V makes a decision about cast/audit:

Audit is selected then Protocol 1.3 is performed.
Cast is selected:

(a) V is asked to enter: Login and CastCode (these can be combined to be a
single long string)

(b) VAs display the Login/CastCode pair; V checks if they are as expected.

Protocol 1.2. The vote-casting procedure of PrivApollo Codes (see Fig. 3).

PrivApollo – Secret Ballot E2E-V Internet Voting 309

Fig. 3. Ballot Generation: PrivApollo Codes. The voter observes that the color corre-
sponding to her candidate Al Dona, as displayed by VB, is Green. The corresponding
code for Green displayed on AVA is CKP. The voter enters CKP in VB. (Color figure
online)

Audit (PrivApollo Colors and PrivApollo Codes)

1. VB sends to BB the randomness used to generate the ballot and encrypt the
vote:

cVB = Enckrand(r, 〈ro1 , . . . , rok 〉 , 〈rc1 , . . . , rck〉)
2. AVA sends to BB the randomness:

cAVA = Enckrand(r), in color version

cAVA = Enckrand(r, 〈rπ1 , . . . , rπk〉 , 〈rv1 , . . . , rv〉), in code version.

3. The VAs decrypt cV B and cAV A and present the vote x′ to V (with the
randomness, VAs can recover the plaintext by brute force).

4. V accepts or not based on what the other VAs say the vote decrypted to:
x = x′ Prepares new encryption; goto step (1) of the Protocols 1.1 1.2
x �= x′ Begins again with new VB and, if necessary, new VAs

Protocol 1.3. The audit procedure PrivApollo– both versions.

310 H. Wu et al.

PrivApollo Codes. Protocol 1.2.
• Encryption of the ballot layout (sent by VB to BB in Step 1(c))
• List of encrypted inner codes (sent by VB to BB in step 1c)
• Encryption of the correspondence between inner codes and vote codes

(sent by AVA to BB in step 3b)
• An encrypted vote code selected by the voter (inner code sent by V to
VB in step 4, encryption sent by VB to BB in step 5).

For both vote casting methods, the tally phase consists of two phases. The
role of the first phase is to select a valid row of the ballot layout that corresponds
to the submitted vote code (or color). To protect ballot privacy, the correspond-
ing row – that is (re)encrypted selected option, goes through the second phase
of mixing and re-encryption.

PrivApollo: VoteCodes ReEncryption – Tallying Phase 1a
Input: 〈ballotLayouti, voteCodesi, ci〉N

i=1 = 〈bLi, vCi, ci〉N
i=1

1. pick at random σ a permutation of N elements.
2. for each i = 1 . . . N do:

(a) select k-element permutations πi,1, πi,2

(b) on input:
bLi = [〈α1, β1〉 , . . . , 〈αk, βk〉];
vCi = [〈γ1, δ1〉 , . . . , 〈γk, δk〉];
ci.

(c) output (for j = 1 . . . k):
bLσ(i)[j] :=

〈
ReEnc(απi,1(j)),ReEnc(βπi,1(j))

〉
;

vCσ(i)[j] :=
〈
ReEnc(γπi,2(j)),ReEnc(δπi,2(j))

〉
;

cσ(i) := ReEnc(ci).

Protocol 1.4. Tallying phase 1a for PrivApollo Codes. A code for a mix-server. ReEnc()
denotes (ElGamal) re-encryption.

After the end of phase 1 (1a and 1b), the last element (ci) of each 3-tuple
of vote i gets decrypted: revealing the vote code that was entered by the voter.
Since c = EncEA(x, r) and x = vπ−1(i), the value vπ−1(i) becomes public.

Also each of δi,j is decrypted (δi,j = EncEA(cπ(j))). For each ballot i, exactly
one decrypted δi,j will match decrypted ci. The mix-server deletes all unmatched
rows of 〈γi,j , δi,j〉.

PrivApollo – Secret Ballot E2E-V Internet Voting 311

PrivApollo: VoteCodes Decryption – Tallying Phase 1b
Input: 〈ballotLayouti, voteCodesi, ci〉N

i=1 = 〈bLi, vCi, ci〉N
i=1

Shared key: Km

1. pick at random σ a permutation of N elements.
2. for each i = 1 . . . N do:

(a) select k-element permutations πi,1, πi,2

(b) on input:
bLi = [〈α1, β1〉 , . . . , 〈αk, βk〉];
vCi = [〈γ1, δ1〉 , . . . , 〈γk, δk〉];
ci.

(c) output (for j = 1 . . . k):
bLσ(i)[j] :=

〈
ReEnc(απi,1(j)),ReEnc(βπi,1(j))

〉
;

vCσ(i)[j] :=
〈
ReEnc(γπi,2(j)),DecKm(δπi,2(j))

〉
;

cσ(i) := DecKm(ci).

Protocol 1.5. Tallying phase 1b (PrivApollo Codes). A code for a mix-server. DecKm(·)
denotes shared key of threshold encryption which was used to generate EA’s public key.

After the Phase 1 the following cryptograms remain:

〈ballotLayouti, γi,ji〉N
i=1 = 〈bLi, ci〉N

i=1 .

In Phase 2 Protocols 1.4 and 1.5 are run sequentially (with bL playing the
role of vC). After Phase 2 is completed, one can decode the only matching α
which encodes the voting option selected by the voter, ox.

5 Security and Usability Discussion

In the PrivApollo Colors procedure, the AVA could easily replace the vote with
another valid one (change the color to another valid color), though it would not
know which candidate the color corresponded to (the randomization attack). On
the other hand, while the PrivApollo Codes procedure requires the voter to deal
with two indirections and is hence more complex, it is hard for VB to change the
vote to another valid vote. This is because it does not know other valid codes
without colluding with AVA, or maliciously attempting to determine a valid code
by, for example, photographing the AVA screen. While the PrivApollo Codes
procedure makes the randomization attack harder, it does allow the adversary
to easily invalidate the vote. As in Apollo, each attack would be detected by the
alert voter. The randomization attack and vote validation can be successfully
carried out on Apollo and Helios as well.

312 H. Wu et al.

Note that, while the integrity properties of the protocol are resilient to col-
lusion between the BB and the AVA, we do rely on the assumption that neither
party knows all the valid credentials (casting codes and lock-in codes). That is,
for example, AVA is not able to photograph the credential sheet that the voter
may have received in the post.

If either AVA or VB wishes to learn the ballot contents, it needs to cooperate
with the other in order to learn the indirection. Such cooperation includes the
surreptitious access to data by one of the parties.

The tallying process is divided into two phases; the information revealed at
the end of each phase helps neither VB nor AVA get more knowledge about the
cast ballot.

As in Apollo, the use of the Benaloh challenge enables voters to detect
attempts to manipulate the vote. This approach hence has all the strengths
and weaknesses of a cast-and-challenge approach, including the fact that voters
may believe they had already verified when they had not [9]. The use of lock-
in codes allows her to communicate that a problem occurred, and allows her
to attempt to vote again. The inclusion of an active voting assistant does not
change these properties, because the actions of the voting assistant are included
in the audit. The integrity properties of Apollo are unchanged. The use of the
active voting assistant may be viewed as a splitting of the voting terminal into
two entities, reducing the reliance on a single entity to protect ballot secrecy,
and improving on the privacy properties of PrivApollo.

We do assume independent devices, but, even if the devices are not inde-
pendent, or malware is transmitted from VB to all the VAs through the QR
code, the verifiability properties hold if the voter performs all the checks using
a different VA into which the voter herself keys in the session ID, or if the voter
goes through the verification steps as in an end-to-end-verifiable protocol that
does not explicitly incorporate a voting assistant. The voter, may, in fact, use a
number of out-of-band voting assistants, in which case the interaction with the
voting assistant will be no less usable than in, say, Helios, though privacy with
respect to the voting terminal will be greater. If the voter uses a single AVA
and no other VAs, one of the VB or the AVA need to be honest for the integrity
property, which is the same requirement as Apollo used with a single VA.

The scheme seems to be well suited for elections with few candidates. When
the number of candidates is large, it would not be possible to find a large enough
number of colors that are sufficiently easily distinguished by voters. Beyond a
couple of candidates, it is likely that the error rate of the indirection would
increase. Similar problems would arise if one used shapes instead of colors. In
such a case, the use of a short alphanumeric code would be a better choice. Even
so, voters might make errors while comparing alphanumeric strings. Finally,
the encryption audit check requires the VA to check every possibility with the
randomness revealed, and hence this would be very inefficient for a large number
of candidates or for more complex elections (other than plurality elections).

We are not aware of any protocols that offer similar security properties given
a similar trust model. We acknowledge that this has been with a loss in usability;
however, that presents interesting future work.

PrivApollo – Secret Ballot E2E-V Internet Voting 313

6 Conclusions

We have presented a fully electronic scheme that is end-to-end voter verifiable
and also provides ballot secrecy from the devices used to cast a ballot. The
privacy property holds if the Voting Booth does not collude with the Active
Voting Assistant. Integrity is achieved as long as at least one Voting Assistant
used by the Voter is honest.

References

1. Adida, B.: Helios: web-based open-audit voting. In: USENIX Security Symposium,
pp. 335–348 (2008)

2. Backes, M., Gagné, M., Skoruppa, M.: Using mobile device communication to
strengthen e-voting protocols. In: Proceedings of the 12th ACM Workshop on
Privacy in the Electronic Society, pp. 237–242. ACM (2013)

3. Chaum, D.: Surevote. International Patent WO 01/55940 A1. Technical report
(2001)

4. Chaum, D., et al.: Scantegrity: end-to-end voter verifiable optical-scan voting.
IEEE Secur. Priv. 6(3), 40–46 (2008)

5. Chaum, D., et al.: Paperless independently-verifiable voting. In: Kiayias, A., Lip-
maa, H. (eds.) Vote-ID 2011. LNCS, vol. 7187, pp. 140–157. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32747-6 9

6. Chondros, N., et al.: D-DEMOS: a distributed, end-to-end verifiable, internet vot-
ing system. In: 36th IEEE International Conference on Distributed Computing
Systems, ICDCS 2016, Nara, Japan, 27–30 June 2016, pp. 711–720 (2016)

7. Gawe�l, D., Kosarzecki, M., Vora, P.L., Wu, H., Zagórski, F.: Apollo – end-to-
end verifiable internet voting with recovery from vote manipulation. In: Krimmer,
R., et al. (eds.) E-Vote-ID 2016. LNCS, vol. 10141, pp. 125–143. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-52240-1 8

8. Grewal, G.S., Ryan, M.D., Chen, L., Clarkson, M.R.: Du-Vote: remote electronic
voting with untrusted computers. In: 2015 IEEE 28th Computer Security Founda-
tions Symposium (CSF), pp. 155–169. IEEE (2015)

9. Marky, K., Kulyk, O., Renaud, K., Volkamer, M.: What did I really vote for?
On the usability of verifiable e-voting schemes. In: Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems, United States, April 2018.
Association for Computing Machinery (ACM) (2008)

10. Popoveniuc, S., Hosp, B.: An introduction to Punchscan. In: WOTE (2006)
11. Riva, B., Ta-Shma, A.: Bare-handed electronic voting with pre-processing. In: EVT

(2007)
12. Ryan, P.Y.A., Teague, V.: Pretty good democracy. In: Christianson, B., Malcolm,

J.A., Matyáš, V., Roe, M. (eds.) Security Protocols 2009. LNCS, vol. 7028, pp.
111–130. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36213-
2 15

13. Zagórski, F., Carback, R.T., Chaum, D., Clark, J., Essex, A., Vora, P.L.:
Remotegrity: design and use of an end-to-end verifiable remote voting system.
In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013.
LNCS, vol. 7954, pp. 441–457. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38980-1 28

https://doi.org/10.1007/978-3-642-32747-6_9
https://doi.org/10.1007/978-3-319-52240-1_8
https://doi.org/10.1007/978-3-642-36213-2_15
https://doi.org/10.1007/978-3-642-36213-2_15
https://doi.org/10.1007/978-3-642-38980-1_28
https://doi.org/10.1007/978-3-642-38980-1_28

End-to-End Verifiable Quadratic Voting
with Everlasting Privacy

Olivier Pereira1 and Peter B. Rønne2(B)

1 Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
olivier.pereira@uclouvain.be

2 SnT, University of Luxembourg, Luxembourg, Luxembourg
peter.roenne@uni.lu

Abstract. Quadratic voting is an intriguing new method for public
choice suggested by Lalley and Weyl, which they showed to be utilitar-
ian efficient. Voters are given a budget of credits and can assign each of
the candidates a (perhaps negative) value, where the price paid for their
voting choice is the sum of the squared values. From a security view-
point, we generally request elections to be private and have integrity,
and even further (end-to-end) verifiability which entails public bulletin
boards. Such public data might be troublesome when considering future
adversaries capable of breaking current cryptographic primitives, either
due to computational power advances, broken primitives or scientific
breakthroughs. This calls for election schemes with everlasting privacy
and perfectly private audit trails. In the case of quadratic voting this
is even more crucial since budget balances have to be linked between
elections in a verifiable way, and revealing old budget values partially
break privacy in later elections. In this paper, we suggest an efficient
construction of electronic quadratic voting with end-to-end verifiability
and a perfectly private audit trail inspired by the methods of Cuvelier,
Pereira and Peters, but adapted to include the quadratic relations and
keeping budget balances everlasting private.

1 Introduction

Finding good public choice methods is a notoriously hard problem. Recently
a novel intriguing approach has appeared: quadratic voting [16]. The quadratic
voting method works by providing the voter with a budget b of credits for buying
votes, however, the voting credit does not have to be connected to a real financial
currency. The peculiarity is that a voter casting v votes for a candidate has to
pay a quadratic amount v2 of credits for this choice. That is, the voter assigns
vote values v1, . . . , vc to the c candidates, or choices, and has to pay the sum of
squared values which have to be within budget

v2
1 + · · · + v2

c ≤ b .

c© International Financial Cryptography Association 2020
A. Bracciali et al. (Eds.): FC 2019 Workshops, LNCS 11599, pp. 314–329, 2020.
https://doi.org/10.1007/978-3-030-43725-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43725-1_22&domain=pdf
https://doi.org/10.1007/978-3-030-43725-1_22

End-to-End Verifiable Quadratic Voting with Everlasting Privacy 315

The advantage of quadratic voting is that it theoretically satisfies utilitarian
efficiency at least in the asymptotic case [16], and in the finite case the ineffi-
ciency is suppressed by the number of voters, see also [8]. To put it differently,
the quadratic pricing gives incentive for the voter to buy a number of votes
corresponding to her internal value.

An enlightening example demonstrating the effect of quadratic voting on real
users can be found in [19]. Here voting was not directly considered but rather
closely related surveys. In a combined between-groups and within-subjects study,
participants were asked about their opinion on 10 proposals. One group of par-
ticipants gave answers on a Likert 7-choice scale ranging from “Very strongly
against” over “Neutral” to “Very strongly in favor” whereas another group
gave responses using quadratic voting with a total budget of 100 credits for
all answers i.e. being able to vote in the range {−10, . . . , 0, . . . , 10}. As is intu-
itive the quadratic voting resulted in much less extreme answer but, further, the
answers were also much closer to being normal distributed. The quasi-normal
distribution could be an indication that the answers were closer to expressing
the true internal value.

Once the vote is complete, the collected payments are redistributed among
the voters. The method suggested by Lalley and Weyl [16] is to split the rev-
enue of the election evenly among the voters. However, other solutions have been
proposed, including lotteries [17]. The actual choice is not essential for the utili-
tarian efficiency. For simplicity we will focus on the even split of revenue in this
paper.

Quadratic voting is also an interesting challenge from a security viewpoint,
as we have to cryptographically deal with squared values and checks of bud-
get balances. A first solution for running end-to-end verifiable elections with
quadratic voting is described by Park and Rivest [17]. Here security properties
of voting schemes are discussed, and the importance of budget privacy is stressed,
especially if revealing individual votes due to Italian attacks. Our scheme uses
homomorphic tallying, partially sidestepping the Italian attacks. Still, budget
balances should be kept private by the voters, as they could result in vote pri-
vacy leaks. Note that a very small leak in privacy is unavoidable since we reveal
the total revenue by refunding it to the voters. Park and Rivest also analyze
strategic voting and refunding rules for quadratic voting, and further suggest
schemes for in-person and electronic voting, with cryptography based on the
BGN encryption scheme [6], which allows to calculate squares of encrypted val-
ues, and to further homomorphically add those squares. Regarding the handling
of the payments, it is also mentioned as a possible option to use an anonymous
cryptocurrency such as Zerocash [20].

We create a different solution, which offers several additional benefits:

– Our protocol offers a perfectly private audit trail (PPAT), that is, all the data
needed for public verifiability perfectly hide all the votes and budgets. The
previous solution requires publishing ciphertexts that would eventually leak
vote content.

316 O. Pereira and P. B. Rønne

– Our protocol is compatible with traditional threshold key generation protocols
in the discrete log setting [15,18], even in the malicious setting. The BGN
scheme requires the use of an RSA modulus with unknown factorisation,
which is considerably more challenging to obtain (see discussion in [6] for
instance).

– Our solution is quite efficient: voter computation takes place in prime order
groups on elliptic curves (e.g., BN curves [2]), and only requires to compute
one pairing per election. The BGN based solution requires to compute on
curves with a modulus that has the size of an RSA modulus, and requires the
evaluation of pairings for each vote.

We believe that everlasting privacy of the audit data is an important improve-
ment for any secure election scheme: we want these data to be widely available
to the public, but then need to take care that votes do not leak in the future.
An adversary may benefit from the ever-increasing efficiency improvements in
computing, the breaking of believed-secure cryptographic assumptions or tech-
nical breakthroughs such as quantum computers. However, in quadratic voting
such future-proofing is even more essential, since the budget can be carried over
from election to election. Thus breaking the privacy of earlier elections might
(partially) leak the later budget in the present of the future adversary.

We also conjecture that handling the payments inside the voting system
(compared to relying on an externally managed cryptocurrency) is an interesting
feature: this avoids mixing the systems of incentive that come with cryptocur-
rencies with those in the election process, and it also makes it easier to control
that all voters start from an equal budget.

The outline of the paper is as follows. In Sect. 2 we present the necessary
cryptographic tools, that will be used in the cryptographic protocol presented
in Sect. 3. In Sect. 4 we discuss the security properties of the protocol. We end
with a conclusion and discussion of future research directions.

2 Background and Cryptographic Tools

2.1 Commitment Consistent Encryption

The first component of our quadratic voting protocol is commitment consistent
encryption (CCE) [12], a cryptographic tool that was proposed to facilitate the
design of universally verifiable voting schemes with a perfectly private audit trail.

A CCE scheme is a traditional public key encryption scheme offering an
extra feature: from any ciphertext, it is possible to derive a perfectly hiding
commitment, as well as an opening of that commitment to the value that is
encrypted. The commitment derivation operation, DCom, only requires using
the public key, while the computation of the opening, Open requires the secret
key.

It is convenient to have, associated to a CCE scheme, the possibility to use
efficient proof systems, which can serve several purposes, and which we will need
in our application:

End-to-End Verifiable Quadratic Voting with Everlasting Privacy 317

– A proof of validity of a ciphertext, that guarantees election organisers that the
Open operation would succeed without performing it. Quite often, ciphertexts
are never decrypted but rather homomorphically combined, e.g., in order to
add votes. A single invalid ciphertext would then suffice to make it impossible
to open the election result.

– A proof of knowledge of the plaintext. This can be used to make ciphertexts
non-malleable [5,22], and avoid attacks on privacy.

– A proof of validity of a plaintext, which guarantees that the plaintext that is
encrypted encodes a valid vote.

These will be discussed in the next subsection.
We use the PPATS encryption scheme of Cuvelier et al. [12], which is

described in Fig. 1. This scheme works in an asymmetric bilinear group set-
ting, which can be obtained using BN curves [2] for instance. In the group G1,
two random generators (g1, h1) are given in order to produce Pedersen-like com-
mitments and, in the group G2, an ElGamal key (g2, h2) is produced. The main
twist of the scheme is to open a commitment gv1hr

1 using gr2 and to verify it using
the pairing operator, instead of using r directly as with Pedersen commitments:
the pairing makes it possible to verify, after removal of the gv1 term, whether
e(hr

1, g2) = e(h1, g
r
2). Using this alternate way of opening the commitment offers

two benefits: (i) the opening is now a group element, which can be conveniently
encrypted using the ElGamal key (ii) all the secret values are in exponents, which
eases compatibility with traditional, efficient, Σ-protocols.

PPATS encryption
Setup(1λ) Return, as a public parameter pp, type-3 pairing-friendly groups

G1,G2,GT of prime order q s.t. |q| = λ, together with random generators
g1, h1 of G1 and g2 of G2. We assume that pp is available to all other
algorithms.

Gen(1n) Generate an ElGamal public encryption key pk = h2 = gx
2 . The secret

key is the uniformly random sk = x ∈ Zq.
Encpk(v) Encrypt vote v as (d, c1, c2) = (gv

1hr
1, g

s
2, g

r
2hs

2), using uniformly ran-
dom (r, s) ← Z

2
q.

Decsk(d, c1, c2) Return the discrete logarithm of e(h1, c
x
1/c2)e(d, g2) in basis

e(g1, g2).
DCompp(d, c1, c2) Derive and return the perfectly hiding commitment d.
Opensk(d, c1, c2) The commitment opening is computed as a = c2/cx

1 .
Vrfypk(d, v, a) (v, a) is an opening of d iff e(h1, a) = e(d/gv

1 , g2).

Fig. 1. The PPATS encryption scheme

2.2 Sigma Protocols

A Sigma protocol [13], or Σ-protocol, for a relation R enables a prover P to
convince a verifier V that he knows a witness w for a statement x such that
(w, x) ∈ R.

318 O. Pereira and P. B. Rønne

Sigma-protocols are structured as follows: based on a joint input x, P sends
a commitment a to V , who answers with a uniformly random challenge e and,
finally, P sends a response f . Based on this response, V accepts or rejects the
proof.

Σ-protocols exhibit the following properties:

Completeness. If P and V follow the protocol honestly and if P actually knows
a witness w for the statement x, then V accepts the proof.

Special Honest Verifier Zero-Knowledge. There is a simulator S that, from
any valid statement x and challenge e from the set of possible challenges,
is able to produce a full valid protocol transcript (a, e, f). If e is uniformly
distributed, then this transcript is distributed exactly like a real protocol
execution. (Note that no valid witness w for x is given to S.)

Special Soundness. From any two valid proof transcripts (a, e1, f1) and
(a, e2, f2) for a statement x, with a single commitment a and two distinct
challenges e1 �= e2, it is possible to extract a witness w s.t. (w, x) ∈ R.

Σ-protocols come with two interesting features: (i) They can be efficiently
turned into non-interactive zero-knowledge in the random oracle model thanks
to the Fiat-Shamir heuristic [5,14]; (ii) their perfect ZK property makes them
suitable to be published as part of a perfectly private audit trail.

We need to use several standard Σ-protocols, which we list below.

Opening of a Commitment. We use a protocol πb
op(c) to prove knowledge of an

opening of a commitment c to a value b s.t. c = gbhr. This can be achieved using
Schnorr’s protocol [21], which takes a single exponentiation.

CCE Ciphertext Validity. We use a protocol πva(c) that proves the validity
of a PPATS ciphertext c, by demonstrating the knowledge of the vote v and
randomness (r, s) used to produce c. This protocol guarantees to the talliers
that they will be able to run the tallying protocol successfully, as explained
above. Such a protocol has been constructed for PPATS by Cuvelier et al. [12]
and requires 2 exponentiations in G1 and 3 exponentiations in G2.

Range Proof. We use a protocol πn
r (c) that proves the ability to open a commit-

ment c = gvhr on a vote v that is included in the range [0, 2n], with n < log q−1.
Note that the notion of “positive” has a slightly unusual meaning here, as the
values we are committing to lie in Zq; this is the reason of our upper bound on n,
which guarantees that values do not “overflow” to negative values, interpreted
as those above (q − 1)/2.

This protocol will be used by the voters to prove that they are not over-
spending, that is, that their budget after each vote remains positive.

Many such proofs have been proposed, with their efficiency differing depend-
ing on the value of the range upper bound 2n (among other factors). As we work
in prime order groups and our range upper bound is a power of 2, we simply rely
on the protocol by Bellare and Goldwasser [3]. This protocol makes a sequence of

End-to-End Verifiable Quadratic Voting with Everlasting Privacy 319

n commitments c0, . . . , cn on the individual bits v0, . . . , vi of the binary decom-
position of v, proves that each commitments actually commit to bits, and then
show that c/

∏
c2

i

i = hs for a known s.
If the 0/1 proofs are made using the disjunctive proofs of Cramer et al. [10],

which takes 3 exponentiations in the group in which the commitment lies, then
the total cost of such a proof is (i) n exponentiations for the bit commitments,
(ii) 3n exponentiations for the proofs that they can be opened on bits, (iii) 1
exponentiation for the final proof on s. The total is then 4n+1 exponentiations.

2.3 Proof of Square

Finally, a key ingredient of our quadratic voting protocol is a proof πsq that
one can open two perfectly hiding commitments on values such that one is the
square of the other. This will be used by the voters to show that they commit
on an accurate payment based on their vote.

Such a proof can be achieved using the usual technique systematically
described by Camenisch [7]. We propose here a slightly more efficient method,
which we detail.

Suppose that P publishes two commitments c1 and c2 and wishes to demon-
strate that he knows pairs (v1, r1) and (v2, r2) such that c1 = gv1hr1 , c2 = gv2hr2

and v2 = v2
1 mod q. He can then follow the Square protocol depicted in Fig. 2.

P (g, h, v, r1, r2) V (g, h, c1, c2)

a, s1, s2 ← Zq •

• e ← {0, 1}n

• Accept iff gfht1 = d1c
e
1

and ht2 = d2c
e
2c

−f
1

d1 = gahs1 , d2 = gavhs2

e

f = a + ev, t1 = s1 + er1,

t2 = s2 − ar1 + e(r2 − r1v)

Fig. 2. Square: a Σ-protocol for commitments on values in quadratic relation.

Theorem 1. The protocol πsq(c1, c2) described in Fig. 2 is a Σ-protocol for the
relation {v, r1, r2|c1 = gvhr1 , c2 = gv

2
hr2}.

Proof. We show the completeness, the special soundness and the perfect honest
verifier ZK of the protocol.

Completeness: The perfect completeness of the protocol follows from the
inspection of the verification equations. In particular, we see that d2c

e
2c

−f
1 is

a commitment on av + ev2 − v(a + ev) = 0.

Special Soundness: Let us imagine that we have two valid transcripts for
the same c1, c2, d1, d2, that is, we have (e, f, t1, t2) and (e′, f ′, t′1, t

′
2) that are

320 O. Pereira and P. B. Rønne

both consistent with the verification equations. Dividing the two versions of the
verification equations gives: gf−f ′

ht1−t′
1 = ce−e′

1 and ht2−t′
2 = ce−e′

2 cf
′−f

1 .
The first of these equations shows that v = f−f ′

e−e′ and r1 = t1−t′
1

e−e′ are a valid

opening of c1. Inserting the extracted v in the second equation gives ce−e′
2 =

c
v(e−e′)
1 ht2−t′

2 . Isolating c2, we can open it on the pair (v2, r1v + t2−t′
2

e−e′), and
observe that the second element of that pair equals r2.

Special HVZK: Given any e, we can select f, t1, t2 uniformly at random in
Zq, then compute d1 and d2 from the verification equations. If e is uniformly
random, then it is distributed as in the real protocol. The uniform selection of
a, s1, s2 in a real execution guarantees that f , t1, t2 are random in the absence of
d1 and d2, and those two commitments only enforce the verification equations.
Hence, the simulated view is distributed exactly as a real one. ��

The cost of this protocol is 3 exponentiations (considering that v is small),
which is slightly better than the 4 exponentiations that would be obtained using
the more common approach [7]. This may make this protocol of independent
interest.

3 Verifiable Quadratic Voting

We now describe the steps of our quadratic voting protocol in detail. The main
participants are the Election Authority with a set of Tally Tellers jointly holding
the election secret key, the Voters and a Public Bulletin Board used to publish
and verify the outcome of the election.

Our election setting and adversarial model is standard (we will discuss secu-
rity in the next section) and similar to the one used by Cramer et al. [11] or
Helios 2.0 [1].

The Election Authority orchestrates the election, publishing the questions
and election public parameters (keys) on the public bulletin board, which is
assumed to behave as a trustworthy broadcast channel. The Election Authority
also handles the voter lists, and offers authentication services to the voters if
needed.

We aim for an end-to-end verifiable protocol: the election result should be
verifiable without requiring to trust any particular entity or entities.

Regarding privacy, we want that votes remain computationally secret in front
of the Tally Tellers: Tally Tellers would only be able to break privacy if a compu-
tational assumption is broken, or if enough of them are malicious (the threshold
can be arbitrarily chosen). Furthermore, we want that all the data published
on the Bulletin Board guarantee the perfect privacy of the votes: someone who
can only access the Bulletin Board should never be able to learn the votes,
independently of the falsification of any computational assumption.

3.1 Election Setup

Parameter Generation. Given a security parameter n, generate public param-
eters pp = (G1,G2,Gt, q, g1, h1, g2) and a key pair (pk, sk) = (h2, x) for the

End-to-End Verifiable Quadratic Voting with Everlasting Privacy 321

PPATS encryption scheme. The key pair may be generated in a distributed
or threshold fashion by the Tally Tellers. We define the commitment key as
cpk = (g1, h1), taken from pp.

Initialization. Before the voting starts, a public bulletin board is initialized, the
public parameters and keys (pp, pk, cpk) are published there, together with the
initial budget of every voter b and the first election question.

We assume that b is a reasonably small value, e.g., b < 220, so that it will be
possible to run the PPATS decryption of sum of the payments made by all voters
in an election. If we have less than a million voters, then the total payment will
be less than 240. A discrete logarithm of this size can be extracted in less than
a second, e.g., using a baby-step giant-step algorithm. We define the bound for
our range proofs n = �log b�, that is, 20 in our example above.

Each voter publishes a commitment cb = Comcpk(b; rb) = gb1h
rb
1 on his budget

b together with a proof of validity of this commitment πb
op(cb), and saves the

opening rb.

3.2 Voting

Ballot Preparation. A voter who wishes to submit a vote of value v computes
two ciphertexts c = (d, c1, c2) ← Encpk(v) and ĉ = (d̂, ĉ1, ĉ2) ← Encpk(v2) and
proofs πva and π̂va of the validity of these ciphertexts.

The commitments d and d̂ derived from these ciphertexts and a proof πsq(d, d̂)
is computed in order to prove that the right payment is committed to. Eventually,
we need to make sure that v lies in a proper range, that is, in [−2n/2, 2n/2]. This
can be done by computing a proof π

n/2+1
r (dgn/2). Note that if only positive votes

are allowed the factor gn/2 is simply left out.
In the case of several vote questions we need to repeat this process for each

question.

Budget Update. The voter then updates his budget as cb := cb/d̂, and also
records the updated opening rb := rb − r̂d, where r̂d is the random exponent
that was used to compute d̂ = gv

2

1 hr̂d
1 .

He then produces a proof that this budget is still positive, which can be done
by computing a range proof π̂n

r (cb). For several vote questions we only need to
do this once after having updated the budget with the vote payments for each
question.

We may wonder why both proofs πr and π̂r are needed: the πb
op and π̂r proofs

show that the initial budget is less than 2n and that the payment v2 that is made
is less than b. However, the proof πsq only proves that v2 is a square of v in Zq.
As a result, v2 could actually be any quadratic residue modulo q, which opens
to many undesirable values thanks to modulo reduction. Showing in πr that v
is actually with the [−2n/2, 2n/2] range makes sure that no reduction happens
during the squaring.

Still, the square proof πsq conveniently handles the case of negative votes:
both roots of v2 are valid witnesses.

322 O. Pereira and P. B. Rønne

Ballot Preparation Audit. The ballot preparation system of the voters is expected
to provide a verification mechanism for this process. A traditional solution is to
use a so-called Benaloh challenge [4]: the ballot preparation system commits to
the voter on the value of these ciphertexts and proofs, e.g., by displaying a hash
of all these values. The voter can then decide to challenge the ballot preparation
system who then needs to release all the randomness that it used to prepare the
ballot, which allows verifying the commitment on an independent device.

Ballot Submission. When the voter finished to challenge his ballot preparation
device, he sends his vote (c, ĉ, πva, π̂va, πsq, πr, π̂r) to the Election Authority.

The Election Authority verifies πva and π̂va, then publishes the vote audit
data (DCom(c),DCom(ĉ), πsq, πr, π̂r) next to the name of the voter on the public
bulletin board. (Publishing the names makes it possible to verify who voted, e.g.,
by interrogating the voters, and removes the need to trust an Election Authority,
or any other entity, for voter authentication – even if such authentication can
remain useful to protect from ballot flooding).

The publication of DCom(ĉ) is accompanied by an update of the commitment
cb on the budget available for the voter, which is publicly recomputed as cb :=
cb/DCom(ĉ) and posted on the bulletin board.

3.3 Election Tally

Computing the Election Results. The PPATs ciphertexts are homomorphically
additive. So, multiplying the first series of PPATS cipehertexts, i.e., the c’s
together and decrypting the result yields the sum of the votes.

This decryption process can be made publicly verifiable without any addi-
tional proof: the authorities just need to publish the opening on the product of
the d commitments of all voters: correctness follows from the binding property
of the commitment scheme.

Budget Updates. The same homomorphic addition can be performed on the
second series of ciphertexts, i.e., the ĉ, which, after decryption, reveals the total
amount spent during the election. This amount is posted on the bulletin board,
together with an opening of the product of the d̂ commitments of the voters.

That amount can now be equally split among the voters as a sum bu per voter,
and all the budget commitments on the board are then updated as cb := cbg

bu
2 .

Voters can verify their updated budget, and keep making new proofs based on
it, as the update process does not change the randomness of cb, which the voter
knows.

End-to-End Verifiable Quadratic Voting with Everlasting Privacy 323

3.4 Election Audit

The various steps of the protocol can be verified in the natural way.

Parameter Generation and Initialization. The auditor verifies that pp have been
produced according to the expected security parameter, and possibly verify the
process of the generation of h1 (in order to avoid the risks of a trapdoor).

The auditor also verifies that the right budget has been announced, and that
the budget commitments cb posted by the voters come with valid proofs πb

op.

Vote Validity. The auditor then verifies the validity of the πsq and πr proofs
associated to each vote, and their uniqueness on the board. He verifies that each
vote is associated to a legitimate voter, and questions voters (whether they are
reported to have voted or not) to check that they agree with what is posted on
the bulletin board on their behalf.

Tally Validity. The auditor then computes the product of the d and d̂ commit-
ments in all the valid votes, and verifies that the Tally Tellers published a result
and total election payments that is an opening of these commitment products.

Budget Verification. The auditor recomputes the value of budget redistribution
bu and that all individual voter budgets have been updated accordingly.

3.5 Protocol Efficiency

Most of the computational cost of our protocol lies in two steps: ballot prepara-
tion, and election tally. The setup cost (key generation, initial budget commit-
ment) is essentially negligible (unless a large number of Tally Tellers is chosen,
but we expect it to be more in the range of 3–5).

We make a rough estimate of these costs, focusing on the cost of the expo-
nentiations in G1 and G2, and on the cost of multiplications when they come in
a potentially large number compared to the exponentiations, that is, during the
tally. We neglect the cost of computing hashes and of the arithmetic in Zq in the
NIZK proofs, which is expected to be smaller by a level of magnitude compared
to the cost of the exponentiations that these proofs contain.

Our estimate gives an idea of the order of magnitude of the timings and
of the practicality of our protocol. The exact performance will strongly depend
on the actual arithmetic and cryptographic libraries that are used, and on the
computing platform that is chosen.

Our timings are based on the benchmark of the PandA library of Chuengsa-
tiansup et al. [9], and on the execution of the protocol on a single core of a
2012 Intel i5-3210M processor running at 2.5 GHz. Their numbers are given in
number of CPU cycles, which we convert into time based on the processor clock
frequency.

Cost of Ballot Preparation. We consider a budget upper bound of 2n = 220 and a
single choice question (which is the typical application case of quadratic voting).
The operation count for the preparation of a ballot is available in Table 2. The
resulting timing, based on the performance in Table 1, is then less than 8.4 ms.

324 O. Pereira and P. B. Rønne

Table 1. Cost of the main group operations

G1 G2 GT

Fixed base exponentiation 51 µs 135 µs 244 µs

Single multiplication 2.4 µs 6.4 µs 3 µs

Table 2. Count of exponentiations for ballot preparation.

G1 G2

c 1 3

ĉ 1 3

πva 2 3

π̂va 2 3

πsq 3 0

πr 2n + 1 0

π̂r 4n + 1 0

πop 1 0

Total: 6n + 12 12

Cost of the Election Tally. The bulk of the cost of the election tally will come
from the verification of the validity of the individual ballots, which will be essen-
tially the same as the cost of producing all the NIZK proofs. The marginal cost
per ballot coming from the homomorphic addition of the votes and costs is indeed
negligible: 1 multiplication in G1 and 2 multiplications in G2, that is, around
15μs. The decryption operation has a cost that is constant and independent
of the number of voters and will then be negligible as soon as we have a few
thousand voters. The cost of the final discrete logarithm operation, needed to
obtain the actual number of votes and election budget, will be around

√
m2n

multiplications in GT using the baby-step giant-step algorithm in an election
with m ballots. If m = 220, we obtain a timing around 3 s.

4 Protocol Analysis

We briefly discuss the security properties of the quadratic voting protocol pre-
sented in last section, their main assumptions and give arguments why the prop-
erties are satisfied.

4.1 Protocol Correctness

The correctness of the protocol essentially follows from the additive homomor-
phic property of the PPATS encryption scheme and of Pedersen commitments.

As in traditional schemes based on homomorphic encryption, votes are
encrypted, but now with their value that can be any integer (provided that

End-to-End Verifiable Quadratic Voting with Everlasting Privacy 325

the corresponding payment can be made). Tally tellers homomorphically add
these votes and decrypt the election result.

The same happens with the encrypted quadratic payments. The balance of
each voter is then adjusted twice: once after submission of the vote, then after
redistribution of the election spending.

4.2 Ballot Privacy

The protocol offers computational privacy against the Election Authorities, pro-
vided that sufficiently many of them are honest (as defined by the threshold key
generation protocol). These authorities receive ballots that are encrypted with
a CPA secure encryption scheme, accompanied with various Σ-protocols that
prove, among other things, the knowledge of the vote content.

This combination of encryption and proof of knowledge has been shown
to lead to an NM-CPA non-malleable encryption scheme. This combination
is known to be sufficient to offer ballot privacy when duplicate ballots are
rejected [5].

Note that the amount of information revealed on the bulletin board is also
very minimal, that is, we only reveal the total votes for each candidate/question
and the total budget amount spent in the election.

4.3 Perfectly Private Audit Trail

The protocol offers a perfectly private audit trail, or everlasting privacy in front
of adversaries who can only access the election bulletin board. This follows from
the fact that the only information posted by voters on the board is perfectly
hiding commitments and perfect zero-knowledge proofs, and that the result of
the election is posted as a simple opening of a perfectly hiding commitment on
that result.

So, provided that the voters have access to good sources of randomness when
they prepare their vote, the content of the board is simply statistically indepen-
dent of each vote content.

Note that for usability, it might be better for the voters to hold only a single
long-term key that can generate openings to their budgets via a pseudorandom
generator, instead of having to update the key in each election. However, this
would endanger the everlasting privacy.

4.4 Verifiability

Cast-as-Intended Verifiability. The Benaloh challenge allows the voter to verify
that the ballot preparation system prepares ciphertexts that match the voter
intent.

326 O. Pereira and P. B. Rønne

Recorded-as-Cast Verifiability. The bulletin board, assumed honest, displays the
perfectly hiding part of the submitted ballot, which the voter can control to
be correct. If it is correct, then the voter is guaranteed that his vote cannot
be interpreted in an unexpected way, provided that the commitment scheme’s
binding property is not broken.

The Election Authorities are prevented from claiming that the vote is actually
invalid due to an issue in the non-published part, because they are required to
verify that validity (thanks to the corresponding πva proofs) before publishing a
ballot on the board. (Of course, authorities could also reject a valid ballot and
not publish it, arguing that the voter transmitted it incorrectly. But this is the
case of any verifiable remote voting scheme: the voter can only know that his
vote will be taken into account after his vote is included on the bulletin board.)

Eligibility Verifiability. The bulletin board includes the name of every voter next
to the ballot that it submitted. This is enough for an auditor to interrogate the
voters, ask them whether they submitted a ballot or not and, if they did, ask
them if it is accurately displayed on the bulletin board.

This mechanism protects form malicious authentication authorities who
would submit votes on behalf of potential voters who would not pay atten-
tion to the election. The use of an authentication mechanism of course remains
important in order to avoid that voters submit arbitrary ballots on behalf of
arbitrary voters, which would simply result in declaring the election invalid as
soon as it is observed.

Actually the eligibility verifiability is also strengthened by the extra budget
structure compared to ordinary PPAT voting schemes. In order to vote, and pay
for your vote, you need to hold an opening to your budget commitment. If a
voter has already voted in an earlier election, this prevents ballot stuffing on
their behalf. As an example, if the adversary somehow knows a voter will not
be paying attention to the bulletin board e.g. being without internet connection
for some time, then the adversary cannot abuse this and vote on his behalf. For
first time voters we can, however, not give such guarantees.

Budget Verifiability. The cb commitments and πb
op proofs make it possible for

anyone to observe that every voter received his correct initial budget.
The update of the voter budget is publicly performed, using the spending

amount DCom(ĉ) committed to as part of the ballot. The proof π̂r makes it
possible to verify that the spending is within the correct range, and the proof
πr ensures that the actually paid amount is the square value of the vote, seen as
integers, as mentioned in last section.

Tallied-as-Recorded Verifiability. After verification of the ballots that need to be
included in the tally, any auditor can multiply the vote commitments DCom(c)
together and obtain a commitment on the election result. The Tally Tellers
are able to open that commitment thanks to the openings that they received
for each individual vote. The finding of any different opening would break the
computational binding property of the commitment scheme, which relies on the
DDH assumption.

End-to-End Verifiable Quadratic Voting with Everlasting Privacy 327

Budget Update Verifiability. The opening of the total spending in an election can
be verified just as the vote tally. From this, the voter refund can be recomputed,
and the updated commitments of every voter budget cb can also be recomputed.

5 Conclusion and Outlook

In this paper we have presented an efficient protocol for electronic quadratic
voting with everlasting privacy and end-to-end verifiability. The protocol uses
perfectly hiding commitments for both vote choices and budgets to create a
perfectly private audit trail. The constructions also facilitates easy threshold
sharing of the secret election. In total, we have improved many aspects of the
earlier protocol suggested in [17].

As it stands we don’t allow transfer between different voters’ budgets. This
could easily be changed, but we think that both the everlasting privacy, universal
verifiability and non-coupling to real currencies is an advantage over solutions
using anonymous cryptocurrencies such as Zerocash. Note that allowing budget
transfers also opens up to strategic voting since it would be more favorable to
have equal-sized budgets when voting [17].

An improvement of the scheme would be to achieve receipt-freeness. In the
present scheme, the commitments and corresponding openings could be used
directly to prove to a vote-buyer that you voted according to his instructions.
It is an important piece of future work to improve on this situation. If we allow
budget transfers, it would maybe also impede strategic voting since you cannot
get proof that the budget you give away will be used according to your prefer-
ence. Note that whereas the receipt-freeness of the vote choice can follow similar
ideas in other e-voting schemes, the budget is less straight-forward since in our
construction we hold a key to unlock the budget. Especially to prevent forced-
abstention attacks, it will be necessary to hide the budget from the coercer.

Acknowledgements. The authors acknowledge support from the Luxembourg
National Research Fund (FNR) and Belgium Fonds de la Recherche Scientifique for
the joint FNR/F.R.S.-FNRS project SeVoTe. PBR also acknowledges the FNR INTER
project VoteVerif. This work has also been funded in part by the European Union (EU)
and the Walloon Region through the FEDER project USERMedia (convention number
501907-379156).

References

1. Adida, B., De Marneffe, O., Pereira, O., Quisquater, J.-J.: Electing a university
president using open-audit voting: analysis of real-world use of Helios. In: Pro-
ceedings of the 2009 Conference on Electronic Voting Technology/Workshop on
Trustworthy Elections, EVT/WOTE 2009, Berkeley, CA, USA, p. 10. USENIX
Association (2009)

2. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006). https://doi.org/10.1007/11693383 22

https://doi.org/10.1007/11693383_22

328 O. Pereira and P. B. Rønne

3. Bellare, M., Goldwasser, S.: Verifiable partial key escrow. In: Proceedings of the
4th ACM Conference on Computer and Communications Security, pp. 78–91. ACM
(1997)

4. Benaloh, J.: Ballot casting assurance via voter-initiated poll station auditing.
In: USENIX/ACCURATE Electronic Voting Technology Workshop, EVT 2007.
USENIX Association (2007)

5. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: pitfalls of
the fiat-shamir heuristic and applications to Helios. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 626–643. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4 38

6. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-30576-7 18

7. Camenisch, J.: Group signature schemes and payment systems based on the dis-
crete logarithm problem. PhD thesis, ETH Zurich (1998)

8. Chandar, B., Weyl, E.G.: Quadratic voting in finite populations (2017)
9. Chuengsatiansup, C., Naehrig, M., Ribarski, P., Schwabe, P.: PandA: pairings and

arithmetic. In: Cao, Z., Zhang, F. (eds.) Pairing 2013. LNCS, vol. 8365, pp. 229–
250. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04873-4 14

10. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

11. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 103–118. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
69053-0 9

12. Cuvelier, É., Pereira, O., Peters, T.: Election verifiability or ballot privacy: do we
need to choose? In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013.
LNCS, vol. 8134, pp. 481–498. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40203-6 27

13. Damg̊ard, I.: On sigma protocols (2010). http://www.daimi.au.dk/∼ivan/Sigma.
pdf

14. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

15. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key genera-
tion for discrete-log based cryptosystems. J. Cryptol. 20(1), 51–83 (2007)

16. Lalley, S.P., Weyl, E.G.: Nash equilibria for a quadratic voting game. CoRR,
abs/1409.0264 (2014)

17. Park, S., Rivest, R.L.: Towards secure quadratic voting. Public Choice 172(1–2),
151–175 (2017). https://eprint.iacr.org/2016/400

18. Pedersen, T.P.: A threshold cryptosystem without a trusted party. In: Davies,
D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg
(1991). https://doi.org/10.1007/3-540-46416-6 47

19. Quarfoot, D., von Kohorn, D., Slavin, K., Sutherland, R., Goldstein, D., Konar,
E.: Quadratic voting in the wild: real people, real votes. Public Choice 172(1),
283–303 (2017). https://doi.org/10.1007/s11127-017-0416-1

20. Sasson, E.B., et al.: Decentralized anonymous payments from Bitcoin. In: Proceed-
ings of the 2014 IEEE Symposium on Security and Privacy, SP 2014, Washington,
DC, USA, pp. 459–474. IEEE Computer Society (2014)

https://doi.org/10.1007/978-3-642-34961-4_38
https://doi.org/10.1007/978-3-540-30576-7_18
https://doi.org/10.1007/978-3-319-04873-4_14
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-69053-0_9
https://doi.org/10.1007/3-540-69053-0_9
https://doi.org/10.1007/978-3-642-40203-6_27
https://doi.org/10.1007/978-3-642-40203-6_27
http://www.daimi.au.dk/~ivan/Sigma.pdf
http://www.daimi.au.dk/~ivan/Sigma.pdf
https://doi.org/10.1007/3-540-47721-7_12
https://eprint.iacr.org/2016/400
https://doi.org/10.1007/3-540-46416-6_47
https://doi.org/10.1007/s11127-017-0416-1

End-to-End Verifiable Quadratic Voting with Everlasting Privacy 329

21. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

22. Wikström, D.: Simplified submission of inputs to protocols. In: Ostrovsky, R., De
Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 293–308. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85855-3 20

https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/978-3-540-85855-3_20

Lattice-Based Proof of a Shuffle

Nuria Costa1, Ramiro Mart́ınez2(B), and Paz Morillo2

1 Scytl Secure Electronic Voting, Barcelona, Spain
nuria.costa@scytl.com

2 Universitat Politècnica de Catalunya, Barcelona, Spain
{ramiro.martinez,paz.morillo}@upc.edu

Abstract. In this paper we present the first fully post-quantum proof of
a shuffle for RLWE encryption schemes. Shuffles are commonly used to
construct mixing networks (mix-nets), a key element to ensure anonymity
in many applications such as electronic voting systems. They should pre-
serve anonymity even against an attack using quantum computers in
order to guarantee long-term privacy. The proof presented in this paper
is built over RLWE commitments which are perfectly binding and com-
putationally hiding under the RLWE assumption, thus achieving security
in a post-quantum scenario. Furthermore we provide a new definition for
a secure mixing node (mix-node) and prove that our construction satis-
fies this definition.

Keywords: Mix-nets · E-voting · Post-quantum · RLWE encryption ·
RLWE commitment · Proof of a shuffle

1 Introduction

In the last years, several countries have been introducing electronic voting sys-
tems to improve their democratic processes, in particular, they provide voters
with the chance to cast their votes from anywhere. Anonymity and verifiabil-
ity are two fundamental requirements for internet voting systems that seem to
be contradictory. Anonymity requires that the link between the vote and the
voter who has cast it must remain secret during the whole process, while veri-
fiability requires that all the steps of the electoral process - vote casting, vote
storage and vote counting - can be checked by the voters, the auditors or exter-
nal observers. One of the resources used by the actual internet voting systems to
achieve anonymity are mixing networks (mix-nets). Informally we can define a
mix-net as a multiparty protocol that, given a number of encrypted messages at
the input, performs a permutation over them followed by a cryptographic trans-
formation using a re-encryption and/or a decryption algorithm. This operation
is called a shuffle [9] and it is done in such a way that the correlation between
the input and the output of the process is hidden, and it is not possible to trace
it back. The proof of the shuffle guarantees that the ciphertexts at the output of
the mix-net are those at its input permuted and re-encrypted/decrypted, with-
out revealing any secret information. One way to construct a mix-net is to define
c© International Financial Cryptography Association 2020
A. Bracciali et al. (Eds.): FC 2019 Workshops, LNCS 11599, pp. 330–346, 2020.
https://doi.org/10.1007/978-3-030-43725-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43725-1_23&domain=pdf
https://doi.org/10.1007/978-3-030-43725-1_23

Lattice-Based Proof of a Shuffle 331

several mixing nodes (mix-nodes) each one performing in turns this operation.
It is clear that if at least one of the nodes is honest, unlinkability is preserved.

On the other hand, in order to build verifiable systems one key instrument is
the Bulletin Board: a public place where all the audit information of the election
(encrypted votes, election configuration, proof of a shuffle, . . .) is published by
authorized parties and can be verified by anyone: voters, auditors or third parties.
However, once published in the Bulletin Board anyone can save a copy, and
long-term privacy may not be ensured by encryption algorithms used nowadays,
for example due to the efficient quantum algorithm given by Shor [29] that
breaks computational problems such as the discrete logarithm (DL) or the integer
factorization problems. Learning how a person voted some years ago may have
political, as well as personal implications.

Some cryptosystems have appeared in the last years that are believed to
be secure against quantum attacks: hash-based, code-based, lattice-based or
multivariate-quadratic-equations. Lattice-based cryptography is a great promise
to get cryptosystems that will remain secure in the post-quantum era [23]. These
ones enjoy strong security guarantees from worst-case hardness, meaning that
breaking their security implies finding an efficient algorithm for solving any
instance of the underlying lattice problem, e.g., the Shortest Vector Problem
(SVP) or the Closest Vector Problem (CVP). Furthermore, these constructions
mainly involve linear operations such as matrix and vector sum or multiplica-
tion modulo relatively small integers, which make them highly parallelizable and
consequently faster in certain contexts. Given the interest aroused by this type
of cryptography, several lattice-based protocols have been proposed like public
key encryption schemes, digital signatures schemes, hash functions, identity-
based encryption schemes or Zero-Knowledge Proofs of Knowledge (ZKPoK).
Our contribution increases the literature of the latter, providing a fully lattice-
based proof of a shuffle that will remain secure in a post-quantum scenario.

To the best of our knowledge there are two proposed e-voting schemes [10,15]
that are constructed using lattices. They both follow an alternative approach
without shuffling, making use of the homomorphic property of their encryption
schemes to compute the tally. However mix-net based schemes are more flexible
and provide a better support for complex electoral processes.

On the other hand [11] and [31] give proofs of a shuffle for lattice-based cryp-
tography. The first requires Pedersen commitments (based on the DL problem).
The latter requires a Fully Homomorphic Encryption scheme, and works with
any homomorphic commitment scheme, that is, using the lattice-based commit-
ment scheme presented in [4] their proof is fully post-quantum.

We propose a proof of a shuffle that is fully constructed over lattice-based
cryptography and the first for RLWE encryption schemes, which makes it secure
in a post-quantum scenario. The proof uses a commitment scheme which is
perfectly binding and computationally hiding under the Learning With Errors
over Rings (RLWE) assumption. This lattice computational problem has been
shown to be as hard as certain worst-case problems in ideal lattices (such as
SVP and CVP in ideal lattices) and thus resistant to quantum attacks. We also

332 N. Costa et al.

provide a formal definition for security of a mix-node and prove security of our
proposal using the sequence of games approach.

1.1 Previous Work

After the introduction of the idea of a shuffle by Chaum in 1981 [9], several
schemes have been proposed. The first universally verifiable mix-net is presented
in [28] and gives a proof to check the correctness of the shuffle. Later, several
solutions for an efficient universally verifiable mix-net are proposed [1–3,22] and
in [17] Furukawa and Sako suggest a paradigm based on permutation matrices
in the common reference string model (CRS) for proving the correctness of a
shuffle, that was improved in [16,20]. The latest proposal for a CRS based proof
of a shuffle is [8] by Bünz et al. Wikström also uses this idea of the permutation
matrix and presents in [36] a proof of a shuffle that can be split in an offline and
online phase in order to reduce the computational complexity in the online part.

On the other hand, Neff [24] proposes another paradigm based on polynomials
being identical under permutation of their roots, obtaining Honest Verifier Zero-
Knowledge (HVZK) proof and improved later in [18,25] with the drawback that
these constructions are 7-move proofs. Unlike previous proposals, Groth and
Ishai [19] and Bayer and Groth [6] give a practical shuffle argument with sub-
linear communication complexity.

The proof of a shuffle presented in this paper requires lattice-based ZKPoK to
prove that some hidden elements have small norm and also that several commit-
ted elements satisfy a polynomial relation. As these proofs are generally costly
we are going to use amortized protocols to reduce the communication cost. The
first amortized protocol is presented in [12] by Cramer et al., it is improved first
by del Pino and Lyubashevsky [14] and later by Baum and Lyubashevsky in [5].

Recently, Costa et al. [11] have presented a proof of a shuffle based on lat-
tices but it cannot be considered fully post-quantum since they use Pedersen
commitments, whose binding property relies on the DL problem. Moreover in
[11] there is no formal definition of security, necessary to precisely know how it
can be embedded in a larger construction. Strand [31] presents a verifiable shuf-
fle for the GSW cryptosystem using homomorphic commitment schemes. Using
the lattice-based commitment scheme [4] makes the proof fully post-quantum.
Additionally, there have been some proposals for a lattice-based universal re-
encryption for mix-nets [30] but none of them give a proof of a shuffle.

In [35] Wikström provides a definition of security for a single re-encryption
mix-node. It is important to note that as Wikström remarks this is not enough
to completely ensure privacy since a definition of security of a complete mix-net
must involve several other aspects, regarding validity of the input messages or
decryption proofs.

1.2 Our Contribution

We propose a proof of a shuffle fully constructed over lattices. It is based on the
technique introduced by Bayer and Groth in [6] to construct a shuffle argument;

Lattice-Based Proof of a Shuffle 333

nevertheless it is not a direct adaptation of it since working with lattices requires
different techniques to be applied.

The first step of the proof, that is also the first difference with [6], consists on
committing the re-encryption parameters in order to demonstrate that they meet
certain constraints. This is done using the commitment scheme and the ZKPoK
proposed by Benhamouda et al. [7] which are perfectly binding and computa-
tionally hiding under the RLWE assumption and satisfy special soundness and
special HVZK. The next step consists on proving knowledge of the permutation.
The general idea here is to prove that two sets contain the same elements. This is
done by computing two polynomials, each of them having as roots the elements
of each set, and proving that both polynomials are equal.

The last step will prove knowledge of the re-encryption parameters, and
this introduces another difference between Bayer and Groth’s protocol and ours.
While they demonstrate that there exists a linear combination of the parameters
such that an equality holds, we have to use a different technique, since the
re-encryption parameters in a RLWE re-encryption scheme are taken from an
error distribution and a linear combination of them would imply the error grows
uncontrollably, causing decryption errors.

Finally, we give a definition of security, based on the one proposed by Wik-
ström in [35], and we provide a proof of security for our mix-node. His proposal
implies that no adversary can properly compute two indices for the input and
the output respectively such that the messages encrypted in the correspond-
ing ciphertexts are the same, except with a probability negligibly close to the
probability given by a random guess. In his definition the adversary might have
some knowledge of correlations between the input messages. We provide a def-
inition of security allowing the adversary to have full control over the input of
the mix-node, and we prove that our construction meets this definition.

Organization of the Paper. In Sect. 2 we introduce some notation and give
some cryptographic background necessary to understand the proof presented in
Sect. 4. In Sect. 3 we describe the computational problem on which the security of
our scheme is based and we also give a description of a RLWE-based commitment
scheme. Finally in Sect. 4 we present our fully post-quantum proof of a shuffle
and the results about the security of the mix-node. We briefly conclude in Sect. 5.

2 Preliminaries

We denote column vectors by boldface lower-case roman letters, v or w. Matrices
are represented by boldface upper-case roman letters, M or A. Given two vectors
v,w ∈ Z

N
q , we define the standard inner product in Z

N
q as 〈v,w〉 =

∑N
i=1 viwi,

the l∞ norm as ‖v‖∞ = max1≤i≤N |vi| and the general norm lp as ‖v‖p =
(
∑N

i=1 |vi|p)1/p for p ≥ 1.
We let �x� denote the largest integer not greater than x, and �x	 := �x+1/2�

denote the integer closest to x, with ties broken upward.
We write a

$←− A when a is sampled uniformly at random from a set A, and
a

$←− D if it is drawn according to the distribution D.

334 N. Costa et al.

Finally, in order to avoid confusions we are going to identify the ciphertexts’
elements with the subscript E, and those corresponding to the commitments
with subscript C. When working with lattices we are going to follow the notation
proposed in [21].

The ZKPoK between a prover P and a verifier V constructed in this paper
satisfies the properties of completeness, special soundness and special HVZK as
they are defined in [13]. We will use them to prove knowledge of valid openings
of commitments that satisfy several polynomial relations.

2.1 Generalized Schwartz–Zippel Lemma

The proof of a shuffle presented in this paper uses a generalized version of the
Schwartz-Zippel lemma to prove polynomial equalities. This lemma works in gen-
eral commutative rings that are not necessarily integral domains. Unlike Bayer
and Groth we need the generalized version since we work with polynomials whose
coefficients belong to another ring of polynomials.

Lemma 1. Let p ∈ R[x1, x2, . . . , xn] be a non-zero polynomial of total degree
d ≥ 0 over a commutative ring R. Let S be a finite subset of R such that none of
the differences between two elements of S is a divisor of 0 and let r1, r2, . . . , rn

be selected at random independently and uniformly from S. Then:
Pr[p(r1, r2, . . . , rn) = 0] ≤ d

|S| .

We will use this lemma to prove that two polynomials, p1 and p2, are equal
with overwhelming probability if p1(r1, r2, . . . , rn) − p2(r1, r2, . . . , rn) = 0 for

r1, r2, . . . , rn
$←− S. The proof of this generalization directly follows from the

original proof of the lemma. We have included it in a full version of this paper
for the reader interested on it.

3 Ideal Lattices

A lattice is a set of points in an n-dimensional space with a periodic structure. We
are going to work with ideal lattices that have some extra algebraic structure
and introduce some redundancy allowing a more compact representation and
thus reducing significantly the storage space. We refer the interested reader to
[26] for a survey on lattices.

Let Rq = Zq[x]/〈f(x)〉 be the ring of polynomials modulo f(x) = xn + 1 for
n a power of 2, which makes the polynomial irreducible over the rationals. The
ideal lattice L(a) generated by a(x) = a1 + a2x+ . . .+ anxn−1 ∈ Rq is the set of
polynomials v(x) obtained as v(x) = a(x) · p(x) mod xn + 1, where p(x) ∈ Rq.

There is currently no known way to take a significant advantage of this
extra structure introduced in this class of ideal lattices, and the running time
required to solve lattice problems on such lattices is comparable to that for
general lattices.

Lattice-Based Proof of a Shuffle 335

3.1 RLWE Problem

The security of lattice-based cryptosystems relies on the hardness of solving some
computational problems on lattices, such as the Learning With Errors (LWE).

Lyubashevsky et al. [21] introduced in 2010 the ideal lattice based variant of
LWE, called Ring Learning With Errors (RLWE). This was motivated by the
necessity of constructing efficient LWE-based cryptosystems.

Definition 1 (RLWE Distribution). For a secret s ∈ Rq, the RLWE dis-
tribution As,χ over Rq × Rq is sampled choosing a ∈ Rq uniformly at random,

e
$←− χn (that is, e ∈ Rq with its coefficients drawn from χ), and outputting

samples of the form (a, b = a · s + e mod q) ∈ Rq × Rq.

Analogously to LWE [27], the goal will be either to distinguish random linear
equations, perturbed by a small amount of noise, from truly uniform pairs, or
recover the secret s ∈ Rq from arbitrarily many noisy products. Usually the error
distribution χ is a discrete Gaussian distribution on Z, that is χ = Dσ, where σ
is the standard deviation.

Hardness of RLWE . Certain instantiations of RLWE are supported by worst-
case hardness theorems [21], related to the Shortest Vector Problem (SVP). For
the error distribution χ where σ ≥ ω(

√
log n), and for any ring, there exist a

quantum reduction from the γ(n)-SVP problem to the RLWE problem to within
γ(n) = O(

√
n · q/σ). Additionally, RLWE becomes no easier to solve even if the

secret s is chosen from the error distribution, rather than uniformly [21].

3.2 RLWE Encryption Scheme

The additive homomorphic RLWE encryption scheme proposed in [21] consists
of three algorithms (KeyGenE, Encrypt, Decrypt) defined below. We denote the
security parameter as κ.

– KeyGenE(1κ): Given a uniformly random aE ∈ Rq and two small elements
s, e ∈ Rq drawn from the error distribution χn, the public key is an RLWE
sample (aE, bE) = (aE, aE · s + e) ∈ Rq × Rq and the secret key is s.

– Encrypt((aE, bE), rE, eE,u, eE,v, z): Given three random small elements rE, eE,u,
eE,v ∈ Rq drawn from the error distribution χn, the encryption of an n-bit
message z ∈ {0, 1}n (identified as a polynomial of degree n−1 with coefficients
0 or 1) is (u, v) = (aE · rE + eE,u, bE · rE + eE,v + � q

2	z) ∈ Rq × Rq.
– Decrypt(s,(u,v)): Given the secret key and the ciphertext this algorithm com-

putes: v − u · s = (rE · e − s · eE,u + eE,v) + � q
2	z mod q. Then recovers each

bit of z by rounding each coefficient to 0 or � q
2	.

Correctness. Notice that in case of lack of error the decryption would always
be correct since the algorithm will return directly 0 or � q

2	 depending on the
encrypted bit. Given that, a decryption error will occur if the coefficients of
(rE · e − s · eE,u + eE,v) have magnitude greater than q/4.

336 N. Costa et al.

As the messages encrypted using this scheme will pass through a mixing
process we will need to also re-encrypt them. Due to the homomorphic property
of the scheme we can compute the re-encryption just adding to the original
ciphertext the encryption of the element 0.

– Re-encrypt((u, v), (aE, bE), r′
E, e

′
E,u, e′

E,v): Given the small elements r′
E, e

′
E,u,

e′
E,v drawn from the error distribution χn, the re-encryption of a ciphertext

(u, v) is (u′, v′) = (u, v) + Encrypt((aE, bE), r′
E, e

′
E,u, e′

E,v, 0) ∈ Rq × Rq.

Security. RLWE encryption scheme and consequently the RLWE re-encryption
scheme are semantically secure based on the RLWE assumption. It is demon-
strated that if there exists a polynomial-time algorithm that distinguishes
between two encryptions then there exists another algorithm able to distinguish
between As,χ and a uniformly random distribution over Rq for a non-negligible
fraction of all possible s. Notice that, even though these schemes do not achieve
circuit privacy, the secrecy of the shuffle is not affected since the randomness
used during the encryption and re-encryption procedures is never revealed. In
order to demonstrate that the random values are of the right form, that is, that
they are small enough, we use zero-knowledge proofs.

3.3 Commitments from RLWE

The commitment scheme used to build our proof of a shuffle is that described
by Benhamouda et al. in [7] and consists of the following three algorithms:

– KeyGenC(1κ): given as input the security parameter κ (we omit the details
about κ here and we refer the reader to [7]) this algorithm generates the

public commitment key pkC = (aC, bC) where aC, bC
$←− (Rq)

k, q ≡ 3 mod 8
is prime and n is a power of 2.

– Com: in order to commit to a message m ∈ Rq, the algorithm chooses rC
$←− Rq

and eC
$←− Dk

σe
conditioned on ‖eC‖∞ ≤ n and computes:

c = ComaC,bC
(m; rC,eC) = aCm + bCrC + eC

The opening of the commitments is defined as (m, rC,eC, 1).
– Ver: given (c,m′, r′

C,e′
C, f ′) the verification algorithm accepts if and only if:

aCm′ + bCr′
C + f ′−1e′

C = c ∧ ‖e′
C‖∞ ≤

⌊
n4/3

2

⌋

∧ ‖f ′‖∞ ≤ 1 ∧ degf ′ ≤ n

2

This commitment scheme satisfies the security requirements of correctness, per-
fectly binding and computational hiding as they are explained in [7].

The main reason for us to choose this commitment scheme is that [7] gives
efficient ZKPoK to prove knowledge of an opening of a given commitment or
to prove that the messages inside some commitments satisfy any polynomial
relation.

Lattice-Based Proof of a Shuffle 337

4 Proof of a Shuffle for RLWE Encryptions

The existing published proposal for a universally verifiable proof of a shuffle for
RLWE encryptions [11] based on [32], uses Generalized Pedersen commitments
to hide the secret re-randomization elements. This would not be sound in a
post-quantum scenario, as it is based on DL assumptions.

Naively replacing the commitment scheme with the one proposed by
Benhamouda et al. yields several difficulties since it is useful when committing
to polynomials, but is quite inefficient if we only want to commit to a bit, as is
the case with the entries of a permutation matrix. The fact that Zq [x] / 〈xn + 1〉
is not an integral domain also has some implications for the characterization of a
permutation matrix proposed in [32], that cannot be proven directly and would
require additional statements different from the ones discussed in [11].

In this section we construct a post-quantum verifiable mix-node following
the paradigm given by Bayer and Groth in [6]. Once again, replacing Pedersen
commitments with the ones proposed by Benhamouda et al. is not immediate.

We first show an overview of the shuffling protocol, then we present our proof
of a shuffle and give details regarding the ZKPoK involved in the construction
of the main proof and finally we prove that our mix-node is secure based on a
new formal definition of security, stronger than that given in [35].

Proofs of a shuffle commonly require universal verifiability, meaning that
a proof must be generated and also published, so it can be verified by any
observer. Classically, this kind of interactive protocols can be transformed into
non-interactive protocols by means of the Fiat-Shamir heuristics, replacing the
random responses from the verifier with a hash of the previous elements in the
conversation, achieving a protocol secure in the Random Oracle Model (ROM).

However, as it is exposed in [34], this method is not secure anymore in the
Quantum Random Oracle Model (QROM). As far as we know the only quantum
secure general transformation from an interactive protocol to a non-interactive
version is the one described by [33]. Therefore, a universally verifiable version of
our protocol requires further considerations.

4.1 Protocol Overview

Given a permutation π and a set of re-encryption parameters
{

r
′(i)
E , e

′(i)
E,u, e

′(i)
E,v

}

for each one of the messages, the shuffling of N RLWE encryptions is defined as
(
u′(i), v′(i)) = Re-encrypt

((
uπ(i), vπ(i)

)
, r

′(i)
E , e

′(i)
E,u, e

′(i)
E,v

)
.

A mix-node will perform the shuffling over the input ciphertexts and will gen-
erate a proof of a shuffle, see (1), to demonstrate that it knows the permutation
π and the random elements r

′(i)
E , e

′(i)
E,u, e

′(i)
E,v , without revealing any information

about them.
This proof will be published so everybody is convinced that the ciphertexts

have been permuted and re-encrypted without modifying the encrypted plain-
texts (even if some of the nodes are dishonest and leak the permutation).

338 N. Costa et al.

The first step of the protocol will be to commit to the encryptions of 0 used to
compute the RLWE re-encryptions and a ZKPoK of the resulting commitments
containing valid encryptions of 0. Additionally, it will also be demonstrated that
the small polynomials r′

E, e
′
E,u, e′

E,v used to compute the re-encryptions have an
infinity norm that is bounded by some parameter δ � q/4.

ZKPoK

⎡

⎢
⎢
⎢
⎢
⎣

π
{

r
′(i)
E , e

′(i)
E,u, e

′(i)
E,v

}N

i=1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(
u′(i), v′(i)) =

Re-encrypt
((

uπ(i), vπ(i)
)
, r

′(i)
E , e

′(i)
E,u, e

′(i)
E,v

)

∥
∥
∥r

′(i)
E

∥
∥
∥

∞
,
∥
∥
∥e

′(i)
E,u

∥
∥
∥

∞
,
∥
∥
∥e

′(i)
E,v

∥
∥
∥

∞
≤ δ

⎤

⎥
⎥
⎥
⎥
⎦

(1)
As it is explained in [7] for a suitable δ even if this additional restriction on

the re-encryption parameters norm is applied, the re-encryptions remain pseu-
dorandom, as the two probability distributions are statistically close. The last
part of the protocol consists on proving that two sets contain the same elements:

{(
u′(i), v′(i)

)
−

(
aEr

′(i)
E + e

′(i)
E,u, bEr

′(i)
E + e

′(i)
E,v

)}N

i=1
=

{(
u(i), v(i)

)}N

i=1

This is done following the strategy proposed by Bayer and Groth in [6], that
consists on building two polynomials, each of them having as roots the elements
of each of the sets and then prove that both polynomials are equal. To convince
a verifier that two polynomials are equal the prover evaluates them in a random
point chosen by the verifier and uses the generalized version of Schwartz-Zippel
lemma (Lemma 1). Our polynomials will be evaluated and have coefficients in
Rq, that is, we will work in Rq [A] and the variable A takes values on Rq.

We define the mixing protocol using the following algorithms:

– Setup(1κ): generate parameters (n, q, σ) and run the following algorithms:
• KeyGenE(1κ) to obtain the public and the private key of the RLWE

encryption scheme: (aE, bE) ∈ Rq × Rq and s ∈ Rq.

• KeyGenC(1κ) to generate the public commitment key: aC, bC
$←− (Rq)

k.
Output {{(aE, bE), s}, (aC, bC)}

– MixVotes(pkE, pkC, {(u(i), v(i))}N
i=1): taking as input a list of N encrypted mes-

sages {(u(i), v(i))}N
i=1 compute the shuffling of these RLWE encryptions. Gen-

erate commitments and ZKPoK (we denote by ZKi its corresponding proto-
cols and by Σi the proofs they output) as it is explained in Sect. 4.2 in order
to demonstrate the correctness of the process. We can explicitly state the
permutation and/or random elements to be used writing MixVotes(pkE, pkC,

{(u(i), v(i))}N
i=1;π, {r

′(i)
E , e

′(i)
E,u, e

′(i)
E,v}N

i=1).

Output
(
{(u′(i), v′(i))}N

i=1, {(c
u
(i)
0

, c
v
(i)
0

, cπ(i), cαπ(i))}N
i=1, Σ1, Σ2, Σ3, Σ4

)
.

We denote Σ0 = {c
u
(i)
0

, c
v
(i)
0

, cπ(i), cαπ(i))}N
i=1 to unify the notation of the

output of MixVotes.

Lattice-Based Proof of a Shuffle 339

– VerifyMix(pkE, pkC, {(u(i), v(i))}N
i=1, {(u′(i), v′(i))}N

i=1, {Σl}4l=0): given an input
and an output of the mixing process and the ZKPoK generated, this algorithm
outputs 1 if the proofs are valid and 0 otherwise.

4.2 Proof of a Shuffle

In this subsection we present the proposed proof (see Protocol 1.1) and explain
in detail how it can be used as a proof of a shuffle.

Notice that each mix-node runs the algorithm MixVotes and acts as a prover.
He first commits to N encryptions of zero. Each commitment (c

u
(i)
0

, c
v
(i)
0

) is:
(
aC

(
aEr

′(i)
E + e

′(i)
E,u

)
+ bCr

(i)
C,u + e

(i)
C,u,aC

(
bEr

′(i)
E + e

′(i)
E,v

)
+ bCr

(i)
C,v + e

(i)
C,v

)

That is, the commitment is a linear combination of the polynomials, with
the additional condition of r

′(i)
E , e

′(i)
E,u, e

′(i)
E,v ,e

(i)
C,u,e

(i)
C,v having small norm.

Then, P sends the commitments to the verifier and proves using the amor-
tized proof of knowledge of secret small elements [14] that the public commit-
ments are indeed commitments to encryptions of zero.

As the relation is always the same we will use the amortized proposal by
del Pino and Lyubashevsky [14], which is a direct improvement of the proposal
by Cramer et al. [12]. For a linear function f , a small vector x and its image
y = f(x) we can prove knowledge of a small vector x′ such that f(x′) = y. As
it is usual in this kind of proofs there is a gap τ between the upper bound of
the norm we use for witness x and the upper bound we get for the extracted x′.
This has to be taken into account when determining specific parameters so that
this possible error multiplied by the number of mix-nodes does not exceed the
bounds allowed for a correct decryption. We refer the reader to [14] for details,
as we directly use their protocol as a building block for the ZKPoK of linear
relations in ZK1 (Protocol 1.1).

In order to commit to a permutation, P starts committing to π(1), . . . , π(N)
in cπ(i) and receives a polynomial α chosen uniformly at random from the subset:

S = {p(x) ∈ Rq | deg p(x) < n/2}
Observe that the subset S meets the required conditions for Lemma 1, as

all differences of two different elements in S are invertible. This is true as the
condition q ≡ 3 mod 8 required for the Benhamouda et al. commitment scheme
implies that xn + 1 splits into two irreducible polynomials of size exactly n/2.
Then all polynomials of degree smaller that n/2 have an inverse that can be
computed using the Chinese Remainder Theorem.

P commits to each power απ(i) in commitments cαπ(i) and publishes them.
P receives two more random polynomials β, γ

$←− S. Using the Σ-protocols from
[7] that allow him to prove polynomial relations between committed messages, P
proves that he knows openings mi, m̂i to commitments cπ(i), cαπ(i) that satisfy
the following relation (ZK2 in Protocol 1.1).

∏N
i=1

(
βi + αi − γ

)
=

∏N
i=1 (βmi + m̂i − γ) (2)

340 N. Costa et al.

Protocol 1.1. Proof of a shuffle

P
(
u(i), v(i), u′(i), v′(i); π, r

′(i)
E , e

′(i)
E,u, e

′(i)
E,v

)
V

(
u(i), v(i), u′(i), v′(i)

)

∀i ∈ [1, . . . , N]

c
u
(i)
0

= Com
(
aEr

′(i)
E + e

′(i)
E,u

)

c
v
(i)
0

= Com
(
bEr

′(i)
E + e

′(i)
E,v

)

c
u
(i)
0

, c
v
(i)
0−−−−−−−−−−−→

ZKPoK

⎡
⎢⎢⎢⎢⎢⎢⎣

r
′(i)
E , e

′(i)
E,u, e

′(i)
E,v

r
(i)
C,u, e

(i)
C,u, r

(i)
C,v, e

(i)
C,v

∣∣∣∣∣∣∣∣∣∣∣∣

c
u
(i)
0

= aC

(
aEr

′(i)
E + e

′(i)
E,u

)
+ bCr

(i)
C,u + e

(i)
C,u

c
v
(i)
0

= aC

(
bEr

′(i)
E + e

′(i)
E,v

)
+ bCr

(i)
C,v + e

(i)
C,v

∥∥∥r
′(i)
E

∥∥∥
∞

,
∥∥∥e

′(i)
E,∗

∥∥∥
∞

≤ τδ,
∥∥∥e(i)

C,∗
∥∥∥

∞
≤ τδ′

⎤
⎥⎥⎥⎥⎥⎥⎦

(ZK1)

∀i ∈ [1, . . . , N]

cπ(i) = Com(π(i))
cπ(i)−−−−−−−−−−−→

α
$←− S

α←−−−−−−−−−−−
∀i ∈ [1, . . . , N]

cαπ(i) = Com
(
απ(i)

)

cαπ(i)−−−−−−−−−−−→
β, γ

$←− S
β, γ←−−−−−−−−−−−

ZKPoK

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

mi, ri, eC,i, fi

m̂i, r̂i, êC,i, f̂i

∣∣∣∣∣∣∣∣∣∣∣∣∣

(
N∏

i=1

(
βi + αi − γ

)
=

N∏
i=1

(βmi + m̂i − γ)

)
,

N∧
i=1

(
Ver(cπ(i); mi, ri, eC,i, fi) = accept

)
,

N∧
i=1

(
Ver(cαπ(i) ; m̂i, r̂i, êC,i, f̂i) = accept

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(ZK2)

ZKPoK

⎡
⎢⎢⎢⎣

y ∈
{

απ(i)

u
(i)
0

}
i

ry

eC,y

fy

∣∣∣∣∣∣∣∣∣

N∑
i=1

αiu(i) =

N∑
i=1

mαπ(i)

(
u′(i) − m

u
(i)
0

)

∧
y

(
Ver(cy; my, ry, eC,y, fy) = accept

)

⎤
⎥⎥⎥⎦ (ZK3)

ZKPoK

⎡
⎢⎢⎢⎣

y ∈
{

απ(i)

v
(i)
0

}
i,j,l

ry

eC,y

fy

∣∣∣∣∣∣∣∣∣

N∑
i=1

αiv(i) =

N∑
i=1

mαπ(i)

(
v′(i) − m

v
(i)
0

)

∧
y

(
Ver(cy; my, ry, eC,y, fy) = accept

)

⎤
⎥⎥⎥⎦ (ZK4)

outputs accept if all
ZKPoK are correct

Lattice-Based Proof of a Shuffle 341

Notice that the prover claims that each cπ(i) is a commitment to π(i) with
a fixed permutation π. But until it proves that it has indeed committed to a
permutation we will refer to the opening of the commitment cπ(i) as mi and for
the same reason we will call m̂i to the opening of the commitment cαπ(i) .

We can consider the two expressions as polynomials in a variable that we can
call Γ evaluated in a specific γ ∈ Rq with coefficients in Zq [x] / 〈xn + 1〉. The
prover has shown that they are equal when evaluated in this specific γ chosen
by the verifier, but we would like them to be equal as polynomials in Rq[Γ]. The
left hand side of the equation has been determined by the choices of the verifier,
and in the right hand side, by the binding property of the commitment scheme,
we know that mi, m̂i were determined before the choice for γ was made.

We have already checked that subset S satisfies the conditions of the Gen-
eralized Schwartz-Zippel lemma (Lemma 1). Then the verifier is convinced that
with overwhelming probability the two polynomials defined by (2) are equal in
Rq[Γ] and have the same roots. These roots may be in different order, defined
by a permutation π̃. For all i ∈ [1, . . . , N] we have:

βmi + m̂i = βπ̃(i) + απ̃(i), then β(mi − π̃(i)) = απ̃(i) − m̂i.

The polynomials mi and m̂i were fixed before β was chosen. But the permu-
tation π̃ was not predetermined. However looking at one i and fixed mi and m̂i

we can consider all possible j and study β(mi−j) = αj −m̂i. If (mi−j) �= 0 then
there exists at most one βj ∈ S that fulfills the equation with this particular j
(this was trivial in Bayer and Groth’s proof, but in our case is again given by
the condition of set S). The probability of choosing β equal to one of these (at
most N) βj is negligible. This implies that for each i there exists a j such that
mi = j and m̂i = αj . With this reasoning for each i and the previous equations
we finally get that, with overwhelming probability mi = π̃(i) and m̂i = απ̃(i).

This means that cαπ(i) are indeed commitments to α with exponents from 1
to N permuted in an order that was fixed by cπ(i) before α was chosen.

Then we again need to prove polynomial relations between committed mes-
sages using the Σ-protocols from [7]. We get that the input and output of the
mix-node hold the following relation (ZK3 and ZK4 in Protocol 1.1).

∑N
i=1 αiu(i) =

∑N
i=1 mαπ(i)

(
u′(i) − aEr

′(i)
E − e

′(i)
E,u

)

We already know that mαπ(i) = απ(i) for a secret π and that the claimed
small elements used for the re-encryption are in fact small.

∑N
i=1 αiu(i) =

∑N
i=1 απ(i)

(
u′(i) − aEr

′(i)
E − e

′(i)
E,u

)

Once again we can see them as polynomials in Rq[A] with coefficients in Rq

that are equal when evaluated in α.
Both polynomials were determined before α was picked up, so we can apply

Lemma 1 and conclude that with overwhelming probability they are equal as
polynomials, and so:

u′(i) = uπ(i) + aEr
′(i)
E + e

′(i)
E,u v′(i) = vπ(i) + bEr

′(i)
E + e

′(i)
E,v

342 N. Costa et al.

The verifier V can conclude that the mix-net has behaved properly and the
output is a permuted re-encryption of the input. Completeness, zero-knowledge
and soundness follow from this reasoning and are discussed in a full version of
this paper.

4.3 Security

Finally we propose a security definition and provide a proof of security for our
proposed mix-node. Informally, a mix-node should ensure that it is not possible
to link an input ciphertext with its corresponding output. However, there might
be more than one ciphertext encrypting the same message (this is particularly
the case in an election with many voters and only a few voting options), and we
have to precisely say that it is not possible to link an input of the mix-node to
an output encrypting the same message.

Some security definitions assume that the original messages are indepen-
dently and uniformly distributed over the message space, but it was pointed out
by Wikström in [35] that there might be known correlations between some of
the input plaintexts that cannot be ignored.

We base our secure mix-node definition in the one presented by Wikström
in [35], but we notice that he assumes that the inputs of the mix-node are
correctly computed encryptions of the messages. However the input of each mix-
node comes from the (possibly malicious) previous node, and while the proofs
of a shuffle ensure that the input is a set of valid encryptions we do not know
if the re-encryption parameters have been drawn randomly from the adequate
distributions or specifically chosen by the possibly malicious previous nodes.
Therefore we present a stronger definition where we even allow an adversary A
to choose the messages and compute something of the form of an encryption, that
is, a pair of polynomials in Rq, allowing him to completely determine the input
of the mix-node. Even though, he should not be able to identify an input and
output index corresponding to the same message with a probability significantly
greater than a random guess. Let MixVotes be an algorithm that performs a
shuffle and outputs a zero-knowledge proof Σ. Then we can define:

Expsec
A (κ)

– (pk, sk) ← Setup(1κ)
– (z(1), . . . , z(N), aux) $←− A(pk)
– for k ∈ {1, . . . , N}

(u(k), v(k)) $←− A(pk, z(k), aux)
end for

– π
$←− SN

–
({(u′(k), v′(k))}N

k=1, Σ
) ← MixVotes(pk, {(u(k), v(k))}N

k=1;π)

– (iA, jA) $←− A({(u(k), v(k))}N
k=1, {(u′(k), v′(k))}N

k=1, Σ, aux)
– if z(iA) = zπ(jA) then Return 1 else Return 0

Now we can formalize our security definition saying that no adversary can
have a significant advantage over a random guess.

Lattice-Based Proof of a Shuffle 343

Definition 2 (Secure Mix-Node). Let J be a uniform random variable
taking values in [1, . . . , N]. We say that a mix-node defined by an algorithm
MixVotes is secure if the advantage of any PPT adversary A over a random
guess is negligible in the security parameter. That is, for all c there exists a κ0

such that if κ ≥ κ0:

Advsec
A (κ) =

∣
∣
∣Pr

[
z(iA) = zπ(jA)

]
− Pr

[
z(iA) = zπ(J)

]∣
∣
∣

=
∣
∣
∣Pr [Expsec

A (κ) = 1] − Pr
[
z(iA) = zπ(J)

]∣
∣
∣ <

1
κc

We allow the adversary to corrupt all mix-nodes except one, and the non-
corrupted one is that considered in the experiment Expsec

A . In order to take into
account any possible control of the adversary over those other corrupted nodes
and possibly a subset of the voters we even allow him to fully control all the
input of the mix-node. Even though, if at least one of the mix-nodes is honest,
the link between the ciphertexts at the output and those at the input of the
mix-net remains completely hidden.

Observe that this security definition has to be complemented with additional
security proofs when this mix-node is used as a building block in a larger scheme.
For instance Wikström in [35] shows how a malleable cryptosystem can be used
to break anonymity. Therefore additional validity proofs are required to enforce
non-malleability, as well as strict decryption policies to prevent any leakage of
information during the decryption phase.

Theorem 1. The proposed mix-node given by our MixVotes algorithm is a
secure mix-node according to Definition 2, under the RLWE hardness assump-
tion.

The proof of Theorem1 is given in a full version of this paper.

5 Conclusions

We present a shuffle that consists of a permutation and re-encryption of a set of
RLWE ciphertexts. The lattice-based encryption scheme used is that proposed
by Lyubashevsky et al. and we provide a proof of correctness of the shuffle using a
lattice-based commitment scheme proposed by Benhamouda et al. Furthermore
we give a security definition and we prove that our shuffle satisfies it.

As future work it would be worthy to have an implementation with concrete
parameters in order to accurately test efficiency in a real setting. We also remark
that this shuffle has to be combined with additional security requirements regard-
ing how the input is generated as well as how the output is decrypted, in order
to guarantee privacy for the overall scheme that uses this shuffle as a building
block, and these requirements will depend on the specific application.

Acknowledgements. We would like to thank Kristian Gjøsteen for his helpful com-
ments that greatly improved the proposal.

344 N. Costa et al.

This work is partially supported by the European Union PROMETHEUS project
(Horizon 2020 Research and Innovation Program, grant 780701) and the Spanish Min-
istry of Economy and Competitiveness, under Project MTM2016-77213-R.

References

1. Abe, M.: Universally verifiable mix-net with verification work independent of the
number of mix-servers. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403,
pp. 437–447. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054144

2. Abe, M.: Mix-networks on permutation networks. In: Lam, K.-Y., Okamoto, E.,
Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 258–273. Springer, Hei-
delberg (1999). https://doi.org/10.1007/978-3-540-48000-6 21

3. Abe, M., Hoshino, F.: Remarks on mix-network based on permutation networks.
In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 317–324. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44586-2 23

4. Baum, C., Damg̊ard, I., Lyubashevsky, V., Oechsner, S., Peikert, C.: More efficient
commitments from structured lattice assumptions. In: Catalano, D., De Prisco, R.
(eds.) SCN 2018. LNCS, vol. 11035, pp. 368–385. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-98113-0 20

5. Baum, C., Lyubashevsky, V.: Simple amortized proofs of shortness for linear rela-
tions over polynomial rings. Cryptology ePrint Archive, Report 2017/759 (2017).
http://eprint.iacr.org/2017/759

6. Bayer, S., Groth, J.: Zero-knowledge argument for polynomial evaluation with
application to blacklists. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 646–663. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38348-9 38

7. Benhamouda, F., Krenn, S., Lyubashevsky, V., Pietrzak, K.: Efficient zero-
knowledge proofs for commitments from learning with errors over rings. In: Pernul,
G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015, Part I. LNCS, vol. 9326, pp.
305–325. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24174-6 16

8. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy, pp. 315–334. IEEE Computer Society Press, San Francisco
(2018). https://doi.org/10.1109/SP.2018.00020

9. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24(2), 84–90 (1981). https://doi.org/10.1145/
358549.358563

10. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: A homomorphic LWE based
E-voting scheme. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 245–
265. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8 16

11. Costa, N., Mart́ınez, R., Morillo, P.: Proof of a shuffle for lattice-based cryptogra-
phy. In: Lipmaa, H., Mitrokotsa, A., Matulevičius, R. (eds.) NordSec 2017. LNCS,
vol. 10674, pp. 280–296. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70290-2 17

12. Cramer, R., Damg̊ard, I., Xing, C., Yuan, C.: Amortized complexity of zero-
knowledge proofs revisited: achieving linear soundness slack. In: Coron, J.-S.,
Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 479–500.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 17

13. Damgard, I.: On σ-protocols. Lecture on Cryptologic Protocol Theory. Faculty of
Science, University of Aarhus (2010)

https://doi.org/10.1007/BFb0054144
https://doi.org/10.1007/978-3-540-48000-6_21
https://doi.org/10.1007/3-540-44586-2_23
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/978-3-319-98113-0_20
http://eprint.iacr.org/2017/759
https://doi.org/10.1007/978-3-642-38348-9_38
https://doi.org/10.1007/978-3-642-38348-9_38
https://doi.org/10.1007/978-3-319-24174-6_16
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1145/358549.358563
https://doi.org/10.1145/358549.358563
https://doi.org/10.1007/978-3-319-29360-8_16
https://doi.org/10.1007/978-3-319-70290-2_17
https://doi.org/10.1007/978-3-319-70290-2_17
https://doi.org/10.1007/978-3-319-56620-7_17

Lattice-Based Proof of a Shuffle 345

14. del Pino, R., Lyubashevsky, V.: Amortization with fewer equations for proving
knowledge of small secrets. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part
III. LNCS, vol. 10403, pp. 365–394. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63697-9 13

15. del Pino, R., Lyubashevsky, V., Neven, G., Seiler, G.: Practical quantum-safe vot-
ing from lattices. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.)
ACM CCS 2017, pp. 1565–1581. ACM Press, Dallas (2017). https://doi.org/10.
1145/3133956.3134101

16. Furukawa, J.: Efficient and verifiable shuffling and shuffle-decryption. IEICE Trans.
88–A, 172–188 (2005)

17. Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 368–387. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 22

18. Groth, J.: A verifiable secret shuffe of homomorphic encryptions. In: Desmedt,
Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 145–160. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-36288-6 11

19. Groth, J., Ishai, Y.: Sub-linear zero-knowledge argument for correctness of a shuffle.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 379–396. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 22

20. Groth, J., Lu, S.: Verifiable shuffle of large size ciphertexts. In: Okamoto, T., Wang,
X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 377–392. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-71677-8 25

21. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

22. Markus, J., Ari, J.: Millimix: mixing in small batches. Technical report, Center for
Discrete Mathematics, Theoretical Computer Science (1999)

23. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buch-
mann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7

24. Neff, C.A.: A verifiable secret shuffle and its application to e-voting. In: Reiter,
M.K., Samarati, P. (eds.) ACM CCS 2001, pp. 116–125. ACM Press, Philadelphia
(2001). https://doi.org/10.1145/501983.502000

25. Neff, C.A.: Verifiable mixing (shuffling) of ElGamal pairs. VoteHere, Inc. (2003)
26. Peikert, C.: A decade of lattice cryptography. Cryptology ePrint Archive, Report

2015/939 (2015). http://eprint.iacr.org/2015/939
27. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-

phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press,
Baltimore (2005). https://doi.org/10.1145/1060590.1060603

28. Sako, K., Kilian, J.: Receipt-free mix-type voting scheme - a practical solution to
the implementation of a voting booth. In: Guillou, L.C., Quisquater, J.-J. (eds.)
EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-49264-X 32

29. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997).
https://doi.org/10.1137/S0097539795293172

30. Singh, K., Pandu Rangan, C., Banerjee, A.K.: Lattice based mix network for loca-
tion privacy in mobile system. Mob. Inf. Syst. 2015, 1–9 (2015). https://doi.org/
10.1155/2015/963628

https://doi.org/10.1007/978-3-319-63697-9_13
https://doi.org/10.1007/978-3-319-63697-9_13
https://doi.org/10.1145/3133956.3134101
https://doi.org/10.1145/3133956.3134101
https://doi.org/10.1007/3-540-44647-8_22
https://doi.org/10.1007/3-540-36288-6_11
https://doi.org/10.1007/978-3-540-78967-3_22
https://doi.org/10.1007/978-3-540-71677-8_25
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-540-88702-7
https://doi.org/10.1145/501983.502000
http://eprint.iacr.org/2015/939
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1007/3-540-49264-X_32
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1155/2015/963628
https://doi.org/10.1155/2015/963628

346 N. Costa et al.

31. Strand, M.: A verifiable shuffle for the GSW cryptosystem. In: Zohar, A., et al.
(eds.) FC 2018. LNCS, vol. 10958, pp. 165–180. Springer, Heidelberg (2019).
https://doi.org/10.1007/978-3-662-58820-8 12

32. Terelius, B., Wikström, D.: Proofs of restricted shuffles. In: Bernstein, D.J., Lange,
T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 100–113. Springer, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-12678-9 7

33. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle
model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS,
vol. 9057, pp. 755–784. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 25

34. Unruh, D.: Post-quantum security of Fiat-Shamir. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 65–95. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 3

35. Wikström, D.: The security of a mix-center based on a semantically secure cryp-
tosystem. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551,
pp. 368–381. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36231-
2 29

36. Wikström, D.: A commitment-consistent proof of a shuffle. In: Boyd, C., González
Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 407–421. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02620-1 28

https://doi.org/10.1007/978-3-662-58820-8_12
https://doi.org/10.1007/978-3-642-12678-9_7
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-319-70694-8_3
https://doi.org/10.1007/3-540-36231-2_29
https://doi.org/10.1007/3-540-36231-2_29
https://doi.org/10.1007/978-3-642-02620-1_28

Author Index

Atashpendar, Arash 289
Avizheh, Sepideh 50

Bakshi, Surya 35
Banach, Richard 106
Bernhard, Matthew 226
Blom, Michelle 211
Buckland, Chris 3, 35

Clark, Jeremy 82, 170
Costa, Nuria 330
Crafa, Silvia 138

di Angelo, Monika 91
Di Pirro, Matteo 138

Elsheikh, Muhammad 82
Eskandari, Shayan 170

Ferreira Torres, Christof 67
Fink, Glenn A. 154
Fiz Pontiveros, Beltrán Borja 67
Funk, Markus 257

Gailly, Nicolas 272
Galal, Hisham S. 190
Gjøsteen, Kristian 289

Haenni, Rolf 272
Halderman, J. Alex 226

Kiayias, Aggelos 21
Kumaramangalam, Muni Venkateswarlu 50

Locher, Philipp 272

Marky, Karola 257
Martínez, Ramiro 330
McCorry, Patrick 3, 35
Miller, Andrew 35

Moosavi, Seyedehmahsa 170
Morillo, Paz 330
Mühlhäuser, Max 257

Nabi, Mahmudun 50

Otsuka, Akira 12
Ottoboni, Kellie 226

Pereira, Olivier 314

Rivest, Ronald L. 226, 242
Rønne, Peter B. 289, 314
Ryan, Peter Y. A. 257, 289

Sack, Christian 91
Safavi-Naini, Reihaneh 50
Salzer, Gernot 91
Spoto, Fausto 122
Sridhar, Mayuri 242
Stark, Philip B. 226
State, Radu 67
Stuckey, Peter J. 211

Takahashi, Taisei 12
Teague, Vanessa J. 211

Vora, Poorvi L. 299

Wu, Hua 299
Wüst, Karl 35

Xu, Weifeng 154

Youssef, Amr M. 82, 190

Zagórski, Filip 299
Zindros, Dionysis 21
Zollinger, Marie-Laure 257
Zucca, Elena 138

	WTSC 2019 Preface
	WTSC 2019 Organization
	VOTING 2019 Preface
	VOTING 2019 Organization
	Contents
	Trusted Smart Contracts
	Two-Party State Channels with Assertions
	1 Introduction
	2 Background
	3 State Assertion Channels
	3.1 Application Contract Assumptions
	3.2 Assertion Channel Overview

	4 Discussion and Future Work
	References

	Short Paper: Secure Offline Payments in Bitcoin
	1 Introduction
	2 Preliminaries
	3 Secure Offline Bitcoin Payments
	4 Security Model
	5 Conclusion
	References

	Proof-of-Work Sidechains
	1 Introduction
	2 Overview
	3 Construction
	References

	You Sank My Battleship! A Case Study to Evaluate State Channels as a Scaling Solution for Cryptocurrencies
	1 Introduction
	2 Background
	2.1 Smart Contracts
	2.2 Evolution of Channel Constructions

	3 Kitsune State Channel Construction
	3.1 Overview of Kitsune
	3.2 Kitsune State Channel Contract
	3.3 Application Contract Template

	4 Applying the Application Template for Battleship
	4.1 Minimal Modifications for a State Channel
	4.2 Workarounds for State Channel

	5 Proof of Concept Implementation
	6 Discussion and Future Work
	References

	Game-Theoretic Analysis of an Incentivized Verifiable Computation System
	1 Introduction
	2 HB System
	3 Game-Theoretic Analysis of HB
	4 Attacks on HB System
	4.1 Collusion Attack in HB System
	4.2 Sybil Attack in HB System
	4.3 Shortcoming of HB

	5 HB+ System
	5.1 Analysis of HB+
	5.2 Malicious Contractors

	6 Evaluation and Comparison
	7 Related Work
	8 Conclusion
	References

	Sluggish Mining: Profiting from the Verifier's Dilemma
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Sluggish Mining Strategy

	4 Mining Strategy Evaluation
	5 Experimental Results
	5.1 Ethereum Clients
	5.2 Transaction Fees
	5.3 Block Reward
	5.4 Sluggish Contract Execution Times
	5.5 Evaluation

	6 Conclusions
	References

	Short Paper: Deploying PayWord on Ethereum
	1 Introduction
	2 Background
	3 Preliminaries
	4 EthWord Implementation
	4.1 EthWord Code Design
	4.2 Evaluation

	5 Discussion
	References

	SoK: Development of Secure Smart Contracts – Lessons from a Graduate Course
	1 Introduction
	1.1 Characteristics of Smart Contracts
	1.2 Reasons for a University Course
	1.3 Interesting Courses Online and at Other Universities
	1.4 Added Value of This Paper
	1.5 Roadmap

	2 Course Design
	2.1 Characteristics
	2.2 Body of Knowledge
	2.3 Learning Activities
	2.4 Assignments in Detail
	2.5 Technical Setup

	3 Lessons Learned from the Students' Submissions
	3.1 Beer Bar
	3.2 Final Project
	3.3 Tools

	4 Discussion
	4.1 Distinctive Aspects
	4.2 Course Feedback

	5 Conclusions
	5.1 Differences to Conventional Development
	5.2 Further Challenges

	References

	Verification-Led Smart Contracts
	1 Introduction
	2 An Overview of Event-B
	3 Event-B Refinement
	4 A Bare Outline of Solidity
	4.1 On Guards and Preconditions

	5 A Simple Payment Contract in Event-B
	6 Implementation in Solidity
	7 Variations and Generalisations
	8 Related Work
	9 Conclusions
	References

	A Java Framework for Smart Contracts
	1 Introduction
	2 Takamaka: A Java Framework for Smart Contracts
	3 Storage and Transactions
	4 Storage Classes and Their Instrumentation
	5 Class takamaka.lang.Contract and Its Instrumentation
	6 Gas
	7 Instrumentation and Code Verification
	8 Conclusion
	References

	Is Solidity Solid Enough?
	1 Introduction
	2 Background
	3 The Featherweight Solidity Calculus
	4 Type System
	5 Refined Type System
	6 Conclusions and Related Work
	References

	Building Executable Secure Design Models for Smart Contracts with Formal Methods
	1 Introduction
	2 Background and Approach Overview
	3 Modeling Business Contracts
	4 Secure Smart Contract Design
	5 Related Work
	6 Conclusion
	References

	SoK: Transparent Dishonesty: Front-Running Attacks on Blockchain
	1 Introduction
	2 Preliminaries and Related Work
	2.1 Traditional Front-Running
	2.2 Literature on Traditional Front-Running
	2.3 Background on Blockchain Front-Running
	2.4 Literature on Blockchain Front-Running

	3 A Taxonomy of Front-Running Attacks
	4 Cases of Front-Running in DApps
	4.1 Markets and Exchanges
	4.2 Crypto-Collectibles Games
	4.3 Gambling
	4.4 Name Services

	5 Cases of Front-Running in ICOs
	5.1 Status.im ICO
	5.2 Data Collection and Analysis

	6 Key Mitigations
	6.1 Transaction Sequencing
	6.2 Confidentiality
	6.3 Design Practices

	7 Concluding Remarks
	References

	Trustee: Full Privacy Preserving Vickrey Auction on Top of Ethereum
	1 Introduction
	2 Related Work
	2.1 Sealed-Bid Auctions on Blockchain
	2.2 SGX with Blockchain Solutions

	3 Preliminaries
	4 Trustee's Design and Analysis
	4.1 Trustee's Architecture
	4.2 Threat Model
	4.3 Security Analysis
	4.4 Prototype Implementation and Gas Cost Analysis

	5 Conclusion
	References

	Advances in Secure Electronic Voting Schemes
	Election Manipulation 100
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Computing the MOV for an IRV Election
	4.1 DistanceTo with Side Constraints
	4.2 Selecting a Desired Winner

	5 Case Study: The NSW 2015 State Election
	6 Modelling a Weaker Adversary
	7 Concluding Remarks
	References

	Bernoulli Ballot Polling: A Manifest Improvement for Risk-Limiting Audits
	1 Introduction
	2 Notation and Mathematical Background
	2.1 Multi-round Bernoulli Sampling
	2.2 Exchangeability and Conditional Simple Random Sampling

	3 Tests
	3.1 Wald's SPRT with a Nuisance Parameter
	3.2 Auditing Multiple Contests

	4 Escalation
	5 Initial Sampling Rate
	6 Implementation
	6.1 Election Night Auditing
	6.2 Vote-By-Mail and Provisional Ballots
	6.3 Geometric Skipping
	6.4 Pseudorandom Number Generation

	7 Evaluation
	7.1 Empirical Data

	8 Discussion
	8.1 Previous Work
	8.2 Stratified Audits

	9 Conclusion
	References

	k-Cut: A Simple Approximately-Uniform Method for Sampling Ballots in Post-election Audits
	1 Introduction
	2 Notation and Election Terminology
	3 The k-Cut Method
	4 (Non)-Uniformity of Single Ballot Selection
	4.1 Empirical Data for Single Cuts
	4.2 Making k Successive Cuts to Select a Single Ballot
	4.3 Asymptotic Convergence to Uniform with k

	5 Approximate Sampling
	6 Auditing Arbitrary Contests
	6.1 General Statistical Audit Model
	6.2 Mitigation Strategy
	6.3 How Much Adjustment Is Required?
	6.4 Empirical Support

	7 Multi-stack Sampling
	8 Approximate Sampling in Practice
	9 Discussion and Open Problems
	10 Conclusions
	References

	How to Assess the Usability Metrics of E-Voting Schemes
	1 Introduction
	2 End-to-End Verifiable E-Voting Schemes
	3 The Impact of Usability
	4 Study Design Challenges
	4.1 Election Setting
	4.2 Participant Vote Privacy
	4.3 Social Acceptability Bias
	4.4 Mental Tasks
	4.5 Demographic Data
	4.6 Motivation Interference

	5 Usability Metrics
	5.1 Effectiveness
	5.2 Efficiency
	5.3 Satisfaction

	6 Usability Study Guidelines
	6.1 Challenge-Based Guidelines
	6.2 Metric-Based Guidelines
	6.3 General Guidelines

	7 Related Work
	8 Conclusion
	References

	Improving the Performance of Cryptographic Voting Protocols
	1 Introduction
	1.1 Problem Description and Context
	1.2 Contribution and Paper Overview

	2 Performance Analysis of Exponentiation Algorithms
	2.1 Measurement Methodology
	2.2 General-Purpose Exponentiation Algorithms
	2.3 Algorithms for Product Exponentiations
	2.4 Algorithms for Fixed-Base Exponentiations
	2.5 Use Case: Cryptographic Shuffle

	3 Experimental Results
	3.1 Technologies
	3.2 Performance Analysis

	4 Conclusion
	References

	Short Paper: Coercion-Resistant Voting in Linear Time via Fully Homomorphic Encryption
	1 Introduction
	2 The JCJ Model and Voting Protocol in a Nutshell
	2.1 The JCJ Protocol
	2.2 Properties
	2.3 Related Work

	3 JCJ in Linear Time via Fully Homomorphic Encryption
	3.1 Enhancing JCJ with FHE and Weeding in Linear Time
	3.2 Advantages, Potential Pitfalls and Open Questions

	4 Future Work and Further Security Remarks
	References

	PrivApollo – Secret Ballot E2E-V Internet Voting
	1 Introduction
	2 Related Work
	3 Model
	3.1 Participants
	3.2 Assumptions, Including Trust Assumptions

	4 The PrivApollo Protocol
	4.1 PrivApollo Colors
	4.2 PrivApollo Codes
	4.3 Tallying

	5 Security and Usability Discussion
	6 Conclusions
	References

	End-to-End Verifiable Quadratic Voting with Everlasting Privacy
	1 Introduction
	2 Background and Cryptographic Tools
	2.1 Commitment Consistent Encryption
	2.2 Sigma Protocols
	2.3 Proof of Square

	3 Verifiable Quadratic Voting
	3.1 Election Setup
	3.2 Voting
	3.3 Election Tally
	3.4 Election Audit
	3.5 Protocol Efficiency

	4 Protocol Analysis
	4.1 Protocol Correctness
	4.2 Ballot Privacy
	4.3 Perfectly Private Audit Trail
	4.4 Verifiability

	5 Conclusion and Outlook
	References

	Lattice-Based Proof of a Shuffle
	1 Introduction
	1.1 Previous Work
	1.2 Our Contribution

	2 Preliminaries
	2.1 Generalized Schwartz–Zippel Lemma

	3 Ideal Lattices
	3.1 RLWE Problem
	3.2 RLWE Encryption Scheme
	3.3 Commitments from RLWE

	4 Proof of a Shuffle for RLWE Encryptions
	4.1 Protocol Overview
	4.2 Proof of a Shuffle
	4.3 Security

	5 Conclusions
	References

	Author Index

