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Abstract. In recent years neuroevolution has become a dynamic and
rapidly growing research field. Interest in this discipline is motivated
by the need to create ad-hoc networks, the topology and parameters
of which are optimized, according to the particular problem at hand.
Although neuroevolution-based techniques can contribute fundamentally
to improving the performance of artificial neural networks (ANNs), they
present a drawback, related to the massive amount of computational
resources needed. This paper proposes a novel population-based frame-
work, aimed at finding the optimal set of synaptic weights for ANNs. The
proposed method partitions the weights of a given network and, using an
optimization heuristic, trains one layer at each step while “freezing” the
remaining weights. In the experimental study, particle swarm optimiza-
tion (PSO) was used as the underlying optimizer within the framework
and its performance was compared against the standard training (i.e.,
training that considers the whole set of weights) of the network with PSO
and the backward propagation of the errors (backpropagation). Results
show that the subsequent training of sub-spaces reduces training time,
achieves better generalizability, and leads to the exhibition of smaller
variance in the architectural aspects of the network.

Keywords: Neuroevolution · Particle swarm optimization · Artificial
neural networks

1 Introduction

An artificial neural network (ANN) is a biologically-inspired computer system
that simulates the biological neural networks (BNNs) and their biochemical
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processes [10]. As such, an ANN consists of a set of interconnected layers of basic
processing units, called neurons, which, altogether, comprise a powerful and ver-
satile computing system that can solve numerous complex problems, including,
but not limited to automatic speech and image recognition, natural language
processing, autonomous car driving, bio-informatics, fraud-detection [24].

Several properties of ANNs make them an appropriate technique to solve
supervised machine-learning (SML) problems. First, ANNs are data-driven, self-
adaptive, real-time learning methods, that rely on few a priori assumptions
about the models for problems under study [23,33]. Thus, the ANNs are suitable
for problems with solutions requiring knowledge that may be difficult to specify,
but for which there are sufficient data to do so. Second, ANNs are universal
function approximators. More specifically, ANNs have been proven to be capable,
with some limitations, of approximating any continuous function to any desired
level of accuracy [12–14]. The effectiveness of ANNs derives from the neurons’
mode of interacting with each other, i.e. their interconnections. Traditionally,
such interconnections are assigned random weights to initialize a network. Then,
a training algorithm is executed to identify the optimal set of weights, thereby
allowing the network to achieve satisfactory performance, given the problem at
hand. Typically, within the context of SML, such a training algorithm consists
of the backward propagation of the errors, known as backpropagation. This is an
optimization algorithm, based on the gradient of a loss function in the weight
space [22,31].

Backpropagation is one of the most popular training algorithms for ANNs.
In practice, however, backpropagation presents significant limitations related to
multi-modal and non-differentiable cost functions. Moreover, backpropagation is
particularly inefficient and time-consuming in the face of problems with a huge
number of local optima and plateaus in the error surface [11].

In the context of deep learning (DL), the backpropagation is known to suffer
from vanishing/exploding gradients. This phenomenon refers to a situation in
which the gradient of a cost function can become exceedingly large or extremely
small. More specifically, the backpropagation performs very small/big updates
to the set of weights, thereby rendering the training process imprecise and time-
consuming [15].

This work introduces a novel population-based framework for training ANNs.
The proposed technique optimizes the weights of an ANN, one layer per step,
while freezing all remaining weights in the other layers. This approach forces
the optimization algorithm to work in a subspace of the original search space.
This choice boasts two main advantages compared with the more traditional
approach, which is aimed at optimizing the whole network at once: (i) it increases
the effectiveness of the exploration and (ii) reduces the time needed for the
optimization process. To investigate the capability of the technique proposed
in this work, particle swarm optimization (PSO) was used as the underlying
optimizer in our experiments. However, the framework is flexible to a point, to
allow for the use of any optimization heuristic. In the following discussion, we
present results, obtained on a set of well-known benchmark problems, which
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demonstrate the capacity of the proposed system to produce results better than
(or comparable to) those yielded by backpropagation and to produce them more
quickly, in terms of training time, than traditional approaches.

It is important to note here that the main purpose of this paper is to present
our preliminary results concerning the ability of the proposed layered paradigm
to optimize an ANN, but that there has been no special effort expended to
identify the most suitable optimizer for the problem at hand. For this reason,
only standard versions of the PSO and backpropagation algorithms have been
used, despite the existence of several well-known variants of these algorithms
that may be able to achieve better performance.

For the same reason, only feed-forward fully-connected networks have been
considered in the performed experiments, even if, in principle, the proposed
technique applies to recurrent networks as well.

The paper is organized as follows: Sect. 2 reviews prior related work, aimed
at defining techniques for optimizing the weights of ANNs; Sect. 3 describes the
proposed approach; while Sect. 4 presents the experimental settings and discusses
the obtained results; and finally, Sect. 5 summarizes the main findings of this
paper and suggests ideas for future research.

2 Prior Related Work

It is challenging to train an ANN to find an optimal, or at least a satisfactory,
set of synaptic weights for a given problem. We refer to this task as WEANN
(Weight Evolving Artificial Neural Networks), which is a simplified version of
the standard Neuroevolution problem. The difficulty is associated mainly with
the non-linearity of the problem that the network is meant to solve, the lack
of knowledge regarding the best set of weights and biases, and the dependency
of the performance of the training algorithm on the architectural aspects of
the network (specifically, the topology and activation functions of the neurons).
Hence, given their utility as alternatives to backpropagation and its variants [21],
heuristic search algorithms were used to optimize ANNs [3,18,26,28].

Within this research track, evolutionary algorithms (EAs) were assigned
a special role, due to their recognized advantages over gradient-based tech-
niques [23,31]. EAs are better at handling a global search in a vast, complex,
multimodal and non-differentiable surface, and especially useful when the gradi-
ent of the cost function is expensive to calculate. Moreover, EAs can be used to
train many types of ANNs, including feed-forward, recurrent and higher-order.
Finally, EAs can easily incorporate special characteristics, such as regularization.
Among the many existing references that report on the use of EAs to optimize
ANNs, we refer the reader to [23,31].

Given our selection of PSO as the underlying optimization algorithm to con-
duct our experiments, in this section, we focus on prior contributions studying
the application of PSO to training ANNs. In [9,16,32] PSO was used to evolve
the weights and topology of the network. In particular, in [16], authors pre-
sented a multi-dimensional particle swarm optimization (MD-PSO) technique
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to automatically design ANNs through a process of evolution to the optimal
network configuration (consisting of connections, weights, and biases) within an
architecture space. Similarly, in [9], the study consisted of performing a simul-
taneous evolution of an ANN’s three principal components: the set of synap-
tic weights, the architecture, and the transfer functions of each neuron. The
main topic of the paper was to find the optimal design of an ANN, using eight
proposed fitness functions to evaluate the quality of each solution. In [32], the
authors introduced a new evolutionary system, constrained to the use of PSO,
for feed-forward ANNs. The architecture and the weights of ANNs were adjusted
adaptively according to the quality of the network.

All of these approaches differ substantially from the one presented in this
paper, because their performance is not directly comparable with standard train-
ing algorithms, such as backpropagation. In fact, the objective of standard train-
ing algorithms is “only” to find an optimal set of synaptic weights, and that is
also the objective of the system presented here. Another chief and distinctive
feature of this work is its lack of apriori considerations regarding the extent
to which the standard PSO was effective at training an ANN to solve a given
optimization problem. In this paper, we show it is possible to achieve a bet-
ter performance by reducing the search space by constraining the evolutionary
process within a subspace of the whole solution space, without reducing the
exploratory power of the selected optimization technique.

In [1] and [25], the authors applied PSO in the context of using coopera-
tive learning (CL) to train ANNs. The training process was conducted within a
multi-swarm architecture, such that each swarm optimized a subset of the solu-
tion’s vector, which was previously split and distributed across swarms according
to a given rule. To identify an optimal solution to the original problem, it was
necessary to combine particles from all swarms to form the candidate solution
vector, which was then passed to the fitness function. In [1], the authors pre-
sented three splitting rules to train ANNs for classification problems. Each time
a new global best solution was found, the fitness value of the best particles in all
the swarms was updated to reflect that value, because of all these particles par-
ticipated in the creation of the global best. A similar idea was proposed in [25],
in which the authors sought to improve the performance of the basic PSO by
halving the solution vector (Esplit) and allocating each on its swarm. Then, a
plain swarm, containing the entire solution vector, was used as an “attractor”
for other two swarms. Both approaches suffer from problems related to selection
of which particles to bind for composition of the solution, and the assignment
of fitness within the evolutionary process. Regarding the latter, the question
discussed in [1] is: How much credit should each swarm be awarded when the
combined vector (constructed from all the swarms) results in a better solution?
It is not, in fact, an easy task, to define a proper way to split the value of the
fitness so as to give the bulk of it to the best swarm involved in representing
the final solution. A precise answer to this question, supported by experimental
results, was not provided.
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Given the nomenclature assigned to the CL framework, the technique pre-
sented in this paper uses Lsplit (or Layer-split) architecture to distribute the net-
work’s weights across different swarms. However, unlike the approaches described
above, the swarms are not evolved simultaneously, but rather sequentially, one
after another, layer after layer.

Our approach does not suffer from any of the aforementioned problems,
because the optimization phase of a given layer is constrained to the remaining
part of the network. In fact, the main objective is to maximize the performance
of the whole network by adapting the behavior of each layer to the ones that
follow.

In [34], the authors presented a hybrid algorithm (called PSO-BP), combining
PSO with backpropagation, to train the weights of feedforward ANNs. The main
idea is to combine the rapid converge of PSO during the initial stages of a global
search (as the PSO search process is likely to slow considerably as it approaches
a global optimum) with the gradient descent method that can achieve faster
convergence around global optima. The proposed PSO-BP algorithm presents a
heuristic way to give a transition from particle swarm search to gradient descent.
The experimental results showed that the PSO-BP algorithm is better than the
backpropagation algorithm in terms of convergence speed and accuracy.

3 The Proposed Method

Due to the nature of gradient descent optimization, the backpropagation suf-
fers from certain drawbacks that can, in some cases, compromise its effective-
ness. For instance, the backpropagation can get stuck in local optima or have
problems optimizing error surfaces with vast neutral plateaus. Furthermore, non-
differentiability and vanishing/exploding gradients can be other possible sources
of difficulties. These problems have been solved partially by stochastic gradient
descent with momentum [19], but they remain an issue.

Evolutionary ANNs (EANNs) rely on the use of evolutionary and nature-
inspired algorithms and can represent an alternative to gradient-based tech-
niques. Although EANNs are characterized by their adaptability, broad range
of applications and flexibility, they usually require significant amounts of com-
putational power to perform the training task. Considering a population-based
optimization heuristic and that each individual in the population represents
the whole set of synaptic weights, as the network grows bigger and deeper, so
increases the computational power required to train the system [27,30].

The purpose of the algorithm proposed in this paper is to use a population-
based heuristic to overcome the exploratory shortcomings of the backpropaga-
tion, while reducing the computational effort required during training of ANNs.
The proposed system is characterized by two main elements: (i) it is a population-
based heuristic algorithm, which allows us to conduct a global optimization in a
potentially huge, rugged, multi-modal and non-differentiable search space, avoid-
ing plateaus in the error surface and eliminating the vanishing/exploding gra-
dient problem; and (ii) considering a n-dimensional search space, where each
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dimension represents a weight in a given ANN, and a candidate solution is an n-
dimensional vector of candidate weights, the algorithm severs the layers, splitting
the search space into subspaces that are then optimized sequentially.

In recent years, deep learning has become very popular and state-of-the-art
networks usually contain many layers. Therefore, to reduce the computational
time needed for their optimization, it makes sense to avoid using population-
based heuristics to achieve a simultaneous optimization of the whole network.
For this reason, we considered splitting the solution vector into semantically
different subsets of the search space, each optimized within its population.

Our solution to the problem of ANN weights optimization is called greedy
iterative layered training (GILT) algorithm and is described in the next section.
It is worth noting here that, in theory, GILT can use any optimization heuristic.
However, given that, in our experiments, we have chosen to use PSO as the
optimization algorithm for GILT, the method will hereinafter be referred to as
GILT-PSO.

3.1 Greedy Iterative Layered Training

The GILT algorithm conducts a greedy training of an ANN using an arbitrary
population-based heuristic algorithm. By greedy, we mean that the algorithm
does not seek to train the whole network at the same time. Instead, it searches,
one layer at a time, for an optimal set of weights, while freezing the other layers.
Each layer is optimized in its turn, and the whole procedure is iterated until the
satisfaction of a stopping criterion or through a predefined number of epochs.
During the optimization of a given layer, the algorithm’s objective is to find a
set of weights for the current layer that maximizes the performance of the whole
network. In GILT, after the optimization of a given layer, the final population
is stored for later use in seeding the new population that will optimize the same
layer in the subsequent epoch. In other words, throughout this framework, a
layer can be viewed as a point in an n-dimensional space and, at the end of the
optimization process, we will have not only one single point representing the
layer, but for each layer we will have a cloud of available points. If a sufficient
number of iterations is given to the optimization technique, even after the first
epoch, the population optimizing each layer is likely to reach a good degree of
convergence. Thus, it is expected that the populations will be made of the best
individual and a certain number of its perturbations. We expect this training
framework to provide higher exploratory power than the backpropagation, while
maintaining good exploitability. At the same time, semantically splitting the
solution space by ANN layers forces the heuristic algorithm to conduct the opti-
mization within a subspace of the search space, which is unlike the simultaneous
optimization of all layers. In conclusion, it is important to note that the final
solution is constrained to the initial setting of the network because all adjust-
ments to the weights are influenced by the way the neurons in the other layers
perceive them. Moreover, repeating this process for more than one epoch only
serves to fine-tune the solution obtained on the first one. It is worth noting that
our methodology does not make use of minibatches, which means that, for each
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Algorithm 1. Network Training
Input : O - Optimizer, l - Layout, X - Training set, y - Training labels,

max epochs - Number of epochs,
stopping criterion - A stopping criterion method

Output: w - Set of weights for the whole network that minimizes loss

1 current epoch ← 0
2 w ← Random()
3 seeds ← 2-dimensional array with initial weights
4 while current epoch < max epochs and not stopping criterion() do
5 foreach (l index, layer) in w do
6 layer ← O.optimize ( seeds[l index], l index, w, X, y )
7 seeds[l index] ← O.get population()
8 w ← replace(w, l index, layer)

9 end
10 current epoch ← current epoch + 1

11 end
12 return w

fitness evaluation, all contents of the dataset are fed to the ANN. The mean
squared error between the expected output and the current one has been used
as a fitness metric. The proposed method is described in Algorithm 1.

4 Experimental Study

4.1 Test Problems

The performance of GILT-PSO has been tested on four different classification
problems and with several network topologies for each problem. The reason
behind this choice is to prove the general suitability of GILT-PSO; thus, we pre-
ferred to test the algorithm under different (although simple) test cases instead
of focusing on a single complex task.

The datasets used have been taken from the UCI repository [5] and they are:

1. Iris: This dataset consists of measurements related to three classes of the
iris plant, and it contains 50 instances for each class. One class is linearly
separable from the other two; the latter is not. Each sample is described in
terms of four features: sepal length in cm, sepal width in cm, petal length in
cm, petal width in cm [8].

2. Seeds: Data belonging to three varieties of wheat: Kama, Rosa, and Cana-
dian; 70 elements of each, randomly selected for the experiment. High-quality
visualization of the internal kernel structure was detected, using a soft x-
ray technique. The images were recorded on 13×18 cm x-ray KODAK plates.
Studies were conducted using combine harvested wheat grain originating from
experimental fields, explored at the Institute of Agrophysics of the Polish
Academy of Sciences in Lublin. Each sample is described in terms of seven
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features: area, perimeter, compactness, length of the kernel, width of the ker-
nel, asymmetry coefficient, length of the kernel groove [2].

3. Breast Cancer Wisconsin (Diagnostic): Features are computed from a
digital image of fine needle aspirate (FNA) of a breast mass. They refer to
characteristics of the cell nuclei that are visible in the image. The dataset
consists of two classes (malignant and benign) and 569 total samples. Each
sample is described in terms of 30 features: mean, standard error and worst of
radius, texture, perimeter, area, smoothness, compactness, concavity, concave
points, symmetry, fractal dimension [17,29].

4. Wine: Results of a chemical analysis of wines grown in the same region
in Italy, but derived from three cultivates. The dataset is characterized by
three classes and 178 total observations. Each sample is described in terms
of 13 features: alcohol, malic acid, ash, alkalinity of ash, magnesium, total
phenols, flavonoids, non-flavonoid phenols, proanthocyanidins, color intensity,
hue, OD280/OD315 of diluted wines, proline.

4.2 Experimental Setting

For each of the above datasets, several topologies for the hidden layers have
been used, while the number of input and output neurons are set according to
the number of features and classes for the specific problem. The ANNs used
are fully connected and they present the following topologies: (in, 3, out), (in,
20, out), (in, 30, 20, out), (in, 50, 30, out), (in, 40, 40, 30, out), where in and
out stand respectively for the number of input features and target classes of
the underlying problem. All hidden neurons have the same activation function,
which is the hyperbolic tangent, while the output layer’s activation is Softmax.

The results obtained using GILT-PSO have been compared with the ones
obtained by the standard backpropagation algorithm, and implemented in the
SciKit framework [20] through the class MLPClassifier. The parameters have
been chosen after a coarse-grained grid search and are shown below:

– activation = ‘tanh’: Hyperbolic tangent
– solver = ‘sgd’: Stochastic gradient descent
– alpha = 0: L2 regularization parameter
– shuffle = True: Shuffling of the dataset for each epoch
– learning rate = ‘constant’
– learning rate init = 0.03
– validation fraction = 0
– early stopping = False
– tol = 0: Used for the early stopping
– momentum = 0.9
– batch size = size of the training set

It should be noted here that using a batch size equal to the entire dataset
“guarantees” the convergence for the MLP classifier, thereby complicating the
comparison with respect to GILT-PSO.
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To offer empirical proof of the effectiveness of GILT-PSO, we performed a
comparison with the standard PSO; in this context, we use the term “standard
PSO” to indicate a PSO with the objective of optimizing all the weights in the
ANN at once, i.e. without splitting them into layers. The hyperparameters for
PSO and GILT-PSO are the following: w = 0.73, c1 = 1.5, c2 = 1.5, and they
have been chosen according to [6]. The version of the PSO algorithm used is the
classical one described in [7].

Because this work aims to prove the effectiveness of the proposed layered
approach without depending on low-level details of the underlying optimizers,
we decided to use basic variants of both backpropagation and PSO.

During the experiments, the goal was to perform a fair evaluation across all
algorithms under investigation; thus, the number of epochs for the backpropa-
gation was calculated according to the following formula:

nBPepochs = nparticles · niterations · nepochs · (nhidden layers + 1)

where nhidden layers represents the number of hidden layers of a given network.
However, for the standard PSO, the number of iterations was calculated by:

npso it = niterations · nepochs · (nhidden layers + 1)

These equations ensure the same number of fitness evaluations for all the algo-
rithms under comparison.

The major objective of our experiments was to compare the performance
of different training algorithms for different ANN architectures across different
problems. For each layout and each dataset, 30 independent runs were performed
and final classification accuracy on the training and validation set, for each
network, was stored. The validation accuracy was then used to select the best
network in order to evaluate it on the test set. It is worth to note that, for each
run, a new set of random weights are generated and used as a starting point
for all the algorithms under comparison. Based on these results, we performed
a statistical analysis to validate our conclusions. For the first experiment, the
used parameters were the following: number of epochs equal to 2, number of
iterations equal to 17 and number of particles equal to 15.

Using only two epochs was found to be sufficient to evaluate the perfor-
mance of the network after a first rough optimization by GILT-PSO and, thus,
to understand its effectiveness.

4.3 Experimental Results

Table 1 reports a broad perspective of the experimental results that we obtained
using 2 epochs. Here, the reader can find the average classification accuracy on
the validation set, and the respective standard deviation, for each training algo-
rithm, calculated using the best solutions found (in terms of training accuracy),
at the end of each run, across all studied problems and topologies. From the
table, the competitive advantage of GILT-PSO over backpropagation and stan-
dard PSO is clear: GILT-PSO is not only, in average terms, more accurate, but
also more stable (in fact, it has a lower standard deviation).
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Table 1. Summary of the validation accuracy in terms of mean and standard deviation
across all the problems under examination.

Algorithm Mean Std deviation

BP 0.889 0.096

GILT-PSO 0.903 0.034

PSO 0.898 0.040

Table 2. Median accuracy on the test set of the best networks evaluated on the
validation set - 2 epochs.

Dataset Layout BP GILT-PSO PSO

Iris [4, 3, 3] 0.889 0.944 0.861

[4, 20, 3] 0.889 0.833 0.833

[4, 30, 20, 3] 0.889 0.889 0.889

[4, 50, 30, 3] 0.889 0.889 0.889

[4, 40, 40, 30, 3] 0.944 0.889 0.889

Seeds [7, 3, 3] 0.913 0.870 0.913

[7, 20, 3] 0.870 0.913 0.826

[7, 30, 20, 3] 0.870 0.870 0.913

[7, 50, 30, 3] 0.739 0.913 0.913

[7, 40, 40, 30, 3] 0.652 0.957 0.870

Wine [13, 3, 3] 0.824 0.853 0.882

[13, 20, 3] 0.824 0.882 0.941

[13, 30, 20, 3] 0.882 0.882 0.706

[13, 50, 30, 3] 0.824 0.824 0.912

[13, 40, 40, 30, 3] 0.882 0.882 0.853

Breast [30, 3, 2] 0.482 0.786 0.804

[30, 20, 2] 0.482 0.875 0.795

[30, 30, 20, 2] 0.411 0.696 0.482

[30, 50, 30, 2] 0.411 0.688 0.607

[30, 40, 40, 30, 2] 0.634 0.554 0.732

If we study the results obtained by the different algorithms on each of the
studied problems, we can see that, in the majority of the cases, GILT-PSO
outperforms both backpropagation and PSO or returns a result comparable to
the best of them. More specifically, when selecting the best solution (in terms
of training accuracy) from the 30 runs, the highest validation accuracy, for most
of the problems and topologies, is obtained using GILT-PSO. These results,
considering 2 epochs, are summarized in Table 2, where the best accuracy values
for each row are highlighted in bold.
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Table 3. Median accuracy on the test set of the best networks evaluated on the
validation set - 3 epochs.

Dataset Layout BP GILT-PSO PSO

Iris [4, 3, 3] 0.889 0.917 0.889

[4, 20, 3] 0.889 0.833 0.889

[4, 30, 20, 3] 0.889 0.889 0.889

[4, 50, 30, 3] 0.889 0.889 0.889

[4, 40, 40, 30, 3] 0.833 0.889 0.889

Seeds [7, 3, 3] 0.913 0.870 0.826

[7, 20, 3] 0.913 0.891 0.870

[7, 30, 20, 3] 0.826 0.913 0.891

[7, 50, 30, 3] 0.870 0.913 0.913

[7, 40, 40, 30, 3] 0.739 0.913 0.870

Wine [13, 3, 3] 0.824 0.882 0.941

[13, 20, 3] 0.824 0.882 0.912

[13, 30, 20, 3] 0.882 0.882 0.941

[13, 50, 30, 3] 0.824 0.912 0.941

[13, 40, 40, 30, 3] 0.882 0.882 0.765

Breast [30, 3, 2] 0.464 0.804 0.661

[30, 20, 2] 0.464 0.661 0.446

[30, 30, 20, 2] 0.429 0.804 0.607

[30, 50, 30, 2] 0.420 0.536 0.500

[30, 40, 40, 30, 2] 0.643 0.750 0.634

Here, we can observe that, 11 times out of 20, GILT-PSO outperforms or
furnishes comparable results to both backpropagation and standard PSO; more
specifically, it outperforms the backpropagation 16 times.

The same experiments were repeated for when the number of epochs was
equal to three. The results are shown in Table 3. In this case, GILT-PSO out-
performs the other algorithms or returns a result that is comparable to the best
of them, in 13 cases out of 20.

4.4 Execution Time Comparison

Another advantage of the layered approach used by GILT-PSO is its efficiency,
in terms of the running time needed for the training phase. As already discussed,
optimizing only one layer at a time allows the chosen optimizer to reduce the
dimensionality of the search space. First, working with smaller candidate solu-
tions reduces the computational time needed to perform the mathematical oper-
ations involved in the optimization process. Second, having smaller candidate
solutions also means working with smaller amounts of data, thereby reducing
the consequent overhead.
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Fig. 1. Comparison of the average execution times between the GILT-PSO algorithm
and the PSO algorithm. The error bars account for the standard deviations.

It is worth to notice that only the running times regarding the standard
PSO and GILT-PSO are presented in this paper because both algorithms rely
on the framework which was created in the context of this research, i.e., we can
guarantee the implementation compatibility for both PSO-based approaches,
while the used implementation of the backpropagation relies on the external
library [20]. However, GILT-PSO and PSO were the methods that returned the
best results in terms of accuracy, as reported in the previous section. As such, it
makes sense to compare those two systems as well, in terms of running time. The
comparison is reported in Fig. 1. Based on this figure, it is clear that GILT-PSO
is faster than PSO, and that the difference between these two methods grows
increasingly visible as the size of the network increases.

4.5 Non-parametric Statistical Test with Control Method

To evaluate whether the previously presented results differ from each other in
a statistically significant way, a statistical analysis, based on a non-parametric
test [4] has been performed. In particular, given that the data are not normally
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Table 4. Adjusted p-values for the post-hoc procedures for Aligned Friedman test
(backpropagation is the control method) for 2 epochs.

Algorithm p z Bonferroni Holm Holland Rom Finner Li

GILT-PSO 0.056 1.915 0.056 0.025 0.025 0.025 0.025 0.032

PSO 0.385 0.869 0.385 0.050 0.050 0.050 0.050 0.050

Table 5. Adjusted p-values for the post-hoc procedures for Aligned Friedman test
(backpropagation is the control method) for 3 epochs.

Algorithm p z Bonferroni Holm Holland Rom Finner Li

GILT-PSO 0.182 1.335 0.182 0.025 0.025 0.025 0.025 0.037

PSO 0.298 1.041 0.298 0.050 0.050 0.050 0.050 0.050

distributed, an aligned Friedman test was executed for multiple comparisons.
The null hypothesis H0 for this test states that the medians between the differ-
ent algorithms are identical. The goal of the test is to confirm this hypothesis
or reject it, with the level of confidence α = 0.05. The p-value we have obtained
applying the Aligned Friedman method is equal to 0.0005. This value is lower
than the chosen level of confidence, which confirms the existence of statistically
significant differences among the results returned by the studied algorithms.
Given that H0 is rejected, we can proceed with the post-hoc procedures to inves-
tigate whether the results returned by the PSO-based methods (PSO and GILT-
PSO) are statistically different from the ones returned by the backpropagation.
To this end, a new null hypothesis H ′

0 is used. H ′
0 states that the performance of

a PSO-based algorithm is identical to the one of the backpropagation, which is
used as a control method. Table 4 reports the adjusted p-values for the post-hoc
procedures for Aligned Friedman test, in case the number of epochs is equal to 2.
In the table, the generic (i, j) adjusted p-value represents the smallest level of
significance that results in the rejection of H ′

0 between algorithm i and the con-
trol method j, i.e., the lowest value for which the algorithm i and the control
method are not statistically equivalent, for the j-th post-hoc procedure. The
lower a value, the more likely the null hypothesis can be rejected. A very impor-
tant feature of such a table is that it is not tied to a pre-set level of significance
α. Rather, depending on the value of α we choose, the post-hoc procedures will
either accept or reject H ′

0. Considering the value used for α, the table says that
the statistical equivalence between backpropagation and GILT-PSO can be sta-
tistically rejected by all of the post-hoc procedures, except for Bonferroni since
the adjusted p-values for those methods are lower than 0.05. Furthermore, the
statistical equivalence between PSO and backpropagation cannot be rejected by
all the procedures.
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For the number of epochs equal to 3, the results of the post-hoc analysis
are reported in Table 5. Considering the value used for α, this analysis suggests
that the statistical equivalence between backpropagation and GILT-PSO can
be rejected by all of the post-hoc procedures except for Bonferroni, as all the
adjusted p-values for those methods are smaller than 0.05. Moreover, the sta-
tistical equivalence between PSO and backpropagation cannot be statistically
rejected by all the procedures.

5 Conclusions

A new greedy optimization algorithm, called greedy iterative layered train-
ing (GILT), to optimize the synaptic weights of an artificial neural net-
work (ANN), was proposed in this paper. GILT uses a population-based opti-
mization heuristic and works by optimizing the weights by layers. At each step,
the synaptic weights of one layer are optimized, without modifying the weights
of all the other connections in the network. Given that in this study we used
particle swarm optimization (PSO), the system was referred to as GILT-PSO.

According to the presented results, GILT-PSO outperforms backpropaga-
tion when considering the best networks trained among a set of 30 runs; it also
outperforms PSO in terms of training time, while maintaining a comparable
exploratory power. The presented statistical analysis shows that there is a sig-
nificant difference between the results returned by GILT-PSO and the ones of
backpropagation. Furthermore, the results returned by GILT-PSO in the differ-
ent runs possess a smaller standard deviation than the ones of backpropagation,
which seems to indicate that GILT-PSO may exhibit more stable (and thus more
reliable) behavior.

These achievements are important and encourage us to pursue the study,
particularly considering that GILT benefits from other potential advantages: it
is not bounded to a specific optimization technique or fitness measure. In other
words, in principle, it can be used not only with the PSO but also with any other
population-based optimization heuristic. Moreover, when defining a new fitness
measure and a new representation for the individuals, GILT can also be used to
evolve the structure of the network as well as the neurons activation functions.

In the future, we plan to extend the study by using other types of opti-
mization techniques, instead of PSO, and by extending the representation of the
solutions and the fitness in such a way that GILT can be used to optimize the
synaptic weights, the structure of the network and the activation functions of the
neurons at the same time. Moreover, we plan to implement minibatch learning
to increase the efficiency of our methodology. Furthermore, to better assess the
capabilities and limitations of the proposed algorithm, more (and more complex)
test cases must be considered.

Finally, we are currently working on the development of strategies to further
improve the efficiency (in terms of training time) of the proposed algorithm. In
the current version, in fact, to calculate fitness we need to perform a certain
number of matrix operations, that involve the evaluation of the whole network.
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But considering that at each step only one layer at a time can change, the process
can be significantly optimized. In particular, each time that a layer is considered,
it is possible to store the results of the partial evaluations of the previous layers.
In this way, we could perform only the matrix operations of the current and
following layers. It makes sense to expect that, particularly for deep networks,
this will represent a considerable performance improvement.
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