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Abstract. Cognitive impairments affect millions of persons worldwide,
and especially elderly ones. These impairments may be one of the first
signs of the arising of neurodegenerative diseases, such as Alzheimer’s and
Parkinson’s, and it is expected that the incidence of this kind of diseases
will dramatically increase worldwide in the near future. For this reason,
the improvement of the tools currently used to diagnose these diseases
is becoming crucial. Handwriting is one of the human skills affected by
this kind of impairments, and anomalies such as micrographia have been
adopted as diagnosis sign for the Parkinson’s disease. In a previous paper,
we presented a study in which the handwriting of the subjects involved
was recorded while they were performing some elementary tasks, such
as the copy of simple words or the drawing of elementary forms. Then
we extracted the features characterizing the dynamics of the handwrit-
ing and used them to train a classifier to predict whether the subject
analyzed was affected by a cognitive impairment or not. In this paper,
we present a system that uses a genetic algorithm to improve of the per-
formance of the system previously presented. The genetic algorithm has
been used to select the subset of tasks that allow improving the predic-
tion ability of the previous system. The experimental results confirmed
the effectiveness of the proposed approach.

Keywords: Genetic algorithms · Handwriting · Alzheimer’s disease ·
Parkinson’s disease · Neurodegenerative disorders

1 Introduction

Cognitive impairments are defined as cognitive decline greater than expected for
an individual’s age and education level but that does not interfere deeply with
activities of daily life. Their symptoms can remain stable or even disappear,
but for more than half of the cases they evolve into dementia diseases [10],
thus their early identification could lead to the prevention of dementia diseases.
Moreover, some types of cognitive impairments have a high risk of progression
to Alzheimer’s disease (AD), and then they can be considered as prodromal
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symptoms of this disorder. The risk of being affected by Alzheimer’s increases
strongly with age thus it is expected that in the next decades the incidence
of cognitive impairments will dramatically increase [19]. To date, Alzheimer’s
clinical diagnosis is performed by physicians that, in most cases, in addition to
cognitive tests, perform some invasive biomarker tests, e.g. cerebrospinal fluid
tests. This creates a strong need for the improvement of the approaches currently
being used for diagnosis of these diseases.

One of the basic skills compromised by cognitive impairments is certainly the
handwriting [3,16,17,24]. In fact, it has been observed that some handwriting
anomalies can be used as diagnostic signs. For example, has been found that the
handwriting of Alzheimer’s patients shows alterations in spatial organization and
poor control of movement [18,20]. Most of the studies which analyze the effects of
cognitive impairments on handwriting have been conducted in the medical field,
with few studies adopting classification algorithms to analyze people’s handwrit-
ing to detect those affected by cognitive impairments. Moreover, almost all of
these studies have involved a few dozens of subjects, thus limiting the effective-
ness of classification algorithms. To try to overcome these problems, in [8] the
authors proposed a protocol consisting of twenty five handwriting tasks, with
the aim of investigating how cognitive impairments affect the different motor
and cognitive skills involved in the handwriting process. The protocol has been
then adopted to collect handwriting data from about one hundred seventy-five
subjects, both cognitive impaired or healthy. This data has been then used to
build a system in which two kinds of pen traits were distinguished, i.e. on-paper
and on-air. With the former representing the movements in which the pen is
touching the paper, whereas the latter are those in which the pen is on air dur-
ing the handwriting process. It is worth noting that in the literature has been
found that this distinction allows a better characterization of the handwriting
anomalies caused by cognitive impairments [9,13,14]. For each task, the features
extracted have been employed to train two classifiers, both for on-paper and
on-air features [6,7]. Finally, in order to predict the cognitive state of a subject
(healthy or impaired) the fifty responses provided by the classifiers trained on
the single tasks were combined according to the Majority-vote rule.

In the scenario outlined above, it arises the need to optimize system perfor-
mance. The need is twofold: from one hand we want to maximize the prediction
performance of the system; on the other hand, we want to reduce the number
of tasks to be performed. This optimization problem can be seen as a combina-
torial one, in which given the set T = {t1, t2, . . . , tn}, the best subset must be
found, according to a given evaluation function (the prediction performance in
our case). Though the best subset can be found by exhaustively evaluating all
the possible solutions, this search strategy is impracticable in our case, where
the total number of possible solutions is 250 ≈ 1015. For this reason, a heuristic
search is needed. Since Genetic Algorithms (GAs) are well-known for their global
search ability without using any domain knowledge or assumptions about the
search space, they have been widely used for this kind of combinatorial prob-
lems. This is because GA binary vectors provide a natural and straightforward
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representation for item subsets: the value 1 or 0 of the chromosome i-th element
indicates whether the i-th item is included or not in the subset represented by
the chromosome.

Because of their search-ability Evolutionary algorithms have been also used
for health applications. In particular, GA and GP have been mostly used. As
concerns the GP-based approaches, they have been used in a wide range of
applications. For example, in [2], the authors proposed a constrained-syntax GP-
based algorithm for discovering classification rules in medical data. The authors
tested their approach on five datasets and achieved better results than decision
trees. In [4], instead, the authors tackled a problem related to the physio-chemical
properties of proteins, involving the prediction on these properties in tertiary
structure. The authors proved that the proposed approach was more effective
than artificial Neural Networks and Support Vector Machines. More recently, the
Cartesian GP approach has been used to automatically identify subjects affected
by the Parkinson’s disease through the analysis of their handwriting [22,23]. GP
algorithms have been also used as a tool to support medical decisions for treating
rare diseases [1].

Also GA has been widely used in medical applications, in most of the med-
ical specialities, e.g., medical imaging, rehabilitation medicine, and health care
management [11]. As concerns neurodegenerative diseases, in [25] the authors
used a GA with Multi-Objective fitness function to find the relevant volumes of
the brain related to the Alzheimer’s disease, whereas in [15] the authors used a
GA to search the optimal set of neuropsychological tests, to be used to build a
system for the prediction of the Alzheimer’s disease.

Note that, to the best of our knowledge, there are no other studies in which
a GA has been used to improve the performance of a system for the prediction
of cognitive impairments, based on handwriting analysis.

In this paper, we present a GA-based system for the improvement of the
prediction performance of the system described above. In particular, the devised
system selects the subset of tasks, both on-air and on paper, that allows improv-
ing the performance of the proposed system in predicting the cognitive impair-
ments of the subjects involved. The final prediction of the cognitive state of a
subject is made applying the majority vote rule to the responses collected from
the selected tasks. The system has been trained by using the dataset made of the
responses provided by the classifier used to predict the cognitive impairment of
a subject for a given task. A part of it has been used as a training set, to imple-
ment the fitness function for evaluating the individuals to be evolved, whereas
the remaining part has been used as a test set to assess the performance of the
system on unseen data.

We tested our approach taking into account four well-known classifiers: deci-
sion trees, random forests, neural networks, and support vector machines. More-
over, in the first set of experiments, we analyzed the generalization ability of the
system as well as its capability in reducing the number of tasks needed to cor-
rectly predict cognitive impairments. Then, by counting the occurrences of the
tasks in the solutions found in the several runs performed, we tried to figure out
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the more relevant tasks. Finally, we compared the proposed approach with the
majority-vote and the weighted majority rules, which are well-known and widely
used strategies for combining the responses provided by several classifiers. More-
over, since the problem in hand is a combinatorial one in which the best subset
must be found, as is the case of feature selection problems [5], we compared our
results with those achieved by a state-of-the-art algorithm for feature selection.
The comparison results confirmed the effectiveness of the proposed approach.

The remainder of the paper is organized as follows: Sect. 2 describes the
data collection and the protocol developed to collect handwriting data. Section 3
details the proposed system. Section 4 displays the experiments and presents the
results achieved. Finally, Sect. 5 is devoted to some concluding remarks.

2 Data Collection and Protocol

In the following subsections, the data collection procedure, the protocol designed
for collecting handwriting samples, the segmentation and feature extraction
methods, are detailed.

2.1 Data Collection

The one hundred seventy five subjects who participated in the experiments,
namely eighty six cognitively impaired patients and eighty nine healthy controls,
were recruited with the support of the geriatric ward, Alzheimer unit, of the
University hospital Federico II in Naples. As recruiting criteria we have took
into account clinical tests (such as PET, TAC and enzymatic analyses) and
standard cognitive tests (such as MMSE). As for the healthy controls, in order
to have a fair comparison, demographic as well as educational characteristics
were considered and matched with the patient group.

The data were collected by using a graphics tablet, which allowed the subjects
to write on standard A4 white sheets using an apparently normal pen: such a
pen produces both the ink trace on the sheet and the digital information, which
are recorded on the tablet in the form of spatial coordinates and pressure for
each point, acquired at a frequency of 200 Hz. The tablet also records the in-air
movements (up to a maximum of three centimetres in height). In this condition,
the subject should not change his natural writing movements as it happens, for
instance, when the writing is produced with a stylus on the surface of a tablet.

2.2 Protocol

The aim of the protocol is to record the dynamics of the handwriting, in order
to investigate whether there are specific features that allow us to distinguish
cognitively impaired subjects from the healthy ones. The goal of these tasks
is to test the patients’ abilities in repeating simple as well as complex graphic
gestures, which have a semantic meaning, such as letters and words of different
lengths and with different spatial organizations. The tasks considered for this
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Fig. 1. The layout of the proposed system. Note that in our case n = 25.

study are been presented in [8], and they are arranged in increasing order of
difficulty, in terms of the cognitive functions required. Taking into account their
objectives, we have grouped the tasks as follows:

– Graphic tasks, whose objective is to test the patient’s ability in: (i) writing
elementary traits; (ii) joining some points; (iii) drawing figures (simple or
complex and scaled in various dimensions).

– Copy and Reverse Copy tasks, whose objective is to test the patient’s abilities
in repeating complex graphic gestures, which have a semantic meaning, such
as letters, words and numbers (of different lengths and with different spatial
organizations).

– Memory tasks, whose objective is to test the variation of the graphic section,
keeping in memory a word, a letter, a graphic gesture or a motor planning.

– Dictation, whose purpose is to investigate how the writing in the task varies
(with phrases or numbers) in which the use of the working memory is neces-
sary.

3 The Proposed System

The following subsections details the steps performed to implement the proposed
system (see Fig. 1).

3.1 Segmentation and Feature Extraction

We extracted both on-paper and on-air features by considering their segmen-
tation in elementary strokes assuming as segmentation points both pen-up and
pen-down, as well as the zero-crossing of the vertical velocity profile. The feature
values were computed for each stroke and averaged over all the strokes relative
to a single task. In particular, from each task, we have extracted the following
types of features:

(i) Static features: Start time; Duration; Initial vertical position; Vertical
dimension; Initial horizontal position; Horizontal dimension; Inclination
from the initial point to the final point; Loop surface; Absolute size.
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(ii) Dynamic features: Vertical speed peak; Peak of vertical acceleration;
Straightness error; Relative initial inclination; Time relative to the verti-
cal speed peak; Relative duration of the on-paper sections; Average speed;
Absolute Jerk: the Root Mean Square (RMS) value of the absolute jerk on
all samples of a stroke or segment; Normalized Jerk; Number of points of
acceleration peaks; Average pen pressure.

Note that we have separately redefined and computed the features over on-paper
and on-air traits since in the literature has been found that the two conditions
exhibit significant differences in characterizing the handwriting anomalies caused
by cognitive impairments [9].

3.2 Classification

Once the features were extracted, for each task, two classifiers were trained (both
for on-paper and on-air features), and the test predictions obtained using the
5-fold cross-validation was stored. As a consequence, at the end of this step,
for each classification algorithm considered, a dataset containing one hundred
seventy-five samples was available, one for each subject, with each sample con-
sisting of fifty predictions. The datasets so built were used to train and test the
GA module detailed in the next subsection. In particular, a part of it was used
as the training set (Tr in the following), to implement the fitness function for
evaluating the individuals to be evolved, whereas the remaining part was used
as test set (Ts) to assess the performance of the system on unseen data.

3.3 GA for Task Selection

To optimize the performance of the system in predicting the cognitive state of
the involved subjects, we used a GA to select the subset of fifty tasks (both on-air
and on-paper) that allows the system to achieve the best prediction performance.
As mentioned in the introduction, we used a GA because this algorithm is well-
known for its global search ability and also because it provides a natural and
straightforward representation of item (tasks in our case) subsets: the value 1 or 0
of the chromosome i-th element indicates whether the i-th item (task) is included
or not in the subset represented by the chromosome. Given the i-th individual
to be evaluated, representing the task subset si, its fitness was computed by
considering in the majority-vote rule only the tasks included in si (see Fig. 1).

The GA was implemented by using a generational evolutionary algorithm,
which starts by generating a population of P individuals, randomly generated.
Afterwards, the fitness of the generated individuals is evaluated by computing
the prediction accuracy on Tr. After this preliminary evaluation phase, a new
population is generated by selecting P/2 couples of individuals using the tourna-
ment method, of size t. The one point crossover operator is then applied to each
of the selected couples, according to a given probability factor pc. Afterwards,
the mutation operator is applied with a probability pm. The value of pm was



Using Genetic Algorithms for the Prediction of Cognitive Impairments 485

set to 1/50, where 50 is the chromosome length, i.e. the total number of avail-
able tasks. This probability value allows, on average, the modification of only
one chromosome element. This value has been suggested in [21] as the optimal
mutation rate below the error threshold of replication. Finally, these individuals
are added to the new population. The process just described is repeated for Ng

generations.

4 Experimental Results

We tested our approach by training four well-known and widely-used classi-
fiers: decision trees (DT), random forests (RF), neural networks (NN), and sup-
port vector machines (SVM). Thus, according to the procedure detailed in Sub-
sect. 3.2, we built up four datasets, where each sample contained the responses
provided by the given classifier on the fifty tasks, i.e. twenty five for the on-
paper features and twenty five for the on-air features (see Fig. 1). Each dataset
was split into two parts, statistically independent: a training set Tr, made of the
80% of the available samples, and a test set Ts, made of the remaining samples.
Tr was used to evaluate the individuals’ fitness, whereas Ts was used to assess
the performance of the best individual on unseen data. For each dataset, we
performed fifty runs and at the end of each run, the task subset encoded by the
individual with the best fitness was stored as the solution provided by that run.
The results reported in the following were computed by averaging those obtained
by the fifty best individuals stored. As for the parameters of the GA, we per-
formed some preliminary trials to set them. These parameters were used for
all the experiments described below and are reported in Table 1. We performed
three sets of experiments. In the first set, we analyzed the generalization ability
of the GA-based system as well as its capability in reducing the number of tasks
needed to correctly predict cognitive impairments. To this aim, we have plotted
the training and test accuracy of the best individual as well as the population’s
average number of selected tasks and the number of the selected tasks of the best
individual during the fifty runs performed. As concerns the second set of exper-
iments, we analyzed the number of occurrences of the selected tasks in order to
figure out which are the most relevant ones. Finally, we compared the results

Table 1. The values of the parameters used in the experiments.

Parameter Symbol Value

Population size P 100

Crossover probability pc 0.6

Tournament size t 5

Elitism e 2

Mutation probability pm 0.02

Number of Generations Ng 1000
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(a) DT

(b) NN

Fig. 2. Evolution of accuracy and average number of selected tasks for DT and NN
classifiers.

achieved by the proposed approach with those obtained by the majority-vote
and weighted majority rules as well as those achieved by the floating Forward
Selection (FFS) algorithm.

The plots obtained from the first set of experiments are shown in Figs. 2 and
3. The plots show the evolution of: (i) the average training and test accuracy
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Fig. 3. Evolution of accuracy and average number of selected tasks for RF and SVM
classifiers.

of the best individual; (ii) the average number of selected tasks for the best
individual and the whole population, computed by averaging the values of the
fifty run performed. From the plots, it can be seen that, for every classifier, the
GA did not suffer overfitting, because the test and train curves show similar
trends, although train and test accuracies differ a lot among the classifiers. Most
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probably, these differences depend on the generalization ability of the classifiers,
with the DT and NN exhibiting very good results, whereas RF and SVM achieved
poor generalization results. A common, and very interesting, trend emerging
from the plots is that as the number of iterations increases the fitness function
increases, even if only slightly, and the number of selected tasks, both average
and best, decreases. At the end of the run, for every classifier, about less than
half of the tasks were selected. Moreover, it is worth noting that the number of
selected tasks of the best individual is always less than the average one. This
seems to confirm our assumption that better prediction performance can be
achieved by suitably selecting a subset of the whole set of available tasks.

The histograms of the second set of experiments are shown in Figs. 4 and 5.
They show the number of occurrences of the selected tasks, computed on the
fifty runs performed. Gray and white bars represent on-air and on-paper tasks,
respectively. The histograms does not show a common pattern, with some tasks
more selected for a given classifier and less or even far less for the remaining ones,
as is the case, for example, for the task 1 (signature), which was selected about
twenty times for the DT and far less for the remaining classifiers. This depends
on the fact that for a given task the classifiers achieved different prediction
performances. The only aspect shared by the four histograms is that for the
same task the number of occurrences of the on-paper and on-air tasks differs
little. This is due to the fact that, for every task, for a given classifier, the
prediction performance of on-air and on-paper features are very similar.

In order to test the effectiveness of our system, we compared its results with
those achieved by the majority-vote and the weighted majority rules, which are
well-known and widely used strategies for combining the responses provided by
several classifiers. The first rule, given a set of responses to be combined, in our
case the prediction provided by the classifiers for the single tasks, assigns an
unknown sample (a subject in our case) to the class (CI or HC) that has the
highest occurrence among those provided by the whole set of classifiers. As for
the second rule, it takes into account the prediction performance of the single
classifiers by multiplying each response with the training accuracy achieved by
the related classifier. Finally, since the problem in hand is a combinatorial one in
which the best subset must be found, as is the case of feature selection problems,
we compared our results with those achieved by the Sequential Forward Float-
ing Search Algorithm (SFS in the following). This strategy searches the solution
space by using a greedy hill-climbing technique. It starts with the empty set of
features and, at each step, selects the best feature according to the subset eval-
uation function. SFS stops when the addition of a new feature does not produce
any improvement. Further details can be found in [12]. To statistically validate
the comparison results, we performed the non-parametric Wilcoxon rank-sum
test (α = 0.05). Comparison results are shown in Table 2, where the values in
bold are the best ones, for a given classifier, according to the Wilcoxon test.
From the table, it can be seen that the DT achieved the best overall prediction
performance. Moreover, the GA achieved much better results than those of the
combination rules. The GA largely outperforms SFS, on all the four classifiers
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(a) DT

(b) NN

Fig. 4. Number of occurrences of the selected tasks for DT and NN classifiers.

considered, confirming its effectiveness. Finally, it is worth noting that the stan-
dard deviations exhibited by the GA results are significantly lower than those of
the other results confirming the average good quality of solutions found by our
system.
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(a) RF

(b) SVM

Fig. 5. Number of occurrences of the selected tasks for RF and SVM classifiers.
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Table 2. Comparison results. For each classifier the best result is highlighted in bold.

Classifier GA MjV WMjV FFS

Avg Dev Avg Dev Avg Dev Avg Dev

DT 91.26 1.75 83.40 5.89 83.43 5.8 68.86 7.1

NN 89.20 2.23 72.00 6.93 73.34 6.3 77.02 3.6

RF 81.71 2.29 67.83 5.68 68.13 5.68 76.69 2.0

SVM 82.11 2.05 79.09 5.98 79.14 5.92 70.05 7.3

5 Conclusions

Cognitive impairments are one the first signs of the arising of neurodegenera-
tive diseases and it is expected their incidence will increase in the near feature.
Thus, the improvement of the tools currently available to diagnose these dis-
eases is becoming crucial. Since handwriting is one of the human skills affected
by cognitive impairments, it can be analyzed to detect this kind of diseases.

In this paper, we presented a GA-based approach for the improvement of
the performance of a system that record and analyze the handwriting of the
involved subjects in performing some simple tasks, in order to detect those that
are cognitively impaired. In particular, the system selects the subset of tasks
that allow the maximization of the prediction performance.

In the experiments performed we tested the generalization ability of the sys-
tem as well as its capability in reducing the number of tasks needed to correctly
predict cognitive impairments. Moreover, we also tried to figure out which are
the more relevant tasks, i.e. those most frequently selected by the GA in the per-
formed runs. Finally, we compared our results with those of the majority-vote
and the weighted majority rules, as well as the sequential floating search algo-
rithm. The experimental results showed that the proposed system has a good
generalization ability, by selecting only half of the available tasks. As concerns
the relevance of the single tasks, the results showed that it varies greatly among
the different classifiers considered; most probably, this depends on the fact that,
for a given task, they exhibit a wide performance variability. As concerns the
comparison results, they confirmed the effectiveness of our system.
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