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Abstract. Perceived to be one of the cornerstones of the emerging next
generation (5G) networks, Network slicing enables the accommodation
of multiple logical networks with diverse performance requirements on a
common substrate platform. Of particular interest among different facets
of network slicing is the problem of designing an individual network slice
tailored specifically to match the requirements of the big-bandwidth next
generation network services. In this work, we present an exact formula-
tion for the network slice design problem under traffic uncertainty. As
the considered mathematical formulation is known to pose a high degree
of computational difficulty to state-of-the-art commercial mixed integer
programming solvers owing to the inclusion of robust constraints, we
propose a meta-heuristic based on ant colony optimisation algorithms
for the robust network slice design problem. Experimental evaluation
conducted on realistic network topologies from SNDlib reveals that the
proposed meta-heuristic can indeed be an efficient alternative to the
commercial mixed integer programming solvers.

Keywords: Ant colony optimisation · Meta-heuristics · Robust
optimisation · Data uncertainty · Network slicing

1 Introduction

Powered by cloud computing and virtualisation techniques, Network softwari-
sation has paved the way for a holistic transformation of the underlying mono-
lithic ICT infrastructure into a software-defined infrastructure where the legacy
hardware-based networking components are replaced by software-based functions
executed on general-purpose hardware [1,17]. While this increases the flexibility
in deployment, operation and management of immersive next generation services,
it is also expected to significantly improve the revenue of the network operators
[22]. To leverage the benefits of network softwarisation, NGMN proposes the
concept of Network slicing as a basis for enabling co-existence of a myriad of
logical, self-sufficient, autonomous networks with distinct attributes on a shared
substrate platform further opening up newer business prospects in the form of
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Over-The-Top (OTT) content/service providers such as Amazon, Hulu, Netflix
[23,24]. Each of these logical networks, henceforth termed as network slices, rep-
resents an abstraction of a fraction of the shared physical substrate network
resources tailored to meet customer/vertical-specific performance requirements.

Network slicing has gained traction in the recent years for its ability to pro-
vide “on-demand”, end-to-end slices composed of an assortment of compute,
storage, network, radio resources for a wide array of verticals/use-cases thereby
empowering network operators to achieve the stringent yet diverse requirements
of the emerging next generation (5G) services [19,24,26]. For example, deploy-
ing a network slice along a dynamic railway corridor will require very specific
characteristics like high mobility, low latency and low throughput whereas a
slice dedicated for collaborative automation within an industrial environment
demands high reliability, guaranteed throughput with a relaxed mobility pol-
icy. Notwithstanding the imminent benefits, realising network slicing in practise
entails several algorithmic challenges ranging from efficient resource provisioning
mechanisms to online admission control policies [29].

Earlier proposals handled network slicing exclusively as a resource partition-
ing problem as in the virtual network embedding (VNE) problem addressed
in [10,16,18]. Recent works have attempted to broaden the problem statement
from merely assigning substrate network resources to pre-defined network slice
requests to encompassing the design of the individual network slices (i.e., the
network slice topology, the number of required virtual functions, their dimension-
ing, and the interconnections) as well as considering the impact of the stochastic
traffic demands in the problem formulation [3,4]. In this work, we consider the
problem of designing a large-scale logical network slice capable of handling the
uncertain nature of traffic demands proposed in [4]. We first present an exact for-
mulation for the network slice design problem (NSDP) under uncertainty where
the uncertain traffic demands in the network slice request are characterised using
the multi-band uncertainty model proposed by Büsing and D’Andreagiovanni
[9]. The multi-band uncertainty model extends the Γ -robustness model [5] by
partitioning the deviation interval into multiple sub-intervals thereby returning
solutions with reduced conservatism without compromising on their robustness
guarantees against traffic uncertainty.

The robust counterpart of the network slice design problem is known to pose
computational challenges to state-of-the-art commercial mixed integer program-
ming (MIP) solvers due to the inclusion of robust constraints. This observation
is in line with prior works that tackle the presence of uncertainty in the prob-
lem formulation as in [10,11]. Inspired by the performance of the ant colony
optimisation (ACO) algorithms on several real-world problems such as the trav-
elling salesman problem (TSP), vehicle routing problem (VRP) and so on [8],
we propose a meta-heuristic approach to solve the robust network slice design
problem. Our approach employs the MAX − MIN ant system [27] variant of
the ACO algorithms within a hyper-cube framework [7] to guide the variable
fixing procedure for the considered problem. Experiments conducted on a range
of realistic network topologies from SNDlib [25] reveal that the proposed ACO-
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based meta-heuristic returns solutions of improved quality in comparison to the
commercial MIP solvers.

The paper is structured as follows: We present a mathematical model for the
robust NSDP by employing a multi-band uncertainty model in Sect. 2 followed
by our ant colony optimisation approach to solve the robust NSDP in Sect. 3.
Experimental results are presented in Sect. 4 with a conclusion in Sect. 5.

2 Robust Network Slice Design

In this section, we present the mathematical model for the robust network slice
design problem. The physical substrate network infrastructure is modelled as an
undirected graph G composed of a network of nodes V connected by edges E. The
residual (i.e. unused) capacities of the nodes and edges are denoted by c0v ∈ R≥0

and c0e ∈ R≥0, respectively. The costs per allocated unit of the substrate network
resources to the network slice is given by γ0

v ∈ R+ and γ0
e ∈ R+, respectively.

Additionally, we allow the expansion of substrate network capacity in discrete
steps of size cv ∈ Z+ and ce ∈ Z+ incurring a one-time installation costs denoted
by γv ∈ R+ and γe ∈ R+, respectively.

We assume the network slice to be composed of a set of demands K, where
each demand k is associated with an uncertain traffic volume dk ∈ R that must
be routed from source sk to destination tk through a sequence of network func-
tions F k = 〈fi | i ∈ N〉 usually derived from the corresponding service graph
[2]. To comply with the restrictions arising due to technological, economic or
geographical limitations, or security issues, we assume that only a subset of the
substrate nodes V (fi) ⊆ V are capable of offering the functionality fi in virtual
modules of size cf ∈ Z+.

In this work, we cast the NSDP under uncertainty within a layered graph
framework [20]. This is achieved through the following steps: The given undi-
rected graph G is converted into a directed graph G′ = (V,A), where for every
edge {u, v} ∈ E we add two arcs (u, v), (v, u) to A. The digraph G′ is then trans-
formed into a layered graph Gk

L = (V k
L , Ak

L), where the newly-constructed vertex
set V k

L = {vi | v ∈ V, 1 ≤ i ≤ |F k| + 1} is obtained by creating |F k| + 1 copies of
the nodes in V . We retain the connection of the vertices according to the original
digraph G′ to obtain Ak,E

L = {(ui, vi) | (u, v) ∈ A, 1 ≤ i ≤ |F k| + 1}. We then
encode the potential routing of the demand k through the network functions F k

by creating a set of inter-layer arcs Ak,V
L = {(vi, vi+1) | v ∈ V (fi), 1 ≤ i ≤ |F k|}.

Finally, we let Ak
L = Ak,V

L ∪ Ak,E
L to complete the transformation.

A formal problem statement for the robust network slice design problem can
now be stated as:

Definition 1. The robust network slice design problem. Let G = (V,E) denote
the physical substrate network infrastructure with residual node and edge capac-
ities c0 : V → R≥0 and c0 : E → R≥0 expressed in bits per second, whose costs
per occupied unit bandwidth is given as γ0 : V → R≥0 and γ0 : E → R≥0. Let
the node and edge capacities be expanded, optionally, in discrete steps of size
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c : V → Z+ and c : V → Z+ costing γ : V → Z≥0 and γ : E → Z≥0 per unit
module of installed capacity. Given a set of demands K, where each demand k
is associated with an uncertain traffic flow of volume d : K → R from sk to tk

through a sequence of network functions F k, the robust network slice design prob-
lem on a transformed layered graph instance Gk

L = (V k
L , Ak

L) concerns routing
the uncertain traffic volume of each demand over the layered graph instance such
that the cumulative costs of substrate resource utilisation and potential capacity
expansions to host the network slice are minimised.

To this end, we employ the following family of decision variables to model
the robust NSDP. Variables xk

a ∈ {0, 1} indicate if demand k is routed over arc a
of the layered graph. Variables yvf ∈ Z≥0 specify the number of virtual modules
allocated to the network function f hosted on node v. Variables yv ∈ Z≥0 and
ye ∈ Z≥0 specify the number of capacity modules installed on the nodes and
edges of the substrate network, respectively. The robust network slice design
problem takes the form:

min max
d∈D

∑

v∈V

γvyv +
∑

f∈F

∑

v∈V (f)

γ0
vcfyvf

+
∑

e∈E

γeye +
∑

e∈E

∑

k∈K

∑

a∈Ak,E
L (e)

γ0
edkxk

a (1a)

s.t.
∑

a∈δ+
v

xk
a −

∑

a∈δ−
v

xk
a = bk ∀v ∈ V k

L , k ∈ K (1b)

∑

k∈K:f∈Fk

∑

a∈Ak,V
L (f,v)

dkxk
a ≤ cfyvf ∀d ∈ D, f ∈ F, v ∈ V (f) (1c)

∑

f∈F :v∈V (f)

cfyvf ≤ c0v + cvyv ∀v ∈ V (1d)

∑

k∈K

∑

a∈Ak,E
L (e)

dkxk
a ≤ c0e + ceye ∀d ∈ D, e ∈ E (1e)

xk
a ∈ {0, 1} (1f)

yvf , yv, ye ∈ Z≥0 (1g)

Objective function (1a) minimises, for the worst-case realisation of the uncertain
demands, the sum of capacity consumption and capacity installation costs for
accommodating the network slice request on the substrate network infrastruc-
ture. Constraints (1b) are standard flow conservation constraints, where bk = 1
if v = sk, bk = −1 if v = tk, else 0. Constraints (1c) denote the capacity require-
ments of the network functions on the substrate nodes. Constraints (1d) and (1e)
ensure that the consumption of the substrate network resources doesn’t exceed
the available capacity (residual and installed together) at the substrate nodes
and edges, respectively. Note that constraints (1c) and (1e) must hold good for
every realisation of the uncertain traffic flow d contained in the uncertainty set D.
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2.1 Multi-band Uncertainty Model

We consider the multi-band uncertainty model proposed in [9] to design the
uncertainty set D for the robust NSDP. Under this model, we assume the uncer-
tain coefficient dk,∀k ∈ K to be an independent and bounded random variable
represented by the nominal (or forecast) traffic volume d̄k > 0 and a deviation
from the forecast traffic volume d̂k belonging to the deviation range [d̂k

R− , d̂k
R+ ],

where d̂k
R− < 0 and d̂k

R+ > 0 represent the maximum negative and positive devi-
ation from the forecast traffic volume d̄k. The deviation range of each uncertain
coefficient is partitioned into R = R− + 1 + R+ disjoint ranges on the basis of
R deviation values:

−∞ < d̂k
R− < · · · < d̂k

−1 < d̂k
0 = 0 < d̂k

1 < · · · < d̂k
R+ < ∞

A band r ∈ {R−+1, · · · , R+} now corresponds to the range (d̂k
r−1, d̂

k
r ], and band

r = R− corresponds to the single value d̂k
R− . We impose a lower bound θr and an

upper bound Θr on the number of realisations of the uncertain traffic coefficients
in band r, where 0≤ θr ≤Θr ≤ |K| with Θ0 = |K|. To guarantee a feasible real-
isation of the uncertain traffic coefficients, we ensure

∑
r∈{R−,··· ,R+} θr ≤ |K|.

The multi-band uncertainty set for the robust NSDP can now be defined as:

D = {dk ∈ R | dk = d̄k +
r=R+∑

r=R−
d̂k

rzk
r ,∀k ∈ K, z ∈ Z}

where

Z =
{
θr ≤

∑

k∈K

zk
r ≤ Θr ∀r ∈ {R−, · · · , R+}

r=R+∑

r=R−
d̂k

rzk
r = 1 ∀k ∈ K

zk
r ∈ {0, 1}}

2.2 The Multi-band Robust NSDP

Since the goal of the decision maker is to be protected against the worst-case
realisation of the uncertain traffic coefficients in multi-band uncertainty set D,
we introduce additional terms DEVΓ

vf (x,D) and DEVΓ
e (x,D) in every equation

affected by the uncertain coefficients dk in the robust NSDP indicating addi-
tional capacities required at the network functions and the substrate edges in
order to cope with traffic uncertainty. These terms, however, render the robust
NSDP formulation non-linear and can be linearised by transforming the inner
maximisation problem into its dual equivalent as follows:
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DEVΓ
vf (x,D) = max

∑

k∈K:f∈Fk

∑

a∈Ak,V
L (f,v)

∑

r∈R

d̂k
rxk

azk
rvf (2a)

s.t.
∑

k∈K:f∈Fk

zk
rvf ≤ Γr ∀r ∈ R (2b)

∑

r∈R

zk
rvf ≤ 1 ∀k ∈ K : f ∈ F k (2c)

zk
rvf ∈ {0, 1} (2d)

where binary variables zk
rvf ,∀k ∈ K : f ∈ F k, r ∈ R take the value 1 if the

coefficient d̂k falls in the r-th band. Objective function (2a) maximises the worst-
case deviation for each constraint (1c). Constraints (2b) ensure that not more
than Γr coefficients deviate in each band whereas constraints (2c) impose that
each coefficient deviates in at most one band. As the constraint matrix of the
problem is totally unimodular [9], variables zk

rvf can be relaxed. By virtue of
strong LP duality, the resulting LP can be replaced by its dual equivalent:

DEVΓ
vf (x,D) = min

∑

r∈R

Γrπ
r
vf +

∑

k∈K:f∈Fk

ρk
vf (3a)

s.t. πr
vf + ρk

vf ≥
∑

a∈Ak,V
L (f,v)

d̂k
rxk

a

∀r ∈ R, k ∈ K : f ∈ F k (3b)

πr
vf , ρk

vf ∈ R≥0 (3c)

where πr
vf ,∀r ∈ R and ρk

vf ,∀k ∈ K : f ∈ F k are dual variables. The dual
equivalent of DEVΓ

e (x,D) can be obtained in a similar fashion. Substituting
the inner maximisation problems with their dual equivalents, we can obtain the
compact reformulation of the robust NSDP for the multi-band uncertainty set.

3 An ACO-Based Meta-Heuristic for the Robust NSDP

In the previous section, we presented a compact reformulation of the robust
NSDP for the multi-band uncertainty set. Through the inclusion of (hard) robust
constraints in the formulation, we restrict the solution space to contain only those
solutions that are robust against traffic uncertainty. Such inclusion is known to
pose computational challenges to state-of-the-art commercial MIP solvers such
as CPLEX as observed in [4,11,12]. To circumvent this computational difficulty,
we present a resolution method that employs the MAX − MIN ant system
[27] variant of the ACO algorithms within a hyper-cube framework [7] to solve
the robust NSDP.

Ant colony optimisation is a stochastic meta-heuristic that draws influence
from the foraging behaviour of real ants [13]. A standard ACO meta-heuristic
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involves a family of computing agents iteratively constructing candidate solu-
tions for the considered problem by means of probabilistic sampling from a set
of solution components. Each solution component is typically associated with two
values of attractiveness - an a-priori pheromone trail value and an a-posteriori
desirability value - that influence the transition probability of the solution com-
ponents. During the construction phase, a computing agent makes a probabilistic
move from the current state (with a partial solution) to the next state by aug-
menting the incumbent solution with a new solution component until a complete
solution is found. The probability of selecting the next move from a set of plau-
sible moves is usually governed by a state transition rule. Upon the completion
of the solution construction phase, the pheromone trail values of the solution
components are reinforced essentially creating a positive feedback mechanism
to aid the construction of improved solutions. The process is repeated until a
termination condition is satisfied. For an exhaustive introduction to the theory
and applications of ACO algorithms, we refer the reader to the works of [8,14].

3.1 A Meta-Heuristic for the Multi-band Robust NSDP

In this section, we sketch our meta-heuristic that employs the MAX − MIN
ant system within a hyper-cube framework to guide the decision making strategy
for our robust NSDP. A crucial decision within the problem formulation is to
determine the routing paths for the network slice demands K in given substrate
network infrastructure. Once the routing template for the network slice demands
is identified, we can easily compute the capacities required to support the iden-
tified routing template to complete the robust network slice design solution. We
accomplish the vital task of identifying the routing template through the ant-
based solution construction module. Algorithm 1 presents a high-level descrip-
tion of the proposed ACO-based meta-heuristic. In the following, we explain, in
further detail, the different phases involved in the meta-heuristic.

Initialisation. In the first step, we set the global-best (xgb, ygb) and restart-best
(xrb, yrb) ant solutions to a null value, the convergence factor cf to 0, and the
boolean variable gb update to false. Similar to [7], the pheromone trail values
T are initialised to 0.5.

Ant-Based Solution Construction. The algorithm starts with a family of
Ψ > 0 computing agents that set out to build feasible solutions to the multi-band
robust NSDP at each iteration. Within the inner construction loop, agent ψ ∈ Ψ
incrementally constructs the solution to the problem as outlined in the Con-

structNSDP(T) module. For every k ∈ K, agent ψ probabilistically selects a
path p from the set of candidate paths Pk over which the traffic of the demand k
can be possibly routed. The probabilities of the candidate paths to feature in the
solution are determined by the following state transition rule proposed in [21]:

prψpk =
α · τpk + (1 − α) · ηpk∑

p∈Pk
α · τpk + (1 − α) · ηpk

(4)
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Algorithm 1. A meta-heuristic for the multi-band robust NSDP
Input: Problem instance, parameter file
1:

(
xgb, ygb

)
:= ∅;

(
xrb, yrb

)
:= ∅; cf = 0; gb update := false

2: for all τpk ∈ T do
3: τpk = 0.5
4: end for
5: while an arrest condition is not met do
6: S := ∅
7: for ψ = 1 : Ψ do
8: (x̄, ȳ)ψ := ConstructNSDP (T)
9: S := S ∪ {(x̄, ȳ)ψ}

10: end for
11: if (iter % 50) = 0 then
12: for ψ = Ψ + 1 : Ψ + 3 do
13: (x̄, ȳ)ψ := ConstructElitistNSDP (T)
14: S := S ∪ {(x̄, ȳ)ψ}
15: end for
16: end if
17:

(
xib, yib

)
:= argmin{f(x̄, ȳ) | (x̄, ȳ) ∈ S}

18: if f
(
xib, yib

)
< f

(
xrb, yrb

)
then

19:
(
xrb, yrb

)
:=

(
xib, yib

)

20: end if
21: if f

(
xib, yib

)
< f

(
xgb, ygb

)
then

22:
(
xgb, ygb

)
:=

(
xib, yib

)

23: end if
24: ReinforcePheromone

(
cf, gb update, T,

(
xib, yib

)
,
(
xrb, yrb

)
,
(
xgb, ygb

))

25: cf := ComputeConvergenceFactor (T)
26: if cf > 0.999 then
27: if gb update = true then
28: for all τpk ∈ T do
29: τpk = 0.5
30: end for
31:

(
xrb, yrb

)
:= ∅

32: gb update := false

33: else
34: gb update := true

35: end if
36: end if
37: end while
38: return

(
xgb, ygb

)

where α ∈ [0, 1] controls the level of influence of the pheromone trail value τ and
the desirability value η. We remark that this rule has the advantage of using sim-
pler computational operations and lesser parameters over the classical transition
rule. Upon termination of the inner construction cycle by agent ψ, we execute
the variable fixing strategy for the robust NSDP as follows: For every demand
k, we activate the arcs comprising the chosen routing path while deactivating
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the remaining arcs, consequently arriving at the fixing of the binary routing
variables xk

a. Having established a complete routing template for the network
slice request, we determine the number capacity modules yvf to be allocated
network functions f ∈ F using (1c). We then check if the substrate network has
enough resources to fulfill the routing template under traffic uncertainty thereby
deriving the fixings for variables yv, and ye, respectively. If no constraint of the
problem is violated, we declare that the computing agent ψ has found a com-
plete feasible solution to the multi-band robust NSDP, the costs for which can
be assessed by using the equation (1a). A formal representation of the solution
construction is depicted in Algorithm 2. At the end of the solution construction
phase, we update variable

(
xib, yib

)
to contain the best solution found by the

ants in the current iteration.

Algorithm 2. Ant-based solution construction (ConstructNSDP)
Input: Problem instance, T
1: Pr := ∅; P = ∅
2: for all k ∈ K do
3: for all p ∈ Pk do
4: prpk := StateTransitionRule (T)
5: end for
6: p := ProbabilisticSampling (Pr, Pk)
7: P := P ∪ {p}
8: end for
9: (x̄, ȳ) := VariableFixing (P)

10: return (x̄, ȳ)

Pheromone Reinforcement. Traditional pheromone reinforcement models
consider only the iteration-best solution to update the pheromone trails. We
employ a rather sophisticated model to update the pheromone trail values of the
candidate paths wherein the pheromone deposit each candidate path receives is
influenced by three different solutions: the iteration-best

(
xib, yib

)
, the restart-

best
(
xrb, yrb

)
and the global-best

(
xgb, ygb

)
solutions. The level of influence of

each of these solutions on the pheromone reinforcement depends on the state of
convergence of the algorithm indicated by convergence factor cf . An update to
the pheromone trail values is now performed by the following rule:

τpk := min{max{τ−, τpk +  · (ωpk − τpk)}, τ+} (5)

where  ∈ (0, 1] is the pheromone evaporation rate, and τ+, τ− are the upper and
lower bounds of the pheromone trail values. The update ensures that pheromone
trail values of the solution components remain in the range [τ−, τ+]. Finally,
parameter ωpk ∈ [0, 1] is expressed as:

ωpk := κib · δ
( (

xib, yib
)
, (p, k)

)
+ κrb · δ

( (
xrb, yrb

)
, (p, k)

)
(6)

+κgb · δ
( (

xgb, ygb
)
, (p, k)

)
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where κib, κrb, and κgb are the weights of the solutions (xib, yib), (xrb, yib), and
(xgb, yib), respectively such that the total sum of the weights doesn’t exceed 1.
These weights are chosen according to the schedule specified in Table 1. The
term δ

(
(x, y) , (p, k)

) ∈ {0, 1} takes the value 1 if the solution component (p, k)
features in the solution (x, y), else 0.

Table 1. The schedule for weights κib, κrb, and κgb depending on the convergence
factor cf and the Boolean update variable gb update.

gb update = false gb update = true

cf < 0.4 cf ∈ [0.4, 0.6) cf ∈ [0.6, 0.8) cf ≥ 0.8

κib 1 2/3 1/3 0 0

κrb 0 1/3 2/3 1 0

κgb 0 0 0 0 1

Convergence Factor. In the final phase of the solution construction, we com-
pute the convergence factor cf which estimates the state of convergence of the
algorithm using the formula (7). A convergence factor of cf ≥ 0.999 indicates
that the algorithm has converged and the probability of finding better solutions
in the future iterations is extremely low. To overcome this, the boolean variable
gb update is set to true and the pheromone trail values are reset to 0.5.

cf := 2 ×
((∑

τpk∈T max(τ+ − τpk, τpk + τ−)

|T| × (τ+ − τ−)

)
− 0.5

)
(7)

This concludes one complete iteration of the ACO-based meta-heuristic for the
robust NSDP. To accelerate the search towards solutions of improved quality,
at every 50th iteration of the algorithm, we introduce a small number of elitist
agents that conduct the probabilistic search on a smaller pool of the short-
est candidate paths P e

k ⊂ Pk for each demand k. As a result of working on a
smaller solution space, these elitist ants may not only find solutions of (possi-
bly) improved quality but also influence the search towards such solutions in the
subsequent iterations.

4 Performance Evaluation

In this section, we validate the performance of the proposed solution methodolo-
gies using realistic problem instances. We consider ten different network topolo-
gies from SNDlib [25] to model the underlying substrate network infrastructure.
For each network topology, the residual capacities of the nodes are drawn at
random from the tuple (2.0,3.0,4.0) Tbps weighted by (0.3,0.4,0.3), and the cost
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per occupied unit of the node resources is set to EUR 12.5/Gbps. Auxiliary
capacity modules of size 40 Gbps can be installed on the nodes at a cost of EUR
50,000 per module. The residual capacities of the edges are sampled at random
from (0.2,0.3,0.4) Tbps with probability (0.3,0.4.0.3). The cost per occupied unit
of the edge resources is set to EUR 5/Gbps. The capacity of the edges can be
optionally expanded in steps of size 10 Gbps with each module costing EUR
20,000.1

We consider the design of a network slice for the use-case of next generation
emergency services for which the set of network functions comprising the ser-
vice is assumed to be F = 〈vf1,vf2,vf3,vf4,vf5〉. These network functions
can be instantiated on substrate nodes in virtual modules of size 1 Gbps. For
every network function f ∈ F , we draw samples of size |V |/2� uniformly at
random from the physical substrate node set V to construct the candidate phys-
ical substrate nodes that support the functionality. Historical traffic traces for
the demands of the network slice are generated using the following three-step
procedure: First, for every demand k, we randomly draw a value from the tuple
(10.0,20.0,50.0) Gbps with probability (0.3,0.4,0.3). Second, to enforce that the
traffic coefficients dk are normal distributed, for each demand k, we draw 1440
samples at random from a normal distribution of mean 0 and standard devia-
tion of 50% of the respective value chosen in the first step. In the final step,
the value determined in the first step is added to each of these 1440 samples to
obtain the historical traffic traces. Each of the constructed problem instances is
now solved using the proposed solution methodologies for bands |R| ∈ {2, 4, 6},
encompassing the 68-95-99.7 areas of the normal distribution of the uncertain
traffic demands.

We employ a single-threaded Linux machine with Intel R© Core
TM

i3-3120M
CPU @ 2.5GHz and 8 GB RAM to conduct the performance evaluation. The
compact reformulation (1) is implemented in JuMP v0.18 [15] —a modelling
language for mathematical optimisation embedded in Julia v0.6 [6] and is solved
using IBM R© ILOG R© CPLEX R© Optimization Studio v12.7.1 [28] with a time
limit of 3600 s. The ACO-based meta-heuristic is coded in Julia v0.6 and a trun-
cated time limit of 2400 s is imposed on each problem instance. The parameters
of the ACO-based meta-heuristic are hand-tuned to the following values: Can-
didate paths considered for the construction of the network slice design solution
are computed using the k−shortest path algorithm [30], where k is set to 10.
Six computing agents are considered for the ant-based solution construction.
Additionally, three computing agents periodically conduct an elitist search to
find improved solutions in quick intervals. The lower and upper bounds for the
pheromone trail values are fixed at τ− = 0.001 and τ+ = 0.999, respectively and
the pheromone evaporation rate  is set to 0.1.

1 As large coefficients are known to pose some problems at various stages of the solu-
tion process in CPLEX, the capacities and demands were scaled down by a factor
of 1 Gbps, and the costs by EUR 1000.
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We evaluate the performance of the proposed solution methods by compar-
ing the absolute gap of the slice design solutions obtained from the respective
methods. The absolute gap of a solution is defined as the difference between its
best integer objective value and the best lower bound to the problem (returned
by CPLEX). Table 2 reports the absolute gaps of the robust network slice design
solutions obtained from the considered solutions methodologies, where |R| indi-
cates the number of bands employed in the multi-band uncertainty set to capture
the uncertain traffic coefficients, “LB” indicates the lower bound to the consid-
ered problem instance which, in this case, is produced by CPLEX, and the values
under columns labelled “Exact” and “ACO” indicate the absolute gaps of the
robust network slice design solutions obtained from the commercial MIP solver
CPLEX and the ACO-based meta-heuristic.

Firstly, the absolute gaps of the robust network slice design solutions from
CPLEX are observed to be exceedingly high as compared to their ACO-based
counterparts consequently rendering these solutions cost-ineffective to imple-
ment in practise. In addition, for 27% of the problem instances, CPLEX couldn’t
find a non-trivial solution. Despite solving these failed instances using a compu-
tationally powerful IBM Decision Optimisation on Cloud service, we observed
a negligible improvement in the absolute gaps of the solutions (in the range of
0–3%). We remark that this behaviour is in line with many of the previous works
where the robust counterparts were often hard to solve for the commercial MIP
solvers thereby justifying the need for scalable heuristic methods [4,11]. The
ACO-based meta-heuristic, on the other hand, performs significantly better by
yielding solutions of reduced absolute gap for 97% of the considered instances.
In most cases, we observe that these solutions are at least an order of magni-
tude better when compared to the state-of-the-art commercial MIP solvers. The
improved performance of the ACO-based meta-heuristic is particularly evident
for larger problem instances (i.e., germany50, janos-us, pioro40) thereby
establishing the effectiveness of the proposed ACO-based meta-heuristic.

In order to further assess the performance of the meta-heuristic, we develop
a simple greedy algorithm to solve the robust NSDP and compare the resulting
solution costs with that of the proposed ACO-based meta-heuristic. The algo-
rithm employs a greedy strategy of routing each demand k of the network slice
request over the shortest path in the substrate network infrastructure. In the
next step, the binary routing variables xk

a are fixed to reflect the shortest path
routings for each demand. After setting up the routing template for the net-
work slice, the remaining variables and the costs of the constructed solution are
derived similar to the procedure outlined in Algorithm 2. While the solutions
returned by the simple greedy algorithm outperform those of CPLEX for 29 of
the considered problem instances, these solutions are still found to be of inferior
quality when compared to those of our ACO-based meta-heuristic.
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Table 2. Numerical results for the robust network slice design problem.

Absolute gap

ID Network |R| LB Exact Greedy ACO

1 france

2 5.21E+4 - 1.48E+4 6.40E+3

4 6.40E+4 7.89E+6 1.43E+4 7.59E+3

6 6.76E+4 9.48E+6 1.41E+4 9.05E+3

2 geant

2 1.35E+5 - 1.66E+4 1.18E+4

4 1.51E+5 9.26E+6 1.80E+4 1.27E+4

6 1.55E+5 1.12E+7 1.87E+4 1.49E+4

3 germany50

2 1.80E+5 - 3.30E+4 2.54E+4

4 0.00E+0 3.32E+7 2.48E+5 2.43E+5

6 0.00E+0 4.02E+7 2.60E+5 2.57E+5

4 india35

2 1.26E+5 5.24E+4 3.26E+4 2.17E+4

4 0.00E+0 2.80E+7 1.88E+5 1.80E+5

6 0.00E+0 3.36E+7 1.96E+5 1.90E+5

5 janos-us

2 2.21E+5 1.14E+5 2.67E+4 1.67E+4

4 2.49E+5 1.51E+7 2.57E+4 1.94E+4

6 0.00E+0 1.86E+7 2.82E+5 2.78E+5

6 newyork

2 3.10E+4 - 1.59E+4 8.79E+3

4 3.82E+4 6.85E+6 1.49E+4 8.76E+3

6 3.98E+4 8.17E+6 1.50E+4 9.51E+3

7 nobel-eu

2 9.36E+4 - 1.92E+4 9.14E+3

4 1.09E+5 - 1.96E+4 1.11E+4

6 0.00E+0 1.01E+7 1.34E+5 1.27E+5

8 nobel-us

2 1.54E+4 - 4.12E+3 5.28E+2

4 1.77E+4 4.97E+5 3.95E+3 9.35E+2

6 1.84E+4 3.75E+2 3.88E+3 7.53E+2

9 norway

2 2.26E+5 2.03E+5 1.74E+4 1.09E+4

4 0.00E+0 2.03E+7 2.76E+5 2.71E+5

6 0.00E+0 2.45E+7 2.84E+5 2.82E+5

10 pioro40

2 2.02E+5 - 4.63E+4 3.08E+3

4 0.00E+0 3.93E+7 2.85E+5 2.77E+5

6 0.00E+0 4.71E+7 2.95E+5 2.90E+5

We now focus on the performance of the ACO-based meta-heuristic over the
course of its execution. Figure 1 traces the evolution of the costs of the robust
network slice design solutions during the ACO-based meta-heuristic execution
for two exemplary networks: janos-us and pioro40. We observe from Fig. 1
that the final best solutions yielded by the ACO-based meta-heuristic show, on
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Fig. 1. Evolution of the objective value of the robust network slice design solutions
yielded by the ACO-based meta-heuristic for bands |R| ∈ {2, 4, 6}.

average, a cost improvement of 8.27% against the initial best solutions over the
course of 2400 s. This improvement is noticeably higher (9.91%) for instances
with |R| = 2, and reduces (to 7.85% and 7.05%) with the increase in the number
of bands. This can be explained as follows: The computational difficulty of the
considered instances increases with the number of bands employed to capture
the uncertain traffic coefficients. As a result, each computing agent ψ consumes
more time at every iteration to construct a feasible solution to the robust NSDP,
limiting the number of ant-based solution construction iterations. We remark
that the computational burden of repetitive evaluation of the objective function
after every iteration of the ant-based solution construction can be lessened by
means of fitness approximation techniques. Re-defining the cost function (1a)
using an approximate cost function may not only reduce the time consumed to
execute the ConstructNSDP module in Algorithm 1 but can also accelerate
the search process of the meta-heuristic through quick identification of good
solutions in the modified solution landscape.

5 Conclusion

In this work, we propose a meta-heuristic based on the ACO algorithms to solve
the robust network slice design problem. Experimentations conducted using real-
istic problem instances reveal that the proposed heuristic is capable of yielding
solutions with improved absolute gaps in comparison to the commercial MIP
solver CPLEX. As a further step, the ACO-based meta-heuristic can be inte-
grated with a perturbative method relying on an exact solver to further improve
the quality of the obtained network slice design solutions. We plan to evaluate
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the performance of the integrated ACO-based meta-heuristic with the existing
solution methods [4] for the robust network slice design problem.
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