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Abstract. Using robots to locate odour sources is an interesting prob-
lem with important applications. Many researchers have drawn inspi-
ration from nature to produce robotic methods, whilst others have
attempted to automatically create search strategies with Artificial Intel-
ligence techniques. This paper extends Geometric Syntactic Genetic Pro-
gramming and applies it to automatically produce robotic controllers in
the form of behaviour trees. The modification proposed enables Geomet-
ric Syntactic Genetic Programming to evolve trees containing multiple
symbols per node. The behaviour trees produced by this algorithm are
compared to those evolved by a standard Genetic Programming algo-
rithm and to two bio-inspired strategies from the literature, both in sim-
ulation and in the real world. The statistically validated results show that
the Geometric Syntactic Genetic Programming algorithm is able to pro-
duce behaviour trees that outperform the bio-inspired strategies, while
being significantly smaller than those evolved by the standard Genetic
Programming algorithm. Moreover, that reduction in size does not imply
statistically significant differences in the performance of the strategies.

Keywords: Evolutionary Robotics · Odour source localisation ·
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1 Introduction

Olfaction enables the detection and localisation of distant targets, even if they
are silent and invisible. While in nature animals use this sense to locate food,
detect danger and mates, humans may use it for locating victims in disaster sce-
narios, detecting illegal substances or tracking sources of pollution. But, locat-
ing odour sources in realistic environments is not easy as the odour particles
released flow with the wind, spreading through molecular diffusion and turbu-
lent dispersion. The resulting chemical plumes are intermittent, containing local
voids and peaks of concentration which hinder the ability to estimate local gra-
dients. The process of locating an odour source has three well-defined stages [1],
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each requiring a distinct behaviour: (1) plume searching, where the agent must
explore the environment, searching for initial odour cues; (2) plume tracking,
where the agent is sensing the odour plume and must follow it to the vicinity
of its source; and (3) source localisation, where the agent is close to the odour
source and must pinpoint its location. Most of the existing works, including the
present one, focus only on the plume finding and tracking stages, assuming that
other sensory perceptions (e.g., vision) are used to identify the odour source once
it is close enough.

Due to the great ability of animals to locate odour sources, many of the pub-
lished works draw inspiration from their behaviours to devise search strategies
[2,3]. The present paper proposes to go one step further, creating new strategies
by means of a new kind of Evolutionary Algorithm. Evolutionary Algorithms
(EA) are stochastic search heuristics inspired by Darwin’s principles of evolu-
tion and by Mendel’s genetics, which have produced good solutions to difficult
problems from many application domains. They have been successfully applied
to design robots and their controllers, yielding the field of Evolutionary Robotics
(ER) [4]. In this work, a sub-family of EAs entitled Genetic Programming (GP)
[5] is used to improve the search strategies encoded as behaviour trees. One of
the purposes of evolving robotic controllers in the form of behaviour trees is to
enable their interpretation by humans. However, GP suffers from bloat, a phe-
nomenon which translates into an uncontrolled growth of the behaviour trees
without a correspondent increase in performance. This growth not only renders
the trees hard to be interpreted by humans, but also hampers their interpreta-
tion by computers, consequently slowing down the evolutionary process. While
there are methods available in the literature to cope with bloat [6] these methods
typically restrict the search ability of the evolutionary algorithm.

This work investigates the ability of Geometric Syntactic Genetic Program-
ming (GSynGP) [7] to evolve the robotic controllers for locating odour sources.
In its original version, this method has been shown to produce controlled vari-
ations of the individuals, resulting in an implicit control of their growth. The
present paper extends GSynGP to enable it to evolve expression trees with mul-
tiple symbols per node. The best controllers produced by GSynGP are compared
to those evolved by the standard Genetic Programming algorithm (SGP) and
to two bio-inspired strategies from the literature, both in simulation and in the
real world. The statistically validated experimental results show that GSynGP
is able to produce behaviour trees that outperform the bio-inspired strategies,
while being significantly smaller than those evolved by SGP. Moreover, there
are no statistically significant differences between the fitness of the strategies
evolved by the two GP algorithms.

2 Background and Related Work

Consider a mobile robot r moving in R2. The robot is equipped with the neces-
sary sensors to measure the wind direction, the concentration of a target odour
and the distance to nearby obstacles. The robot is placed in a bounded arena A
where there is a single odour source S emitting at a constant rate. The location
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of the odour source is unknown. The goal of the robot is to fulfil the first two
stages of the odour source localisation process (i.e., to detect the plume and
follow it to the vicinity of its source) before a time limit T . This section briefly
presents some of the background and related works on odour source localisation.

2.1 Odour Source Localisation Strategies

Over the past decades, researchers have proposed various bio-inspired strategies
for locating odour sources. Similarly to the natural organisms that provide inspi-
ration, those strategies are meant to work under particular environmental con-
ditions. The wind speed is amongst the most relevant environmental variables.
In the presence of very weak winds, odour disperses mainly through diffusion,
whereas in environments with strong wind the odour spreads mainly through
turbulent advection. The resulting dispersion patterns are quite distinct, requir-
ing fundamentally different search strategies.

In environments lacking strong wind, chemotactic strategies are typically
employed, which use only chemical information to guide their search process.
An example of such strategies is the method inspired by the E. coli bacteria
[8], which consists of a biased random walk composed only by rotations and
linear motions. On each iteration, the search agent compares the local chemical
concentration to its previous measurement. If the concentration has increased,
the agent makes a small rotation followed by a large straight motion, continuing
searching roughly in the same direction. Otherwise, it makes a large rotation
followed by a short straight motion, directing the search to another direction.

In environments where there is a strong air-flow, animals typically employ
strategies that use the direction of the wind for guiding the search, i.e., they
perform anemotaxis. A popular anemotactic strategy is inspired by the behaviour
of the Male Silkworm Moth (SM) while tracking a trail of pheromone released
by a female moth [9]. This algorithm is based on three behaviours: straight
line upwind surges when detecting odour, and upwind-centred zigzag or spiral
motions for re-encountering the chemical plume. Another popular anemotactic
strategy is inspired by the Dung Beetle (DB) tracking a cow’s pat [9]. In this
approach, the robot starts with a plume finding behaviour, moving crosswind in
search for odour cues. Upon sensing odour, it performs an odour-centred zigzag
behaviour for tracking the plume to its source. In this behaviour, the robot moves
diagonally upwind, changing direction every time it stops sensing odour.

2.2 Evolutionary Algorithms

Evolutionary Algorithms (EA) are a family of stochastic search heuristics loosely
inspired by the principles of evolution through natural selection and Mendel’s
genetics. The application of these heuristics to the automatic design of robots and
their controllers yielded a novel research area known as Evolutionary Robotics
(ER) [4]. While there are many ways to represent robotic controllers, a popular
choice are Behaviour Trees (BT), which are human-readable directional graphs.
The trees are composed by inner nodes, encoding decision or sequence functions,
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and leaf nodes that encode the actions of the robot. In this work, a Genetic
Programming (GP) algorithm is used for evolving robotic controllers in the form
of Behaviour Trees. GPs [5] are a family of EAs which evolve computer programs
that produce the solutions to a given problem, rather than evolving that solution
directly. The evolved programs are typically represented by expression trees,
composed by inner and leaf nodes. Thus, GPs may be seamlessly used to evolve
behaviour trees. Genetic Programming has already been applied to the evolution
of robotic controllers for odour source localisation [10]. That work differs from
the present one as it focused solely on the evolution of chemotactic strategies,
which where tested in an indoor environment without air flow. Moreover, the
standard Genetic Programming algorithm used is known to suffer from bloat,
producing large expression trees that hinder their interpretation by humans. The
present paper investigates the applicability of a recently proposed geometric GP
algorithm [7] which has been shown to implicitly control bloat. An extension
to that algorithm is made to enable it to evolve expression trees with multiple
symbols per node. This is useful to be able to evolve strategies with complex
behaviours (e.g., zigzag), rather than elementary actions (e.g., move, rotate) as
used in [10]. This algorithm is presented in Sect. 3.

3 Geometric Syntactic Genetic Programming

Geometric variation operators are representation-independent operators based
on a distance defined in the search space interpreted as a metric space [11]. A
geometric crossover operator produces offspring that are on a shortest path (i.e.,
line segment) linking its parents. In turn, a geometric mutation operator pro-
duces an individual in the neighbourhood of the original individual, i.e., within
a ball centred on the original individual whose radius defines the magnitude of
the mutation. Geometric Syntactic Genetic Programming (GSynGP) [7] differs
from the other GP algorithms by performing geometric crossover between two
individuals in the syntactic space. The genotype of each individual is a string
that encodes an expression tree in prefix notation. The crossover operation uses
the Longest Common Subsequence to align the genomes of the two parent indi-
viduals and to create two modification masks, which are used to alter a copy
of one individual so that it becomes more similar to the other. Each iteration
of this crossover consists of performing one of four modifications: (1) removing
one terminal symbol and inserting another of the same type; (2) removing a
non-terminal symbol and inserting another of the same type; (3) removing a
terminal and a non-terminal symbol; and (4) inserting a terminal and a non-
terminal symbol.

As an example, consider the Santa Fe Ant trail benchmark problem [5], for
which the terminal set is {left, right, move} and the function set is {IfFoodAhead,
Progn}. Two possible strategies are:

IfFoodAhead move Progn left moveA:

Progn Progn move move rightB:
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The Longest Common Subsequence between the two individuals is [Progn,
move], and the modification masks created by GSynGP are:

F_IfFoodAhead T_move Progn T_left moveMA:

Progn F_Progn move T_move T_rightMB:

Due to space limitations, the algorithm for creating the modification masks
is not reproduced in this work and we direct the interested reader to [7]. The
modification masks contain three types of symbols: (1) the aligned symbols that
constitute the longest common subsequence (i.e. the aligned common symbols,
whose nodes are presented with a grey background); (2) blank spaces where
insertions or deletions must be made; and (3) the non-common symbols, marked
with a T or F depending on whether they belong to the terminal or function
set, and that should either be deleted or inserted. The crossover operator uses
these masks to make a copy of parent A more similar to parent B. This process
can be repeated for various iterations, generating individuals at different points
in the paths linking the original parents. Two possible offspring for the first
iteration of this crossover operator are:

F_IfFoodAhead T_move Progn left moveO1:

O2: Progn move Progn left move

where O1 results from deleting IfFoodAhead and move, whereas O2 is created
by deleting IfFoodAhead and inserting Progn in its place. In this work, only a
single iteration of the crossover operator is used.

3.1 Extended GSynGP

The original version of Geometric Syntactic Genetic Programming considered
expression trees where each node contains a single symbol. However, in many
cases the nodes of the expression trees may contain more than one symbol. This
work is one of such cases, where the symbols in the function and terminal sets,
called main symbols, take a list of parameters. The proposed variant of the
crossover operator works in the same manner as before when two nodes (one of
each type) are to be removed or inserted. The novelty is when a node is to be
deleted and another of the same type is to be inserted. For the sake of clarity, the
node to be deleted shall be referred to as Nd, whereas the node to be inserted
shall be called Ni. The new crossover operator works as follows:

1. A new node Nn is created with the main symbol of Ni;
2. The parameters that are present only in Nd are ignored, whereas those that

only exist in Ni are added to the new node.
3. The parameters that are common to Nd and Ni are merged as follows: if a

parameter takes a numerical value, it takes the mean value from the parents;
otherwise, k randomly chosen parameters take the value from Ni, while the
remaining take the value from Nd. In this work k was set to 1.
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As an example consider the following two nodes:

– Nd: ZZ (dir = U, dist = 0.5, iters = 1, off = π/4, term = PL(5))
– Ni: SP(s dir = r, dist = 1, dist inc = 0.1, intvs = 7, term = SO())

which are contained in the terminal set described in Sect. 4.3. Further consider
that during a crossover operation, Nd is to be deleted and Ni is to be inserted.
The creation process of the new node Nn is depicted in Fig. 1. As before, Nn

is created with the symbol SP. The parameters dir, iters and off from Nd are
not present in Ni and thus are ignored. The parameters s dir, dist inc and intvs
are only present in Ni and thus are added to Nn with their original values. The
parameter term is present in both nodes but takes a non-numerical value and
thus it is added to Nn with the value from Ni. The only remaining parameter is
dis, which is added to Nn with the mean of the values from Nd and Ni. Nn is
then inserted in the appropriate place using the same method as in the original
version of the crossover operator. The proposed extension to GSynGP enables
it to perform smaller, geometric modifications to the individuals, rather than
simply replacing the different nodes as a whole.

ZZ dir=U dis=0.5 iters=1 off= /4 term=PL(5) SP s_dir=r dis=1 dis_inc=0.1 intvs=7 term=SO()

SP s_dir=r dis=0.75 dis_inc=0.1 intvs=7 term=SO()

Nd Ni

Nn :

Fig. 1. Creation of a new node, merging the parameters of its parent nodes.

4 Experimental Setup

This section presents the robot, simulator and validation environments used for
conducting the experiments, as well as provides details regarding the Genetic
Programming algorithms used.

4.1 Odour-Seeking Robot

The robot used for validating the strategies is an in-house built two-wheeled
differential unit based on DFRobot’s MiniQ 2WD v2.1, that has been extensively
modified. The robot is equipped with a E2V MICS 5524 sensor for measuring
the gas concentration, two SHARP 2YOA21F57 proximity sensors for detecting
nearby obstacles and an in-house built wind vane, which is able to sense the wind
direction in 45◦ intervals. Figure 2 depicts a photograph of this robot, as well
a schematic pointing out its various components. The robot uses a nodeMCU
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ESP8266 to communicate through WiFi with a remote server running the Robot
Operating System Framework [12]. The server receives the sensory information
from the robot, executes the active controller and returns to the robot a motion
command, in the form of a rotation or a linear motion. The STM32 board in
the robot interprets the command and performs the low-level motion-control.
The ESP8266 is also responsible for interfacing with the sensors, through the
ADS1115 analog-to-digital converter.

Fig. 2. (Left) developed robot; (right) schematic of the robot.

4.2 Testing Environments

The robotic simulator presented in [9] is used to evaluate the search strategies
during evolution. The simulated arena is a scaled up version of the real world
arena, measuring 40 by 30 m and containing no obstacles. A single odour source,
modelled according to [13], is placed randomly within a bounded region. Its
behaviour is characterised by two parameters: (1) the chemical release rate,
which is set at 8.3 · 109 molecules/s; and (2) the filament release rate, which is
set accordingly to the intended type of environment. The wind is simulated in a
grid that covers the entire arena. The cells of this grid have a square shape, being
the width of each cell equal to 7% of the arena’s width. At each simulation step
(which is set to 0.5 s), a wind vector is computed for each vertex of this grid. A
Gaussian noise is then added to each vector, emulating the random phenomena
of turbulence. Modifying the standard deviation of this Gaussian distribution, it
is possible to achieve different levels of wind stability. The standard deviation,
along with the filament emission rate and the initial wind velocity are used to
create diverse environmental conditions, as described in the Sect. 4.3. The real
world test arena (Fig. 3) is a 4 by 3 m enclosed rectangular environment with
50 cm of height. The walls along its length are made of plywood, whereas the
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Fig. 3. Validation arena.

others are made of a honeycomb mesh to reduce turbulence. Behind the mesh, on
one of the walls, a set of fans are mounted to create air flow with a mean speed
of 1.6 m/s. A single odour source is created using an air pump and a bubbler
with a 96% solution of ethanol. The bubbler is connected to a hose that emits
the odour at the centre of the arena, i.e., at location (2, 1.5) m. A 25 cm circle
centred on the end of this hose is marked on the floor, representing the goal
region for the robot. The coordinate system of the arena has its origin in the
corner closest to the camera, with the x-axis coinciding with the wall along its
length and the y-axis coinciding with the wall along its width.

4.3 Genetic Programming Algorithms

The Genetic Programming algorithms used in this work evolve the robotic search
strategies in the form of behaviour trees. Each tree is composed by inner and
leaf nodes, both of which contain a main symbol (i.e. the function or action
to execute) and a list of parameters required by that symbol. The algorithms
work as follows: at each generation, a number n offspring of individuals are
created. Each offspring may result from crossover (sub-tree or geometric) from
two parents, or be a copy of an existing individual. In either case, the indi-
viduals are chosen from the population by tournament selection. The offspring
may then be mutated, at which case either its main symbol or a parameter is
altered with equal probability. At the end of each generation, a new population
is created containing the elite size best individuals from the old population, as
well as the best pop size-elite size new individuals to ensure that the population
size remains constant. During preliminary experiments, the algorithms exhibited
signs of premature convergence, which was fought by injecting a set of random
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and elitist immigrants (in equal number) into the population at each genera-
tion. The parameters used by the algorithms are presented on Table 1. The two
Genetic Programming algorithms use the same parameters, differing solely in the
type of crossover. SGP uses sub-tree crossover, whereas GSynGP uses geometric
crossover with one iteration.

Table 1. Parameters of the Genetic Programming algorithms

Parameter Value Description

gens 75 Number of generations used

pop size 50 Size of the population used by the algorithm

n immigrants 20 Number of immigrants injected per generation

n offspring 30 Number of offspring created per generation

max depth 5 Maximum depth of the trees in the initial population

p cross 0.7 Crossover rate

p mut 0.3 Mutation rate

tourn size 2 Size of the tournaments for selecting the parent individuals

The function set used by the GPs contains a set of binary functions devised
to make it easier to use the sensors’ signals, both from the present and past
moments: Fset = {SO,HDO,PL(t),WS(s), P rogn}. Progn is a sequence func-
tion, which executes its two sub-trees in order; SO and HDO respectively inform
whether the robot is currently sensing odour and if it has already sensed odour
in this trial; PL(t) informs whether the robot has not sensed odour for a period
longer than t seconds, t ∈ [1, plume lost time ∗ 0.75], where plume lost time is
a predefined threshold, set at 60 s, above which it is considered that the robot
has definitively lost the plume; WS(s) returns true if the sensed wind speed is
higher than s m/s, s ∈ {0.5, 1.0}.

The terminal set used by the GPs contains the elementary behaviours that
constitute the strategies of the Silkworm Moth and Dung Beetle, which are
adapted from [1]: T set = {Break, ZZ(dir, dis, iters, off, term), PCZZ(dir, dis,
off, term), SP(s dir, dis, dis inc, intvs, iters, term)}. Break stops the robot for a
control step and the interpretation of the behaviour tree is resumed from its root;
ZZ encodes a simple zigzag motion, which is carried out with an offset off to a
specified direction dir, with each linear motion having a given length dis. This
behaviour is made for a number of iterations iters until a termination criteria
term is met; PCZZ encodes an odour-centred zigzag motion similar to that of
the dung beetle, where the robot attempts to regain contact with the plume once
its lost. It consists of performing straight motions, each with a predefined length
dis and an offset off to a specified direction dir. This behaviour is performed
until a termination criteria term is met; SP encodes a rectilinear spiral motion,
composed by intvs line segments until a termination criteria term is met. Each
iteration of this motion is composed by three steps: (1) rotating 2 · π/intvs
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radians, (2) moving linearly for a given distance dis and increment dis with
an amount dis inc. s dir controls whether the spiral is made to the left (l) or
to the right (r). The values of the aforementioned parameters, found through
preliminary experimentation, are:

– term ∈ {C, PL(t = 5), PL(t = 40)}, where C halts the behaviour when all
iterations are completed.

– dir ∈ {U, D, X }, where U, D, X respectively stand for upwind, downwind
and crosswind;

– off ∈ {0, π/3, π/4, π/6};
– dis ∈ {motion length/2, motion length, motion length * 2};
– iters ∈ {1, 2, 3};
– s dir ∈ {l, r};
– dis inc ∈ {motion length * x}, where x ∈ [0, 1];
– intvs ∈ {4, 5, 6, 7, 8, 9, 10};

where motion length is set to 0.5 m.

Fig. 4. Screenshot of the second evaluation environment. The wind vectors W are
presented as black line segments, the odour source S is the filled green circle, the
odour filaments O are empty green circles and the robot R is the filled blue circle with
two red lines representing the ranges of its proximity sensors. (Color figure online)

Evaluation Mechanism. Evaluating odour source localisation strategies is not
straightforward, as chance may enable a bad strategy to find the source. More-
over, accurately matching the odour and air flow conditions created in simulation
and in the real world is not an easy task. For those reasons, an evaluation mech-
anism was devised to provide a good assessment of a strategy’s quality while
increasing its robustness to the reality gap. This evaluation mechanism consists
of evaluating each strategy in 3 environments, each having different air flow and



222 J. Macedo et al.

odour dispersion patterns. Using distinct sets of environmental conditions should
encourage the GPs to find strategies that perform well across various scenarios.
The environments are made different by varying the initial wind speed WS, the
stability of the wind and the rate at which the odour filaments are emitted.
The stability of the wind is varied by using different values for the standard
deviation (WAV) of the Gaussian noise added to the computed wind vectors
(see Sect. 3.1.1 of [9]). As described in Sect. 4.2, the modelled chemical source
emits odour in filaments. Two variables regulate odour emission: the chemical
emission rate (Q̄), which is set at 8.3 · 109 molecules/s and the filament emission
rate (FER), which is set differently for each environment. A screenshot of the
second evaluation environment is presented in Fig. 4.

Table 2. Environmental parameters

Parameter Env. 1 Env. 2 Env. 3

WS 0.1 m/s 1.5 m/s 1.5 m/s

Wind direction 0 rad 0 rad 0 rad

WAV 0.3 rad 0.2 rad 0.3 rad

FER 0.05 Hz 0.7 Hz 2.0 Hz

Kx 6 6 6

Arena size 40 m× 30 m 40 m× 30 m 40 m× 30 m

Cell size 2.8 m 2.8 m 2.8 m

Start region (38 m, 28 m) (38 m, 2 m) (30 m, 28 m)

Simulation step 0.5 s 0.5 s 0.5 s

Simulation time 600 s 600 s 600 s

In each of the three evaluation environments the robot departs from a dif-
ferent start region, reducing the possibility of chance enabling bad solutions to
find the chemical source. The start position of the robot in each environment is
chosen at the beginning of each run and used for all evaluations. The coordinates
of those positions are drawn randomly from Gaussian distributions centred on
the corresponding coordinates of each start region and with a standard devia-
tion of 0.5. The position of the odour source is also drawn randomly for each
trial. Its x-coordinate is drawn from a uniform distribution, ranging between
40% and 45% of the arena’s length, while its y-coordinate is between 48% and
53% of the arena’s width. The values of the parameters used to create the three
environments are presented on Table 2. As previously described, the process of
locating odour sources has different stages, each requiring a distinct behaviour.
On each evaluation, the search strategy must lead the robot to find and track
the odour plume as efficiently as possible. A trial ends successfully when the
robot reaches a location within 25 cm from the odour source. Conversely, it ends
unsuccessfully if the time limit runs out or if the plume is lost for longer than
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plume lost time. The fitness of an individual S is given by the mean perfor-
mance values attained in the three environments, being the performance Fi(S)
in environment i computed by Eq. 1.

Fi(S) =

{
α tsi

T + (1 − α)( ttiT + di

Di
) if the plume has been found

c if the plume has not been found
(1)

where tsi is the time taken to find the plume, tti is the time spent tracking the
plume, T is the evaluation time, di is the final distance to the source and Di

is the maximum possible distance to the source in environment i. α and c are
constant values which, after preliminary experimentation, were set respectively
to 0.5 and 2. This is a minimisation problem.

5 Experimental Results

The first step of this work consisted on devising modular implementations of
two well-known strategies from the literature (SM and DB), where each module
is a elementary behaviour that can later be used by the evolutionary process, as
described in [1]. The two strategies were then optimised using a (1 + 1) version
of the standard Genetic Programming algorithm that relied solely on parameter
mutation. Each optimisation trial was given the same amount of evaluations as
the population-based approaches (i.e., each trial ran for pop size · gens itera-
tions). All of the other parameters are equal to those used by the population-
based approaches, which were presented in Sect. 4.3. Thirty independent optimi-
sation trials were made for these approaches, being the performance of the strate-
gies measured with Eq. 1. The population-based versions of SGP and GSynGP
also ran for 30 independent trials using the parameters described in Sect. 4.3.
The mean performance values and sizes of the best strategies found by each
algorithm are presented on Table 3. As can be seen, the bio-inspired strategies
attain worse mean performance values than those produced by evolution. The
worst performing strategies are produced by SM, with a mean fitness of 0.299,
whereas the best strategies are produced by GSynGP, with a mean performance
of 0.258. The strategies produced by GSynGP are also the most consistent, hav-
ing the lowest std. dev. of 0.03. Regarding the sizes of the evolved strategies,
those evolved by SGP are on average 17 nodes larger than those produced by

Table 3. Results of the search strategies.

SM DB SGP GSynGP

Fitness Mean 0.299 0.285 0.273 0.258

Std. Dev. 0.044 0.0468 0.044 0.030

Size Mean 15 5 26.133 9.133

Std. Dev. - - 17.600 8.131
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GSynGP. Moreover, the strategies produced by GSynGP can be considered to
be of an appropriate size, being only 4 nodes larger than DB and 6 nodes smaller
than SM.

Table 4. Results of the Wilcoxon test applied to the fitness values.

SM-DB SGP-SM SGP-DB SGP-GSynGP GSynGP-SM GSynGP-DB

Z −1.18 −2.29 −1.14 −1.51 −3.30 −2.7

p 0.237 0.022 0.254 0.131 0.001 0.007

SO
ZZ(U,0.1,3,0,PL(40))

ZZ(U,0.05,1,0.785,PL(40))

HDO
PL(28)

SOZZ(U,0.15,3,1.047,PL(5))

Progn

Break

Break

Progn

SP(l,0.05,0.15,5,3,SO()) SO

SP(r,0.1,0.15,5,3,SO())

ZZ(X,0.1,1,0,SO())

HDO

ZZ(X,0.025,3,0.524,PL(5))

PL(28)

PCZZ(U,0.1,0,PL(40))

ZZ(X,0.1,1,0,SO())

HDO

ZZ(X,0.025,2,0,C)

PCZZ(U,0.1,0,PL(40))
SO

HDO

SO

Break ZZ(X,0.025,2,0.785,C)
SO

PCZZ(U,0.05,0.785,PL(5))

ZZ(X,0.025,2,0,C)
PL(32.5)

SO

PCZZ(U,0.04,0,PL(5))ZZ(U,0.1,1,0,PL(40))

HDO

Break ZZ(X,0.06,1,0,C)

Fig. 5. Overall best strategy for the Silkworm Moth (top-left), Dung Beetle (top-right),
SGP (bottom-left) and GSynGP (bottom-right) algorithms. The root nodes are shaded
and are drawn with thicker strokes. The parameters of each node follow the same order
as presented in Sect. 4.3.

In order to be able to draw more robust conclusions, the results obtained
are statistically validated using a confidence interval of 95%. The Kolmogorov-
Smirnov test is used to assess the normality of the distributions. Its results
show that, at the chosen confidence interval, the fitness values of the DB cannot
be considered to follow a normal distribution and, consequently, this analysis
must resort to non-parametric tests. The Friedman’s Anova is applied to assess
whether there are significant differences between the performance of all strate-
gies. It outputs a p-value of 0.009, indicating the presence of statistically signif-
icant differences. The next step consists of using the Wilcoxon test to perform
pairwise comparisons between the strategies. The Bonferroni correction is used
to adjust the significance value to 0.0083. The results of the Wilcoxon test are
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presented on Table 4, showing that the two bio-inspired strategies are not signif-
icantly different. At the chosen confidence level, the strategies produced by SGP
do not outperform those produced by any other algorithm. On the other hand,
the strategies produced by GSynGP are found to perform significantly better
than those of the two bio-inspired approaches. Analysing the sizes of the trees
produced, the Kolmogorov-Smirnov test indicates that the data produced by
GSynGP cannot be considered to follow a normal distribution. For that reason,
the Wilcoxon test is used to compare the sizes of the strategies. Its results show
that the trees evolved by GSynGP are significantly smaller than those produced
by SGP (Z = −4.48, p = 0.0).

5.1 Real World Validation

This section presents the real world validation of the best strategy produced
by each algorithm. In the previous simulation experiments, each algorithm pro-
duced 30 strategies, one for each run. As the environments used in the evaluation
process have stochastic components, it is not possible to directly compare fit-
ness values obtained from different trials. For that reason, the best strategies
produced by each algorithm were evaluated in the conditions of the 30 indepen-
dent trials and the one with the lowest mean fitness value was chosen as the
overall best for that algorithm. The overall best strategies are depicted in Fig. 5.
The real world validation consists of using the overall best strategy found by
each algorithm to control a mobile robot tasked with locating an odour source
in the indoor environment described in Sect. 4.2. Due to the real world arena
being significantly smaller than the simulated one, the distance parameters of
the strategies presented in Fig. 5 are a tenth of the values found in simulation.
Similarly to the simulation experiments, each strategy has a maximum evalu-
ation time of 600s and the evaluation is halted if the robot reaches a 25 cm
distance from the odour source (goal region) or if it looses contact with the
plume for a period longer than 60 s. The robot departs from location (0.5, 0.5) m
with its heading set at 0 rad. Odour is emitted at location (2, 1.5) m. Due to
the time required for the validation, only 5 trials were made for each strategy.
In most experiments, the strategies were able to consistently lead the robot to
the vicinity of the odour source within the available time. The two unsuccessful
trials occurred when the robot was being controlled by DB and by the best strat-

Table 5. Validation results

Strategy Time search Time track Success rate

Mean Std. Dev. Mean Std. Dev.

SM 42.710 s 3.899 44.072s 1.993 5/5

DB 67.757 s 4.672 61.896s 8.979 4/5

SGP 125.801 s 4.358 71.141s 5.411 4/5

GSynGP 60.288 s 3.487 46.876s 3.487 5/5
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egy of SGP. Despite not reaching the goal region, the strategies made the robot
halt its motion at approximately 35 cm from goal region, remaining still until
the end of the trial. From an observers’ perspective, all strategies exhibited a
plume searching behaviour, moving crosswind while attempting to sense odour.
All strategies also exhibited similar plume tracking behaviours, moving upwind
after sensing odour. The main difference between the behaviours exhibited was
the speed, as the strategies produced by SGP and DB were considerably slower
than the others due to making shorter motions. These short motions also meant
that the robot did not go as deep into the plume before starting the tracking
stage. As a result, the robot is more likely to loose contact with the odour plume
when controlled by the SGP and DB strategies than when using the GSynGP
and SM strategies. While this may not have been an issue in simulation, the
anemometer used in the real world experiments has a resolution of only 45◦,
making it possible for the robot to unintentionally move diagonally to upwind
and thus increasing the chance of losing the plume. The time periods taken by
the strategies to find and track the odour plume are presented in Table 5. As
can be seen, the SM is the fastest strategy, requiring an average of 42.71 s to
find the odour plume and 44.072 s to reach the vicinity of its source. The strat-
egy produced by GSynGP is the second fastest, requiring 60.288 s to find the
plume and 46.876 s to reach the goal region. The DB and SGP strategies are
the slowest, being their average times affected by the trials where the goal was
not reached and the robot remained still until the end of the trial. The larger
standard deviations are also indications of this.

6 Conclusions and Future Work

This paper presented an extension to Geometric Syntactic Genetic Programming
that enables it to evolve expression trees with multiple symbols per node. This
method is applied to evolve search strategies for a mobile robot tasked with
locating an odour source. The search strategies produced are compared to those
evolved by a standard Genetic Programming algorithm and to two bio-inspired
search strategies from the literature. The statistically validated results show that
the extended GSynGP is able to evolve solutions that are significantly smaller
than those produced by SGP without loss of performance. Moreover, the results
show that GSynGP is able to outperform the two strategies from the literature,
while the SGP can only match their performance. The best strategy of each
algorithm was validated by controlling a real robot attempting to locate an
odour source in an indoor environment. In this experiment, GSynGP and SM
managed to successfully locate the odour source in all trials, whereas DB and
SGP failed 1 of the 5 trials conducted. Furthermore, the SM was the fastest to
find and track the plume, followed by GSynGP, whereas SGP required the most
time.

In the future, efforts should be made to encourage behavioural diversity as a
means to counteract premature convergence and, possibly, achieve better quality
solutions. The strategies should also be encouraged to re-encounter the odour
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plume rather than simply halting the motion after loosing contact with the
odour. Finally, efforts should be made to quantify and reduce the reality gap, so
that strategies perform more similarly both in simulation and in the real world.
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