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5 MODŌ - International Associated Laboratory, Lille, France

Abstract. Dynamic Compartmental Models are linear models inspired
by epidemiology models to study Multi- and Many-Objective Evolution-
ary Algorithms dynamics. So far they have been tested on small MNK-
Landscapes problems with 20 variables and used as a tool for algorithm
analysis, algorithm comparison, and algorithm configuration assuming
that the Pareto optimal set is known. In this paper, we introduce a new
set of features based only on when non-dominated solutions are found
in the population, relaxing the assumption that the Pareto optimal set
is known in order to use Dynamic Compartment Models on larger prob-
lems. We also propose an auxiliary model to estimate the hypervolume
from the features of population dynamics that measures the changes of
new non-dominated solutions in the population. The new features are
tested by studying the population changes on the Adaptive ε-Sampling
ε-Hood while solving 30 instances of a 3 objective, 100 variables MNK-
landscape problem. We also discuss the behavior of the auxiliary model
and the quality of its hypervolume estimations.

Keywords: Compartmental models · Modeling · Multi-objective
optimization · Population dynamics · Hypervolume estimation

1 Introduction

Dynamic Compartmental Models (DCMs) [8,9] are linear compartmental mod-
els that track population dynamics in Multi- and Many-Objective Evolutionary
Algorithm (MOEAs). They are based on epidemiology models, mainly the SIR
model [4]. In the SIR model, a population of individuals is broken in groups
assigned each to a compartment of the model in accordance to their health
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status, which changes as time progresses. This is captured by the model equa-
tions and parameters. Similarly, the goal of a DCM is to capture the changes
of the population focusing on the dominance relationship between individuals.
Each group or compartment represents how many are in a particular state of
domination. The interaction between compartments and the rates of interaction
is captured by the equations that defined the model and its parameters. How
membership to a compartment is defined represents a feature on the population,
and different sets of features allow to explore the same algorithm, problem, and
configuration from other perspectives.

Two and three compartments DCMs have been successfully used to study and
explain in detail the dynamics of multi-objective evolutionary algorithms. DCMs
do not provide a direct estimation of performance of an algorithm expressed in
terms of well known performance estimators such as hypervolume, generational
distance, inverse generational distance, and others. To associate dynamics to
performance, DCMs require that at least one of the compartments relates to some
rate of improvement of the algorithm, from which a known performance metric
can be correlated or estimated. Previous works using DCMs have focused on
problems where the Pareto optimal set is known and have therefore used features
associated to rates of improvement of the algorithm that require knowledge of
whether a solution is Pareto optimal or not. Although DCMs on these problems
have served to gain knowledge about the working principles of multi- and many-
objective evolutionary algorithms, in order to use DCMs on real world scenarios,
where the set of Pareto optimal solutions is unknown, new sets of features and
ways to estimate measures of performance from features of population dynamics
are required.

From this standpoint, in this work, we introduce new features focusing on
when non-dominated solutions appear in the population to define the com-
partments of the model. In particular, we define a three compartments DCM
where the population is divided into (1) new non-dominated solutions, (2) non-
dominated but not new solutions, and (3) dominated solutions. The goal of these
features is to keep track of how many new solutions appear in each generation,
which serves to estimate the rate of progress of the algorithm. These features
are useful whether the problem is enumerable or not. In addition, we propose an
additional model to estimate a performance metric, the hypervolume achieved by
an algorithm, from the features of population dynamics, i.e. new non-dominated
solutions. An effective way to estimate performance from features of dynamics
opens new venues to apply DCMs beyond algorithm analysis and understanding.

The paper is organized as follows. Section 2 describes in more detail the
DCMs, the proposed new feature set and how to relate them to performance.
Section 3 covers the experimental results to test the new features with the DCMs
and the HV model. Section 4 concentrates on the proposed model for estimation
of performance, and analyzes it on more configurations. Finally, in Sect. 5 we
resume the work done and propose some future directions to expand it.
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2 Methodology

2.1 Dynamic Compartmental Models for Multi-objective
Evolutionary Algorithms

Dynamic Compartmental Models (DCM) are mathematical models that simulate
how individuals in different compartments in a population interact and affect the
instantaneous composition of the compartments. Here, the assumptions are that
the population can be divided into compartments and that every individual in
the same compartment has the same characteristics. The rates of interaction
between compartments are known as the parameters of the model.
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γ

β̄ β ᾱα

Fig. 1. A Three compartment DCM

Linear compartmental models of up to three compartments have been used
to study the population dynamics of evolutionary multi-objective algorithms
using the Pareto dominance status of the individuals as criteria to define the
compartments. Figure 1 illustrates a three compartments DCM, which can be
described by the following equations,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xt+1 = (1 − (α + β))xt + ᾱyt + β̄zt

yt+1 = αxt + (1 − (ᾱ + γ))yt + γ̄zt

zt+1 = βxt + γyt + (1 − (β̄ + γ̄))zt
P = xt + yt + zt,

(1)

where xt, yt and zt are variables associated to the number of individuals in the
compartments at time (generation) t and α, β, γ, ᾱ, β̄, and γ̄ are the interaction
rates between compartments.

Each compartment size at time t + 1 depends on its size and the size of all
other compartments at time t modified by some constant, i.e a parameter of the
model. From the system of Eq. (1) and its graphical representation on Fig. 1,
we see that any change in one compartment will be distributed into the other
ones, therefore the total number of individuals remains constant. This models the
dynamics of an evolutionary algorithm with a fixed population size throughout
the generations. It is important to note that the model tracks changes between
compartments, not specific individuals.
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The parameter values of the model are estimated (learned) from the data
generated by the algorithm which dynamics we want to capture. The selected
algorithm is run tracking on each generation the features (compartments sizes)
we choose for our model. The output data relevant to these features is used to
fit the model’s parameters. Thus, the parameters of the model are linked to a
particular algorithm set with a given configuration on a problem instance or a
subclass of problems. If the algorithm, its configuration or the problem changes,
parameters naturally will change too.

DCMs have been successfully used to study and explain in detail the dynam-
ics of multi- and many-objective evolutionary algorithms, gaining knowledge
about the working principles of the various approaches to design these algorithms
[8,9]. DCMs were used, for example, to study how multi- and many-objective
evolutionary algorithms are able to continue discovering Pareto optimal solutions
once their population is full of them in order to achieve a high resolution of the
Pareto optimal set (POS). To answer this question the study was conducted
on problems where the POS could be enumerated [9], defining the three com-
partments so that the population was divided into (1) newly discovered Pareto
optimal solutions, (2) non-dominated but not new Pareto optimal solutions, and
(3) dominated solutions. The union of the first two compartments is the set
of non-dominated solutions in the population. Verifying that a non-dominated
solution is also a Pareto optimal solution and that it has been seen by the algo-
rithm for the first time in the current generation allows dividing non-dominated
solutions into the two first compartments mentioned above. Of course, this can
be done if and only if the POS is known.

As mentioned before, DCMs directly do not estimate the performance of
an algorithm in terms of well known and commonly used estimators such as
hypervolume, generational distance, inverse generational distance, and others.
However, to associate the dynamics to performance is possible to have a feature
set where at least one of them can carry information about the rate of improve-
ment of the algorithm, which then can be correlated or used to estimate a more
common performance metric. In [8,9] the first compartment referred above, i.e.
the number of new Pareto optimal solutions in the population, provides the rate
of discovery of Pareto optimal solutions and gives a rate of improvement of the
algorithm. Thus, in these works, this feature was correlated to performance.
Namely, it was shown that the accumulation of newly discovered Pareto optimal
solutions is highly correlated to the hypervolume. In other words, it is possible to
look at this feature to decide with high confidence what algorithm (or algorithm
configuration) is better than others.

DCMs can also be used to predict future behavior and performance of the
algorithm. That is, running the DCM for additional generations for which the
actual algorithm has not been yet run can be estimated with high confidence, for
example, whether increasing the fitness evaluation budget for a giving algorithm
may translate into improved performance. This is quite relevant to application
domains where fitness is computationally expensive, such as simulation-based
optimization.
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Another important potential use of DCMs is for algorithm configuration and
algorithm selection [9]. For example, let us assume we want to configure pop-
ulation size for a given budget of fitness evaluations. A common approach is
to run the algorithm several times, each time with a different combination of
population size and number of generations. Another alternative is to run the
algorithms in a sample of configurations, learn DCMs for each one of them, and
infer new models for intermediate configurations by interpolation of the models’
parameters.

Initial explorations of the application of DCMs are promising. However, the
above studies have been done on small landscapes and using a feature that
requires knowledge of the Pareto optimal set. In order to use DCMs in real-world
scenarios, dynamics should relate to performance using features that correlate
to a rate of improvement of the algorithm but do not require to know whether
a solution is optimal or not.

In the next sections, we introduce a set of features that can be used for such
purpose together with a method to estimate performance from one of them.

2.2 The NDNew-NDOld-DOM Feature Set

To explore DCMs in large problems, we define three compartments so that the
population is divided into (1) new non-dominated solutions, (2) non-dominated
but not new solutions, and (3) dominated solutions. These compartments or fea-
tures are called for short Non-Dominated New, Non-Dominated Old, and Dom-
inated. A solution is counted as Non-Dominated New at generation t only if it
is a non-dominated solution in the population but did not appear in any previ-
ous generation from 0 to t − 1. A solution is counted as Non-Dominated Old at
generation t if it is a non-dominated solution and has also appeared in a pre-
vious generation. A solution is counted as Dominated at generation t if it is a
dominated solution in the population. A more compact explanation can be seen
in Table 1. While this set of features does not offer directly a way to measure
performance, it still gives an idea of the progress of the search, since we expect to
see the number of New Non-Dominated solutions to go down when the algorithm
is converging.

It is important to mention that when we count a Non-Dominated solution at
generation t, it is non-dominated relative to the population at that generation.
It may be that at a future generation that solution becomes dominated. We
could maintain an updated list of solutions non-dominated so far and check
non-dominated solutions in the current population against it before counting it.
However, this could add substantial computational overhead and it is not clear
whether this could add any extra value to the feature. As it is defined now, it still
serves the purpose of showing us from the algorithm perspective if the search is
still moving, i.e. it has not stagnated.
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Table 1. Proposed features. F1: first front containing all the non-dominated solutions.
t: current generation. P : whole population including F1.

Abbr. Formula Comment

NDNew {x : x ∈ F1(t) ∧ x �∈ ∪t−1
k=0F1(k)} New non dominated solutions

NDOld {x : x ∈ F1(t) ∧ x ∈ ∪t−1
k=0F1(k)} Old non dominated solutions

DOM {x : x ∈ P ∧ x /∈ F1(t)} Dominated solutions

2.3 Performance Metrics and Features

The new features of dynamics do not provide a direct measure of the algo-
rithm performance from the model. One solution to this issue is creating an
auxiliary model that takes in some of the features and an initial evaluation of
a performance metric to estimate this value at any generation. In this work,
we estimate the hypervolume indicator (HV) [11], more specifically the hyper-
volume calculated over the Non-Dominated set of all solutions in the popula-
tion at generation t and previous ones. The reference point is set to (0,0,0).
Figure 2 illustrates the model learning process of population dynamics and per-
formance features from some sampled configurations. We try a model of the form
HVt+1 = HVt + μ × some feature /t.

Fig. 2. Scheme of the model learning process of population dynamics and performance
features from some sampled configurations.

We used Grammatical Evolution, a tool from Genetic Programming, that
searches for expressions instead of programs. To evaluate which expression gives
the best model, we use the mean square error between the model and our refer-
ence data, namely the number of found NDNew, NDOld and DOM solutions in
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generation t and the corresponding hypervolume HV for generation t + 1. The
first step is defining a grammar than can derive in the type of expression we
need, in this case, μ × some feature/t, which we will refer to as ΔHVt, and is
presented in Fig. 3.

〈expr〉 |= 〈expr〉〈op〉〈expr〉 | -1*〈value〉*〈var〉 | 〈value〉*〈var〉
〈op〉 |= + | - | × | ˆ | /

〈var〉 |= NDNew | NDOld | t

〈value〉 |= 〈cat〉
〈cat〉 |= 〈int〉.〈int〉 | 〈int〉
〈int〉 |= 〈int〉〈number〉 | 〈number〉

〈number〉 |= [0-9]

Fig. 3. BNF Grammar used to search for an expression that relates the hypervolume
to the features.

This grammar can generate expressions such as 0.833 × NDNew/NDOld or
−5×NDOld×t. To implement this part we used gramEvol [10] a library available
in the R language. After some tries with this library the suggested expression
for the model was:

HVt+1 = HVt +
μ × NDNewt

t + 1
, (2)

The model can be interpreted as the HV will grow on generation t+1 propor-
tionally to how many New Non-Dominated solutions were found at generation
t times a constant μ and inversely to the next generation number. This makes
sense as the impact of finding solutions at the beginning will surely make the
hypervolume value jump, while at the end we can think that these newly found
solutions probably fill in gaps having very little effect.

3 Experimental Results

3.1 Test Problem and Experiment Settings

Testing these new features requires generating some data by running an MOEA
with different configurations on a given problem. The MOEA we selected is the
Adaptive ε-Sampling ε-Hood (AεSεH), a Many-objective Optimization Evolu-
tionary Algorithm that can also handle Multi-objective problems. Its approach
is Pareto dominance relaxation in the form of ε-dominance to determine which
solutions are kept and how parents are selected for the next generation [1]. The
crossover is two-point with rate pc = 1, bit flip mutation with rate pm = 1/N ,
the reference neighborhood size is set to 20 individuals and the ε-dominance
function is additive (f ′ = f + ε).
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The chosen problem is the combinatorial multi-objective problem generator
MNK-Landscapes [2]. Its parameters are the number of objectives M, number of
variables N and K, a value that allows setting the ruggedness by determining the
number of epistatic interactions between variables. This is, it determines how
much other variables affect the fitness contribution of a given variable. In MNK-
Landscapes terms, an M = 3, N = 100 and K = 5 problem is a 3 objective, 100
variables one where each variable fitness contribution will be affected by other 5
variables values defined as part of the problem. We generated 30 landscapes or
sub-classes of an M = 3, N = 100 and K = 5 problem, each time the epistatic
interactions are determined at random when the problem is created.

The data for the models is then generated by running AεSεH on each of the
30 landscapes, with different configurations, i.e, population sizes ranging from
3000 to 10500, with increments of 2500. On each configuration, the maximum
number of Function Evaluations (FE) allowed was of 600000, which determined
the maximum number of generations to run the algorithm (FE = Population
Size × tmax). In this section, results will be shown for models that only have
seen data until 400000 FE, and in the next one, we will present results with
other FE limits.

Lastly, when we talk about the models’ estimation we want to emphasize
that for our DCMs we give only one measured value, the ones obtained from
generation 0, i.e. the initial population. Here is also where we measure the first
hypervolume value used to start the HV model. From there, both models use
the estimation they generated for generation t to calculate the following one in
t + 1, and so on, until the required number of generations tmax is met.

3.2 Fitting of the Models

The fitting process, was done with the Levenberg-Marquardt Non-Linear Least
Squares algorithm [6,7] using the R language implementation [3]. The input for
this process is the feature data from the algorithms and the system of equations
(1), obtaining the parameters for some configurations with different popula-
tion sizes, (3000, 5500, 8000, 10500) and varying the FE limits, (300000, 400000,
500000, 600000).

We took some considerations while doing the fitting process. Instead of using
the feature data from each landscape’s data, we take the average value of the
features at each generation, including the HV value. This, at least for the DCM
had a more significant impact on producing better estimations.

Cross-validation was also introduced, so the obtained parameters are not a
product of over-fitting to our generated data and would generalize better in the
presence of new and unseen data. We choose k-fold cross-validation and apply
it during DCMs and HV model fitting process. In k-fold cross-validation, the
dataset is split into k subsets of equal size, each subset is used only once as a
test set and k − 1 times as part of the training set. For our data, we have 30
runs of the algorithm, corresponding each one to a different landscape. To ensure
an 80/20 split between training and testing data, we select k = 5, a common
recommendation for this method as suggested in [5]. So each fold is composed
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of one subset of 6 landscapes worth of test data, and the remaining 4 subsets,
provide 24 landscapes worth of training data. The score obtained on each set is
measured by the goodness of fit or R2, a value between 0 and 1 that indicates
how much of the variance present in the data is explained by the model.

Under cross-validation, the fitting process per configuration is done only with
the data from the training set, and the resulting parameters estimation ability is
measured on the test set, repeated for each fold. We report in Table 2 the average
R2 of the 5 scores obtained for the training and test datasets for all population
sizes and considering only 400000 FE available. Since at the end of the process
we also have 5 sets of parameters, we take the average and keep the result as
the best parameters found for that configuration and number of FE.

From the table, we can see that the R2 is overall higher than 0.64 for the
features NDOld, DOM and HV for both training and testing sets, while the
NDNew feature has a lower score when compared to the other features. To
understand better this situation, we can refer to Figs. 4, 5, 6 and 7 that show
the NDNew-NDOld-DOM feature measured values and the DCM estimation for
all the considered population sizes. In these plots, we are using the obtained best
parameters and creating the estimations considering all available landscapes.

Table 2. R2 values obtaining during the model training and testing. Obtained doing
k-fold cross-validation with k = 5. Considering only 400000 FE.

Training R2 Testing R2

Population NDNew NDOld DOM HV NDNew NDOld DOM HV

3000 0.69580 0.86617 0.84022 0.70278 0.85538 0.82754 0.66148 0.66104

5500 0.65387 0.82545 0.80737 0.66051 0.81289 0.79353 0.86231 0.86223

8000 0.64272 0.87690 0.86889 0.64110 0.85950 0.85072 0.91488 0.91099

10500 0.68936 0.87161 0.86475 0.65749 0.86807 0.86062 0.88234 0.87566

From a first look at the figures, we can see that the model estimation (red
points), goes through the middle of the measured data (black points) since the
fitting was done on the average values for the features. Not doing so, produced
overestimations after the hump in the feature NDNew graph, which translated
into a poor HV estimation as the other model depends on this value. The lower
R2 in this feature, when compared to the other two, could be attributed to the
higher overall variance present as appreciated in the figure. An understandable
situation, since the number of newly found non-dominated solutions, can change
very quickly.

It is also interesting to notice how this simple model can adapt to different
configurations, for larger population sizes the number of generations diminishes
and the fitted model can keep up with the different rates of change in each case.

Now we move to the HV model results, in Fig. 8 we show the estimation
against measured values for all sampled population sizes. As can be seen, the
model seems to follow the change of the hypervolume until a certain point from
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Fig. 4. Non-Dominated New, Non-Dominated Old and Dominated Solutions DCM’s
estimation vs Measured data for a configuration with Pop. Size 3000 and 400000 FE.

Fig. 5. Non-Dominated New, Non-Dominated Old and Dominated Solutions DCM’s
estimation vs Measured data for a configuration with Pop. Size 5500 and 400000 FE.

Fig. 6. Non-Dominated New, Non-Dominated Old and Dominated Solutions DCM’s
estimation vs Measured data for a configuration with Pop. Size 8000 and 400000 FE.

which there is a tendency to overestimate in all configurations. Looking aside
from the overestimation in the last few generations, it seems to follow the overall
tendency of the hypervolume, which growth seems correlated to the NDNew
feature.
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Fig. 7. Non-Dominated New, Non-Dominated Old and Dominated Solutions DCM’s
estimation vs Measured data for a configuration with Pop. Size 10500 and 400000 FE.

4 Discussion

In the last section, we discussed how to create and fit both, the Dynamic Com-
partmental Model and the HV model. Here we want to explore how well they can
to follow the trend in the performance data. We will look at the estimated accu-
mulated HV at the end of a run for different population sizes and the maximum
number of Function Evaluations allowed. As mentioned before, the hypervolume
at each generation is calculated over all non-dominated solutions found until
that generation t, therefore we refer to it as accumulated HV. In Figs. 9, 10, 11
and 12 we have two box plots per population size, the one in red represents the
measured data (M) for all 30 landscapes while the one in blue is the HV model
estimation (E) for the same 30 landscapes with each figure showing results con-
sidering 300000, 400000, 500000 and 600000 FE.

Looking at the big picture, we notice that for every variation of the FE
the measured data indicates a downward trend. That is, even though we keep
adding more FE so the largest population sizes could benefit with more time
to get a better convergence, this does not translate into a better overall final
HV. Thus, in this particular problem, it seems that a population size of 3000
is enough to ensure a good final hypervolume. If we look now at the model
estimation, we notice a clear overestimation for all population sizes, though it
maintains the ordering, replicating the trend seen in the data. This is particularly
important if we want to use the models for any analysis and to distinguish which
configurations perform better than others.

If we focus on the plot of the NDNew feature on Figs. 4, 5, 6 and 7, we see that
our DCM learned the mean of the data and this still produces overestimation as
can be checked in the plot against the measured data in Fig. 8. In fact, for all
the variations in FE, the DCM keeps going through the mean and still ends in
an overestimation when used by our current HV model.
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Fig. 8. HV model estimation vs Measured data for sampled configurations with Pop.
Size [3000,5500,8000,10500] and 400000 FE.

From the formulation, it seems that we are on the right track and there is a
connection between newly discovered solutions appearance rate and the growth
of the HV, but our parameter μ, or even the current generation number do not
seem enough to keep this estimation closer to the measured values. In particular,
it is important to tell the model that the weight of newly found solutions varies
depending on what stage we are in the algorithm’s run. In the beginning, it is
not strange to see the HV grow quicker with each newly found solution, while by
the end we expect these solutions to fill gaps on a set of non-dominated solutions
that form a good approximation set for this problem.

Even with the current formulation, it is still interesting to see how a simple
feature such as the number of newly discovered non-dominated solutions per
generation can carry enough information that can be translated into what kind
of trend we can expect of a performance metric such as the hypervolume. More
so if we remember that for all the estimations done with the models, they only
start with one piece of measured data, and from there is purely the captured
dynamics and behavior of the algorithm that guides the process.
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Fig. 9. Comparison between the final
HV for all landscapes on 300000 FE.

Fig. 10. Comparison between the final
HV for all landscapes on 400000 FE.

Fig. 11. Comparison between the final
HV for all landscapes on 500000 FE.

Fig. 12. Comparison between the final
HV for all landscapes on 600000 FE.

5 Conclusions and Future Work

In this work we proposed a new set of features that allows Dynamic Compart-
mental Models to be used on larger multi-objective problems where the Pareto
optimal set is not known or cannot be obtained through enumeration, remov-
ing the assumption that the Pareto optimal set is known made by previously
proposed feature sets. Parting from the knowledge that features that capture
the rate of improvement of an algorithm can be correlated to a performance
metric, we presented and tested a possible auxiliary model that can estimate
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and capture the general trend of the hypervolume metric. We designed a simple
HV model that can estimate, with good results, the value of the HV at the next
generation from the HV value at the current generation, the number of newly
found non-dominated solutions, the current generation and a parameter.

We tested DCM and HV models on several instances of the same class of
problem, and showed in terms of goodness of fit score and visually the estimations
produced by them. We verified that the DCM with the new set of features
successfully learns the mean of the data, similarly to when it is used with other
sets of features reported in the past. On the other hand, the HV model had
a tendency for overestimation but still keeping the ordering when applied on
different configurations. This allows selecting among them just by looking at the
values of HV estimated by the model.

For future work, we want to revise the formulation to explore control mecha-
nisms to discriminate between the algorithm’s initial and final stages, so the HV
estimation can be smoother and closer to the measured values. We also plan to
introduce interpolation of the parameters and use it for selecting configurations,
exploiting the relationship between a set of parameters and the configuration
and algorithm from which it was obtained.
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