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Abstract. We present an algebraic approach for dealing with combi-
natorial optimization problems based on permutations with repetition.
The approach is an extension of an algebraic framework defined for com-
binatorial search spaces which can be represented by a group (in the
algebraic sense). Since permutations with repetition does not have the
group structure, in this work we derive some definitions and we devise
discrete operators that allow to design algebraic evolutionary algorithms
whose search behavior is in line with the algebraic framework. In par-
ticular, a discrete Differential Evolution algorithm which directly works
on the space of permutations with repetition is defined and analyzed. As
a case of study, an implementation of this algorithm is provided for the
Job Shop Scheduling Problem. Experiments have been held on commonly
adopted benchmark suites, and they show that the proposed approach
obtains competitive results compared to the known optimal objective
values.

Keywords: Discrete evolutionary algorithms · Permutations with
Repetition · Algebraic approach

1 Introduction

An algebraic framework for combinatorial optimization problems has been pre-
viously proposed in a series of articles [4–6,22]. This framework mainly proposed
the discrete operations of sum, difference, and scalar multiplication that allow to
design discrete variants of widely used continuous evolutionary algorithms such
as the Differential Evolution (DE) [22] and the Particle Swarm Optimization
(PSO) [23]. The main requirement of the framework is that the solutions in the
search space of the combinatorial problem at hand must form a group (in the
algebraic sense). For instance, this is the case of widely considered search spaces
such as those of bit-strings [24] and permutations [1,6].

However, there are interesting problems defined in combinatorial search
spaces which do not form a group. One of these is the space of permutations
c© Springer Nature Switzerland AG 2020
L. Paquete and C. Zarges (Eds.): EvoCOP 2020, LNCS 12102, pp. 18–34, 2020.
https://doi.org/10.1007/978-3-030-43680-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43680-3_2&domain=pdf
http://orcid.org/0000-0001-5630-7173
http://orcid.org/0000-0003-4534-1805
http://orcid.org/0000-0003-1483-7998
https://doi.org/10.1007/978-3-030-43680-3_2


An Algebraic Approach for the Search Space of Permutations 19

with repetition, i.e., ordering of items which – differently from classical permu-
tations – can appear multiple times in the sequence. This search space has been
considered, for example, in [8,14,16,20,27]. The most notable applications of
permutations with repetition are in some scheduling and partitioning problems.
Indeed, in the scheduling case, the repeated items accommodate the fact that
some jobs need to be processed in more than one machine, while, in partitioning
problems, permutations with repetition are intended as assignments of items to a
particular cluster among a set of clusters with a given size. Widely known exam-
ple of such problems are the job shop scheduling problem [11] and the balanced
multiway graph partitioning problem [17].

In this work, we extend the algebraic framework in order to work on the
search space of permutations with repetition, even if they do not form a group.
With this regard, we derive formal definitions and algorithmic implementations
of the discrete operators of sum, difference and scalar multiplication. Such oper-
ators allow to design discrete variants of evolutionary algorithms which are
commonly and effectively used in the continuous search spaces. In particular,
we introduce a discrete Algebraic Differential Evolution for Permutations with
Repetition (ADE-PR) by also analyzing its search behavior.

ADE-PR can in principle be applied to any problems requiring a permutation
with repetition as a solution. As a case of study, we have investigated the effec-
tiveness of ADE-PR on the Job Shop Scheduling Problem (JSSP). Therefore,
few additional algorithmic components, purposely defined for the JSSP, have
been integrated in ADE-PR. Finally, computational experiments have been held
by considering widely used benchmark suites for the JSSP.

The rest of the paper is organized as follows. Section 2 recalls the algebraic
framework which has been extended in Sect. 3 in order to handle the space of
permutations with repetition. Section 4 describes the main scheme of ADE-PR,
while its implementation for the JSSP is depicted in Sect. 5. The experimental
analysis is described in Sect. 6, while Sect. 7 concludes the paper by also providing
future lines of research.

2 Algebraic Background

2.1 The Abstract Algebraic Framework for Evolutionary
Computation

The algebraic framework for evolutionary computation, firstly proposed in [22]
and further studied in [3,4,6,7], allows to define the discrete operators ⊕, � and
� which simulate in a discrete search space the properties of their numerical
counterparts.

In particular, these discrete operators are abstractly defined for any combi-
natorial search space whose solution set can be represented with an algebraic
structure known as finitely generated group [18].

The triple (X, ◦, G) is a finitely generated group representing the search space
of a given combinatorial optimization problem P if:
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– X is the set of solutions of P;
– ◦ is a binary operation on X satisfying the group properties, i.e., closure,

associativity, identity (e), and invertibility (x−1); and
– G ⊆ X is a finite generating set of the group, i.e., any x ∈ X has a (not

necessarily unique) minimal-length decomposition 〈g1, . . . , gl〉, with gi ∈ G
for all i ∈ {1, . . . , l}, and whose evaluation is x, i.e., x = g1 ◦ · · · ◦ gl.

Moreover, the length of a minimal decomposition of a discrete solution x ∈ X is
denoted by |x|.

Using (X, ◦, G), it is possible to provide formal definitions of the operators
⊕, � and �. Let x, y ∈ X and 〈g1, . . . , gk, . . . , g|x|〉 be a minimal decomposition
of x, then

x ⊕ y := x ◦ y, (1)

x � y := y−1 ◦ x, (2)

a � x := g1 ◦ · · · ◦ gk, with k = 
a · |x|� and a ∈ [0, 1]. (3)

Interesting graph-based interpretations of these definitions can be given as
follows. The algebraic structure on the search space naturally defines neigh-
borhood relations among the solutions. Indeed, any finitely generated group
(X, ◦, G) is associated to a labelled digraph G whose vertices are the solutions in
X and two generic solutions x, y ∈ X are linked by an arc labelled by g ∈ G if
and only if y = x ◦ g. Therefore, a simple one-step move in the search space can
be directly encoded by a generator, while a composite move can be synthesized
as the evaluation of a sequence of generators (a path on the graph).

In analogy with R
n, the elements of X can be dichotomously interpreted

both as solutions (vertices on the graph) and as displacements between solutions
(labelled paths on the graph). As detailed in [22], this allows to provide rational
interpretations of the definitions (1), (2) and (3) as follows:

– x⊕y is the vertex of G where we arrive if we move from the vertex x following
the arcs in any (minimal) decomposition of y;

– a minimal decomposition of x � y corresponds to the sequence of arcs in a
shortest path from the vertex y to the vertex x in G;

– the scalar multiplication a � x, with a ∈ [0, 1], corresponds to truncating a
shortest path from the vertex e (the identity of the group) to the vertex x
in G.

Clearly, these geometrical interpretations are in line with the vectors/points
interpretations of the classical Euclidean space.

2.2 The Algebraic Differential Evolution

As shown in [22] and [23], expressions which involve the three discrete operators
allow to derive discrete variants of some popular evolutionary schemes originally
defined for continuous problems [19,26]. For instance, a discrete variant of the
Differential Evolution (DE) algorithm, namely Algebraic Differential Evolution
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(ADE), can be defined by simply replacing the classical mathematical operations
with their discrete variants ⊕,�,� in the definition of the differential mutation
which is the key operator of the DE.

Therefore, the differential mutation of ADE is defined as follows:

v ← xr0 ⊕ F � (xr1 � xr2), (4)

where xr0 , xr1 , xr2 ∈ X are three randomly selected population individuals, F ∈
[0, 1] is the DE scale factor parameter, and v ∈ X is the mutant produced.

The interpretation of Eq. (4) in the search space graph G is as follows: v
is generated by starting from the vertex xr0 and following the arcs indicated
by F � (xr1 � xr2) which is a sequence of arcs’ labels (generators) obtained
by truncating a shortest path from xr2 to xr1 . This is in line with what is
done by the classical differential mutation equation in the Euclidean space, i.e.,
generate a mutant v by applying to xr0 the vector corresponding to the truncated
segment which connects xr2 to xr1 . Indeed, note that the concept of segment in
the Euclidean space is analogous to the concept of shortest path in the graph
representing a discrete search space.

2.3 The Search Space of Permutations

The definitions provided in the previous sections are abstract and require imple-
mentations for concrete spaces. One of the most investigated search space that
verifies the properties of finitely generated groups is the space of permutations
[2,25].

The permutations of the set {1, . . . , n}, together with the usual permutation
composition, form the so-called Symmetric group S(n). The identity permutation
is ι = 〈1, . . . , n〉. Furthermore, since S(n) is finite, it is also finitely generated.

One of the most useful generating sets for the permutations is the set of simple
transpositions ASW ⊂ S(n), i.e., particular permutations which algebraically
encode the adjacent swap moves. Formally,

ASW = {σi : 1 ≤ i < n}, (5)

where the n − 1 simple transpositions σi are permutations such that

σi(j) =

⎧
⎪⎨

⎪⎩

i + 1 if j = i,

i if j = i + 1,

j otherwise.
(6)

Given a generic π ∈ S(n), the composition π ◦ σi swaps the i-th and (i +
1)-th items in π. Therefore, using the abstract definitions provided before, a
minimal decomposition of the difference between two generic permutations π and
ρ corresponds to the shortest sequence of adjacent swap moves which transforms
π into ρ.

A minimal decomposition for a generic permutation π ∈ S(n), in terms of
ASW , can be obtained by ordering the items in π by using a sorting algorithm
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based on adjacent swap moves. The sequence of generators corresponding to the
moves performed during the sorting process is annotated, then reversing this
sequence produces a minimal decomposition [22].

As widely known, the bubble-sort algorithm sorts any given array by using a
minimal number of adjacent swap moves, therefore it can be used for computing
a minimal decomposition of any permutation in terms of ASW . Anyway, since
there can be more than one minimal decompositions, a randomized variant of
bubble-sort, namely RandBS , has been proposed in [22].

RandBS exploits the concept of inversion and the property that the identity
permutation ι is the only permutation without inversions. Formally, (i, j) is an
inversion of a given permutation π if and only if i < j and π(i) > π(j). Moreover,
a permutation with a positive number of inversions has to have at least one
adjacent inversion, i.e., an inversion of the form (i, i+1). Therefore, RandBS (π)
decreases the inversions of π by first computing its adjacent inversions and, then,
iteratively applying adjacent swaps corresponding to those inversions. At the end
of this process π will be transformed into the identity ι, thus the reverse of the
sequence of adjacent swaps is a minimal decomposition of π.

RandBS has been proved to have Θ(n2) complexity. For further implementa-
tion details, proofs of correctness and complexity we refer the interested reader
to [22].

3 Permutations with Repetition

3.1 Motivations and Preliminary Definitions

The search space of permutations arises in a variety of combinatorial problems
such as, just to name a few: the permutation flowshop scheduling problem, the
linear ordering problem, the quadratic assignment problem and the traveling
salesman problem. Without loss of generality, an n-length permutation is an
ordering of the set {1, . . . , n}, thus the items in this ordering are all different
from each other.

However, there exist other important combinatorial problems for which it is
required that some items can appear several times in the ordering. For instance,
in the job shop scheduling problem [11], the items are the jobs to be scheduled
and repeated items accommodate the fact that some jobs need to be processed on
more than one machine. Repeated items also allow to handle some partitioning
problems, such as the balanced multiway graph partitioning problem [17].

We can encode solutions to these problems by means of permutations with
repetition, i.e., orderings of a given multiset.

A multiset M is a collection of possibly repeated items, the size (or cardinal-
ity) of the collection is denoted by |M |, and its support Supp(M) is the set of all
different items appearing in M . For example, the multiset M = {1, 1, 2, 2, 3, 3}
has cardinality |M | = 6 and support Supp(M) = {1, 2, 3}.

Given a multiset M with support {1, . . . , n} and cardinality q > n, a per-
mutation with repetition of M is an ordering of the q items in M . We denote
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by RM the set of all the permutations with repetition of M . Considering the
multiset M in the previous example, a possible permutation with repetition is
x = 〈2, 1, 3, 3, 2, 1〉.

The search space RM has size

|RM | =
q!

∏
i∈Supp(M) mM (i)!

, (7)

where mM (i) is the multiplicity of the item i in M , i.e., the number of times
i appears in M . Therefore, though |RM | < |S(q)|, the size of the search space
is anyway exponential with respect to the length of the orderings. This is the
main reason of why the combinatorial problems with solutions in RM are usually
NP-hard.

For the sake of readability, in the rest of the paper, we will use the acronym
PwR in place of the phrase “permutation with repetition”.

3.2 Discrete Operators for Permutations with Repetition

Differently from classical permutations, it is not apparent how to define an inter-
nal operation on RM which obeys to the group properties. As a consequence,
it is not possible to directly use the discrete algebraic operators as defined in
Sect. 2.

Anyway, the same simple search moves considered for permutations, i.e.,
swaps of adjacent items, can be used to move between permutations with repe-
tition. Indeed, all the PwRs in RM can be thought as vertices of a search space
graph where, as before, its arcs are labelled by adjacent swap moves. Hence, the
solutions x, y ∈ RM are neighbors to each other if and only if y can be obtained
from x (or vice versa) by swapping two adjacent items in x (or y).

By recalling that the adjacent swap move between the i-th and (i + 1)-th
items (of a normal permutation, but also of a PwR) can be represented as the
very simple permutation σi ∈ ASW defined in Eq. (6), we have that a path
between two given PwRs x, y ∈ RM is a composition of adjacent swaps, i.e.,
a generic |M |-length permutation π ∈ S(|M |). Clearly, in this space we do not
have the dichotomy observed in the Symmetric group S(n) that is: solutions and
paths between solutions have different representations. Solutions are elements of
RM , while paths/moves between solutions are elements of S(|M |).

The absence of the solution-move dichotomy does not allow to use the same
algebraic definitions given in Sect. 2. Nevertheless, we can exploit the graph
structure of RM in order to derive reasonable definitions for the discrete sum,
difference and scalar multiplication operators. These definitions are in line with
the geometrical interpretations given in the previous section.

Discrete Sum. The discrete sum operator � : RM × S(|M |) → RM which,
given a solution x ∈ RM and a move π ∈ S(|M |), produces the new solution
y = x � π by applying to x all the adjacent swap moves appearing in a minimal
decomposition of π in terms of ASW .
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Discrete Difference. The discrete difference operator � : RM ×RM → S(|M |)
applied to two solutions x, y ∈ RM produces the permutation π = x � y whose
minimal decomposition in terms of ASW is formed by the sequence of adjacent
swaps that transform y into x. It is interesting to note that, similarly to what
happens in the classical Euclidean space, � and � are consistent to each other,
i.e., for any x, y ∈ RM , x � (y � x) = x.

Discrete Scalar Multiplication. Regarding the scalar multiplication, let
observe that practically it is only used to scale-down a move or path in the space1.
With this regard, see also the geometric interpretation of ADE in Sect. 2.2. Since
a move in the search space of PwRs is a normal permutation, we can use unmod-
ified the operator � defined in Sect. 2 for the permutation space.

3.3 Implementation of the Discrete Operators

The definition previously given for � actually indicates also its implementation.
As noted in Sect. 2.3, decomposing the permutation costs Θ(|M |2). Luckily, given
x ∈ RM and π ∈ S(|M |), it is possible to compute x � π in linear time without
decomposing π. Formally, by denoting with x(i) the i-th item of the PwR x, we
have that:

(x � π) (i) = x(π(i)). (8)

It is easy to see that applying Eq. (8) to any item i ∈ {1, . . . , |M |} is equivalent
to sequentially applying to x all the adjacent swaps in a decomposition of π.

Let also note that the operator � is actually a (right) group action [18] of the
Symmetric group S(|M |) on the set RM . Indeed, by using the Polish notation
for the sake of readability, it is easy to verify that � satisfies the two axioms of
the (right) group action functions [18]: (i) �(x, ι) = x for all x ∈ RM , and (ii)
�(x, π ◦ σ) = �(�(x, π), σ) for any π, σ ∈ S(|M |) and x ∈ RM .

For the discrete difference �, we first need to define the canonical PwR
e ∈ RM as the ordering of M whose items are increasingly sorted. For instance,
given M = {1, 1, 2, 2, 3, 3}, its canonical PwR is e = 〈1, 1, 2, 2, 3, 3〉.

Furthermore, let observe that the concept of inversion, introduced in Sect. 2.3,
is also defined on the permutations with repetition, and e is the only PwR
without inversions.

Therefore, it is possible to use RandBS – or, if randomness is not required,
any other bubble-sort variant – to sort any PwR x, towards the canonical PwR
e, by using an optimal number of adjacent swaps. The optimality derives from
the facts that: (i) bubble-sort schemes are known to be optimal when all items
are different, and (ii) useless adjacent swaps between equivalent items in a PwR
are avoided because the pairs of equivalent items cannot form inversions.

Hence, we are now able to find the sequence of adjacent swaps for moving
from any PwR x towards e, i.e., we are able to compute e � x. Moreover, by

1 Even in the Euclidean space R
n, multiplying a vector by a scalar has a geometric

meaning only if we interpret this vector as a proper free vector and not as a point
in the space.
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observing the commutative diagram depicted in Fig. 1, we can generalize the
computation x � y to any x, y ∈ RM . In this diagram, any arrow connects
two PwRs and is labelled with the permutation which encodes the sequence of
adjacent swaps that transform the tail of the arrow into its head. Equivalently,
the label of the arrow is the difference between the head PwR and the tail PwR.

y x

e

σ

π

ρ

Fig. 1. Commutative diagram showing how to compute π = x � y

Since we know how to compute σ = e � y and ρ = e � x, we can now define
the difference between two generic PwRs as:

x � y = π = σ ◦ ρ−1. (9)

4 Algebraic Differential Evolution for Permutations with
Repetition

In this section we define an Algebraic Differential Evolution scheme for Permu-
tations with Repetition (ADE-PR) which is based on the ADE scheme described
in Sect. 2.2 and the discrete operators for the PwR representation depicted in
Sect. 3.

ADE-PR evolves a population of N permutations with repetition by means of
the genetic operators: differential mutation, crossover and selection. Its working
scheme, depicted in Algorithm 1, is similar to those of ADE and classical DE. The
main difference is that the population of ADE-PR is composed by individuals
represented as permutations with repetition.

ADE-PR optimizes a given objective function f defined on the search space
RM . Its control parameters are: the population size N , the scale factor F ∈ [0, 1]
and the crossover strength CR ∈ [0, 1] (the latter may not be present depending
on the chosen crossover operator).

In Algorithm 1, the population is randomly initialized in lines 2–3, then the
evolution is performed in the main cycle in lines 4–12 until a given termination
criterion is satisfied. For each population individual xi, a mutant vi is generated
in line 6 by exploiting the differential mutation scheme which is implemented by
means of the discrete operators for PwRs previously introduced. Then, a trial
PwR ui is obtained, in line 7, by hybridizing xi and vi by means of a chosen
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Algorithm 1. Main scheme of ADE-PR
1: function ADE-PR(f : RM → R,N ∈ N

+,F ∈ [0, 1],CR ∈ [0, 1])
2: for i ← 1, . . . , N do
3: xi ← randomly sample a PwR from RM

4: while termination criterion is not satisfied do
5: for i ← 1, . . . , N do
6: vi ← xr0 � F � (xr1 � xr2)
7: ui ← Crossover(xi, vi,CR)
8: Optionally apply a local search procedure on ui

9: for i ← 1, . . . , N do
10: if f(ui) < f(xi) then
11: xi ← ui

12: Optionally perform a population restart

13: return xbest

14: end function

crossover operator working on the PwR representation (like, for instance, GOX,
GPMX and PPX [8,9]). In lines 9–10, if ui is fitter than xi, it enters the next-
generation population by replacing xi.

Moreover, it is possible to integrate into the ADE-PR scheme: (i) a local
search scheme, purposely defined for the problem at hand, in order to refine
the search, and (ii) a restart procedure which is often useful in combinatorial
problems whose search space is finite.

Note also that the parameters F and CR can be self-adapted during the
evolution using one of the many self-adaptive DE schemes in the literature.

The key operator of ADE-PR is the newly introduced differential mutation
scheme which directly works with permutations with repetition. The expression
in line 6 of Algorithm 1 can be interpreted as follows. The mutant vi is generated
by applying to the PwR xr0 a sequence of adjacent swap moves which is a prefix
of the sequence of moves that transform the PwR xr2 into xr1 . Clearly, the length
of the prefix is regulated by the scale factor F ∈ [0, 1]. This interpretation is in
line with what happens in the continuous DE and for ADE in a search space
representable as a finitely generated group.

5 ADE-PR for the Job Shop Scheduling Problem

As a case study, we describe an implementation of ADE-PR for solving the
Job Shop Scheduling Problem (JSSP). The resulting algorithm, called ADE-
PR-JSSP, follows the scheme depicted in Sect. 4, i.e., it starts with a population
of randomly initialized PwRs which are evolved by means of the following oper-
ators: discrete differential mutation, GOX crossover [9], selection, local search
for the JSSP, and restart procedure. Furthermore, the parameter F used in the
discrete differential mutation is self-adapted by means of the jDE method [10],
while the GOX crossover, as defined in [9], has no parameter.
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In the next subsections we describe: the definition of the JSSP, the procedure
for converting a permutation with repetition to a feasible JSSP schedule, the
local search operator and the restart scheme adopted in ADE-PR-JSSP.

5.1 Definition of the Problem

The Job Shop Scheduling Problem (JSSP) is an important scheduling problem
with many applications in the manufacturing and service industry [12,13].

An instance of the JSSP is defined in terms of a set J of n jobs J1, . . . , Jn

and a set M of m machines μ1, . . . , μm. Each job Ji is composed by m oper-
ations Oi1, . . . , Oim. Every operation Oij has a processing time pij and has to
be executed by the machine μij ∈ M. All the operations within a given job are
linearly ordered, while no constraint is defined among operations belonging to
different jobs. The set of all the operations is denoted by O.

A feasible schedule s consists in assigning to each operation Oij ∈ O a start
time sij such that the following constraints are satisfied: for each i = 1, . . . , n
and j = 1, . . . , m − 1,

sij ≤ si,j+1, (10)

and, for each Oij , Ohk ∈ O with μij = μhk,

sij ≥ ehk or shk ≥ eij , (11)

where eij = sij + pij is the end time of the operation Oij .
A feasible schedule s is optimal if it optimizes a given objective function. In

this paper, the aim is to minimize the makespan

Cmax(s) = max
ij

eij . (12)

The JSSP has been approached using a variety of different techniques. In the
recent survey [11] many evolutionary and meta-heuristic approaches to solve the
JSSP are described: Particle Swarm Optimization, Ant Colony Optimization,
Variable Neighborhood Search, Tabu Search, Genetic Algorithms, and several
others.

5.2 From a Permutation with Repetition to a JSSP Schedule

The solutions of ADE-PR-JSSP are represented as PwRs over the multiset Mm,n,
whose support is {1, . . . , n}, and such that every item in Mm,n has multiplicity
m. Hence, ADE-PR-JSSP navigates the search space of the permutations with
repetition in RMm,n

.
This representation, called operation-based representation [12], was firstly

introduced by [8] and has the important property that it generates only feasible
solutions.

The operation-based representation is based on the fact that each operation
Oij ∈ O can be uniquely identified by the integer number (i−1)m+j. Therefore,
a PwR x ∈ RMm,n

is decoded to a JSSP schedule by using a two-phase procedure.
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In the first phase, a permutation πx ∈ S(mn), representing a total order ≺x

among the operations in O, is built from x as follows.
For each h = 1, . . . , mn, let j = x(h) be the h–th item of x and let k be

the number of items xl, for 1 ≤ l ≤ h, such that xl = j, then πx(h) is set to
(j − 1)m + k. Then, πx(h) corresponds to the operation Oj,k.

It is easy to see that ≺x respects the constraint (10) by construction. Indeed
Oij ≺x Oi,j+1, for each pair of indices i and j < m. Moreover, for each pair of
operations Oij , Ohk ∈ O assigned to the same machine, ≺x states in which order
the two operations have to be executed.

The second phase assigns to each operation Oij a start time sij as the maxi-
mum among the end time of Oi,j−1 and the end times of all the operations Ohk

preceding Oij , with respect to ≺x, and such that μij = μhk.
The obtained schedule is feasible and respects the precedence relations ind-

uced by πx. Therefore, by calling the conversion procedure as GenerateSchedule
and given a PwR x ∈ RMm,n

, we have that the fitness of x in ADE-PR-JSSP is
the makespan of the corresponding schedule, i.e., Cmax (GenerateSchedule(x)).

5.3 Local Search for the JSSP

We have designed ADE-PR-JSSP in such a way that every trial individual ui ∈
RMm,n

, at every generation of the algorithm, undergoes a local search procedure
with probability pLS .

Before applying the local search, the trial individual, represented as a PwR,
is first converted to a schedule by means of the procedure described in Sect. 5.2.

The local search is based on the neighborhood N �, as described in [21], and
works as follows. At each iteration the critical path of the current schedule s is
computed. This path is the sequence of consecutive operations (where the end
time of any operation coincides with the start time of the successive operation
in the path) which has the maximum completion time (which corresponds to the
makespan of s). Then, the blocks of consecutive operations assigned to the same
machine are detected in the critical path. For each block B, two swaps are tried:
one exchanges the first two operations in B, while the other exchanges the last
two operations. The swap which most reduces the makespan is performed and
the schedule is updated accordingly. If no swap produces a better makespan, the
local search terminates.

Now, the local optimal schedule is converted back to a PwR and replaces the
seed individual ui in the population of ADE-PR-JSSP. The conversion can be
easily implemented by considering a topological sorting in the precedence graph
of the local optimal schedule.

After some preliminary experiments, we set the probability pLS to apply the
local search as

pLS (t) =
t

T
· pendLS +

(

1 − t

T

)

· pstartLS , (13)

where t is the current computational time, T is the budget for the execution time,
pstart

LS is the probability of applying the local search at time t = 0, and pend
LS >
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pstart
LS is the probability at time t = T . Hence, the local search is progressively

applied more often as time passes. This behavior should favor exploration in the
earlier phase of the evolution, while exploitation is intensified with the passing
of time.

5.4 Restart Scheme

The restart mechanism is implemented by replacing all the population individ-
uals, except the best one, with new randomly generated PwRs.

A restart is performed when the algorithm has not been able to improve its
best solution so far after T ·rrestart seconds, where T is the total allotted running
time and rrestart < 1 is the parameter which regulates how often this operation
should be performed at most.

6 Experiments

ADE-PR-JSSP has been experimentally validated on some commonly adopted
benchmarks for the JSSP, namely: the ft, la, and orb benchmark suites [15]2.
The benchmarks contain a total of 53 JSSP instances with n · m ranging from
36 to 300.

After some preliminary experiments, the population size has been set to
N = 25 individuals, the range for the application probability of the local search
has been set using pstart

LS = 0 and pend
LS = 1, while the restart parameter rrestart

has been set to 0.1.
The executions of ADE-PR-JSS have been carried out on a machine equipped

with the Intel Xeon CPU E5-2620 v4 clocking at 2.10 GHz. Every execution ter-
minates after a time budget of T = 4mn seconds has been exhausted. Moreover,
R = 15 executions per instance have been run.

The presentation of the experimental results is divided in three groups,
according to the values of mn: Table 1 refers to the instances with nm < 100,
Table 2 to those with nm = 100, and Table 3 to the remaining instances. In
these three tables we present, for each instance: the sizes n and m, the average
(Avg i) and minimum (Mini) fitness values obtained by ADE-PR-JSSP in the R
runs, the known optimal value (Opt i) for the instance (taken from the recently
published survey paper [15]), and the average relative percentage deviation com-
puted as ARPDi = 100 × Avgi−Opti

Opti
. Moreover, the minimum Mini is reported

in boldface when it matches the known optimal value Opt i.
Interestingly, in 38 out of 53 instances, ADE-PR-JSSP reached the optimal

value at least once, while, in 22 instances, this happened in all the executions.
In particular, the results provided in Table 1 refer to small JSSP instances,

where ADE-PR-JSSP has been always able to find the optimal value, and for 7
of such instances this happened in all the executions. Indeed, the average ARPD
for this set of instances is rather small, i.e., 0.167%.

2 These JSSP instances can be downloaded from the website http://jobshop.jjvh.nl.

http://jobshop.jjvh.nl
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Table 1. Experimental results on instances with nm < 100

Instance n m Avg ARPD Min Opt

ft06 6 6 55.000 0.000 55 55

la01 10 5 666.000 0.000 666 666

la02 10 5 660.133 0.784 655 655

la03 10 5 602.867 0.983 597 597

la04 10 5 590.400 0.068 590 590

la05 10 5 593.000 0.000 593 593

la06 15 5 926.000 0.000 926 926

la07 15 5 890.000 0.000 890 890

la08 15 5 863.000 0.000 863 863

la09 15 5 951.000 0.000 951 951

la10 15 5 958.000 0.000 958 958

Table 2. Experimental results on instances with nm = 100

Instance n m Avg ARPD Min Opt

ft10 10 10 937.933 0.853 930 930

ft20 20 5 1174.600 0.824 1165 1165

la11 20 5 1222.000 0.000 1222 1222

la12 20 5 1039.000 0.000 1039 1039

la13 20 5 1150.000 0.000 1150 1150

la14 20 5 1292.000 0.000 1292 1292

la15 20 5 1207.000 0.000 1207 1207

la16 10 10 949.800 0.508 945 945

la17 10 10 785.267 0.162 784 784

la18 10 10 848.667 0.079 848 848

la19 10 10 845.667 0.435 842 842

la20 10 10 906.667 0.517 902 902

orb01 10 10 1078.267 1.819 1064 1059

orb02 10 10 890.800 0.315 889 888

orb03 10 10 1019.000 1.393 1005 1005

orb04 10 10 1018.267 1.320 1011 1005

orb05 10 10 891.400 0.496 889 887

orb06 10 10 1025.800 1.564 1021 1010

orb07 10 10 401.667 1.175 397 397

orb08 10 10 906.800 0.868 899 899

orb09 10 10 943.467 1.014 934 934

orb10 10 10 944.000 0.000 944 944
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Table 3. Experimental results on instances with nm > 100

Instance n m Avg ARPD Min Opt

la21 15 10 1059.933 1.332 1047 1046

la22 15 10 930.133 0.338 927 927

la23 15 10 1032.000 0.000 1032 1032

la24 15 10 941.667 0.713 938 935

la25 15 10 982.867 0.600 982 977

la26 20 10 1218.000 0.000 1218 1218

la27 20 10 1257.533 1.825 1242 1235

la28 20 10 1221.533 0.455 1216 1216

la29 20 10 1190.067 3.304 1174 1152

la30 20 10 1355.000 0.000 1355 1355

la31 30 10 1784.000 0.000 1784 1784

la32 30 10 1850.000 0.000 1850 1850

la33 30 10 1719.000 0.000 1719 1719

la34 30 10 1721.000 0.000 1721 1721

la35 30 10 1888.000 0.000 1888 1888

la36 15 15 1286.267 1.441 1278 1268

la37 15 15 1435.600 2.763 1418 1397

la38 15 15 1210.867 1.243 1202 1196

la39 15 15 1249.400 1.330 1246 1233

la40 15 15 1240.133 1.484 1228 1222

Table 2 shows that on the 22 selected instances with nm = 100 the algorithm
has been able to find the optimal value: at least once on 17 instances, and in all
the executions in 6 cases. As expected, the average ARPD for this second set of
instances, 0.606%, is larger than the previous, but anyway close to 0.

In Table 3 it is possible to see that ADE-PR-JSSP reached the known optimal
value: at least once in half the instances (10 out of 20), and in all the executions
for 8 of them. Therefore, the average ARPD for this last set of instances is
slightly larger than the other: 0.841%. Moreover, Table 3 also shows that the
instances with m = 15 are much harder and the average ARPD restricted to
this subset raises to 1.652%.

Summarizing, the overall ARPD obtained by averaging on all the 53 instances
is 0.604, thus promoting the proposed approach as a method competitive with
respect to the known values for the considered benchmarks.

7 Conclusion and Future Work

In this paper, we have extended the algebraic framework for evolutionary com-
putation previously proposed in [22] in order to handle the search space of per-
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mutations with repetition. The newly proposed discrete operators allowed to
design an Algebraic Differential Evolution called ADE-PR which can be applied
to any combinatorial optimization problem whose solutions may be represented
as permutations of possibly repeated items.

In particular, ADE-PR has been devised for the Job Shop Scheduling Prob-
lem (JSSP). In order to validate the effectiveness of the proposed approach,
experiments have been on a set of widely adopted benchmark instances for
the JSSP. The experimental results show that our proposal is competitive with
respect to the known optimal objective values for the considered benchmarks.

Possible future lines of research are: apply ADE-PR to partitioning problems;
use simple search moves other than the swaps of adjacent items; design other
algebraic evolutionary algorithms, like the APSO [23], in order to work with
permutations with repetition; and generalize the approach to other search spaces,
by means of the algebraic concept of group action, in order to see the deployed
discrete operators as projections from a known space which can be represented
as a group to other more general combinatorial spaces.

Acknowledgement. The research described in this work has been partially sup-
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