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Abstract. Software Product Lines Engineering (SPLE) proposes tech-
niques to model, create and improve groups of related software systems
in a systematic way, with different alternatives formally expressed, e.g.,
as Feature Models. Selecting the ‘best’ software system(s) turns into a
problem of improving the quality of selected subsets of software fea-
tures (components) from feature models, or as it is widely known, Fea-
ture Configuration. When there are different independent dimensions to
assess how good a software product is, the problem becomes even more
challenging – it is then a multi-objective optimisation problem. Another
big issue for software systems is evolution where software components
change. This is common in the industry but, as far as we know, there is no
algorithm designed to the particular case of multi-objective optimisation
of evolving software product lines. In this paper we present MILPIBEA,
a novel hybrid algorithm which combines the scalability of a genetic algo-
rithm (IBEA) with the accuracy of a mixed-integer linear programming
solver (IBM ILOG CPLEX). We also study the behaviour of our solution
(MILPIBEA) in contrast with SATIBEA, a state-of-the-art algorithm in
static software product lines. We demonstrate that MILPIBEA outper-
forms SATIBEA on average, especially for the most challenging problem
instances, and that MILPIBEA is the one that continues to improve
the quality of the solutions when SATIBEA stagnates (in the evolving
context).
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1 Introduction

Software Engineering combines various domains [1]. Software Product Lines
(SPL) is one of these domains that deal with groups of related software sys-
tems as an ensemble, instead of handling each of them independently [2]. SPL is
getting more attention by the software industry as it simplifies software reuse [3]
and enables better reliability and important reduction in cost [4].

A common way to represent a product line, all available products and their
essential characteristics, is a Feature Model (FM). Every feature corresponds to
an element of a software system/product that is of interest to a particular com-
pany. Each FM describes the available configuration choices, and consequently
the set of all possible products as combinations of features. These FMs can grow
to become very large (e.g., in this paper, we use FMs with ∼7k features and
∼350k constraints).

When deriving a particular product from the product line, we have to perform
a feature selection. To find the best possible product, we optimise the feature
selection, i.e., pick the set of features which gives us the ‘best’ product [5]. Since
in practice various characteristics often have to be considered simultaneously
(e.g., cost, technical feasibility, or reliability) finding the ‘best’ feature selection
is an instance of a multi-objective optimisation problem [6].

A similar problem that is not fully studied in the literature is the multi-
objective feature selection when FMs evolve. There is a continual evolution of
software libraries and a constant change in customers’ preferences regarding the
requirements of software applications. These evolutions appear as an adaptation
of the FM from a version to another. For instance, Saber et al. [7] have shown in
their study that the large FM representing the Linux kernel evolves continuously.
They have also shown that a new version of the kernel is released every few
months with a successive difference that can go up to 7%.

In this paper, we propose to leverage the evolution context when performing
optimisations of feature configurations. It seems odd to generate random boot-
strapping populations for SATIBEA in the presence of well-performing solutions
for similar problem instances. At the same time, it might be beneficial to exploit
the fact that the FM has evolved and that configurations generated previously
are close enough and can be adapted.

This paper presents our approach, MILPIBEA, which was initially designed
to address the problem of feature selection in a multi-objective context when the
FMs evolve, but proved to be better than SATIBEA both when the FMs evolve
and when they do not. MILPIBEA is a hybrid algorithm that uses a genetic
algorithm (IBEA) and a mixed-integer linear programming (MILP) solver (IBM
ILOG CPLEX).

SATIBEA [6] (also a hybrid algorithm) faces a difficult challenge: the search
space is so large and constrained that mutation and crossover operations generate
a large number of infeasible solutions. SATIBEA uses a SAT solver to fix these
infeasible solutions and obtains (close to) viable individuals at each generation of
the genetic algorithm. However, this process has two major issues: (i) it is time-
consuming – an empirical study of SATIBEA showed that the vast majority of
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the execution time consists in fixing the faulty individuals; (ii) it modifies the
individuals, often substantially, which defies the idea behind genetic algorithms –
where you expect to inherit properties from previous generations and modify the
individuals only marginally. MILPIBEA’s correction of individuals is both more
efficient and more effective, making sure the corrected individuals are closer to
the ones generated by IBEA’s mutation and crossover.

This paper makes the following contributions:

– We propose MILPIBEA, a hybrid algorithm that outperforms the SAT-
IBEA [6] both in terms of execution time and quality of the solutions.

– We thoroughly evaluate SATIBEA and MILPIBEA on evolving and non-
evolving SPL problems and show that MILPIBEA is 42% better than SAT-
IBEA in hypervolume on average, especially for the most challenging problem
instances, and that MILPIBEA is the one that continues to improve the qual-
ity of solutions when SATIBEA stagnates (in the evolving context) and does
improve the quality of solutions.

Combining a solver with a multi-objective evolutionary algorithm has already
been proposed to address the particular problem of multi-objective feature selec-
tion in SPL [6,8,9] and problems from various other problem domains (e.g., cloud
computing [10–12]). However, this is the first work that proposes using a MILP
solver for the multi-objective feature selection in SPL.

The remainder of this paper is organised as follows: Sect. 2 describes the
context of our study. Section 3 provides the overall set-up and the benchmark
for evolving SPL. We then discuss potential improvements in three steps: Sect. 4
motivates seeding previous solutions when dealing with evolving FMs. Section 5
compares the correction mechanisms of SATIBEA and MILPIBEA. Section 6
discusses how MILPIBEA performs in comparison to SATIBEA in terms of
achieved hypervolume and required time. Finally, Sect. 7 concludes the paper.

2 Background

In this section, we present four elements that form our research’s background:

– Software Product Line Engineering, in particular how to describe variations
of software applications as configurations of a feature model.

– Multi-objective optimisation (MOO); picking features can lead to many prod-
ucts for which the quality can be seen from different perspectives. MOO gives
a framework to address this sort of problems.

– Evolution of Software Product Lines: Software applications, requirements,
and implementations change constantly. Therefore, feature models need to
be updated to reflect these evolutions [7].

– SATIBEA, a state-of-the-art algorithm to address the MOO for feature selec-
tion in feature models [6] and the same when FMs evolve [7].
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2.1 Software Product Line Engineering

Software engineers often need to adapt software artefacts to the needs of a
particular customer. Software Product Line Engineering (SPLE) is a software
paradigm that aims at managing those variations in a systematic fashion. For
instance, all software artefacts (and their variations) can be interpreted as a set
of features which can be selected and combined to obtain a particular product.

Feature Models can be represented as a set of features and connecting rela-
tionships (constraints). Figure 1 shows a toy FM which has ten features con-
nected by several relationships. For instance, each ‘Screen’ has to be have exactly
one of three types, i.e., ‘Basic’, ‘Colour’ or ‘High Resolution’. When deriving a
software product from the software product line, we have to select a subset of
features S ⊆ F that satisfies the FM F and the requirements of the stake-
holder/customer. This configuration can be described as a satisfiability problem
(SAT), i.e., instantiating variables (in our case, features) with the values true or
false in a way that satisfies all the constraints. Let fi ∈ {true, false} which is set
to true if the feature Fi ∈ F is selected to be part of S and false otherwise.

An FM is represented in a conjunctive normal form (CNF). Finding a prod-
uct in the SPL is then equivalent to assigning a value in {true, false} to every
feature. For instance, in Fig. 1 the FM would have the following clauses, among
others: (Basic ∨Colour ∨High resolution) ∧ (¬Basic ∨ ¬Colour) ∧ (¬Basic ∨
¬High resolution) ∧ (¬Colour ∨ ¬High resolution), which describe the alter-
native between the three screen features. When configuring a SPL, software
designers do not limit themselves to finding possible products (satisfying the
FM) but also attempt to discover products optimising multiple criteria. For this
reason, SPL configuration is modelled as multi-objective problem.

Fig. 1. Example of a feature model

2.2 Multi-objective Optimisation

Multi-Objective Optimisation (MOO) involves the simultaneous optimisation of
more than one objective function. Given that the value of software artefacts can
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be seen from different angles (e.g., cost, importance, reliability), feature selection
in SPL is a good candidate for MOO [6].

Solutions of a MOO problem represent the set of non-dominated solutions
defined as follows: Let S be the set of all feasible solutions for a given FM. Then
∀x ∈ S, F = [O1(x), ..., Ok(x)] represents a vector containing values of the k
objective functions for a given solution x. We say that a solution x1 dominates
x2, written as x1 � x2, if and only if ∀i ∈ {1, ..., k}, Oi(x1) ≤ Oi(x2) and
∃i ∈ {1, ..., k} such that Oi(x1) < Oi(x2). We also say that xi is a non-dominated
solution if there is no other solution xj in the Pareto front s.t. xj dominates xi.

All the non-dominated solutions represent a set called a Pareto front: in
this set, it is impossible to find any solution better in all objectives than
the other solutions in the set. The Pareto front given in Fig. 2 contains solu-
tions x1, x2, x4, x6, x7 because they are not dominated by any other, while, for
instance, x8 is dominated by x1. Hence, x8 is not in the Pareto front.

Fig. 2. Example of a Pareto front with two minimisation objectives.

2.3 Evolution in SPL

Evolution of SPLs and the corresponding FMs is known to be an important
challenge, since product lines represent long-term investments [13]. For instance,
in Sect. 3 we describe a study of a large-scale FM, the Linux kernel by Saber et
al. [7] which shows that every few months a new FM is released with up to 7%
modifications among the features (features added or removed).

In this paper, we show a potential approach for this optimisation problem
which utilises the evolution from one FM to another. The relationship between
two versions of a feature model is expressed as a mapping between features. Let
us assume an FM FM1 evolved into another FM FM2. Some of the features
f1
i ∈ FM1 are mapped on to features f2

i ∈ FM2 (treated as the same), whereas
other features f1

i ∈ FM1 are not mapped onto any features in FM2 (f1
i has been

removed), and features f2
i ∈ FM2 have no corresponding features in FM1 (f2

i

has been added). The same can be applied to constraints (removed from FM1 or
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added to FM2). The problem we address concerns adapting the solutions found
previously for FM1 to FM2.

2.4 SATIBEA

SATIBEA [6] is an extension of the Indicator-Based Evolutionary Algorithm
(IBEA) which guides the search by a quality indicator given by the user. Pre-
viously to SATIBEA, several techniques have been tried to solve the multi-
objective feature selection in SPL. As most of the random techniques and genetic
algorithms tend to generate invalid solutions (given the large and constrained
search space, any random, mutation or crossover operation is tricky) setting the
number of violated constraints as a minimisation objective has been proposed
by Sayyad et al. [14] and has since been widely used in the literature [6–8]. It
is not the best possible decision and is acceptable only for small problems (only
small FMs are solvable with exact algorithms [15]).

SATIBEA has been introduced to help IBEA find valid products using a SAT
solver. SATIBEA changes the mutation process of IBEA: when an individual is
mutated, three different exclusive mutations can be applied:

1. The standard bit-flip mutation proposed by IBEA.
2. Replacing the individual by another one generated by the SAT solver that

does not violate any constraints.
3. Transforming the individual into a valid one using the SAT solver (repair).

Using this novel mutation approach, SATIBEA finds better solutions than IBEA:
it finds valid optimised products, but also gives better values in quality metrics.

In this paper, we propose MILPIBEA; a novel technique that addresses some
of SATIBEA’s limitations (i.e., slow and stagnating performance improvements).

3 System Set-Up

This section presents the different elements that we have used in our implemen-
tation: the data set, the objectives we use for our multi-objective optimisation
problem, the metric we use (i.e., hypervolume), the parameters we use for the
genetic algorithm (i.e., IBEA) and the hardware configuration.

3.1 Benchmark for Evolving FMs

Our work is based on the largest open-source FM we could find in the literature:
the Linux kernel version 2.6.28 containing 6,888 features and 343,944 constraints.

Saber et al. [7,16] studied the demographics (features/constraints) and evo-
lution pattern of 21 successive versions of the Linux kernel (going from 2.6.12 to
2.6.32). They observed that on average there was only 4.6% difference in terms
of features between a version and the next (out of those changes, 21.22% were
removed features and 78.78% were added features). They also evaluated the size
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of the clauses/constraints in the problem, as we need to know how the con-
straints we add in the problem should look and found that a large proportion of
the FMs’ constraints have 6 features (39%), 5 features (16%), 18 features (14%)
or 19 features (14%). Saber et al. [7] put at our disposal a generator of synthetic
FM evolutions based on the real evolution of the Linux kernel – hence a realistic
benchmark but with more variability than in a real one, allowing us also to get
several synthetic data sets corresponding to these characteristics.

The FM generator provided by Saber et al. uses two parameters representing
the percentage of feature modifications (added/removed) and the percentage of
constraint modifications (added/removed). The higher those percentages are,
the more different the new FM is from its original. The FM generator uses the
proportions observed in the 20 FMs to generate new features/remove old ones,
and to generate new constraints of a particular length. We use the following
values to generate evolved FMs: from 5% of modified features and 1% of modified
constraints (FM 5 1) to 20% of modified features and 10% of modified constraints
(FM 20 10). In our evaluations we generate 10 synthetic FMs for each parameter
values. Data is available at https://github.com/aventresque/EvolvingFMs.

3.2 Optimisation Objectives

We use a set of optimisation objectives from the literature [6]:

1. Correctness – minimise the number of violated constraints, proposed by
Sayyad et al. [14].

2. Richness of features – maximise the number of selected features (have prod-
ucts with more functionality).

3. Features used before – minimise the number of selected features that were not
used before.

4. Known defects – minimise the number of known defects in selected features
(we use random integer values between 0 and 10).

5. Cost – minimise the cost of the selected features (we use random real values
between 5.0 and 15.0).

In a different application context, these objectives could be augmented or
replaced with other criteria, e.g., consumption of resources or various costs.

3.3 Hypervolume Indicator

We evaluate the quality of our solutions cost using the hypervolume metric [17].
Intuition behind the hypervolume is that it gives the volume (in the k dimensions
of the search space) dominated by a set of non-dominated solutions. Hypervol-
ume is the region between the solutions and the reference point (the higher the
better). The reference point is set with the worst value for each of the objectives.

https://github.com/aventresque/EvolvingFMs
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3.4 System and Algorithms Set-Up

We use the source code provided by SATIBEA’s authors and make MILPIBEA
publicly available at https://github.com/takfarinassaber/MILPIBEA. The tests
are performed on a machine with 62 GB of RAM and 12 core Intel(R) Xeon(R)
2.20 GHz CPU. We use the following parameters for our genetic algorithm:

– Population size: 300 individuals.
– Offspring population size: 300 individuals.
– Crossover rate: 0.8. Represents the probability of two individuals in the pop-

ulation to perform a crossover (an exchange of their selected features).
– Mutation rate: 0.001. Represents the probability for each bit (true if a feature

is selected, 0 otherwise) of an individual to be flipped.
– Solver mutation rate: 0.02. Represents the probability of using the solver to

correct a solution during the mutation process.

We also use one heuristic in our algorithm: we do not do any bit flip for
mandatory or dead features as this always lead to invalid products. We use the
engine of the MILP solver IBM ILOG CPLEX. We use the hypervolume metric
proposed by Fonseca et al. [17]. We ran all our algorithm instances for 20 min
and determined the average over 10 runs (for each randomly generated instance).

4 Using Seeds in Evolving FM

In this section, we explore how to use seeds (including previously found solutions
in the initial population of a new evolution) to take advantage of the fact that
the feature model evolved.

When a FM evolves, the modifications of features and constraints depend on
how different the two models are (new and original models). We propose to take
advantage of previous FM configurations (when they exist) to feed SATIBEA
with solutions of the original model. Let’s suppose two FMs: F1 and F2 with F2

being an evolution of F1 (i.e., features/constraints added and removed). We con-
sider that we already found a set of solutions S1 by applying a multi-objective
optimisation algorithm (SATIBEA in our case) on F1. Instead of leaving SAT-
IBEA with an initial random population for F2 (similar to what is proposed
in [7]), we adapt S1 to F2. Therefore, for each individual, we remove bits repre-
senting removed features and add bits with random values for each new feature.
Then, we compute their objective functions. We give the new resulting individu-
als as an initial population to SATIBEA that will run normally on F2. Our hope
is that initial individuals will be better than random solutions.

We tested this approach on all the modified versions of the Linux Kernel and
all of the results are equivalent: as expected, when supplied with an initial seed
SATIBEA converges within a short time (i.e., less than 100 s) whereas the clas-
sical SATIBEA needs 700 s to reach the same hypervolume. This approach also
has some limits: with a modified version of 20% features and 10% constraints,
classical SATIBEA reaches a slightly better hypervolume than the one with seed.

https://github.com/takfarinassaber/MILPIBEA
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When we give an initial population to SATIBEA, it converges very fast.
Still, it is also blocked very fast, i.e., after 100 s on all models, it stagnates and
is unable to improve results further. That is why we decided to investigate a
better substitution for SATIBEA, starting from its repair technique based on a
SAT solver. We describe this approach in the next section.

5 Correcting Individuals

In this section, we present two ways of correcting non-feasible individuals, i.e., a
situation that happens very often during the execution of the genetic algorithm
for our problem. Indeed, both mutation and crossover, the basic operations of
(SAT)IBEA, generate quite a large ratio of infeasible individuals, given the size
of the search space and the number of constraints that can be violated.

The first solution we present is the one proposed in the definition of SAT-
IBEA [6]. The second one is our own improved solution using the MILP solver.
Eventually, we propose an evaluation of the two techniques with an example.

5.1 How SATIBEA Corrects Solutions

SATIBEA’s correction method occurs in the mutation phase of the genetic algo-
rithm. IBEA takes an individual that violates one or several constraints out of
the population and corrects it, using a SAT solver. This leads to the individual
being now valid (no longer violating constraints). Figure 3 shows an example
of SATIBEA’s repair technique on a FM with 5 features (f1 to f5) and 3 con-
straints (c1 to c3). The constraints are shown on the left-hand side of Fig. 3, with
c2 marked as violated.

(1) First, an individual with assignment {1 1 1 0 0} is selected for repair due to
the violation of constraints c2 (which causes the individual to be invalid).
This is shown in row (1) in the table on the right-hand side of Fig. 3.

(2a) Second, SATIBEA unsets (this is represented by ‘ ’ in the example) all the
bits that belong to a violated constraint. Here, constraint c2 is violated, so
f4 and f5 are unset. This is in row (2a) of the table.

(2b) Third, SATIBEA unsets all the bits that are evaluated as ‘false’ in every
constraint. Each of these can either be a feature without a negation sign
in the constraint (i.e., f) that is set to false or a feature with a negation
(i.e., f) that is set to true. All of these are unset. In our example, f2
is assigned to true and is evaluated at false in the constraint c1 (f2).
Therefore, SATIBEA unsets f2. This is shown in row (2b) of the table.

(3) Eventually, the resulting partial assignment is given to the SAT solver
to complete the unset values while satisfying the constraints of the FM.
SATIBEA’s correction always obtains a valid solution if it exists. In our
case, SATIBEA results in a new individual (i.e., {1 0 1 1 0}). This is shown
on line 3 of Fig. 3. Note that this procedure cannot guarantee to always
return a valid individual as the problem may be unsatisfiable.
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c1 f1 ∨ f̄2 ∨ f3
) ∧

c2 (Violated) (f4 ∨ f5) ∧
c3 f̄2 ∨ f3 ∨ f̄5

)

f1 f2 f3 f4 f5
1) 1 1 1 0 0
2a) 1 1 1
2b) 1 1
3) 1 0 1 1 0

Fig. 3. Correction of an individual in SATIBEA. The original individual, violating
constraint 2, is shown on line 1 and the different steps of SATIBEA’s correction are
shown on lines 2a, 2b and 3.

Although this correction technique is fast and improves the classical IBEA
algorithm, the number of flipped bits is large. This often creates new individuals
that are far from the original ones (before the correction). This issue is that those
individuals were obtained by mutation in IBEA and modifying them too much is
against the idea behind genetic algorithms (i.e., inheriting and preserving good
characters). For instance, from the individual {1 1 1 0 0} (line 1 of Fig. 3) that
violates the constraints, it would be better to obtain individual {1 1 1 1 0} that
does not violate the constraints (instead of {1 0 1 1 0}). The next subsection
describes our MILP-based correction technique that overcomes this problem.

5.2 How Our MILP Technique Corrects Solutions

Our new method corrects individuals and avoids the problem described in previ-
ous section (i.e., a large number of flipped bits between the initial individuals and
the corrected ones). This method corrects the faulty individuals and minimises
the number of flipped bits which are not part of any violated constraint.

Applied to the example in Fig. 3, only features f4 and f5 are unset. CPLEX
solves the problem of finding a valid individual by assigning values to f4 and f5
while at the same time, minimising the total bit flips on the rest of the features
(i.e., f1,f2 and f3). One possible output is {1 1 1 1 0} which does not modify any
fixed bit, unlike SATIBEA’s one (i.e., {1 0 1 1 0} which has one modification
on the feature f2).

Using our method, CPLEX is guaranteed to find a valid individual. Moreover,
it returns an individual that is as close as possible to the original one. In our
method, we use the model defined by Eqs. 1a, 1b, and 1c.

Minimise
∑

x∈T

(1 − x) +
∑

x∈F

x (1a)

Subject to
∑

x∈Pi

x +
∑

x∈Ni

(1 − x) ≥ 1, ∀i ∈ {1, .. n} (1b)

x ∈ {0, 1}, ∀x ∈ X (1c)
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With n number of clauses, X set of features, T ⊂ X set a features fixed at true,
F ⊂ X set of features fixed at false, Pi ⊂ X set of features without negation in
clause i, and Ni ⊂ X set of features with negation in clause i.

In the MILP model above, we aim to minimise the number of flipped features
that were not part of violated constraints in the original individual: if the feature
was originally at True (i.e., ‘1’), then we count it as a modification if and only if
it changes to False (i.e., ‘0’). Similarly, when the feature was originally at False
and is changed to True, we also count it as a modification. As in the technique
using the SAT model, each clause is represented by a linear constraint. Every
feature without a negation is considered as ‘1’ when selected, and every feature
that is negated is considered as ‘1’ when unselected. The sum of every feature
within a clause has to be larger or equal to 1 to validate it.

Table 1. Comparison of SATIBEA and MILP corrections. Higher values of hypervol-
ume (HV) are better. Lower values of both time and number of modifications (#mod)
are better. Best values for each instance in bold.

Instance No correction SATIBEA correction MILP correction

HV HV Time (ms) #mod HV Time (ms) #mod

1 1 1.09 1.12 8,895 2,696 1.18 6,801 141

5 1 2.15 2.27 8,474 2,660 2.35 2,337 353

5 3 1.03 1.14 9,005 2,747 1.25 5,675 297

10 1 1.00 1.04 9,273 2,615 1.16 2,192 798

10 3 1.08 1.19 10,255 2,732 1.33 4,044 99

10 5 1.02 1.18 10,339 2,784 1.33 4,082 110

20 1 0.90 0.96 9,762 2,528 1.03 2,143 412

20 3 2.16 2.28 9,699 2,691 2.47 2,891 148

20 5 1.06 1.20 10,222 2,752 1.36 2,962 124

20 10 0.72 0.73 10,877 3,008 0.75 6,719 92

5.3 Comparison with Respect to the Correction Process

In Table 1, we compare our correction method against SATIBEA’s correction.
Each instance corresponds to an evolved FM and is represented by a couple
(x y) where x is the percentage of features modified and y the percentage of
constraints modified. We took the 300 individuals given by SATIBEA on the
original FM as seeds for the evolved versions. SATIBEA found 62 solutions that
do not violate constraints in the original FM. Obviously, these solutions violate
some constraints in each of the evolved FMs. We compared both SATIBEA’s
and MILP’s correction methods applied on the 62 individuals. We measured the
hypervolume (HV), the average execution time for each individual (in millisec-
onds) and the average number of modified features from the original individual
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to the corrected one (#mod). We also added the hypervolume of non-corrected
solutions (NC) as a baseline.

We can see that when applying a correction, both algorithms improve the
hypervolume composed to non-corrected individuals. However, MILP’s cor-
rections outperforms SATIBEA’s corrections. Correction using a MILP solver
improved hypervolume of SATIBEA’s correction by 147% on average, while only
requiring 48% of its execution time. Moreover, we notice that the number of
modified features per individual using the MILP correction is one order of mag-
nitude lower than when using SATIBEA’s correction (on average SATIBEA’s
correction requires 2,721 feature modifications whereas MILP’s correction only
requires 257). As our correction method needs less modifications of individuals
to transform them into valid ones, it could be more interesting to use it instead
of SATIBEA’s one in a genetic algorithm: indeed, less modifications imply a
better conservation of the accumulated knowledge during the generations. An
implementation of our genetic algorithm with this type of correction method in
the mutation part is described in the next section.

6 Performance of MILPIBEA vs. SATIBEA

We now report on how MILPIBEA and SATIBEA perform on the multi-objective
features selection problem – in particular with respect to the achieved hyper-
volume and the required time for that. We initially discuss the general feature
selection problem and then the case of evolved FMs.

6.1 On the Multi-objective Feature Selection Problem

Figure 4 show the evolution using SATIBEA or MILPIBEA in terms of hyper-
volume when applied on our 10 generated models: each of them is a modification
of the 2.6.28 version of Linux kernel represented by a couple (x y) where x is
the percentage of features modified and y the percentage of constraints modi-
fied. This hypervolume is measured based only on the individuals of the current
population. We are not seeding the initial population: the problem studied in
these result is the multi-objective feature selection problem, without the notion
of evolution. The initial population is generated randomly for both algorithms.

Our results indicate that MILPIBEA outperforms SATIBEA with an
improvement of 41.2% hypervolume on average. Figure 4 also indicates that
MILPIBEA is more efficient on the most constrained problems (i.e., with con-
straint modifications ≥ 5%). MILPIBEA reaches a good hypervolume after 100 s,
then increases slowly. We can see that SATIBEA’s hypervolume increases with
a slower pace than MILPIBEA’s; then its hypervolume stays stable (within a
small interval).

6.2 With Evolved Feature Models

We now compare MILPIBEA and SATIBEA in the case of the multi-objective
feature selection problem in evolving FMs. As described in Sect. 2, the notion of
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Fig. 4. Comparison of MILPIBEA and SATIBEA on various evolved FMs. The higher
the better for the hypervolume.

evolution is represented by features/constraints modifications in the FM. In our
case, the Linux kernel 2.6.28 is the original FM, and we generated 10 modified
versions. Because of evolution, the original FM has been optimised, and its solu-
tions as given as initial population to SATIBEA and MILPIBEA: the purpose
is to improve the quality of results on modified FMs as fast as possible.
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Fig. 5. Comparison of the hypervolume achieved by seeded MILPIBEA and seeded
SATIBEA on various evolved FMs (higher values are better).

Figure 5 show the hypervolume of the individuals at every new generation
for both SATIBEA and MILPIBEA when given the solutions of the original FM
as initial population. We see that both algorithms start from a relatively good
hypervolume, which shows the quality of the initial population.

We also see that MILPIBEA successfully improves the hypervolume, whereas
SATIBEA struggles when seeded. This is mainly because MILPIBEA has a cor-
rection method that allows it to take advantage of the initial population’s good
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characteristics by not changing a lot of features in individuals that are obtained
from the crossover. However, SATIBEA requires to modify several features, mak-
ing the individuals obtained by the repair almost random.

Moreover, we can observe that unlike SATIBEA, MILPIBEA’s hypervolume
continues improving slowly even after the limit (i.e., 1200 s). A larger allowed
time would lead to better solutions. MILPIBEA stagnates after 40 min beyond
which we might consider adding a local search phase [18–21].

When comparing MILPIBEA without seeds and MILPIBEA with seeds: after
the first generation, MILPIBEA with seeds is 10.5% better in hypervolume than
without seeds. It also reaches 97.28% of MILPIBEA’s final hypervolume (com-
puted in 1200 s) after only one generation (42.29 s on average). This shows us
that a good initial population improves the time needed to reach good solutions.

7 Conclusion and Future Work

In this paper, we have presented the importance of the evolution in SPL by
introducing the multi-objective features selection in evolving SPL problem. To
solve this problem, we proposed a method based on a combination of a genetic
algorithm (IBEA) with a MILP solver (i.e., CPLEX). We observed that this
method not only outperforms SATIBEA on the multi-objective features selec-
tion but also achieves faster better results in the context of evolving SPL. Our
thorough evaluation shows the importance of using a MILP solver to reduce the
number of modifications when correcting an individual.

Our future work will investigate the performance with respect to other multi-
objective performance metrics and the utility of a local search when the genetic
algorithm stagnates.
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