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Preface

Combinatorial optimization is concerned with finding an optimal solution from a huge
finite set of candidate solutions. Problems of this nature are omnipresent in many of
today’s societal, industrial, and scientific challenges and include important areas such
as scheduling, timetabling, network design, transportation and distribution, vehicle
routing, stringology, graphs, satisfiability, energy optimization, cutting, packing,
planning, and search-based software engineering. However, classical optimization
techniques often cannot cope with the complexities and constraints of these problems.
Heuristic methods such as evolutionary algorithms and other nature-inspired approa-
ches as well as advanced local search techniques constitute very powerful and suc-
cessful approaches that are able to produce high-quality solutions in reasonable time.
They are typically very easy to implement and apply and come with the advantage of
being anytime algorithms, i. e., they can be stopped at any time during the optimization
process and will return the best solution seen so far. This clearly distinguishes them
from classical algorithms that usually do not return any solution if stopped prematurely.
This way, anytime algorithms provide a very flexible and intuitive approach to
problem-solving that can easily be configured to user needs such as time constraints.
Recent theoretical and experimental advances in this area are the main topics of these
proceedings.

This volume contains the proceedings of the 20th European Conference on Evo-
lutionary Computation in Combinatorial Optimisation (EvoCOP 2020). The conference
was held in Seville, Spain, from April 15–17, 2020. The EvoCOP conference series
started in 2001, with the first workshop specifically devoted to evolutionary compu-
tation in combinatorial optimization. It became an annual conference in 2004. EvoCOP
2020 was organized together with EuroGP (the 23rd European Conference on Genetic
Programming), EvoMUSART (the 9th International Conference on Computational
Intelligence in Music, Sound, Art and Design), and EvoApplications (the 23rd Euro-
pean Conference on the Applications of Evolutionary Computation, formerly known as
EvoWorkshops), in a joint event collectively known as EvoStar 2020. Previous
EvoCOP proceedings were published by Springer in the Lecture Notes in Computer
Science series (LNCS volumes 2037, 2279, 2611, 3004, 3448, 3906, 4446, 4972, 5482,
6022, 6622, 7245, 7832, 8600, 9026, 9595, 10197, 10782, and 11452). The table on
the next page reports the statistics for each of the previous conferences.

This year, 14 out of 37 papers were accepted after a rigorous double-blind review
process, resulting in a 38% acceptance rate. We would like to acknowledge the quality
and timeliness of our Program Committee members’ work. Decisions considered both
the reviewers’ report and the evaluation of the program chairs. The 14 accepted papers
cover a wide spectrum of topics, ranging from the foundations of evolutionary com-
putation algorithms and other search heuristics, to their accurate design and application
to combinatorial optimization problems. Fundamental and methodological aspects deal
with runtime analysis, the structural properties of fitness landscapes, the study of



metaheuristics core components, the clever design of their search principles, and their
careful selection and configuration. Applications cover problem domains such as
scheduling, routing, partitioning, and general graph problems. We believe that the
range of topics covered in this volume of EvoCOP proceedings reflects the current state
of research in the fields of evolutionary computation and combinatorial optimization.

EvoCOP LNCS vol. Submitted Accepted Acceptance (%)

2020 12102 37 14 37.8
2019 11452 37 14 37.8
2018 10782 37 12 32.4
2017 10197 39 16 41.0
2016 9595 44 17 38.6
2015 9026 46 19 41.3
2014 8600 42 20 47.6
2013 7832 50 23 46.0
2012 7245 48 22 45.8
2011 6622 42 22 52.4
2010 6022 69 24 34.8
2009 5482 53 21 39.6
2008 4972 69 24 34.8
2007 4446 81 21 25.9
2006 3906 77 24 31.2
2005 3448 66 24 36.4
2004 3004 86 23 26.7
2003 2611 39 19 48.7
2002 2279 32 18 56.3
2001 2037 31 23 74.2

We would like to express our appreciation to the various persons and institutions
making EvoCOP 2020 a successful event. Firstly, we thank the local organization team,
led by Francisco Fernández de Vega from the University of Extremadura, Spain, and
Federico Divina from the University Pablo de Olavide, Spain. We extend our
acknowledgments to Francisco Chicano from the University of Málaga, Spain, and
João Correia from the University of Coimbra, Portugal, for the EvoStar website and
publicity, as well as Nuno Lourenço for additional general support. Thanks are also due
to our EvoStar coordinator Anna I Esparcia-Alcázar, from Universitat Politècnica de
València, Spain, and Jennifer Willies, as well as to the SPECIES (Society for the
Promotion of Evolutionary Computation in Europe and its Surroundings) executive
board, including Marc Schoenauer (President), Anna I Esparcia-Alcázar (Secretary and
Vice-President), and Wolfgang Banzhaf (Treasurer). We finally wish to thank our
prominent keynote speakers, José Antonio Lozano from the University of the Basque
Country, Spain, and Roberto Serra from the University degli Studi di Modena e Reggio
Emilia, Italy.

Special thanks also to Christian Blum, Francisco Chicano, Carlos Cotta, Peter
Cowling, Jens Gottlieb, Jin-Kao Hao, Jano van Hemert, Bin Hu, Arnaud Liefooghe,

vi Preface



Manuel Lopéz-Ibáñez, Peter Merz, Martin Middendorf, Gabriela Ochoa, and Günther
R. Raidl for their hard work and dedication at past editions of EvoCOP, making this
one of the reference international events in evolutionary computation and
metaheuristics.

April 2020 Luís Paquete
Christine Zarges

Preface vii
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Optimizing Prices and Periods
in Time-of-use Electricity Tariff Design

Using Bilevel Programming
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Abstract. In this paper, a comparison is made between two bilevel pro-
gramming models to design time-of-use tariffs in the electricity retail
market. The upper-level objective function consists of the maximization
of the retailer’s profit and the lower-level problem relates to the mini-
mization of the consumer’s cost. In the first model, the periods in which
prices apply are pre-defined and the aim is to determine the price values.
In the second model, which is developed for the first time in this paper,
both the periods and prices are decision variables, thus leading to a very
large search space for the upper-level problem due to the number of com-
binations periods-prices. For the model with variable periods, a hybrid
approach combining a genetic algorithm for the upper-level search with
a mixed-integer linear programming solver to obtain optimal solutions
to the lower-level problem is herein developed. Computational results
comparing the two models are presented.

Keywords: Bilevel optimization · Genetic algorithm · Mixed-integer
linear programming model · Time-of-use pricing · Electricity retail
market · Demand response

1 Introduction

Major changes are underway in the electricity sector, namely regarding the evolu-
tion to smart grids, the increasing share of renewable sources, the dissemination
of electric vehicles, the deployment of distributed storage and the empower-
ment of consumers/prosumers. Retail electricity markets are very competitive
and retail companies should design appropriate pricing schemes to offer to con-
sumers, who are increasingly sensitive to the need to manage consumption pat-
terns in an optimal manner by considering cost and comfort dimensions in their
c© Springer Nature Switzerland AG 2020
L. Paquete and C. Zarges (Eds.): EvoCOP 2020, LNCS 12102, pp. 1–17, 2020.
https://doi.org/10.1007/978-3-030-43680-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43680-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-43680-3_1


2 M. J. Alves et al.

energy decisions. Energy service companies and grid operators provide auto-
mated home energy management systems (HEMS), which manage consumption
on the consumer’s behalf according to his preferences (e.g., time slots for appli-
ance operation). In general, retailers buy energy in spot markets (e.g., day ahead)
or through bilateral contracts. These prices seen by the retailer are increasingly
influenced by the grid status and the generation mix required to satisfy demand.
So, time-of-use prices have been increasingly adopted, thus fostering a “load fol-
lows supply” paradigm in such a way that benefits can be obtained for all players
in the energy supply chain (generators, grid operators, retailers and consumers).

There is a hierarchical interplay between a retailer and consumers. The
retailer establishes time-of-use prices (which can be valid for a long-term con-
tract, e.g. one year, or be dynamic, e.g. announced one day ahead) to maximize
profits. The consumer reacts by managing his consumption to minimize the elec-
tricity bill, which can be facilitated by the use of HEMS. Therefore, the design of
time-of-use pricing schemes, i.e. specifying variable energy prices and the peri-
ods in which they apply, considering the demand response, is of utmost impor-
tance for the electricity retail business. This problem has been dealt with bilevel
optimization (BLO) models, which are well suited to represent this hierarchical
decision setting. The retailer is the leader, who decides first by setting prices for
given periods, and the consumer is the follower, who reacts to these prices by
determining the appliance schedule that optimizes his cost function. Although
the retailer is the first to play, he must consider the consumer’s reaction because
it affects the retailer’s profit.

In BLO, the (lower-level) follower’s optimization problem is nested in the
constraints of the (upper-level) leader’s problem. BLO models are, in general,
very difficult to handle theoretically, methodologically and computationally [1].
Most approaches reported in the literature for designing time-of-use tariffs are
devoted to computing the energy prices for pre-defined periods (e.g., along one
day for daily cycle prices). This problem has been addressed by several authors,
e.g. in [2–7] among others, the last one using a trilevel model.

The problem of designing time-of-use pricing schemes becomes more real-
istic if, in addition to the price values, the periods in which prices apply are
also determined as a result of the optimization. However, this problem becomes
much more complex to solve. A general framework of models to optimize prices
and periods can be set as follows – models M1 to M4 – being the price values
decision variables in all of them; a certain discretization of the planning horizon
is considered (e.g., 24 h discretized in 96 units of 15 min each) and the periods
to define the prices are ordered sets of time units (t.u.):

(M1) periods are pre-defined;
(M2) periods are variable, each one consisting of a set of contiguous t.u. (i.e.,
each period is defined by a start t.u. and an end t.u.), with a pre-specified
number of different periods (which implies a maximum number of different
prices for the whole planning horizon);
(M3) a price is assigned to each t.u., but imposing a pre-specified maximum
number of different prices for the whole planning horizon;
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(M4) no restrictions, i.e. each t.u. may have a different price.

Model M4 is the most general one (prices and periods are totally free) and
model M1 is the most restricted one (periods are pre-defined). Model M3 is more
general than model M2: in M3, prices may change from each t.u. to the next,
while in M2 prices may change only by the pre-defined number of periods. In
other words, M3 is an extension of M2, looking at each period as a set of possibly
non-contiguous t.u.

These four time-of-use pricing models may have further variations due to
additional constraints on periods (e.g., minimum number of t.u. in each period)
or prices (e.g., minimum difference between different prices). Further constraints
may be introduced in the time dimension or in price magnitudes.

Models M1 and M2 are more realistic to be implemented in electricity retail
markets, namely having in mind consumer’s acceptance. By increasing the num-
ber of combinations of prices and periods, model M2 offers the retailer the expec-
tation of increasing profits with respect to the ones obtained with model M1
(which is a particular case of M2). This paper is devoted to model M2: a maxi-
mum number of different periods is specified; the problem consists of determining
the start and the end t.u. for each period and the corresponding price value. A
comparison with model M1 is carried out.

Our previous works have been devoted to model M1 [4–6] and M3+M4 [8]
using hybrid approaches combining a meta-heuristic (particle swarm optimiza-
tion or genetic algorithm) to perform the upper-level search for prices and a
solver to obtain the solution to the lower-level mixed-integer linear program-
ming (MILP) problem for each price setting. Although models M3 and M4 are
interesting from a conceptual perspective, in practice they may induce an exces-
sive change of prices that probably would not be accepted by consumers, or even
regulatory authorities, as a viable tariff option.

It should be noticed that the problem of designing time-of-use electricity tar-
iffs falls into the broad category of price setting problems [9,10] which includes,
e.g., the toll setting problem (the problem of defining highway tolls, where cos-
tumers want to minimize their individual generalized travel costs). In these prob-
lems, the leader typically seeks to maximize revenues (or profits) raised from
taxes or tariffs, while consumers specify consumption or production levels aim-
ing to minimize costs. Therefore, the present study may also act as a lever for
future works in pricing setting problems aiming to balance demand along time,
which have not yet been addressed in the literature using optimization models.
An example may be the definition of happy hours and drink/food prices in bars
and restaurants.

In Sect. 2, the main concepts of BLO are presented and bilevel models for
price setting problems in the electricity retail market are outlined, considering
(i) variable prices only (M1 model) and (ii) variable prices and periods of time
(variable period model – M2 model). In Sect. 3, a genetic algorithm for the
variable period model is described. Numerical results comparing the two models
are presented in Sect. 4 and the main conclusions are drawn in Sect. 5.



4 M. J. Alves et al.

2 Bilevel Modelling of Electricity Prices

A general BLO problem can be formulated as follows:

max
x∈X

F (x, y)

s.t. G(x, y) ≤ 0
y ∈ arg min

y∈Y
{f(x, y) : g(x, y) ≤ 0}

where x ∈ IRn1 is the vector of variables controlled by the leader – the decision
maker at the upper-level problem – and y ∈ IRn2 is the vector of variables
controlled by the follower – the decision maker at the lower-level problem.

In a bilevel problem, the decision process is sequential as the leader makes his
decisions first by setting the values of the variables x. Then, the follower reacts
by choosing the y values that optimize his objective function on the feasible
solutions restricted by the fixed x. The bilevel problem is the leader’s problem.
However, the leader must incorporate into the optimization process the reac-
tion of the follower because this affects the leader’s objective value and even
the feasibility of the solution. It is difficult to find global optimal solutions to
bilevel optimization problems due to their inherent non-convexity. Even the lin-
ear bilevel problem is NP-hard [1].

In Alves et al. [4], a bilevel problem was considered to model the interaction
between the electricity retailer (leader) and a cluster of consumers (follower) with
similar consumption and demand response profiles. The retailer buys energy in
the wholesale market and wants to determine the prices xi to be charged to
the consumers in I pre-defined periods Pi (i = 1, . . . , I) of a planning horizon
discretized into T time units (t = 1, . . . , T ), in order to maximize his profit.
The consumer aims to minimize the electricity bill, by reacting to the electricity
prices communicated by the retailer and deciding on the operation of control-
lable appliances. In [4] only shiftable appliances were considered, in addition
to a base load not deemed for control (e.g., tv set, oven, fridge, etc.). Shiftable
appliances are typically cyclic loads, such as dishwashers or laundry machines,
whose operation cycle can be shifted in time but not interrupted once initiated.

In Soares et al. [6], the bilevel model in [4] was extended by including other
types of controllable appliances with different physical features and type of con-
trol: in addition to shiftable appliances, a thermostatic load (air conditioning
system) and interruptible appliances have been modelled in the lower-level prob-
lem. Interruptible appliances are loads whose operation can be interrupted pro-
vided that the necessary amount of energy is supplied during a required time
slot (e.g. charge of an electric vehicle). In both studies [4,6] the lower-level opti-
mization model is a mixed-integer programming problem, which can be solved
by an exact MILP solver (for instance, CPLEX) for each instantiation of the
upper-level variables x.

In the current study, we consider bilevel models with a consumer’s problem
including J shiftable appliances (j = 1 . . . J) and K interruptible appliances (k =
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1 . . . K) as the controllable loads. The consumer wants to determine the times of
the operation of these loads in order to minimize the electricity bill, ensuring that
the operation of each load is within a specified comfort time slot defined by a start
t.u. and an end t.u. within the planning horizon {1, . . . , T}: [t1j , t

2
j ], j = 1 . . . J and

[t1k, t2k], k = 1 . . . K, respectively, for shiftable and interruptible appliances. Each
shiftable appliance j has a load diagram specifying the power (qshifjr ) required at
each stage r (one t.u.) of its operation cycle with duration dj . Each interruptible
appliance k has the requirement that the energy Ek should be supplied during
the given comfort time slot, being qintk the power requested at each t.u. when
the load is operating. The electricity bill includes an energy component (cost of
the energy consumed by all loads) and a power component (the retailer defines
multiple levels of contracted power, P cont

l , l = 1 . . . L, with different prices el and
the consumer pays for the power level corresponding to the peak).

The electricity prices in each period Pi are controlled at the upper-level: xi,
i = 1, . . . , I, where I is the number of periods Pi.

The lower-level decision variables are binary variables: vkt, which specify, for
each interruptible appliance k, whether it is operating or not at each time unit t
of the respective comfort time slot; in the case of shiftable appliances, the binary
variables are wjrt, which further include the index r to specify the stage of the
operation cycle in which the load is operating at each t. These binary variables
define auxiliary real variables pt, ∀t, which represent the power requested from
the grid by all loads: shiftable, interruptible and also a (constant) base load
bt not deemed for control. These variables, together with the electricity prices
set by the leader, define the cost of energy for the consumer:

∑I
i=1

∑
t∈Pi

xipt.
Binary decision variables ul ∈ {0, 1}, l = 1 . . . L, are also used to model the power
component, identifying the peak power level the consumer should be charged for
in the whole planning horizon:

∑L
l=1 elul (the constraints ensure that only one

ul is equal to 1).
The formulation of the lower-level combinatorial optimization problem is:

min
p,u

f =
I∑

i=1

∑

t∈Pi

xipt +
L∑

l=1

elul (1)

s.t.

pt = bt +
J∑

j=1

dj∑

r=1

qshifjr wjrt +
K∑

k=1

qintk vkt, t = 1, . . . , T (2)

dj∑

r=1

wjrt ≤ 1, j = 1, . . . , J ; t = t1j , . . . , t
2
j (3)

wj(r+1)(t+1) ≥ wjrt, j = 1, . . . , J ; r = 1, . . . , dj − 1; t = t1j , . . . , t
2
j − 1 (4)

t2j∑

t=t1j

wjrt = 1, j = 1, . . . , J ; r = 1, . . . , dj (5)
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t2j−dj+1
∑

t=t1j

wj1t ≥ 1, j = 1, . . . , J (6)

wjrt = 0, j = 1, . . . , J ; r = 1, . . . , dj ; t < t1j ∨ t > t2j (7)
t2k∑

t=t1k

qintk vkt = Ek k = 1, . . . ,K (8)

vkt = 0, k = 1, . . . ,K; t < t1k ∨ t > t2k (9)
L∑

l=1

ul = 1 (10)

pt ≤
L∑

l=1

P cont
l ul, t = 1, . . . , T (11)

ul ∈ {0, 1}, l = 1, . . . , L (12)

wjrt ∈ {0, 1}, j = 1, . . . , J ; r = 1, . . . , dj ; t = t1j , . . . , t
2
j (13)

vkt ∈ {0, 1}, k = 1, . . . ,K; t = t1k, . . . , t2k (14)

where constraints (2) define the power requested at each t by all loads, con-
straints (3)–(7) model the operation of the shiftable appliances, (8)–(9) model
the operation of the interruptible appliances and (10)–(11) model the contracted
power.

For a given x = (x1, . . . , xI), the lower-level problem is a MILP problem with
a large number of binary variables and constraints. The genetic algorithm used
to perform the upper-level search calls the MILP solver CPLEX to solve the
lower-level problem (as a black-box).

2.1 Bilevel Model with Pre-defined Periods (M1)

The bilevel model M1, in which only the prices xi are decision variables for the
retailer because the periods Pi are pre-specified (models in [4–6]), can be stated
as follows:

max
x

F =
I∑

i=1

∑

t∈Pi

xipt +
L∑

l=1

elul −
T∑

t=1

πtpt

s.t.

x ≤ xi ≤ x̄ , i = 1, · · · , I

1
T

I∑

i=1

P̄ixi ≤ xAV G

(1) − (14)
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where πt is the energy price seen by the retailer in the spot market at each
t ∈ {1, . . . , T} and P̄i denotes the amplitude of Pi, i.e. P̄i = P 2

i − P 1
i + 1

where P 1
i , P 2

i delimit each period Pi, i ∈ {1, . . . , I} (the start and end t.u.,
respectively). In order to enforce market competitiveness of retailer prices, the
upper-level constraints impose minimum and maximum values on prices in each
period Pi and an average price (xAV G) value during the whole planning horizon.
In the present study, we consider the same minimum and maximum price values
throughout the planning horizon (x and x̄, respectively).

2.2 Bilevel Model with Variable Periods (M2)

In model M1, the prices to be established in each pre-defined period were the
only decision variables. Model M2 builds on model M1 to offer the retailer the
possibility of optimizing not just the price values but also the periods in which
they apply. This is accomplished by defining a number of periods (which, for
instance, may result from regulatory obligations) and determining their optimal
start and end t.u. within the planning horizon. The imposition of a number of
periods I constrains the maximum number of different price values.

Each period Pi is defined by a start t.u. (P 1
i ) and an end t.u. (P 2

i ). Thus,
the upper-level variables of M2 are: xi, P 1

i and P 2
i , i = 1, . . . , I. Two sets of

constraints characterize the upper-level problem of Model M2: constraints on
prices x (the same as in M1 but with P 1

i and P 2
i being decision variables) and

constraints that ensure continuity of the periods. Only either P 1
i or P 2

i need
to be considered, because these variables depend on each other (P 1

i+1 = P 2
i +

1), but both are represented in the model below to improve clarity. Continuity
constraints ensure that the first period starts at t = 1, the last one ends at t = T ,
and the periods are chained: P 1

1 ≤ P 2
1 = P 1

2 − 1, . . . , P 2
I−1 + 1 = P 1

I ≤ P 2
I = T .

For instance, suppose that one t.u. is 15 min and the planning horizon starts
at 00:00 h; P 1

1 = 1, meaning that period P1 includes, at least, the first 15 min
of the day; if, for instance, P 2

1 = 4, then the first period is [00:00, 01:00[ h and
the second period starts at P 1

2 = 5, which means that P2 includes at least t = 5,
i.e., [01:00, 01:15[ h. The model M2 can be stated as follows:

max
x,P 1,P 2

F =
I∑

i=1

∑

t∈[P 1
i ,P 2

i ]

xipt +
L∑

l=1

elul −
T∑

t=1

πtpt

s.t.

x ≤ xi ≤ x̄ , i = 1, · · · , I

1
T

I∑

i=1

(P 2
i − P 1

i + 1)xi ≤ xAV G

P 1
1 = 1; P 2

I = T

P 1
i+1 = P 2

i + 1, i = 1, · · · , I − 1

P 2
i ≥ P 1

i , i = 1, · · · , I
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P 1
i , P 2

i integer, i = 1, · · · , I

min
p,u

f =
I∑

i=1

∑

t∈[P 1
i ,P 2

i ]

xipt +
L∑

l=1

elul

s.t. (2) − (14)

Other conditions may be imposed on the periods, which we call aggregation
constraints, e.g. the following ones.

– The length of each period must be a multiple of a given number of units of
time. Consider, for instance, that the planning horizon is discretized in units
of quarter-hour (which is generally used for measurements in power systems
and enables a fine grain analysis of appliance operation) and the prices must
be defined for periods that are multiple of half-hour or one hour (e.g., for
regulatory reasons). Therefore, the amplitude of each period (P 2

i − P 1
i + 1)

must be multiple of 2 or 4, respectively. For a multiple of β units of time, and
provided that T is multiple of β, the following constraints are included:

P 2
i − P 1

i + 1 = βki, i = 1, · · · , I

ki integer, 1 ≤ ki ≤ T
β , i = 1, · · · , I (15)

– Each period must have a minimum length C, where C is a constant:

P 2
i − P 1

i + 1 ≥ C, i = 1, · · · , I (16)

In the present study, we have considered constraints (15) with β = 2, which
also ensure a minimum length of C = 2. Since the quarter-hour is the t.u.
considered, the periods are then multiple of half-hour.

The electricity prices charged to the consumer (xi, i = 1, . . . , I) and the
prices seen by the retailer in the spot market (πt, t = 1, . . . , T ) are presented in
e/KWh. So, an adequate scale factor α is applied in the upper and lower-level
objective functions of M1 and M2 to convert the prices into the t.u. used in
these models. That is, xi and πt are replaced by αxi and απt, respectively. In
this study, α = 1/4.

3 A Genetic Algorithm for the Variable Period Model

We aim at comparing results obtained for models M1 and M2. The algorithm
presented in [4] has been adapted to deal with model M1 considering prices with
4 decimal places (as it is usual in electricity bills presented to consumers) instead
of real numbers. The algorithm consists of a genetic algorithm (GA) to deal with
the upper-level search combined with CPLEX to find the optimal solution to the
lower-level problem for each x vector. The individuals dealt with by the GA are
the price vectors x = (x1, x2, . . . , xI). The upper-level constraints of M1 are
ensured by a repair routine [4], which has been adjusted in the present work to
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prices with a fixed number of decimal places and is also used in the approach
developed for model M2. This routine is briefly described below.

The approach developed for the variable period model M2 is also a hybrid
GA-solver. The individuals are composed by two vectors, one for prices (as in
model M1) and the other for periods. Since the start t.u. of each period is the
end t.u. of the previous period +1 (P 1

i = P 2
i−1 + 1), the periods are represented

only by their end t.u. : P 2 = (P 2
1 , P 2

2 , . . . , P 2
I−1, T ) with increasing integer values

P 2
i < P 2

i+1. This vector has dimension I, but the last component is fixed to T .
These two vectors define each upper-level solution and are illustrated in Fig. 1.

Fig. 1. Encoding of an upper-level solution in model M2

A population of N individuals (xn, P 2,n), n = 1, . . . , N evolves throughout
G iterations of the GA. The vector of start t.u. P 1,n corresponding to P 2,n is:
P 1,n = (1, P 2,n

1 +1, . . . , P 2,n
I−1+1). For each individual, the lower-level problem of

M2 with P 1 = P 1,n, P 2 = P 2,n and x = xn is exactly solved. Let yn = (pn, un)
be the optimal solution obtained for this lower-level instance (vector p of power
required by all load operation and vector u of binary variables that determine the
contracted power). Each solution is then evaluated by the upper-level objective
function F (xn, P 1,n, P 2,n, yn), which gives its fitness.

The general description of the GA is presented below.

Step 1 - Create the initial population with N individuals (n = 1, · · · , N)
– Generate each P 2,n: I − 1 different integer numbers are randomly

drawn; these values are then sorted by increasing order. In order to
satisfy the time limits and the aggregation constraints (15), multiples
of β are generated in the range (1, T − 1); P 2,n

I = T,∀n.
– Generate each xn: a real number with 4 decimal places is randomly

generated in [x, x̄] for each component xn
i ; xn is then repaired to satisfy

also the average price constraint (repair routine).
Step 2 - Obtain the lower-level solutions: for each individual, the P 1,n

vector associated with P 2,n is defined and the lower-level problem is solved
for (xn, P 1,n, P 2,n) to obtain yn. Compute its fitness value, Fn.
While the maximum number of generations G is not achieved do
Step 3 - Selection and Reproduction

– Select N pairs of individuals for being parents: one parent is ran-
domly chosen and the other is the winner of a binary tournament with
replacement.
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– In order to ensure that all P 2 values will satisfy the aggregation con-
straints, their scale is changed by dividing all values by β, which will
be recovered at the final of the reproduction phase; after scaling, P 2

I

= T̃ = T/β .
– For each pair of parents (P 2′

, x′) and (P 2′′
, x′′), an one-point crossover

operator is separately applied to P 2 and x. For P 2, the last component
(equal to T̃ ) never changes.

– Apply mutation to each offspring with a given probability of changing
each gene of x and of P 2. The mutation of an xi consists of adding or
subtracting a positive perturbation randomly generated in the range
[0, 0.2(x̄−x)], ensuring that xi remains within bounds. The mutation of
P 2

i consists of adding or subtracting 1 t.u., ensuring that 1 ≤ P 2
i < T̃ .

In this study, the mutation probability is 0.05 as in [4].
– For each offspring P 2 vector, sort P 2

i (i = 1, . . . , I − 1) by increasing
order and adjust it to contain no repeated values, since there are no
periods with duration 0; convert P 2 to the original scale (see Fig. 2
for an example).

– Repair each x vector of the offspring to also satisfy the average price
constraint and keeping 4 decimal places (repair routine).

– Obtain the lower-level solutions for the offspring as in Step 2.
Step 4 - Replacement
Form the next population by copying the solution with best F obtained
thus far (which is either in the current population or in the offspring) and
by performing N − 1 binary tournaments without replacement between
individuals of the current population and the offspring population.
End While
Return the solution with the highest fitness F .

Figure 2 illustrates the reproduction process (without mutation) of two 6-
period vectors, P 2′

and P 2′′
, for a planning horizon of T = 96 t.u. of quarter-

hour and β = 2 (periods should be multiple of half-hours). The vectors P 2′

and P 2′′
at the top of Fig. 2 have already been scaled to half-hour units (thus,

T̃ = 48). After applying crossover and sorting by ascending order the values of
the offspring P 2 (P 2

i , i = 1, . . . , I − 1), if there are two equal values then the
second one is incremented by 1. In this example, this only happened once for
value 27. If a modified value becomes equal to the next, then this process is
repeated until all duplicate values are eliminated. If the second to the last value
(P 2

I−1) is equal to the last one (T̃ ), the chromosome is discarded and another
one must be generated.

In this work, a one-point crossover operator has been used both for P 2 and
x vectors. A geometric crossover operator for the prices x had been used in
the study [8] for models M3 and M4, but the results with the GA were not
encouraging.

The repair routine implemented in both algorithms (for M1 and M2 models)
ensures that prices are within bounds (x ≤ xi ≤ x̄, i = 1, . . . , I) and satisfy the
average price constraint ( 1

T

∑I
i=1 P̄ixi ≤ xAV G with P̄i = P 2

i − P 1
i + 1). Since
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Fig. 2. Crossover and adjustment of periods

the aim is to maximize the retailer’s profit, the repair operations attempt to
set prices as close as possible to satisfying the average price constraint as an
equality, keeping all values with a fixed number of d decimal places (we have
been working with d = 4). The repair routine operates as follows. Firstly, the xi

are truncated to d decimal places and pushed into bounds. Let A be the set of
indices i of x that can still change; initially, A = {1, . . . , I}. The following cycle
is repeated until a valid x is obtained or A = ∅:

(1) xi ← trunc(xi + δ, d), ∀i ∈ A, with

δ =
TxAV G − ∑I

i=1 P̄ixi
∑

i∈A P̄i

(2) if all xi are within the bounds, then stop: a valid x has been obtained;
otherwise, push into the closest bound (x or x̄) any xi that is out of bounds,
A ← A \ {i} and return to (1) if A 	= ∅.

4 Results

A case study has been used to compare results obtained with the M1 and M2
models using the respective hybrid GA algorithms. A 24-h planning horizon
(starting at 00:00 h) is considered, which is discretized into t.u. of quarter-hour,
leading to a planning horizon {1, . . . , 96}. The consumer’s problem includes five
controllable appliances: three shiftable loads (dishwasher, laundry machine and
clothes dryer) and two interruptible loads (electric water heater and electric
vehicle). The data concerning the consumer’s problem were obtained from actual
audit information and some values were estimated; they can be found in the
Supplementary Material of [6], including the operation cycles of the loads, the
comfort time slots allowed for the operation of each load, the base load, the
contracted power levels and their costs, as well as the prices seen by the retailer
at the spot market. These data define a lower-level problem with 559 binary
variables.

Six periods of time Pi, i = 1, . . . , 6, are considered for defining the electricity
prices to be charged by the retailer to the consumer (as in [6]). In model M1,
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the pre-defined periods [P 1
i , P 2

i ], i = 1, . . . , 6, are: [1–28], [29–44], [45–56], [57–
72], [73–84], [85–96]. These periods reproduce realistic time-of-use tariff schemes
being currently used and induce good solutions to the retailer (thus, imposing
more challenges to M2 to yield better solutions). In model M2, the periods
are decision variables. In both models, the minimum and maximum prices that
can be charged to the consumer are: x = 0.08 e/kWh and x̄ = 0.35 e/kWh.
The average price over the entire planning horizon cannot exceed xAV G = 0.18
e/kWh.

We started by running the algorithms (for M1 and M2) considering differ-
ent parameterizations of the population size (N) and number of generations
(G) in order to choose a configuration that provides a satisfactory compromise
between the quality of the solution obtained vs. the computation time needed.
The following parameterizations were attempted for N × G: 30 × 100, 30 × 200,
40 × 150, the last two requiring similar computation effort, since both require
solving 6000 lower-level MILP problems, which is the most demanding part of
the computational effort. Ten independent runs were performed with M1 and
M2 for each parameterization. In order to allow a better comparison, an equal
rand-seed (seed used for the generation of random numbers) was considered for
runs with the same index. For instance, run k started with rand-seed rk for all
parameterizations N × G in M1 and M2. The best, worst, average and stan-
dard deviation of the retailer’s profit (F ) obtained over the 10 runs for each
parametrization in each model are reported in Table 1. All F values are in e
and refer to a cluster of 1000 consumers with similar consumption and demand
response profiles. The best values for each model are highlighted in bold.

Table 1. Results of different combinations of the population size and number of gen-
erations for M1 and M2

F values M1 (N ×G) M2 (N ×G)

30 × 100 30 × 200 40 × 150 30 × 100 30 × 200 40 × 150

Maximum 6038.67 6039.24 6039.27 6145.12 6151.16 6145.75

Minimum 6026.96 6035.99 6028.68 6070.72 6070.72 6070.72

Average 6034.49 6037.57 6036.80 6116.18 6121.14 6108.95

Stand.dev. 3.387 0.963 2.773 26.930 27.813 21.981

From this experiment, we can observe (Table 1):

– Better retailer’s profit can be obtained when the retailer can set prices and
periods (model M2) over setting prices only (model M1) (1.85% improvement
in the best cases). This result was expected, because the M2 solution space,
say S(M2), includes the M1 solution space, i.e., S(M1) ⊆ S(M2). Although
theoretically expected, it should be noticed that in our previous work [8] with
models with more degrees of freedom – referred to as M3 and M4 above –
the population-based approaches experienced several difficulties to efficiently
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explore broader upper-level spaces, yielding better results for the M3 model
than for M4, in spite of M3 being a constrained M4. In the present work
this has not happened: the algorithm proposed herein provides good results
for M2, with values for F systematically higher than the ones obtained with
M1, also providing better figures (in any of the parameterizations) than the
results obtained in [8] for M3 and M4, although S(M2) ⊆ S(M3) ⊆ S(M4).

– The improvement of the results from 30 × 100 to 30 × 200 is small, being
slightly higher in M2 than in M1. The average improvement in M1 is 0.05%,
while in M2 is 0.08%. The solution space S(M2) is much larger than S(M1)
due to the combinatorial explosion of the price-periods combinations. This
may explain why M2 benefits more than M1 from a longer search process;
this may also justify the higher standard deviations in M2 than in M1. The
improvement of F from 100 to 200 generations does not seem relevant given
the large increase in the computational effort, which doubles.

– The parameterization 40 × 150 does not produce better results, still looking
slightly worse than 30 × 200, although 10 runs are not enough to support
strong conclusions.

The non-parametric Kruskal-Wallis test was applied to assess whether the dif-
ferences of the F values obtained with the different parameterizations in each
model are statistically significant, considering a significance level of α = 0.01. In
both models, the differences are not statistically significant. The Mann-Whitney
test comparing the results of M1 and M2 for the same parameterizations led to
the conclusion that the differences are statistically significant in all the three
cases.

The algorithms were run in a computer with an Intel Core i7-7700 CPU 3.6
GHz, 64 GB RAM. The computation time of each generation is similar for M1
and M2, which is on average less than 4” for the population size of 30 and 5”
for the population size of 40. The total computation time of one complete run is
about 6’– 6’30” for the parametrization 30 × 100 and about 12’ – 13’30” for the
parametrizations 30 × 200 and 40 × 150, which have similar computation times.

Given the results obtained in this experiment, we have adopted the 30 ×
100 parameterization because it presents a good compromise between solution
quality and computation time. The best solution (maximum F ) obtained for M1
has F = 6038.67 and the best solution obtained for M2 has F = 6145.12. We
refer to these solutions as SolM1 and SolM2, respectively. The periods [P 1

i , P 2
i ],

i = 1, . . . , 6, computed in SolM2 are: [1–8], [9–12], [13–16], [17–48], [49–52], [53–
96]. Figure 3 compares the pre-defined periods in M1 with the ones obtained
with M2, showing the times of the day (h) that delimit the periods; {1, . . . , 96}
corresponds to 00:00 h – 24:00 h where t = 1 represents the t.u. from 00:00 h to
00:15 h, and so on. A significant difference between the periods of M1 and M2
can be observed: P1 is the longer period in M1 ranging from 00:00 h to 07:00 h,
while M2 defines three of the six periods from 00:00 h to 04:00 h. The longer
period of M2 ranges from 13:00 h to 24:00 h.
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Fig. 3. Pre-defined periods in M1 and the best periods given by the algorithm for M2
in the 30 × 100 parameterization (SolM2)

Considering the periods of M2 in SolM2 (shown in Fig. 3), we have further
intensified the search in an attempt to improve the prices for these periods.
Accordingly, these periods were fixed, and the M1 model was solved for these pre-
defined periods. Five independent runs were performed from scratch (without
injecting SolM2 in the initial population) for the parameterization N × G =
30 × 100. The solutions obtained ranged from F = 6147.0 to F = 6155.5, with
an average of F = 6151.1, i.e., all improving F (SolM2) = 6145.12. The best
solution (F = 6155.5) is also better that the one provided by running M2 for
30 × 200. This result suggests that it is better to execute the algorithm for the
variable period model M2 during 100 iterations and then intensify the search for
prices by using M1 for the best periods obtained than extending the search for
periods and prices using M2 until 200 iterations. We have further experimented
to run M2 for N × G = 30 × 500. The best and average values obtained over 10
runs were F = 6152.85 and F = 6126.82, both being worse than the respective
values obtained with the strategy M2+M1 (with G = 100 in each one).

Let us denote by SolM2+M1 the best solution obtained in the experiment
M2+M1, which has the same periods as SolM2 but slightly different prices. Table
2 shows the prices in SolM1, SolM2 and SolM2+M1. Figure 4 compares the best
prices obtained for M1 (SolM1 with a retailer’s profit of 6038.67) and for M2
(SolM2+M1 with a retailer’s profit of 6155.50). Although a maximum of 6 different
prices was allowed, solutions SolM1 and SolM2+M1 have fewer than 6 different
prices (4 and 5, respectively).
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Table 2. Prices in the best solutions obtained for M1 and M2 in the 30 × 100 param-
eterization (SolM1 and SolM2) and after the intensification of the search for M2 with
M1 (SolM2+M1)

Prices (e/kWh)

P1 P2 P3 P4 P5 P6

Periods [1–28] [29–44] [45–56] [57–72] [73–84] [85–96]

SolM1 Prices 0.2976 0.2986 0.08 0.0803 0.0803 0.08

Periods [1–8] [9–12] [13–16] [17–48] [49–52] [53–96]

SolM2 Prices 0.2689 0.2384 0.2701 0.2890 0.0804 0.0801

SolM2+M1 Prices 0.2683 0.2360 0.2793 0.2885 0.08 0.08

Fig. 4. Prices obtained for the models M1 (SolM1) and M2 (SolM2+M1).

5 Conclusions

This paper presented a comparison between two bilevel programming models
to assist electricity retail companies to design optimal time-of-use tariffs. In the
upper-level problem, the retailer maximizes the profit and in the lower-level
problem the consumer minimizes the cost using his flexibility in the use of appli-
ances in face of the time-differentiated prices. A bilevel model was previously
presented by the authors in which the periods for setting the different prices
were pre-defined and the aim was to determine the price values that maximize
the retailer’s profit. In this paper, a new more general model is proposed in which
both the periods and prices are decision variables, thus leading to a very large
search space for the upper-level problem due to the vast number of combinations
periods-prices. To deal with this variable period model, a hybrid approach com-
bining a genetic algorithm for the upper-level search with a mixed-integer linear
programming solver to obtain optimal solutions to the lower-level problem has
been developed. Specific encoding as well as crossover and mutation operators
have been designed to make the most of the physical features of the problem.
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The algorithm has been able to compute good quality solutions obtaining
higher profit when the retailer can establish prices and periods over setting prices
only, with a moderate computation effort. This information is of utmost impor-
tance for a retailer designing tariff options to offer consumers in very competitive
electricity retail markets.

In order to cope with the complexity of the variable period model, additional
experiments consisted of using the period configuration determined in this new
model as an input of the pre-defined period model aiming to further improve
prices. This intensification strategy proved useful since better solutions have
been obtained in comparison with solutions found with a higher computation
effort in the variable period model.

Further work will involve a comprehensive study of time-of-use pricing prob-
lems vs. adequate features of algorithmic approaches, including using algorithms
based on strategies other that the hybridization of metaheuristics with mathe-
matical programming solvers.
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Abstract. We present an algebraic approach for dealing with combi-
natorial optimization problems based on permutations with repetition.
The approach is an extension of an algebraic framework defined for com-
binatorial search spaces which can be represented by a group (in the
algebraic sense). Since permutations with repetition does not have the
group structure, in this work we derive some definitions and we devise
discrete operators that allow to design algebraic evolutionary algorithms
whose search behavior is in line with the algebraic framework. In par-
ticular, a discrete Differential Evolution algorithm which directly works
on the space of permutations with repetition is defined and analyzed. As
a case of study, an implementation of this algorithm is provided for the
Job Shop Scheduling Problem. Experiments have been held on commonly
adopted benchmark suites, and they show that the proposed approach
obtains competitive results compared to the known optimal objective
values.

Keywords: Discrete evolutionary algorithms · Permutations with
Repetition · Algebraic approach

1 Introduction

An algebraic framework for combinatorial optimization problems has been pre-
viously proposed in a series of articles [4–6,22]. This framework mainly proposed
the discrete operations of sum, difference, and scalar multiplication that allow to
design discrete variants of widely used continuous evolutionary algorithms such
as the Differential Evolution (DE) [22] and the Particle Swarm Optimization
(PSO) [23]. The main requirement of the framework is that the solutions in the
search space of the combinatorial problem at hand must form a group (in the
algebraic sense). For instance, this is the case of widely considered search spaces
such as those of bit-strings [24] and permutations [1,6].

However, there are interesting problems defined in combinatorial search
spaces which do not form a group. One of these is the space of permutations
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with repetition, i.e., ordering of items which – differently from classical permu-
tations – can appear multiple times in the sequence. This search space has been
considered, for example, in [8,14,16,20,27]. The most notable applications of
permutations with repetition are in some scheduling and partitioning problems.
Indeed, in the scheduling case, the repeated items accommodate the fact that
some jobs need to be processed in more than one machine, while, in partitioning
problems, permutations with repetition are intended as assignments of items to a
particular cluster among a set of clusters with a given size. Widely known exam-
ple of such problems are the job shop scheduling problem [11] and the balanced
multiway graph partitioning problem [17].

In this work, we extend the algebraic framework in order to work on the
search space of permutations with repetition, even if they do not form a group.
With this regard, we derive formal definitions and algorithmic implementations
of the discrete operators of sum, difference and scalar multiplication. Such oper-
ators allow to design discrete variants of evolutionary algorithms which are
commonly and effectively used in the continuous search spaces. In particular,
we introduce a discrete Algebraic Differential Evolution for Permutations with
Repetition (ADE-PR) by also analyzing its search behavior.

ADE-PR can in principle be applied to any problems requiring a permutation
with repetition as a solution. As a case of study, we have investigated the effec-
tiveness of ADE-PR on the Job Shop Scheduling Problem (JSSP). Therefore,
few additional algorithmic components, purposely defined for the JSSP, have
been integrated in ADE-PR. Finally, computational experiments have been held
by considering widely used benchmark suites for the JSSP.

The rest of the paper is organized as follows. Section 2 recalls the algebraic
framework which has been extended in Sect. 3 in order to handle the space of
permutations with repetition. Section 4 describes the main scheme of ADE-PR,
while its implementation for the JSSP is depicted in Sect. 5. The experimental
analysis is described in Sect. 6, while Sect. 7 concludes the paper by also providing
future lines of research.

2 Algebraic Background

2.1 The Abstract Algebraic Framework for Evolutionary
Computation

The algebraic framework for evolutionary computation, firstly proposed in [22]
and further studied in [3,4,6,7], allows to define the discrete operators ⊕, � and
� which simulate in a discrete search space the properties of their numerical
counterparts.

In particular, these discrete operators are abstractly defined for any combi-
natorial search space whose solution set can be represented with an algebraic
structure known as finitely generated group [18].

The triple (X, ◦, G) is a finitely generated group representing the search space
of a given combinatorial optimization problem P if:
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– X is the set of solutions of P;
– ◦ is a binary operation on X satisfying the group properties, i.e., closure,

associativity, identity (e), and invertibility (x−1); and
– G ⊆ X is a finite generating set of the group, i.e., any x ∈ X has a (not

necessarily unique) minimal-length decomposition 〈g1, . . . , gl〉, with gi ∈ G
for all i ∈ {1, . . . , l}, and whose evaluation is x, i.e., x = g1 ◦ · · · ◦ gl.

Moreover, the length of a minimal decomposition of a discrete solution x ∈ X is
denoted by |x|.

Using (X, ◦, G), it is possible to provide formal definitions of the operators
⊕, � and �. Let x, y ∈ X and 〈g1, . . . , gk, . . . , g|x|〉 be a minimal decomposition
of x, then

x ⊕ y := x ◦ y, (1)

x � y := y−1 ◦ x, (2)

a � x := g1 ◦ · · · ◦ gk, with k = 
a · |x|� and a ∈ [0, 1]. (3)

Interesting graph-based interpretations of these definitions can be given as
follows. The algebraic structure on the search space naturally defines neigh-
borhood relations among the solutions. Indeed, any finitely generated group
(X, ◦, G) is associated to a labelled digraph G whose vertices are the solutions in
X and two generic solutions x, y ∈ X are linked by an arc labelled by g ∈ G if
and only if y = x ◦ g. Therefore, a simple one-step move in the search space can
be directly encoded by a generator, while a composite move can be synthesized
as the evaluation of a sequence of generators (a path on the graph).

In analogy with R
n, the elements of X can be dichotomously interpreted

both as solutions (vertices on the graph) and as displacements between solutions
(labelled paths on the graph). As detailed in [22], this allows to provide rational
interpretations of the definitions (1), (2) and (3) as follows:

– x⊕y is the vertex of G where we arrive if we move from the vertex x following
the arcs in any (minimal) decomposition of y;

– a minimal decomposition of x � y corresponds to the sequence of arcs in a
shortest path from the vertex y to the vertex x in G;

– the scalar multiplication a � x, with a ∈ [0, 1], corresponds to truncating a
shortest path from the vertex e (the identity of the group) to the vertex x
in G.

Clearly, these geometrical interpretations are in line with the vectors/points
interpretations of the classical Euclidean space.

2.2 The Algebraic Differential Evolution

As shown in [22] and [23], expressions which involve the three discrete operators
allow to derive discrete variants of some popular evolutionary schemes originally
defined for continuous problems [19,26]. For instance, a discrete variant of the
Differential Evolution (DE) algorithm, namely Algebraic Differential Evolution
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(ADE), can be defined by simply replacing the classical mathematical operations
with their discrete variants ⊕,�,� in the definition of the differential mutation
which is the key operator of the DE.

Therefore, the differential mutation of ADE is defined as follows:

v ← xr0 ⊕ F � (xr1 � xr2), (4)

where xr0 , xr1 , xr2 ∈ X are three randomly selected population individuals, F ∈
[0, 1] is the DE scale factor parameter, and v ∈ X is the mutant produced.

The interpretation of Eq. (4) in the search space graph G is as follows: v
is generated by starting from the vertex xr0 and following the arcs indicated
by F � (xr1 � xr2) which is a sequence of arcs’ labels (generators) obtained
by truncating a shortest path from xr2 to xr1 . This is in line with what is
done by the classical differential mutation equation in the Euclidean space, i.e.,
generate a mutant v by applying to xr0 the vector corresponding to the truncated
segment which connects xr2 to xr1 . Indeed, note that the concept of segment in
the Euclidean space is analogous to the concept of shortest path in the graph
representing a discrete search space.

2.3 The Search Space of Permutations

The definitions provided in the previous sections are abstract and require imple-
mentations for concrete spaces. One of the most investigated search space that
verifies the properties of finitely generated groups is the space of permutations
[2,25].

The permutations of the set {1, . . . , n}, together with the usual permutation
composition, form the so-called Symmetric group S(n). The identity permutation
is ι = 〈1, . . . , n〉. Furthermore, since S(n) is finite, it is also finitely generated.

One of the most useful generating sets for the permutations is the set of simple
transpositions ASW ⊂ S(n), i.e., particular permutations which algebraically
encode the adjacent swap moves. Formally,

ASW = {σi : 1 ≤ i < n}, (5)

where the n − 1 simple transpositions σi are permutations such that

σi(j) =

⎧
⎪⎨

⎪⎩

i + 1 if j = i,

i if j = i + 1,

j otherwise.
(6)

Given a generic π ∈ S(n), the composition π ◦ σi swaps the i-th and (i +
1)-th items in π. Therefore, using the abstract definitions provided before, a
minimal decomposition of the difference between two generic permutations π and
ρ corresponds to the shortest sequence of adjacent swap moves which transforms
π into ρ.

A minimal decomposition for a generic permutation π ∈ S(n), in terms of
ASW , can be obtained by ordering the items in π by using a sorting algorithm
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based on adjacent swap moves. The sequence of generators corresponding to the
moves performed during the sorting process is annotated, then reversing this
sequence produces a minimal decomposition [22].

As widely known, the bubble-sort algorithm sorts any given array by using a
minimal number of adjacent swap moves, therefore it can be used for computing
a minimal decomposition of any permutation in terms of ASW . Anyway, since
there can be more than one minimal decompositions, a randomized variant of
bubble-sort, namely RandBS , has been proposed in [22].

RandBS exploits the concept of inversion and the property that the identity
permutation ι is the only permutation without inversions. Formally, (i, j) is an
inversion of a given permutation π if and only if i < j and π(i) > π(j). Moreover,
a permutation with a positive number of inversions has to have at least one
adjacent inversion, i.e., an inversion of the form (i, i+1). Therefore, RandBS (π)
decreases the inversions of π by first computing its adjacent inversions and, then,
iteratively applying adjacent swaps corresponding to those inversions. At the end
of this process π will be transformed into the identity ι, thus the reverse of the
sequence of adjacent swaps is a minimal decomposition of π.

RandBS has been proved to have Θ(n2) complexity. For further implementa-
tion details, proofs of correctness and complexity we refer the interested reader
to [22].

3 Permutations with Repetition

3.1 Motivations and Preliminary Definitions

The search space of permutations arises in a variety of combinatorial problems
such as, just to name a few: the permutation flowshop scheduling problem, the
linear ordering problem, the quadratic assignment problem and the traveling
salesman problem. Without loss of generality, an n-length permutation is an
ordering of the set {1, . . . , n}, thus the items in this ordering are all different
from each other.

However, there exist other important combinatorial problems for which it is
required that some items can appear several times in the ordering. For instance,
in the job shop scheduling problem [11], the items are the jobs to be scheduled
and repeated items accommodate the fact that some jobs need to be processed on
more than one machine. Repeated items also allow to handle some partitioning
problems, such as the balanced multiway graph partitioning problem [17].

We can encode solutions to these problems by means of permutations with
repetition, i.e., orderings of a given multiset.

A multiset M is a collection of possibly repeated items, the size (or cardinal-
ity) of the collection is denoted by |M |, and its support Supp(M) is the set of all
different items appearing in M . For example, the multiset M = {1, 1, 2, 2, 3, 3}
has cardinality |M | = 6 and support Supp(M) = {1, 2, 3}.

Given a multiset M with support {1, . . . , n} and cardinality q > n, a per-
mutation with repetition of M is an ordering of the q items in M . We denote
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by RM the set of all the permutations with repetition of M . Considering the
multiset M in the previous example, a possible permutation with repetition is
x = 〈2, 1, 3, 3, 2, 1〉.

The search space RM has size

|RM | =
q!

∏
i∈Supp(M) mM (i)!

, (7)

where mM (i) is the multiplicity of the item i in M , i.e., the number of times
i appears in M . Therefore, though |RM | < |S(q)|, the size of the search space
is anyway exponential with respect to the length of the orderings. This is the
main reason of why the combinatorial problems with solutions in RM are usually
NP-hard.

For the sake of readability, in the rest of the paper, we will use the acronym
PwR in place of the phrase “permutation with repetition”.

3.2 Discrete Operators for Permutations with Repetition

Differently from classical permutations, it is not apparent how to define an inter-
nal operation on RM which obeys to the group properties. As a consequence,
it is not possible to directly use the discrete algebraic operators as defined in
Sect. 2.

Anyway, the same simple search moves considered for permutations, i.e.,
swaps of adjacent items, can be used to move between permutations with repe-
tition. Indeed, all the PwRs in RM can be thought as vertices of a search space
graph where, as before, its arcs are labelled by adjacent swap moves. Hence, the
solutions x, y ∈ RM are neighbors to each other if and only if y can be obtained
from x (or vice versa) by swapping two adjacent items in x (or y).

By recalling that the adjacent swap move between the i-th and (i + 1)-th
items (of a normal permutation, but also of a PwR) can be represented as the
very simple permutation σi ∈ ASW defined in Eq. (6), we have that a path
between two given PwRs x, y ∈ RM is a composition of adjacent swaps, i.e.,
a generic |M |-length permutation π ∈ S(|M |). Clearly, in this space we do not
have the dichotomy observed in the Symmetric group S(n) that is: solutions and
paths between solutions have different representations. Solutions are elements of
RM , while paths/moves between solutions are elements of S(|M |).

The absence of the solution-move dichotomy does not allow to use the same
algebraic definitions given in Sect. 2. Nevertheless, we can exploit the graph
structure of RM in order to derive reasonable definitions for the discrete sum,
difference and scalar multiplication operators. These definitions are in line with
the geometrical interpretations given in the previous section.

Discrete Sum. The discrete sum operator � : RM × S(|M |) → RM which,
given a solution x ∈ RM and a move π ∈ S(|M |), produces the new solution
y = x � π by applying to x all the adjacent swap moves appearing in a minimal
decomposition of π in terms of ASW .



24 M. Baioletti et al.

Discrete Difference. The discrete difference operator � : RM ×RM → S(|M |)
applied to two solutions x, y ∈ RM produces the permutation π = x � y whose
minimal decomposition in terms of ASW is formed by the sequence of adjacent
swaps that transform y into x. It is interesting to note that, similarly to what
happens in the classical Euclidean space, � and � are consistent to each other,
i.e., for any x, y ∈ RM , x � (y � x) = x.

Discrete Scalar Multiplication. Regarding the scalar multiplication, let
observe that practically it is only used to scale-down a move or path in the space1.
With this regard, see also the geometric interpretation of ADE in Sect. 2.2. Since
a move in the search space of PwRs is a normal permutation, we can use unmod-
ified the operator � defined in Sect. 2 for the permutation space.

3.3 Implementation of the Discrete Operators

The definition previously given for � actually indicates also its implementation.
As noted in Sect. 2.3, decomposing the permutation costs Θ(|M |2). Luckily, given
x ∈ RM and π ∈ S(|M |), it is possible to compute x � π in linear time without
decomposing π. Formally, by denoting with x(i) the i-th item of the PwR x, we
have that:

(x � π) (i) = x(π(i)). (8)

It is easy to see that applying Eq. (8) to any item i ∈ {1, . . . , |M |} is equivalent
to sequentially applying to x all the adjacent swaps in a decomposition of π.

Let also note that the operator � is actually a (right) group action [18] of the
Symmetric group S(|M |) on the set RM . Indeed, by using the Polish notation
for the sake of readability, it is easy to verify that � satisfies the two axioms of
the (right) group action functions [18]: (i) �(x, ι) = x for all x ∈ RM , and (ii)
�(x, π ◦ σ) = �(�(x, π), σ) for any π, σ ∈ S(|M |) and x ∈ RM .

For the discrete difference �, we first need to define the canonical PwR
e ∈ RM as the ordering of M whose items are increasingly sorted. For instance,
given M = {1, 1, 2, 2, 3, 3}, its canonical PwR is e = 〈1, 1, 2, 2, 3, 3〉.

Furthermore, let observe that the concept of inversion, introduced in Sect. 2.3,
is also defined on the permutations with repetition, and e is the only PwR
without inversions.

Therefore, it is possible to use RandBS – or, if randomness is not required,
any other bubble-sort variant – to sort any PwR x, towards the canonical PwR
e, by using an optimal number of adjacent swaps. The optimality derives from
the facts that: (i) bubble-sort schemes are known to be optimal when all items
are different, and (ii) useless adjacent swaps between equivalent items in a PwR
are avoided because the pairs of equivalent items cannot form inversions.

Hence, we are now able to find the sequence of adjacent swaps for moving
from any PwR x towards e, i.e., we are able to compute e � x. Moreover, by

1 Even in the Euclidean space R
n, multiplying a vector by a scalar has a geometric

meaning only if we interpret this vector as a proper free vector and not as a point
in the space.
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observing the commutative diagram depicted in Fig. 1, we can generalize the
computation x � y to any x, y ∈ RM . In this diagram, any arrow connects
two PwRs and is labelled with the permutation which encodes the sequence of
adjacent swaps that transform the tail of the arrow into its head. Equivalently,
the label of the arrow is the difference between the head PwR and the tail PwR.

y x

e

σ

π

ρ

Fig. 1. Commutative diagram showing how to compute π = x � y

Since we know how to compute σ = e � y and ρ = e � x, we can now define
the difference between two generic PwRs as:

x � y = π = σ ◦ ρ−1. (9)

4 Algebraic Differential Evolution for Permutations with
Repetition

In this section we define an Algebraic Differential Evolution scheme for Permu-
tations with Repetition (ADE-PR) which is based on the ADE scheme described
in Sect. 2.2 and the discrete operators for the PwR representation depicted in
Sect. 3.

ADE-PR evolves a population of N permutations with repetition by means of
the genetic operators: differential mutation, crossover and selection. Its working
scheme, depicted in Algorithm 1, is similar to those of ADE and classical DE. The
main difference is that the population of ADE-PR is composed by individuals
represented as permutations with repetition.

ADE-PR optimizes a given objective function f defined on the search space
RM . Its control parameters are: the population size N , the scale factor F ∈ [0, 1]
and the crossover strength CR ∈ [0, 1] (the latter may not be present depending
on the chosen crossover operator).

In Algorithm 1, the population is randomly initialized in lines 2–3, then the
evolution is performed in the main cycle in lines 4–12 until a given termination
criterion is satisfied. For each population individual xi, a mutant vi is generated
in line 6 by exploiting the differential mutation scheme which is implemented by
means of the discrete operators for PwRs previously introduced. Then, a trial
PwR ui is obtained, in line 7, by hybridizing xi and vi by means of a chosen
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Algorithm 1. Main scheme of ADE-PR
1: function ADE-PR(f : RM → R,N ∈ N

+,F ∈ [0, 1],CR ∈ [0, 1])
2: for i ← 1, . . . , N do
3: xi ← randomly sample a PwR from RM

4: while termination criterion is not satisfied do
5: for i ← 1, . . . , N do
6: vi ← xr0 � F � (xr1 � xr2)
7: ui ← Crossover(xi, vi,CR)
8: Optionally apply a local search procedure on ui

9: for i ← 1, . . . , N do
10: if f(ui) < f(xi) then
11: xi ← ui

12: Optionally perform a population restart

13: return xbest

14: end function

crossover operator working on the PwR representation (like, for instance, GOX,
GPMX and PPX [8,9]). In lines 9–10, if ui is fitter than xi, it enters the next-
generation population by replacing xi.

Moreover, it is possible to integrate into the ADE-PR scheme: (i) a local
search scheme, purposely defined for the problem at hand, in order to refine
the search, and (ii) a restart procedure which is often useful in combinatorial
problems whose search space is finite.

Note also that the parameters F and CR can be self-adapted during the
evolution using one of the many self-adaptive DE schemes in the literature.

The key operator of ADE-PR is the newly introduced differential mutation
scheme which directly works with permutations with repetition. The expression
in line 6 of Algorithm 1 can be interpreted as follows. The mutant vi is generated
by applying to the PwR xr0 a sequence of adjacent swap moves which is a prefix
of the sequence of moves that transform the PwR xr2 into xr1 . Clearly, the length
of the prefix is regulated by the scale factor F ∈ [0, 1]. This interpretation is in
line with what happens in the continuous DE and for ADE in a search space
representable as a finitely generated group.

5 ADE-PR for the Job Shop Scheduling Problem

As a case study, we describe an implementation of ADE-PR for solving the
Job Shop Scheduling Problem (JSSP). The resulting algorithm, called ADE-
PR-JSSP, follows the scheme depicted in Sect. 4, i.e., it starts with a population
of randomly initialized PwRs which are evolved by means of the following oper-
ators: discrete differential mutation, GOX crossover [9], selection, local search
for the JSSP, and restart procedure. Furthermore, the parameter F used in the
discrete differential mutation is self-adapted by means of the jDE method [10],
while the GOX crossover, as defined in [9], has no parameter.
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In the next subsections we describe: the definition of the JSSP, the procedure
for converting a permutation with repetition to a feasible JSSP schedule, the
local search operator and the restart scheme adopted in ADE-PR-JSSP.

5.1 Definition of the Problem

The Job Shop Scheduling Problem (JSSP) is an important scheduling problem
with many applications in the manufacturing and service industry [12,13].

An instance of the JSSP is defined in terms of a set J of n jobs J1, . . . , Jn

and a set M of m machines μ1, . . . , μm. Each job Ji is composed by m oper-
ations Oi1, . . . , Oim. Every operation Oij has a processing time pij and has to
be executed by the machine μij ∈ M. All the operations within a given job are
linearly ordered, while no constraint is defined among operations belonging to
different jobs. The set of all the operations is denoted by O.

A feasible schedule s consists in assigning to each operation Oij ∈ O a start
time sij such that the following constraints are satisfied: for each i = 1, . . . , n
and j = 1, . . . , m − 1,

sij ≤ si,j+1, (10)

and, for each Oij , Ohk ∈ O with μij = μhk,

sij ≥ ehk or shk ≥ eij , (11)

where eij = sij + pij is the end time of the operation Oij .
A feasible schedule s is optimal if it optimizes a given objective function. In

this paper, the aim is to minimize the makespan

Cmax(s) = max
ij

eij . (12)

The JSSP has been approached using a variety of different techniques. In the
recent survey [11] many evolutionary and meta-heuristic approaches to solve the
JSSP are described: Particle Swarm Optimization, Ant Colony Optimization,
Variable Neighborhood Search, Tabu Search, Genetic Algorithms, and several
others.

5.2 From a Permutation with Repetition to a JSSP Schedule

The solutions of ADE-PR-JSSP are represented as PwRs over the multiset Mm,n,
whose support is {1, . . . , n}, and such that every item in Mm,n has multiplicity
m. Hence, ADE-PR-JSSP navigates the search space of the permutations with
repetition in RMm,n

.
This representation, called operation-based representation [12], was firstly

introduced by [8] and has the important property that it generates only feasible
solutions.

The operation-based representation is based on the fact that each operation
Oij ∈ O can be uniquely identified by the integer number (i−1)m+j. Therefore,
a PwR x ∈ RMm,n

is decoded to a JSSP schedule by using a two-phase procedure.
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In the first phase, a permutation πx ∈ S(mn), representing a total order ≺x

among the operations in O, is built from x as follows.
For each h = 1, . . . , mn, let j = x(h) be the h–th item of x and let k be

the number of items xl, for 1 ≤ l ≤ h, such that xl = j, then πx(h) is set to
(j − 1)m + k. Then, πx(h) corresponds to the operation Oj,k.

It is easy to see that ≺x respects the constraint (10) by construction. Indeed
Oij ≺x Oi,j+1, for each pair of indices i and j < m. Moreover, for each pair of
operations Oij , Ohk ∈ O assigned to the same machine, ≺x states in which order
the two operations have to be executed.

The second phase assigns to each operation Oij a start time sij as the maxi-
mum among the end time of Oi,j−1 and the end times of all the operations Ohk

preceding Oij , with respect to ≺x, and such that μij = μhk.
The obtained schedule is feasible and respects the precedence relations ind-

uced by πx. Therefore, by calling the conversion procedure as GenerateSchedule
and given a PwR x ∈ RMm,n

, we have that the fitness of x in ADE-PR-JSSP is
the makespan of the corresponding schedule, i.e., Cmax (GenerateSchedule(x)).

5.3 Local Search for the JSSP

We have designed ADE-PR-JSSP in such a way that every trial individual ui ∈
RMm,n

, at every generation of the algorithm, undergoes a local search procedure
with probability pLS .

Before applying the local search, the trial individual, represented as a PwR,
is first converted to a schedule by means of the procedure described in Sect. 5.2.

The local search is based on the neighborhood N �, as described in [21], and
works as follows. At each iteration the critical path of the current schedule s is
computed. This path is the sequence of consecutive operations (where the end
time of any operation coincides with the start time of the successive operation
in the path) which has the maximum completion time (which corresponds to the
makespan of s). Then, the blocks of consecutive operations assigned to the same
machine are detected in the critical path. For each block B, two swaps are tried:
one exchanges the first two operations in B, while the other exchanges the last
two operations. The swap which most reduces the makespan is performed and
the schedule is updated accordingly. If no swap produces a better makespan, the
local search terminates.

Now, the local optimal schedule is converted back to a PwR and replaces the
seed individual ui in the population of ADE-PR-JSSP. The conversion can be
easily implemented by considering a topological sorting in the precedence graph
of the local optimal schedule.

After some preliminary experiments, we set the probability pLS to apply the
local search as

pLS (t) =
t

T
· pendLS +

(

1 − t

T

)

· pstartLS , (13)

where t is the current computational time, T is the budget for the execution time,
pstart

LS is the probability of applying the local search at time t = 0, and pend
LS >



An Algebraic Approach for the Search Space of Permutations 29

pstart
LS is the probability at time t = T . Hence, the local search is progressively

applied more often as time passes. This behavior should favor exploration in the
earlier phase of the evolution, while exploitation is intensified with the passing
of time.

5.4 Restart Scheme

The restart mechanism is implemented by replacing all the population individ-
uals, except the best one, with new randomly generated PwRs.

A restart is performed when the algorithm has not been able to improve its
best solution so far after T ·rrestart seconds, where T is the total allotted running
time and rrestart < 1 is the parameter which regulates how often this operation
should be performed at most.

6 Experiments

ADE-PR-JSSP has been experimentally validated on some commonly adopted
benchmarks for the JSSP, namely: the ft, la, and orb benchmark suites [15]2.
The benchmarks contain a total of 53 JSSP instances with n · m ranging from
36 to 300.

After some preliminary experiments, the population size has been set to
N = 25 individuals, the range for the application probability of the local search
has been set using pstart

LS = 0 and pend
LS = 1, while the restart parameter rrestart

has been set to 0.1.
The executions of ADE-PR-JSS have been carried out on a machine equipped

with the Intel Xeon CPU E5-2620 v4 clocking at 2.10 GHz. Every execution ter-
minates after a time budget of T = 4mn seconds has been exhausted. Moreover,
R = 15 executions per instance have been run.

The presentation of the experimental results is divided in three groups,
according to the values of mn: Table 1 refers to the instances with nm < 100,
Table 2 to those with nm = 100, and Table 3 to the remaining instances. In
these three tables we present, for each instance: the sizes n and m, the average
(Avg i) and minimum (Mini) fitness values obtained by ADE-PR-JSSP in the R
runs, the known optimal value (Opt i) for the instance (taken from the recently
published survey paper [15]), and the average relative percentage deviation com-
puted as ARPDi = 100 × Avgi−Opti

Opti
. Moreover, the minimum Mini is reported

in boldface when it matches the known optimal value Opt i.
Interestingly, in 38 out of 53 instances, ADE-PR-JSSP reached the optimal

value at least once, while, in 22 instances, this happened in all the executions.
In particular, the results provided in Table 1 refer to small JSSP instances,

where ADE-PR-JSSP has been always able to find the optimal value, and for 7
of such instances this happened in all the executions. Indeed, the average ARPD
for this set of instances is rather small, i.e., 0.167%.

2 These JSSP instances can be downloaded from the website http://jobshop.jjvh.nl.

http://jobshop.jjvh.nl
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Table 1. Experimental results on instances with nm < 100

Instance n m Avg ARPD Min Opt

ft06 6 6 55.000 0.000 55 55

la01 10 5 666.000 0.000 666 666

la02 10 5 660.133 0.784 655 655

la03 10 5 602.867 0.983 597 597

la04 10 5 590.400 0.068 590 590

la05 10 5 593.000 0.000 593 593

la06 15 5 926.000 0.000 926 926

la07 15 5 890.000 0.000 890 890

la08 15 5 863.000 0.000 863 863

la09 15 5 951.000 0.000 951 951

la10 15 5 958.000 0.000 958 958

Table 2. Experimental results on instances with nm = 100

Instance n m Avg ARPD Min Opt

ft10 10 10 937.933 0.853 930 930

ft20 20 5 1174.600 0.824 1165 1165

la11 20 5 1222.000 0.000 1222 1222

la12 20 5 1039.000 0.000 1039 1039

la13 20 5 1150.000 0.000 1150 1150

la14 20 5 1292.000 0.000 1292 1292

la15 20 5 1207.000 0.000 1207 1207

la16 10 10 949.800 0.508 945 945

la17 10 10 785.267 0.162 784 784

la18 10 10 848.667 0.079 848 848

la19 10 10 845.667 0.435 842 842

la20 10 10 906.667 0.517 902 902

orb01 10 10 1078.267 1.819 1064 1059

orb02 10 10 890.800 0.315 889 888

orb03 10 10 1019.000 1.393 1005 1005

orb04 10 10 1018.267 1.320 1011 1005

orb05 10 10 891.400 0.496 889 887

orb06 10 10 1025.800 1.564 1021 1010

orb07 10 10 401.667 1.175 397 397

orb08 10 10 906.800 0.868 899 899

orb09 10 10 943.467 1.014 934 934

orb10 10 10 944.000 0.000 944 944
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Table 3. Experimental results on instances with nm > 100

Instance n m Avg ARPD Min Opt

la21 15 10 1059.933 1.332 1047 1046

la22 15 10 930.133 0.338 927 927

la23 15 10 1032.000 0.000 1032 1032

la24 15 10 941.667 0.713 938 935

la25 15 10 982.867 0.600 982 977

la26 20 10 1218.000 0.000 1218 1218

la27 20 10 1257.533 1.825 1242 1235

la28 20 10 1221.533 0.455 1216 1216

la29 20 10 1190.067 3.304 1174 1152

la30 20 10 1355.000 0.000 1355 1355

la31 30 10 1784.000 0.000 1784 1784

la32 30 10 1850.000 0.000 1850 1850

la33 30 10 1719.000 0.000 1719 1719

la34 30 10 1721.000 0.000 1721 1721

la35 30 10 1888.000 0.000 1888 1888

la36 15 15 1286.267 1.441 1278 1268

la37 15 15 1435.600 2.763 1418 1397

la38 15 15 1210.867 1.243 1202 1196

la39 15 15 1249.400 1.330 1246 1233

la40 15 15 1240.133 1.484 1228 1222

Table 2 shows that on the 22 selected instances with nm = 100 the algorithm
has been able to find the optimal value: at least once on 17 instances, and in all
the executions in 6 cases. As expected, the average ARPD for this second set of
instances, 0.606%, is larger than the previous, but anyway close to 0.

In Table 3 it is possible to see that ADE-PR-JSSP reached the known optimal
value: at least once in half the instances (10 out of 20), and in all the executions
for 8 of them. Therefore, the average ARPD for this last set of instances is
slightly larger than the other: 0.841%. Moreover, Table 3 also shows that the
instances with m = 15 are much harder and the average ARPD restricted to
this subset raises to 1.652%.

Summarizing, the overall ARPD obtained by averaging on all the 53 instances
is 0.604, thus promoting the proposed approach as a method competitive with
respect to the known values for the considered benchmarks.

7 Conclusion and Future Work

In this paper, we have extended the algebraic framework for evolutionary com-
putation previously proposed in [22] in order to handle the search space of per-
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mutations with repetition. The newly proposed discrete operators allowed to
design an Algebraic Differential Evolution called ADE-PR which can be applied
to any combinatorial optimization problem whose solutions may be represented
as permutations of possibly repeated items.

In particular, ADE-PR has been devised for the Job Shop Scheduling Prob-
lem (JSSP). In order to validate the effectiveness of the proposed approach,
experiments have been on a set of widely adopted benchmark instances for
the JSSP. The experimental results show that our proposal is competitive with
respect to the known optimal objective values for the considered benchmarks.

Possible future lines of research are: apply ADE-PR to partitioning problems;
use simple search moves other than the swaps of adjacent items; design other
algebraic evolutionary algorithms, like the APSO [23], in order to work with
permutations with repetition; and generalize the approach to other search spaces,
by means of the algebraic concept of group action, in order to see the deployed
discrete operators as projections from a known space which can be represented
as a group to other more general combinatorial spaces.
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Abstract. The use of multi-graphs in modelling multi-objective trans-
portation problems is gaining popularity, necessitating the consideration
of the Multi-objective Shortest Path Problem (MSPP) on multigraphs.
This problem is encountered in time-dependent vehicle routing, mul-
timodal transportation planning and in optimising airport operations.
This problem is more complex than the NP-hard simple graph MSPP,
and thus approximate solution methods are needed to find a good repre-
sentation of the true Pareto front in a given time budget. Evolutionary
algorithms have been applied with success to the simple graph MSPP,
however their performances on multigraph MSPP were not systemat-
ically investigated. To this aim, we extend the most popular genetic
representations to the multigraph case and compare the achieved per-
formances. We find that the priority based encodings outperform the
direct ones with purely random initialisation. We further introduce a
novel heuristic initialisation technique, that is generic enough for many
representations, and that further improves the convergence speed and
solution quality of the algorithms. The results are encouraging for later
application to the time constrained multigraph MSPP.

Keywords: Multi-objective shortest path problems · Multigraphs ·
Genetic representation techniques · Heuristic initialisation

1 Introduction

There is substantial evidence [6,9,15,25] that representing routing problems as
multigraphs offers benefits with regards to time, cost, environmental impact and
flexibility in multiple practical settings. The availability of multiple parallel edges
between pairs of nodes is rooted in the multi-objective nature of the problems. If
there are multiple ways to traverse a section of the route offering different trade-
offs between the objectives, they should all be modelled in the optimisation
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process in order to find the set of Pareto-optimal solutions. The parallel edges
in practice might correspond to different physical routes as in multi-objective
vehicle routing problems [9,11,25], different modes of transport [15], or the same
physical route traversed with different speed profiles such as in the airport ground
movement problem [6].

The multi-objective shortest path problem (MSPP) on multigraphs can be
reduced to two NP-hard problems, the MSPP on simple graphs and the Fixed
Sequence Arc Selection Problem (FSASP) [11]. In the FSASP the sequence of
nodes to be traversed is fixed but there are multiple alternative routes (parallel
edges) between any neighbouring nodes in the sequence. For the simple graph
MSPP the number of solutions grows exponentially with the number of nodes
in the worst case, and for the multigraph MSPP getting close to this worst
case is even more probable. Consequently, the running times of exact solution
approaches for the multigraph MSPP are often unacceptable in real applications.

Metaheuristics and in particular genetic algorithms have been used with suc-
cess [7,18,19] to solve simple graph shortest path problems in the context of
communication and transportation. We extend four of the main genetic repre-
sentation methods for the multigraph case. These are the direct variable length
[4], direct fixed length [16], random key [12] and integer valued priority [19] rep-
resentations. A comparison of the representations is an important step towards
the design of an efficient metaheuristic algorithm for the multigraph MSPP.

Heuristic initialisation techniques have been used with success in different
combinatorial optimisation problems, as they can lead to quicker convergence
by starting the evolutionary process with an initial population of higher quality.
However, this approach is mostly overlooked when solving shortest path prob-
lems, the main concern being premature convergence caused by a lack of suf-
ficient diversity. Premature convergence can be avoided by introducing enough
randomness into the population, while still preserving higher quality compared to
a purely random population. We introduce a new heuristic initialisation method
applicable for all four mentioned representations to speed up convergence.

The problem is described in Sect. 2. Related work on representation methods
for the simple and multigraph MSPP, and initialisation techniques are sum-
marised in Sect. 3. Section 4 describes our approach to extend the main repre-
sentations to the multigraph case and the heuristic initialisation technique. In
Sect. 5, the numerical experiments and their results are presented. Conclusion is
drawn and future research directions are described in Sect. 6.

2 Problem Description

The multigraph MSPP is defined by a multigraph network G = (V,E) and
a multi-dimensional cost-vector associated with each edge in G. The network
is assumed to be undirected in this paper. V = 1, ..., n represents the set of
nodes, and E the set of edges. Given that G is a multigraph, there might be
multiple edges in E connecting the same nodes. For this reason an edge in
the network is denoted by e = (v, u, i), where u, v ∈ V and i is a parallel
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edge index, that differentiates between the edges with the same endpoints u
and v. These edges are numbered starting from 1 to the number of parallel
edges between the two nodes l(u, v). There are two special nodes O,D ∈ V , the
origin and destination nodes respectively. The costs associated with each edge
according to k objectives considered are given by a k-dimensional cost-vector
cost(e) = (c1(e), c2(e), ..., ck(e)). For a valid path P between O and D, the
corresponding cost-vector can be calculated according to Eq. (1).

C(P ) =
∑

e∈P

cost(e) (1)

We are looking for the minimum cost path between O and D considering all k
objectives. The solution is the set of valid paths with non-dominated cost-vectors,
i.e. the Pareto optimal solutions. A solution path P1 is said to be non-dominated
if another solution path that is at least as good as P1 according to all k objectives
and better according to at least one objective does not exist.

3 Related Work

3.1 Genetic Representations for Paths in Simple Graphs

Multiple genetic representation methods have been proposed for the simple graph
version of the problem, the most popular ones can be classified as direct repre-
sentations priority-based representations.

Direct Variable Length Encoding. In the simple graph problem candidate
solutions need to encode a sequence of nodes in a graph. The most straightfor-
ward way of doing this is the direct variable length representation proposed in
[24] for the single objective shortest path problem (SSPP). Chromosomes consist
of lists of node IDs, that form a path starting with the origin node and ending
with the destination node. An arbitrary list of nodes usually won’t correspond
to a feasible path in the graph, and this necessitates the use of problem specific
genetic operators. The overlap-based crossover and random walk based mutation
introduced by Ahn and Ramakrishna [4] are the most popular choice, and these
were adapted by multiple authors for the multi-objective problem [7,17,18].

The main advantage of this representation is that it gives a one-to-one map-
ping. However, the operators might lead to loop formation, and thus offspring
need to be checked and repaired after mutation and crossover. Also, according
to [20,23] this representation is not suitable for large networks.

Direct Fixed Length Encoding. Another node ID based representation was
proposed by Inagaki et al. [16]. The length of the chromosome equals n, the
number of nodes in the network, and the node IDs are the numbers from 1 to n.
The chromosomes incorporate a pointer to a neighbouring node for each node.
This way the path is decoded by following the pointers until the destination is
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reached or a loop is formed. The locus of a gene corresponds to a node in the
network with the same ID, and the value of the gene is the ID of a neighbour that
is the next node in the path. The crossover operator applied in [16] is essentially
a uniform crossover, which is deemed inconsistent and requires large population
sizes [4,20].

Integer Valued Priority Based Encoding. Gen et al. proposed a priority
based encoding technique with integer priority values [13], which encodes the
solution path indirectly through some guiding information.

Priority-based encoding is a permutation encoding, where a chromosome con-
tains priority values for each node in the network. In this case, the priorities are
integers from 1 to n. A path is decoded from the chromosome by starting at the
origin node and appending to the path the node with the highest priority among
the neighbours of the current node, given it is not yet in the path. If it is already
in the path, the neighbour with the next highest priority is chosen instead.

The main advantage of this representation is that common crossover opera-
tors can be used and expected to work well, unlike in case of the direct represen-
tation. This is mainly because a random permutation of the priorities will always
be decoded to some valid path starting from the origin node. In direct representa-
tion a random permutation of node IDs will most likely not correspond to a valid
path, in the sense that the consecutive node IDs will not be adjacent in the net-
work. This representation has been shown to perform well in comparison to the
variable length direct representation for the bi-objective problem with Weight
Mapping Crossover (WMX) proposed specifically for this problem [19]. WMX is
an extension of the one-cut point crossover for permutation representation.

Random Key Based Encoding. Gen and Lin proposed another similar encod-
ing technique by using floating-point numbers instead of integers as priorities
[14], resulting in a random key representation for the single objective shortest
path problem. Random keys were found to be a powerful method for permutation
representation in other combinatorial optimisation problems [5]. The advantage
of random key encoding is that even simpler operators might be used. In [14]
arithmetical crossover is employed, where the offspring are calculated as the
weighted average of the two parent vectors.

3.2 Genetic Representations for Paths in Multigraphs

For multigraph, not only the sequence of nodes needs to be specified, but also the
index of a parallel edge between any two consecutive nodes. A multigraph net-
work and a solution path within it is illustrated in Fig. 1. Although this is a rel-
evant issue for a wider range of real-world problems, the only previous attempts
to solve it to our knowledge are from the context of multi-modal transportation
[3,27].

Abbaspour and Samadzadegan extended the direct variable length represen-
tation to the multi-modal problem [3]. The length of the chromosomes are double
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Fig. 1. An example of a multigraph network and a solution path from node 1 to node
5 in it, indicated by a wider line.

the number of nodes in the network. The genes at odd loci correspond to node
IDs, just like in [4]. The genes at even loci are used to indicate the mode of travel
to be used between the node IDs indicated by the neighbouring genes. The same
crossover and mutation operators are used on the odd genes as in simple graph
problem, and the even genes (modes of transport) only change with the odd
ones.

Yu and Lu [27] propose a slightly different approach, where they only indicate
the changes in the mode of travel and do not specify it for each edge separately.
Genes indicating the mode of travel for the consecutive node IDs have a negative
value, to differentiate them from the node IDs. However, only a limited number of
parallel edges were used. When the number of parallel edges groves, the possible
advantage of a shorter chromosome is diminished by the burden of maintaining
the chromosome structure with more complicated operators. For this reason we
propose a strategy that encodes the indices of parallel edges for each consecutive
node in the paths, not just the changes.

3.3 Initialisation

Most mentioned works applied purely random initialisation. An exception is [17],
where spatial information is utilised to guide the random walk further from the
origin node and closer to the destination node. Spatial information however is
not always available and in some cases might be misleading. Another example
for heuristic initialisation can be found in [18], where shortest paths are found
according to some weighted aggregation of smaller subsets of the objectives with
Dijkstra’s algorithm, and these are included in the initial population along with
randomly generated chromosomes. The disadvantage of this approach is that it
cannot be used with the priority-based representations.

A different heuristic initialisation approach was proposed for Particle Swarm
Optimisation in [23] for solving the SSPP with a priority based representation
method. They achieved decreased risk of loop formation by using the values of
node IDs to reject backwards moves when decoding the solution path. Priorities
were randomly assigned and node IDs were assigned in a way that the higher the
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IDs are, the closer a node is to the destination. They rejected backwards moves
in the decoding process, defined as moves that would lead to some given level of
decrease in node IDs, when other moves were also available.

4 New Representations and Initialisation

4.1 Extension of Representations

Representations for the multigraph MSPP need to encode the parallel indices
for each pair of consecutive nodes in a solution path, not just the node sequence.
This is easier for direct representation than for the priority based ones if the
network might contain varied numbers of parallel edges between pairs of nodes.
The previously proposed approaches for encoding mode of transport in the mul-
timodal transportation literature employ direct representation, which allows for
including the parallel edge index directly. Our proposed way of representing par-
allel edges works with priority based representations that were previously not
extended to the multigraph problem to our knowledge.

Using the multimodal transportation problem for illustrative purposes, the
difficulty of applying the same approach for priority-based representation as in
[3] is the following. Generally, there are different modes of transport (different
number of parallel edges) available between pairs of nodes in the network. This
means that if we assign a mode of transport to a pair of adjacent nodes randomly,
it might not be feasible. In direct representation, such as [3], once the modes of
transport are initialised to be feasible, the crossover and mutation operators
do not ruin feasibility. One might try to follow a similar strategy with priority
based representation and assign modes of transport to node IDs to be used when
leaving the node. Then it might happen that a crossover results in a solution
path in which a node u is followed by another node v that does not even appear
in the paths encoded by the parents of the given chromosome. Additionally,
the modes used for leaving u in the parents might not be available between u
and v. This could be resolved with a repair mechanism, but here we propose
an alternative method for representing the parallel indices that does not require
repairing.

Instead of encoding the indices of parallel edges directly, we use a floating-
point number r between 0 and 1, that we call index indicator. These index
indicators are assigned to node IDs, and encode which parallel edge to use when
leaving the given node. Given two neighbouring nodes u, v and the number of
parallel edges between them l(u, v), the index of the chosen parallel edge can be
calculated as �r(u) ∗ l(u, v)� + 1. Any random value of index indicators can be
decoded to an index of parallel edge that is available between two given nodes.

This way we do not need to access information about the structure of the
multigraph when performing evolutionary operators, only when evaluating the
solutions. We also apply the same method for direct representations in our exper-
iments.
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Direct Variable Length Representation for the Multigraph MSPP.
We adapt the representation found in [4] directly. The node IDs are integers and
thus a convenient way to store the parallel edge indicators that are floating-point
numbers below 1 is to add them to the node IDs. This way the chromosome is
the same length as in the simple graph problem. The integer parts indicate the
node sequence of the path and the fractional parts indicate which of the parallel
edges to use when leaving the nodes. The node sequence and sequence of parallel
edge indices can be decoded according to Algorithm 1.

The crossover, mutation and repair operators are the same as in [4], the only
modification is that crossovers can be conducted on any two parents that have
at least one node in common. In the simple graph case there is no point in
crossing two chromosomes that encode the same sequence of nodes, however for
the multigraph problem the overlap-based crossover can still be used to cross
the parallel edge indicators of the two solution paths. The mutation operator
generates new partial solutions by a random walk.

Algorithm 1. Decode direct variable length chromosome
Input: chromosome, G, vO, vD
Output: path: node sequence, indices: parallel edge indicator sequence

1 path ← Empty list+ vO
2 indices ← Empty list
3 for i ← 2 to length of chromosome do
4 prevNode ← Integer part of the (i − 1)th gene of chromosome
5 nextNode ← Integer part of the ith gene of chromosome
6 r(prevNode) ← fractional part of the (i − 1)th gene of chromosome
7 path ← path + nextNode
8 indices ← indices + � r(prevNode) * l(prevNode,nextNode) � + 1

9 return path, indices

An example of a chromosome from this representation that encodes the solu-
tion path in Fig. 1 is: [1.38, 6.82, 2.67, 4.51]. The value of the first gene encodes
that the first node in the solution path is 1 and the parallel edge to be used to
reach the second node, 6 is calculated as �r(1) ∗ l(1, 6)� + 1 = �0.38 ∗ 3� + 1 = 2.

Direct Fixed Length Representation for the Multigraph MSPP. The
representation introduced in [16] is adapted. As before, we include parallel edge
indicators as fractional parts added to the genes that were previously integers.
The parallel edge indicator of node v is r(v) = genev − �genev� where genev
is the vth gene of the chromosome. The node sequence and sequence of parallel
edge indices can be decoded according to Algorithm 2.

The uniform crossover is adapted without modification. There wasn’t any
mutation specified, so we used the following mutation operator. When a chro-
mosome is mutated each of its genes is reassigned randomly with probability 0.5.
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This means that the integer part of the gene at locus i is changed to a random
neighbour of the node i and the same fractional part is kept.

Algorithm 2. Decode direct fixed length chromosome
Input: chromosome, G, vO, vD
Output: path: node sequence, indices: parallel edge indicator sequence

1 path ← Empty list + vO
2 indices ← Empty list
3 while Last node of path �= vD do
4 prevNode ← Last node of path
5 nextNode ← integer part of prevNode-th element of chromosome
6 if nextNode is in path then
7 path ← path + vD // Path got stuck, will be penalised

8 else
9 r(prevNode) ← fractional part of the parallel edge indicator of node

prevNode
10 path ← path + nextNode
11 indices ← indices + � r(prevNode) * l(prevNode,nextNode) � + 1

12 return path, indices

An example of a chromosome from this representation that encodes the solu-
tion path in Fig. 1 is: [6.38, 4.67, 2.24, 5.51, 4.09, 2.82].

Integer-Valued Priority Based Representation for the Multigraph
MSPP. The representation used in [19] is extended. As before, we include par-
allel edge indicators as fractional parts added to the genes that were previously
integers. The priority of node v can be found as priority(v) = �genev�, and the
parallel edge indicator of node v is r(v) = genev − �genev� where genev is the
vth gene of the chromosome. The node sequence and sequence of parallel edge
indices can be decoded according to Algorithm3. Insertion mutation and WMX
is employed as in [19], without modifications.

An example of a chromosome from this representation that encodes the solu-
tion path in Fig. 1 is: [6.38, 3.67, 1.24, 2.51, 5.09, 4.82].

Random Key Based Representation for the Multigraph MSPP. The
representation proposed in [14] is adapted. Here the chromosomes do not consist
of integers for the simple graph MSPP. Thus here the parallel edge indicators are
stored separately, making the genes two dimensional. The first value of the gene
at locus i encodes the priority value of the node with ID i, while the second of
the gene at locus i encodes the parallel edge indicator of the node with ID i. The
sequence of nodes and parallel edge indices can be decoded from a chromosome
according to Algorithm 3.
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Algorithm 3. Decode priority based representations
Input: chromosome, G, vO, vD
Output: path: node sequence, indices: parallel edge indicator sequence

1 path ← Empty list + vO
2 indices ← Empty list
3 while Last element of path �= vD do
4 neighbours ← set of neighbours in G of last element in path
5 allowed ← set of elements in neighbours not in path
6 if allowed is empty then
7 path ← path + vD // Path got stuck, will be penalised

8 else
// Priority of node and parallel indicator of node is found

differently for Integer priority and Random keys

9 prevNode ← Last node in path
10 nextNode ← node with maximum priority in allowed
11 r(prevNode) ← fractional part of the parallel edge indicator of node

prevNode
12 path ← path + nextNode
13 indices ← indices + � r(prevNode) * l(prevNode,nextNode) � + 1

14 return path, indices

In [14] arithmetic crossover was used, but 1-point and 2-point crossovers are
also mentioned as a possibility and we found in preliminary experiments that
two-point crossover gives the best results. Thus we use two-point crossover and
insertion mutation. Both the mutation and crossover mechanism is independent
of the values of the genes and thus is straightforward to apply on two dimensional
genes.

An example of a chromosome from this representation that encodes the solu-
tion path in Fig. 1 is: [(0.93,0.38), (0.36,0.67), (0.12,0.24), (0.25,0.51), (0.51,0.09),
(0.45,0.82)].

Additional Mutation Operator. We define an additional mutation operator
used with all four representations to change some of the parallel edge indicators.
This mutation cannot make a solution path infeasible, because that only depends
on the encoded node sequence. For this reason the additional mutation opera-
tor is used with probability 1 on all candidates, however it might not always
introduce any changes. For a given chromosome each of its parallel edge indica-
tors are reassigned randomly with a small probability, which in the numerical
experiments is set to 0.05.

4.2 Heuristic Initialisation

Inspired by previous works in the literature that aim to avoid detours, we propose
a novel heuristic initialisation technique that can also be used with priority based
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genetic representations. Compared to the method proposed in [23], our approach
similarly aims to reduce the chance of backwards moves, but not to eliminate
them. We incorporate the roles of IDs and priorities into a single priority value
assigned to each node in a quasi-random way.

Solutions encoded by random key representation can be transformed to any
of the other three representations, while this is not true the other way around.
We introduce the initialisation technique for random key representation, and
later describe how to use it for the other ones.

The idea is to give higher priorities to nodes closer to the destination node
more often than to the ones far from it, thereby discouraging detours. The
method incorporates knowledge about the network structure and randomisa-
tion to provide a diverse initial population of high quality. The priority p is
assigned to node v according to Eq. (2). The hopcount (distance without any
weights) of node v from the destination node vD in the network G is denoted
h(v, vD), and τmax denotes a randomisation coefficient.

p(v, vD) = −h(v, vD, G) + τ, τ ∈ (0, τmax) (2)

The likelihood of detours appearing in the decoded paths can be controlled
by the parameter τmax. The higher τmax is, the more random the priorities
are, and the less prominent is the effect of the heuristic initialisation compared
to a purely random one. If τmax < 1, all initial solutions will be paths without
detours, with minimal hop-counts, which is undesirable when the costs are highly
inhomogeneous and higher hopcount routes might still be efficient. If 1 < τmax <
2 small detours are possible, an encoded path might move from a node to another
one with the same hopcount, as depicted in Fig. 2. If 2 < τmax moving to a node
that is at higher hopcount from the destination is possible and becomes more
probable with the increase of τmax.

Fig. 2. Illustration of the role of τmax in heuristic initialisation. Here τmax = 1.5, and
thus detours are possible as demonstrated.

The resulting values need to be transformed according to the representations
before they are fed to the algorithms as initial populations. For random key
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encoding, they need to be normalised to fit the appropriate intervals. For integer
valued priority encoding the nodes are converted to integers by sorting them into
increasing order according to their priorities and assign to each node its rank.
For direct encodings the priorities are converted to node-based representations
by decoding them as usual, each node is followed by its neighbour with the
highest priority. This way the method can be used with all four representations.
The parallel edge indicators are assigned purely randomly.

A crucial point is that the heuristic initialisation method should be eas-
ily computable compared to the original problem being solved. The proposed
method makes use of the hopcount of each node in the graph from the destina-
tion node, which can be computed in O(V + E) time. This is significantly lower
than solving the multigraph MSPP, which is in general NP-hard.

5 Results

The proposed algorithms are tested empirically and their performances are eval-
uated compared to the true Pareto front using a set of performance indicators.
The true Pareto front was found by a state-of-the-art exact algorithm NAMOA*
[22], that was adapted to the multigraph problem.

5.1 Implementation Details

We use the NSGA-II [8] algorithm to compare the representation and initialisa-
tion techniques. The selection and elitism mechanisms are defined by NSGA-II.
In all experiments the population size was set to n, the number of nodes, as
it is often done in the literature. The maximum number of generations was set
to 400. In all reported results the crossover probability is 1 and the mutation
probability is 0.15. All numerical tests are performed on Queen Mary’s Apoc-
rita HPC facility [2]. The methods are implemented in Python, for the NSGA-II
implementation the inspyred package [1] was used.

The fitness of a valid path is calculated according to Eq. (1). In all cases it
might happen that some candidates do not correspond to a feasible path, because
the decoded path does not reach the destination node. In these cases a penalty
function is used, that assigns a large cost to such candidates. The penalty is
larger the further away the path ends from the destination node, measured by
hopcount. The fitness of an infeasible path P ′ that does not reach the destination
node is calculated according to Eq. (3), where costmax is the k-dimensional vector
where each component equals the maximum value of any cost component in the
given instance.

C(P ′) =
∑

e∈P ′
cost(e) + costmax ∗ h(P ′, vD) (3)
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5.2 Test Instances

The algorithms are evaluated using 8 test instances for the 2 objective problem
and 6 test instances for the 3 objective problem. The test instances are described
in Table 1.

Table 1. The multigraph MSPP instances used for evaluation. Each instance has two
variants one for 2 objectives and one for 3 objectives with the same graph structure.

Instance ID Number of nodes Network type lmax Correlation between
objectives

I1 49 Waxman 5 Negative

I2 49 Waxman 10 Negative

I3 100 Waxman 5 Negative

I4 100 Waxman 10 Negative

I5 49 Grid 5 Negative

I6 49 Grid 10 Negative

I7 100 Grid 5 Negative

I8 100 Grid 10 Negative

We use Waxman networks [26] on 49 and 100 nodes and square grid networks
with the same number of nodes (7 by 7 and 10 by 10 nodes). Each edge in these
simple graphs is converted to a multi-edge by assigning a cost matrix to it.
The number of parallel edges (number of rows of the cost matrix) is randomly
chosen between 1 and lmax, where lmax the maximum allowed number of parallel
edges, 5 or 10 in this case. All parallel edges between the same two nodes have
non-dominated cost-vectors. The cost assignment method described in [21] was
used to generate costs with negative correlation, because this is the case where
a multi-objective approach is essential for real world applications and also these
kind of instances are the most challenging for the exact algorithms. The cost
components are from the interval (1, 1000). The origin and destination nodes
are specified as two endpoints of a diameter of the network, to ensure that they
are not too close that could result in a trivial problem.

For 3 objectives I8 and I7 the exact algorithm did not terminate in five days,
we failed to find the true Pareto front and thus those instances are left out of
the investigation.

5.3 Comparing Representations with Purely Random Initialisation

The solution quality of approximate algorithms can be evaluated in different
ways. We compare them to the true Pareto front by dominance-compliant quality
indicators recommended in [10], the hypervolume indicator, the epsilon indicator
and the R3 indicator. For the calculation of the R3 and hypervolume metric,
the fitnesses of the solutions are normalised, such that the components of the
fitnesses of the real Pareto fronts are between 0 and 1. This means that the fitness
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Fig. 3. The hypervolume indicator for 50 runs of the algorithms with purely random
initialisation on 8 test instances for the two objective multigraph MSPP, and 6 test
instances for the three objective multigraph MSPP.

components of the approximate solutions might be above 1. The reference point
for the hypervolume calculation is set to 1.5 for all objectives and approximate
solutions that do not dominate this reference point are ignored. The hypervolume
defined by the approximate solutions is divided by the hypervolume defined by
the true Pareto front to get a value between 0 and 1.

The performance achieved by the different representations as measured by the
hypervolume indicator is presented in Fig. 3. Both in the two and three objective
cases the two priority-based representations perform the best, with the integer
valued priority showing a slightly higher average. The worst performing repre-
sentation is the direct fixed-length one, which agrees with our expectations based
on the literature. The results are similar for the other performance indicators.
The Wilcoxon signed rank test is performed for all pairs of the representations
for both the bi-objective and three objective problems. The only case where the
difference was non-significant (with p-value = 0.05) is the two priority-based
representations in the three-objective case for all three performance indicators
(epsilon, R3, hypervolume). In all other cases, there are significant differences
between the representations.

5.4 Comparing Initialisation Techniques

The same representations were also tested using the proposed heuristic initiali-
sation method. Only the initial population is changed, the genetic operators and
parameters are the same. The resulting solution qualities after 401 ∗ n function
evaluations are described in Table 2. All representations perform better accord-
ing to all performance metrics when heuristic initialisation is used compared to
the purely random initialisation. This difference was found significant in case of
all representations by the Wilcoxon signed rank test. The best performing algo-
rithm is the random-keys based one with heuristic initialisation, according to
Table 2, however the difference between the performances of the representations
is less prominent when the heuristic initialisation is used.
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Table 2. The average values of the three performance indicators for 50 runs of the
algorithms on each of the 8 test instances with the 4 main representations with the two
initialisation methods for the two and three objective multigraph MSPP. For heuristic
initialisation τmax = 1.5 was used. The best values for the two and three objective
cases separately are indicated in bold for each instance.

Representation Direct, variable l. Direct, fixed l. Integer priority Random key

Initialisation Rand. Heur. Rand. Heur. Rand. Heur. Rand. Heur.

No objectives

Epsilon indicator

2 1.779 1.574 1.853 1.453 1.574 1.455 1.641 1.427

3 1.453 1.337 1.577 1.237 1.376 1.220 1.377 1.188

R3 indicator

2 0.017 0.010 0.022 0.007 0.011 0.007 0.013 0.006

3 0.013 0.007 0.021 0.004 0.010 0.004 0.010 0.003

Hypervolume indicator

2 0.941 0.959 0.926 0.970 0.955 0.969 0.952 0.972

3 0.927 0.948 0.907 0.970 0.942 0.967 0.938 0.974

Fig. 4. The ratio of the average hypervolume achieved by the heuristic and random
initialisations as a function of the elapsed generations. A value above 1 means that the
heuristic initialisation (τmax = 1.5) achieved a higher hypervolume.

A heuristic initialisation method should allow the evolutionary process to
start with a higher quality population and also should not lead to premature
convergence. To illustrate these properties we visualise the ratio of the hypervol-
ume achieved with the heuristic and purely random initialisations throughout
1000 generations in Fig. 4. The ratio stays above 1 through the evolutionary
process, which means that heuristic initialisation leads to better solution quality
at all stages for all the representations. The improvement is the most prominent
in the earlier generations. Thus we can conclude that speed-up is achieved and
the premature convergence is avoided.

Note that the direct fixed length representation profits the most from the
heuristic initialisation technique. In fact it is competitive with the priority based
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representations when used with the heuristic initialisation (see Table 2), while it
is significantly worse than others when used with the purely random initialisa-
tion.

6 Conclusion and Future Work

Four previously proposed representations for the MSPP were extended to the
multigraph case and the performances of the resulting algorithms are compared
according to three performance indicators. The extension is done in a way that
it can be used for multigraph networks with inhomogeneous numbers of paral-
lel edges between pairs of nodes, even with priority-based representations. We
observed that the best performing representations are the priority-based repre-
sentations in almost all cases.

A heuristic initialisation technique was proposed that can be used with all
four representations. It was found that the heuristic initialisation improves the
solution quality significantly for three of the four representations, the direct fixed
length representation, the integer-valued priority representation and the random
key-based representation.

Future work includes refining the representation of parallel edges and decreas-
ing the number of possible chromosomes that encode the same solution path,
which could potentially make the algorithms more efficient. Another future direc-
tion is the extension to constrained problems particularly the investigation and
design of bespoke crossover and mutation operators. The extension will allow
the proposed approach to be tested on real-world problems and to be compared
with other exact and approximate algorithms.
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Abstract. In their recent work, Lehre and Nguyen (FOGA 2019) show
that the univariate marginal distribution algorithm (UMDA) needs time
exponential in the parent populations size to optimize the Deceiving-
LeadingBlocks (DLB) problem. They conclude from this result that
univariate EDAs have difficulties with deception and epistasis.

In this work, we show that this negative finding is caused by an unfor-
tunate choice of the parameters of the UMDA. When the population sizes
are chosen large enough to prevent genetic drift, then the UMDA opti-
mizes the DLB problem with high probability with at most λ( n

2 +2e ln n)
fitness evaluations. Since an offspring population size λ of order n log n
can prevent genetic drift, the UMDA can solve the DLB problem with
O(n2 log n) fitness evaluations. In contrast, for classic evolutionary algo-
rithms no better run time guarantee than O(n3) is known, so our result
rather suggests that the UMDA can cope well with deception and epis-
tatis.

Together with the result of Lehre and Nguyen, our result for the first
time rigorously proves that running EDAs in the regime with genetic
drift can lead to drastic performance losses.

Keywords: Estimation-of-distribution algorithm · Univariate marginal
distribution algorithm · Run time analysis · Epistasis · Theory

1 Introduction

Estimation-of-distribution algorithms (EDAs) are randomized search heuristics
that evolve a probabilistic model of the search space in an iterative manner.
Starting with the uniform distribution, an EDA takes samples from its current
model and then adjusts it such that better solutions have a higher probability
of being generated in the next iteration. This method of refinement leads to
gradually better solutions and performs well on many practical problems, often
outperforming competing approaches [21].
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Theoretical analyses of EDAs also often suggest an advantage of EDAs when
compared to evolutionary algorithms (EAs); for an in-depth survey of run time
results for EDAs, please refer to the article by Krejca and Witt [16]. With respect
to simple unimodal functions, EDAs seem to be comparable to EAs. For exam-
ple, Sudholt and Witt [22] proved that the two EDAs cGA and 2-MMASib
have an expected run time of Θ(n log n) on the standard theory benchmark
function OneMax (assuming optimal parameter settings; n being the problem
size), which is a run time that many EAs share. The same is true for the EDA
UMDA, as shown by the results of Krejca and Witt [15], Lehre and Nguyen [17],
and Witt [24]. For the benchmark function LeadingOnes, Dang and Lehre [4]
proved an expected run time of O(n2) for the UMDA when setting the parame-
ters right, which is, again, a common run time bound for EAs on this function.
One result suggesting that EDAs can outperform EAs on unimodal function was
given by Doerr and Krejca [8]. They proposed an EDA called sig-cGA, which
has an expected run time of O(n log n) on both OneMax and LeadingOnes –
a performance not known for any classic EA or EDA.

For the class of all linear functions, the EDAs perform slightly worse than
EAs. The classical (1 + 1) evolutionary algorithm optimizes all linear functions
in time O(n log n) in expectation [12]. In contrast, the conjecture of Droste [11]
that the cGA does not perform equally well on all linear functions was recently
proven by Witt [23], who showed that the cGA has an Ω(n2) expected run time
on the binary value function. We note that the binary value function was found
harder also for classical EAs. While the (1+λ) evolutionary algorithm optimizes
OneMax with Θ(nλ log log λ/ log λ) fitness evaluations, it takes Θ(nλ) fitness
evaluations for the binary value functions [9].

For the bimodal Jumpk benchmark function, which has a local optimum
with a Hamming distance of k away from the global optimum, EDAs seem to
drastically outperform EAs. Hasenhörl and Sutton [13] recently proved that the
cGA only has a run time of exp

(
O(k + log n)

)
. In contrast, common EAs have a

run time of Θ(nk) [12] (mutation-only) or Θ(nk−1) [3] (mutation and crossover),
and only get to O(n log n + kn + 4k) by using crossover in combination with
diversity mechanisms like Island models [2]. Doerr [6] proved that the cGA even
has an expected run time of O(n log n) on Jumpk if k < 1

20 ln n, meaning that
the cGA is unfazed by the gap of k separating the local from the global optimum.

Another result in favor of EDAs was given by Chen et al. [1], who introduced
the Substring function and proved that the UMDA optimizes it in polynomial
time, whereas the (1 + 1) evolutionary algorithm has an exponential run time,
both with high probability. In the Substring function, only substrings of length
αn, for α ∈ (0, 1), of the global optimum are relevant to the fitness of a solution,
and these subtrings provide a gradient to the optimum. In the process, the (1+1)
evolutionary algorithm loses bits that are not relevant anymore for following the
gradient (but relevant for the optimum). The UMDA fixes its model for correct
positions while it is following the gradient and thus does not lose these bits.

The first, and so far only, result to suggest that EDAs can be drastically worse
than EAs was recently stated by Lehre and Nguyen [18] via the DeceivingLea-
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dingBlocks function (DLB for short), which they introduce and which consists
of blocks of size 2, each with a deceiving function value, that need to be solved
sequentially. The authors prove that many common EAs optimize DLB within
O(n3) fitness evaluations in expectation, whereas the UMDA has a run time of
eΩ(μ) (where μ is an algorithm-specific parameter that often is chosen as a small
power of n) for a large regime of parameters. Only for extreme parameter values,
the authors prove an expected run time of O(n3) also for the UMDA.

In this paper, we prove that the UMDA is, in fact, able to optimize DLB in
time O(n2 log n) with high probability if its parameters are chosen more carefully
(Theorem 5). Note that our result is better than any of the run times proven in
the paper by Lehre and Nguyen [18]. We achieve this run time by choosing the
parameters of the UMDA such that its model is unlikely to degenerate during the
run time (Lemma 6). Here by degenerate we mean that the sampling frequencies
approach the boundary values 0 and 1 without that this is justified by the objec-
tive function. This leads to a probabilistic model that is strongly concentrated
around a single search point. This effect is often called genetic drift [22]. While
it appears natural to choose the parameters of an EDA as to prevent genetic
drift, it also has been proven that genetic drift can lead to a complicated run
time landscape and inferior performance (see Lengler et al. for the cGA [19]).

In contrast to our setting, for their exponential lower bound, Lehre and
Nguyen [18] use parameters that lead to genetic drift. Once the probabilistic
model it is sufficiently degenerated, the progress of the UMDA is so slow that
even to leave the local optima of DLB (that have a better search point in Ham-
ming distance two only), the EDA takes time exponential in μ.

Since the UMDA shows a good performance in the (more natural) regime
without genetic drift and was shown inferior only in the regime with genetic
drift, we disagree with the statement of Lehre and Nguyen [18] that there are
“inherent limitations of univariate EDAs against deception and epistasis”.

In addition to the improved run time, we derive our result using only tools
commonly used in the analysis of EDAs and EAs, whereas the proof of the poly-
nomial run time of O(n3) for the UMDA with uncommon parameter settings [18]
uses the level-based population method, which is an advanced tool that can be
hard to use. We are thus optimistic that our analysis method can be useful also
in other run time analyses of EDAs.

Last, we complement our theoretical result with an empirical comparison of
the UMDA to two other evolutionary algorithms. The outcome of these exper-
iments suggests that the UMDA outperforms the competing approaches while
also having a smaller variance.

The remainder of this paper is structured as follows: in Sect. 2, we introduce
our notation, formally define DLB and the UMDA, and we state the tools we use
in our analysis. Section 3 contains our main result (Theorem 5) and discusses its
proof informally before stating the different lemmas used to prove it. In Sect. 4,
we discuss our empirical results. Last, we conclude this paper in Sect. 5.
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2 Preliminaries

We are concerned with the run time analysis of algorithms optimizing pseudo-
Boolean functions, that is, functions f : {0, 1}n → R, where n ∈ N denotes the
dimension of the problem. Given a pseudo-Boolean function f and a bit string x,
we refer to f as a fitness function, to x as an individual, and to f(x) as the fitness
of x.

For n1, n2 ∈ N := {0, 1, 2, . . .}, we define [n1..n2] = [n1, n2] ∩ N, and for
an n ∈ N, we define [n] = [1..n]. From now on, if not stated otherwise, the
variable n always denotes the problem size. For a vector x of length n, we denote
its component at index i ∈ [n] by xi and, for and index set I ⊆ [n], we denote
the subvector of length |I| consisting only of the components at indices in I by
xI . Further, let |x|1 denote the number of 1s of x and |x|0 its number of 0s.

DeceivingLeadingBlocks. The pseudo-Boolean function DeceivingLea-
dingBlocks (abbreviated as DLB) was introduced by Lehre and Nguyen [18]
as a deceptive version of the well known benchmark function LeadingOnes. In
DLB, an individual x of length n is divided into blocks of equal size 2. Each
block consists of a trap, where the fitness of each block is determined by the
number of 0s (minus 1), except that a block of all 1s has the best fitness of 2.
The overall fitness of x is then determined by the longest prefix of blocks with
fitness 2 plus the fitness of the following block. Note that in order for the chunk-
ing of DLB to make sense, it needs to hold that 2 divides n. In the following,
we always assume this implicitly.

We now provide a formal definition of DLB. To this end, we first introduce
the function DeceivingBlock : {0, 1}2 → [0..2] (abbreviated as DB), which
determines the fitness of a block (of size 2). For all x ∈ {0, 1}2, we have

DB(x) =
{

2 if |x|1 = 2,

|x|0 − 1 else.

Further, we define the function Prefix : {0, 1}n → [0..n], which determines the
longest prefix of x with blocks of fitness 2. For a logic formula P , let [P ] be 1
if P is true and 0 otherwise. We define, for all x ∈ {0, 1}n,

Prefix(x) =
n/2∑

i=1

[∀j ≤ i : DB(x{2i−1,2i}) = 2
]
.

DLB is now defined as follows for all x ∈ {0, 1}n:

DLB(x) =
{

n if Prefix(x) = n,
∑Prefix(x)+1

i=1 DB(x{2i−1,2i}) else.



The UMDA Copes Well with Deception and Epistasis 55

The Univariate Marginal Distribution Algorithm. Our algorithm of inter-
est is the UMDA ([20]; Algorithm 1) with parameters μ, λ ∈ N+, μ ≤ λ. It main-
tains a vector p (frequency vector) of probabilities (frequencies) of length n as
its probabilistic model. This vector is used to sample an individual x ∈ {0, 1}n,
which we denote as x ∼ sample(p), such that, for all y ∈ {0, 1}n,

Pr[x = y] =
n∏

i=1:
yi=1

pi

n∏

i=1:
yi=0

(1 − pi).

The UMDA updates this vector iteratively in the following way: first, λ individu-
als are sampled. Then, among these λ individuals, a subset of μ with the highest
fitness is chosen (breaking ties uniformly at random), and, for each index i ∈ [n],
the frequency pi is set to the relative number of 1s at position i among the μ
best individuals. Last, if a frequency pi is below 1

n , it is increased to 1
n , and,

analogously, frequencies above 1 − 1
n are set to 1 − 1

n . Capping into the interval
[ 1n , 1− 1

n ] circumvents frequencies from being stuck at the extremal values 0 or 1.
Last, we denote the frequency vector of iteration t ∈ N with p(t).

Algorithm 1. The UMDA [20] with parameters μ and λ, μ ≤ λ, maximiz-
ing a fitness function f : {0, 1}n → R with n ≥ 2
1 t ← 0;
2 p(t) ← ( 1

2 )i∈[n];
3 repeat � iteration t

4 for i ∈ [λ] do x(i) ∼ sample
(
p(t));

5 let y(1), . . . , y(μ) denote the μ best individuals out of x(1), . . . , x(λ) (breaking
ties uniformly at random);

6 for i ∈ [n] do p
(t+1)
i ← 1

μ

∑μ

j=1 y
(j)
i ;

7 restrict p(t+1) to the interval [ 1
n

, 1 − 1
n

];
8 t ← t + 1;
9 until termination criterion met;

Run Time Analysis. When analyzing the run time of the UMDA optimizing
a fitness function f , we are interested in the number T of fitness function evalu-
ations until an optimum of f is sampled for the first time. Since the UMDA is a
randomized algorithm, this run time T is a random variable. Note that the run
time of the UMDA is at most λ times the number of iterations until an optimum
is sampled for the first time, and it is at least (λ − 1) times this number.

In the area of run time analysis of randomized search heuristics, it is common
to give bounds for the expected value of the run time of the algorithm under
investigation. This is uncritical when the run time is concentrated around its
expectation, as often observed for classical evolutionary algorithms. For EDAs,
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it has been argued, among others in [6], that it is preferable to give bounds that
hold with high probability. This is what we shall aim at in this work as well.
Of course, it would be even better to give estimates in a distributional sense,
as argued for in [5], but this appears to be difficult for EDAs, among others,
because of the very different behavior in the regimes with and without strong
genetic drift.

Probabilistic Tools. We use the following results in our analysis.
In order to prove statements on random variables that hold with high probability,
we use the following commonly known Chernoff bound.

Theorem 1 (Chernoff bound [7, Theorem 10.5], [14]). Let k ∈ N, δ ∈ [0, 1],
and let X be the sum of k independent random variables, each taking values in
[0, 1]. Then

Pr
[
X ≤ (1 − δ)E[X]

] ≤ exp
(

−δ2E[X]
2

)
.

The next lemma tells us that, for a random X following a binomial law, the
probability of exceeding E[X] is bounded from above by roughly the term with
the highest probability.

Lemma 2 ([7, Eq. (10.62)]). Let k ∈ N, p ∈ [0, 1], X ∼ Bin(k, p), and let
m ∈ [

E[X] + 1..k
]
. Then

Pr[X ≥ m] ≤ m(1 − p)
m − E[X] · Pr[X = m].

We use Lemma 2 for the converse case, that is, in order to bound the proba-
bility that a binomially distributed random variable is smaller than its expected
value.

Corollary 3. Let k ∈ N, p ∈ [0, 1], X ∼ Bin(k, p), and let m ∈ [
0..E[X] − 1

]
.

Then

Pr[X ≤ m] ≤ (k − m)p
E[X] − m

· Pr[X = m].

Proof. Let X := k − X, and let m := k − m. Note that X ∼ Bin(k, 1 − p) with
E[X] = k − E[X] and that m ∈ [

E[X] + 1..k
]
. With Lemma 2, we compute

Pr[X ≤ m] = Pr[X ≥ m] ≤ mp

m − E[X]
· Pr[X = m] = (k − m)p

E[X] − m
· Pr[X = m],

which proves the claim. 
�
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Last, the following theorem deals with a neutral bit in a fitness function f ,
that is, a position i ∈ [n] such that bit values at i do not contribute to the fitness
value at all. The theorem (from [10], extending a similar result [25, Theorem 4.5])
states that if the UMDA optimizes such an f , then the frequency at position i
stays close to its initial value 1

2 for Ω(μ) iterations. We go more into detail about
how this relates to DLB at the beginning of Sect. 3.

Theorem 4 ([10, Corollary 2]). Consider the UMDA optimizing a fitness func-
tion f with a neutral bit i ∈ [n]. Then, for all d > 0 and all t ∈ N, we have

Pr
[∀t′ ∈ [0..t] : |p(t′)

i − 1
2 | < d

] ≥ 1 − 2 exp
(

−d2μ

2t

)
.

3 Run Time Analysis

In the following, we prove that the UMDA optimizes DeceivingLeading-
Blocks efficiently, which is the following theorem.

Theorem 5. Let cμ, cλ ∈ (0, 1) be constants chosen sufficiently large or small,
respectively. Consider the UMDA optimizing DeceivingLeadingBlocks with
μ ≥ cμn ln n and μ/λ ≤ cλ. Then the UMDA samples the optimum after λ( n

2 +
2e ln n) fitness function evaluations with a probability of at least 1 − 9n−1.

Before we present the proof, we sketch its main ideas and introduce important
notation. We show that the frequencies of the UMDA are set to 1− 1

n block-wise
from left to right with high probability. We formalize this concept by defining
that a block i ∈ [ n

2 ] is critical (in iteration t) if and only if p
(t)
2i−1 + p

(t)
2i < 2 − 2

n

and, for each index j ∈ [2i − 2], the frequency p
(t+1)
j is at 1 − 1

n . Intuitively,
a critical block is the first block whose frequencies are not at their maximum
value. We prove that a critical block is optimized within a single iteration with
high probability if we assume that its frequencies are not below (1 − ε)/2, for
ε ∈ (0, 1) being a constant.

In order to assure that the frequencies of each block are at least (1 − ε)/2
until it becomes critical, we show that most of the frequencies right of the critical
block are not impacted by the fitness function. We call such frequencies neutral.
More formally, a frequency pi is neutral in iteration t if and only if the probability
to have a 1 at position i in each of the μ selected individuals equals p

(t)
i . Note

that since we assume that μ = Ω(n log n), the impact of the genetic drift on
neutral frequencies is low with high probability (Theorem 4).

We know which frequencies are neutral and which are not by the following
key observation: consider a population of λ individuals of the UMDA during
iteration t; only the first (leftmost) block that has strictly fewer than μ 11s
is relevant for selection, since the fitness of individuals that do not have a 11
in this block cannot be changed by bits to the right anymore. We call this
block selection-relevant. Note that this is a notion that depends on the random
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offspring population in iteration t, whereas the notion critical depends only
on p(t).

The consequences of a selection-relevant block are as follows: if block i ∈ [ n
2 ]

is selection-relevant, then all frequencies in blocks left of i are set to 1 − 1
n , since

there are at least μ individuals with 11s. All blocks right of i have no impact on
the selection process: if an individual has no 11 in block i, its fitness is already
fully determined by all of its bits up to block i by the definition of DLB. If an
individual has a 11 in block i, it is definitely chosen during selection, since there
are fewer than μ such individuals and since its fitness is better than that of all of
the other individuals that do not have a 11 in block i. Thus, its bits at positions
in blocks right of i are irrelevant for selection. Overall, since the bits in blocks
right of i do not matter, the frequencies right of block i get no signal from the
fitness function and are thus neutral (Lemma 6).

Regarding block i itself, all of the individuals with 11s are chosen, since they
have the best fitness. Nonetheless, individuals with a 00, 01, or 10 can also be
chosen, where an individual with a 00 in block i is preferred, as a 00 has the
second best fitness after a 11. Since the fitness for a 10 or 01 is the same, this
does not impact the number of 1s at position i in expectation. However, if more
00s than 11s are sampled for block i, it can happen that the frequencies of
block i are decreased. Since we assume that μ = Ω(n log n), the frequency is
sufficiently high before the update and the frequencies of block i do not decrease
by much with high probability (Lemma 8). Since, in the next iteration, block i is
the critical block, it is then optimized within a single iteration (Lemma 9), and
we do not need to worry about its frequencies decreasing again.

Neutral Frequencies. We now prove that the frequencies right of the selection-
relevant block do not decrease by too much within the first n iterations.

Lemma 6. Let ε ∈ (0, 1) be a constant. Consider the UMDA with λ ≥ μ ≥
(16n/ε2) log n optimizing DeceivingLeadingBlocks. Let t ≤ n be the first
iteration such that block i ∈ [ n

2 ] becomes selection-relevant for the first time.
Then, with a probability of at least 1 − 2n−1, all frequencies at the positions
[2i + 1..n] are at least (1 − ε)/2 within the first t iterations.

Proof. Let j ∈ [2i + 1..n] denote the index of a frequency right of block i. Note
that by the assumption that t is the first iteration such that block i becomes
selection-relevant it follows that, for all t′ ≤ t, the frequency p

(t′)
i is neutral, as

we discussed above.
Since p

(t′)
j is neutral for all t′ ≤ t, by Theorem 4 with d = ε

2 , we see that the
probability that pj leaves the interval

(
(1−ε)/2, (1+ε)/2

)
within the first t ≤ n

iterations is at most 2 exp
( − ε2μ/(8t)

) ≤ 2 exp
( − ε2μ/(8n)

) ≤ 2n−2, where we
used our bound on μ.

Applying a union bound over all n − 2i ≤ n neutral frequencies yields that
at least one frequency leaves the interval

(
(1 − ε)/2, (1 + ε)/2

)
within the first t

iterations with a probability of at most 2n−1, as desired. 
�
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Update of the Selection-Relevant Block. As mentioned at the beginning
of the section, while frequencies right of the selection-relevant block do not
drop below (1 − ε)/2 with high probability (by Lemma 6), the frequencies of
the selection-relevant block can drop below (1 − ε)/2, as the following example
shows.

Example 7. Consider the UMDA with μ = 0.05λ ≥ c ln n, for a sufficiently
large constant c, optimizing DLB. Consider an iteration t and assume that
block i = n

2 − 1 − o(n) is critical. Assume that the frequencies in blocks i
and i + 1 are all at 2/5. Then the offspring population in iteration t has roughly(
(2/5)2/e

)
λ ≈ 0.058λ > μ individuals with at least 2i leading 1s in expectation.

By Theorem 1, this also holds with high probability. Thus, the frequencies in
block i are set to 1 − 1

n with high probability.
The expected number of individuals with at least 2i + 2 leading 1s is roughly(

(2/5)4/e
)
λ ≈ 0.0095λ, and the expected number of individuals with 2i lead-

ing 1s followed by a 00 is roughly
(
(2/5)2 ·(3/5)2/e

)
λ ≈ 0.02λ. In total, we expect

approximately 0.0295λ < μ individuals with 2i leading 1s followed by either a 11
or a 00. Again, by Theorem 1, these numbers occur with high probability. Note
that this implies that block i + 1 is selection-relevant with high probability.

Consider block i + 1. For selection, we choose all 0.0295λ individuals with
2i leading 1s followed by either a 11 or a 00 (which are sampled with high
probability). For the remaining μ − 0.0295λ = 0.0205λ selected individuals
with 2i leading 1s, we expect half of them, that is, 0.01025λ individuals to
have a 10. Thus, with high probability, the frequency p

(t+1)
2i+1 is set to roughly

(0.0095 + 0.01025)λ/μ = 0.395, which is less than 0.4 = p
(t)
2i+1. Thus, this fre-

quency decreased.

The next lemma shows that such frequencies do not drop too low, however.

Lemma 8. Let ε, δ ∈ (0, 1) be constants, and let c be a sufficiently large con-
stant. Consider the UMDA with λ ≥ μ ≥ c ln n optimizing DeceivingLeading-
Blocks. Further, consider an iteration t such that block i ∈ [2..n

2 ] is selection-
relevant, and assume that its frequencies p

(t)
2i−1 and p

(t)
2i are at least (1 − ε)/2

when sampling the population. Then the frequencies p
(t+1)
2i−1 and p

(t+1)
2i are at

least (1 − δ)(1 − ε)2/4 with a probability of at least 1 − 4n−2.

Proof. Let k denote the number of individuals with a prefix of at least 2i − 2
leading 1s. Since block i is selection-relevant, it follows that k ≥ μ. We consider
a random variable X that follows a binomial law with k trials and with a success
probability of p

(t)
2i−1p

(t)
2i =: p̃ ≥ (1 − ε)2/4. We now bound the probability that at

least (1 − δ)p̃μ =: m have 2i leading 1s, that is, we bound Pr[X ≥ m | X < μ],
where the condition follows from the definition of block i being selection-relevant.
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Elementary calculations show that

Pr[X ≥ m | X < μ] = 1 − Pr[X < m | X < μ] = 1 − Pr[X < m, X < μ]
Pr[X < μ]

= 1 − Pr[X < m]
Pr[X < μ] . (1)

To show a lower bound for (1), consider separately the two cases that E[X] < μ
and E[X] ≥ μ.
Case 1: E[X] < μ. We first bound the numerator of the subtrahend in (1). Since
m/(1 − δ) = p̃μ ≤ p̃k = E[X], we have Pr[X < m] ≤ Pr

[
X < (1 − δ)E[X]

]
. By

Theorem 1, by E[X] ≥ p̃μ, and by our assumption that μ ≥ c ln n, choosing c
sufficiently large, we have

Pr
[
X < (1 − δ)E[X]

] ≤ exp
(

−δ2E[X]
2

)
≤ exp

(
−δ2p̃μ

2

)
≤ n−2.

For bounding the denominator, we note that p̃ ≤ 1 − 1
n and use the fact that

a binomially distributed random variable with a success probability of at most
1− 1

n is below its expectation with a probability of at least 1
4 [7, Lemma 10.20 (b)].

This yields

Pr[X < μ] ≥ Pr
[
X < E[X]

] ≥ 1
4 .

Combining these bounds, we obtain Pr[X ≥ m|X < μ] ≥ 1 − 4n−2 for this
case.
Case 2: E[X] ≥ μ > m. We bound the subtrahend from (1) from above. By
basic estimations and by Corollary 3, we see that

Pr[X < m]
Pr[X < μ] ≤ Pr[X ≤ m − 1]

Pr[X = μ − 1] ≤ (k − m + 1)p̃
E[X] − m + 1 · Pr[X = m − 1]

Pr[X = μ − 1] . (2)

We bound the first factor of (2) as follows:

(k − m + 1)p̃
E[X] − m + 1 ≤ E[X]

E[X] − m
= 1 + m

E[X] − m
≤ 1 + m

μ − m
≤ 1 + m

m

p̃
− m

= 1 + p̃

1 − p̃
≤ 1 + n − 1 = n ,

where the last inequality uses that p̃ ≤ (1 − 1
n )2 ≤ 1 − 1

n .
For the second factor of (2), we compute

Pr[X = m − 1]
Pr[X = μ − 1] =

(
k

m−1
)
p̃m−1(1 − p̃)k−m+1

(
k

μ−1
)
p̃μ−1(1 − p̃)k−μ+1

= (μ − 1)!(k − μ + 1)!
(m − 1)!(k − m + 1)! ·

(
1 − p̃

p̃

)μ−m

. (3)
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Since p̃ ≥ (1 − ε)2/4, we see that (1 − p̃)/p̃ ≤ 4/(1 − ε)2.
For the first factor of (3), let p∗ := (1−δ)p̃, thus μp∗ = m. Noting that, for all

a, b ∈ R with a < b, the function j 
→ (a + j)(b − j) is maximal for j = (b − a)/2,
we first bound

(μ − 1)!
(m − 1)! =

μ−m−1∏

j=0
(μ − 1 − j) ≤

�(μ−m−1)/2�∏

j=0

(
(μ − 1 − j)(m + j)

)

≤
(

μ + m

2

)μ−m

≤
(μ

2 (1 + p∗)
)μ−m

.

Substituting this into the first factor of (3), we bound

(μ − 1)!(k − μ + 1)!
(m − 1)!(k − m + 1)! ≤

(μ

2 (1 + p∗)
)μ−m

· (k − μ + 1)!
(k − m + 1)!

=
(

μ
2 (1 + p∗)

)μ−m

∏μ−m−1
j=0 (k − m + 1 − j)

=
μ−m−1∏

j=0

μ(1 + p∗)
2(k − m + 1 − j) .

By noting that kp̃ = E[X] ≥ μ, we bound the above estimate further:
μ−m−1∏

j=0

μ(1 + p∗)
2(k − m + 1 − j) ≤

μ−m−1∏

j=0

μ(1 + p∗)
2(μ/p̃ − m + 1 − j)

≤
(

μ(1 + p∗)
2μ(1/p̃ − 1) + 2

)μ−m

≤
(

p̃(1 + p∗)
2(1 − p̃)

)μ−m

.

Substituting both bounds into (3) and recalling that m = μp∗, we obtain

Pr[X = m − 1]
Pr[X = μ − 1] ≤

(
1 + p∗

2

)μ(1−p∗)
= exp

(
−μ(1 − p∗) ln

(
2

1 + p∗

))
.

Finally, substituting this back into our bound of (2), using our assumption
that μ ≥ c ln n and noting that p∗ is constant, choosing c sufficiently large, we
obtain

Pr[X < m]
Pr[X < μ] ≤ n exp

(
−μ(1 − p∗) ln

(
2

1 + p∗

))
≤ n−2.

Concluding the Proof. In both cases, we see that the number of 11s in block i
is at least m = (1 − δ)p̃μ ≥ (

(1 − δ)(1 − ε)2/4
)
μ with a probability of at least

1 − 4n−2. Since each 11 contributes to the new values of p2i−1 and p2i, after the
update, both frequencies are at least (1 − δ)(1 − ε)2/4, as we claimed. 
�

Optimizing the Critical Block. Our next lemma considers the critical block
i ∈ [ n

2 ] of an iteration t. It shows that, with high probability, for all j ∈ [2i], we
have that p

(t+1)
j = 1 − 1

n . Informally, this means that (i) all frequencies left of
the critical block remain at 1 − 1

n , and (ii) the frequencies of the critical block
are increased to 1 − 1

n .
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Lemma 9. Let δ, ε, ζ ∈ (0, 1) be constants and let q = (1 − δ)2(1 − ε)4/16. Con-
sider the UMDA optimizing DeceivingLeadingBlocks with λ ≥ (4/ζ2) ln n
and μ/λ ≤ (1 − ζ)q/e, and consider an iteration t such that block i ∈ [ n

2 ] is crit-
ical and that p

(t)
2i−1 and p

(t)
2i are at least √

q. Then, with a probability of at least
1 − n−2, at least μ offspring are generated with at least 2i leading 1s. In other
words, the selection-relevant block of iteration t is at a position in [i + 1..n

2 ].
Proof. Let X denote the number of individuals that have at least 2i leading 1s.
Since block i is critical, each frequency at a position j ∈ [2i−2] is at 1− 1

n . Thus,
the probability that all of these frequencies sample a 1 for a single individual is
(1 − 1

n )2i−2 ≥ (1 − 1
n )n−1 ≥ 1/e. Further, since the frequencies p

(t)
2i−1 and p

(t)
2i

are at least √
q, the probability to sample a 11 at these positions is at least q.

Hence, we have E[X] ≥ qλ/e.
We now apply Theorem 1 to show that it is unlikely that fewer than μ individ-

uals from the current iteration have fewer than 2i leading 1s. Using our bounds
on μ and λ, we compute

Pr[X < μ] ≤ Pr
[
X ≤ (1 − ζ)q

e
λ

]
≤ Pr

[
X ≤ (1 − ζ)E[X]

] ≤ e− ζ2λ
2 ≤ n−2.

Thus, with a probability of at least 1−n−2, at least μ individuals have at least 2i
leading 1s. This concludes the proof.

The Run Time of the UMDA on DLB. We now prove our main result.
Proof (of Theorem 5). We prove that the UMDA samples the optimum after
n
2 + 2e ln n iterations with a probability of at least 1 − 9n−1. Since it samples λ
individuals each iteration, the theorem follows.

Due to Lemma 6 and μ ≥ cμn log n, for an ε ∈ (0, 1), within the first n
iterations, with a probability of at least 1 − 2n−1, no frequency drops below
(1 − ε)/2 while its block has not been selection-relevant yet.

By Lemma 8, for another constant δ ∈ (0, 1), with a probability of at least
1 − 4n−2, once a block becomes selection-relevant, its frequencies do not drop
below (1 − δ)(1 − ε)2/4 for the next iteration. By a union bound, this does not
fail for n consecutive times with a probability of at least 1 − 4n−1. Note that a
selection-relevant block becomes critical in the next iteration.

Consider a critical block i ∈ [ n
2 ]. By Lemma 9, choosing cλ sufficiently large,

with a probability of at least 1 − n−2, all frequencies at positions in [2i] are
immediately set to 1 − 1

n in the next iteration, and the selection-relevant block
has an index of at least i+1, thus, moving to the right. Applying a union bound
for the first n iterations of the UMDA and noting that each frequency belongs
to a selection-relevant block at most once shows that all frequencies are at 1 − 1

n
after the first n

2 iterations, since each block contains two frequencies, and stay
there for at least n

2 additional iterations with a probability of at least 1 − 2n−1.
Consequently, after the first n

2 iterations, the optimum is sampled in each
iteration with a probability of (1 − 1

n )n ≥ 1/(2e). Thus, after 2e ln n addi-
tional iterations, the optimum is sampled with a probability of at least 1 −(
1 − 1/(2e)

)2e ln n ≥ 1 − n−1.
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Fig. 1. This figure shows the number of fitness evaluations (note the logarithmic scale)
until the optimum is sampled for the first time. Depicted are three different algorithms
and for various values of n (from 50 to 300 in steps of 50), optimizing DLB. For each
value of n, 50 independent runs were started per algorithm. The results of these runs
are depicted above. The lines depict the median of the 50 runs of an algorithm, and the
shaded areas denote the center 50%. The UMDA uses μ = 3n ln n and λ = 12μ. The
(μ, λ) GA uses μ = ln n, λ = 9μ, uniform crossover, and has a crossover probability of
1/2.

Overall, by applying a union bound over all failure probabilities above, the
UMDA needs at most n + ln n iterations to sample the optimum with a proba-
bility of at least 1 − 9n−1. 
�

4 Experiments

In their paper, Lehre and Nguyen [18] analyze (among others) the (1 + 1) EA
and the (μ, λ) GA on DLB. For an optimal choice of parameters, they prove an
expected run time of O(n3) for all considered algorithms.
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Since these are only provide upper bounds, it is not clear how well the algo-
rithms actually perform against the UMDA, which has a run time in the order
of n2 ln n (Theorem 5) for optimal parameters. Thus, we provide some empirical
results in Fig. 1 on how well these algorithms compare against each other.

We see that, for increasing n, the UMDA seems to perform best. Further,
the run time behavior of the (1 + 1) EA and the (μ, λ) GA is very similar. These
findings indicate that there is a strict difference in run time between the UMDA
and the other two algorithms.

Another interesting aspect of Fig. 1 is the variance of the different algorithms.
The (1 + 1) EA and the (μ, λ) GA have a visible variance that does not seems
to reduce. In contrast, the UMDA is strongly concentrated around its empirical
mean. This behavior is supported by our analysis in Sect. 3, which proves a run
time that holds with high probability.

Overall, the UMDA seems to be outperforming the competing approaches.

5 Conclusion

We conducted a rigorous run time analysis of the UMDA on the Deceiving-
LeadingBlocks function. In particular, it shows that the algorithm with the
right parameter choice finds the optimum within O(n2 log n) fitness evaluations
with high probability (Theorem 5). This result shows that the lower bound by
Lehre and Nguyen [18], which is exponential in μ, is not due to the UMDA
being ill-suited for coping with epistasis and deception, but rather due to an
unfortunate choice of the algorithm’s parameters. For several EAs, Lehre and
Nguyen [18] showed a run time bound of O(n3) on DeceivingLeadingBlocks
and we believe that this is tight, which is further supported by our experiments
in Sect. 4. In this light, our result suggests that the UMDA can handle epistasis
and deception even better than many evolutionary algorithms.

Our run time analysis holds for parameter regimes that prevent genetic drift.
When comparing our run time with the one shown in [18], we obtain a strong
suggestion for running EDAs in regimes of low genetic drift. In contrast to the
work of Lengler, Sudholt, and Witt [19] that indicates moderate performance
losses due to genetic drift, here we obtain the first fully rigorous proof of such
a performance loss, and in addition one that is close to exponential in n (the
exp(−Ω(μ)) lower bound of [18] holds for μ up to o(n)).

On the technical side, our result indicates that the regime of low genetic drift
admits relatively simple and natural analyses of run times of EDAs, in contrast,
e.g., to the level-based methods previously used in comparable analyses, e.g.,
in [4,18].

We conjecture that our result can be generalized to a version of the Decei-
vingLeadingBlocks function with a block size of k ≤ n.
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Abstract. The well-known traveling tournament problem is a hard opti-
mization problem in which a double round robin sports league schedule
has to be constructed while minimizing the total travel distance over all
teams. The teams start and end their tours at their home venues, are
only allowed to play a certain maximum number of games in a row at
home or away, and must not play against each other in two consecutive
rounds. The latter aspects introduce also a difficult feasibility aspect.
In this work, we study a beam search approach based on a recursive
state space formulation. We compare different state ordering heuristics
for the beam search based on lower bounds derived by means of decision
diagrams. Furthermore, we introduce a randomized beam search variant
that adds Gaussian noise to the heuristic value of a node for diversifying
the search in order to enable a simple yet effective parallelization. In our
computational study, we use randomly generated instances to compare
and tune algorithmic parameters and present final results on the classi-
cal National League and circular benchmark instances. Results show that
this purely construction-based method provides mostly better solutions
than existing ant-colony optimization and tabu search algorithms and it
comes close to the leading simulated annealing based approaches without
using any local search. For two circular benchmark instances we found
new best solutions for which the last improvement was twelve years ago.
The presented state space formulation and lower bound techniques could
also be beneficial for exact methods like A∗ or DFS∗ and may be used
to guide the randomized construction in ACO or GRASP approaches.

Keywords: Traveling tournament problem · Beam search · Decision
diagrams

1 Introduction

In 2001, Easton, Nemhauser, and Trick [4] introduced the traveling tournament
problem (TTP). It concerns the construction of a double round robin schedule
for a sports league, where the sum of the travel distances over all teams shall be
minimized. Teams start and end at their respective home venues and are assumed
to always travel directly from their current position to their next designated game
venue, which is either at home or away. They are only allowed to play a certain
c© Springer Nature Switzerland AG 2020
L. Paquete and C. Zarges (Eds.): EvoCOP 2020, LNCS 12102, pp. 67–82, 2020.
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maximum number of games away or at home consecutively, and two teams must
not play against each other in two subsequent rounds. These aspects make even
finding any feasible schedule in general difficult. At the time of writing, proven
optimal solutions have been found for classical benchmarks instances with up to
ten teams, but not for twelve and more teams, as stated on Michael Trick’s TTP
web page1.

Due to the problem’s complexity, many different metaheuristics have already
been suggested to solve larger instances approximately. Neighborhood search
based approaches as tabu search [3] or simulated annealing [1,14] provide par-
ticularly strong results. In this contribution, we present a beam search based on
a new recursive state space formulation of the problem. We compare different
lower bound heuristics to order the nodes in a layer of the state graph, which
is traversed in breadth-first-search manner. Competitive results can be achieved
with a randomized variant of the beam search in which we add noise to the
heuristic estimates. This randomization enables a simple yet effective execution
of multiple diversified beam search runs in parallel.

In Sect. 2 we summarize the work on which our new approach is based, specif-
ically worth mentioning are the papers of Uthus, Riddle, and Guesgen [11–13],
which broadly fall into the class of tree search based techniques. In particular,
we build upon their bound pre-calculation method. We formally introduce the
TTP in Sect. 3 and give an associated state space formulation in Sect. 4, which
differs from integer programming or constraint programming formulations pri-
marily used so far. A state may be reached by different partial schedules and
determines the feasible completions to a complete schedule, which allows to
detect and break symmetries on the go. Section 5 is concerned with the schedule
construction algorithm on the state graph using beam search driven by lower
bounds that are derived from the states. These lower bounds are calculated by
solving either an associated traveling salesperson problem (TSP) or a capaci-
tated vehicle routing problem (CVRP) independently for each team; the latter
corresponds to the well-known independent lower bound (ILB) introduced by
Easton et al. [4].

We introduce a method to pre-calculate lower bounds for all states by means
of decision diagrams. Moreover, we show in Sect. 6 how these bounds can be
further tightened using the minimum number of trips (MNT) bound introduced
by Urrutia et al. [10]. Section 7 presents computational results. We tune algo-
rithmic parameters and compare the performance of different algorithm variants
on randomly generated instances on a two-dimensional grid, and conduct final
tests on the classical benchmark instances derived from teams of the US Major
League Baseball (NL) and the circular instances (CIRC) [4]. We observe that
our purely constructive approach, which does not make use of any local search,
delivers competitive results. In particular, we could find new best solutions for
two circular instances. Finally, we conclude in Sect. 8 and make suggestions for
further research.

1 https://mat.tepper.cmu.edu/TOURN/.

https://mat.tepper.cmu.edu/TOURN/
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Fig. 1. Left: the NL6 problem instance from [4] shown as complete undirected graph.
Right: a feasible double round robin tournament schedule represented by a (2n−2)×n
matrix, where the value j of entry (r, i) corresponds to the game i →r |j|, if j is
negative, otherwise to the game j →r i.

2 Previous Work

The TTP itself, together with the NL and CIRC benchmark instances, and the
ILB were introduced by Easton et al. [4]. The MNT lower bound was proposed
by Urrutia et al. [10] including an algorithm to calculate it. Uthus et al. [13] sug-
gested an exact iterative deepening A∗ search, which allowed them to solve the
NL instance with ten teams to proven optimality. Their approach features spe-
cial symmetry breaking techniques, memoization, and was performed in parallel
on 120 processors for a wall time of roughly 67 h.

From this work, we adopt the method to pre-calculate independent lower
bounds for states to occur during the state space traversal. We aim at solving
larger instances approximately and compare our beam search results therefore
to the results of today’s state-of-the-art metaheuristic approaches, which are the
simulated annealing from [1], the tabu search from [3], the ant colony optimiza-
tion from [11], and the population-based simulated annealing from [14], where
the latter found the so far best solutions for the larger NL and CIRC instances
using a cluster consisting of 60 nodes.

For beam search in general, see, e.g., [6]. For a thorough introduction to
decision diagrams in combinatorial optimization, we recommend the book by
Bergman et al. [2].

3 Problem Formalization

We are given a set V = {1, . . . , n} of n teams, where n is even, and a distance
matrix d where d(i, j) is the traveling distance from team i’s home venue to team
j’s home venue, i, j ∈ V . The goal is to find a double round robin tournament
schedule, where every team plays at most U games subsequently at home or
on the road (at-most), respectively, teams must not play against each other in
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subsequent rounds (no-repeat), and the total travel distance over all teams is to
be minimized. Each team starts and ends at its home venue.

Adopting the formulation of [8], we see the teams V as vertices of a complete
weighted directed graph G = (V,A), where the weights are given by the distance
matrix d. A double round robin schedule T is an ordered 1-factorization T =
(G1 = (V,A1), . . . , G2n−2 = (V,A2n−2)) of G, which is an ordered partitioning of
the arcs into 2n−2 perfect matchings (1-factors). An arc (i, j) (or i →r j) denotes
that team i plays against team j at j’s venue in round r, r = 1, . . . , 2n − 2. The
location of team i in round r is denoted pr

i ∈ V and determined by the single arc
in Ar incident to team i. The objective value of a schedule T is the total travel
distance given by

z(T ) =
n∑

i=1

(
d(i, p1i ) +

2n−2∑

r=2

d(pr−1
i , pr

i ) + d(p2n−2
i , i)

)
. (1)

Throughout this paper and as in most previous work, we only consider U = 3,
for which Thielen and Westphal [9] have shown strong NP-completeness in the
corresponding decision variant of the problem.

Figure 1 shows on the left an example instance with n = 6 teams depicted
as an undirected complete graph (distances are here assumed to be symmetric).
A corresponding feasible TTP schedule is shown on the right, represented as a
(2n − 2) = 10 rounds by six teams matrix, denoting the opponent and venue for
each round and team.

4 State Space Formulation

We model the solution space, i.e., the set of feasible schedules of a TTP instance
(V, d), by a state graph. This is a rooted directed acyclic graph representing
the feasible schedules by corresponding paths from a root state to a dedicated
terminal state. The states (nodes) are organized into n2 − n + 2 layers, where
layer 0 only contains the root state sr, layer n2 − n + 1 only the terminal state
st, and layers l = 1, . . . , n2 − n contain states representing the situations after
the l-th played game.

Each state is a tuple (Ms,ys, rs,xs,hs,os), where Ms = (Ms
i,j)i,j∈V ∈

{0, 1}n×n is an incidence matrix that indicates the games left to be scheduled
and vectors ys = (ys

i )i∈V , rs = (rs
i )i∈V , xs = (xs

i )i∈V , hs = (hs
i )i∈V , and

os = (os
i )i∈V represent for each team i the currently forbidden opponent ys

i , the
current round rs

i , its location xs
i , and the number of still possible home or away

games left to play in a row hs
i and os

i , respectively. The forbidden opponents ys

are used to implement the no-repeat constraint and hs and os to take care of
the at-most constraints. Moreover, this information contained in a state implies
for each team i ∈ V the set P s

i of the games that can be played next without
violating the TTP constraints.

A state transition from a state s at layer l to a state s′ at layer l + 1,
l = 0, . . . , n2 − n, corresponds to a specific game i →r j being played by teams
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Partial schedule
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 −3 2 6 −1 −4
−3 6 1 5 −4 −2
−2 1 −4 3 −6 5
− − − − − −
− − − − − −
− − − − − −
− − − − − −
− − − − − −
− − − − − −
− − − − − −

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Ms =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 1 1
1 0 0 1 1 1
1 1 0 0 1 1
1 1 1 0 1 1
0 1 1 0 0 1
1 0 1 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

Ms′
=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 1 1
1 0 0 1 1 1
1 1 0 0 1 1
1 1 1 0 1 1
0 1 1 0 0 0
1 0 1 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

xs =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1
3
3
3
1

⎞
⎟⎟⎟⎟⎟⎟⎠

xs′
=

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1
3
3
5
5

⎞
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⎛
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1
3
2
3
1
1

⎞
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os′
=

⎛
⎜⎜⎜⎜⎜⎜⎝

1
3
2
3
0
3

⎞
⎟⎟⎟⎟⎟⎟⎠

hs =

⎛
⎜⎜⎜⎜⎜⎜⎝

3
1
3
0
3
3

⎞
⎟⎟⎟⎟⎟⎟⎠

hs′
=

⎛
⎜⎜⎜⎜⎜⎜⎝

3
1
3
0
3
2

⎞
⎟⎟⎟⎟⎟⎟⎠

Fig. 2. Left: exemplary partial schedule for an instance with six teams before ending
the third round, for which the teams six and five (in bold) are selected to play the next
game. Right: corresponding state updates where in the matrix of the games left the
currently forbidden games implied by ys,os,hs are grayed out. We omitted rs and ys

for space reasons.

i and j at j’s venue in round r. Each state transition is weighted by the sum
of the distances both teams have to travel from their previous locations to play
the game

Δz(s, s′) = d(xs
i , x

s′
i ) + d(xs

j , x
s′
j ). (2)

Teams for the game are selected in a way that the partial schedule grows round
by round in ascending order where each round is completed before the next
one starts. All paths starting from the root state and leading to the terminal
state correspond to feasible solutions. Paths that end before the terminal state
at a state without further transitions represent partial schedules that cannot be
feasibly continued. A shortest path from the root to the terminal state therefore
corresponds to an optimal feasible solution for a given problem instance.

We introduce two special rounds r = 0 and r = 2n−1 where every team is at
its home location. Let Msr be the matrix with non-diagonal ones and diagonal
zeros, corresponding to all games to be played, and matrix Mst be the all-zeros
matrix. If there is no forbidden opponent for a team i ∈ V in state s, then
ys

i is set to −1. The root state is then sr = (Msr ,ysr = (−1, . . . ,−1), rsr =
(0, . . . , 0),xsr = (1, . . . , n),hsr = (U, . . . , U),osr = (U, . . . , U)) and the ter-
minal state st = (Mst ,yst = (−1, . . . ,−1), rst = (2n − 1, . . . , 2n − 1),xst =
(1, . . . , n),hst = (0, . . . , 0),ost = (0, . . . , 0)). Transitions to the terminal state
are special in the sense that they do not correspond to played games but just to
going back to the teams’ home venues.

Transitions from a state s at some layer l to a subsequent state s′ at layer
l + 1 are done by selecting a game (i, j) ∈ P s

i (or (j, i)) where we impose the
condition ri = rj = mini∈V ri. This ensures that the teams are in the same
round and games are assigned to teams round by round. If there exists a dead
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team i with P s
i = ∅, our current state has no feasible completion. Since there is

no meaning in which order we select the teams in a specific round r, we break
this symmetry by defining a specific team permutation π : V → V . At each state
of layer l, a game from P s

πi
has to be played for which i and rπi

are minimal. A
trivial ordering is the lexicographic ordering of the teams.

Selecting the game (i, j) yields state s′ with Ms′
being a copy of Ms except

that Ms′
i,j = 0, which implicitly removes this game from P s′

i and P s′
j as well.

The position, round, and streak related information of i and j is updated from s
to s′ accordingly. To respect the no-repeat constraints, the forbidden opponent
vector ys is copied to ys′

except that ys′
i = j and ys′

j = i, if Ms
j,i = 1; otherwise

these values are set to −1. For every other team k ∈ V \ {i, j}, ys′
k = −1 is set

if ys
k ∈ {i, j}. The at-most constraints are already implied by the updates in os′

and hs′
. If os′

i = 0, then away games are not allowed in the next round for team
i; analogously, a continuation of j’s home stand is not allowed, if hs′

j = 0.
An exemplary state transition is shown in Fig. 2 for an instance with six

teams before and after ending the third round with the game (5, 6). We see that
team five hits its away streak limit and all its away games are not available for
the next round and that the game (6, 5) is forbidden.

5 Beam Search

We perform a layer-by-layer breadth-first-search traversal of the state graph,
where for each state all permitted games for a selected team are played by per-
forming the respective transitions to corresponding successor states. The current
shortest path value and the corresponding partial schedule are cached for each
state during construction and updated if a shorter path to an already visited
state is discovered.

Due to the complexity of the problem, only instances with four teams admit
a complete construction of the state graph, providing a guaranteed optimal solu-
tion. We therefore restrict the search to an incomplete beam search where at each
layer at most β states are kept for further consideration; parameter β is hereby
called the beam width. In this way the total number of expanded states is poly-
nomially bounded by O(n2β). The shortest path through such a restricted state
graph then corresponds to a feasible heuristic solution. To guide the search, in
each layer the β most promising states are kept according to some state ranking
heuristic, in the hope that the finally shortest path corresponds to an optimal or
close-to-optimal solution. Classical beam search sorts the states by an f -value
known from A∗ search that combines the length of the currently shortest path
g(s) to the state s with a lower bound b(s) (or heuristic estimate) for the further
continuation to the terminal state:

f(s) = g(s) + b(s) (3)

In our beam search implementation, we only keep the current layer in a queue
and the successive layer in a priority queue sorted according to f that contains at
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most the β best successor states so far. The latter is implemented by a maximum
heap combined with a hash map to access arbitrary states in expected constant
time. Before creating a successor state, we check in case of a full beam by means
of incremental evaluation whether the potential new state’s f -value is worse
than the worst f -value in the heap. If this is the case, we do not need to consider
the state further. Otherwise we create the successor state and check whether it
already exists in the maximum heap, in which case we conditionally update its
shortest path value and current best partial schedule. If the state was not yet
contained in the heap, we replace its so far worst state by the newly created
successor state. This approach gives us a smaller memory footprint than storing
all created states until termination, allowing us to test higher beam widths. The
current partial schedule is cached along each state in a growing vector.

As will be discussed in detail in Sect. 6, the lower bound values are also
cached along the state for each team, together with the number of home and
away games left for each team. The latter allow to quickly check whether there
are not enough home games in relation to away games or vice versa to make a
feasible completion.

To allow a simple parallelization of the beam search by independent diversi-
fied runs, we further introduce a randomized variant of the beam search. To this
end we add a normally distributed random offset with standard deviation σ to
each state’s original f -value:

f̃(s) = f(s) + N (0, σ). (4)

The motivation is that states which would be pruned when just considering
their deterministic f -value get a chance to survive, and they may possibly lead
to superior solutions. Initially promising states can also get cut off early by
drawing a too high random offset. Crucial is the standard deviation σ for which
we make the following parameterized ansatz:

σ = σrel · b(sr) (5)

Parameter σrel thus determines the fraction of the lower bound of the root state
to be used as σ, so that the order of magnitude of the expected solution length
of a given instance is respected. Tuning results for this parameter are presented
in the computational study in Sect. 7.

Algorithm 1 shows our beam search in pseudo-code. next-team(l, s) selects
the team to consider for a given layer l and state s. Trivial options are to take
the lexicographically smallest team that is in a minimal round or to initially fix
a random permutation of the teams.

Procedure feasibility-and-optimality-check(H,β, s, b, ε, (i, j)) incrementally
checks whether the transition would lead to a state for which we know for sure
that it does not have a feasible completion. This is the case when not enough
home or away games are available for a specific team to not violate the at-most
constraint or because one team has an empty possible games set in this round.
The optimality check is done by considering the increase in the f -value by the
move and whether it is worse than the maximal f -value in a full, i.e., containing
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Input: number of teams n, distance matrix d, root state sr, terminal state st,
noise parameter σrel, state lower bound function b, beam width β

Output: feasible schedule T

1 queue Q ← {sr};
2 for l ← 1 to n2 − n do
3 H ← empty maximum heap;
4 while Q �= ∅ do
5 s ← Q.pop;
6 t ← next-team(l, s);
7 foreach (i, j) ∈ {(i′, j′) ∈ P s

t |rsi′ = rsj′} do
8 ε ← N (0, σrel · b(sr));
9 if feasibility-and-optimality-check (H, β, s, b, ε, (i, j)) then

10 s′ ← copy s and make transition by playing (i, j) and updating
state along with cached data accordingly;

11 s′.current schedule ← s′.current schedule ∪ (i, j);
12 f(s′) ← g(s′) + b(s′) + ε;
13 include s′ into H respecting f(s′);
14 if H.size > β then
15 remove worst element of H;
16 end

17 end

18 end

19 end
20 Q ←sorted-by-f-value(H);

21 end
22 if Q �= ∅ then
23 create going home transitions for all states Q to st;
24 return st.current schedule;

25 else
26 return ∅;

Algorithm 1. Beam search for the TTP.

β states, maximum heap H—then the transition for game (i, j) does not need
to be considered and state s′ is not created, which saves a costly state expansion
operation that would require to copy the whole current state and cache variables.

After all successor states have been checked and potentially included into the
heap H, its states are transferred to queue Q, sorted according to state priorities,
and thus these nodes become the new current layer. The sorting is done to fill
the beam earlier with likely better states to increase the odds for rejecting the
creation of successor states during incremental evaluation.

In the next section, we study in detail the crucial part of devising and effi-
ciently calculating a lower bound b for determining the state’s f -value.
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6 Lower Bounds Calculation

The main idea for obtaining lower bounds is to relax the problem by considering
the tours of all teams independently. Easton et al. [4] already suggested the
independent lower bound (ILB) that applies this principle. This bound neglects
the no-repeat constraints and considers only the away teams for a given team
i ∈ V with only the away at-most constraints. This amounts to a capacitated
vehicle routing problem (CVRP), where the depot is at i’s home venue, the
customers are the away teams with unit demand, and the capacity for the trucks
is U = 3. The CVRP itself is strongly NP-hard but for few customers tractable
in practice.

Given an arbitrary state s and team i, we have to consider the remaining
away teams As

i for i, the position xs
i , and the remaining away streak os

i . If xs
i �=

i∧os
i = 0, then we consider an artificial state in which the team is assumed to have

returned home (this is the only option it has at that moment), os
i = min(As

i , U),
and add d(xs

i , i) to the resulting bound. Let the optimal total length for this
problem for team i be bCVRP

i (s). Then the sum of the optimal values over all
teams is a lower bound for the optimal value of the corresponding TTP-feasible
completion of s

bCVRP(s) =
n∑

i=1

bCVRP
i (s). (6)

A natural further relaxation is to drop even the away at-most constraints,
which yields a traveling salesperson problem based lower bound bTSP. In this
case, we do not have to consider the current away streak of team i in state s.

To provide better guidance for the beam search, we are more interested
in tighter lower bounds, while keeping their computational costs in mind. A
first natural strengthening is to consider also the home at-most constraints. Let
hleft

i = |Hs
i | be the number of home games left for team i in state s. Then

we need at least h̃min
i = �(hleft + h̄i)/U� home stands to accommodate for the

home games, where h̄i is the length of the current home stand. Translated to
the CVRP, this amounts to the constraint that we need to perform at least h̃
non-trivial tours. Analogously, every away streak needs at least one home game
from where it came, minus one if the team is currently at home. This gives us
a maximum to the home stands h̃max

i we can realize from a given state. We
can therefore define a home stand constrained lower bound bCVRPC

i (s, h̃) and
tighten the CVRP bound by finding the minimum within the range of allowed
home stands, summed over all teams resulting in the CVRP with home stands
bound (CVRPH)

bCVRPH(s) =
n∑

i=1

min
h̃∈{h̃min

i ,...,h̃max
i }

bCVRPC
i (s, h̃). (7)

To speed up our beam search, we pre-calculate the lower bounds for the states
that can occur for a given TTP instance, similarly as done by Uthus et al. [13].
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We do this by representing the whole space of feasible solutions to the given
CVRP instance for each team i with an exact multi-valued decision diagram
(DD) [2] and finally store the lower bounds for the states that occurred in a
lookup table. Each node in this DD is associated with a state q consisting of the
away games left to play Aq (represented by the subset of other teams against
which team i still has to play), the team i’s position xq and the current number
of consecutive away games, the away streak ōq. The root state for a given team
i is therefore qr = ({1, . . . , i − 1, i + 1, . . . , n}, i, 0). Transitions are made until
the terminal state qt = ({}, i, 0) is reached, where in every layer, all available
transitions are performed. Hereby we distinguish between three possibilities:

– Select any away team left j ∈ Aq to visit next, if there are such, and go
home afterwards, where costs d(xq, j) + d(j, i) accrue. The state is updated
accordingly to (Aq \ {j}, i, 0).

– If ōq is less than U − 1, then select any away team left j ∈ Aq to visit next,
if there are such, and stay at j afterwards, where costs d(xq, j) accrue. The
state is updated to (Aq \ {j}, j, ōq + 1).

– If Aq is empty, go home if not already at home, where costs d(xq, i) accrue.
The state is updated to the terminal state qt.

Paths from the root to the terminal node in the DD then correspond to the
feasible solutions of the CVRP, and with the costs associated with the transitions
(i.e., arcs in the DD), the lengths of such paths correspond to solution lengths.
For each node in the CVRP decision diagram the shortest path to the terminal
node is calculated and saved in the lookup table, serving as a lower bound
for a team with given away teams to play, being at a position either at home
or at some away team and its current away streak. Being a layered directed
acyclic multigraph, the shortest paths for each node in the decision diagram
can be calculated efficiently by doing a breadth-first-search backwards from the
terminal to the root node.

The TSP based bound values can also be pre-calculated by these method by
simply ignoring the away streak and allowing always a direct transition to a next
away team without going home first.

Furthermore, for the CVRPH bound, we consider constrained shortest path
lengths zsp(q, h̃) from any node to the terminal node, with the constraint
that exactly h̃ home stands occur. This means that at most h̃U − h̄i home
games can be played from a given node, where h̄i is the length of the cur-
rent home stand for team i. At the terminal node zsp(qt, 1) = 0 and ∞ for
each other node. In the backward sweep from q′ to q with arc costs cq,q′ , if
xq �= i, then we set zsp(q, h̃) = min{zsp(q′, h̃) + cq,q′ , zsp(q, h̃)}. If on the other
hand xq = i, i.e., a new home stand has occurred, we set zsp(q, h̃ + 1) =
min{zsp(q′, h̃)+cq,q′ , zsp(q, h̃+1)}. For each state we now have all the constrained
lower bound values available that correspond to bCVRPC

i (s, h̃). Additionally, we
define bCVRPC,≥

i (s, h̃) = minh̃′∈{h̃,...,h̃max
i } bCVRPC

i (s, h̃′) ∀h̃ ∈ {h̃min
i , . . . , h̃max

i },

which gives us the lower bounds when using at least h̃ home stands.
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Table 1. Memory demand for different lower bound lookup tables over the number of
teams in GB assuming two bytes per bound value.

n TSP CVRP CVRPH

14 0.003 0.009 0.127

16 0.016 0.047 0.75

18 0.079 0.237 4.27

20 0.390 1.172 23.43

Table 2. Runtimes in minutes for CVRPH bound calculations for NL14 to NL16 and
CIRC14 to CIRC18.

14 16 18

NLn 25 169 –

CIRCn 25 173 903

In Table 1, we see the memory demand for the three different lower bound
lookup tables in GB assuming 2 bytes per bound value. Up to 16 teams, they all
have reasonable size and our experiments have shown that the 16 teams instance
bounds can be pre-calculated within three hours in a prototypic Python 3.7
implementation on an Intel Xeon E5-2640 processor with 2.40 GHz in single-
threaded mode, see Table 2. 18 teams instances are also within reach with the
strong CVRPH bound taking already 15 h—we suppose that an order of magni-
tude in time can be saved using a compiled language. For larger instances, these
numbers and the computation times increase dramatically, since the number of
bounds grows for the CVRPH bound with O(n32n)—already the TSP bound,
being the weakest, needs 42 GB for 26 teams.

For even a further tightening of the CVRPH bound, we make use of the
minimum number of trips (MNT) bound by Urrutia et al. [10]. It does not
assume strong independence between the teams anymore. Instead, the relaxed
CONSTANT variant of the problem, where all distances are set to one is solved
to optimality (or taking a lower bound), yielding a minimum number of trips all
teams together have to perform in a feasible solution of the problem. A trip in
this case is an atomic movement of a team from one venue to another. Given a
state s, let us call τ =

∑n
i=1 ti the number of trips performed so far by all teams

in the shortest path from sr to s. By the CVRPC bound, each team has an
optimal number h̃opt

i of home stands from s to st. This translates to an optimal
number of trips topti = |As

i | + h̃opt − 1xi=i. Let τ lb be the lower bound for the
minimum number of trips. If τ lb ≤ τ +

∑
i topti , then we cannot tighten the

CVRPH bound further. Otherwise, we can add the constraint that the teams
have to perform Δτ = τ lb − τ − ∑

i topti extra trips, yielding the MNT bound
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bMNT(s) = min
n∑

i=1

bCVRPC,≥
i (s, h̃i) (8)

s.t. h̃i ∈ {h̃min
i , . . . , h̃max

i } ∀i ∈ 1, . . . , n (9)

τ +
n∑

i=1

|As
i |

︸ ︷︷ ︸
|P s|

+h̃i − 1xi=i ≥ τ lb (10)

This bound can be calculated by solving a corresponding integer linear program
using binary decision variables yh̃

i with costs derived from the CVRPC lower
bound function ch̃

i and counting values dh̃
i ∈ {h̃min

i , . . . , h̃max
i }:

bMNT(s) = min
n∑

i=1

ch̃
i yh̃

i (11)

s.t.
∑

h̃

yh̃
i = 1 ∀i ∈ 1, . . . , n (12)

∑

i,h̃

yh̃
i dh̃

i ≥ τ lb − |P s| − τ +
n∑

i=1

1xi=i (13)

We take the τ lb values from [7], where Rasmussen and Trick present a Benders
decomposition approach to solve the CONSTANT instances for up to 16 teams
each within at most five minutes.

7 Computational Study

We conducted all our experiments on Intel Xeon E5-2640 processors with
2.40 GHz in single-threaded mode and a memory limit of 32 GB. We imple-
mented our approach as a prototype in Python 3.7, being aware that an imple-
mentation in a compiled language would likely be substantially faster and have
a smaller memory footprint. To solve the integer linear programs for the MNT
bound, we used Gurobi 12.8.

In Table 3, we present a comparison of the results obtained by the determin-
istic beam search with beam widths 1000 and 10000 for the instance sets NL and
CIRC (See footnote 1) [4] over the different lower bounds used in the state order-
ing. We see that the weak TSP bound does not provide good guidance and even
misguides the search for larger instances, where using no bound (b(s) = 0) and
sorting the nodes only by the currently shortest path length to them (SHORT)
provides better results. Much better guidance can be observed for the CVRP
based bounds, where we see similar improvements over all instances.
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Table 3. Final solution lengths of deterministic beam search with different state order-
ing heuristics and beam widths with lexicographic team orderings. Sorting the states
by currently shortest path length to them (SHORT) does not use any lower bound;
for a description of the TSP, CVRP, CVRPH, MNT lower bounds refer to Sect. 6. For
circ16 with MNT we did not achieve a final result due to excessive runtime.

β = 1000 β = 10000

inst SHORT TSP CVRP CVRPH MNT SHORT TSP CVRP CVRPH MNT

nl6 24876 24759 23954 23916 23916 24876 23978 23916 23916 23916

nl8 42308 41977 40687 40687 40687 40970 41762 39776 39776 39776

nl10 67094 66469 62329 60713 62400 66087 64700 61129 60757 60554

nl12 131046 129209 116976 114499 114499 127238 119271 113294 114475 114824

nl14 217763 233765 211643 211116 211116 224537 219708 203519 203279 203279

nl16 309227 – 283985 285326 286085 301989 322567 276599 275562 271251

circ6 66 64 64 64 64 64 64 64 64 64

circ8 144 146 134 134 134 136 142 134 134 134

circ10 280 284 264 262 266 268 276 246 246 250

circ12 452 502 428 430 430 444 468 418 418 418

circ14 734 774 674 672 672 710 760 668 656 656

circ16 – – 1012 1000 990 1012 1114 956 966 n/a

Since the number of classic benchmark instances is limited and to further
validate the guidance quality of the different bounds, we created two different
types of random instances. First, the set IL1 , where we sample 30 instances
for team numbers 8, 10, and 12 each on an integer grid of size 1000 × 1000
using Manhattan distances to compute the resulting distance matrices; second,
the set IL2 , using the same sampling procedure but using the rounded to the
nearest even integer Euclidean distances. This yields in total 180 additional test
instances. We exclude the TSP bound from our further experiments since it
did not show promising results for the tests on the NL and CIRC instances. In
Table 4, we see mean values of final solution lengths and corresponding standard
deviations when performing the deterministic beam search with the different
state ordering heuristics on the randomly generated instances. The gap between
SHORT and CVRP is well observed especially with 10 and 12 teams. The gap
between CVRP and CVRPH is closer, a Wilcoxon signed rank sum test shows
that we can reject the assumption that CVRP is better than CVRPH with a
significance level of α = 1%. The difference between CVRPH and MNT is for the
L1 distance instances inconclusive, and for the L2 instances slightly in favor of
MNT, but at the cost of substantially higher runtime due to the linear programs
that need to be solved for every state. For further experiments we therefore limit
ourselves to the CVRP/CVRPH bounds.

Finally, Table 5 compares our randomized beam search variant with either
lexicographic or random team ordering performed in parallel and independently
on 30 cores with several state-of-the-art approaches on three difficult NL and
CIRC instances. Each beam search run was conducted with beam width β = 105

and randomization parameter σrel = 0.001 resulting in equally gentle noise
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Table 4. Comparison of our beam search algorithm with β = 1000 over different state
ordering heuristics on 180 randomly generated test instances with 8, 10, and 12 teams,
using Manhattan and Euclidean distances, evenly split. Mean values of final solution
lengths and standard deviations over 30 test instances are shown.

β = 1000

class SHORT CVRP CVRPH MNT

I8
L1 42532 ± 5384 40530 ± 5214 40405 ± 5030 40405 ± 5030

I10
L1 70049 ± 7280 65483 ± 6886 64760 ± 6689 64964 ± 6922

I12
L1 99086 ± 7991 92838 ± 8089 91728 ± 7726 91465 ± 7694

I8
L2 34412 ± 5088 33034 ± 5109 32965 ± 5071 32965 ± 5071

I10
L2 55019 ± 5872 51723 ± 5988 51269 ± 5808 51057 ± 5829

I12
L2 79699 ± 7293 74231 ± 6933 73700 ± 6456 73524 ± 6403

applied to the f -values of the states in every layer. The noise parameter was
determined using irace [5] on the randomly generated instances. The table shows
minimum and mean values for solution lengths of finally best solutions. We
observe that we can compete well with the other mainly constructive approach
“ant colony optimization with forward checking and conflict-directed backjump-
ing” (AFC-TTP) from [11] and the composite-neighborhood tabu search (CNTS)
from [3] on the NL instances and obtain better results than these for the CIRC
instances, without hybridizing with a final local search. For CIRC instances we
can also obtain similar results to population-based simulated annealing from
scratch (PBSAFS) from [14], which uses parallel simulated annealing. For the
circular instances with 14 and 16 teams, we found new best feasible solutions, as

Table 5. Comparison of the final solution lengths of parallel randomized beam search
using either lexicographic team ordering or random team ordering (RTO) with 30
independent runs each, parameters σrel = 0.001, β = 105, and the CVRPH lower bound
function (RBS-CVRPH) with the reported solution lengths of ant-colony optimization
(AFC-TTP) [11], composite-neighborhood tabu search (CNTS) [3], simulated annealing
(TTSA) [1], and population-based simulated annealing (PBSA) [14], where the latter
is either used from scratch (PBSAFS) or starting from an already high quality solution
(PBSAHQ) provided by a TTSA run. †New best feasible solutions.
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Fig. 3. Runtimes in hours for deterministic beam search runs on NL instances with
β ∈ {103, 104, 105}.

of the time of writing according to Michael Trick’s TTP web page. The strongest
results overall for NL and CIRC are provided by simulated annealing (TTSA)
from [1] and its parallel variant PBSA from [14].

Runtimes of our approach are shown in Fig. 3 measured for deterministic
beam search on the NL instances up to 16 teams for β ∈ {103, 104, 105}. For
example, a run on an instance with 12 teams and a beam width of 105 takes
roughly 10 h. We believe it is possible to improve this further by an order of
magnitude using a compiled language.

8 Conclusion and Future Work

We investigated a beam search approach for the well-known traveling tournament
problem. To this end, we proposed a recursive state space formulation, which is
searched by a restricted breadth-first-search. This beam search is implemented
in a memory efficient variant allowing for high beam widths to be tested. For
guiding the search, we studied different lower bounds derivable from a state. Fur-
thermore, we introduced a randomized beam search variant which applies param-
eterized Gaussian noise to the state ordering heuristic in order to diversify the
search when performing multiple runs in parallel. We contribute a method based
on decision diagrams to pre-calculate the existing capacitated vehicle routing
problem and minimum number of trips bounds for instances up to 18 teams and
how these bounds can be effectively used for any given state. To compare different
lower bounds and tune algorithmic parameters, we created artificial instances.
This allowed us to ultimately achieve better results on difficult NL and CIRC
benchmark instances than the also mainly constructive ant-colony optimization
approach AFC-TTP and the composite-neighborhood tabu search CNTS. For
the circular instances with 14 and 16 teams we could find new best feasible
solutions. Overall, the simulated annealing based approaches TTSA/PBSA still
remain dominant.

We have implemented our approach as a prototype in Python 3.7. A re-
implementation in a compiled language is desirable as much better runtimes
and smaller memory footprints can be expected, which would allow to tackle
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even higher beam widths. So far we did not consider any local search, but a
natural extension would be to try to further improve a number of best solu-
tions provided by our beam search by local search. Furthermore, the provided
state space formulation and lower bound methods might also be incorporated
into GRASP or ACO algorithms, as well as into exact techniques such as A∗

variants.
To tackle instances with more than 18 teams with lower bound guidance, an

interesting direction could be to use relaxed decision diagram for the bound pre-
calculations, in order to keep the memory and computational demand reasonably
bounded.
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Abstract. In this paper, we propose the use of path relinking to improve
the performance of parallel portfolio-based local search solvers for the
Boolean Satisfiability problem. In the portfolio-based framework several
algorithms explore the search space in parallel, either independently or
cooperatively with some communication between the solvers. Path relink-
ing is a method to maintain an appropriate balance between diversifica-
tion and intensification (and explore paths that aggregate elite solutions)
to properly craft a new assignment for the variables to restart from. We
present an empirical study that suggest that path relinking outperforms
a set of well-known parallel portfolio-based local search algorithms with
and without cooperation.

Keywords: SAT · Parallel local search

1 Introduction

The propositional satisfiability problem (SAT) is a fundamental problem in
computer science with important applications ranging from bioinformatics [19]
to planning [23] and scheduling [22]. The SAT problem consists in determin-
ing whether a given Boolean formula F is satisfiable or not. This formula
is usually represented using the Conjunctive Normal Form (CNF) as follows:
F =

∧
i

∨
j lij , where each lij represents a literal (a propositional variable or its

negation) and the disjunctions
∨

j lij are the clauses in F . A k-SAT problem
indicates that F contains k literals per clause, for instance a 3-SAT formula can
be represented as follows:

F = (v11 ∨ v12 ∨ v13) ∧ (v21 ∨ v22 ∨ v23) . . . (vn1 ∨ vn2 ∨ vn3)

In the weighted MaxSAT problem, clauses are associated with a positive
weight and the problem consists in minimizing the cost, i.e., the sum of weights of
unsatisfied clauses. The weighted partial MaxSAT problem consists in finding a
solution (or an assignment for the variables) that minimizes cost while satisfying
a given subset of clauses (i.e., hard clauses).
c© Springer Nature Switzerland AG 2020
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Complete parallel solvers for the SAT problem have received significant atten-
tion recently, these solvers can be divided into two categories the classical divide-
and-conquer approach [14] and the parallel portfolio approach [1,7]. The first one
typically divides the search space into several sub-spaces, and the second one lets
algorithms compete and cooperate to solve a given problem instance.

In this paper, we focus our attention in cooperative parallel local search
solvers for the SAT and Weighted Partial MaxSAT problems. In our settings,
each member of the portfolio shares its best assignment for the variables. At each
restart point, instead of classically generating a random assignment to start with,
the portfolio aggregates the shared knowledge to carefully craft a new starting
point.

This paper is organized as follows. Section 2 presents key concepts of local
search, including a description of a set of well-known variable selection methods
to tackle SAT and MaxSAT problems. Section 3 provides general concepts about
parallel portfolios of local search algorithms. Section 4 describes our new coop-
erative policies using path relinking. Section 5 evaluates our new cooperative
policies and Sect. 6 presents concluding remarks and areas of future work.

2 Local Search for SAT and MaxSAT

Algorithm 1 describes the general schema of the local search procedure for the
SAT problem. It starts with a random assignment for the variables in the formula
F (initial-solution line 2). The key point of the local search procedure is depicted
in lines 3–9 where the algorithm flips the most appropriate variable until a certain
stopping condition is met, e.g., a given number of flips is reached (Max-Flips)
or after a given timeout. After this procedure the algorithm restart itself with a
new fresh random assignment for the variables.

Algorithm 1. Local Search (CNF formula F, Max-Flips, Max-Tries)
1: for try := 1 to Max-Tries do
2: A := initial-solution(F)
3: for flip := 1 to Max-Flips do
4: if A satisfies F then
5: return A
6: end if
7: x := select-variable(A)
8: A := A with x flipped
9: end for

10: end for
11: return ‘No solution found’

As one may expect, a critical part of the algorithm is the variable selection
function (line 7 select-variable), which indicates the next variable to be flipped
in the current iteration of the algorithm. Currently, nearly all variable selection
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algorithms are variations of the GSAT [18] and WalkSAT [17] algorithms orig-
inally proposed for the SAT problem. These two algorithms attempt to select
the variable with the highest score.

score(x) = make(x) − break(x)

Intuitively, make(x) indicates the total number of clauses that are currently
unsatisfied but become satisfied after flipping x. Similarly, break(x) indicates
the total number of clauses that are currently satisfied but become unsatisfied
after flipping x. Taking this into account, local search algorithms tend to select
variables with the minimum score, flipping those variables would most likely
increase the chances of obtaining the optimal assignment for the variables. In
the following, we describe seven well-known variable selection algorithms for the
SAT and MaxSAT problems.

– WalkSAT [17] uniformly at random selects an unsatisfied clause c. Then, with
a probability wp selects a random variable from c and with probability 1-wp
identifies the most suitable variable in c.

– AdaptNovelty+ (AN+) [8] uses an adaptive mechanism to properly self-tune
the noise parameter (wp) of WalkSAT algorithms (e.g., Novelty+).
AdaptNovelty+ introduces a new parameter φ to control the value of wp.
wp is initially set to 0 and updated when search stagnation is observed, i.e.,
wp = wp+(1+wp)×φ. Additionally, whenever an improvement is observed wp
is decreased, i.e., wp = wp − wp × φ/2. The authors define search stagnation
as a stage when no improvement has been observed in the objective function
for a given number of iterations.

– G2WSAT (G2) [11] introduces the concept of promising decreasing variable.
Broadly speaking, a variable is decreasing if flipping it improves the objective
function (i.e., total number of (weighted) violated clauses).

– Adaptive G2WSAT (AG2) [11] aims to integrate an adaptive noise mechanism
into the G2WSAT algorithm.

– PAWS (Pure Additive Weighting Scheme) [20] assigns a weight penalty to
each clause, with those that go unsolved having their weight penalty changed.
This solver includes a chance to make a flip that will result in a lateral move-
ment in satisfiability and a variable to determine how often the weights of
clauses are changed.

– Dist [5] proposes a variable selection scheme based on hard and soft clauses.
Dist initially, maintains a list of hard-decreasing variables (i.e., a set of
promising decreasing variables of hard clauses), and the algorithm defines
a hard and a soft score for the variables in the problem. Furthermore, the
authors propose to on-the-fly adjust the weight of hard clauses. This way,
Dist bias the variable selection process towards improving the score of hard
clauses with the set of hard-decreasing variables.

– CCLS [13] maintains a list of candidate variables CCMPVars (Configuration
Checking and Make Positive), each variable x in the list has a make(x) >
0 and the age of x is smaller than at least one of its neighbour variables
(i.e., a variable sharing at least one clause). In the diversification phase with



86 P. Jarvis and A. Arbelaez

probability p performs a random walk step; otherwise, with a probability 1-p
in the intensification phase the algorithm selects the variable with the greatest
score in CCMPVars. However, if CCMPVars is empty the algorithm performs
a random walk. CCEHC [12] extends CCLS to prioritize the search towards
variables involved in violated hard clauses.

3 Parallel Local Search

In this paper, we use the traditional parallel portfolio framework by executing
several algorithms in parallel (or different copies of the same one with different
random seeds). Therefore, each algorithm independently executes a sequential
restart-based local search algorithm and we periodically restart the algorithms
to aggregate the common knowledge of the portfolio.

M =

⎛

⎜
⎜
⎝

X11 X12 . . . X1n

X21 X22 . . . X2n

...
...

...
...

Xc1 Xc2 . . . Xcn

⎞

⎟
⎟
⎠

Fig. 1. Pool of elite solutions.

In our parallel algorithm we maintain a pool of elite solutions. In this context,
each algorithm in the portfolio shares the best solution observed so far in a shared
pool M (see Fig. 1). Where n indicates the total number of variables of the
problem and c indicates the number of local search algorithms in the portfolio.
In the following we are associating local search algorithms and processing cores.
Each element Xji in the pool denotes the ith variable of the best solution found
so far by the jth core.

The initial restarting solution of the algorithms in the portfolio is deter-
mined by the cooperation protocol and is a composition of the solutions in the
pool. Therefore, maintaining an appropriate balance between diversification and
intensification of the solutions in the pool is an important step in the proposed
cooperative framework. We remark that we use a random solution for the first
start and the cooperative framework afterwards.

Recently, [2] proposed seven cooperative algorithms for parallel SAT solving.
These strategies range from a voting mechanism, where each algorithm in the
portfolio suggest a value for each variable, to probabilistic constructions. This
way, the variable-initialization function (line 2, Algorithm1) uses cooperation
(after the second restart) in lieu of random values for the variables.

Prob uses a probability function based in the number of occurrences of vari-
ables with positive and negative values. PNorm normalizes the probability func-
tion with the quality of the solutions (i.e., number of unsatisfied clauses), there-
fore, values involved in better truth assignments are most likely to be used in
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the future. Complete details about these two popular cooperative techniques are
available in [2].

Other work in the area includes PGSAT [15], a parallel version of the GSAT
algorithm. The entire set of variables is randomly divided into τ subsets and
allocated to different processors. In this way at each iteration, if no global solu-
tion has been obtained, the ith processor uses the GSAT score function to select
and flip the best variable for the ith subset. Another contribution to this parallel
architecture is described in [16] where the authors aim to combine PGSAT and
random walk. Thus at each iteration, the algorithm performs a random walk
step with a certain probability wp, that is, a random variable from an unsatis-
fied clause is flipped. Otherwise, PGSAT is used to flip τ variables in parallel at
a cost of reconciling partial configurations to test if a solution is found.

4 Path Relinking

Path relinking [6] is a popular technique to generate new solutions by exploring
paths that connect elite solutions. To generate the new solution (i.e., line 2 in
Algorithm 1), an initial solution and a guiding solution are selected from the
pool to represent the starting and the ending points of the path.

Si

S1

S2

S3

S4

Sg
Initial 

Solution

Guiding 
Solution

Path of solutions

Fig. 2. Path relinking.

In this paper, we use path relinking to generate new starting solutions for
the algorithms in the portfolio. Figure 2 depicts the process of generating the
path of solutions. We select the initial (si) and guiding (sg) solutions, and then
the path relinking algorithm generates the intermediate solutions by replacing
values for the variables in si with values from sg. In the context of this paper,
the path of solutions regulates the intensification/diversification trade-off. The
first neighbour solution of si denotes, at least, one change in the initial solution
and n-1 chances in the guiding solution.1 Ideally, in order to balance the diversi-
fication/intensification trade-off, the new generated solution should be in middle
between the si and sg.

Algorithm 2 shows our path relinking algorithm to generate a new starting
solution. Let si and sg denote the initial and guiding solutions and pd ∈ [0, 1]

1 n denotes the number of variables in the problem.
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denotes the probability of using the initial or guiding solution for each variable
in the problem. In particular, we explore the following four alternatives to define
si and sg:

– best2rand (b2r): si represents the best solution in M and sg is randomly
selected from M ;

– cbest2rand (cb2r): si represents the best solution obtained so far for the pro-
cessing unit that is currently seeking a new starting solution and sg is ran-
domly selected from M ;

– best2cbest (b2cb): si represents the best solution in M and sg represents the
best solution obtained so far for the processing unit that is currently seeking
a new starting solution;

– best2sbest (b2sb): si represents the best solution in M and sg represents the
second best solution available in M .

The path relinking algorithm uses pd to balance the diversification vs. intensi-
fication trade-off dilemma, a value close to 1 (resp. 0) favours sg (resp. si). There-
fore, pd = 0.5 is a reasonable value for a proper intensification/diversification
balance of the solutions. Furthermore, best2rand and cbest2rand provide further
diversification benefits as the method randomizes the selection of the solutions
in the pool. Certainly, biasing the search towards si or sg might improve perfor-
mance for specific problem families. However, without explicit knowledge of the
target instances we recommend pd = 0.5.

Algorithm 2. Path-relinking(Si, Sg, pd)
1: s := si
2: for i := 1 to |s| do
3: if with probability pd then
4: s[i] := sg[i]
5: end if
6: end for
7: return s

5 Experiments

In this section, we present experiments for our cooperative parallel portfolios
using path relinking for SAT and Weighted Partial MaxSAT Solving. We decided
to build our parallel portfolio on top of UBCSAT [21], a well-known local search
library that provides efficient implementations of popular local search algorithms
for SAT and MaxSAT.

In our experiments we use the sequential local search algorithms with
their default parameters and MaxFlips = 106 except for non-cooperative algo-
rithms. Indeed, sequential algorithms are equipped with important diversifica-
tion techniques and usually perform better without restarts and therefore we use
MaxFlips = ∞ for non-cooperative parallel portfolios.
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5.1 SAT Experiments

In these experiments we consider all known satisfiable uniform random k-SAT
instances from the 2017 and 2018 SAT competitions (for a total collection of 174
instances).2 and we consider the following algorithms: AN+, G2WSAT, PAWS,
AG2. We evaluated the impact of our cooperative policies with two versions
of the portfolio. The first version analyses the impact of the new policies with
multiple copies of the same algorithm and the second one implements a parallel
portfolio with four different algorithms.

We conducted this set of experiments on 15 machines running Ubuntu18.04
with 16 GB of RAM and a AMD Razen 5 2400 g CPU with 4 cores. We ran each
solver 5 times on each instance (each time with a different random seed) with
a 5-min time cutoff. For each pair 〈instance, solver〉 we compute the median
time and the Penalized Average Runtime (PAR10 ), i.e., average runtime, but
unsolved instances are considered as 10× the time-limit [9], over all 5 runs.

Figure 3 shows the cactus plot of the parallel portfolios with multiple copies
of the same algorithm. The y-axis gives the number of solved instances and
the x-axis presents the cumulative runtime. In this figure, it can be seen that
our new cooperative policies with path relinking outperform (except for AN+)
existing techniques such as: PNorm, Prob, and a portfolio without cooperation
(non-coop).

Figure 3(a) and (b) show the performance of the two weakest algorithms,
that is, AG2 with 51 instances in 280 s (for Prob) and AN+ with 43 instances
in 267 s (for best2cbest). Figure 3(c) shows that best2cbest is the best coopera-
tive policy for PAWS solving 60 instances in 276 s. On the other hand, Fig. 3(d)
summarizes the performance of the best algorithm, it can be observed that the
non-cooperative framework outperforms the other methods when the time cutoff
is up 150 s. However, after this point, best2sbest and best2cbest report outstand-
ing performances with respectively 74 instances in 275 s and 72 instances in
281 s.

Figure 4 shows the cactus plot of the parallel portfolio with different algo-
rithms, sequential reports the performance of the best sequential algorithm (i.e.,
G2WSAT ). Similarly to Fig. 3(d) the non-cooperative portfolio reports a very
good performance up to about 200 s. However, after this point our new path
relinking policies largely outperform non-coop, Prob and PNorm. In particular,
cbest2rand (resp. best2cbest) solves 7.4% (resp. 12%) more instances than PNorm
(resp. Prob).

Table 1 reports complete details of the performance of a 4-core portfolio with
different algorithms. # Solved reports the number of solved instances within the
time limit, Time denotes the average time in seconds for solved instances (i.e.,
average across instances of the median across 5 runs on a given instance), and
PAR10 reports the average PAR10 of the parallel portfolio. It can be observed
that all our new path relinking policies outperform existing methods (except
best2sbest), i.e., cbest2rand and best2cbest solve seven (resp. five) more instances
than PNorm (resp. Non-cooperation).
2 https://satcompetition.org/.

https://satcompetition.org/
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(a) AG2 (b) AN+

(c) PAWS (d) G2WSAT

Fig. 3. Cactus plot for 4-core portfolios using copies of the same algorithm.

Table 1. Portfolio full results

Method # Solved Time PAR10

Sequential 53 51 2101

Non-cooperative 63 41 1928

Pnorm 65 58 1901

Prob 62 55 1950

best2cbest 70 73 1822

cbest2rand 70 69 1821

best2rand 68 66 1853

best2sbest 64 61 1919



Cooperative Parallel SAT Local Search with Path Relinking 91

Fig. 4. Cactus for 4-core portfolio with different algorithms

Table 2 reports the performance of a 4-core parallel portfolio with multiple
copies of the best sequential algorithm, i.e., G2WSAT. In this experiment, we
observe that all our new policies outperform well-known techniques, for instance,
the worst path relinking algorithm solves more instances than the best exiting
technique for this experiment (i.e., Prob). Furthermore, our overall best new pol-
icy (i.e., best2sbest) solves 21% more instances than the non-cooperative portfolio
and 25% more instances than the best existing method. As expected the time of
solved instances increases as this parallel algorithm solves more instances.

Finally, Table 3 summaries the overall results of the 4-core portfolios. Algo-
rithm indicates the base local search algorithm. Coop. Policy indicates the coop-
erative policy, each cell shows the performance of Non-cooperative portfolios,
Prob, and the best parallel portfolio for the reference algorithm.3 As it can be
observed the cooperative portfolio always outperform the non-cooperative one,
and our new path relinking policies outperform all other policies in 4 out of 5
experiments. Furthermore, G2 equipped with best2sbest is the overall winner
policy with 74 solved instances in 87 s.

3 Please notice that AG2 only reports two cooperative policies as Prob is the winner
strategy.
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Table 2. Results for 4-core G2 parallel portfolios

Method # Solved Time PAR10

Sequential 53 51 2101

Non-cooperative 59 31 1993

PNorm 61 57 1968

Prob 62 55 1950

best2cbest 72 79 1791

cbest2rand 70 78 1824

best2rand 69 82 1843

best2sbest 74 87 1761

Table 3. Experiment results

Algorithm Coop. policy # Solved Time PAR10

AG2 Non-cooperation 48 54 2187

Prob 51 45 2134

AN+ Non-cooperation 38 51 2355

Prob 38 52 2356

best2cbest 43 54 2272

G2 Non-Cooperation 59 31 1993

Prob 62 55 1950

best2sbest 74 87 1761

PAWS Non-Cooperation 54 67 2090

Prob 51 63 2139

best2cbest 60 41 1990

Portfolio Non-Cooperation 63 41 1928

Prob 62 55 1950

cbest2rand 70 69 1821

5.2 Weighted Partial MaxSAT

We conducted experiments using crafted and random instances. The first dataset
is a collection of 234 crafted instances used regularly in the annual MaxSAT
competitions: staff-scheduling (12), auctions/auc-paths (20), auctions/auc-
scheduling (20), min-enc/planning (30), warehouses (18), casual-discovery (35),
csg (10), random-net (32), set-covering (45), mip-lib (12).

For the second dataset, we followed a similar approach as [13] and used
makewff [24] to generate 270 uniform random weighted partial MaxSAT
instances around the phase transition, i.e., 90 3-SAT instances, 90 5-SAT
instances, and 90 7-SAT instances; and the number of variables per instance
ranges from 2000 to 4000 (3-SAT), 1000 to 3000 (5-SAT), and 300 to 500
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(7-SAT). For each random instance we randomly split clauses into two disjoint
sets with hard and soft clauses. The number of hard clauses varies between
10%–40% of the total clauses in the problem.

After a preliminary experimentation we decided to use multiple copies of
AdapNovelyt+ to build our parallel portfolio for the random dataset. We would
like to remark that WalkSAT and G2WSAT reported a poor performance and
were unable to find feasible solutions for this problem family (i.e., satisfying all
hard clauses). Alternatively, we use AdaptNovelty+, WalkSAT, and G2WSAT
for crafted instances, so that we build our portfolios for crafted instances as
follows:

– 4 Cores: AdaptNovelty+ (2 cores), WalkSAT (1 core), and G2WSAT (1 core);
– 8 Cores: AdaptNovelty+ (3 cores), WalkSAT (2 cores), and G2WSAT (3

cores).

We compare our cooperative algorithm against the following state-of-the-art
local search solvers (with their recommended parameters): Dist, CCEHC, CCLS,
Prob, and PNorm.4 We remark that we use the same configurations for all our
portfolios using the UBCSAT library. Unfortunately, Dist, CCEHC, CCLS do
not support parallelism, and therefore, the only feasible parallel option for these
solvers is the parallel portfolio without cooperation.

We conducted this set of experiments in the Microsoft Azure Cloud using
DS4 v2 virtual machines with 28 GB of RAM and 8 cores at 2.40 Ghz Intel Xeon
Processors E5-2673 running ubuntu. We ran each solver 5 times on each instance
(each time with a different random seed) with a 5-min wall-clock timeout (300 s)
for each experiment. For each pair 〈instance, solver〉 we compute the median
time and solution quality over all 5 runs. Furthermore, we report the number of
instances a given solver finds the best solution among all the solvers. We restart
our local search solveres in all cooperative portfolios (i.e., PNorm, best2rand,
and best2cbest) every 106 iterations or flips.

We start our evaluation with Fig. 5, we compare the performance of best2rand
(cooperative portfolio) vs. Portfolio (non-cooperative portfolio) with eight cores.
In both cases we use the same reference algorithms to build the portfolio.

As it can be seen in the figure, the cooperative framework implementing
path relinking helps to considerably improve performance. For random instances
(Fig. 5(a)) best2rand outperforms Portfolio for 128 instances; for 22 instances
both solvers report the same solution cost; and only for 28 instances Portfolio
outperforms best2rand. Alternatively, for crafted instances (Fig. 5(b)) best2rand
outperforms Portfolio for 73 instances; Portfolio outperforms best2rand for 106
instances; and interestingly the non-cooperative portfolio only outperforms the
cooperative one for 10 instances. It is also worth mentioning that best2rand is
faster than Portfolio when both parallel solvers report the same solution cost,
i.e., 13 and 47 times faster for random and crafted instances.

4 In this paper, we use the implementation of Dist, CCEHC, CCLS, Prob and PNorm
available in the SAT competitions and the website of the authors.



94 P. Jarvis and A. Arbelaez

(a) Random instances. (b) Crafted instances.

Fig. 5. best2rand vs. Portfolio. Proportion of instances where the best2rand is better
(resp. worst and equal) than Portfolio (counterpart portfolio without cooperation).

Table 4 presents further experimental results with the performance of sequen-
tial and parallel algorithms with and without cooperation using 4 and 8 cores
for random instances. We recall that for random instances we build our parallel
portfolio with and without cooperation using AdaptNovelty+ (denoted as Port-
folio in the table), and we omit the performance of WalkSAT and G2WSAT as
these two solvers are unable to find feasible solutions for this problem family.
Actually, the sequential version of the solvers in UBCSAT are unable to find
the best solution for random instances (i.e., an assignment for the variables that
satisfies all hard clauses), while CCLS and CCEHC solve 2 instances.

These results confirm that the cooperative approach with path relinking out-
performs its counterpart portfolio with existing cooperative policies and without
cooperation. For instance, best2rand solves (with 8 cores) respectively 36 and 32
more instances than the reference portfolio without cooperation (i.e., Portfolio)
and PNorm.

As expected our non-cooperative portfolio is considerably weaker than CCLS
(best sequential solver). However, adding our suggested cooperative framework
leads to substantial performance improvements. As a result of that, our cooper-
ative portfolio greatly outperforms the parallel version of CCLS, e.g., best2rand
solves 7 and 16 more instances than CCLS with 4 and 8 cores.

We now switch our attention to crafted instances (Table 5). In this experi-
ment, we include experimental results for our reference sequential solvers from
UBCSAT (i.e., WalkSAT, G2WSAT, and AdaptiveNovelt+) as these solvers
report competitive performance against modern local search solvers (i.e., CCLS,
Dist, and CCEHC ) for the Weighted Partial MaxSAT problem. In this dataset,
it can be observed that CCEHC is the best sequential solver, reporting 109
instances with the best performance, followed by Dist (88 instances), and Adap-
tiveNovelty+ (74 instances).

Similarly to random instances, our cooperative solver with path relinking
outperforms its counterpart solvers PNorm (cooperative solver) and Portfolio
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Table 4. Results for random instances.

Algorithm Sequential 4 cores 8 cores

Time (s) Best Time (s) Best Time (s) Best

best2rand – 0 189.6 22 157.4 54

best2cbest – 0 176.2 20 185.5 49

PNorm – 0 149.8 7 162.9 22

Portfolio – 0 114.1 6 166.3 18

CCLS 183.9 2 143.3 15 139.6 38

Dist 2.3 1 108.1 7 108.4 14

CCEHC 266.5 2 116.1 7 125.4 16

Table 5. Results for crafted instances.

Algorithm Sequential 4 cores 8 cores

Time (s) Best Time (s) Best Time (s) Best

best2rand 49.2 74 56.6 113 57.3 123

best2cbest 49.2 74 51.3 110 87.0 138

PNorm 49.2 74 38.8 101 38.4 103

Portfolio 49.2 74 35.4 98 26.2 99

AdaptNovelty+ 49.2 74 40.8 86 42.9 91

WalkSAT 10.2 41 12.6 44 20.3 48

G2WSAT 25.8 57 16.1 60 12.1 61

CCLS 4.5 45 11.3 50 9.7 50

Dist 14.7 88 11.4 94 27.3 108

CCEHC 15.1 109 13.0 115 18.7 121

(parallel portfolio without cooperation). For instance, bets2rand solves 9 and 12
more instances than PNorm and Portfolio with 8 cores. CCEHC is the best port-
folio with 4 cores solving 115 instances, 2 more than best2rand. This performance
difference is mainly because CCEHC is considerably better (for this dataset)
than our sequential algorithms from the UBCSAT library. Finally, best2cbest
leads the ranking (with 8 cores) by solving 17 more instances than the parallel
portfolio with the best sequential solver (i.e., CCEHC ). Certainly, this perfor-
mance improvement comes from our path relinking cooperative framework.

Finally, Figs. 6 and 7 show the cactus (i.e., number of solved instances with
given a time limit) plot for 8-core portfolios for random and crafted instances.
best2rand (b2r) is the best parallel solver, the second place is for best2cbest (b2c),
and the third place is for CCLS. On the other hand, for crafted instances (Fig. 7)
best2cbest and best2rand are the most effective solvers.
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Fig. 6. Cactus plot for 8-core portfolios with random instances.

Fig. 7. Cactus plot for 8-core portfolios with crafted instances.

6 Conclusions and Future Work

In this paper, we proposed a cooperative framework using path relinking, a well-
known technique to combine solutions in meta-heuristic search. The algorithm
exploits parallelism by executing multiple local search algorithms in parallel,
at each restart point, instead of classically generating a random solution to
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start with, we propose the use of path relinking to carefully craft new starting
solutions.

Extensive experiments on a large number of instances for the SAT and
Weighted Partial MaxSAT problems suggest that our new cooperative framework
outperforms its counterpart parallel portfolio with and without cooperation. Fur-
thermore, we have seen improvements for parallel portfolios with multiple copies
of the same algorithm and parallel portfolios with different algorithms.

In the future, we would like to investigate the use offline and online tuning
of the pd parameter to balance the diversification vs. intensification trade-off.
On the one hand, for the offline case, we plan to explore automatic tools such as
ParamLS [10] and F-RACE [4]. On the other hand, for the online case, we would
like to investigate the use of reinforcement learning for self-adaptive tuning of the
pd parameter. Finally, we would like to investigate the use of supervised machine
learning to identify the best set of algorithms for a given problem instance [3].
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Abstract. Dynamic Compartmental Models are linear models inspired
by epidemiology models to study Multi- and Many-Objective Evolution-
ary Algorithms dynamics. So far they have been tested on small MNK-
Landscapes problems with 20 variables and used as a tool for algorithm
analysis, algorithm comparison, and algorithm configuration assuming
that the Pareto optimal set is known. In this paper, we introduce a new
set of features based only on when non-dominated solutions are found
in the population, relaxing the assumption that the Pareto optimal set
is known in order to use Dynamic Compartment Models on larger prob-
lems. We also propose an auxiliary model to estimate the hypervolume
from the features of population dynamics that measures the changes of
new non-dominated solutions in the population. The new features are
tested by studying the population changes on the Adaptive ε-Sampling
ε-Hood while solving 30 instances of a 3 objective, 100 variables MNK-
landscape problem. We also discuss the behavior of the auxiliary model
and the quality of its hypervolume estimations.

Keywords: Compartmental models · Modeling · Multi-objective
optimization · Population dynamics · Hypervolume estimation

1 Introduction

Dynamic Compartmental Models (DCMs) [8,9] are linear compartmental mod-
els that track population dynamics in Multi- and Many-Objective Evolutionary
Algorithm (MOEAs). They are based on epidemiology models, mainly the SIR
model [4]. In the SIR model, a population of individuals is broken in groups
assigned each to a compartment of the model in accordance to their health
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status, which changes as time progresses. This is captured by the model equa-
tions and parameters. Similarly, the goal of a DCM is to capture the changes
of the population focusing on the dominance relationship between individuals.
Each group or compartment represents how many are in a particular state of
domination. The interaction between compartments and the rates of interaction
is captured by the equations that defined the model and its parameters. How
membership to a compartment is defined represents a feature on the population,
and different sets of features allow to explore the same algorithm, problem, and
configuration from other perspectives.

Two and three compartments DCMs have been successfully used to study and
explain in detail the dynamics of multi-objective evolutionary algorithms. DCMs
do not provide a direct estimation of performance of an algorithm expressed in
terms of well known performance estimators such as hypervolume, generational
distance, inverse generational distance, and others. To associate dynamics to
performance, DCMs require that at least one of the compartments relates to some
rate of improvement of the algorithm, from which a known performance metric
can be correlated or estimated. Previous works using DCMs have focused on
problems where the Pareto optimal set is known and have therefore used features
associated to rates of improvement of the algorithm that require knowledge of
whether a solution is Pareto optimal or not. Although DCMs on these problems
have served to gain knowledge about the working principles of multi- and many-
objective evolutionary algorithms, in order to use DCMs on real world scenarios,
where the set of Pareto optimal solutions is unknown, new sets of features and
ways to estimate measures of performance from features of population dynamics
are required.

From this standpoint, in this work, we introduce new features focusing on
when non-dominated solutions appear in the population to define the com-
partments of the model. In particular, we define a three compartments DCM
where the population is divided into (1) new non-dominated solutions, (2) non-
dominated but not new solutions, and (3) dominated solutions. The goal of these
features is to keep track of how many new solutions appear in each generation,
which serves to estimate the rate of progress of the algorithm. These features
are useful whether the problem is enumerable or not. In addition, we propose an
additional model to estimate a performance metric, the hypervolume achieved by
an algorithm, from the features of population dynamics, i.e. new non-dominated
solutions. An effective way to estimate performance from features of dynamics
opens new venues to apply DCMs beyond algorithm analysis and understanding.

The paper is organized as follows. Section 2 describes in more detail the
DCMs, the proposed new feature set and how to relate them to performance.
Section 3 covers the experimental results to test the new features with the DCMs
and the HV model. Section 4 concentrates on the proposed model for estimation
of performance, and analyzes it on more configurations. Finally, in Sect. 5 we
resume the work done and propose some future directions to expand it.
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2 Methodology

2.1 Dynamic Compartmental Models for Multi-objective
Evolutionary Algorithms

Dynamic Compartmental Models (DCM) are mathematical models that simulate
how individuals in different compartments in a population interact and affect the
instantaneous composition of the compartments. Here, the assumptions are that
the population can be divided into compartments and that every individual in
the same compartment has the same characteristics. The rates of interaction
between compartments are known as the parameters of the model.

zt yt

xt

γ̄

γ

β̄ β ᾱα

Fig. 1. A Three compartment DCM

Linear compartmental models of up to three compartments have been used
to study the population dynamics of evolutionary multi-objective algorithms
using the Pareto dominance status of the individuals as criteria to define the
compartments. Figure 1 illustrates a three compartments DCM, which can be
described by the following equations,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xt+1 = (1 − (α + β))xt + ᾱyt + β̄zt

yt+1 = αxt + (1 − (ᾱ + γ))yt + γ̄zt

zt+1 = βxt + γyt + (1 − (β̄ + γ̄))zt
P = xt + yt + zt,

(1)

where xt, yt and zt are variables associated to the number of individuals in the
compartments at time (generation) t and α, β, γ, ᾱ, β̄, and γ̄ are the interaction
rates between compartments.

Each compartment size at time t + 1 depends on its size and the size of all
other compartments at time t modified by some constant, i.e a parameter of the
model. From the system of Eq. (1) and its graphical representation on Fig. 1,
we see that any change in one compartment will be distributed into the other
ones, therefore the total number of individuals remains constant. This models the
dynamics of an evolutionary algorithm with a fixed population size throughout
the generations. It is important to note that the model tracks changes between
compartments, not specific individuals.
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The parameter values of the model are estimated (learned) from the data
generated by the algorithm which dynamics we want to capture. The selected
algorithm is run tracking on each generation the features (compartments sizes)
we choose for our model. The output data relevant to these features is used to
fit the model’s parameters. Thus, the parameters of the model are linked to a
particular algorithm set with a given configuration on a problem instance or a
subclass of problems. If the algorithm, its configuration or the problem changes,
parameters naturally will change too.

DCMs have been successfully used to study and explain in detail the dynam-
ics of multi- and many-objective evolutionary algorithms, gaining knowledge
about the working principles of the various approaches to design these algorithms
[8,9]. DCMs were used, for example, to study how multi- and many-objective
evolutionary algorithms are able to continue discovering Pareto optimal solutions
once their population is full of them in order to achieve a high resolution of the
Pareto optimal set (POS). To answer this question the study was conducted
on problems where the POS could be enumerated [9], defining the three com-
partments so that the population was divided into (1) newly discovered Pareto
optimal solutions, (2) non-dominated but not new Pareto optimal solutions, and
(3) dominated solutions. The union of the first two compartments is the set
of non-dominated solutions in the population. Verifying that a non-dominated
solution is also a Pareto optimal solution and that it has been seen by the algo-
rithm for the first time in the current generation allows dividing non-dominated
solutions into the two first compartments mentioned above. Of course, this can
be done if and only if the POS is known.

As mentioned before, DCMs directly do not estimate the performance of
an algorithm in terms of well known and commonly used estimators such as
hypervolume, generational distance, inverse generational distance, and others.
However, to associate the dynamics to performance is possible to have a feature
set where at least one of them can carry information about the rate of improve-
ment of the algorithm, which then can be correlated or used to estimate a more
common performance metric. In [8,9] the first compartment referred above, i.e.
the number of new Pareto optimal solutions in the population, provides the rate
of discovery of Pareto optimal solutions and gives a rate of improvement of the
algorithm. Thus, in these works, this feature was correlated to performance.
Namely, it was shown that the accumulation of newly discovered Pareto optimal
solutions is highly correlated to the hypervolume. In other words, it is possible to
look at this feature to decide with high confidence what algorithm (or algorithm
configuration) is better than others.

DCMs can also be used to predict future behavior and performance of the
algorithm. That is, running the DCM for additional generations for which the
actual algorithm has not been yet run can be estimated with high confidence, for
example, whether increasing the fitness evaluation budget for a giving algorithm
may translate into improved performance. This is quite relevant to application
domains where fitness is computationally expensive, such as simulation-based
optimization.
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Another important potential use of DCMs is for algorithm configuration and
algorithm selection [9]. For example, let us assume we want to configure pop-
ulation size for a given budget of fitness evaluations. A common approach is
to run the algorithm several times, each time with a different combination of
population size and number of generations. Another alternative is to run the
algorithms in a sample of configurations, learn DCMs for each one of them, and
infer new models for intermediate configurations by interpolation of the models’
parameters.

Initial explorations of the application of DCMs are promising. However, the
above studies have been done on small landscapes and using a feature that
requires knowledge of the Pareto optimal set. In order to use DCMs in real-world
scenarios, dynamics should relate to performance using features that correlate
to a rate of improvement of the algorithm but do not require to know whether
a solution is optimal or not.

In the next sections, we introduce a set of features that can be used for such
purpose together with a method to estimate performance from one of them.

2.2 The NDNew-NDOld-DOM Feature Set

To explore DCMs in large problems, we define three compartments so that the
population is divided into (1) new non-dominated solutions, (2) non-dominated
but not new solutions, and (3) dominated solutions. These compartments or fea-
tures are called for short Non-Dominated New, Non-Dominated Old, and Dom-
inated. A solution is counted as Non-Dominated New at generation t only if it
is a non-dominated solution in the population but did not appear in any previ-
ous generation from 0 to t − 1. A solution is counted as Non-Dominated Old at
generation t if it is a non-dominated solution and has also appeared in a pre-
vious generation. A solution is counted as Dominated at generation t if it is a
dominated solution in the population. A more compact explanation can be seen
in Table 1. While this set of features does not offer directly a way to measure
performance, it still gives an idea of the progress of the search, since we expect to
see the number of New Non-Dominated solutions to go down when the algorithm
is converging.

It is important to mention that when we count a Non-Dominated solution at
generation t, it is non-dominated relative to the population at that generation.
It may be that at a future generation that solution becomes dominated. We
could maintain an updated list of solutions non-dominated so far and check
non-dominated solutions in the current population against it before counting it.
However, this could add substantial computational overhead and it is not clear
whether this could add any extra value to the feature. As it is defined now, it still
serves the purpose of showing us from the algorithm perspective if the search is
still moving, i.e. it has not stagnated.
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Table 1. Proposed features. F1: first front containing all the non-dominated solutions.
t: current generation. P : whole population including F1.

Abbr. Formula Comment

NDNew {x : x ∈ F1(t) ∧ x �∈ ∪t−1
k=0F1(k)} New non dominated solutions

NDOld {x : x ∈ F1(t) ∧ x ∈ ∪t−1
k=0F1(k)} Old non dominated solutions

DOM {x : x ∈ P ∧ x /∈ F1(t)} Dominated solutions

2.3 Performance Metrics and Features

The new features of dynamics do not provide a direct measure of the algo-
rithm performance from the model. One solution to this issue is creating an
auxiliary model that takes in some of the features and an initial evaluation of
a performance metric to estimate this value at any generation. In this work,
we estimate the hypervolume indicator (HV) [11], more specifically the hyper-
volume calculated over the Non-Dominated set of all solutions in the popula-
tion at generation t and previous ones. The reference point is set to (0,0,0).
Figure 2 illustrates the model learning process of population dynamics and per-
formance features from some sampled configurations. We try a model of the form
HVt+1 = HVt + μ × some feature /t.

Fig. 2. Scheme of the model learning process of population dynamics and performance
features from some sampled configurations.

We used Grammatical Evolution, a tool from Genetic Programming, that
searches for expressions instead of programs. To evaluate which expression gives
the best model, we use the mean square error between the model and our refer-
ence data, namely the number of found NDNew, NDOld and DOM solutions in
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generation t and the corresponding hypervolume HV for generation t + 1. The
first step is defining a grammar than can derive in the type of expression we
need, in this case, μ × some feature/t, which we will refer to as ΔHVt, and is
presented in Fig. 3.

〈expr〉 |= 〈expr〉〈op〉〈expr〉 | -1*〈value〉*〈var〉 | 〈value〉*〈var〉
〈op〉 |= + | - | × | ˆ | /

〈var〉 |= NDNew | NDOld | t

〈value〉 |= 〈cat〉
〈cat〉 |= 〈int〉.〈int〉 | 〈int〉
〈int〉 |= 〈int〉〈number〉 | 〈number〉

〈number〉 |= [0-9]

Fig. 3. BNF Grammar used to search for an expression that relates the hypervolume
to the features.

This grammar can generate expressions such as 0.833 × NDNew/NDOld or
−5×NDOld×t. To implement this part we used gramEvol [10] a library available
in the R language. After some tries with this library the suggested expression
for the model was:

HVt+1 = HVt +
μ × NDNewt

t + 1
, (2)

The model can be interpreted as the HV will grow on generation t+1 propor-
tionally to how many New Non-Dominated solutions were found at generation
t times a constant μ and inversely to the next generation number. This makes
sense as the impact of finding solutions at the beginning will surely make the
hypervolume value jump, while at the end we can think that these newly found
solutions probably fill in gaps having very little effect.

3 Experimental Results

3.1 Test Problem and Experiment Settings

Testing these new features requires generating some data by running an MOEA
with different configurations on a given problem. The MOEA we selected is the
Adaptive ε-Sampling ε-Hood (AεSεH), a Many-objective Optimization Evolu-
tionary Algorithm that can also handle Multi-objective problems. Its approach
is Pareto dominance relaxation in the form of ε-dominance to determine which
solutions are kept and how parents are selected for the next generation [1]. The
crossover is two-point with rate pc = 1, bit flip mutation with rate pm = 1/N ,
the reference neighborhood size is set to 20 individuals and the ε-dominance
function is additive (f ′ = f + ε).
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The chosen problem is the combinatorial multi-objective problem generator
MNK-Landscapes [2]. Its parameters are the number of objectives M, number of
variables N and K, a value that allows setting the ruggedness by determining the
number of epistatic interactions between variables. This is, it determines how
much other variables affect the fitness contribution of a given variable. In MNK-
Landscapes terms, an M = 3, N = 100 and K = 5 problem is a 3 objective, 100
variables one where each variable fitness contribution will be affected by other 5
variables values defined as part of the problem. We generated 30 landscapes or
sub-classes of an M = 3, N = 100 and K = 5 problem, each time the epistatic
interactions are determined at random when the problem is created.

The data for the models is then generated by running AεSεH on each of the
30 landscapes, with different configurations, i.e, population sizes ranging from
3000 to 10500, with increments of 2500. On each configuration, the maximum
number of Function Evaluations (FE) allowed was of 600000, which determined
the maximum number of generations to run the algorithm (FE = Population
Size × tmax). In this section, results will be shown for models that only have
seen data until 400000 FE, and in the next one, we will present results with
other FE limits.

Lastly, when we talk about the models’ estimation we want to emphasize
that for our DCMs we give only one measured value, the ones obtained from
generation 0, i.e. the initial population. Here is also where we measure the first
hypervolume value used to start the HV model. From there, both models use
the estimation they generated for generation t to calculate the following one in
t + 1, and so on, until the required number of generations tmax is met.

3.2 Fitting of the Models

The fitting process, was done with the Levenberg-Marquardt Non-Linear Least
Squares algorithm [6,7] using the R language implementation [3]. The input for
this process is the feature data from the algorithms and the system of equations
(1), obtaining the parameters for some configurations with different popula-
tion sizes, (3000, 5500, 8000, 10500) and varying the FE limits, (300000, 400000,
500000, 600000).

We took some considerations while doing the fitting process. Instead of using
the feature data from each landscape’s data, we take the average value of the
features at each generation, including the HV value. This, at least for the DCM
had a more significant impact on producing better estimations.

Cross-validation was also introduced, so the obtained parameters are not a
product of over-fitting to our generated data and would generalize better in the
presence of new and unseen data. We choose k-fold cross-validation and apply
it during DCMs and HV model fitting process. In k-fold cross-validation, the
dataset is split into k subsets of equal size, each subset is used only once as a
test set and k − 1 times as part of the training set. For our data, we have 30
runs of the algorithm, corresponding each one to a different landscape. To ensure
an 80/20 split between training and testing data, we select k = 5, a common
recommendation for this method as suggested in [5]. So each fold is composed
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of one subset of 6 landscapes worth of test data, and the remaining 4 subsets,
provide 24 landscapes worth of training data. The score obtained on each set is
measured by the goodness of fit or R2, a value between 0 and 1 that indicates
how much of the variance present in the data is explained by the model.

Under cross-validation, the fitting process per configuration is done only with
the data from the training set, and the resulting parameters estimation ability is
measured on the test set, repeated for each fold. We report in Table 2 the average
R2 of the 5 scores obtained for the training and test datasets for all population
sizes and considering only 400000 FE available. Since at the end of the process
we also have 5 sets of parameters, we take the average and keep the result as
the best parameters found for that configuration and number of FE.

From the table, we can see that the R2 is overall higher than 0.64 for the
features NDOld, DOM and HV for both training and testing sets, while the
NDNew feature has a lower score when compared to the other features. To
understand better this situation, we can refer to Figs. 4, 5, 6 and 7 that show
the NDNew-NDOld-DOM feature measured values and the DCM estimation for
all the considered population sizes. In these plots, we are using the obtained best
parameters and creating the estimations considering all available landscapes.

Table 2. R2 values obtaining during the model training and testing. Obtained doing
k-fold cross-validation with k = 5. Considering only 400000 FE.

Training R2 Testing R2

Population NDNew NDOld DOM HV NDNew NDOld DOM HV

3000 0.69580 0.86617 0.84022 0.70278 0.85538 0.82754 0.66148 0.66104

5500 0.65387 0.82545 0.80737 0.66051 0.81289 0.79353 0.86231 0.86223

8000 0.64272 0.87690 0.86889 0.64110 0.85950 0.85072 0.91488 0.91099

10500 0.68936 0.87161 0.86475 0.65749 0.86807 0.86062 0.88234 0.87566

From a first look at the figures, we can see that the model estimation (red
points), goes through the middle of the measured data (black points) since the
fitting was done on the average values for the features. Not doing so, produced
overestimations after the hump in the feature NDNew graph, which translated
into a poor HV estimation as the other model depends on this value. The lower
R2 in this feature, when compared to the other two, could be attributed to the
higher overall variance present as appreciated in the figure. An understandable
situation, since the number of newly found non-dominated solutions, can change
very quickly.

It is also interesting to notice how this simple model can adapt to different
configurations, for larger population sizes the number of generations diminishes
and the fitted model can keep up with the different rates of change in each case.

Now we move to the HV model results, in Fig. 8 we show the estimation
against measured values for all sampled population sizes. As can be seen, the
model seems to follow the change of the hypervolume until a certain point from
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Fig. 4. Non-Dominated New, Non-Dominated Old and Dominated Solutions DCM’s
estimation vs Measured data for a configuration with Pop. Size 3000 and 400000 FE.

Fig. 5. Non-Dominated New, Non-Dominated Old and Dominated Solutions DCM’s
estimation vs Measured data for a configuration with Pop. Size 5500 and 400000 FE.

Fig. 6. Non-Dominated New, Non-Dominated Old and Dominated Solutions DCM’s
estimation vs Measured data for a configuration with Pop. Size 8000 and 400000 FE.

which there is a tendency to overestimate in all configurations. Looking aside
from the overestimation in the last few generations, it seems to follow the overall
tendency of the hypervolume, which growth seems correlated to the NDNew
feature.
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Fig. 7. Non-Dominated New, Non-Dominated Old and Dominated Solutions DCM’s
estimation vs Measured data for a configuration with Pop. Size 10500 and 400000 FE.

4 Discussion

In the last section, we discussed how to create and fit both, the Dynamic Com-
partmental Model and the HV model. Here we want to explore how well they can
to follow the trend in the performance data. We will look at the estimated accu-
mulated HV at the end of a run for different population sizes and the maximum
number of Function Evaluations allowed. As mentioned before, the hypervolume
at each generation is calculated over all non-dominated solutions found until
that generation t, therefore we refer to it as accumulated HV. In Figs. 9, 10, 11
and 12 we have two box plots per population size, the one in red represents the
measured data (M) for all 30 landscapes while the one in blue is the HV model
estimation (E) for the same 30 landscapes with each figure showing results con-
sidering 300000, 400000, 500000 and 600000 FE.

Looking at the big picture, we notice that for every variation of the FE
the measured data indicates a downward trend. That is, even though we keep
adding more FE so the largest population sizes could benefit with more time
to get a better convergence, this does not translate into a better overall final
HV. Thus, in this particular problem, it seems that a population size of 3000
is enough to ensure a good final hypervolume. If we look now at the model
estimation, we notice a clear overestimation for all population sizes, though it
maintains the ordering, replicating the trend seen in the data. This is particularly
important if we want to use the models for any analysis and to distinguish which
configurations perform better than others.

If we focus on the plot of the NDNew feature on Figs. 4, 5, 6 and 7, we see that
our DCM learned the mean of the data and this still produces overestimation as
can be checked in the plot against the measured data in Fig. 8. In fact, for all
the variations in FE, the DCM keeps going through the mean and still ends in
an overestimation when used by our current HV model.
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Fig. 8. HV model estimation vs Measured data for sampled configurations with Pop.
Size [3000,5500,8000,10500] and 400000 FE.

From the formulation, it seems that we are on the right track and there is a
connection between newly discovered solutions appearance rate and the growth
of the HV, but our parameter μ, or even the current generation number do not
seem enough to keep this estimation closer to the measured values. In particular,
it is important to tell the model that the weight of newly found solutions varies
depending on what stage we are in the algorithm’s run. In the beginning, it is
not strange to see the HV grow quicker with each newly found solution, while by
the end we expect these solutions to fill gaps on a set of non-dominated solutions
that form a good approximation set for this problem.

Even with the current formulation, it is still interesting to see how a simple
feature such as the number of newly discovered non-dominated solutions per
generation can carry enough information that can be translated into what kind
of trend we can expect of a performance metric such as the hypervolume. More
so if we remember that for all the estimations done with the models, they only
start with one piece of measured data, and from there is purely the captured
dynamics and behavior of the algorithm that guides the process.
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Fig. 9. Comparison between the final
HV for all landscapes on 300000 FE.

Fig. 10. Comparison between the final
HV for all landscapes on 400000 FE.

Fig. 11. Comparison between the final
HV for all landscapes on 500000 FE.

Fig. 12. Comparison between the final
HV for all landscapes on 600000 FE.

5 Conclusions and Future Work

In this work we proposed a new set of features that allows Dynamic Compart-
mental Models to be used on larger multi-objective problems where the Pareto
optimal set is not known or cannot be obtained through enumeration, remov-
ing the assumption that the Pareto optimal set is known made by previously
proposed feature sets. Parting from the knowledge that features that capture
the rate of improvement of an algorithm can be correlated to a performance
metric, we presented and tested a possible auxiliary model that can estimate
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and capture the general trend of the hypervolume metric. We designed a simple
HV model that can estimate, with good results, the value of the HV at the next
generation from the HV value at the current generation, the number of newly
found non-dominated solutions, the current generation and a parameter.

We tested DCM and HV models on several instances of the same class of
problem, and showed in terms of goodness of fit score and visually the estimations
produced by them. We verified that the DCM with the new set of features
successfully learns the mean of the data, similarly to when it is used with other
sets of features reported in the past. On the other hand, the HV model had
a tendency for overestimation but still keeping the ordering when applied on
different configurations. This allows selecting among them just by looking at the
values of HV estimated by the model.

For future work, we want to revise the formulation to explore control mecha-
nisms to discriminate between the algorithm’s initial and final stages, so the HV
estimation can be smoother and closer to the measured values. We also plan to
introduce interpolation of the parameters and use it for selecting configurations,
exploiting the relationship between a set of parameters and the configuration
and algorithm from which it was obtained.
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Abstract. The field of Automated Machine Learning (AutoML) has as
its main goal to automate the process of creating complete Machine
Learning (ML) pipelines to any dataset without requiring deep user
expertise in ML. Several AutoML methods have been proposed so far,
but there is not a single one that really stands out. Furthermore, there is
a lack of studies on the characteristics of the fitness landscape of AutoML
search spaces. Such analysis may help to understand the performance of
different optimization methods for AutoML and how to improve them.
This paper adapts classic fitness landscape analysis measures to the con-
text of AutoML. This is a challenging task, as AutoML search spaces
include discrete, continuous, categorical and conditional hyperparame-
ters. We propose an ML pipeline representation, a neighborhood defini-
tion and a distance metric between pipelines, and use them in the evalua-
tion of the fitness distance correlation (FDC) and the neutrality ratio for
a given AutoML search space. Results of FDC are counter-intuitive and
require a more in-depth analysis of a range of search spaces. Results of
neutrality, in turn, show a strong positive correlation between the mean
neutrality ratio and the fitness value.

Keywords: Fitness landscape analysis · Automated Machine
Learning · Fitness distance correlation · Neutrality

1 Introduction

The recent hype on machine learning (ML) and its application to a wide range
of problems that are close to the general public has increased the interest in
the area and, consequently, the number of people using ML to solve a wide
range of problems [24]. However, the performance of an ML solution to a spe-
cific learning problem depends heavily on the choice of data preprocessing and
learning algorithms, as well as on their hyperparameters. Although the choice of
an ML solution can be manually made, this is a hard and not effective process.
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Considering the number of ML algorithms, combinations among them and their
associated hyperparameters, the number of choices can grow exponentially. Fur-
thermore, manual tuning requires an inherent expertise in the choice of methods
and the possible values of their hyperparameters [24]. Hence, it is a challenging
task for people who have little knowledge in ML.

The area of Automated Machine Learning (AutoML) has emerged as a
solution to the aforementioned issue, becoming very popular over the past
decades [8]. Its main objective is to automate the process of recommending or
creating complete machine learning pipelines to any dataset without requiring
deep user knowledge on the learning task itself [8]. A machine learning pipeline is
a sequence of tasks to follow when performing data analysis in a specific dataset.
It can include preprocessing steps (e.g., data cleaning, data discretization and
feature selection [23]), a machine learning model (such as a classifier or a regres-
sor), and postprocessing steps that may help to combine the results of several
ML models (for instance, a voting method [23]).

Several optimization methods have been proposed to solve the problem
of automatically generating ML pipelines, including those based on Bayesian
optimization (e.g., Auto-WEKA and AutoSKLearn), evolutionary search (e.g.,
RECIPE and TPOT), multi-fidelity optimization (e.g., Hyperband) and hier-
archical planing (e.g., ML-Plan) [8,24]. However, there is not a single one that
seems to outperform all the others and, in most cases, very similar results are
obtained by different methods.

AutoML methods based on optimization techniques rely on two main compo-
nents: a search space and an optimization method. The search space comprises
the main building blocks (e.g., the preprocessing methods, the learning mod-
els, the postprocessing approaches and their associated hyperparameters) from
previously designed ML pipelines. The optimization method is responsible for
finding the best combinations of ML components to build the most effective
pipelines according to a quality metric to a given dataset.

There is still very little knowledge on how the characteristics of the search
space impact AutoML methods. These search spaces are difficult to analyze, as
they include discrete, continuous, categorical and conditional variables [8]. A
better understanding of AutoML search spaces can help to explain the perfor-
mance of existing algorithms and lead to the development of new ones, designed
to explore the peculiarities of these spaces [14].

One way to analyze the characteristics of the search spaces is through fitness
landscape analysis (FLA) [19]. The fitness landscape of a problem is given by the
values of fitness obtained by all possible solutions present in the search space. The
idea of FLA methods is to gain a better understanding of algorithm performance
on a related set of problem instances, creating an intuitive understanding of how
a heuristic algorithm explores the fitness landscape. However, as AutoML search
spaces contain mixed types of variables, performing FLA in this case is more
challenging because the notion of neighborhood or distance function needed by
FLA metrics is not straightforward.
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Fitness landscape analysis of algorithm configuration and machine learning
pipeline generation is still in its early stages [7,15]. In this paper, we propose
a way of measuring the distance between machine learning pipelines and adapt
typical FLA metrics to the complex search spaces of AutoML. We then adapt the
fitness distance correlation (FDC) and the neutrality ratio metrics for AutoML
search spaces. Results of FDC are initially counter-intuitive and require a more
in-depth analysis of a range of search spaces. Results of neutrality, in turn, show
a strong positive correlation between the mean neutrality ratio and the fitness
value. A next step is to investigate whether this is beneficial or detrimental to
different search methods.

2 Problem Definition

Before defining the fitness landscape of an AutoML problem, we formally define
the problem itself. AutoML can be cast as the Combined Algorithm Selection
and Hyperparameter optimization (CASH) problem [6,20]. Given a set A =
{A(1), A(2), . . . , A(k)} of learning algorithms, where each algorithm A(j) has a
hyperparameter space Λ(j), the CASH problem is defined in Eq. 1. In its original
formulation [20], CASH is defined as a minimization problem. Here we cast it as
a maximization problem, replacing the loss function with a gain function.

A∗
λ∗ ∈ argmax

A(j)∈A,λ∈Λ(j)

1
k

k∑

i=1

G(A(j)
λ ,D(i)

train,D(i)
valid), (1)

where G(A(j)
λ ,D(i)

train,D(i)
valid) is the gain achieved when a learning algorithm A,

with hyperparameters λ, is trained and validated on disjoint training and val-
idation sets D(i)

train and D(i)
valid, respectively, on each partition 1 ≤ i ≤ k of a

k-fold cross-validation procedure. The main idea of this paper is to analyze the
characteristics of the search space of algorithms A and the hyperparameters λ(j)

of each Aj ∈ A.

3 AutoML Fitness Landscape

Stadler [19] defines a fitness landscape as having three components: (i) a set X
of configurations; (ii) a notion X of neighborhood or distance on X, and (iii) a
fitness function f : X → R. The set X of configurations and the neighborhood
definition X define the configuration space of the problem. Depending on X , one
fitness function can be associated with several different fitness landscapes [14].
The next sections discuss these three components in the context of AutoML.

3.1 Configurations

The first component of a fitness landscape is a set X of configurations. In the
case of the AutoML problem tackled in this paper, X corresponds to all valid
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classification machine learning pipelines that can be generated to solve a given
problem. An ML pipeline can be defined as the sequence of algorithms that
transform a feature vector �x ∈ X

d (with d dimensions) into a target vector �y ∈ Y,
which contains discrete values (i.e., class labels) for classification problems [24].

Machine Learning Pipelines: A typical machine learning pipeline is com-
posed of preprocessing steps (e.g., data cleaning and feature selection), a machine
learning modeling step (e.g., a classification or regression algorithm), and some
postprocessing steps that may help to combine the results of several models [23].

For the sake of simplicity, in this first analysis we consider only classification
pipelines composed of up to three preprocessing algorithms and one classifier,
without any postprocessing steps. The pipelines are generated by creating deriva-
tion trees from a proposed context-free grammar (CFG). One of the benefits of
using CFGs [18] to represent the AutoML search spaces is that they organize
prior knowledge (from specialists) about the problem, properly guiding the opti-
mization process. In addition, the grammar also gives flexibility in the definition
of the search space, as the grammar rules can be modified anytime. Finally, the
grammar can introduce semantics along with its syntax, possibly allowing the
evaluation of the complexity of the search space.

The grammar defines the order of the preprocessing algorithms and guar-
antees a classification algorithm is always present in a pipeline. The search
space the grammar defines is composed of 18 preprocessing and 23 classifi-
cation algorithms. Given these algorithms an their associated hyperparame-
ters, the grammar contains 148 terminal symbols and 128 non-terminal sym-
bols and production rules, generating a search space with an estimated size of
7.88e9(feat − 1)2 + 1.62e18(feat − 1) + 1.05e13 pipeline configurations, where
feat is the number of features of the dataset1. The complete grammar and other
supplementary material are available online2.

An example of a pipeline, which is a derivation tree from the grammar,
is shown in Fig. 1, where algorithm names correspond to tree nodes with sharp
edges. Hyperparameter names are represented as rounded rectangles with dashed
lines, whereas their values correspond to the ellipses. In this paper, pipelines are
initialized at random by uniformly choosing production rules from the grammar.

3.2 Neighborhood and Distance Between Pipelines

The second component of a fitness landscape is a notion X of neighborhood or
a distance metric between the elements of the set X of configurations, described
in Sect. 3.1. Considering the complexity of the AutoML search space, which con-
tains categorical, discrete, continuous and conditional parameters, and the lack
of literature on the analysis of such spaces, we propose a simple neighborhood

1 When determining the search space size, for continuous hyperparameters, we simplify
and always consider 100 values, regardless of the size of the interval.

2 https://cgpimenta.github.io/EvoCOP2020 CGPimenta/.

https://cgpimenta.github.io/EvoCOP2020_CGPimenta/
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Fig. 1. Tree representation of a machine learning pipeline.

definition and a distance metric between our tree-based pipelines, adapted from
the metric proposed by Ekárt & Németh for genetic programs [5].

Neighborhood Definition: We defined the neighborhood N(s) of machine
learning pipeline s as the set that contains all trees that result from the applica-
tion of a mutation operator on a random node of the tree (i.e., the selected node
is replaced by another component generated by its parent node on the tree).
Figure 2 shows two neighbors of the pipeline from Fig. 1. Grey subtrees indicate
where the mutation operation was employed. Considering that changing an algo-
rithm by another can have a much bigger impact than changing the value of a
hyperparameter, we define the probability p(x) of choosing a node x from tree
T as the mutation point as a function that increases with the distance from the
root. The exceptions are the terminal symbols (leaves of the tree), which are
only changed when their parent node is selected. In order to do that, we give
a weight w(x) to each node that is directly proportional to the probability of
choosing it, as defined in Eq. 2.

In this way, the root tree (<start> symbol) has weight 1, and the weight
increases according to the level of the node in the tree. In our case, the pre-
processing symbol has weight 2, the classification and preprocessing subgroups
weight 3. The non-terminals representing algorithm names have weight 4 and
those representing hyperparameter names, weight 5. p(x) is then given by Eq. 3.

w(x) =

{
tree level if non-terminal symbol
0 if terminal symbol

(2)
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Fig. 2. Two neighbors of the pipeline from Fig. 1. Grey subtrees indicate mutation
points.

p(x) =
w(x)∑

x∈T w(x)
(3)

Garciarena et al. [7] proposed a similar definition for the neighborhood of
an ML pipeline, where they changed a randomly chosen algorithm or hyperpa-
rameter by another feasible value. The neighborhood we proposed here can be
considered as an extension of their approach, and is based on the typical muta-
tion operator used in grammar-based genetic programming [11]. For example,
the proposed neighborhood can change all preprocessing steps of a pipeline at
once, something the original approach does not allow.
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Distance Between Pipelines: In the context of ML pipelines, the distance
dist(Tx, Ty) between two trees Tx and Ty must reflect the impact of changing
either an algorithm or a hyperparameter. For example, the impact of changing
a linear model by an ensemble for the classification task will probably have a
more significant impact in fitness than changing the number of models used by
the ensemble (a hyperparameter). For this reason, determining the distances
between any two symbols of the grammar is not straightforward and depends on
expert knowledge. In order to define these distances, we classified the symbols
of the grammar into 17 disjoint sets A0, A1, . . . , A16:

– A0: NULL symbol
– A1: <start> symbol
– A2: <preprocessing> symbol
– A3: <classification> symbol
– A4: Imputation algorithms
– A5: Data range manipulation algo-

rithms
– A6: Dimensionality manipulation

algorithms
– A7: Näıve Bayes

– A8: Linear models
– A9: Neural networks
– A10: Nearest neighbors
– A11: Discriminant analysis
– A12: Trees
– A13: Ensembles
– A14: Discrete hyperparamenters
– A15: Continuous hyperparameters
– A16: Categorical hyperparameters

A list of the algorithms in each set is available online (See footnote 2). The set
A0 is reserved to a special NULL symbol, used to treat cases in which a node in a
tree does not have a corresponding node in the other. For i, j ∈ {0, 1, . . . , 16}, the
distance d(x, y) between two symbols x ∈ Ai and y ∈ Aj is defined as a constant

Table 1. Distances d(x, y) between symbols w.r.t. their partitions.

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16

A0 1 0 8 0 4 4 4 0 0 0 0 0 0 0 0 0 0

A1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A2 8 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

A4 4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

A5 4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

A6 4 0 0 0 0 0 1 2 2 2 2 2 2 2 0 0 0

A7 0 0 0 0 0 0 2 1 2 2 2 2 2 2 0 0 0

A8 0 0 0 0 0 0 2 2 1 2 2 2 2 2 0 0 0

A9 0 0 0 0 0 0 2 2 2 1 2 2 2 2 0 0 0

A10 0 0 0 0 0 0 2 2 2 2 1 2 2 2 0 0 0

A11 0 0 0 0 0 0 2 2 2 2 2 1 2 2 0 0 0

A12 0 0 0 0 0 0 2 2 2 2 2 2 1 2 0 0 0

A13 0 0 0 0 0 0 2 2 2 2 2 2 2 1 0 0 0

A14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0.5

A15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0.5

A16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0.5
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that depends on the class a symbol belongs to. If x and y have the same label,
d(x, y) = 0. Table 1 shows the values of the constants used in this work.

Note that to make this analysis possible, the grammar defined here lim-
its the pipelines to have at most three preprocessing algorithms and exactly
one classifier. Given this restriction, we represent a tree Ti with root ri as
Ti = ri(c

(i)
1 , c

(i)
2 , . . . , c

(i)
m ), where the root has m children nodes, denoted by

c
(i)
j , j ∈ {1, 2, . . . ,m}. Each node is represented by its label (i.e., its name) and

can be considered as the root of a subtree. Let us consider Tx as the pipeline
in Fig. 1. rx corresponds to the <start> node. It has two children, c

(x)
1 and

c
(x)
2 , which correspond to the nodes <preprocessing> and <classification>,

respectively. We define a function ch1(N) that returns the first child of node
N . In this example, the <imputation> group is denoted as ch1(c

(x)
1 ), whereas

<bernoulliNB> is given by ch1(c
(x)
2 ).

The distance between two trees Tx and Ty will initially depend on whether
they include preprocessing steps or only a classification algorithm. Equation 4
shows four possible cases: neither Tx nor Ty have preprocessing steps, and only
the distance from the classification algorithm (distclf ) is accounted for (C1);
both trees have preprocessing steps, and we calculate the distances from the two
sides of the tree (distpre and distclf ) (C2); only Tx (C3) or Ty (C4) have a pre-
processing step, so we calculate the distance between the classification subtrees
and add a constant k to the distance, where k = d(<preprocessing>, NULL) is
the distance between the <preprocessing> non-terminal and the NULL symbol,
which is greater than the distance between any two preprocessing algorithms.

dist(Tx, Ty) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

distclf (ch1(c
(x)
1 ), ch1(c

(y)
1 )) C1

distpre(c
(x)
1 , c

(y)
1 ) + distclf (ch1(c

(x)
2 ), ch1(c

(y)
2 )) C2

k + distclf (ch1(c
(x)
1 ), ch1(c

(y)
2 )) C3

k + distclf (ch1(c
(x)
2 ), ch1(c

(y)
1 )) C4

(4)

To the best of our knowledge, the way we calculate the distance between two
preprocessing subtrees cannot be expressed in closed form, and function distpre

is described in Algorithm 1, where children(N) is a function that returns all the
children of node N . Sets A and B are initialized with the preprocessing groups
of trees Tx and Ty, respectively (line 3). The first component of the distance is
calculated as the distance from all groups that are only present in one of the
trees to the NULL symbol (lines 4 and 5). The second component consists of
the distances between groups that are present in both trees (line 6). The loop
in lines 7–16 compares the groups in the intersection. Function get node(l,X)
returns the node in set X whose label is l. For each group, if the algorithms in
trees Tx and Ty are different, we add their distance to the total distance (line
11). If they are the same, we add to the total distance the distance between
the values of their hyperparameters (lines 13 and 14). The total distance is then
returned in line 17.

As an example, consider that Algorithm 1 receives the pipelines from Figs. 1
and 2b as Tx and Ty, respectively. In line 3, set A receives node <imputation>
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and B receives nodes <imputation> and <dimensionality>. Thus, the differ-
ence between the two sets is composed of node <dimensionality> and its dis-
tance to the NULL symbol is added to the total distance. In line 4, intersect
gets the symbol <imputation> and the corresponding nodes in trees Tx and Ty

are retrieved in lines 8 and 9. algA and algB correspond to the same algorithm,
so the distances between the values of their hyperparameters are added to the
total distance.

Algorithm 1. Distance between preprocessing subtrees
1: procedure distpre(Tx, Ty) � The root of Tx and Ty is the <preprocessing> symbol
2: distance ← 0
3: A ← {n | n ∈ children(Tx)}; B ← {n | n ∈ children(Ty)}
4: diff ← (A − B) ∪ (B − A)

5: distance ← distance +
∑|diff|

i=1 d(diffi, NULL)

6: intersect ← A ∩ B
7: for all label ∈ intersect do
8: algA ← ch1(get node(label, A))
9: algB ← ch1(get node(label, B))
10: if algA �= algB then � Different algorithms
11: distance ← distance + d(algA, algB)
12: else � Same algorithm; check hyperparameters
13: hpA ← children(algA); hpB ← children(algB)

14: distance ← distance +
∑|hpA|

i=2 d(ch1(hpAi), ch1(hpBi))

15: end if
16: end for
17: return distance
18: end procedure

Equation 5 handles the case of the distance between the classification algo-
rithms. In the first case of the equation, the algorithms are the same. Thus,
the roots r1 and r2, which correspond to the non-terminals with the names of
the algorithms, have the same number of children, m. In this case, the distance
between the trees is the summation of the distance between the values of the
hyperparameters of each algorithm. If the algorithms are the same, the distance
between the trees is the distance between the algorithms, given in Table 1.

distclf (Tx, Ty) =

{∑m
j=2 d(ch1(c

(x)
j ), ch1(c

(y)
j )) if rx = ry,

d(rx, ry) otherwise.
(5)

3.3 Fitness Function

The final component of the fitness landscape is a fitness function f : X → R

that maps each element of the set X of configurations to a real number. Here
we deal with multiclass classification problems with class imbalance. Therefore,
we defined the fitness function as the weighted F-measure [23] to evaluate the
pipeline’s learning model on the dataset of interest.

F-measure is defined in Eq. 6 for binary classification problems, where TP,
FP and FN are the number of true positives, false positives and false negatives
of the pipeline’s learning model on the dataset, respectively.
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F -measure =
2 · TP

2 · TP + FP + FN
, (6)

As we deal with multiclass classification problems, we use a one-vs-all app-
roach, transforming a problem of c classes into c binary classification problems to
calculate the F-measure. We then calculate a weighted average of the F-measure
over the c binary classification problems.

4 AutoML Fitness Landscape Analysis

For continuous optimization problems with two variables, fitness landscapes can
be visualized, where the XY plane is the search space and fitness represents
the third dimension. However, given the complexity of real world problems,
this approach is not feasible. Several metrics have been proposed to describe
and compare fitness landscapes for different problems. These metrics evaluate a
number of features of optimization problems that play a role in the performance
of search algorithms, such as modality, fitness distribution in the search space,
ruggedness, degree of variable interdependency, evolvability, neutrality, among
others [14,19].

After we have defined the fitness landscape of AutoML problems, we will
use these metrics to perform an analysis of the characteristics of this space.
We focus on two metrics: the fitness distance correlation (FDC) and the mean
neutrality ratio of the landscape. FDC is a popular way of measuring how the
fitness function correlates with the distance to the global optimum, which is a
way of measuring problem difficulty [9]. Neutrality, on the other hand, indicates
the presence of regions in the search space with equal (or nearly equal, in the
case of continuous spaces) fitness function values, which can have positive or
negative impacts on the performance of optimization algorithms [14].

Fitness Distance Correlation: The fitness distance correlation (FDC) mea-
sure was proposed by the authors in [9] to give a global view of problem difficulty
for genetic algorithms, but it has been frequently used as a metric to evaluate
the fitness landscape of other optimization problems [14]. In its original formu-
lation, FDC requires knowledge of the global optimum, which is unfeasible for
AutoML problems. The authors in [10] proposed an adaption of FDC, called
FDCs, for continuous problems with no known global optimum. Given a sam-
ple of n points X = {x1, . . . , xn} from the search space with associated fitness
values F = {f1, . . . , fn} with mean f , the best point in the sample is denoted
by x∗. The Euclidean distance from x∗ to every point xi ∈ X is denoted by
D∗ = {d∗

1, . . . , d
∗
n}, with mean d∗. FDCs is given by Eq. 7. From here on, we

denote FDCs simply by FDC.

FDCs =
∑n

i=1(fi − f)(d∗
i − d∗)√∑n

i=1(fi − f)2
√∑n

i=1(d
∗
i − d∗)2

(7)

FDC returns a value between -1 (perfect anti-correlation) and +1 (perfect
correlation). For maximization problems, search spaces with low FDC values
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Table 2. Datasets used in the experiments.

Dataset Instances Features Classes Missing Source

breast-w 699 9 2 Yes OpenML

diabetes 768 8 2 No OpenML

stalog-segment 2310 19 7 No UCI

vehicle 846 18 4 No OpenML

wilt 4839 5 2 No OpenML

wine-quality-red 1599 11 6 No OpenML

are considered easy, values around 0 are difficult, and high values correspond
to misleading spaces [9,10]. Given the nature of the AutoML search space, we
replace the Euclidean distances D∗ used in Eq. 7 by the distance measure defined
in Eq. 4.

Neutrality: Neutrality identifies the presence of regions in the landscape with
equal or similar fitness [17]. Its role in determining the ability of an optimization
method to find good solutions has been a topic of discussion, especially in the
context of evolutionary algorithms. There is evidence that neutrality can both
make the search space easier to explore [21] or get some algorithms stuck in
regions of the search space with equal fitness, preventing them from exploring
areas with possibly better results [14].

In the context of AutoML, we define a neutral neighborhood N≈(s) of a
solution s as the set N≈(s) = {s′ ∈ N(s) | |f(s′) − f(s)| < δ} for some small
constant δ ≥ 0, where f(s) is the fitness of s and N(s) is a sample of the complete
neighborhood of s, as defined in Sect. 3.2.

The cardinality of N≈(s) is called the neutrality degree of s, whereas the
neutrality ratio of s is given by |N≈(s)|/|N(s)| [21]. These metrics give us an
overview of the neutrality level of the landscape.

5 Experimental Analysis

In this section, we present the FDC and neutrality results for six classification
datasets, obtained either from UCI [2] or OpenML [22]. Table 2 summarizes their
main characteristics, including the number of instances, features and classes, the
presence or absence of missing values, and the data source. Correlation analyses
are reported considering Spearman’s rank correlation coefficient (ρ) and the two-
sided p-value for the hypothesis test (null hypothesis is that the two sets of data
are uncorrelated) [25].

All pipeline configurations were generated using algorithms implemented in
the Python library Scikit-learn [13] and evaluated using 5-fold cross-validation.
All results reported correspond to an average of 30 independent samples from
the search space.
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5.1 Fitness Distance Correlation Analysis

For the FDC analysis, we generated 30 random samples of the search space of
varying sizes, ranging from 500 to 3,000 in intervals of 500. The pipelines in
each sample were generated by randomly selecting production rules from the
grammar.

Figure 3 shows the FDC values for different sample sizes. Observe that
increasing the sample size has little effect on FDC, showing our sample is able to
capture the overall trend of this metric in the evaluated search space. We found
a slight positive correlation between FDC and the mean fitness (ρ = 0.222,
p < 0.01), which is somewhat unexpected, since higher FDC values (in our case,
values that are closer to 0) should be related to harder problems.

We tried to find a relation between the mean values of accuracy reported in
the OpenML repository for the datasets used in the experiments and the values
of FDC. For example, breast-w has mean accuracy of 0.93 and FDC values always
smaller than −0.2. Diabetes, in turn, has a mean accuracy of 0.75 and values
of FDC always in the interval [−0.05, 0]. However, this is not consistent for all
datasets. Wilt, for instance, has an accuracy of 0.98 and FDC values as small as
diabetes. Analysis of FDC for a greater number of datasets and looking at their
main characteristics are yet to be performed. Further, FDC results are correlated
with the distance measure used in this work, and a more in-depth evaluation of
this measure is also subject of future work.

However, for AutoML problems, there may be other factors related to low
fitness apart from the difficulty of the problem. In order to fully understand the
relation between FDC and problem difficulty in the context of AutoML, further
experimentation varying the search space is necessary.

Fig. 3. FDC values for different sample sizes.
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5.2 Neutrality Analysis

For the analysis of the neutrality of the search space, we performed random
walks starting from a random position. For each point of the walk (solution),
we evaluated the fitness function of a given number of neighbors and analyzed
the neutrality ratio. One of the neighbors was then selected as the next starting
point of the walk. Here we report the mean neutrality ratio of the complete walk.

Recall that, for continuous spaces, we consider regions that are neutral within
a specified tolerance δ for the fitness difference between two solutions. For each
dataset, we defined δ as the standard deviation of the mean fitness of 30 inde-
pendent random samples of size 1000.

Figure 4 shows the neutrality ratios for different walk lengths (100, 200, 300
and 400) and neighborhood sizes (5, 10, 15 and 20). The tolerance δ for each
dataset is shown in the title of the corresponding plot. As we can see, increasing
the walk length and the neighborhood size does not have a strong impact on the
average neutrality ratio, but the variance decreases. We found a strong positive
correlation between the mean neutrality ratio and the fitness value (ρ = 0.715,
p = 0.0). This result shows higher neutrality in regions of the search space with
higher fitness values. However, in order to understand how neutrality affects the
performance of different AutoML optimization methods, further experimentation
with variations of the search space and its neutrality ratio are also necessary.

6 Related Work

Fitness landscape analysis has been vastly explored for typical optimization
problems [14], but the literature regarding such analysis for machine learning
problems is scarce. Much of the effort has been directed to neural network error
landscapes. Rakitianskaia et al. [16] measured FDC, ruggedness and gradients
to evaluate the error landscape of fully-connected neural networks used for clas-
sification. They showed that the ruggedness of the landscapes decreases with an
increase in the number of hidden layers of the network, making the landscape
“harder” to explore, whereas the results for FDC indicate that it can be used to
determine the searchability of different network architectures for specific prob-
lems. Another study analyzed neutrality in such landscapes, whose presence can
hinder population-based methods for training neural networks [1]. The authors
proposed two measures of neutrality based on random walks on the landscape
and suggested that they can be used to study the relation between neutrality
and the performance of search algorithms.

In [4], the authors explored different subsets of the unbounded neural network
search space using random walks. They found high-magnitude fitness gradients
and more rugged landscapes for larger search spaces, specially for large steps
of the random walk. Searchability metrics, on the other hand, decrease with
an increase in the size of the search space. These properties reflect a greater
difficulty in searching larger spaces. A subsequent study by the same group
proposed a progressive random walk method for sampling network error land-
scapes [3]. The authors noted that methods based on random walks may not
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Fig. 4. Neutrality ratios for varying walk lengths and neighborhood sizes. The tolerance
δ for each dataset is shown in parentheses.

cover regions with high fitness values, thus not representing the search space
well. The results showed that the proposed method is more computationally effi-
cient than population-based walks and is very successful in finding areas of high
fitness.

The landscape of the algorithm configuration problem has been evaluated
in [15] in terms of the modality and convexity of parameter responses. The
authors defined parameter response slices by parameter p within a given window
around an optima found by the Sequential Model-based Algorithm Configura-
tion (SMAC), keeping all other parameters fixed and measuring the performance
of the algorithm as a function of p. This procedure is repeated for all parameters
being considered. They evaluated algorithms for three typical optimization prob-
lems, namely SAT, MIP and TSP, and concluded that many of the parameter
slices appear to be uni-modal and convex, both on instance sets and on indi-
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vidual instances, although the former leads to a more rugged landscape. This
algorithm configuration analysis is related to the problem of hyperparameter
optimization of machine learning algorithms, but it does not consider neither
algorithm selection nor categorical parameters.

Garcianera et al. [7], in turn, performed an analysis of a subset of the search
space explored by TPOT [12], an AutoML tool that uses genetic programming to
evolve machine learning pipelines for regression and classification problems. The
authors defined a neighborhood relation in which two pipelines are neighbors if
they differ in a single algorithm or parameter. Using a reduced grid search, they
compared the classification accuracy of TPOT with stochastic, random-restart
hill climbing and random search. The results suggest the existence of several
regions with high fitness, but which are prone to overfitting. However, the paper
fails to analyze other characteristics of the fitness landscape and how they can
influence the performance of optimization methods.

7 Conclusions and Future Work

The main contribution of this paper is the definition of a fitness landscape for
AutoML problems. We proposed a flexible representation for machine learning
pipelines that captures the relative importance of changing an algorithm by
another or modifying the value of a hyperparameter. We use this representation
to define a notion of neighborhood and the distance between pipelines. We found
a strong correlation between the mean fitness ratio and fitness values, and a high
correlation between fitness values and neutrality.

Having defined the components of the AutoML search space, the next steps
include modifying the search space to evaluate how the metrics change in
response to the size of the space. We also plan on testing other sampling strategy
to take into account the differences in the size of the search space induced by
categorical, discrete and continuous hyperparameters. Another possible direction
of future work is analysing how different AutoML optimization methods behave
in the presence of different levels of neutrality and for different FDC values.
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Abstract. This paper intends to understand and to improve the work-
ing principle of decomposition-based multi-objective evolutionary algo-
rithms. We review the design of the well-established Moea/d framework
to support the smooth integration of different strategies for sub-problem
selection, while emphasizing the role of the population size and of the
number of offspring created at each generation. By conducting a compre-
hensive empirical analysis on a wide range of multi- and many-objective
combinatorial NK landscapes, we provide new insights into the combined
effect of those parameters on the anytime performance of the underlying
search process. In particular, we show that even a simple random strat-
egy selecting sub-problems at random outperforms existing sophisticated
strategies. We also study the sensitivity of such strategies with respect to
the ruggedness and the objective space dimension of the target problem.

1 Introduction

Context. Evolutionary multi-objective optimization (EMO) algorithms [7] have
been proved extremely effective in computing a high-quality approximation of
the Pareto set, i.e., the set of solutions providing the best trade-offs among the
objectives of a multi-objective combinatorial optimization problem (MCOP).
Since the working principle of an evolutionary algorithm (EA) is to evolve a
population of solutions, this population can be explicitly mapped with the tar-
get approximation set. The goal is then to improve the quality of the popula-
tion, and to guide its incumbent individuals to be as close and as diverse as
possible w.r.t. the (unknown) Pareto set. Existing EMO algorithms can be dis-
tinguished according to how the population is evolved. They are based on an
iterative process where at each iteration: (i) some individuals (parents) from
the population are selected, (ii) new individuals (offspring) are generated using
variation operators (e.g., mutation, crossover) applied to the selected parents,
c© Springer Nature Switzerland AG 2020
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and (iii) a replacement process updates the population with newly generated
individuals. Apart from the problem-dependent variation operators, the design
of selection and replacement is well-understood to be the main challenge for an
efficient and effective EMO algorithm, since these interdependent steps allow to
control both the convergence of the population and its diversity. In contrast with
dominance- (e.g., [7]) or indicator-based (e.g., [2]) approaches, aggregation-based
approaches [16] rely on the transformation of the objective values of a solution
into a scalar value, that can be used for selection and replacement. In this paper,
we are interested in studying the working principles of this class of algorithms,
while focusing on the so-called Moea/d (Multi-objective evolutionary algorithm
based on decomposition) [11,22], which can be considered as a state-of-the-art
framework.

Motivations. The Moea/d framework is based on the decomposition of the
original MCOP into a set of smaller sub-problems that are mapped to a popu-
lation of individuals. In its basic variant [22], Moea/d considers a set of single-
objective sub-problems defined using a scalarizing function transforming a multi-
dimensional objective vector into a scalar value w.r.t. one weight (or direction)
vector in the objective space. The population is then typically structured by
mapping one individual to one sub-problem targeting a different region of the
objective space. Individuals from the population are evolved following a coopera-
tive mechanism in order for each individual (i) to optimize its own sub-problem,
and also (ii) to help solving its neighboring sub-problems. The population hence
ends up having a good quality w.r.t. all sub-problems. Although being extremely
simple and flexible, the computational flow of Moea/d is constantly redesigned
to deal with different issues. Different Moea/d variants have been proposed so
far in the literature, e.g., to study the impact of elitist replacements [19], of
generational design [13], or of stable-matching based evolution [12], and other
mechanisms [1]. In this paper, we are interested in the interdependence between
the population size, which is implied by the number of sub-problems defined in
the initial decomposition, and the internal evolution mechanisms of Moea/d.

The population size has a deep impact on the dynamics and performance of
EAs. In Moea/d, the sub-problems target diversified and representative regions
of the Pareto front. They are usually defined to spread evenly in the objective
space. Depending on the shape of the (unknown) Pareto front, and on the num-
ber of objectives, one may need to define a different number of sub-problems.
Since, the population is structured following the so-defined sub-problems, it is
not clear how the robustness of the Moea/d selection and replacement strate-
gies can be impacted by a particular setting of the population size. Conversely,
it is not clear what population size shall be chosen, and how to design a selection
and replacement mechanism implying a high-quality approximation. Besides, the
proper setting of the population size (see e.g. [6,8,20]) in is EAs can depend on
the problem properties, for example in terms of solving difficulty. EMO algo-
rithms are no exceptions. In Moea/d, sub-problems may have different charac-
teristics, and the selection and replacement mechanisms can be guided by such
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considerations. This is for example the case for a number of Moea/d variants
where it is argued that some sub-problems might be more difficult to solve than
others [18,23], and hence that the population shall be guided accordingly.

Methodology and Contribution. In this paper, we rely on the observation
that the guiding principle of Moea/d can be leveraged in order to support a
simple and high-level tunable design of the selection and replacement mecha-
nisms on one hand, while enabling a more fine-grained control over the choice
of the population size, and subsequently its impact on approximation quality on
the other hand. More specifically, our work can be summarized as follows:

– We consider a revised design of Moea/d which explicitly dissociates between
three components: (i) the number of individuals selected at each generation,
(ii) the strategy adopted for selecting those individuals and (iii) the setting
of the population size. Although some sophisticated strategies to distribute
the computational effort of sub-problems exploration were integrated within
some Moea/d variants [10,18,23], to the best of our knowledge, the indi-
vidual impact of such components were loosely studied in the past.

– Based on this fine-grained revised design, we conduct a comprehensive analy-
sis about the impact of those three components on the convergence profile of
Moea/d. Our analysis is conducted in an incremental manner, with the aim
of providing insights about the interdependence between those design com-
ponents. In particular, we show evidence that the number of sub-problems
selected at each generation plays an even more important role than the way
the sub-problems are selected. Sophisticated selection strategies from the lit-
erature are shown to be outperformed by simpler, well configured strategies.

– We consider a broad range of multi- and many-objective NK landscapes,
viewed as a standard and difficult family of MCOP benchmarks, which is
both scalable in the number of objectives and exposes a controllable difficulty
in terms of ruggedness. By a thorough benchmarking effort, we are then able
to better elicit the impact of the Moea/d population size, and the robustness
of selection strategies on the (anytime) approximation quality.

It is worth noticing that our work shall not be considered as yet another variant
in the Moea/d literature. In fact, our analysis precisely aims at enlightening the
main critical design parameters and components that can be hidden behind a suc-
cessful Moea/d setting. Our investigations are hence to be considered as a step
towards the establishment of a more advanced component-wise configuration
methodology allowing the setting up of future high-quality decomposition-based
EMO algorithms for both multi- and many-objective optimization.

Outline. In Sect. 2, we recall basic definitions and we detail the working princi-
ple of Moea/d. In Sect. 3, we describe our contribution in rethinking Moea/d
by explicitly dissociating between the population size and the number of selected
sub-problems, then allowing us to leverage existing algorithms as instances of
the revised framework. In Sect. 4, we present our experimental study and we
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state our main findings. In Sect. 5, we conclude the paper and discuss further
research.

2 Background

2.1 Multi-objective Combinatorial Optimization

A multi-objective combinatorial optimization problem (MCOP) can be defined
by a set of M objective functions f = (f1, f2, . . . , fM ), and a discrete set X
of feasible solutions in the decision space. Let Z = f(X) ⊆ IRM be the set of
feasible outcome vectors in the objective space. To each solution x ∈ X is assigned
an objective vector z ∈ Z, on the basis of the vector function f : X → Z. In
a maximization context, an objective vector z ∈ Z is dominated by a vector
z′ ∈ Z iff ∀m ∈ {1, . . . ,M}, zm � z′

m and ∃m ∈ {1, . . . , M} s.t. zm < z′
m. A

solution x ∈ X is dominated by a solution x′ ∈ X iff f(x) is dominated by
f(x′). A solution x� ∈ X is Pareto optimal if there does not exist any other
solution x ∈ X such that x� is dominated by x. The set of all Pareto optimal
solutions is the Pareto set. Its mapping in the objective space is the Pareto
front. The size of the Pareto set is typically exponential in the problem size. Our
goal is to identify a good Pareto set approximation, for which EMO algorithms
constitute a popular effective option [7]. As mentioned before, we are interested
in aggregation-based methods, and especially in the Moea/d framework which
is sketched below.

2.2 The Conventional MOEA/D Framework

Aggregation-based EMO algorithms seek good-performing solutions in multiple
regions of the Pareto front by decomposing the original multi-objective problem
into a number of scalarized single-objective sub-problems [16]. In this paper, we
use the Chebyshev scalarizing function: g(x, ω) = maxi∈{1,...,M} ωi · ∣∣z�

i − fi(x)
∣
∣,

where x ∈ X, ω = (ω1, . . . , ωM ) is a positive weight vector, and z� = (z�
1 , . . . , z

�
M )

is a reference point such that z�
i > fi(x) ∀x ∈ X, i ∈ {1, . . . ,M}.

In Moea/d [22], sub-problems are optimized cooperatively by defining a
neighborhood relation between sub-problems. Given a set of μ weight vec-
tors Wμ = (ω1, . . . , ωμ), with ωj = (ωj

1, . . . , ω
j
M ) for every j ∈ {1, . . . , μ},

defining μ sub-problems, Moea/d maintains a population Pμ = (x1, . . . , xμ)
where each individual xj corresponds to one sub-problem. For each sub-problem
j ∈ {1, . . . , μ}, a set of neighbors Bj is defined by considering the T closest
weight vectors based on euclidean distance. All sub-problems are considered at
each generation. Given a sub-problem j, two sub-problems are selected at ran-
dom from Bj , and the two corresponding solutions are considered as parents.
An offspring x′ is created by means of variation (e.g., crossover, mutation). For
every k ∈ Bj , if x′ improves k’s current solution xk, then x′ replaces it, i.e.,
if g(x′, ωk) < g(xj , ωk) then xk = x′. The algorithm loops over sub-problems,
i.e., weight vectors, or equivalently over the individuals in the population, until
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a stopping condition is satisfied. In the conventional Moea/d terminology, an
iteration refers to making selection, offspring generation, and replacement for one
sub-problem. By contrast, a generation consists in processing all sub-problems
once, i.e., after one generation μ offspring are generated. Notice that other issues
are also addressed, such as the update of the reference point z� required by the
scalarizing function, and the option to incorporate an external archive for storing
all non-dominated points found so far during the search process.

From the previous description, it should be clear that, at each iteration,
Moea/d is applying an elitist (T+1)-EA w.r.t. the sub-population Bi underlying
the neighborhood of the current sub-problem. After one generation, one can
roughly view Moea/d as applying a (μ + μ)-EA w.r.t. the full population. A
noticeable difference is that the basic Moea/d is not a generational algorithm, in
the sense that it does not handle the population as a whole, but rather in a local
and greedy manner. This is actually a distinguishable feature of Moea/d, since
the population is structured by the initial sub-problems and evolved accordingly.

3 Revising and Leveraging the Design of MOEA/D

3.1 Positioning and Rationale

As in any EA, both the population size and the selection and replacement mech-
anisms of Moea/d play a crucially important role. Firstly, a number of weight,
i.e., a population size, that is too small may not only be insufficient to cover well
the whole Pareto front, but may also prevent the identification of high-quality
solutions for the defined sub-problems. This is because the generation of new off-
spring is guided by the so-implied (T +1)-EA for which the local sub-population
of size T might be too different and hence too restrictive for generating good
offspring. On the other hand, a too large population may result in a substantial
waste of resources, since too many sub-problems might map to the same solu-
tion. Secondly, a small population size can be sufficient to approach the Pareto
front in a reduced number of steps. However, a larger population is preferable
to better cover the Pareto front. As in single-objective optimization, a larger
population might also help escaping local optima [20]. As a result, it is not clear
what is a proper setting of the population size in Moea/d, since the previously
discussed issues seem contradictory.

Although one can find different studies dealing with the impact of the pop-
ulation size in EAs [5,6,8,20], this issue is explicitly studied only to a small
extent, especially for decomposition-based multi- and many-objective optimiza-
tion [9,15]. For instance, in [8], offline and online scheduling strategies for control-
ling the population size are coupled with SMS-EMOA [2], a well-known indicator-
based EMO algorithm, for bi-objective continuous benchmarks. Leveraging such
a study to combinatorial domains with more than two objectives, and within
the Moea/d framework, is however a difficult question. Tightly related to the
population size, other studies investigate the distribution of the computational
effort over the sub-problems [3,4,10,18,23]. The rationale is that the defined
sub-problems might have different degrees of difficulty and/or that the progress
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over some sub-problems might be more advanced than others in the course of
the search process. Hence, different adaptive mechanisms have been designed in
order to detect which sub-problems to consider, or equivalently which solutions
to select when generating a new offspring. A representative example of such
approaches is the so-called Moea/d–Dra (Moea/d with dynamical resource
allocation) [23], that can be considered as a state-of-the-art algorithm when deal-
ing with the proper distribution of the computational effort over sub-problems.
In Moea/d–Dra, a utility function is defined w.r.t. the current status of sub-
problems. A tournament selection is used to decide which sub-problems to select
when generating a new offspring. Despite a skillful design, such an approach
stays focused on the relative difficulty of solving sub-problems, while omitting
to analyze the impact of the number of selected sub-problems and its interaction
with both the population size and the characteristics of the underlying problem.

We propose to revise the Moea/d framework and to study in a more explicit
and systematic manner the combined effect of population size and sub-problem
selection in light of the properties of the MCOP at hand. As mentioned above,
this was investigated only to a small extent in the past although, as revealed
by our experimental findings, it is of critical importance to reach an optimal
performance when adopting the Moea/d framework.

3.2 The Proposed MOEA/D–(μ, λ, sps) Framework

In order to better study and analyze the combined effect of population size and
sub-problem selection, we propose to rely on a revised framework for Moea/d,
denoted Moea/d–(μ, λ, sps), as defined in the high-level template depicted in
Algorithm 1. This notation is inspired by the standard (μ+λ)-EA scheme, where
starting from a population of size μ, λ new individuals are generated and merged
to form a new population of size μ after replacement. In the Moea/d framework,
however, this has a specific meaning as detailed in the following.

The proposed Moea/d–(μ, λ, sps) algorithm follows the same steps as the
original Moea/d. However, it explicitly incorporates an additional component,
denoted sps, which stands for the sub-problem selection strategy. Initially, the
population is generated and mapped to the initial μ weight vectors. An optional
external archive is also incorporated in the usual way with no effect on the search
process. The algorithm then proceeds in different generations (the outer while
loop). At each generation, λ sub-problems, denoted Iλ, are selected using the
sps strategy. A broad range of deterministic and stochastic selection strategies
can be integrated. In particular, λ can be though as an intrinsic parameter of
the EMO algorithm itself, or implied by a specific sps strategy. The so-selected
sub-problems are processed in order to update the population (the inner for
loop). For the purpose of this paper, we adopt the same scheme than conven-
tional Moea/d: selected sub-problems are processed in an iterative manner,
although other generational EA schemes could be adopted. At each iteration,
that is for each selected sub-problem, denoted i, some parents are selected as
usual from the T -neighborhood Bi of weight vector ωi w.r.t. Wμ. The setting of
the neighborhood Bi can be exactly the same as in conventional Moea/d and
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Algorithm 1. High level template of Moea/d–(μ, λ, sps)
Input: Wμ :=

{
ω1, . . . , ωμ

}
: weights; g(· | ω): scalar function; T : neighb. size;

1 EP ← ∅ : (optional) external archive ;
2 Pμ ← {

x1, . . . , xμ
}

: generate and evaluate initial population of size μ;
3 z� ← initialize reference point from Pμ;
4 while StoppingCriteria do
5 Iλ ← sps(Wμ, Pμ, history);
6 for i ∈ Iλ do
7 Bi ← the T -neighborhood of sub-problem i using Wμ;
8 X ← matingSelection(Bi);
9 x′ ← variation(X );

10 F (x′) ← evaluate x′ ;
11 EP ← update external archive using x′;
12 z� ← update reference point using F (x′);
13 Pμ ← replacement(Pμ, x′, Bi | g);
14 history ← update search history;

its variants. However, at this step, it is important to emphasize that the consid-
ered neighborhood Bi is w.r.t. the whole set of available weight vectors Wμ, that
is considering all the initially designed sub-problems, and not only the selected
ones. In particular, Bi may include some sub-problems that were not selected
by the sps strategy. This is motivated by the fact that parents that are likely to
produce a good offspring should be defined w.r.t. the population as a whole, and
not solely within the subset of active sub-problems at a given generation, which
might be restrictive. A new offspring x′ is then generated using standard vari-
ation operators (e.g., crossover, mutation). The reference point required by the
scalarizing function and the optional external archive are updated. Thereafter,
the offspring is considered for replacement as in the conventional Moea/d and
its variants. Here again, this is handled using the neighborhood Bi of the current
sub-problem i, computed w.r.t. the whole population. It is worth noticing that
population update is made on the basis of the scalarizing function g, which is a
distinguishable feature of aggregation-based approaches.

At last, notice that we also use a history variable, referring to the evolution of
the search state, and hence serving as a memory where any relevant information
could be store for the future actions of the algorithm. In particular, we explicitly
integrate the history within the sps strategy, since this will allow us to leverage
some existing Moea/d variants, as further discussed below.

3.3 Discussion and Outlook

It shall be clear from the previous description that the Moea/d–(μ, λ, sps)
framework allows us to emphasize the interdependence between three main com-
ponents in a more fine-grained manner while following the same working principle
than the original Moea/d. Firstly, the number of weight vectors, or equivalently
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Table 1. Different instantiations of the Moea/d-(μ, λ, sps) framework.

Algorithm Pop. size # selected sub-prob. Selection strategy Ref.

Moea/d μ μ spsAll [22]

Moea/d–Dra μ μ/5 spsDra [23]

Moea/d–Rnd μ λ � μ spsRnd here

the population size, is now made more explicit. In fact, the set of weight vectors
now ‘simply’ plays the role of a global data structure to organize the individuals
from the population. This structure can be used at the selection and replacement
steps. In particular, one is not bound to iterate over all weight vectors, but might
instead select a subset of individuals following a particular strategy. Secondly, the
number of selected sub-problems λ determines directly the number of offspring
to be generated at each generation. From an exploration/exploitation perspec-
tive, we believe this is of critical importance in general for (μ + λ)-EAs, and it
is now made more explicit within the Moea/d framework. Furthermore, the λ
offspring solutions are not simply generated from the individuals mapping to the
selected sub-problems. Instead, parent selection interacts directly with the whole
population, structured around the μ weight vectors, since the local neighborhood
of each selected sub-problem may be used. Thirdly, the interaction between μ
and λ is complemented more explicitly by the sub-problem selection strategy.
In conventional Moea/d for instance, the selection strategy turns out to be:
spsAll = ‘select all sub-problems’, with λ = μ. However, advanced Moea/d
variants can be captured as well. For instance, Moea/d–Dra [23], focusing
on the dynamic distribution of computations, can easily be instantiated as fol-
lows. For each sub-problem, we store and update the utility value as introduced
in [23] by using the history variable. Let us recall that in Moea/d–Dra, the
utility of a sub-problem is simply the amount of progress made by solution xi

for sub-problem ωi in terms of the scalarized fitness value g(·|ωi) over different
generations. In addition, M boundary weight vectors (in the objective space) are
selected at each generation, and further (μ/5 − M) weight vectors are selected
by means of a tournament selection of size 10. Hence, the sub-problem selection
strategy turns out to be spsDra = ‘select the boundary vectors and sub-problems
using a tournament selection of size 10’, with λ = μ/5. Notice that this choice
is to recall the one-fifth success rule from (μ + λ) evolution strategies [14].

In the reminder, Moea/d–(μ, μ, spsAll) refers to the conventional Moea/d
as described in [22], and Moea/d–(μ, μ/5, spsDra) refers to Moea/d–Dra [23];
see Table 1. Other settings and parameters can be conveniently investigated as
well. Since we are interested in the combined effect of μ, λ and sps, we also con-
sider a simple baseline sub-problem selection strategy, denoted spsRnd, which is
to select a subset of sub-problems uniformly at random. Notice that our empir-
ical analysis shall shed more lights on the behavior and the accuracy of the
existing spsDra strategy.
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4 Experimental Analysis

4.1 Experimental Setup

Multi-objective NK Landscapes. We consider multi-objective NK land-
scapes as a problem-independent model of multi-objective multi-modal combina-
torial optimization problems [17]. Solutions are binary strings of size N and the
objective vector to be maximized is defined as f : {0, 1}N �→ [0, 1]M . The param-
eter K defines the ruggedness of the problem, that is the number of (random)
variables that influence the contribution of a given variable to the objectives. By
increasing K from 0 to (N − 1), problems can be gradually tuned from smooth
to rugged. We consider instances with the following settings: the problem size is
set to N = 100, the number of objectives to M ∈ {2, 3, 4, 5}, and the ruggedness
to K ∈ {0, 1, 2, 4}, that is, from linear to highly rugged landscapes. We generate
one instance at random for each combination.

Parameter Setting. For our analysis, we consider three competing algorithms
extracted from the Moea/d–(μ, λ, sps) framework as depicted in Table 1. For
the conventional Moea/d, only one parameter is kept free, that is the popu-
lation size μ. For Moea/d–Dra, the sub-problem selection strategy is imple-
mented as described in the original paper [23]. We further consider to exper-
iment Moea/d–Dra with other λ values. Recall that in the original vari-
ant, only μ/5 sub-problems are selected, while including systematically the
M boundary weight vectors. For fairness, we follow the same principle when
implementing the Moea/d–Rnd strategy. Notice that the boundary weight
vectors were shown to impact the coordinates of the reference point z� used
by the scalarizing function [18]. They are then important to consider at each
generation. To summarize, for both Moea/d–Dra and Moea/d–Rnd, two
parameters are kept free, namely the population size μ and the number of
selected sub-problems λ. They are chosen to cover a broad range of values,
from very small to relatively very high, namely, μ ∈ {1, 10, 50, 100, 500} and
λ ∈ {1, 2, 5, 10, 25, 50, 100, 150, 200, 300, 400, 450, 500} such that λ � μ.

The other common parameters are set as follows. The initial weights are
generated using the methodology described in [21]. The neighborhood size is
set to 20% of the population size: T = 0.2μ. Two parents are considered for
mating selection, i.e., the parent selection in the neighborhood of a current sub-
problem i. The first parent is the current solution xi, and the second one is
selected uniformly at random from Bi. Given that solutions are binary strings,
we use a two-point crossover operator and a bit-flip mutation operator where each
bit is flipped with a rate of 1/N . Moea/d–Dra involves additional parameters
which are set following the recommendations from [23].

Performance Evaluation. Given the large number of parameter values (more
than 2 000 different configurations), and in order to keep our experiments man-
ageable in a reasonable amount of time, every configuration is executed 10 inde-
pendent times, for a total of more than 20 000 runs. In order to appreciate the
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Fig. 1. Convergence profile of the conventional Moea/d w.r.t. population size (μ).

convergence profile and the anytime behavior of the competing algorithms, we
consider different stopping conditions of

{

100, 101, . . . , 107
}

calls to the evalua-
tion function. Notice however that due to lack of space, we shall only report our
findings on the basis of a representative set of our experimental data.

For performance assessment, we use the hypervolume indicator (hv) [24] to
assess the quality of the obtained approximation sets, the reference point being
set to the origin. More particularly, we consider the hypervolume relative devi-
ation, computed as hvrd(A) = (hv(R) − hv(A))/hv(R), where A is the obtained
approximation set, and R is the best Pareto front approximation, obtained by
aggregating the results over all executions and removing dominated points. As
such, a lower value is better. It is important to notice that we consider the exter-
nal archive, storing all non-dominated points found so far during the search pro-
cess, for performance assessment. This is particularly important when comparing
configurations using different population sizes.

4.2 Impact of the Population Size: spsAll with Varying μ Values

We start our analysis by studying the impact of the population size for the con-
ventional Moea/d, that is Moea/d–(μ, μ, spsAll) following our terminology. In
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Fig. 1, we show the convergence profile using different μ values for the considered
instances. Recall that hypervolume is measured on the external archive.

For a fixed budget, a smaller population size allows the search process to focus
the computational effort on fewer sub-problems, hence approaching the Pareto
front more quickly. By contrast, using a larger population implies more diver-
sified solutions/sub-problems, and hence a better spreading along the Pareto
front. This is typically what we observe when a small and a large budget are
contrasted. In fact, a larger population size can be outperformed by a smaller one
for relatively small budgets, especially when the problem is quite smooth (K � 1)
and the number of objectives relatively high (M � 3). Notice also that it is not
straightforward to quantify what is meant by a ‘small’ population, depending on
the problem difficulty. For a linear bi-objective problem (M = 2, K = 0), a par-
ticularly small population size of μ = 10 is sufficient to provide a relatively high
accuracy. However, for quadratic many-objective problems (M � 4, K = 1), a
small population size of μ = 10 (resp. μ = 50) is only effective up to a budget of
about 104 (resp. 105) evaluations.

To summarize, it appears that the approximation quality depends both on
the problem characteristics and on the available budget. For small budgets, a
small population size is to be preferred. However, as the available budget grows,
and as the problem difficulty increases in terms of ruggedness and number of
objectives, a larger population performs better. These first observations suggest
that the anytime behavior of Moea/d can be improved by more advanced selec-
tion strategy, allowing to avoid wasting resources in processing a large number
of sub-problems at each iteration, as implied by the conventional spsAll strategy
which iterates over all sub-problems. This is further analyzed next.

4.3 Impact of the Sub-problem Selection Strategy

In order to fairly compare the different selection strategies, we analyze the impact
of λ, i.e., the number of selected sub-problems, independently for each strategy.
It is worth-noticing that both the value of λ and the selection strategy impact
the probability of selecting a weigh vector. Our results are depicted in Fig. 2
for spsDra and spsRnd, for different budgets and on a representative subset of
instances. Other instances are not reported due to space restrictions. The main
observation is that the best setting for λ depends on the considered budget, on
the instance type, and on the sub-problem selection strategy itself.

Impact ofλon spsRnd. For the random strategy spsRnd (Fig. 2, top), and for
smooth problems (K = 0), a small λ value is found to perform better for a small
budget. As the available budget grows, the λ value providing the best perfor-
mance starts to increase until it reaches the population size μ. In other words,
for small budgets one should select very few sub-problems at each generation,
whereas for large budgets selecting all sub-problems at each generation, as done
in the standard Moea/d, appears to be a more reasonable choice. However, this
tendency only holds for smooth many-objective problems. When the rugged-
ness increases, that is when the degree of non-linearity K grows, the effect of λ



142 G. Pruvost et al.

Fig. 2. Quality vs. number of selected sub-problems (λ) w.r.t. budget (μ = 500).

changes. For the highest value of K = 4, the smallest value of λ = 1 still appears
to be effective, independently of the available budget. However, the difference
with a large λ value is seemingly less pronounced, especially for a relatively large
budget, and the effect of λ seems to decay as the ruggedness increases. Notice
also that for the ‘easiest’ problem instance (with K = 0 and M = 2), it is only
for a small budget or for a high λ value that we observe a loss in performance. We
attribute this to the fact that, when the problem is harder, search improvements
are scarce within all sub-problems, it thus makes no difference to select few or
many of them at each generation. By contrast, when the problem is easier, it is
enough to select fewer sub-problems, as a small number of improving offspring
solutions are likely sufficient to update the population.

Impact ofλon spsDra. The impact of λ appears to be different when analyzing
the spsDra strategy (Fig. 2, bottom). In fact, the effect of λ seems relatively uni-
form, and its optimal setting less sensitive to the available budget and instance
type. More precisely, the smallest value of λ = 1 is always found to perform bet-
ter, while an increasing λ value leads to a decrease in the overall approximation
quality. We attribute this to the adaptive nature of spsDra, for which the prob-
ability of selecting non-interesting sub-problems is smaller for lower λ values.
Interestingly, in the original setting of Moea/d–Dra [23], from which spsDra

is extracted, the number of selected sub-problems is fixed to μ/5. Not only we
found that this setting can be sub-optimal, but it can actually be substantially
outperformed by a simple setting of λ = 1.

spsAll vs. spsDra vs. spsRnd. Having gained insights about the effect of λ for the
different selection strategies, we can fairly analyze their relative performance by
using their respective optimal setting for λ. We actually show results with λ = 1
for both spsDra and spsRnd. Although this setting was shown to be optimal for
spsDra, it only provides a reasonably good (but sub-optimal) performance in
the case of the simple random spsRnd strategy, for which other λ values can
be even more efficient. Our results are shown in Fig. 3 for a subset of instances.
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Fig. 3. Convergence profile of MOEA/D–(μ, λ, sps) w.r.t. sub-problem selection strat-
egy (μ = 500; λ = 500 for spsAll, λ ∈ {1, μ/5} for spsDra, and λ = 1 for spsRnd).

Table 2. Ranks and average hvrd value (between brackets, in percentage) obtained by
the different sps strategies after

{
104, 105, 106, 107

}
evaluations (a lower value is better).

Results for spsRnd and spsDra are for λ = 1. For each budget and instance, a rank of c
indicates that the corresponding strategy was found to be significantly outperformed
by c other strategies w.r.t. a Wilcoxon statistical test at a significance level of 0.05.
Ranks in bold correspond to approaches that are not significantly outperformed by any
other, and the underlined hvrd value corresponds to the best approach in average.

M K 104 evaluations 105 evaluations 106 evaluations 107 evaluations

spsAll spsDra spsRnd spsAll spsDra spsRnd spsAll spsDra spsRnd spsAll spsDra spsRnd

2 0 2(11.2) 1(10.5) 0(09.1) 2(09.4) 1(09.3) 0(09.0) 2(09.1) 0(09.0) 0(09.0) 0(09.0) 0(09.0) 2(09.0)

1 1(14.0) 1(13.2) 0(11.4) 1(10.9) 1(10.5) 0(09.5) 2(09.8) 1(09.6) 0(09.2) 2(09.5) 1(09.4) 0(09.2)

2 1(17.2) 0(15.6) 0(15.4) 1(13.0) 0(12.5) 0(11.7) 0(11.3) 0(10.9) 0(10.6) 0(10.2) 0(10.1) 0(09.8)

4 2(22.1) 0(19.5) 0(18.9) 1(17.5) 0(14.9) 0(16.0) 2(14.6) 0(13.3) 0(13.0) 0(13.1) 0(12.0) 0(12.2)

3 0 1(15.1) 1(15.0) 0(10.2) 1(11.0) 1(10.9) 0(09.2) 0(09.1) 0(09.1) 0(09.1) 0(09.0) 0(09.0) 2(09.1)

1 1(18.4) 1(18.4) 0(14.2) 1(13.3) 1(13.0) 0(10.5) 1(10.8) 1(10.5) 0(09.4) 1(09.5) 1(09.5) 0(09.0)

2 1(24.4) 1(23.4) 0(20.6) 1(16.3) 0(16.1) 0(14.7) 2(12.8) 1(12.3) 0(11.1) 1(11.7) 1(11.1) 0(09.4)

4 1(31.0) 0(29.9) 0(28.0) 0(22.7) 0(20.5) 0(21.4) 0(16.7) 0(15.4) 0(15.6) 0(13.6) 0(13.0) 0(12.2)

4 0 1(20.5) 1(20.5) 0(13.2) 1(12.9) 1(12.8) 0(09.9) 0(09.4) 0(09.4) 0(09.3) 0(09.0) 0(09.0) 2(09.2)

1 1(25.0) 1(24.9) 0(18.5) 1(15.2) 1(15.4) 0(11.8) 1(09.9) 1(09.8) 0(08.8) 1(08.4) 1(08.5) 0(07.9)

2 1(29.8) 1(30.6) 0(24.7) 1(19.5) 1(18.7) 0(16.0) 1(12.9) 1(12.3) 0(10.1) 1(09.8) 1(09.9) 0(07.9)

4 1(38.0) 1(37.1) 0(32.5) 1(26.4) 1(25.4) 0(22.5) 1(16.8) 1(16.6) 0(15.1) 0(11.6) 0(11.3) 0(10.5)

5 0 2(26.3) 1(25.2) 0(15.4) 1(14.1) 1(14.7) 0(10.2) 0(08.0) 1(08.3) 2(08.5) 0(07.4) 0(07.5) 2(08.0)

1 1(29.9) 1(29.9) 0(21.5) 1(16.5) 1(17.1) 0(13.0) 1(08.3) 1(08.5) 0(07.7) 0(05.9) 0(06.1) 1(06.1)

2 1(35.2) 1(34.1) 0(28.1) 1(21.4) 0(20.0) 0(17.6) 0(10.9) 0(10.5) 0(09.7) 0(06.8) 0(06.2) 0(05.3)

4 1(41.6) 1(40.7) 0(35.5) 1(26.5) 1(26.9) 0(24.1) 0(14.7) 0(15.1) 0(14.3) 0(06.0) 0(07.4) 0(07.4)

The spsAll strategy, corresponding to the conventional Moea/d [22], and spsDra

with λ = μ/5, corresponding to Moea/d–Dra [23], are also included. We can
see that the simple random selection strategy spsRnd has a substantially better
anytime behavior. In other words, selecting a single sub-problem at random is
likely to enable identifying a high-quality approximation set more quickly, for a
wide range of budgets, and independently of the instance type.

Pushing our analysis further, the only situation where a simple random strat-
egy is outperformed by the conventional Moea/d or by a Moea/d–Dra setting
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Fig. 4. Convergence profile of MOEA/D–(μ, 1, spsRnd) w.r.t. population size (μ).

using an optimal λ value is essentially for the very highest budget (107 evalu-
ations) and when the problem is particularly smooth (K = 0). This can be
more clearly observed in Table 2, where the relative approximation quality of
the different strategies are statistically compared for different budgets. Remem-
ber however that these results are for λ = 1, which is shown to be an optimal
setting for spsDra, but not necessarily for spsRnd where higher λ values perform
better.

4.4 Robustness of MOEA/D–(μ, λ, spsRnd) w.r.t. μ and λ

In the previous section, the population size was fixed to the highest value of
μ = 500. However, we have shown in Sect. 4.2 that the anytime behavior of the
conventional Moea/d can be relatively sensitive to the setting of μ, in particular
for some instance types. Hence, we complement our analysis by studying the sen-
sitivity of the spsRnd strategy, which was found to have the best anytime behavior
overall, w.r.t the population size μ. Results for spsRnd with λ = 1 are reported
in Fig. 4. In contrast with the spsAll strategy from the conventional Moea/d
reported in Fig. 1, we can clearly see that the anytime behavior underlying spsRnd

is much more stable. In fact, the hypervolume increases with μ, independently
of the considered budget and instance type. Notice also that when using small
μ values, convergence occurs much faster for smooth problems (K = 0) com-
pared against rugged ones (K = 4). This means that a larger population size μ,
combined with a small value of λ, shall be preferred.

From a more general perspective, this observation is quite insightful since
it indicates that, by increasing the number of weight vectors, one can allow
for a high-level structure of the population, being eventually very large. Notice
also that such a data structure can be maintained very efficiently in terms of
CPU time complexity, given the scalar nature of Moea/d. This is to contrast
with, e.g., dominance-based EMO algorithms, where maintaining a large popu-
lation may be computationally intensive, particularly for many-objective prob-
lems. Having such an efficient structure, the issue turns out to select some sub-
problems from which the (large) population is updated. A random strategy for
sub-problem selection is found to work arguably well. However, in order to reach
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an optimal performance, setting up the number of sub-problems λ might require
further configuration issues. Overall, our analysis, reveals that a small λ value,
typically ranging from 1 to 10, is recommended for relatively rugged problems,
whereas a large value of λ should be preferred for smoother problems.

5 Conclusions and Perspectives

In this paper, we reviewed the design principles of the Moea/d framework by
providing a high-level, but more precise, reformulation taking inspiration from
the (μ+λ) scheme from evolutionary computation. We analyzed the role of three
design components: the population size (μ), the number of sub-problems selected
(and then the number of offspring generated) at each generation (λ), and the
strategy used for sub-problems selection (sps). Besides systematically informing
about the combined effect of these components on the performance profile of
the search process as a function of problem difficulty in terms of ruggedness and
objective space dimension, our analysis opens new challenging questions on the
design and practice of decomposition-based EMO algorithms.

Although we are now able to derive a parameter setting recommendation
according to the general properties of the problem at hand, such properties
might not always be known beforehand by the practitioner, and other properties
might be considered as well. For instance, one obvious perspective would be to
extend our analysis to the continuous domain. More importantly, an interest-
ing research line would be to infer the induced landscape properties in order to
learn the ‘best’ parameter setting, either off-line or on-line; i.e. before or during
the search process. This would not only avoid the need of additional algorithm
configuration (tuning) efforts, but it could also lead to an even better anytime
behavior. One might for instance consider an adaptive setting where the values
of μ, λ, and sps are adjusted according to the search behavior observed over
different generations. Similarly, we believe that considering a problem where the
objectives expose some degree of heterogeneity, e.g., in terms of solving difficulty,
is worth investigating. In such a scenario, the design of an accurate sps strategy
is certainly a key issue. More generally, we advocate for a more systematic anal-
ysis of such considerations for improving our fundamental understanding of the
design issues behind Moea/d and EMO algorithms in general, of the key differ-
ences between EMO algorithm classes, and of their success in solving challenging
multi- and many-objective optimization problems.
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Abstract. The Multi Depot Pickup and Delivery Problem with Time
Windows and Heterogeneous Vehicle Fleets is a Rich Vehicle Routing
Problem as it combines many real-world problems and is therefore rel-
evant to practice. In this paper a new mathematical two-index model
formulation for the MDPDPTWHV is developed as well as a Grouping
Genetic Algorithm (GGA), which features a grouping-oriented individual
representation. Therefore, each chromosome contains only the assign-
ment of requests to vehicles, i.e., no information about the customer
sequence is included. In order to compare different variants of the GGA
to each other as well as the best one to solutions calculated by Cplex, 120
MDPDPTWHV datasets are created through a generator implemented
by the authors. In a benchmark study, it can be shown that the way in
which population management is performed is important to enhance the
solution quality of the GGA. On average, the best GGA variant is 2.43%
worse than the best known solution.

Keywords: Multi-Depot Pickups and Deliveries · Combinatorial
optimization model · Rich Vehicle Routing

1 Problem Identification

In Germany, almost all of the top 10 transportation companies (with respect to
their revenue) operate in the Less-Than-Truckload (LTL) sector [23] in which
several transportation requests are transported together in one truck. Usually,
the freight of each request has to be forwarded from an origin (pickup customer)
to a destination (delivery customer). At each customer location, the correspond-
ing goods have to be loaded by employees. As this is a time-sensitive process due
to the availability of employees, loading ramps, and equipment, it is important
to consider loading time windows in order to reduce waiting times [8,9]. Since
different types of goods are transported, e.g., palletized goods, but also lattice
boxes, cable reels or steel rods, LTL carriers have to maintain different vehicle
types with regard to capacity, speed or even pollution emission. Large carriers in
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the LTL market typically have several locations, so that a multi depot problem
must be taken into account. At each depot, vehicles are available which start
and end their routes at this depot.

The described application appears not only with large carriers. In the event
that small LTL companies operate in cooperations, a central collaborative pickup
and delivery problem consisting of data from all carriers needs to be consid-
ered. Due to the fact that about 60% of carriers have a small vehicle fleet of
at most 10 vehicles [5], these carriers usually have only one depot. As a con-
cept to retain their competitive ability, a possible and clever strategy for these
small and medium-sized carriers is to affiliate in coalitions, in order to collabo-
rate in transportation planning. Already 20% of the top 25 carriers on the LTL
market (taking the revenue into account) were organized in coalitions of small
companies in 2015 [11]. It is known from [13] that there are many contributions
with centrally organized cooperation concepts, i.e., a central entity optimizes
the transportation plans over all participants of the coalition (multi depot prob-
lem). For this purpose, this entitiy assigns all requests cost-efficiently to the
coalition partners, while some of the requests may have been acquired by part-
ners other than the assigned partners. By this request exchange, the coalition
profit is gained and is allocated by the central entity to all participants.

The applications result in a practical problem that occurs at both large car-
riers and small cooperating carriers. In particular, it is a special Pickup and
Delivery Problem (PDP), where requests with a positive quantity have to be
transported from origins to destinations on the same vehicle or route, respec-
tively. Each vehicle starts and ends at a certain depot, while several depots are
taken into account (Multi Depot). The vehicles themselves may be heterogeneous
regarding, e.g., capacity (HV). In order to address the bottleneck of employees
and equipment for loading activities, (hard) time windows (TW) are taken into
account in which the service must be started. Hence, the proposed LTL problem
is modelled as a Multi Depot Pickup and Delivery Problem with Time Win-
dows and Heterogeneous Vehicle Fleets (MDPDPTWHV), which is a problem
of the Rich Vehicle Routing Problem (RVRP) class, since a variety of restrictions
relevant in practice are integrated [4,16] (cf. model formulation in Sect. 3).

The outline of the paper is as follows: We first give a brief overview
of the related literature in Sect. 2. A two-index formulation of the proposed
MDPDPTWHV is presented in Sect. 3. A detailed description of the solution
approach, which is based on the group-oriented Genetic Algorithm presented in
[10,19], can be found in Sect. 4. To evaluate this Genetic Algorithm (GA), we
consider a benchmark test set with 120 self-generated MDPDPTWHV instances,
where the structure of the data is similar to the well known Li and Lim PDPTW
datasets [18]. Computational results are presented in detail in Sect. 5. Finally,
we close the paper in Sect. 6 with a short discussion.

2 Related Work

In this section, we give an overview of contributions that deal with problems
of the RVRP class. We focus on articles that either consider a problem that is
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similar to our routing problem or use a solution method that is similar to our
approach. In addition, different variants of RVRPs with appropriate solution
methods can be found in [4,16,27].

The PDP with time windows is addressed by Ropke and Pisinger [21], who
developed a large neighborhood search. In their approach, the authors apply
several competing insertion and removal heuristics (e.g., shaw removal, regret-
2 insertion), which are chosen by a roulette wheel selection parameterized by
the historical performance of the heuristics. The effectiveness of the approach is
shown using benchmark instances from the literature on the one hand and new
randomly generated instances containing multiple depots on the other hand.
Li et al. [17] propose a PDPTW with profits and reserved requests, which is
a routing problem with selective requests for carrier collaboration, i.e., some
requests can be reserved by the owning carriers. An adaptive large neighborhood
search is developed to solve the problem. The results obtained by the solution
method are compared to the results of an exact solver. Goel and Gruhn [14] also
present an approach based on large neighborhood search which is able to address
practical constraints of multiple pickup and delivery problems, such as time
windows, heterogeneous vehicles, and also restrictions that refer to order-vehicle-
assignments. In the paper of Irnich [15], a special kind of multi depot pickup
and delivery problem is considered, in which all requests has to be transported
via a central location (called hub). The routes before and beyond the hubs are
typically short, thus the routes can be easily enumerated. The author has derived
lower bounds for the addressed problem as well as strategies how to integrate
the model into a column generation or branch-and-price approach.

Dondo and Cerda [7] consider a multi depot vehicle routing problem (VRP)
with time windows and heterogeneous vehicle fleets. In contrast to the PDP, a
vehicle routing problem has the advantage, that the place of pickup is always a
depot. The authors take vehicles into account that are not permanently assigned
to one depot, i.e., open routes can be performed. They developed a cluster-
based optimization approach to solve the problem. This procedure assigns cost-
efficient customer clusters to a vehicle and considers the sequencing of each
cluster by solving a mixed-integer model. In the paper of Sombuntham and
Kachitvichyanukul [25], a multi depot VRP variant with simultaneous pickup
and delivery requirements at customer nodes is introduced. The problem has
the characteristic that goods picked up at a customer location do not necessarily
have to be transported to a depot and places of delivery can be different from
depots. The authors implement a particle swarm optimization technique with
learning structures in order to solve the described problem with heterogeneous
vehicles. Bettinelli et al. [3] consider a problem slightly different to the problem
in Sect. 1, where soft time windows are taken into account, i.e., the time windows
need not be yield, but a penalty price is charged for violating the time window.
A branch-and-price algorithm is developed to analyze the impact of time window
management on the overall distribution costs.

Alaia et al. [1] present a genetic algorithm for multi depot PDPTW, where
all vehicles have the same capacity and each vehicle starts and ends its route at
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the same depot. The genetic algorithm works with a solution representation that
saves the ordering of the customer nodes which have to be visited (path represen-
tation). A detailed description is given of how the initial population is created.
In order to hold the problem constraints, several repair procedures are neces-
sary. The PDPTW is also taken into account by Pankratz [19]. In order to solve
the problem, a Grouping Genetic Algorithm (GGA) is used. Since the problem
contains precedence constraints (pickup before delivery), a typical chromosome
representation for VRPs leads to frequently occurring infeasible solutions. More-
over, the crossover and mutation operators have to be very complex to handle
the problem (cf. [1]). Therefore, the GGA saves in the chromosomes which vehi-
cles serve which requests. The efficiency of the algorithm is proven by using the
Li and Lim PDPTW datasets [24]. A comparison of the GGA to the tabu search
presented in the paper of Li and Lim [18] shows that the GGA performs best.

3 A Two Index Formulation for the MDPDPTWHV

In order to get an impression of the problem structure for the Pickup and Deliv-
ery Problem at hand (cf. Sect. 1), we introduce a new two-index model formula-
tion. The main advantage of the model in comparison to a typical three-index for-
mulation (cf. [6,22]) is the significant reduction of decision variables. This reduc-
tion enables to calculate solutions with exact solvers (such as Cplex) even for
large, complex problem instances (cf. performance results in Sect. 5.2). In order
to take time windows or heterogeneous vehicles into account, a vehicle index
must be introduced. Usually, this results in three-index decision variables xv

ij

that indicate whether a vehicle v uses the arc from node i to j in the underlying
directed transportation graph. In our advantageous two-index model, we now
split up the required decision in two binary decision variables: xij to decide if
an arc (i, j) is used or not, and yiv to determine if a customer i is visited by
vehicle v. In detail, the parameters and variables are listed in Table 1.

min
∑

i,j∈V
cijxij +

∑

v∈K

∑

d∈Ds

fvydv (1)

s.t.
∑

j∈N∪De

xij = 1 ∀i ∈ N (2)

∑

i∈N∪Ds

xij = 1 ∀j ∈ N (3)

∑

j∈Np

xdj ≤ k ∀d ∈ Ds (4)

∑

j∈Np

xdj −
∑

v∈K
ydv = 0 ∀d ∈ Ds (5)

∑

i∈Nd

xid −
∑

v∈K
ydv = 0 ∀d ∈ De (6)

∑

v∈K
yiv = 1 ∀i ∈ Np (7)
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Table 1. Variables and parameters (alphabetically ordered)

Indices and sets:

d ∈ D Set of depots, where each depot is modelled as start depot d and as end
depot 2n + δ + d; δ is the number of depots ⇒ set of start depots
Ds = {0, . . . , δ − 1}, set of end depots De = {2n + δ, . . . , 2n + 2δ − 1}

i, j ∈ N Set of customer nodes, N = {δ, . . . , 2n + δ − 1}
i, j ∈ Np Set of pickup locations, Np = {δ, . . . , n + δ − 1}
i, j ∈ Nd Set of delivery locations, Nd = {n + δ, . . . , 2n + δ − 1}
i, j ∈ V Set of all nodes, V = N ∪ D
r ∈ R Set of requests, R = {1, . . . , n}, where each request consists of a pickup

location i ∈ Np and delivery location j ∈ Nd, j = i + n

v ∈ K Set of (heterogeneous) vehicles, K = {1, . . . , k}
Parameters:

[ai, bi] Time window at node i ∈ V in which the service has to start

cij(tij) Variable costs (travel time) for travelling from i to j ∈ V
di Delivery demand at customer i ∈ N , where di > 0, ∀i ∈ Nd, and

di = 0, ∀i ∈ Np; please note that di+n = pi, ∀i ∈ Np holds

fv Fixed costs for using a vehicle v ∈ K
κv Capacity of vehicle v ∈ K
κmax Maximum capacity of all vehicles

l Load factor for loading the vehicles measured in time unit per quantity
unit

lconst Additional loading time to model preparations before service

Mκ, MT Big M ’s for linearization of time window and capacity constraints

pi Pickup demand at customer i ∈ N , where pi > 0, ∀i ∈ Np, and
pi = 0, ∀i ∈ Nd

Decision variables:

Li Current load of the visiting vehicle after serving node i ∈ V
Si Service-time at node i ∈ V (depending on the demand di + pi)

Ti Beginning of the service at node i ∈ V
xij Binary variable which indicates if a vehicle uses the arc between nodes i

and j ∈ V
yiv Binary variable which specifies if vehicle v ∈ K serves node i ∈ V

yiv − yjv ≤ 1 − xij ∀i, j ∈ N , v ∈ K (8)
xdi + xdj + yiv + yjv ≤ 3 ∀i, j ∈ Np, v ∈ K, d ∈ Ds (9)
xid + xjd + yiv + yjv ≤ 3 ∀i, j ∈ Nd, v ∈ K, d ∈ De (10)

∑

i∈Np

yiv ≤ n
∑

d∈Ds

ydv ∀v ∈ K (11)
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∑

d∈Ds

ydv ≤ 1 ∀v ∈ K (12)

yiv − yi+n,v = 0 ∀v ∈ K, i ∈ Np (13)
ydsv − ydev = 0 ∀v ∈ K, ds, de ∈ D (14)

Ti + Si + tij − Tj ≤ MT (1 − xij) ∀i, j ∈ V, i �∈ De, j �∈ Ds (15)
ai ≤ Ti ≤ bi ∀i ∈ V (16)

Ti + Si + ti,i+n ≤ Ti+n ∀i ∈ Np (17)
l · (pi + di) + lconst = Si ∀i ∈ V (18)
Li − dj + pj − Lj ≤ κmax(1 − xij) ∀i, j ∈ V, i �∈ De, j �∈ Ds (19)

Li − κv ≤ Mκ(1 − yiv) ∀i ∈ V, v ∈ K (20)
xij , yiv ∈ {0, 1} ∀i, j ∈ V, v ∈ K (21)

Li, Si, Ti ∈ R
≥0 ∀i ∈ V (22)

Objective function (1) considers variable costs regarding the length of all
routes and the fixed costs of all used vehicles that are to be minimized. Con-
straints (2) and (3) ensure that each customer is visited exactly once. Moreover,
the number of used vehicles should not exceed the fleet size k at the corre-
sponding depot (4). Please note that the first customer in a route has to be
a pickup and the last customer a delivery node as well as a feasible route can
only start at a start depot and end at the associated end depot. Constraints (5)
and (6) guarantee that an arc starting from a depot (and ending in a depot) is
associated with a vehicle. Each pickup location must be visited by exactly one
vehicle (7). If customer j directly follows on i, both of them should be served
by the same vehicle v (8). Constraints (9) and (10) make sure that each starting
and ending arc of a route will be assigned to a unique vehicle. With condition
(11) it is ensured that a vehicle v ∈ K may serve customers, if and only if it
starts from the depot. In addition, a maximum number of one vehicle can be
assigned to one start depot (12). Constraints (13) ensure that the pickup and
delivery location of a specific request are carried on the same route. Moreover,
(14) guarentee that each starting vehicle ends in the corresponding depot. If
customer j directly follows on i, the beginning of service at j is not allowed to
start before the end of service at i plus the travel time between i and j (15).
The service start time must be in the given time window [ai, bi] of customer i
(16). The precedence relationship between pickup and delivery nodes is mod-
eled using inequalities (17), where the beginning of services at node i and i + n
are considered. The constraints (18) set the service time, which depends on the
demand pi + di at customer i and a constant loading time, e.g., for the prepara-
tion of loading. Restrictions (19) ensure that the load Li after visiting customer
i will be updated correctly by subtracting the delivered and adding the picked
up load. Furthermore, (20) guarentee that the capacity of the vehicle used to
serve customer i will not be exceeded. Note that we can choose MT = ξ − η
and Mκ = κmax − κmin, whereas [η, ξ] is the time window of the depot and
κmax, κmin are the maximum and minimum capacity of the vehicles. Finally, we
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have to restrict transportation variables to be binary (21) as well as time and
load variables to be non-negative, real numbers (22).

It can be shown that a three-index formulation of the MDPDPTWHV con-
tains (2n+2d)2(k−1)− (2n+2d)k more decision variables for k > 1. Therefore,
the two-index formulation has quadratically less decision variables for all prob-
lem instances with more than one vehicle, which speeds up exact solvers.

4 A Grouping Genetic Algorithm

In the literature, GAs are known to give good results especially for RVRP, such
as the Grouping Genetic Algorithm for the PDPTW introduced by Pankratz
in [19]. It can hence be assumed that a genetic algorithm promises a good solu-
tion quality for the presented problem. Thus, we used the GGA as a basis for
solving the MDPDPTWHV and extended the procedure regarding, in particular,
crossover and mutation operators. Due to a fixed vehicle depot assignment and
our solution representation, the GGA manages the multi depot aspect automati-
cally. An overview of the procedure of the GGA and the implemented approaches
in each step is given in Fig. 1. Please note that all terms and concepts of genetic
algorithms can be read in Eiben and Smith [12].

In general, the presented GGA proceeds as follows: Initially, a population
of npop individuals is determined. We assume that each individual has a fitness
value that is equal to the sum of variable and fixed costs of the vehicle routing
solution as described in objective function (1), which has to be minimized in the
proposed GA variant. Each individual is computed by using two double insertion
heuristics, where both of them are sequential insertion heuristics that create
routes one after another by inserting customers. In order to enhance the diversity
of the initial population, we generate 25% of the individuals with Best Insertion
that starts the route with one request and inserts the best corresponding request
in each iteration, and 75% with Random which chooses a random request in every
iteration and inserts it at the best position within the current route. A high level
of diversity is achieved, as we do not allow duplicates within the population. For
this purpose, a comparison of the objective values, the numbers of vehicles used,
and the fixed costs is carried out, since each pair of the three attributes is not
unique for comparing two individuals.

As long as a termination criterium has not been met, two parents p1, p2 for
generating offsprings are selected. The termination criterium may depend on
the number of generations γmax or on individuals generated (generally ηmax or
without fitness improvement η̃max). With a probability of pcross, one crossover
operator is applied to p1, p2 in order to create two children c1, c2. Moreover,
each child is modified by using one of the mutation operations with probability
pmut and so two mutated children c̃1 and c̃2 are generated. In case no opera-
tor is applied, the created offsprings are just clones of their ancestors. Finally,
the best individual regarding its fitness is selected as result. Please note that
npop, γmax, ηmax, η̃max, pcross, pmut are parameters that have to be set manually.

In general, the most critical part of a GA is to find a good solution repre-
sentation or genotype encoding, respectively, such that crossover and mutation
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Fig. 1. Grouping Genetic Algorithm Framework (left) and its implemented
approaches (right)

operators do not have to be too complex as well as the decoding from genotype
to phenotype is not too time expensive. In particular, for pickup and delivery
problems a genotype encoding that saves the ordering of customers within the
chromosome is not practical, since the operators then have to take a lot of con-
straints into account, such as precedence relationships, and their verification can
be very time-consuming. This is why our approach, as well as the one from
Pankratz in [19], is implemented as a Grouping GA, which has been introduced
by Falkenauer in [10] and groups the pickup and delivery customers to their
request index. A genotype encoding then saves the assignment of a request to
the executing vehicle and can be represented by a vector of integers (cf. Fig. 2).
The corresponding phenotype, i.e., the associated routes like route 6 in Fig. 2, is
calculated through double insertion heuristics as described above.

As demonstrated in Fig. 2, vehicles are represented by negative index val-
ues and all subsequent positive integers characterize the requests served by the
corresponding vehicle. This encoding implies that for each vehicle the route
(e.g., route 6 in Fig. 2) has to be calculated, whenever the genotype decoding
is necessary, e.g., for fitness value determination. Since this is a time-consuming
procedure, which is with respect to the applied heuristic not necessarily deter-
ministic, we also store the corresponding phenotype of an individual (cf. [19]),
i.e., the vehicle routing solution. In this way, good features of an individual are
less likely to be removed from the phenotype, when applying the crossover or
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Fig. 2. Genotype encoding for the Grouping Genetic Algorithm

mutation operators. Please note that the phenotype must always be modified
together with the genotype during the solution process. Additionally, the geno-
type corresponds to the decision variables yiv, while the phenotype corresponds
to xij variables (cf. Sect. 3).

In the following Subsects. 4.1–4.5 a detailed description is given for the selec-
tion, crossover, mutation, and repair operators as well as population management
applied in the GGA.

4.1 Selection

In order to select parents for offspring generation, two well known selection
techniques (cf. [20]) are implemented and can be used within our GGA.

Fitness Proportional. Two individuals are chosen with regard to their fitness
value. To do so, each slot on a roulette wheel represents an individual with
its slotsize determined by the fitness, hence individuals with better fitness are
chosen with a higher probability.

Binary Tournament. Two individuals are chosen randomly without duplicates
from the population and the best individual is chosen as first parent. The second
parent is selected analogously.

4.2 Crossover Operator

The implemented crossover as in [19] is based on the group-oriented crossover
variant introduced by Falkenauer [10]. A simplified illustration of how the cross-
over works for a representation with nine requests distributed over 25 possible
vehicles, of which three/four are used, is given in Fig. 3. Firstly, we choose ran-
domly two crossover points for the first parent p1 by selecting two genes and
finding the nearest vehicle indices to the left and right of these selected genes,
i.e., there are always only complete vehicles crossed. In contrast to Pankratz [19],
we then cross (or transfer) the genes in between the two crossing points (inner
genes) in half of the cases and otherwise the genes outside of those (outer genes).
In doing so, we investigate the solution space in a broader way. To insert the
chosen sequence of genes, an insertion point (that is also a vehicle index) in
the second parent p2 is selected randomly, at which the genes to be crossed are
placed. Since this replacement might lead to infeasibility with respect to the
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Fig. 3. Crossover operator when transferring genes from parent 1 to parent 2

vehicles used or the served requests, we need to investigate these aspects to fix
infeasibilities. If a vehicle to be inserted is already present in parent p2, we delete
this vehicle from parent p2 and insert the newly selected one from p1. Due to
the deletion of doubled vehicles, it is possible that there are unassigned requests.
These will be re-inserted by using the repair operator explained in Subsect. 4.5.
The second child is generated analogously by switching notation of p1 and p2.
While modifying the genotype, the phenotype will be changed accordingly.

4.3 Mutation Operator

The mutation is done through selecting a vehicle index and deleting the cor-
responding vehicle from the genotype and phenotype. All requests served by
the erased vehicle have to be re-inserted, which is done by the repair opera-
tor (cf. Subsect. 4.5), such that the solution yields all constraints, i.e., possibly a
new vehicle has to be introduced. Contrary to Pankratz [19], we use the following
vehicle selection mechanisms to tackle the problem of heterogeneous vehicles. A
simplified scheme of the mutation operator is given in Fig. 4.

Costs/Number-of-Request Ratio. For each vehicle, the ratio of route costs
and the number of served requests is calculated and used to generate a roulette
wheel. By spinning this roulette wheel, a vehicle index is selected, i.e., expensive
routes with a small number of requests are preferred for removal. This variant
is applied in 40% of the cases.

Number of Requests. The vehicle with minimum number of requests is used
for deletion. This variant is selected with a probability of 0.4.

Random Vehicle Index. Here, in 10% of the cases a random vehicle index
from the genotype is selected, so all vehicles are equally likely to be chosen.

Random Genotype Position. This variant chooses a random position within
the genotype and selects the corresponding vehicle index. In doing so, vehicles
with many requests are preferred. The variant is applied with probability of 0.1.
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Fig. 4. Mutation operator and mutated child to be repaired (using an additional empty
vehicle if needed)

We also extend the mutation operator by applying a so-called swap operator
with a certain probability, after one of the mutation variants is applied. This
operator tries to swap used and free vehicles to minimize the sum of fixed costs.
In order to keep the search broad within the solution space, the choice of vehicles
to be swapped is controlled by a roulette wheel.

4.4 Population Management

Various variants can be used for population management. As we know from [26],
a steady-state population management can produce better results than a general
replacement while being high performant, which it is shown in [19]. Contrary
to the PDPTW addressed by Pankratz, the MDPDPTWHV considered in this
paper has a larger and more complex solution space, i.e., in a steady-state variant
the intensification may be too high and the diversification too low to search the
solution space broadly enough. Thus, we have implemented a variant of general
replacement with elitism in this framework. In our general replacement variant, a
mating pool of 1.5 of the generation size is filled with generated children, whereas
duplicates are prevented. To preserve the best solutions from the last generation,
elitism is applied by copying the best individuals (5% of generation size) into
the next generation. Then, the best 5% of the individuals from the mating pool
are selected and the rest of the next generation is filled with randomly chosen
individuals from the mating pool. The GGA provides also the option of using a
steady-state variant, in which the generated children c̃1, c̃2 replace the two worst
individuals in the population, if no duplicates are produced.

4.5 Repair Operator

When applying the crossover or mutation, respectively, we often have to fill the
chromosome with unattended/non-served requests. In order to re-insert these
requests, we use a double insertion heuristic, that is calculating the best inser-
tion positions for each request and places the best one at its computed position,
i.e., the heuristic is greedy. This approach is quite similar to the best (double)
insertion heuristic, which is used for generating the population. However, the
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proposed repair operator is a parallel insertion, i.e., the possible insertion posi-
tions are evaluated for all vehicles being used. If there are requests that cannot
be served by the available vehicles, a new (empty) vehicle has to be introduced.

5 Evaluation

In this section, the results of four Grouping Genetic Algorithm variants are
presented, which includes a variant that is similar to the one from Pankratz [19].
At first, it is described how the benchmark datasets are created (cf. Subsect. 5.1).
Then, the results for all GGA variants are presented. Furthermore, the best
and most stable GGA variant is compared to the solution calculated by Cplex
(cf. Subsect. 5.2).

5.1 Data Generation

In order to create datasets for GGA evaluation, a generator implemented by
the authors for PDPTWHV datasets is used. A multi-depot environment is cre-
ated during the generation process by creating four single depot PDPTWHV
instances and layering them on the top of each other, i.e., the instances have
four depots with up to 80 requests. To make the generated datasets compara-
ble with Li and Lim PDPTW datasets [18], different parameters (e.g., number
of requests, cluster size, time window structures, vehicle capacity etc.) may be
set. All parameters used for generating instances, which can be downloaded
from [2], are given in Table 2. In order to create 60 datasets, 12 variants of all
possible parameter combinations are applied on five generate runs. In doing so,
instances with the combination, e.g., (s3, tw2, v3) correspond to the randomly
created datasets with large time windows and big vehicles, which are the lr2xx
instances [24]. In addition, 60 datasets are generated with the easiest combina-
tion, i.e., (a1, c1, s1, tw1, v1), to compare the best GGA variant to Cplex.

5.2 Results

In this study, four variants of the proposed GGA depending on the selection oper-
ator and the population management are compared using all generated datasets.
The fitness proportional roulette wheel selection (FitPro) and binary tournament
(BinT) are combined with the steady-state population management (StSt) and
general replacement with elitism (GenRep). In each of the four possible combi-
nations, all other parameters are set as depicted in Table 3 based on Pankratz,
since preliminary studies show, that the parameter setting is reasonable. Please
note that the variant “BinT StSt” is equivalent to the GGA introduced in [19].
The GGA is implemented in C++ and executed single threaded on an Ubuntu
Server with a 2.1 GHz CPU and 128 GB RAM.

In Fig. 5, the relative error of the objective values for the GGA variants to
the best solution among all four variants are calculated for each instance and



160 C. Rüther and J. Rieck

Table 2. Used parameters for creating datasets with generator

Number of requests: (a1) 10, (a2) 15, (a3) 20

Number of clusters: (c1) 2, (c2) 3, (c3) 4

Mean of cluster radius: (s1) 5, (s2) 30, (s3) 60

Time window [min, mean, dev]: (tw1) [20, 90, 40], (tw2) [150, 600, 400]

Vehicle capacity: (v1) [150, 200, 250], (v2) [300, 400, 500],
(v3) [500, 650, 800]

displayed as boxplots. It can be seen that on average the GGA variants with gen-
eral replacement outperform the ones with steady-state population management
regarding mean and standard deviation (sd) as well as regarding the compu-
tation time (cf. Table 4). This implies that GenRep is more often better than
StSt and it is less far away from the best fitness value if its solution is not the
minimum. A reason for this is that StSt is too intensifying for a sufficiently
large search in the solution space without implementing a clever maintenance
mechanism and replacement strategy. This is necessary due to the complexity
of the considered MDPDPTWHV. In order to find sufficiently good solutions,
the diversity of the initial population is much more important in this StSt than
in GenRep. Moreover, it can be evaluated that dataset variants 6, 8 and 11 give
the worst GGA results. These variants have parameter settings similar to the
lrc1xx, lrc2xx and lr2xx Li and Lim datasets, which are also known as the more
difficult instances.

Afterwards, the best approach FitPro GenRep is taken and compared to
the best solution found by Cplex for the 60 instances built with the easiest
attribute combination (cf. Table 2). To do so, the introduced two-index formu-
lation is implemented in GAMS and run on a Windows Server (2.72 GHz and
383 GB RAM) with 30 Threads in parallel, an execution time limit of 2 h, and an
initial solution given by the BinT StSt variant with ηmax = 1,000 individuals.
If Cplex’s solution is worse than the one of the FitPro GenRep variant due to
running out of the execution time limit, the FitPro GenRep GGA will be com-
pared to the best solution of all four described GGA variants. While comparing

Table 3. Parameter settings for the comparison of GGA variants

Parameter Value Description

npop 50 Population size

pcross 1.0 Crossover probability

pmut 0.3 Mutation probability

γmax 250 Max. number of generations in GenRep

ηmax 20,000 Max. number of individuals in StSt

η̃max 4,000 Max. number of individuals without improvement in StSt
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Fig. 5. Boxplot of the relative errors to the best solution variant in %

Table 4. Average relative errors and average computation times of all GGA variants
for all instances (single run)

Variant Fit errormean Fit errorsd ComputationTimemean

BinT GenRep 1.23% 1.57% 74.995 s

BinT StSt 2.63% 2.86% 85.433 s

FitPro GenRep 0.62% 1.03% 72.675 s

FitPro StSt 2.43% 2.35% 87.636 s

the GGA variant FitPro GenRep to the best known solutions, it is 2.43% worse,
whereas FitPro GenRep is 2.12% worse on average compared to all optimal solu-
tions, as it is presented in Table 5. Furthermore, the computation times of Cplex
(in which the instances that have reached the time limit are also integrated) are
significantly longer than the computation times of the GGA. Thus, the results
show that the developed GGA gives a sufficiently good tool with respect to the
solution quality to solve the MDPDPTWHV.

6 Discussion

In this paper, we have considered the Multi Depot Pickup and Delivery Problem
with Time Windows and Heterogeneous Vehicle Fleets. To model the problem,
a new mathematical two-index formulation has been introduced, which gives the
ability to solve more complex instances of the problem with exact solvers, e.g.,
Cplex, compared to a typical three-index formulation. Due to the high complex-
ity of the MDPDPTWHV, a Grouping Genetic Algorithm has been proposed
to solve the addressed problem heuristically, which has not been done in the
literature yet. The developed GGA is based on Pankratz [19], who invented a
variant for the PDPTW. In addition, the algorithm has been extended so that it
can consider heterogeneous vehicles and several depots. In order to evaluate the
GGA, self-generated instances were used, which are similar to the well known Li
and Lim [18] datasets, and four variants (regarding population management and
selection) of the GGA were compared to each other. The best algorithm of these
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Table 5. Relative error on average of FitPro GenRep to best known solution

#exact Fit errorexact Fit errorall Cplexexe. GGAexe.

19 2.12% 2.43% 5330.162 s 72.675 s

Remark. The GGA is evaluated on a less powerful server
than Cplex.

has been competed against the best known solution of the datasets (calculated
by Cplex or one of the GGA variants). It could be shown, that the steady-state
variants performed worse than the general replacement versions due to the high
intensification, which has a negative impact on searches in large solution spaces.
As a result, the best GGA variant is 2.43% worse than the best known solution.

In future research, the two variants, i.e., general replacement and steady-
state, should be combined due to the high intensifying steady-state behavior. In
the first stage of the GGA, the general replacement will investigate the solution
space in a broad way followed by the second stage, where the population then
is intensified by using steady-state for determinating the best individuals. As
a further reasonable enhancement of the GGA, an adaptive genetic algorithm
approach with respect to the probability values, e.g., for the mutation variants
will improve the presented results should be investigated. In addition, it would
be interesting to find out whether the algorithm described also produces simi-
larly good results for, e.g., dial-a-ride problems in which people are transported
instead of goods.
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7. Dondo, R., Cerdà, J.: A cluster-based optimization approach for the multi-depot

heterogeneous fleet vehicle routing problem with time windows. Eur. J. Oper. Res.
176, 1478–1507 (2007)

https://www.uni-hildesheim.de/fb4/institute/bwl/betriebswirtschaft-und-operations-research/
https://www.uni-hildesheim.de/fb4/institute/bwl/betriebswirtschaft-und-operations-research/
https://doi.org/10.1007/s12532-014-0064-0
https://doi.org/10.1007/s12532-014-0064-0


A Grouping Genetic Algorithm for Multi Depot PDPTWHV 163

8. Elbert, R., Thiel, D., Reinhardt, D.: Delivery time windows for road freight carriers
and forwarders—influence of delivery time windows on the costs of road transport
services. In: Clausen, U., Friedrich, H., Thaller, C., Geiger, C. (eds.) Commercial
Transport. LNL, pp. 255–274. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-21266-1 17

9. Eurotransport Homepage. https://www.eurotransport.de/artikel/standgeld-anerk
annter-ausgleich-6543390.html. Accessed 26 Oct 2019

10. Falkenauer, E.: Genetic Algorithms and Grouping Problems, 1st edn. Wiley, New
York (1998)

11. Frauenhofer SCS: Führende Logistikdienstleister im Bereich Stückgut nach Umsatz
in Deutschland im Jahr 2015. Deutsche Verkehrszeitung 82(9) (2017)

12. Eiben, A.E., Smith, J.E.: Evolutionary robotics. In: Eiben, A.E., Smith, J.E. (eds.)
Introduction to Evolutionary Computing. NCS, pp. 245–258. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-44874-8 17

13. Gansterer, M., Hartl, R.F.: Collaborative vehicle routing: a survey. Eur. J. Oper.
Res. 268(1), 1–12 (2018)

14. Goel, A., Gruhn, V.: Large Neighborhood Search for rich VRP with multiple pickup
and delivery locations. In: Proceedings of the 18th Mini EURO Conference on VNS
(2005)

15. Irnich, S.: A multi-depot pickup and delivery problem with a single hub and het-
erogeneous vehicles. Eur. J. Oper. Res. 122, 310–328 (2000)

16. Lahyani, R., et al.: Rich vehicle routing problems: from a taxonomy to a definition.
Eur. J. Oper. Res. 241, 1–14 (2015)

17. Li, Y., et al.: Adaptive large neighborhood search for the pickup and delivery
problem with time windows, profits, and reserved requests. Eur. J. Oper. Res.
252, 27–38 (2016)

18. Li, H., Lim, A.: A metaheuristic for the pickup and delivery problem with time
windows. Int. J. Artif. Intell. Tools 12(2), 160–167 (2001)

19. Pankratz, G.: A grouping genetic algorithm for the pickup and delivery prob-
lem with time windows. OR Spectr. 27(1), 21–41 (2005). https://doi.org/10.1007/
s00291-004-0173-7

20. Razali, N.M., Geraghty, J.: Genetic algorithm performance with different selec-
tion strategies in solving TSP. In: 2011 Proceedings of the World Congress on
Engineering, vol. II, pp. 1134–1139. Newswood Limited, London (2011)

21. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transp. Sci. 40(4), 455–472 (2006)

22. Savelsbergh, M.W.P., Sol, M.: The general pickup and delivery problem. Transp.
Sci. 29(1), 17–29 (1995)

23. Schwemmer, M.: Top 100 der Logistik - Marktgrößen, Marktsegment, Marktführer.
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in a systematic way, with different alternatives formally expressed, e.g.,
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problem of improving the quality of selected subsets of software fea-
tures (components) from feature models, or as it is widely known, Fea-
ture Configuration. When there are different independent dimensions to
assess how good a software product is, the problem becomes even more
challenging – it is then a multi-objective optimisation problem. Another
big issue for software systems is evolution where software components
change. This is common in the industry but, as far as we know, there is no
algorithm designed to the particular case of multi-objective optimisation
of evolving software product lines. In this paper we present MILPIBEA,
a novel hybrid algorithm which combines the scalability of a genetic algo-
rithm (IBEA) with the accuracy of a mixed-integer linear programming
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static software product lines. We demonstrate that MILPIBEA outper-
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the quality of the solutions when SATIBEA stagnates (in the evolving
context).
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1 Introduction

Software Engineering combines various domains [1]. Software Product Lines
(SPL) is one of these domains that deal with groups of related software sys-
tems as an ensemble, instead of handling each of them independently [2]. SPL is
getting more attention by the software industry as it simplifies software reuse [3]
and enables better reliability and important reduction in cost [4].

A common way to represent a product line, all available products and their
essential characteristics, is a Feature Model (FM). Every feature corresponds to
an element of a software system/product that is of interest to a particular com-
pany. Each FM describes the available configuration choices, and consequently
the set of all possible products as combinations of features. These FMs can grow
to become very large (e.g., in this paper, we use FMs with ∼7k features and
∼350k constraints).

When deriving a particular product from the product line, we have to perform
a feature selection. To find the best possible product, we optimise the feature
selection, i.e., pick the set of features which gives us the ‘best’ product [5]. Since
in practice various characteristics often have to be considered simultaneously
(e.g., cost, technical feasibility, or reliability) finding the ‘best’ feature selection
is an instance of a multi-objective optimisation problem [6].

A similar problem that is not fully studied in the literature is the multi-
objective feature selection when FMs evolve. There is a continual evolution of
software libraries and a constant change in customers’ preferences regarding the
requirements of software applications. These evolutions appear as an adaptation
of the FM from a version to another. For instance, Saber et al. [7] have shown in
their study that the large FM representing the Linux kernel evolves continuously.
They have also shown that a new version of the kernel is released every few
months with a successive difference that can go up to 7%.

In this paper, we propose to leverage the evolution context when performing
optimisations of feature configurations. It seems odd to generate random boot-
strapping populations for SATIBEA in the presence of well-performing solutions
for similar problem instances. At the same time, it might be beneficial to exploit
the fact that the FM has evolved and that configurations generated previously
are close enough and can be adapted.

This paper presents our approach, MILPIBEA, which was initially designed
to address the problem of feature selection in a multi-objective context when the
FMs evolve, but proved to be better than SATIBEA both when the FMs evolve
and when they do not. MILPIBEA is a hybrid algorithm that uses a genetic
algorithm (IBEA) and a mixed-integer linear programming (MILP) solver (IBM
ILOG CPLEX).

SATIBEA [6] (also a hybrid algorithm) faces a difficult challenge: the search
space is so large and constrained that mutation and crossover operations generate
a large number of infeasible solutions. SATIBEA uses a SAT solver to fix these
infeasible solutions and obtains (close to) viable individuals at each generation of
the genetic algorithm. However, this process has two major issues: (i) it is time-
consuming – an empirical study of SATIBEA showed that the vast majority of
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the execution time consists in fixing the faulty individuals; (ii) it modifies the
individuals, often substantially, which defies the idea behind genetic algorithms –
where you expect to inherit properties from previous generations and modify the
individuals only marginally. MILPIBEA’s correction of individuals is both more
efficient and more effective, making sure the corrected individuals are closer to
the ones generated by IBEA’s mutation and crossover.

This paper makes the following contributions:

– We propose MILPIBEA, a hybrid algorithm that outperforms the SAT-
IBEA [6] both in terms of execution time and quality of the solutions.

– We thoroughly evaluate SATIBEA and MILPIBEA on evolving and non-
evolving SPL problems and show that MILPIBEA is 42% better than SAT-
IBEA in hypervolume on average, especially for the most challenging problem
instances, and that MILPIBEA is the one that continues to improve the qual-
ity of solutions when SATIBEA stagnates (in the evolving context) and does
improve the quality of solutions.

Combining a solver with a multi-objective evolutionary algorithm has already
been proposed to address the particular problem of multi-objective feature selec-
tion in SPL [6,8,9] and problems from various other problem domains (e.g., cloud
computing [10–12]). However, this is the first work that proposes using a MILP
solver for the multi-objective feature selection in SPL.

The remainder of this paper is organised as follows: Sect. 2 describes the
context of our study. Section 3 provides the overall set-up and the benchmark
for evolving SPL. We then discuss potential improvements in three steps: Sect. 4
motivates seeding previous solutions when dealing with evolving FMs. Section 5
compares the correction mechanisms of SATIBEA and MILPIBEA. Section 6
discusses how MILPIBEA performs in comparison to SATIBEA in terms of
achieved hypervolume and required time. Finally, Sect. 7 concludes the paper.

2 Background

In this section, we present four elements that form our research’s background:

– Software Product Line Engineering, in particular how to describe variations
of software applications as configurations of a feature model.

– Multi-objective optimisation (MOO); picking features can lead to many prod-
ucts for which the quality can be seen from different perspectives. MOO gives
a framework to address this sort of problems.

– Evolution of Software Product Lines: Software applications, requirements,
and implementations change constantly. Therefore, feature models need to
be updated to reflect these evolutions [7].

– SATIBEA, a state-of-the-art algorithm to address the MOO for feature selec-
tion in feature models [6] and the same when FMs evolve [7].
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2.1 Software Product Line Engineering

Software engineers often need to adapt software artefacts to the needs of a
particular customer. Software Product Line Engineering (SPLE) is a software
paradigm that aims at managing those variations in a systematic fashion. For
instance, all software artefacts (and their variations) can be interpreted as a set
of features which can be selected and combined to obtain a particular product.

Feature Models can be represented as a set of features and connecting rela-
tionships (constraints). Figure 1 shows a toy FM which has ten features con-
nected by several relationships. For instance, each ‘Screen’ has to be have exactly
one of three types, i.e., ‘Basic’, ‘Colour’ or ‘High Resolution’. When deriving a
software product from the software product line, we have to select a subset of
features S ⊆ F that satisfies the FM F and the requirements of the stake-
holder/customer. This configuration can be described as a satisfiability problem
(SAT), i.e., instantiating variables (in our case, features) with the values true or
false in a way that satisfies all the constraints. Let fi ∈ {true, false} which is set
to true if the feature Fi ∈ F is selected to be part of S and false otherwise.

An FM is represented in a conjunctive normal form (CNF). Finding a prod-
uct in the SPL is then equivalent to assigning a value in {true, false} to every
feature. For instance, in Fig. 1 the FM would have the following clauses, among
others: (Basic ∨Colour ∨High resolution) ∧ (¬Basic ∨ ¬Colour) ∧ (¬Basic ∨
¬High resolution) ∧ (¬Colour ∨ ¬High resolution), which describe the alter-
native between the three screen features. When configuring a SPL, software
designers do not limit themselves to finding possible products (satisfying the
FM) but also attempt to discover products optimising multiple criteria. For this
reason, SPL configuration is modelled as multi-objective problem.

Fig. 1. Example of a feature model

2.2 Multi-objective Optimisation

Multi-Objective Optimisation (MOO) involves the simultaneous optimisation of
more than one objective function. Given that the value of software artefacts can
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be seen from different angles (e.g., cost, importance, reliability), feature selection
in SPL is a good candidate for MOO [6].

Solutions of a MOO problem represent the set of non-dominated solutions
defined as follows: Let S be the set of all feasible solutions for a given FM. Then
∀x ∈ S, F = [O1(x), ..., Ok(x)] represents a vector containing values of the k
objective functions for a given solution x. We say that a solution x1 dominates
x2, written as x1 � x2, if and only if ∀i ∈ {1, ..., k}, Oi(x1) ≤ Oi(x2) and
∃i ∈ {1, ..., k} such that Oi(x1) < Oi(x2). We also say that xi is a non-dominated
solution if there is no other solution xj in the Pareto front s.t. xj dominates xi.

All the non-dominated solutions represent a set called a Pareto front: in
this set, it is impossible to find any solution better in all objectives than
the other solutions in the set. The Pareto front given in Fig. 2 contains solu-
tions x1, x2, x4, x6, x7 because they are not dominated by any other, while, for
instance, x8 is dominated by x1. Hence, x8 is not in the Pareto front.

Fig. 2. Example of a Pareto front with two minimisation objectives.

2.3 Evolution in SPL

Evolution of SPLs and the corresponding FMs is known to be an important
challenge, since product lines represent long-term investments [13]. For instance,
in Sect. 3 we describe a study of a large-scale FM, the Linux kernel by Saber et
al. [7] which shows that every few months a new FM is released with up to 7%
modifications among the features (features added or removed).

In this paper, we show a potential approach for this optimisation problem
which utilises the evolution from one FM to another. The relationship between
two versions of a feature model is expressed as a mapping between features. Let
us assume an FM FM1 evolved into another FM FM2. Some of the features
f1
i ∈ FM1 are mapped on to features f2

i ∈ FM2 (treated as the same), whereas
other features f1

i ∈ FM1 are not mapped onto any features in FM2 (f1
i has been

removed), and features f2
i ∈ FM2 have no corresponding features in FM1 (f2

i

has been added). The same can be applied to constraints (removed from FM1 or
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added to FM2). The problem we address concerns adapting the solutions found
previously for FM1 to FM2.

2.4 SATIBEA

SATIBEA [6] is an extension of the Indicator-Based Evolutionary Algorithm
(IBEA) which guides the search by a quality indicator given by the user. Pre-
viously to SATIBEA, several techniques have been tried to solve the multi-
objective feature selection in SPL. As most of the random techniques and genetic
algorithms tend to generate invalid solutions (given the large and constrained
search space, any random, mutation or crossover operation is tricky) setting the
number of violated constraints as a minimisation objective has been proposed
by Sayyad et al. [14] and has since been widely used in the literature [6–8]. It
is not the best possible decision and is acceptable only for small problems (only
small FMs are solvable with exact algorithms [15]).

SATIBEA has been introduced to help IBEA find valid products using a SAT
solver. SATIBEA changes the mutation process of IBEA: when an individual is
mutated, three different exclusive mutations can be applied:

1. The standard bit-flip mutation proposed by IBEA.
2. Replacing the individual by another one generated by the SAT solver that

does not violate any constraints.
3. Transforming the individual into a valid one using the SAT solver (repair).

Using this novel mutation approach, SATIBEA finds better solutions than IBEA:
it finds valid optimised products, but also gives better values in quality metrics.

In this paper, we propose MILPIBEA; a novel technique that addresses some
of SATIBEA’s limitations (i.e., slow and stagnating performance improvements).

3 System Set-Up

This section presents the different elements that we have used in our implemen-
tation: the data set, the objectives we use for our multi-objective optimisation
problem, the metric we use (i.e., hypervolume), the parameters we use for the
genetic algorithm (i.e., IBEA) and the hardware configuration.

3.1 Benchmark for Evolving FMs

Our work is based on the largest open-source FM we could find in the literature:
the Linux kernel version 2.6.28 containing 6,888 features and 343,944 constraints.

Saber et al. [7,16] studied the demographics (features/constraints) and evo-
lution pattern of 21 successive versions of the Linux kernel (going from 2.6.12 to
2.6.32). They observed that on average there was only 4.6% difference in terms
of features between a version and the next (out of those changes, 21.22% were
removed features and 78.78% were added features). They also evaluated the size
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of the clauses/constraints in the problem, as we need to know how the con-
straints we add in the problem should look and found that a large proportion of
the FMs’ constraints have 6 features (39%), 5 features (16%), 18 features (14%)
or 19 features (14%). Saber et al. [7] put at our disposal a generator of synthetic
FM evolutions based on the real evolution of the Linux kernel – hence a realistic
benchmark but with more variability than in a real one, allowing us also to get
several synthetic data sets corresponding to these characteristics.

The FM generator provided by Saber et al. uses two parameters representing
the percentage of feature modifications (added/removed) and the percentage of
constraint modifications (added/removed). The higher those percentages are,
the more different the new FM is from its original. The FM generator uses the
proportions observed in the 20 FMs to generate new features/remove old ones,
and to generate new constraints of a particular length. We use the following
values to generate evolved FMs: from 5% of modified features and 1% of modified
constraints (FM 5 1) to 20% of modified features and 10% of modified constraints
(FM 20 10). In our evaluations we generate 10 synthetic FMs for each parameter
values. Data is available at https://github.com/aventresque/EvolvingFMs.

3.2 Optimisation Objectives

We use a set of optimisation objectives from the literature [6]:

1. Correctness – minimise the number of violated constraints, proposed by
Sayyad et al. [14].

2. Richness of features – maximise the number of selected features (have prod-
ucts with more functionality).

3. Features used before – minimise the number of selected features that were not
used before.

4. Known defects – minimise the number of known defects in selected features
(we use random integer values between 0 and 10).

5. Cost – minimise the cost of the selected features (we use random real values
between 5.0 and 15.0).

In a different application context, these objectives could be augmented or
replaced with other criteria, e.g., consumption of resources or various costs.

3.3 Hypervolume Indicator

We evaluate the quality of our solutions cost using the hypervolume metric [17].
Intuition behind the hypervolume is that it gives the volume (in the k dimensions
of the search space) dominated by a set of non-dominated solutions. Hypervol-
ume is the region between the solutions and the reference point (the higher the
better). The reference point is set with the worst value for each of the objectives.

https://github.com/aventresque/EvolvingFMs
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3.4 System and Algorithms Set-Up

We use the source code provided by SATIBEA’s authors and make MILPIBEA
publicly available at https://github.com/takfarinassaber/MILPIBEA. The tests
are performed on a machine with 62 GB of RAM and 12 core Intel(R) Xeon(R)
2.20 GHz CPU. We use the following parameters for our genetic algorithm:

– Population size: 300 individuals.
– Offspring population size: 300 individuals.
– Crossover rate: 0.8. Represents the probability of two individuals in the pop-

ulation to perform a crossover (an exchange of their selected features).
– Mutation rate: 0.001. Represents the probability for each bit (true if a feature

is selected, 0 otherwise) of an individual to be flipped.
– Solver mutation rate: 0.02. Represents the probability of using the solver to

correct a solution during the mutation process.

We also use one heuristic in our algorithm: we do not do any bit flip for
mandatory or dead features as this always lead to invalid products. We use the
engine of the MILP solver IBM ILOG CPLEX. We use the hypervolume metric
proposed by Fonseca et al. [17]. We ran all our algorithm instances for 20 min
and determined the average over 10 runs (for each randomly generated instance).

4 Using Seeds in Evolving FM

In this section, we explore how to use seeds (including previously found solutions
in the initial population of a new evolution) to take advantage of the fact that
the feature model evolved.

When a FM evolves, the modifications of features and constraints depend on
how different the two models are (new and original models). We propose to take
advantage of previous FM configurations (when they exist) to feed SATIBEA
with solutions of the original model. Let’s suppose two FMs: F1 and F2 with F2

being an evolution of F1 (i.e., features/constraints added and removed). We con-
sider that we already found a set of solutions S1 by applying a multi-objective
optimisation algorithm (SATIBEA in our case) on F1. Instead of leaving SAT-
IBEA with an initial random population for F2 (similar to what is proposed
in [7]), we adapt S1 to F2. Therefore, for each individual, we remove bits repre-
senting removed features and add bits with random values for each new feature.
Then, we compute their objective functions. We give the new resulting individu-
als as an initial population to SATIBEA that will run normally on F2. Our hope
is that initial individuals will be better than random solutions.

We tested this approach on all the modified versions of the Linux Kernel and
all of the results are equivalent: as expected, when supplied with an initial seed
SATIBEA converges within a short time (i.e., less than 100 s) whereas the clas-
sical SATIBEA needs 700 s to reach the same hypervolume. This approach also
has some limits: with a modified version of 20% features and 10% constraints,
classical SATIBEA reaches a slightly better hypervolume than the one with seed.

https://github.com/takfarinassaber/MILPIBEA
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When we give an initial population to SATIBEA, it converges very fast.
Still, it is also blocked very fast, i.e., after 100 s on all models, it stagnates and
is unable to improve results further. That is why we decided to investigate a
better substitution for SATIBEA, starting from its repair technique based on a
SAT solver. We describe this approach in the next section.

5 Correcting Individuals

In this section, we present two ways of correcting non-feasible individuals, i.e., a
situation that happens very often during the execution of the genetic algorithm
for our problem. Indeed, both mutation and crossover, the basic operations of
(SAT)IBEA, generate quite a large ratio of infeasible individuals, given the size
of the search space and the number of constraints that can be violated.

The first solution we present is the one proposed in the definition of SAT-
IBEA [6]. The second one is our own improved solution using the MILP solver.
Eventually, we propose an evaluation of the two techniques with an example.

5.1 How SATIBEA Corrects Solutions

SATIBEA’s correction method occurs in the mutation phase of the genetic algo-
rithm. IBEA takes an individual that violates one or several constraints out of
the population and corrects it, using a SAT solver. This leads to the individual
being now valid (no longer violating constraints). Figure 3 shows an example
of SATIBEA’s repair technique on a FM with 5 features (f1 to f5) and 3 con-
straints (c1 to c3). The constraints are shown on the left-hand side of Fig. 3, with
c2 marked as violated.

(1) First, an individual with assignment {1 1 1 0 0} is selected for repair due to
the violation of constraints c2 (which causes the individual to be invalid).
This is shown in row (1) in the table on the right-hand side of Fig. 3.

(2a) Second, SATIBEA unsets (this is represented by ‘ ’ in the example) all the
bits that belong to a violated constraint. Here, constraint c2 is violated, so
f4 and f5 are unset. This is in row (2a) of the table.

(2b) Third, SATIBEA unsets all the bits that are evaluated as ‘false’ in every
constraint. Each of these can either be a feature without a negation sign
in the constraint (i.e., f) that is set to false or a feature with a negation
(i.e., f) that is set to true. All of these are unset. In our example, f2
is assigned to true and is evaluated at false in the constraint c1 (f2).
Therefore, SATIBEA unsets f2. This is shown in row (2b) of the table.

(3) Eventually, the resulting partial assignment is given to the SAT solver
to complete the unset values while satisfying the constraints of the FM.
SATIBEA’s correction always obtains a valid solution if it exists. In our
case, SATIBEA results in a new individual (i.e., {1 0 1 1 0}). This is shown
on line 3 of Fig. 3. Note that this procedure cannot guarantee to always
return a valid individual as the problem may be unsatisfiable.
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c1 f1 ∨ f̄2 ∨ f3
) ∧

c2 (Violated) (f4 ∨ f5) ∧
c3 f̄2 ∨ f3 ∨ f̄5

)

f1 f2 f3 f4 f5
1) 1 1 1 0 0
2a) 1 1 1
2b) 1 1
3) 1 0 1 1 0

Fig. 3. Correction of an individual in SATIBEA. The original individual, violating
constraint 2, is shown on line 1 and the different steps of SATIBEA’s correction are
shown on lines 2a, 2b and 3.

Although this correction technique is fast and improves the classical IBEA
algorithm, the number of flipped bits is large. This often creates new individuals
that are far from the original ones (before the correction). This issue is that those
individuals were obtained by mutation in IBEA and modifying them too much is
against the idea behind genetic algorithms (i.e., inheriting and preserving good
characters). For instance, from the individual {1 1 1 0 0} (line 1 of Fig. 3) that
violates the constraints, it would be better to obtain individual {1 1 1 1 0} that
does not violate the constraints (instead of {1 0 1 1 0}). The next subsection
describes our MILP-based correction technique that overcomes this problem.

5.2 How Our MILP Technique Corrects Solutions

Our new method corrects individuals and avoids the problem described in previ-
ous section (i.e., a large number of flipped bits between the initial individuals and
the corrected ones). This method corrects the faulty individuals and minimises
the number of flipped bits which are not part of any violated constraint.

Applied to the example in Fig. 3, only features f4 and f5 are unset. CPLEX
solves the problem of finding a valid individual by assigning values to f4 and f5
while at the same time, minimising the total bit flips on the rest of the features
(i.e., f1,f2 and f3). One possible output is {1 1 1 1 0} which does not modify any
fixed bit, unlike SATIBEA’s one (i.e., {1 0 1 1 0} which has one modification
on the feature f2).

Using our method, CPLEX is guaranteed to find a valid individual. Moreover,
it returns an individual that is as close as possible to the original one. In our
method, we use the model defined by Eqs. 1a, 1b, and 1c.

Minimise
∑

x∈T

(1 − x) +
∑

x∈F

x (1a)

Subject to
∑

x∈Pi

x +
∑

x∈Ni

(1 − x) ≥ 1, ∀i ∈ {1, .. n} (1b)

x ∈ {0, 1}, ∀x ∈ X (1c)
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With n number of clauses, X set of features, T ⊂ X set a features fixed at true,
F ⊂ X set of features fixed at false, Pi ⊂ X set of features without negation in
clause i, and Ni ⊂ X set of features with negation in clause i.

In the MILP model above, we aim to minimise the number of flipped features
that were not part of violated constraints in the original individual: if the feature
was originally at True (i.e., ‘1’), then we count it as a modification if and only if
it changes to False (i.e., ‘0’). Similarly, when the feature was originally at False
and is changed to True, we also count it as a modification. As in the technique
using the SAT model, each clause is represented by a linear constraint. Every
feature without a negation is considered as ‘1’ when selected, and every feature
that is negated is considered as ‘1’ when unselected. The sum of every feature
within a clause has to be larger or equal to 1 to validate it.

Table 1. Comparison of SATIBEA and MILP corrections. Higher values of hypervol-
ume (HV) are better. Lower values of both time and number of modifications (#mod)
are better. Best values for each instance in bold.

Instance No correction SATIBEA correction MILP correction

HV HV Time (ms) #mod HV Time (ms) #mod

1 1 1.09 1.12 8,895 2,696 1.18 6,801 141

5 1 2.15 2.27 8,474 2,660 2.35 2,337 353

5 3 1.03 1.14 9,005 2,747 1.25 5,675 297

10 1 1.00 1.04 9,273 2,615 1.16 2,192 798

10 3 1.08 1.19 10,255 2,732 1.33 4,044 99

10 5 1.02 1.18 10,339 2,784 1.33 4,082 110

20 1 0.90 0.96 9,762 2,528 1.03 2,143 412

20 3 2.16 2.28 9,699 2,691 2.47 2,891 148

20 5 1.06 1.20 10,222 2,752 1.36 2,962 124

20 10 0.72 0.73 10,877 3,008 0.75 6,719 92

5.3 Comparison with Respect to the Correction Process

In Table 1, we compare our correction method against SATIBEA’s correction.
Each instance corresponds to an evolved FM and is represented by a couple
(x y) where x is the percentage of features modified and y the percentage of
constraints modified. We took the 300 individuals given by SATIBEA on the
original FM as seeds for the evolved versions. SATIBEA found 62 solutions that
do not violate constraints in the original FM. Obviously, these solutions violate
some constraints in each of the evolved FMs. We compared both SATIBEA’s
and MILP’s correction methods applied on the 62 individuals. We measured the
hypervolume (HV), the average execution time for each individual (in millisec-
onds) and the average number of modified features from the original individual
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to the corrected one (#mod). We also added the hypervolume of non-corrected
solutions (NC) as a baseline.

We can see that when applying a correction, both algorithms improve the
hypervolume composed to non-corrected individuals. However, MILP’s cor-
rections outperforms SATIBEA’s corrections. Correction using a MILP solver
improved hypervolume of SATIBEA’s correction by 147% on average, while only
requiring 48% of its execution time. Moreover, we notice that the number of
modified features per individual using the MILP correction is one order of mag-
nitude lower than when using SATIBEA’s correction (on average SATIBEA’s
correction requires 2,721 feature modifications whereas MILP’s correction only
requires 257). As our correction method needs less modifications of individuals
to transform them into valid ones, it could be more interesting to use it instead
of SATIBEA’s one in a genetic algorithm: indeed, less modifications imply a
better conservation of the accumulated knowledge during the generations. An
implementation of our genetic algorithm with this type of correction method in
the mutation part is described in the next section.

6 Performance of MILPIBEA vs. SATIBEA

We now report on how MILPIBEA and SATIBEA perform on the multi-objective
features selection problem – in particular with respect to the achieved hyper-
volume and the required time for that. We initially discuss the general feature
selection problem and then the case of evolved FMs.

6.1 On the Multi-objective Feature Selection Problem

Figure 4 show the evolution using SATIBEA or MILPIBEA in terms of hyper-
volume when applied on our 10 generated models: each of them is a modification
of the 2.6.28 version of Linux kernel represented by a couple (x y) where x is
the percentage of features modified and y the percentage of constraints modi-
fied. This hypervolume is measured based only on the individuals of the current
population. We are not seeding the initial population: the problem studied in
these result is the multi-objective feature selection problem, without the notion
of evolution. The initial population is generated randomly for both algorithms.

Our results indicate that MILPIBEA outperforms SATIBEA with an
improvement of 41.2% hypervolume on average. Figure 4 also indicates that
MILPIBEA is more efficient on the most constrained problems (i.e., with con-
straint modifications ≥ 5%). MILPIBEA reaches a good hypervolume after 100 s,
then increases slowly. We can see that SATIBEA’s hypervolume increases with
a slower pace than MILPIBEA’s; then its hypervolume stays stable (within a
small interval).

6.2 With Evolved Feature Models

We now compare MILPIBEA and SATIBEA in the case of the multi-objective
feature selection problem in evolving FMs. As described in Sect. 2, the notion of
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1 51 51 3

10 011 013 5

20 025 021 3

20 10

Fig. 4. Comparison of MILPIBEA and SATIBEA on various evolved FMs. The higher
the better for the hypervolume.

evolution is represented by features/constraints modifications in the FM. In our
case, the Linux kernel 2.6.28 is the original FM, and we generated 10 modified
versions. Because of evolution, the original FM has been optimised, and its solu-
tions as given as initial population to SATIBEA and MILPIBEA: the purpose
is to improve the quality of results on modified FMs as fast as possible.
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]
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10 011 013 5
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Fig. 5. Comparison of the hypervolume achieved by seeded MILPIBEA and seeded
SATIBEA on various evolved FMs (higher values are better).

Figure 5 show the hypervolume of the individuals at every new generation
for both SATIBEA and MILPIBEA when given the solutions of the original FM
as initial population. We see that both algorithms start from a relatively good
hypervolume, which shows the quality of the initial population.

We also see that MILPIBEA successfully improves the hypervolume, whereas
SATIBEA struggles when seeded. This is mainly because MILPIBEA has a cor-
rection method that allows it to take advantage of the initial population’s good
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characteristics by not changing a lot of features in individuals that are obtained
from the crossover. However, SATIBEA requires to modify several features, mak-
ing the individuals obtained by the repair almost random.

Moreover, we can observe that unlike SATIBEA, MILPIBEA’s hypervolume
continues improving slowly even after the limit (i.e., 1200 s). A larger allowed
time would lead to better solutions. MILPIBEA stagnates after 40 min beyond
which we might consider adding a local search phase [18–21].

When comparing MILPIBEA without seeds and MILPIBEA with seeds: after
the first generation, MILPIBEA with seeds is 10.5% better in hypervolume than
without seeds. It also reaches 97.28% of MILPIBEA’s final hypervolume (com-
puted in 1200 s) after only one generation (42.29 s on average). This shows us
that a good initial population improves the time needed to reach good solutions.

7 Conclusion and Future Work

In this paper, we have presented the importance of the evolution in SPL by
introducing the multi-objective features selection in evolving SPL problem. To
solve this problem, we proposed a method based on a combination of a genetic
algorithm (IBEA) with a MILP solver (i.e., CPLEX). We observed that this
method not only outperforms SATIBEA on the multi-objective features selec-
tion but also achieves faster better results in the context of evolving SPL. Our
thorough evaluation shows the importance of using a MILP solver to reduce the
number of modifications when correcting an individual.

Our future work will investigate the performance with respect to other multi-
objective performance metrics and the utility of a local search when the genetic
algorithm stagnates.

Acknowledgment. This work was supported by Science Foundation Ireland grant
13/RC/2094.
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Abstract. Containers have gain popularity because they support fast
development and deployment of cloud-native software such as micro-
services and server-less applications. Additionally, containers have low
overhead, hence they save resources in cloud data centers. However, the
difficulty of the Resource Allocation in Container-based clouds (RAC)
is far beyond Virtual Machine (VM)-based clouds. The allocation task
selects heterogeneous VMs to host containers and consolidate VMs to
Physical Machines (PMs) simultaneously. Due to the high complexity,
existing approaches use simple rule-based heuristics and meta-heuristics
to solve the RAC problem. They either prone to stuck at local optima or
have inherent defects in their indirect representations. To address these
issues, we propose a novel group genetic algorithm (GGA) with a direct
representation and problem-specific operators. This design has shown
significantly better performance than the state-of-the-art algorithms in
a wide range of test datasets.

Keywords: Cloud resource allocation · Container placement · Energy
consumption · Group genetic algorithm

1 Introduction

Container-based clouds [14] have quickly become a new trend in cloud com-
puting. Compared to Virtual Machines (VMs), containers (e.g. docker) cause
much fewer overheads. This feature is critical for modern cloud-native applica-
tions, such as microservices and serverless applications, as they are developed
in a decoupling and scalable manner. Cloud providers apply server consolida-
tion [21] strategies in resource allocation to improve the utilization of cloud
resources. Server consolidation strategies aim to allocate applications to a min-
imum number of Physical Machines (PMs), to reduce energy consumption. In
container-based clouds, it is much difficult than in VM-based clouds because of
the higher granularity of the allocation problem. Server consolidation in VM-
based clouds involves one level of allocation, i.e. a set of VMs is allocated to
PMs directly while container-based clouds involve two levels of allocation, i.e. a
set of containers is allocated to a set of VMs with various types, and the VMs are
allocated to PMs. In the remaining of this paper, we use Resource Allocation in
c© Springer Nature Switzerland AG 2020
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Container-based clouds (RAC) to represent the consolidation problem. In terms
of difficulty, the two levels of allocation are both vector bin packing problems
which are NP-hard [22]. Moreover, resource allocation in the first level, e.g., VM
type selection, impacts the resource allocation in the second level.

Since it is impossible to find the optimal solution for a large scale RAC prob-
lem (e.g. over 1000 containers), existing studies mainly apply rule-based heuris-
tics [6,11,14,22], and meta-heuristic algorithms [2,4,19] to find near-optimal
solutions. Rule-based heuristics are greedy so they prone to stuck at local opti-
mal solutions and they perform differently when facing various settings of VM
types from multiple cloud providers. The meta-heuristics are promising algo-
rithms. However, the current research either focuses on the problem of allocating
containers directly to PMs or uses indirect representation which is inefficient in
the searching process.

Group Genetic Algorithm (GGA) was proposed by Falkenauer [3] and has
inspired many studies in solving the VM allocation problem [10,20]. Differ-
ent from the standard GA, GGA applies a variable length of chromosome and
domain-specific genetic operators such as inversion and rearrangement. GGA is
designed for bin packing problem and uses a direct representation which avoids
a decoding process. However, GGAs [3,16] can only solve one-level problems.

This research aims at proposing a novel GGA for the RAC problem to min-
imize the energy consumption. The proposed GGA provides the functionality
of selecting VM types. Also, it has a direct representation and problem-specific
operators to address the limitations of the dual-chromosome GA. To achieve our
aim, we set up the following objectives:

1. To propose a new representation for the RAC problem;
2. To develop new genetic operators including gene-level crossover, unpack, rear-

rangement, and merge;
3. To evaluate our proposed approach by comparing it with the state-of-the-

art algorithms: Rule-based (FF&BF/FF) approach [22] and two variations of
dual-chromosome GAs [19].

The paper is organized as follows. Section 2 gives a background of our method-
ology and discusses related studies of the RAC problem. Section 3 presents the
model of the problem. Then, Sect. 4 describes the proposed GGA. Section 5 illus-
trates the experiment design, results, and analysis. Section 6 summarizes the
contributions and discusses the future works.

2 Related Work and Background

This section first reviews related works of the resource allocation in container-
based clouds. Then, we provide a brief background of GGA [3].

2.1 Related Works

Current studies solve the RAC problem with two types of approaches, rule-based
approaches, and meta-heuristics approaches. Piraghaj [14], Kaur [6], Mann [12],
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Liu [9] and Zhang [22] treat the problem as a dynamic problem and propose
AnyFit-based (e.g. First-Fit, Best-Fit) approaches to solve the problem. The
proposed rules evaluate the candidate VMs and VM types to decide which VM
to choose or which VM type to create. Overall, from the problem’s perspec-
tive, as Wolke et al. [21] suggest that dynamic approaches are useful in some
scenarios such as container migration and inferior in other scenarios such as ini-
tial container allocation. From the methods’ perspective, the rules have a poor
generality. Their performance varies when applying them to different settings of
VM types (see Sect. 5.4). Another drawback is that these greedy rules are easily
stuck at local optimal solutions.

A few meta-heuristics have been proposed, but they either focus on one-level
allocation problem such as [4,8], or uses an indirect representation [2,19]. Guer-
rero et al. [4] propose an NSGA-II-based approach for a four-objective allocation
problem. Lin et al. [8] propose an ant colony algorithm-based approach for the
problem. In their models, containers are allocated directly to PMs without con-
sidering VMs. Tan et al. [2,19] propose two meta-heuristic approaches for the
RAC problem, an NSGA-II-based and a dual-chromosome GA (DGA). These
approaches use indirect representations and they require a decoding process to
interpret the representation to a solution. Overall, these algorithms search in the
genotype space.

The current meta-heuristics have two shortcomings. The first drawback is
that they [4,8] only consider the one-level structure which inherently leads to
local optimal solutions. The second drawback is that the decoding process of
[19] can easily break the solutions (good combination of containers and VMs)
from the previous generation. Therefore, it is hard to perform a directed search.
As a consequence, the algorithms with indirect representation cannot find local
optimal solutions efficiently.

Therefore, because of these drawbacks in the literature, we propose a meta-
heuristic with a direct representation to solve the two-level RAC problem. The
next section discusses the background of the GGA and explains how it can be
adapted to our problem and meets our goal.

2.2 Group Genetic Algorithm (GGA)

GGA was proposed by Falkenauer [3] to solve the bin packing problem. GGA
overcomes a major defect, the redundant encoding problem, in the ordering
GA [15]. The ordering GA uses an encoded representation and the decoding
process highly relies on items rather than the numbering of groups. For example,
using two letters A and B to represent distinct groups, AAB and BBA are two
solutions. However, in terms of grouping, these two solutions have the same
meaning – the first two items are in the same group and the third item is in
another group. To solve the redundant problem, GGA proposes a variable-length
representation. The new crossover, mutation, and inversion operators directly
operate on groups instead of items. Later on, Quiroz-Castellanos [16] embeds
heuristics into the algorithm to speed up the search procedures.
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GGA has been successfully applied to solve many bin packing problems such
as ordering batch problems in warehouse [7], VM placement problem [5,10], and
assembly line balancing problem [17]. However, it has not been used to solve any
two-level vector bin packing problems. Our RAC problem is a two-level vector
bin packing problem. It is promising to adopt GGA’s framework and propose
problem-specific operators to solve our problem.

3 Problem Model

Resource Allocation in Container-based clouds (RAC) is a task of allocating a set
of containers to a set of VMs of various types, then allocating the created VMs
to a set of PMs. VM selection chooses an existing VM to allocate a container.
VM creation selects a type of VM, creates a VM with the selected type and
allocates the container to the new VM. The types of VM are defined by cloud
providers. PM selection chooses an existing PM to allocate the new VM. If there
is no available PM, a new PM will be created and the data center automatically
allocates the new VM to the new PM. Since the PMs are homogeneous, no
decision is needed for PM creation.

In the static setting of RAC problem, a set of containers C = {c1, . . . , cn}
arrives to the cloud to be allocated. Each container ci has a CPU occupa-
tion ζcpu(ci), a memory occupation ζmem(ci). There is a set of VM types
Γ = {τ1, . . . , τm} that can be selected to allocate the containers. Each VM
type τj has a CPU capacity Ωcpu(τj) and a memory capacity Ωmem(τj). Also,
it has a CPU overhead πcpu(τj) and memory overhead πmem(τj), indicating the
CPU and memory occupation for creating a new VM of that type. There is an
unlimited set of PMs P = {p1, . . . , } for allocating the created VMs. Each PM
pk has a CPU capacity Ωcpu(pk) and a memory capacity Ωmem(pk).

The static RAC problem is subject to the following constraints:

1. Each container is allocated to one VM.
2. Each created VM is allocated to one PM.
3. For each created VM, the total CPU and memory occupations of the contain-

ers allocated to that VM does not exceed the corresponding VM capacity.
4. For each PM, the sum of the CPU and memory capacities of the VMs allo-

cated on the PM does not exceed the corresponding PM’s capacity.

The energy consumption is calculated as follows:

E =
K∑

k=1

Ek, (1)

where Ek is the energy consumption of the kth PM (K is the number of PM
used).

Ek is calculated as follows:

Ek = Eidle
k + (Efull

k − Eidle
k ) · μcpu

k , (2)
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where Eidle
k and Efull

k indicate the energy consumption of the kth PM per time
unit if it is idle and fully loaded, respectively. μcpu

k indicates the CPU utilization
level of the kth PM. μcpu

k is calculated as follows.

μcpu
k =

∑L
l=1

(∑m
j=1 πcpu(τj) · zjl +

∑n
i=1 Ωcpu(ci) · xil

)
· ylk

Ωcpu(pk)
, (3)

where xil, ylk and zjl are binary decision variables, and L is the number of created
VMs. xil takes 1 if ci is allocated to the lth created VM, and 0 otherwise. ylk

takes 1 if the lth created VM is allocated to the kth PM, and 0 otherwise. zjl

takes 1 if the lth created VM is of type j, and 0 otherwise.
The static RAC problem is to find resource allocation with minimal overall

energy consumption as shown as follows.

min
K∑

k=1

Ek, (4)

s.t.

L∑

l=1

xil = 1, ∀ i = 1, . . . , n, (5)

K∑

k=1

ylk = 1, ∀ l = 1, . . . , L, (6)

m∑

j=1

zjl = 1, ∀ l = 1, . . . , L, (7)

n∑
i=1

ζres(ci)xil ≤
m∑

j=1

Ωres(τj)zjl,

∀ l = 1, . . . , L, res ∈ {cpu,mem},

(8)

L∑
l=1

m∑
j=1

Ωres(τj)zjl ≤ Ωres(pk),

∀ k = 1, . . . ,K, res ∈ {cpu,mem},

(9)

xil, ylk, zjl ∈ {0, 1}, (10)

where constraints (5) and (6) indicate that each container (or new created VM)
is allocated to exactly one created VM (or PM). Constraint (7) indicates that
each created VM must belong to a type. Constraint (8) implies that the total
occupation of all the containers allocated to each created VM does not exceed
its corresponding capacity. Constraint (9) indicates that the total capacity of the
created VMs allocated to each PM does not exceed its corresponding capacity.
Constraint (10) defines the domain of the decision variables.

The energy calculation (see Eq. 1) will be used as the fitness function of our
proposed algorithm. The constraints of the model are used in the algorithm to
ensure the solutions are valid.
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4 The Proposed Group GA for the RAC Problem

This section describes our GGA approach for the RAC problem which includes
a group representation and three problem specific operators.

4.1 Overall Framework

Algorithm 1 starts with the initialization of a population. The individual is rep-
resented as a list of PMs. Then, the algorithm enters a loop of evolutions where
each loop is called a generation. In each generation, individuals are evaluated
with a fitness function (Eq.(1)). For this algorithm, the top individuals are pre-
served and copied to the new population with Elitism [1]. Tournament selection
[13] is used to direct the population to the high-fitness region. Then, we propose
three problem-specific operators, gene-wise crossover, unpack, and merge. These
operators modify the individuals so that they can perform an effective search in
the solution space. Details of the three operators will be presented later.

Algorithm 1. Group genetic algorithm for the RAC problem
Input : a set of containers, a set of VM types, a list of PMs,
Output: an allocation of containers

1 population ← Initiailization;
2 gen; for gen does not reach the maximum generation do
3 fitness evaluation(population);
4 new population ← elitism(population);
5 while has not fill the new population do
6 parents ← tournament selection(population);
7 children ← gene-level crossover(parents);
8 unpack(children);
9 merge(children);

10 add children to the new population

11 end
12 gen ← gen + 1;

13 end
14 return an allocation of containers;

4.2 Representation

We use an individual (see Fig. 1) to represent a complete solution for a RAC
problem. A individual consists of a list of PMs. Each PM consists of a list of
VMs and each VM has a list of containers. This representation can be directly
evaluated without using any decoding process. More importantly, the direct rep-
resentation can be modified by heuristics at a specific point, e.g. switch two
containers’ allocation, without changing the structure of the entire solution.
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Therefore, the disadvantage of indirect representation in dual-chromosome GA
[19] can be avoided.

4.3 Initialization

Fig. 1. Representation

The design of initialization aims at pro-
ducing a diverse population of solutions.
For each individual, we first randomly
generate a permutation of containers.
Then, we allocate containers to VMs using
the First-Fit heuristic. If there is no VM
available, we create a VM with a random
type. Lastly, a list of VMs is allocated
to PMs with the First-Fit heuristic. This
representation ensures a diverse combina-
tion of containers and VMs. It also locates
the solutions in a relatively high-quality
region with First-Fit instead of Next-Fit.
This is because Next-Fit does not guar-
antee that a VM or a PM is filled while
First-Fit guarantees that. Therefore, the average quality obtained by First-Fit
is much better than Next-Fit.

4.4 Gene-Level Crossover

To inherit the useful parts from parents, one must define what is a “good gene”.
In the bin packing problem, a good gene is at bins’ level where well-filled bins can
lead to fewer bins [16]. Similarly, highly utilized PMs could lead to fewer PMs in
the allocation problem. Therefore, good gene as a PM with high utilization. In
our case, we apply the crossover twice according to the utilization of CPU and
memory respectively and generate two children.

The gene-level crossover preserves the highly utilized PMs from both parents.
In the beginning, we sort the PMs in both parents according to PMs’ utilization
of CPU or memory in descending order. Then, the crossover compares the PMs
from two parents pairwisely by utilization (see Fig. 2). The winner’s PM of the
pair will be preserved. Preservation includes three steps. First, the crossover
copies the VMs combination inside the PM including the types and number of
VMs. Second, the crossover checks whether a container from the original VM
has been allocated in the previous PMs. If the container has been allocated, then
the container will not be allocated again. In the end, some containers may not
be allocated to PMs. They are called free containers. These free containers are
reallocated with an operator called rearrangement which will be introduced in
the next section. After all the containers have been allocated, empty PMs and
VMs are removed from an individual.
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Fig. 2. Gene-level crossover

An example of the gene-level crossover is shown in Fig. 2. We first sort the
PMs from parents according to their CPU utilization. Then, we compare PMs
and preserve the structure of PM 1, PM 2’, and PM 3’. The containers in PM 1
are preserved while the duplicated containers in PM 2’ and PM 3’ are removed.
In the end, containers 3 and 5 become free containers and they will be allocated
to these PMs using the rearrangement operator.

4.5 Rearrangement

Rearrangement inserts free items to bins. In the beginning (see Algorithm 2), we
sort the containers according to the product of their normalized resources (see
Eq. 11) in ascending order. Then, we check that in each VM, whether the smallest
two containers can be replaced by the target container. If so, we replace the
small containers with the target container. Otherwise, check the next VM. After
replacing, we have two smaller containers need to be allocated. At this point,
we apply First-Fit (FF) & Random Creation (RC) / First-Fit (FF) heuristics
to allocate them. The FF&RC/FF heuristic uses FF to allocate containers to
existing VMs. If no VM is available, we randomly create a new VM and allocate
containers to it. Then, we use FF to allocate the new VM to PMs.

R =
ζcpu(ci)
Ωcpu(pk)

· ζmem(ci)
Ωmem(pk)

(11)

Our rearrangement operator is inspired by [16] to avoid the drawback of First-
Fit (FF) and further improve the allocation of a VM. In the bin packing problem,
FF-based approaches [3,16] have been widely used. However, a simple FF-based
approach cannot change the existing packing of a bin. Hence, a replacement
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heuristic is developed. The core idea of the replacement heuristic is that the
smaller items are easier to allocate. Therefore, we can replace a big container
with smaller ones, which can be easily allocated to existing VMs without creating
a new VM.

Algorithm 2. Rearrangement operator
Input : a target container, a list of PMs,
Output: a list of PMs

1 Sort the containers in all VMs according to Eq. 11 in ascending order;
2 for each VM do
3 if the two smallest containers in each VM can be replaced by the target

container then
4 Replace two containers with the target VM;
5 Allocate two containers using FF&RC/FF ;
6 return a list of PMs;

7 end

8 end
9 Allocate the target container using FF&RC/FF ;

10 return a list of PMs;

4.6 Unpack

Unpack operator eliminates low-utilized PMs and reallocates their containers.
This operator prevents premature convergence and introduces new gene compo-
nents into the current population.

The operator has two steps. First, it calculates the probability of unpacking a
PM according to Eq. (12). The lower CPU utilization of a PM, the higher chance
it will be unpacked. Second, it unpacks PMs in a roulette wheel style. After
unpacking, the free containers are reallocated with the rearrangement operator.

probability =
1 − Ωcpu(pk)

∑K
k=1 1 − Ωcpu(pk)

(12)

The unpack operator is adaptive with the evolution process. In the beginning,
the average utilization of PMs is low, therefore, more PMs are unpacked. As the
population evolved through some generation, highest utilized PMs move to the
head of an individual and have a low chance to be unpacked. Therefore, the
good genes are preserved and new genes are introduced by the rearrangement
operator.

4.7 Merge

The merge operator replaces small VMs with a bigger one to reduce the free
resources in PMs. Free resources here refer the resources that have not been
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allocated to any VMs. The merge operator can improve the utilization of PM
by reducing the free resources in PMs as well as the overheads from VMs.

Merge operators have two alternative functionalities, merge and enlarge. In
the first one, it goes through all the PMs and checks whether the two smallest
VMs can be replaced by a larger VM type. If it is possible, all the containers
are migrated from these two small VMs to the new larger VM and the small
VMs are removed. If we cannot replace two VMs with a larger one, we attempt
to replace the smallest VM with a larger one for which a large VM type is also
selected randomly.

5 Experiment

The overall goal of the experiment is to test the performance of our proposed
GGA in terms of energy consumption. We conduct experiments on a real-world
dataset and compare the results with three benchmark algorithms (a rule-based
approach FF&BF/FF and two variations of the dual-chromosome GA). Then,
we analyze the performance of these approaches and explain the pros and cons
of them. Details are shown below.

5.1 Dataset and Test Instance

We design 8 test instances (see Table 1) which contain an increasing number
of containers (from 200 to 1500) and two sets of VM types. We use a real-
world application trace (AuverGrid trace [18]) as the resource requirements of
containers. To generate the containers’ resource requirements, we select the first
400,000 lines of the trace from the original datasets. Then we filtered the trace
to exclude the containers that require more resources than the largest VM. The
last step randomly samples a set of resource requirements and use them to define
the containers to be allocated.

Table 1. Test instances

Instance VM types Number
of con-
tainers

Instance VM types Number
of con-
tainers

1 Synthetic VM types 200 5 Real-world VM types 200

2 Synthetic VM types 500 6 Real-world VM types 500

3 Synthetic VM types 1000 7 Real-world VM types 1000

4 Synthetic VM types 1500 8 Real-world VM types 1500

For the settings of PMs and VMs, we assume homogeneous PMs which have
8 cores and a total capacity of [13200 MHz, 16000 MB]. The maximum energy
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Table 2. VM types

Real world VM types

VM
types

[CPU, Memory] VM
types

[CPU, Memory] VM
types

[CPU, Memory] VM
types

[CPU, Memory]

1 [206.25, 250] 6 [412.5, 1000] 11 [825, 2000] 16 [825, 1875]

2 [412.5, 500] 7 [825, 4000] 12 [1650, 250] 17 [1650, 3750]

3 [825, 1000] 8 [206.25, 500] 13 [1650, 500] 18 [412.5, 1312.5]

4 [1650, 2000] 9 [412.5, 2000] 14 [1650, 1000] 19 [825, 2625]

5 [412.5, 250] 10 [412.5, 4000] 15 [412.5, 937.5] 20 [2475, 2625]

Synthetic VM types

1 [719, 2005] 4 [1135, 3542] 7 [1363, 2634] 10 [2100, 3013]

2 [917, 951] 5 [1231, 1989] 8 [1648, 1538]

3 [1032, 1009] 6 [1311, 3238] 9 [2047, 1181]

consumption for the PM is set to 540 KWh the same setting as [11]. We design
two sets of VM types (see Table 2), a real-world VMs (20 types from Amazon
EC2) and a synthetic set of VMs (10 types). The real-world VM types are
proportional whereas the synthetic ones are random. The values of CPU and
memory of synthetic VM types are sampled from [0, 3300 MHz] and [0, 4000
MB] representing the capacity of one core.

5.2 Benchmark Algorithms

FF&BF/FF [11,22] uses three heuristics to allocate containers. It uses First-Fit
heuristics to allocate both containers and VMs and applies a Best Fit (BF) for
selecting VM types. Whenever no existing VM can host a given container, the
BF selects a type of VM which has just enough resource to host the container.
Explicitly, BF selects the VM which has the minimum normalized free resources
according to Eq. 13.

Free resources = min{ Ωcpu(τj) − ζcpu(ci) − πcpu(τj)

Ωcpu(pk)
and

Ωmem(τj) − ζmem(ci) − πmem(τj)

Ωmem(pk)
}

(13)

Dual-chromosome GA is a recent approach proposed in [19] to solve the
resource allocation problem in container-based clouds. This approach uses a
dual chromosome representation which includes two vectors, one represents a
permutation of containers, the other represents the selected VM types. An indi-
vidual requires a decoding process to construct the dual-chromosome into a solu-
tion. The rest of the algorithm follows a standard GA process with vector-based
crossover and mutation operators.

This paper compares with two variations of the dual-chromosome GA with
two decoding processes. The original work [19] applies a Next-Fit (NF) decoding.
We refer it as DGA-NF in the following content. We implement a different
version that applies a First-Fit (FF) decoding called DGA-FF.
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Table 3. Parameter settings

Parameter Description

Runs 30

Crossover 70%

Mutation rate for dual-chromosome GA 10%

Elitism Top 5 individuals

Stopping criteria 12 s

Population 100

Selection Tournament selection (size = 7)

In the experiments, we also compare the wasted resources in the allocation.
The wasted resources include all the free resources in both VMs and PMs as well
as the overheads used by VMs (see Eq. 14).

wasted resources = min{ Ωcpu(pk) − ∑n
i=1 ζcpu(ci) · xil

Ωcpu(pk)
and

Ωmem(pk) − ∑n
i=1 ζmem(ci) · xil

Ωmem(pk)
}

(14)

5.3 Parameter Settings

The parameter setting of GGA and two dual-chromosome GAs are listed in
Table 3. In addition to the operators that we proposed, we apply Elitism with
size 5 and tournament selection with size 7. To ensure that all algorithms have
the same computation time, we set the stopping criteria of all GAs to 12 s (all
algorithms finished in this period of time).

All algorithms were implemented in Java version 8 and the experiments were
conducted on i7-4790 3.6 GHz with 8 GB of RAM running Linux Arch 4.14.15.
We applied the Wilcoxon rank-sum to test the statistic significance.
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Fig. 3. Comparison of the average energy consumption
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Table 4. Mean and standard deviation of the test instances with 95% confident
interval.

Synthetic VM types

200 500 1000 1500

FF&BF/FF 1708.0 ± 0 4244.2 ± 0 8259.5 ± 0 12176.0 ± 0

DGA-NF 1685.6 ± 0.3 3838.5 ± 1.1 8,485.3 ± 94.1 12,625.8 ± 50.6

DGA-FF 1684.6 ± 0.2 3758.4 ± 151.1 7,865.7657 ± 1.0 11,795.3957 ± 1.5

GGA 1686.0 ± 0.1 3571.4 ± 177.1 7,833.9 ± 41.1 11,490.7 ± 108.8

Real-world VM types

200 500 1000 1500

FF&BF/FF 2093.2 ± 0 4635.0 ± 0 9809.2 ± 0 14500.4 ± 0

DGA-NF 1683.6 ± 0.4 4213.1 ± 1.8 9,027.9 ± 3.1 13,580.9 ± 93.9

DGA-FF 1682.3 ± 0.2 3827.8 ± 1.3 8,222.3681 ± 40.7 12,180.0944 ± 1.9

GGA 1683.1 ± 0.5 3828.2 ± 2.3 8,091.7 ± 91.1 12,083.8 ± 51.7

5.4 Results

This section illustrates the performance comparison among the four algorithms
in terms of energy consumption. Then, we explain the drawbacks of the compared
algorithms by comparing the convergence, the number of VMs and the wasted
resources in the allocation. Lastly, we compare the execution time of the four
algorithms.
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Fig. 4. Comparison of the convergence

The energy consumption of four algorithms running for the same amount of
time (12 s) are compared in Fig. 3 and Table.4. This ensures the comparison is
fair. Our proposed GGA approach consistently achieves the best performance
than the FF&BF/FF and two dual-chromosome GA approaches, DGA-NF and
DGA-FF, in large instances. The DGA-FF has a similar performance with GGA
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in the small instance (less than 1500 containers) but it performs poorly in the
large instances. The DGA-NF performs better than FF&BF/FF in most of
the instances except instance 3 and 4 (1000 and 1500 containers with synthetic
VM types). In instances with 200 and 500 containers, DGA-FF and GGA have
similar performances. In larger instances, GGA has clearly show its advantages.

Due to the space limit, we show in Fig. 4 the convergence curves in terms
of computation time from instance 4 and 8. In most instances except instance
3 and 4, the convergence curves are similar to instance 8 where we observe the
FF&BF/FF shows a flat line because it has no searching process. FF&BF/FF
is also easily affected by the set of available VM types as it performs well in
the synthetic VM types and performs poorly in the real-world data set. The
DGA-NF starts with a much higher energy consumption than other algorithms.
Although DGA-NF reaches convergence, its final fitness value cannot compete
with the initial fitness from DGA-FF and GGA. In instance 3 and 4, the DGA-
NF worse than the FF&BF/FF approach. DGA-FF and GGA have a similar
starting point. In instance 4, DGA-FF and GGA have a similar pattern while
GGA outperforms in instance 8 after 1 s.

The major defect of DGA-NF is the decoding process. Compared to FF, NF
closes a bin (such as VM and PM) whenever the current item (such as container
and VM) cannot allocate to it while FF never closes a bin so that the future
items can be still put into the unfilled bins. It means that NF cannot guarantee
a VM is filled with containers. Consequently, we may observe DGA-NF starts
from a bad allocation and takes a long time to converge. Even though replacing
NF with FF can improve the performance of DGA. However, the DGA-FF is
still inferior to the GGA approach.

The number of VMs (left-hand side) and the wasted resources (right-hand
side) are compared in Fig. 5. The FF&BF/FF always uses the greatest number
of VMs and has the highest wasted resources. For most instances, the dual-
chromosome algorithms use fewer VMs and have fewer wasted resources except
in instance 4. Our proposed GGA always uses the least number of VMs and has
the least wasted resources.

Due to the overheads and resource segmentation, the number of VMs is
generally proportional to the wasted resources. The FF&BF/FF always creates
a VM that has the least resources to host a container, and therefore, creates a
large number of small VMs. DGA-NF has a high wasted resource in instance
4 because DGA-NF cannot fill VMs with container, hence, there are more free
resources in VMs and PMs than the overheads of VMs. DGA-FF and GGA
use fewer VMs. However, DGA-FF does not have the mechanism to reduce the
number of VMs.

On the other hand, among all the algorithms, GGA can generate allocation
solutions with the least wasted resources thanks to the merge operator. Without
deliberately merging smaller VMs into larger ones, a PM could be filled with a
large number of small VMs.

In summary, our propose GGA can find an allocation that leads to the
least energy consumption in all the test instances. The performance of dual-
chromosome GA varies with the decoding process.
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Fig. 5. Number of VMs and wastes in instance 4 and 8

6 Conclusion and Future Work

This work proposes a Group GA (GGA)-based approach to solve the resource
allocation problem in container-based clouds. The experiments show that our
proposed GGA approach outperforms three state-of-the-art approaches, a rule-
based FF&BF/FF approach and two variations of dual-chromosome GA [19] in
terms of energy consumption. For our GGA, we propose three novel problem-
specific operators, gene-level crossover, rearrangement, and unpack. These oper-
ators have shown effectiveness in searching good combinations of containers
and VM types. Also, these operators can effectively search for better solutions
directly on the representation. Current operators have a high computation cost
in each generation. In the future, we will focus on improving the efficiency by
applying clustering-based preprocessing approaches.
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17. Şahin, M., Kellegöz, T.: An efficient grouping genetic algorithm for u-shaped assem-
bly line balancing problems with maximizing production rate. Memetic Comput.
9(3), 213–229 (2017)

18. Shen, S., van Beek, V., Iosup, A.: Statistical characterization of business-critical
workloads hosted in cloud datacenters. In: IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, pp. 465–474. IEEE (2015)

19. Tan, B., Ma, H., Mei, Y.: Novel genetic algorithm with dual chromosome repre-
sentation for resource allocation in container-based clouds. In: International Con-
ference on Cloud Computing, pp. 452–456. IEEE (2019)

20. Wen, Y., Li, Z., Jin, S., Lin, C., Liu, Z.: Energy-efficient virtual resource dynamic
integration method in cloud computing. IEEE Access 5, 12214–12223 (2017)

https://doi.org/10.1007/s00500-018-3403-7
https://doi.org/10.1007/978-3-319-44482-6_9
https://doi.org/10.1007/978-3-319-44482-6_9


196 B. Tan et al.

21. Wolke, A., Bichler, M., Setzer, T.: Planning vs. dynamic control: resource allocation
in corporate clouds. IEEE Trans. Cloud Comput. 4(3), 322–335 (2016)

22. Zhang, R., Zhong, A., Dong, B., Tian, F., Li, R.: Container-VM-PM architecture: a
novel architecture for docker container placement. In: Luo, M., Zhang, L.-J. (eds.)
CLOUD 2018. LNCS, vol. 10967, pp. 128–140. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-94295-7 9

https://doi.org/10.1007/978-3-319-94295-7_9
https://doi.org/10.1007/978-3-319-94295-7_9


The Local Optima Level
in Chemotherapy Schedule Optimisation

Sarah L. Thomson(B) and Gabriela Ochoa

Computing Science and Mathematics, University of Stirling, Stirling, UK
{s.l.thomson,gabriela.ochoa}@stir.ac.uk

Abstract. In this paper a multi-drug Chemotherapy Schedule Opti-
misation Problem (CSOP) is subject to Local Optima Network (LON)
analysis. LONs capture global patterns in fitness landscapes. CSOPs
have not previously been subject to fitness landscape analysis. We fill
this gap: LONs are constructed and studied for meaningful structure.
The CSOP formulation presents novel challenges and questions for the
LON model because there are infeasible regions in the fitness landscape
and an unknown global optimum; it also brings a topic from healthcare
to LON analysis. Two LON Construction algorithms are proposed for
sampling CSOP fitness landscapes: a Markov-Chain Construction Algo-
rithm and a Hybrid Construction Algorithm. The results provide new
insight into LONs of highly-constrained spaces, and into the proficiency
of search operators on the CSOP. Iterated Local Search and Memetic
Search, which are the foundations for the LON algorithms, are found to
markedly out-perform a Genetic Algorithm from the literature.

Keywords: Combinatorial fitness landscapes · Local Optima
Networks · Search space analysis

1 Introduction

Local Optima Networks (LONs) [1] are used to study fitness landscapes. Anal-
ysis of them provides insight into how optimisation problems and search algo-
rithms interact together. LONs capture global patterns at the Local Optima
Level (LOL) in landscapes and have mostly been extracted for benchmark com-
binatorial optimisation problems such as NK Landscapes [1–3], the Quadratic
Assignment Problem (QAP) [4–6], and the Travelling Salesman Problem (TSP)
[7–9].

Studies in non-benchmark problem domains have been sparse and have con-
sisted of computational protein modelling [10] and feature selection [11]. These
were steps towards bringing LON analysis to unmapped real-world problems.
This type of case study, demonstrating LON efficacy, is needed for convincing
possible industry collaborators. Large and highly-constrained problems should
ideally be used in case studies (by ‘large’ we mean hundreds of dimensions), in
pursuit of simulating environments typical of real-world optimisation problems.
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Chemotherapy Schedule Optimisation Problems (CSOPs) [12] have been the
subject of several research papers in evolutionary computation [13–17]. One
instance was formulated to reflect real-life chemotherapy drug response closely
[13] and the tumour shrinkage model used in the fitness function has been subject
to extensive clinical testing [18]. The instance, alongside other CSOP formula-
tions, has not been subject to fitness landscape analysis (although some authors
have made passing remarks about CSOP landscapes [19,20]).

We conduct a first fitness landscape analysis on CSOP, focussing on the LOL
with the use of LOLs. Two LON Construction algorithms are proposed—the first
has Iterated Local Search (ILS) as its foundation; the second has Memetic Search
(MS) as the foundation. LONs are then produced and their attributes and fitness
distributions are compared. A study of the feasibility trajectories in the LONs
is also presented. Later on, algorithm performance results suggest our search
algorithms (ILS and MS) outperform a GA from the literature for the CSOP. In
summary, the present work contributes in the following ways:

1. First fitness landscape analysis of CSOP, lending to new insights of the prob-
lem interacting with search operators;

2. The presence of infeasible solutions in the landscapes is new to LON research;
3. Two LON Construction algorithms for the CSOP are proposed (which can

also be easily applied to an arbitrary binary-encoded problem).
4. Two search algorithms are offered which outperform a GA from the literature

(ILS and MS; a separate MS has been used on a CSOP formulation before
but with different fitness function, constraints, and solution encoding [19]).

1.1 Background

We use a multi-drug CSOP which was initially formulated and described in
1998 [13] and then further studied in later research [14–17,21]. As asserted in
the original paper, a multi-drug CSOP can have a binary representation where
each gene, i, is set iff a particular concentration of a particular drug (of number
n) is administered at a particular time interval (t, from within defined time
intervals). As suggested in the literature [21], we set the number of drugs n = 10
and the number of time intervals for doses, t, also at 10. There are four allowed
concentrations for each drug, p = 4, giving each binary solution a length of 400,
i.e. n× t× p. The number of possible solutions, and the size of the configuration
space, is extremely large at 2ntp i.e. 2400.

1.2 Fitness Function

We consider curative chemotherapy treatment here, meaning tumour eradication
is the aim. This is the primary (and only) objective. For this single-objective
case, fitness is calculated with respect to the chemotherapy schedule minimising
tumour size (in number of cells). This is done through maximising the combined
effect of drugs in the schedule against the tumour. In considering the tumour’s
shrinkage response, a mathematical function is needed. The most popular model
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in the literature is called the Gompertz Growth Model [18], which has a linear
cell-loss effect and has been validated by significant clinical experiments. The
formula is given in Eq. 1:

dN

dt
= N(t)

⎛
⎝λ ln

(
θ

N(t)

)
−

d∑
j=1

kj

i=1∑
n

Cij {H(t − ti) − H(t − ti+1)}
⎞
⎠ (1)

with the components as follows: N(t) is the cancerous cell count at time interval
t; λ and θ are parameters pertaining to tumour growth; H(t) is the Heaviside
step function; kj denotes the efficacy of chemotherapy drugs; and Cij is the
concentration levels of the drugs administered.

The actual fitness function is quite complex, including penalties based on
feasibility distances, and in the interest of space we refer the interested reader
to a comprehensive description [13] (pp. 106–107). In essence, initial fitness is
calculated with respect to the total impact on the tumour for the treatment
schedule. Individual impacts for each drug are known. The objective is to max-
imise the combined impact of all the drugs in the schedule (at the specified
concentrations, and at the specified time-slots). The maximisation of this will
minimise the tumour.

Following the drug impact fitness calculation, the solution is checked for
constraint violations and the fitness is penalised accordingly (see [13] for details).
Any violation will result in a fitness below zero. A feasible solution has fitness
zero or above.

The constraints are as follows: the tumour is not allowed above a particular
size; the maximum cumulative dose of drugs cannot exceeded the specified limits
for each individual drug; and the limit on toxic chemotherapy side-effects cannot
be exceeded (for each time interval). In all cases the magnitude of the violation
is captured through proportional subtraction from the fitness sum.

Mathematically the fitness function is subject to these constraints:

1. Maximum allowable cumulative Ccum dosage for each drug:

g1(c) =

{
Ccum j −

n∑
i=1

Cij ≥ 0
... ∀ j ∈ 1, d

}
(2)

2. Maximum allowable size of the tumour, i.e. number of cancerous cells, N :

g2(c) =
{

Nmax − N(ti) ≥ 0
... ∀ i ∈ 1, n

}
(3)

3. A threshold for the known toxic side-effects of using multiple drugs in
chemotherapy treatment:

g3(c) =

⎧⎨
⎩Cs−ek −

d∑
j=1

ηkjCij ≥ 0
... ∀i ∈ 1, n, ∀ k ∈ 1,m

⎫⎬
⎭ (4)
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In the constraint seen in Eq. 4, the variables ηkj are the known possibility of
harming the kth organ (for example, the heart) through administering the jth

drug.

1.3 Evolutionary Search Algorithms

Evolutionary algorithms have been used with success for CSOPs; in partic-
ular, Genetic Algorithms (GAs) have dominated [13,21–23], although other
approaches have been utilised, such as Estimation of Distribution Algorithms
[15,17]; Simulated Annealing variants [23,24]; Memetic Algorithm (MA) [19];
and Evolutionary Strategies [23,25]. A GA from the literature [17] is used as the
foundation for the Hybrid LON Construction algorithm proposed here (detailed
later in Sect. 2.2) and is also used later on in conducting optimisation on the
problem to collect search difficulty information.

2 Methodology

This section describes the LON Construction algorithms proposed for studying
CSOP fitness landscapes. Our aim is examining the topological features form-
ing when optimisation search operators are moving on the CSOP configuration
space. The particular focus is on global-scale local optima connectivity patterns.

2.1 Markov-Chain LON Construction Algorithm

To align with existing LON Construction algorithms for benchmark domains
such as TSP and QAP [6,26,27] we instrument an algorithm using Iterated
Local Search (ILS) as the vehicle. ILS is naturally suited to constructing LONs:
each iteration identifies a transformation between local optima and this can
straightforwardly be added as an edge to a LON. We refer to the ILS-driven
LON Construction algorithm as Markov-Chain LON Construction—to avoid
confusion, because ILS is also used later on to collect difficulty information
about the CSOP.

Markov-Chain LON Construction tracks thirty independent ILS runs, which
begin from random solutions. The local search is best-improvement and uses
one-flip neighbourhood. Perturbation flips thirty bits. Improving local optima
are always accepted; 10% of the time, worsening local optima are accepted too.
All accepted local optima are added as LON nodes and the transformation is
logged as a LON edge (if the edge exists already, the weight is incremented).
Runs terminate after 1000 iterations. Parameters were chosen in response to
observations about preliminary runs.

Nodes and edges from the thirty runs are joined together to form a single
LON for the problem. Our initial intention was to mirror parameter choices in
previous LON Construction works [27] but those choices were for much smaller
search space sizes and the computation was therefore more feasible for their
circumstance. The complete process for Markov-Chain LON Construction is
provided in Algorithm 1.
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Algorithm 1. Markov-Chain LON Construction
1: Search space S, Fitness function f ,
2: Perturbation strength k, Stopping threshold t, Number of runs r
3: runs ← 0
4: repeat
5: Choose initial random solution s0 ∈ S
6: l ← LocalSearch(s0)
7: i ← 0
8: repeat
9: s′ ← Perturbation(l1, k)

10: l2 ← LocalSearch(s′)
11: if f(l2) ≤ f(l1) then
12: l1 ← l2
13: end if
14: LON = LON + nodes(l1, l2)
15: LON = LON + edge(l1 −→ l2)
16: i ← i + 1
17: until i ≥ t return l
18: runs ← r + 1
19: until runs ≥ r

2.2 Hybrid LON Construction Algorithm

Genetic Algorithms (GAs) have been successful in finding good approximate
solutions in CSOP [16]; it follows that a GA is a reasonable foundation for
CSOP LON Construction. When LON Construction algorithms share operators
with successful heuristics, the constructed LONs should infer future landscapes
that might be induced during genuine optimisation.

Our LON Construction algorithm originates from a generational GA from the
literature [14]. By definition LONs contain only local optima. GAs, of course,
do not guarantee local optima in the population, which necessitates the addi-
tion of local search to the algorithm, resulting in a Memetic Search (MS). The
Memetic Search-driven LON tracking process is hereafter referred to by Hybrid
LON Construction, to differentiate from a MS used later for collecting problem
difficulty information.

The algorithmic process for creating the LON is as follows. The algorithm
runs for 100 generations; at each generation the fittest 10% of offspring are
subject to local search to produce local optima. To deem a node a local optimum,
one-flip best-improvement hill-climbing is applied for 100 iterations. The nodes
are added to the LON and are put into the next generation. The set of local
optima are then deterministically recombined with one another. The offspring
are possibly mutated according to the mutation rate, before being subject to
local search. All four local optima (parent one and two, child one and two) are
then added as nodes to the LON. Similarly, four edges are added to the network:
from parent one to child one; parent one to child two; parent two to child one;
and parent two to child two.



202 S. L. Thomson and G. Ochoa

Algorithm 2. Hybrid LON Construction: Part 1
1: procedure Hybrid LON Construction(population size ps, generations

g, percent fittest individuals pf , mutation probability mp, crossover proba-
bility cp, length evolution path lp, search space S, fitness function f)

2: LON = ∅ � local optima network
3: P = randomPopulation(S, ps) � Initial random population
4: fit = SelectFittest(P , pf , f) � fittest individuals
5: iterations = 0 � counter for generations completed
6: repeat
7: P = GeneticProcess(P , ps)
8: fit = SelectFittest(P , pf)
9: for sol ∈ fit do

10: sol = HillClimb(sol)
11: end for
12: for mom ∈ fit do
13: for dad ∈ fit do
14: child1, child2 = MemeticEvolution(mom, dad)
15: iterations = iterations + 1
16: end for
17: end for
18: until iterations ≥ g
19: for mom ∈ LON do
20: for dad ∈ LON do
21: steps = 0
22: repeat
23: child1, child2 = MemeticEvolution(mom, dad)
24: mom, dad = child1, child2

25: steps = steps + 1
26: until steps ≥ lp
27: end for
28: end for
29: end procedure

After all generations are complete, LON nodes undergo another evolution-
ary process. For each pairwise combination of nodes, the following is repeated
ten times: the solutions are deterministically recombined with one another; the
offspring are probabilistically subject to mutation; the offspring are subject to
local search. They are added as LON nodes, and transformations from parent to
child are added as edges. After this, the locally-optimised offspring become the
parents for the next iteration of the same process. The steps repeat ten times.
In this way, each pair of original LON nodes (from the 100-generation MS) are
the ancestors in a ten-generation evolutionary trajectory. This was a deliber-
ate design choice to facilitate LONs containing sequences of evolution for local
optima. Without this, the LON would consist of many isolated pairs of nodes
and would be difficult to study for meaningful structure. The complete process
for the Hybrid LON Construction algorithm is shown in Algorithms 2 and 3.



The Local Optima Level in Chemotherapy Schedule Optimisation 203

Algorithm 3. Hybrid LON Construction: Part 2
1: procedure GeneticProcess(P , ps)
2: repeat
3: mom, dad = Selection(P )
4: if cp then
5: child1, child2 = Crossover(mom, dad)
6: end if
7: if mp then
8: child1, child2 = Mutation(child1, child2)
9: end if

10: P [mom] = child1
11: P [dad] = child2
12: until iterations ≥ ps/2
13: end procedure

1: procedure MemeticEvolution(mom, dad)
2: child1, child2 = Crossover(mom, dad)
3: if mp then
4: child1, child2 = Mutation(child1, child2)
5: end if
6: child1, child2 = HillClimb(child1, child2)
7: LON = LON + nodes(child1, child2)
8: LON = LON + edges({mom −→ child1}, {mom −→ child2}, {dad −→

child1}, {dad −→ child2})
9: return child1, child2

10: end procedure

3 Visualisations

Visual analysis of LONs can provide an abstracted view of the Local Optima
Level, which is a multi-dimensional complex system. Sometimes, patterns observ-
able in visual analysis help to explain search algorithm performance on the asso-
ciated combinatorial problem.

Markov-Chain LON Construction and Hybrid LON Construction algorithms
produce networks with thousands of nodes. For meaningful visualisation, pruned
sub-networks are constructed. The ‘elite’ nodes of the LONs are chosen for this.
For the Markov-Chain LON, these are nodes in the top 2% of the fitness distri-
bution. The Hybrid LON has more nodes, so only the top 0.05% are visualised.
It follows that this lifts the veil on the most promising regions reached by the
algorithms.

Figure 1 shows plots for two LONs of the same CSOP. The top Figure is
the LON constructed by the Markov-Chain method; on the bottom was con-
structed with the Hybrid method. Edges encode sequences of search operations.
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Fig. 1. Top 2% of local optima which were sampled using Markov-Chain LON Con-
struction (top) and top 0.05% sampled during Hybrid LON Construction (bottom).
Pseudo-global optima (i.e. the best in that particular sample for the purposes of this
visualisation) are shown in red; all other local optima are grey. For the Markov-Chain
LON, the highest fitness is 1.707677. For the Hybrid LON, it is 1.707826. (Color figure
online)

On the higher LON, the sequence is perturbation −→ local search; on the bot-
tom, recombination −→ probabilistic random mutation −→ local search. Nodes
with the highest fitness in that sample are red; all other local optima are grey.

Examining the Figure, Markov-Chain is the sparser network of the two. There
are neat sequences of local optima and nodes typically have one incoming edge
and one outgoing edge. The sequences are separate, in that they do not have
bridges connecting them. The highest-fitness node is located within a sequence.
The visual analysis of this implies that this fitness would only be reached if
the search arrived by happenstance on that particular sequence of local optima.
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The Hybrid LON is denser and instead of linear sequences, clusters of nodes
are seen. Some clusters are connected to other clusters and some are isolated.
Many distinct solutions with the pseudo-optimal fitness are found by the Hybrid
(look at the red nodes) and these are found in different clusters. The presence of
clusters instead of linear sequences hints that at lower fitness levels (not shown)
the clusters would be larger and more opportunity to connect to a pseudo-
optimum would be found when comparing to the Markov-Chain LON.

4 Experimental Setup

4.1 Markov-Chain LON Construction: Details

As stipulated in Sect. 2.1, Markov-Chain LON Construction algorithm is an
Iterated Local Search (ILS) framework. As such, local search handles intensifi-
cation and perturbation mechanism contributes diversification. The local search
uses a bit-flip operator and best-improvement as a pivot rule. A solution is
deemed a local optimum at the end of 100 iterations. Perturbation is 30 bit-flips
and improving local optima are always accepted. Deteriorating local optima are
accepted 10% of the time. Runs terminate after 1000 iterations. Thirty indepen-
dent runs are conducted, with each accepted local optimum added as a LON
node and each transformation between two local optima added as a LON edge.
The parameters are shown in Table 1.

Table 1. Markov-Chain LON Construction parameter settings

Parameter Value

Local iterations 100
Global iterations 1000
Pivot rule Best
Local search 1 bit-flips
Perturbation 30 bit-flips
Number of runs 30

Iterated Local Search. The ILS process from Markov-Chain LON Construc-
tion is modified (without any LON logging) and is proposed for optimisation of
CSOP. We use it in collecting algorithm performance information. The algorith-
mic setting remains the same except the best-improvement rule changes to the
best of 100.
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4.2 Hybrid LON Construction: Details

Hybrid LON Construction is instrumented on top of a competitive GA for the
domain [13]. A previous study using statistical inference found that only two GA
parameters were significant on this CSOP when solutions are binary-encoded:
crossover probability φ′ and mutation probability φ′′ [21]. Our values for those
parameters are the ones they recommended (φ′ = 0.614, φ′′ = 0.198); the others
are from a related study [14] (which used integer encoding for the problem), in
the absence of reported values in the binary-encoded study. A random starting
population of 76 individuals, all binary strings with n = 400, is created. Elitism
is implemented for the fittest two individuals; the selection method is linear
roulette-wheel (parents are selected with probability proportionate to their fit-
ness ranking); selection pressure is seven; and there are six points of crossover,
with the crossover type being uniform. We added local search, making the algo-
rithm memetic. The local search was best-improvement, using single bit-flips,
and for 100 iterations. This is applied to the best 10% of individuals at each
generation. Those individuals are added as LON nodes, recombined, and the
trajectories from parent to child are taken as LON edges. After 100 generations,
pairwise combinations of LON nodes are recursively recombined 10 times: off-
spring from the first recombination are subject to local search and then become
the parents for the next. Nodes and edges are added to the LON during this
process.

Memetic Search. A variant of the MS framework described in the previous
Section (without any LON logging) is also proposed here for optimisation on the
CSOP. In our study we use it to collect algorithm performance information. The
percentage of individuals locally optimised at each generation becomes 5%; the
best-improvement local search becomes first-improvement; and the local search
operator becomes ten bit-flips instead of one. All parameter settings for the GA
component remain the same. 100 generations are allowed.

4.3 Unknown Global Optimum

For this problem the global optimum is not known. In previous LON research,
there has always been a known optimum fitness. To simulate this for our problem,
we conduct several runs of the MS and ILS and take the highest obtained fitness
across all runs to be the pseudo-optimal fitness. This value is 1.71.

5 Results

5.1 The Hybrid LON

The Hybrid LON Construction network has 124,497 nodes and 1,264,500 edges,
giving an edge-to-node ratio of 10:1. The average fitness is 0.909698, which at
above zero is a feasible solution and is around 53% of the pseudo-optimal fitness
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stipulated in Sect. 4.3. The maximum fitness is 1.707826, which is within 0.001%
of the pseudo-optimal fitness. The minimum fitness (of a local optimum in the
sample) is −106.717. There are 217 different solutions with the pseudo-optimal
fitness. The vast majority—93.6%—of the local optima are feasible solutions.

Around 14.5% of edges in the LON represent no fitness change; 43.6% are
improving fitness; and 41.8% have deteriorating fitness.

The assortativity coefficient of a network is the Pearson’s correlation for
the degrees of connected nodes. In the Hybrid -constructed LON, it stands at
0.794687. This implies that it is likely for a node to connect to nodes which have
similar degree.

The median degree for a node in the LON is 10; the mean is 20.31; the
75% quantile is 16; and the maximum is very large at 179,154. Most nodes
have relatively low degree (≤16) and only 0.1% of nodes have degree ≥241.
The presence of a single node with excessively high degree (179154) hints at a
hub-and-spoke system being present in a section of the LON.

5.2 The Markov-Chain LON

The Markov-Chain LON Construction models an adaptive walk through the
LOL. There are 11,393 nodes and 209,489 edges in the sample, for an edge-
to-node ratio of approximately 20:1. The average sampled fitness is 0.638913—
around 37% of the pseudo-optimal fitness. This is noticeably lower than the aver-
age fitness in the Hybrid LON. The maximum fitness is 1.707677, which is lower
than both the pseudo-optimal fitness and the maximum fitness in the Hybrid
LON but is still within 0.002% of the pseudo-optimal value. The minimum is
−61.6745, which is approximately twice as fit as the lowest in the Hybrid LON.
This makes sense given the unguided nature of selection in the Hybrid algorithm
compared to the guided walk of the Markov-Chain process.

In the LON, around 64% of edges are deteriorating (that is, they orient
towards a worse fitness); 26% are improving; and around 9% direct towards equal
fitness. The majority are deteriorating even though deteriorating moves are only
accepted 10% of the time. This fact hints at the scarcity of improving moves
on the local optima level manifesting under these operators. Let us compare the
percentages with those present in the Hybrid LON (43.6% improving and 41.8%
deteriorating, as we recall); a judicious conclusion is that the recombination −→
local search sequence of the Hybrid algorithm has more evolvability potential on
the LOL than the perturbation −→ local search sequence of the Markov-Chain
algorithm.

The assortativity coefficient is 0.996704, which stipulates that nodes are
highly likely to be connected to nodes which have the same degree as them.
This is evidence against the presence of a ‘hub-and-spoke’ network structure in
this LON because that phenomenon is defined by heterogeneous degree distri-
bution. The median degree in the LON is 34; the mean is close by at around 37;
the 75% quantile is 52; and the maximum degree is 526. Only 0.01% of nodes
have degree ≥128. The range of values in the degree distribution is much less
extreme than was present in the Hybrid LON.
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5.3 A Study of Feasibility in LONs

The existence of infeasible solutions in CSOP fitness landscapes brings new pos-
sibilities for the features calculated from the LONs. One consideration is the
proportion of LON nodes which are infeasible. In the Hybrid LON Construction
object, 93.6% of nodes are feasible (meaning they have fitness above 0.0000); the
Markov-Chain LON Construction object has 86.2% feasible nodes. This implies
that the former more heavily exploits feasible regions at the level of local optima.
Another detail that can be studied for the LONs is the notion of feasibility gra-
dient. This is the change in fitness feasibility that a LON edge encodes. An edge
could be oriented from an infeasible local optimum towards a feasible local opti-
mum, which is a desirable situation. The distribution of feasibility gradients in
the LON therefore captures the ability of the LON algorithm to escape infeasible
regions.

Table 2. Percentage of Markov-Chain LON edges in terms of feasibility gradient

Orientation Percentage

infeasible −→ feasible ≈77%
infeasible −→ infeasible ≈14%
feasible −→ feasible ≈5%
feasible −→ infeasible ≈4%

Table 3. Percentage of Hybrid LON edges in terms of feasibility gradient

Parameter Value

feasible −→ feasible ≈84.8%
infeasible −→ feasible ≈7.7%
infeasible −→ infeasible ≈4.1%
feasible −→ infeasible ≈3.4%

In Table 2 are indications of the feasibility gradients (in percentage terms)
of the edges of the sampled Markov-Chain LON. These must be viewed with
the consideration that the algorithm used to construct the edges always accepts
improving local optima, but also accepts deteriorating local optima 10% of the
time. Encouragingly, the large majority (77%) of edges orient from infeasible
to feasible local optima. That implies the operator sequence often succeeds in
traversing portals out of infeasible regions. Transformations from feasible −→
feasible are much fewer at approximately 5% of total edges. This perhaps implies
that the operator sequence is not great at exploiting within the feasible regions
in the search space.
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Table 3 shows the feasibility gradient percentages seen in the Hybrid LON.
Here a vast majority (84.8%) of the orientations are from feasible −→ feasible.
This hints the operator sequence is proficient at intensification within promis-
ing areas in the search space. The percentage of directions from infeasible −→
feasible is small, which could also be important—maybe the algorithm struggles
to escape infeasible areas. It could be, however, that this small percentage is
born from the fact that the number of infeasible nodes in the network is low.
A surprisingly low percentage (3.4%) lead from feasible −→ infeasible solutions.
This is interesting, because there is no acceptance condition for nodes during
the construction. It seems recombining already-fit solutions before refining the
offspring with local search results in fit solutions.

5.4 Newly Proposed Optimisation Algorithms

As described in Sects. 4.1 and 4.2 we propose and use modified versions of our
ILS and MS frameworks to conduct optimisation on the CSOP and compare
algorithm performances, alongside the GA from the literature [21]. Tables 4 and 5
summarise distributions for the obtained fitness (averaged over 100 runs) for
each algorithm variant. Table 4 displays algorithm results when not enforcing
a fitness evaluation budget; Table 5 shows results from the versions which were
budgeted 50 000 fitness evaluations. Each row is an algorithm variant. Indications
of the variant are found in the algorithm and seeded columns. By seeded, we
mean that for these runs a specific solution was seeded into the algorithms. The
solution was not chosen due to good fitness (in fact, the fitness is infeasible and
heavily-penalised) but rather to provide the same solution across algorithms for
100 runs. In the case of GA and MA, this solution was one individual in the
starting populations; for the ILS, it served as the starting solution. As asserted
in Sect. 4.3, we assume the pseudo-optimal fitness value of 1.71 for the purposes
of this study.

Table 4. Averaged obtained fitness over 100 runs of the algorithms. In the case of the
EAs, this is the best fitness in the population. No computational budget is specified.

Algorithm Seeded Minimum 1st quantile Median Mean 3rd quantile Maximum

ILS No −25.43 −7.39 −2.09 −4.49 −0.48 1.66

GA No −71 556.39 −97.64 −32.15 −3738.60 −11.67 0.40

MS No 1.46 1.70 1.71 1.70 1.71 1.71

ILS Yes −62.54 −6.61 −1.87 −4.86 −0.31 1.67

GA Yes −137 600.69 −212.50 −32.79 −4084.30 −7.55 −0.19

MS Yes 1.45 1.70 1.71 1.68 1.71 1.71

Across budgeted and non-budgeted runs, seeded and unseeded runs, the
Genetic Algorithm (GA) is definitely the least competent at obtaining fit (or
even feasible) solutions. This can be seen by, for example, comparing the median
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Table 5. Averaged obtained fitness over 100 runs of the algorithms. In the case of the
EAs, this is the best fitness in the population. The computational budget for each run
is 50 000 function evaluations.

Algorithm Seeded Minimum 1st quantile Median Mean 3rd quantile Maximum

ILS No −55.89 −10.22 −4.26 −7.38 −0.64 1.66

GA No −235 584.20 −2538.16 −75.86 −12 476.17 −32.63 −4.07

MS No 1.15 1.46 1.66 1.59 1.68 1.70

ILS Yes −46.84 −6.25 −1.96 −4.18 0.15 1.44

GA Yes −271 039.28 −4572.31 −63.20 −10 765.08 −27.74 1.19

MS Yes 1.31 1.45 1.67 1.60 1.68 1.70

of the GA rows with the median of the MS or ILS rows in either of Table 4 or
Table 5. Sometimes the difference in fitness is several orders of magnitude—see
for example the algorithm comparison available minimum columns.

The MS performs by far the best of the three algorithms. In all cases (bud-
geted and unbudgeted, seeded and unseeded), 100% of the runs ended with a
feasible fitness found in the population. That is shown in the third and sixth rows
of both tables. The best ILS runs (the maximum rows) ended with a desirable
fitness although the majority ended with infeasible fitness. It is of note, however,
that the distributions comprise fitness values which are ‘almost’ feasible in many
cases. The deduction seems to be that the success (or lack thereof) of ILS on
this CSOP depends on the starting position. The ‘almost’ feasible fitness values,
we argue, are the dead-ends of sub-optimal massif centrals or funnels.

The success of the MS tells us that using all of: recombination, random muta-
tion, and guided local search together works in harmony with this configuration
space to guide the search to promising feasible regions. The genetic algorithm’s
vast range of obtained fitnesses suggests a lack of reliability. Sometimes a feasible
solution may be found (a previous paper found that it was around 5% of runs
given 100 generations [14]) but other times a population filled with individuals
of severely penalised fitness may be obtained. Contrarily, the MA appears to
be rather uniformly consistent: all of the total 400 runs ended with a feasible
fitness, and this was also always ≥1.15.

The consistency of the ILS lies somewhere between the performances of the
GA and the MS: although often the end fitness is infeasible, the range of values in
the distributions is tight compared to the GA and are usually between −10 and
+1.66. ILS solutions could be seeded to a different highly-exploitative algorithm
to finish the job.
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6 Conclusions

This work has pursued modelling a problem from healthcare with LONs. Doing
so brought the added complications of infeasible regions in the fitness landscapes,
which is new for LON analysis. Two algorithms were offered for the purpose of
constructing LONs for CSOP: Markov-Chain LON Construction and Hybrid
LON Construction. An examination of the feasibility gradients within the LONs
revealed that an ILS framework (i.e. the Markov-Chain algorithm) may be bet-
ter at finding portals out of infeasible regions but lack in local optima-level
exploitative power when in a promising region. MS (i.e. the Hybrid algorithm)
appears very proficient in exploitation within feasible areas but did not boast
many escapes from infeasible areas. This provides insight into how CSOP inter-
acts with sequences of search operators. We showed that our MS and our ILS
outperformed the GA from the literature, even when mandating an equal fitness
function budget for the algorithms. We stipulate that the selection process of
the GA does not have sufficient exploitative power (perhaps due to the small
population size) and this can be brought by adding local search. Importantly,
the best results are obtained using the recombination and random mutation of
the GA together with a guided local search. It follows that the former bring inno-
vation and diversification, while the latter brings intensification and facilitates
propagation of good genes.
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Abstract. Dynamic flexible job shop scheduling (DFJSS) is a very valu-
able practical application problem that can be applied in many fields such
as cloud computing and manufacturing. In DFJSS, machine assignment
and operation sequencing decisions need to be made simultaneously in
dynamic environments with unpredicted events such as new job arrivals.
Scheduling heuristic is an ideal candidate for solving the DFJSS prob-
lem due to its efficiency and simplicity. Genetic programming (GP) has
been successfully applied to evolve scheduling heuristics for job shop
scheduling automatically. However, GP has a huge search space, and
the traditional search algorithms do not utilise effectively the informa-
tion obtained from the evolutionary process. This paper proposes a new
method to make better use of the information during the evolutionary
process of GP to further enhance the ability of GP. To be specific, this
paper proposes two adaptive search strategies based on the frequency of
features in promising individuals to guide GP to evolve effective rules.
This paper examines the proposed algorithm on six different DFJSS sce-
narios. The results show that the proposed GP with adaptive search
can converge faster and achieve significantly better performance than
the GP without adaptive search in most scenarios while no worse in all
other scenarios without increasing the computational cost.

Keywords: Adaptive search · Scheduling heuristic · Dynamic flexible
job shop scheduling · Genetic programming

1 Introduction

Job shop scheduling (JSS) [1] is an important combinational optimisation prob-
lem, which has essential roles in all walks of life such as manufacturing [2,3] and
cloud computing [4]. The task in JSS is to process a number of jobs by a set
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of machines. Each job has a sequence of operations. The goal is to optimise the
machine resources to achieve the objectives such as minimising the max-flowtime.
Flexible JSS (FJSS) [5] is a variant of JSS which is better to reflect requirements
in real-world applications. In FJSS, an operation can be processed on a set of
machines. It indicates that two decisions need to be made simultaneously. One is
machine assignment (i.e. assign an operation to a particular machine), and the
other is operation sequencing (i.e. choose an operation as the next operation to
be processed by an idle machine). In addition, many practical scheduling prob-
lems are dynamically changing over time, for example, due to new job arrivals
[6,7]. Dynamic FJSS (DFJSS) is to consider FJSS under dynamic environments.

Scheduling heuristics such as dispatching rules [8] are widely used to handle
such kinds of dynamic problems. A scheduling heuristic is a heuristic that works
like a priority function to evaluate the priorities of operations and machines.
To be specific, in DFJSS, a machine that has the highest priority value based
on the routing rule (i.e. routing scheduling heuristic) will be assigned a job.
An operation with the highest priority value based on the sequencing rule (i.e.
sequencing scheduling heuristic) will be chosen as the next operation to be pro-
cessed. There are some rules such as SPT (i.e. shortest processing time) and
WIQ (i.e. the workload in the queue of a machine) which have been identified as
effective rules for JSS. However, they are manually designed by experts, which
is time-consuming and not always available. In practical, it is hard to manually
design effective rules due to the complexity of the job shop environments.

Genetic programming (GP) [9], as a hyper-heuristic (GPHH) method, has
been successfully applied to automatically evolve scheduling heuristic for JSS
[10,11]. As a population-based algorithm, GP tries to improve the scheduling
heuristics (i.e. individuals) generation by generation. In traditional GP, features
are randomly chosen to build subtrees for mutation and generate individuals.
However, the importance of features can be different. Such a way that chooses
all the features randomly cannot fully play its role because the importance of
the features is ignored. The challenge is that the search space of GP is huge
(i.e. the individual can be a big tree), and the traditional search might not
be enough. This paper proposes the adaptive search to guide GP to the more
promising region by utilising the information during the evolutionary process.
The proposed algorithm aims to guide the behaviour of GP over time adaptively.

The key to the success of GP is that it can automatically detect important
features and optimise the structure of individuals guided by the fitness function.
From an evolutionary perspective, the individuals themselves, especially good
individuals, contain useful information which can be further utilised to improve
evolutionary efficiency. An advantage is that information generated during the
evolutionary process can be easily used without putting more extra effort to get
the information. In this paper, the frequency of features based on the individuals
that have good performance will be further used to guide GP to find more
effective rules for DFJSS adaptively. To this end, two adaptive search strategies
which can be realised by mutation and re-initialisation will be proposed.
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The overall goal of this paper is to develop effective adaptive search strategies
with the frequency of features to guide GP to find effective scheduling heuris-
tics for DFJSS efficiently. The proposed algorithms are expected to speed up
the convergence of GP and find effective rules without additional computing
requirement. In particular, this paper has the following research objectives:

– Develop adaptive search strategies with the frequency of features in promising
individuals to guide GP towards the more promising areas.

– Verify the effectiveness and efficiency of the proposed GP algorithm with the
adaptive strategy by comparing its performance and convergence speed with
the baseline GP.

– Analyse how the adaptive search affects the evolutionary process of GP.

2 Background

2.1 Dynamic Flexible Job Shop Scheduling

In FJSS problem, n jobs J = {J1, J2, . . . , Jn} need to be processed by m
machines M = {M1,M2, . . . ,Mm}. Each job Jj has an arrival time at(Ji) and a
sequence of operations Oj = (Oj1, Oj2, . . . , Oji). Each operation Oji can only be
processed by one of its optional machines π(Oji) and its processing time δ(Oji)
depends on the machine that processes it. It indicates that there are two deci-
sions which are routing decision and sequencing decision in FJSS. In DFJSS,
not only two decisions need to be made simultaneously, but also the dynamic
events are necessary to be taken into account when making schedules. This paper
focuses on one dynamic event (i.e. continuously arriving new jobs). That is, the
information of a job is unknown until its arrival time.

2.2 Genetic Programming Hyper-heuristic for DFJSS

A hyper-heuristic [12] is a heuristic search method that seeks to select or generate
heuristics to efficiently solve hard problems. The unique characteristic is that
hyper-heuristic works on heuristic search space instead of solution search space.

GP, as a hyper-heuristic method [13], has been successfully applied to more
informative scheduling heuristics for combinational optimisation problems such
as packing [14,15], timetabling [16,17] and JSS [18–21]. Scheduling heuristics,
including routing and sequencing rules, are needed in DFJSS in our research. To
follow the sequence constraint of operations of a job, this paper only starts to
allocate an operation when it becomes a ready operation. There are two sources of
ready operations. One is the first operation of a job. The second is the operation
that its proceeding operation is just finished. Once an operation becomes a
ready operation (routing decision point), it will be allocated to the machine by
the routing rule. When a machine becomes idle, and its queue is not empty
(sequencing decision point), the sequencing rule will be triggered to choose the
next operation to be processed.
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GP has shown its superiority in DFJSS [18,19]. However, most of the existing
works follow the traditional way of the evolutionary process of GP, which may
not enough due to its large search space. To this end, this paper introduces
the adaptive search to help GP evolve more effective scheduling heuristics (i.e.
routing rule and sequencing rule) for DFJSS.

3 The Proposed GP with Adaptive Search

In this paper, the adaptive search aims to guide the behaviour of the GP algo-
rithm over time by utilising the information generated during the evolutionary
process of GP. It is expected to speed up the convergence of GP and evolve
effective rules. It is not trivial to answer “when”, “how”, and “where” to apply
the adaptive search. These three research questions are investigated as follows.

Question 1: When to use the adaptive search?
This paper uses the adaptive strategy at every generation.
Question 2: How to use the adaptive search?
In this paper, the frequency of features is the number of occurrences of fea-

tures. The number of occurrences of features based on the entire top ten individu-
als (i.e. roughly 1% of the population size) will be utilised to guide the behaviour
of GP to improve its convergence speed and find more promising rules for DFJSS,
since top ten individuals have much better fitnesses than others. Based on the
number of occurrences of features, the probability of each feature is calculated.
The larger the number of the occurrence, the higher the probability that the fea-
ture is given. When generating new individuals and subtrees for mutation, the
features will be selected based on their probability. The higher the probability,
the easier the feature is to be selected for building new trees. The pseudo-code
of calculating the probabilities of features are shown in Algorithm1.

Algorithm 1. Pseudo-code of calculating the probabilities of features

Input : Top ten individuals
Output: The probabilities of features probabilities

1: probabilities ← null
2: for i = 1 to |featureSize| do
3: occurrencei: count the number of occurrence of a feature in the top ten

individuals
4: end
5: sumOccurrences: sum up the occurrences of all features
6: for i = 1 to |featureSize| do
7: probabilityi = occurrencei

sumOccurrences

8: end
9: probabilities ← probabilityi

10: return probabilities
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Fig. 1. The flowchart of the proposed GP with the adaptive search.

Question 3: Where to use the adaptive search?
During the evolutionary process of GP, there are two occasions using selected

features. One is when building subtree for mutation. The other is when gener-
ating new individuals. To guide the behaviour of GP as much as possible, it is
straightforward to simply apply the adaptive search by mutation. Another adap-
tive search strategy related to re-initialisation is also proposed in this paper.

Mutation. As a genetic operator, mutation aims to maintain the diversity of
the population by replacing one subtree with a randomly generated subtree. The
new individual produced by mutation can be very bad (i.e. too random). If the
mutation direction can be guided to some extent, it may enhance the effectiveness
of mutation. The subtree that builds with the informed features has such a role
because it has a high chance to bring more useful building blocks.

Re-initialisation. The quality of individuals in the population can be different.
Some individuals have good performance and have a higher chance to be selected
as parents to generate offspring. However, there still has a number of individuals
that will not contribute too much to the next generation due to their lower
performance. These kinds of individuals are useless to some extent. This paper
proposes to use a re-initialisation strategy to generate some useful individuals
to the population to replace them at each generation. The reinitialised new
individuals generated based on the frequency of features are structurally different
and have reasonably good fitness.

It is not trivial to decide which individuals to remove from the population.
Removing too many individuals takes the risk to lose the quality of the popula-
tion. Removing very few individuals may not work. This paper uses simulation
information to decide which individuals will be removed. If an individual leads
to a very long queue of a machine during the simulation, it will be replaced
by randomly generated individuals based on the frequency of features. This is
because the evolved best rules will not assign a machine lots of operations from
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our preliminary investigation. In this way, the current population is more likely
to have more promising individuals, and thus more capable of generating better
offspring for the next generations.

Figure 1 depicts the general outline of the proposed GP with the adaptive
search. GP starts to initialise the population randomly, and then evaluate the
individuals in the population. The individuals in the new generation (i.e. off-
spring) are generated in the evolution stage along with the selection. For the
proposed algorithm, there are three main differences compared with standard
GP. The first one is that the frequency of features are counted based on the
entire top ten individuals after evaluating the individuals. The top ten individu-
als are better than others obviously, which are good for measuring the frequency
of features from our preliminary work. This information is converted into a prob-
ability for each feature. The second one is that the re-initialisation strategy is
applied to import new potential good individuals into the population by gener-
ating new individuals based on the frequency of features. The last one is that
the frequency of feature information is utilised to guide the mutation direction.
The adaptive strategies are applied over time.

4 Experiment Design

4.1 Simulation Model

Simulation is a common method to investigate complex real-world problems
[22]. This paper assumes there are 5000 jobs that need to be processed by ten
machines. The importance of jobs might be different, which are indicated by
weights. The weights of 20%, 60%, and 20% of jobs are set as one, two and four,
respectively. The number of operations of each job varies by a uniform discrete
distribution between one and ten. The processing time of each operation is set
by uniform discrete distribution with the range [1]. The number of candidate
machines for an operation follows a uniform discrete distribution between one
and ten.

In each problem instance, jobs arrive stochastically according to a Poisson
process with rate λ. To improve the generalisation ability of the evolved rules
for DFJSS problems, the seeds used to generate the jobs are rotated at each
generation. In addition, to make sure the accuracy of the collected data, a warm-
up period of 1000 jobs is used. If any machine in the system has more than 100
operations, the simulation will be stopped, and the current evaluating individual
is replaced by a new individual based on re-initialisation strategy.

4.2 Parameter Settings

In our experiment, the terminal and function set are shown in Table 1, following
the setting in [23]. The “/” operator is protected division, returning one if divided
by zero. The other parameter settings of GP are shown in Table 2.
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Table 1. The terminal and function sets.

Series terminals Series description

Machine-related NIQ The number of operations in the queue

WIQ Current work in the queue

MWT Waiting time of a machine

Operation-related PT Processing time of an operation

NPT Median processing time for next operation

OWT The waiting time of an operation

Job-related WKR The median amount of work remaining of a job

NOR The number of operations remaining of a job

W Weight of a job

TIS Time in system

Functions +, −, ∗, /, max, min As usual meaning

Table 2. The parameter setting of GP.

Parameter Value

Number of subpopulations 2

Subpopulation size 512

Method for initialising population Ramped-half-and-half

Initial minimum/maximum depth 2/6

Maximal depth of programs 8

The number of elites 10

Crossover/mutation/reproduction rate 80%/15%/5%

Parent selection Tournament selection with size 7

Number of generations 51

Terminal/non-terminal selection rate 10%/90%

4.3 Comparison Design

Four algorithms are taken into the comparison in this paper. The cooperative
coevolution genetic programming (CCGP) [6] which can be used to evolve rout-
ing rule and sequencing rule simultaneously, is selected as the baseline algo-
rithm. Our proposed algorithm, which incorporates with adaptive strategy by
mutation, is named as MUGP (i.e. generate subtree based on the frequency of
features for mutation). The algorithm that incorporates re-initialisation strategy
(i.e. reinitialise some useful individuals based on the machine information during
the simulation) is named as IMGP. The proposed algorithm, which incorporated
by both mutation and re-initialisation, is named as IM2GP. MUGP, IMGP and
IM2GP are compared with CCGP, respectively.

To verify their effectiveness, the proposed algorithms are tested on six differ-
ent scenarios. The scenarios consist of three objectives (e.g. max flowtime, mean
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Table 3. The mean (standard deviation) of the objective value of CCGP, MUGP,
IMGP, and IM2GP over 50 independent runs for six dynamic flexible scenarios.

Scenario CCGP MUGP IMGP IM2GP

<Fmax, 0.85> 1212.05(34.68) 1219.73(29.41) 1208.64(30.78) 1219.61(40.52)

<Fmax, 0.95> 1941.98(29.93) 1946.65(47.62) 1934.25(25.90) 1942.72(31.19)

<Fmean, 0.85> 385.95(3.22) 384.79(1.39) 384.89(2.42)(−) 384.57(1.46)(−)

<Fmean, 0.95> 551.18(5.78) 549.66(2.90) 551.20(4.70) 549.51(4.21)(−)

<WFmean, 0.85> 831.41(6.08) 829.43(5.31)(−) 831.20(6.71) 829.26(4.14)(−)

<WFmean, 0.95> 1111.01(12.02) 1107.59(9.57) 1105.44(6.71)(−) 1105.70(6.95)(−)

flowtime, and mean weighted flowtime) and two utilisation levels (e.g. 0.85 and
0.95). For the sake of convenience, Fmax, Fmean, and WFmean are used to indi-
cate max flowtime, mean flowtime, and mean weighted flowtime, respectively.
The objective functions are shown as follows.

– Minimising Fmax = max{C1, Ci, . . . , Cn}
– Minimising Fmean =

∑n
i=1 {Ci−ri}

n

– Minimising WFmean =
∑n

i=1 wi∗{Ci−ri}
n

where Ci is the completion time of job Ji, ri is the release time of Ji, and wi is
the weight of Ji.

Note that the evolved best rule at each generation is tested on 50 different test
instances, and the mean objective value is reported as the objective value of this
best rule. This aims to guarantee the accuracy of measuring the performance.

5 Results and Discussions

Fifty independent runs are conducted for the comparison. Wilcoxon rank-sum
test with a significance level of 0.05 is used to verify the performance of proposed
algorithms. In the following results, “−” and “+” indicate the corresponding
result is significantly better or worse than its counterpart. If there is no mark
there, that means they have similar performance.

5.1 Performance of Evolved Rules

Table 3 shows the mean and standard deviation of the objective value of CCGP,
MUGP, IMGP, and IM2GP over 50 independent runs for six dynamic flexible
scenarios. The performance of MUGP is significantly better than CCGP in one
scenario (e.g. <WFmean, 0.85>. It indicates that the proposed adaptive strategy
with the mutation has the potential to take advantage of the information of the
frequency of features. However, it does not work in most scenarios. One possible
reason is that the mutation rate is too low (i.e. 0.15) to fully utilise the informa-
tion. The performance of IMGP is significantly better than that of CCGP in only
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Fig. 2. The convergence curves of CCGP, MUGP, IMGP, and IM2GP over 50 inde-
pendent runs in six scenarios.

two scenarios (e.g. <Fmean, 0.85> and <WFmean, 0.95>). One possible reason
is that the reinitialised individuals do not have a big impact on the population.
The performance of IM2GP is significantly better than CCGP in four scenar-
ios (e.g. <Fmean, 0.85>, <Fmean, 0.95>, <WFmean, 0.85> and <WFmean,
0.95>). It indicates that the proposed adaptive strategy with mutation and re-
initialisation strategies are more promising. For minimising the max-flowtime,
in scenario <Fmax, 0.85> and <Fmax, 0.85>, there is no significant difference
among the three algorithms.

Figure 2 shows the convergence curves of the average objective value on
the test instances of CCGP, MUGP, IMGP, and IM2GP over 50 independent
runs. Except for max-flowtime related scenarios, IM2GP can converge faster and
achieve better performance than that of CCGP. For minimising max-flowtime,
the proposed three algorithms have no obvious advantages. It might be because
max-flowtime is more sensitive to the worst case, which is more complex and
hard to optimise.

5.2 Unique Feature Analyses

The number of unique features in the rules is one of the indicators of the com-
plexity of evolved rules. The number of unique feature means the least number
of elements that is needed to construct the rules. A rule with a smaller number
of features is easier to be interpreted [24].

Figures 3 and 4 show the violin plot of the number of unique features of
routing and sequencing rules obtained by CCGP, MUGP, IMGP, and IM2GP
over 30 independent runs in different scenarios. Violin plots are similar to box
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Fig. 3. Violin plot of the number of unique features of routing rules obtained by CCGP,
MUGP, IMGP, and IM2GP over 30 independent runs in six scenarios.
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Fig. 4. Violin plot of the number of unique features of sequencing rules obtained by
CCGP, MUGP, IMGP, and IM2GP over 30 independent runs in six scenarios.

plots, except that they also show the probability density of the data at different
values, usually smoothed by a kernel density estimator. From an overall view,
both for the routing rule and sequencing rule, the rules obtained by MUGP
and IM2GP involve a smaller set of features. For the routing rule, there is no
statistical difference between MUGP and IM2GP in most scenarios except the
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scenario <Fmean, 0.85>. For the sequencing rule, there is no statistical difference
between MUGP and IM2GP in all the scenarios. It indicates that the adaptive
search strategy only with mutation still can have a significant influence on the
unique number of features, although the mutation rate is low. However, both for
routing and sequencing rules, the unique number of features of IMGP is similar
with that of CCGP in all scenarios.

5.3 The Frequency of Features

Figure 5 shows the curves of the frequency of features in routing rules during the
evolutionary process of IM2GP. It shows that the MWT (i.e. machine waiting
time) is the most important feature for the routing rules in all scenarios. The
importance of MWT is much higher than other features. In the scenarios whose
utilisation levels are 0.85, WIQ (i.e. the workload in the queue) plays a secondary
role. In the scenarios whose have a higher utilisation level (i.e. 0.95), NIQ (i.e. the
number of operations in the queue) plays a significant role. Intuitively, both WIQ
and NIQ are important indicators for measuring the workload for machines, they
might have the same functions, and one might take over another one. However,
we do not know how they work in different scenarios. It is interesting to see that
the role of NIQ is significantly higher than that of WIQ in the scenarios that
have higher utilisation level. One possible reason is that NIQ is an important
factor in busy scenarios.

Fig. 5. The curves of the frequency of features in routing rules during the evolutionary
process of IM2GP.
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Fig. 6. The curves of the frequency of features in sequencing rules during the evolu-
tionary process of IM2GP.

Figure 6 shows the curves of the frequency of features in sequencing rules
during the evolutionary process of IM2GP. Different from routing rules, there
are three features (e.g. WKR, TIS, and PT) play a vital role in minimising max-
flowtime. PT and WKR also are two important features in minimising mean-
flowtime and weighted mean-flowtime. Except for them, W plays a dominant
role in weighted mean-flowtime, which is consistent with our intuition. Besides,
W plays its role mainly in sequencing rules instead of routing rules.

It is interesting to see the trend of the feature frequency without adaptive
strategies. Figure 7 shows the curves of the frequency of features of the routing
rules that evolved by CCGP. Comparing Figs. 5 and 7, both IM2GP and CCGP
can detect important features and use them to build individuals, this is the
advantage of GP itself. The difference is that IM2GP can further enhance this
ability. Figure 7 shows that the frequency of feature MWT is much higher than
that of CCGP (i.e. the most obvious one) during the evolutionary process (i.e.
generation 50). For IM2GP, in the scenarios with utilisation level 0.85, the fre-
quency of WIQ is higher than other features, which is not that clear for CCGP.
Besides, in the scenarios with utilisation level 0.95, the importance of NIQ is
easier to be distinguished than that of in CCGP.
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Fig. 7. The curves of the frequency of features in routing rules during the evolutionary
process of CCGP.

5.4 Reinitialised Individuals

Figure 8 shows the curves of the number of reinitialised routing rules. In all
the scenarios, in the beginning, there are a lot of reinitialised individuals in the
population. As the number of generations increases, the number of reinitialised
routing rules is getting smaller and smaller. After the fifteenth generation, there
is no significant change in the number of reinitialised routing rules.

Figure 9 shows the curves of the number of reinitialised sequencing rules.
Different from routing rules, the sequencing rules are seldom detected as bad
rules. This is in line with our expectations. When evaluating sequencing rules,
the best routing rule is used as the collaborator, the probability of a machine
that is assigned lots of operations is small. Only when a sequencing rule is quite
bad, it might be detected as a bad rule. But for the routing rule, even the
best sequencing rule is chosen as the collaborator, there are different routing
rules which can lead to a high probability of a machine that is assigned lots of
operations.
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Fig. 8. The curves of the number of reinitialised routing rules of IM2GP over 50 inde-
pendent runs in six different scenarios.
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Fig. 9. The curves of the number of reinitialised sequencing rules of IM2GP over 50
independent runs in six different scenarios.

5.5 Training Time

Table 4 shows the mean and standard deviation of training time of the four
algorithms over 50 independent runs in six scenarios. There is no significant
difference between the four algorithms. It means the proposed adaptive search
strategies do not need extra computational cost. This verifies the advantages of
utilising the information generated during the evolutionary process of GP.
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In general, IM2GP can speed up the convergence and achieve effective rules in
most scenarios without extra computational cost, which confirms its effectiveness
and efficiency.

Table 4. The mean (standard deviation) of training time (in minutes) obtained by
over 50 independent runs for six different scenarios.

Scenario CCGP MUGP IMGP IM2GP

<Fmax, 0.85> 73(9) 75(12) 75(10) 75(11)

<Fmax, 0.95> 87(15) 83(12) 88(11) 91(23)

<Fmean, 0.85> 71(10) 71(12) 72(11) 73(12)

<Fmean, 0.95> 80(13) 81(12) 80(11) 81(11)

<WFmean, 0.85> 73(13) 73(10) 75(12) 78(11)

<WFmean, 0.95> 82(13) 80(11) 85(10) 87(11)

6 Conclusions and Future Work

The goal of this paper was to develop adaptive search strategies to guide the
behaviour of GP for both improving its convergence speed and evolving more
effective scheduling heuristics for DFJSS. The goal was achieved by proposing the
adaptive mutation and re-initialisation strategies that can utilise the information
of the frequency of features information during the evolutionary process.

The results show that with adaptive search, the proposed IM2GP can speed
up the convergence and achieve better performance in most scenarios while no
worse in all other scenarios without increasing the computational cost. The
evolved rules by IM2GP have better test performance of a given complex job shop
scenario, especially in minimising mean-flowtime and weighted mean-flowtime.
In terms of the number of unique features, the evolved rules by the proposed
algorithms with adaptive strategies contain fewer features. This can poten-
tially improve the interpretability of the evolved rules because the relationships
between features tend to be less complicated. Besides, the proposed algorithms
that incorporate the frequency of features information do not need extra com-
putational cost. This shows the benefits of making use of the information during
the evolutionary process.

Some interesting directions can be further investigated in the near future.
This work already shows the effectiveness to take advantage of the information
generated during the evolutionary process. We would like to find more promising
ways to detect useful information further to improve its performance.
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