
On the Size of Depth-Three Boolean
Circuits for Computing Multilinear

Functions

Oded Goldreich and Avi Wigderson

Abstract. This paper introduces and initiates a study of a new model
of arithmetic circuits coupled with new complexity measures. The new
model consists of multilinear circuits with arbitrary multilinear gates,
rather than the standard multilinear circuits that use only addition and
multiplication gates. In light of this generalization, the arity of gates
becomes of crucial importance and is indeed one of our complexity mea-
sures. Our second complexity measure is the number of gates in the
circuit, which (in our context) is significantly different from the num-
ber of wires in the circuit (which is typically used as a measure of size).
Our main complexity measure, denoted AN(·), is the maximum of these
two measures (i.e., the maximum between the arity of the gates and the
number of gates in the circuit). We also consider the depth of such cir-
cuits, focusing on depth-two and unbounded depth.

Our initial motivation for the study of this arithmetic model is the fact
that its two main variants (i.e., depth-two and unbounded depth) yield
natural classes of depth-three Boolean circuits for computing multilinear
functions. The resulting circuits have size that is exponential in the new
complexity measure. Hence, lower bounds on the new complexity mea-
sure yield size lower bounds on a restricted class of depth-three Boolean
circuits (for computing multilinear functions). Such lower bounds are a
sanity check for our conjecture that multilinear functions of relatively
low degree over GF(2) are good candidates for obtaining exponential
lower bounds on the size of constant-depth Boolean circuits (computing
explicit functions). Specifically, we propose to move gradually from linear
functions to multilinear ones, and conjecture that, for any t ≥ 2, some
explicit t-linear functions F : ({0, 1}n)t → {0, 1} require depth-three cir-
cuits of size exp(Ω(tnt/(t+1))).

Letting AN2(·) denote the complexity measure AN(·), when minimized
over all depth-two circuits of the above type, our main results are as
follows.

– For every t-linear function F , it holds that AN(F) ≤ AN2(F) =
O((tn)t/(t+1)).

– For almost all t-linear function F , it holds that AN2(F) ≥ AN(F) =
Ω((tn)t/(t+1)).

– There exists a bilinear function F such that AN(F) = O(
√

n) but
AN2(F) = Ω(n2/3).

The main open problem posed in this paper is proving that AN2(F) ≥
AN(F) = Ω((tn)t/(t+1)) holds for an explicit t-linear function F , with
t ≥ 2. For starters, we seek lower bound of Ω((tn)0.51) for an explicit t-
linear function F , preferably for constant t. We outline an approach that
reduces this challenge (for t = 3) to a question regarding matrix rigidity.

c© Springer Nature Switzerland AG 2020

O. Goldreich (Ed.): Computational Complexity and Property Testing, LNCS 12050, pp. 41–86, 2020.

https://doi.org/10.1007/978-3-030-43662-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43662-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-43662-9_6

42 O. Goldreich and A. Wigderson

An early version of this work appeared as TR13-043 of ECCC. The current
revision is quite substantial (cf. [11]). In particular, the original abstract was
replaced, the appendices were omitted, notations were changed, some arguments
were elaborated, and updates on the state of the open problems were added (see,
most notably, the progress made in [9]).

1 Introduction

The introduction contains an extensive motivation for the model of arithmetic
circuits that is studied in the paper. Readers who are only interested in this
model may skip the introduction with little harm, except for the definition of
three specific functions that appear towards the end of Sect. 1.2 (see Eqs. (2),
(3), and (4)).

1.1 The General Context

Strong lower bounds on the size of constant-depth Boolean circuits computing
parity and other explicit functions (cf., e.g., [12,34] and [26,29]) are among the
most celebrated results of complexity theory. These quite tight bounds are all of
the form exp(n1/(d−1)), where n denote the input length and d the circuit depth.
In contrast, exponential lower bounds (i.e., of the form exp(Ω(n))) on the size
of constant-depth circuits computing any explicit function are not known, even
when using a weak notion of explicitness such as only requiring the Boolean
function to be in E =

⋃
c∈N

Dtime(fc), where fc(n) = 2cn.
Providing exponential lower bounds on the size of constant-depth Boolean

circuits computing explicit functions is a central problem of circuit complexity,
even when restricting attention to depth-three circuits (cf., e.g., [16, Chap. 11]).
It seems that such lower bounds cannot be obtained by the standard interpre-
tation of either the random restriction method [6,12,34] or the approximation
by polynomials method [26,29]. Many experts have tried other approaches (cf.,
e.g., [14,17])1, and some obtained encouraging indications (i.e., results that refer
to restricted models, cf., e.g., [23]); but the problem remains wide open.

There are many motivations for seeking exponential lower-bounds for
constant-depth circuits. Two notable examples are separating NL from P (see,
e.g., [11, Apdx A]) and presenting an explicit function that does not have
linear-size circuits of logarithmic depth (see Valiant [32]). Another motivation
is the derandomization of various computations that are related to AC0 cir-
cuits (e.g., approximating the number of satisfying assignments to such circuits).
Such derandomizations can be obtained via “canonical derandomizers” (cf. [7,
Sec. 8.3]), which in turn can be constructed based on strong average-case versions
of circuit lower bounds; cf. [21,22].

It seems that the first step should be beating the exp(
√

n) size lower bound
for depth-three Boolean circuits computing explicit functions (on n bits). A next
1 The relevance of the Karchmer and Wigderson approach [17] to constant-depth cir-

cuits is stated explicitly in [18, Sec. 10.5].

On Depth-Three Boolean Circuits Computing Multilinear Functions 43

step may be to obtain a truly exponential lower bound for depth-three Boolean
circuits, and yet another one may be to move to any constant depth.

This paper focuses on the first two steps; that is, it focuses on depth-three
circuits. Furthermore, within that confined context, we focus on a restricted class
of functions (i.e., multilinear functions of small degree), and on a restricted type
of circuits that emerges rather naturally when considering the computation of
such functions.

1.2 The Candidate Functions

We suggest to study specific multilinear functions of relatively low degree over the
binary field, GF(2), and in the sequel all arithmetic operations are over this field.
For t, n ∈ N, we consider t-linear functions of the form F : ({0, 1}n)t → {0, 1},
where F is linear in each of the t blocks of variables (which contain n variables
each). Such a function F is associated with a t-dimensional array, called a tensor,
T ⊆ [n]t, such that

F (x(1), x(2), ..., x(t)) =
∑

(i1,i2,...,it)∈T

x
(1)
i1

x
(2)
i2

· · · x(t)
it

(1)

where here and throughout this paper x(j) = (x(j)
1 , ..., x

(j)
n) ∈ {0, 1}n for every

j ∈ [t]. Indeed, we refer to a fixed partition of the Boolean variables to t blocks,
each containing n variables, and to functions that are linear in the variables of
each block. Such functions were called set-multilinear in [23]. Note that the input
length for these functions is t · n; hence, exponential lower bounds mean bounds
of the form exp(Ω(tn)).

We will start with a focus on constant t, and at times we will also consider t to
be a function of n, but n will always remain the main length parameter. Actually,
it turns out that t = t(n) = Ω(log n) is essential for obtaining exponential lower
bounds (i.e., size lower bounds of the form exp(Ω(tn)) for depth-d circuits, when
d > 2).

A good question to ask is whether there exists any multilinear function that
requires constant-depth Boolean circuit of exponential size (i.e., size exp(Ω(tn))).
We conjecture that the answer is positive.

Conjecture 1.1 (a sanity check for the entire approach): For every d > 2,
there exist t-linear functions F : ({0, 1}n)t → {0, 1} that cannot be computed by
Boolean circuits of depth d and size exp(o(tn)), where t = t(n) ≤ poly(n).

We believe that the conjecture holds even for t = t(n) = O(log n), and note that,
for any fixed t, there exist explicit t-linear functions that cannot be computed
by depth-two Boolean circuits of size 2tn/4 (see [11, Apdx C.3]).

Merely proving Conjecture 1.1 may not necessarily yield a major break-
through in the state-of-art regarding circuit lower bounds, although it seems that
a proof will need to do something more interesting than mere counting. How-
ever, disproving Conjecture 1.1 will cast a shadow on our suggestions, which may

44 O. Goldreich and A. Wigderson

nevertheless maintain their potential for surpassing the exp((tn)1/(d−1)) barrier.
(Showing an upper bound of the form exp((tn)1/(d−1)) on the size circuits of
depth d that compute any t-linear function seems unlikely (cf. [23], which proves
an exponential in t lower bound on the size of depth-three arithmetic circuits
(when n = 4)).)

Assuming that Conjecture 1.1 holds, one should ask which explicit functions
may “enjoy” such lower bounds. Two obviously bad choices are

– F t,n
all(x(1), ..., x(t)) =

∑
i1,...,it∈[n] x

(1)
i1

· · · x(t)
it

, and

– F t,n
diag(x(1), ..., x(t)) =

∑
i∈[n] x

(1)
i · · · x(t)

i ,

since each of them is easily reducible to an n-way parity (the lower bounds for
which we wish to surpass).2 The same holds for any function that corresponds
either to a rectangular tensor (i.e., T = I1 × · · · × It, where I1, .., It ⊆ [n]) or
to a sparse tensor (e.g., T ⊆ [n]t such that |T | = O(n)). Ditto w.r.t the sum of
few such tensors. Indeed, one should seek tensors T ⊆ [n]t that are far from the
sum of few rectangular tensors (i.e., far from any tensor of low rank [30]). On
the other hand, it seems good to stick to as “simple” tensors as possible so as
to facilitate their analysis (let alone have the corresponding multilinear function
be computable in exponential-time (i.e., in E)).3

A Less Obviously Bad Choice. Consider the function F t,n
leq : ({0, 1}n)t → {0, 1}

such that

F t,n
leq(x

(1), x(2), ..., x(t)) =
∑

1≤i1≤i2≤···≤it≤n

x
(1)
i1

x
(2)
i2

· · · x(t)
it

(2)

(having the corresponding tensor T t,n
leq = {(i1, ..., it) ∈ [n]t : i1 ≤ i2 ≤ · · · ≤

it}). Note that this function is polynomial-time computable (e.g., via dynamic
programming),4 and that t = 1 corresponds to Parity. Unfortunately, for every
constant t ≥ 2, the function F t,n

leq is not harder than parity: It has depth-three

2 Note that F t,n
all (x(1), ..., x(t)) =

∏
j∈[t]

∑
ij∈[n] x

(j)
ij

, which means that it can be com-

puted by a t-way conjunction of n-way parity circuits, whereas F t,n
diag is obviously an

n-way parity of t-way conjunctions of variables.
3 Thus, these tensors should be constructible within exp(tn)-time. Note that we can

move from the tensor to the multilinear function (and vice versa) in nt � exp(tn)
oracle calls.

4 Note that F t,n
leq (x(1), ..., x(t)) equals

∑
i∈[n] F

t−1,i
leq (x

(1)

[1,i], ..., x
(t−1)

[1,i])·x(t)
i , where x

(j)

[1,i] =

(x
(j)
1 , ..., x

(j)
i). So, for every t′ ∈ [t − 1], the dynamic program uses the n values

(F t′,i
leq (x

(1)

[1,i], ..., x
(t′)
[1,i]))i∈[n] in order to compute the n values (F t′+1,i

leq (x
(1)

[1,i], ...,

x
(t′+1)

[1,i]))i∈[n].

On Depth-Three Boolean Circuits Computing Multilinear Functions 45

circuits of size exp(O(
√

n)); see Proposition 3.4. Thus, we move to the slightly
less simple candidates presented next.

Specific Candidates. We suggest to consider the following t-linear functions, F t,n
tet

and F t,n
mod p (especially for p ≈ 2t ≈ n), which are presented next in terms of their

corresponding tensors (i.e., T t,n
tet and T t,n

mod p, resp).

T t,n
tet =

⎧
⎨

⎩
(i1, ..., it) ∈ [n]t :

∑

j∈[n]

|ij − 	n/2
| ≤ 	n/2

⎫
⎬

⎭
(3)

T t,n
mod p =

⎧
⎨

⎩
(i1, ..., it) ∈ [n]t :

∑

j∈[t]

ij ≡ 0 (mod p)

⎫
⎬

⎭
(4)

(The shorthand tet was intended to stand for tetrahedon, since the geometric
image of one eighth of T 3,n

tet resembles a “slanted tetrahedon”. Indeed, T 3,n
tet as a

whole looks more like a regular octahedon.)
Note that the functions F t,n

tet and F t,n
mod p are also computable in polynomial-

time.5 For p < n, it holds that F t,n
mod p(x

(1), ..., x(t)) equals F t,p
mod p(y

(1), ..., y(t)),

where y
(j)
r =

∑
i∈[n]:i≡r (mod p) x

(j)
i for every j ∈ [t] and r ∈ [p]. This reduction

may have a forbidding “size cost” in the context of circuits of a specific depth
(especially if p � n), but its cost is insignificant if we are willing to double the
depth of the circuit (and aim at lower bounds that are larger than those that
hold for parity). Thus, in the latter cases, we may assume that p = Ω(n), but of
course p < tn must always hold.

We note that none of the bilinear versions of the foregoing functions can serve
for beating the exp(

√
n) lower bound. Specifically, the failure of F 2,n

mod p is related
to the aforementioned reduction, whereas the failure of F 2,n

tet is due to the fact
that T 2,n

tet is very similar to T 2,n
leq (i.e., each fourth of T 2,n

tet is isomorphic to T 2,n
leq

(under rotation and scaling)). But these weaknesses do not seem to propagate
to the trilinear versions (e.g., the eighthes of the tensor T 3,n

tet are not isomorphic
to T 3,n

leq).

What’s Next? In an attempt to study the viability of our suggestions and con-
jectures, we defined two restricted classes of depth-three circuits and tried to
prove lower bounds on the sizes of circuits (from these classes) that compute
the foregoing functions. Our success in proving lower bounds was very partial,
5 Again, we use dynamic programming, but here we apply it to generalizations

of these functions. Specifically, let T t,n,d
tet = {(i1, ..., it) ∈ [n]t :

∑
j∈[n] |ij −

�n/2	| ≤ d} and note that the associated function satisfies F t,n,d
tet (x(1), ..., x(t)) =

∑
i∈[n] F

t−1,n,d−i
tet (x(1), ..., x(t−1)) · x

(t)
i . Likewise, consider the tensor T t,n,r

mod p =
{

(i1, ..., it) ∈ [n]t :
∑

j∈[t] ij ≡ r (mod p)
}

and note that the associated function sat-

isfies F t,n,r
mod p(x(1), ..., x(t)) =

∑
i∈[n] F

t−1,n,r−i
mod p (x(1), ..., x(t−1)) · x

(t)
i .

46 O. Goldreich and A. Wigderson

and will be discussed next—as part of the discussion of these two classes (in
Sects. 1.3 and 1.4). Subsequent work [9] was more successful in that regard.

1.3 Design by Direct Composition: The D-Canonical Model

What is a natural way of designing depth-three Boolean circuits that compute
multilinear functions?

Let us take our cue from the linear case (i.e., t = 1). The standard way of
obtaining a depth-three circuit of size exp(

√
n) for n-way parity is to express

this linear function as the
√

n-way sum of
√

n-ary functions that are linear in
disjoint sets of variables. The final (depth-three) circuit is obtained by combing
the depth-two circuit for the outer sum with the depth-two circuits computing
the

√
n internal sums.

Hence, a natural design strategy is to express the target multilinear func-
tion (denoted F) as a polynomial (denoted H) in some auxiliary multilinear
functions (i.e., Fi’s), and combine depth-two circuits that compute the auxiliary
multilinear functions with a depth-two circuit that computes the main polyno-
mial (i.e., H). That is, we “decompose” the multilinear function on the alge-
braic level, expressing it as a polynomial in auxiliary multilinear functions (i.e.,
F = H(F1, ..., Fs)), and implement this decomposition on the Boolean level (i.e.,
each polynomial is implemented by a depth-two Boolean circuit). Specifically,
to design a depth-three circuit of size exp(O(s)) for computing a multilinear
function F the following steps are taken:

1. Select s arbitrary multilinear functions, F1, ..., Fs, each depending on at most
s input bits;

2. Express F as a polynomial H in the Fi’s;
3. Obtain a depth-three circuit by combining depth-two circuits for computing

H and the Fi’s.

Furthermore, we mandate that H(F1, ..., Fs) is a syntactically multilinear func-
tion; that is, the monomials of H do not multiply two Fi’s that depend on
the same block of variables. The size of the resulting circuit is defined to be
exp(Θ(s)): The upper bound is justified by the construction, and the lower
bound by the assumption that (low degree) polynomials that depend on s vari-
ables require depth-two circuits of exp(s) size. (The latter assumption is further
discussed in Sect. 2.2.)6

Circuits that are obtained by following this framework are called D-canonical,
where “D” stands for direct (or deterministic, for reasons that will become appar-
ent in Sect. 1.4). Indeed, D-canonical circuits seem natural in the context of
computing multilinear functions by depth-three Boolean circuits.

6 In brief, when computing t-linear polynomials, a lower bound of exp(Ω(s/2t)) on
the size of depth-two circuits can be justified (see [11, Apdx C]). Furthermore, for
2t � s, a lower bound of exp(Ω(s)) can be justified if the CNFs (or DNFs) used are
“canonical” (i.e., use only s-way gates at the second (i.e., Fi’s) level).

On Depth-Three Boolean Circuits Computing Multilinear Functions 47

For example, the standard design, reviewed above, of depth-three circuits
(of size exp(

√
n)) for (n-way) parity yields D-canonical circuits. In general, D-

canonical circuits for a target multilinear function are obtained by combining
depth-two circuits that compute auxiliary multilinear functions with a depth-
two circuit that computes the function that expresses the target function in
terms of the auxiliary functions. The freedom of the framework (or the circuit
designer) is reflected in the choice of auxiliary functions, whereas the restriction
is in insisting that the target multilinear function be computed by composition of
a polynomial and multilinear functions (and that this composition corresponds
to a syntactically multilinear function).

Our main results regarding D-canonical circuits are a generic upper bound on
the size of D-canonical circuits computing any t-linear function and a matching
lower bound that refers to almost all t-linear functions. That is:

Theorem 3.1: For every t ≥ 2, every t-linear function F : ({0, 1}n)t → {0, 1} can
be computed by D-canonical circuits of size exp(O(tn)t/(t+1)).

(Corollary to) Theorem 4.1: For every t ≥ 2, it holds that almost all t-linear
functions F : ({0, 1}n)t → {0, 1} require D-canonical circuits of size at least
exp(Ω(tn)t/(t+1)).

Needless to say, the begging question is what happens with explicit multilinear
functions.

Problem 1.2 (main problem regarding D-canonical circuits): For every fixed
t ≥ 2, prove a exp(Ω(tn)t/(t+1)) lower bound on the size of D-canonical circuits
computing some explicit function. Ditto when t may vary with n, but t ≤ poly(n).

We mention that subsequent work of Goldreich and Tal [9] proved an
exp(Ω̃(n2/3)) lower bound on the size of D-canonical circuits computing some
explicit trilinear functions (e.g., F 3,n

tet). A very recent result of Goldreich [8]
asserts that, for every constant ε > 0, there exists an explicit poly(1/ε)-linear
that requires D-canonical circuits of size at least exp(n1−ε).

1.4 Design by Nested Composition: The ND-Canonical Model

As appealing as D-canonical circuits may appear, it turns out that one can build
significantly smaller circuits by employing the “guess and verify” technique (see
Theorem 2.3). This allows to express the target function in terms of auxiliary
functions, which themselves are expressed in terms of other auxiliary functions,
and so on. That is, the “composition depth” is no longer 1—it is even not a
priori bounded—and yet the resulting Boolean circuit has depth-three.

Assuming we want to use s auxiliary functions of arity s, the basic idea is
to use s non-deterministic guesses for the values of these s functions, and to
verify each of these guesses based on (some of) the other guesses and at most s
bits of the original input. Thus, the verification amounts to the conjunction of
s conditions, where each condition depends on at most 2s bits (and can thus be

48 O. Goldreich and A. Wigderson

verified by a CNF of size exp(2s)). The final depth-three circuit is obtained by
replacing the s non-deterministic guesses by a 2s-way disjunction.

This way of designing depth-three circuits leads to a corresponding frame-
work, and the circuits obtained by it are called ND-canonical, where “ND” stands
for non-determinism. In this framework depth-three circuits of size exp(O(s)) for
computing a multilinear function F are designed by the following three-step pro-
cess:

1. Select s auxiliary multilinear functions, F1, ..., Fs;
2. Express F as well as each of the other Fi’s as a polynomial in the subsequent

Fi’s and in at most s input bits;
3. Obtain a depth-three circuit by combining depth-two circuits for computing

these polynomials, where the combination implements s non-deterministic
choices as outlined above.

As in the D-canonical framework, the polynomials used in Step (2) should be
such that replacing the functions Fi’s in them yields multilinear functions (i.e.,
this is a syntactic condition). Again, the size of the resulting circuit is defined
to be exp(Θ(s)).

Note that, here (i.e., in the case of ND-canonical circuits), the combination
performed in Step (3) is not a functional composition (as in the case of the D-
canonical circuits). It is rather a verification of the claim that there exists s + 1
values that fit all s+1 expressions (i.e., of F and the Fi’s). The implementation
of Step (3) calls for taking the conjunction of these s + 1 depth-two computa-
tions as well as taking a 2s+1-way disjunction over all possible values that these
computations may yield.

The framework of ND-canonical circuits allows to express F in terms of
Fi’s that are themselves expressed in terms of Fj ’s, and so on. (Hence, the
composition is “nested”.) In contrast, in the D-canonical framework, the Fi’s
were each expressed in terms of s input bits. A natural question is whether this
generalization actually helps. We show that the answer is positive.

Theorem 2.3: There exists bilinear functions F : ({0, 1}n)2 → {0, 1} that have
ND-circuits of size exp(O(

√
n)) but no D-circuits of size exp(o(n2/3)).

Turning to our results regarding ND-circuits, the upper bound on D-canonical
circuits clearly holds for ND-circuits, whereas our lower bound is actually estab-
lished for ND-canonical circuits (and the result for D-canonical circuits is a
corollary). Thus, we have

(Corollary to) Theorem 3.1: For every t ≥ 2, every t-linear function F : ({0, 1}n)t

→ {0, 1} can be computed by ND-canonical circuits of size exp(O(tn)t/(t+1)).
Theorem 4.1: For every t ≥ 2, it holds that almost all t-linear functions

F : ({0, 1}n)t → {0, 1} require ND-canonical circuits of size at least
exp(Ω(tn)t/(t+1)).

Again, the real challenge is to obtain such a lower bound for explicit multilinear
functions.

On Depth-Three Boolean Circuits Computing Multilinear Functions 49

Problem 1.3 (main problem regarding ND-canonical circuits): For every fixed
t ≥ 2, prove a exp(Ω(tn)t/(t+1)) lower bound on the size of ND-canonical circuits
computing some explicit function. Ditto when t may vary with n, but t ≤ poly(n).

The subsequent work of Goldreich and Tal [9] establishes an exp(Ω̃(n0.6)) lower
bound on the size of ND-canonical circuits computing the trilinear function F 3,n

tet

and an exp(Ω̃(n2/3)) lower bound on the size of ND-canonical circuits computing
some explicit 4-linear functions. It does so by following the path suggested in
the original version of this work [11], where we wrote:

For starters, prove a exp(Ω(tn)0.51) lower bound on the size of ND-
canonical circuits computing some explicit t-linear function.
As a possible step towards this goal we reduce the task of proving such a
lower bound for F 3,n

tet to proving a lower bound on the rigidity of matri-
ces with parameters that were not considered before. In particular, an
exp(ω(

√
n)) lower bound on the size of ND-canonical circuits computing

F 3,n
tet will follow from the existence of an n-by-n Toeplitz matrix that has

rigidity ω(n3/2) with respect to rank ω(n1/2).

For more details, see Sect. 4.2 (as well as Sect. 4.3).

1.5 The Underlying Models of Arithmetic Circuit and
AN-Complexity

Underlying the two models of canonical circuits (discussed in Sects. 1.3 and 1.4) is
a new model of arithmetic circuits (for computing multilinear functions). Specif-
ically, the expressions representing the value of (the target and auxiliary) func-
tions in terms of the values of auxiliary functions and original variables corre-
spond to gates in a circuit. These gates can compute arbitrary polynomials (as
long as the multilinear condition is satisfied). In the case of D-canonical cir-
cuits, the corresponding arithmetic circuits have depth two (i.e., a top gate and
at most one layer of intermediate gates), whereas for ND-canonical circuits the
corresponding arithmetic circuits have unbounded depth. In both cases, the key
complexity measure is the maximum between the arity of the gates and their
number.

In both cases, a canonical Boolean circuit (for computing a multilinear func-
tion F) is obtained by presenting a Boolean circuit that emulates the computa-
tion of an arithmetic circuit (computing F). Specifically, a D-canonical circuit
is obtained by a straightforward implementation of a depth-two arithmetic cir-
cuit that computes F , the arithmetic circuit computes F by applying a function
H (in the top gate) to intermediate results computed by the intermediate gates
(i.e., F = H(F1, ..., Fs), where Fi is computed by the ith intermediate gate). The
ND-canonical circuits are obtained by a Valiant-like (i.e., akin [32]) decompo-
sition of the computation of (unbounded depth) arithmetic circuits; that is, by
guessing and verifying the values of all intermediate gates. In both cases, the size
of the resulting Boolean circuit is exponential in the maximum between the arity
of these gates the number of gates. Indeed, this parameter (i.e., the maximum

50 O. Goldreich and A. Wigderson

of the two measures) restricts the power of the underlying arithmetic circuits
or rather serves as their complexity measure, called AN-complexity, where “A”
stands for arity and “N” for number (of gates). Let us spell out these two models
of arithmetic circuit complexity.

The arithmetic circuits we refer to are directed acyclic graphs that are labeled
by arbitrary multilinear functions and variables of the target function (i.e., F).
These circuits are restricted to be syntactically multilinear; that is, each gate
computes a function that is multilinear in the variables of the target function
(i.e., arguments that depend on variables in the same block are not multiplied
by such gates). Specifically, a gate that is labelled by a function Hi and is fed by
gates computing the auxiliary functions Fi1 , ..., Fim′ and m′′ original variables,
denoted z1, ..., zm′′ (out of x(1), x(2), ..., x(t)), computes the function

Fi(x(1), x(2), ..., x(t))
= Hi(Fi1(x

(1), x(2), ..., x(t)), ..., Fim′ (x(1), x(2), ..., x(t)), z1, ..., zm′′).

This holds also for the top gate that computes F = F0. In case of depth-two cir-
cuits, the top gate is the only gate in the circuit that may be fed by intermediate
gates (and we may assume, with no loss of generality, that it is not fed by any
variable).7 As we shall see later (see, e.g., Remark 3.5), the benefit of circuits of
larger depth is that they may contain gates that are fed both by other gates and
by variables. Let us summarize this discussion and introduce some notation.

– Following [23], we say that an arithmetic circuit is multilinear if its input vari-
ables are partitioned into blocks and the gates of the circuit compute multi-
linear functions such that if two gates have directed paths from the same block
of variables, then the results of these two gates are not multiplied together.

– We say that the direct-composition complexity of F , denoted AN2(F), is at
most s if F can be computed by a depth-two multilinear circuit with at most
s gates that are each of arity at most s.

– We say that the nested-composition complexity of F , denoted AN(F), is at most
s if F can be computed by a multilinear circuit with at most s gates that are
each of arity at most s.

We stress that the multilinear circuits in the foregoing definition employ arbi-
trary multilinear gates, whereas in the standard arithmetic model the gates
correspond to either (unbounded) addition or multiplication. Our complexity
measure is related to but different from circuit size: On the one hand, we only
count the number of gates (and discard the number of leaves, which in our set-
ting may be larger). On the other hand, our complexity measure also bounds
the arity of the gates.

Note that for any linear function F , it holds that AN2(F) = Θ(AN(F)),
because all intermediate gates can feed directly to the top gate (since, in this case,

7 Since such directly fed variables can be replaced by dummy gates that are each fed
by the corresponding variable.

On Depth-Three Boolean Circuits Computing Multilinear Functions 51

all gates compute linear functions).8 Also note that AN2(F) equals the square
root of the number of variables on which the linear function F depends. In gen-
eral, AN(F) ≥ √

tn for any t-linear function F that depends on all its variables,
and AN(F) ≤ AN2(F) ≤ tn for any t-linear function F . Thus, our complexity
measures (for non-degenerate t-linear functions) range between

√
tn and tn.

Clearly, F has a D-canonical (resp., ND-canonical) circuit of size exp(Θ(s))
if and only if AN2(F) = s (resp., AN(F) = s). Thus, all results and open problems
presented above (i.e., in Sects. 1.3 and 1.4) in terms of canonical (Boolean) cir-
cuits are actually results and open problems regarding the (direct and nested)
composition complexity of multilinear circuits (i.e., AN2(·) and AN(·)). Further-
more, the results are actually proved by analyzing these complexity measures.
Specifically, we have:

Theorem 3.1: For every t-linear function F : ({0, 1}n)t → {0, 1}, it holds that
AN(F) ≤ AN2(F) = O((tn)t/(t+1)).

Theorem 4.1: For almost all t-linear function F : ({0, 1}n)t → {0, 1}, it holds that
AN2(F) ≥ AN(F) = Ω((tn)t/(t+1)).

Theorem 2.3: There exists a bilinear function F : ({0, 1}n)2 → {0, 1} such that
AN(F) = O(

√
n) but AN2(F) = Ω(n2/3).

We stress that the foregoing lower bounds are existential, whereas we seek ω(
√

n)
lower bounds for explicit multilinear functions. (As noted above, this initial goal
was achieved by the subsequent work of Goldreich and Tal [9], which establishes
an AN(F) = Ω̃(n2/3) for some explicit 4-linear functions F .)

Summary and Additional Comments. This paper introduces and initiates a study
of a new model of arithmetic circuits and accompanying new complexity mea-
sures. The new model consists of multilinear circuits with arbitrary multilinear
gates, rather than the standard multilinear circuits that use only addition and
multiplication gates. In light of this generalization, the arity of gates becomes
of crucial importance and is indeed one of our complexity measures. Our second
complexity measure is the number of gates in the circuit, which (in our context)
is significantly different from the number of wires in the circuit (which is typi-
cally used as a measure of size). Our main complexity measure is the maximum
of these two measures (i.e., the maximum between the arity of the gates and
the number of gates in the circuit). Our initial motivation for the study of this
arithmetic model is its close relation to canonical Boolean circuits, and from this
perspective depth-two arithmetic circuits have a special appeal.

A natural question is whether our complexity measure (i.e., AN) decreases if
one waives the requirement that the arithmetic circuit be a multilinear one (i.e.,
the gates compute multilinear functions and they never multiply the outcomes

8 Doing so may increase the arity of the top gate, but this increase is upper-bounded
by the number of gates. A more general argument is presented in Remark 2.4, which
asserts that if gate G computes a monomial that contains no leaves, then this mono-
mial can be moved up to the parent of G.

52 O. Goldreich and A. Wigderson

of gates that depend on the same block of variables). The answer is that waiving
this restriction in the computation of any t-linear function may decrease the
complexity by at most a factor of 2t (see Remark 2.5).

We note that the arithmetic models discuss above make sense with respect
to any field. The reader may verify that all results stated for AN2(·) and AN(·)
hold for every field, rather than merely for the binary field. Ditto for the open
problems.

1.6 Related Work

Multilinear functions were studied in a variety of models, mostly in the context
of algebraic and arithmetic complexity. In particular, Nisan and Wigderson [23]
initiated a study of multilinear circuits as a natural model for the computation
of multilinear functions. Furthermore, they obtained an exponential (in t) lower
bound on the size of depth-three multilinear circuits that compute a natural
t-linear function (i.e., iterated matrix multiplication for 2-by-2 matrices).9

The multilinear circuit model was studied in subsequent works (cf., e.g., [25]);
but, to the best of our knowledge, the complexity measure introduced in Sect. 1.5
was not studied before. Nevertheless, it may be the case that techniques and
ideas developed in the context of the multilinear circuit model will be useful for
the study of this new complexity measure (and, equivalently, in the study of
canonical circuits). For example, it seems that the latter study requires a good
understanding of tensors, which were previously studied with focus at a different
type of questions (cf., e.g., [24]).

In the following two paragraphs we contrast our model of multilinear circuits,
which refers to arbitrary gates of arity that is reflected in our complexity mea-
sure, with the standard model of multilinear circuits [23], which uses only addition
and multiplication gates (of unbounded arity). For the sake of clarity, we shall
refer to canonical circuits rather than to our model of multilinear circuits, while
reminding the reader that the two are closely related.

The difference between the standard model of constant-depth multilinear
circuit and the model of constant-depth Boolean circuits is rooted in the fact
that the (standard) multilinear circuit model contains unbounded fan-in addi-
tion gates as basic components, whereas unbounded fan-in addition is hard for
constant-depth Boolean circuits. Furthermore, the very fact that n-way addition
requires exp(n)-size depth-two Boolean circuits is the basis of the approach that
we are suggesting here. In contrast, hardness in the multilinear circuit model is
related to the total degree of the function to be computed.10

9 Thus, n = 4 and t is the number of matrices being multiplied.
10 Concretely, the conjectured hardness of computing a multilinear function by

constant-depth Boolean circuits may stem from the number (denoted n) of variables
of the same type (i.e., the variables in x(j)), even when the arity of multiplication
(denoted t) is relatively small (e.g., we even consider bilinear functions), whereas in
the multilinear circuits hardness seem to be related to t (cf., indeed, the aforemen-
tioned lower bound for iterated matrix multiplication).

On Depth-Three Boolean Circuits Computing Multilinear Functions 53

The foregoing difference is reflected in the contrast between the following two
facts: (1) multilinear functions of low degree have small depth-two multilinear
circuits (i.e., each t-linear function F : ({0, 1}n)t → {0, 1} can be written as
the sum of at most nt products of variables), but (2) almost all such functions
require depth-three Boolean circuits of subexponential size (because parity is
reducible to them). Furthermore, (2′) almost all t-linear functions require depth-
three canonical circuits of size at least exp(Ω(tn)t/(t+1)), see Theorem 4.1. Hence,
in the context of low-degree multilinear functions, depth-three Boolean circuits
(let alone canonical ones) are weaker than standard (constant-depth) multilinear
circuits, and so proving lower bounds for the former may be easier.

Decoupling Arity from the Number of Gates. In a work done independently (but
subsequent to our initial posting11), Hrubes and Rao studied Boolean circuits
with general gates [15]. They decoupled the two parameters (i.e., the number
of gates and their arity), and studied the asymmetric case of large arity and a
small number of gates. We refrained from decoupling these two parameters here,
because, for our application, their maximum is the governing parameter. Lastly,
we mention that a different relation between the arity and the number of gates
is considered in a subsequent work [10] that extends the notion of canonical
circuits to constant depth d > 3.

1.7 Subsequent Work

The subsequent works of Goldreich and Tal [9,10] were already mentioned several
times in the foregoing. While [10] deals with an extension of the current models,
the other work (i.e., [9]) is directly related to the current work; specifically, it
resolves many of the specific open problems suggested in this work. As done so
far, we shall report of the relevant progress whenever reproducing text (of our
original work [11]) that raises such an open problem.

1.8 Various Conventions

As stated up-front, throughout this paper, when we say that a function f : N →
N is exponential, we mean that f(n) = exp(Θ(n)). Actually, exp(n) often means
exp(cn), for some unspecified constant c > 0. Throughout this paper, we restrict
ourselves to the field GF(2), and all arithmetic operations are over this field.12

Tensors. Recall that any t-linear function F : ({0, 1}n)t → {0, 1} is associated
with the tensor T ⊆ [n]t that describes its existing monomials (cf., Eq. (1)). This
tensor is mostly viewed as a subset of [n]t, but at times such a tensor is viewed
in terms of its corresponding characteristic predicate or the predicate’s truth-
table; that is, T ⊆ [n]t is associated with the predicate χT : [n]t → {0, 1} or
with the t-dimensional array (χT (i1, ..., it))i1,...,it∈[n]) such that χT (i1, ..., it) = 1

11 See ECCC TR13-043, March 2013.
12 However, as stated in Sect. 1.5, our main results extend to other fields.

54 O. Goldreich and A. Wigderson

if and only if (i1, ..., it) ∈ T . The latter views are actually more popular in
the literature, and they also justify our convention of writing

∑
k∈[m] Tk instead

of the symmetric difference of T1, ..., Tm ⊆ [n]t (i.e., (i1, ..., it) ∈ ∑
k∈[m] Tk iff

|{k ∈ [m] : (i1, ..., it) ∈ Tk}| is odd).
In the case of t = 2, the tensor (viewed as an array) is a matrix. In that case,

we sometimes denote the variable-blocks by x and y (rather than x(1) and x(2)).

1.9 Organization and Additional Highlights

The rest of this paper focuses on the study of the direct and nested composition
complexity of multilinear functions (and its relation to the two canonical circuit
models). This study is conducted in terms of the arithmetic model outlined in
Sect. 1.5; that is, of multilinear circuits with general multilinear gates and a
complexity measure, termed AN-complexity, that accounts for both the arity
of these gates and their number. The basic definitional issues are discussed in
Sect. 2, upper bounds are presented in Sect. 3, and lower bounds in Sect. 4. These
sections are the core of the current paper.

We now highlight a few aspects that were either not mentioned in the intro-
ducion or mentioned too briefly.

On the Connection to Matrix Rigidity. As mentioned in Sect. 1.4, we show a con-
nection between proving lower bounds on the AN-complexity of explicit functions
and matrix rigidity. In particular, in Sect. 4.2, we show that AN(F 3,n

tet) = Ω(m) if
there exists an n-by-n Toeplitz matrix that has rigidity m3 with respect to rank
m. This follows from Theorem 4.4, which asserts that if T is an n-by-n matrix
that has rigidity m3 for rank m, then the corresponding bilinear function F satis-
fies AN(F) > m. In Sect. 4.3 we show that the same holds for a relaxed notion of
rigidity, which we call structured rigidity. We also show that structured rigidity
is strictly separated from the standard notion of rigidity. All these connections
were used in the subsequent work of Goldreich and Tal [9].

On Further-Restricted Models. In Sect. 5, we consider two restricted models of
multilinear circuits, which are obtained by imposing constraints on the models
outlined in Sect. 1.5.

1. In Sect. 5.1, we consider circuits that compute functions without relying on
cancellations. We show that such circuits are weaker than the multilinear cir-
cuits considered in the bulk of the paper. Specifically, we prove a Ω(n2/3)
lower bound on the complexity of circuits that compute some explicit func-
tions (i.e., F 3,n

tet and F 2,n
had) without cancellation, whereas one of these functions

(i.e., F 2,n
had) has AN-complexity Õ(

√
n).13

13 In fact, AN2(F
2,n
had) = Õ(

√
n). In contrast, by [9], AN2(F

3,n
tet) = Ω̃(n2/3) and AN(F 3,n

tet) =

Ω̃(n0.6).

On Depth-Three Boolean Circuits Computing Multilinear Functions 55

2. In Sect. 5.2 we study a restricted multilinear model obtained by allowing only
standard addition and multiplication gates (and considering the same com-
plexity measure as above, except for not counting multiplication gates that
are fed only by variables). While this model is quite natural, it is quite weak.
Nevertheless, this model allows to separate F t,n

all and F t,n
diag from the “harder”

F 2,n
leq , which is shown to have AN-complexity Θ(n2/3) in this restricted model.

Note that in both these restricted models, we are able to prove a non-trivial
lower bound on an explicit function.

2 Multilinear Circuits with General Gates

In this section we introduce a new model of arithmetic circuits, where gates may
compute arbitrary multilinear functions (rather than either addition or multi-
plication, as in the standard model). Accompanying this new model is a new
complexity measure, which takes into account both the number of gates and
their arity. This model (and its restriction to depth-two circuits) is presented
in Sect. 2.1 (where we also present a separation between the general model and
its depth-two restriction). As is clear from the introduction, the model is moti-
vated by its relation to canonical depth-three Boolean circuits. This relation is
discussed in Sect. 2.2.

Recall that we consider t-linear functions of the form F : (GF(2)n)t → GF(2),
where the tn variables are partitioned into t blocks with n variables in each block,
and F is linear in the variables of each block. Specifically, for t and n, we consider
the variable blocks x(1), x(2), ..., x(t), where x(j) = (x(j)

1 , ..., x
(j)
n) ∈ GF(2)n.

2.1 The Two Complexity Measures

We are interested in multilinear functions that are computed by composition
of other multilinear functions, and define a conservative (or syntactic) notion
of linearity that refers to the way these functions are composed. Basically, we
require that this composition does not result in a polynomial that contains terms
that are not multilinear, even if these terms cancel out. Let us first spell out
what this means in terms of standard multilinear circuits that use (unbounded)
addition and multiplication gates, as defined in [23]. This is done by saying that a
function is J-linear whenever it is multilinear (but not necessarily homogeneous)
in the variables that belongs to blocks in J , and does not depend on variables
of other blocks.

– Each variable in x(j) is a {j}-linear function.
– If an addition gate computes the sum

∑
i∈[m] Fi, where Fi is a Ji-linear func-

tion computed by its ith child, then this gate computes a
(⋃

i∈[m] Ji

)
-linear

function.

56 O. Goldreich and A. Wigderson

– If a multiplication gate computes the product
∏

i∈[m] Fi, where Fi is a Ji-
linear function computed by its ith child, and the Ji’s are pairwise disjoint,
then this gate computes a

(⋃
i∈[m] Ji

)
-linear function.

We stress that if the Ji’s mentioned in the last item are not pairwise disjoint,
then their product cannot be taken by a gate in a multilinear circuit.

We now extend this formalism to arithmetic circuits with arbitrary gates,
which compute arbitrary polynomials of the values that feed into them. Basi-
cally, we require that when replacing each gate by the corresponding depth-two
arithmetic circuit that computes this polynomial as a sum of products (a.k.a
monomials), we obtain a standard multilinear circuit. In other words, we require
the following.

Definition 2.1 (multilinear circuits with general gates): An arithmetic circuit
with arbitrary gates is called multilinear if each of its gates is J-linear for some
J ⊂ [t], where J-linearity is defined recursively as follows. Suppose that a gate
computes H(F1, ..., Fm), where H is a polynomial and Fi is a Ji-linear function
computed by the ith child of this gate.14 Then, each monomial in H computes a
function that is J-linear, where J is the disjoint union of the sets Ji that define
the linearity of the functions multiplied in that monomial; that is, if for some
set I ⊆ [m] this monomial multiplies Ji-linear functions for i ∈ I, then these
Ji’s should be disjoint and their union should equal J (i.e., Ji1 ∩ Ji2 = ∅ for all
i1 �= i2 and

⋃
i∈I Ji = J). The function computed by the gate is J ′-linear if J ′ is

the union of all the sets that define the linearity of the functions that correspond
to the different monomials in H.

Alternatively, we may require that if a gate multiplies two of its inputs (in one
of the monomials computed by this gate), then the sub-circuits computing these
two inputs do not depend on variables from the same block (i.e., the two sets of
variables in the directed acyclic graphs rooted at these two gates belong to two
sets of blocks with empty intersection).

Definition 2.2 (the AN-complexity of multilinear circuits with general gates):
The arity of a multilinear circuit is the maximum arity of its (general) gates, and
the number of gates counts only the general gates and not the leaves (variables).
The AN-complexity of a multilinear circuit is the maximum between its arity and
the number of its (general) gates.

– The general (or unbounded-depth or nested) AN-complexity of a multilinear
function F , denoted AN(F), is the minimum AN-complexity of a multilinear
circuit with general gates that computes F .

14 Clearly, w.l.o.g., H is multilinear in its m inputs, since we are considering multipli-
cation over GF(2). However, what we consider next is not the dependency of H on
its own inputs, but rather its dependency on the inputs of the circuits as reflected in
the composed function H(F1, ..., Fm). Furthermore, we do not consider this function
per se, but rather its syntactic form (before cancellations).

On Depth-Three Boolean Circuits Computing Multilinear Functions 57

– The depth-two (or direct) AN-complexity of a multilinear function F , denoted
AN2(F), is the minimum AN-complexity of a depth-two multilinear circuit
with general gates that computes F .

More generally, for any d ≥ 3, we may denote by ANd(F) the minimum AN-
complexity of a depth d multilinear circuit with general gates that computes F .

Clearly, AN2(F) ≥ AN(F) for every multilinear function F . For linear functions
F , it holds that AN2(F) ≤ 2 · AN(F), because in this case all gates are addition
gates and so, w.l.o.g., all intermediate gates can feed directly to the top gate
(while increasing its arity by at most AN(F) − 1 units). This is no longer the
case for bilinear functions; that is, there exists bilinear functions F such that
AN2(F) � AN(F).

Theorem 2.3 (separating AN2 from AN): There exist bilinear functions F :
(GF(2)n)2 → GF(2) such that AN(F) = O(

√
n) but AN2(F) = Ω(n2/3). Further-

more, the upper bound is established by a depth-three multilinear circuit.

The furthermore clause is no coincidence: As outlined in Remark 2.4, for every
t-linear function F , it holds that ANt+1(F) = O(AN(F)).

Proof: Consider a generic bilinear function g : GF(2)n+s → GF(2), where
g is linear in the first n bits and in the last s =

√
n bits. Using the fact

that g is linear in the first n variables, it will be useful to write g(x, z) as∑
i∈[s] gi((x(i−1)s+1, ..., xis), z), where each gi is a bilinear function on GF(2)s ×

GF(2)s. Define f : GF(2)2n → GF(2) such that f(x, y) = g(x,L1(y), ..., Ls(y)),
where Li(y) =

∑si
k=(i−1)s+1 yk. That is, f is obtained from g by replacing each

variable zi (of g) by the linear function Li(y); in the sequel, we shall refer to this
f as being derived from g.

Clearly, AN(f) ≤ 2s+1 by virtue of a depth-three multilinear circuit that first
computes v ← (L1(y),, Ls(y)) (using s gates each of arity s), then computes
wi ← (gi((x(i−1)s+1, ..., xis), v) for i ∈ [s] (using s gates of arity 2s), and finally
compute the sum

∑
i∈[s] wi (in the top gate). The rest of the proof is devoted to

proving that for a random g, with high probability, the corresponding f satisfies
AN2(f) = Ω(n2/3).

We start with an overview of the proof strategy. We consider all functions f :
GF(2)n × GF(2)n → GF(2) that can be derived from a generic bilinear function
g : GF(2)n × GF(2)s → GF(2) (by letting f(x, y) = g(x,L1(y), ..., Ls(y))). For
each such function f , we consider a hypothetical depth-two multilinear circuit
of AN-complexity at most m = 0.9n2/3 that computes f . Given such a circuit,
using a suitable (random) restriction, we obtain a circuit that computes the
underlying function g such that the resulting circuit belongs to a set containing
at most 20.9sn circuits. But since the number of possible functions g is 2sn, this
means that most functions f derived as above from a generic g do not have
depth-two multilinear circuit of AN-complexity at most m = 0.9n2/3; that is, for
almost all such functions f , it holds that AN2(f) > 0.9n2/3. The actual argument
follows.

58 O. Goldreich and A. Wigderson

Consider an arbitrary depth-two multilinear circuit of AN-complexity m that
computes a generic f (derived as above from a generic g). (We shall assume,
w.l.o.g., that the top gate of this circuit is not fed directly by any variable, which
can be enforced by replacing such variables with singleton linear functions.)15

By the multilinear condition, the top gate of this circuit computes a function of
the form

B(F1(x), ..., Fm′(x), G1(y), ..., Gm′′(y)) +
∑

i∈[m′′′]

Bi(x, y), (5)

where B is a bilinear function (over GF(2)m′ × GF(2)m′′
), the Fi’s and Gi’s

are linear functions, the Bi’s are bilinear functions, and each of these functions
depends on at most m variables. Furthermore, m′ + m′′ + m′′′ < m. (That is,
Eq. (5) corresponds to a generic description of a depth-two multilinear circuit of
AN-complexity m that computes a bilinear function. The top gate computes the
sum of a bilinear function of m′ +m′′ intermediate linear gates and a sum of m′′′

intermediate bilinear gates, whereas all intermediate gates are fed by variables
only.)

We now consider a random restriction of y that selects at random ij ∈ {(j −
1)s + 1, ..., js} for each j ∈ [s], and sets all other bit locations to zero. Thus, for
a selection as above, we get y′ such that y′

i = yi if i ∈ {i1, ..., is} and y′
i = 0

otherwise. In this case, f(x, y′) equals g(x, yi1 , ..., yis). We now look at the effect
of this random restriction on the expression given in Eq. (5).

The key observation is that the expected number of “live” y′ variables (i.e.,
y′

i = yi) in each Bi is at most m/s; that is, in expectation, Bi(x, y′) depends
on m/s variables of the y-block. It follows that each Bi(x, y′) can be specified
by ((m + (m/s)) log2 n) + m · (m/s) bits (in expectation), because Bi(x, y′) is a
bilinear form in the surviving y-variables and in at most m variables of x, whereas
such a function can be specified by identifying these variables and describing the
bilinear form applied to them. Hence, in expectation, the residual

∑
i Bi(x, y′)

is specified by less than (2m2 log2 n) + (m3/s) bits, and we may pick a setting
(of i1, ..., is) that yields such a description length. This means that, no matter
from which function g (and f) we start, the number of possible (functionally
different) circuits that result from Eq. (5) is at most

2m2 ·
⎛

⎝
∑

k∈[m]

(
n

k

)
⎞

⎠

m

· 2m3/s+2m2 log2 n (6)

where the first factor reflects the number of possible bilinear functions
B, the second factor reflects the possible choices of the linear functions
F1, ..., Fm′ , G1, ..., Gm′′ , and the third factor reflects the number of possible bilin-
ear functions that can be computed by

∑
i Bi(x, y′). Note that, for m ≥ nΩ(1),

15 Actually, this may increase m by one unit. The reason is that if the top gate if fed
by i variables, then the number of intermediate gates in the circuit is at most m− i.
So introducing intermediate singleton gates yields a depth-two circuit with at most
(m − i) + i intermediate gates.

On Depth-Three Boolean Circuits Computing Multilinear Functions 59

the quantity in Eq. (6) is upper-bounded by 2m2+ ˜O(m2)+(m3/s+ ˜O(m2)), and for
m > Õ(n1/2) the dominant term in the exponent is m3/s. In particular, for
m = 0.9n2/3, the quantity in Eq. (6) is smaller than 21.1m3/s < 20.9sn, which
is much smaller than the number of possible functions g (i.e., 2sn). Hence, for
m = 0.9n2/3, not every function f can be computed as in Eq. (5), and the theo-
rem follows. �

Digest. The proof of the lower bound of Theorem2.3 may be decoupled into
two parts pivoted at an artificial complexity class, denoted G, that contains
all functions g that have multilinear circuits of a relatively small description
(i.e., description length at most 0.9n1.5). Using the random restriction, we show
that if f has depth-two AN-complexity at most 0.9n2/3, then the underlying
g is (always) in G. A counting argument then shows that most g’s are not in
G. Combining these two facts, we conclude that most functions f (constructed
based on a function g as in the proof) have depth-two AN-complexity greater
than 0.9n2/3. (A more appealing abstraction, which requires a slightly more
refined proof, is obtained by letting G contains all functions g that have depth-
two multilinear circuits of AN-complexity at most 0.9n2/3 such that each gate
is fed by at most n1/6 variables from the short block.)16

Remark 2.4 (on the depth of multilinear circuits achieving AN): In light of the
above, it is natural to consider the depth of general multilinear circuits (as in
Definition 2.1), and study the trade-offs between depth and other parameters (as
in Definition 2.2). While this is not our primary focus here, we make just one
observation: If AN(F) = s for any t-linear function F , then there is a depth t+1
circuit with arity and size O(s) computing F as well; that is, for any t-linear F , it
holds that ANt+1(F) = O(AN(F)). This observation is proved in Proposition 4.5.

Remark 2.5 (waiving the multilinear restriction): We note that arbitrary
arithmetic circuits (with general gates) that compute t-linear functions can be
simulated by multilinear circuits of the same depth, while increasing their AN-
complexity measure by a factor of at most 2t. This can be done by replacing each
(intermediate) gate in the original circuit with 2t − 1 gates in the multilinear
circuit such that the gate associated with I ⊆ [t] computes the monomials that
are I-linear (but not I ′-linear, for any I ′ ⊂ I). The monomials that are not
multilinear are not computed, and this is OK because their influence must cancel

16 The point is that this alternative class G does not refer to the “description length”
but rather to the complexity measures defined in this section. In this case, we may
show that a random restriction of the type used in the original proof leaves m/s live
variables in each Gi, in expectation, just as it holds for the Bi’s. Using m = 0.9n2/3,
it holds that, with high probability, none of the gates exceeds this expectation by
a factor of 1/0.9. Next, we upper-bound the size of G, very much as done in the
foregoing proof, where here the crucial fact is that each Bi has only m · n1/6 live
terms, whereas m2 · n1/6 = 0.81 · n3/2.

60 O. Goldreich and A. Wigderson

out at the top gate.17 Indeed, the top gate performs the 2t − 1 computations that
corresponds to the different I-linear sums, and sums-up the 2t − 1 results.

2.2 Relation to Canonical Circuits

As outlined in Sect. 1.5, the direct and nested AN-complexity of multilinear
functions (i.e., AN2 and AN) are closely related to the size of D-canonical and ND-
canonical circuits computing the functions. Below, we spell out constructions of
canonical circuits, which are depth-three Boolean functions, having size that is
exponential in the relevant parameter (i.e., D-canonical circuits of size exp(AN2)
and ND-canonical circuits of size exp(AN)).

Construction 2.6 (D-canonical circuits of size exp(AN2)): Let F : (GF(2)n)t →
GF(2) be a t-linear function, and consider a depth-two multilinear circuit that
computes F such that the top gate applies an m-ary polynomial H to the results
of the m gates that compute F1, ..., Fm, where each Fi is a multilinear function of
at most m variables. (Indeed, we assume, without loss of generality, that the top
gate is fed by the second-level gates only, which in turn are fed by variables.)18

Then, the following depth-three Boolean circuit computes F .

1. Let CH be a CNF (resp., DNF) that computes H.
2. For each i ∈ [m], let Ci be a DNF (resp., CNF) that computes Fi, and let C ′

i

be a DNF (resp., CNF) that computes 1 + Fi.
3. Compose CH with the various Ci’s and C ′

i’s such that a positive occurrence of
the ith variable of CH is replaced by Ci and a negative occurrence is replaced
by C ′

i.
Collapsing the two adjacent levels of or-gates (resp., and-gates), yields a
depth-three Boolean circuit C.

The derived circuit C is said to be D-canonical, and a circuit is said to be D-
canonical only if it can be derived as above.

Clearly, C computes F and has size exponential in m. In particular, we have

Proposition 2.7 (depth-three Boolean circuits of size exp(AN2)): Every mul-
tilinear function F has depth-three Boolean circuits of size exp(AN2(F)).

It turns out that the upper bound provided in Proposition 2.7 is not tight; that
is, D-canonical circuits do not provide the smallest depth-three Boolean circuits
for all multilinear functions. In particular, there exists multilinear functions that
have depth-three Boolean circuits of size exp(AN2(F)3/4). This follows by com-
bining Theorem2.3 and Proposition 2.9, where Theorem 2.3 asserts that for some
bilinear functions F it holds that AN(F) = O(

√
n) = O(n2/3)3/4 = O(AN2(F))3/4,

17 Here, we assume (as is standard in the area) that the cancellations must hold over any
extension field of GF(2) (rather than only over GF(2) itself); that is, the polynomial
xi may be cancelled by the polynomial (2k + 1) · xj if and only if i = j.

18 Variables that feed directly into the top gate can be replaced by 1-ary identity gates.

On Depth-Three Boolean Circuits Computing Multilinear Functions 61

and Proposition 2.9 asserts that every multilinear function F has depth-three
Boolean circuits of size exp(AN(F)). The latter is proved by using ND-canonical
circuits, which leads us to their general construction.

Construction 2.8 (ND-canonical circuits of size exp(AN)): Let F : (GF(2)n)t

→ GF(2) be a t-linear function, and consider a multilinear circuit that computes
F such that the each of the m gates applies an m-ary polynomial Hi to the
results of prior gates and some variables, where H1 corresponds to the polynomial
applied by the top gate. Consider the following depth-three Boolean circuit that
computes F .

1. For each i ∈ [m] and σ ∈ GF(2), let Cσ
i be a CNF that computes Hi + 1 + σ.

That is, Cσ
i evaluates to 1 iff Hi evaluate to σ.

2. For each v
def= (v1, v2, ..., vm) ∈ GF(2)m, let

Cv(x(1), ..., x(t)) =
∧

i∈[m]

Cvi
i (Πi,1(x(1), ..., x(t), v), ...,Πi,m(x(1), ..., x(t), v)),

where the Πi,j’s are merely the projection functions that describe the routing
in the multilinear circuit; that is, Πi,j(x(1), ..., x(t), v)) = vk if the jth input of
gate i is fed by gate k and Πi,j(x(1), ..., x(t), v)) = x

(�)
k if the jth input of gate

i is fed by the kth variable in the 	th variable-block (i.e., the variable x
(�)
k).

Indeed, each Cv is a CNF of size Õ(2m).
3. We obtain a depth-three Boolean circuit C by letting

C(x(1), ..., x(t)) =
∨

(v2,...,vm)∈GF(2)m−1

C(1,v2,...,vm)(x(1), ..., x(t))

Hence, C has size 2m−1 · Õ(2m).

The derived circuit C is said to be ND-canonical, and a circuit is said to be
ND-canonical only if it can be derived as above.

Note that C(x(1), ..., x(t)) = 1 if and only if there exists v = (v1, v2, ..., vm) ∈
GF(2)m such that v1 = 1 and for every i ∈ [m] it holds that Hi(zi,1, ..., zi,m) = vi,
where zi,j is the 	thi,j bit in the (tn + m)-bit long sequence (x(1), ..., x(t), v) for
some predetermined 	i,j ∈ [tn + m]. For this choice of v, the vi’s represent the
values computed by the gates in the original arithmetic circuit (on an input that
evaluates to 1), and it follows that C computes F . Clearly, C has size exponential
in m. In particular, we have

Proposition 2.9 (depth-three Boolean circuits of size exp(AN)): Every multi-
linear function F has depth-three Boolean circuits of size exp(AN(F)).

A key question is whether the upper bound provided in Proposition 2.9 is tight.
The answer depends on two questions: The main question is whether smaller
depth-three Boolean circuits can be designed by deviation from the construction

62 O. Goldreich and A. Wigderson

paradigm presented in Construction 2.8. The second question is whether the
upper bound of exp(m) on the size of the depth-two Boolean circuits used to
compute m-ary polynomials (of degree at most t) is tight. In fact, it suffices to
consider t-linear polynomials, since only such gates may be used in a multilinear
circuit.

The latter question is addressed in [11, Apdx C.1], where it is shown that any
t-linear function that depends on m variables requires depth-two Boolean circuits
of size at least exp(Ω(exp(−t) ·m)). (Interestingly, this lower bound is tight; that
is, there exist t-linear functions that depends on m variables and have depth-
two Boolean circuits of size at most exp(O(exp(−t) ·m)).) Conjecturing that the
main question has a negative answer, this leads to the following conjecture.

Conjecture 2.10 (AN yields lower bounds on the size of general depth-three
Boolean circuits): No t-linear function F : (GF(2)n)t → GF(2) can be com-
puted by a depth-three Boolean circuit of size smaller than exp(Ω(exp(−t) ·
AN(F)))/poly(n).

When combined with adequate lower bounds on AN (e.g., Theorem 4.1), Conjec-
ture 2.10 yields size lower bounds of the form exp(Ω(exp(−t) · nt/(t+1))), which
yields exp(n1−o(1)) for t =

√
log n. Furthermore, in some special cases (see [11,

Apdx C.3]), multilinear functions that depends on m variables requires depth-
two Boolean circuits of size at least exp(Ω(m)). This suggests making a bolder
conjecture, which allows using larger values of t.

Conjecture 2.11 (Conjecture 2.10, stronger form for special cases): None of
the multilinear functions F ∈ {F t,n

tet , F
t,n
mod p : p ≥ 2} (see Eqs. (3) and (4),

resp.) can be computed by a depth-three Boolean circuit of size smaller than
exp(Ω(AN(F)))/poly(n). The same holds for almost all t-linear functions.

When combined with adequate lower bounds on AN (e.g., Theorem 4.1), Con-
jecture 2.11 yields size lower bounds of the form exp(Ω((tn)t/(t+1))), which for
t = log n yields exp(Ω(tn)).

The authors are in disagreement regarding the validity of Conjecture 2.10 (let
alone Conjecture 2.11), but agree that also refutations will be of interest.

3 Upper Bounds

In Sect. 3.1 we present a generic upper bound on the direct AN-complexity of
any t-linear function; that is, we show that AN2(F) = O((tn)t/(t+1)), for every t-
linear function F . This bound, which is obtained by a generic construction, is the
best possible for almost all multilinear functions (see Theorem 4.1). Obviously,
one can do better in some cases, even when this may not be obvious at first
glance. In Sect. 3.2, we focus on two such cases (i.e., F t,n

leq and F 2,n
mod p).

On Depth-Three Boolean Circuits Computing Multilinear Functions 63

3.1 A Generic Upper Bound

The following upper bound on the AN-complexity of multilinear circuits that
compute a generic t-linear function is derived by using a depth-two circuit with
a top gate that computes addition (i.e., a linear function). This implies that
the intermediate gates in this circuit, which are fed by variables only, must all
be t-linear gates. While the overall structure of the circuit is oblivious of the
t-linear function that it computes, the latter function determines the choice of
the t-linear gates.

Theorem 3.1 (an upper bound on AN2(·) for any multilinear function): Every
t-linear function F : (GF(2)n)t → GF(2) has D-canonical circuits of size
exp(O(tn)t/(t+1)); that is, AN2(F) = O((tn)t/(t+1)).

Proof: We partition [n]t into m equal-sized subcubes such that the number
of subcubes (i.e., m) equals the number of variables that correspond to each
subcube (i.e., t · t

√
nt/m); that is, the side-length of each subcubes is 	

def= n/m1/t

and m is selected such that m = t · 	. We then write the tensor that corresponds
to F as a sum of tensors that are each restricted to one of the aforementioned
subcubes. Details follow.

We may assume that t = O(log n), since the claim holds trivially for
t = Ω(log n). Partition [n]t into m cubes, each having a side of length 	 =
(nt/m)1/t = n/m1/t; that is, for k1, ..., kt ∈ [n/], let Ck1,...,kt

= Ik1 × · · · × Ikt
,

where Ik = {(k − 1)	 + j : j ∈ []}. Clearly, [n]t is covered by this collection of
((n/)t = m) cubes, and the sum of the lengths of each cube is t	. Let T be the
tensor corresponding to F . Then,

F (x(1), ..., x(t)) =
∑

k1,...,kt∈[n/�]

Fk1,...,kt
(x(1), ..., x(t))

where Fk1,...,kt
(x(1), ..., x(t)) =

∑

(i1,...,it)∈T∩Ck1,...,kt

x
(1)
i1

· · · x(t)
it

.

Each Fk1,...,kt
is computed by a single [t]-linear gate of arity t·	, and it follows that

AN2(F) ≤ max(t	,m+1), since (n/)t = m. Using m = t	, we get AN2(F) ≤ m+1
and m = t ·n/m1/t (equiv., m1+ 1

t = t ·n), which yields AN2(F) = O((tn)t/(t+1)),
since m = (tn)

1
1+(1/t) . �

3.2 Improved Upper Bounds for Specific Functions (e.g., F t,n
leq)

Clearly, the generic upper bound can be improved upon in many special cases.
Such cases include various t-linear functions that are easily reducible to linear
functions. Examples include (1) F t,n

all(x(1), ..., x(t)) =
∑

i1,...,it∈[n] x
(1)
i1

· · · x(t)
it

=
∏

j∈[t]

∑
i∈[n] x

(j)
i and (2) F t,n

diag(x(1), ..., x(t)) =
∑

i∈[n] x
(1)
i · · · x(t)

i . Specifically,
we can easily get AN2(F

t,n
all) ≤ t

√
n + 1 and AN2(F

t,n
diag) ≤ t

√
n. In both cases,

the key observation is that each n-way sum can be written as a sum of
√

n

64 O. Goldreich and A. Wigderson

functions such that each function depends on
√

n of the original arguments.
Furthermore, in both cases, we could derive (depth-three) multilinear formulae
of AN-complexity t

√
n+1 that use only (

√
n-way) addition and (t-way) multipli-

cation gates.19 While such simple multilinear formulae do not exist for F 2,n
leq (see

Sect. 5.2), the full power of (depth-two) multilinear circuits with general gates
yields AN2(F

2,n
leq) = O(

√
n); that is, as in the proof of Theorem3.1, the following

construction also uses general multilinear gates.

Proposition 3.2 (an upper bound on AN2(F
2,n
leq)): The bilinear function F 2,n

leq

(of Eq. (2)) has D-canonical circuits of size exp(O(
√

n)); that is, AN2(F
2,n
leq) =

O(
√

n).

Recall that the corresponding tensor is T 2,n
leq = {(i1, i2) ∈ [n]2 : i1 ≤ i2}.

Proof: Letting s
def=

√
n, we are going to express F 2,n

leq as a polynomial in 3s
functions, where each of these functions depends on at most 2s variables. The
basic idea is to partition [n]2 into s2 squares of the form Si,j = [(i−1)s+1, is]×
[(j − 1)s + 1, js], and note that

⋃
i<j Si,j ⊂ T 2,n

leq ⊂ ⋃
i≤j Si,j . Thus, F 2,n

leq can be
computed by computing separately the contribution of the diagonal squares and
the contribution of the squares that are off the diagonal. The contribution of the
square Si,i can be computed as a function of the 2s variables that correspond
to it, while the contribution of each off-diagonal square can be computed as
the product of the corresponding sum of x(1)-variables and the corresponding
sum of x(2)-variables. Thus, the contribution of each diagonal square will be
computed by a designated bilinear gate, whereas the contribution of the off-
diagonal squares will be computed by the top gate (which is fed by 2s linear
gates, each computing the sum of s variables, and computes a suitable bilinear
function of these 2s sums). Details follow.

– For every i ∈ [s], let Qi(x(1), x(2)) =
∑

(j1,j2)∈T 2,s
leq

x
(1)
(i−1)s+j1

·x(2)
(i−1)s+j2

, where

T 2,s
leq = {(j1, j2) ∈ [s]2 : j1 ≤ j2}. This means that Qi(x(1), x(2)) only depends

on 2s variables (i.e., x
(1)
(i−1)s+1, ..., x

(1)
is and x

(2)
(i−1)s+1, ..., x

(2)
is).

Indeed, Qi(x(1), x(2)) computes the contribution of the ith diagonal square
(i.e., Si,i). In contrast, the following linear functions will be used to compute
the contribution of the off-diagonal squares.

– For every i ∈ [s], let Li(x(1)) =
∑

j∈[s] x
(1)
(i−1)s+j , which means that Li(x(1))

only depends on x
(1)
(i−1)s+1, ..., x

(1)
is .

– Likewise, for every i ∈ [s], let L′
i(x

(2)) =
∑

j∈[s] x
(2)
(i−1)s+j .

Observing that

F 2,n
leq (x(1), x(2)) =

∑

i∈[s]

Qi(x(1), x(2)) +
∑

1≤i<j≤s

Li(x(1)) · L′
j(x

(2)), (7)

19 Depth-two circuits can be derived by combining the t-way multiplication gate with
the

√
n-way addition gates feeding it (resp., each

√
n-way addition gate with the

t-way multiplication gate feeding it).

On Depth-Three Boolean Circuits Computing Multilinear Functions 65

the claim follows. Specifically, we use 3s intermediate gates that compute the
Qi’s, Li’s and L′

j ’s (and let the top gate compute their combination (per
Eq. (7))). �

The Case of F 2,n
mod p. We turn to another bilinear function, the function F 2,n

mod p,
where F t,n

mod p is defined in Eq. (4).

Proposition 3.3 (an upper bound on AN2(F
2,n
mod p)): For every p and n, the

bilinear function F 2,n
mod p has D-canonical circuits of size exp(O(

√
n)); that is,

AN2(F
2,n
mod p) = O(

√
n).

Recall that F 2,n
mod p(x

(1), x(2)) =
∑

i1,i2∈[n]:i1≡−i2 (mod p) x
(1)
i1

· x
(2)
i2

.

Proof: Let s =
√

n, and let’s consider first the case p ≤ s. For every r ∈Zp, con-
sider the functionsLr(x(1)) =

∑
i≡r (mod p) x

(1)
i andL′

r(x
(2)) =

∑
i≡r (mod p) x

(2)
i .

Then,
F 2,n
mod p(x

(1), x(2)) =
∑

r∈Zp

Lr(x(1)) · L′
p−r(x

(2)).

Each of the foregoing p ≤ s linear functions depend on �n/p� variables, which
is fine if p = Ω(s). Otherwise (i.e., for p = o(s)), we replace each linear function
by �n/ps� auxiliary functions (in order to perform each �n/p�-way summation),
which means that in total we have 2p · �n/ps� = O(s) functions such that each
function depends on �n/p�

�n/ps� < 2s variables. Then, the top gate just computes the
suitable (bilinear) combination of these O(s) linear functions.

In the case of p > s, we face the opposite problem; that is, we have too
many linear functions, but each depends on n/p < s variables. So we group
these functions together; that is, for a partition of Zp to s equal parts, denoted
P1, ..., Ps, we introduce s functions of the form

Qi(x(1), x(2)) =
∑

r∈Pi

⎛

⎝
∑

j≡r (mod p)

x
(1)
j

⎞

⎠ ·
⎛

⎝
∑

j≡p−r (mod p)

x
(2)
j

⎞

⎠

for every i ∈ [s]. Clearly, F 2,n
mod p(x

(1), x(2)) =
∑

i∈[s] Qi(x(1), x(2)), and each Qi

depends on 2 · |Pi| · �n/p� = O(s) variables, since |Pi| ≤ �p/s�. �

The Case of F t,n
leq for t > 2. Finally, we turn to t-linear functions with t > 2.

Specifically, we consider the t-linear function F t,n
leq (of Eq. (2)), focusing on t ≥ 3.

Proposition 3.4 (an upper bound on AN2(F
t,n
leq)): For every t, it holds that

AN2(F
t,n
leq) = O(exp(t) · √

n).

66 O. Goldreich and A. Wigderson

Proof: The proof generalizes the proof of Proposition 3.2, and proceeds by
induction on t. We (again) let s

def=
√

n and partition [n]t into st cubes of the
form Ck1,...,kt

= Ik1 × · · · × Ikt
, where Ik = {(k − 1)s + j : j ∈ [s]}. Actually, we

prove an inductive claim that refers to the simultaneously expressibility of the
functions F

t,[(k−1)s+1,n]
leq for all k ∈ [s], where

F
t,[i,n]
leq (x(1), ..., x(t)) def=

∑

(i1,...,it)∈T t,n
leq : i1≥i

x
(1)
i1

· · · x(t)
it

. (8)

Indeed, F t,n
leq = F

t,[1,n]
leq . The inductive claim, indexed by t ∈ N, asserts that

the functions F
t,[(k−1)s+1,n]
leq , for all k ∈ [s], can be expressed as polynomials

in t2t · s multilinear functions such that each of these functions depends on
t · s variables. The base case (of t = 1) follows easily by using the s functions
Li(x(1)) =

∑
j∈[s] x

(1)
(i−1)s+j .

In the induction step, for every j ∈ [t], define Tj
def= {(k1, ..., kt) ∈ T t,s

leq :

k1 = kj < kj+1}, where kt+1
def= s + 1; that is, (k1, ..., kt) ∈ Tj if and only if

k1 = · · · = kj < kj+1 ≤ · · · ≤ kt ≤ s (for j < t, whereas Tt = {(k, k, ..., k) ∈
[s]t : k ∈ [s]}). Note that, for every k ∈ [s], the elements of T

t,[(k−1)s+1,n]
leq

are partitioned according to these Tj ’s; that is, each (i1, ..., it) ∈ T
t,[(k−1)s+1,n]
leq

uniquely determines j ∈ [t] and k1 ∈ [k, n] such that (i1, ..., ij) ∈ Ik1 × · · · × Ik1

and (ij+1, ..., it) ∈ T
t−j,[k1s+1,n]
leq . Thus, for every k ∈ [s], it holds that

F
t,[(k−1)s+1,n]
leq (x(1), ..., x(t))

=
∑

j∈[t−1]

∑

k1≥k

P
(j)
k1

(x(1), ..., x(j)) · F
t−j,[k1s+1,n]
leq (x(j+1), ..., x(t))

where P
(j)
k1

(x(1), ..., x(j)) def=
∑

(i1,...,ij)∈(T j,n
leq ∩(Ik1)

j)

x
(1)
i1

· · · x(j)
ij

.

It follows that all F
t,[(k−1)s+1,n]
leq ’s are simultaneously expressed in terms of

(t − 1) · s new functions (i.e., the P
(j)
k1

’s), each depending on at most t · s

inputs, and (t − 1) · s functions (i.e., the F
t−j,[k1s+1,n]
leq ’s) that by the induc-

tion hypothesis can be expressed using
∑

j∈[t−1](t − j)2t−j · s multilinear func-
tions (although with different variable names for different j’s).20 So, in total, we
expressed all F

t,[(k−1)s+1,n]
leq ’s using less than ts+

∑
j∈[t−1](t−j)2t−j ·s functions,

each depending on at most ts variables. Noting that ts +
∑

j∈[t−1](t − j)2t−j · s

20 By the induction hypothesis, for every t′ ∈ [t − 1], we can express the functions

F
t−t′,[(k−1)s+1,n]
leq (x(1), ..., x(t−t′)) for all k ∈ [s], but here we need the functions

F
t−t′,[(k−1)s+1,n]
leq (x(t′+1), ..., x(t)). Still, these are the same functions, we just need

to change the variable names in the expressions.

On Depth-Three Boolean Circuits Computing Multilinear Functions 67

is upper-bounded by t2ts, the induction claim follows. This establishes that
AN(F t,n

leq) ≤ t2t · √
n.

In order to prove AN2(F
t,n
leq) ≤ t2t · √n, we take a closer look at the foregoing

expressions. Specifically, note that all F
t,[(k−1)s+1,n]
leq are expressed in terms of

t2ts functions such that each function is either a polynomial in the input variables
or another function of the form F

t−j,[k1s+1,n]
leq . In terms of multilinear circuits,

this means that each gate is fed either only by variables or only by other gates
(rather than being fed by a mix of both types). It follows that the top gate is a
function of all gates that are fed directly by variables only, and so we can obtain
a depth-two multilinear circuit with the same (or even slightly smaller) number
of gates and the same (up to a factor of 2) gate arity. �

Remark 3.5 (circuits having no mixed gates yield depth-two circuits): The last
part of the proof of Proposition 3.4 relied on the fact that if no intermediate gate
of the circuit is fed by both variables and other gates, then letting all intermedi-
ate gates feed directly to the top gate yields a depth-two circuit of AN-complexity
that is at most twice the AN-complexity of the original circuit, since this trans-
formation may only increase the arity of the top gate by the number of gates. In
contrast, as can be seen in the proof of Theorem2.3, the benefit of feeding a gate
by both intermediate gates and variables is that it may multiply these two types
of inputs. Such a mixed gate, which may apply an arbitrary multilinear function
to its inputs, can be split into two non-mixed gates only if it sums a function of
the variables and a function of the other gates. It is also not feasible to feed the
top gate with all variables that are fed to mixed gates, because this may square
the AN-complexity.

4 Lower Bounds

We believe that the generic upper bound established by Theorem3.1 (i.e., every
t-linear function F satisfies AN(F) ≤ AN2(F) = O((tn)t/(t+1)) is tight for some
explicit functions. However, we were only able to show that almost all multi-
linear functions have a lower bound that meets this upper bound. This result
is presented in Sect. 4.1, whereas in Sect. 4.2 we present an approach towards
proving such lower bounds for explicit functions.

Before proceeding to these sections, we comment that it is easy to see that
the n-way Parity function Pn has AN-complexity at least

√
n; this follows from

the fact that the product of the number of gates and their arity must exceed n.
Of course, AN(Pn) = Ω(

√
n) follows by combining Proposition 2.9 with either [12]

or [14], but the foregoing proof is much simpler (to say the least) and yields a
better constant in the Ω-notation.

4.1 On the AN-Complexity of Almost All Multilinear Functions

Theorem 4.1 (a lower bound on the AN-complexity of almost all t-linear func-
tions): For all t = t(n) ≥ 2, almost all t-linear functions F : (GF(2)n)t → GF(2)

68 O. Goldreich and A. Wigderson

satisfy AN(F) = Ω(tnt/(t+1)). Furthermore, such a t-linear function can be found
in exp(nt) time.

Combined with Theorem 3.1, it follows that almost all t-linear functions satisfy
AN(F) = Θ(tnt/(t+1)). Here (and elsewhere), we use the fact that tt/(t+1) = Θ(t).

Proof: For m > t
√

n to be determined at the end of this proof, we upper bound
the fraction of t-linear functions F that satisfy AN(F) ≤ m. Each such function
F is computed by a multilinear circuit with at most m gates, each of arity at
most m. Let us denote by Hi the function computed by the ith gate.

Recall that each of these polynomials (i.e., Hi’s) is supposed to compute a [t]-
linear function. We shall only use the fact that each Hi is t-linear in the original
variables and in the other gates of the circuit; that is, we can label each gate
with an integer i ∈ [t] (e.g., i may be an block of variables on which this gate
depends) and require that functions having the same label may not be multiplied
nor can they be multiplied by variables of the corresponding block.

Thus, each gate specifies (1) a choice of at most m original variables, (2) a
t-partition of the m auxiliary functions, and (3) a t-linear function of the m
variables and the m auxiliary function. (Indeed, this is an over-specification in
many ways.)21 Thus, the number of such choices is upper-bounded by

(
tn

m

)

· tm · 2((2m/t)+1)t (9)

where ((2m/t) + 1)t is an upper bound on the number of monomials that
may appear in a t-linear function of 2m variables, which are partitioned into
t blocks.22 Note that Eq. (9) is upper-bounded by exp((m/t)t + m log(tn)) =
exp((m/t)t), where the equality is due to m > t

√
n > t log n and t ≥ 2 (as we

consider here).
It follows that the number of functions that can be expressed in this way

is exp((m/t)t)m, which equals exp(mt+1/tt). This is a negligible fraction of the
number (i.e., 2nt

) of t-linear functions over (GF(2)n)t, provided that mt+1/tt �
nt, which does hold for m ≤ c · (tn)t/(t+1), for some c > 0. The main claim
follows.

The furthermore claim follows by observing that, as is typically the case
in counting arguments, both the class of admissible functions and the class of
computable functions (or computing devices) are enumerable in time that is
polynomial in the size of the class. Moreover, the counting argument asserts
that the class of t-linear functions is the larger one (and it is also larger than
2tn, which represents the number of possible inputs to each such function). �
21 For starters, we allowed each gate to be feed by m original variables and m auxiliary

functions, whereas the arity bound is m. Furthermore, we allowed each gate to be fed
by all other gates, whereas the circuit should be acyclic. Moreover, the choice of the t-
partition can be the same for all gates, let alone that the various t-partitions must be
consistent among gates and adheres to the multilinearity condition of Definition 2.1.

22 Denoting by mj the number of variables and/or gates that belong to the jth block, the
number of possible monomials is

∏
j∈[t](mj +1), where in our case

∑
j∈[t] mj ≤ 2m.

On Depth-Three Boolean Circuits Computing Multilinear Functions 69

Open Problems. The obvious problem that arises is proving similar lower bounds
for some explicit multilinear functions. In the original version of this work [11],
we suggested the following “modest start”:

Problem 4.2 (the first goal regarding lower bounds regarding AN): Prove that
AN(F) = Ω((tn)c) for some c > 1/2 and some explicit multilinear function
F : (GF(2)n)t → GF(2).

This challenge was met by Goldreich and Tal [9], who showed that AN(F 3,n
tet) =

Ω(n0.6) and that AN(F) = Ω̃(n2/3) holds for some explicit 4-linear F . Referring
to Problem 4.2, their work leaves open the case of t = 2 (for any c > 1/2) as
well as obtaining c > 2/3 (for any t > 2). The more ambitious goal set in [11]
remains far from reach, since the techniques of [9] (which are based on the
“rigidity connection” made in Sect. 4.2) cannot yield c > 2/3.

Problem 4.3 (the ultimate goal regarding lower bounds regarding AN): For
every t ≥ 2, prove that AN(F) = Ω((tn)t/(t+1)) for some explicit t-linear function
F : (GF(2)n)t → GF(2). Ditto when t may vary with n, but t ≤ poly(n).

Actually, a lower bound of the form AN(F) = Ω((tn)εt/(εt+1)), for some fixed
constant ε > 0, will also allow to derive exponential lower bounds when setting
t = O(log n).

4.2 The AN-Complexity of Bilinear Functions and Matrix Rigidity

In this section we show that lower bounds on the rigidity of matrices yield
lower bounds on the AN-complexity of bilinear functions associated with these
matrices. We then show that even lower bounds for non-explicit matrices (e.g.,
generic Toeplitz matrices) would yield lower bounds for explicit trilinear func-
tions, specifically, for our candidate function F 3,n

tet (of Eq. (3)).
Let us first recall the definition of matrix rigidity (as defined by Valiant [31]

and surveyed in [19]). We say that a matrix A has rigidity s for target rank r
if every matrix of rank at most r disagrees with A on more than s entries.
Although matrix rigidity problems are notoriously hard, it seems that they were
not extensively studied in the range of parameters that we need (i.e., rigidity
ω(n3/2) for rank ω(n1/2)).23 Anyhow, here is its basic connection to our model.

Theorem 4.4 (reducing AN-complexity lower bounds to matrix rigidity): If T
is an n-by-n matrix that has rigidity m3 for rank m, then the corresponding
bilinear function F satisfies AN(F) > m.

23 Added in Revision: Interestingly, a subsequent work of Dvir and Liu [3,4] shows
that no Toeplitz matrix is rigid in the range of parameters sought by Valiant [31].
Specifically, they show that, for any constant c > 1, no Toeplitz matrix has rigidity
nc with respect to rank n/ log n (see [4], which builds upon [3]). In contrast, the
subsequent work of Goldreich and Tal [9] shows that almost all Toeplitz matrix have

rigidity Ω̃(n3/r2) with respect to rank r ∈ [
√

n, n/32].

70 O. Goldreich and A. Wigderson

In particular, if there exists an n-by-n Toeplitz matrix that has rigidity m3 for
rank m, then the corresponding bilinear function F satisfies AN(F) > m.

Proof: As a warm-up, we first prove that AN2(F) > m; that is, we prove a lower
bound referring to depth-two multilinear circuits rather than to general multilin-
ear circuits. Suppose towards the contradiction that AN2(F) ≤ m, and consider
the multilinear circuit that guarantees this bound. Without loss of generality,24

it holds that F (x, y) = H(F1(x, y), ..., Fm−1(x, y)), where H is computed by
the top gate and Fi is computed by its ith child. W.l.o.g, the first m′ func-
tions (Fi’s) are quadratic functions whereas the others are linear functions (in
either x or y). Furthermore, each Fi depends on at most m variables. Since
H(F1(x, y), ..., Fm−1(x, y)) is a syntactically bilinear polynomial (in x and y), it
follows that it has the form

∑

i∈[m′]

Qi(x, y) +
∑

(j1,j2)∈P

Lj1(x)Lj2(y), (10)

where P ⊂ [m′ +1,m′′]× [m′′ +1,m−1] (for some m′′ ∈ [m′ +1,m−2]) and each
Qi and Lj depends on at most m variables. (Indeed, the same form was used
in the proof of Theorem 2.3 (see Eq. (5)).) Furthermore, each of the Lj ’s is one
of the auxiliary functions Fi’s, which means that the second sum (in Eq. (10))
depends on at most m − 1 different (linear) functions.

The key observation is that bilinear functions correspond to matrices; that
is, the bilinear function B : GF(2)n+n → GF(2) corresponds to the n-by-
n matrix M such that the (k,)th entry of M equals 1 if and only if the
monomial xky� is included in B(x, y) (i.e., iff B(0k−110n−k, 0�−110n−�) = 1).25

Now, observe that the matrix that corresponds to the first sum in Eq. (10)
has less than m3 one-entries (since the sum of the Qi’s depends on at most
m′ ·m2 < m3 variables), whereas the matrix that corresponds to the second sum
in Eq. (10) has rank at most m − 1 (since the sum

∑
(j1,j2)∈P Lj1Lj2 , viewed as

∑
j1∈[m−1] Lj1 ·∑j2:(j1,j2)∈P Lj2 , corresponds to the sum of m − 1 rank-1 matri-

ces).26 But this contradicts the hypothesis that T has rigidity m3 for rank m,
and so AN2(F) > m follows.

Turning to the actual proof (of AN(F) > m), which refers to multilinear cir-
cuits of arbitrary depth, we note that in the bilinear case the benefit of depth
is very limited. This is so because nested composition is beneficial only when

24 As in Construction 2.6, we may replace variables that feed directly into the
top gate by 1-ary identity gates. That is, if F (x, y) = H(F1(x, y), ..., Fm′(x, y),
zm′+1..., zm−1), where each zi belongs either to x or to y, then we let F (x, y) =
H(F1(x, y), ..., Fm−1(x, y)), where Fi(x, y) = zi for every i ∈ [m′ + 1, m − 1].

25 In terms of Eq. (1), letting T denote the set of one-entries of M , it holds that
B(x, y) =

∑
(k,�)∈T xky�.

26 That is, letting L′
j(y) =

∑
j2:(j,j2)∈P Lj2(y), we consider the sum

∑
j1∈[m−1] Lj1(x) ·

L′
j1(y), and note that each term corresponds to a rank-1 matrix (i.e., the (k, �)th

entry of the jth1 matrix equals Lj1(0
k−110n−k) · L′

j1(0
�−110n−�)).

On Depth-Three Boolean Circuits Computing Multilinear Functions 71

it involves occurrence of the original variables (since terms in Fi that are prod-
uct of auxiliary functions only can be moved from the expression for Fi to the
expressions that use Fi; cf., Remark 3.5). In particular, without loss of generality,
linear Fi’s may be expressed in terms of the original variables only (since a lin-
ear Fj that feeds a linear Fi can be moved to feed the gates fed by Fi), whereas
quadratic Fi’s are expressed in terms of the original variables and possibly lin-
ear Fj ’s (since products of linear Fj ’s can be moved to the top gate). Thus, the
expression for F (x, y) is as in Eq. (10), except that here for every (j1, j2) ∈ P
either Lj1 or Lj2 is one of the auxiliary functions Fi’s (whereas the other linear
function may be arbitrary).27 This suffices for completing the argument. Details
follow.

Suppose towards the contradiction that AN(F) ≤ m, and consider a multilin-
ear circuit that supports this bound. Each of the m′ ≤ m gates in this circuit
computes a bilinear (or linear) function of its feeding-inputs, which are a possible
mix of (up to m) original variables and (up to m−1) outputs of other gates. This
bilinear (or linear) function of the feeding-inputs can be expressed as a sum of
monomials of the following three types, where Fi denotes the auxiliary function
computed by the ith internal gate (and F0 = F is the function computed by the
top gate).

1. Mixed monomials that consist of the product of a linear auxiliary function (i.e., an
Fj) and an original variable. Such monomials cannot exist in the computation
of linear functions.

2. Monomials that consist only of auxiliary functions Fj ’s: Such a monomial may
be either a single bilinear (or linear) function or a product of two linear
functions.28

Without loss of generality, such monomials exist only in the computation of
the top gate (and not in the computation for any other gate), because the
computation of such monomials can be moved from the current gate to all
gates fed by this gate (without effecting the number of variables that feed
directly to these gates). Note that the arity of gates in the resulting circuit is
at most m + m, where one term is due to the number of variables that feed
directly into the gate and the other term is due to the total number of gates
in the circuit.
For example, if the monomial Fk(x)F�(y) appears in the expression computed
by the jth internal gate (which computes Fj(x, y)) that feeds the ith gate
(which computes Fi(x, y)), where possibly i = 0 (i.e., the jth gate feeds the top
gate), then we can remove the monomial FkF� from Fj and add it to Fi, which
may require adding Fk and F� to the list of gates (or rather functions) that
feed Fi. Ditto if Fk(x, y) is a monomial of Fj . The process may be repeated till
no internal gate contains a monomial that consists only of auxiliary functions.

27 Actually, we can combine all products that involve Fi, see below.
28 Since, as argued next, such monomials exist only in the top gate, it follows that

(w.l.o.g.) they cannot be a single linear function, because the top gate must compute
a homogeneous polynomial of degree 2.

72 O. Goldreich and A. Wigderson

3. Monomials that contain only original variables. Each quadratic (resp., linear)
function computed by any gate has at most m2 (resp., m) such monomials.

Hence, we obtain the general form for the computations of the top gate (which
computes F) and the intermediate gates (which compute the auxiliary functions
Fi’s):

F (x, y) =
∑

(k,�)∈P0,1

Fk(x)y� +
∑

(k,�)∈P0,2

xkF�(y)

+
∑

i∈S

Fi(x, y) +
∑

(i,j)∈P3

Fi(x)Fj(y) +
∑

(i,j)∈P0,4

xiyj

Fi(x, y) =
∑

(k,�)∈Pi,1

Fk(x)y� +
∑

(k,�)∈Pi,2

xkF�(y) +
∑

(k,j)∈Pi,4

xkyj

Fi(z) =
∑

k∈Si

zk

where the P ’s are subsets of [m]2 (resp., the S’s are subsets of [m]), and the
Fi’s (of arity at most 2m) replace the original Fi’s (per the “w.l.o.g.”-clause of
Item 2). Indeed, as asserted in Item 2, only the top gate contains monomials
that are either auxiliary bilinear functions (corresponding to S) or products of
auxiliary linear functions (corresponding to P3).

Summing together all mixed monomials, regardless of the gate to which they
belong, we obtain at most m − 1 quadratic forms, where each quadratic form is
the product of one of the auxiliary (linear) functions Fi and a linear combination
(of an arbitrary number) of the original variables. Let us denote this sum by σ1;
that is,

σ1 =
∑

i∈{0,1,...,m−1}

⎛

⎝
∑

(k,�)∈Pi,1

Fk(x)y� +
∑

(k,�)∈Pi,2

xkF�(y)

⎞

⎠

=
∑

k

Fk(x) ·
∑

i

∑

�:(k,�)∈Pi,1

y� +
∑

�

F�(y) ·
∑

i

∑

k:(k,�)∈Pi,2

xk

Adding to this sum (i.e., σ1) the sum, denoted σ2, of all monomials (com-
puted by the top gate) that are a product of two linear Fi’s (i.e., σ2 =∑

(i,j)∈P3
Fi(x)Fj(y)), we still have at most m − 1 quadratic forms that are

each a product of one of the auxiliary (linear) functions Fi and a linear combi-
nation of the original variables. (This uses the fact that Fi ·Fj may be viewed as
a product of Fi and the linear combination of the original variables given by the
expression for Fj .)29 These sums leave out the monomials that are a product of
two original variables (i.e., the sum

∑
i∈{0,1,...,m−1}

∑
(k,j)∈Pi,4

xkyj). We stress

29 Note that σ1+σ2 =
∑

k Fk(x) ·Lk(y)+
∑

� L�(x) ·F�(y), where the Li’s are arbitrary
linear functions (which may depend on an arbitrary number of variables in either x
or y).

On Depth-Three Boolean Circuits Computing Multilinear Functions 73

that sum
∑

i∈S Fi(x, y) is not included here, since the monomials computed by
these Fi’s are already accounted by one of the foregoing three types (i.e., they
either appear in the sum σ1 + σ2 or were left out as products of two variables).

Let T ′ denote matrix that corresponds to the F ′ = σ1 + σ2. Note that T ′

has rank at most m − 1 (since it is the sum of at most m − 1 rank-1 matrices,
which correspond to the products of the different linear Fi’s with arbitrary linear
functions). Lastly, note that F−F ′ equals

∑
i∈{0,1,...,m−1}

∑
(k,j)∈Pi,4

xkyj , which
means that T ′ differs from T on at most m3 entries. (Actually, the disagreement
is smaller, since |Pi,4| ≤ maxm′∈[m−1]{m′ · (m − m′) ≤ (m/2)2.) This implies
that T = T ′ + (T − T ′) does not have rigidity m3 for rank m, and the claim
follows. �

A Short Detour. Before proceeding, let us state the following result that is
obtained by generalizing one of the observations used in the proof of Theorem4.4.

Proposition 4.5 (on the depth of multilinear circuits that approximately
achieve the AN-complexity): Let F be ay t-linear function. Then, there exists a
depth t + 1 circuit with arity and size at most 2 · AN(F) that computes F . That
is, for any t-linear F , it holds that ANt+1(F) ≤ 2 · AN(F).

Proof: Generalizing an observation made in the proof of Theorem4.4, note that
monomials in the expression for Fj that contain only auxiliary functions can be
moved to the expressions of all functions that depend on Fj , while at most
doubling the AN-complexity of the circuit (i.e., the arity of each gate grows by
at most the number of gates).30 Thus, without loss of generality, each auxiliary
function Fj (computed by a internal gate) can be expressed in terms of input
variables and auxiliary functions that are of smaller degree (than the degree of
Fj). Hence, using induction on i ≥ 0, it holds that gates that are at distance i
from the top gate are fed by auxiliary functions of degree at most t− i. It follows
that gates at distance t from the top gate are only fed by variables. Thus, the
depth of multilinear circuits computing a t-linear function F and having AN-
complexity 2 · AN(F) needs not exceed t + 1. �

Implications of the “Rigidity Connection” on AN(F 3,n
tet). In the original version

of this work [11], we suggested to try to obtain an improved lower bound on
the AN-complexity of the trilinear function F 3,n

tet (see Eq. (3)) via a reduction to
proving a rigidity lower bound for a random (or actually any) Toeplitz matrix.
Recall that a Toeplitz matrix is a matrix (ti,j)i,j∈[n] such that ti+1,j+1 = ti,j . The
reduction, which is presented next, actually reduces proving lower bounds on
AN(F 3,n

tet) to proving lower bounds on the AN-complexity of any bilinear function
that corresponds to a Toeplitz matrix.

30 This generalizes the claim made in Remark 3.5. Furthermore, as stated there, mixed
gates are potentially beneficial. The observation made here is that this benefit (i.e.,
a mixed monomial) comes at the “cost” of using auxiliary functions of lower degree.

74 O. Goldreich and A. Wigderson

Proposition 4.6 (from F 3,n
tet to Toeplitz matrices): If there exists an n-by-n

Toeplitz matrix such that the corresponding bilinear function F satisfies AN(F) ≥
m, then AN(F 3,n

tet) = Ω(m).

Indeed, a striking feature of this reduction is that a lower bound on an explicit
function follows from a lower bound on any function in a natural class that
contained exponentially many different functions.

Proof: For simplicity, assume that n = 2n′ + 1 is odd, and consider the
trilinear function F3 : (GF(2)n′+1)3 → GF(2) associated with the tensor
T3 = {(i1, i2, i3) ∈ [[n′]]3 :

∑
j ij ≤ n′}, where [[n′]] def= {0, 1, ..., n′} (and

n′ = 	n/2
). Indeed, T3 is a lightly padded version of one eighth of T 3,n
tet .

Observe that multilinear circuits for F 3,n
tet yield circuits of similar AN-complexity

for F3: For y
(j)
[[n′]] = (y(j)

0 , y
(j)
1 , ..., y

(j)
n′), the value of F3(y

(1)
[[n′]], y

(2)
[[n′]], y

(3)
[[n′]])

equals F 3,n
tet (0n′

y
(1)
[[n′]], 0

n′
y
(2)
[[n′]], 0

n′
y
(3)
[[n′]]), since (i1, i2, i3) ∈ T3 if and only if

(n′ + i1, n
′ + i2, n

′ + i3) ∈ T 3,n
tet . This means that we may modify each of the

expressions used for F 3,n
tet by replacing the first n′ variables in each variable-block

with the value 0 (i.e., omit the corresponding monomials).31

The main observation is that if F3(x, y, z) =
∑

(i,j,k)∈T3
xiyjzk satisfies

AN(F3) ≤ m, then the same upper bound holds for any bilinear function that
is associated with an (n′ + 1)-by-(n′ + 1) triangular Toeplitz matrix (i.e.,
(tj,k)j,k∈[[n′]] such that tj+1,k+1 = tj,k and tj,k = 0 if j < k). This is actually
easier to see for their transpose—triangular Hankel matrices (i.e., (hj,k)j,k∈[[n′]]
such that hj+1,k = hj,k+1 and hj,k = 0 if j + k > n′). The foregoing holds
because any linear combination of the 1-slices of T3 (i.e., the two-dimensional
tensors T ′

i = {(j, k) : (i, j, k) ∈ T3} for every i ∈ [[n′]]) yields a triangu-
lar Hankel matrix, and all such matrices can be obtained by such a combi-
nation; that is, for every I ⊆ [[n′]], it holds that the matrix (tj,k)j,k∈[[n′]]
such that tj,k = |{i ∈ I : (i, j, k) ∈ T3}| mod 2 satisfies tj,k+1 = tj+1,k and
tj,k = 0 if j + k > n′, and each such matrix can be obtained by a choice of
such an I (i.e., given a triangular Hankel matrix (hj,k)j,k∈[[n′]], set I such that
|{i ∈ I : (i, j, k) ∈ T3}| ≡ hj,k (mod 2) holds).32

Finally, note that multilinear circuits for any bilinear function that is associ-
ated with a triangular Toeplitz matrix yields circuits of similar AN-complexity
for general Toeplitz matrix. This holds because each Toeplitz matrix can be
written as the sum of two triangular Toeplitz matrices (i.e., an upper-triangular
one and a lower-triangular one). �

31 The opposite direction is equally simple: Just note that F 3,n
tet can be expressed as a

sum of the values in the eight directions corresponding to {±1}3.
32 Equivalently, we wish to set I such that |{i ∈ I : χ(i, j, k) = 1}| ≡ h0,j+k (mod 2)

holds, where χ(i, j, k) = 1 if (i, j, k) ∈ T3 (equiv., i + j + k ≤ n′). Letting ζi ∈ GF(2)
represent whether i ∈ I, we solve the linear system

∑
i∈[[n′]] χ(i, 0, j + k)ζi ≡ h0,j+k

(mod 2) for j + k ∈ [[n′]]. Note that the matrix corresponding to this linear system
has full rank.

On Depth-Three Boolean Circuits Computing Multilinear Functions 75

Hence, establishing an Ω(nc) lower bound on AN(F 3,n
tet) reduces to establishing

this bound for some Toeplitz matrix. This gives rise to the following open prob-
lems posed in [11] and resolved in [9].

Problem 4.7 (on the AN-complexity of Toeplitz matrices): Prove that there
exists an n-by-n Toeplitz matrix such that the corresponding bilinear function F
satisfies AN(F) ≥ nc, for some c > 1/2.

(This was proved for c = 0.6 in [9, Cor. 1.4].) As we saw, Problem 4.7 would be
resolved by

Problem 4.8 (on the rigidity of Toeplitz matrices): For some c > 1/2, prove
that there exists an n-by-n Toeplitz matrix T that has rigidity n3c for rank nc.

(This was proved for c = 0.6−o(1) in [9, Thm. 1.2], whereas the improved bound
for c = 0.6 (in [9, Cor. 1.4]) was established via “structured rigidity” as defined
next.)

4.3 On Structured Rigidity

The proof of Theorem 4.4 shows that if a bilinear function F has AN-complexity
at most m, then the corresponding matrix T can be written as a sum of a
rank m − 1 matrix T ′ and a matrix that has at most m3 one-entries. However,
even a superficial glance at the proof reveals that the matrix T −T ′ is structured:
It consists of the sum of m matrices such that the one-entries of each matrix are
confined to some m-by-m rectangle. This leads us to the following definition.

Definition 4.9 (structured rigidity): We say that a matrix T has structured
rigidity (m1,m2,m3) for rank r if for every matrix R of rank at most r and
for every I1, ..., Im1 , J1, ..., Jm1 ⊆ [n] such that |I1| = · · · = |Im1 | = m2 and
|J1| = · · · = |Jm1 | = m3 it holds that T − R �⊆ ⋃m1

k=1(Ik × Jk), where M ⊆ S
means that all non-zero entries of the matrix M reside in the set S ⊆ [n] × [n].
We say that a matrix T has structured rigidity m3 for rank r if T has structured
rigidity (m,m,m) for rank r.

Clearly, rigidity is a lower bound on structured rigidity (i.e., if T has rigidity
m3 for rank r, then T has structured rigidity m3 for rank r), but (as shown
below) this lower bound is not tight. Before proving the latter claim, we apply
the notion of structured rigidity to our study.

Theorem 4.10 (reducing AN-complexity lower bounds to structured rigidity):
If T is an n-by-n matrix that has structured rigidity m3 for rank m, then the

corresponding bilinear function F satisfies AN(F) ≥ m.

(As stated above, Theorem 4.10 follows by the very proof of Theorem4.4.) In
particular, if there exists an n-by-n Toeplitz matrix that has structured rigidity
m3 for rank m, then the corresponding bilinear function F satisfies AN(F) ≥ m.
Hence, Problem 4.7 would be resolved by

76 O. Goldreich and A. Wigderson

Problem 4.11 (on the structured rigidity of Toeplitz matrices): For some c >
1/2, prove that there exists an n-by-n Toeplitz matrix T that has structured
rigidity n3c for rank nc.

Indeed, the lower bound of Ω(n0.6) on the AN-complexity of (the bilinear func-
tions that correspond to) most n-by-n Toeplitz matrices has been proved in [9] by
establishing an analogous lower bound on the structured rigidity of these matri-
ces, improving over a lower bound of Ω̃(n0.6) established in [9] via an analogous
lower bound on the standard notion of rigidity (see [9, Thm. 1.2] versus [9,
Thm. 1.3]). This provides some weak empirical evidence for the speculation,
made in the original version of this work [11], by which Problem4.11 may be
easier than Problem 4.8. This speculation was supported in [11] by the following
separation result.

Theorem 4.12 (rigidity versus structured rigidity): For any m ∈ [n0.501, n0.666],
consider a uniformly selected n-by-n Boolean matrix M with exactly 3mn ones.
Then, with very high probability, M has structured rigidity m3 for rank m.

Note that M does not have rigidity 3nm � m3 for rank zero, let alone for rank
m. Hence, the gap between structured rigidity and standard rigidity (for rank
m) is a factor of at least m3

3nm = Ω(m2/n).

Proof: For each sequence R,S1, ..., Sm such that R has rank m and each Si ⊆
[n] × [n] is an m-by-m square (generalized) submatrix (i.e., has the form Ii × Ji

such that |Ii|, |Ji| ≤ m), we shall show that

PrM∈GF(2)n×n:|M |=3mn

⎡

⎣M − R ⊆
⋃

i∈[m]

Si

⎤

⎦ ≤ 2−3nm, (11)

where M is a uniformly selected n-by-n matrix with exactly 3mn ones (and
M − R ⊆ S means that all non-zero entries of the matrix M − R reside in the
set S ⊆ [n] × [n]). The theorem follows since the number of such sequences (i.e.,
a rank m matrix R and small submatrices S1, ..., Sm) is smaller than (22n)m ·
(

n
m

)2m � 22nm+2m2 log n, where we specify a rank-m matrix by a sequence of m
rank-1 matrices (equiv., pairs of subsets of [n]). Using m2 log n < nm/4 (equiv.,
m = o(n/ log n)), the foregoing quantity is upper-bounded by 22.5nm. We shall
also use m ≤ n2/3/2, which implies m3 ≤ n2/8 and 3nm = o(n2). In order to
prove Eq. (11), we consider two cases

Case 1: R has at least n2/3 one-entries. Since 3nm = o(n2), it follows that
M − R has at least n2/4 non-zero entries, but these cannot be covered by
the

⋃
i Si, since the latter has at most m3 ≤ n2/8 elements. Hence, M − R ⊆⋃

i∈[m] Si never holds in this case, which means that the l.h.s. of Eq. (11) is
zero.

On Depth-Three Boolean Circuits Computing Multilinear Functions 77

Case 2: R has at most n2/3 one-entries. In this case the union of the one-
entries of R and

⋃
i Si, denoted U , covers at most half of a generic n-by-n

matrix. Now, selecting 3nm random entries in the matrix, the probability
that all entries reside in U at most (1/2)3nm. But if some one-entry of M
does not reside in U , then this entry is non-zero in M −R but does not reside
in

⋃
i Si. In this case, M − R �⊆ ⋃

i∈[m] Si holds. Hence, Eq. (11) holds.

To rec-cap: Having established Eq. (11), and recalling the upper bound on the
number of (R,S1, ..., Sm)-sequences, we conclude that with probability at least
1−22.5nm ·2−3nm = 1−2−nm/2, the matrix M has structural rigidity (m,m,m)
for rank m. �

5 On Two Restricted Models

Focusing on our arithmetic circuit model, we consider two restricted versions of
it: The first restricted model is of computation without cancellation, and the
second is of computation that use only addition and multiplication gates while
parametrizing their arity.

5.1 On Computing Without Cancellation

A natural model in the context of arithmetic computation is that of comput-
ing without cancellations.33 We note that all our upper bounds (of Sect. 3) were
obtained by computations that use no cancellations. Nevertheless, as one may
expect, computations that use cancellation may be more efficient than computa-
tions that do not use it. In fact, obtaining such a separation result is quite easy.
A striking example is provided by the bilinear function F 2,n

had that corresponds to
the Hadamard matrix T 2,n

had (i.e., T 2,n
had = {(i, j) ∈ [n]2 : ip2(i, j)}, where n = 2�

and ip2(i, j) is the inner product (mod 2) of the 	-bit binary expansions of i− 1
and j − 1).

Proposition 5.1 (computing F 2,n
had without cancellation): Computing F 2,n

had

without cancellations requires a circuit of AN-complexity Ω(n2/3), where the
AN-complexity of circuits is as defined in Definition 2.2. In contrast, F 2,n

had can
be computed by a circuit of AN-complexity Õ(

√
n) with cancellation; actually,

AN2(F
2,n
had) = O(

√
n log n).

Proof: We first prove the lower bound. Suppose that F 2,n
had can be computed by

a circuit of AN-complexity m that uses no cancellation. Following the argument
in the proof of Theorem 4.4, we conclude that T 2,n

had is a sum of at most m
matrices that have m2 one-entries each and at most m matrices of rank 1 (see

33 This means that one considers the syntactic polynomial computed by the circuit
(over a generic field) and requires that it equals the target polynomial when the field
remains unspecified.

78 O. Goldreich and A. Wigderson

Footnote 29). Specifically, assuming that the first m′ < m auxiliary functions
(i.e., Fi’s) are bilinear functions, we observe that

F 2,n
had (x, y) = F0(x, y) =

m′
∑

i=0

Qi(x, y) +
m−1∑

i=m′+1

Li(x, y)Fi(x, y) , (12)

where Qi is a sum of the products of pairs of variables that appear in Fi and the
Li’s are arbitrary linear functions (which may depend on an arbitrary number of
variables in either x or y).34 Hence, each Qi corresponds to a tensor (or matrix)
with at most m2 one-entries, whereas each LiFi corresponds to a rectangular
tensor.

The punchline is that, by the non-cancellation hypothesis, these rectangles
(i.e., the LiFi’s) must be pairwise disjoint and their one-entries must be one-
entries also in T 2,n

had (since they cannot be cancelled). But by Lindsey’s Lemma
(cf., e.g., [5, p. 88]) rectangles of area greater than n must contain zero-entries of
T 2,n
had , which implies that each rectangle may have area at most n. It follows that

the total area covered by all m tensors is at most (m′ + 1) · m2 + (m − m′) · n <
m3+mn, whereas T 2,n

had has n2/2 one-entries. The main claim (i.e., m = Ω(n2/3))
follows.

The secondary claim (i.e., AN(F 2,n
had) = Õ(

√
n)) follows by the fact that T 2,n

had

has rank 	 = log2 n. The point is that any bilinear function F that corresponds
to a rank r matrix can be computed as the sum of r functions that correspond
to rectangular tensors, where each of these r functions can be computed as the
product of two linear functions, and each linear function can be computed as the
sum of

√
n/2r functions that compute the sum of at most

√
2rn variables. All

in all, we use 1 + 2r · √n/2r gates, which are each of arity
√

2rn. This yields a
depth-two circuit of AN-complexity

√
2rn+1, where the top gate is a quadratic

expression in
√

2rn linear functions. �

Computing F 3,n
tet Without Cancellation. While we were unable to prove that

AN(F 3,n
tet) = ω(

√
n), it is quite easy to prove such a lower bound for circuits

that compute F 3,n
tet without cancellation.

Proposition 5.2 (computing F 3,n
tet without cancellation): Computing F 3,n

tet

without cancellations requires a circuit of AN-complexity Ω(n2/3).

(Again, recall that the AN-complexity of circuits is defined exactly as in Defini-
tion 2.2.)
34 Recall that, w.l.o.g., gates that compute quadratic Fi’s (for i ∈ [m′]) may only

feed into the top gate. Ditto for gates computing products of two linear Fi’s (for
i ∈ [m′ + 1, m − 1]). Thus, F0 = Q0 +

∑
i∈[m′] Fi +

∑m−1
i=m′+1 L0,iFi, where Q0 is a

sum of the products of pairs of variables that appear in F0, the L0,i’s are arbitrary
linear functions, and for i > m′ the linear function Fi is computed by an internal
gate. Furthermore, for every i ∈ [m′], it holds that Fi = Qi +

∑m−1
j=m′+1 Li,jFj , where

Qi is a sum of the products of pairs of variables that appear in Fi, the Li,j ’s are
arbitrary linear functions, and for j > m′ the linear function Fj is computed by an

internal gate. Letting Lj =
∑m′

i=0 Li,j , we get Eq. (12).

On Depth-Three Boolean Circuits Computing Multilinear Functions 79

Proof: Proceeding as in the proof of Proposition 5.1, we consider the top gate
of a circuit (with m gates) that computes F 3,n

tet without cancellations. Here, we
can write F 3,n

tet as

F0 =
m′
∑

i=0

Ci +
m′+m′′
∑

i=m′+1

LiFi +
m′+m′′+m′′′

∑

i=m′+m′′+1

QiFi , (13)

where m′ + m′′ + m′′′ ≤ m − 1, the cubic function Ci is a sum of the products
of triples of variables that appear in the cubic function Fi (for i ∈ [0,m′]), the
Li’s (resp., Qi’s) are arbitrary linear (resp., quadratic) functions (which may
depend on an arbitrary number of variables (from adequate variable-blocks)),
and the other Fi’s are either quadratic (for i ∈ [m′ + 1,m′ + m′′]) or linear (for
i ∈ [m′ + m′′ + 1,m′ + m′′ + m′′′]).35 Combining the two last summations in
Eq. (13), we obtain

F0 =
m′
∑

i=0

Ci +
m−1∑

i=m′+1

L′
iQ

′
i (14)

where the Ci’s are as in Eq. (13), and the L′
i’s (resp., Q′

i’s) are arbitrary lin-
ear (resp., quadratic) functions (which may depend on an arbitrary number of
variables (from adequate variable-blocks)). Note that Ci corresponds to a tensor
with one-entries that are confined to a m-by-m-by-m box, and each L′

iQ
′
i corre-

sponds to a tensor that is the outer product of a subset of [n] and a subset of
[n]2. By the non-cancellation condition, all these tensors are disjoint, and none
may contain a zero-entry of T 3,n

tet .
We consider the boundary of the tensor T 3,n

tet (i.e., the set of one-entries
that neighbor zero-entries), and consider the contributions of the aforementioned
tensors to covering this boundary (without covering zero-entries of F 3,n

tet). We will
upper bound this contribution by m3 + mn, and the claim will follow since the
size of the boundary is Ω(n2).

Actually, we shall consider covering the upper-boundary of T 3,n
tet , defined as

the part of the boundary that resides in [n/2, n]3. In other words, the upper-
boundary consists of all points (i1, i2, i3) ∈ [n/2, n] such that i1 + i2 + i3 = 2n,
and it has size Ω(n2).

35 Recall that, w.l.o.g., gates that compute cubic Fi’s (for i ∈ [m′]) may only feed
into the top gate. Ditto for gates computing products of linear Fi’s and quadratic

Fi’s (for i ∈ [m′ + 1, m − 1]). Thus, F0 = C0 +
∑

i∈[m′] Fi +
∑m′+m′′

i=m′+1 L0,iFi +
∑m′+m′′+m′′

i=m′+m′′+1 Q0,iFi, where C0 is a sum of the products of triples of variables that
appear in F0, the L0,i’s (resp., Q0,i’s) are arbitrary linear (resp., quadratic) functions,
and for i > m′ the quadratic (resp., linear) function Fi is computed by an internal

gate. Furthermore, for every i ∈ [m′], it holds that Fi = Ci +
∑m′+m′′

j=m′+1 Li,jFj +
∑m′+m′′+m′′

j=m′+m′′+1 Qi,jFj , where Ci is a sum of the products of triples of variables that
appear in Fi, the Li,j ’s (resp., Qi,j ’s) are arbitrary linear (resp., quadratic) functions,
and for j > m′ the quadratic (resp., linear) function Fj is computed by an internal

gate. Letting Lj =
∑m′

i=0 Li,j and Qj =
∑m′

i=0 Qi,j , we get Eq. (13).

80 O. Goldreich and A. Wigderson

We first observe that the tensor corresponding to each Cj can cover at most
m2 points of the upper-boundary, because this tensor is confined to an m-by-m-
by-m box I ′

j × I ′′
j × I ′′′

j and for each (i1, i2) ∈ I ′
j × I ′′

j there exists at most one
i3 such that (i1, i2, i3) resides in the upper-boundary. Hence, the contribution of
∑m′

j=0 Cj to the cover is at most m3.
Turning to the tensors that correspond to the LjQj ’s, we note that (w.l.o.g.)

each such tensor has the form I ′
j × I ′′

j , where I ′
j ⊆ [n] and I ′′

j ⊆ [n]2. We first
observe that only the largest i1 ∈ I ′

j can participate in (a point that resides in)
the upper-boundary, because if (i1, i2, i3) ∈ I ′

j × I ′′
j participates in the upper-

boundary and i′1 > i1, then (i′1, i2, i3) must be a zero-entry of T 3,n
tet (and contra-

diction is reached in case i′1 ∈ I ′
j , since then (i′1, i2, i3) ∈ I ′

j ×I ′′
j). Next, fixing the

largest i1 ∈ I ′
j , we observe that the upper-boundary contains at most n points

of the form (i1, ·, ·). Hence, the contribution of
∑m−1

j=m′+1 LjQj to the cover is at
most mn.

Having shown that the union of the aforementioned tensors can cover at most
m3 + mn points in the upper-boundary, the claim follows since the size of the
upper-boundary is Ω(n2). �

5.2 Addition and Multiplication Gates of Parameterized Arity

In continuation to Definition 2.2, we consider a restricted complexity measure
that refers only to multilinear circuits that use standard addition and multipli-
cation gates. Needless to say, the multiplication gates in a multilinear circuit
computing a t-linear function have arity at most t, whereas the arity of the
addition gates is accounted for in our complexity measure. Furthermore, in our
restricted complexity measure we do not count multiplication gates that are fed
by variables only. For sake of clarify, we spell out the straightforward adaptation
of Definition 2.2:

Definition 5.3 (the complexity of multilinear circuits with standard gates):
A standard multilinear circuit is a multilinear circuit (as in Definition 2.2) hav-
ing only addition and multiplication gates, and its complexity is the maximum
between the arity of its gates and the number of its non-trivial gates, where the
trivial gates are multiplication gates that are fed by variables only. The restricted
complexity of a multilinear function F , denoted RC(F), is the minimum complex-
ity of a standard multilinear circuit that computes F .

Indeed, we avoided introducing a depth-two version of Definition 5.3, because the
model seems restricted enough as is. Note that for every t-linear function F , it
holds that AN(F) ≤ t ·RC(F), since trivial multiplication gates can be eliminated
by increasing the arity of the circuit (in the general model) by a factor of at
most t.36

36 In a gate that is fed by a trivial multiplication-gate, the argument representing the
trivial gate’s output is replaced by the (up to) t input variables feeding this trivial
gate.

On Depth-Three Boolean Circuits Computing Multilinear Functions 81

5.2.1 The Restricted Model Separates F t,n
all and F t,n

diag from F 2,n
leq . As

stated (implicitly) in Sect. 3.2, it holds that RC(F t,n
all) ≤ t

√
n+1 and RC(F t,n

diag) ≤
t
√

n. We show that this upper bound does not hold for F 2,n
leq . We start with a

general result.

Theorem 5.4 (the restricted complexity of bilinear functions is lower-bounded
by the parameters of matrix rigidity): Let F : (GF(2)n)2 → GF(2) be a bilinear
function with a corresponding tensor T ⊆ [n]2. If T has rigidity s with respect
to rank r > 1, then RC(F) ≥ min(r,

√
s).

As shown in Proposition 5.5, the tensor T 2,n
leq has rigidity Ω(n2/r) with respect

to rank r, so letting r = n2/3, we obtain RC(F 2,n
leq) = Ω(n2/3), since

√
n2/r =

n(2−(2/3))/2 = r. Also, since a random n-by-n matrix has rigidity Ω(n2)
with respect to rank Ω(n), it follows that for almost all bilinear functions
F : GF(2)n+n → GF(2) it holds that RC(F) = Ω(n). The latter lower bound is
tight, since (for any t ≥ 1) any t-linear function F satisfies RC(F) ≤ nt/2 (via a
multilinear formula with nt/2 addition gates, each of arity nt/2, that sum-up all
the relevant monomials).

Proof: Let m
def= RC(F) and suppose that m <

√
s, since otherwise the claim

follows (i.e., RC(F) ≥ min(r,
√

s)). Consider a standard multilinear circuit that
computes F with m′ addition gates of arity at most m and m′′ non-trivial mul-
tiplication gates, where m′ + m′′ ≤ m. Note that the top gate cannot be a
multiplication gate, because such a multilinear circuit can only compute bilinear
functions that correspond to rank-1 matrices. Also note that there exists exactly
one multiplication gate on each path from the top gate to a variable, since F
is bilinear, and that this gate is trivial if and only if it is the last gate on this
path. Hence, the circuit, which is a directed acyclic graph (DAG) rooted at the
top gate, can be decomposed into a top layer that consists of a DAG of addition
gates, an intermediate layer of multiplication gates, and a bottom layer that
consists of a DAG of addition gates and variables (which feeds linear functions
to the multiplication gates). We note that the number of trivial multiplication
gates that feed the top DAG is at most m2, because this DAG has m′ ≤ m
addition gates each of in-degree at most m.

We truncate the foregoing circuit at the trivial multiplication gates (which
compute products of variables), obtaining a new circuit that computes a bilinear
function F ′; that is, F − F ′ is the sum of the variable-products computed by
the trivial multiplication gates. This new circuit has no trivial gates and it has
m′′ non-trivial multiplication gates (each computing a bilinear function that
corresponds to a rank-1 matrix). Hence, the corresponding tensor, denoted T ′,
has rank at most m′′ (since it is the sum of m′′ rank-1 matrices), whereas |T +
T ′| ≤ m2 (since T + T ′ corresponds to the function F − F ′, which is the sum of
at most m2 products of variables). We consider two cases:

1. If m′′ ≤ r, then T ′ has rank at most r, and we derive a contradiction to the
hypothesis that T has rigidity s with respect to rank r, since |T+T ′| ≤ m2 < s
(where the last inequality uses m <

√
s).

82 O. Goldreich and A. Wigderson

2. Otherwise, m′′ ≥ r, and it follows that m ≥ r.

The claim follows (i.e., RC(F) ≥ min(r,
√

s)). �

Proposition 5.5 (a bound on the rigidity of T 2,n
leq): For every r < n/O(1), the

tensor T 2,n
leq (of Eq. (2)) has rigidity at least Ω(n2/r) with respect to rank r.

The rigidity lower bound is quite tight, since T 2,n
leq is O(1/r)-close to

∑
k∈[r](Ik ×

Jk), where Ik = {(k − 1)n/r + 1, ..., kn/r} and Jk = {kn/r + 1, ..., n}, for every
k ∈ [r]. (This is the case since

∑
k∈[r](Ik × Jk) ⊆ T 2,n

leq ⊆ ∑
k∈[r](Ik × Jk−1), and

∑
k∈[r] |Ik × (Jk−1 − Jk)| = n2/r.)

Proof: For a constant c > 1 to be determined later, we consider any r < n/c.
We shall prove that any matrix R = (Ri,j)i,j∈[n] of rank r is Ω(1/r)-far from

T
def= T 2,n

leq ; that is, |R + T | = Ω(n2/r).
Let R be an arbitrary matrix of rank at most r. We say that i ∈ [n] is good if

|{j ∈ [n] : Ri,j �= Ti,j}| < n/cr. The claim of the proposition reduces to proving
that at least half of i ∈ [n] are not good, since in this case R disagrees with T

on at least n
2 · n

cr = n2

2cr entries. It is thus left to prove the latter claim.
Let G denote the set of good i ∈ [n], and supposed towards the contradiction

that |G| > n/2. For c′ ∈ [1, c/2] to be (implicitly) determined later, select c′r
indices i1, ..., ic′r ∈ G such that for every k ∈ [c′r−1] it holds that ik+1 > ik+ n

2c′r .
Let us denote the ithk row of T by vk, and the ithk row of R by wk. Then, for a
random non-empty set K ⊆ [c′r], the following two conditions hold:

1. With probability greater than 1−2−r, the vector
(∑

k∈K vk mod 2
)

has weight
greater than n/6.
The claim follows from the structure of T (i.e., vk = 0ik−11n−ik+1) and
the distance between the ik’s. Specifically, for a random K, the weight
of the vector

(∑
k∈K vk mod 2

)
is distributed as

∑
j∈[c′r](ij+1 − ij) · Xj ,

where ic′r+1
def= n + 1 and Xj = Xj(K) def=

∑
k∈K Tik,ij mod 2 indicates

the parity of the elements selected in column ij (which equals the par-

ity in all columns in [ij , ij+1 − 1]). Thus, Xj =
(∑

k≤j Yk mod 2
)
, where

Yk = 1 if k ∈ K and Yk = 0 otherwise, which implies that the Xj ’s are
uniformly and indentially distributed in {0, 1}. For sufficiently large c′, we
have Pr

[∑
j∈[c′r−1] Xj > c′r/3

]
> 1 − 2−r, and the claim follows since

∑
j∈[c′r](ij+1 − ij) ·Xj is greater than n

2c′r ·∑j∈[c′r] Xj (and n
2c′r · c′r

3 = n/6).
2. With probability at least 2−r, the vector

(∑
k∈K wk mod 2

)
has weight 0.

This follows from the rank of R. Specifically, consider a maximal set of inde-
pendent vectors among the w1,, wc′r, and denote the corresponding set of
indices by I. Then, PrK

[∑
k∈K wk =0

]
= 2−|I| ≥ 2−r, which can be seen

by first selecting a random K ′ ⊆ ([c′r] \ I), and then (for any outcome K ′)
selecting a random K ′′ ⊆ ([c′r] ∩ I).

On Depth-Three Boolean Circuits Computing Multilinear Functions 83

Combining (1) and (2), it follows that there exists non-empty set K ⊆ [c′r] such
that the vector

∑
k∈K vk has weight greater than n/6 but the vector

∑
k∈K wk

has weight 0. But this is impossible because, by the hypothesis that all ik’s are
good, the distance between these two vectors is at most |K| · n

cr ≤ c′r · n
cr < n/6,

where the last inequality require selecting c > 6c′. The claim (that |G| ≤ n/2)
follows. �

Corollary 5.6 (lower bound on the restricted complexity of F 2,n
leq): RC(F 2,n

leq) =
Ω(n2/3).

Indeed, Corollary 5.6 follows by combining Theorem 5.4 and Proposition 5.5,
while using r = n2/3 and s = Ω(n2/r). The resulting lower bound is tight:

Proposition 5.7 (upper bound on the restricted complexity of F 2,n
leq): RC(F 2,n

leq)
= O(n2/3).

Proof: Consider a partition of [n]2 into n4/3 squares, each with side s = n1/3:
For i, j ∈ [n/s], let Si,j = [(i − 1)s + 1, is] × [(j − 1)s + 1, js], and note that
⋃

i<j Si,j ⊂ T 2,n
leq ⊂ ⋃

i≤j Si,j . Thus, F 2,n
leq can be computed by computing sepa-

rately the contribution of the n/s = n2/3 diagonal squares and the contribution
of the squares that are above the diagonal; that is,

F 2,n
leq (x, y) =

∑

i∈[n2/3]

∑

(k,�)∈Si,i:k≤�

xky� +
∑

i<j

∑

(k,�)∈Si,j

xky�.

The contribution of the square Si,i can be computed as the sum of its relevant

r
def=

(
s
2

)
+ s < n2/3 entries, which means that the sum of the contribution

of all n2/3 diagonal squares consists of less than n4/3 monomials. This sum
can be computed by n2/3 + 1 addition gates, each of arity n2/3. (We also use
n2/3 · r < n4/3/2 trivial multiplication gates, but these are not counted.)

The contribution of the above-diagonal squares can be computed by writing
⋃

i<j Si,j as
⋃

i∈[n/s]

(
Li × ⋃

j>i Lj

)
, where Li = [(i − 1)s + 1, is]. Hence, the

total contribution of the off-diagonal squares is

∑

i<j

∑

(k,�)∈Si,j

xky� =
∑

i∈[n/s]

(
∑

k∈Li

xk

)

·
∑

j>i

⎛

⎝
∑

�∈Lj

y�

⎞

⎠

=
∑

i∈[n/s]

Fi(x) ·
∑

j>i

Gj(y),

where each of the Fi’s and Gj ’s can be computed by an addition gate of arity
s = n1/3, whereas

∑
i∈[n/s] Fi(x) · ∑j>i Gj(y) can be computed using n2/3 + 1

addition gates of arity n2/3 (and n2/3 multiplication gates, each of arity 2).
Hence, the total contribution of the off-diagonmal squares can be computed by
4 · n2/3 + 1 gates each having arity at most n2/3. The claim follows. �

84 O. Goldreich and A. Wigderson

Digest: The proof of Proposition 5.7 uses two different strategies for computing
a generic bilinear form of m + m inputs. The first strategy, employed for each
of the diagonal squares, is to compute the sum of the r ≤ m2 relevant input-
pairs using a single addition gate of arity r. The second strategy, employed for
summing-up the total contribution of the non-diagonal squares, is to use m + 1
addition gates (of arity m) and m multiplication gates (of arity two). Specifically,∑

i,j∈[m]:bi,j=1 uivj is computed as
∑

i∈[m] ui · ∑j∈[m]:bi,j=1 vj .

Added in Revision: A Lower Bound on the Restricted Complexity of F 3,n
tet . Com-

bining [9, Thm. 1.2] with Theorem 5.4, we get RC(F 3,n
tet) = Ω̃(n3/4). This fol-

lows because by [9, Thm. 1.2] almost all n-by-n Toeplitz matrices have rigidity
Ω̃(n3/r2) with respect to rank r ∈ [

√
n, n/32], and (by Theorem 5.4) each cor-

responding bilinear function F satisfies RC(F) ≥ min(r, Ω̃(n3/2/r)) = Ω̃(n3/4)
(using r = n3/4). The bound for F 3,n

tet follows analogously to Proposition 4.6.

5.2.2 On the Restricted Complexity of Almost All t-Linear Functions
Recall that for every t-linear function F , it holds that RC(F) = O(nt/2), by a
circuit that merely adds all relevant monomials. We prove that for almost all
t-linear functions this upper bound is tight up to a logarithmic factor.

Proposition 5.8 (a lower bound on the restricted complexity of almost all t-
linear functions): For all t = t(n), almost all t-linear functions F : (GF(2)n)t →
GF(2) satisfy RC(F) = Ω(nt/2/

√
log(nt)).

Proof: We upper-bound the number of standard multilinear circuits of
restricted complexity m. Each such circuit corresponds to a DAG with m ver-
tices, each representing either an addition gate or a (non-trivial) multiplication
gate. In addition, each of these non-trivial gates may be fed by some variables
or trivial multiplication gates (which are not part of this DAG), but the number
of such gate-entries is at most m and each is selected among at most (n + 1)t

possibilities (since there are (n + 1)t possible multilinear monomials). Thus, the
number of such circuits is at most

2(m2) · 2m ·
(

(n + 1)t

m

)m

(15)

where 2(m2) upper bounds the number of m-vertex DAGs, 2m accounts for choice
of the gate types, and

(
(n+1)t

m

)
accounts for the choice of “DAG-external inputs”

to each gate. Clearly, Eq. (15) is upper-bounded by ((n+1)t)m2
= exp(tm2 log n),

whereas the number of t-linear functions is 2nt

. The claim follows. �

Acknowledgments. We are grateful to Or Meir for extremely helpful discussions,
and to Avishay Tal for many suggestions for improving the presentation. Research was
partially done while O.G. visited the IAS.

On Depth-Three Boolean Circuits Computing Multilinear Functions 85

References

1. Ajtai, M.: Σ1
1 -formulae on finite structures. Ann. Pure Appl. Logic 24(1), 1–48

(1983)
2. Babai, L.: Random oracles separate PSPACE from the polynomial-time hierarchy.

IPL 26, 51–53 (1987)
3. Dvir, Z., Liu, A.: Fourier and circulant matrices are not rigid. In: 34th CCC, pp.

17:1–17:23 (2019). arXiv:1902.07334 [math.CO]
4. Dvir, Z., Liu, A.: Fourier and circulant matrices are not rigid. To appear in TOC,

special issue of 34th CCC. See also ECCC, TR19-129, September 2019
5. Erdos, P., Spencer, J.: Probabilistic Methods in Combinatorics. Academic Press

Inc., New York (1974)
6. Furst, M.L., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hier-

archy. Math. Syst. Theory 17(1), 13–27 (1984). Preliminary version in 22nd FOCS
(1981)

7. Goldreich, O.: Computational Complexity: A Conceptual Perspective. Cambridge
University Press, Cambridge (2008)

8. Goldreich, O.: Improved bounds on the AN-complexity of multilinear functions.
In: ECCC, TR19-171 (2019)

9. Goldreich, O., Tal, A.: Matrix rigidity of random Toeplitz matrices. Comput. Com-
plex. 27(2), 305–350 (2018). Preliminary versions in 48th STOC (2016) and ECCC
TR15-079 (2015)

10. Goldreich, O., Tal, A.: On constant-depth canonical Boolean circuits for computing
multilinear functions. In: ECCC, TR17-193 (2017)

11. Goldreich, O., Wigderson, A.: On the size of depth-three Boolean circuits for com-
puting multilinear functions. In: ECCC, TR13-043 (2013)

12. Hastad, J.: Almost optimal lower bounds for small depth circuits. In: Micali, S.
(ed.) Advances in Computing Research: A Research Annual, (Randomness and
Computation), vol. 5, pp. 143–170 (1989). Extended abstract in 18th STOC (1986)

13. Hastad, J.: Computational Limitations for Small Depth Circuits. MIT Press, Cam-
bridge (1987)

14. Hastad, J., Jukna, S., Pudlak, P.: Top-down lower bounds for depth-three circuits.
Comput. Complex. 5(2), 99–112 (1995)

15. Hrubes, P., Rao, A.: Circuits with medium fan-in. In: ECCC, TR14-020 (2014)
16. Jukna, S.: Boolean Function Complexity: Advances and Frontiers. Algorithms and

Combinatorics, vol. 27. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-24508-4

17. Karchmer, M., Wigderson, A.: Monotone circuits for connectivity require super-
logarithmic depth. SIAM J. Discret. Math. 3(2), 255–265 (1990)

18. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press, Cambridge (1997)

19. Lokam, S.V.: Complexity lower bounds using linear algebra. Found. Trends Theor.
Comput. Sci. 4, 1–155 (2009)

20. van Melkebeek, D.: A survey of lower bounds for satisfiability and related problems.
Found. Trends Theor. Comput. Sci. 2, 197–303 (2007)

21. Nisan, N.: Pseudorandom bits for constant depth circuits. Combinatorica 11(1),
63–70 (1991)

22. Nisan, N., Wigderson, A.: Hardness vs randomness. J. Comput. Syst. Sci. 49(2),
149–167 (1994). Preliminary version in 29th FOCS (1988)

http://arxiv.org/abs/1902.07334
https://doi.org/10.1007/978-3-642-24508-4
https://doi.org/10.1007/978-3-642-24508-4

86 O. Goldreich and A. Wigderson

23. Nisan, N., Wigderson, A.: Lower bound on arithmetic circuits via partial deriva-
tives. Comput. Complex. 6, 217–234 (1996)

24. Raz, R.: Tensor-rank and lower bounds for arithmetic formulas. In: Proceeding of
the 42nd STOC, pp. 659–666 (2010)

25. Raz, R., Yehudayoff, A.: Lower bounds and separations for constant depth multi-
linear circuits. In: ECCC, TR08-006 (2008)

26. Razborov, A.: Lower bounds on the size of bounded-depth networks over a complete
basis with logical addition. Matematicheskie Zametki 41(4), 598–607 (1987). (in
Russian). English translation in Math. Notes Acad. Sci. USSR 41(4), 333–338
(1987)

27. Savitch, W.J.: Relationships between nondeterministic and deterministic tape com-
plexities. JCSS 4(2), 177–192 (1970)

28. Shaltiel, R., Viola, E.: Hardness amplification proofs require majority. SIAM J.
Comput. 39(7), 3122–3154 (2010). Extended abstract in 40th STOC (2008)

29. Smolensky, R.: Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In: 19th STOC, pp. 77–82 (1987)

30. Strassen, V.: Vermeidung von Divisionen. J. Reine Angew. Math. 264, 182–202
(1973)

31. Valiant, L.G.: Graph-theoretic arguments in low-level complexity. In: Gruska,
J. (ed.) MFCS 1977. LNCS, vol. 53, pp. 162–176. Springer, Heidelberg (1977).
https://doi.org/10.1007/3-540-08353-7 135

32. Valiant, L.G.: Exponential lower bounds for restricted monotone circuits. In: 15th
STOC, pp. 110–117 (1983)

33. Vazirani, U.V.: Efficiency considerations in using semi-random sources. In: 19th
STOC, pp. 160–168 (1987)

34. Yao, A.C.: Separating the polynomial-time hierarchy by oracles. In: 26th FOCS,
pp. 1–10 (1985)

https://doi.org/10.1007/3-540-08353-7_135

	On the Size of Depth-Three Boolean Circuits for Computing Multilinear Functions
	1 Introduction
	1.1 The General Context
	1.2 The Candidate Functions
	1.3 Design by Direct Composition: The D-Canonical Model
	1.4 Design by Nested Composition: The ND-Canonical Model
	1.5 The Underlying Models of Arithmetic Circuit and AN-Complexity
	1.6 Related Work
	1.7 Subsequent Work
	1.8 Various Conventions
	1.9 Organization and Additional Highlights

	2 Multilinear Circuits with General Gates
	2.1 The Two Complexity Measures
	2.2 Relation to Canonical Circuits

	3 Upper Bounds
	3.1 A Generic Upper Bound
	3.2 Improved Upper Bounds for Specific Functions (e.g., Fleqt,n)

	4 Lower Bounds
	4.1 On the AN-Complexity of Almost All Multilinear Functions
	4.2 The AN-Complexity of Bilinear Functions and Matrix Rigidity
	4.3 On Structured Rigidity

	5 On Two Restricted Models
	5.1 On Computing Without Cancellation
	5.2 Addition and Multiplication Gates of Parameterized Arity

	References

