
Flexible Models for Testing Graph
Properties

Oded Goldreich

Abstract. The standard models of testing graph properties postulate
that the vertex-set consists of {1, 2, ..., n}, where n is a natural num-
ber that is given explicitly to the tester. Here we suggest more flexible
models by postulating that the tester is given access to samples the arbi-
trary vertex-set; that is, the vertex-set is arbitrary, and the tester is given
access to a device that provides uniformly and independently distributed
vertices. In addition, the tester may be (explicitly) given partial infor-
mation regarding the vertex-set (e.g., an approximation of its size). The
flexible models are more adequate for actual applications, and also facili-
tates the presentation of some theoretical results (e.g., reductions among
property testing problems).

An early version of this work appeared as TR18-104 of ECCC. The presentation
was elaborated in the current revision.

Introduction

In the last couple of decades, the area of property testing has attracted much
attention (see, e.g., a recent textbook [4]). Loosely speaking, property testing
typically refers to sub-linear time probabilistic algorithms for deciding whether
a given object has a predetermined property or is far from any object having
this property. Such algorithms, called testers, obtain local views of the object by
making adequate queries; that is, the object is seen as a function and the testers
get oracle access to this function (and thus may be expected to work in time
that is sub-linear in the size of the object).

A significant portion of the foregoing research has been devoted to testing
graph properties in three different models: the dense graph model (introduced
in [7] and reviewed in [4, Chap. 8]), the bounded-degree graph model (introduced
in [8] and reviewed in [4, Chap. 9]), and the general graph model (introduced
in [12,13] and reviewed in [4, Chap. 10]). In all these models, it is postulated
that the vertex-set consists of {1, 2, ..., n}, where n is a natural number that is
given explicitly to the tester, and this simplified assumption is made in all studies
of these models. The simplifying assumption may be employed, without loss of
generality, provided that (1) the tester can sample the vertex-set, and (2) the
tester is explicitly given the size of the vertex-set.1

1 See Observations 1.2, 2.2 and 3.2.

c© Springer Nature Switzerland AG 2020

O. Goldreich (Ed.): Computational Complexity and Property Testing, LNCS 12050, pp. 352–362, 2020.

https://doi.org/10.1007/978-3-030-43662-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43662-9_19&domain=pdf
https://doi.org/10.1007/978-3-030-43662-9_19

Flexible Models for Testing Graph Properties 353

Having explicitly stated the two foregoing conditions that allow to extend
testers of the simplified model to more general settings, we observe that they are
of fundamentally different nature. The first condition (i.e., sampleability of the
vertex-set) seems essential to testing any non-trivial property, whereas the second
condition (i.e., knowledge of the (exact) size of the vertex-set) may be relaxed
and even avoided altogether in many cases. For example, all graph-partition
properties (see [7]) and subgraph-free properties are testable in a general version
of the dense graph model in which only the first condition holds. This is the
case since the original testers (presented in [7] and [1], resp.) use the description
of the vertex-set only in order to sample it. Needless to say, it follows that the
query complexities of these testers are oblivious of the size of the graph (and
depend only on the proximity parameter), but (as observed by [2]) the converse
does not hold (i.e., testers of size-oblivious query complexity may depend on the
size of the graph for their verdict (see also [11])).

On the other hand, when the query complexity depends on the size of the
graph, the tester needs to obtain at least a sufficiently good approximation of
the said size. Typically, such an approximation suffices, as in the case of the
bipartite tester for the bounded-degree and general graph models [9,12]. Hence,
we highlight three cases regarding the (a priori) knowledge of the size of the
vertex-set (where in all cases the tester is given access to samples drawn from
the vertex-set):

1. The tester is explicitly given the exact size of the vertex-set.
As shown in Observations 1.2, 2.2 and 3.2, this (“exact size”) case is essentially
reducible to the simplified case in which the vertex-set equals {1, 2, ..., n} and
n is explicitly given to the tester.

2. The tester is explicitly given an approximation of the size of the vertex-set,
where the quality of the approximation may vary.

3. The tester is not given explicitly any information regarding the size of the
vertex-set.

The foregoing three cases are special cases of a general formulation that may be
employed in the study of testing graph properties in settings in which the tested
graph has an arbitrary vertex-set, which (w.l.o.g.) is a set of strings.

The Flexible Models at a Glance. The general formulation postulates that, when
testing a graph with vertex-set V ⊂ {0, 1}∗, the tester is given access to a device
that samples uniformly in V . In addition, the tester is explicitly given some
information about V , where this information resides in a set of possibilities,
denoted p(V). The point is that the “given information about V ” is allowed to
be in a predetermined set of possibilities rather than be uniquely determined. For
example, the “exact size case” corresponds to p(V) = {|V |}, the “approximate
size case” corresponds to p(V) ∈ {n ∈ N : n ≈ |V |}, and the “no information
case” corresponds to p(V) = {λ}. This general formulation is called flexible,
since it allows its user to determine the function p : 2{0,1}∗ → 2{0,1}∗

according
to the setting at hand.

354 O. Goldreich

The benefits of the flexible models are two-fold. First, they narrow the gap
between the study of testing graph properties and possible real-life applications.
Second, they facilitate the presentation of reductions among property testing
problems and models, as will be discussed in the sequel. Examples of such reduc-
tions include those reviewed in [4, Thm. 9.22] and [4, Thm. 10.4] and those used
in [5].

While flexible models may be applicable also to testing properties of objects
that are not naturally viewed as graphs, we focus on testing graph properties
in the three aforementioned models (i.e., the dense graph model, the bounded-
degree graph model, and the general graph model). In all cases we consider only
graph properties, which are sets of unlabeled graphs (equiv., set of label graphs
that are closed under the renaming of the vertices).2

Subsequent Work. In subsequent work [6], the foregoing flexible models were used
as a starting point for more general models in which the tester obtains samples
that are arbitrarily distributed in the vertex-set. In this case, the definition of
the distance between graphs is modified to reflect this vertex distribution; such
a modification is not required in the current paper.

Organization. The following three sections present flexible versions of the three
aforementioned models of testing graph properties. In Sect. 1 we consider the
dense graph model (a.k.a. the adjacency matrix model), in Sect. 2 we consider
the bounded-degree graph model (a.k.a. the bounded incidence lists model), and
in Sect. 3 we consider the general graph model. The definitional parts of these
sections contain some repetitions in order to enable reading them independently
of one another.

1 Testing Graph Properties in the Dense Graph Model

Here we present a more flexible version of the notion of property testing in the
dense graph model (a.k.a. the adjacency matrix model, which was introduced
in [7] and reviewed in [4, Chap. 8]). The standard version (e.g., as in [4, Def. 8.2])
is obtained as a special case by setting V = {1, 2, ..., n} and p(V) = n.

In this model, a graph of the form G = (V,E) is represented by its adjacency
predicate g : V ×V → {0, 1}; that is, g(u, v) = 1 if and only if u and v are adjacent
in G (i.e., {u, v} ∈ E). Distance between graphs (over the same vertex-set) is
measured in terms of their foregoing representation; that is, as the fraction of
(the number of) entries on which they disagree (over |V |2). The tester is given
oracle access to the representation of the input graph (i.e., to the adjacency
predicate g) as well as to a device that returns uniformly distributed elements in
the graph’s vertex-set. As usual, the tester is also given the proximity parameter
ε, which determined when graphs are considered “far apart” (i.e., see the notion
of ε-far).
2 That is, if a graph G = (V, E) has the property, then, for any bijection π : V → V ′,

the graph G′ = (V ′, {{π(u), π(v)} : {u, v}∈E} has the property.

Flexible Models for Testing Graph Properties 355

In addition, the tester gets some partial information about the vertex-set
(i.e., V) as auxiliary input, where this partial information is an element of a set
of possibilities, denoted p(V). Indeed, two extreme possibilities are p(V) = {V },
which is closely related to the standard formulation, and p(V) = {λ}, but we
can also consider natural cases such as p(V) ∈ {|V |, |V | + 1, ..., 2|V |}.

For simplicity (and without loss of generality), we assume that the vertex-set
is a set of strings (i.e., a finite subset of {0, 1}∗). Hence, p is a function from
sets of strings (representing possible vertex-sets) to sets of strings (representing
possible partial information about the vertex-set).

Definition 1.1 (property testing in the dense graph model, revised): Let Π be
a property of graphs and p : 2{0,1}∗ → 2{0,1}∗

. A tester for the graph property Π (in
the dense graph model) with partial information p is a probabilistic oracle machine
T that is given access to two oracles, an adjacency predicate g : V × V → {0, 1}
and a device denoted Samp(V) that samples uniformly in V , and satisfies the
following two conditions:

1. The tester accepts each graph G = (V,E) ∈ Π with probability at least 2/3;
that is, for every g : V × V → {0, 1} representing a graph in Π and every
i ∈ p(V) (and ε > 0), it holds that Pr[T g,Samp(V)(i, ε)=1] ≥ 2/3.

2. Given ε > 0 and oracle access to any graph G that is ε-far from Π, the tester
rejects with probability at least 2/3; that is, for every ε > 0 and g : V × V →
{0, 1} that represents a graph that is ε-far from Π and i ∈ p(V), it holds that
Pr[T g,Samp(V)(i, ε) = 0] ≥ 2/3, where the graph represented by g : V × V →
{0, 1} is ε-far from Π if for every g′ : V × V → {0, 1} that represents a graph
in Π it holds that |{(u, v) ∈ V 2 : g(u, v) �= g′(u, v)}| > ε · |V |2.

The tester is said to have one-sided error probability if it always accepts graphs in
Π; that is, for every g : V × V → {0, 1} representing a graph in Π (and every
i ∈ p(V) and ε > 0), it holds that Pr[T g,Samp(V)(i, ε)=1] = 1.

The case of p(V) = {V } corresponds to the standard model in which one typ-
ically postulates that V = {1, 2, ..., |V |}. This is the case because, given V , the
tester may use a bijection between V and {1, 2, ..., |V |}. The case of p(V) = {|V |}
is closely related to these cases, except that in this case the bijection can only be
constructed on-the-fly. In order to formally state this correspondence, we need
to define the query complexity of a tester (as in Definition 1.1). For our pur-
poses, it suffice to define the query complexity of the tester as the total number
of queries it makes to both its oracles (i.e., the adjacency predicate and the
sampling oracles).3

Observation 1.2 (the “exact size case” reduces to the standard case): Suppose
that the graph property Π has a tester of query complexity q : N×(0, 1] → N in the

3 A more refined definition, following [3], may consider the number of queries to each
of the oracles. In such a case, it makes sense to refer to the number of queries to
the adjacency predicate (resp., the sampling device) as the query (resp., sample)
complexity of the tester.

356 O. Goldreich

dense graph model under its standard formulation (e.g., as in [4, Def. 8.2]). Then,
Π has a tester of query complexity q′ = ˜O(q) in the dense graph model (as in
Definition 1.1) with partial information p such that p(V) = {|V |}. Furthermore,
one-sided error is preserved, and q′(n, ε) = O(q(n, ε)) whenever either q(n, ε) <
n/3 or q(n, ε) > 4n ln n. The same holds (simultaneously) for time complexity.

Proof: As articulated in [10], graph properties are actually properties of unla-
beled graphs, and hence testers of such properties may effectively ignore the
labels as long as they can sample the vertex-set. Hence, when testing graph
properties, the actual labels of the vertices are immaterial. What matters is
whether or not vertices that appear in the current query have appeared in pre-
vious queries.

Note that a tester under the standard formulation may easily generate new
vertices, since the vertex-set equals [n] def= {1, 2, ..., n} and it is explicitly given
n. In contrast, the tester that we construct is given |V |, but has no other a
priori information regarding V . Its only way of obtaining new vertices is to
query Samp(V) for a sample. The overhead of the transformation is due to the
fact that obtaining a new vertex may require several samples, when the number
of queries made so far (by the original tester) is large (i.e., Ω(

√|V |)). Yet, this
is a minor problem that is easily resolved.

Formally, we emulate a tester T of the standard formulation, by invoking this
tester, on input (n, ε), where n = |V |. We answer T ’s queries by constructing
on-the-fly a bijection π between [n] and the (unknown to us) vertex-set V , and
querying our own oracle on the corresponding vertex pairs. Specifically, the query
(u, v) ∈ [n] × [n] is answered by making a corresponding query (π(u), π(v)) such
that if π is not defined on w ∈ {u, v}, then we assign π(w) a new vertex obtained
by sampling V (i.e., we repeatedly invoke Samp(V) till we obtain a vertex that
is not in the (defined so far) image of π). Hence, our emulation of the tester T
proceeds as follows, where π denotes a partial bijection of [|V |] to V .

– On input (|V |, ε), we invoke the standard tester T on this very input, while
initializing π to be totally undefined.
(Recall that T issues queries to an adjacency predicate that is defined over
[|V |] × [|V |].)

– When T issues a query (u, v) ∈ [|V |]2, we check if π(u) and π(v) are already
defined.

• If both π(u) and π(v) are already defined, then we make the query
(π(u), π(v)) to our input graph G = (V,E), and answer T accordingly.

• If for w ∈ {u, v}, the value π(w) is undefined, then we get a new sam-
ple s ∈ V from the sampling device (i.e., s ← Samp(V)). If π−1(s) is
undefined, then we define π(w) = s. Otherwise, we try again, and con-
tinue trying till reaching a total number of q′/3 (i.e., q′/3 invocations of
Samp(V)), where q′ = ˜O(q(|V |, ε)) and q is the query complexity of T .
Once π(u) and π(v) are both defined, we proceed as in the previous case.

– If we reached the claimed query complexity (i.e., q′) and T has not terminated,
then we suspend the execution of T and accept. Otherwise, we output the
verdict of T .

Flexible Models for Testing Graph Properties 357

Note that if q(|V |, ε) < |V |/3, then the probability of obtaining a sample
s ← Samp(V) on which π−1 is undefined is at least 1/3, since the number
of vertices in V that were assigned in response to prior queries of T is less
than 2 · q(|V |, ε). Hence, in this case, with very high probability, we can obtain
2 · q(|V |, ε) distinct elements of V by invoking Samp(V) for O(q(|V |, ε) times,
which means that we do not suspend the execution of T . On the other hand,
(4|V | ln |V |)/3 samples of Samp(V) are very likely to cover all of V , so we are fine
also in case q(|V |, ε) ≥ |V |/3. Hence, in both cases, we suspend the execution
with very small probability. Our choice to accept in the rare case of suspended
executions preserves the one-sided error of T (but slightly increases the error on
graphs that are far from Π).

Note that the foregoing tester can be efficiently implemented (w.r.t time
complexity) by maintaining dynamic sets (of the values) on which π and π−1

are defined. �

The No-Information Case. We mention that the testers for the various graph-
partition problems presented in [7] satisfy the requirements of Definition 1.1 with
p(V) = {λ} (i.e., the “no partial information” case). Indeed, these (low complex-
ity) testers use the description of the vertex-set only in order to sample it, and
so this auxiliary input can be replaced (in them) by a vertex sampling device.
The same holds for many other testers (in the dense graph model), including the
subgraph-freeness testers presented in [1].

We also observe that applying the transformation of [10, Thm. 2] to a tester
that satisfies Definition 1.1 with p(V) = {λ}, yields a canonical tester of the
same type; that is, the (auxiliary) property that the induced subgraph should
satisfy is oblivious of the size of the input graph (cf., [10,11]). That is:

Observation 1.3 (canonical testers for the “no partial information case”): Sup-
pose that Π has a tester of query complexity q : (0, 1] → N in the dense graph
model (of Definition 1.1) with no partial information (i.e., p(V) = {λ}). Then,
there exists a graph property Π ′ and a tester that, on input ε, accepts if and only
if the subgraph induces by O(q(ε)) random vertices is in Π ′.

We mention that this special case of Definition 1.1 (i.e., p(V) = {λ}) is pivotal
to the reduction used in the proof of [5, Thm. 4.5]. In fact, this special case
of Definition 1.1 appears as [5, Def. 4.3], and triggered us to write the current
paper.

2 Testing Graph Properties in the Bounded-Degree
Graph Model

Here we present a more flexible version of the notion of property testing in the
bounded-degree graph model (a.k.a. the bounded incidence lists model, which
was introduced in [8] and reviewed in [4, Chap. 9]). The standard version (e.g.,
as in [4, Def. 9.1]) is obtained as a special case by setting V = {1, 2, ..., n} and
p(V) = n.

358 O. Goldreich

The bounded-degree graph model refers to a fixed (constant) degree bound,
denoted d ≥ 2. In this model, a graph G = (V,E) of maximum degree d is
represented by the incidence function g : V × [d] → V ∪ {⊥} such that g(v, j) =
u ∈ V if u is the jth neighbor of v and g(v, j) = ⊥ �∈ V if v has less than
j neighbors.4 Distance between graphs is measured in terms of their foregoing
representation; that is, as the fraction of (the number of) different array entries
(over d|V |).

As in the dense graph model, the tester is given oracle access to the represen-
tation of the input graph (i.e., to the incidence function g) as well as to a device
that returns uniformly distributed elements in the graph’s vertex-set. As usual,
the tester is also given the proximity parameter ε. In addition, the tester gets
some partial information about the vertex-set (i.e., V) as auxiliary input, where
this partial information is an element of a set of possibilities, denoted p(V).
(Again, two extreme possibilities are p(V) = {V }, which is closely related to the
standard formulation, and p(V) = {λ}, but we can also consider natural cases
such as p(V) ∈ {|V |, |V | + 1, ..., 2|V |}). Again, we assume that the vertex-set is
a set of strings (i.e., a finite subset of {0, 1}∗).

Definition 2.1 (property testing in the bounded-degree graph model, revised):
For a fixed d ∈ N, let Π be a property of graphs of degree at most d, and
p : 2{0,1}∗ → 2{0,1}∗

. A tester for the graph property Π (in the bounded-degree
graph model) with partial information p is a probabilistic oracle machine T that is
given access to two oracles, an incidence function g : V × [d] → V ∪ {⊥} and a
device denoted Samp(V) that samples uniformly in V , and satisfies the following
two conditions:

1. The tester accepts each graph G = (V,E) ∈ Π with probability at least 2/3;
that is, for every g : V × [d] → V ∪ {⊥} representing a graph in Π and every
i ∈ p(V) (and ε > 0), it holds that Pr[T g,Samp(V)(i, ε)=1] ≥ 2/3.

2. Given ε > 0 and oracle access to any graph G that is ε-far from Π, the tester
rejects with probability at least 2/3; that is, for every ε > 0 and g : V × [d] →
V ∪ {⊥} that represents a graph that is ε-far from Π and i ∈ p(V), it holds
that Pr[T g,Samp(V)(i, ε)=0] ≥ 2/3, where the graph represented by g : V ×[d] →
V ∪ {⊥} is ε-far from Π if for every g′ : V × [d] → V ∪ {⊥} that represents a
graph in Π it holds that |{(v, j) ∈ V × [d] : g(v, j) �= g′(v, j)}| > ε · d|V |.

The tester is said to have one-sided error probability if it always accepts graphs
in Π; that is, for every g : V × [d] → V ∪ {⊥} representing a graph in Π (and
every i ∈ p(V) and ε > 0), it holds that Pr[T g,Samp(V)(i, ε)=1] = 1.

Defining the query complexity as in Sect. 1, we make analogous observations
regarding the cases of p(V) = {V } and p(V) = {|V |}. In particular,

4 For simplicity, we adopt the standard convention by which the neighbors of v appear

in arbitrary order in the sequence (g(v, 1), ..., g(v, deg(v))), where deg(v)
def
= |{j ∈

[d] : g(v, j) �= ⊥}|.

Flexible Models for Testing Graph Properties 359

Observation 2.2 (the “exact size case” reduces to the standard case): Suppose
that the graph property Π has a tester of query complexity q : N × (0, 1] →
N in the bounded-degree graph model under its standard formulation (e.g., as
in [4, Def. 9.1]). Then, Π has a tester of query complexity q′ = ˜O(q) in the
bounded-degree graph model (as in Definition 2.1) with partial information p such
that p(V) = {|V |}. Furthermore, one-sided error is preserved, and q′(n, ε) =
O(q(n, ε)) whenever q(n, ε) < n/3. The same holds (simultaneously) for time
complexity.

Proof Sketch: We follow the proof of Observation 1.2, except that here “new
vertices” are such that have not appeared in previous queries or in previous
answers (to such queries). Furthermore, when we answer a query (v, j) ∈ [|V |]×
[d] of the standard tester T by making the query (π(v), j) to our own input graph,
we may obtain as an answer either an old or a new vertex, denoted α ∈ V . In the
former case, the value of π−1(α) ∈ [|V |] is already defined, and we provide this
value as answer. Otherwise, we answer with a random w ∈ [|V |] such that π(w)
is yet undefined, and set π(w) = α. Indeed, this new vertex w is obtained from
the sampling device, and this may require repeated sampling as in the proof of
Observation 1.2. �

The No-Information Case. As in the dense graph model, natural testers that
have query complexity that depends only on the proximity parameter are eas-
ily adapted to the bounded-degree graph model (as in Definition 2.1) with no
partial information (i.e., p such that p(V) = {λ}). The list includes testers that
operate by local searchers (reviewed in [4, Sec. 9.2])5 and testers that operate
by constructing and utilizing partition oracles (reviewed in [4, Sec. 9.5]).

The Approximate-Size Case. Obviously, testers of query complexity that depend
on the size of the graph must obtain some information regarding this size, and
a constant-factor approximation will typically do (see, e.g., the bipartite tester
of [9]). We mention that testers of query complexity that is at least the square
root of the size of the graph can obtain such an approximation by sampling the
vertex-set, but this method does not preserve one-sided error probability (and
only yield probabilistic bounds on the complexity).6

The approximate-size version of Definition 2.1 is implicit in the reduction
that underlies the presentation of the proof of [4, Thm. 9.22]. The original
presentation lacks this notion of a reduction, and so it proceeds by emulat-
ing a specific tester for bipartiteness (i.e., the one of [9]) on an auxiliary graph
that is derived from the input graph. Using Definition 2.1, we can now say that

5 In some cases (e.g. [4, Sec. 9.2.3]), these testers use an estimate of |V | in order to

avoided pathological problems that arise when |V | < B
def
= O(1/ε). But determining

whether not |V | < B holds can be done by using ˜O(1/ε) samples of V , let alone that
it actually suffices to distinguish between |V | < B and |V | ≥ 2B.

6 The obvious procedure is to keep sampling till seeing, say, 100 pairwise collisions,
and then outputting the square of the number of trials (divided by 200).

360 O. Goldreich

(one-sided error) testing of cycle-freeness in the bounded-degree graph model
is randomly reducible to (one-sided error) testing of bipartiteness in the model
of Definition 2.1 with p(V) = {Ω(|V |), ..., O(|V |)}. The same holds also w.r.t
the proof of [4, Thm. 10.4], which can be presented as a reduction of testing
bipartitness in the general graph model to testing bipartiteness in the model of
Definition 2.1 with p(V) = {Ω(|V |), ..., O(|V |)}.

3 Testing Graph Properties in the General Graph Model

Here we present a more flexible version of the notion of property testing in
the general graph model (which was introduced in [12,13] and reviewed in [4,
Chap. 10]). The standard version (e.g., as in [4, Def. 10.2]) is obtained as a special
case by setting V = {1, 2, ..., n} and p(V) = n.

Unlike in the previous two models, here the representation of the graph is
decoupled from the definition of the (relative) distance between graphs. Following
the discussion in [4, Sec. 10.1.2], we define the relative distance between G =
(V,E) and G′ = (V,E′) as the ratio of the symmetric difference of E and E′

over max(|E|, |E′|) + |V |.
In this model, a graph G = (V,E) is redundantly represented by both its

incidence function g1 : V × N → V ∪ {⊥} (alternatively, we may consider g1 :
V ×[b(|V |)] → V ∪{⊥}, where b : N → N is some degree-bounding function)7 and
its adjacency predicate g2 : V × V → {0, 1}; indeed, as before, g1(v, j) = u ∈ V
if u is the jth neighbor of v (and g1(v, j) = ⊥ if v has less than j neighbors), and
g2(u, v) = 1 if and only if {u, v} ∈ E. The tester is given oracle access to the two
representations of the input graph (i.e., to the functions g1 and g2) as well as to
a device that returns uniformly distributed elements in the graph’s vertex-set.
As usual, the tester is also given the proximity parameter ε.

In addition, the tester gets some partial information about the vertex-set
(i.e., V) as auxiliary input, where this partial information is an element of a set
of possibilities, denoted p(V). (Again, two extreme possibilities are p(V) = {V },
which is closely related to the standard formulation, and p(V) = {λ}, but we
can also consider natural cases such as p(V) ∈ {|V |, |V | + 1, ..., 2|V |}). Again,
we assume that the vertex-set is a set of strings (i.e., a finite subset of {0, 1}∗).

Definition 3.1 (property testing in the general graph model, revised):8 Let Π
be a property of graphs and p : 2{0,1}∗ → 2{0,1}∗

. A tester for the graph property

7 In a previous version of this paper, we considered g1 : V × [|V | − 1] → V ∪ {⊥},
where |V |−1 served as a trivial degree bound. In retrospect, we feel that using such
an upper bound is problematic, because it may allow the tester to determine the
number of vertices in the graph (assuming that querying g1 on an input that is not in
its domain results in a suitable indication). On the other hand, allowing an infinite
representation of finite graphs is not problematic, because the representation is not
used as a basis for the definition of the relative distance between graphs.

8 Here we follow [4, Def. 10.2], rather than [4, Def. 10.1]. See discussion in [4,
Sec. 10.1.2].

Flexible Models for Testing Graph Properties 361

Π (in the general graph model) with partial information p is a probabilistic oracle
machine T that is given access to three oracles, an incidence function g1 : V ×
N → V ∪{⊥}, an adjacency predicate g2 : V ×V → {0, 1}, and a device denoted
Samp(V) that samples uniformly in V , and satisfies the following two conditions:

1. The tester accepts each graph G = (V,E) ∈ Π with probability at least 2/3;
that is, for every g1 : V × N → V ∪ {⊥} and g2 : V × V → V ∪ {⊥}
representing a graph in Π and every i ∈ p(V) (and ε > 0), it holds that
Pr[T g1,g2,Samp(V)(i, ε)=1] ≥ 2/3.

2. Given ε > 0 and oracle access to any graph G that is ε-far from Π, the tester
rejects with probability at least 2/3; that is, for every ε > 0 and (g1, g2) such
that g1 : V ×N → V ∪{⊥} and g2 : V ×V → V ∪{⊥} represent a graph that is ε-
far from Π, and every i ∈ p(V), it holds that Pr[T g1,g2,Samp(V)(i, ε)=0] ≥ 2/3,
where the graph G = (V,E) is ε-far from Π if for every G′ = (V,E′) that
represents a graph in Π it holds that the symmetric difference of E and E′ is
greater than ε · (max(|E|, |E′|) + |V |).

The tester is said to have one-sided error probability if it always accepts graphs
in Π.

Defining the query complexity as in the previous sections, we make analogous
observations regarding the cases of p(V) = {V } and p(V) = {|V |}. In particular,

Observation 3.2 (the “exact size case” reduces to the standard case): Suppose
that the graph property Π has a tester of query complexity q : N × (0, 1] → N in
the general graph model under its standard formulation (e.g., as in [4, Def. 10.2]).
Then, Π has a tester of query complexity q′ = ˜O(q) in the general graph
model (as in Definition 3.1) with partial information p such that p(V) = {|V |}.
Furthermore, one-sided error is preserved, and q′(n, ε) = O(q(n, ε)) whenever
q(n, ε) < n/3. The same holds (simultaneously) for time complexity.

References

1. Alon, N., Fischer, E., Krivelevich, M., Szegedy, M.: Efficient testing of large graphs.
Combinatorica 20, 451–476 (2000)

2. Alon, N., Shapira, A.: A separation theorem in property testing. Combinatorica
28(3), 261–281 (2008)

3. Balcan, M., Blais, E., Blum, A., Yang, L.: Active property testing. In: 53rd FOCS,
pp. 21–30 (2012)

4. Goldreich, O.: Introduction to Property Testing. Cambridge University Press,
Cambridge (2017)

5. Goldreich, O.: Hierarchy theorems for testing properties in size-oblivious query
complexity. Comput. Complex. 28(4), 709–747 (2019). https://doi.org/10.1007/
s00037-019-00187-2

6. Goldreich, O.: Testing graphs in vertex-distribution-free models. In: 51st STOC,
pp. 527–534 (2019)

7. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to
learning and approximation. J. ACM 45, 653–750 (1998)

https://doi.org/10.1007/s00037-019-00187-2
https://doi.org/10.1007/s00037-019-00187-2

362 O. Goldreich

8. Goldreich, O., Ron, D.: Property testing in bounded degree graphs. Algorithmica
32(2), 302–343 (2002)

9. Goldreich, O., Ron, D.: A sublinear bipartitness tester for bounded degree graphs.
Combinatorica 19(3), 335–373 (1999)

10. Goldreich, O., Trevisan, L.: Three theorems regarding testing graph properties.
Random Struct. Algorithms 23(1), 23–57 (2003)

11. Goldreich, O., Trevisan, L.: Errata to [10]. Manuscript, August 2005. http://www.
wisdom.weizmann.ac.il/∼oded/p ttt.html

12. Kaufman, T., Krivelevich, M., Ron, D.: Tight bounds for testing bipartiteness in
general graphs. SIAM J. Comput. 33(6), 1441–1483 (2004)

13. Parnas, M., Ron, D.: Testing the diameter of graphs. Random Struct. Algorithms
20(2), 165–183 (2002)

14. Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with applications
to program testing. SIAM J. Comput. 25(2), 252–271 (1996)

http://www.wisdom.weizmann.ac.il/~oded/p_ttt.html
http://www.wisdom.weizmann.ac.il/~oded/p_ttt.html

	Flexible Models for Testing Graph Properties
	1 Testing Graph Properties in the Dense Graph Model
	2 Testing Graph Properties in the Bounded-Degree Graph Model
	3 Testing Graph Properties in the General Graph Model
	References

