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Abstract. Chemical species can be characterized by various observable features:
mass, enthalpy of formation, charge (ions), dipole moment, magnetic susceptibil-
ity, electrical susceptibility, electromagnetic spectra, refraction index, polarizabil-
ity, electron density distribution etc. But, on the other hand, the understanding of
chemical an physical behavior is usually based on specific non-observable features
- for example: electronegativity, partial atomic charges, nucleophilicity, atomic
and molecular orbitals, aromaticity, hyperconjugation,…All non-observable fea-
tures generally have no physical unit, and are not amenable to experimental mea-
surements. For that reason the values ascribed to them are strongly dependent
on the definition(s). For example, we know (and use) various electronegativ-
ity scales: Pauling’s, Mulliken’s, Alfred-Rochov’s [1, 2], Sanderson’s, Allen’s,
and other. They are based on different theoretical assumptions, and produce (on
many instances, significantly) different numerical values. On the other hand, all
scales follow similar general trend, indicating that the values reflect some intrinsic
chemical property.

1 Introduction

Electronegativity, as a concept, is highly powerful for rationalization of atomic and
molecular properties and reactivity, and many attempts were made to obtain the scale
which will precisely mimic them. The first electronegativity scale was proposed by
Pauling [3]. It was based on the fact that the energy, D, of a heteronuclear bond, A&B,
is generally higher than the average bond energies of the homonuclear bonds, A&A and
B&B. (This is actually the root of idea of resonance.)

D(AB) = 1

2
[D(AA) + D(BB)] + �AB

The square root of the stabilization term, �AB, was found to be proportional to
atomic constants that were defined by Pauling as atomic electronegativities,

√
�AB ∝ χA − χB .
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It was quickly recognized that electronegativity of an atom depends on the other
bonds in the molecule (e.g. on hybridization).

Another method for definition of electronegativity is well designed for account of
mode of bonding. Mulliken electronegativities are defined as a balance between electron
attracting and electron releasing ability [4]:

Hence, Mulliken defined the electronegativity of an orbital ν (another unobservable)
of an atom A as the mean of the correspondent ionization potential (IAν) and electron
affinity (EAν),

χAv = 1

2
(IAv + EAv)

Based onMulliken’s definition, a number of ‘improved’ models emerge [5–9]. Many
of them have rather sophisticated computational methodology, but in essence a little
improvement was achieved.

Generally, use of Mulliken electronegativities is most popular due the simplicity of
the calculation method.

Situation with partial atomic charges (PAC) is even more complicated, because more
than30different scales are known, and canbedivided in four classes, basedon themethod
for defining them.

Concept of partial atomic charges, which is also important term in chemistry, is
closely connected to the electronegativity. First definition is known as Coulson’s net
atomic charges [10].

qA = ZA −
∑

μ∈A

Pμμ

where qA is the net atomic charge on Ath nucleus, ZA the charge of Ath nucleus (atomic
number), and Pμμ the density matrix given by the summation of multiplications of M.O.
coefficients (c) over occupied orbitals;

Pμμ =
occ∑

i=1

cμi cνi

Originally it was introduced for the analysis ofHückelmolecular orbitals, but quickly
is upgraded with Mulliken definition [11] which is better suited for the analysis of all
valence orbitals population.

qA = ZA −
∑

μ∈A

∑

ν∈A

PμηSμν

where Sμν is the overlap matrix. Therefore, the Mulliken’s net atomic charges give
similar values to the Coulson net atomic charges.

Further variant based on the same (Mulliken’s) idea is proposed by Mayer [12, 13]
involving much more sophisticated model for interatomic electron density partition.
Amount of such variants for the calculation of PAC is very large, but it is hard to pick
one which is more reliable than the other.
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Density functional theory is a quantum-chemical method for accurate calculation of
electron density distribution. It stems from the basic idea of quantum chemistry, that all
molecular properties are derived from the distribution of electron density in molecule(s).
Corollary, it justifies the use of partial atomic charges in molecule which reflect the
distribution of electron density. Specificity of DFT method(s) is in the inclusion of
electron correlation in the calculation of electron distribution in molecule. Besides DFT,
many semiempirical methods implicitly include electron correlation in the distribution
of electron density calculations. Therefore, they offer a quick computation methodology
for the calculation of the distribution of electron density in the molecule.

2 Observables Correlated with Partial Atomic Charges

Partial atomic charges were tested as a reliable method for the calculation of the
observable properties of molecules [14].

The observablewhich is naturallymost directly related to PAC, is the dipolemoment
of molecules. In the special case of diatomic molecules, dipole moments can be used for
experimental determination of partial atomic charges.

There are number of results on ESCA and 1H-NMR chemical shifts, [15–20]
dependence on partial atomic charges. PAC values were proven to be important, but
chemical shifts in ESCA and NMR are markedly influenced by general electron density
distribution.

Many studies were devoted toElectrostatic effects betweenmolecules. Themodels
for the prediction of conformations and properties of polymers [21, 22] and proteins [23,
24] are mostly based on electrostatic interactions between partially charged atoms in the
neighboring polymer chains. Optimization of these interaction may lead to definition
of electrostatic potential surfaces, and from them can be inferred a special scale of
partial atomic charges. These charges are very reasonable for the atoms on the surface
of molecules, but are quite unreasonable for atoms buried inside the complex molecule.

It was proven thatElectronic polarizability is strongly coupledwith atomic charges,
[25, 26] and was mostly applied for the structures in the solid state [27].

Chromatographic retention indices were well correlated with molecular descrip-
tors based on atomic partial charges [28, 29]. Using similar methodology, the odor
thresholds were successfully predicted, too.

Surface tension, boiling point, [29, 30] simulation of bulk densities, surface tension,
and molecular orientation at liquid/vapor interface of molecular system, [31] hydration
free energy estimates, [32] and many other simulations of observables are based on PAC
[33–35].

A common chemist’s intuition hints that acid dissociation constants should be
directly related to the partial charge on acidic hydrogen [36]. The acid dissociation
constant, Ka, which describes the extent to which the compound dissociates in the gas
phase or in the solution, is a fundamental property of many chemical compounds. It is
a key feature which governs the chemical reactivity of the substances in any solvent,
and the interaction with the solvent itself. In aqueous solution, the pKa is a proxy for
several pharmacokinetic properties. Jointly with integrity, lipophilicity, solubility, and



4 I. Juranić

permeability, pKa has been considered as one of the five key physico-chemical profiling
screens to predict the key properties that affect ADME(T) characteristics [37].

Because no strongly founded method exists for the calculation of partial atomic
charges in molecules, we intentionally used a fast semi empirical molecular orbital
method, MNDO-PM3 (which by default calculates Mulliken partial atomic charges).
This was chosen as one well balanced for hydrogen-bonding interactions. Basic MNDO
underestimates hydrogen bonding, and MNDO-AM1 overestimates it [38–40].

The idea was tested on demanding example: the set of unsaturated and epoxy
polycarboxylic acids presented in Scheme 1.

a b

1. R1 = H ;  R2 = H ;  R3 = COOH ;  R4 = COOH

2. R1 = H ;  R2 = COOH ;  R3 = COOH ;  R4 = H 

3. R1 = CH3 ;  R2 = H ;  R3 = COOH ;  R4 = COOH

4. R1 = CH3 ; R2 = COOH ;  R3 = COOH ;  R4 = H 

5. R1 = H ;  R2 = H ;  R3 = COOH ;  R4 = CH2COOH

6. R1 = H ;  R2 = CH2COOH ;  R3 = COOH ;  R4 = COOH

7. R1 = COOH ;  R2 = CH2COOH ;  R3 = H ;  R4 = COOH

SCHEME 1

For these 14 acids the 32 dissociation constants were measured [41]. The simple
correlation with calculated charge on acidic hydrogen failed (as can be seen on Fig. 1).

A logical explanation is that solvation plays important role in the course of the
dissociation to ions. When partial charges on all atoms in carboxylic group (-C(=O)OH)
are included, the “composite” charge, Q, as a weighted sum of atomic charges, according
to the formula (Eq. 1) can be derived:

Q = qH + A · qO− + B · qC + C · qO= + D (1)

The values of the parameters (after the renormalization) are:

−1 ± 0.0940 (for qH) A = −0.4931 ± 0.0235;
B = −0.0820 ± 0.0321; C = − 0.0368 ± 0.0249;
D = 0.1728 ± 0.0344; (r = 0.9456, n = 32).
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Fig. 1. Relation between measured pKa values of β-alkenoic acids (hollow markers) and corre-
sponding epoxy acids (filled markers), and of calculated charges on carboxylic hydrogen for 1st,
2nd, and 3rd dissociation.

This correlation is plotted on Fig. 2.
The magnitude of parameters A-D could give insight into the mechanistic details

of reactions involving carboxylic group. The major weight of charges on hydrogen and
on hydroxylic oxygen, supports the well-established concept of polarity of O-H bond
as a dominant factor determining the efficiency of carboxylic acids dissociation. This
is directly confirmed by polylinear correlation including only charges on hydrogen and
hydroxylic oxygen. The correlation with charges calculated by the equation:

Q’= qH + A · qO− + B (2)

is only slightly inferior to that from Eq. (1) [−1 ± 0.1070 (for qH); A = −
0.5480 ± 0.0267; B = 0.1372 ± 0.0314; r = 0.9384, n = 32].

The obvious achievement of this approach is a single basis for the evaluation of all
dissociation steps of polycarboxylic acids.

An extensive study is made to find what influences the accuracy of prediction by this
approach [42]. In some cases the quality of correlation is slightly improved by addition
of the simulation of solvent (medium). When charges are calculated by some ab initio
method, the use of charges derived from Natural Bonds Analysis (NBO) gives better
correlation.

The method is successfully applied for the prediction of pKa of protonated amines,
too. Because here is no carboxylic group, the method is slightly modified [43]. We
decided to include in correlation the charge on vicinal nitrogen atom (qN) along with
the partial atomic charge on hydrogen (qH):

pKa(calc) = A × qH + B × qN + C × I + D (3)
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Fig. 2. Relation betweenmeasured pKa values of β-alkenoic (hollow symbols) and corresponding
epoxy acids, and of calculated “composite” charges derived from charges of all atoms in carboxyl
group.

Here, I is the index variable to distinguish between primary, secondary and tertiary
amines. We didn’t deeply analyze this variable, but it is clear that it must account for
differences in steric hindrance, solvation, and other effectors for acidity of ammonium
ions. For this purpose it is set to have integer values. Polylinear regression of data of 57
amines gives the following statistics:

A = −140.878; B = −11.775; C = −1.250; D = 52.773

n = 57; r = 0.937; sd = 0.604; F = 126.306

The correlation between pKa and pKa(calc) of ammonium ions is presented on Fig. 3.
This simple model works equally accurate as various other very sophisticated

approaches, and can be valuable aid in estimation of pKa values of aliphatic amines.
In Fig. 3 is obvious that the scattering of data is minimal for primary amines. A likely
reason for it is that among secondary and tertiary amines the cyclic amines (with N atom
in the ring) are included, which can have markedly reduced steric hindrance. We didn’t
check quinuclidine, because its peculiar structure (bridgehead tricyclic amine) will set
it as outlier.
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Fig. 3. Correlation of experimental and calculated (Eq. 3) pKa values for 57 aliphatic amines.
Standard deviation of estimate is 0.593.

The analogous approach was successfully applied for the correlation of the rate con-
stants for the esterification of substituted pyrimidine acids with diazo diphenyl methane
(DDM) [44] (Table 1).

R C6H4 C
O

O

H
C
Ph

Ph
N

+
N

R C6H4 C
O

O
H

C
Ph

Ph
N

+
N

R C6H4 C
O

O CH
Ph

Ph

(1)

(2)

+ N2

Transition states 
SCHEME 2.

The reaction kinetics is compatible with either transition state shown on Scheme 2:
Concerted five (1) and three (2) membered transition states for the esterification of
carboxylic acids with DDM.

A straightforward correlation of log k2 rate constants with charges on the carboxylic
hydrogen (qH) was satisfactory having regression coefficient r = 0.9708 (Fig. 4, Left).
n = 11, s = 0.001.

An analysis is done on the contribution of the partial charges on every atom of the
carboxylic group of each acid to the composite charge Q, obtained according to Eq. (1),
as shown in Fig. 4, Right (r = 0.9911).

The calculated parameters are as follows: qH = 1.00 ± 0.23, A = 0.06 ± 0.19, B =
0.32 ± 0.14 C = 1.44 ± 0.10, denoting the relative contribution of the atomic charges
to the overall charge expression of the carboxylic group.
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Table 1. Various 2,6-disubstituted-4-pyrimidine carboxylic acids subjected to calculation by
AM1 semiempirical MO method, including solvation effects of DMF.

N

N

Y

X COOH

1
2

3 4

56

N (1) N (3) X Y 
1 -SCH3 -OH
2 -H -OH
3 -H -H
4 -Cl -CH3

5 -OH -CH3

6 -CH3 -H =O =O
7 -OH -OH
8 -CH3 -CH3 =O =O
9 -SH -OH
10 -Cl -Cl
11 -CH3 -OH
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Fig. 4. Left: Correlation of the log (k2) values with calculated charges on carboxylic hydrogen
(qH): Right: the same correlation of log k2 with derived charges (Q) according to the Eq. (1).

Amongmost probable transition states for this reaction, the first one on the Scheme 2,
above, is compatible with the values of parameters obtained by polylinear regression of
Eq. 1. In other words, high value of parameter C shows the dominant role of carbonyl
oxygen interaction with DDM in the transition state of the reaction.

In these calculations, only the most stable conformations of molecules were con-
sidered. Preliminary results show that for conformationally mobile molecules, the dis-
tribution among various conformations markedly influence the reactivity. A weighted
contribution of most stable conformations of the same acid could give more accurate
description of reactivity.
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3 Conclusion

In this short review is shown that calculated partial atomic charges (the easily obtainable
non-observable property) can be used for relatively accurate estimation of (observable)
pKa values of carboxylic acids and of protonated amines. Similar approach can enable
to decide on most probable mechanism for the reaction with carbene precursors, too.

Acknowledgments. Ministry of Education, Science, and Technological Development of the
Republic of Serbia supported this work, Grant No. 172035. Author gratefully acknowledge the
computational time provided on the PARADOX cluster at the Scientific Computing Laboratory
of the Institute of Physics, Belgrade.

References

1. Allred, A.L., Rochow, E.G.: A scale of electronegativity based on electrostatic force. J. Inorg.
Nucl. Chem. 5(4), 264–268 (1958). https://doi.org/10.1016/0022-1902(58)80003-2

2. Ghosh,D.C., Chakraborty, T.: Gordy’s electrostatic scale of electronegativity revisited. J.Mol.
Struct. (THOECHEM) 906, 87–93 (2009). https://doi.org/10.1016/j.theochem.2009.04.007

3. Pauling, L.: The nature of the chemical bond. IV. The energy of single bonds and the relative
electronegativity of atoms. J. Am. Chem. Soc. 54, 3570–3582 (1932). https://doi.org/10.1021/
ja01348a011

4. Mulliken, R.S.: New electroaffinity scale; together with data on valence states and on valence
ionization potentials and electron affinities. J. Chem. Phys. 2, 782–793 (1934). https://doi.
org/10.1063/1.1749394

5. Hinze, J., Jaffé, H.H.: Electronegativity. I. Orbital electronegativity of neutral atoms. J. Am.
Chem. Soc. 84, 540–546 (1962)

6. Hinze, J., Whitehead, M.A., Jaffé, H.H.: Electronegativity. II. Bond and orbital electronega-
tivities. J. Am. Chem. Soc. 85, 148–154 (1963)

7. Hinze, J., Jaffé, H.H.: Electronegativity. III. Orbital electronegativities and electron affinities
of transition metals. Can. J. Chem. 41, 1315–1328 (1963). https://doi.org/10.1139/v63-183

8. Hinze, J., Jaffé, H.H.: Electronegativity. IV. Orbital electronegativities of the neutral atoms
of the periods three A and four A and of positive ions of periods one and two. J. Phys. Chem.
67, 1501–1506 (1963). https://doi.org/10.1021/j100801a024

9. Iczkowski, R.P., Margrave, J.L.: Electronegativity. J. Am. Chem. Soc. 83, 3547–3551 (1961).
https://doi.org/10.1021/ja01478a001

10. Coulson, C.A., Longuet-Higgins, H.C.: The electronic structure of conjugated systems. II.
Unsaturated hydrocarbons and their hetero-derivatives. Proc. Roy. Soc. (London) A 192,
16–32 (1947). https://doi.org/10.1098/rspa1947.0136

11. Mulliken, R.S.: Electronic population analysis on LCAO-MOmolecular wave functions. I. J.
Chem. Phys. 23(10), 1833–1840 (1955). https://doi.org/10.1063/1.1740588

12. Mayer, I.: Charge, bond order and valence in the AB initio SCF theory. Chem. Phys. Lett.
97(3), 270–274 (1983). https://doi.org/10.1016/0009-2614(83)80005-0

13. Mayer, I.: Charge, bond order and valence in the AB initio SCF theory. Chem. Phys. Lett.
117(4), 396 (1985). https://doi.org/10.1016/0009-2614(85)85253-2
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