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Abstract We study and compare different discretizations of the van Roosbroeck
system for charge transport in bulk semiconductor devices that can handle nonlinear
diffusion. Three common challenges corrupting the precision of numerical solutions
will be discussed: boundary layers, discontinuities in the doping profile, and corner
singularities in L-shaped domains. The most problematic of these challenges are
boundary layers in the quasi-Fermi potentials near ohmic contacts, which can have
a drastic impact on the convergence order.

Keywords Finite volume method · Finite element method · Nonlinear diffusion ·
Scharfetter-gummel scheme · Semiconductors · Van roosbroeck system ·
Convergence order · Diffusion enhancement

MSC (2010) 35Q99 · 82D37 · 65M08 · 65M06 · 65M60

1 Introduction

The present paper aims at comparing different discretization philosophies for semi-
conductor problems. We study three major challenges for recent finite element and
finite volume schemes which are designed to deal with nonlinear diffusion in a
thermodynamic consistent way and are based on quasi-Fermi potentials as primary
variables. In particular, we study the error and convergence rate of the numerical solu-
tions in the presence of: boundary layers, discontinuous doping profile and corner
singularities.
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2 Modelling Semiconductors with Ohmic Contacts

2.1 Stationary van Roosbroeck System

The van Roosbroeck system is a drift-diffusion model, which describes the recom-
bination and transport of charge carriers driven by diffusion and by electric fields
within a semiconductor device. It consists of three nonlinear, coupled partial differ-
ential equations for the electrostatic potentialψ : Ω → R aswell as the non-negative
electron and hole densities n : Ω → R

+ and p : Ω → R
+, namely a Poisson equa-

tion and two continuity equations. We consider a homogeneous material and some
domain Ω ⊆ R

d for d ∈ {1, 2, 3} in an isothermal setting. Then the stationary van
Roosbroeck system is given by the system of elliptic partial differential equations

−∇ · (ε0εr∇ψ) = q
(
C + p(ψ, ϕp) − n(ψ, ϕn)

)
, (1a)

∇ · jn = +qR, (1b)

∇ · jp = −qR, (1c)

where q denotes the elementary charge, ε0 is the vacuum permittivity and εr is the
relative permittivity of the material. The recombination rate R and the charge-carrier
currents jn , jp depend on the solution n, p, ψ and vanish in thermal equilibrium. The
given doping concentration C : Ω → R (intentionally introduced impurities) varies
spatially and can have discontinuities. The equations of state are given by

n(ψ, ϕn) = NcF

(
q(ψ − ϕn) − Ec

kBT

)
, (2a)

p(ψ, ϕp) = NvF

(
q(ϕp − ψ) + Ev

kBT

)
, (2b)

where the statistical distribution function F relates the electron and hole densities
n, p to the quasi-Fermi potentials ϕn, ϕp. Working with quasi-Fermi potentials has
all the advantages mentioned in the introduction, in particular from a modeling and
computational point of view. Furthermore, we set the recombination rate to zero as
it plays a minor role for most of our considerations.

The effective density of states for electrons in the conduction band Nc and holes in
the valence band Nv as well as the corresponding band-edge energies Ec, Ev and the
band gap Eg = Ec − Ev arematerial parameters and assumed to be spatially constant
in this paper. Temperature and the Boltzmann constant are denoted with T and kB .
The three most important reference cases for the statistical distribution functions are
the Boltzmann, Blakemore and Fermi-Dirac function. For each distribution function,
the corresponding current densities in (1b) and (1c) are
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jn = −qμnn∇ϕn = −qμnn∇ψ + qDn∇n, (3a)

jp = −qμp p∇ϕp = −qμp p∇ψ − qDp∇ p. (3b)

Using the thermal voltageUT = kBT
q , the diffusion coefficients Dn, Dp are linked to

the carrier mobilities μn, μp via generalized Einstein relations

Dn

μn
= UT g

(
ηn

)
,

Dp

μp
= UT g

(
ηp

)
, g(η) = F (η)

F ′(η)
, (4)

where g is the diffusion enhancement as motivated in [8].
The system (1) is supplied with mixed Dirichlet-Neumann boundary conditions.

3 Discretization of the van Roosbroeck System Using
Potentials

In the following we are going to explain standard discretization methods to solve the
van Roosbroeck system.

3.1 Finite Element Method

AssumeΩ ⊂ R
2 is a polygonal domain and letTh be an admissible decomposition of

Ω into Ntria triangles and Nvert vertices, such that Ω = ⋃Ntria
t=1 τt for τt ∈ Th . Similar

as in [2], we solve the stationary van Roosbroeck system (1) using a standard P1 finite
element method. We seek the electrostatic potential and the quasi-Fermi potentials
uh = (ψh, ϕh

n , ϕ
h
p) ∈ V h , such that the van Roosbroeck system can be written in the

weak form as

0 =
∫

Ω

(
ε0εr∇ψh · ∇vi − q

(
C + p(ψh, ϕh

p) − n(ψh, ϕh
n )

)
vi

)
dx, (5a)

0 =
∫

Ω

(
qμnn(ψh, ϕh

n )∇ϕh
n · ∇v j − qR

(
n(ψh, ϕh

n ), p(ψ
h, ϕh

p)
)
v j

)
dx, (5b)

0 =
∫

Ω

(
qμp p(ψ

h, ϕh
p)∇ϕh

p · ∇vk + qR
(
n(ψh, ϕh

n ), p(ψ
h, ϕh

p)
)
vk

)
dx, (5c)

for all suitable test functionsvh = (vi , v j , vk) ∈ V h ,whereV h ∼= R
Nvert×3 is the 3Nvert

dimensional space of vectorial continuous functions which are piecewise linear on
each triangle τt .
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3.2 Finite Volume Method

In this section, we present a Voronoï finite volume technique [4, 6, 7]. Similar as for
finite elements, we start by partitioning the domain Ω into non-intersecting, convex
polyhedral control volumes ωk such that Ω = ⋃Nvert

k=1 ωk . We associate with each
control volume ωk a node xk ∈ ωk . For every boundary intersecting control volume,
we demand that this node lies on the boundary xk ∈ ∂Ω ∩ ωk . Assuming the partition
is admissible [3], i.e. for two adjacent control volumes ωk and ωl , the edge xkxl of
length hkl is orthogonal to ∂ωk ∩ ∂ωl , the normal vectors to ∂ωk can be calculated
by νkl = (xl − xk)/‖xl − xk‖. We note that the variables (ψ, ϕn, ϕp) are of interest
only at the nodes, not at the edges.

For each control volume ωk , the finite volume discretization is given by the three
equations:

∑

ωl∈N (ωk )

|∂ωk ∩ ∂ωl | jψ;k,l = q|ωk |
(
Ck + p(ψk, ϕp;k) − p(ψk, ϕn;k)

)
, (6a)

∑

ωl∈N (ωk )

|∂ωk ∩ ∂ωl | jn;k,l = +q|ωk |R(ψk, ϕn;k, ϕp;k), (6b)

∑

ωl∈N (ωk )

|∂ωk ∩ ∂ωl | jp;k,l = −q|ωk |R(ψk, ϕn;k, ϕp;k). (6c)

We denote with N (ωk) the set of all control volumes neighboring ωk . In 2D, the
measure |∂ωk ∩ ∂ωl | corresponds to the length of the boundary line segment and in
3D to the area of the intersection of the boundary surfaces.

The unknownsψk , ϕn;k ,ϕp;k correspond to the electrostatic potential as well as the
quasi-Fermi potentials for electrons and holes evaluated at node xk . To approximate
the fluxes in (6) using generalF , ideas from [1] are useful to derive a finite volume
scheme for convection-diffusion problems in a thermodynamically consistent way
by averaging the nonlinear diffusion term appropriately.

4 Numerical Examples

In this section, we are going to present numerical solutions of the van Roosbroeck
system via FE and the Scharfetter-Gummel FV discretization. We focus on two
challenges, which have an impact on the convergence rate of solutions: the size of a
boundary layer and the regularity of the doping. Since in this section we are mostly
concerned with numerical solutions, we will drop the superindex h. If necessary,
we replace it with the acronym of the corresponding discretization method. Also we
remind the reader that we solve the van Roosbroeck system without recombination,
i.e., R ≡ 0. Throughout this section, we use the Blakemore distribution function.
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4.1 Resolution of Boundary Layer

In Fig. 1 the densities n, p and the doping C are shown for the two cases κ =
5 · 102 and κ = 5 · 105 at Vext = 3V. Note that in both cases, the hole density p
has a boundary layer at x = 0 and the electron density n has a boundary layer
at x = 0.3µm. This boundary layer, however, is on the length scale of λD and
therefore nicely resolved by the mesh. On the level of the plot, the difference in
solutions corresponding to the two alternative doping profiles is not visible. In the
left panel of Fig. 2 we show the potentials (ψ, ϕn, ϕp) for Vext = 3V. While the
electrostatic potential in both cases is a rather smooth function (blue line), the quasi-
Fermi potentials have a boundary layer of size �J (green and red line) that can not be
resolved on any of the uniform meshes. This logarithmic boundary layer is predicted
by our analysis in [5]. As one can see in Fig. 2 (middle and right panel), the solution
effectively jumps within the last interval before the ohmic contact.
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Fig. 1 1D electron and hole densities n, p and doping C at bias Vext = 3V shown (left) with
κ = 500 and (right) with κ = 5 · 105, the former yielding a smooth doping profile and the latter
practically a discontinuous one

x [μm]
0 0.05 0.1 0.15 0.2 0.25 0.3

po
te
nt
ia
l
[V

]

0

0.5

1

1.5

2

2.5

3 electrostatic potential
quasi-Fermi potential n

quasi-Fermi potential p

x [μm]
0.26 0.27 0.28 0.29 0.3

po
te
nt
ia
l
[V

]

1.5

2

2.5

3 n h = 2−3

n h = 2−5

n h = 2−7

n h = 2−9

x [μm]
0.26 0.27 0.28 0.29 0.3

po
te
nt
ia
l
[V

]

1.5

2

2.5

3 n h = 2−3

n h = 2−5

n h = 2−7

n h = 2−9

Fig. 2 1D quasi-Fermi potentials of electrons and holes ϕn, ϕp and electrostatic potential ψ (left)
with bias Vext = 3V as well as boundary layers in the electron quasi-Fermi potential ϕn near
x = 0.3µm for different mesh resolutions h (middle) for finite element and (right) Scharfetter-
Gummel type finite volume discretization for κ = 500
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4.2 Regularity of the Doping

Next, we discuss the influence of the smoothness of the doping on the convergence
order for the different discretizationmethods.Wheneverwecompare a coarse discrete
solution (of size 2h) to a finer one (of size h), we restrict the finer solution to the
coarser mesh. Then we can subtract uh from u2h and slightly abusing the notation
write ‖uh − u2h‖ for the corresponding norm. Provided that the doping is sufficiently
smooth and the carrier densities converge sufficiently fast, then the FV discretization
of the Poisson equation is second order accurate, see the convergence for n, p, ψ
in the top right panel of Fig. 3. When the doping is discontinuous (κ = 5 · 105), the
bottom row in Fig. 3 shows that also the convergence order of the FV electrostatic
potential becomes linear, which is plausible by standard FE error estimates. From
Fig. 3 it appears that while the error in the FE method is dominated by the quasi-
Fermi potentials, the error in the FV method is dominated by the lack of regularity
in the doping.
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Fig. 3 L2 convergence rates in 1D for solution (left) of the FE discretization and (right) of the FV
discretization with κ = 500 in the top row and for κ = 5 · 105 in the bottom row at Vext = 3V
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4.3 Corner Singularities and Boundary Adapted Meshes

Semiconductor devices may often be angular-shaped. However, in particular L-
shaped domains pose numerical difficulties which we would like to study for the
FE and FV methods. We consider a two-dimensional L-shaped domain

Ω = [0, 2L]2 \ [0, L]2 ⊂ R
2, (7)

and impose ohmic contacts at the boundaries (x, 0) and (0, y) for L ≤ x, y ≤ 2L .
All other boundaries are suppliedwith homogeneous Neumann boundary conditions.
The p-i-n doping concentration C : Ω → R is given by

C(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

+C0 0 ≤ x ≤ L/2,

−C0 0 ≤ y ≤ L/2,

+2C0(L − x)/L L/2 < x ≤ L ,

−2C0(L − y)/L L/2 < y ≤ L ,

0 otherwise

(8)

with x = (x, y) and as before L = 10−7m = 0.1µmandC0 = Cm = 1023 m−3.With
this choicewe ensure that the convergence order does not suffer from the regularity of
the doping. However, constructing a non-convex domain with a corner angle ϑ = θπ

and θ = 3/2 imposes a corner singularity of the form ψ(x) ∼ r1/θ as r → 0 for
r = √

(x − x0)2 + (y − y0)2 at x0 = y0 = 0.1µm.
The upper left panel of Fig. 4 shows the convergence of the electron quasi-Fermi

potentials at Vext = 3V,where the FE and FV are compared on a sequence of uniform
and a sequence of boundary adapted meshes. As in 1D, the FV method converges
quadratically. Furthermore, for the FV discretization the error seems not to be influ-
enced very much by the boundary adapted meshes. In contrast, the FE method again
has a lower convergence order and local adaptivity improves the L2 error of the
solution by about one order of magnitude.

The lower panels of Fig. 4 show the solutions at Vext = 0.2V, where the boundary
layer is moderate and solutions are closer to thermal equilibrium. Hence, the lower
left panel shows the general tendency to have lower errors. However, the convergence
is slower with an order betweenO(h) andO(h4/3), indicating a stronger influence of
the corner singularity. This effect is even more pronounced in the lower right panel,
in which for all the used methods the convergence of the electrostatic potential nicely
follows the O(h4/3) order predicted by the error analysis of the corner singularity.
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Fig. 4 Convergence of solutions on different meshes as a function of relative triangle size h = 2−�

for a electron quasi-Fermi potential ϕn at Vext = 3V, b electrostatic potential ψ at Vext = 3V, c
electron quasi-Fermi potential ϕn at Vext = 0.2V, d electrostatic potential ψ at Vext = 0.2V

5 Conclusion

Summarizing, in 2D both FE and FV discretizations deliver reasonable results.While
the finite volume scheme often shows better convergence rates, the finite element
method can be drastically improved by using meshes which are finer near ohmic
contacts. We clearly observe that depending on the potential and the selected bias,
the error is dominated by the boundary layer or the corner singularity. While the FV
method generally handles the boundary layer well, the FE method in 2D introduces
extra oscillations in the boundary layer, see [5] for details.
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