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Abstract We propose an application of the new monotone embedded discrete frac-
ture method (mEDFM) [13] to the two-phase flow model. The new method for
modelling of flows in fractured media consists in coupling of the embedded discrete
fracture method (EDFM) with the nonlinear monotone finite volume (FV) scheme
with two-point flux approximation, which preserves non-negativity of the discrete
solution. The resulting method combines effectiveness and simplicity of the standard
EDFM approach with accuracy and physical relevance of the nonlinear FV schemes
for non-orthogonal grids and anisotropic media. Numerical experiments show that
the two-phase flow modelling with the mEDFM provides much more accurate solu-
tion compared to the conventional EDFM, and is in a good agreement with the
discrete fracture method, which directly applies the nonlinear FV method to a grid
with fractures explicitly represented by 3D cells.
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1 Introduction

A significant amount of world’s hydrocarbon reserves lies in reservoirs with fractures
of various length scales.

One of popularmethods of accounting fractures is the embedded discrete fractures
method (EDFM). The method was first proposed in [7] as a hierarchical approach
to modelling fractures in porous media. Small fractures were accounted implicitly
by their effective properties, while large fractures were considered explicitly. This
method canbe coupledwith any approach such as the dual-porosity dual-permeability
method and others. The idea of representing large-scale fractures by embedded grids
independent of the reservoir gridswas presented in [8]. The family of EDFMmethods
was further developed in [4, 5, 10].

In EDFM fractures are considered as surfaces with prescribed apertures, and the
connecting term between fractures and surrounding rock matrix can be derived by
dimensionality reduction [6].

The original EDFMwas proposed for the structured grid and isotropicmedia, thus
the conventional linear two-point flux approximation (TPFA) schemewas used for all
discrete fluxes. However, it is well known that the linear TPFA lacks approximation
on non-K-orthogonal grids. One popular alternative to the linear TPFA is the linear
multi-point flux approximation [1], which is second-order accurate, but may be non-
monotone for the cases with anisotropic media, which often coexists with fractures.

In our previous work [13] we proposed the monotone embedded discrete fractures
method (mEDFM) which couples the original EDFM approach with two advanced
nonlinear schemes: themonotone two-point flux approximation (NTPFA) [3] and the
compact multi-point flux approximation (NMPFA) satisfying the discrete maximum
principle (DMP) [2, 9]. The importance of the monotone and DMP schemes for the
multi-phase flow models was studied in [11].

In this paper we consider the application of the mEDFM to the two-phase flows
in porous media and compare the results with the original EDFM and with the
discrete fracture method, which assumes explicit representation of fractures by the
computational grid and uses the similar nonlinear scheme for the flux discretization.

2 Two-Phase Flow Model

The basic equations for the two-phase flow in a domain Ω ⊂ R
3 are the following:

1. Mass conservation for each phase:

∂ραϕSα

∂t
+ div (ραuα) = qα, α = w, o. (1)

2. Darcy’s law:
uα = −λαK (∇ pα − ραg∇z) , α = w, o. (2)



Monotone Embedded Discrete Fracture Method for the Two-Phase Flow Model 559

3. Two fluids fill the voids:
Sw + So = 1. (3)

4. Pressure difference between phases is given by the capillary pressure pc =
pc(Sw):

po − pw = pc. (4)

Here K is the absolute permeability tensor, ϕ(p) is the porosity, g is the grav-
ity term, z is the depth. For the phase α we have denoted: the pressure pα

(unknown), the saturation Sα (unknown), the Darcy’s velocity uα (unknown), the
density ρα(p) = ρα,0/Bα(p), the formation volume factor Bα(p), the mobility
λα(p, S) = krα(S)/μα(p), the relative permeability krα(S), the viscosityμα(p), and
the source/sink well term qα (e.g. the injector or producer wells).

For the boundaries we consider no-flow condition, and for the wells the simple
Peaceman formula is used [14]. For a cell T with center xT connected to the well we
have:

qα(x) = ραkrα
μα

W I
(
pbh − p − ραg(zbh − z)

)
δ(x − xT ), (5)

where pbh is the bottom hole pressure, zbh is the depth of the bottom hole,W I is the
well index, which does not depend on the properties of fluids, but depends on the
properties of the media, δ is the Dirac delta function.

3 Embedded Discrete Fracture Method

For representation of the fractured reservoir we use two types of media: the matrix
domain Ωm ⊂ R

3 and the fractures domain Ω f ⊂ R
3 represented by n f virtual

domains Ω f =
n f⋃
i=1

Ω f,i .

Each fracture Ω f,i is considered as the surface extruded on the fracture aperture
w f,i . We assume that the fractures permeability and porosity are significantly larger
than that of the porous media.

Next we define mass balance equation (1) for each of the domains Ωm , Ω f [5]:

∂ραϕmSmα
∂t

+ div
(
ραumm

α

) + div
(
ραum f

α

) = qm
α , in Ωm, α = w, o, (6)

∂ραϕ f S f
α

∂t
+ div

(
ραu f m

α

) + div
(
ραu f f

α

) = q f
α , in Ω f , α = w, o, (7)

where umm
α is the cell-to-cell Darcy’s flux identical to (2) for pressure pm and satu-

ration Sm defined in the matrix, u f f
α is the similar flux for the fractures domain for
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Fig. 1 Darcy fluxes for a
fracture in porous media:
cell-to-cell (green),
cell-to-fracture (blue) and
intra-fracture (red)
exchanges

F
i

T
−

T
+
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T T

unknowns p f and S f defined in fractures, and um f
α = −u f m

α is the additional flow
between the matrix and the fractures.

On the discrete level, for each grid cell T there is a set of the matrix unknowns
pmα,T , S

m
α,T , and n f,T fracture unknowns p f

α, fi
, S f

α, fi
, where n f,T is the number of

fractures Fi inside the cell.
The fully implicit scheme is used for the solution of the coupled equations. For

the spatial discretization we use the finite volume method, however instead of one
flux we need to approximate three types of fluxes u∗ in Eqs. (6) and (7), which are
schematically presented in Fig. 1. We use the following space discretizations for the
fluxes (colors correspond to the ones in the figure):

• For the cell-to-cell flux between cells T+ and T− we use the nonlinear TPFA
scheme [3] both for the pressure (including capillary) and the gravity terms:

div
(
ραumm

α

) ≈ upw
[
ρn+1

α (pm)λn+1
α (Sm, pm),

(
M+(pm)pm+ − M−(pm)pm−

)]

− upw
[
ρn+1

α (pm)λn+1
α (Sm, pm),

(
M+(z)ρ+gz+ − M−(z)ρ−gz−

)]
.

• For the fracture-to-cell flux within cell T we use the conventional linear TPFA:

div
(
ραum f

α

) ≈ upwm f

[
ρn+1

α (p)λn+1
α (S, p), Mmf

T

(
pm − p f

) ]

− upwm f

[
ρn+1

α (p)λn+1
α (S, p), Mmf

T

(
ρmgzm − ρ f gz f

) ]
.

• For the intra-fractureflux between virtual fracture cells T−,i and T+,i (intersection
of the fracture Fi with cells T− and T+, respectively) we also use the linear TPFA:

div
(
ραu f f

α

) ≈ upw
[
ρn+1

α (p f )λn+1
α (S f , p f ), M f f

(
p f

+ − p f
−
) ]

− upw
[
ρn+1

α (p f )λn+1
α (S f , p f ), M f f (ρ+gz+ − ρ−gz−)

]
.

Here, M±(p) are the coefficients of the nonlinear discretization scheme, M∗ are
the EDFM coefficients presented in [13], and ‘upw’ are the upwind functions:
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upw
[
f (C), v

] =
{
f (C+)v, v ≥ 0,
f (C−)v, v < 0,

upwm f

[
f (C), v

] =
{
f (Cm)v, v ≥ 0,
f (C f )v, v < 0,

The resulting system of algebraic equations is nonlinear due to nonlinearity of
the two-phase flow model, and the Newton method is used to solve it. Using the
nonlinear flux discretization scheme does not introduce additional complexity for
the nonlinear solver. However, in spite of being formally two-point, the nonlinear
scheme produces a multi-point stencil for the Jacobian matrix, which results in more
expensive linear system solution (on average, extra 25–100%) compared to the linear
TPFA scheme. For more details about the Newton method and the construction of
the Jacobian matrix for the nonlinear scheme we refer to [12].

4 Numerical Experiment for Two-Phase Flow

For the numerical experiment we simulate the two-phase flow for a standard five-spot
problem with two wells in the opposite corners of a rectangular domain, and add two
fractures as shown in Fig. 2.

The permeability tensor for the porous media is full anisotropic:

K
m = Rz(−α)

⎛
⎝

k1 0 0
0 k2 0
0 0 k3

⎞
⎠ Rz(α), Rz(α) =

⎛
⎝

cosα sin α 0
− sin α cosα 0

0 0 1

⎞
⎠ ,

where k1 = 103 [md], k2 = k3 = 102 [md], α = π
4 , and the porosity is φm = 0.15.

The permeability tensor for the fractures is scalar K f = k f
I, k f = 106 [md],

w f = 0.13 [ft] and the porosity is φ f = 0.15.
Domain dimensions are: [0, 100] × [0, 100] × [0, 10] ft. Tables for capillary

pressure and relative permeabilities are similar to the two-phase flow experiments
from [12]. For the wells we set the bottom hole pressures pinj = 4100 [psi] and

Fig. 2 Setup for the
five-spot problem with two
fractures
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Fig. 3 Oil and water rates for EDFM, mEDFM (NTPFA) and DFM-FV (NTPFA) solutions

pprod = 3900 [psi]. The initial pressure is p0 = 4000 [psi], and the initial saturation
is S0 = 0.15.

We simulate water injection for 90 days with time step �t = 1 day and compare
three solutions: (1) the EDFM solutionwith the linear TPFA discretization for all flux
types, (2) the mEDFM solution with the NTPFA discretization, and (3) the discrete
fracture method (DFM-FV) solution with the NTPFA scheme, which directly applies
the original FV discretization for the mesh with cut-cells and a thin layer of 3D cells
representing the fracture.

Water and oil rates for the producer well are shown in the Fig. 3. The mEDFM and
the DFM-FV schemes produce very close results with similar rates and breakthrough
times since the NTPFA scheme provides the approximation for non-K-orthogonal
grids. On the contrast, the original EDFM provides a different solution, with 40%
larger breakthrough time.

Figure4 shows the oil pressure and the water saturation fields at the time T = 45
days. One can see that the mEDFM (NTPFA) and the DFM-FV methods produce
almost identical results, whereas the EDFM solution is noticeably different from
them. It should be noted that the DFM-FV requires gridmodification to take fractures
into account explicitly, whichmay complicate the reservoir simulation. ThemEDFM
provides a viable alternative.
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EDFM:

mEDFM:

DFM-FV:

Fig. 4 Oil pressure (left) and water saturation (right) fields for the two-phase flow, T = 45 days.
Top: EDFM solution; middle: mEDFM (NTPFA) solution; bottom: DFM-FV (NTPFA) solution
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5 Conclusion

We present the application of the new monotone embedded discrete fracture method
(mEDFM) for the two-phase flows in fractured media. The method combines the
EDFM approach with the monotone nonlinear two-point flux approximation.

Numerical experiments show that in anisotropic media the two-phase flow mod-
ellingwith themEDFMprovides the accurate solution (in contrast to the conventional
EDFM), and is in a good agreement with the discrete fracturemethod, which assumes
explicit representation of the fractures by the grid.
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