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Abstract We review our recent results on the convergence of invariant domain-
preserving finite volume solutions to the Euler equations of gas dynamics. If the
classical solution exists we obtain strong convergence of numerical solutions to the
classical one applying the weak-strong uniqueness principle. On the other hand, if
the classical solution does not exist we adapt thewell-known Prokhorov compactness
theorem to space-time probability measures that are generated by the sequences of
finite volume solutions and show how to obtain the strong convergence in space and
time of observable quantities. This can be achieved even in the case of ill-posed Euler
equations having possibly many oscillatory solutions.
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1 Introduction

Hyperbolic conservation laws are fundamental for most of physical, biological and
mechanical processes. The iconic example of this class of partial differential equa-
tions are the Euler equations of gas dynamics. Being published in 1757 by Leonhard
Euler in Mémoires de l’Académie des Sciences de Berlin in his article “Principes
généraux du mouvement des fluides” the Euler equations are one of the first written
partial differential equations at all. Recently, multidimensional Euler equations have
achieved renewed interest in mathematical community. Indeed, it is a well-known
fact that the classical (i.e., continuously differentiable) solution exists in general
only for a short time since discontinuities (shocks) may develop. A suitable gener-
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alization is to consider weak solutions, which moreover satisfy the second law of
thermodynamics.

As shown by De Lellis and Székelyhidi [8] and by Chiodaroli et al. [6] infinitely
many weak entropy solutions can be constructed for the multidimensional compress-
ible Euler equations. Their ill-posedness is related to the lack of compactness of a
set of weak entropy solutions. Such a failure of well-posedness (i.e., uniqueness)
of the multidimensional Euler equations in the class of weak entropy solutions is
connected to the turbulence effects which are apparently not appropriately described
by the concept of distributional solutions.

On the other hand, we can find in literature a large variety of powerful numer-
ical schemes, typically finite volume or discontinuous Galerkin methods, that are
successfully used in order to approximate multidimensional hyperbolic conserva-
tion laws and the Euler equations, in particular. We refer to monographs [11, 12,
18, 22, 28, 30, 33] and the references therein. Despite the popularity of the finite
volume and discontinuous Galerkin methods for practical applications their theo-
retical convergence analysis for multidimensional hyperbolic conservation laws is
still incomplete. We should mention for example the convergence and error analysis
obtained in [26] for the Cauchy problem of a general multidimensional hyperbolic
conservation law. Under the assumption of the existence of the classical solution the
authors applied the stability result due to Dafermos [7] and DiPerna’s method [9] in
order to derive the error estimates for the explicit finite volume schemes satisfying
the discrete entropy inequality. Consequently, they proved the strong convergence of
the entropy stable finite volume schemes.

In view of the facts that the classical solution may not exist and the weak entropy
solutions are non-unique new probabilistic concepts have been developed. In [9, 10,
29, 31] the so-called measure–valued solutions to hyperbolic conservation laws are
studied. The latter are represented by the Young measures, which are space-time
parametrized probability measures acting on a (solution) phase space. Measure–
valued solutions have been also successfully used in [19, 21] in order to show con-
vergence of the entropy stable finite volume schemes for general hyperbolic conser-
vation laws under additional assumptions on the boundedness of numerical solutions
or a growth condition on the flux function. Another interesting contribution to the
convergence analysis of the Euler equations was presented in [29], where the limit
of higher order viscous regularization to the Euler equations was identified with a
measure–valued solution that exists globally in time.

Clearly, the set of (entropy) measure–valued solutions is larger than that of
(entropy) weak solutions and thus the question of uniqueness remains still open.
However, a recently introduced concept of dissipative measure–valued (DMV) solu-
tions [5, 25] allows to show the DMV-strong uniqueness principle. It means that
DMV solutions coincide with the strong solution as long as the latter exists.

The aim of the present paper is to review our recent results on the conver-
gence analysis of some finite volume methods. It turned out that some invariant
domain-preserving properties, such as the entropy stability, preservation of posi-
tivity of density and internal energy and minimum entropy principle are important
in order to obtain convergence of a numerical scheme without any additional non-
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physical assumptions [15]. We also report on the recently established concept of
K -convergence which allows to compute observable quantities of possibly strongly
oscillating dissipative measure–valued solutions [14, 17]. We wish to give a clear
overview of main convergence results without going into deep theoretical justifica-
tions. In this way we hope to attract the attention of more experimentally oriented
computational scientists and to encourage them to apply K -convergence to other
well-known finite volume and discontinuous Galerkin methods. A reader interested
in further theoretical details and proofs is referred to [14–17] and the references
therein.

Inwhat followswefirstly introduce the dissipativemeasure–valued anddissipative
weak solutions of the Euler equations and describe a suitable invariant domain-
preserving finite volume method. Consequently, we present the strong convergence
results for single realizations under the assumption that the classical solution to the
Euler equation exists and the strong convergence result of observable quantities in a
general case.

2 Euler Equations and Dissipative Solutions

The gas dynamics of inviscid compressible flows is governed by the Euler equations

∂tρ + divm = 0,

∂tm + div(m ⊗ u) + ∇ p = 0,

∂t E + div((E + p)u) = 0, (1)

where ρ,m and E represent the conservative variables, the density, momentum and
the total energy, respectively. Further, p and u = m/ρ stand for the pressure and
velocity. The total energy E = 1

2
m2

ρ
+ ρe consists of the kinetic energy and the

internal energy e.
System (1) is closed by the standard pressure law for a perfect gas

p(ρ, ϑ) = Rρϑ, ϑ is the temperature and R the gas constant. We assume with-
out loss of generality that R = 1. We denote by γ the adiabatic coefficient and by
cV the specific heat at constant volume, cV = 1

γ−1 . In what follows we will assume
that 1 < γ < 2 and note that this covers the physically reasonable range for gases
1 < γ ≤ 5/3. Denoting s the specific physical entropy and S the total entropy we
have

s(ρ, ϑ) = log

(
ϑcV

ρ

)
= 1

γ − 1
log

(
p

ργ

)
, S = ρs and e(ρ, ϑ) = cV ϑ.

On a space-time cylinder Ω × (0, T ), Ω ⊂ R
d , d = 2, 3, T > 0, the system of

the Euler equations is accompanied by appropriate boundary and initial conditions.
Here we assume the periodic or the no flux boundary conditions
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u|∂Ω · n = 0,
∂ϑ

∂n
= 0

and set
ρ(t = 0) = ρ0, m(t = 0) = m0, E(t = 0) = E0.

In [16] it has been proved that numerical solutions obtained by suitable numerical
schemes (such as invariant domain-preserving finite volume methods) either con-
verge strongly in suitable Bochner spaces or their (weak) limit is not a weak entropy
solution. Clearly, such a result calls for a new concept of generalized solutions to
the Euler equations. Following [2, 5] we introduce the dissipative measure–valued
solutions and dissipative weak solutions. The latter can be seen as the statistical mean
values with respect to the corresponding Young measures.

Definition 1 (Dissipative measure–valued solution) [5, 16] A parametrized prob-
ability measure {Vt,x }(t,x)∈(0,T )×Ω ,

V ∈ L∞((0, T ) × Ω;P(Rd+2)), R
d+2 =

{
[ρ̃, m̃, S̃]

∣∣∣ ρ̃ ∈ R, m̃ ∈ R
d , S̃ ∈ R

}
,

is called dissipative measure valued (DMV) solution of the Euler system (1) if the
following holds:

• lower bound on density and entropy
there exists s ∈ R such that

Vt,x

[ {
ρ ≥ 0, S ≡ sρ ≥ sρ

} ] = 1 for a.a. (t, x); (2)

• integral energy inequality1

∫
Ω

〈
Vτ,x ; 1

2

|m̃|2
ρ̃

+ ρ̃e(ρ̃, S̃)

〉
dx +
∫
Ω
dEcd (τ ) ≤

∫
Ω

[
1

2

|m0|2
ρ0

+ ρ0e(ρ0, S0)

]
dx

(3)
holds for a.a. 0 ≤ τ ≤ T , with the energy concentration defect

Ecd ∈ L∞(0, T ; M+(Ω)),

where M+(Ω) denotes the space of positive Radon measures on Ω;
• equation of continuity

[∫
Ω

〈V ; ρ̃〉 dx

]t=τ

t=0

=
∫ τ

0

∫
Ω

[
〈V ; ρ̃〉 ∂tϕ + 〈V ; m̃〉 · ∇ϕ

]
dx dt (4)

1Here the mean value
〈
Vt,x ; b

(
Ũ
)〉

≡ ∫
Rd+2 b

(
Ũ
)

dVt,x (Ũ) for U ∈ R
d+2 and b bounded con-

tinuous function.
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for any 0 ≤ τ ≤ T , and any ϕ ∈ W 1,∞((0, T ) × Ω);
• momentum equation

[∫
Ω

〈V ; m̃〉 · ϕ dx

]t=τ

t=0

=
∫ τ

0

∫
Ω

[
〈V ; m̃〉 · ∂tϕ +

〈
V ; 1ρ̃>0

m̃ ⊗ m̃
ρ̃

〉
: ∇ϕ + 〈V ; 1ρ̃>0 p(ρ̃, S̃)

〉
divϕ

]
dx dt

+
∫ τ

0

∫
Ω

∇ϕ : dRcd (t) dt

(5)
for any 0 ≤ τ ≤ T , and any ϕ ∈ Cm([0, T ] × Ω; Rd), ϕ · n|∂Ω = 0, m ≥ 1, with
the Reynolds concentration defect

Rcd ∈ L∞(0, T ; M+(Ω; Rd×d
sym ))

satisfying

d Ecd ≤ tr[Rcd ] ≤ d Ecd for some constants 0 < d ≤ d; (6)

• entropy inequality

[∫
Ω

〈
V ; S̃
〉
ϕ dx

]t=τ2+

t=τ1−
≥
∫ τ2

τ1

∫
Ω

[〈
V ; S̃
〉
∂tϕ + 〈V ; 1ρ̃>0

(
S̃ũ
)〉 · ∇ϕ

]
dx dt

(7)
for any 0 ≤ τ1 ≤ τ2 < T , and any ϕ ∈ W 1,∞((0, T ) × Ω), ϕ ≥ 0.

The DMV solution is a very general concept that allows to show the convergence
of invariant domain-preserving schemes in an elegant way. Despite its generality it
still satisfies the DMV-strong uniqueness principle [5] and thus the DMV solutions
coincide with the classical solution as long as the latter exists. To prove the latter
the crucial properties are the energy dissipation (3) and (6) controlling the Reynolds
defect in the momentum equation by the energy concentration defect. It is to be
pointed out that the Reynolds concentration defect brings an additional freedom to
model turbulent flow behaviour.

To simplify the viewpoint on this generalized solutions it often suffices to consider
only the mean values of DMV solutions, which are the below-mentioned dissipative
solutions.

Definition 2 (dissipative weak solution) [16] A triple [ρ,m, S] is dissipative weak
(DW) solution of the full Euler system (1) if the following holds:

• weak continuity in time

ρ ∈ Cweak([0, T ]; Lγ (Ω)), (γ being the adiabatic constant)

m ∈ Cweak([0, T ]; L
2γ

γ+1 (Ω;Rd)),

S ∈ L∞(0, T ; Lγ (Ω)) ∩ BVweak([0, T ]; Lγ (Ω));
(8)
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• energy inequality: there exists a measure

E ∈ L∞(0, T ; M+(Ω)),

such that the inequality

∫
Ω

[
1

2

|m|2
ρ

+ ρe(ρ, S)

]
(τ, ·) dx +

∫
Ω
dE(τ ) ≤

∫
Ω

[
1

2

|m0|2
ρ0

+ ρ0e(ρ0, S0)

]
dx

(9)
holds for a.a. 0 ≤ τ ≤ T ;

• equation of continuity

[∫
Ω

ρϕ dx

]t=τ

t=0

=
∫ τ

0

∫
Ω

[ρ∂tϕ + m · ∇ϕ] dx dt (10)

holds for any 0 ≤ τ ≤ T ;
• momentum equation

[∫
Ω

m · ϕ dx

]t=τ

t=0
=
∫ τ

0

∫
Ω

[
m · ∂tϕ + 1ρ>0

m ⊗ m
ρ

: ∇ϕ + 1ρ>0 p(ρ, S)divϕ

]
dx dt

+
∫ τ

0
∇ϕ : dR

(11)
for any 0 ≤ τ ≤ T , any test function ϕ ∈ Cm([0, T ] × Ω;Rd), ϕ · n|∂Ω = 0, and
a defect measure

R ∈ L∞(0, T ; M+(Ω;Rd));
• entropy inequality

[∫
Ω

Sϕ dx

]t=τ2+

t=τ1−
≥
∫ τ2

τ1

∫
Ω

[
S∂tϕ + 〈V ; 1ρ̃>0

(
S̃ũ
)〉 · ∇ϕ

]
dx dt, S(0−, ·) = S0,

(12)
for any 0 ≤ τ1 ≤ τ2 < T , any ϕ ∈ W 1,∞((0, T ) × Ω), ϕ ≥ 0, where

{Vt,x }(t,x)∈(0,T )×Ω is the aforementioned DMV solution
• defect compatibility conditions

d E ≤ tr [R] ≤ d E for some constants 0 ≤ d ≤ d, (13)

and

E ≥
〈
V ; 1

2

|m̃|2
ρ̃

+ ρ̃e(ρ̃, S̃)

〉
−
(
1

2

|m|2
ρ

+ ρe(ρ, S)

)
. (14)

The existence of DMV or DW solutions can be shown by the convergence of suitable
invariant domain-preserving finite volume schemes. In what follows we will present
such a finite volume method and review its convergence results for multidimensional
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Euler equations. We mention in passing that in [13] the convergence of the stan-
dard Lax-Friedrichs finite volume method has been shown in an analogous way as
presented below.

3 A Finite Volume Method Based on the Brenner Model

In [15] the two-velocity model for compressible flows by Brenner [3, 4] was revis-
ited and a new invariant domain-preserving finite volume method, denoted here by
the FLM method, has been proposed and analysed. To fix the notation we start by
introducing a suitable discrete space and a finite volume mesh.

The finite volume grid Th consists of finite volumes, denoted by K , that can be
triangles, rectangles or polygons and cover the physical domain Ω

Ω =
⋃

K∈Th

K .

The parameter h ∈ (0, 1) is the maximum element size, i.e., the size of the mesh
Th . We assume that Th is regular and quasi-uniform. The set of all faces is denoted
by Σ, while the set of faces on the boundary is denoted by Σext , and the set of
interior faces by Σint = Σ\Σext . For periodic boundary conditions we set Σext =
∅ and Σint = Σ. Further, we associate each face with its outer normal vector n.

We denote by Qh the set of piecewise constant functions on Th and define for any
v ∈ Qh , x ∈ σ ∈ Σint

vout(x) = lim
δ→0+ v(x + δn), vin(x) = lim

δ→0+ v(x − δn),

v(x) = vin(x) + vout(x)

2
, [[v]] = vout(x) − vin(x).

A numerical flux function in our finite volume method is based on the so-called
dissipative upwinding. Let a velocity uh ∈ Qh and a function rh ∈ Qh, then the
(classical) upwinding reads

U p[rh, uh] = ruph uh · n = r inh [uh · n]+ + routh [uh · n]−

= rh uh · n − 1

2
|uh · n| [[rh]] ,

where

[ f ]± = f ± | f |
2

and rup =
{

r in if uh · n ≥ 0,

rout if uh · n < 0.

The numerical flux function is defined in the following way
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Fh(rh, uh) = U p[rh, uh] − hβ [[rh]] , 0 < β < 1.

Note that the term hβ [[rh]] leads to an additional vanishing viscosity term in
the approximation of the Euler equations. Now we proceed to the formulation of a
semi-discrete finite volume method for the Euler system (1).

Definition 3 (FLM method)Given the initial values (ρ0,h,m0,h, E0,h) ∈ Qh × Qh ×
Qh, we seek a piecewise constant approximation (ρh,mh, Eh) ∈ Qh × Qh × Qh
which solves at any time t ∈ (0, T ] the following equations:

Dtρh

∣∣∣
K

+
∑

σ∈∂K

|σ |
|K | Fh(ρh, uh) = 0,

Dtmh

∣∣∣
K

+
∑

σ∈∂K

|σ |
|K | (Fh(mh, uh) + phn) = hα−1

∑
σ∈∂K

|σ |
|K | [[uh]] , (15)

Dt Eh

∣∣∣
K

+
∑

σ∈∂K

|σ |
|K |
(

Fh(Eh, uh) + (ph [[uh]] + [[ph]] uh) · n
)

= hα−1

2

∑
σ∈∂K

|σ |
|K |
[[
u2h
]]

,

for any K ∈ Th .

By Dt we have denoted (continuous) time derivative; in practical implementation
one can use any suitable ODE solver in order to approximate (15). In our recent
work [15] we have shown that the FLMmethod (15) satisfies the following invariant
domain-preserving properties, see [23, 24] where this notion was firstly introduced.

• Positivity of the discrete density, pressure and internal energy.
For any fixed h > 0 the approximate density, pressure and internal energy remain
strictly positive on any finite time interval. We refer the reader to [15, Sects. 4.3
and 4.4] for more details.

• Discrete entropy inequality.
The discrete (renormalized) entropy inequality in the sense of Tadmor is satisfied,
cf. [32]. More precisely, it holds that

d

dt

∫
Th

ρhχ(sh)Φh dx ≥
∑

σ∈Σint

∫
σ

U p[ρhχ(sh), uh][[Φh]]dSx+

+
∑

σ∈Σint

∫
σ

hβ
(
∇ρ(ρhχ(sh))[[ρh]] + ∇p(ρhχ(sh))[[ph]]

)
[[Φh]]dSx ,

where χ is a non-decreasing, concave, twice continuously differentiable function
on R that is bounded from above. For the derivation and proof see [15, Sect. 3.2].

• Minimum entropy principle
The discrete physical entropy sh = log

(
ϑ

cv
h /ρh
)
attains its minimum at the initial

time, i.e.,

sh(t) ≥ s, t ≥ 0, where − ∞ < s < min sh(0).
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The entropy is either constant or produced over time, cf. [15, Sect. 4.2].

The above invariant domain-preserving properties are crucial in order to show that
the approximate solutions obtained by the FLMmethod yield a consistent approxima-
tion to the Euler equations (1). Moreover, the discrete mass and energy conservation
and some standard estimates, cf. [15], imply the stability of the FLM method, i.e.,
we have uniformly w.r.t. h → 0

‖ρh‖L∞(0,T ;Lγ (Ω))

<∼ 1, ‖mh‖L∞(0,T ;L2γ /(γ+1)(Ω))

<∼ 1, ‖Eh‖L∞(0,T ;L1(Ω))

<∼ 1.

In [15] the following type of nonlinear generalization of the Lax-equivalence
theorem has been proven: Having consistent FLM method (15) for the Euler system
(1), the stability of the FLMmethod is equivalent to its convergence. More precisely,
we have shown the following results.

Theorem 1 (Existence of a DMV solution) Let the initial data (ρ0,h,m0,h, E0,h)

satisfy

ρ0,h ≥ ρ > 0, E0,h − 1

2

|m0,h |2
ρ0,h

> 0.

Let (ρh,mh, Eh) ∈ Qh × Qh × Qh be the solution of the FLM scheme (15) with

0 < β < 1, 0 < α <
4

3
,

and there exist ρ, ϑ ∈ R, such that the numerical solutions stay in a non-degenerate
gas region

0 < ρ ≤ ρh(t), ϑh(t) ≤ ϑ for all t ∈ [0, T ] uniformly for h → 0.

Then the family of approximate solutions {ρh,mh, Eh}h↘0 generates a dissipative
measure–valued (DMV) solution of the complete Euler system (1) in the sense of
Definition 1.

Further, taking into account the DMV–strong uniqueness principle proved in [5,
Theorem 3.3] we obtain the desired strong convergence result.

Theorem 2 (Strong convergence of the FLM method) In addition to the hypothe-
ses of Theorem 1, suppose that the Euler system (1) admits the strong (Lipschitz–
continuous) solution (ρ,m, E) defined on [0, T ].

Then for h −→ 0 it holds

ρh → ρ, mh → m, Eh → E (strongly) in L1((0, T ) × Ωh).



34 M. Lukáčová-Medvid’ová

4 K -Convergence

Asdemonstratedbynumerical experiments, cf. [17, 19, 21], thefinite volumeapprox-
imations may not converge strongly. A typical example is the Kelvin-Helmholtz
problem, where new and new small vortex substructures arise by refining the mesh.
On the other hand, one can consider coarse-grained quantities, such as the mean or
variance, averaged over different meshes. In our recent work [17] we have studied
the question of strong convergence for these observable quantities. The aim of this
section is to give an overview of our main results on the strong convergence without
going deep into the theory of Young measures. Moreover, we would like to point out
some connections to well-known and recent probabilistic concepts.

To start we recall a beautiful result of Komlós [27] on the pointwise convergence
of the so-called Cèsaro averages.

Any sequence {Fn}∞n=1 of uniformly L1-bounded real valued functions on a set
Q ⊂ RK admits a subsequence {Fnk }∞k=1, such that the arithmetic averages (Cèsaro
averages)

1

N

N∑
k=1

Fnk converge a.e. to a function F ∈ L1(Q).

Moreover, any subsequence of {Fnk }∞k=1 enjoys the same property.

We note that analogous result holds also for sequences in the reflexive L p spaces,
1 < p < ∞, due to the Banach-Sachs theorem. Komlós theorem has been adapted
by Balder [1] who introduced the concept ofK (Komlós)-convergence for sequences
of Young measures. Applying the Young measure adapted variant of the celebrated
Prokhorov theorem for random processes one obtains compactness of the empirical
measures and the strong convergence in space and time ofmean values and variances,
see [14, 16, 17].

Theorem 3 (K -convergence of the FLM method) Let {ρhn ,mhn , Shn }∞n=1 be a
sequence of finite volume solutions obtained by the FLM method (15) with 0 < β <

1, 0 < α < 4
3 . Further, assume that the FLM solutions remain in a non-degenerate

gas region, i.e., there exist ρ, ϑ ∈ R, such that

0 < ρ ≤ ρhn (t), ϑhn (t) ≤ ϑ for all t ∈ [0, T ] uniformly for hn → 0.

Then there exists a subsequence of {ρhn ,mhn , Shn }∞n=1 denoted by {ρnk ,mnk , Snk },
for which we have

• strong convergence of Cesàro averages to a DW solution

1

N

N∑
k=1

ρnk → ρ as N → ∞ in Lq(0, T ; Lγ (Ω)) for any 1 ≤ q < ∞,
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1

N

N∑
k=1

mnk → m as N → ∞ in Lq(0, T ; L
2γ

γ+1 (Ω; Rd)) for any 1 ≤ q < ∞,

1

N

N∑
k=1

Snk → S as N → ∞ in Lq(0, T ; Lγ (Ω)) for any 1 ≤ q < ∞, (16)

where ρ,m, S are the density, momentum and total entropy components of the
DW solution in the sense of Definition 2.

• strong convergence to a DMV solution in the Wasserstein metric2

Wq

[
1

N

N∑
k=1

δ[ρnk (t,x),mnk (t,x),Snk (t,x)];Vt,x

]
→ 0 as N → ∞ in Lq((0, T ) × Ω)

(17)
for any 1 ≤ q <

2γ
γ+1 . Here δ denotes the Dirac measure acting on numerical

solutions [ρnk ,mnk , Snk ].
• strong convergence of the variance

Let Ũ = (ρ̃, m̃, S̃) and Unk ≡ (ρnk ,mnk , Snk

)
, then

∥∥∥∥∥∥
1

N

N∑
k=1

∣∣∣∣∣∣Unk − 1

N

N∑
j=1

Un j

∣∣∣∣∣∣−
〈
Vt,x ;
∣∣Ũ − 〈Vt,x ; Ũ

〉∣∣〉
∥∥∥∥∥∥

L1((0,T )×Ω)

as N → ∞.

(18)

Theorem 3 offers an elegant way how to compute DW solutions and the statistical
moments of DMV solutions in the case that the strong solution does not exist. It
indicates that we still have strong convergence to the observable quantities that can
be approximated directly by averaging of numerical solutions over different meshes.
We refer a reader to [17] where the numerical solutions obtained by the FLMmethod
were presented for several tests. Depending on chosen numerical experiments it may
happen that the mesh-convergence of single numerical solutions is not achieved. On
the other hand, the strong convergence of empirical mean values and variances was
clearly shown, see [17, Figs. 1–7]. In future it will be interesting to investigate the
rate of K -convergence.

In this context we should also mention an interesting work [20], where a different
probabilistic concept of the so-called statistical solutions for general multidimen-
sional hyperbolic conservation laws has been developed. Analogously to the DMV
solutions the statistical solutions are probabilistic-type solutions. In fact, they are
time-parametrized probability measures satisfying an infinite set of partial differ-
ential equations consistent with the underlying hyperbolic conservation laws. Thus,

2We recall that the Wasserstein metric of q-th order, q ∈ [1,∞), is defined in the following way
Wq (N ,V ) := {infπ∈�(N ,V )

∫
Rd+2×Rd+2 |ζ − ξ |q dπ(ζ, ξ)

}1/q , where �(N ,V ) is the set of

probability measures on R
d+2 × R

d+2 with marginals N and V .
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they are themeasure–valued solutions augmented by information onmulti-point spa-
tial correlations. In order to obtain strong convergence of the entropy stable finite
volume solutions (or more precisely, approximate statistical solutions) to a statistical
solution one however needs to assume that a special condition on an approximate
scaling of structure factors holds. The latter is related to the Kolmogorov compact-
ness criterium. On the other hand, the concept of K -convergence based on the
averaging over different meshes naturally inherits compactness. Consequently, the
empirical mean values (Cèsaro averages) converge strongly to a DW solution. In
future it will be interesting to generalize the concept of DMV and DW solutions to
general hyperbolic conservation laws.

Acknowledgements The author wishes to thank E. Feireisl (Prague), H.Mizerová (Bratislava) and
B. She (Prague) for fruitful discussions on the topic. This research was supported by the German
ScienceFoundation under the grantsTRR146Multiscale simulationmethods for softmatter systems
and TRR 165 Waves to Weather.

References

1. Balder, E.: On Prohorov’s theorem for transition probabilities. Sém. Anal. Convexe 19 (1989)
2. Breit, D., Feireisl, F., Hofmanová, M.: Solution semiflow to the isentropic Euler system. Arch.

Ration. Mech. Anal. (2019). https://doi.org/10.1007/s00205-019-01420-6
3. Brenner, H.: Kinematics of volume transport. Phys. A 349, 11–59 (2005)
4. Brenner, H.: Fluid mechanics revisited. Phys. A 349, 190–224 (2006)
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