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Abstract We propose a P1 finite-element scheme with mass-lumping for a model
of two incompressible and immiscible phases in a porous media flow. We prove the
dissipation of the free energy and the existence of a solution to the nonlinear scheme.
We also present numerical simulations to illustrate the behavior of the scheme.
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1 Immiscible Two-Phase Flows in Porous Media

We are interested in the numerical approximations of the equations governing an
immiscible incompressible two-phase flow in a porous medium. Let Ω ⊂ R

d (d =
2, 3) be an open bounded polyhedral subset with Lipschitz boundary condition and
let tf > 0 be an arbitrary finite time horizon. Then the conservation of the wetting
(subscript w) and non-wetting phases (subscript n) are given by

φ∂t sα − ∇ · (ηα(sα)Λ∇ pα) = qα(sα), α ∈ {w, n}, (1)

where the unknowns are the phase saturations sα , which satisfy

sn + sw = 1, (2)
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and the phase pressures pα . The porosity φ ∈ (0, 1) is given, as well as the intrin-
sic permeability Λ, which is assumed to be symmetric and uniformly elliptic. The
mobility ηα : [0, 1] → R is assumed to be continuous and strictly increasing, with
ηα(0) = 0 and ηα(s) > 0 if s > 0. They are extended to the whole R by ηα(s) = 0
if s < 0 and ηα(s) = ηα(1) if s > 1. The sources qα are such that

qα(x, sα) = qinj(x)
ηα(cα)

ηw(cw) + ηn(cn)
− qsink(x)

ηα(sα)

ηw(sw) + ηn(sn)
, (3)

where cw ∈ (0, 1] and cn = 1 − cw is the prescribed composition of the injected
mixture, and where qinj, qsink ∈ L∞(Ω) are nonnegative, bounded, and such that∫
Ω
qinj = ∫

Ω
qsink. The phase pressures are linked by the capillary pressure relation

pn − pw = γ (sn), (4)

where γ ∈ L1(0, 1) is strictly increasing, nonnegative, and blows up as sn tends to
1. This function is extended for s < 0 by γ (s) = γ (0) + 2s. We further assume
that s �→ ηw(1 − s)γ (s) ∈ L∞(0, 1) and s �→ ηw(1 − s)γ ′(s) ∈ L1(0, 1). These
assumptions are satisfied by the usual models of the literature (see for instance [1]).
The system is complemented with no-flux boundary conditions and initial conditions
s iniα ∈ L∞(Ω; [0, 1]) that are compatible with (2). Note that since γ ∈ L1(0, 1), then
Γ : s �→ ∫ s

0 γ (a)da is bounded on [0, 1]. The phase pressures being only defined
up to a constant, we enforce additionally that

∫
Ω
pn = 0.

Multiplying (1) by pα , summing over α ∈ {n,w}, integrating over Ω , and using
(2) and (4) yields

d

dt

∫

Ω

φΓ (sn) +
∫

Ω

∑

α∈{n,w}
ηα(sα)Λ∇ pα · ∇ pα =

∫

Ω

∑

α∈{n,w}
qα(sα)pα. (5)

Following [6], we define the global pressure P by P = pn − r(sn) with r : sn �→∫ sn
0

ηw(1−a)

ηn(a)+ηw(1−a)
γ ′(a)da. The definition of P yields

∑

α

ηα(sα)|∇ pα|2 = (ηn(sn) + ηw(sw))|∇P|2 + ηn(sn)ηw(sw)

ηn(sn) + ηw(sw)
|∇γ (sn)|2. (6)

In view of the particular form (3) of the source terms,

∑

α∈{n,w}
qα(sα)pα ≤ (

qinj − qsink
)
(P + r(sn)) + qsinkk(sn), (7)

with k(sn) = ηw(1−sn)
ηw(1−sn)+ηn(sn)

γ (sn). Since ηw(1 − ·)γ ′ ∈ L1(0, 1) and ηw(1 − ·)γ ∈
L∞(0, 1), both r and k are bounded on (0, 1). Moreover, the extensions outside
(0, 1) of ηα and γ ensure that for all ε > 0, there exists Cε such that
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|s| + |k(s)| + |r(s)| ≤ εΓ (s) + Cε, ∀s ∈ (−∞, 1). (8)

Combining (7) with (6) in (5) together with the uniform ellipticity of Λ, ηn(s) +
ηw(1 − s) ≥ δ > 0 for all s, and (8) we get that

d

dt

∫

Ω

φΓ (sn) +
∫

Ω

⎛

⎝|∇P|2 +
∑

α∈{n,w}
ηα(sα)|∇ pα|2

⎞

⎠ ≤ C. (9)

This estimate is enough to establish the existence of aweak solution. In this paper, our
goal is to show that this stability is still encoded in very natural numerical schemes.
For the sake of simplicity, we present our analysis in the framework of P1 finite-
elements with mass-lumping, but our approach can be extended to a wide family
of schemes having the structure highlighted in [3, Sect. 3]. We show here how to
transpose estimate (9) to the discrete setting and to infer the existence of discrete
solutions therefrom. A full convergence study will be carried out in a forthcoming
contribution. While deeply inspired from [7], the goal of this paper is to exploit more
finely the energy estimate which allows to relax some stringent conditions on the
anisotropy, on the mesh and the non-linearities presented in [7].

2 An Energy Stable Finite-Element Scheme

We study the problem (1)–(4) using a P1 conforming finite-element scheme with
mass-lumping for the space discretization. Let T be a conforming simplicial dis-
cretization ofΩ .Wedenote by T ∈ T a simplex,VT is the set of all the vertices a and
VT ⊂ VT the set of the (d + 1) vertices a0, . . . , ad of the simplex T . We also denote
by Vh = {uh ∈ C(Ω) : uh |T is affine for all T ∈ T } the usual conforming P1 finite-
element space corresponding to themeshT and by (ϕa)a∈VT the basis of Vh . In order
to deal with the mass-lumping procedure, for any vertex a ∈ VT , we define the set
sa, the boundary ∂sa of which being defined by the hyperplanes joining the centers of
mass of the simplices, edges (and faces if d = 3) sharing a as a vertex. We can now
define the functional space Xh := {u ∈ L∞(Ω) : u|sa is constant for all a ∈ VT },
and the linearmappingsπX : C(Ω) → Xh andπV : C(Ω) → Vh byπu(a) = u(a),
for any a ∈ VT , for any u ∈ C(Ω),  = X, V . In order to lighten the notations, for
any uh ∈ Vh we write πXuh = uh . We will use the following Poincaré inequality
that can be established as in [2]: there exist C1, C2 > 0 depending only on the mesh
regularity such that for any uh ∈ Vh ,

∥
∥
∥
∥uh − 1

|Ω|
∫

Ω

uh

∥
∥
∥
∥
L2(Ω)

≤ C1

∥
∥
∥
∥uh − 1

|Ω|
∫

Ω

uh

∥
∥
∥
∥
L2(Ω)

≤ C2‖∇uh‖L2(Ω). (10)

Before detailing the numerical scheme, we have to define the discrete tensor field
Λh : Ω → R

d×d almost everywhere by Λh(x) := ΛT := 1
|T |

∫
T Λ if x ∈ T . From
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there, we define the matrix AT := (αT
i, j )1≤i, j≤d ∈ R

d×d by

αT
i, j = αT

j,i :=
∫

T
ΛT∇ϕai · ∇ϕa j

and for any uh, vh ∈ Vh one has,

∫

T
ΛT∇uh · ∇vh =

⎛

⎝
va1 − va0

. . .

vad − va0

⎞

⎠ · AT

⎛

⎝
ua1 − ua0

. . .

uad − ua0

⎞

⎠ . (11)

Following [4], we can prove that there exists C3 > 0 depending on the regularity of
the mesh and on the anisotropy ratio of Λ and C4 > 0 depending, in addition, on d
such that for any T ∈ T the matrix AT satisfies

cond2(AT ) ≤ C3 and
d∑

i=1

⎛

⎝
d∑

j=1

|αT
i, j |

⎞

⎠ (uai )
2 ≤ C4u · ATu, ∀u = (uai ) ∈ R

d .

(12)
We are now in a position to give the numerical scheme using a backward Euler

scheme for the time discretization. Let (tn)n=0,...,N be a partition of the interval
[0, tf ] and for n = 1, . . . , N we denote by τn = tn − tn−1 the time step. We define
the discrete initial data by s0α,h := ∑

a∈VT
s0α,aϕa ∈ Vh with s0α,a = 1

|sa|
∫
sa
s iniα .

Let sn−1
α ∈ Vh be given, we search for snα, pnα ∈ Vh such that for any vα,h ∈ Vh

with α = (n,w) one has,

φ

∫

Ω

snα,h − sn−1
α,h

τn
vα,h +

∫

Ω

ηn
α,hΛh∇ pnα,h · ∇vα,h =

∫

Ω

qα(snα,h)vα,h, (13a)

snn,h + snw,h = 1, (13b)

pnn,h − pnw,h = γ n
n,h, (13c)

∫

Ω

pnn,h = 0. (13d)

We have denoted by ηn
α,h = πVη(snα,h), γ

n
n,h = πV γ (snn,h) and,

qα(snα,h) = q inj
ηα(cα)

ηw(cw) + ηn(cn)
− qsink

ηα(snα,h)

ηw(snw,h) + ηn(s
n
n,h)

.

Mimicking the continuous case, we define the discrete global pressure and we
can obtain the discrete counterpart of (6).

Proposition 1 Let snα,h, p
n
α,h ∈ Vh be a solution to the scheme (13). Then there exists

C5 > 0 depending on the regularity of the mesh, on the anisotropy ratio of Λ, on δ

and d such that
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∫

Ω

Λh∇Ph · ∇Ph ≤ C5

(∫

Ω

ηn
n,hΛh∇ pnn,h · ∇ pnn,h +

∫

Ω

ηn
w,hΛh∇ pnw,h · ∇ pnw,h

)

,

where Pn
h = pnn,h − πV r(snn,h) ∈ Vh.

Proof We define the functions

fn(s) = ηn(s)

ηn(s) + ηw(1 − s)
and fw(s) = ηw(1 − s)

ηn(s) + ηw(1 − s)
.

Then, noting that fn + fw = 1 and using Eq. (13c), for any T ∈ T and for any
vertices a0, ai ∈ VT , there exists sni ∈ [min(a0, ai ),max(a0, ai )] such that,

Pn
a0 − Pn

ai = fn(s
n
i )

(
pnn,a0 − pnn,ai

) − fw(sni )
(
pnw,a0 − pnw,ai

)
.

Since ηα is strictly increasing, for any T ∈ T with a0, . . . , ad as vertices

ηn
α,T := 1

d + 1

d∑

i=0

ηα(snα,ai ) ≥ 1

d + 1
max
x∈T ηα(x) ≥ 1

d + 1
ηα(sni ). (14)

Thus using that fn, fw ≤ 1 and ηn(s) + ηw(1 − s) ≥ δ > 0 we obtain,

δ

2(d + 1)

d∑

i=0

∣
∣Pn

a0 − Pn
ai

∣
∣2 ≤ ηn

n,T

d∑

i=0

∣
∣pnn,a0 − pnn,ai

∣
∣2 + ηn

w,T

d∑

i=0

∣
∣pnw,a0 − pnw,ai

∣
∣2 .

Since for any v1, v2,w satisfying |v1|2 + |v2|2 ≥ cond2(AT )|w|2 one has

v1 · AT v1 + v2 · AT v2 ≥ w · ATw,

we use equality (11) associated with the fact that the condition number of AT is
bounded, cf. (12). Then summing the resulting estimate over T ∈ T and noting that
the Lagrange vertex-quadrature formula is exact on P1 (see [5, Remark 2.2]) we
obtain the claim. �
Proposition 2 Let sn−1

α,h ∈ Vh be given and snα, pnα ∈ Vh be a solution to the
scheme (13). There exists C6 > 0 depending on the data of the continuous prob-
lem but neither on the mesh T or nor the time step τn such that,

φ

∫

Ω

Γ (snn,h) + τn
∑

α∈{n,w}

∫

Ω

ηn
α,hΛh∇ pnα,h · ∇ pnα,h + τn

∫

Ω

∇Pn
h · ∇Pn

h

≤ C6

(

1 + φ

∫

Ω

Γ (sn−1
n,h )

)

.
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Proof Let us choose vα,h = pnα,h as test function in Eq. (13a) and then add the
resulting equations. Then, since Γ is convex, thanks to relation (13c) we obtain

φ

∫

Ω

Γ (snn,h) +
∑

α∈{n,w}
τn

∫

Ω

ηn
α,hΛh∇ pnα,h · ∇ pnα,h

≤ φ

∫

Ω

Γ (sn−1
n,h ) + τn

∫

Ω

∑

α∈{n,w}
qα(snα,h)p

n
α,h . (15)

As for the continuous case, one has

∑

α∈{n,w}
qα(snα,h)p

n
α,h ≤ (

q inj − qsink

) (
P
n
h + r(snn,h)

)
+ qsinkk(s

n
n,h). (16)

Using the definition of the discrete global pressure Pn
h and Eq. (13d), combined with

the discrete Poincaré inequality (10) and (8) give

‖Pn
h‖L1(Ω) ≤ C2|Ω|1/2‖∇Pn

h ‖L2(Ω) +
∫

Ω

∣
∣r(snn,h)

∣
∣

≤ ε‖∇Pn
h ‖2L2(Ω) + ε

∥
∥Γ (snn,h)

∥
∥
L1(Ω)

+ Cε. (17)

Since qinj, qsink ∈ L∞(Ω), the use of the above inequality and of (8) in (16) leads to

∫

Ω

∑

α∈{n,w}
qα(snα,h)p

n
α,h ≤ ε‖∇Pn

h ‖2L2(Ω) + ε
∥
∥Γ (snn,h)

∥
∥
L1(Ω)

+ Cε (18)

whatever ε > 0. Using (18) together with Proposition 1 in (15) provides the expected
bound. �

Thanks to Eqs. (13b) and (13c) we see that the saturations and the pressures of
the wetting and non-wetting phases are linked. Thus we can choose the pressure of
the wetting phase and the capillary pressure as main unknowns. Choosing vα,h = ϕa

as test functions in Eq. (13a) we can rewrite the scheme (13) as a nonlinear system
of 2#VT algebraic equationsF n((γ (snn,a), p

n
w,a)a∈VT ) = 0. Since γ (1) = +∞, the

functionF n is continuous but non uniformly continuous. However, we prove in the
following lemma that this situation is avoided for a solution to the scheme (13).

Proposition 3 Let sn−1
α,h ∈ Vh be such that

∫
Ω
sn−1
w,h ≥ 0 and snα,h, p

n
α,h ∈ Vh be a solu-

tion the scheme (13). There exists στn ,T , ετn ,T > 0 depending on the data of the
continuous problem, T , τn and sn−1

n,h such that,

−στn ,T ≤ snn,a ≤ 1 − ετn ,T , ∀a ∈ VT .

Proof First of all, thanks to the extension of γ for s < 0, the energy estimate given
in Proposition 2 yields

∫
Ω

((snn,h)
−)2 ≤ Cn−1, which provides the lower bound.
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Then we prove a bound on the pressure of the non-wetting phase pn,h . Thanks to
inequality (17) and the definition of Pn

h one has

‖pnn,h‖L1(Ω) ≤ Cn−1 ⇒ |pnn,a| ≤ Cn−1

|sa| , ∀a ∈ VT . (19)

Now, let us note that proving the upper bound is equivalent to proving that there
exists γ �

τn ,T
such that for any a ∈ VT , γ (sn,a) ≤ γ �

τn ,T
.

We choose vw,h = 1 as test function in Eq. (13a), then since qinj is nonnegative,
ηn(s) + ηw(1 − s) ≥ δ > 0 and cw > 0 (and so ηw(cw) > 0), one has

snw,ai ≥ 1

|Ω|
∫

Ω

snw,h >
1

|Ω|
(∫

Ω

sn−1
w,h − τn

δ
‖qsink‖L∞(Ω)

∫

Ω

ηw(snn,h)

)

.

Note that we proved here by induction that
∫
Ω
snw,h ≥ 0. Since s �→ (s + ηw(s))−1 is

Lipschitz, there exists ai ∈ VT such that snw,ai > 0 that is there exists ai ∈ VT such
that snn,ai < 1.

Let af ∈ VT be arbitrary and (aq)q=0,··· , be a path from ai to af . Let q ∈
{0, . . . ,  − 1}. Using the property (12) of the matrix AT and since the quadrature
formula is exact on P1, Proposition 2 gives

∑

T∈T
ηn
w,T

d∑

i=1

⎛

⎝
d∑

j=1

|αT
i, j |

⎞

⎠
(
pnw,h(ai ) − pnw,h(a0)

)2 ≤ C4C6

τn

(

1 + φ

∫

Ω

Γ (sn−1
n,h )

)

.

We assume by induction that there exists ετn ,T > 0 such that snn,aq < 1 − ετn ,T that
is snw,aq > ετn ,T . Thus, if T is a simplex with aq , aq+1 as vertices, the definition (14)

of ηn
w,T yields ηn

w,T ≥ η(snw,aq )

d+1 ≥ ε′
τn ,T

. Thanks to Eqs. (13c) and (19) it follows that,

∣
∣
∣γ (snn,aq ) − γ (snn,aq+1

)

∣
∣
∣ −

∣
∣
∣pnn,aq − pnn,aq+1

∣
∣
∣ ≤ Cτn ,T ⇒ γ (snn,aq+1

) ≤ γ ��
τn ,T

.

We conclude the proof by induction along the path. �
The bound on the saturation associated with the definition (14) on ηn

w,T yields ηn
w,T ≥

ηw(ετn ,T ). This, combined with the Poincaré inequality (10) and since γ (snn,a) ≤
γ (1 − ετn ,T ) for any a ∈ VT , allows us to obtain a discrete bound on the pressure.

Proposition 4 There exists p�
τn ,T

> 0 depending on the data of the continuous prob-

lem, T , τn and sn−1
n,h such that

∫
Ω

|pnw,h |2 ≤ p�
τn ,T

.

Thanks to the material introduced above, it is possible to prove the existence of a
solution to the discrete problem using the topological degree theory.

Theorem 1 (Existence of a solution) Let sn−1
n,h ∈ Vh be given, there exists at least

one solution to the scheme (13).
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(a) t = 0.002 (b) t = 0.01 (c) t = 0.015

Fig. 1 Approximate saturation sn,h in Ω for different times t

3 Numerical Results

We present here numerical results obtained with the software FreeFem [8] in the
two-dimension case by choosing as main unknowns the saturation of the non-wetting
phase and the pressure of the wetting phase. To solve the nonlinear system we use
a Newton method with a stopping criteria on the ∞-norm between two successive
iterations. The computational domain is the unit square Ω = [0, 1]2 and the mesh
is made up of triangles whose mesh size is approximately equal to 0.028. The final
time is tf = 0.015 and the time step is constant τn = 10−3. We choose the porosity

φ = 0.3, the permeability tensor fieldΛ =
(
1 0
0 100

)

and cw = 0.2. For s ∈ [0, 1]we
define the mobility functions by ηn(s) = s2 and ηw(s) = 2s, the capillary pressure
by γ (s) = 1√

1−s
and the source functions are defined by qinj = 40.1[0,0.2]×[0.8,1] and

qsink = 40.1[0.8,1]×[0,0.2]. We plot in Fig. 1 the approximate saturation of the non-
wetting phase.

One observes from the outset of the simulation the influence on the injection well
qinj and of the anisotropy ratio in the longitudinal direction. Moreover we can see
that the maximum does not exceed cn = 0.8.
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