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Preface

The Finite Volume method in its various forms is a discretization technique for partial
differential equations based on the fundamental physical principle of conservation.
It has been used successfully in many applications including fluid dynamics, mag-
netohydrodynamics, structural analysis, nuclear physics, semiconductor theory, and
electrochemistry. Recent decades have brought significant success in the theoretical
understanding of the method. Many finite volume methods preserve further qualitative
or asymptotic properties including maximum principles, dissipativity, monotone decay
of the free energy, or asymptotic stability.

Due to these properties, finite volume methods belong to the wider class of
compatible discretization methods, which preserve qualitative properties of con-
tinuous problems at the discrete level. This structural approach to the discretization
of partial differential equations becomes particularly important for complex mul-
tiphysics and multiscale applications.

The triennal series of conferences “Finite Volumes for Complex Applications
(FVCA)” brings together mathematicians, physicists, and engineers interested in
this kind of physically motivated discretizations. The focus of the conference series
is two-fold. Further development and advancement of the theoretical understanding
of suitable finite volume, finite element, discontinuous Galerkin, and other dis-
cretization schemes provides a sound foundation for these methods. On the other
hand, practical examples showcase the usefulness of the approach for modeling,
simulation, and optimization in academia and industry.

Previous conferences of this series have been held in Rouen (1996), Duisburg
(1999), Porquerolles (2002), Marrakech (2005), Aussois (2008), Prague (2011),
Berlin (2014), and Lille (2017).

The present volumes contains the invited and contributed papers presented as
posters or talks at the 9th International Symposium on Finite Volumes for Complex
Applications held as an online event organized by NORCE Norwegian Research
Centre AS and University of Bergen June 15–19, 2020.

The contributions in the first volume deal with theoretical aspects of the method.
They focus on topics like preservation of physical properties on the discrete level,
convergence, stability and error analysis, physically consistent coupling between
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discretizations for different processes, connections to other discretization methods,
relationship between grids and discretization schemes, complex geometries and
adaptivity shock waves and other flow discontinuities, new and existing schemes
and their limitations, and bottlenecks in the solution of large scale problems.

The practical value of finite volume and related methods is demonstrated by the
contributions to the second volume of the proceedings. Application fields include
atmosphere and ocean modeling, chemical engineering and combustion, energy
generation and storage, and electro-reaction-diffusion systems and porous media.

The volume editors would like to thank the authors for their high quality con-
tributions, the members of the program committee for supporting the organization
of the review process, and all reviewers for their thorough work on the evaluation of
each of the contributions.

The production of the proceedings was continuously supported by the Editor’s
team at Springer Verlag.

Bergen, Norway Robert Klöfkorn
Bergen, Norway Eirik Keilegavlen
Bergen, Norway Florin A. Radu
Berlin, Germany
February 2020

Jürgen Fuhrmann
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Interplay Between Diffusion Anisotropy
and Mesh Skewness in Hybrid
High-Order Schemes

J. Droniou

Abstract We explore the effects of mesh skewness on the accuracy of standard
Hybrid High-Order (HHO) schemes for anisotropic diffusion equations. After defin-
ing a notion of regular skewed mesh sequences, which allows, e.g., for elements that
become more and more elongated during mesh refinement, we establish an error
estimate in which we precisely track the dependency of the local multiplicative con-
stants in terms of the diffusion tensor and mesh skewness. This dependency makes
explicit an interplay between the local diffusion properties and the distortion of the
elements. We then provide several numerical results to assess the practical conver-
gence properties of HHO for highly anisotropic diffusion or highly distorted meshes.
These tests indicate a more robust behaviour than the theoretical estimate predicts.

Keywords Hybrid high-order schemes · Anisotropy · Diffusion equation ·
Skewed meshes

1 Introduction

The last few years have seen a increased interest in novel discretisation meth-
ods, for diffusion equations, that support polytopal meshes (made of general poly-
gons/polyhedra) and allow for arbitrary approximation orders: Hybridisable Discon-
tinuous Galerkin methods [3], Virtual Element Methods (VEM) [2], Weak Galerkin
Methods [11], etc. The Hybrid High-Order (HHO) method [6, 7] is one of these
arbitrary-order polytopal methods, and shares with the aforementioned ones the
hybrid structure of unknowns (contrary to Discontinuous Galerkin methods [5]),
that is, unknowns located in the elements and on their faces. We refer to the intro-
duction of [7] for a thorough review of the literature on polytopal methods. The
HHO method can be seen as a high-order extension of the Hybrid Mimetic Mixed
method [8] and, contrary to some other polytopal methods, it has a flux formulation

J. Droniou (B)
School of Mathematics, Monash University, Melbourne, Victoria 3800, Australia
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4 J. Droniou

that makes it a Finite Volume method. Additionally, the design of HHO schemes is
dimension-independent and has an enhanced compliance with the physics due to the
construction of local problem-dependent reconstruction operators.

HHO schemes have been applied to and analysed for a variety of models (see [7]
and references therein), with error estimates that have an explicit dependency on the
physical data. These estimates are however obtained for “regular” polytopal meshes,
that is, meshes whose elements are “isotropic” (not elongated in any particular direc-
tion, and whose faces have a diameter comparable to their elements’ diameters). In
this work we analyse and numerically test the HHO scheme for highly anisotropic
diffusion equations and families of distorted meshes, that no longer satisfy the usual
regularity conditions. We consider the archetypal linear diffusion model

{−∇·(K∇u) = f in�,

u = 0 on ∂�,
(1)

where � is a polytopal domain of R
d , K : � → R

d×d
sym is a symmetric bounded uni-

formly coercive diffusion tensor, and f ∈ L2(�). The solution to (1) is taken in the
classical weak sense.

A review of historical or polytopal numerical methods on distorted meshes is out
of this paper’s scope. We however mention the recent works [1, 12] about the VEM
on anisotropic meshes, which present numerical results for a Poisson problem with
internal layer, and derive approximation properties of the relevant interpolators. The
novelty of our work, besides considering the HHOmethod instead of the VEM, is to
establish complete error estimates (not just interpolator approximation properties)
that take into account not only the distortion of the mesh, but also the high anisotropy
of the diffusion tensor and the subtle interplay between these two features. The
approach used here can be adapted to other methods, such as VEM, to yield error
estimates that account for this interplay.

This paper is organised as follows. The concept of regular skewedmesh sequences,
for which the error analysis will be carried out, is introduced in Sect. 2; these meshes
can have very elongated elements, provided that some local linear map transforms
them into isotropic elements. The oblique elliptic projector is at the core of HHO
schemes; its approximation properties on skewed elements are presented in Sect. 3,
and are used in Sect. 4 to perform the error analysis of HHO schemes on skewed
meshes. This analysis is based on local transports of each skewed element T into
an isotropic element T̂ ; this transport identifies a new diffusion tensor on T̂ , whose
anisotropy properties dictate the contribution of T to the global error estimate. The
error estimate stated in Theorem 2 therefore highlights how the diffusion anisotropy
and the mesh skewness are combined in the multiplicative constants. This approach
has the added advantage of leading to an error estimate that is as optimal as the
standard error estimate for anisotropic diffusion models on regular (non-skewed)
mesh sequences. In Sect. 5, we perform a series of tests to evaluate the practical
impact of high diffusion anisotropy and mesh skewness on the accuracy of HHO
schemes. Some of the conclusions drawn from these tests are predicted by the error
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estimate but, overall, the HHO scheme is found to be more robust with respect to the
diffusion anisotropy and mesh skewness than what the theoretical analysis seems to
indicate. A conclusion is provided in Sect. 6.
Notations. The Euclidean norm of a vector ξ ∈ R

d is denoted by |ξ |. If L : (Rd )s →
R is an s-linear map, we define the norm of L by

Ns(L) := sup{|L(ξ 1, . . . , ξ s)| : ξ i ∈ R
d , |ξ i| ≤ 1 ,∀i = 1, . . . , s}.

For X an open subset of R
n, n ∈ {d , d − 1}, (·, ·)X and ‖ · ‖X denote respectively the

L2(X )- or L2(X )n-inner product and norm. Letting Dsv be the s-th order differential
of v, the Hs(X )-seminorm of a function v ∈ Hs(X ) is |v|Hs(X ) := ‖Ns(Dsv)‖X .

2 Regular Skewed Mesh Sequences

Let us first briefly recall the definition of polytopal mesh, referring to [7, Sect. 1.1] for
details. A polytopal mesh of � is a couple Mh = (Th,Fh) where Th is a collection
of disjoint polytopes T—the elements—such that � = ∪T∈ThT , and Fh is the set of
mesh faces whose closures form a partition of ∪T∈Th∂T , and such that each face is
contained in one or two elements boundaries. Mesh faces can be different from the
geometrical faces of the polytopes, the latter being possibly cut in two mesh faces
in case of non-conforming mesh [7, Fig. 1.2]. The diameter of a subset X of R

d is
denoted by hX . The index h inMh is the meshsize h = maxT∈Th hT . For T ∈ Th, we
let FT be the set of faces F ∈ Fh such that ∂T = ∪F∈FT F . The outer normal to T
on F ∈ FT is nTF . A matching simplicial mesh of T ∈ Th is a polytopal mesh of T
made of simplices and whose faces correspond to the geometrical simplicial faces.

We now define the concept of regular skewed mesh sequence, which allows for
elements that becomemore andmore stretched as h decreases, provided that each ele-
ment can be linearly mapped onto an “isotropic” element, that satisfies the regularity
conditions of a standard regular mesh sequence [7, Definition 1.9].

Definition 1 (Regular Skewed Mesh Sequence) Let H ⊂ (0,+∞) be a countable
set with 0 as only accumulation point. For each h ∈ H, letMh be a polytopal mesh
and φh = (φT )T∈Th be a family of isomorphisms of R

d . The sequence (Mh, φh)h∈H
is a regular skewed mesh sequence if there exists � ∈ (0, 1) such that, for all h ∈ H
and all T ∈ Th, the following properties hold:

1. Setting T̂ = φT (T ), it holds �hT ≤ hT̂ and �hT̂ ≤ hT .
2. There is a matching simplicial mesh (TT̂ ,FT̂ ) of T̂ such that, lettingFT̂ := {F̂ :=

φT (F) : F ∈ FT } be the set of faces of T̂ , for any face σ ∈ FT̂ , either σ ∩ ∂T̂ = ∅
or there is F̂ ∈ FT̂ such that σ ⊂ F̂ .

3. For all τ ∈ TT̂ , it holds �hT̂ ≤ hτ and �hτ ≤ rτ , where rτ is the inradius of τ .

Remark 1 (Comparison with [12]) The notion of regular skewed mesh sequence
is close to the notion of regular anisotropic mesh of [12], in particular in the usage
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of maps from skewed elements to isotropic elements. A noticeable difference, how-
ever, is the requirement in [12] that two neighbouring elements T ,T ′ must have
similar isotropy (that is, the corresponding mappings φT , φT ′ must be close in a
proper measure); this is due to the type of interpolators considered in [12], which are
adapted to VEM and therefore require to compute averaged values around each ver-
tex. Such a requirement of similar isotropy for neighbouring elements is absent from
Definition 1, which is geared towards methods—such as HHO—whose interpola-
tors are L2-projections on cell and face polynomials; as a consequence, this definition
allows for example formesheswith layers of very thin rectangles neighbouring layers
of squares.

In the rest of the paper, we consider a regular skewedmesh sequence (Mh, φh)h∈H
with parameter �, and we write a � b if a ≤ Cb with C > 0 depending only on �

and � and, when the inequality involves Hs seminorms, also on the exponent s. We
write a ≈ b if a � b and b � a. We also make the following assumption.

Assumption 1 (Piecewise constant diffusion tensor) For all h ∈ H, the diffusion
tensor K is piecewise constant on Th. For any T ∈ Th we set KT = K |T .

Let T be an element of one of the meshes Mh. If x ∈ T we set x̂ = φT (x) ∈ T̂ .
The gradient (resp. differential) with respect to x̂ is denoted by ∇̂ (resp. D̂). For
w ∈ L2(T ), the transport ŵ ∈ L2(T̂ ) of w on T̂ is ŵ(̂x) = w(x) = w(φ−1

T (̂x)). We
also set JφT = |det φT |, and define JφT |F as the absolute value of the determinant
of the restriction φT |F : HF → HF̂ , where HX denotes the hyperplane generated by
X = F or F̂ ; JφT |F can be computed using any pair of orthonormal bases in F and
F̂ . Letting φt

T be the transpose of φT , the relevant diffusion tensor on T̂ is:

Kφ,T̂ = φTKTφt
T . (2)

The maximal and minimal eigenvalues of Kφ,T̂ are denoted by Kφ,T̂ and Kφ,T̂ .

Lemma 1 (Transport relations)

1. Geometrical properties. It holds N1(φ
−1
T ) ≤ �−3 and, for all F ∈ FT ,

φt
TnT̂ F̂ = JφT

JφT |F
nTF . (3)

2. Transport of L2-inner products and norms. For all w, z in L2(T ) or L2(T )d ,

(w, z)T = Jφ−1
T (ŵ, ẑ)T̂ and ‖w‖T = Jφ−1/2

T ‖ŵ‖T̂ . (4)

For all F ∈ FT and w, z ∈ L2(F),

(w, z)F = Jφ−1
T |F(ŵ, ẑ)F̂ and ‖w‖F = Jφ−1/2

T |F ‖ŵ‖F̂ . (5)
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3. Transport of derivatives. For all s ∈ N, w ∈ Hs(T ), x ∈ T , it holds

Ns(D̂
sŵ(̂x)) � Ns(̂Dsw(̂x)). (6)

For all w, z ∈ H 1(T ),

∇̂w(̂x) = ∇w(x) = φt
T ∇̂ŵ(̂x) ∀x ∈ T , (7)

(KT∇w,∇z)T = Jφ−1
T (Kφ,T̂ ∇̂ŵ, ∇̂ ẑ)T̂ ,

‖K1/2

T ∇w‖T = Jφ−1/2

T ‖K1/2

φ,T̂
∇̂ŵ‖T̂ . (8)

Proof 1. We have φ−1
T (T̂ ) = T . Since T̂ contains a ball of radius �2hT̂ (Point 3 in

Definition 1) and T has diameter hT ≤ �−1hT̂ , we see that φ
−1
T maps a ball of radius

�2hT̂ into a ball of radius �−1hT̂ . Hence, N1(φ
−1
T ) ≤ (�−1hT̂ )/(�2hT̂ ) = �−3.

Select two orthonormal bases B = (BF ,nTF) and B̂ = (B̂F ,nT̂ F̂) of R
d , where

BF is a basis of HF and B̂F is a basis of HF̂ . Since φT (F) = F̂ , the matrix of φT in
(B, B̂) is written [

A ∗
0 λ

]
,

where A is the matrix of φT |F in (BF , B̂F). In particular, JφT = |det A|λ = JφT |Fλ

and thus λ = JφT/JφT |F . Transposing the matrix above gives the matrix of φt
T in

the orthonormal bases (B̂,B). Since the last vector of B̂ (resp. B) is nT̂ F̂ (resp. nTF ),
reading the last column of this transposedmatrix givesφt

TnT̂ F̂ = λnTF and proves (3).
2. Simple changes of variables (in T or F) establish (4) and (5).
3. Since ŵ(̂x) = w(φ−1

T (̂x)), an induction on s shows that, for all ξ 1, . . . , ξ s ∈ R
d ,

D̂sŵ(̂x)(ξ 1, . . . , ξ s) = Dsw(φ−1
T (̂x))(φ−1

T (ξ 1), · · · , φ−1
T (ξ s))

= D̂sw(̂x)(φ−1
T (ξ 1), · · · , φ−1

T (ξ s)). (9)

We infer that |D̂sŵ(̂x)(ξ 1, . . . , ξ s)| ≤ Ns(̂Dsw(̂x)) |φ−1
T (ξ 1)| · · · |φ−1

T (ξ s)|.
By Point 1, |φ−1

T (ξ i)| � |ξ i| for all i = 1, . . . , s, and the proof of (6) is complete.
The relation (7) is obtained transposing (9) for s = 1. The second relation in (8)

follows from the first with z = w. To prove this first relation, apply (4) to KT∇w and
∇z instead of w and z, use the fact that KT is constant and invoke (7) to write

(KT∇w,∇z)T = Jφ−1
T (KT ∇̂w, ∇̂z)T̂ = Jφ−1

T (φTKTφt
T ∇̂ŵ, ∇̂̂z)T̂ .

�
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3 Oblique Elliptic Projector on Skewed Elements

Here, T is a generic element of Mh. Fix a polynomial degree 	 ≥ 0 and recall the
definition in [7, Sect. 3.2.1] of the oblique elliptic projector π

1,	
K,T : H 1(T ) → P

	(T ):
for all v ∈ H 1(T ),

(KT∇π
1,	
K,T v,∇w)T = (KT∇v,∇w)T ∀w ∈ P

	(T ), (10)

(π
1,	
K,T v, 1)T = (v, 1)T . (11)

The approximation properties of the oblique elliptic projector form an essential com-
ponent of the analysis of HHO schemes for (1). To establish these approximation
properties, let us first describe how the elliptic projector is transported through φT .

Lemma 2 (Transport of the elliptic projector) Letting π
1,	
K,φ,T̂

be the oblique elliptic

projector on T̂ for the tensor Kφ,T̂ defined by (2), it holds

̂
π
1,	
K,T v = π

1,	
K,φ,T̂

v̂ ∀v ∈ H 1(T ). (12)

Proof Take w ∈ P
	(T ) and write, using the definition (10) of π

1,	
K,T , the transport

relation (8) applied to (v,w) instead of (w, z), and the definition of π
1,	
K,φ,T̂

together

with ŵ ∈ P
	(T̂ ),

(KT∇π
1,	
K,T v,∇w)T = (KT∇v,∇w)T = Jφ−1

T (Kφ,T̂ ∇̂v̂, ∇̂ŵ)T̂

= Jφ−1
T (Kφ,T̂ ∇̂π

1,	
K,φ,T̂

v̂, ∇̂ŵ)T̂ . (13)

On the other hand, (8) applied to (π
1,	
K,T v,w) instead of (w, z) gives

(KT∇π
1,	
K,T v,∇w)T = Jφ−1

T (Kφ,T̂ ∇̂̂
π

1,	
K,T v, ∇̂ŵ)T̂ .

Combining this relationwith (13) and using the fact that ŵ is arbitrary inP
	(T̂ ) yields

∇̂π
1,	
K,φ,T̂

v̂ = ∇̂̂
π

1,	
K,T v. To prove (12) it remains to show that π1,	

K,φ,T̂
v̂ and ̂

π
1,	
K,T v have

the same average on T̂ . This is done by using (4) and (11) (for both π
1,	
K,T and π

1,	
K,φ,T̂

)

to write (π
1,	
K,φ,T̂

v̂, 1)T̂ = (̂v, 1)T̂ = JφT (v, 1)T = JφT (π
1,	
K,T v, 1)T = (

̂
π

1,	
K,T v, 1)T̂ . �

Let |·|n be the n-dimensional Lebesgue measure. The following characteristic
lengths will be used to state boundary approximation properties of π

1,	
K,T :

dTF = |T |d
|F |d−1

∀F ∈ FT . (14)
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Using JφT |T |d = |T̂ |d , JφT |F |F |d−1 = |F̂ |d−1, and |T̂ |d ≈ hF̂ |F̂ |d−1 and hF̂ ≈ hT̂
(owing to the isotropy of T̂ and to [7, Lemma 1.12]), we see that

dTF ≈ JφT |F
JφT

hF̂ ≈ JφT |F
JφT

hT̂ . (15)

Proposition 1 (Approximation properties of the elliptic projector on skewed ele-
ments) For all s ∈ {1, . . . , 	 + 1} and all v ∈ Hs(T ),

‖K1/2

T ∇(v − π
1,	
K,T v)‖T � K

1/2

φ,T̂ h
s−1
T |v|Hs(T ) (16)

and, if s ≥ 2, for all F ∈ FT ,

d
1/2

TF‖K1/2

T ∇(v − π
1,	
K,T v)‖F � K

1/2

φ,T̂ h
s−1
T |v|Hs(T ). (17)

Proof Since T̂ satisfies Points 2 and 3 in Definition 1, [7, Theorem 3.3] yields

‖K1/2

φ,T̂
∇̂(̂v − π

1,	
K,φ,T̂

v̂)‖T̂ � K
1/2

φ,T̂ h
s−1
T̂

|̂v|Hs(T̂ ), (18)

h
1/2

T̂
‖K1/2

φ,T̂
∇̂(̂v − π

1,	
K,φ,T̂

v̂)‖F̂ � K
1/2

φ,T̂ h
s−1
T̂

|̂v|Hs(T̂ ) ∀F̂ ∈ FT̂ (if s ≥ 2). (19)

The volumetric (16) and trace (17) estimates are obtained transporting these estimates
with (12). We start with the volumetric estimate. Using (12) and (8) we have

‖K1/2

φ,T̂
∇̂(̂v − π

1,	
K,φ,T̂

v̂)‖T̂ = ‖K1/2

φ,T̂
∇̂ ̂

(v − π
1,	
K,T v)‖T̂ = Jφ

1/2
T ‖K1/2

T ∇(v − π
1,	
K,T v)‖T .

Hence, applying (18) and using the estimate hT̂ � hT (see Point 1 in Definition 1),

‖K1/2

T ∇(v − π
1,	
K,T v)‖T � Jφ−1/2

T K
1/2

φ,T̂ h
s−1
T |̂v|Hs(T̂ ). (20)

By the definition of the Hs-seminorm, the relation (6) and the transport (4) give

|̂v|Hs(T̂ ) � ‖Ns(D̂sv)‖T̂ � Jφ
1/2

T ‖Ns(D
sv)‖T = Jφ

1/2

T |v|Hs(T ). (21)

Plugged into (20), this concludes the proof of (16).We now turn to (17). The transport
relations (12), (7) and (5) together with the definition (2) of Kφ,T̂ yield

‖K1/2

φ,T̂
∇̂(̂v − π

1,	
K,φ,T̂

v̂)‖F̂ = ‖K1/2

φ,T̂
∇̂ ̂

(v − π
1,	
K,T v)‖F̂ = Jφ

1/2
T |F‖K1/2

T ∇(v − π
1,	
K,T v)‖F .

Estimate (17) follows plugging this relation into (19), using (21) and recalling (15)
and that hT̂ � hT . �

Remark 2 (Optimality of the approximation properties) This proof shows that (16)
and (17) come from the corresponding inequalities (18) and (19) for isotropic ele-
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ments, and from (21), itself derived from (6). The latter inequality is optimal in the
sense that, for any φT , there are functions w for which it is an equality. Hence, the
approximation properties (16) and (17) for skewed elements are as optimal as the
corresponding approximation properties for isotropic elements.

4 Analysis of HHO Schemes on Skewed Meshes

We briefly recall the construction of HHO schemes for (1) (referring to [7, Chap. 3.1]
for a comprehensive presentation), and establish key properties for proving error
estimates on skewed meshes. In the following, k ≥ 0 is a fixed polynomial degree.

4.1 Local Space and Potential Reconstruction

For T ∈ Th, the local space of unknowns is

Uk
T := {vT = (vT , (vF )F∈FT ) : vT ∈ P

k(T ) , vF ∈ P
k(F) ∀F ∈ Fh}.

Setting KTF = KTnTF · nTF , this space is endowed with the seminorm

‖vT‖1,K,T :=
⎛
⎝‖K1/2

T ∇vT‖2T +
∑
F∈FT

KTF

dTF
‖vF − vT‖2F

⎞
⎠

1/2

∀vT ∈ Uk
T . (22)

For isotropic elements, this norm is usually defined using hF instead of dTF , see
[7, Sect. 3.1.3.2]. The choice made in (22) ensures, for skewed elements, optimal
estimates in terms of φT . The potential reconstruction p

k+1
K,T : Uk

T → P
k+1(T ) is such

that, for all vT ∈ Uk
T and w ∈ P

k+1(T ),

(KT∇pk+1
K,T ,∇w)T = (KT∇vT ,∇w)T +

∑
F∈FT

(vF − vT ,KT∇w · nTF)F , (23)

(pk+1
K,T vT , 1)T = (vT , 1)T . (24)

Lemma 3 (Transport of potential reconstruction) It holds

̂pk+1
K,T vT = pk+1

K,φ,T̂
v̂T ∀vT ∈ Uk

T , (25)

where v̂T = (v̂T , (v̂F )F∈FT ) ∈ Uk
T̂
is the transported vT , and pk+1

K,φ,T̂
is the potential

reconstruction on T̂ for the diffusion tensor Kφ,T̂ .
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Proof For all w ∈ P
k+1(T ),

(Kφ,T̂ ∇̂ ̂pk+1
K,T vT , ∇̂ŵ)T̂ = JφT (KT∇pk+1

K,T vT ,∇w)T

= JφT (KT∇vT ,∇w)T + JφT

∑
F∈FT

(vF − vT ,KT∇w · nTF)F

= (Kφ,T̂ ∇̂v̂T , ∇̂ŵ)T̂ + JφT

∑
F∈FT

Jφ−1
T |F(v̂F − v̂T ,KT ∇̂w · nTF)F̂ , (26)

where we have used in this order the transport relation (8), the definition (23) of
pk+1
K,T , the transport relations (8) and (5), and the fact that KT and nTF are constant.
Invoking (7), (3) and (2), we have

KT ∇̂w · nTF = Kφ,T̂ ∇̂ŵ · (φ−1
T )tnTF = JφT |F

JφT
Kφ,T̂ ∇̂ŵ · nT̂ F̂

and (26) gives

(Kφ,T̂ ∇̂ ̂pk+1
K,T vT , ∇̂ŵ)T̂ = (Kφ,T̂ ∇̂v̂T , ∇̂ŵ)T̂ +

∑
F∈FT

(v̂F − v̂T ,Kφ,T̂ ∇̂ŵ · nT̂ F̂)F̂

= (Kφ,T̂ ∇̂pk+1
K,φ,T̂

v̂T , ∇̂ŵ)T̂ ,

the conclusion following from the definition of pk+1
K,φ,T̂

. Since ŵ is arbitrary inP
k+1(T̂ ),

this proves that ̂pk+1
K,T vT and pk+1

K,φ,T̂
v̂T have the same gradient. Using (4) and (24) we

also see that they have same average on T̂ , which concludes the proof of (25). �

4.2 Local Bilinear Form

The difference operators δkK,T : Uk
T → P

k(T ) and, for F ∈ FT , δkK,TF : Uk
T → P

k(F)

are defined by: for all vT ∈ Uk
T ,

δkK,T vT := π
0,k
T (pk+1

K,T vT − vT ) , δkK,TFvT = π
0,k
F (pk+1

K,T vT − vF) ∀F ∈ FT ,

(27)
where, for X = T or F , π0,k

X : L2(X ) → P
k(X ) is the L2(X )-orthogonal projection.

We note that, for any w ∈ L2(X ),

̂
π

0,k
X w = π

0,k
X̂

ŵ. (28)

The local stabilisation bilinear form is given by: for all uT , vT ∈ Uk
T ,
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sK,T (uT , vT ) :=
∑
F∈FT

KTF

dTF
(δkK,TFuT − δkK,T uT , δkK,TFvT − δkK,T vT )F . (29)

The local HHO bilinear form aK,T : Uk
T ×Uk

T → R is then defined by:

aK,T (uT , vT ) := (KT∇pk+1
K,T uT ,∇pk+1

K,T vT )T + sK,T (uT , vT ) ∀uT , vT ∈ Uk
T . (30)

In the right-hand side above, the first term is responsible for the consistency of
the bilinear form, while the addition of the second term ensures the stability and
boundedness property stated in the following proposition. Other choices of sK,T

are possible [7, Assumption 3.9], and, on isotropic meshes, the factor dTF in this
stabilisation bilinear form can be replaced by hF .

Proposition 2 (Stability and boundedness of aK,T ) It holds

aK,T (vT , vT ) ≈ ‖vT‖21,K,T ∀vT ∈ Uk
T . (31)

Proof Step 1: transport of seminorms. Let ‖·‖1,K,φ,T̂ be defined on Uk
T̂
by:

‖v̂T‖21,K,φ,T̂ := ‖K1/2

φ,T̂
∇̂v̂T‖2T̂ +

∑
F̂∈FT̂

Kφ,T̂ F̂

hF̂
‖v̂F − v̂T‖2F̂ ∀v̂T ∈ Uk

T̂ ,

where Kφ,T̂ F̂ := Kφ,T̂nT̂ F̂ · nT̂ F̂ . If vT ∈ Uk
T , the transport relations (8) and (5) yield

‖vT‖21,K,T = Jφ−1
T ‖K1/2

φ,T̂
∇̂v̂T‖2T̂ +

∑
F∈FT

KTF

dTF
Jφ−1

T |F‖v̂F − v̂T‖2F̂ . (32)

Starting from KTF = KTnTF · nTF , the relations (3), (15) and (2) yield

KTF

dTF
Jφ−1

T |F = KT
JφT |F
JφT

φt
TnT̂ F̂ · JφT |F

JφT
φt
TnT̂ F̂

dTFJφT |F
≈ Jφ−1

T

Kφ,T̂ F̂

hF̂
. (33)

Plugged into (32), this gives

‖vT‖21,K,T ≈ Jφ−1
T ‖v̂T‖21,K,φ,T̂ . (34)

Step 2: transport of bilinear forms. Let aK,φ,T̂ : Uk
T̂

×Uk
T̂

→ R be the standard
local HHO bilinear form on T̂ for Kφ,T̂ :

aK,φ,T̂ (v̂T , ŵT ) := (Kφ,T̂ ∇̂pk+1
K,φ,T̂

v̂T , ∇̂pk+1
K,φ,T̂

ŵT )T̂ + sK,φ,T̂ (v̂T , ŵT ), where

sK,φ,T̂ (v̂T , ŵT ) :=
∑
F̂∈FT̂

Kφ,T̂ F̂

hF̂
(δkK,φ,T̂ F̂ v̂T − δkK,φ,T̂ v̂T , δkK,φ,T̂ F̂ ŵT − δkK,φ,T̂ ŵT )F̂
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with difference operators δK,φ,T̂ and (δK,φ,T̂ F̂)F̂∈FT̂
defined on Uk

T̂
in a similar way

as in (27), using pk+1
K,φ,T̂

instead of pk+1
K,T . Let vT ∈ Uk

T . Relations (27), (25) and (28)

show that ̂δkK,T vT = δK,φ,T̂ F̂ v̂T and ̂δkK,TFvT = δK,φ,T̂ F̂ v̂T . Hence, by (5) and (33),

sK,T (vT , vT ) ≈ Jφ−1
T sK,φ,T̂ (v̂T , ŵT ) (35)

and, recalling (8),

(KT∇pk+1
K,T uT ,∇pk+1

K,T vT )T = Jφ−1
T (Kφ,T̂ ∇̂pk+1

K,φ,T̂
v̂T , ∇̂pk+1

K,φ,T̂
v̂T )T .

This leads to
aK,T (vT , vT ) ≈ Jφ−1

T aK,φ,T̂ (v̂T , v̂T ). (36)

Step 3: conclusion. Since T̂ is isotropic, [7, Proposition 3.13] yields aK,φ,T̂ (v̂T , v̂T )

≈ ‖v̂T‖2
1,K,φ,T̂

. Using (34) and (36), the proof of (31) is complete. �

4.3 HHO Scheme and Error Estimate

The global discrete space of unknowns is obtained patching local spaces and enforc-
ing homogeneous Dirichlet boundary conditions:

Uk
h,0 := {vh = ((vT )T∈Th , (vF )F∈Fh) : vT ∈ P

k(T ) ∀T ∈ Th ,

vF ∈ P
k(F) ∀F ∈ Fh , vF = 0 ∀F ⊂ ∂�}.

The restriction of vh ∈ Uk
h,0 to an element T is vT = (vT , (vF )F∈FT ) ∈ Uk

T . The inter-
polator I kh : H 1

0 (�) → Uk
h,0 is such that, for v ∈ H 1

0 (�),

I khv := ((π
0,k
T v)T∈Th , (π

0,k
F v|F)F∈Fh).

The local interpolator on T ∈ Th is I kT : H 1(T ) → Uk
T such that, for v ∈ H 1(T ),

I kT v = (π
0,k
T v, (π0,k

F v|F)F∈FT ). The global HHO bilinear form aK,h : Uk
h,0 ×Uk

h,0 →
R is assembled from local contributions: for vh,wh ∈ Uk

h,0,

aK,h(uh, vh) :=
∑
T∈Th

aK,T (uT , vT ).

This global bilinear form defines the energy norm such that, for vh ∈ Uk
h,0,

‖vh‖a,K,h := aK,h(vh, vh)
1/2. (37)
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The HHO scheme for (1) is written: find uh ∈ Uk
h,0 such that

aK,h(uh, vh) =
∑
T∈Th

(f , vT )T ∀vh ∈ Uk
h,0. (38)

This scheme is well-posed, and is a Finite Volume scheme in the sense that it has a
flux formulation [7, Lemma 3.17]. Our main result is the following theorem.

Theorem 2 (Discrete energy error estimate for HHO schemes on skewed meshes)
Assume that the weak solution u ∈ H 1

0 (�) to (1) is such that, for some r ∈ {0, . . . , k},
u|T ∈ Hr+2(T ) for all T ∈ Th. Let uh ∈ Uk

h,0 be the solution to the HHO scheme (38).
Then, it holds

‖I khu − uh‖a,K,h �

⎛
⎝∑

T∈Th

Kφ,T̂αK,φ,T̂ h
2(r+1)
T |u|2Hr+2(T )

⎞
⎠

1/2

, (39)

where αK,φ,T̂ is the anisotropy ratio of Kφ,T̂ , defined by αK,φ,T̂ := Kφ,T̂

Kφ,T̂
.

Remark 3 (Optimality of the error estimate) Following Remark 2, Estimate (39)
is as optimal with respect to the mesh skewness as the corresponding estimate [7,
Theorem 3.18], for isotropic meshes, is optimal with respect to the diffusion tensor.

Remark 4 (Interplay between mesh skewness and diffusion anisotropy) Assume
for simplicity that d = 2 and that, for any T ∈ Th, there is an orthonormal basis in
which

KT =
[

λT 0
0 1

]
and φT =

[
aT 0
0 bT

]
. (40)

Then Kφ,T̂ is diagonal with coefficients a2TλT and b2T , and (39) leads to the estimate

‖I khu − uh‖a,K,h

� max
T∈Th

[
max(aTλ

1/2

T , bT )max

(
aTλ

1/2

T

bT
,

bT

aTλ
1/2

T

)]
hr+1|u|Hr+2(Th), (41)

where |u|Hr+2(Th) is the usual brokenH
r+2-seminorm of u. The first term in the right-

hand side of (41) encodes the interaction between the skewness of the mesh elements
and the local anisotropy of the diffusion tensor.

Proof (Theorem 2) Applying the 3rd Strang lemma [4], we have

‖I khu − uh‖a,K,h ≤ sup
vh∈Uk

h,0, ‖vh‖a,K,h≤1

EK,h(u; vh), (42)

whereEK,h(u; vh) := ∑
T∈Th

(f , vT )T − aK,h(I khu, vh). The following relation is estab-
lished in the proof of [7, Lemma 3.15]:
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EK,h(u; vh) =
∑
T∈Th

∑
F∈FT

(KT∇(u − π
1,k+1
K,T u) · nTF , vF − vT )F

−
∑
T∈Th

sK,T (I kT u, vT ) = T1 + T2.
(43)

Let vh ∈ Uk
h,0 be such that ‖vh‖a,K,h ≤ 1. Writing KT∇(u − π

1,k+1
K,T u) · nTF =

K
1/2

T ∇(u − π
1,k+1
K,T u) · K1/2

T nTF , using Cauchy–Schwarz inequalities and |K1/2

T nTF | =
K

1/2

TF , we have

|T1| ≤
∑
T∈Th

∑
F∈FT

K
1/2
TF‖K1/2

T ∇(u − π
1,k+1
K,T u)‖F‖vF − vT‖F

≤
⎛
⎝ ∑

T∈Th

∑
F∈FT

dTF‖K1/2
T ∇(u − π

1,k+1
K,T u)‖2F

⎞
⎠

1/2 ⎛
⎝ ∑

T∈Th

∑
F∈FT

KTF

dTF
‖vF − vT‖2F

⎞
⎠

1/2

�

⎛
⎝ ∑

T∈Th

Kφ,T̂ h
2(r+1)
T |u|2Hr+2(T )

⎞
⎠

1/2

, (44)

where we have used (17) (with 	 = k + 1 and s = r + 2) and the norm equiva-
lence (31) to write

∑
T∈Th

∑
F∈FT

KTF
dTF

‖vF − vT‖2F �
∑

T∈Th
aK,T (vT , vT ) = aK,h(vh,

vh) ≤ 1. To estimate T2, we also use Cauchy–Schwarz inequalities, the bound∑
T∈Th

sK,T (vT , vT ) ≤ ∑
T∈Th

aK,T (vT , vT ) ≤ 1 and the transport relation (35) to
write

|T2| ≤
⎛
⎝∑

T∈Th

sK,T (I kT u, I
k
T u)

⎞
⎠

1/2

�

⎛
⎝∑

T∈Th

Jφ−1
T sK,φ,T̂ (Î kT u, Î

k
T u)

⎞
⎠

1/2

.

Since T̂ is isotropic and Î kT u = I k
T̂
û (owing to (28)), the consistency properties [7,

Lemma 3.10] of sK,φ,T̂ and the relations hT̂ � hT and (21) yield

|T2| �

⎛
⎝∑

T∈Th

Jφ−1
T Kφ,T̂αK,φ,T̂ h

2(r+1)
T̂

|̂u|2Hr+2(T̂ )

⎞
⎠

1/2

�

⎛
⎝∑

T∈Th

Kφ,T̂αK,φ,T̂ h
2(r+1)
T |u|2Hr+2(T )

⎞
⎠

1/2

.

Plug this estimate and (44) into (43), use αK,φ,T̂ ≥ 1 and recall (42) to conclude.
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5 Numerical Evaluation of the Effects of Diffusion
Anisotropy and Mesh Skewness

We provide here a series of numerical results, on the domain � = (0, 1)2 (and with
non-homogeneous Dirichlet boundary conditions —see [7, Sect. 2.4] for the adapta-
tion of the scheme (38) to this case), to assess the practical optimality of the error
estimate (39) and its consequence (41) in cases of highly anisotropic diffusion tensor
and/or skewedmesh families. The accuracy of the HHO scheme is measured through
the following two relative errors:

Ea,K,h := ‖I khu − uh‖a,K,h

‖I khu‖a,K,h
and E1,h := ‖I khu − uh‖1,h

‖I khu‖1,h
,

where ‖·‖a,K,h is defined by (37), and ‖·‖1,h is the diffusion-independent discrete
H 1-norm obtained adding together the local seminorms (22) with K = Id , that is:

‖vh‖1,h :=
⎛
⎝∑

T∈Th

[
‖∇vT‖2T +

∑
F∈FT

d−1
TF ‖vF − vT‖2F

]⎞⎠
1/2

. (45)

The numerical tests have been performed using the code “HHO-Diffusion” in
the C++ open source library HArDCore [9]. This library provides generic tools for
implementing 2D and 3D numerical methods with unknowns made of polynomials
on the edges/faces and cells of the mesh; it also naturally handles generic polyg-
onal and polyhedral meshes. The variety of possible tests to assess the practical
efficiency of the scheme (38) with anisotropic diffusion/skewed meshes is infinite,
given the numerous possible parameters (polynomial degrees k, diffusion tensors,
exact solutions, type of meshes, etc). We only report a few relevant results here, but
all the meshes and data used in the tests below are available in HArDCore for the
interested reader to run additional tests.

5.1 Test A: Anisotropic Diffusion Tensor

This test focuses on the effect of an anisotropic and heterogeneous diffusion tensor.
For λ ∈ {10−6, 1, 106}, we consider the tensor

K(x, y) =
[

λ 0
0 1

]
if y < 0.5, K(x, y) = Id if y ≥ 0.5,

and fix the exact solution u(x, y) = cos(πx) cos(πy); the source term and bound-
ary conditions are computed from this solution. Since (∂xu)|y=0.5 = 0, we still have
∇·(K∇u) ∈ L2(�)despite the discontinuity ofK along y = 0.5.Weconsider a family
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of locally refined meshes from the FVCA5 benchmark [10] (see Fig. 1), for which
the setting of Remark 4 holds with λT = λ and aT = bT = 1; the estimate (41)
therefore predicts a dependency of the energy error on max(λ, λ− 1

2 ). The results for
k = 1, 3 are presented in Fig. 2; tests with other polynomial degrees present the same
trend. The energy error Ea,K,h appears to depend much less on the anisotropy ratio
than predicted; the error E1,h shows a more pronounced dependency on the tensor
anisotropy, especially for low degrees where a factor of about 30 is seen on the finest
mesh between λ = 1 and λ = 10−6, 106.

Fig. 1 Two members of the family of meshes used in Test A
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Fig. 2 Errors versus meshsize for Test A. Slopes = rates expected from (39)
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5.2 Test B: Skewed Mesh

In this test, we study the impact of the mesh skewness. We take K = Id and the exact
solution u(x, y) = cos(πx) cos(πy). The meshes are (mostly) hexagonal, and more
and more skewed as their size decreases (see Fig. 3). The results in Fig. 4 show a
clear loss of rate of convergence, compared to the expected rate for isotropic meshes.

To estimate more precisely the effect of mesh skewness, we introduce the flatness
factor defined as flh := maxT∈Th flT with flT := hT

ρT
, where ρT is the radius of the

largest ball centred at the centre of mass of T and contained in T . The skewness of
the considered meshes comes from the large flatness factors flT of some elements
T . It is easy to convince oneself that this setting is compatible with Remark 4 with
λ = 1, aT = flT and bT = 1. As a consequence, (41) predicts an upper bound

Fig. 3 First two meshes in the skewed family used in Test B
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Fig. 4 Errors versus meshsize for Test B. The slopes indicate the expected rates of convergence
hk+1, disregarding the effects of the mesh skewness
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Ea,K,h � fl2hh
k+1|u|Hk+2(Th). (46)

To evaluate the accuracy of this estimate with respect to the mesh flatness, for each
error Eh ∈ {Ea,K,h,E1,h} we provide in Table1 an evaluation of the rates of growth of
Eh/hk+1 with respect to flh. Estimate (46) tells us that, at least for the energy error,
this rate should be at a maximum of 2. As can be seen in Table1, the actual rates are
much smaller than 2, and both errors are less sensitive to the mesh flatness than (46)
predicts; the diffusion-independent norm E1,h is the least sensitive of both.

Table1 also reports the condition numbers (CN) in 1-norm for the statically con-
densed system. For regularmesh sequences, CNs ofHHO systems grow as h−2. Here,
the growth is in h−4 (but the CNs do not depend much on k). The additional power of
2 could come from a factor fl2 (since, here, fl ∼ 1/h). Further analysis and tests are
however necessary to reach a definitive conclusion, and it should also be noted that
the meshes considered here contain a large portion of skewed elements; the condition
numbers could be reduced for meshes with a smaller portion of distorted cells.

5.3 Test C

We assess here the interplay betweenmesh skewness and diffusion anisotropy, taking
K(x, y) = diag(106, 1), and u(x, y) = cos(πx) cos(πy) as before. We consider two
families of meshes: regular hexagonal, and skewed hexagonal with flatness factor
multiplied by two from one mesh member to the next; see Fig. 5.

The setting of Remark 4 is valid with (aT , bT ) = (1,flh) with flh ≤ 103 for the
considered meshes; (41) thus predicts a bound Ea,K,h � 106fl−1

h hk+1|u|Hk+2(�). For
the skewed meshes, we have flh ∼ 1/h and we therefore expect a better rate of
convergence than the usual hk+1 rate for isotropic meshes. Figure6 confirms this
improvement, albeit in a non-uniform way.

The improvement is clearer if we superimpose the errors for the families of regular
and skewed meshes, see Figs. 7a, b. For a given meshsize, selecting a mesh that is
stretched in the direction of strong diffusion improves the convergence in both norms;
this gain is valid for all degrees, but especially prominent for the lowest-order case
k = 0 (for which, at the considered meshsizes, there is no apparent convergence on
non-stretched meshes). In Fig. 7c, d the same errors are plotted against the number
of globally coupled degrees of freedom, which for HHO schemes correspond to the
edge unknowns (the element unknowns can be eliminated by static condensation [7,
Appendix B]). In terms of errors vs. number of degrees of freedom, the gain in using
skewedmeshes is less clear, except for k = 0; the reason is that meshes entirelymade
of stretched elements usually have, for a given meshsize, more edges than regular
meshes.
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Fig. 5 Upper left corner of the meshes in Test C: regular hexagonal (top); skewed hexagonal
(bottom)
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Fig. 6 Errors in Test C for the family of skewed hexagonal meshes. The slopes correspond to the
hk+1 rates expected for non-skewed meshes

6 Conclusion

We presented a theoretical and numerical study of the accuracy and robustness of the
classical HHO method, when applied to anisotropic diffusion equations on distorted
meshes. We defined a notion of mesh sequences that accepts in particular elements
that become more and more elongated as the mesh is refined, and we established
an error estimate that tracks the dependency of the constants with respect to the
local diffusion anisotropy and elements skewness. We then presented the results of
several numerical tests designed to explore the optimality of the error estimate. These
results indicate that some behaviours highlighted by the theoretical estimate (such
as the interplay between diffusion anisotropy and mesh skewness) are perceptible
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(a) Errors vs. h for k = 0 (top four plots) and
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Fig. 7 Test C: comparison between regular (dashed lines) and skewed (continuous lines) hexagonal
meshes. Round markers: Ea,K,h; square markers: E1,h

in practical numerical results, but they also show that this estimate appears to be
pessimistic in its prediction of the behaviour of the error in case of strong anisotropy
or skewness.

Further work remains to be done to obtain more optimal estimates in terms of
dependency with respect to the tensor anisotropy (this only has to be done for non-
skewed meshes, as our approach would then provide an optimal estimate for skewed
meshes). An aspect that is not covered by our definition of regular skewed mesh
sequences is the case of small edges/faces in otherwise isotropic elements; another
approach has to be adopted to derive error estimates in such situations. Finally, even
though the standard HHO scheme displays some level of robustness on distorted
meshes, it would be interesting to develop a variant that is specifically adapted to
such meshes, and leads to better condition numbers than the standard method.
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K -Convergence of Finite Volume
Solutions of the Euler Equations

Mária Lukáčová-Medvid’ová

Abstract We review our recent results on the convergence of invariant domain-
preserving finite volume solutions to the Euler equations of gas dynamics. If the
classical solution exists we obtain strong convergence of numerical solutions to the
classical one applying the weak-strong uniqueness principle. On the other hand, if
the classical solution does not exist we adapt thewell-known Prokhorov compactness
theorem to space-time probability measures that are generated by the sequences of
finite volume solutions and show how to obtain the strong convergence in space and
time of observable quantities. This can be achieved even in the case of ill-posed Euler
equations having possibly many oscillatory solutions.

Keywords Convergence analysis · Finite volume methods · Euler equations ·
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1 Introduction

Hyperbolic conservation laws are fundamental for most of physical, biological and
mechanical processes. The iconic example of this class of partial differential equa-
tions are the Euler equations of gas dynamics. Being published in 1757 by Leonhard
Euler in Mémoires de l’Académie des Sciences de Berlin in his article “Principes
généraux du mouvement des fluides” the Euler equations are one of the first written
partial differential equations at all. Recently, multidimensional Euler equations have
achieved renewed interest in mathematical community. Indeed, it is a well-known
fact that the classical (i.e., continuously differentiable) solution exists in general
only for a short time since discontinuities (shocks) may develop. A suitable gener-
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alization is to consider weak solutions, which moreover satisfy the second law of
thermodynamics.

As shown by De Lellis and Székelyhidi [8] and by Chiodaroli et al. [6] infinitely
many weak entropy solutions can be constructed for the multidimensional compress-
ible Euler equations. Their ill-posedness is related to the lack of compactness of a
set of weak entropy solutions. Such a failure of well-posedness (i.e., uniqueness)
of the multidimensional Euler equations in the class of weak entropy solutions is
connected to the turbulence effects which are apparently not appropriately described
by the concept of distributional solutions.

On the other hand, we can find in literature a large variety of powerful numer-
ical schemes, typically finite volume or discontinuous Galerkin methods, that are
successfully used in order to approximate multidimensional hyperbolic conserva-
tion laws and the Euler equations, in particular. We refer to monographs [11, 12,
18, 22, 28, 30, 33] and the references therein. Despite the popularity of the finite
volume and discontinuous Galerkin methods for practical applications their theo-
retical convergence analysis for multidimensional hyperbolic conservation laws is
still incomplete. We should mention for example the convergence and error analysis
obtained in [26] for the Cauchy problem of a general multidimensional hyperbolic
conservation law. Under the assumption of the existence of the classical solution the
authors applied the stability result due to Dafermos [7] and DiPerna’s method [9] in
order to derive the error estimates for the explicit finite volume schemes satisfying
the discrete entropy inequality. Consequently, they proved the strong convergence of
the entropy stable finite volume schemes.

In view of the facts that the classical solution may not exist and the weak entropy
solutions are non-unique new probabilistic concepts have been developed. In [9, 10,
29, 31] the so-called measure–valued solutions to hyperbolic conservation laws are
studied. The latter are represented by the Young measures, which are space-time
parametrized probability measures acting on a (solution) phase space. Measure–
valued solutions have been also successfully used in [19, 21] in order to show con-
vergence of the entropy stable finite volume schemes for general hyperbolic conser-
vation laws under additional assumptions on the boundedness of numerical solutions
or a growth condition on the flux function. Another interesting contribution to the
convergence analysis of the Euler equations was presented in [29], where the limit
of higher order viscous regularization to the Euler equations was identified with a
measure–valued solution that exists globally in time.

Clearly, the set of (entropy) measure–valued solutions is larger than that of
(entropy) weak solutions and thus the question of uniqueness remains still open.
However, a recently introduced concept of dissipative measure–valued (DMV) solu-
tions [5, 25] allows to show the DMV-strong uniqueness principle. It means that
DMV solutions coincide with the strong solution as long as the latter exists.

The aim of the present paper is to review our recent results on the conver-
gence analysis of some finite volume methods. It turned out that some invariant
domain-preserving properties, such as the entropy stability, preservation of posi-
tivity of density and internal energy and minimum entropy principle are important
in order to obtain convergence of a numerical scheme without any additional non-
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physical assumptions [15]. We also report on the recently established concept of
K -convergence which allows to compute observable quantities of possibly strongly
oscillating dissipative measure–valued solutions [14, 17]. We wish to give a clear
overview of main convergence results without going into deep theoretical justifica-
tions. In this way we hope to attract the attention of more experimentally oriented
computational scientists and to encourage them to apply K -convergence to other
well-known finite volume and discontinuous Galerkin methods. A reader interested
in further theoretical details and proofs is referred to [14–17] and the references
therein.

Inwhat followswefirstly introduce the dissipativemeasure–valued anddissipative
weak solutions of the Euler equations and describe a suitable invariant domain-
preserving finite volume method. Consequently, we present the strong convergence
results for single realizations under the assumption that the classical solution to the
Euler equation exists and the strong convergence result of observable quantities in a
general case.

2 Euler Equations and Dissipative Solutions

The gas dynamics of inviscid compressible flows is governed by the Euler equations

∂tρ + divm = 0,

∂tm + div(m ⊗ u) + ∇ p = 0,

∂t E + div((E + p)u) = 0, (1)

where ρ,m and E represent the conservative variables, the density, momentum and
the total energy, respectively. Further, p and u = m/ρ stand for the pressure and
velocity. The total energy E = 1

2
m2

ρ
+ ρe consists of the kinetic energy and the

internal energy e.
System (1) is closed by the standard pressure law for a perfect gas

p(ρ, ϑ) = Rρϑ, ϑ is the temperature and R the gas constant. We assume with-
out loss of generality that R = 1. We denote by γ the adiabatic coefficient and by
cV the specific heat at constant volume, cV = 1

γ−1 . In what follows we will assume
that 1 < γ < 2 and note that this covers the physically reasonable range for gases
1 < γ ≤ 5/3. Denoting s the specific physical entropy and S the total entropy we
have

s(ρ, ϑ) = log

(
ϑcV

ρ

)
= 1

γ − 1
log

(
p

ργ

)
, S = ρs and e(ρ, ϑ) = cV ϑ.

On a space-time cylinder Ω × (0, T ), Ω ⊂ R
d , d = 2, 3, T > 0, the system of

the Euler equations is accompanied by appropriate boundary and initial conditions.
Here we assume the periodic or the no flux boundary conditions
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u|∂Ω · n = 0,
∂ϑ

∂n
= 0

and set
ρ(t = 0) = ρ0, m(t = 0) = m0, E(t = 0) = E0.

In [16] it has been proved that numerical solutions obtained by suitable numerical
schemes (such as invariant domain-preserving finite volume methods) either con-
verge strongly in suitable Bochner spaces or their (weak) limit is not a weak entropy
solution. Clearly, such a result calls for a new concept of generalized solutions to
the Euler equations. Following [2, 5] we introduce the dissipative measure–valued
solutions and dissipative weak solutions. The latter can be seen as the statistical mean
values with respect to the corresponding Young measures.

Definition 1 (Dissipative measure–valued solution) [5, 16] A parametrized prob-
ability measure {Vt,x }(t,x)∈(0,T )×Ω ,

V ∈ L∞((0, T ) × Ω;P(Rd+2)), R
d+2 =

{
[ρ̃, m̃, S̃]

∣∣∣ ρ̃ ∈ R, m̃ ∈ R
d , S̃ ∈ R

}
,

is called dissipative measure valued (DMV) solution of the Euler system (1) if the
following holds:

• lower bound on density and entropy
there exists s ∈ R such that

Vt,x

[ {
ρ ≥ 0, S ≡ sρ ≥ sρ

} ] = 1 for a.a. (t, x); (2)

• integral energy inequality1

∫
Ω

〈
Vτ,x ; 1

2

|m̃|2
ρ̃

+ ρ̃e(ρ̃, S̃)

〉
dx +
∫
Ω
dEcd (τ ) ≤

∫
Ω

[
1

2

|m0|2
ρ0

+ ρ0e(ρ0, S0)

]
dx

(3)
holds for a.a. 0 ≤ τ ≤ T , with the energy concentration defect

Ecd ∈ L∞(0, T ; M+(Ω)),

where M+(Ω) denotes the space of positive Radon measures on Ω;
• equation of continuity

[∫
Ω

〈V ; ρ̃〉 dx

]t=τ

t=0

=
∫ τ

0

∫
Ω

[
〈V ; ρ̃〉 ∂tϕ + 〈V ; m̃〉 · ∇ϕ

]
dx dt (4)

1Here the mean value
〈
Vt,x ; b

(
Ũ
)〉

≡ ∫
Rd+2 b

(
Ũ
)

dVt,x (Ũ) for U ∈ R
d+2 and b bounded con-

tinuous function.
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for any 0 ≤ τ ≤ T , and any ϕ ∈ W 1,∞((0, T ) × Ω);
• momentum equation

[∫
Ω

〈V ; m̃〉 · ϕ dx

]t=τ

t=0

=
∫ τ

0

∫
Ω

[
〈V ; m̃〉 · ∂tϕ +

〈
V ; 1ρ̃>0

m̃ ⊗ m̃
ρ̃

〉
: ∇ϕ + 〈V ; 1ρ̃>0 p(ρ̃, S̃)

〉
divϕ

]
dx dt

+
∫ τ

0

∫
Ω

∇ϕ : dRcd (t) dt

(5)
for any 0 ≤ τ ≤ T , and any ϕ ∈ Cm([0, T ] × Ω; Rd), ϕ · n|∂Ω = 0, m ≥ 1, with
the Reynolds concentration defect

Rcd ∈ L∞(0, T ; M+(Ω; Rd×d
sym ))

satisfying

d Ecd ≤ tr[Rcd ] ≤ d Ecd for some constants 0 < d ≤ d; (6)

• entropy inequality

[∫
Ω

〈
V ; S̃
〉
ϕ dx

]t=τ2+

t=τ1−
≥
∫ τ2

τ1

∫
Ω

[〈
V ; S̃
〉
∂tϕ + 〈V ; 1ρ̃>0

(
S̃ũ
)〉 · ∇ϕ

]
dx dt

(7)
for any 0 ≤ τ1 ≤ τ2 < T , and any ϕ ∈ W 1,∞((0, T ) × Ω), ϕ ≥ 0.

The DMV solution is a very general concept that allows to show the convergence
of invariant domain-preserving schemes in an elegant way. Despite its generality it
still satisfies the DMV-strong uniqueness principle [5] and thus the DMV solutions
coincide with the classical solution as long as the latter exists. To prove the latter
the crucial properties are the energy dissipation (3) and (6) controlling the Reynolds
defect in the momentum equation by the energy concentration defect. It is to be
pointed out that the Reynolds concentration defect brings an additional freedom to
model turbulent flow behaviour.

To simplify the viewpoint on this generalized solutions it often suffices to consider
only the mean values of DMV solutions, which are the below-mentioned dissipative
solutions.

Definition 2 (dissipative weak solution) [16] A triple [ρ,m, S] is dissipative weak
(DW) solution of the full Euler system (1) if the following holds:

• weak continuity in time

ρ ∈ Cweak([0, T ]; Lγ (Ω)), (γ being the adiabatic constant)

m ∈ Cweak([0, T ]; L
2γ

γ+1 (Ω;Rd)),

S ∈ L∞(0, T ; Lγ (Ω)) ∩ BVweak([0, T ]; Lγ (Ω));
(8)
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• energy inequality: there exists a measure

E ∈ L∞(0, T ; M+(Ω)),

such that the inequality

∫
Ω

[
1

2

|m|2
ρ

+ ρe(ρ, S)

]
(τ, ·) dx +

∫
Ω
dE(τ ) ≤

∫
Ω

[
1

2

|m0|2
ρ0

+ ρ0e(ρ0, S0)

]
dx

(9)
holds for a.a. 0 ≤ τ ≤ T ;

• equation of continuity

[∫
Ω

ρϕ dx

]t=τ

t=0

=
∫ τ

0

∫
Ω

[ρ∂tϕ + m · ∇ϕ] dx dt (10)

holds for any 0 ≤ τ ≤ T ;
• momentum equation

[∫
Ω

m · ϕ dx

]t=τ

t=0
=
∫ τ

0

∫
Ω

[
m · ∂tϕ + 1ρ>0

m ⊗ m
ρ

: ∇ϕ + 1ρ>0 p(ρ, S)divϕ

]
dx dt

+
∫ τ

0
∇ϕ : dR

(11)
for any 0 ≤ τ ≤ T , any test function ϕ ∈ Cm([0, T ] × Ω;Rd), ϕ · n|∂Ω = 0, and
a defect measure

R ∈ L∞(0, T ; M+(Ω;Rd));
• entropy inequality

[∫
Ω

Sϕ dx

]t=τ2+

t=τ1−
≥
∫ τ2

τ1

∫
Ω

[
S∂tϕ + 〈V ; 1ρ̃>0

(
S̃ũ
)〉 · ∇ϕ

]
dx dt, S(0−, ·) = S0,

(12)
for any 0 ≤ τ1 ≤ τ2 < T , any ϕ ∈ W 1,∞((0, T ) × Ω), ϕ ≥ 0, where

{Vt,x }(t,x)∈(0,T )×Ω is the aforementioned DMV solution
• defect compatibility conditions

d E ≤ tr [R] ≤ d E for some constants 0 ≤ d ≤ d, (13)

and

E ≥
〈
V ; 1

2

|m̃|2
ρ̃

+ ρ̃e(ρ̃, S̃)

〉
−
(
1

2

|m|2
ρ

+ ρe(ρ, S)

)
. (14)

The existence of DMV or DW solutions can be shown by the convergence of suitable
invariant domain-preserving finite volume schemes. In what follows we will present
such a finite volume method and review its convergence results for multidimensional
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Euler equations. We mention in passing that in [13] the convergence of the stan-
dard Lax-Friedrichs finite volume method has been shown in an analogous way as
presented below.

3 A Finite Volume Method Based on the Brenner Model

In [15] the two-velocity model for compressible flows by Brenner [3, 4] was revis-
ited and a new invariant domain-preserving finite volume method, denoted here by
the FLM method, has been proposed and analysed. To fix the notation we start by
introducing a suitable discrete space and a finite volume mesh.

The finite volume grid Th consists of finite volumes, denoted by K , that can be
triangles, rectangles or polygons and cover the physical domain Ω

Ω =
⋃

K∈Th

K .

The parameter h ∈ (0, 1) is the maximum element size, i.e., the size of the mesh
Th . We assume that Th is regular and quasi-uniform. The set of all faces is denoted
by Σ, while the set of faces on the boundary is denoted by Σext , and the set of
interior faces by Σint = Σ\Σext . For periodic boundary conditions we set Σext =
∅ and Σint = Σ. Further, we associate each face with its outer normal vector n.

We denote by Qh the set of piecewise constant functions on Th and define for any
v ∈ Qh , x ∈ σ ∈ Σint

vout(x) = lim
δ→0+ v(x + δn), vin(x) = lim

δ→0+ v(x − δn),

v(x) = vin(x) + vout(x)

2
, [[v]] = vout(x) − vin(x).

A numerical flux function in our finite volume method is based on the so-called
dissipative upwinding. Let a velocity uh ∈ Qh and a function rh ∈ Qh, then the
(classical) upwinding reads

U p[rh, uh] = ruph uh · n = r inh [uh · n]+ + routh [uh · n]−

= rh uh · n − 1

2
|uh · n| [[rh]] ,

where

[ f ]± = f ± | f |
2

and rup =
{

r in if uh · n ≥ 0,

rout if uh · n < 0.

The numerical flux function is defined in the following way
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Fh(rh, uh) = U p[rh, uh] − hβ [[rh]] , 0 < β < 1.

Note that the term hβ [[rh]] leads to an additional vanishing viscosity term in
the approximation of the Euler equations. Now we proceed to the formulation of a
semi-discrete finite volume method for the Euler system (1).

Definition 3 (FLM method)Given the initial values (ρ0,h,m0,h, E0,h) ∈ Qh × Qh ×
Qh, we seek a piecewise constant approximation (ρh,mh, Eh) ∈ Qh × Qh × Qh
which solves at any time t ∈ (0, T ] the following equations:

Dtρh

∣∣∣
K

+
∑

σ∈∂K

|σ |
|K | Fh(ρh, uh) = 0,

Dtmh

∣∣∣
K

+
∑

σ∈∂K

|σ |
|K | (Fh(mh, uh) + phn) = hα−1

∑
σ∈∂K

|σ |
|K | [[uh]] , (15)

Dt Eh

∣∣∣
K

+
∑

σ∈∂K

|σ |
|K |
(

Fh(Eh, uh) + (ph [[uh]] + [[ph]] uh) · n
)

= hα−1

2

∑
σ∈∂K

|σ |
|K |
[[
u2h
]]

,

for any K ∈ Th .

By Dt we have denoted (continuous) time derivative; in practical implementation
one can use any suitable ODE solver in order to approximate (15). In our recent
work [15] we have shown that the FLMmethod (15) satisfies the following invariant
domain-preserving properties, see [23, 24] where this notion was firstly introduced.

• Positivity of the discrete density, pressure and internal energy.
For any fixed h > 0 the approximate density, pressure and internal energy remain
strictly positive on any finite time interval. We refer the reader to [15, Sects. 4.3
and 4.4] for more details.

• Discrete entropy inequality.
The discrete (renormalized) entropy inequality in the sense of Tadmor is satisfied,
cf. [32]. More precisely, it holds that

d

dt

∫
Th

ρhχ(sh)Φh dx ≥
∑

σ∈Σint

∫
σ

U p[ρhχ(sh), uh][[Φh]]dSx+

+
∑

σ∈Σint

∫
σ

hβ
(
∇ρ(ρhχ(sh))[[ρh]] + ∇p(ρhχ(sh))[[ph]]

)
[[Φh]]dSx ,

where χ is a non-decreasing, concave, twice continuously differentiable function
on R that is bounded from above. For the derivation and proof see [15, Sect. 3.2].

• Minimum entropy principle
The discrete physical entropy sh = log

(
ϑ

cv
h /ρh
)
attains its minimum at the initial

time, i.e.,

sh(t) ≥ s, t ≥ 0, where − ∞ < s < min sh(0).
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The entropy is either constant or produced over time, cf. [15, Sect. 4.2].

The above invariant domain-preserving properties are crucial in order to show that
the approximate solutions obtained by the FLMmethod yield a consistent approxima-
tion to the Euler equations (1). Moreover, the discrete mass and energy conservation
and some standard estimates, cf. [15], imply the stability of the FLM method, i.e.,
we have uniformly w.r.t. h → 0

‖ρh‖L∞(0,T ;Lγ (Ω))

<∼ 1, ‖mh‖L∞(0,T ;L2γ /(γ+1)(Ω))

<∼ 1, ‖Eh‖L∞(0,T ;L1(Ω))

<∼ 1.

In [15] the following type of nonlinear generalization of the Lax-equivalence
theorem has been proven: Having consistent FLM method (15) for the Euler system
(1), the stability of the FLMmethod is equivalent to its convergence. More precisely,
we have shown the following results.

Theorem 1 (Existence of a DMV solution) Let the initial data (ρ0,h,m0,h, E0,h)

satisfy

ρ0,h ≥ ρ > 0, E0,h − 1

2

|m0,h |2
ρ0,h

> 0.

Let (ρh,mh, Eh) ∈ Qh × Qh × Qh be the solution of the FLM scheme (15) with

0 < β < 1, 0 < α <
4

3
,

and there exist ρ, ϑ ∈ R, such that the numerical solutions stay in a non-degenerate
gas region

0 < ρ ≤ ρh(t), ϑh(t) ≤ ϑ for all t ∈ [0, T ] uniformly for h → 0.

Then the family of approximate solutions {ρh,mh, Eh}h↘0 generates a dissipative
measure–valued (DMV) solution of the complete Euler system (1) in the sense of
Definition 1.

Further, taking into account the DMV–strong uniqueness principle proved in [5,
Theorem 3.3] we obtain the desired strong convergence result.

Theorem 2 (Strong convergence of the FLM method) In addition to the hypothe-
ses of Theorem 1, suppose that the Euler system (1) admits the strong (Lipschitz–
continuous) solution (ρ,m, E) defined on [0, T ].

Then for h −→ 0 it holds

ρh → ρ, mh → m, Eh → E (strongly) in L1((0, T ) × Ωh).
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4 K -Convergence

Asdemonstratedbynumerical experiments, cf. [17, 19, 21], thefinite volumeapprox-
imations may not converge strongly. A typical example is the Kelvin-Helmholtz
problem, where new and new small vortex substructures arise by refining the mesh.
On the other hand, one can consider coarse-grained quantities, such as the mean or
variance, averaged over different meshes. In our recent work [17] we have studied
the question of strong convergence for these observable quantities. The aim of this
section is to give an overview of our main results on the strong convergence without
going deep into the theory of Young measures. Moreover, we would like to point out
some connections to well-known and recent probabilistic concepts.

To start we recall a beautiful result of Komlós [27] on the pointwise convergence
of the so-called Cèsaro averages.

Any sequence {Fn}∞n=1 of uniformly L1-bounded real valued functions on a set
Q ⊂ RK admits a subsequence {Fnk }∞k=1, such that the arithmetic averages (Cèsaro
averages)

1

N

N∑
k=1

Fnk converge a.e. to a function F ∈ L1(Q).

Moreover, any subsequence of {Fnk }∞k=1 enjoys the same property.

We note that analogous result holds also for sequences in the reflexive L p spaces,
1 < p < ∞, due to the Banach-Sachs theorem. Komlós theorem has been adapted
by Balder [1] who introduced the concept ofK (Komlós)-convergence for sequences
of Young measures. Applying the Young measure adapted variant of the celebrated
Prokhorov theorem for random processes one obtains compactness of the empirical
measures and the strong convergence in space and time ofmean values and variances,
see [14, 16, 17].

Theorem 3 (K -convergence of the FLM method) Let {ρhn ,mhn , Shn }∞n=1 be a
sequence of finite volume solutions obtained by the FLM method (15) with 0 < β <

1, 0 < α < 4
3 . Further, assume that the FLM solutions remain in a non-degenerate

gas region, i.e., there exist ρ, ϑ ∈ R, such that

0 < ρ ≤ ρhn (t), ϑhn (t) ≤ ϑ for all t ∈ [0, T ] uniformly for hn → 0.

Then there exists a subsequence of {ρhn ,mhn , Shn }∞n=1 denoted by {ρnk ,mnk , Snk },
for which we have

• strong convergence of Cesàro averages to a DW solution

1

N

N∑
k=1

ρnk → ρ as N → ∞ in Lq(0, T ; Lγ (Ω)) for any 1 ≤ q < ∞,
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1

N

N∑
k=1

mnk → m as N → ∞ in Lq(0, T ; L
2γ

γ+1 (Ω; Rd)) for any 1 ≤ q < ∞,

1

N

N∑
k=1

Snk → S as N → ∞ in Lq(0, T ; Lγ (Ω)) for any 1 ≤ q < ∞, (16)

where ρ,m, S are the density, momentum and total entropy components of the
DW solution in the sense of Definition 2.

• strong convergence to a DMV solution in the Wasserstein metric2

Wq

[
1

N

N∑
k=1

δ[ρnk (t,x),mnk (t,x),Snk (t,x)];Vt,x

]
→ 0 as N → ∞ in Lq((0, T ) × Ω)

(17)
for any 1 ≤ q <

2γ
γ+1 . Here δ denotes the Dirac measure acting on numerical

solutions [ρnk ,mnk , Snk ].
• strong convergence of the variance

Let Ũ = (ρ̃, m̃, S̃) and Unk ≡ (ρnk ,mnk , Snk

)
, then

∥∥∥∥∥∥
1

N

N∑
k=1

∣∣∣∣∣∣Unk − 1

N

N∑
j=1

Un j

∣∣∣∣∣∣−
〈
Vt,x ;
∣∣Ũ − 〈Vt,x ; Ũ

〉∣∣〉
∥∥∥∥∥∥

L1((0,T )×Ω)

as N → ∞.

(18)

Theorem 3 offers an elegant way how to compute DW solutions and the statistical
moments of DMV solutions in the case that the strong solution does not exist. It
indicates that we still have strong convergence to the observable quantities that can
be approximated directly by averaging of numerical solutions over different meshes.
We refer a reader to [17] where the numerical solutions obtained by the FLMmethod
were presented for several tests. Depending on chosen numerical experiments it may
happen that the mesh-convergence of single numerical solutions is not achieved. On
the other hand, the strong convergence of empirical mean values and variances was
clearly shown, see [17, Figs. 1–7]. In future it will be interesting to investigate the
rate of K -convergence.

In this context we should also mention an interesting work [20], where a different
probabilistic concept of the so-called statistical solutions for general multidimen-
sional hyperbolic conservation laws has been developed. Analogously to the DMV
solutions the statistical solutions are probabilistic-type solutions. In fact, they are
time-parametrized probability measures satisfying an infinite set of partial differ-
ential equations consistent with the underlying hyperbolic conservation laws. Thus,

2We recall that the Wasserstein metric of q-th order, q ∈ [1,∞), is defined in the following way
Wq (N ,V ) := {infπ∈�(N ,V )

∫
Rd+2×Rd+2 |ζ − ξ |q dπ(ζ, ξ)

}1/q , where �(N ,V ) is the set of

probability measures on R
d+2 × R

d+2 with marginals N and V .
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they are themeasure–valued solutions augmented by information onmulti-point spa-
tial correlations. In order to obtain strong convergence of the entropy stable finite
volume solutions (or more precisely, approximate statistical solutions) to a statistical
solution one however needs to assume that a special condition on an approximate
scaling of structure factors holds. The latter is related to the Kolmogorov compact-
ness criterium. On the other hand, the concept of K -convergence based on the
averaging over different meshes naturally inherits compactness. Consequently, the
empirical mean values (Cèsaro averages) converge strongly to a DW solution. In
future it will be interesting to generalize the concept of DMV and DW solutions to
general hyperbolic conservation laws.
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14. Feireisl, E., Lukáčová-Medvid’ová,M.,Mizerová,H.:K −convergence as a new tool in numer-
ical analysis. IMA J. Numer. Anal. (2019). https://doi.org/10.1093/imanum/drz045
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Time-Dependent Conservation Laws
on Cut Cell Meshes and the Small Cell
Problem

Sandra May

Abstract When solving time-dependent conservation laws on cut cell meshes, one
has to face the small cell problem: standard explicit schemes are not stable if the time
step is chosen based on the size of the background cells. Therefore, special schemes
must be developed. The first part of this contribution discusses the small cell problem
in detail and summarizes several existing solution approaches in the context of both
finite volume (FV) schemes and discontinuousGalerkin (DG) schemes. In the second
part, we present our two fundamentally different solution approaches for overcoming
the small cell problem: the FV based mixed explicit implicit scheme, developed in
collaboration with Berger (J. Sci. Comput. 71, pp. 919–943, 2017), and the DG based
Domain-of-Dependence (DoD) stabilization, joint work with Engwer, Nüßing, and
Streitbürger (ArXiv:1906.05642).

Keywords Cut cell · Small cell problem · Finite volume method · Discontinuous
Galerkin method · Hyperbolic conservation law
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1 Introduction

As a result of the objective to tackle real-world problems, grid generation has become
a big challenge in today’s numerical schemes for solving partial differential equations
(PDEs). Simulating flow around an airplane, flow in blood vessels, the process of
metal forming, collisions, or phase transitions requires to mesh very complicated
geometries, which are often implicitly given or as CAD models. The generation of
corresponding body-fittedmeshes, which exhibit the desired properties such as shape
regularity, is a sophisticated and very time-consuming process, in particular in the
case of evolving geometries.
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Fig. 1 Idea behind the cut cell approach: the embedded geometry is cut out of a structured back-
ground mesh (For second-order schemes, typically curved boundaries are replaced by piecewise
linear approximations.)

An alternative approach is the usage of structured, e.g., Cartesian, background
meshes that do not resolve the geometry combined with suitable numerical schemes
that take over that role. There are different versions of so called embedded boundary,
immersed boundary, or cut cell methods. In the following, we focus on the follow-
ing approach: we consider a Cartesian background mesh and simply cut the given
geometry out of the mesh, resulting in so called cut cells along the boundary of the
embedded object as shown in Fig. 1. Cut cells can have various shapes and may in
particular become arbitrarily small. Special schemes must be developed as standard
schemes usually do not work well.

For solving time-dependent, first-order hyperbolic problems, probably the biggest
challenge is the small cell problem, which is the main subject of this contribution.
We describe the problem in detail in Sect. 1.1. In Sect. 2, we give a short overview of
the state of the art for solving the small cell problem. Finally, in Sects. 3 and 4, we
present our contributions for solving the small cell problem in the context of a finite
volume (FV) scheme and of a discontinuous Galerkin (DG) scheme, respectively.

1.1 The Small Cell Problem

Typically, explicit time stepping schemes are used for solving first-order hyperbolic
conservation laws: the associated CFL condition of having to choose�t = O(h) for
stability coincides with the standard choice for accuracy reasons (if time stepping
scheme and spatial discretization are of the same order); further, limiters are signif-
icantly better understood in an explicit setting; and explicit schemes are typically
cheaper than implicit schemes.

When using an explicit time stepping scheme on a cut cell mesh, one faces the so
called small cell problem: one would like to choose the time step based on the size
of the (Cartesian) background cells and use the same time step on the potentially
arbitrarily small cut cells as well. This causes standard schemes to become unstable
since the CFL condition is violated on small cut cells.
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x

−2 −1 0 1 2

h h αh h h

Fig. 2 1d model problem for examining the small cell problem: equidistant mesh of mesh width h
with one small cell (cell 0) in the middle, which is of length αh, α ∈ (0, 1]

Let us examine this problem in more detail. We consider the 1d model mesh
shown in Fig. 2. Here, cell 0, which can become arbitrarily small for α � 1, imitates
the behavior of cut cells.

We consider the linear advection equation given by

ut (x, t) + βux (x, t) = 0 in I × (0, T ), u(x, 0) = u0(x) ∀ x ∈ I, (1)

with β > 0 constant. We make the following definition.

Definition 1 The model problem refers to solving the advection equation (1) on the
mesh shown in Fig. 2 on a finite domain I with periodic boundary conditions.

As numerical scheme we consider the standard FV upwind scheme given by

Un+1
i = Un

i − β�t

hi

(
Un

i −Un
i−1

)
, (2)

where Un
i denotes the (piecewise constant) discrete solution on cell i at time tn .

Further, hi denotes the cell length of cell i and �t the time step. The scheme (2) is
stable under the CFL condition 0 ≤ β�t

hi
≤ 1 ∀i .

We set �t = λh
β

and choose λ = 0.8, independent of the size of the small cut

cell 0. We determine the solution at time tn+1 by tracing back characteristics to the
solution at time tn as shown in Fig. 3. For cell 2, the solution at time tn+1 obviously
depends on Un

2 and Un
1 , i.e., on the solution at time tn in its own cell and in its left

neighbor. This is the case for all cells, except for cells 0 and 1. Therefore, for a
cell i with i �= 0, 1, the numerical domain of dependence of the upwind scheme (2)
contains the domain of dependence of the PDE.

The exact solution in cell 1 at tn+1, however, depends on the solution at time tn

in cells −1, 0, and 1, which is not reflected in the upwind scheme (2). Therefore, we
cannot expect the solution on cell 1 to be correct if the upwind scheme is used with
the chosen time step.

Further, the upwind scheme for cell 0 reads

Un+1
0 = Un

0 − β�t

αh

(
Un

0 −Un
−1

)
.
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t

tn

tn+1

−2 −1 0 1 2

Fig. 3 Domain of dependence of the solution at time tn+1 in terms of the data at time tn for
tn+1 − tn = 0.8h and β = 1

Interpreting the solution unknowns as point values at the cell centroids, we expect
for smooth (non-constant) solutions Un

0 −Un
−1 = O((1 + α)h) to hold. As a conse-

quence, with �t = O(h), the update explodes for α � 1.
Therefore, to solve the small cell problem, one needs to address the following two

problems:

1. The outflow neighbors of small cut cells need information from the cut cells’
inflow neighbors.

2. One needs to stabilize the update on small cut cells.

2 Approaches for Solving the Small Cell Problem

The most obvious approach for overcoming the small cell problem is cell merging
or cell agglomeration: small cut cells are simply merged with their neighbors and
thereby the problem is gone. This solution is used by a variety of authors, see, e.g.,
[12, 14, 16, 21, 23]. While this approach is intuitive, it is difficult to realize in a
robust and fully automatic way (in 3d). Furthermore, it shifts the complexity caused
by cut cells back into the mesh generation procedure.

In the following, we focus on approaches that are able to deal with potentially
arbitrarily small cut cells and that solve the small cell problem in an algorithmic
fashion. First though we briefly discuss the question of measuring the accuracy of a
cut cell scheme.

2.1 Accuracy Considerations

We refer to the 2d ramp geometry shown in Fig. 4. Denote by N the number of cells
of the background mesh in x- and y-direction, respectively. Then, the mesh width
h behaves as h = O( 1

N ). Consider a scheme that is second-order on Cartesian cells
but only first-order accurate on cut cells.
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Fig. 4 Simple cut cell
geometry: a ramp of angle γ

is cut out of a square domain

γ

Denote by |A| the size of a cut cell. The overall L1 error is given by

∑

Cart. cells

h2O(h2) +
∑

cut cells

|A|O(h)

≤
∑

Cart. cells

O(h4) +
∑

cut cells

O(h3).

The cut cell mesh contains O(N 2) Cartesian cells. The number of cut cells is O(N ).
Consequently, the L1 error behaves like O(h2) despite the scheme being only first-
order accurate along the cut cell boundary. Therefore, it is not sufficient to just
examine the L1 error measured over the whole domain if one is also interested in the
accuracy of the scheme along the cut boundary. Similar considerations apply for the
L2 norm [11].

2.2 FV Schemes for Solving the Small Cell Problem

There exist several approaches to stabilize explicit time stepping schemes on cut cell
meshes in the context of FV schemes. We briefly review three approaches in the
following.

2.2.1 The Flux Redistribution Method

The flux redistribution method had originally been introduced by Chern and Colella
[4] and was then developed further by Colella and coworkers, see, e.g., [6, 22].
The method is designed to expand the range of influence of small cut cells to their
neighbors in order to get stability: the idea is to use a stable, but non-conservative
scheme on small cut cells and to restore conservation by redistributing the mass
difference to the neighboring cells.
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The scheme has successfully been used in complex simulations in 3d. However,
due to the redistribution process, the scheme is second-order accurate in L1 but only
of first-order accurate along the cut boundary.

2.2.2 Dimensionally Split Approach

This is a more recent approach, introduced and further developed by Klein, Niki-
forakis, and coworkers [8, 15]. The general idea in 1d is very similar to the idea behind
the flux redistribution method but its extension to 2d and 3d relies on a dimensionally
split approach. Like the flux redistribution scheme, it is second-order accurate in L1

but only first order along the embedded boundary.

2.2.3 The h-box Method

The h-box method was developed by Berger, Helzel, and LeVeque [1, 2, 13]. It
follows a different approach: it constructs boxes of length h, the so called h-boxes,
for the flux computation on cut cell faces.

We refer to Fig. 5 and again consider solving the model problem with the upwind
scheme. Due to using the upwind flux, we only construct boxes on the downwind
sides of the cut faces. The box for the flux computation at face x− 1

2
is shown with

a dotted line: it starts at x− 1
2
and has length h, and therefore it coincides with cell

−1. The box for the flux computation at face x 1
2
(drawn with a dashed line) is more

interesting: it includes all of cell 0 and some part of cell −1. One then reconstructs
a new solution on this box, based on the solution of the underlying cells −1 and 0.
This new solution is then used for the flux computation at edge x 1

2
.

This approach addresses both issues described in Sect. 1.1:

• the outflow neighbor of cut cell 0 obtains information from the inflow neighbor of
the cut cell;

• the fluxes for the update on cell 0 satisfy F1
2
− F− 1

2
= O(α); an intuitive expla-

nation for this behavior is the observation that for α � 1 the two h-boxes almost
coincide, except for the two ends of length αh.

The h-boxmethod can be proven to be fully second-order accurate in 1d and shows
close to second-order accuracy in numerical experiments in 2d. As the construction
of the appropriate h-boxes is fairly complex, it has not been implemented in 3d yet.

x
−2 −1 0 1 2

− 3
2 − 1

2
1
2

3
2

Fig. 5 Idea behind the h-box method for solving the model problem with the upwind scheme: at
the cut faces boxes of length h are constructed to restore the proper domains of dependence
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In Sect. 3, we present yet another approach for overcoming the small cell problem
in a FV setting, which we developed together with Berger [20]. Here, the idea is to
combine an explicit and an implicit time stepping scheme.

2.3 DG Schemes for Solving the Small Cell Problem

Solving the small cell problem in the context of DG schemes has not been researched
to a comparable standard yet. There has been a lot of research for solving PDEs on
cut cell meshes using finite element or DG schemes in recent years—but most people
have focused on solving elliptic and parabolic problems with only few exceptions.

Sticko and Kreiss [24] have developed penalty terms for stabilizing the solution
of the wave equation, written as a second-order equation. Gürkan and Massing [10]
propose a stabilization for solving the steady advection-reaction equation. Both pub-
lications consider hyperbolic problems but do not solve the small cell problem for
first-order hyperbolic problems.

In [7], we introduced togetherwith Engwer, Nüßing, and Streitbürger theDomain-
of-Dependence stabilization (DoD stabilization) to overcome the small cell problem
for the time-dependent linear advection equation. We give a short summary of the
scheme in Sect. 4. To the best of our knowledge, this is the first scheme for stabilizing
explicit time stepping for solving time-dependent conservation laws on a cut cell
mesh in the context of a DG scheme.

3 A Mixed Explicit Implicit Scheme

We introduced the FV based mixed explicit implicit scheme together with Berger
[18–20].

The idea is fairly straight forward: an implicit scheme is used on cut cells for
stability. In order to keep the cost low, an explicit scheme is used away from the
cut cells. The switch between explicit and implicit scheme is done in a conservative
and stable way. The scheme is extendable to 3d [20]. For combining a second-order
accurate explicit scheme with a second-order accurate implicit scheme, the mixed
scheme is provably second-order accurate in 1d in the L1 and the L∞ norm [17]. In
2d, we numerically observe second order in L1 and between first and second order
in L∞ [20].

In the following, we describe how to switch between the explicit and implicit
scheme and examine the accuracy of the mixed scheme in more detail.
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3.1 Flux Bounding

We suggest to use what we call flux bounding to couple the explicit and implicit
scheme. We refer to the model problem examined in Sect. 1.1. For the considered
mesh, flux bounding proceeds as shown in Fig. 6:

• Step 1: Update all cells away from the cut cell using explicit fluxes FE .
• Step 2: Update the neighborhood of the cut cell using implicit fluxes F I on the
cut faces.

In Step 2, cut cell 0 is treated fully implicitly using implicit fluxes F I . Thereby, we
solve both issues raised in Sect. 1.1: the update on cut cell 0 is stabilized and the
proper domain of dependence for the update on cell 1 is used.

The Cartesian neighbors of the cut cell, which we refer to as transition cells use
explicit fluxes on faces, which connect them to other Cartesian cells (in this case cells
−2 and 2), and implicit fluxes on faces, which connect them to the cut cell (cell 0).
By reusing the explicit fluxes FE

− 3
2
and FE

3
2
, which were used in Step 1 to compute

Un+1
−2 andUn+1

2 , for the updates of cellsUn+1
−1 andUn+1

1 in Step 2, one ensures mass
conservation.

Example 1 We consider the upwind flux and use explicit and implicit Euler in time.
Then, on all cells i with i �= −1, 0, 1 the scheme corresponds to the standard upwind
scheme (2). For cells −1, 0, 1 the scheme has the following form with λ = β�t

h

t Step 2:

tn

tn+1

−2 −1 0 1 2

FE FI FI FE

t Step 1:

tn

tn+1

−2 −1 0 1 2

FE FE FE FE

Fig. 6 Idea behind flux bounding for the time step tn → tn+1: First, all cells away from the cut cell
0 are updated (indicated by the symbol ‘◦’) using a standard explicit scheme based on the explicit
flux FE ; then, the neighborhood of the cut cell is updated (indicated by the symbol ‘�’) using
implicit fluxes F I for the cut faces
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Un+1
−1 = Un

−1 − λ
(
Un+1

−1 −Un
−2

)
(transition cell),

Un+1
0 = Un

0 − λ

α

(
Un+1

0 −Un+1
−1

)
(impl. Euler),

Un+1
1 = Un

1 − λ
(
Un

1 −Un+1
0

)
(transition cell).

Concerning stability, one can show the following theorem, which corresponds to
a rewording of [20, Theorem 1]. The result holds for the model problem, independent
of the size of α, and employs the MUSCL scheme [5, 26] as explicit scheme. The
MUSCL scheme is second-order accurate in space and time. On an equidistant mesh
in one dimension, it is given by

Un+1
i = Un

i − �t

h

(
Fn+1/2
i+1/2 − Fn+1/2

i−1/2

)
, with Fn+1/2

i+1/2 = β

(
Un

i + (1 − λ)Un
x,i

h

2

)

(3)
for equation (1), with Un

x,i ≈ ∂xu(xi , tn) denoting suitably limited slopes.

Theorem 1 The mixed scheme for the model problem consisting of MUSCL with
minmod limiter as explicit scheme and implicit Euler with piecewise constant data
as implicit scheme, coupled by means of flux bounding, is TVD for 0 ≤ λ ≤ 1, if the
exact solution has compact support.

Therefore, flux bounding couples the explicit and implicit scheme in a stable and
conservative way. Further, it is straight forward to extend the idea of flux bounding
to 2d and 3d [20].

We note that so far flux bounding has only been applied to one stage time step-
ping schemes. The application to time stepping schemes with several stages is more
complex. One possibility to extend the implicit zone correspondingly.

Concerning the costs of this approach: due to using implicit time stepping on cut
cells, one needs to solve an implicit system in each time step that involves the cut
cells and their direct Cartesian neighbors. However, as discussed in Sect. 2.1, the
number of cut cells is usually one order of magnitude lower than the overall number
of cells, which makes this approach inexpensive.

3.2 Accuracy

For a second-order accurate scheme, we need a second-order explicit scheme and
a second-order accurate implicit scheme. We use MUSCL as explicit scheme and
choose the implicit Trapezoidal rule combined with slope reconstruction in space
as implicit scheme. We refer to the mixed scheme as MUSCL-Trap. The question
is whether this combination of explicit and implicit scheme leads to a second-order
accurate mixed scheme.
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Fig. 7 The one step error for the MUSCL-Trap scheme: on cells i = −1, 0, 1 the error is of order
O(h2), on all other cells, it is O(h3)

3.2.1 Considerations in 1d

In Fig. 7, we show the one step error, i.e., the error for taking one time step with
MUSCL-Trap on the model mesh for the linear advection equation. We observe a
second-order one step error on cells −1, 0, and 1, and a third-order one step error
on all other cells [17, 20]. We note that the order of the one step error is typically by
one higher than the order of the overall error at time T . Therefore, this implies that
the mixed scheme may not be second-order accurate.

For the reduced order of the one step error on cells −1, 0, and 1, there are two
main reasons:

1. the switch in the time stepping between the explicit MUSCL scheme and the
implicit Trapezoidal rule leads to an error of order O(h2) on cells −1 and 1;

2. the fact that cell 0 has a different length also leads to errors of size O(h2) on all
three cells.

Fortunately, as is often observed on non-uniform meshes [27], the error does not
accumulate in the standard way and together with Laakmann [17], we can show the
following result for the model problem in 1d:

Theorem 2 Let the MUSCL-Trap scheme be stable with respect to the L1 and the
L∞ norm and use unlimited forward difference quotients for slope reconstruction.
Then the scheme is second-order accurate with respect to the L1 and the L∞ norm
for the model problem for smooth data u0.

This is backed up by numerical results that show full second-order accuracy for
smooth test problems for the linear advection equation, measured in the L1 and L∞
norm.

3.2.2 Considerations in 2d

Numerical results in 2d unfortunately showworse convergence behavior with respect
to the L∞ norm. For advection along the ramp shown in Fig. 4 with varying ramp
angle γ , we observe for MUSCL-Trap [20]:
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• second-order convergence in the L1 norm;
• rates between 1.3 and 1.7 in the L∞ norm, with some dependence on the ramp
angle γ .

Therefore, different to 1d, the error does accumulate in this setting. One major dif-
ference to 1d is the way that we switch between explicit and implicit time stepping.
In 1d, a particle trajectory undergoes a switch from explicit to implicit and back
to explicit. In 2d, this is not the case, as the transition cells are (roughly speaking)
located parallel to the ramp. Therefore, one cannot expect the error caused by the
switch in time stepping to cancel in the same way as it does in 1d.

One possibility to solve this problem is to use a different pair of explicit and
implicit scheme. First tests show promising results.

4 DoD Stabilization

The DoD stabilization, jointly introduced with Engwer, Nüßing, and Streitbürger,
is a very recent approach for solving the small cell problem in the context of DG
schemes. In 2d, the stabilized scheme shows second-order convergence in the L1

norm and rates of roughly 1.6 in the L∞ norm if piecewise linear polynomials are
used. Partially due to its short lifespan, it has not been extended to 3d yet.

4.1 Problem Setup in 1d

For examining the small cell problem in a DG setting, we use a slightly different
model problem: we again consider the advection equation (1) but instead of using
the mesh shown in Fig. 2, we now consider the mesh shown in Fig. 8. Again, cell 0
is the model for the behavior of a small cut cell. We use this model mesh to account
for the fact that one might want to center the basis functions of the DG scheme with
respect to the background mesh (instead of centering them with respect to cut cell
centroids). In the following, we only stabilize the solution on the small cut cell 0, and
do not stabilize the solution on the bigger cut cell 1. This corresponds to the approach
taken in cell merging, where one typically also uses a slightly reduced CFL number.

We define the function space

x

−2 −1 0 1 2

h h αh (1−α )h h

Fig. 8 1d model problem for the small cell problem in a DG setting: for a given equidistant mesh of
mesh width h with N cells, one cell is split in two parts of lengths αh and (1 − α)h with α ∈ (0, 1

2 ]
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V k
h (I ) := {

vh ∈ L2(I ) vh is a polynomial of degree k on cell j = 1, . . . , N + 1
}
.

(4)
The semi-discrete scheme, which uses the standard DG scheme with an upwind flux
in space and is not yet discretized in time, is given by: Find uh ∈ V k

h (I ) such that

∫

I
dtuh(t) wh dx + aupwh (uh(t),wh) = 0, ∀wh ∈ V k

h (I ), (5)

with the bilinear form defined as

aupwh (uh,wh) = −
N+1∑

j=1

∫

cell j
βuh∂xwhdx +

N+1∑

j=1

βuh(x
−
j+ 1

2
) �wh� j+ 1

2
,

and the jump being given by

�wh� j+ 1
2

= wh(x
−
j+ 1

2
) − wh(x

+
j+ 1

2
), x±

j+ 1
2

= lim
ε→0+

x j+ 1
2
± ε.

Using an explicit time stepping scheme and choosing�t based on h and independent
of α leads to instabilities. The goal is to stabilize the scheme by adding a suitable
penalty term Jh , i.e., to define a new solution: Find uh ∈ V k

h (I ) such that

∫

I
dtuh(t) wh dx + aupwh (uh(t),wh) + Jh(uh(t),wh) = 0, ∀wh ∈ V k

h (I ). (6)

4.2 The Case of Piecewise Constant Polynomials in 1d

The ghost penalty stabilization, introduced by Burman [3], has been used very suc-
cessfully for stabilizing elliptic PDEs on cut cell meshes. For the case of V 0

h (I ) and
the considered model problem shown in Fig. 8, the penalty term for stabilizing the
bilinear form aupwh on cell 0 is given by

JGP
h = βη1 �uh�− 1

2
�wh�− 1

2
+ βη2 �uh� 1

2
�wh� 1

2
. (7)

Here, the parameters η1, η2 ∈ R are free to choose.
Let us use explicit Euler in time. Then, the scheme that wewish to stabilize simply

corresponds to the upwind scheme. Straight forward computations show that it is not
possible to chooseη1 andη2 in such away that the resulting scheme ismonotonewhen
the size of α is not reflected in the choice of the time step length [25]. Monotonicity
however is a reasonable property to ask from a first-order scheme.

Therefore, we suggest to use the penalty term

JDoD
h (uh,wh) := βη �uh�− 1

2
�wh� 1

2
. (8)
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This term introduces an additional flux between cells 0 and 1 with the size of the
flux depending on the jump between the solution on cell −1 and on cell 0. Thereby,
information from the inflow neighbor of cell 0 is passed to the outflow neighbor of
cell 0, and the proper domain of dependence of cell 1 is restored. In addition, the
stabilized flux difference for the update on cell 0 is of order O(α) is η is chosen
appropriately. Therefore, both problems described in Sect. 1.1 are taken care of. We
also note that the new stabilization term JDoD

h reflects the hyperbolic character of
the equation of having a designated direction of information propagation, different
to JGP

h .
For a suitable choice of η, it is possible to design a stable and monotone scheme

[7, 25]. For piecewise constant polynomials, we suggest to use η = 1 − min
(

α
λ
, 1

)

with λ = β�t
h , for piecewise linear polynomials, the choice η = 1 − min

(
α
2λ , 1

)
does

better. There holds the following theorem [7, 25].

Theorem 3 Consider the model problem with the mesh shown in Fig.8. Use V 0
h

in space and explicit Euler in time. Consider the stabilized scheme using the DoD-
stabilization with η = 1 − min

(
α
λ
, 1

)
or η = 1 − min

(
α
2λ , 1

)
. Then, the scheme is

monotone, L1 stable, and TVD stable for 0 < λ < 1
2 , independent of the size of α.

The reduced CFL of λ < 1
2 is mainly due to not stabilizing cell 1, which can become

as small as 1
2h.

Overall, theDoD stabilization has a certain similarity to the h-boxmethodwithout
the explicit reconstruction of the h-boxes. The stabilization is implemented by adding
penalty terms, which is a natural approach for DG schemes. The h-box method and
theDoD stabilization thereforemainly differ in the extension of the schemes to higher
order.

4.3 The Case of Piecewise Linear Polynomials in 1d

Thenext step is the extensionof the stabilization frompiecewise constant to piecewise
linear polynomials. Here, we suggest to use the following term

JDoD
h (uh,wh) =β η

(
�uh�− 1

2
+ αh �∂xuh�− 1

2

)
�wh� 1

2

−
∫

cell 0
β η

(
�uh�− 1

2
+ 1

2
αh �∂xuh�− 1

2

)
∂xwh dx

(9)

with η = 1 − min
(

α
2λ , 1

)
. We note that the terms in the first line of JDoD

h are mainly
responsible for correcting the mass distribution between the cells, while the second
line mainly stabilizes the gradient. An eigenvalue analysis shows stability of the
resulting scheme if the standard second-order explicit SSP Runge Kutta scheme [9]
is used with a CFL condition that is independent of α [7].

Numerical results in 1d for smooth initial data show that the scheme is second-
order accurate in the L1 and the L∞ norm.
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4.4 The Scheme in 2d

The extension of the scheme to 2d is more technical and we refer to the contribution
[7] for details. Numerical results for the ramp test show second-order convergence
in L1 for piecewise linear polynomials. In the L∞ norm, we observe convergence
rates of roughly 1.6 for most angles γ . This behavior still needs to be examined in
more detail.

We currently work on the extension of the scheme to Burgers equation and the
compressible Euler equations. In 1d, the most challenging step is the extension of the
fourth term in (9), which stabilizes the gradient. In the case of the linear advection
equation, an eigenvalue analysis was used, which will not be feasible anymore.
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Reactive Flow in Fractured Porous Media

Alessio Fumagalli and Anna Scotti

Abstract In this work we present a model reduction procedure to derive a hybrid-
dimensional framework for the mathematical modeling of reactive transport in frac-
tured porousmedia. Fractures are essential pathways in the undergroundwhich allow
fast circulation of the fluids present in the rockmatrix, often characterized by low per-
meability. However, due to infilling processes fractures may change their hydraulic
properties and become barriers for the flow and creating impervious blocks in the
underground. The geometrical as well as the physical properties of the fractures
require a special treatment to allow the subsequent numerical discretization to be
affordable and accurate. The aim of this work is to introduce a simple yet complete
mathematical model to account for such diagenetic effects where chemical reactions
will occlude or empty portions of the porous media and, in particular, fractures.

Keywords Reduced modeling · Hybrid-dimensional framework · Fracture porous
media · Reactive flow
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1 Introduction

Fractures play a crucial role in determining fluid flow in a geological system. How-
ever, two critical parameters make the modeling of fractures challenging from both
mathematical and numerical points of view.These are their apertures,which normally
are several order of magnitude smaller than any other dimensions in the problem,
and their microscopic structure: fractures can be open or filled by porous materials.
Fractures thus can behave as highly conductive flow pathways that link distant parts
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of the geological system and allow for fast circulation of fluid or, on the opposite
side, can be clogged preventing the flow and creating impervious parts which are
not reachable. A fracture can have a portion of its core partially or fully filled and
another portion empty.

In addition the fluids present in the underground can carry ions of different types
that, under certain thermal conditions, might interact and react forming salts that
precipitate and attach to the walls of the void spaces of the porous media. This
process tends to reduce the void spaces with a direct impact on the flow properties of
the system. We will call these salts “precipitate” while the ions are called “solutes”.
Conversely, if a precipitate is already present and the environmental conditions are
such that it can dissolve we will have an increment of the porosity (i.e., void space)
and the creation of ions that can be transported by the liquids. Some reference on
this subject are: reactive transport on porous media at pore-scale [12, 22, 30] and
at macro-scale [1, 14, 25] with experiment comparison [24]. For an micro to macro
upscaling procedure see [31, 32].

In presence of fractures the situation is even more complex. The deposition or
dissolution reactions can also take place inside the fractures, substantially altering
their physical properties and impacting the global flow properties of the geological
system. This work aims to introduce a mathematical model to accurately describe
these phenomena with the technique of dimensionality reduction. This technique
is rather standard in the treatment of problems with thin interfaces and frequently
used in problems involving fractures. Single-phase flow [2, 4, 6, 7, 9, 11, 16, 17,
29, 33, 35, 36], two-phase flow [13, 18, 23], passive transport [3, 10, 19], and
poro-elasticity [5, 8, 20, 37] are some of the physical problems which have been
successfully modeled with this technique.

This work is organised as follow: in Sect. 2 the mathematical model for flow and
reactive transport in a porousmedia is presented. Section3 is devoted to the derivation
of the reduced model to describe the fracture flow and transport via reduced models.
Finally, Sect. 4 contains the conclusion of this work.

2 Reactive Flow

In this section we present the mathematical model which describes the flow in porous
media and the transport of several species of ions (solutes). These may react forming
a salt and the salt may in turn dissolve forming the ions. We consider two possible
reactions: (i) the precipitation or crystallisation where these solutes form a solid part
or (ii) a dissolution. For simplicity in the exposition, we consider only one precipitate.
For more details see [25–28, 31].

The porous media is described by the domain Ω ⊂ R
n , for n = 2, 3. We suppose

that the porous media is saturated by a single liquid phase, e.g. water, and the ions
are transported by its motion. Finally, the fine scale composition of the porous media
is such that a Darcy model at macroscopic scale can be applied. Our presentation is
indeed given at the macro-scale. For simplicity, the initial time is assumed to be 0.
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2.1 Reactive Model

Let us consider several solutes {Ui }Ni=1 which are transported in the porous media by
a liquid phase. As already mentioned, these solutes may react to form a solid part
W . The integer N indicates the number of species of ions that are involved in the
chemical reactions, which can be written as

N∑

i=1

α+
i Ui ↔ W +

N∑

i=1

α−
i Ui . (1)

The terms α±
i ≥ 0 are the stoichiometric coefficients of the reactions. Each reaction

(precipitation anddissolution) is characterized by a reaction constantλ±, beingλ+ the
one associated with the precipitation and λ− the one associated with the dissolution.
We have λ± ≥ 0. We indicate with {ui }Ni=1 and w the molar concentration of the
species {Ui }Ni=1 and W , respectively. We have the lower bound ui ≥ 0, for all i =
1, . . . , N , as well as w ≥ 0. We can write the net precipitation rate associated with
the reaction (1) in the following way

rw({ui }Ni=1) = λ+
N∏

i=1

u
α+
i

i − λ−
N∏

i=1

u
α−
i

i ,

the first term being the rate of creation of solid part w and the second term the
dissolution rate of the solid part in a unit time.

For simplicity, we suppose only one species of positive ions and one species of
negative ions, meaning N = 2. Moreover, we assume electrical equilibrium, i.e.,
number of anions equal to the number of cations, and thus we can have ui = u for
i = 1, 2. The previously introduced reaction rate can be simplified as

rw(u) = λ+uα+ − λ−uα−
with α± = α±

1 + α±
2 . (2)

We consider that the dissolution of w does not depend on the presence of ions u
whereas precipitation involves all the ions present. In formula (2), if we assume that
α−
i = 0, for i = 1, 2, and (2) becomes

rw(u) = λ−
(

λ+

λ− uα+ − 1

)
.

Inspired by the previous relation, we can finally write the more abstract reaction rate
law that is considered in this work. In a more compact way, we have

rw(u) = λ[r(u) − 1],
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withλ ≥ 0 a coefficient and r(u) = uζ , with ζ a positive integer. The previousmodels
suffer of an inconsistency, in fact they do not not vanish in the limit case ofw = 0 and
might create negative values of the quantities involved. To overcome this problem,
we reformulate the reaction rate as follows

rw(u,w) =

⎧
⎪⎨

⎪⎩

λ[r(u) − 1] if r(u) − 1 ≥ 0

−λ[r(u) − 1] if r(u) − 1 < 0 and w > 0

0 if r(u) − 1 < 0 and w ≤ 0

. (3)

The first condition models the case of a positive net precipitation rate, i.e., ions
precipitate and form the salt w. The second condition requires that the precipitate
w is present, i.e. w > 0, and allows for its dissolution. The last equation stops the
reaction when the dissolution should occur but the precipitate is not present.

The chemical model we are considering is rather general and it does not depend
on the fact that the solutes are transported in porous media. However, in our case
these reactions occur each spatial point of the domain, and they can alter porosity and
permeability of the porous media. The flow and transport properties of the system
will be thus altered.

2.2 Porosity and Permeability Model

We assume that the solid matrix is formed by two distinct parts: the precipitate w
and the solid inert part that does not react. The latter will be called solid rock. In
the absence of precipitate the porous media has a prescribed or reference values of
porosity and permeability due to the solid rock, named φ and k respectively.

During the flow of chemical species in the porous media, transported by the liquid
phase, a reaction may happen and the deposition of new material is assumed to be
around the grains of solid rock or on a layer of precipitate already deposited. See [31]
for a more detailed discussion. A graphical representation is given in Fig. 1, where
we can notice that the deposition of new material alters the flow path in the porous
media itself.

Fig. 1 Graphical representation of a porous media in presence of reactive species. The floating
green and blue circles represent the anions and cations flowing in the void space between solid rock
grains. The red parts are the deposited material due to the reaction
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We can model the change of porosity of porous media by a law which accounts
for the dependence on the precipitate concentration as follows

∂tφ = −ν(φ)∂tw t > 0

φ(t = 0) = φ
(4)

where the precipitate dependent function, which represents the rate of deposition of
the solute around the solid rock grains, has the properties

ν ≥ 0 and φ = 0 ⇒ ν = 0.

We notice that when φ = 0 the porous media is occluded and no deposition of new
material can take place. Moreover, (4) allows the porosity to increase in presence of
the dissolution of precipitate, conversely the porosity decreases when the precipitate
is deposited.Othermodel can be taken into consideration, but to keep the presentation
simpler we adopt (4) where ν(φ) = ηφ, with η a positive constant.

Finally, also the permeability of the porous media is influenced by the reaction.
In this work, we consider a Kozeny relationship between the porosity and the per-
meability k, namely

k(φ) = k
φα

φ
α , (5)

with α > 0 a rock dependent parameter. In this work we chose α = 2. More sophis-
ticated models can be found in, e.g., [21].

2.3 Transport Model

We introduce now the transport model, assuming that the anions and cations are
transported in the porous media as passive scalars, meaning that there is not a direct
influence of the scalar variable u on the given advective field q. In addition, we
consider a Fick’s law to describe the molecular diffusivity of u in the liquid with a
coefficient (or tensor) d. The model we are considering for the solute u is given, in
its mixed formulation, by

χ − qu + φd∇u = 0
∂t (φu) + ∇ · χ + φrw(u,w) = 0

in Ω × {t > 0}
tru = û on Γin × {t > 0}
trφd∇u · n = 0 on Γout × {t > 0}
trχ · n = 0 on ΓN × {t > 0}
u(t = 0) = u in Ω

. (6)
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With χ we have denoted the total flux given by the contributions of advection and
diffusion. The boundary ∂Ω of the porous media is divided into three disjoint parts
Γin , Γout , and ΓN such that Γin ∪ Γout ∪ ΓN = ∂Ω . The portion Γin represents the
inflow boundary, with trq · n < 0, where the value of u is prescribed as û. The part
Γout is where the outflow takes place with trq · n > 0. On ΓN we prescribe zero flux
exchange with the outside, we are here assuming that trq · n = 0 in agreement with
the boundary conditions of the Darcy problem, see Sect. 2.4. Other types of boundary
conditions can be considered. The outward unit normal of ∂Ω is indicated with n,
and the operator tr indicates, in a formal way, a spacial trace operator mapping the
variable at the corresponding portion of the boundary ∂Ω . Finally, u represents the
initial data for the solute.

Problem (6) is an advection-diffusion-reaction equation, which can degenerate
due to clogging, i.e. φ = 0 from (4), in some parts of the domain. The reaction term,
described by the law (3), is a non-linear and non-smooth function of the solution u
and of the precipitate w.

The evolution of the precipitatew follows a similar model of u, with the additional
assumption that w does not move in space. All the spatial differential operators are
thus removed and we obtain that the model is an ordinary differential equation in
each point of Ω , namely

∂t (φw) − φrw(u,w) = 0 in Ω × {t > 0}
w(t = 0) = w in Ω

. (7)

The value w represents the initial condition of w in Ω . The reaction terms in the two
Eqs. (6) and (7) match each other.

2.4 Darcy Model

In this part we introduce the Darcy model and its relation with the previously dis-
cussed chemical model. We are interested in computing the Darcy velocity q and the
pressure field p in the porous media satisfying the following relations

q = −k(φ)∇ p
∂tφ + ∇ · q = f

in Ω × {t > 0}
trp = p Γin × {t > 0}
trq · n = q Γout × {t > 0}
trq · n = 0 ΓN × {t > 0}

. (8)

The division of the boundary ∂Ω into parts follows the description given in (6). The
boundary value p represents the data at the inflow. The value q is the outflow flux
out of Γout with the request that q > 0. The condition on ΓN is a no flow condition
for that portion of boundary. By conservation we obtain that trq · n < 0 on Γin . Also
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in this case other type of boundary conditions can be considered, but they should be
coherent with the one prescribed in the model (6).

Equation (8) is coupled with the reactive models (6) and (7) via the dependency
of porosity and permeability on the solute u and precipitate w.

2.5 The Complete Model

The complete model is a six unknowns model and describes the evolution in time
and space of: (i) u solute, (ii) w precipitate, (iii) φ porosity, (iv) k permeability, (v) q
Darcy velocity, and (vi) p pressure. The equations involved are (6), (7), (4), (5), and
(8) respectively for each variable or pair of variables. The resulting system is fully
coupled, non-smooth and non-linear with a possible degeneracy due to vanishing
porosity and permeability.

3 A Reduced Model for the Fracture

A fracture is a thin object immersed in a porous media, whose aperture is orders
of magnitude smaller than any other characteristic size of the problem at hand. The
fact that the fracture may exhibit higher or lower permeability with respect to the
surrounding porous media increases the problem complexity and requires a proper
treatment to obtain an effective and reliable model. The choice adopted here is a
reduced model, meaning that the fracture is reduced as an object of lower dimension
and new equations and coupling conditions are derived.

In this part, we start by presenting the interface conditions used to couple the
porous media and the fracture, being the latter represented as an equi-dimensional
object. Then, we present the model reduction procedure to introduce the new model
and interface conditions.

3.1 Coupling Conditions for the Equi-dimensional Model

Given a parameter ε(t), called the fracture aperture, which might change in time due
to deposition of dissolution of newmaterial. Following the presentation given in [16]
we can define the fracture as the domain Ωγ (t) given by

Ωγ (t) =
{
x ∈ R

n : x = s + ξ(t)n, with s ∈ γ and ξ ∈
(

−ε(s, t)
2

,
ε(s, t)

2

)}
,

(9)
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Fig. 2 Equi-dimensional
representation of a fracture
Ωγ immersed in a porous
media Ω

ε (t)
γ

n

Ω −

Ωγ (t)

n+Ωγ
(t)

n−Ωγ
(t)

Ω+

where γ is a non self-intersecting one-codimensional manifold of class C2. We have
ε(·, t) ∈ C2(γ ) and we assume that the fracture aperture varies slowly compared to
the local coordinate system. The vector n is the normal vector of γ pointing towards
one of the sides of the surrounding porous media. This choice of orientation is
arbitrary andwill not change the following procedure. Finally, to ease the presentation
we suppose that the fracture cuts the porous media in two disjoint parts indicated
with + and −. Extension to more general cases are straightforward. An example is
reported in Fig. 2.

Being Ωγ equi-dimensional with respect to the surrounding porous media Ω it
is possible to write the same equations to model the reactive transport as the one
discussed in Sect. 2.5 but applied to Ωγ instead. We will indicate with a subscript
if the variable or data is referred to the porous media Ω or to the equi-dimensional
representation of the fracture Ωγ .

In addition to this, interface conditions have to be considered to couple the two
problems at their common boundaries. For the transport equation (6), following [19],
we have the conservation of the total flux and the continuity of the solute u, meaning

trχΩ · nΩγ
= trχΩγ

· nΩγ

truΩ = truΩγ

on ∂Ω ∩ ∂Ωγ , (10)

where nΩγ
is the unit normal of the boundary of Ωγ pointing from the latter toward

Ω . For the Darcy equation (8) across the interfaces we have continuity of the normal
component of Darcy velocity q as well as the continuity of the pressure p. Following
[15, 29, 34] we obtain

trqΩ · nΩγ
= trqΩγ

· nΩγ

trpΩ = trpΩγ

on ∂Ω ∩ ∂Ωγ . (11)

Finally, the full equi-dimensionalmodel for porousmedia-fracture system is given
by equations (6), (7), (4), (5), and (8) for both Ω and Ωγ along with the coupling
conditions given by (10) and (11).
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Fig. 3 Hybrid-dimensional
representation of a fracture
immersed in a porous media

γ

n

Ω −

Ω +

3.2 The Reduced Variables

The model reduction procedure approximates the equi-dimensional representation
of the fracture Ωγ by its centre line γ , and derives new equations to describe the
variables in γ and new interface conditions for the coupling with the surrounding
porous media. Due to the previously mentioned assumptions on γ , we approximate
n±

Ωγ
with ±n. The representation of Ω ⊂ R

n and γ as co-dimension one object is
usually named as hybrid-dimensional. See Fig. 3 as an example.

The new variables defined on γ are defined differently if they are scalar or vector
fields. In the former case we define average values as

uγ (s, t) = 1

ε(s, t)

∫ ε(s,t)
2

− ε(s,t)
2

uΩγ
(t)dn(s) and pγ (s) = 1

ε(s, t)

∫ ε(s,t)
2

− ε(s,t)
2

pΩγ
(t)dn(s),

(12)

where s ∈ γ and the time dependent integrals are done along the direction normal
to the fracture γ . For the vector fields χ and q we need to introduce the following
projection matrices along and across the fracture, given by

N = n ⊗ n and T = I − N .

Now, we can define

χγ =
∫ ε(s,t)

2

− ε(s,t)
2

T (s)χΩγ
(t)dn(s) and qγ =

∫ ε(s,t)
2

− ε(s,t)
2

T (s)qΩγ
(t)dn(s) (13)

which, it is worth to notice, are not average values of fluxes or velocity, but time
dependent integrals. We require that, following the idea of [2, 29], the permeability
for the fracture (8) is aligned to the local coordinate system, meaning that we have

kΩγ
= kγ T + κN , (14)

where kγ and κ are positive real numbers. Moreover, also the diffusion tensor of
Eq. (6) is required to follow the similar request
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dΩγ
= dγ T + δN ,

where dγ and δ are positive real numbers.
Finally, the fracture is initially considered open, meaning φΩγ

= 1, and in the
reduced model its role will be played by the aperture ε. We will give a specific law
for its evolution. This will be part of the discussion in Sect. 3.4.

3.3 Reduced Transport Model

We describe now the procedure to derive the reduced model for the system (6). First
of all the first equation of (6) is decomposed in its normal and tangential parts as

TχΩγ
− T qΩγ

uΩγ
+ TdΩγ

∇uΩγ
= 0,

NχΩγ
− NqΩγ

uΩγ
+ NdΩγ

∇uΩγ
= 0.

(15)

Now, the tangential equation is integrated in the normal directionn across the fracture.
Dropping the dependency on s and t when not needed, we obtain

∫ ε
2

− ε
2

TχΩγ
dn −

∫ ε
2

− ε
2

T qΩγ
uΩγ

dn +
∫ ε

2

− ε
2

TdΩγ
∇uΩγ

dn = 0,

having TdΩγ
= Tdγ and by assuming small variations along the thickness of the

fracture of qγ and uγ , we get the following expression

χγ − qγ uγ + εdγ ∇T uγ = 0 in γ × {t > 0}, (16)

where the nabla operator ∇T = T∇ is defined now on the tangent space of the
fracture. The second equation of (15) gives the coupling conditions between the
fracture γ and the surrounding porous medium, i.e. the sides Ω+ and Ω−. The
derivation of such conditions requires the integration from the centre line of Ωγ to
its boundary, which is given, for Ω+, by

∫ ε
2

0
NχΩγ

· ndn −
∫ ε

2

0
NqΩγ

uΩγ
· ndn +

∫ ε
2

0
NdΩγ

∇uΩγ
· ndn = 0.

For the last term, we have NdΩγ
= Nδ and it can be approximated as

∫ ε
2

0
Nδ∇uΩγ

· ndn ≈ δ(truΩ+ − uγ ).

While for the other two terms we consider a first order one-side integration rule,
along with the continuity conditions (10) and (11) for its approximation. We get
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∫ ε
2

0
NχΩγ

· ndn −
∫ ε

2

0
NqΩγ

uΩγ
· ndn ≈ ε

2

(
trχΩ+ · n − trqΩ+ · ntruΩ+

)
.

Finally, we get the coupling condition for the side of the fracture in contact with Ω+

ε
(
trχΩ+ · n − trqΩ+ · ntruΩ+

) = 2δ(uγ − truΩ+) (17)

For the other side Ω− the derivation is similar.
The conservation equation, second of (6), is reduced following the same approach

presented in [7]. Its integral form is given by

∂t

∫

ω(t)
uΩγ

dx +
∫

∂ω(t)
trχΩγ

· nωdσ +
∫

ω(t)
rw(uΩγ

,wΩγ
)dx = 0 (18)

where ω(t) = (l0, l1) × (−ε(t)/2, ε(t)/2) ⊂ Ωγ (t) and with (l0, l1) ⊂ γ . Note that
the latter does not depend on time. The vector nω is the outward unit normal of ω.
See Fig. 4 for a more detailed representation of the objects involved. The first and
third part of the previous equation, omitting the dependency on t , are now given by

∫ l1

l0

(
∂t

∫ ε
2

− ε
2

uΩγ
dn +

∫ ε
2

− ε
2

rw(uΩγ
,wΩγ

)dn

)
ds =

∫ l1

l0

∂t (εuγ ) + εrw(uγ ,wγ )ds

The second part of (18) becomes

∫

∂ω

trχΩγ
· nωdσ =

∫

∂Ωγ ∩∂ω

trχΩγ
· nΩγ

dσ +
∫

∂ω+
trχΩγ

· nωdσ+
∫

∂ω−
trχΩγ

· nωdσ ,

with ∂ω+ = {l1} × (−ε/2, ε/2) and ∂ω− = {l0} × (−ε/2, ε/2). Now, setting
|(l0, l1)| → 0 we obtain the following expressions

Fig. 4 Equi-dimensional
representation of a fracture
immersed in a porous media
with the control volume ω

εγ

n

Ω −

Ωγ

nω

Ω +

ω

nω

nω

l0
l1
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lim
|(l0,l1)|→0

1

|(l0, l1)|
∫ l1

l0

∂t (εuγ ) + εrw(uγ ,wγ )ds = ∂t (εuγ ) + εrw(uγ ,wγ )

lim
|(l0,l1)|→0

1

|(l0, l1)|
∫

∂ω

trχΩγ
· nωdσ = trχΩγ

· nΩγ
| ε
2
+ trχΩγ

· nΩγ
|− ε

2
+ ∇T · χγ

by using the continuity conditions (10) the last equation becomes

lim
|(l0,l1)|→0

1

|(l0, l1)|
∫

∂ω

trχΩγ
· nωdσ = trχΩ+ · n − trχΩ− · n + ∇T · χγ .

Finally, the conservation equation for the transport system of the solute is reduced
as

∂t (εuγ ) + ∇T · χγ + trχΩ+ · n − trχΩ− · n + εrw(uγ ,wγ ) = 0 in γ × {t > 0}
uγ (t = 0) = uγ in γ

,

(19)

where uγ is the reduced initial condition, given by uγ = 1
ε

∫ ε
2

− ε
2
uΩγ

. The reduced
boundary conditions for the transport problem are given by the following

truγ = ûγ on (∂γ ∩ Γin) × {t > 0}
trεdγ ∇T uγ · n = 0 on (∂γ ∩ Γout ) × {t > 0}
trχγ · n = 0 on (∂γ ∩ ΓN ) × {t > 0}

, (20)

where ûγ is defined accordingly. We have assumed here that, for example if γ is
one-dimensional, a single boundary condition is assigned to each end point ∂γ .

For the precipitate the derivation of the reduced model is rather easy since no
spatial differential operators are involved. From (7) and by considering again the
control volume ω(t), we get

∂t

∫

ω(t)
wΩγ

dx −
∫

ω(t)
rw(uΩγ

,wΩγ
)dx = 0

and proceeding as before we obtain

lim
|(l0,l1)|→0

1

|(l0, l1)|
∫ l1

l0

(
∂t

∫ ε
2

− ε
2

wΩγ
dn −

∫ ε
2

− ε
2

rw(uΩγ
,wΩγ

)dn

)
ds =

lim
|(l0,l1)|→0

1

|(l0, l1)|
∫ l1

l0

∂t (εwγ ) − εrw(uγ ,wγ )ds = ∂t (εwγ ) − εrw(uγ ,wγ ).

Finally, the following is the reduced model for the precipitate w
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∂t (εwγ ) − εrw(uγ ,wγ ) = 0 in γ × {t > 0}
wγ (t = 0) = wγ in γ

, (21)

where wγ is the reduced initial condition for wγ , given by wγ = 1
ε

∫ ε
2

− ε
2
wΩγ

.

3.4 Aperture and Permeability Models

Following the ideas discussed in [26], to derive the variation of the fracture aperture
by the deposition or dissolution of the solute, we consider a law similar to the one
given for the porosity in (4). However, in this case since the fracture is supposed
to be initially empty, free from granular material, we assume that the new material
is accumulated or dissolved at the fracture boundary. See Fig. 5 for a graphical rep-
resentation. We consider again a precipitate dependent law to describe the rate of
aperture change, we have

∂tε = −υ(ε)∂twγ t > 0

ε(t = 0) = ε
(22)

where the aperture dependent model, which represents the rate of deposition of the
solute around the fracture walls, has the following properties

υ ≥ 0 and ε = 0 ⇒ υ = 0.

We notice that when ε = 0 the fracture is occluded and no deposition of new mate-
rial takes place. Moreover, (22) allows the aperture to increase in presence of the
dissolution of precipitate, conversely the aperture decreases when the precipitate is
deposited. Other models can be taken into consideration, but to keep the presentation
simpler we adopt (22) where υ(ε) = ηγ ε, with ηγ a positive constant. In (22), the
value of ε ≥ 0 represents the initial aperture of the fracture.

ε (t)

Ω −

Ωγ (t)

Ω +

Fig. 5 Equi-dimensional representation of a fracture immersed in a porous media with dynamics
of deposition and dissolution due to the chemical reaction. The solutes are the blue and green circles
and the precipitate is depicted in red
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The fracture permeability, both normal κ and tangential kγ are now related to the
fracture aperture by the cubic law

kγ = kγ

ε2

ε
and κ = κ

ε2

ε
. (23)

Here kγ , symmetric and positive defined, and κ > 0 are the reference tangential and
normal fracture permeability, respectively.

3.4.1 Reduced Darcy Model

In this part we derive the reduced model for the Darcy system (8) written in the
fracture. The steps are rather similar to the one presented for the transport equation
with fewmodifications. The Darcy equation, first of (8) is projected on the tangential
and normal directions of the fracture obtaining

T qΩγ
+ T kΩγ

∇ pΩγ
= 0,

NqΩγ
+ NkΩγ

∇ pΩγ
= 0.

(24)

The first of (24) is now integrated across the normal section of the fracture, along
the direction given by n. We have

∫ ε
2

− ε
2

T qΩγ
dn +

∫ ε
2

− ε
2

T kΩγ
∇ pΩγ

dn = 0.

From the assumption on the permeability (14) we obtain T kΩγ
= T kγ . By assuming

small variations along the thickness of the fracture of ∇ pΩγ
, we get the following

relation

qγ + εkγ ∇T pγ = 0 in γ × {t > 0}. (25)

The second relation in (24) gives the coupling conditions between the fracture and
the surrounding porous media for the Darcy problem. The approach is similar to the
one already presented for the transport part, we integrate the second of (24) from 0
to ε/2 and we do some approximation of the integrals involved. We start with

∫ ε
2

0
NqΩγ

· n +
∫ ε

2

0
NkΩγ

∇ pΩγ
· n = 0.

The first integral is approximated by a one-side integration rule and the coupling
conditions (11) are considered to get
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∫ ε
2

0
NqΩγ

· n ≈ ε

2
trqΩ+ · n,

while recognising that NkΩγ
= Nκ , for the second term we obtain

∫ ε
2

0
NkΩγ

∇ pΩγ
· n ≈ κ(trpΩ+ − pγ ).

The coupling conditions of the reduced model for the Darcy equation, for the side
of the fracture in contact with Ω+, are thus given by

εtrqΩ+ · n = 2κ(trpΩ+ − pγ ). (26)

Also in this case, for the sideΩ− the derivation of the coupling conditions are similar.
Finally, to complete the Darcy system the conservation equation for the fracture

has to be reduced. Unlike the previous steps, which are in agreement with the existing
literature, see for instance [7, 16, 29], this last step differs from the previous works on
model reduction for fracturedmedia becausewe have to account for a time dependent
aperture. We consider again the control volumeω(t) given as before, and the integral
form of the conservation equation is given by

∂t

∫

ω(t)
dx +

∫

∂ω(t)
trqΩγ

· nωdσ =
∫

ω(t)
f dx. (27)

Reminding thatω(t) = (l0, l1) × (−ε(t)/2, ε(t)/2), the first and last terms, dropping
the dependence on t , can be expressed as

lim
|(l0,l1)|→0

1

|(l0, l1)|
∫ l1

l0

(
∂t

∫ ε
2

− ε
2

dn −
∫ ε

2

− ε
2

f dn

)
ds = ∂tε − ε fγ ,

where fγ is the reduced source or sink term expressed by fγ = 1
ε

∫ ε
2

− ε
2
f dn. The

second term in (27) becomes

∫

∂ω

trqΩγ
· nωdσ =

∫

∂Ωγ ∩∂ω

trqΩγ
· nωdσ +

∫

∂ω+
trqΩγ

· nωdσ+
∫

∂ω−
trqΩγ

· nωdσ .

By shrinking the domain ω as |(l0, l1)| → 0 the last relation becomes

lim
|(l0,l1)|→0

1

|(l0, l1)|
∫

∂ω

trqΩγ
· nωdσ = trqΩγ

· nω| ε
2
+ trqΩγ

· nω|− ε
2
+ ∇T · qγ ,
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and by using the continuity condition at the fracture-porous media boundary (11) we
finally get

lim
|(l0,l1)|→0

1

|(l0, l1)|
∫

∂ω

trqΩγ
· nωdσ = trqΩ+ · n − trqΩ− · n + ∇T · qγ .

To conclude the conservation equation for the Darcy flow is given by

∂tε + ∇T · qγ + trqΩ+ · n − trqΩ− · n = ε fγ in γ × {t > 0}. (28)

The reduced boundary conditions for the Darcy problem are given by the following

trpγ = pγ (∂γ ∩ Γin) × {t > 0}
trqγ · n = qγ (∂γ ∩ Γout) × {t > 0}
trqγ · n = 0 (∂γ ∩ ΓN ) × {t > 0}

, (29)

with pγ and qγ being defined accordingly.

3.4.2 The Complete Reduced Model

We can now summarize the full hybrid-dimensional problem, in this case we have
six fields for the porous media and seven other fields for the fractures. For the former
the reader can refer to the description given in Sect. 2.5 for Ω , which in the latter we
have the evolution of: (i) uγ solute, (ii) wγ precipitate, (iii) ε aperture, (iv) κ and kγ

normal and tangential permeability, (v) qγ Darcy velocity, and (vi) pγ pressure.
For the fracture the equations involved are (16), (17), (25), and (20) for uγ . For

wγ the problem (21), and for ε (22). For the permeabilities κ and kγ the model given
by (23). Finally, for qγ and pγ the equations (25), (26), (28), and (29).

Finally, it is important to mention that due to the model reduction procedure the
aperture is now a time dependent model parameter and not any more a geometrical
constraint for the problem.

4 Conclusion

In this work we have presented a reduced model for fluid flow in fractured porous
media. The liquid phase flow is governed by the Darcy law and, dissolved in the
liquid itself, chemical species (solutes) can react and precipitate forming a salt (or
an immobile phase that fills the void spaces). Moreover, the latter can also dissolve
to form solutes. The dissolution or precipitation processes can alter the porosity of
the porous media, changing thus the Darcy velocity of the liquid. As mentioned, we
have assumed that in the porousmedium a fracture is present whichmay dramatically
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alter the flow properties of the system and thus requires an adequate model to obtain
reliable and accurate results. What we have proposed is a reduced model that leads to
a hybrid-dimensional framework, where the fracture is one dimensional smaller than
the porous medium itself. New equations have been derived to model the physical
processes in the fracture as well as the coupling conditions between the fracture itself
and the surrounding porous media. The complete set of equations forms a reactive
transport model in a fractured porous medium. An extension, which will be part of
a future work, is the introduction of a discrete setting for the efficient solution of the
proposed mathematical model.
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Abstract We introduce some finite volume schemes for unipolar energy-transport
models. Using a reformulation in dual entropy variables, we can show the decay of
a discrete entropy with control of the discrete entropy dissipation.
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1 Energy-Transport Models

Presentation

In this article,we are interested in the discretization of unipolar energy-transportmod-
els for semiconductor devices. Such models describe the flow of electrons through
a semiconductor crystal, influenced by diffusive, electrical and thermal effects. As
they have a drift-diffusion form, they remain simpler than hydrodynamic equations or
semiconductor Boltzmann equations. As explained for example in [17] (and the ref-
erences therein), these energy-transport models can be derived from the Boltzmann
equation by the moment method.

The unipolar energy-transport system consists in two continuity equations for
the electron density ρ1 and the internal energy density ρ2, coupled with a Poisson
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equation describing the electrical potential V . Following the framework adopted in
[6], we consider that the electron and energy densities are defined as functions of the
entropy variables u1 = μ/T and u2 = −1/T where μ is the chemical potential and
T the temperature. We set u = (u1, u2).

Let Ω be an open bounded subset of Rd (d ≥ 1) describing the geometry of
the considered semiconductor device and let Tmax > 0 be a finite time horizon. The
energy transport model writes in Ω × (0, Tmax)

∂tρ1(u) + divJ1 = 0, (1a)

∂tρ2(u) + divJ2 = ∇V · J1 + W (u), (1b)

−λ2ΔV = C(x) − ρ1(u), (1c)

where J1 and J2 are respectively the electron and energy current densities, ∇V · J1
corresponds to a Joule heating term and W (u) is an energy relaxation term. The
doping profile C(x) describes the fixed charged background and λ is the rescaled
Debye length. The electron and energy current densities are given by:

J1 = −L11(u)(∇u1 + u2∇V ) − L12(u)∇u2, (2a)

J2 = −L21(u)(∇u1 + u2∇V ) − L22(u)∇u2, (2b)

where L(u) = (Li j (u))1≤i, j≤2 is a symmetric uniformly positive definite matrix.
The system (1)–(2) is supplemented with an initial condition u0 = (u1,0, u2,0)

and with mixed boundary conditions. There are Dirichlet boundary conditions on
the ohmic contacts and homogeneous Neumann boundary conditions on insulating
segments. More precisely, we assume that Ω is an open bounded polygonal (or
polyhedral) subset of Rd , such that its boundary ∂Ω is split into ∂Ω = Γ D ∪ Γ N ,
with Γ D ∪ Γ N = ∅ and md−1(Γ

D) > 0. We denote by n the normal to ∂Ω outward
Ω . The boundary conditions write

u1 = uD
1 , u2 = uD

2 , V = V D on Γ D × [0, Tmax], (3a)

J1 · n = J2 · n = ∇V · n on Γ N × [0, Tmax]. (3b)

We assume that the Dirichlet boundary conditions uD
1 , uD

2 and V D do not depend
on time and are the traces of some functions defined on the whole domain Ω , still
denoted by uD

1 , uD
2 and V D . Moreover, we assume that uD

2 < 0 is constant on Γ D

and that the energy relaxation term W (u) verifies, for all u ∈ R
2 and uD

2 < 0,

W (u)(u2 − uD
2 ) ≤ 0. (4)

The main results on the energy-transport model (1)–(3) are presented in [15]:
existence of solutions to the transient system, regularity, uniqueness and existence
and uniqueness of steady-states. The main assumptions needed on the function u �→
ρ(u) = (ρ1(u), ρ2(u)) for the existence result are the following:
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ρ ∈ W 1,∞(R2;R2), (5a)

∃c0 > 0 such that (ρ(u) − ρ(v)) · (u − v) ≥ c0|u − v|2 for u, v ∈ R
2, (5b)

∃χ ∈ C1(R2;R) strictly convex such that ρ = ∇uχ. (5c)

These hypotheses are rather hard to satisfy in the applications (see Sect. 4), as well as
the hypothesis on uniform positive definiteness of the diffusion matrix L. Existence
results for physically more realistic diffusion matrices (only positive semi-definite)
are established in [10, 12] for the stationary model and in [4, 5] for the transient
system, but only in the case of data close to thermal equilibrium. More recently,
existence of solutions has been proved in a simplified degenerate case, namely for a
model with a simplified temperature equation in [16] and for vanishing electric fields
(avoiding the coupling with Poisson equation) in [20].

The existence result due to Degond, Génieys and Jüngel [6, 15] is based on a
reformulation of the system in terms of dual entropy variables. This reformulation
symmetrizes the system and allows to apply an entropy method. Since we are going
to adapt the results of [6] to the discrete framework, let us now introduce the system
reformulated in terms of dual entropy variables and give the outline of the entropy
structure.

The System in Dual Entropy Variables

The key point of the analysis of the primal model (1)–(2) is to use another set of
variables which symmetrizes the problem, see [6]. Let us define the so-called dual
entropy variables w = (w1, w2) (w1 is an electrochemical potential):

w1 = u1 + u2V, (6a)

w2 = u2. (6b)

Through this change of variables, the problem (1)–(2) is equivalent to

∂t b1(w, V ) + divI1(w, V ) = 0, (7a)

∂t b2(w, V ) + divI2(w, V ) = ˜W (w) − ∂t V b1(w, V ), (7b)

− λ2ΔV = C − b1(w, V ), (7c)

where the function b(w, V ) = (b1(w, V ), b2(w, V )) is related to ρ and V by

b1(w, V ) = ρ1(u), b2(w, V ) = ρ2(u) − Vρ1(u), (8)

and the new energy relaxation term is defined by ˜W (w) = W (u). Moreover, the
symmetrized currents are given by I1 = J1 and I2 = J2 − V J1, which leads to
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I1(w, V ) = −D11(w, V )∇w1 − D12(w, V )∇w2, (9a)

I2(w, V ) = −D21(w, V )∇w1 − D22(w, V )∇w2, (9b)

where the new diffusion matrix D(w, V ) = (Di j (w, V ))1≤i, j≤2 is defined by

D(w, V ) = P(V )T
L(u)P(V ), with P(V ) =

(

1 −V
0 1

)

. (10)

It is therefore clear that the new diffusion matrix D is also symmetric and uniformly
positive definite.

Entropy Structure

We recall in this section the entropy/entropy-dissipation property satisfied by the
energy-transport model (1)–(3) established in [6]. The entropy function is defined by

S(t) =
∫

Ω

[

ρ(u) · (u − uD) − (χ(u) − χ(uD))
]

dx − λ2

2
uD
2

∫

Ω

|∇(V − V D)|2dx .

(11)
Since uD

2 < 0 and χ is a convex function such that ρ = ∇uχ , S(t) is nonnegative for
all t ≥ 0.

In addition to the hypotheses already given above, we assume that the Dirichlet
boundary conditions are at thermal equilibrium, namely

∇wD
1 = ∇wD

2 = 0. (12)

Then the entropy function satisfies the following identity:

d

dt
S(t) = −

∫

Ω

(∇w)T
D∇w +

∫

Ω

W (u)(u2 − uD
2 ) ≤ 0. (13)

The proof of (13) is given in [6], even for more general boundary conditions.

2 Numerical Schemes

Different kind of numerical schemes have already been designed for the energy-
transport systems, essentially for the stationary systems: finite difference schemes in
[11, 19], finite element schemes in [7, 14]. We also refer to [3] for DDFV (Discrete
Duality Finite Volume) schemes for the evolutive case. Up to our knowledge, there
exists no convergence analysis of these numerical schemes. In this paper, we are
interested in the design and the analysis of some finite volume schemes for the
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system (1)–(3), with two-point flux approximations (TPFA) of the numerical fluxes.
Wepay attention,while building the scheme, on the possibility of adapting the entropy
method to the discrete setting. This will be crucial in order to fulfill the convergence
analysis of the scheme.

Mesh and Notations

Let Δt > 0 be the time step and set tn = nΔt for all n ≥ 0. We now define the mesh
of the domain Ω . It is given by a family T of open polygonal (or polyhedral in
3D) control volumes, a family E of edges (or faces), and a familyP = (xK )K∈T of
points. The schemes we will consider are based on two-points flux approximations,
so that we assume that the mesh is admissible in the sense of [9, Definition 9.1].

In the set of edges E , we distinguish the interior edges σ = K |L ∈ Eint and
the boundary edges σ ∈ Eext . Due to the mixed boundary conditions, we have to
distinguish the edges included in Γ D from the edges included in Γ N : Eext = E D ∪
E N . For a control volume K ∈ T , we define EK the set of its edges, which is also
split into EK = EK ,int ∪ E D

K ∪ E N
K .

In the sequel, we denote by d the distance inRd and m the measure inRd orRd−1.
For all σ ∈ E , we define dσ = d(xK , xL) if σ = K |L ∈ Eint and dσ = d(xK , σ )

if σ ∈ Eext , with σ ∈ EK . Then the transmissibility coefficient is defined by τσ =
m(σ )/dσ , for all σ ∈ E .

A finite volume scheme with two-point flux approximation provides, for an
unknown v, a vector v = (vK )K∈T ∈ R

θ (with θ = Card(T )) of approximate values
on each cells. We can associate to v a piecewise constant function, still denoted v.
For all K ∈ T and all σ ∈ EK , we define

vK ,σ =
⎧

⎨

⎩

vL if σ = K |L ∈ Eint ,

vD
σ if σ ∈ E D,

vK if σ ∈ E N ,

and
DK ,σv = vK ,σ − vK , Dσv = |DK ,σv|.

Schemes in Primal and Dual Entropy Variables

Our aim is to design a scheme for the energy transport model in the primal entropy
variables (1)–(3). This scheme must lead to an equivalent scheme for the system
written in the dual entropy variables (7)–(9). Indeed, in this case, it will be possible
to apply the entropy method at the discrete level. This step is crucial as it brings a
priori estimates on the sequences of approximate solutions, leading to compactness
results. Moreover, it also permits to prove existence of a solution to the scheme.
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Onemain difficulty in writing a TPFA scheme for the energy-transport model (1)–
(3) comes from the approximation of the Joule heating term∇V · J1. One possibility
would be to apply the technique developed in [1], and further used in [8, 18], to
discretize de Joule heating term. However, with such discretization, the rewriting
of the scheme in dual entropy variables is not straightforward. Therefore, following
[2], we propose an approximation of the Joule heating term which is based on its
following reformulation:

∇V · J1 = div(V J1) − V divJ1.

Let us now turn to the definition of the scheme for the model (1)–(3). Initial and
Dirichlet boundary conditions are discretized as usually: u0

i,K is the mean value of
ui,0 over K for all K ∈ T and i = 1, 2, uD

i,σ and V D
σ are the mean values of uD

i for
i = 1, 2 and V D for σ ∈ E D and we define:

un
1,σ = uD

1,σ , un
2,σ = uD

2,σ , V n
σ = V D

σ , ∀σ ∈ E D, ∀n ≥ 0. (14)

The scheme is backward Euler in time and finite volume in space with a two-point
flux approximation. It writes, for all n ≥ 0, for all K ∈ T :

m(K )
ρn+1
1,K − ρn

1,K

Δt
+

∑

σ∈EK

F n+1
1,K ,σ = 0, (15a)

m(K )
ρn+1
2,K − ρn

2,K

Δt
+

∑

σ∈EK

F n+1
2,K ,σ = m(K )W n+1

K

+
∑

σ∈EK

V n+1
σ F n+1

1,K ,σ − V n+1
K

∑

σ∈EK

F n+1
1,K ,σ , (15b)

− λ2
∑

σ∈EK

τσ DK ,σ V n+1 = m(K )(CK − ρn+1
1,K ), (15c)

where

ρn+1
i,K = ρi (u

n+1
K ), i = 1, 2 and W n+1

K = W (un+1
K ) for all K ∈ T .

The numerical fluxes are given by

F n+1
1,K ,σ = −τσ

(

Ln
11,σ (DK ,σu1n+1 + un+1

2,σ DK ,σVn+1) + Ln
12,σ DK ,σu2n+1

)

, (16a)

F n+1
2,K ,σ = −τσ

(

Ln
12,σ (DK ,σu1n+1 + un+1

2,σ DK ,σVn+1) + Ln
22,σ DK ,σu2n+1

)

, (16b)

where the matrix Ln
σ = (Ln

i j,σ )1≤i, j≤n is defined as

L
n
σ = L

(

un
K + un

K ,σ

2

)

for all K ∈ T , σ ∈ EK . (17)
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At this point, it remains to define V n+1
σ involved in (15b) and un+1

2,σ involved in (16) for
all σ ∈ E . We will do it later. The choice will be driven by the expected equivalence
with a scheme for (7)–(10).

In order to obtain an equivalent scheme for the energy transport system in the dual
entropy variables (7)–(10), we apply the change of variables (6), associated with the
new functions defined in (8)–(10), to (15) and (16). Let us define for all K ∈ T , for
all n ≥ 0,

wn
1,K = un

1,K + un
2,K V n

K , wn
2,K = un

2,K , (18a)

bn
1,K = ρn

1,K = b1(w
n
K , V n

K ), bn
2,K = ρn

2,K − ρn
1,K V n

K = b2(w
n
K , V n

K ). (18b)

We similarly define wD
1,σ and wD

2,σ for σ ∈ E D . From (15a) and (15b), we deduce

m(K )
bn+1
1,K − bn

1,K

Δt
+

∑

σ∈EK

F n+1
1,K ,σ = 0,

m(K )
bn+1
2,K − bn

2,K

Δt
+

∑

σ∈EK

(

F n+1
2,K ,σ − V n+1

σ F n+1
1,K ,σ

)

= m(K )W n+1
K − m(K )

V n+1
K − V n

K

Δt
bn
1,K .

It leads to the following scheme for the system written in the dual variables (7):

m(K )
bn+1
1,K − bn

1,K

Δt
+

∑

σ∈EK

G n+1
1,K ,σ = 0, (19a)

m(K )
bn+1
2,K − bn

2,K

Δt
+

∑

σ∈EK

G n+1
2,K ,σ = m(K )W̃ n+1

K − m(K )
V n+1

K − V n
K

Δt
bn
1,K , (19b)

− λ2
∑

σ∈EK

τσ DK ,σ V n+1 = m(K )(CK − bn+1
1,K ), (19c)

with

G n+1
1,K ,σ = F n+1

1,K ,σ , ∀K ∈ T ,∀σ ∈ EK , (20a)

G n+1
2,K ,σ = F n+1

2,K ,σ − V n+1
σ F n+1

1,K ,σ , ∀K ∈ T ,∀σ ∈ EK , (20b)

and W̃ n+1
K = W n+1

K = W̃ (wn+1
K ).

The crucial point now is to ensure that the new numerical fluxes G n+1
1,K ,σ , G

n+1
2,K ,σ

can be seen as approximations of the currents I1 and I2 defined by (9). This means
that we want to rewrite the numerical fluxes as
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G n+1
1,K ,σ = −τσ (D∗

11,σ DK ,σwn+1
1 + D∗

12,σ DK ,σwn+1
2 ), (21a)

G n+1
2,K ,σ = −τσ (D∗

21,σ DK ,σwn+1
1 + D∗

22,σ DK ,σwn+1
2 ), (21b)

with the coefficients (D∗
i j,σ )1≤i, j≤2 defined such that the associate matrix D∗

σ is sym-
metric and uniformly positive definite. This property will now depend on the def-
inition of V n+1

σ and un+1
2,σ , respectively involved in (15b) and (16), for each edge

σ ∈ E .

Equivalence of the Schemes in the Primal and Dual Entropy
Variables

Proposition 1 Let us supplement the scheme (15)–(16) with the definition of the
(V n+1

σ )σ∈E , n≥0 and (un+1
2,σ )σ∈E , n≥0. We distinguish two cases:

• Case 1: centered scheme. For all σ ∈ E and n ≥ 0, we set:

un+1
2,σ = un+1

2,K + un+1
2,K ,σ

2
and V n+1

σ = V n+1
K + V n+1

K ,σ

2
. (22)

• Case 2: upwind scheme. For all σ ∈ E and n ≥ 0, we set:

un+1
2,σ =

{

un+1
2,K ,σ , if DK ,σ V n+1 > 0,

un+1
2,K , if DK ,σ V n+1 ≤ 0,

and V n+1
σ = min(V n+1

K , V n+1
K ,σ ). (23)

Then, in both cases, the scheme (15)–(16) written in the primal entropy variables is
equivalent with the scheme (19)–(21) written in the dual entropy variables, provided
that

D
∗
σ = (Pn+1

σ )T
L

n
P

n+1
σ with P

n+1
σ =

(

1 −V n+1
σ

0 1

)

. (24)

Proof Starting from the definition (20) of the numerical fluxes G n+1
1,K ,σ and G n+1

2,K ,σ ,
we want to establish (21) with D∗

σ defined by (24).
Let us first notice that, due to the change of variables (18a), we can rewrite

DK ,σu1n+1 and DK ,σu2n+1 for all K ∈ T and σ ∈ EK . It is clear that DK ,σu2n+1 =
DK ,σw2

n+1. Moreover, we have

DK ,σu1n+1 = DK ,σw1
n+1 − V n+1

K DK ,σw2
n+1 − wn+1

2,K ,σ DK ,σVn+1,

= DK ,σw1
n+1 − V n+1

K ,σ DK ,σw2
n+1 − wn+1

2,K DK ,σVn+1.

This yields, for Case 1 as well as for Case 2,

DK ,σu1n+1 = DK ,σw1
n+1 − V n+1

σ DK ,σw2
n+1 − wn+1

2,σ DK ,σVn+1,
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with wn+1
2,σ = un+1

2,σ . Therefore, from (16) and (20), we deduce that

G n+1
1,K ,σ = −τσ

(

Ln
11,σ DK ,σw1

n+1 + (Ln
12,σ − V n+1

σ Ln
11,σ )DK ,σw2

n+1
)

,

G n+1
2,K ,σ = −τσ

(

(Ln
12,σ − V n+1

σ Ln
11,σ )DK ,σw1

n+1
)

+(Ln
22,σ − 2V n+1

σ Ln
12,σ + (V n+1

σ )2Ln
11,σ )DK ,σw2

n+1) .

This corresponds to (21) with D
∗
σ defined by (24). We have shown that the scheme

(15) and (16), supplemented either with (22) or (23), implies (19)–(24). Starting from
(19)–(24), we similarly get (15) and (16).

3 Discrete Entropy Inequality

In this Section, we establish the discrete counterpart of the decay of the entropy, with
the control of its dissipation, (13). The result is stated in Proposition 2.

Main Result

First of all, since the functions uD
1 , uD

2 , V D are assumed to be defined on the whole
domain Ω , we can set

(uD
1,K , uD

2,K , V D
K ) = 1

m(K )

∫

K
(uD

1 (x), uD
2 (x), V D(x))dx, ∀K ∈ T .

Moreover, we remember that uD
2 is a constant function, such that

uD
K ,2 = uD

2 < 0, ∀K ∈ T . (25)

Let (un
K = (un

1,K , un
2,K )T , V n

K )K∈T ,n≥0 be a solution to the scheme (14)–(17),
supplemented with either (22) or (23). For all n ≥ 0, we define the discrete entropy
functional as follows:

Sn =
∑

K∈T
m(K )

[

ρn
K · (un

K − uD
K ) − (χ(un

K ) − χ(uD
K ))

]

(26)

− λ2

2
uD
2

∑

σ∈E
τσ (Dσ (Vn − VD))2.

We recall that ρn
K = ρ(un

K ) = (ρ1(un
K ), ρ2(un

K ))T and that ρ is related to χ by (5c).
Therefore, Sn is nonnegative for all n ≥ 0.
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Proposition 2 (Discrete entropy dissipation) Assume (4), (5), (25) and let (un
K =

(un
1,K , un

2,K )T , V n
K )K∈T ,n≥0 be a solution to the scheme (14)–(17), supplemented

with either (22) or (23). The discrete entropy satisfies the following inequality: for
all n ≥ 0,

Sn+1 − Sn

Δt
≤ −

∑

σ∈E
τσ (DK ,σwn+1)T

D
∗
σ DK ,σwn+1

+
∑

K∈T
m(K ) W n+1

K (wn+1
2,K − wD

2,K ) ≤ 0,
(27)

where DK ,σwn+1 = (DK ,σwn+1
1 , DK ,σwn+1

2 )
T

.

Proof Using the definition (26) of the discrete entropy, one has

Sn+1 − Sn = A + B, (28)

where

A =
∑

K∈T
m(K )

(

ρn+1
K · (un+1

K − uD
K ) − (χ(un+1

K ) − χ(uD
K ))

− ρn
K · (un

K − uD
K ) + (χ(un

K ) − χ(uD
K ))

)

, (29)

B = − λ2

2
uD
2

∑

σ∈E
τσ

[

(Dσ (Vn+1 − VD))2 − (Dσ (Vn − VD))2
]

. (30)

Wefirst consider the term A. Asχ is a convex function such that ρ = ∇uχ , leading
to ρn

K = ∇uχ(un
K ), we have:

χ(un+1
K ) − χ(un

K ) − ρn
K · (un+1

K − un
K ) ≥ 0.

This yields
A ≤

∑

K∈T
m(K )(ρn+1

K − ρn
K ) · (un+1

K − uD
K ). (31)

We now address the term B. Since (a2 − b2)/2 ≤ a(a − b), for all a, b ∈ R, and
uD
2 ≤ 0, we get:

B ≤ −λ2uD
2

∑

σ∈E
τσ DK ,σ (Vn+1 − VD) DK ,σ (Vn+1 − Vn).

A discrete integration by part leads to

B ≤ λ2uD
2

∑

K∈T
(V n+1

K − V D
K )

⎛

⎝

∑

σ∈EK

τσ DK ,σ (Vn+1 − Vn)

⎞

⎠ .
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Using the scheme for the Poisson equation (15c), we obtain

B ≤ uD
2

∑

K∈T
m(K )(V n+1

K − V D
K )(ρn+1

1,K − ρn
1,K ). (32)

From (28), (31) and (32), we deduce:

Sn+1 − Sn ≤
∑

K∈T
m(K )(ρn+1

1,K − ρn
1,K )

(

(un+1
1,K − uD

1,K ) + uD
2 (V n+1

K − V D
K )

)

+
∑

K∈T
m(K )(ρn+1

2,K − ρn
2,K )(un+1

2,K − uD
2,K ).

(33)

Using the primal scheme (15a), (15b), the inequality (33) becomes

Sn+1 − Sn

Δt
≤ C + D +

∑

K∈T
m(K )W n+1

K (un+1
2,K − uD

2,K ), (34)

with

C = −
∑

K∈T

⎛

⎝

∑

σ∈EK

F n+1
1,K ,σ

⎞

⎠

[

(un+1
1,K − uD

1,K ) + V n+1
K (un+1

2,K − uD
2,K )

]

− uD
2

∑

K∈T

⎛

⎝

∑

σ∈EK

F n+1
1,K ,σ

⎞

⎠ (V n+1
K − V D

K ),

D = −
∑

K∈T

⎛

⎝

∑

σ∈EK

F n+1
2,K ,σ − V n+1

σ Fn+1
1,K ,σ

⎞

⎠ (un+1
2,K − uD

2,K ).

Using the change of variables (18a), the relations (20) on the numerical fluxes
written in the primal and dual entropy variables and the hypothesis (25), we get

C = −
∑

K∈T

⎛

⎝

∑

σ∈EK

G n+1
1,K ,σ

⎞

⎠ (wn+1
1,K − wD

1,K ),

D = −
∑

K∈T

⎛

⎝

∑

σ∈EK

G n+1
2,K ,σ

⎞

⎠ (wn+1
2,K − wD

2,K ).

(35)

Accounting for the boundary conditions, we conclude by a discrete integration by
parts which gives (27):
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Sn+1 − Sn

Δt
≤

∑

σ∈E
G n+1
1,K ,σ DK ,σwn+1

1 +
∑

σ∈E
G n+1
2,K ,σ DK ,σwn+1

2

+
∑

K∈T
m(K )W n+1

K (wn+1
2,K − wD

2,K ).

(36)

The formulation (21) of the numerical fluxes G n+1
i,K ,σ permits to rewrite

∑

σ∈E
G n+1
1,K ,σ DK ,σwn+1

1 +
∑

σ∈E
G n+1
2,K ,σ DK ,σwn+1

2

= −
∑

σ∈E
τσ

(

DK ,σwn+1
1

DK ,σwn+1
2

)T

D
∗
σ

(

DK ,σwn+1
1

DK ,σwn+1
2

)

. (37)

From (36) and (37), we deduce (27). The hypothesis (4) on the energy relaxation
term and the positive definiteness of the matrices Dσ ensure the nonpositivity of the
right-hand-side in (27) and the decay of the discrete entropy.

Consequences

FromProposition 2,we deduce the uniformbound: Sn ≤ S0 for all n ≥ 0. The control
of the dissipation writes

N
∑

n=0

∑

σ∈E
τσ (DK ,σwn+1)T

D
∗
σ DK ,σwn+1 ≤ S0.

This yields a discrete L2(0, Tmax, H 1) estimates on w1 and w2. But, following the
ideas of [6, 17], we may obtain other a priori estimates on the solution. They permit
first to prove the existence of a solution to the scheme, thanks to a topological degree
argument, and second to show the compactness of the sequence of approximate
solutions leading to the convergence of the scheme. The existence result and the
convergence analysis will be detailed in a forthcoming paper.

4 Numerical Experiments

For the numerical experiments, we consider the unipolar energy-transport model
under Boltzmann statistics, as in [6, 17]. It is based on the following definitions of
the densities ρi (u), i = 1, 2:
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⎧

⎪

⎪

⎨

⎪

⎪

⎩

ρ1(u) =
(

− 1

u2

)3/2

exp(u1),

ρ2(u) = 3

2

(

− 1

u2

)5/2

exp(u1).

(38)

so that ρ(u) = ∇uχ(u) with χ(u) = (−u2)
−3/2 exp(u1).

The diffusion matrix L(u) = (Li j (u))1≤i, j≤2 actually depends on u under the
following form [17]:

L = coρ1(u)T 1/2−β

(

1 (2 − β)T
(2 − β)T (3 − β)(2 − β)T 2

)

, (39)

where c0 > 0 is a constant (and we recall that T = −1/u2). The usual values of β are
1/2, corresponding to the Chen model, and 0, corresponding to the Lyumkis model
[17]. The matrix L(u) is symmetric positive definite.

Presentation of the Test Case

We consider a test case of a 2-D n+nn+ silicon diode, uniform in one space direction,
already introduced in [3, 7, 13]. It is a simple model for the channel of a MOS
transistor. The adopted model is the Chen model (β = 1/2 in (39)). Additional test
cases will be given in a forthcoming paper.

The domain is Ω = (0, lx ) × (0, ly) with lx = 0.6µm and ly = 0.2µm. The
channel length is 0.4µm, see Fig. 1.

The numerical values of the physical parameters for a silicon diode are given in
Table1. The doping profile is

C = Cm = 5 × 1017cm−3 in the n+ region,

C = Cm = 2 × 1015cm−3 in the n region.

The boundary conditions are

x in μm0 0.1 0.5 0.6
0

0.2

y in μm

n+ n+nΓ D
1 Γ D

2

Fig. 1 Geometry of the n+nn+ ballistic diode
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Table 1 Physical parameters

Parameter Physical meaning Numerical value

q Elementary charge 10−19 As

ε Permittivity constant 10−12AsV−1cm−1

μ0 Low field mobility 1.5 × 103cm2V−1s−1

UT Thermal voltage at T0 = 300K 0.0259V

τ0 Energy relaxation time 0.4 × 10−12 s

V = 1.5V on Γ D
1 and V = 0 on Γ D

2 ,

u2 = −1/T0, with T0 = 300K , on Γ D
1 ∪ Γ D

2 ,

ρ1(u) = Cm on Γ D
1 ∪ Γ D

2 ,

the latest giving theboundary condition foru1 according to (38). The initial conditions
for u1 and u2 are constant and equal to the boundary conditions.

The function W reads

W (u) = c1ρ1(u) − c2ρ2(u),

with

c1 = 3

2

l2x
τ0μ0UT

, c2 = l2x
τ0μ0UT

,

and the scaling ensures that the Debye length is

λ2 = εUT

ql2x Cm
.

Numerical Results

We use an admissible mesh made of 896 triangles. Figure2 presents the results
obtained by the scheme (15) and (16) in the centered case (22). The results are plot-
ted for the final time Tfinal = 1s, as the equilibrium state is reached. Although the
discretization is fully implicit, it is necessary to use an adaptative time step during
the first iterations, in order to allow the convergence of the Newton’s method. As
expected, the computed quantities are almost uniform in one space direction. More-
over one observes the expected hot electron effect in the channel, which compares
with the results given in [3, 7, 13].
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Fig. 2 2-D n+nn+ diode: temperature (above) and electrostatic potential (below)
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Abstract Weextend theCompatibleDiscreteOperator (CDO) schemes to the steady
incompressible Stokes and Navier–Stokes equations. The main features of the CDO
face-based schemes are recalled: a hybrid velocity discretization with degrees of
freedom at faces and cells, a stabilized velocity gradient reconstruction defined on
the face-based subcell pyramids, and a discrete pressure attached to the mesh cells.
We introduce adiscrete divergenceoperator thatwill account for the velocity-pressure
coupling, and a hybrid discretization of the convection term. The results of several
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xc

pf,c

xf
nfc

Fig. 1 Example of cell compatible with CDO. Left cell with hanging nodes. Center cell with one
of its subpyramids pf,c. Right cell with velocity (arrows) and pressure (circle) DoFs

invisible to the end user, discrete differential operators are carefully designed to
satisfy conservation laws and properties typical of their continuous counterparts. This
special treatment results in optimal order of convergence in space [3] (first order for
the reconstructed gradient and second for the original variable) and a cell-wise and
fully parallelizable building stage ensures good performances of the overall method.
Thanks to its flexibility, the CDO framework allows to define the main problem
variables on different mesh entities, according to their physical nature. Hence, one
can choose to use a cell-, vertex- [3], edge- [8] or face-based [2] scheme.

Here, the Stokes and Navier–Stokes equations (NSE) are discretized by means
of face-based CDO (CDO-Fb) schemes. In this case, the velocity is defined at faces
and cells, and the pressure is defined at cells only. CDO-Fb was introduced ini-
tially for the Poisson problem [2] and its key ingredient is a stabilized subcell gra-
dient reconstruction, which can be bridged to the one used in the Hybrid Mixed
Mimetic (HMM) framework [12] and to a generalization of the Crouzeix-Raviart
framework [10] (GCR). A divergence operator is derived from this gradient and it is
the tool on which the velocity-pressure coupling hinges. Finally, the discretization
of the convection term is inspired by the lowest-order case of the Hybrid High-Order
(HHO(k = 0)) method [9]. The Stokes problem in its curl formulation has been
already treated by means of CDO with vertex- and cell-based schemes [4] but here
we retain the face-based one.

Let D ⊂ R
d , d = 2, 3, be a bounded connected polyhedral domain and denote

by ∂D its boundary. We consider the following model problem:

− νΔ u + χ(u · ∇ )u + ∇ p = f, in D (1a)

∇ · u = 0, in D (1b)

where ν > 0 is the viscosity, and χ = 0 for the Stokes equations or χ = 1 for the
NSE. For the sake of simplicity, homogeneous Dirichlet boundary conditions (BC)
are considered. The pressure is uniquely defined by requiring that

∫
D p = 0.
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2 Space Discretization

A mesh discretizing D is a finite collection C := {c} of nonempty, disjoint, open,
polytopal elements of Rd , d = 2, 3, usually referred to as cells c. The faces f are
assumed to be planar and are gathered in the set F which may be subdivided in
two disjoint sets: Fb := {f | f ⊂ ∂D} collects the boundary faces and Fi := F \ Fb

the interfaces. One associates with each face f a normal vector nf : if f ∈ Fb, nf

points outwardD and, if f ∈ Fi , the direction is chosen arbitrarily. For a mesh entity
z = c, f, xz denotes its barycenter and |z| its measure. Consider now a generic cell
c. Define the set of faces of the cell c as Fc := {f ∈ F |, f ⊂ ∂c}. For every f ∈ Fc,
nfc := ±nf is the normal vector to the face f pointing outward c, the sign depends
on the direction chosen for nf . The subpyramid obtained by joining the vertices of f
to the barycenter xc of the cell (cf. the central part of Fig. 1) is denoted by pf,c.

2.1 Discrete Functional Spaces and Differential Operators

Given a generic mesh entity z = c, f, P0(z) ≡ R denotes the scalar-valued, zero-th
order polynomials defined on z. We denote with πz : L1(z) → P

0(z) ≡ R the L2-
projection (average): for all s ∈ L1(z),πz(s) = ∫

z s/ |z|. For vector-valued functions
s ∈ [L1(z)]d the projection is applied component-wise: πz(s) := (πz(si ))i=1,...,d .

In the CDO-Fb framework the velocity is hybrid, meaning that it has cell- and
face-based degrees of freedom (DoFs). Hence, the global velocity space is

Ûh :=×
c∈C

[P0(c)]d ××
f∈F

[P0(f)]d . (2)

An element of Ûh is denoted by ûh := (
(uc)c∈C , (uf)f∈F

)
, where, for a generic z =

c, f, uz is the z-based DoF. Notice that the value at the interfaces is uniquely defined.
The velocity DoFs associated with a cell c are denoted ûc := (

uc, (uf)f∈Fc
) ∈ Ûc :=

[P0(c)]d ××f∈Fc [P0(f)]d . The pressure is defined at cells only: Ph :=×c∈C Pc �
ph := (pc)c∈C, where Pc := P

0(c). In order to take into consideration the velocity BC
and the constraint on the pressure average, one also needs Ûh,0 :={
ûh ∈ Ûh | uf = 0∀f ∈ Fb

}
, Ph,∗ := {

ph ∈ Ph | ∑
c∈C |c| pc = 0

}
. The right part of

Fig. 1 gives an example of local velocity and pressure DoFs for a cell.

2.1.1 Discrete Velocity Gradient and Divergence

For each cell c ∈ C, the discrete local gradient Gc is piecewise constant on the
pyramid partition

{
pf,c

}
f∈Fc (cf. central part of Fig. 1) and is defined as follows: Gc:

Ûc → [P0(
{
pf,c

}
f∈Fc)]d×d such that for all f ∈ Fc
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Gc(̂uc)|pf,c := G0
c (̂uc) + β

|f|
∣
∣pf,c

∣
∣
(
(uf − uc) − G0

c (̂uc) (xf − xc)
) ⊗ nfc , (3)

where β > 0 is an arbitrary stability parameter andG0
c (̂u) is aP0-consistent gradient,

constant inside each cell and defined as G0
c (̂uc) := 1/ |c| ∑f∈Fc |f| (uf − uc) ⊗ nfc.

The definition (3) is the vector-valued version of the gradient introduced in [2]. In
the numerical tests, we will use β = 1, which recovers the GCR framework [10]; the
choice β = 1/

√
d gives the HMM one [12].

For each cell c ∈ C, the discrete velocity divergence Dc : Ûc → P
0(c) is defined

as follows

Dc(̂uc) := trace
(
G0

c (̂uc)
) = 1

|c|
∑

f∈Fc
|f| uf · nfc . (4)

Notice that only the face-based DoFs are used (since faces are planar). The discrete
velocity divergence is the tool on which the velocity-pressure coupling hinges. This
divergence operator can be found also in the HMM framework [11].

2.1.2 Discrete Advection Scheme

The design of the advection scheme is inspired by HHO(k = 0) [9]. We aim at
discretizing the classical advective trilinear form such that

∫
D ((w · ∇)u) · v. Given

ûh, v̂h, ŵh ∈ Ûh,0, we use

aadv(ŵh; ûh, v̂h) := 1

2

∑

c∈C

∑

f∈Fc
|f| (wf · nfc)(uf − uc)(vf + vc)

+θupw
∑

f∈Fi

∑

c∈Cf

|f| |wf · nf | (uf − uc)(vf − vc) , (5)

where θupw := 1 in one wants a stabilization by upwinding, or θupw := 0 for a cen-
tered scheme. Suppose, for now, that θupw = 0. One has:

aadv(ŵh; ûh, v̂h) + aadv(ŵh; v̂h, ûh) = −
∑

c∈C
|c| Dc(ŵc)uc · vc +

∑

f∈Fb
|f| (wf · nf )uf · vf

(6)
obtained by using (4) and by discarding the internal face-defined DoFs since they
sum to zero. The boundary DoFs are kept in order to better show that (6) is the
discrete counterpart of a known integral-by-parts result. Plugging v̂h = ûh into (6)
one obtains

aadv(ŵh; ûh, ûh) = −1

2

∑

c∈C
|c| Dc(ŵc)u2

c . (7)
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Supposing there exists μ > 0 such that−1/2 Dc(ŵc) ≥ μ for all c ∈ C (this is a dis-
crete counterpart of the well-known stability hypothesis of the continuous advection
problem), then (7) proves the coercivity of aadv(ŵh; ·, ·).

2.2 Discrete Bilinear Form

The discrete counterpart of problem (1a) stemming from the CDO-Fb schemewrites:
Find (̂uh, ph) ∈ Ûh,0 × Ph,∗ such that, ∀̂vh ∈ Ûh,0 and ∀qh ∈ Ph,∗

∑

c∈C

∫

c
{νGc(̂uc) : Gc(̂vc) − pcDc(̂vc)} + χaadv(̂uh; ûh, v̂h) =

∑

c∈C

∫

c
f · vc ,

(8a)
∑

c∈C
−Dc(̂uc)qc = 0 . (8b)

The Stokes problem (χ = 0 in (1a)) has been analyzed in [11].
A static condensation procedure eliminating the cell-based velocity DoFs can be

performed in order to reduce the size of the global system, which thus becomes
d Card(F) + Card(C). The discarded DoFs are recovered after the solving stage, as
a post-processing.

3 Numerical Results

The proposed framework is validated on four test cases, two for the Stokes equa-
tions (in 2D and 3D), and two for the NSE (both in 2D). When considering the
latter, the nonlinear equations are solved by Picard iterations, and the stopping
criterion is evaluated using the cell-based, discrete L2-norm of the increment,
namely

∥
∥̂uk

h − ûk−1
h

∥
∥
C /

∥
∥̂uk−1

h

∥
∥
C < ε, where ‖̂uh‖2C := ∑

c∈C |c| ‖uc‖22. When com-
puting the errors, this velocity norm is considered, as well as the norm of the
velocity gradient ‖̂uh‖2G,C := ∑

c∈C |c| ‖G(̂uc)‖22 and the discrete L2-norm of the
pressure‖ph‖2C := ∑

c∈C |c| p2c . The resulting error norms used in the analysis are:

erru := ‖̂uh − π̂h(u)‖C
‖π̂hu‖C , errgu := ‖̂uh − π̂h(u)‖G,C

‖π̂h(u)‖G,C
, errp := ‖ph − πh(p)‖C

‖πh(p)‖C
,

(9)
where π̂h(u) := ((πc(u))c∈C, (πf(u))f∈F) and πh(p) := (πc(p))c∈C. Let nuu (resp.
npu) stand for the number of velocity (pressure) unknowns. They will be used to
evaluate the orders of convergence in space.

We will use the CDO implementation available via Code_Saturne [1], an open-
source multi-purpose CFD solver developed at EDF R&D. The computations have
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Fig. 2 Examples of 2D meshes. Left polygonal. Right progressively refined cartesian

been performed on an octa-core, Intel i7 laptop with 32GB RAM using PETSc and
MUMPS libraries to solve the linear systems.

3.1 Stokes Equations

Two test cases are considered for the Stokes equations (χ = 0 in (1a)).

2D Bercovier–Engelman test case It is proposed in the test case 2.1 of the benchmark
[7]. The sequence of Cartesian meshes (denoted by Hn where n is the number of
segments an edge of the domain is divided into) from [7] and a 2D polygonal family
(similarly denoted by Pn, cf. left part of Fig. 2) have been considered. The results are
collected in Table1.

3D Taylor–Green vortex This test case corresponds to Sect. 2.2 of the benchmark
[7]. The meshes used were the Cartesian (Hn) and prismatic with triangular bases
(PrTn) sequences proposed in [7], and one composed of tetrahedra (Tn, the refine-

Table 1 Errors for the 2D Bercovier—Engelman test case. Cartesian and polygonal meshes

Mesh nuu npu errgu Order erru Order errp Order

H32 4224 1024 9.15 × 10−4 – 7.71 × 10−4 – 1.06 × 10−1 –

H64 16640 4096 3.16 × 10−4 1.55 1.93 × 10−4 2.02 2.87 × 10−2 1.98

H128 66048 16384 1.35 × 10−4 1.24 4.82 × 10−5 2.01 7.36 × 10−3 1.99

H256 263168 65536 6.41 × 10−5 1.07 1.21 × 10−5 2.01 1.85 × 10−3 1.99

P10 720 121 9.99 × 10−2 – 3.33 × 10−2 – 2.63 × 100 –

P20 2640 441 5.81 × 10−2 0.83 9.07 × 10−3 2.00 7.42 × 10−1 1.96

P30 5760 961 4.07 × 10−2 0.91 4.07 × 10−3 2.05 3.36 × 10−1 2.03

P40 10080 1681 3.13 × 10−2 0.94 2.29 × 10−3 2.05 1.91 × 10−1 2.02



Compatible Discrete Operator Schemes for the Steady Incompressible … 99

Table 2 Errors for the 3D Taylor–Green Vortex. Cartesian, tetrahedral and prismatic meshes

Mesh nuu npu errgu Order erru Order errp Order

H4 720 64 4.36 × 10−1 – 3.18 × 10−1 – 4.83 × 10−1 –

H8 5184 512 2.60 × 10−1 0.79 1.05 × 10−1 1.69 1.49 × 10−1 1.70

H16 39168 4096 1.36 × 10−1 0.96 2.82 × 10−2 1.95 3.95 × 10−2 1.92

H32 304128 32768 6.91 × 10−2 1.00 7.18 × 10−3 2.00 1.00 × 10−2 1.98

T6 15090 2383 3.39 × 10−1 – 8.99 × 10−2 – 1.45 × 10−1 –

T12 117552 19064 1.76 × 10−1 0.96 2.39 × 10−2 1.94 5.65 × 10−2 1.36

T24 927744 152512 8.86 × 10−2 1.00 6.07 × 10−3 1.99 2.49 × 10−2 1.18

PrT10 16200 2000 3.12 × 10−1 – 9.18 × 10−2 – 1.64 × 10−1 –

PrT20 124800 16000 1.67 × 10−1 0.92 2.72 × 10−2 1.79 6.60 × 10−2 1.32

PrT30 415800 54000 1.13 × 10−1 0.97 1.28 × 10−2 1.88 3.96 × 10−2 1.26

PrT40 979200 128000 8.54 × 10−2 0.99 7.40 × 10−3 1.92 2.81 × 10−2 1.20

ment is achieved by dividing each tetrahedra into 8 subtetrahedra). The results are
collected in Table2.

3.2 Navier–Stokes Equations

Two test cases are considered for the Navier–Stokes equations (χ = 1 in (1a)).

Burggraf flow It consists in a manufactured polynomial solution of the 2D NSE
presented in [6]. The centered scheme was considered (θupw = 0 in (5)). The vis-
cosity is ν = 1/100. About 15 Picard iterations were needed to reach the prescribed
tolerance ε = 10−7. Two sequences of meshes have been considered: the Cartesian
one (Hn) from [7], and one composed of nonmatching squares (HRn, cf. right part
of Fig. 2), obtained by progressively refining the Cartesian meshes. The results are
collected in Table3.

Table 3 Errors for the 2D Burggraf flow. Cartesian and refined cartesian meshes

Mesh nuu npu errgu Order erru Order errp Order

H32 4224 1024 2.40 × 10−1 – 1.73 × 10−2 – 1.33 × 10−2 –

H64 16640 4096 1.20 × 10−1 1.01 4.35 × 10−3 2.01 3.39 × 10−3 1.98

H128 66048 16384 6.01 × 10−2 1.00 1.09 × 10−3 2.00 8.53 × 10−4 1.99

H256 263168 65536 3.01 × 10−2 1.00 2.73 × 10−4 2.02 2.14 × 10−4 1.99

HR80 12984 3124 1.74 × 10−1 – 2.19 × 10−2 – 2.38 × 10−2 –

HR160 50960 12496 8.85 × 10−2 0.99 5.95 × 10−3 1.90 6.59 × 10−3 1.85

HR320 201888 49984 4.44 × 10−2 1.00 1.51 × 10−3 1.99 1.69 × 10−3 1.96
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Fig. 3 Lid-driven cavity, vertical and horizontal velocity profiles at the axis of symmetry. Data:
CDOH127 (dotted line), CDOH255 (dashed line), CDOH511 (solid line), [13] (circle), [5] (cross).
Left ν = 1/400. Right ν = 1/1000

2D lid-driven cavity It is proposed in the test case 6 of the benchmark [7]. Two values
of the viscosity have been considered: ν = 1/400, 1/1000. Computations have been
run on Cartesian meshes with edges divided into 127, 255, and 511 segments. The
centered scheme was considered (θupw = 0 in (5)). The prescribed tolerance for the
Picard iterations is ε = 10−7, less than 25 iterations were needed for ν = 1/400 and
less than 30 for 1/1000. In Fig. 3, one can find the plots of the computed vertical and
horizontal velocity profiles on the symmetry axes for three Cartesian meshes as well
as those fromRefs. [5, 13]. Some computations have been runwith an upwind scheme
(θupw = 1 in (5)) for the advection term, and the results on the velocity profiles were
less accurate on the coarser meshes than those obtained with the centered one.
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On the Significance of
Pressure-Robustness for the Space
Discretization of Incompressible High
Reynolds Number Flows

Alexander Linke and Christian Merdon

Abstract Only recently, strong gradient fields in the momentum balance of incom-
pressible flows have been identified as a common major source for numerical errors
in flow solvers. The novel notion of pressure-robustness denotes those space dis-
cretizations that behave in a robust manner with respect to strong gradient fields.
This contribution elaborates on certain advantages of pressure-robust solvers versus
standard solvers: (i) the asymptotic convergence rate of pressure-robust solvers may
be reached onmuch coarser grids than for standard solvers; (ii) certain preasymptotic
convergence-rates may be provably suboptimal for standard solvers; thus, low-order
pressure-robust solver can outperform high-order classical solvers on coarse grids.
Last but not least, the contribution explains how strong gradient fields develop in
complex incompressible flows.

Keywords Incompressible Navier–Stokes equations · Pressure-robustness · High
Reynolds numbers · Vortex-dominated flows
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1 Introduction

Strong gradient fields in the momentum balance have been identified in recent years
as a common source for numerical errors for standard solvers of the incompressible
Navier–Stokes equations
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ut − ν�u + (u · ∇) u + ∇ p = f,

∇ · u = 0,
(1)

see [8, 11, 12]. In the following, the notion standard solvers denotes classical dis-
cretely inf-sup stable space discretizations like the conforming Taylor–Hood ele-
ment [6]. However, all the arguments in this contribution can be extended to many
other space discretizations like the nonconforming Crouzeix–Raviart element [4]
or standard Discontinuous Galerkin discretizations [14]; also extensions to space
discretizations that are not discretely inf-sup stable, but apply some kind of pressure-
stabilization [7] can be shown to fit into this framework.

1.1 Pressure-Robustness and Velocity-Equivalence

The importance of gradient field forces in (1) is quickly explained. Assuming that
(u, p) solves (1) for a forcing f , then (u, p + φ) will solve (1) for the modified
forcing f + ∇φ,—where ∇φ is an arbitrary gradient field. Thus, the forcings f and
f + ∇φ are in a sense velocity-equivalent [5], i.e.,

f � f + ∇φ, (2)

since they induce the very same velocity solution u. In other words, the additional
forcing ∇φ will be balanced completely by a modified pressure gradient ∇(p + φ).

This purely mathematical observation allows for a couple of distinct physical
regimes, i.e., special solutions of (1), where gradient forces play a dominant role
in the Navier–Stokes momentum balance. Well-known is the hydrostatic regime—
which is definitely not a complex flow—, assuming homogeneous Dirichlet velocity
boundary conditions. For a gradient field forcing f = ∇φ, where φ denotes an arbi-
trary gravitational potential, the hydrostatic solution of (1) is just given by:

u = 0,

p = φ + const,
(3)

where “const” denotes some constant assuring a unique solution of the problem.
The following examples demonstrates the behavior of certain standard solvers

with a different (formal) convergence order for a series of hydrostatic problems with
varying complexity of the gravitational potential φ and compares their accuracy with
a lowest-order pressure-robust solver.

Resembling hydrostatics in a glass ofwater—, consider the incompressible Stokes
problem−�u + ∇ p = ∇φ,∇ · u = 0 with homogeneous Dirichlet velocity bound-
ary conditions, where it holds φ(x, y) = yk with k = 1, 2, 4, 8. The exact velocity
solution reads u = 0, and the numerical results calculated on a unstructured grid are
depicted in Fig. 1.
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Fig. 1 Numerical errors in water glass calculations for the Bernardi–Raugel method (first row),
Taylor–Hoodmethod (second row), cubicTaylor–Hoodmethod (third row) and amodified, pressure-
robust Bernardi–Raugel method (last row) for a pressure force with potential k = 1 (first column),
k = 2 (second column), k = 4 (third column) and k = 8 (last column). The underlying grid for all
computations is shown in the upper left corner

Although the numerical example is rather simple, it is nonetheless telling some-
thing important: in the first three rows, the results of standard solvers are presented:
a first-order Bernardi–Raugel element, a second and a third-order Taylor–Hood ele-
ment, which are all standard solvers in the sense above.

As a rule of thumb, we can infer from the results: high-order standard solvers are
in general more accurate than low-order standard solvers, i.e., high-order standard
solvers are able to balance gradient fields ∇φ up to a higher polynomial degree.
However, in the last row, the numerical results for the first-order pressure-robust,
modified Bernardi–Raugel element [10, 12] are presented, and they all deliver the
correct velocity hydrostatic velocity solution u = 0. Thus, low-order pressure-robust
solvers can be as accurate as high-order standard solvers, whenever strong gradient
fields dominate the Navier–Stokes momentum balance. Since the hydrostatic case is
rather trivial, we will argue in the following that dominant gradient fields generally
appear in typical highReynolds number flowswith f = 0. Thus, also in highReynolds
number flows low-order pressure-robustmethods can be competetivewith high-order
standard solvers, on preasymptotic grids [5].
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1.2 Pressure-Robustness and Vorticity Equation

An intuitive understanding for the distinctive significance of gradient field forces in
the incompressible Navier–Stokes momentum balance derives from the famous div-
curl-problem [2, 8]. A sufficiently smooth vector field w on a sufficiently smooth,
simply-connected domain Ω with a finite number of closed, disjoint surfaces can be
determined by prescribing its divergence ∇ · w, its curl ∇ × w and some boundary
data for the normal component w · n at the boundary ∂� of the domain, i.e., w is
determined by

∇ · w = g, x ∈ �,

∇ × w = χ, x ∈ �,

w · n = b, x ∈ ∂�,

(4)

where as assumptions for the data χ ∈ C1(�) and∇ · χ = 0 and
∫
�
g dx = ∫

∂�
b dS

hold.
Applying this knowledge to the velocity solution u of the incompressible Navier–

Stokes equation (1), we recognize that two of three quantities are known: it holds
∇ · u = 0 and the boundary data ofu is also known, assuminghomogeneousDirichlet
velocity boundary conditions. The only missing information about u is its vorticity

ω := ∇ × u. (5)

An evolution for the vorticity equation can be formally derived by applying the curl
operator to (1), yielding formally

ωt − ν�ω + (u · ∇) ω − (ω · ∇) u = ∇ × f . (6)

This vorticity equation tells us that all gradient parts—in the sense of the Helmholtz
decomposition [8]—of the forces f , (u · ∇) u, −ν�u, and ut do not contain any
information for the determination of u. These gradient parts rather determine ∇ p.
So, an important issue in the space discretization of the incompressible Navier–
Stokes equations is to derive a space discretization, where the vorticity equation is
discretized implicitly in an accurate manner, such that

∇ × ∇ψ = 0 for arbitrary (!) gradient fields∇ψ. (7)

This is the very goal of pressure-robust space discretizations.

1.3 Pressure-Robustness and H(div)-Conforming FEM
Spaces

The statement (7) concerns the strong formulation of (1): For a finite element or
Discontinuous Galerkin method, one has to translate (7) into a weak setting, with
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appropriate test functions. Therefore, we multiply (7) with a test function v with
compact support and integrate over the domain, yielding:

0 =
∫

v · (∇ × ∇ψ) dx =
∫

(∇ × v) · ∇ψ dx. (8)

Due to the vector calculus identity ∇ · (∇ × v) = 0, the identity (7) is nothing else
than the L2-orthogonality of divergence-free vector fields and gradient fields, which
is at the basis of the Helmholtz decomposition [8]. Further, every divergence-free
vector field v ∈ H(div) with a vanishing normal component v · n = 0 along ∂� is
L2-orthogonal to arbitrary gradient fields ∇ψ with ψ ∈ H 1 due to

∫
∇ψ · v dx = −

∫
ψ∇ · v dx = 0. (9)

This powerful L2-orthogonality can be exploited to construct pressure-robust dis-
cretizations [9]. For example, a standard finite element discretization for the incom-
pressible Stokes problem can be made pressure-robust by replacing the spatial dis-
cretization of the right hand side via

∫
f · vh dx →

∫
f · Ihvh dx. (10)

Here, Ih denotes a (locally defined) interpolation operator, mapping vector-valued
finite element functions to H(div)-conforming vector fields such that it holds

∇ · (Ihvh) = divhvh . (11)

Especially discretely divergence-free vector fields are mapped to divergence-free
ones in the sense of H(div) [1].

2 How Do Strong Gradient Field Forces Develop in High
Reynolds Number Flows Incompressible Flows?

Regarding the incompressible Euler equations

ut + (u · ∇) u + ∇ p = f,

∇ · u = 0,
(12)

one recognizes that even in the case f = 0, the material derivative of the Euler equa-
tions is a gradient field, i.e.,
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Du
dt

:= ut + (u · ∇) u = −∇ p. (13)

This leads to the important observation that, e.g., in high Reynolds number Navier–
Stokes flows with obstacles, the material derivative is approximately a nontrivial (!)
and complicated gradient field, see [5].Moreover, (13) tells us something interesting:
a quadratic, velocity-dependent term on the left hand side is balanced by a linear
pressure-dependent term. Thus, the pressure p is in general more complicated to
approximate by, e.g., piecewise polynomial functions, than the velocity u [5].

This holds in general, since fundamental objects of fluid mechanics like vortices,
vortex rings or vortex filaments can be generated as Galilean-invariant transforma-
tions of steady solutions of the incompressible Euler equations, fulfilling

(u · ∇)u + ∇ p = 0,

∇ · u = 0,
(14)

see [3] for examples. In the language of (2), standing vortices, vortex rings, …have
a strong convection term that is velocity-equivalent to 0, thus there is no dominant
convection. In [5], the notion of pseudo-dominant convection is introduced for such
situations.

This observation is highly important for the issue of convection stabilisation.
Here, we remark that convection stabilization like an upwind mechanism is only
necessary for the divergence-free part (in the sense of the Helmholtz decomposition)
of (u · ∇)u. We remark that any standing steady solution of (14), will get an addi-
tional divergence-free part, when its reference system is transformed by a Galilei
transformation u → u + w, where w denotes a constant vector field [5].

3 Numerical Example—The Chorin Vortex

This section illustrates numerically some of the theoretical considerations above.
Consider the Chorin vortex

u(x, y, t) = (− cos(nπx) sin(nπy), sin(nπx) cos(nπy))T e−2n2π2ν t

p(x, y, t) = −1

4
(cos(2nπx) + cos(2nπy)) e−4n2π2ν t

.

for n = 2 on the unit square.
First, it is studied for the time-dependent Stokes equations ut − ν�u + ∇ p = f ,

∇ · u = 0, and later for the time-dependent Navier–Stokes equations with f = 0, i.e.,
the Chorin vortex is a so-called exact solution of the incompressible Navier–Stokes
equations. In the Stokes case, the right hand side f contains a dominant gradient
field, while in the Navier–Stokes case the nonlinear term (u · ∇)u itself is a dominant
gradient field. Thus, the Chorin vortex problem in the high Reynolds number Navier–
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Stokes setting is an example of (strong) pseudo-dominant convection in the sense
above.

In the following numerical examples, for the space discretization we employ
finite element spaces Xh ⊂ H1

0 for the discrete velocities, Qh ⊂ L2
0 for the discrete

pressures. Additional, we will employ aH(div) velocity reconstruction operator Ih :
Xh → H(div) as mentioned in (10) and (11). Then, the above space discretization is
written as follows: search for (uh, ph) ∈ Xh × Qh such that it holds for all (vh, qh) ∈
Xh × Qh

(Ih u̇h, Ihvh) + ν(∇uh,∇vh) + ((uh · ∇)uh, Ihvh) − (ph,∇ · vh) = (f, Ihvh)

(∇ · vh, qh) = 0.
(15)

Using Ih = id denotes a Galerkin scheme, while for Ih �= id the scheme leaves the
classical framework of Galerkin schemes.

In the numerical examples, we compare the classical (Galerkin) Bernardi–Raugel
element, a-pressure-robust variant of it [10, 12] and the classical (Galerkin) cubic
Taylor–Hood element P3-P2.

Thus, for the classical cubic Taylor–Hood element, we specifyXh = (P3)2, Qh =
P2 and Ih = id.

For the Bernardi–Raugel element, we specify Qh = P0 and Xh = (P1)2 ⊕
{normal-weighted face bubbles}, where the (H1-conforming) face bubbles are ele-
mentwise givenby {λ1λ2n3 ⊕ λ2λ3n1 ⊕ λ3λ1n2}making thediscretizationdiscretely
inf-sup stable. For the classical (Galerkin) Bernardi–Raugel element, we choose
Ih = id. For themodified, pressure-robust Bernardi–Raugel element, the only change
in the scheme is that we employ Ih = IBDM1

h , mappingXh elementwise via the BDM1

standard interpolation to H(div).
In the following, the errors e := u − uh are measured in the L2-norm at final time

T = 0.01 and the accumulated H 1-seminorm

‖∇e‖2L2(�×[0,T ]) := τ

N∑

n=1

1

2

(
‖∇e(tn−1)‖2L2(�) + ‖∇e(tn)‖2L2(�)

)
.

The time integration is performed by a Crank-Nicolson scheme with time step τ =
10−4 until T = 0.01.

In Table1, the classical (Galerkin) Bernardi–Raugel scheme is considered for the
Stokes problem. For ν = 1, one finds the optimal rate 2 in the L2(T ) norm, but for
ν = 10−6 the convergence rate breaks down preasymptotically to 0!

Similarly, in Table3, the classical (Galerkin) cubic Taylor–Hood scheme is con-
sidered for the Stokes problem. For ν = 1, one finds the optimal rate 4 in the L2(T )

norm, but for ν = 10−6 the convergence rate breaks down preasymptotically to 2!
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Table 1 Errors and convergence rates for the classical Bernardi–Raugel for the Stokes case

(classical Bernardi–Raugel ν = 1)

ndof ‖e(T )‖L2(�)
rate ‖∇e‖L2(�×[0,T ]) rate

478 1.056 · 10−2 1.516 · 10−1

1822 2.737 · 10−3 1.95 7.662 · 10−2 0.98

7114 6.856 · 10−4 2.00 3.841 · 10−2 1.00

28114 1.711 · 10−4 2.00 1.922 · 10−2 1.00

111778 4.284 · 10−5 2.00 9.619 · 10−3 1.00

(classical Bernardi–Raugel ν = 10−6)

ndof ‖e(T )‖L2(�)
rate ‖∇e‖L2(�×[0,T ]) rate

478 2.290 · 10−2 2.191 · 10−1

1822 1.710 · 10−2 0.42 1.389 · 10−1 0.66

7114 1.755 · 10−2 −0.04 1.837 · 10−1 −0.40

28114 1.793 · 10−2 −0.03 3.535 · 10−1 −0.94

111778 1.806 · 10−2 −0.01 7.060 · 10−1 −1.00

Table 2 Errors and convergence rates for the pressure-robust modified Bernardi–Raugel for the
Stokes case

(modified Bernardi–Raugel ν = 1)

ndof ‖e(T )‖L2(�)
rate ‖∇e‖L2(�×[0,T ]) rate

478 1.187 · 10−2 1.598 · 10−1

1822 3.123 · 10−3 1.93 8.240 · 10−2 0.96

7114 7.801 · 10−4 2.00 4.184 · 10−2 0.98

28114 1.834 · 10−4 2.09 2.152 · 10−2 0.96

111778 4.877 · 10−5 1.91 1.094 · 10−2 0.98

(modified Bernardi–Raugel ν = 10−6)

ndof ‖e(T )‖L2(�)
rate ‖∇e‖L2(�×[0,T ]) rate

478 1.997 · 10−2 2.168 · 10−1

1822 4.936 · 10−3 2.02 1.070 · 10−1 1.02

7114 1.210 · 10−3 2.03 5.330 · 10−2 1.01

28114 2.939 · 10−4 2.04 2.670 · 10−2 1.00

111778 8.698 · 10−5 1.76 1.401 · 10−2 0.93

Actually, these results for the Galerkin Bernardi–Raugel and the Galerkin cubic
Taylor–Hood element are confirmed and proved in [13]. There, it is shown that
preasymptotically for ν 
 1, the order in the L2 norm equals the formal order of
the discrete pressure space, which is 0 for Bernardi–Raugel and 2 for the cubic
Taylor–Hood element.

However, one sees in Table2 that for the (pressure-robust) modified Bernardi–
Raugel this breakdown of the convergence for ν 
 1 does not happen, and the
modified pressure-robust Bernardi–Raugel element converges for ν 
 1 with order
2 in the L2 norm (Table 3). Thus, a pressure-robust first order element has the same
convergence order as a cubic, classical Taylor–Hood element, preasymptotically!

For the full Navier–Stokes Chorin vortex, the results are essentially very similar,
see also [13]. This demonstrates that dominant gradient fields in the transient Navier-
Stokes problem at high Reynolds number can lead to a severe degradation of the
convergence order of space discretizations that are not pressure-robust (Tables 4
and 5). In the transient Navier–Stokes Chorin vortex this gradient field is given by
(u · ∇)u. Thus, low-order pressure-robust discretizations can be competitive against
higher-order standard solvers on preasymptotic grids [13].
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Table 3 Errors and convergence rates for the classical cubic Taylor–Hood method for the Stokes
case

(classical cubic Taylor–Hood ν = 1)

ndof ‖e(T )‖L2(�)
rate ‖∇e‖L2(�×[0,T ]) rate

1479 6.037 · 10−4 4.514 · 10−3

5683 7.001 · 10−5 3.11 9.535 · 10−4 2.24

22275 6.078 · 10−6 3.53 1.614 · 10−4 2.56

88195 1.019 · 10−6 2.58 2.789 · 10−5 2.53

350979 8.802 · 10−7 0.21 4.902 · 10−6 2.51

(classical cubic Taylor–Hood ν = 10−6)

ndof ‖e(T )‖L2(�)
rate ‖∇e‖L2(�×[0,T ]) rate

1479 2.663 · 10−3 1.319 · 10−2

5683 6.900 · 10−4 1.95 5.690 · 10−3 1.21

22275 1.903 · 10−4 1.86 2.801 · 10−3 1.02

88195 4.613 · 10−5 2.04 1.329 · 10−3 1.07

350979 1.159 · 10−5 1.99 6.591 · 10−4 1.01

Table 4 Errors and convergence rates for the classical and modified Bernardi–Raugel method for
the Navier–Stokes case

(classical Bernardi–Raugel ν = 10−4)

ndof ‖e(T )‖L2(�)
rate ‖∇e‖L2(�×[0,T ]) rate

478 2.271 · 10−2 2.191 · 10−1

1822 1.685 · 10−2 0.43 1.378 · 10−1 0.67

7114 1.713 · 10−2 −0.02 1.795 · 10−1 −0.38

28114 1.646 · 10−2 0.06 3.291 · 10−1 −0.87

111778 1.316 · 10−2 0.32 5.473 · 10−1 −0.73

(modified Bernardi–Raugel ν = 10−4)

ndof ‖e(T )‖L2(�)
rate ‖∇e‖L2(�×[0,T ]) rate

478 2.024 · 10−2 2.176 · 10−1

1822 6.595 · 10−3 1.62 1.107 · 10−1 0.98

7114 2.983 · 10−3 1.14 6.552 · 10−2 0.76

28114 5.878 · 10−4 2.34 3.157 · 10−2 1.05

111778 1.095 · 10−4 2.42 1.506 · 10−2 1.07

Table 5 Errors and convergence rates for the classical cubic Taylor–Hood method for the Navier–
Stokes case

(classical Taylor–Hood ν = 10−4)

ndof ‖e(T )‖L2(�)
rate ‖∇e‖L2(�×[0,T ]) rate

631 1.001 · 10−2 3.875 · 10−2

2375 3.135 · 10−3 1.68 2.086 · 10−2 0.89

9211 9.719 · 10−4 1.69 1.316 · 10−2 0.66

36275 2.830 · 10−4 1.78 7.930 · 10−3 0.73

143971 9.642 · 10−5 1.55 5.578 · 10−3 0.51

(classical cubic Taylor–Hood ν = 10−4)

ndof ‖e(T )‖L2(�)
rate ‖∇e‖L2(�×[0,T ]) rate

1479 2.458 · 10−3 1.289 · 10−2

5683 6.793 · 10−4 1.86 5.628 · 10−3 1.20

22275 1.732 · 10−4 1.97 2.599 · 10−3 1.11

88195 4.041 · 10−5 2.10 1.183 · 10−3 1.14

350979 7.541 · 10−6 2.42 4.569 · 10−4 1.37
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Well-Balanced Discretisation
for the Compressible Stokes Problem
by Gradient-Robustness

Alexander Linke and Christian Merdon

Abstract Based on the novel concept of gradient-robustness a well-balanced and
provably convergent scheme for the compressible Stokes equations is discussed.
Gradient-robustness means that arbitrary gradient fields in the momentum balance
are correctly balanced by the discrete pressure gradient if there is enough mass in the
system to compensate the force. For lowMach numbers the scheme degenerates to a
recent inf-sup stable and pressure-robust discretisation for the incompressible Stokes
equations. Numerical examples illustrate the properties for nearly-hydrostatic low
Mach number flows also for nonlinear equations of state.
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1 Introduction

This paper studies a novel well-balanced discretisation scheme for the barotropic
compressible (nonlinear) Stokes problem based on gradient-robustness. The scheme
is similar to the Crouzeix-Raviart finite element-finite volume scheme of [5] where
the continuity equation is discretised by some upwind finite volume technique to
ensure non-negativity and the mass constraint of the piecewise-constant discrete
density ρh . The main important difference is a modified discretization of the right-
hand side inspired by certain pressure-robust schemes for the incompressible Stokes
equations, see e.g. [7, 8]. This modification maps discretely divergence-free test
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functions to pointwise divergence-free ones by some reconstruction operator Π and
so improves the balancing of divergence-free and irrotational gradient forces to gain
much more accuracy in nearly hydrostatic situations. Moreover, using the conform-
ing Bernardi–Raugel finite element instead of the nonconforming Crouzeix–Raviart
finite element for the velocity-pressure pair allows for application of the stress tensor
σ and an easier convergence proof of the scheme in [1].

1.1 The Steady Compressible Stokes Equations

Given some force fields (f, g) ∈ L2(Ω) × L∞(Ω) on some Lipschitz domain Ω ⊂
R

d (where d ∈ {2, 3}), total mass M > 0 and Lamé parameters 0 < μ ∈ R and
−2μ < λ ∈ R, we seek some velocity field u, a pressure field p and a non-negative
density ρ ≥ 0 with

∫
Ω

ρ dx = M such that

−∇ · σ + ∇ p = f + ρg,

div(ρu) = 0

p = ϕ(ρ) := cργ .

(1)

For simplicity, homogeneous Dirichlet velocity boundary conditions are assumed to
close the system. The friction term is modeled as in linear elasticity by

σ = 2με(u) + λ(∇ · u)I, (2)

where ε(u) := 1
2 (∇u + (∇u)T ), denotes the symmetric part of the gradient, com-

pare e.g. with [3]. The equation of state function realises some power law with
exponent γ ≥ 1 and some c > 0 related to the speed of sound in the fluid that (in a
dimensionless setting) may model the squared inverse of the Mach number.

Its weak form seeks (u, p, ρ) ∈ H1
0(Ω) × L2(Ω) × L2γ (Ω) with

a1(u, v) + a2(u, v) + b(p, v) = F(v) + G(ρ, v) for all v ∈ H1
0(Ω), (3)

c(ρ, u, φ) = 0 for all φ ∈ W 1,∞(Ω),

according to e.g. [2] where

a1(u, v) := 2μ
∫

Ω

ε(u) : ε(v) dx, a2(u, v) := λ

∫

Ω

div(u)div(v),

b(p,u) := −
∫

Ω

p div(u) dx, c(ρ,u, φ) :=
∫

Ω

ρu · ∇φ dx,

F(v) :=
∫

Ω

f · v dx, G(ρ, v) :=
∫

Ω

ρg · v dx .
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1.2 Divergence-Free Part and Helmholtz Projector

Consider the Sobolev space V := H1
0(Ω) that has an orthogonal split into the

divergence-free functions and its orthogonal complement

V0 = {v ∈ V : ∇ · v = 0},
V⊥ = {v ∈ V : (ε(v), ε(w)) = 0 for allw ∈ V0}

(where (·, ·) denotes the L2 scalarproduct). Hence, any u ∈ V can be split into

u = u0 + u⊥ for some u0 ∈ V0 and u⊥ ∈ V⊥.

For test functions v0 ∈ V0 in Eq. (3), one obtains

2μ(ε(u0), ε(v0)) = (f + ρg, v0) = (P(f + ρg), v0). (4)

Here, P denotes the Helmholtz–Hodge projector characterized by projecting into the
space of divergence-free vector fields

L2
σ = {v ∈ L2(Ω) : (v,∇φ) = 0 for allφ ∈ H 1(Ω)},

i.e. P : L2(Ω) → L2
σ and (P(f),w) = (f,w) for all w ∈ L2

σ , see [7] for details.
Thus, if ρ is fixed or g = 0, the divergence-free part u0 of the solution u of the

compressible problem fulfills the linear incompressible Stokes equations (4) and
hence balances P(f + ρg). Also note, that in particular it holds

P(∇φ) = 0 for all φ ∈ H 1(Ω),

which means that gradient forces in f + ρg can only be balanced by the pressure p
and not by the divergence-free part u0. Gradient-robust schemes are concerned with
the preservation of this correct balancing.

2 Well-Balanced Bernardi–Raugel Finite Element—Finite
Volume Method

This section explains our modified Bernardi–Raugel finite element-finite volume
scheme to discretise the weak form of the compressible Stokes system (3).



116 A. Linke and C. Merdon

2.1 Notation and Upwind Divergence

Given some regular triangulation T of the domain with nodesN and facesF , the
velocity space of the Bernardi–Raugel finite element is given by

Vh := (P1(T ) ⊕ B(F )) ∩ V

where P1(T ) denotes the set of piecewise affine polynomials and B(F ) denotes
the set of normal-weighted face bubbles. The discrete density and pressure fields are
discretised by piecewise constants, i.e.

Qh := P0(T ).

Moreover, belowΠ denotes the lowest-order Brezzi–Douglas–Marini standard inter-
polation that preserves the discrete divergence of the test function, i.e.

b(Πvh, qh) = b(vh, qh) for all vh ∈ Vh, qh ∈ Qh .

Given a simplex T ∈ T , the subsetF (T ) ofF denotes the faces along the bound-
ary of T . With this, the upwind discretisation divupw(ρhuh) ∈ P0(T ) of div(ρhuh)
is defined on all T ∈ T by

divupw(ρhuh)|T := 1

|T |
∑

F∈F (T )

u+
T,Fρh |T − u−

T,Fρh |Tneighbour = 1

|T |
∑

F∈F (T )

ρ
upw
F uT,F ,

where uT,F = ∫
F uh · nT ds is the integral over the face F in outer normal direc-

tion of the simplex T and u+
K ,F ≥ 0 and u−

T,F ≥ 0 is the positive and negative
part, respectively. Hence, ρ

upw
F := ρh |T if uT,F > 0 and ρ

upw
F := ρh |Tneighbour else for

F = ∂T ∩ ∂Tneighbour. This gives rise to the (singular) matrix

Djk := divupw(χ juh)|Tk (5)

where χ j is the characteristic function of Tj ∈ T . In order to determine a suitable
but non-unique density that solves

divupw(ρhuh) = 0 ⇔ Dρh = 0

we suggest some pseudo-time stepping with the implicit Euler method to preserve
the non-negativity and mass constraints. Key motivation is that D plus any positive
diagonal matrix results in some M-matrix with positive inverse, see [1] for details.
Here, MQh is the mass matrix matrix of Qh .
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2.2 An Iterative Algorithm

The previous statements motivate the following algorithm that intends to discretise
(3) by some iterative pseudo time stepping.

Algorithm 1 Given initial values u0
h and ρ0

h , some time step τ > 0 and termination
tolerance tol > 0, perform the following loop (start with n = 1) until convergence:

1. Update matrix D according to (5) (with uh = un−1
h ) and find ρn

h ∈ Qh such that

(MQh + τD)ρn
h = MQhρ

n−1
h . (6)

2. Update the pressure according to the equation of state, i.e.

pnh := ϕ(ρn
h ). (7)

3. Find unh ∈ Vh that satisfies the momentum equation for all vh ∈ Vh, i.e.,

a1(unh, vh) + a2(Πunh,Πvh) = F(Πvh) + G(ρn
h ,Πvh) − b(pnh , vh).

(8)

4. Compute residuals of stationary momentum and continuity equations, i.e.

res := ‖a1(unh, •) + a2(Πunh,Π•) − F(Π•) + G(ρn
h ,Π•) − b(pnh , •)‖l2

+|divupw(ρn
hun)|

5. Stop if res < tol, otherwise increase n by one and restart loop at 1.

The triplet (uh, ph, ρh) := (unh, p
n
h , ρ

n
h ) ∈ Vh × Qh × Qh denotes a discrete solu-

tion of the ’modified’ Bernardi–Raugel scheme for the compressible Stokes equa-
tions. If Π is replaced by Π = 1, we call it a solution of the ’classical’ Bernardi–
Raugel scheme. Both schemes are used in some comparisons of the final section.

Remark 1 Although some fixpoint argument ensures the existence of a solution, see
[1] for details, it cannot be guaranteed that the algorithm converges. However, in the
presented examples convergencewas always observed for small enough τ .Moreover,
convergence of the discrete solutions to an exact solution of the compressible Stokes
equations is nontrivial and, so far, has only been shown for the isothermal case in
[1], or for special schemes on structured meshes like the MAC-scheme [6].

Remark 2 One may use a solution of the incompressible Stokes equations (with
ρ ≡ M/|Ω| in (1)) as an initial guess. See [1] for a more elaborate choice that
chooses the density according to the pressure of this incompressible Stokes problem.
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3 Numerical Examples

This section demonstrates the features of the suggested scheme, in particular the
well-balanced properties with respect to gradient forces in the momentum balance.

3.1 No-Flow Over Mountains

This example studies the compressible Stokes problem on the domain depicted in
Fig. 1 with a non-flat symmetric bottom topography (the large mountain has height
0.1 and width 0.2, the two smaller ones have height 0.05 and width 0.15) and the
rest of the boundary. The forces in the right-hand side read f = 0 and g = (0,−1)T ,
which leads to the expected no-flow solution u = 0 and some complicated (stratified)
density.Note that stratifiedflows above a non-flat bottom topography are an important
research question in oceanography and meteorology.

Figure1 shows the velocity error of the no-flow velocity for the classical and
the modified Bernardi–Raugel method for γ = 1.4 and M = 1. Observe, that the
errors are much smaller for the modified well-balanced scheme. For large c the error
converges towards zero as expected by gradient-robustness. In fact, for c → ∞,
ρh → const and hence also ρhg converges to a gradient of some potential which is
not seen by a gradient-robust discretisation. Also, the convergence order with respect
to h ≈ ndof−1/2 for the modified scheme is one order larger than expected, i.e. cubic
convergence for the L2-error and quadratic convergence for the L2 gradient error.
The classical scheme ‘only’ converges with the expected rates. This tiny example

102 104 106
10−9

10−6

10−3

ndof

‖ (u−uh)‖L2 (BR)

‖u−uh‖
L2

(BR)

‖ (u−uh)‖L2 (BR+)

‖u−uh‖
L2

(BR+)

h

h2

h3

c ‖ (u−uh)‖L2 (BR+) ‖ (u−uh)‖L2 (BR)
1 4.8643 ·10−5 4.2768 ·10−3

10 4.7943 ·10−6 4.0726 ·10−3

100 4.7870 ·10−7 4.0619 ·10−3

1000 4.7863 ·10−8 4.0609 ·10−3

10000 4.7854 ·10−9 4.0608 ·10−3

Fig. 1 Errors of the modified Bernardi–Raugel method (BR+) and the classical Bernardi–Raugel
method (BR) in the no-flow over mountain scenario. Left Plot: convergence history for c = 1. Right
Plot: Triangulation. Table: Errors on a fixed mesh with ndof = 1394 for different values of c
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raises the hope that the novel modified scheme is an interesting discretisation for
more complicated low Mach number flows and multi-physics applications.

3.2 Convergence Study and Pressure-Robustness

This example on the unit square examines the exact solution

u := curl(x2(x − 1)2y2(y − 1)2)/ρ, p = ϕ(ρ) := cγ

for γ = 1.4, μ ∈ {1, 10−3} and λ = −2μ/3. Assuming a quadratic density ρ :=
1 + (y2 − 1/3)/c with

∫
Ω

ρ dx = M := 1, the right-hand side functions are chosen
such that (u, p, ρ) is a solution of the compressible Stokes system with

f := −2με(u) − μ

3
∇(divu) + ∇ p − ρ(0,−1)T , g := (0,−1)T .

Figure2 shows convergence histories for μ = 1 and c = 1 versus c = 100. Both
schemes show a very similar behaviour and close to optimal convergence rates, so the
modifications do not harm for moderate μ. In Fig. 3 the results for μ = 10−3 show a
much different picture. Here, the errors of themodified scheme aremuch smaller by a
factor of about 1/μ. This behaviour is related to the lack of pressure-robustness of the
classical Bernardi–Raugel method which is healed by the suggested modifications.
This example proves that this is also an important aspect in the discretisation of
compressible flows.

102 104 106
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‖u−uh‖
L2

‖u−uh‖
L2

(BR+)

h

h2

102 104 106
10−7

10−4

10−1

ndof

Fig. 2 Convergence histories for the modifiedmethod and classical method for γ = 1.4 andμ = 1
and c = 1 (left), c = 100 (right)
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Fig. 3 Convergence histories for the modified method (BR+) and classical method (BR) for
γ = 1.4 and μ = 10−3 and c = 1 (left), c = 100 (right)
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Fig. 4 Convergence histories towards the incompressible Stokes solution for the modified method
(BR+) and the classical method (BR) for γ = 1.4 and μ = 1 (left) and μ = 10−3 (right) and
c ≈ 1/h2

3.3 Asymptotic Convergence to Stokes System

Inspired by Feireisl et al. [4] the last experiment demonstrates that the scheme is
asymptotic preserving in the sense that it converges to the solution of the incom-
pressible Stokes system for c → ∞ and h → 0. To do so, consider the data of the
last experiment and c is now coupled to the mesh-width h by c ≈ h−2 (in fact we
start with c = 16 on the initial mesh and multiply by 4 after each refinement). For
the limit c = ∞ it is to be expected that both schemes converge to their parental
schemes for the incompressible Stokes problem, which is again locking-free only in
case of the ’modified’ scheme. Figure4 plots the errors with respect to the solution
of the incompressible Stokes system û and ρ̂ ≡ 1. Another interesting observation
is that ρ converges quadratically to ρ̂. This was also observed in [4].
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A Second Order Consistent MAC
Scheme for the Shallow Water Equations
on Non Uniform Grids

T. Gallouët, R. Herbin, J.-C. Latché, and Y. Nasseri

Abstract Wepropose in this paper a formally second order scheme for the numerical
simulation of the shallow water equations in two space dimensions, based on the so-
called Marker-And-Cell (MAC) staggered discretization on non uniform grids. For
the space discretization, we use a MUSCL-like scheme for the convection operators
while the pressure gadient is centered; time discretization is performedwith theHeun
scheme. The scheme preserves the positivity of the water height and “lake at rest”
steady states. Its consistency in the Lax-Wendroff sense is proven.

Keywords Shallow water · Finite volumes · Heun scheme · Staggered grid

MSC (2010) 65M08 · 76B99

1 Introduction

LetΩ be an open bounded domain ofR2 and let T > 0. The shallowwater equations
with topography over the space and time domain Ω × (0, T ) read:

∂t h + div(hu) = 0 in Ω × (0, T ), (1a)
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∂t (hu) + div(hu ⊗ u) + ∇(
1

2
gh2) + gh∇z = 0 in Ω × (0, T ), (1b)

u · n = 0 on ∂Ω × (0, T ), (1c)

h(x, 0) = h0(x), u(x, 0) = u0(x) in Ω. (1d)

where t stands for the time, g is the acceleration of gravity and z the (given) topogra-
phy, supposed to be continuouswith respect to space variables, and independent from
the time. For the sake of simplicity, only impermeability conditions are considered;
initial conditions h0 and u0 are such that h0 ≥ 0. These equations solve the water
height h and the velocity u.

We propose in this paper a formally second order extension of a staggered scheme
based on the so-called Marker and Cell (MAC) space discretization on non uniform
Cartesian grids (often referred to, in the context of shallow-water equations on uni-
form grids, as the Arakawa-C scheme, after the seminal paper [1]). This scheme may
be considered as a higher order extension of an existing first order scheme based on
the MAC scheme [3, 6, 7], and staggered schemes on unstructured meshes may be
found in [4]. As in [7], numerical fluxes are obtained in a simpleway,with an upwind-
ing with respect of the flow speed only, implemented here thanks to a MUSCL-like
procedure. Time-stepping is performed with the Heun scheme. This scheme enjoys
some stability properties: the water height is shown to be non-negative and the “lake
at rest” steady state is preserved. The scheme consistency, in the Lax-Wendroff sense,
is shown under rather mild assumptions, namely the boundedness of the approximate
solutions and their convergence in L1(Ω × (0, T )) thanks to tools developed in [5];
in particular, in contrast with [7], no stability in BV-norms needs to be supposed.

This paper is organized as follows. The scheme is introduced in Sect. 2, and
consistency results are given in Sect. 3. Finally, Sect. 4 presents some numerical
experiments.

2 The Numerical Scheme

Mesh and notations – Let Ω be a connected subset of R2 consisting of a union of
non uniform rectangles whose edges are assumed to be orthogonal to the canonical
basis vectors, denoted by (e(1), e(2)). A discretization (M,E ) of Ω with a staggered
rectangular grid (or MAC grid), involves a primal grid M which consists in a con-
forming structured partition ofΩ in rectangles, possibly non uniform. A generic cell
of this grid is denoted by K , and its mass center by xK . The scalar unknowns (water
height and pressure) are associated to this mesh. The set of all the edges of this mesh
is denoted by E , with E = Eint ∪ Eext, where Eint (resp. Eext) denotes the set of edges
that lie in the interior (resp. on the boundary) of the domain. The set of edges (resp.
the internal and boundary edges) that are orthogonal to e(i) is denoted by E (i) (resp.
E (i)
int and E (i)

ext ), for i = 1, 2. For σ ∈ Eint, we write σ = K |L if σ = ∂K ∩ ∂L .
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K L
nK, D D

n ,

Fig. 1 Notations for control volumes and edges—left: primal mesh, right: dual mesh for the first
component of the velocity

A dual cell Dσ associated to an edge σ ∈ E is defined as follows:

– if σ = K |L ∈ Eint then Dσ = DK ,σ ∪ DL ,σ , where DK ,σ (resp. DL ,σ ) is the half-
part of K (resp. L) adjacent to σ (see Fig. 1);

– if σ ∈ Eext is adjacent to the cell K , then Dσ = DK ,σ .

For each velocity component i , the domain Ω is thus partitioned into dual cells:
Ω = ∪σ∈E (i) Dσ . The i th partition is referred to as the i th dual mesh, associated to
the i th velocity component, in a sense which is clarified below. The set of the edges
of the i th dual mesh is denoted by ˜E (i) (note that these edges may be orthogonal to
any vector of the basis of R2 and not only to e(i)). The dual edge separating two dual
cells Dσ and Dσ ′ is denoted by ε = σ |σ ′.

The sets of edges of a primal cell K (resp. of a dual cell Dσ ) is denoted by E (K )

(resp. ˜E (Dσ )). The vector nK ,σ stands for the unit normal vector to σ outward K .
The size δM of the mesh is defined by: δM = max

K∈M
diam(K ) and its regularity ηM

is given by:

ηM = max
{ |σ |

|τ | , σ ∈ E (i), τ ∈ E ( j), i, j = 1, 2, i 	= j
}

, (2)

where | · | stands for the one (or two) dimensional measure of a subset of R (or R2).
The discrete unknowns for the i th component of the velocity are associated to the

i th dual mesh and are denoted by (ui,σ )σ∈E (i) . The scalar unknowns (discrete water
height and topography) are associated to the primal cells and are denoted respectively
by (hK )K∈M and (zK )K∈M.

Description of the scheme –Let us consider a partition 0 = t0 < t1 < · · · < tN =
T of the time interval (0, T ), which we suppose uniform, and let δt = tn+1 − tn for
n = 0, 1, . . . , N − 1 be the (constant) time step. The time integration is performed
by the second order Heun scheme (which falls in the class of Runge-Kutta schemes),
the step n of which may be written as follows:

hn and un being known,

First step − Compute h̃n+1 and ũn+1
i , i = 1, 2, by :

h̃n+1
K = hnK − δt divK (hnun), ∀K ∈ M (3a)

h̃n+1
Dσ

ũn+1
i,σ = hnDσ

uni,σ − δt FDσ
(hn, uni ), ∀σ ∈ E (i)

int (3b)
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Second step − Compute ĥn+1 and ûn+1
i , i = 1, 2, by :

ĥn+1
K = h̃n+1

K − δt divK (h̃n+1ũn+1
), ∀K ∈ M (3c)

ĥn+1
Dσ

ûn+1
i,σ = h̃n+1

Dσ
ũn+1
i,σ − δt FDσ

(h̃n+1, ũn+1
i ), ∀σ ∈ E (i)

int (3d)

Last step − Compute hn+1 and un+1
i , i = 1, 2 by:

hn+1
K = 1

2
(hnK + ĥn+1

K ), ∀K ∈ M (3e)

hn+1
Dσ

un+1
i,σ = 1

2

(

hnDσ
uni,σ + ĥn+1

Dσ
ûn+1
i,σ

)

, ∀σ ∈ E (i)
int (3f)

whereFDσ
(h, ui ) = divDσ

(hu ui ) + 1
2g (ði h2)σ + ghσ,c (ði z)σ , and following [6],

the water height hDσ
at the face σ , used in (3d) and (3f), is defined by:

|Dσ | hDσ
= |DK ,σ | hK + |DL ,σ | hL , for σ = K |L ∈ E (K ). (4)

Note that, to cope with impermeability conditions, the momentum balance equa-
tion is not written on the boundary dual cells, and the velocity (in fact, the normal
velocity, due to the arrangement of the unknowns) on the boundary edges is just set
to zero.

We now define the discrete divergence and gradient operators involved in these
relations.

Discrete divergence and gradient operators—The discrete divergence operator
divK on the primal mesh is defined by:

|K | divK (hu) =
∑

σ∈E (K )

|σ | Fσ · nK ,σ , with Fσ = hσ uσ ,

where uσ = ui,σ e(i) for σ ∈ E (i), i = 1, 2, and hσ is approximated by a second
order MUSCL-like interpolation, which may be qualified as “with respect to the
particle velocity” in the sense that we apply the technology standard for transport
operators (thus disregarding the wave structure of the problem). The i th component
of the discrete gradient operator toward an edge (ði ·)σ applied to the pressure is
defined as the transpose of the discrete divergence operator (i.e. the operator obtained
by setting h = 1 in the divK (hu) operator defined in the previous relation):

(ði h
2)σ = (hK + hL)

|σ |
|Dσ | (hL − hK ) nK ,σ , for σ = K |L , 1 ≤ i ≤ d.

The same definition holds for the gradient of the topography, and, in this term, the
quantity hσ,c is defined by

hσ,c = 1

2
(hK + hL). (5)
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Since no momentum balance equation is written on the boundary edges, a definition
of the gradients on these edges is not required.

Discrete divergence, convection operator—The discrete divergence operator on
the dual mesh divDσ

is given by:

|Dσ | divDσ
(huiu) =

∑

ε∈ ˜E (i)(Dσ )

|ε| Gε · nσ,ε, with Gε = Fε ui,ε, (6)

where Fε is the numerical mass flux through ε outward Dσ and ui,ε is approximated
also by a MUSCL interpolation scheme with respect to Fε . The expression of Fε

depends on the location of the dual edge ε = σ |σ ′. Two cases occur:

(i) the normal vector to ε is collinear with the normal vector to σ (and σ ′), in which
case ε is included in a primal cell;

(ii) the normal vector to ε is perpendicular to the normal vector to σ (and σ ′), in
which case ε results from the union of two half primal edges which we denote
by τ and τ ′. In both cases, the mass flux Fε is an average of primal mass fluxes:

Fε =

⎧

⎪

⎨

⎪

⎩

1

|ε| (
1

2
|σ | Fσ + 1

2
|σ ′| Fσ ′), for case (i),

1

|ε| (
1

2
|τ | Fτ + 1

2
|τ ′| Fτ ′), for case (i i).

(7)

The definitions (4) and (7) ensure that a discrete mass balance (for the dual water
height and the dual mass fluxes) holds on the dual cells, which enables to derive a
discrete balance equation for any convex function of the velocity, as well as a discrete
kinetic energy balance [7].

3 Stability and Consistency

First of all we verify that, under a CFL restriction, the scheme (3) preserves the
positivity of the water height and the “lake at rest” steady state.

Lemma 1 (Preservation of the positivity and the “lake at rest” steady states) Let
1 ≤ n ≤ N − 1, let (hnK , un

σ )K∈M, σ∈E be the approximate solution to the scheme
(3), assume that hnK ≥ 0, for all K ∈ M and assume that the time step satisfies the
following condition:

2δt ≤ min

[ |K |
∑

σ∈E (K )

|σ | |un
σ |

,
|K |

∑

σ∈E (K )

|σ | |ũn
σ |

]

. (8)
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Then hn+1
K ≥ 0 for all K ∈ M. Furthermore when hnK + zK = C and un

σ = 0, with
C a real number, then hn+1

K + zK = C and un+1
σ = 0.

Before stating the global weak consistency of the scheme, some definitions are
needed, as well as some assumed estimates.

Let (M(m),E (m))m∈N be a sequence of meshes in the sense introduced in the
above section and let (h(m), u(m))m∈N be the associated sequence of solutions of the
scheme (3).

Assumed estimates—First of all, we assume that h(m) > 0, ∀m ∈ N; this latter con-
dition can be obtained under the CFL condition (8). Furthermore, we suppose that
the water height h(m), its inverse and the velocity are uniformly bounded, i.e.that
there exists a C > 0 such that for m ∈ N and 0 ≤ n < N (m):

1/C < (h(m))nK ≤ C, ∀K ∈ M(m), (9a)

|(u(m))nσ | ≤ C, ∀σ ∈ E (m). (9b)

Finally, we need the following CFL-like assumption on the mesh:

∃ C ∈ R+ such that ∀m ∈ N, δt (m) ≤ C δM(m) . (10)

Theorem 1 (Weak consistency of the scheme) Let (M(m),E (m))m∈N be a sequence
of meshes such that δM(m) → 0 as m → +∞; assume that there exists η > 0 such
that ηM(m) ≤ η for any m ∈ N (with ηM(m) defined by (2)). Let (h(m), u(m))m∈N be the
associated sequence of solutions to the scheme (3), and assume that (9a), (9b) and
(10) hold. Finally, let us suppose that this sequence converges in L1(Ω × (0, T ))1+d ,
to (h̄, ū). Then (h̄, ū) satisfies a weak formulation of the shallow water equations.

Proof (Sketch of the proof) The proof uses the following arguments.

(i) Thanks to the assumption (10), we prove that if the discrete solution (h(m), u(m))

satisfies (9a–9b) then (h̃(m), ũ(m)
) satisfies the same estimates.

(ii) Then, from the equations (3a) and (3b), we deduce that, if (h(m), u(m)) converges
in L1(Ω × (0, T ))1+d to (h̄, ū), then (h̃(m), ũ(m)

) also converges in L1(Ω ×
[0, T ))1+d to the same limit.

(iii) Finally we recast the Heun scheme under the form:

hn+1
K = hnK − δt

[

1
2divK (hnun) + 1

2divK (h̃n+1ũn+1
)
]

, ∀K ∈ M,

hn+1
Dσ

un+1
i,σ = hnDσ

uni,σ − δt
[

1
2FDσ

(hn, uni ) + 1
2FDσ

(h̃n+1, ũn+1
i )

]

,

∀σ ∈ E (i)
int , 1 ≤ i ≤ d.

From Points (i) and (ii), it is thus sufficient to check the consistency, in the
Lax-Wendroff sense, of the numerical fluxes of the Euler scheme. This is done
using the tools of [5], with some technicalities to cope with the non-linearity
of the problem and the staggered discretization.
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4 Numerical Tests

The scheme under consideration has been developed in the CALIF3S open-source
software [2] of the French Institut de Sûreté et de Radioprotection Nucléaire (IRSN)
and tested against various benchmarks of the literature.Webegin here by checking the
accuracy of the scheme on a known regular solution consisting in a travelling vortex.
This solution is obtained through the following steps: we first derive a compact-
support H 2 solution consisting in a standing vortex which becomes time-dependent
by adding a constant velocity motion. The velocity field of the standing vortex and

the pressure are sought under the form: û = f (ξ)

[−x2
x1

]

, p̂ = ℘(ξ), with ξ =

x21 + x22 . A simple derivation of these expressions yields: û · ∇û = − f (ξ)2
[

x1
x2

]

and ∇ p̂ = 2℘ ′(ξ)

[

x1
x2

]

.Using the relation p = 1
2 gh

2, we thus obtain a stationary

solution of the shallowwater Eq. (1) if℘ satisfies 8 g ℘ = (F + c)2, where F is such
that F ′ = f 2, F(0) = 0 and c is a positive real number. For the present numerical
study, we choose f (ξ) = 10 ξ 2(1 − ξ)2 if ξ ∈ (0, 1), f = 0 otherwise, which indeed
yields an H 2(R2) velocity field (note that as a consequence, the pressure and the
water height are also regular), and c = 1. The problem is made unsteady by a time
translation: given a constant vector field a, the pressure p and the velocity u are
deduced from the steady state solution p̂ and û, we set h(x, t) = ĥ(x − at) and
u(x, t) = û(x − at) + a. The center of the vortex is initially located at x0 = (0, 0)t ,
the translation velocity a is set to a = (1, 1)t , the computational domain is Ω =
(−1.2, 2.)2 and the computation is run on the time interval (0, 0.8).

Computations are performed with successively refined meshes with square cells,
and the time step is δt = δM/8, and corresponds to a Courant number CFL close to
1/3, computed asCFL=max(|u| + √

gh) δt
δM

. The discrete L1-normof the difference
between the computed and the exact solutions is given in Table1.

The observed order of convergence over the whole sequence is 2 for the water
height and 1.5 for the velocity.

Table 1 Measured numerical errors for the travelling vortex, error(h) = ||h(·, 0.8) −
h̄(·, 0.8)||L1

M(Ω), error(u) = ||u(·, 0.8) − ū(·, 0.8)||L1
M(Ω) and corresponding order of convergence

Mesh Error (h) Ord (h) Error (u) Ord (u)

32 × 32 3.61 10−3 / 2.93 10−1 /

64 × 64 1.15 10−3 1.57 1.14 10−1 1.28

128 × 128 2.58 10−4 2.23 4.06 10−2 1.40

256 × 256 5.85 10−5 2.20 1.49 10−2 1.36

512 × 512 1.53 10−5 1.91 4.66 10−3 1.60
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Fig. 2 Partial dam-break flow. Left: MUSCL scheme—Right: upwind scheme

Wenow turn to a test consisting in a partial dam-break problemwith reflection phe-
nomena, andwith a non-flat topography. In this test, the computational domain isΩ =
(0, 200) × (0, 200) \ Ωw with Ωw = (95, 105) × (0, 95) ∪ (95, 105) × (170, 200).
The fluid is supposed to be initially at rest, the initial water height is h = 10 for
x1 ≤ 100 and h = 5 − 0.04 (x1 − 100) otherwise, and the topography is z = 0 if
x1 ≤ 100 and z = 0.04 (x1 − 100) otherwise. The computation is performed with a
mesh obtained from a 1000 × 1000 regular grid by removing the cells included in
Ωw. The time step is δt = δM/40 (the maximal speed of sound and the maximal
velocity are both close to 10). A slight stabilization (corresponding to a diffusion
coefficient equal to the mesh step divided by 4, so two orders of magnitude lower
than the artificial viscosity generated by the upwind scheme in high velocity zones)
is added to damp oscillations appearing in the zones at rest, where no numerical dif-
fusion is generated by our schemes. Results obtained at t = 20 with the first order in
time and space and the present scheme are compared on Fig. 2. One can observe that
the second-order scheme is clearly less diffusive. In addition, these results illustrate
the capacity of the staggered scheme to deal with reflection conditions by simply
imposing the normal velocity to the boundary at zero.
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Post-processing of Fluxes for Finite
Volume Methods for Elliptic Problems

Hanz Martin Cheng

Abstract We develop post-processing techniques for fluxes obtained from finite
volume methods, which enables us to reconstruct flow densities in an H-div space.
These post-processing techniques ensure that mass is conserved locally, which is
very important, e.g., in geophysical applications.

Keywords Diffusion problem · Finite volume methods · Fluxes · Polyhedral mesh

1 Introduction

Let Ω be an open connected subset of Rd and consider an anisotropic diffusion
problem: Find p ∈ H 1(Ω) such that

−div(Λ∇ p) = f on Ω, (1)

with suitable boundary conditions. Here, we assume that the source term f ∈ L2(Ω),
and the diffusion tensor Λ is a measurable function from Ω to the set of d × d sym-
metric matrices and there exists λ, λ > 0 such that, for a.e. x ∈ Ω , the eigenvalues
of Λ(x) are in [λ, λ].

To name a few applications, Eq. (1) is encountered in heat conduction (Fourier’s
law), porous media flow (Darcy’s law), or electric conduction (Ohm’s law). Aside
from p, another main quantity of interest is the flow density u := −Λ∇ p. In the
context of porous media flow, (1) is referred to as the pressure equation, where Λ is
the permeability tensor, p is the pressure, and u is the Darcy velocity. The aim of
this paper is to post-process the fluxes obtained from finite volume methods for (1),
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so that we can reconstruct a flow density u ∈ H(div,Ω). The reason behind taking
u ∈ H(div,Ω) is to ensure that mass is conserved locally, which is very important,
e.g., in geophysical applications.

2 Finite Volume Methods for the Diffusion Equation

For our discretisation, “mesh” is to be understood in the simplest intuitive way:
a partition of Ω into polygonal (in 2D) or polyhedral (in 3D) sets. Following the
notations and definitions in [6, Definition 7.2], we denoteT = (M ,E ) to be the set
of cells K and faces (edges in 2D) σ of our mesh, respectively. For a cell K ∈ M , we
denote by EK ⊂ E the set of faces (edges) of the cell K . Finite volume schemes are
formulated by taking the integral of (1) over a control volume K , and using Stokes’
formula to obtain the balance of fluxes:

∑
σ∈EK

∫
σ
(−Λ∇ p) · nK ,σ = ∫

K f.Now, if σ
is a face shared by two distinct cells K and L , then

∫
σ
(−Λ∇ p) · nK ,σ + ∫

σ
(−Λ∇ p) ·

nL ,σ = 0. This is known as the conservation of fluxes. Key to the definition of a finite
volume scheme is the choice for the discrete approximation of the fluxes, FK ,σ ≈∫
σ
(−Λ∇ p) · nK ,σ , that satisfy a discrete version of the balance and conservation of

fluxes. That is, for each K ∈ M ,

∑

σ∈EK

FK ,σ =
∫

K
f, (2a)

and for each face σ shared by distinct cells K and L ,

FK ,σ + FL ,σ = 0. (2b)

A review of some finite volume schemes (e.g. the TPFA, MPFA, and HMM
method) that yield fluxes for which the post-processing technique described in Sect. 3
is applicable can be found in [7].

3 Post-processing of the Fluxes for Reconstructing a Flow
Density

In this section, we aim to reconstruct, from the approximate fluxes (FK ,σ )K∈M , σ∈EK

obtained in (2), a flow density u, taking into account two important features: the
preservation of the divergence in (1), to avoid creating regions with artificial wells or
sinks (leading to non-physical flows), and the continuity of the normal component of
u (in the context of porous media flow, this ensures that the velocity is well defined,
and does not freeze along an interface). A natural space for functions that satisfies
these properties is the H(div,Ω) space, and themost common examples of functions
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xK F ∗
i

TK, i
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vi∗
i−1

∗
i
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i

F ∗
i−1
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fi

σi

σj

σi,j

σi

Ki

σi,j

Fig. 1 Left: triangulation in 2D. Right: division of a polyhedron into sub-cells

that live in H(div,Ω) are the RTk finite elements on simplices [4]. In particular, we
focus on RT0 elements on simplices. To do so, we divide each cell K ∈ M into
simplices (triangles for d = 2, tetrahedra for d = 3), gathered in a setSK , that share
xK as apex andwhose bases are faces or subsets of the faces of K . In [10], hexahedral
type meshes were subdivided into 5 simplices. The RT0 elements are then obtained
by solving a local Neumann problem. Here, we describe a generic triangulation for
polytopal meshes, and how to reconstruct RT0 elements for these.

For the 2 dimensional case, a triangulation of each cell K is performed by choosing
a point xK in the interior of K , and forming a triangle TK ,σi with apex xK and base σi

for each edge σi ∈ EK (Fig. 1, left). For simplicity of notation, we order the edges σi ,
and thus the corresponding associated triangles TK ,σi of cell K in counterclockwise
order.We then denote byσ ∗

i the edge shared between TK ,σi and TK ,σi+1 , i = 1, . . . , ne,
with the convention that σne+1 = σ1 (see Fig. 1, left).

Now, we present how to divide a cell into simplices in 3D. We start by picking
a point xK in the interior of K and forming, for i = 1, 2, . . . , n f , sub-cells with
vertices xK , vσi,k for k = 1, 2, . . . , (nv)i , where n f and (nv)i denote the number of
faces of the cell K and the number of vertices in the face σi of cell K , respectively.
We then denote the sub-cell in cell K associated to face σi as Ki (Fig. 1, right). This
results to n f polyhedra, as each face corresponds to one sub-cell.

A simplex Si, j is then constructed by joining the point xK to a triangular base Ti, j
formed by joining the edge ei, j being shared by the faces σi and σ j , to a point xσi on
the face σi (Fig. 2). Over a simplex S of dimension d, anRT0 finite element is defined
to be RT0(S) := (P0(S))d + xP0(S). This space has d + 1 degrees of freedom, but
as can be seen in (2), finite volume schemes only provide an approximation for the
fluxes FK ,σ on the boundary ∂K . Hence, in order to reconstruct functions in RT0,
we need to find approximations for the fluxes on the internal faces.

Denote by E ∗
K the set of internal faces of K , that is, all of the faces of the simplices

S ∈ SK , that do not lie on σ ∈ EK . Then, for every simplex S ∈ SK , denote by σS

the face of K on which it sits, σ̃S the part of σS it occupies, and E ∗
S its internal

faces (that is, all its faces except σS). For every internal face σ ∗ ∈ E ∗
S that lies on a

simplex S, we denote by S′ the simplex which shares σ ∗ with S. In order to preserve
the divergence in (1), we impose the balance equation (so that the divergence of
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Fig. 2 Left: triangulation in 3D; Right: simplex sliced from a sub-cell

these fluxes in each simplex is equal to the divergence of the fluxes on K ), and the
conservativity of the fluxes:

∀S ∈ SK ,
∑

σ ∗∈E ∗
S

FS,σ ∗ + |̃σS|
|σS| FK ,σS = |S|

|K |
∑

σ ′∈EK

FK ,σ ′ , (3a)

∀σ ∗ ∈ E ∗
S , FS,σ ∗ + FS′,σ ∗ = 0. (3b)

The second term in the left hand side of (3a) is the contribution of the external face
σ̃S of S, on which we assume that the flux is the corresponding proportion of the flux
FK ,σ (In 2D,we have

|̃σS |
|σS | = 1).We note however that the system (3) is rank-deficient.

This can be seen by taking the sum over all S ∈ SK in (3a), which, in view of (3b),
leads to the trivial relation

∑
σ∈EK

FK ,σ = ∑
σ∈EK

FK ,σ .We illustrate three methods
(Sects. 3.1–3.3) to deal with the rank deficiency.

3.1 Minimal l2 Norm (KR Method)

Wemay take the solution to (3) with minimal l2 norm (both for 2D and 3D), as in [9].
This method will be referred to as the KR method (attributed to Y. Kuznetsov and S.
Repin). However, on distorted meshes, the internal fluxes FK ,σ ∗ obtained from the
least norm solution of (3) cannot construct constant velocity fields accurately.

3.2 Consistency Condition (C Method)

In 2D, the system (3) consists of ne equations in ne unknowns, and it can be shown that
it is rank-deficient by 1. Hence, we remove one of the ne equations, and replace it with
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a ‘consistent’ equation (henceCmethod) so that (3) is of full rank. A generic method
for finding an equation so that the recovered fluxes can reconstruct RT0 velocities
exactly is described in [5]. One such equation can be obtained by taking xK as the
barycenter of K , and setting

∑ne
i=1 Fσ ∗

i
= 0. This particular choice is equivalent to

the composite polygonal mixed finite element described in [2]. An expression for the
fluxes can then be found explicitly. This means that we do not have to solve any local
system, which is one of the main advantages of the C method over the KR method.
The weakness of this method is that it is highly dependent on the fact that we only
need one closing equation in 2D. An extension onto 3D pyramidal cells has been
presented in [3]; however, extension onto meshes with more generic geometries is
non-trivial.

3.3 Introducing Auxiliary Cell-Centered Unknowns
(A Method)

In this section, we look for internal fluxes that are composed of a consistent flux
coming from a constant velocity in the cell, and a stabilisation term, similar to a
Brezzi-Pitkäranta stabilisation (a discrete inconsistent Laplacian on the submesh).
This was actually inspired by the post-processing technique in [1]. After cutting the
cell K into simplices, for each simplex S ∈ SK we look for internal fluxes of the
form

∀σ ∗ ∈ E ∗
S , FS,σ ∗ = F̄S,σ ∗ + |σ ∗|

hσ ∗
(QS − QS′), (4)

where S′ is the simplex on the other side of σ ∗, hσ ∗ is a characteristic distance
between S and S′ (for example, the distance between their centers of mass), and
(QS)S∈S K are real numbers (if u is a Darcy velocity −Λ∇ p, then these could be
considered as potentials inside each simplex).Here, F̄S,σ ∗ = |σ ∗|uK · nS,σ ∗ anduK =
1

|K |
∑

σ∈EK
FK ,σ (xσ − xK ). As a remark, we note that if the fluxes FK ,σ come from

a constant velocity field ξ , then this definition of uK allows us to recover ξ exactly.
Substituting (4) into (3), we obtain the following square system on the unknowns

(QS)S∈S K :

∀S ∈ SK ,
∑

σ ∗∈E ∗
S

|σ ∗|
hσ ∗

(QS − QS′) = bS, (5)

where bS depends on uK and the fluxes around K .

Lemma 1 If (QS)S∈S K is a solution of (5), then

∑

σ ∗∈E ∗
K

|σ ∗|
hσ ∗

(QS − QS′)2 =
∑

S∈S K

bSQS.
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Proof This can be established by multiplying (5) with QS , taking the sum over
S ∈ SK , and gathering the terms by internal faces σ ∗ ∈ E ∗

K . �

In particular, if (bS)S∈S K = 0 then all (QS)S∈S K are identical and thus FS,σ ∗

= F̄S,σ ∗ . As a consequence, the A method can reconstruct constant velocity fields
exactly. Also, the matrix of (5) is rank-deficient by 1, since it only has the constant
vector 1 in its kernel. Velocities reconstructed from fluxes that satisfy (4)–(5) will be
denoted as A velocities (‘A’ for ‘auxiliary’).

3.3.1 Detailed Computations in 2D

Here, we start by introducing an auxiliary unknown Qi associated to each of the
sub-cells TK ,σi as in (4). Writing βi = |σ ∗

i |
hσ∗

i

, the system of Eq. (5) can be written

as AQ = b with unknowns Q = (Q1, . . . , Qne). Here, A = PT DP where D is
the diagonal matrix with di,i = βi , i = 1, . . . , ne and P is the matrix such that for
i = 1, . . . , ne, pi,i = 1, pi,i+1 = −1, where the entry pne,ne+1 is equal to pne,1. Set-

ting F̄σ ∗
0

= F̄σ ∗
ne
, b is composed of entries bi = |TK ,σi |

|K |
∑

σ∈EK
FK ,σ − FK ,σi − F̄σ ∗

i
+

F̄σ ∗
i−1

. The quantities qi = (Qi − Qi+1) can uniquely be determined by removing
any one of the equations in (3) and replacing it with a relation involving the qi ’s. In
particular, we remove the equation corresponding to the ne-th row of A, and replace it
with

∑ne
i=1 qi = 0. This yields a matrix system Âq = b̂, where q is the ne × 1 vector

with i th entry qi , b̂ is the ne × 1 column vector with the first ne − 1 entries identical
to b but with last entry 0, and Â being the matrix formed by the first ne − 1 rows of
PT D, augmented by the 1 × ne row vector of all ones 1. We note now that Â has
full rank, consisting of the equations

β j q j = βneqne +
j∑

i=1

bi , j = 1, . . . , ne − 1, and
ne∑

i=1

qi = 0. (6)

The values qi , i = 1, . . . , ne, and hence the fluxes, can then be explicitly obtained
by solving (6).

3.3.2 A Method in 3D

To implement the A method in 3D, the idea is to perform a 2-step process, the first of
which involves solving a local linear system of equations, followed by a second step,
which gives explicit expressions for the fluxes. We start by partitioning each cell K
into n f sub-cells as in Fig. 1, right. Auxiliary cell-centered unknowns (1 for each
sub-cell) are then introduced as in Sect. 3.3, but over generic polyhedrons, instead
of simplices. Each interior flux Fσi ,σ j then corresponds to the face σi, j formed by
joining the interior point xK to an edge ei, j of K being shared by the faces σi and σ j
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of cell K . An analog of (4) is then given by Fσi ,σ j = F̄σi ,σ j + |σi, j |
hi, j

(Qi − Q j ), with
hi, j being a characteristic distance between the sub-cells Ki and K j . We then write
(3a) for generic cells (i.e. the average divergence of the fluxes for each sub-cell is
equal to the average divergence of the fluxes on K ). Denoting by (ne)i the number
of edges of a face σi of K , we then have, on each sub-cell Ki ,

(ne)i∑

j=1

βi, j (Qi − Q j ) = |Ki |
|K |

∑

σ∈EK

FK ,σ −
(ne)i∑

j=1

F̄σi ,σ j − FK ,σi , (7)

where βi, j = |σi, j |
hi, j

. Owing to Lemma 1, the values (Qi − Q j ) can be uniquely deter-
mined by fixing one of the values Qi . Hence, after setting the value of Q1, we
can solve a local system of size (n f − 1) × (n f − 1) to determine the values of
Q j , j = 2, . . . n f , and thus the fluxes Fσi ,σ j . At this stage, we recall that our aim is
to reconstructRT0 functions over simplices. Hence, we proceed by breaking each of
the sub-cells Ki into simplices. On each sub-cell Ki , we pick a point xσi on the face
σi and associate, for each edge e j ( j = 1, . . . (ne)i ) of the face σi an interior face
σi,e j . We then form a simplex Si, j with base on the sub-triangle Ti, j in σi and faces
σi, j , σi,e j , σi,e j+1 (Fig. 2, right). Since (7) ensures that each sub-cell Ki preserves the
divergence of the entire cell K , we only need each simplex to preserve the divergence
of the sub-cell Ki it resides in. Hence, we set for each edge e j of the face σi ,

Fσi ,e j + Fσi ,e j+1 = |Si, j |
|Ki |

∑

σ∈EKi

FK ,σ − Fσi ,σ j − |Ti, j |
|σi | FK ,σi , (8)

where Fσi ,e j is the interior flux along the interior face σi,e j , oriented outward of
the simplex Si, j . Each sub-cell consists of (ne)i simplices and (ne)i interior fluxes,
which corresponds to (ne)i equations in (ne)i unknowns. System (8) is essentially
the same as the one in 2D (i.e. the connectivity is determined through the adjacency
of the triangles Ti, j and Ti, j+1, corresponding to the edges e j and e j+1 of the face σi ,
respectively). Expressions for the fluxes can then be obtained explicitly.

4 Numerical Tests in 2D

In this section, we present numerical results that illustrate the advantages of the C
and A methods over the KR method. The approximate fluxes (FK ,σ )K∈M , σ∈EK ,
are obtained by solving (1) with the HMM method [8]. The sub-interior fluxes are
then obtained through the methods described in Sects. 3.1–3.3, and used to con-
struct flow densities that are RT0 functions. We will consider tests on the domain
Ω = (0, 1) × (0, 1), for 2 types of velocity fields: V = (0, 1) and V = −Λ∇ p =
(π sin(πx) cos(πy), π cos(πx) sin(πy)). The purpose of testing V = (0, 1) is to
illustrate that the KR method is not able to reconstruct constant velocities exactly
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Table 1 Relative errors in the velocity reconstruction

Mesh K R C A

Cartesian 1.18e-14 1.18e-14 1.18e-14

Hexahedral 3.64e-02 2.91e-13 2.90e-13

Kershaw 3.05e-01 5.14e-14 5.10e-14

(a) V = (0, 1)

Cartesian K R C A

h = 0.1768 1.02e-01 1.02e-01 1.02e-01

h = 0.0884 5.12e-02 5.12e-02 5.12e-02

h = 0.0442 2.56e-02 2.56e-02 2.56e-02

(b) V = (π sin(πx) cos(πy), π cos(πx) sin(πy))

Table 2 Relative errors in the velocity reconstruction

Hexahedral K R C A

h = 0.2414 1.00e-01 8.07e-02 8.01e-02

h = 0.1297 5.79e-02 3.96e-02 3.92e-02

h = 0.0657 3.52e-02 1.94e-02 1.92e-02

(a) V = (π sin(πx) cos(πy), π cos(πx) sin(πy))

Kershaw K R C A

h = 0.5154 6.04e-01 4.72e-01 4.14e-01

h = 0.2881 2.99e-01 2.40e-01 1.95e-01

h = 0.1517 1.58e-01 1.32e-01 1.07e-01

(b) V = (π sin(πx) cos(πy), π cos(πx) sin(πy))

Fig. 3 Mesh types: Cartesian (left); Hexahedral (middle); Kershaw (right)

on distorted cells (see Table1a). On the other hand, as expected, using the A and
C methods enable us to recover V up to machine precision, regardless of the mesh.
For the second test case, we aim to illustrate the first order accuracy of the velocity
reconstructions on a variety of meshes. These are presented in Tables1b and 2a–b.
The coarsest and finest mesh consists of 8 × 8 and 32 × 32 cells, respectively. Here,
the parameter h denotes the maximum diameter of the cells in the mesh.

Looking at Table1b, we see that the KR, C, and A methods are equivalent for
Cartesian meshes, and all of them exhibit first order convergence. Now, we look
at the distorted meshes in Table2a and b. Here, it can be noted that although all
three methods exhibit first order convergence, the C and A methods yield much
better reconstructions than the KR method. We also notice that on the very distorted
Kershaw mesh, the A method performs slightly better than the C method (Fig. 3).
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5 Summary

In this work, we presented post-processing techniques for fluxes obtained from finite
volume methods. Tests in 2D show that the new methods (C and A) are better than
the KRmethod. Details on how to implement the Amethod in 3D are also presented.
Future work will focus on the possibility of obtaining higher order moments along
the interior faces, which will be useful for reconstructing RTk elements for k ≥ 1.
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Exponential Decay to Equilibrium
of Nonlinear DDFV Schemes
for Convection-Diffusion Equations

Claire Chainais-Hillairet and Stella Krell

Abstract We introduce a nonlinear DDFV scheme for an anisotropic linear convec
tion-diffusion equation with mixed boundary conditions and we establish the expo-
nential decay of the scheme towards its steady-state.

Keywords Discrete duality finite volume scheme · Discrete entropy/dissipation
relation · Long time behaviour

MSC (2010) 65M08 · 35B40

1 Motivation

We are interested in the numerical discretization of linear anisotropic convection-
diffusion equations on almost general meshes. LetΩ be a polygonal connected open
bounded subset of R2 and let T > 0. The boundary Γ = ∂Ω is divided into two
parts Γ = Γ D ∪ Γ N with m(Γ D) > 0. The problem writes:

∂t u + divJ = 0, J = −Λ(∇u + u∇V ) in Ω × (0, T ), (1a)

J · n = 0 on Γ N × (0, T ), and u = uD on Γ D × (0, T ), (1b)

u(·, 0) = u0 in Ω. (1c)

We assume that the initial condition u0 belong to L∞(Ω) and is positive, that the
exterior potential V belongs to C1(Ω̄,R). The anisotropy tensor is supposed to be
bounded, symmetric and uniformly elliptic: there exists λM ≥ λm > 0 such that
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λm |v|2 ≤ Λ(x)v · v ≤ λM |v|2 for all v ∈ R
2 and almost all x ∈ Ω. (2)

We finally assume that the boundary data uD corresponds to a thermal Gibbs equi-
librium, which means the existence of ρ > 0 such that uD = ρe−V on Γ D . This
implies that u∞ = ρe−V is a steady-state of (1). Moreover, the exponential decay of
the solution u to (1) towards u∞ is well-known, see for instance [2] (for even more
general results) and the references therein.

When designing numerical schemes for (1), it is crucial to ensure that the scheme
has a similar large time behavior than the continuous model. This property is ensured
by classical TPFA schemes with linear B-fluxes on admissible meshes when Λ = I ,
as shown in [4]. Unfortunately, these schemes cannot be used in the anisotropic case
and/or on general meshes. In [3], a nonlinear DDFV scheme has been introduced for
(1) in the case of Neumann boundary conditions. The convergence of the scheme has
been proved and numerical experiments show the exponential decay of the scheme
towards equilibrium. This last property has been recently established in [5]. The aim
of this paper is to introduce the nonlinear DDFV scheme for (1) and to prove its
exponential decay towards equilibrium. The result is obtained under an assumption
of uniform boundedness of the discrete solution away from 0 and ∞; it is is stated
in Theorem 1.

2 Presentation of the Numerical Scheme

2.1 Meshes and Notations

In order to define a DDFV scheme, we need to introduce three different meshes—the
primal mesh, the dual mesh and the diamond mesh—and some associated notations,
for more details and also illustrations see [1, 3].

The primal mesh denoted M is composed of the interior primal mesh M (a
partition of Ω with polygonal control volumes) and the set ∂M of boundary edges
seen as degenerate control volumes. For all K ∈ M, we define xK the center of K .

For any vertex xK ∗ of the primal mesh satisfying xK ∗ ∈ Ω , we define a polygonal
control volume K ∗ by connecting all the centers of the primal cells sharing xK ∗

as vertex. The set of such control volumes is the interior dual mesh denoted M∗.
For any vertex xK ∗ ∈ ∂Ω , we define a polygonal control volume K ∗ by connecting
the centers xK of the interior primal cells and the midpoints of the boundary edges
sharing xK ∗ as vertex. The set of such control volumes is the boundary dual mesh,
denoted ∂M∗. Finally, the dual mesh isM∗ ∪ ∂M∗, denoted by M∗.

For all neighboring primal cells K and L , we assume that ∂K ∩ ∂L is a segment,
corresponding to an edge of the mesh M, denoted by σ = K |L . Let E be the set of
such edges. We similarly define the set E ∗ of the edges of the dual mesh. For each
couple (σ, σ ∗) ∈ E × E ∗ such that σ = K |L and σ ∗ = K ∗|L∗ cross, we define the
quadrilateral diamondDσ,σ ∗ whose diagonals areσ andσ ∗ (ifσ ⊂ ∂Ω , it degenerates
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into a triangle). The set of the diamonds defines the diamond mesh D, which is a
partition of Ω . Finally, the DDFV mesh is made of T = (M,M∗) and D.

For each K ∈ M and K ∗ ∈ M∗, we definemK themeasure of K , mK ∗ themeasure
of K ∗. For a diamond D = Dσ,σ ∗ , whose vertices are (xK , xK ∗ , xL , xL∗), we define:
xD its center ({xD } = σ ∩ σ ∗), mσ and mσ ∗ the lengths of the edges, mD its measure,
dD its diameter, αD the angle between (xK , xL) and (xK ∗ , xL∗). We have mD =
1
2mσmσ ∗ sin(αD ). We will also use two direct basis (τ K ∗,L∗ ,nσK ) and (nσ ∗K ∗ , τ K,L),
where nσK is the unit normal to σ outward K , nσ ∗K ∗ is the unit normal to σ ∗ outward
K ∗, τ K ∗,L∗ is the unit tangent vector to σ , oriented from K ∗ to L∗, τ K,L is the unit
tangent vector to σ ∗, oriented from K to L .

We define two local regularity factors θD , θ̃D of the diamond D by

θD = 1

2 sin(αD )

(
mσ

mσ ∗
+ mσ ∗

mσ

)
, θ̃D = max

(
max
K∈M,

mD ∩K>0

mD

mD∩K
; max

K∗∈M∗ ,

mD ∩K∗>0

mD

mD∩K ∗

)

and we assume the following regularity of the mesh:

∃Θ ≥ 1 such that 1 ≤ θD , θ̃D ≤ Θ, ∀D ∈ D.

Finally, we define the approximationΛD of the anisotropy tensorΛ on each diamond
D ∈ D as the mean value of Λ over D .

2.2 Discrete Unknowns and Discrete Operators

We need several types of degrees of freedom to represent scalar and vector fields in
the discrete setting. RT is the linear space of scalar fields which are associated to
each primal and dual cell and

(
R

2
)D

the linear space of vector fields constant on the
diamonds:

uT ∈ R
T ⇐⇒ uT = (

(uK )K∈M , (uK ∗)K ∗∈M∗
)

ξD ∈ (
R

2
)D ⇐⇒ ξD = (

ξD

)
D∈D

We also define a positive semi-definite bilinear form on RT and a scalar product on(
R

2
)D

by

�vT , uT �T = 1

2

⎛
⎝ ∑

K∈M
mK uK vK +

∑
K ∗∈M∗

mK ∗uK ∗vK ∗

⎞
⎠ , ∀uT , vT ∈ R

T ,

(
ξD,ϕD

)
Λ,D

=
∑
D∈D

mD ξD · ΛD ϕD , ∀ξD,ϕD ∈ (
R

2
)D

.
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The associated norms are respectively denoted by ‖ · ‖2,T and ‖ · ‖Λ,D.
The DDFV method is based on the definitions of a discrete gradient ∇D, of a

discrete divergence divT and a duality formula (see [1]). Here we do not recall the
definition of the discrete operators as we will use a compact form of the scheme, as in

[3]. For uT ∈ R
T , we just define δDuT = (δD uT )D∈D by δD uT =

(
uK − uL

uK ∗ − uL∗

)

for all D ∈ D. Then, the usual definition of the discrete gradient ensures that:

(∇DuT ,∇DvT )Λ,D =
∑
D∈D

δD uT · AD δD vT , ∀uT , vT ∈ R
T ,

where for all D ∈ D

A
D = 1

4mD

(
m2

σnσK · ΛD nσK mσmσ ∗nσK · ΛD nσ ∗K ∗
mσmσ ∗nσK · ΛD nσ ∗K ∗ m2

σ ∗nσ ∗K ∗ · ΛD nσ ∗K ∗

)
=

(
AD

σ,σ AD
σ,σ ∗

AD
σ ∗,σ AD

σ ∗,σ ∗

)
.

Finally, we introduce a reconstruction operator on diamonds rD. It is a mapping
from R

T to R
D defined for all uT ∈ R

T by rDuT = (
rD uT

)
D∈D, where for

D ∈ D, whose vertices are xK , xL , xK ∗ , xL∗ , rD uT = 1
4 (uK + uL + uK ∗ + uL∗).

2.3 The Scheme

Anonlinear DDFV scheme for the convection-diffusion equation (1a) withNeumann
boundary conditions has already been introduced and analyzed in [3]. In this paper,
we want to take into account Dirichlet boundary conditions on the part Γ D of the
boundary. We assume that the primal mesh is compatible with the partition of ∂Ω .
Let us introduce the set of Dirichlet boundary primal and dual cells:

∂MD = {K ∈ ∂M : K ⊂ ΓD}, ∂M∗
D = {K ∗ ∈ ∂M∗ : xK ∗ ∈ Γ D},

Then, for a given v ∈ C(Γ D), we define

EΓD
v = {uT ∈ R

T , s. t. ∀K ∈ ∂MD, uK = v(xK ) and ∀K ∗ ∈ ∂M∗
D, uK ∗ = v(xK ∗)}.

Let Δt be a time step. We first discretize the initial condition by taking the mean
values of u0 on the primal and dual cells and the exterior potential V by taking its
nodal values on the primal and dual cells. It defines u0T and VT . Then, for all n ≥ 0,
we look for un+1

T ∈ EΓD

uD solution to:

�un+1
T − unT

Δt
, ψT

�

T
+ TD(un+1

T ; gn+1
T , ψT ) = 0, ∀ψT ∈ EΓD

0 , (3a)
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TD(un+1
T ; gn+1

T , ψT ) =
∑
D∈D

rD un+1
T δD gn+1

T · AD δD ψT , (3b)

gn+1
T = log(un+1

T ) + VT . (3c)

The scheme is written here under a compact form. But it can also be expanded on
primal and dual meshes after the introduction of conservative numerical fluxes.

3 Main Results

Steady-state. As the boundary conditions are at thermal equilibrium, uD = ρe−V

on Γ D with ρ > 0. Then, u∞
T = ρe−VT belongs to EΓD

uD and verifies δD (log u∞
T +

VT ) = 0 for all D ∈ D, so that it is a steady-state to the scheme (3). Let us remark
that, due to the definition of the steady-state, it is clearly bounded: there exists
m∞ > 0 and M∞ > 0, such that m∞ ≤ u∞

T ≤ M∞.
Entropy-dissipation estimate. LetΦ1 : x �→ x log x − x + 1 theGibbs entropy.We
define the discrete relative entropy (En

1,T )n≥0 and its associated discrete dissipation
(In+1

1,T )n≥0 by:

E
n
1,T =

�

u∞
T Φ1

(
unT
u∞
T

)
, 1T

�

, ∀n ≥ 0

I
n+1
1,T = TD(un+1

T ; gn+1
T , gn+1

T ), ∀n ≥ 0

The definition of the steady-state implies that δDgn+1
T = δD log(un+1

T /u∞
T ), so that

I
n+1
1,T =

∑
D∈D

rD (un+1
T ) δD log

(
un+1
T

u∞
T

)
· AD δD log

(
un+1
T

u∞
T

)
, ∀n ≥ 0. (4)

Proposition 1 Let assume that the scheme (3) has a solution un+1
T ∈ EΓD

uD ∩
(0,+∞)T for all n ≥ 0. Then, the following entropy-dissipation estimate holds:

E
n+1
1,T − E

n
1,T

Δt
+ I

n+1
1,T ≤ 0, for all n ≥ 0. (5)

Proof Due to the convexity of Φ1 and the fact that Φ ′
1(x) = log x , we have

E
n+1
1,T − E

n
1,T

Δt
≤

�
un+1
T − unT

Δt
log

(
un+1
T

u∞
T

)
, 1T

	

.

Then, we obtain (5) by taking ψT = log
(
un+1
T /u∞

T

) ∈ EΓD
0 in the scheme (3). �
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As a consequence of the entropy-dissipation estimate, we can obtain the existence
of a solution to the scheme (3). The result is a consequence of the control of the
dissipation implied by (5) and of a topological degree argument. We refer to [3] for
the idea of the proof. For the study of the exponential decay, we will further assume
that the solution to the scheme satisfies uniform bounds.

Exponential decay.

Theorem 1 Assume that the solution to the scheme (3) is uniformly bounded:

∃m∗ ∈ (0,m∞] and M∗ ∈ [M∞,+∞) such that m∗ ≤ unT ≤ M∗ ∀n ≥ 0. (6)

Then, there exists ν depending only Ω , Θ , m∗, M∗ and Λ, such that, for any k > 0,
if Δt ≤ k,

E
n
1,T ≤ e−ν̃tn

E
0
1,T , ∀n ≥ 0, with ν̃ = 1

k
log(1 + νk). (7)

Proof Based on the entropy-dissipation estimate (5), the proof consists in establish-
ing the existence of some ν > 0 such that

I
n+1
1,T ≥ νEn+1

1,T , ∀n ≥ 0. (8)

The main difference for the proof of (8) when dealing with Dirichlet boundary
conditions instead of Neumann boundary conditions (see [5]) is that we can not use a
discrete log-Sobolev inequality. The inequality (8) is based on some reformulations
of the discrete entropy and entropy dissipation and on a discrete Poincaré inequality.

Using the definition ofΦ1,E
n+1
1,T rewrites:En+1

1,T = �un+1
T log(un+1

T /u∞
T ) − un+1

T +
u∞
T , 1T �. As x log(x/y) − x + y ≤ (x − y)2/(2min(x, y)) for all x, y > 0, we

obtain:

E
n+1
1,T ≤ 1

2m∗
‖un+1

T − u∞
T ‖22,T , ∀n ≥ 0. (9)

For allD ∈ D, we introduce the diagonal matrixBD , whose diagonal coefficients
are BD

σ,σ = |AD
σ,σ | + |AD

σ,σ ∗ | and BD
σ ∗,σ ∗ = |AD

σ ∗,σ ∗ | + |AD
σ,σ ∗ |. As shown in [3], there

exists a constant C(Θ,Λ) depending only on Θ , λm and λM such that

w · ADw ≤ w · BDw ≤ C(Θ,Λ)w · ADw, ∀w ∈ R
2, ∀D ∈ D. (10)

But, as BD is a diagonal matrix, for all D ∈ D we have:

δD log
un+1
T

u∞
T

· BD δD log
un+1
T

u∞
T

= BD
σ,σ

(
log

un+1
K

u∞
K

− log
un+1
L

u∞
L

)2

+ BD
σ ∗,σ ∗

(
log

un+1
K ∗

u∞
K ∗

− log
un+1
L∗

u∞
L∗

)2

.
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As (log x − log y)2 ≥ (x − y)2/max2(x, y) for all x, y > 0, we deduce from (6)
that

δD log
un+1
T

u∞
T

· BD δD log
un+1
T

u∞
T

≥
( m∗
M∗

)2
δD

un+1
T

u∞
T

· BD δD
un+1
T

u∞
T

.

From (4), (6), (10) (applied twice) and (2), we deduce that

I
n+1
1,T ≥ C(Θ,Λ)m∗

( m∗
M∗

)2
λm

∥∥∥∥∥∇D un+1
T

u∞
T

∥∥∥∥∥
2

I,D

. (11)

Let us now apply the discrete Poincaré inequality to un+1
T /u∞

T − 1 ∈ EΓD
0 (see [1]).

Combined with (6), this yields

‖un+1
T − u∞

T ‖22,T ≤ CP(Ω)M∗2
∥∥∥∥∥∇D un+1

T

u∞
T

∥∥∥∥∥
2

I,D

. (12)

From (9), (11), (12), we finally deduce (8), with

ν = C(Θ,Λ,Ω)
( m∗
M∗

)4
.

This concludes the proof of Theorem 1.

4 Numerical Experiments

We consider a test case where Ω = (0, 1)2, V (x1, x2) = −x1, ΓD = {x1 = 0} ∪
{x1 = 1} and the exact solution uex is defined by

uex((x1, x2), t) = e−αt+ x1
2 sin(πx1) + ex1

with α = π2 + 1
4 . We choose u0 = uex(·, 0).

In order to illustrate the convergence and the robustness of our method, we test
its convergence on two sequences of meshes. The first sequence of primal meshes
is made of successively refined Kershaw meshes. The second sequence of primal
meshes is the so-called quadrangle meshes mesh_quad_i of the FVCA8 bench-
mark on incompressible flows. In the refinement procedure, the time step is divided
by 4 when the mesh size is divided by 2. The nonlinear system (3) is solved
thanks to Newton’s method. In order to avoid the singularity of the log near 0, the
sequence (un+1,i

T )i≥0 to compute un+1
T from the previous state (unT )i≥0 is initialized

by un+1,0
T = max(unT , 10−12). As a stopping criterion, we require the �1-norm of the

residual to be smaller than 10−10. In Table1, the quantities erru and errgu respectively
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Table 1 Numerical results on the Quadrangle mesh family, final time T = 0.1

M dt errgu ordgu erru ordu Nmax Nmean Min un Max un

1 1.613E-03 3.447E-02 – 5.208E-03 – 2 2 1.0 3.148

2 4.032E-04 1.578E-02 1.12 1.389E-03 1.90 2 2 1.0 3.161

3 1.008E-04 8.629E-03 0.92 4.467E-04 1.72 2 2 1.0 3.161

4 2.520E-05 3.934E-03 1.19 1.157E-04 2.04 2 1 1.0 3.162

5 6.300E-06 9.668E-04 1.66 2.402E-05 1.86 1 1 1.0 3.162

Fig. 1 Discrete relative entropy E
n
1,T as a function of nΔt . Left: computed on the first three

Quadrangle meshes. Right: computed on the first three Kershaw meshes

denote the L∞((0, T ); L2(Ω)) error on the solution and the L2(Ω × (0, T ))2 error
on the gradient, whereas ordu and ordgu are the corresponding convergence orders.
It appears that the method is second order accurate w.r.t. space.

The maximal (resp. mean) number of Newton iterations by time step is denoted
by Nmax (resp. Nmean).We observe that the needed number of Newton iterations starts
from a reasonably small value and falls down to 1 after a small number of time steps.
Therefore, our method does not imply an important extra computational cost when
compared to linear methods. Eventually, we observe numerically that the numerical
solution remains bounded in time along the simulation (the bounds are reached at
the initial time), which validates the hypothesis (6) of Theorem 1.

In order to give an evidence of the good large-time behavior of our scheme,we plot
in Fig. 1 the evolution of En

1,T computed on the Kershaw and Quadrangle meshes.
We observe the exponential decay of the relative energy.
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L∞ Bounds for Numerical Solutions
of Noncoercive Convection-Diffusion
Equations

Claire Chainais-Hillairet and Maxime Herda

Abstract In this work, we apply an iterative energy method à la de Giorgi in order
to establish L∞ bounds for numerical solutions of noncoercive convection-diffusion
equations with mixed Dirichlet-Neumann boundary conditions.

Keywords Finite volume schemes · Uniform bounds · Noncoercive elliptic
equations
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1 Introduction

The continuous problem. Let Ω be an open, bounded and connected polygonal or
polyhedral domain ofRd with d = 2 or 3. We denote by m(·) both the Lebesgue and
d − 1 dimensional Hausdorff measure. Without loss of generality, we assume that
m(Ω) = 1. We assume that ∂Ω = Γ D ∪ Γ N with Γ D ∩ Γ N = ∅ and m(Γ D) > 0
and we denote by n the exterior normal to ∂Ω . Let U ∈ C(Ω̄)2 be a velocity field,
b ∈ L∞(Ω) assumed to be nonnegative, f ∈ L p(Ω), with p > d/2 a source term
and vD ∈ L∞(Γ D) a boundary condition. We consider the following convection-
diffusion equation with mixed boundary conditions:
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div(−∇v + Uv) + bv = f in Ω, (1a)

(−∇v + Uv) · n = 0 on Γ N , (1b)

v = vD on Γ D. (1c)

This noncoercive elliptic linear problem has been widely studied by Droniou and
coauthors, even with less regularity on the data, see for instance [2–5]. Nevertheless,
up to our knowledge, the derivation of explicit L∞ bounds on numerical solutions
has not been done in the literature.

The numerical scheme. The mesh of the domainΩ is denoted byM = (T ,E ,P)

and classically given by:T , a set of open polygonal or polyhedral control volumes;
E , a set of edges or faces; P = (xK )K∈T , a set of points satisfying xK ∈ K for all
K ∈ T . In the following,wealsouse thedenomination “edge” for a face in dimension
3. As we deal with a Two-Point Flux Approximation (TPFA) of convection-diffusion
equations, we assume that the mesh is admissible in the sense of [6] (Definition 9.1).

We distinguish in E the interior edges, σ = K |L , from the exterior edges: E =
Eint ∪ Eext . Among the exterior edges, we distinguish the edges included in Γ D from
the edges included in Γ N : Eext = E D ∪ E N . For a given control volume K ∈ T , we
define EK the set of its edges, which is also split into EK = EK ,int ∪ E D

K ∪ E N
K .

Let d(·, ·) denote the Euclidean distance. For all edges σ ∈ E , we set dσ =
d(xK , xL) if σ = K |L ∈ Eint and dσ = d(xK , σ ) if σ ∈ Eext with σ ∈ EK and the
transmissibility coefficient is defined by τσ = m(σ )/dσ , for all σ ∈ E . We also
denote by nK ,σ the normal to σ ∈ EK outward K . We assume that the mesh sat-
isfies the regularity constraint:

∃ξ > 0 such that d(xK , σ ) ≥ ξ dσ , ∀K ∈ T ,∀σ ∈ EK . (2)

As a consequence, we obtain that

∑

σ∈EK

m(σ )dσ ≤ d

ξ
m(K ) ∀K ∈ T . (3)

The size of the mesh is defined by h = max{diam (K ) : K ∈ T }.
Let us define

fK = 1

m(K )

∫

K
f, bK = 1

m(K )

∫

K
b ∀K ∈ T ,

UK ,σ = 1

m(σ )

∫

σ

U · nK ,σ , ∀K ∈ T , ∀σ ∈ EK ,

vD
σ = 1

m(σ )

∫

σ

vD, ∀σ ∈ E D.

Given a Lipschitz-continuous function on R which satisfies
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B(0) = 1, B(s) > 0 and B(s) − B(−s) = −s ∀s ∈ R, (4)

we consider the B-scheme defined by

∑

σ∈EK

FK ,σ + m(K )bK vK = m(K ) fK , ∀K ∈ T , (5)

where the numerical fluxes are defined by

FK ,σ =
⎧
⎨

⎩
0, ∀K ∈ T ,∀σ ∈ E N

K ,

τσ

(
B(−UK ,σdσ )vK − B(UK ,σdσ )vK ,σ

)
, ∀K ∈ T ,∀σ ∈ EK \ E N

K ,

(6)
with the convention vK ,σ = vL if σ = K |L and vK ,σ = vD

σ if σ ∈ E D
K . Let us recall

that the upwind scheme corresponds to the case B(s) = 1 + s− (s− is the negative
part of s, while s+ is its positive part) and the Scharfetter-Gummel scheme to the case
B(s) = s/(es − 1). They both satisfy (4). The centered scheme which corresponds
to B(s) = 1 − s/2 does not satisfy the positivity assumption. It can however be used
if |UK ,σ |dσ ≤ 2 for all K ∈ T and σ ∈ EK . Thanks to the hypotheses (4), we notice
that the numerical fluxes through the interior and Dirichlet boundary edges rewrite

FK ,σ = τσ B(|UK ,σ |dσ )(vK − vK ,σ ) + m(σ )
(
U+

K ,σ vK − U−
K ,σ vK ,σ

)
. (7)

Main result. The scheme (5), (6) defines a linear system of equations Mv = S
whose unknown is v = (vK )K∈T ; Since M is an M-matrix, one has existence and
uniqueness of a solution to the scheme (see [1] for details). Moreover, if vD and f
are nonnegative functions, then S has nonnegative values and therefore vK ≥ 0 for
all K ∈ T . Our purpose is now to establish L∞ bounds on v as stated in Theorem 1.

Theorem 1 Assume that U ∈ C(Ω̄)2, b ∈ L∞(Ω) with b ≥ 0 a.e., f ∈ L p(Ω),
with p > d/2, and vD ∈ L∞(Γ D). There exists non-negative constants M (resp.
M) depending only on Ω , d, p, ξ , the function B, ‖U‖L∞ , ‖ f +‖L p and ‖(vD)+‖L∞

(resp. ‖ f −‖L p and ‖(vD)−‖L∞) such that the solution v to the scheme (5), (6) satisfies

−M ≤ vK ≤ M, ∀K ∈ T .

The rest of this paper is dedicated to the proof of Theorem 1. It relies on a
De Giorgi iteration method (see [7] and references therein). In Sect. 2, we start by
studying a particular casewhere the data is normalized. Then, we give the proof of the
theorem in Sect. 3. Let us mention that from the bounds of Theorem 1, it is possible
to establish global-in-time L∞ bounds for the corresponding evolution equation
by using an entropy method (see [1, Theorem 2.7]). Moreover, as the problem is
linear, these bounds are also sufficient to get convergence of the scheme in a weak
sense by a compactness argument. Finally, let us mention that an interesting but
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difficult perspectivewould be the adaptation of the arguments in this note to numerical
schemes on more general non-admissible meshes.

2 Study of a Particular Case

In this section, we consider the particular case where the source f is non-negative
and the boundary data vD is non-negative and bounded by 1.

Let us start with some notations. Given m ≥ 1, we denote the m-th truncation
threshold by

Cm = 2(1 − 2−m) , (8)

Then, we introduce the m-th energy

Em(v) =
∑

σ∈E int ∪E D

τσ

[
log(1 + (vK ,σ − Cm)+) − log(1 + (vK − Cm)+)

]2
. (9)

When there is no ambiguity we write Em = Em(v). The first proposition is a funda-
mental estimate of the energy.

Proposition 1 Assume that fK ≥ 0 for all K ∈ T and vD
σ ∈ [0, 1] for all σ ∈ E D.

Then the solution v to (5), (6) satisfies vK ≥ 0 for all K ∈ T and one has for all
m ≥ 1 that

Em ≤ 4d

ξ β2
U

(‖U‖2L∞ + ‖ f ‖L p

) ( ∑

K∈T
vK >Cm

m(K )
)1− 1

p
. (10)

where βU := inf x∈[−‖U‖L∞ ,‖U‖L∞ ] B(diam(Ω) x) (because of (4), βU ∈ (0, 1]).
Proof Non-negativity of the solution follows from the M-matrix property of the
scheme. In order to shorten some expressions hereafter, let us introduce wm

K = vK −
Cm for all K ∈ T and wm,D

σ = vD
σ − Cm for all σ ∈ E D . Let us note that we identify

wm = (wm
K )K∈T and the associate piecewise constant function. Therefore, we can

write
m({wm > 0}) =

∑

wm
K >0

m(K ) =
∑

vK >Cm

m(K ) .

First, observe that Em is the discrete counterpart of

∫

Ω

∣∣∇ log(1 + wm)
∣∣2 1{wm>0} =

∫

Ω
∇wm · ∇wm

(1 + wm)2
1{wm>0}, with wm = v − Cm ,

where 1A is the indicator function of A. Let us define ϕ : s → s/(1 + s)1{s≥0}, which
satisfies ϕ′(s) = 1/(1 + s)21{s≥0} and let us introduce Fm another discrete counter-
part of the preceding quantity
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Fm =
∑

σ∈E int ∪E D

τσ

(
(wm

K ,σ )+ − (wm
K )+

) (
ϕ(wm

K ,σ ) − ϕ(wm
K )

)
.

It is clear that Em ≤ Fm for all m ≥ 1, as for all x, y ∈ R we have

(
log(1 + x+) − log(1 + y+)

)2 ≤ (x+ − y+) (ϕ(x) − ϕ(y)) .

Let us now multiply the scheme (5) by ϕ(wm
K ) and sum over K ∈ T . Due to the

non-negativity of b and v, we obtain, after a discrete integration by parts,

∑

σ∈E int ∪E D

FK ,σ (ϕ(wm
K ) − ϕ(wm

K ,σ )) ≤
∑

K∈T
m(K ) fK ϕ(wm

K ).

Using that ϕ is bounded by 1 and vanishes on R−, we deduce that

∑

σ∈E int ∪E D

FK ,σ (ϕ(wm
K ) − ϕ(wm

K ,σ )) ≤ ‖ f ‖L p m({wm > 0})1− 1
p . (11)

We focus now on the left-hand-side of (11). Due to (7) and the definition of wm
K ,

we can rewriteFK ,σ as

FK ,σ = τσ B(|UK ,σ |dσ )(wm
K − wm

K ,σ ) + m(σ )
(

U+
K ,σ (wm

K + Cm) − U−
K ,σ (wm

K ,σ + Cm)
)

.

Observe that since ϕ is a non-decreasing function, one has

(x − y) (ϕ(x) − ϕ(y)) ≥ (x+ − y+)(ϕ(x) − ϕ(y)), ∀x, y ∈ R.

Therefore, using the definition of βU we obtain that

∑

σ∈E int ∪E D

FK ,σ (ϕ(wm
K ) − ϕ(wm

K ,σ )) ≥ βUFm − Gm, (12)

with

Gm = −
∑

σ∈E int ∪E D

m(σ )
(

U+
K ,σ (wm

K + Cm) − U−
K ,σ (wm

K ,σ + Cm)
)

(ϕ(wm
K ) − ϕ(wm

K ,σ )).

For an interior edge, wm
K and wm

K ,σ play a symmetric role in the preceding sum.
As wm,D

σ ≤ 0 for all σ ∈ E D and ϕ vanishes on R−, we can always assume that
wm

K ≥ wm
K ,σ and an edge has a contribution in the sum if at least wm

K > 0. Then,
under these assumptions one has

− m(σ )
(
U+

K ,σ (wm
K + Cm) − U−

K ,σ (wm
K ,σ + Cm)

)
(ϕ(wm

K ) − ϕ(wm
K ,σ ))

≤ ‖U‖L∞m(σ )(wm
K ,σ + Cm)(ϕ(wm

K ) − ϕ(wm
K ,σ )).
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But, wm
K ,σ + Cm ≤ 2(1 + (wm

K ,σ )+) and applying the definition of ϕ, we get

(wm
K ,σ + Cm)(ϕ(wm

K ) − ϕ(wm
K ,σ )) ≤ 2

(wm
K )+ − (wm

K ,σ )+

1 + (wm
K )+

.

Therefore, using that wm
K ≥ wm

K ,σ , one has

Gm ≤ 2‖U‖L∞
∑

σ∈E int ∪E D

m(σ )
|(wm

K )+ − (wm
K ,σ )+|

√
1 + (wm

K )+
√
1 + (wm

K ,σ )+
.

We apply now Cauchy-Schwarz inequality in order to get

Gm ≤ 2‖U‖L∞(Fm)1/2

(
∑

σ∈E sp

m(σ )dσ

)1/2

, (13)

where E sp is the set of interior and Dirichlet boundary edges on which (wm
K )+ −

(wm
K ,σ )+ �= 0. It appears that, due to (3),

∑

σ∈E sp

m(σ )dσ ≤
∑

K∈T ;wm
K >0

⎛

⎝
∑

σ∈EK ,int ∪E D
K

m(σ )dσ

⎞

⎠ ≤ d

ξ
m({wm > 0}). (14)

We deduce from (11)–(14) and Young’s inequality that

βUFm ≤ 2‖U‖L∞(Fm)1/2(
d

ξ
m({wm > 0}))1/2 + ‖ f ‖L pm({wm > 0})1− 1

p ,

≤ βUFm

2
+ 2d

βUξ

(‖U‖2L∞ + ‖ f ‖L p

)
m({wm > 0})1− 1

p

which yields (10) using that Em ≤ Fm , βU ≤ 1 and m(Ω) = 1.

Before stating the main result of the section, we need a technical lemma.

Lemma 1 Let (un)n∈N be a sequence of non-negative real numbers and let K , ρ > 0
and α > 1. Then if un+1 ≤ K ρn uα

n for all n ∈ N then one has

0 ≤ un ≤
(

u0 ρ
1

(α−1)2 K
1

α−1

)αn

ρ
− n(α−1)+1

(α−1)2 K − 1
α−1

for all n ∈ N. In particular, if u0 < ρ
− 1

(α−1)2 K − 1
α−1 , then lim un = 0.

Proof Just observe that the sequence vn = un ρ
n(α−1)+1
(α−1)2 K

1
α−1 satisfies 0 ≤ vn+1 ≤ vα

n
for all n ≥ 0 which directly yields the result. Observe that the bound is optimal.
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Proposition 2 Assume that fK ≥ 0 for all K ∈ T and vD
σ ∈ [0, 1] for all σ ∈ E D.

Then, there exist γ > 0 depending on d and p, and η > 0 depending additionally
on Ω and ξ such that one has

E1 ≤ η

(
β2
U

‖U‖2L∞ + ‖ f ‖L p

)γ

⇒ (vK ≤ 2, ∀K ∈ T ) . (15)

Proof The proof consists in establishing an induction property on Em which guar-
antees that if E1 is small enough then lim Em = 0. Then, as lim Cm = 2 and thanks
to the discrete Poincaré inequality, we deduce that

∑

K∈T
m(K )

(
log(1 + (vK − 2)+)

)2 = 0,

which implies vK ≤ 2 for all K ∈ T .
First observe that as Cm = Cm−1 + 2−m+1, for any q > 0 we have:

1{wm>0} ≤
(
log(1 + (wm−1)+)

)q

(log(1 + 2−m+1))q
1{wm−1>0}, (16)

and thus

m({wm > 0}) ≤ 1

(log(1 + 2−m+1))q

∑

K∈T
m(K )

(
log(1 + (wm−1

K )+)
)q

.

Since p > d/2 there exists q ∈ (2p/(p − 1), 2d/(d − 2)). For such q, the discrete
Poincaré-Sobolev inequality implies

∑

K∈T
m(K )

(
log(1 + (wm−1

K )+)
)q ≤ CΩ,d,q,ξ E

q
2

m−1 .

Then, noticing that for x ∈ [0, 1], (log(1 + x))q ≥ (log 2)q xq , we obtain

m({wm > 0})1− 1
p ≤ CΩ,d,q,ξ 2

(m−1)q(p−1)
p E

q(p−1)
2p

m−1 . (17)

We deduce from (10) and (17) that

Em ≤ CΩ,d,q,ξ

‖U‖2L∞ + ‖ f ‖L p

β2
U

2
(m−1)q(p−1)

p E
q(p−1)

2p

m−1 .

Thus the sequence (Em)m≥0 satisfies the hypothesis of Lemma 1 with α = q(p −
1)/(2p) > 1 and K proportional to (‖U‖2L∞ + ‖ f ‖L p )/β2

U. We deduce the upper
bound for E1 (with γ = 1/(α − 1)) under which lim Em = 0.
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3 Proof of Theorem 1

First observe that if one replaces the data f and vD by either f + and (vD)+, or f −
and (vD)−, in the scheme (5), (6), then the corresponding solutions, say respectively
P = (PK )K∈T andN = (NK )K∈T , are non-negative and such that v = P − N is the
solution to (5), (6) in the original framework.

From there let us show that there is M > V D+ := max(‖(vD)+‖L∞, 1) such that
for all K ∈ T one has 0 ≤ PK ≤ M . The bound for N, which is denoted by M , can
be obtained in the same way.

Let M > V D+ . First observe that PM := P/M satisfies the scheme (5), (6) where
the source term and boundary data have been replaced by f +/M and (vD)+/M
respectively. Moreover, one can apply Proposition 1, which yields

E1(PM) ≤ 4d

ξβ2
U

(
‖U‖2L∞ + ‖ f +‖L p

M

)
m({PM > 1})1− 1

p . (18)

Now observe that P = M PM = V D+ PV D+ . Therefore, for r = 2p/(p − 1) one has

E1(PM) ≤ 4d

ξβ2
U

(
‖U‖2L∞ m({PV D+ > M/V D

+ })1− 1
p + ‖ f +‖L p

M

)

≤ 4d

ξβ2
U

[
‖U‖2L∞

( ∑

K∈T
m(K )

log(1 + (P
V D+
K − 1)+)r

log(1 + (M/V D+ − 1)+)r

)1− 1
p + ‖ f +‖L p

M

]

≤ CΩ,d,p,ξ

β2
U

(
‖U‖2L∞

E1(PV D+ )

log(M/V D+ )2
+ ‖ f +‖L p

M

)
,

where we used an argument similar to (16) in the second inequality and a discrete
Poincaré Sobolev inequality in the third one. Then, (18) with M = V D+ yields

E1(PM) ≤ CΩ,d,p,ξ

β4
U

( ‖U‖2L∞

log(M/V D+ )2

(
‖U‖2L∞ + ‖ f +‖L p

V D+

)
+ ‖ f +‖L p

M

)
.

It remains to choose M such that the right-hand side is bounded by

η

(
β2
U

‖U‖2L∞ + M−1‖ f +‖L p

)γ

.

It is satisfied for M large enough, which permits to define M . Observe that if vD+ = 0
(V D+ = 1) and U = 0, one can take M = C̃Ω,ξ,d,p‖ f +‖L p as expected.
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On Four Numerical Schemes
for a Unipolar Degenerate
Drift-Diffusion Model

Clément Cancès, Claire Chainais Hillairet, Jürgen Fuhrmann,
and Benoît Gaudeul

Abstract We consider a unipolar degenerate drift-diffusion system where the rela-
tion between the concentration of the charged species c and the chemical potential
h is h(c) = log c

1−c . For four different finite volume schemes based on four different
formulations of the fluxes of the problem, we discuss stability and existence results.
For two of them, we report a convergence proof. Numerical experiments illustrate
the behaviour of the different schemes.

Keywords Finite volume methods · Drift-diffusion problems · Energy methods
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1 Introduction

The transport of a charged species with density c in the presence of a fixed or mov-
ing countercharge and a self-consistent electric field, deriving from an electrostatic
potential Φ, can be described by the non-dimensionalized system of equations
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∂tc + div (J) = 0 in (0, T ) × Ω, (1)

J = −c∇ (h(c) + Φ) in (0, T ) × Ω, (2)

where h(c) = log
(

c
1−c

)
is the chemical potential. The electrostatic potential Φ is

related to space charge density via the Poisson equation

− ΔΦ = c + cdop in (0, T ) × Ω. (3)

In (3), cdop describes the doping profile of the media. Such models occur in appli-
cations ranging from organic semiconductors [5], high-temperature fuel cells [13]
or simplified models of ionic liquids [8]. Because of the singularity of h near 1, the
density c remains in the interval (0, 1). We consider the evolution in a connected
bounded open domain Ω of Rd (d ≤ 3) with polyhedral and Lipschitz continuous
boundary ∂Ω during a finite but arbitrary time T > 0. The doping profile cdop is
assumed to be constant w.r.t. time and to be bounded, i.e., cdop ∈ L∞(Ω). The sys-
tem is supplemented with the prescription of the initial concentration

c|t=0 = c0 ∈ L∞(Ω) with 0 ≤ c0 ≤ 1 and 0 < c =
∮

Ω

c0dx < 1, (4)

of no-flux boundary conditions for the concentration

J · n = 0 on (0, T ) × ∂Ω. (5)

For the electrostatic potential, inhomogeneous Dirichlet boundary conditions are
imposed on a subset ΓD of positive measure of ∂Ω , whereas homogeneous Neumann
boundary conditions are imposed on ΓN = ∂Ω\ΓD:

Φ = ΦD on (0, T ) × ΓD, ∇Φ · n = 0 on (0, T ) × ΓN . (6)

We assume that ΦD is defined in the whole domain, with ΦD ∈ H 1(Ω) ∩ L∞(Ω).
In [3],we studied and compared several FiniteVolume schemes for the system (1)–

(6). They are based on various reformulations of the flux J using the excess chemical
potential ν(c) = h(c) − log(c) = − log(1 − c), the activity and the inverse of the
activity coefficient respectively defined by a(c) = eh(c) = c

1−c , and β(c) = c
a(c) =

1 − c, or the diffusion enhancement r(c) = − log(1 − c) satisfying r′(c) = ch′(c).
The flux J, initially defined by (2), can be alternatively rewritten as

J = −∇c − c∇ (Φ + ν(c)) , (7)

= −β(c)(∇a(c) + a(c)∇Φ), (8)

= −r′(c)∇c − c∇Φ. (9)
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Let us notice that, even ν(c) = r(c) for our specific choice of h(c), the excess chem-
ical potential and the diffusion enhancement arising respectively in (7) and (9) have
a different physical sense so that we keep different notations.

Each formulation (2), (7), (8) and (9) leads to a different scheme that we compared
from a numerical analysis point of view.Notice that the flux J can also be expressed as
J = −∇r(c) − c∇Φ. This last formulation is used to define a proper notion of weak
solution to (1)–(6). In order to state this definition, we introduce the vector space
HΓ D = {f ∈ H 1(Ω), f|ΓD

= 0} and the space-time cylinder QT = (0, T ) × Ω .

Definition 1 A couple (c, Φ) is a weak solution of (1)–(6) if

• c ∈ L∞(QT ; [0, 1]) with r(c) ∈ L2((0, T ); H 1(Ω)), and Φ − ΦD ∈ L∞((0, T ),

HΓ D);
• for all ϕ ∈ C∞

c ([0, T ) × Ω), there holds

∫∫

QT

c∂tϕdxdt +
∫

Ω

c0ϕ(0, ·)dx −
∫∫

QT

(∇r(c) + c∇Φ) · ∇ϕdxdt = 0; (10)

• for all ψ ∈ HΓ D and almost all t ∈ (0, T ), there holds

∫

Ω

∇Φ(t, x) · ∇ψ(x)dx =
∫

Ω

(c(t, x) + cdop(x))ψ(x)dx. (11)

We shortly discuss the gradient flow structure of the system (1)–(6). Define the
mixing entropy density

H (c) = c log(c) + (1 − c) log(1 − c),

which is an antiderivative of h, then the electrochemical energy is given by

E(c, Φ) =
∫

Ω

{
H (c) + 1

2
|∇Φ|2

}
dx −

∫

ΓD

ΦD∇Φ · ndγ . (12)

The electrochemical energy is a Lyapunov functional. Moreover, the dissipation rate
for the energy is explicitly given.

Proposition 1 Let (c, Φ) be a smooth solution to (1)–(6), with c bounded away from
0 and 1, then

d

dt
E(c, Φ) +

∫

Ω

c |∇(h(c) + Φ)|2 dx = 0.
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2 TPFA Finite Volume Approximations

For the space discretization, we use the standard notation of an admissible finite
volume mesh

(
T ,E , (xK )K∈T

)
, see [3]. Control volumes are denoted by K ∈ T

with respective measures mK , whereas edges are denoted by σ ∈ E , their (d − 1)-
dimensional measure being denoted by mσ . Since our method relies on a two-point
flux approximation, we suppose that the mesh satisfies the classical orthogonality
condition [6, Chapter 9]. For the time discretization, we consider an increasing finite
family of times 0 = t0 < t1 < · · · < tN = T . We denote by Δtn = tn − tn−1 for 1 ≤
n ≤ N , by Δt = (Δtn)1≤n≤N , and by Δt = max1≤n≤N Δtn.

The initial data c0 and the doping profile cdop are respectively discretized into
(
c0K

)
K∈T ,

(
cdopK

)

K∈T
∈ R

T by setting

c0K = 1

mK

∫

K
c0(x)dx, cdopK = 1

mK

∫

K
cdop(x)dx, ∀K ∈ T , (13)

Assume that cn−1 = (
cn−1

K

)
K∈T ∈ [0, 1]T is given for some n > 0. We define how

to compute (cn, Φn) = (
cn

K , Φn
K

)
K∈T . For all K ∈ T and all σ ∈ EK = Eint ∪ Eext,

the set of interior and exterior control volume facets, we define the mirror values cn
Kσ

and Φn
Kσ of cn

K and Φn
K respectively across σ by setting

cn
Kσ =

{
cn

L if σ = K |L ∈ Eint,

cn
K if σ ∈ Eext,

Φn
Kσ =

⎧
⎪⎨

⎪⎩

Φn
L if σ = K |L ∈ Eint,

Φn
K if σ ∈ E N ,

Φn
σ = 1

mσ

∫
σ ΦDdγ if σ ∈ E D.

For σ ∈ E , we set dσ = |xK − xL| if σ = K |L ∈ Eint, dσ = |xK − xσ | if σ ∈ Eext,
and τσ = mσ

dσ
. Given u = (uK )K∈T ∈ R

T , we define the oriented and absolute jumps
of u across σ ∈ EK by DKσ u = uKσ − uK , and Dσ u = |DKσ u|.

All the four schemes we consider are based on a backward Euler scheme for the
time discretization and a TPFA finite volume scheme for the space discretization.
They are written as follows:

−
∑

σ∈EK

τσ DKσΦn = mK

(
cn

K + cdopK

)
, ∀K ∈ T , (14a)

mK
cn

K − cn−1
K

Δtn
+

∑

σ∈EK,int

Fn
Kσ = 0, ∀K ∈ T . (14b)

To close the system (14), it remains to define the numerical fluxes Fn
Kσ . Due to the

no-flux boundary condition, we only have to define the inner fluxes. They are defined
with a function F of the primary unknowns (cn

K , cn
L, Φ

n
K , Φn

L):
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Fn
Kσ = τσF (cn

K , cn
L, Φ

n
K , Φn

L), ∀K ∈ T ,∀σ = K |L. (15)

The different schemes considered in this contribution correspond to different choices
of F . All of them verify F (cK , cL, ΦK , ΦL) = −F (cL, cK , ΦL, ΦK ), so that the
numerical fluxes are locally conservative. Three of the four schemes are extensions of
the Scharfetter-Gummel scheme [12] and feature theBernoulli functionB(u) = u

eu−1 .
The centred flux is derived from (2), which suggests the following definition:

F (cK , cL, ΦK , ΦL) = −cK + cL

2
DKσ (h(c) + Φ) . (C)

The associate flux can be seen as a particular case in the TPFA context of the fluxes
introduced in [4]. This scheme is not based on the Scharfetter-Gummel scheme.

The Sedan flux is named after the SEDAN III simulator [14]. Formula (7) for
the flux J suggests to use a classical Scharfetter-Gummel scheme, but for a modified
potential Φ + ν(c) instead of only Φ, leading to

F (cK , cL, ΦK , ΦL) = B
(

DKσ (Φ + ν(c))
)

cK − B
(
−DKσ (Φ + ν(c))

)
cL. (S)

The activity based flux is a restriction of the flux introduced in [7]. It relies on
the expression (8). With frozen β(c), the flux J is linear w.r.t. a(c). This suggests
choosing a particular average for β(c)—here the arithmetic mean—and applying the
Scharfetter-Gummel scheme to approximate −∇a(c) − a(c)∇Φ, yielding

F (cK , cL, ΦK , ΦL) = β(cK ) + β(cL)

2

{
B(DKσ Φ)a(cK ) − B(−DKσ Φ)a(cL)

}
.

(AB)
Formula (9) for the flux J suggests that, with introducing a variable diffusion

coefficient approximating the r′(c) per face, one can use the Scharfetter-Gummel
scheme. Following [1], the approximation dr(cK , cL) of r′(c) is defined as

dr(cK , cL) =
⎧
⎨

⎩

h(cK ) − h(cL)

log(cK ) − log(cL)
if cK 
= cL,

r′(cK ) if cK = cL.

This leads to the following definition of the Bessemoulin-Chatard flux [1]:

F (cK , cL, ΦK , ΦL) = dr(cK , cL)

{
B

(
DKσ Φ

dr(cK , cL)

)
cK − B

(
− DKσ Φ

dr(cK , cL)

)
cL

}
. (BC)
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2.1 Main Results

The energy decay was one of the key properties of the continuous model, cf. Proposi-
tion 1. This property is transposed to the discrete setting by all the four discretizations
we have considered. The discrete energy functional ET has to be thought of as a
discrete counterpart of the continuous energy functional E, cf. (12). It is defined by:

ET (cn, Φn) =
∑

K∈T
mK H (cn

K ) + 1

2

∑

σ∈E
τσ

(
Dσ Φn)2 −

∑

K∈T

∑

σ∈E D∩EK

τσ ΦD
σ DKσ Φn.

Our first result focuses on the four schemes on a fixed mesh. It states that the
nonlinear system corresponding to each scheme admits a solution which preserves
the physical bounds on the concentrations and the decay of the energy.

Theorem 1 Let (T ,E , (xK )K∈T ) be an admissible mesh and let c0 be defined
by (13). Then, for all 1 ≤ n ≤ N, the nonlinear system of equations (14)–(15), supple-
mented either with (C), (S), (AB), or (BC), has a solution (cn, Φn) ∈ [0, 1]T × R

T .
Moreover, the solution to the scheme satisfies, for all 1 ≤ n ≤ N,

ET (cn,, Φn) ≤ ET (cn−1, Φn−1) and 0 < cn
K < 1, ∀K ∈ T .

Once a discrete solution to the scheme (cn, Φn)1≤n≤N at hand, we can define an
approximate solution (cT ,Δt, ΦT ,Δt). It is the piecewise constant function defined
almost everywhere by

cT ,Δt(t, x) = cn
K , ΦT ,Δt(t, x) = Φn

K if (t, x) ∈ (tn−1, tn] × K .

Let
(
Tm,Em, (xK )K∈Tm

)
m≥1 be a sequence of admissible meshes such that hTm ,

Δtm −→
m→∞ 0 while the mesh regularity remains bounded (see [3] for the definition of

the regularity of the mesh). A natural question is the convergence of the associated
sequence of approximate solutions (cTm,Δtm , ΦTm,Δtm)m≥1 towards a weak solution
to the continuous problem. The convergence result is stated in Theorem 2, only for
the centred scheme and the Sedan scheme. The proof is detailed in [3]. It is based
on compactness arguments. As far as we know, there is no uniqueness result for the
weak solutions, hence the convergence only holds up to a subsequence.

Theorem 2 For the centred scheme (inner fluxes defined by (15) and (C)) and the
Sedan scheme (inner fluxes defined by (15) and (S)), a sequence of approximate
solutions (cTm,Δtm , ΦTm,Δtm)m≥1 satisfies, up to a subsequence,

cTm,Δtm −→
m→∞ c a.e. in QT , ΦTm,Δtm −→

m→∞ Φ in L2(QT ), (16)

where (c, Φ) is a weak solution to (1)–(6) in the sense of Definition 1.
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3 A Numerical Example

The presented numerical example and those in [3] have been implemented in the Julia
language [2] based on the packagesVoronoiFVM.jl [9] and ForwardDiff.jl
[11].

The example is amodification of one of the numerical examples in [3]. It considers
the problem (1)–(3) inΩ = (0, 50)with homogeneousDirichlet boundary conditions
for Φ and homogeneous Neumann boundary conditions for c with cdop = −0.5 and
c0 = 0.7. We choose a self-consistent initial value Φ0 for the electrostatic potential
such that (3) is fulfilled for c0.

For this test case, the four schemes behave similarly, as shown in the right picture
of Fig. 1. As demonstrated in [3], more extreme examples forcing concentrations to
be close to the physical bounds reveal important differences. The left picture of Fig. 1
shows that, for large t, the charge carrier concentration approaches a steady state with
two space charge regions. We remark that c stays in the range (0, 1), and that the
energy (12) decreases during the time evolution for all four schemes discussed in
this paper, as stated in Theorem 1. At the end of the time evolution, an electroneutral
region occurs in the center of the domain. At both boundaries, equally charged space
regions set up enrichment boundary layers due to the fact that the amount of charge
carriers confined to the domain cannot be compensated by the doping.

For the convergence experiment (see Fig. 2) we present results for scheme (S)
only, the other schemes discussed perform similarly. For the space discretization,
we used 6 levels of refinement building on a subdivision into 100 intervals for the
coarsest mesh. Following a suggestion of Gajewski and Gärtner [10], we used an
adaptive strategy based on the equidistribution of the energy dissipated per time step
for the control of the time step size. We start with t1 = 10−4 and use the following
expression to calculate the next time step:

Fig. 1 Left: Time evolution of solution for scheme (S) on domainΩ = (0, 50)with constant initial
value c = 0.7, homogeneous Dirichlet boundary conditions for Φ, cdop = − 1

2 and homogeneous
Neumann boundary conditions for c. Right: Evolution of the relative free energy according to (12)
for the different schemes
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Fig. 2 Error e0 in L2
(
(0, T ); L2(Ω)2

)
(left) and e1 in L2

(
(0, T ); H 1(Ω)2

)
on (c, Φ) for scheme

(S) versus optimal energy dissipation per time step Dopt for grid step sizes h = 0.5 ∗ 2−m for
m = 1 . . . 6

tn+1 = min

{
tn · 1.2, tn · Dopt

Dn
, 100

}
,

where Dn = |En − En−1| is the change in the free energy during the previous time-
step and Dopt is the parameter which controls the time step size. This approach
ensures that the energy dissipated per time step remains of the same order as Dopt

outside of a start region where the time-step size is ramped up and a final region
where the dissipation rate approaches zero.

In Fig. 2, we show for a sequence of meshes the convergence of the L2(L2) and
L2(H 1) errors for the approximate solution (cT ,Δt, ΦT ,Δt)with respect to a reference
solution calculated on a fine space-time grid. For coarse space discretizations, errors
are dominated by the spatial error, and decreasing the time step control parameter
Dopt does not decrease the overall error. On the other hand, on fine spatial grids, we
observe that the errors seem to decrease proportionally to the square root of Dopt

which gives rise to a corresponding hypothesis to be investigated in further research.
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Non-isothermal Scharfetter–Gummel
Scheme for Electro-Thermal Transport
Simulation in Degenerate
Semiconductors

Markus Kantner and Thomas Koprucki

Abstract Electro-thermal transport phenomena in semiconductors are described by
the non-isothermal drift-diffusion system. The equations take a remarkably simple
form when assuming the Kelvin formula for the thermopower. We present a novel,
non-isothermal generalization of the Scharfetter–Gummel finite volume discretiza-
tion for degenerate semiconductors obeying Fermi–Dirac statistics, which preserves
numerous structural properties of the continuous model on the discrete level. The
approach is demonstrated by 2D simulations of a heterojunction bipolar transistor.

Keywords Scharfetter–Gummel scheme · Fermi–Dirac statistics · Electro-thermal
transport · Non-isothermal drift-diffusion system · Seebeck effect · Self-heating
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1 Introduction

Self-heating effects are a major concern in modern semiconductor devices, where
the on-going miniaturization of feature size leads to increased power loss densities.
The optimal design of semiconductor devices relies on numerical simulations, based
on thermodynamically consistent models for the coupled electro-thermal transport
processes. The standard model for the simulation of self-consistent charge and heat
transport processes is the non-isothermal drift-diffusion system [1, 5, 9], which cou-
ples the semiconductor device equations to a heat transport equation. The magnitude
of the thermoelectric cross effects (Seebeck effect, Thomson–Peltier effect) is gov-
erned by the Seebeck coefficient (also thermopower), which quantifies the thermo-
electric voltage induced by a temperature gradient. Recently [5], the non-isothermal
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drift-diffusion system has been studied assuming the so-calledKelvin formula for the
thermopower [8], which has two important implications: First, the Seebeck term in
the current density expressions can be entirely absorbed in a temperature-dependent
diffusion constant via a generalized Einstein relation. Second, the heat generation
rate involves solely the three classically known self-heating effects without any fur-
ther (transient) contribution. The model equations and its key features are described
in Sect. 2. In Sect. 3, we present a finite volume discretization based on a novel, non-
isothermal generalization of the Scharfetter–Gummel scheme for the discrete fluxes.
The scheme holds for Fermi–Dirac statistics and preserves numerous structural and
thermodynamic properties of the continuous system.

2 Non-isothermal Drift-Diffusion System

We consider the non-isothermal drift-diffusion system on Ω ⊂ R
d , d ∈ {1, 2, 3},

−∇ · ε∇Φ = q (C + p − n) , (1)

q∂t n − ∇ · jn = −qR, (2)

q∂t p + ∇ · jp = −qR, (3)

cV ∂t T − ∇ · κ∇T = H. (4)

Poisson’s Eq. (1) describes the electrostatic potential Φ generated by the electron
density n, the density of valence band holes p and the built-in doping profile C .
Here, q is the elementary charge and ε is the (absolute) permittivity of the material.
The transport and recombination dynamics of the electrons and holes are modeled
by the continuity Eqs. (2)–(3), where jn/p are the electrical current densities and R
is the (net-)recombination rate, which comprises several radiative and non-radiative
processes [4, 7]. The temperature distribution in the device is described by the heat
equation (4), where cV is the volumetric heat capacity, κ is the thermal conductivity
and H is the heat generation rate.

The carrier densities are related with the quasi-Fermi potentials ϕn/p, the electro-
static potential Φ and the (absolute) temperature T via the state equations

n = Nc (T )F

(
q(Φ−ϕn)−Ec(T )

kBT

)
, p = Nv (T )F

(
Ev(T )−q(Φ−ϕp)

kBT

)
,

(5)

where Nc/v are the effective density of states, Ec/v are the band edge energies of the
conduction and the valence band, respectively, and kB is Boltzmann’s constant. The
functionF describes the occupation probability of the electronic states. In the case of
non-degenerate semiconductors (Maxwell–Boltzmann statistics), F (η) = exp (η)

is an exponential function. At high carrier densities, where degeneration effects due
to the Pauli exclusion principle (Fermi–Dirac statistics) must be taken into account,
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F is typically given by the Fermi–Dirac integral F1/2 [4]. The approach outlined
below, does not rely on the specific form of F and is applicable to materials with
arbitrary density of states and degenerate or non-degenerate statistics [5].

2.1 Kelvin Formula for the Thermopower

The electrical current densities are modeled as

jn = −σn (∇ϕn + Pn∇T ) , jp = −σp
(∇ϕp + Pp∇T

)
, (6)

where σn/p are the electrical conductivities and Pn/p are the thermopowers of the
material. In this paper, we choose the thermopowers according to the Kelvin formula
as variational derivatives of the entropy S with respect to the carrier densities

qPn = −DnS (n, p, T ) , qPp = +DpS (n, p, T ) , (7)

where D denotes the Gâteaux derivative. The Kelvin formula is the low frequency
and long wavelength limit of the microscopically exact Kubo formula [8]. It was
shown to provide a good approximation for several materials at sufficiently high
temperature. The entropy is obtained from the free energyF (n, p, T ) of the system.

We assume the free energy functional [1, 5]

F (n, p, T ) =
∫

Ω

dV

(
kBTF

−1
(

n

Nc

)
n − kBT NcG

(
F−1

(
n

Nc

))
+ Ec(T )n (8)

+ kBTF
−1

(
p

Nv

)
p − kBT NvG

(
F−1

(
p

Nv

))
− Ev(T )p

)

+
∫

Ω

dV fL (T ) + 1

2

∫
Ω

dV
∫

Ω

dV ′ G
(
r, r′) ρ (r) ρ

(
r′) +

∫
Ω

dV Φextρ,

where the first two lines describe the free energy of the non-interacting electron-
hole plasma (quasi-free Fermi gas), fL is the free energy of the lattice phonons
(ideal Bose gas), G is the antiderivative of F (i.e., G ′ (η) = F (η)), G

(
r, r′) is

the Green’s function of Poisson’s equation and ρ = q (p − n) is the mobile charge
density. The potentialΦext is generated by the built-in doping-profile and the applied
bias.

The free energy (8) recovers the state equations (5) via the variational deriva-
tive with respect to the carrier densities Dn/pF := ∓qϕn/p, which is the defin-
ing relation for the quasi-Fermi potentials, see [5]. The entropy functional is
defined as the derivative of the free energy (8) with respect to the temperature:
S (n, p, T ) = −∂TF (n, p, T ) . Evaluation of Eq. (7) yields the thermopowers
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Fig. 1 Thermopowers Pn/p
according to Eq. (9) as
functions of the reduced
Fermi energy η (argument of
F in Eq. (5)) in units of
kB/q. The thermopowers are
plotted for F (η) = F1/2 (η)

and Nc/v ∝ T 3/2. Adapted,
with permission, from [5]
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Pn (n, T ) = −kB
q

(
T N ′

c (T )

Nc (T )
g

(
n

Nc (T )

)
− F−1

(
n

Nc (T )

)
− 1

kB
E ′
c (T )

)
,

(9a)

Pp (p, T ) = +kB
q

(
T N ′

v (T )

Nv (T )
g

(
p

Nv (T )

)
− F−1

(
p

Nv (T )

)
+ 1

kB
E ′
v (T )

)
.

(9b)

The temperature-dependency of the band edge energies can be modeled using, e.g.,
the Varshni model [5, 7]. The function

g (x) = x
(
F−1

)′
(x) (10)

quantifies the degeneration of the carriers (g > 1 for Fermi–Dirac statistics; g ≡ 1 for
Maxwell–Boltzmann statistics). See Fig. 1 for a plot of the Seebeck coefficients (9).

2.2 Drift-Diffusion Currents and Heat Generation Rate

The Kelvin formula has two important implications, which lead to a very simple and
appealing form of the thermoelectric cross effects in the system (1)–(4).

First, we rewrite the electrical current densities by passing from the thermody-
namic form (6) to the drift-diffusion form. By explicitly evaluating the gradient of
the quasi-Fermi potentials using the state equation (5), one observes that the See-
beck terms jn/p|Seebeck = −σn/p Pn/p∇T cancel out exactly from the expressions [5].
Using the conductivities σn = qMnn and σp = qMp p (with mobilities Mn/p), one
arrives at

jn = −qMnn∇Φ + qDn (n, T )∇n, jp = −qMp p∇Φ − qDp (p, T ) ∇ p. (11)
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We emphasize that in Eq. (11)—even though there is no explicit thermal driving
force ∝ ∇T—the Seebeck effect is fully taken into account via the (temperature-
dependent) diffusion coefficients Dn/p. The latter obey the generalized Einstein rela-
tions [6]

qDn = kBT Mng (n/Nc (T )) , qDp = kBT Mpg (p/Nv (T )) . (12)

The flux discretization described in Sect. 3.1 is based on the drift-diffusion form (11).
The second implication of the Kelvin formula concerns the heat generation rate

H . The commonly accepted model for H , which was derived by Wachutka [9] from
fundamental laws of linear irreversible thermodynamics, takes a particularly simple
form, when assuming the Kelvin formula for the thermopower. One obtains

H =
∑

λ∈{n,p}

1

σλ

‖jλ‖2 −
∑

λ∈{n,p}
T jλ · ∇Pλ + q

(
ϕp + T Pp − ϕn − T Pn

)
R, (13)

which involves solely the three classically known self-heating effects, namely Joule
heating (first term), the Thomson–Peltier effect (second term) and recombination
heating (last term). Any further (transient) contributions, which necessarily arise for
thermopowers different from the Kelvin formula (7), do not occur in the model.

3 Finite Volume Discretization

We assume a boundary conforming Delaunay triangulation of the computational
domain Ω ⊂ R

d , d = {1, 2, 3}, and obtain the finite volume discretization [4] of the
(stationary) system (1)–(4) by integration over the (restricted) Voronoï cells as

−
∑

L∈N (K )

sK ,Lε (ΦL − ΦK ) = q|ΩK | (CK + pK − nK ) , (14a)

−
∑

L∈N (K )

sK ,L Jn,K ,L = −q|ΩK |RK , (14b)

+
∑

L∈N (K )

sK ,L Jp,K ,L = −q|ΩK |RK , (14c)

−
∑

L∈N (K )

sK ,LκK ,L (TL − TK ) = 1

2

∑
L∈N (K )

sK ,L
(
HJ,K ,L + HT–P,K ,L

) + |ΩK |HR,K .

(14d)

Here, |ΩK | is the volume of the K -thVoronoï cell, sK ,L = |∂ΩK ∩ ∂ΩL |/ ‖rL − rK‖
is a geometric factor and N (K ) is the set of adjacent nodes of K . The subscripts K ,
L indicate evaluation on the respective nodes or edges. The discrete heat sources are
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HJ,K ,L = −
∑

λ∈{n,p}
Jλ,K ,L

(
ϕλ,L − ϕλ,K + Pλ,K ,L (TL − TK )

)
, (15a)

HT–P,K ,L = −
∑

λ∈{n,p}
TK ,L Jλ,K ,L

(
Pλ,L − Pλ,K

)
, (15b)

HR,K = q
(
ϕp,K + TK Pp,K − ϕn,K − TK Pn,K

)
RK , (15c)

where we used a technique involving a weakly converging gradient developed in [3]
for the discretization of the Joule and Thomson–Peltier terms (see [5] for details).

3.1 Generalized Scharfetter–Gummel Scheme

A robust discretization of the flux projections Jn/p,K ,L = (rL − rK ) · jn/p is obtained
by integrating Eq. (11) along the edge K L := {r (x) = x rL + (1 − x) rK , x
∈ [0, 1]}, while assuming the electric field, the current density and the mobility to
be constant along K L . The temperature is assumed to be an affine function between
adjacent nodes: T (x) = x TL + (1 − x) TK , x ∈ [0, 1]. In the case of Fermi–Dirac
statistics (with g �= 1), the resulting two-point boundary value problem on x ∈ [0, 1]
[5]

kBT (x)g

(
n(x)

Nc (T (x))

)
dn

dx
= q (ΦL − ΦK ) n(x) + Jn,K ,L

Mn,K ,L
, n(0) = nK , n(1) = nL ,

can be solved approximately, by freezing the degeneracy factor (10) to a suitable
average gn/p,K ,L [2, 6]. One obtains the non-isothermal Scharfetter–Gummel scheme

Jn,K ,L = Mn,K ,LkBTK ,Lgn,K ,L
(
nL B

(
Xn,K ,L

) − nK B
(−Xn,K ,L

))
, (16)

(holes analogously)with Xn,K ,L = q (ΦL − ΦK ) /
(
kBTK ,Lgn,K ,L

)
and theBernoulli

function B (x) = x/ (exp (x) − 1). The averaged degeneracy factor (consistent with
the thermodynamic equilibrium [2, 6]) and the logarithmic mean temperature read

gn,K ,L = ηn,L − ηn,K

log
(
F

(
ηn,L

)
/F

(
ηn,K

)) , TK ,L = Λ(TL , TK ) = TL − TK
log (TL/TK )

. (17)

The scheme (16) is a non-isothermal generalization of the scheme developed in
[2, 6].
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3.2 Structure-Preserving Properties

The discrete system (14)–(16) has several structure-preserving properties that hold
without any smallness assumption. The conservation of charge is immediately guar-
anteed by the finite volume discretization [4]. Moreover, the scheme (16) is robust
in both the drift- and diffusion dominated limits, as it interpolates between the
upwind scheme for Xn,K ,L → ±∞ (strong electric field) and a central finite differ-
ence scheme for Xn,K ,L = 0 (pure diffusion). The latter involves a discrete analogue
of the nonlinear diffusion constant (12) using gn,K ,L as in Eq. (17). For the analy-
sis of further properties, which address the consistency with thermodynamics, it is
convenient to recast the formula (16) into a discrete analogue of its thermodynamic
form (6):

Jn,K ,L = −σn,K ,L
(
ϕn,L − ϕn,K + Pn,K ,L (TL − TK )

)
. (18)

The edge-averageddiscrete conductivity,which is implicitly takenby theScharfetter–
Gummel discretization, is a “tilted” logarithmic mean Λ of the carrier densities

σn,K ,L = qMn,K ,L

sinhc
(
1
2 Xn,K ,L

)Λ

(
nL exp

(
−1

2
Xn,K ,L

)
, nK exp

(
+1

2
Xn,K ,L

))
, (19)

with sinhc (x) = sinh (x)/x . The thermopower Pn,K ,L (required in Eq. (15a)) reads

Pn,K ,L = −kB
q

[
log

(
Nc (TL)

Nc (TK )

)
gn,K ,L

log (TL/TK )
− 1

kB

Ec (TL) − Ec (TK )

TL − TK

−
(
TL − TK ,L

)
ηn,L − (

TK − TK ,L
)
ηn,K

TL − TK

]
.

(20)

The scheme ismanifestly consistent with the thermodynamic equilibrium (no current
for ϕn,K = ϕn,L and TK = TL ) and the limiting cases of either vanishing chemical
(ϕn,K = ϕn,L : pure Seebeck current) or thermal (TK = TL : isothermal drift-diffusion)
driving forces. The discretization guarantees the non-negativity of the Joule heat term

HJ,K ,L =
∑

λ∈{n,p}
σλ,K ,L

∣∣ϕλ,L − ϕλ,K + Pλ,K ,L (TL − TK )
∣∣2 ≥ 0 (21)

(using Eqs. (15a) and (18)) and subsequently also the consistency with the 2nd
law of thermodynamics [5]. In a 1D case study [5], the scheme (16) was found
to be significantly more accurate than the conventional Scharfetter–Gummel-type
discretization approach. Both schemes revealed quadratic convergence, but the new
scheme (16) saved 1–2 refinement steps to reach the same level of accuracy.
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4 Numerical Simulation of a Heterojunction Bipolar
Transistor

The approach is demonstrated by numerical simulations of the GaAs/AlGaAs-based
heterojunctionbipolar transistor (HBT) shown inFig. 2a.Weassume ideal ohmic con-
tactswith perfect heat sinking (Tcont = 300K) and homogeneousNeumann boundary
conditions else. The material parameters, including temperature-dependent models
for the band edge energies, mobilities and the thermal conductivity, are taken from
[7]. The validity of the Kelvin formula for GaAs was studied in [5]. The calculated
current-voltage curves (with and without self-heating effects) are shown in Fig. 2b.

The temperature distribution and the heat generation rate are plotted in Fig. 3 for
different collector-emitter voltages. The Thomson–Peltier effect is found to cool the
AlGaAs/GaAs heterojunctions (emitter/ emitter cap and emitter/ base junction, blue
color in Fig. 3b, d) and heats up the collector/ subcollector junction. With increasing
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Fig. 2 a Sketch of the considered GaAs/AlGaAs-HBT. Due to symmetry, only half of the
device is simulated. The doping densities are: N+

D = 4 × 1019 cm−3 (emitter cap), N+
D = 2 ×

1017 cm−3 (emitter), N−
A = 3 × 1019 cm−3 (base), N+
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5 × 1018 cm−3 (subcollector). b Calculated collector current IC as a function of the collector-
emitter voltageUCE for different base-emitter voltagesUBE with (solid lines) and without (dashed)
self-heating effects
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Fig. 3 Simulated temperature distribution and self-heating power density H at stationary operation
with a, b UCE = 2V and c, d UCE = 4V. The basis-emitter voltage is UBE = 1.6V in both cases
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current densities (i.e., increasing collector-emitter voltage), the relative importance
of Joule heating increases, until it becomes the dominant effect. This leads to a strong
temperature increase in the collector region close to the symmetry axis. Recombina-
tion processes additionally heat the base region below the base/ emitter junction, but
were found to be of minor importance in the present study.

5 Conclusions

TheKelvin formula for the thermopower yields a remarkably simple form of the non-
isothermal drift-diffusion system. The specific form of the current density expres-
sions, which contain the thermal driving forces only implicitly, allow for a non-
isothermal generalization of the Scharfetter–Gummel scheme for Fermi–Dirac statis-
tics that was previously presented in [2, 6]. The resulting finite volume scheme
preserves fundamental thermodynamic properties and relations on the discrete level.
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Entropy Diminishing Finite Volume
Approximation of a Cross-Diffusion
System

Clément Cancès and Benoît Gaudeul

Abstract We propose a two-point flux approximation finite volume scheme for
the approximation of the solutions of a entropy dissipative cross-diffusion system.
The scheme is shown to preserve several key properties of the continuous system,
among which positivity and decay of the entropy. Numerical experiments illustrate
the behaviour of our scheme.
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1 Finite Volume Approximation of a Cross Diffusion
System

The model addressed in this paper is a toy model for the evolution of a material [1]
which can be derived thanks to a jump process following the program of [3]. We are
interested in the evolution of the composition of the material, which is described by
the concentrations c = (c1, . . . , cI ) of I different species. Thematerial is represented
by an open, connected, bounded, and polyhedral subsetΩ ofRd , and the evolution of
its composition is prescribed by the following system of partial differential equations.
The mass conservation of each species writes for all i ∈ {1, . . . , I }

∂t ci + ∇ · Ji = 0 in R+ × Ω, with Ji =
∑

j �=i

κi j
(
ci∇c j − c j∇ci

)
. (1)
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The coefficients κi j are such that κi j = κ j i ≥ 0. The system is complementedwith no-
flux boundary conditions Ji · n = 0 on ∂Ω , and an initial condition c0 = (

c01, . . . , c
0
I

)

which satisfies 〈c, 1〉 = ∑I
i=1 c

0
i = 1 in Ω .

This continuous problem has some key-properties that one wants to preserve after
discretisation. First, the total mass of each specie is conserved, i.e,

∫
Ω
ci (t) = ∫

Ω
c0i

for all i ∈ {1, . . . , I } and t ≥ 0. This follows directly from the local conservation
property (1) and the no-flux boundary conditions across ∂Ω . Second, the con-
centrations remains non-negative, i.e., ci (x, t) ≥ 0. Third, the expression (1) of
Ji and the condition κi j = κ j i yield

∑I
i=1 Ji = 0, so that

∑I
i=1 ci (x, t) = 1 for all

(x, t) ∈ Ω × R+. Therefore, c(t) takes values in the closed convex set

A =
{
c ∈ L1(Ω;RI

+)

∣∣∣∣ 〈c, 1〉 = 1 a.e. in Ω and
∫

Ω

ci =
∫

Ω

c0i

}
.

Finally, the fluxes rewrite Ji = −∑
j �=i κi j ci c j∇

(
log(ci ) − log(c j )

)
. Therefore,

multiplying (1) by log(ci ) and integrating over Ω leads to

d

dt
E(c) = −

∑

{i, j}∈{1,...,I }2

∫

Ω

κi j ci c j
∣∣∇(log(ci ) − log(c j ))

∣∣2 ≤ 0, (2)

where the entropy E is the convex functional on A defined by

E(c) =
I∑

i=1

∫

Ω

ci log(ci ).

Then due to the entropy / entropy dissipation relation (2), t 	→ E(c(t)) is non-
increasing, and even decreasing unless c is constant w.r.t. space.

Under appropriate conditions on the coefficients κi j , the existence of weak solu-
tions to the problem can be established thanks to the so-called entropy method
[6, 7]. Strong solutions have been recently investigated in [2].

Our goal is to define a scheme that preserves at the discrete level the above
properties, i.e. such that the approximate solution belongs toA for all time and with
a discrete counterpart of (2). To this end,we still need to remark that if the coefficients
κi j are equal to κ� > 0, then Ji = −κ�∇ci , so that (1) reduces to I decoupled heat
equations. Therefore, choosing κ� > 0 and setting κ̃i j = κi j − κ�, Ji rewrites as

Ji = −
∑

j �=i

κ̃i j ci c j∇
(
log(ci ) − log(c j )

) − κ�∇ci , i ∈ {1, . . . , I }. (3)

Our approach consists in approximating the fluxes Ji under their above form (3).
Since it is based on two-point flux approximation (TPFA) finite volumes, it requires
the use of a so-called Δ-admissible mesh. Let (T ,E , (xK )K∈T ) be a finite volume
mesh ofΩ fulfilling the classical orthogonality condition required for the consistency
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of TPFA. Since this notion is classical, we remain sloppy here on the definition and
refer to [5,Definition9.1] or to the companionpaper [4] for details. Let us justmention
that T denotes the set of the cells, while only internal edges are considered in the
set E , i.e. E = {σ = K |L = ∂K ∩ ∂L for K , L ∈ T }. Given K ∈ T , we denote
by EK = {σ ∈ E | σ ⊂ ∂K } and by mK the d-dimensional Lebesgue measure of
K . For σ = K |L , we denote by mσ the (d − 1)-dimensional Lebesgue measure of
σ , by dσ = |xK − xL | the distance between the cell centers, and by aσ = mσ

dσ
the

transmissivity of σ . For the time discretisation, we allow for non-uniform time steps
τn = tn − tn−1, n ≥ 1, with t0 = 0. The initial condition is discretised into

c0i,K = 1

|K |
∫

K
c0i , ∀K ∈ T , i ∈ {1, . . . , I }. (4)

In particular, the corresponding piecewise constant reconstruction c0T = (
c0i,T

)
i
,

defined by c0i,T (x) = ∑
K∈T c0i,KχK (x), belongs to A provided c0 does. Now, we

assume that
(
cn−1
i,K

)
i,K

is given and is such that the corresponding piecewise constant

reconstruction cn−1
T belongs to A , then we seek

(
cni,K

)
i,K

solution of the following
nonlinear system. First, the conservation of mass is locally enforced on each cell K :

cni,K − cn−1
i,K

τn
|K | +

∑

σ∈EK

mσ J
n
i,Kσ = 0, ∀K ∈ T , i ∈ {1, . . . , I }. (5)

No flux boundary conditions translate to J n
i,Kσ = 0 if σ ⊂ ∂Ω . The discretisation

of the fluxes J n
i,Kσ � Ji · nKσ across the edge σ = K |L relies on the expression (3)

and writes

J n
i,Kσ = κ�

cni,K − cni,L
dσ

+
∑

j �=i

κ̃i j

(
cnj,σ

cni,K − cni,L
dσ

− cni,σ
cnj,K − cnj,L

dσ

)
= −J n

i,Lσ .

(6)
Finally, the edge concentrations cni,σ are computed from the cell concentrations cni,K
and cni,L thanks to the continuous formula

cni,σ =

⎧
⎪⎨

⎪⎩

cni,K if cni,K = cni,L ,
cni,K−cni,L

log(cni,K )−log(cni,L )
if cni,K �= cni,L , cni,K > 0, cni,L > 0,

0 if min(cni,K , cni,L) ≤ 0.

(7)

The goal of this paper is to show that the scheme (5)–(7) suitably approximates the
solutions to (1). This encompasses some mathematical properties of the scheme to
be discussed in Sect. 2 and numerical results presented in Sect. 3.

Remark 1 Before going further, let us just highlight why the introduction of the
positive parameter κ� is important. Assume for simplicity that I = 2, so that the
problem reduces to two uncoupled heat equations on c1 and c2 = 1 − c1. Assume
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that the mesh T is made of two cells K and L separated by the unique edge σ ,
and that c01,K = 1, c02,K = 0, c01,L = 0 and c02,L = 1. Then formula (7) shows that
c01,σ = c02,σ = 0. Therefore, if κ� is set to 0, then c0T is a steady solution to the
scheme, which is not reasonable for the discretisation of the heat equation. The
introduction of κ� > 0 annihilates this spurious solution.

2 Some Pieces of Numerical Analysis

Our first statement deals with positivity preservation, mass conservation, the preser-
vation of the constraint

∑
i ci = 1, andwith the existence of a solution to the nonlinear

system (5)–(7).

Proposition 1 Given cn−1
T ∈ A , then there exists (at least) one approximate solution

cnT to the scheme such that cnT ∈ A .

Proof In order to carry out the proof, one first needs to replace cniσ (and cnjσ ) by
c̃niσ = cniσ /max

(
1,

∑

 c

n

σ

)
in (6). These two quantities will be shown later on to

coincide as
∑


 c
n

σ ≤ 1 on all the internal edges σ .

As a first step to prove that cnT ∈ A , let us prove by contradiction that cni,K ≥ 0
for all K ∈ T and all i ∈ {1, . . . , I }. Assume that minL cni,L < 0 for some i , and let
K be the cell where cni,K < 0 is minimum among all cni,L , L ∈ T . Then (7) implies
that c̃ni,σ = 0 for all σ ∈ EK so that we deduce from (5)–(6) that

∑

σ∈EK

aσ

⎡

⎣κ�

⎛

⎝1 −
I∑

j=1

c̃nj,σ

⎞

⎠ (
cni,K − cni,L

) +
I∑

j=1

κi j c̃
n
j,σ

(
cni,K − cni,L

)
⎤

⎦ > 0.

Using c̃nj,σ ≥ 0,
∑

j c̃
n
j,σ ≤ 1, and cni,K ≤ cni,L in previous inequality yields a contra-

diction, hence cni,K ≥ 0 for all i and all K .
The fact that

∑
K∈T cni,KmK = ∑

K∈T cn−1
i,K mK = ∫

Ω
c0i follows directly from

the conservativity of the fluxes (6). Finally, one readily checks from (6) that

I∑

i=1

J n
i,Kσ = κ�

dσ

I∑

i=1

(cni,K − cni,L), ∀σ = K |L ∈ E .

So summing (5) over i shows that snK = ∑I
i=1 c

n
i,K satisfies the discrete heat equation

snK − sn−1
K

τn
mK + κ�

∑

σ=K |L∈EK

aσ (snK − snL) = 0, ∀K ∈ T .

Since sn−1
K = 1 for all K ∈ T , so does

(
snK

)
K . Therefore, c

n
T belongs to A . Now,

it follows from a simple convexity argument that the logarithmic mean cni,σ of cni,K
and cni,L is smaller than the arithmetic mean, the sum of which over i is equal to 1.
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Therefore, cni,σ = c̃ni,σ . The existence proof then easily follows from a topological
degree argument [8], see our companion paper [4] for details. �

Refining the above proof, one can show that cni,K > 0 for all K ∈ T as soon as∫
Ω
c0i > 0. This property is key for the proof of our next statement, and is rigorously

established in [4]. Our second statement highlights the energy diminishing character
of the scheme, which should be thought as a discrete counterpart of (2).

Proposition 2 Let cnT ∈ A be a solution to the scheme as in Proposition 1, then

E(cnT ) ≤ E(cn−1
T ).

Proof Without loss of generality, we assume that
∫
Ω
c0i > 0 for all i (otherwise

cni,K = 0 for all K ∈ T thanks to Proposition 1). Since cni,K > 0, one canmultiply (5)
by log(cni,K ) and to sum over K ∈ T and i ∈ {1, . . . , I }, which leads to

A + B :=
I∑

i=0

∑

K∈T

cni,K − cn−1
i,K

τn
log(cni,K )mK +

I∑

i=0

∑

K∈T

∑

σ=K |L∈E K

mσ J
n
i,Kσ log(cni,K ) = 0.

Thanks to the convexity of c 	→ c log c − c and to mass conservation, one has

A ≥ 1

τn

I∑

i=0

∑

K∈T

(
cni,K log cni,K − cn−1

i,K log cn−1
i,K

)
mK = E(cnT ) − E(cn−1

T )

τn
.

The particular choice (7) for cni,σ allows us to rewrite

Jni,Kσ = κ�
cni,K − cni,L

dσ

+
∑

j �=i

κ̃i j c
n
i,σ c

n
j,σ

(
log(cni,K ) − log(cnj,K ) − log(cni,L ) + log(cnj,L )

)
.

This implies that

B = κ�

N∑

i=1

∑

σ=K |L∈E
aσ (cni,K − cni,L)

(
log(cni,K ) − log(cni,L)

)

+
∑

{i, j}

∑

σ=K |L∈E
κ̃i j aσ c

n
i,σ c

n
j,σ

(
log(cni,K ) − log(cnj,K ) − log(cni,L) + log(cnj,L)

)2
.

Since the logarithmic mean cni,σ of cni,K and cni,L is smaller than the arithmetic mean,
there holds

∑
i c

n
i,σ ≤ 1. As a consequence, one has

N∑

i=1

∑

σ=K |L∈E
aσ (cni,K − cni,L)

(
log(cni,K ) − log(cni,L)

)

≥
∑

{i, j}

∑

σ=K |L∈E
aσ c

n
i,σ c

n
j,σ

(
log(cni,K ) − log(cnj,K ) − log(cni,L) + log(cnj,L)

)2
,
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which implies that

B ≥
∑

{i, j}

∑

σ

κi j aσ c
n
i,σ c

n
j,σ

(
log(cni,K ) − log(cnj,K ) − log(cni,L) + log(cnj,L)

)2 ≥ 0.

This concludes the proof of Proposition 2. �

A more involved study allows to show that under classical assumptions on non-
degeneracy of the mesh regularity, then cT ,τ : (t, x) 	→ ∑

n≥1 c
n
T (x)ξ(tn−1,tn ](t) con-

verges in L1
loc(R+ × Ω) towards a weak solution c to (1) provided κi j > 0 for all

i, j . The proof relies on the exploitation of the regularization coming from the dis-
sipation (term B in the proof of Proposition 2). We refer to [4] for the details of the
convergence proof.

3 Numerical Results

The numerical scheme has been implemented usingMATLAB. The nonlinear system
corresponding to the scheme is solved thanks to Newton method with stopping crite-
rion ‖cn,k+1 − cn,k‖∞ ≤ 10−12. The next iterate cn,k+1 is then “projected” on A by
setting cn,k+1 = max(cn,k+1, 10−10τ), and then cn,k+1 = cn,k+1/(

∑N
i=1 c

n,k+1
i ). For

the first time step, we also make use of a continuation method based on the inter-
mediate diffusion coefficients κλ

i, j = λκi j + (1 − λ)κ� with λ ∈ [0, 1]. The param-
eter λ is originally set to 1. If the Newton’s method does not converge, we let
λ = (

λ + λprev
)
/2 where λprev is originally set to 0. If the Newton’s method con-

verges, we let λprev = λ and λ = 1.
Our first test case is devoted to the convergence analysis of the scheme in a one-

dimensional setting Ω = (0, 1). Two different initial conditions are considered: c0s
is smooth with coordinates that vanish pointwise at the boundary of Ω , whereas c0r
is discontinuous with coordinates vanishing on intervals of Ω:

c01,s(x) = 1

4
+ 1

4
cos(πx), c02,s(x) = 1

4
+ 1

4
cos(πx), c03,s(x) = 1

2
− 1

2
cos(πx),

c01,r = 1[ 38 , 58 ], c02,r = 1
( 18 , 38 )

+ 1
( 58 , 78 )

, c03,r = 1[0, 18 ] + 1[ 78 ,1].

Wealso consider two diffusionmatrices, one called regularwith positive off-diagonal
coefficients and an other called singular with a few null off-diagonal coefficients.

K reg =
⎛

⎝
0 0.2 1
0.2 0 0.1
1 0.1 0

⎞

⎠ K sing =
⎛

⎝
0 0 1
0 0 0.1
1 0.1 0

⎞

⎠

For the convergence tests, we have let κ� = 0.1 and the meshes are uniform discreti-
sations of [0, 1] from 25 cells to 214 cells. Since we do not have an analytical solution



Entropy Diminishing Finite Volume Approximation of a Cross-Diffusion System 189

102 103 104
10−10

10−8

10−6

10−4

10−2

1

1

1

2

number of cells

er
ro
r
in

L
2
no

rm
K = Kreg and c0 = c0s
K = Kreg and c0 = c0r
K = Ksing and c0 = c0s
K = Ksing and c0 = c0r

Fig. 1 Error with respect to the solution computed on the finest mesh for 1D settings

Fig. 2 Initial
configuration c0 c01 = 1

c02 = 1

c03 = 1

at hand, the approximate solutions are compared to a reference solution computed on
a gridmade of 215 cells. The final time is 0.25, and the time discretisation is fixedwith
a time step of 2−18. Result are summarised in Fig. 1. One notices that our scheme is
second order accurate in the setting presented in this paper (K = K reg), but only first
order accurate when confronted to what we call non-diffusive discontinuities, i.e.,
situations where the concentration of species that do not interdiffuse (i.e., ai, j = 0)
are discontinuous (here c1 and c2), and when the concentration of the specie (here
c3) which interacts with both discontinuous species is zero.

Our second test is two-dimensional. We choose K sing as the diffusion matrix,
κ� = 0.1, Ω = [0, 22] × [0, 16], τ = 2−3 and a 2D initial condition c0 depicted in
Fig. 2. The corresponding steady state and long-time limit c∞ does not depend on
x, i.e., c∞

i (x) = ∮
c0i (y)dy for all x ∈ Ω . The time evolution of the relative energy

E(c) − E(c∞) is plotted on Fig. 3, showing exponential decay to the steady state
even thought the diffusion matrix is singular. Snapshots showing the evolution of the
concentration profiles are presented in Fig. 4.
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Fig. 3 E(c) − E∞ as a function of time
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Fig. 4 Concentrations c1 and c2 at times t = 2 and t = 10 (c3 can be deduced from the relation
c1 + c2 + c3 = 1)
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TPFA Finite Volume Approximation
of Wasserstein Gradient Flows

Andrea Natale and Gabriele Todeschi

Abstract Numerous infinite dimensional dynamical systems arising in different
fields have been shown to exhibit a gradient flow structure in the Wasserstein space.
We construct Two Point Flux Approximation Finite Volume schemes discretizing
such problems which preserve the variational structure and have second order accu-
racy in space. We propose an interior point method to solve the discrete variational
problem, providing an efficient and robust algorithm. We present two applications
to test the scheme and show its order of convergence.

Keywords Wasserstein gradient flows · Energy diminishing scheme

MSC (2010) 65M08 · 65M12 · 49M29 · 35K65 · 90C51

1 Gradient Flows’ Time Discretization

Agradient flow is a process that, starting from an initial point, evolves bymaximizing
at each instant the rate of decay of a given specific energy. Many problems arising in
physics, biology, social sciences, etc., can be recast as infinite dimensional gradient
flows. Considering a compact domain Ω ⊂ R

d , a finite time horizon T ∈ R
+, and a

real-valued, strictly convex and proper energy functional E , we focus our attention
on problems of the form
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⎧
⎪⎨

⎪⎩

∂tρ − ∇ · (ρ∇ δE
δρ

[ρ]) = 0, in Ω × [0, T ],
ρ∇ δE

δρ
· n = 0, on ∂Ω × [0, T ],

ρ(0) = ρ0, in Ω,

(1)

where δE
δρ

denotes the first variation of E , ρ0 ∈ L1(Ω;R+) is a given initial condition
and n is the unit outer normal vector to ∂Ω . Problem (1) denotes the continuity
equation of a time evolving non-negative density ρ convected by the velocity field
−∇ δE

δρ
[ρ], with no flux across the boundary of the domain, hence preserving its total

mass. It is nowadays clear that problems of the form of (1) represent gradient flows
of the energy E with respect to the Wasserstein metric. We refer to [1, 9] for more
details on gradient flows and optimal transport.

The underlying variational structure of this type of problems provides useful tools
for their study. From the numerical point of view,more robust solvers can be designed
by taking it into account. In particular, the property that the energy should decrease
as fast as possible at each time step is a useful criterion to assess the goodness
and reliability of a numerical solution and it should be preserved. The JKO scheme
realizes this by using the variational formulation of the implicit Euler method. For
an increasing sequence (tn)n∈N ⊂ R of time steps such that ∪n[tn−1, tn] = [0, T ],
let Qn = Ω × [tn−1, tn] and ∂Qn = ∂Ω × [tn−1, tn]. The JKO scheme constructs
a sequence (ρn)n∈N as follows: given an approximation ρn−1 of the density at time
tn−1, compute ρn = ρ̃(tn), where (ρ̃, F̃) : Qn → R

+ × R
d solves

inf
(ρ̃,F̃)

∫

Qn

|F̃|2
2ρ̃

dxdt + E (ρ̃(tn)), where (ρ̃, F̃) solve:

⎧
⎪⎨

⎪⎩

∂t ρ̃ + ∇ · F̃ = 0, in Qn

F̃ · n = 0, on ∂Qn

ρ̃(tn−1) = ρn−1.

(2)
The density ρn is computed minimizing the sum of its squared Wasserstein distance
from ρn−1 and the energy in ρn . The former term corresponds to the total kinetic
energy of the curve ρ̃ written in the variables density-momentum, (ρ̃, F̃), rather than
density-velocity, in order to highlight the convexity of the problem [2]. The sequence
of densities (ρn)n∈N, meant to be an approximation of the solution at each time step
tn , can be seen as a piecewise constant time-dependent density converging to the
flow under suitable assumptions [1, 9]. This time discretization enables to design
energy-diminishing schemes that are furthermore robust in the sense that, since (2)
is a well-posed convex problem, the solution at step n always exists no matter the
time step τ n = tn − tn−1.

The Wasserstein distance involved in (2) needs to be further discretized in time.
Since the JKO scheme is of order one [6], a first order time discretization is sufficient
and leads to a reasonable computational complexity. We can approximate (2) with
an LJKO [3]: given an approximation ρn−1 of the density at time tn−1, compute ρn

solution to



TPFA Finite Volume Approximation of Wasserstein Gradient Flows 195

inf
(ρ,F)

τn
∫

Ω

|F|2
2ρ

dx + E (ρ), where (ρ,F) solve:

{
ρ − ρn−1 + τn ∇ · F = 0, in Ω,

F · n = 0, on ∂Ω,

(3)
where now (ρ,F) : Ω → R

+ × R
d does not depend on time. The continuity equation

is discretized using a single implicit Euler step, whereas the time integral using a
right endpoint approximation.

Given the conservative form of the problem, Finite Volume methods appear as
natural choices for its discretization. Their relation with optimal transport has been
highlighted in, e.g., [5]. Ensuring the positivity of the density is a crucial property
for any candidate numerical method, since problems (2) and (3) lose their convex-
ity if the density is negative. In [3] problem (3) is discretized using upwind FV,
which provides automatically the positivity for the discrete solution. The problem
can then be solved using a Newton scheme. However, this gives an order one space
discretization. Moreover, the derived scheme is not particularly robust since small
time stepsmay be required tomake theNewton scheme converge. In the present work
we propose a more general FV framework, which allows us to consider second order
discretizations in space. As a consequence, the positivity constraint on the density
needs to be taken into account. To this end, we use an interior point method.

2 Finite Volume Discretization

Assume the domain Ω ⊂ R
d to be polygonal if d = 2 or polyhedral if d = 3. The

specifications for a partitioning of Ω to be admissible for TPFA Finite Volume are
classical [4, Definition 9.1]. We denote by

(
T ,Σ, (xK )K∈T

)
such an admissible

mesh, namely the triplet of the set of polyhedral control volumes, the set of faces
and the set of cell centers. We use Delaunay triangulations in order to satisfy these
assumptions. The Lebesgue measure of K ∈ T is denoted by mK > 0. The set
Σ is composed of boundary faces Σext = {σ ⊂ ∂Ω} and internal faces σ ∈ Σ =
Σ \ Σext . We denote by ΣK = ΣK ∩ Σ the internal faces belonging to ∂K . For
each internal face σ = K |L ∈ Σ , we refer to the diamond cell	σ as the polyhedron
whose edges join xK and xL to the vertices of σ . Denoting by mσ the Lebesgue
measure of the edge σ and by dσ = |xK − xL |, the measure m	σ

of 	σ is then equal
tomσdσ /d, where d stands for the space dimension.We denote by dK ,σ the euclidean
distance between the cell center xK and the midpoint of the edge σ ∈ ΣK . The size
of the mesh is defined by hT = maxK∈T diam(K ).

We introduce the space of discrete conservative fluxes

FT = {F = (FK ,σ , FL ,σ )σ∈Σ ∈ R
2Σ : FK ,σ + FL ,σ = 0}

and denote Fσ = |FK ,σ | = |FL ,σ |. We introduce also the spaces of discrete variables
on cells PT = R

T and diamond cells PΣ = R
Σ , endowed with the two scalar prod-

ucts 〈·, ·〉K : (a,b) ∈ [PT ]2 
→ ∑
K∈T aKbKmK , 〈·, ·〉σ : (u, v) ∈ [PΣ ]2 
→ ∑

σ∈Σ
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uσ vσmσdσ , respectively. We introduce a reconstruction operator from cells to dia-
mond cells RΣ : PT → PΣ . On each edge σ = K |L , the density on the diamond
cell can be reconstructed from the values of the densities ρK , ρL . To keep the
scheme simple, we employ weighted arithmetic averages ρσ = λK ,σ ρK + λL ,σ ρL ,
with λK ,σ , λL ,σ ∈ [0, 1], λK ,σ + λL ,σ = 1. Nonetheless, other choices are possible,
such as geometric, harmonic and logarithmic averages and all their weighted versions
[5]. We consider three possibilities for the weights (λK ,σ , λL ,σ ): ( 12 ,

1
2 ), the standard

arithmetic mean; ( dL ,σ

dσ
,
dK ,σ

dσ
), which provides a linear reconstruction of the density at

the edgemidpoint; ( dK ,σ

dσ
,
dL ,σ

dσ
), which gives amassweighted arithmeticmean. Thanks

to these choices we expect to obtain second order accuracy for the space discretiza-
tion. We introduce also the adjoint operator of this reconstruction, with respect to the
two scalar products, given by RT : ρ ∈ PΣ 
→ ( ∑

σ∈ΣK
ρσλK ,σ

mσ dσ

mK

)

K∈T ∈ PT .
Assuming the energy E (ρ) to be of the form

∫

Ω
E(ρ)dx for a real valued

and strictly convex scalar function E , given the discrete initial density of the
form (ρ0

K )K∈T = (ρ0(xK ))K∈T ∈ P
+
T , the discrete LJKO scheme is: given ρn−1 =

(ρn−1
K )K∈T ∈ P

+
T approximation of the density at time tn−1, compute ρn solution to

inf
(ρ,F)

τ n
∑

σ∈Σ

F2
σ

2(RΣ(ρ))σ
mσdσ +

∑

K∈T
E(ρK )mK , (4)

with (ρ,F) ∈ PT × FT such that (ρK − ρn−1
K )mK + τ n

∑
σ∈ΣK

FK ,σmσ = 0 and
ρK ≥ 0,∀K ∈ T . We take as measure of the diamond cell dm	σ

, as it is classically
done in order to compensate the unidirectional discretization of the momentum [4].
The constraint F · n = 0 is automatically taken into account disregarding the flux
on the boundary edges in the definition of the space of discrete conservative fluxes.
The conservation of mass is also automatically enforced thanks to the conservativity
of the Finite Volume discretization, i.e.

∑
K∈T ρn

KmK = ∑
K∈T ρn−1

K mK . Further-
more, the scheme guarantees a discrete energy-dissipation property: given the couple
(ρn,Fn) solution to (4), the competitor (ρn−1, 0) provides

τ n
∑

σ∈Σ

(Fn
σ )2

2(RΣ(ρn))σ
mσdσ +

∑

K∈T
E(ρn

K )mK ≤
∑

K∈T
E(ρn−1

K )mK .

At each step n, (4) is a strictly convex optimization problem with linear con-
straints. Enforcing the constraints with the multipliers −φ ∈ PT ,λ ∈ P

−
T and using

the definition of the conservative fluxes we obtain the saddle point problem

inf
(ρ,F)

sup
(φ,λ)

τ n
∑

σ∈Σ

(Fσ )2

2(RΣ(ρ))σ
mσdσ +

∑

K∈T
(ρn−1

K − ρK )φKmK+

+τ n
∑

σ∈Σ

FK ,σ

(φL − φK

dσ

)
mσdσ +

∑

K∈T
E(ρK )mK +

∑

K∈T
λKρKmK .

(5)
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The solutionmust satisfy the systemof optimality conditions, namely theKKTcondi-
tions. Plugging the optimality condition w.r.t. FK ,σ , i.e. FK ,σ = −(RΣ(ρ))σ (

φL−φK

dσ
),

in (5) and considering that

∑

σ∈Σ

(RΣ(ρn))σ

(φL − φK

dσ

)2
mσdσ =

∑

K∈T
ρK

(
RT

((φn
L − φn

K

dσ

)2))

K
mK ,

the optimality conditions reduce to the system

⎧
⎪⎨

⎪⎩

(ρn
K − ρn−1

K )mK − τ n
∑

σ∈ΣK
(RΣ(ρn))σ (

φn
L−φn

K
dσ

)mσ = 0,

(φn
K − E ′(ρn

K ) − λn
K )mK + τ n

2 (RT ((
φn
L−φn

K
dσ

)2))KmK = 0,

ρn
K ≥ 0, λn

K ≤ 0, ρn
Kλn

K = 0,

∀K ∈ T . (6)

At each step n of the discrete LJKO, the discrete density (ρn
K )K∈T is completely

defined by (6).
System (6) is not easy to solve, themajor problem being the non-uniqueness of the

multipliers λ and φ whenever the density vanishes. When upwinding is used for the
reconstructed density, i.e. ρσ = ρK if φL > φK , ρσ = ρL otherwise, the Lagrange
multiplier λ can be taken equal zero and disregarded [3]. In our framework this is
not possible and to avoid dealing explicitly with the positivity constraint we use an
interior point method. The constraint is incorporated in the problem by adding to
the functional a barrier function of the density which is convex and singular in zero.
We use the logarithmic barrier − log(ρ). In this way the minimizer is automatically
repulsed away from zero and the problem can be solved using the Newton scheme.
The perturbation introduced by the barrier function can be tuned by multiplying it
by a positive coefficient μ. The perturbed version of problem (5) for the n-th step of
the discrete LJKO is

inf
(ρ,F)

sup
φ

τ n
∑

σ∈Σ

(Fσ )2

2(RΣ(ρ))σ
mσdσ +

∑

K∈T
(ρn−1

K − ρK )φKmK+

+τ n
∑

σ∈Σ

FK ,σ

(φL − φK

dσ

)
mσdσ +

∑

K∈T
E(ρK )mK − μ

∑

K

log(ρK )mK ,

(7)

whose optimality conditions now are

⎧
⎪⎨

⎪⎩

(ρn
K − ρn−1

K )mK − τ n
∑

σ∈ΣK
(RΣ(ρn))σ (

φn
L−φn

K
dσ

)mσ = 0,

(φn
K − E ′(ρn

K ) + sK )mK + τ n

2 (RT ((
φn
L−φn

K
dσ

)2))KmK = 0,

sKρK = μ,

∀K ∈ T , (8)

where the condition FK ,σ = −(RΣ(ρ))σ (
φL−φK

dσ
) has been substituted again. System

(8) can be seen as a perturbation of (6), where ρK and sK = −λK are automatically
forced to be positive and the orthogonality is relaxed. For small value ofμ it provides
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an approximation of the solution (ρ,φ) to problem (6). However, the smaller the
parameter the more difficult it is to solve problem (8) with a Newton scheme. The
idea is then to construct a sequence of solutions to problem (8) for a sequence of
coefficients μ decreasing to zero, using the solution corresponding to the previous
value ofμ as starting point for the Newton scheme. In this way the solver approaches
the solution to (6) from the interior of the region of feasibility: the density is always
positive. With reference to Algorithm 1, ε0 and εμ are the tolerances for the solution
to (6) and (8) respectively, δ0 and δμ denoting a norm of the residues of the two
systems of optimality conditions. In practice, it is not necessary to find for each
value of μ a precise solution, being interested only in the solution for μ = 0, and
relatively big values can be used. Even doing only one Newton step, that is taking
εμ = ∞, can be sufficient and extremely effective. Moreover, the behavior of the
solver strongly depends also on the initial value μ0 and the decay ratio θ ∈ (0, 1),
the difficulty to tune these parameters being its major drawback. We refer to [8] and
references therein for more details on interior point methods.

Algorithm 1: Interior point method

Given the starting point x0 and the parameters μ0 > 0, θ ∈ (0, 1), ε0 > 0, εμ > 0 ;
while δ0 > ε0 do

μ = θμ ;
while δμ > εμ do

compute Newton direction d for (8) and a step length α;
update: x = x + αd ;

end
end

As a final remark, note that solving the gradient flow with respect to an energy
involving the entropy, i.e. E(ρ) = ρ log(ρ), automatically prevents the density from
becoming negative. However, one cannot control the magnitude of the energy and
therefore the interior point method, even if not strictly necessary, helps to get a more
robust solver with respect to the Newton scheme. In fact, possible negative values
for the density during the iterations of the algorithm could make it diverge, since the
problem loses its convexity. The situation is similar when using the upwind technique
to enforce the positivity.

3 Numerical Results

One of the most classical example of problems that exhibit a gradient flow structure
is the Fokker-Planck equation:

{
∂tρ = 	ρ + ∇ · (ρ∇V ) in Ω × [0, T ],
(∇ρ + ρ∇V ) · n = 0 on ∂Ω × [0, T ], (9)
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Table 1 Time-space convergence for the scheme

hm τm εam Rate εbm Rate εcm Rate

0.2986 0.0500 3.9382e−02 / 3.9526e−02 / 3.9157e−02 /

0.1493 0.0125 1.0345e−02 1.9286 1.0446e−02 1.9199 1.0246e−02 1.9342

0.0747 0.0031 2.6019e−03 1.9913 2.6367e−03 1.9861 2.5684e−03 1.9962

0.0373 0.0008 6.5090e−04 1.9990 6.6049e−04 1.9971 6.4170e−04 2.0009

0.0187 0.0002 1.6269e−04 2.0003 1.6519e−04 1.9994 1.6033e−04 2.0009
aWeights ( 12 , 1

2 ). bWeights ( dLdσ
, dK
dσ

). cWeights ( dKdσ
, dL
dσ

).

complemented with a positive initial condition, with V ∈ W 1,∞(Ω) a Lipschitz
continuous exterior potential. Equation (9) has been one of the first equations to
be recasted as a gradient flow in the Wasserstein space with respect to the energy
E (ρ) = ∫

Ω
(ρ log(ρ) + ρV )dx [6]. This example gives us the possibility to test the

convergence of scheme (4). Consider indeed the density ρs(x, t) = exp(−(π2 +
g2

4 )t + g
2 x)(π cos(πx) + g

2 sin(πx)) + π exp(g(x − 1
2 )), which is a solution to (9)

in the domain [0, 1]2 × [0, 0.25]with potential V (x) = −gx . Consider a sequence of
meshes

(
Tm,Σm, (xK )K∈Tm

)
with decreasing mesh size hm = hTm , and a sequence

of decreasing time steps τm such that (
τm+1

τm
) = (

hm+1

hm
)2. We solve problem (9) with

scheme (4) using this sequence ofmeshes and using as discrete initial conditionρ0
K =

ρs(xK , 0). For each solution we compute the mesh-dependent L1((0, T ); L1(Ω))

error εm = ∑
n τm

∑
K∈Tm

|ρn
K − ρs(xK , nτm)|mK . In Table1 are listed the errors

for each m together with the convergence rate
√

εm−1

εm
for the three different weighted

arithmetic averages. The scheme is first order accurate in time and second order
accurate in space.

As second application, we consider a gradient flow of an energy which is not
singular in zero. On the domainΩ = [−1.5, 1.5]2, for a time interval [0, T ], consider
the porous medium equation,

∂tρ = 	ργ + ∇ · (ρ∇V )

which has been proven in [7] to be a gradient flow in the Wasserstein space with
respect to the energy E (ρ) = ∫

Ω
1

γ−1ρ
γ + ρV , for a given γ strictly greater than

one. We consider the confining potential V (x) = 1
2 ||x||22 which forces the density

to concentrate at the origin. In (1) the evolution of an initial cross shaped density is
shown for the case γ = 2. As expected, the solution converges towards the Barenblatt

profile ρ∞(x) = max(( M
2π )

γ−1
γ − γ−1

2γ ||x||2, 0) 1
γ−1 , with M being the total mass of the

initial condition (Figs. 1, 2).
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Fig. 1 Convergence towards the Barenblatt solution (γ = 2). Time steps t = 0, t = 0.1 and t = 0.7

Fig. 2 Exponential decay profile of the discrete energy
∑

K∈T E(ρK )mK (black), with the three
values corresponding to Fig. 1, compared to the value of the energy for the Barenblatt equilibrium
solution (red)
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Free Energy Diminishing Discretization
of Darcy-Forchheimer Flow in
Poroelastic Media

Jakub W. Both, Jan M. Nordbotten, and Florin A. Radu

Abstract In this paper, we develop a discretization for the non-linear coupledmodel
of classical Darcy-Forchheimer flow in deformable porous media, an extension of
the quasi-static Biot equations. The continuous model exhibits a generalized gra-
dient flow structure, identifying the dissipative character of the physical system.
The considered mixed finite element discretization is compatible with this structure,
which gives access to a simple proof for the existence, uniqueness, and stability of dis-
crete approximations. Moreover, still within the framework, the discretization allows
for the development of finite volume type discretizations by lumping or numerical
quadrature, reducing the computational cost of the numerical solution.

Keywords Biot · Poroelasticity · Darcy-Forchheimer · Gradient flow · Mixed
finite element method · Multipoint flux approximation · Mass lumping

MSC (2010) 65M08 · 65N12 · 65N30 · 76S05

1 Introduction

Flow in deformable porous media has been of increased interest in the recent past.
Applications of societal and industrial relevance range from geotechnical to biomedi-
cal engineering, including the consolidation of the subsurface due to fluid production
and the deformation of fluid-filled soft tissue.

Regarding slow viscous flow in linearly poroelastic media, the quasi-static lin-
ear Biot equations are often chosen as mathematical model, essentially coupling
equations of linear elasticity and single-phase flow. For applications with signifi-
cantly faster flow rates, Darcy’s law is not further applicable. Instead the classical
non-linear Darcy-Forchheimer law [8] is often utilized, cf., e.g., [2, 13].
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In this paper, we study the discretization of Darcy-Forchheimer flow in poroe-
lastic media. The basis for this will be a (mixed) finite element method—widely
used in the context of flow in porous media since being locally mass conservative.
However, typically it suffers from larger algebraic systems to be solved, compared to,
e.g., cell-centered finite volume discretizations. To circumvent this, for Darcy flow in
non-deformable media, mass lumping [3] or approximate numerical quadrature tech-
niques resulting in the (symmetric) multipoint flux mixed finite element method [17]
have been developed allowing for local discrete flux pressure relationships. These are
related to finite volume schemes employing respectively two-point and multipoint
flux approximations [3, 11, 12].Moreover, the resulting linear systems involve block-
diagonalmassmatrices, which allow for efficient solution. Recently, these techniques
have been also applied in the context of deformable media [1, 10]. Regarding Darcy-
Forchheimer flow in non-deformable media, especially the mixed finite element
method on unstructured meshes [9, 14] and (similar to the above efforts) a block-
centered finite difference method on rectangular grids [16] have been developed and
studied in more detail including their well-posedness and theoretical convergence.

Motivated by all these advances, we propose a combination of themixed finite ele-
mentmethod and similar localization techniques in the context ofDarcy-Forchheimer
flow indeformablemedia.Weparticularly emphasize the inherent gradient flowstruc-
ture of the continuous model, quantifying the dissipation of free energy over time.
By construction, the numerical schemes considered here mimic a similar structure.
Remarkably, it gives access to simple well-posedness and stability analyses of the
numerical schemes.

The outline of the remaining paper is as follows. InSect. 2, themathematicalmodel
is described. In Sect. 3, the numerical method is presented, for which theoretical
properties are discussed in Sect. 4.

Not part of this paper, but in the future, a numerical study will be conducted with
focus on assessing the potential accuracy loss of the localization techniques, and
efficiency gain regarding the algebraic solution. In particular, the exploitation of the
block-diagonal nature of the flux mass term will be combined with robust splitting
schemes as in [5, 6], benefiting from the linear character of the elasticity equations.

2 Model for Darcy-Forchheimer Flow in Poroelastic Media

The mathematical model couples the balance of linear momentum and the conserva-
tion of mass for a poroelastic medium, here modeled as an open, connected domain
Ω ⊂ R

d , d ∈ {2, 3}. In addition, constitutive relations are considered: the medium is
assumed to be linearly elastic and fully saturated with a slightly compressible fluid,
with fluid flow described by the classical Darcy-Forchheimer law [8]. The solid-
fluid interaction is governed by the so-called effective stress. Finally, the system of
governing equations reads
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−∇ · (Cε(u) − αp I) = f on Ω, (1a)

∂t

(
1

M
p + α∇ · u

)
+ ∇ · q = 0 on Ω, (1b)

μκ−1q + ρβ|q|q = −∇p on Ω, (1c)

where the primal variables are the displacement u : Ω → R
d , the fluid pressure p :

Ω → R, and the volumetric flux q : Ω → R
d . Moreover, C denotes the (symmetric

positive definite) fourth-order stiffness tensor, ε(·) denotes the linear strain tensor,
α ∈ (0, 1] is the Biot coefficient, f is a an external force, ∂t denotes the derivative in
time, M ≥ 0 is the modulus accounting for the compressibility of the fluid and solid
grains,μ > 0 is the fluid viscosity, κ is the (symmetric positive definite) permeability
tensor, ρ > 0 is the reference fluid density, and β ≥ 0 is the Forchheimer index; the
case β = 0 simplifies to Darcy’s law. Ultimately, (1c) can be viewed as non-linear
Darcy law with a direction dependent mobility.

For the sake of brevity, all material parameters are assumed to be constant. Fur-
thermore, no external body or surface sources for the volume content are considered.
However, we note that corresponding extensions are possible.

The system is closed with initial conditions θ(0) = θ◦ for the volume content
θ = 1

M p + α∇ · u as well as boundary conditions for the displacement and flux.
Here, for simplicity we choose u|∂Ω

= 0 and (q · n)|∂Ω
= 0, where n denotes the

outward normal on ∂Ω .

2.1 The Gradient Flow Structure of the Model

As presented in [6], theweak formulation ofmodel (1) exhibits a generalized gradient
flow structure, in the sense of the lecture notes by Peletier [15]. Short, one can
define the standard poroelasticHelmholtz free energy and a non-quadratic dissipation
potential extending the classical potential corresponding to linear Darcy flow

E (u, θ) = 1

2
〈Cε(u), ε(u)〉 + M

2
‖θ − α∇ · u‖2L2(Ω) − 〈 f , u〉 ,

D(q) = μ

2

〈
κ−1q, q

〉 + βρ

3
‖q‖3L3(Ω) ,

with ‖ · ‖L p(Ω) and 〈·, ·〉 denoting the standard L p(Ω) norm and L2(Ω) scalar prod-
uct, respectively. In the following, H 1(Ω)d denotes the Sobolev space consisting of
L2(Ω)d functionswithweak derivatives in L2(Ω)d×d , and H(div;Ω) requires solely
the divergence to be in L2(Ω). Moreover, let δ

δ(·) denote the Fréchet differential.
In the absence of dissipation of energy due to solid deformation, weak solutions

to (1) are alternatively characterized by the degenerate generalized gradient flow
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u = arg min
v∈H 1(Ω)d

E (v, θ),

(∂tθ, q) = arg min
(s,w)∈L2(Ω)×L3(Ω)d∩H(div;Ω)

{
D(w) +

〈
δE

δθ
(u, θ), s

〉}

subj. to

⎧⎨
⎩

v = 0 on ∂Ω,

s + ∇ · w = 0, on Ω,

w · n = 0 on ∂Ω,

such that the flux q governs ∂tθ . The governing equations (1) can be recovered as the
optimality conditions. The fluid pressure p enters as a Lagrange variable associated
to mass conservation, as well as a dual variable p = δE

δθ
(u, θ) and p = δE

δ∇·u (u, θ).
For sufficiently smooth solutions, employing the chain rule and the convexity of

D yield the following energy–dissipation relation

d

dt
E (u, θ) =

〈
δE (u, θ)

δ(u, θ)
, (∂tu, ∂tθ)

〉
= −〈p,∇ · q〉 = −

〈
δD

δq
(q), q

〉
≤ −D(q).

Remark 1 (Incompressible case) In the incompressible case, i.e., M = ∞, the
energy degenerates and becomes merely sub-differentiable, as then (here for f = 0)

E (u, θ) = 1

2
〈Cε(u), ε(u)〉 + χ

(
‖θ − α∇ · u‖L2(Ω)

)
, with χ(p) =

{
0, p = 0,
∞, else.

3 Numerical Discretization

We present discretizations mimicking the free energy dissipating character of the
continuous problem formulation. Focussing on the non-linear character of the prob-
lem, we limit the discussion to equidistant time-stepping and simplicial grids.

3.1 Semi-discrete Approximation in Variational Form

For the discretization in time, we utilize the minimizing movement scheme, which
for (1) is equivalent with the implicit Euler method. Given a time interval of interest
[0, T ], with T > 0 denoting the final time, we consider an equidistant partition
0 = t0 < t1 < . . . < tN = T with time step size τ . Furthermore, let J (u, θ, q) :=
τD(q) + E (u, θ). The discretization at time step n ≥ 1 reads: given θn−1 ∈ L2(Ω),
find (un, θn, qn) ∈ H 1(Ω)d × L2(Ω) × L3(Ω)d ∩ H(div;Ω) satisfying
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(un, θn, qn) = arg min
(u,θ,q)

J (u, θ, q), subj. to

⎧⎨
⎩

u = 0, on ∂Ω,
θ−θn−1

τ
+ ∇ · q = 0, on Ω,

q · n = 0, on ∂Ω.

3.2 Fully Discrete Approximation in Variational Form

For the discretization in space, we utilize the (mixed) finite element method with
the possibility for reduced computational complexity using lumping or appropriate
numerical quadrature. Starting with the semi-discrete formulation, we introduce a
mesh-dependent version Jh of the original objective function J for this.

The mesh. Assume the physical domain Ω is polygonal and can be partitioned by
simplices. Let Th denote such a simplicial mesh with elements K ∈ Th and faces
e ∈ Fh ; let {r i }i=1,..,d+1 denote the corners of K ∈ Th .

The finite element spaces. We consider classical conforming approximation spaces
(including essential boundary conditions): V h , piecewise linear elements for the dis-
placement;Qh , piecewise constant elements for the fluid content and the fluid pres-
sure; and either W RT

h , lowest order Raviart-Thomas, or W BDM
h , lowest order Brezzi-

Douglas-Marini elements, for the flux, depending on the subsequent choice forJh .
If the particular choice is not crucial, we write W h and allow for W RT

h and W BDM
h .

For detailed introduction of the finite element spaces, we refer to [4].

Objective function for MFEM. Instead of pursuing the Galerkin method for deriv-
ing fully discrete approximations, a mesh-dependent approximation of the objective
function J is additionally considered

Jh(uh, θh, qh) := τDh(qh) + Eh(uh, θh).

The canonical mixed finite element discretization of (1) results in particular for

Dh(qh) := D(qh),

Eh(uh, θh) := 1

2
〈Cε(uh), ε(uh)〉 + M

2

∥∥�Q h (θh − α∇ · uh)
∥∥2
L2(Ω)

,

for qh ∈ W h and (uh, θh) ∈ V h × Qh , where �Q h denotes the L2(Ω) projection
onto Qh , allowing for measuring the fluid energy in the ‘units’ of the fluid volume.
In the incompressible case (M = ∞), Eh is defined using an indicator function, as E .

Definition of the method. Given a suitable approximation θ0
h ∈ Qh of the initial

datum θ0 ∈ L2(Ω), the fully discrete approximation at time step n ≥ 1 reads: given
θn−1
h ∈ Qh , find (un

h, θ
n
h , qn

h) ∈ V h × Qh × W h satisfying
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(un
h, θ

n
h , qn

h) = arg min
(uh ,θh ,qh)

τDh(qh) + Eh(uh, θh) (2a)

subj. to |K | (θK − θn−1
K

) + τ

∫
K

∇ · qh dx = 0 ∀K ∈ Th . (2b)

Saddle point formulation. The optimality conditions corresponding to (2) are
obtained by introducing a Lagrange multiplier, which eventually can be identified as
the discrete fluid pressure ph ∈ Qh . We skip the calculations and directly present the
final discrete system to be solved at time step n ≥ 1: given (un−1

h , pn−1
h ) ∈ V h × Qh ,

find (un
h, p

n
h , q

n
h) ∈ V h × Qh × W h satisfying for all test functions (vh,wh) ∈ V h ×

W h and elements K ∈ Th

〈
Cε(un

h), ε(vh)
〉 − α

〈
pnh ,∇ · vh

〉 = 〈 f , vh〉 , (3a)

m(qn
h; qn

h,wh) − 〈
pnh ,∇ · wh

〉 = 0, (3b)

|K |
M

(pnK − pn−1
K ) + α

∫
K

∇ · (un
h − un−1

h ) dx + τ

∫
K

∇ · qn
h dx = 0, (3c)

where the non-linear form is given by m(u; v,w) = ∫
Ω

(
μκ−1 + ρβ|u|I) v · w dx .

The volume content at time step n can be recovered by θn
h = 1

M pnh + α�Q h∇ · un
h .

Localized dissipation potential. One drawback of the above formulation is the non-
local relation between fluxes and pressure gradients. From a computational point of
view, this results in an involved numerical solution. Instead, motivated by efforts for
linear problems, we consider two choices: (i) mass lumping as in [3, 10] resulting in
a two-point flux type approximation for qh ∈ W RT

h

DML
h (qh) =

∑
e∈F h

ωe

[
μ

2κ

∣∣∣∣
∫
e
qh · ne ds

∣∣∣∣
2

+ β

3

∣∣∣∣
∫
e
qh · ne ds

∣∣∣∣
3
]

where ne is a uniquely defined normal on e ∈ Fh andωe is a suitableweight involving
distances and measures of geometric entities [3]; and (ii) trapezoidal quadrature as
in [17] resulting in a multipoint flux type approximation for qh ∈ W BDM

h

DQ
h (qh) =

∑
K∈T h

|K |
d + 1

d+1∑
i=1

[
μ

2
κ |−1

K (r i )qh |K (r i ) · qh |K (r i ) + βρ

3

∣∣qh |K (r i )
∣∣3] .

Lumping is only a sufficient approximation for scalar permeabilities [3]. Also one
has to be aware of the fact that only the normal component of the flux contributes
here, which is inconsistent with the constitutive Darcy-Forchheimer law.

The corresponding optimality conditions read as (3) butwith an approximationmh

of m, which after suitable linearization results in a block-diagonal matrix. Thereby,
fluxes may be explicitly represented in terms of pressure values at cell centers. This
finally enables the development of efficient numerical solvers.
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4 Existence, Uniqueness, and Stability

The scheme (3) satisfies local mass conservation at nonlinear and linearized level—
independent of the particular choices forW h andDh . In the following, we addition-
ally emphasize a free energy dissipating character, naturally deduced from the inher-
ited minimization structure (2). This structure in particular also guarantees unique
solutions to (3). For the main theoretical result, we require consistency of the original
and approximate dissipation potentials; motivated by [3, 17], we expect that there
exists a broad class of grids and parameters for which the following holds.

Assumption 1 There exist constants 0 < c ≤ C < ∞ such that cD(qh) ≤ Dh(qh)

≤ C D(qh) for all qh ∈ W h .

Theorem 1 (Existence, uniqueness and stability) Let Dh satisfy Assumption 1. Let
M < ∞ and the remaining material parameters be as introduced in Sect.2. In addi-
tion, letm0

h ∈ Qh and u0
h ∈ V h, then for all time steps n≥1, the numerical scheme (3)

has a unique solution (un
h, p

n
h , q

n
h) ∈ V h × Qh × W h. It furthermore satisfies the

following discrete energy dissipation inequality: for all N > 0 it holds

〈
Cε(uN

h ), ε(uN
h )

〉 + 1

M

∥∥pN
h

∥∥2 +
N∑

n=0

τDh(qn
h) ≤ 〈

Cε(u0
h), ε(u0

h)
〉 + 1

M

∥∥p0h∥∥2
.

Proof The proof follows by induction with the induction step for n ≥ 1 reading as
follows. The existence and uniqueness result follows from classical convex analy-
sis [7] applied to the minimization formulation (2).

The discrete function spaces V h ,Qh ,W h are reflexive Banach spaces, equipped
with natural norms: the H 1(Ω) semi-norm ‖ · ‖V := | · |H 1(Ω) on V h , the L2(Ω)

norm ‖ · ‖Q := ‖ · ‖L2(Ω) forQh , and ‖ · ‖W on W h , defined by

‖wh‖W := ‖wh‖L2(Ω) + β‖wh‖L3(Ω) + ‖∇ · wh‖L2(Ω), wh ∈ W h .

The objective function Jh is strictly convex on V h × Qh × W h , which follows
directly from the definition and Assumption 1 ensuring the definiteness of Dh ; we
emphasize that ‖θh‖2 can be isolated by hiding the coupling term in the elastic energy.
Furthermore, Jh is lower semi-continuous, and proper on

C := {
(uh, θh, qh) ∈ V h × Qh × W h

∣∣ (2b) is satisfied }

since Jh(0, θn−1
h , 0) < ∞ with (0, θn−1

h , 0) ∈ C . The feasible set C is by that
not only convex and closed, but also non-empty. Lastly, again under Assumption
1, Jh is coercive over C ; for this, we particularly note that (uh, ph, qh) ∈ C
with ‖∇ · qh‖L2(Ω) → ∞ implies ‖θh‖L2(Ω) → ∞, which eventually results in
J (uh, θh, qh) → ∞. Ultimately, existence and uniqueness of a solution
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(un
h, θ

n
h , qn

h) ∈ C to (2) follows from classical convex analysis [7]. By comparing the
solution with the feasible competitor (un−1

h , θn−1
h , 0) ∈ C , stability can be concluded

Jh(un
h, θ

n
h , qn

h) = Eh(un
h, θ

n
h ) + τDh(qn

h) ≤ Eh(u
n−1
h , θn−1

h ) = Jh(0, θn−1
h , 0).

Existence, uniqueness, and stability of a solution (un
h, p

n
h , q

n
h) ∈ V h × Qh × W h

to the saddle point formulation (3) then follows from the equivalence of (2) and (3)
and the identification θn

h = 1
M pnh + α�Q h∇ · un

h . The equivalence follows due to the
well-known inf-sup stability of W h × Qh [4].

Remark 2 (Incompressible case) In the case of an incompressible medium, i.e.,
M = ∞, both problem formulations (2) (modified by the indicator function, cf.
Rem. 1) and (3) are still equivalent, if also V h × Qh is inf-sup stable wrt. the diver-
gence operator. This is not the case for V h as defined above [4].

Remark 3 (Convergence) The convergence of the numerical approximation towards
the continuous solution for decreasing mesh and time step size is a delicate subject—
in particular regarding the localization techniques. For instance, mass lumping (sim-
ilar to linear TPFA) is well-known to be prone for errors even in the linear case, e.g.,
for anisotropic permeability. A further study will be conducted in the future.
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Energy Stable Discretization
for Two-Phase Porous Media Flows

Clément Cancès and Flore Nabet

Abstract We propose a P1 finite-element scheme with mass-lumping for a model
of two incompressible and immiscible phases in a porous media flow. We prove the
dissipation of the free energy and the existence of a solution to the nonlinear scheme.
We also present numerical simulations to illustrate the behavior of the scheme.

Keywords Two-phase porous media flows · Energy stable finite-elements

MSC (2010) 65M60 · 65M12 · 35K65

1 Immiscible Two-Phase Flows in Porous Media

We are interested in the numerical approximations of the equations governing an
immiscible incompressible two-phase flow in a porous medium. Let Ω ⊂ R

d (d =
2, 3) be an open bounded polyhedral subset with Lipschitz boundary condition and
let tf > 0 be an arbitrary finite time horizon. Then the conservation of the wetting
(subscript w) and non-wetting phases (subscript n) are given by

φ∂t sα − ∇ · (ηα(sα)Λ∇ pα) = qα(sα), α ∈ {w, n}, (1)

where the unknowns are the phase saturations sα , which satisfy

sn + sw = 1, (2)
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and the phase pressures pα . The porosity φ ∈ (0, 1) is given, as well as the intrin-
sic permeability Λ, which is assumed to be symmetric and uniformly elliptic. The
mobility ηα : [0, 1] → R is assumed to be continuous and strictly increasing, with
ηα(0) = 0 and ηα(s) > 0 if s > 0. They are extended to the whole R by ηα(s) = 0
if s < 0 and ηα(s) = ηα(1) if s > 1. The sources qα are such that

qα(x, sα) = qinj(x)
ηα(cα)

ηw(cw) + ηn(cn)
− qsink(x)

ηα(sα)

ηw(sw) + ηn(sn)
, (3)

where cw ∈ (0, 1] and cn = 1 − cw is the prescribed composition of the injected
mixture, and where qinj, qsink ∈ L∞(Ω) are nonnegative, bounded, and such that∫
Ω
qinj = ∫

Ω
qsink. The phase pressures are linked by the capillary pressure relation

pn − pw = γ (sn), (4)

where γ ∈ L1(0, 1) is strictly increasing, nonnegative, and blows up as sn tends to
1. This function is extended for s < 0 by γ (s) = γ (0) + 2s. We further assume
that s �→ ηw(1 − s)γ (s) ∈ L∞(0, 1) and s �→ ηw(1 − s)γ ′(s) ∈ L1(0, 1). These
assumptions are satisfied by the usual models of the literature (see for instance [1]).
The system is complemented with no-flux boundary conditions and initial conditions
s iniα ∈ L∞(Ω; [0, 1]) that are compatible with (2). Note that since γ ∈ L1(0, 1), then
Γ : s �→ ∫ s

0 γ (a)da is bounded on [0, 1]. The phase pressures being only defined
up to a constant, we enforce additionally that

∫
Ω
pn = 0.

Multiplying (1) by pα , summing over α ∈ {n,w}, integrating over Ω , and using
(2) and (4) yields

d

dt

∫

Ω

φΓ (sn) +
∫

Ω

∑

α∈{n,w}
ηα(sα)Λ∇ pα · ∇ pα =

∫

Ω

∑

α∈{n,w}
qα(sα)pα. (5)

Following [6], we define the global pressure P by P = pn − r(sn) with r : sn �→∫ sn
0

ηw(1−a)

ηn(a)+ηw(1−a)
γ ′(a)da. The definition of P yields

∑

α

ηα(sα)|∇ pα|2 = (ηn(sn) + ηw(sw))|∇P|2 + ηn(sn)ηw(sw)

ηn(sn) + ηw(sw)
|∇γ (sn)|2. (6)

In view of the particular form (3) of the source terms,

∑

α∈{n,w}
qα(sα)pα ≤ (

qinj − qsink
)
(P + r(sn)) + qsinkk(sn), (7)

with k(sn) = ηw(1−sn)
ηw(1−sn)+ηn(sn)

γ (sn). Since ηw(1 − ·)γ ′ ∈ L1(0, 1) and ηw(1 − ·)γ ∈
L∞(0, 1), both r and k are bounded on (0, 1). Moreover, the extensions outside
(0, 1) of ηα and γ ensure that for all ε > 0, there exists Cε such that
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|s| + |k(s)| + |r(s)| ≤ εΓ (s) + Cε, ∀s ∈ (−∞, 1). (8)

Combining (7) with (6) in (5) together with the uniform ellipticity of Λ, ηn(s) +
ηw(1 − s) ≥ δ > 0 for all s, and (8) we get that

d

dt

∫

Ω

φΓ (sn) +
∫

Ω

⎛

⎝|∇P|2 +
∑

α∈{n,w}
ηα(sα)|∇ pα|2

⎞

⎠ ≤ C. (9)

This estimate is enough to establish the existence of aweak solution. In this paper, our
goal is to show that this stability is still encoded in very natural numerical schemes.
For the sake of simplicity, we present our analysis in the framework of P1 finite-
elements with mass-lumping, but our approach can be extended to a wide family
of schemes having the structure highlighted in [3, Sect. 3]. We show here how to
transpose estimate (9) to the discrete setting and to infer the existence of discrete
solutions therefrom. A full convergence study will be carried out in a forthcoming
contribution. While deeply inspired from [7], the goal of this paper is to exploit more
finely the energy estimate which allows to relax some stringent conditions on the
anisotropy, on the mesh and the non-linearities presented in [7].

2 An Energy Stable Finite-Element Scheme

We study the problem (1)–(4) using a P1 conforming finite-element scheme with
mass-lumping for the space discretization. Let T be a conforming simplicial dis-
cretization ofΩ .Wedenote by T ∈ T a simplex,VT is the set of all the vertices a and
VT ⊂ VT the set of the (d + 1) vertices a0, . . . , ad of the simplex T . We also denote
by Vh = {uh ∈ C(Ω) : uh |T is affine for all T ∈ T } the usual conforming P1 finite-
element space corresponding to themeshT and by (ϕa)a∈VT the basis of Vh . In order
to deal with the mass-lumping procedure, for any vertex a ∈ VT , we define the set
sa, the boundary ∂sa of which being defined by the hyperplanes joining the centers of
mass of the simplices, edges (and faces if d = 3) sharing a as a vertex. We can now
define the functional space Xh := {u ∈ L∞(Ω) : u|sa is constant for all a ∈ VT },
and the linearmappingsπX : C(Ω) → Xh andπV : C(Ω) → Vh byπu(a) = u(a),
for any a ∈ VT , for any u ∈ C(Ω),  = X, V . In order to lighten the notations, for
any uh ∈ Vh we write πXuh = uh . We will use the following Poincaré inequality
that can be established as in [2]: there exist C1, C2 > 0 depending only on the mesh
regularity such that for any uh ∈ Vh ,

∥
∥
∥
∥uh − 1

|Ω|
∫

Ω

uh

∥
∥
∥
∥
L2(Ω)

≤ C1

∥
∥
∥
∥uh − 1

|Ω|
∫

Ω

uh

∥
∥
∥
∥
L2(Ω)

≤ C2‖∇uh‖L2(Ω). (10)

Before detailing the numerical scheme, we have to define the discrete tensor field
Λh : Ω → R

d×d almost everywhere by Λh(x) := ΛT := 1
|T |

∫
T Λ if x ∈ T . From
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there, we define the matrix AT := (αT
i, j )1≤i, j≤d ∈ R

d×d by

αT
i, j = αT

j,i :=
∫

T
ΛT∇ϕai · ∇ϕa j

and for any uh, vh ∈ Vh one has,

∫

T
ΛT∇uh · ∇vh =

⎛

⎝
va1 − va0

. . .

vad − va0

⎞

⎠ · AT

⎛

⎝
ua1 − ua0

. . .

uad − ua0

⎞

⎠ . (11)

Following [4], we can prove that there exists C3 > 0 depending on the regularity of
the mesh and on the anisotropy ratio of Λ and C4 > 0 depending, in addition, on d
such that for any T ∈ T the matrix AT satisfies

cond2(AT ) ≤ C3 and
d∑

i=1

⎛

⎝
d∑

j=1

|αT
i, j |

⎞

⎠ (uai )
2 ≤ C4u · ATu, ∀u = (uai ) ∈ R

d .

(12)
We are now in a position to give the numerical scheme using a backward Euler

scheme for the time discretization. Let (tn)n=0,...,N be a partition of the interval
[0, tf ] and for n = 1, . . . , N we denote by τn = tn − tn−1 the time step. We define
the discrete initial data by s0α,h := ∑

a∈VT
s0α,aϕa ∈ Vh with s0α,a = 1

|sa|
∫
sa
s iniα .

Let sn−1
α ∈ Vh be given, we search for snα, pnα ∈ Vh such that for any vα,h ∈ Vh

with α = (n,w) one has,

φ

∫

Ω

snα,h − sn−1
α,h

τn
vα,h +

∫

Ω

ηn
α,hΛh∇ pnα,h · ∇vα,h =

∫

Ω

qα(snα,h)vα,h, (13a)

snn,h + snw,h = 1, (13b)

pnn,h − pnw,h = γ n
n,h, (13c)

∫

Ω

pnn,h = 0. (13d)

We have denoted by ηn
α,h = πVη(snα,h), γ

n
n,h = πV γ (snn,h) and,

qα(snα,h) = q inj
ηα(cα)

ηw(cw) + ηn(cn)
− qsink

ηα(snα,h)

ηw(snw,h) + ηn(s
n
n,h)

.

Mimicking the continuous case, we define the discrete global pressure and we
can obtain the discrete counterpart of (6).

Proposition 1 Let snα,h, p
n
α,h ∈ Vh be a solution to the scheme (13). Then there exists

C5 > 0 depending on the regularity of the mesh, on the anisotropy ratio of Λ, on δ

and d such that
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∫

Ω

Λh∇Ph · ∇Ph ≤ C5

(∫

Ω

ηn
n,hΛh∇ pnn,h · ∇ pnn,h +

∫

Ω

ηn
w,hΛh∇ pnw,h · ∇ pnw,h

)

,

where Pn
h = pnn,h − πV r(snn,h) ∈ Vh.

Proof We define the functions

fn(s) = ηn(s)

ηn(s) + ηw(1 − s)
and fw(s) = ηw(1 − s)

ηn(s) + ηw(1 − s)
.

Then, noting that fn + fw = 1 and using Eq. (13c), for any T ∈ T and for any
vertices a0, ai ∈ VT , there exists sni ∈ [min(a0, ai ),max(a0, ai )] such that,

Pn
a0 − Pn

ai = fn(s
n
i )

(
pnn,a0 − pnn,ai

) − fw(sni )
(
pnw,a0 − pnw,ai

)
.

Since ηα is strictly increasing, for any T ∈ T with a0, . . . , ad as vertices

ηn
α,T := 1

d + 1

d∑

i=0

ηα(snα,ai ) ≥ 1

d + 1
max
x∈T ηα(x) ≥ 1

d + 1
ηα(sni ). (14)

Thus using that fn, fw ≤ 1 and ηn(s) + ηw(1 − s) ≥ δ > 0 we obtain,

δ

2(d + 1)

d∑

i=0

∣
∣Pn

a0 − Pn
ai

∣
∣2 ≤ ηn

n,T

d∑

i=0

∣
∣pnn,a0 − pnn,ai

∣
∣2 + ηn

w,T

d∑

i=0

∣
∣pnw,a0 − pnw,ai

∣
∣2 .

Since for any v1, v2,w satisfying |v1|2 + |v2|2 ≥ cond2(AT )|w|2 one has

v1 · AT v1 + v2 · AT v2 ≥ w · ATw,

we use equality (11) associated with the fact that the condition number of AT is
bounded, cf. (12). Then summing the resulting estimate over T ∈ T and noting that
the Lagrange vertex-quadrature formula is exact on P1 (see [5, Remark 2.2]) we
obtain the claim. �
Proposition 2 Let sn−1

α,h ∈ Vh be given and snα, pnα ∈ Vh be a solution to the
scheme (13). There exists C6 > 0 depending on the data of the continuous prob-
lem but neither on the mesh T or nor the time step τn such that,

φ

∫

Ω

Γ (snn,h) + τn
∑

α∈{n,w}

∫

Ω

ηn
α,hΛh∇ pnα,h · ∇ pnα,h + τn

∫

Ω

∇Pn
h · ∇Pn

h

≤ C6

(

1 + φ

∫

Ω

Γ (sn−1
n,h )

)

.
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Proof Let us choose vα,h = pnα,h as test function in Eq. (13a) and then add the
resulting equations. Then, since Γ is convex, thanks to relation (13c) we obtain

φ

∫

Ω

Γ (snn,h) +
∑

α∈{n,w}
τn

∫

Ω

ηn
α,hΛh∇ pnα,h · ∇ pnα,h

≤ φ

∫

Ω

Γ (sn−1
n,h ) + τn

∫

Ω

∑

α∈{n,w}
qα(snα,h)p

n
α,h . (15)

As for the continuous case, one has

∑

α∈{n,w}
qα(snα,h)p

n
α,h ≤ (

q inj − qsink

) (
P
n
h + r(snn,h)

)
+ qsinkk(s

n
n,h). (16)

Using the definition of the discrete global pressure Pn
h and Eq. (13d), combined with

the discrete Poincaré inequality (10) and (8) give

‖Pn
h‖L1(Ω) ≤ C2|Ω|1/2‖∇Pn

h ‖L2(Ω) +
∫

Ω

∣
∣r(snn,h)

∣
∣

≤ ε‖∇Pn
h ‖2L2(Ω) + ε

∥
∥Γ (snn,h)

∥
∥
L1(Ω)

+ Cε. (17)

Since qinj, qsink ∈ L∞(Ω), the use of the above inequality and of (8) in (16) leads to

∫

Ω

∑

α∈{n,w}
qα(snα,h)p

n
α,h ≤ ε‖∇Pn

h ‖2L2(Ω) + ε
∥
∥Γ (snn,h)

∥
∥
L1(Ω)

+ Cε (18)

whatever ε > 0. Using (18) together with Proposition 1 in (15) provides the expected
bound. �

Thanks to Eqs. (13b) and (13c) we see that the saturations and the pressures of
the wetting and non-wetting phases are linked. Thus we can choose the pressure of
the wetting phase and the capillary pressure as main unknowns. Choosing vα,h = ϕa

as test functions in Eq. (13a) we can rewrite the scheme (13) as a nonlinear system
of 2#VT algebraic equationsF n((γ (snn,a), p

n
w,a)a∈VT ) = 0. Since γ (1) = +∞, the

functionF n is continuous but non uniformly continuous. However, we prove in the
following lemma that this situation is avoided for a solution to the scheme (13).

Proposition 3 Let sn−1
α,h ∈ Vh be such that

∫
Ω
sn−1
w,h ≥ 0 and snα,h, p

n
α,h ∈ Vh be a solu-

tion the scheme (13). There exists στn ,T , ετn ,T > 0 depending on the data of the
continuous problem, T , τn and sn−1

n,h such that,

−στn ,T ≤ snn,a ≤ 1 − ετn ,T , ∀a ∈ VT .

Proof First of all, thanks to the extension of γ for s < 0, the energy estimate given
in Proposition 2 yields

∫
Ω

((snn,h)
−)2 ≤ Cn−1, which provides the lower bound.
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Then we prove a bound on the pressure of the non-wetting phase pn,h . Thanks to
inequality (17) and the definition of Pn

h one has

‖pnn,h‖L1(Ω) ≤ Cn−1 ⇒ |pnn,a| ≤ Cn−1

|sa| , ∀a ∈ VT . (19)

Now, let us note that proving the upper bound is equivalent to proving that there
exists γ �

τn ,T
such that for any a ∈ VT , γ (sn,a) ≤ γ �

τn ,T
.

We choose vw,h = 1 as test function in Eq. (13a), then since qinj is nonnegative,
ηn(s) + ηw(1 − s) ≥ δ > 0 and cw > 0 (and so ηw(cw) > 0), one has

snw,ai ≥ 1

|Ω|
∫

Ω

snw,h >
1

|Ω|
(∫

Ω

sn−1
w,h − τn

δ
‖qsink‖L∞(Ω)

∫

Ω

ηw(snn,h)

)

.

Note that we proved here by induction that
∫
Ω
snw,h ≥ 0. Since s �→ (s + ηw(s))−1 is

Lipschitz, there exists ai ∈ VT such that snw,ai > 0 that is there exists ai ∈ VT such
that snn,ai < 1.

Let af ∈ VT be arbitrary and (aq)q=0,··· , be a path from ai to af . Let q ∈
{0, . . . ,  − 1}. Using the property (12) of the matrix AT and since the quadrature
formula is exact on P1, Proposition 2 gives

∑

T∈T
ηn
w,T

d∑

i=1

⎛

⎝
d∑

j=1

|αT
i, j |

⎞

⎠
(
pnw,h(ai ) − pnw,h(a0)

)2 ≤ C4C6

τn

(

1 + φ

∫

Ω

Γ (sn−1
n,h )

)

.

We assume by induction that there exists ετn ,T > 0 such that snn,aq < 1 − ετn ,T that
is snw,aq > ετn ,T . Thus, if T is a simplex with aq , aq+1 as vertices, the definition (14)

of ηn
w,T yields ηn

w,T ≥ η(snw,aq )

d+1 ≥ ε′
τn ,T

. Thanks to Eqs. (13c) and (19) it follows that,

∣
∣
∣γ (snn,aq ) − γ (snn,aq+1

)

∣
∣
∣ −

∣
∣
∣pnn,aq − pnn,aq+1

∣
∣
∣ ≤ Cτn ,T ⇒ γ (snn,aq+1

) ≤ γ ��
τn ,T

.

We conclude the proof by induction along the path. �
The bound on the saturation associated with the definition (14) on ηn

w,T yields ηn
w,T ≥

ηw(ετn ,T ). This, combined with the Poincaré inequality (10) and since γ (snn,a) ≤
γ (1 − ετn ,T ) for any a ∈ VT , allows us to obtain a discrete bound on the pressure.

Proposition 4 There exists p�
τn ,T

> 0 depending on the data of the continuous prob-

lem, T , τn and sn−1
n,h such that

∫
Ω

|pnw,h |2 ≤ p�
τn ,T

.

Thanks to the material introduced above, it is possible to prove the existence of a
solution to the discrete problem using the topological degree theory.

Theorem 1 (Existence of a solution) Let sn−1
n,h ∈ Vh be given, there exists at least

one solution to the scheme (13).
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(a) t = 0.002 (b) t = 0.01 (c) t = 0.015

Fig. 1 Approximate saturation sn,h in Ω for different times t

3 Numerical Results

We present here numerical results obtained with the software FreeFem [8] in the
two-dimension case by choosing as main unknowns the saturation of the non-wetting
phase and the pressure of the wetting phase. To solve the nonlinear system we use
a Newton method with a stopping criteria on the ∞-norm between two successive
iterations. The computational domain is the unit square Ω = [0, 1]2 and the mesh
is made up of triangles whose mesh size is approximately equal to 0.028. The final
time is tf = 0.015 and the time step is constant τn = 10−3. We choose the porosity

φ = 0.3, the permeability tensor fieldΛ =
(
1 0
0 100

)

and cw = 0.2. For s ∈ [0, 1]we
define the mobility functions by ηn(s) = s2 and ηw(s) = 2s, the capillary pressure
by γ (s) = 1√

1−s
and the source functions are defined by qinj = 40.1[0,0.2]×[0.8,1] and

qsink = 40.1[0.8,1]×[0,0.2]. We plot in Fig. 1 the approximate saturation of the non-
wetting phase.

One observes from the outset of the simulation the influence on the injection well
qinj and of the anisotropy ratio in the longitudinal direction. Moreover we can see
that the maximum does not exceed cn = 0.8.
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A Finite-Volume Scheme
for a Cross-Diffusion Model Arising
from Interacting Many-Particle
Population Systems

Ansgar Jüngel and Antoine Zurek

Abstract A finite-volume scheme for a cross-diffusion model arising from the
mean-field limit of an interacting particle system for multiple population species
is studied. The existence of discrete solutions and a discrete entropy production
inequality is proved. The proof is based on a weighted quadratic entropy that is not
the sum of the entropies of the population species.

Keywords Finite volume scheme · Cross-diffusion system · Entropy method

MSC (2010) 35K51 · 35K55 · 35Q92 · 65M08

1 Introduction

1.1 Presentation of the Model

We consider the following cross-diffusion system:

∂t ui + div
( − δ∇ui − ui∇ pi (u)

) = 0, pi (u) =
n∑

j=1

ai j u j in Ω, t > 0, (1)

where i = 1, . . . , n with n ≥ 2, Ω ⊂ R
2 is an open bounded polygonal domain, and

δ > 0, ai j > 0. We impose the initial and no-flux boundary conditions

ui (0) = u0
i ≥ 0 in Ω, ∇ui · ν = 0 on ∂Ω, t > 0, i = 1, . . . , n, (2)
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where ν is the exterior unit normal vector on ∂Ω . We write u := (u1, . . . , un) and
u0 := (u0

1, . . . , u0
n). Equations (1) are derived from a weakly interacting stochastic

many-particle system in the mean-field limit [7]. It can be seen as a simplification of
the Shigesada–Kawasaki–Teramoto (SKT) population model [12], where the diffu-
sion is reduced to δ∇ui . The two-species system was analyzed first in [3], but up to
now, no analytical or numerical results are available for the n-species system. The
diffusion matrix associated to (1) is neither symmetric nor positive definite but we
show below that system (1) possesses an entropy structure [10] yielding gradient
estimates that are the basis for the numerical analysis.

We assume that A := (ai j ) ∈ R
n×n is positively stable (i.e., all eigenvalues of A

have positive real part) and that the detailed-balance condition holds, i.e., there exist
numbers π1, . . . , πn > 0 such that

πi ai j = π j a ji for all i, j = 1, . . . , n. (3)

We refer to [6] for an interpretation of this condition and its connection to Markov
chains. Note that for the two-species model this condition is always satisfied, just set
π1 = a21 and π2 = a12. Since A1 := diag(π−1

i ) is symmetric, positive definite and
A2 := (πi ai j ) is symmetric, by [11, Prop. 6.1], the number of positive eigenvalues of
A = A1A2 equals that for A2. Thus, A2 has only positive eigenvalues, which together
with the symmetry means that A2 is symmetric, positive definite.

Our (numerical) analysis is based on the observation that system (1) possesses
an entropy structure with a weighted quadratic entropy that has not been observed
before in cross-diffusion systems:

H [u] =
∫

Ω

h(u)dx, where h(u) := 1

2δ

n∑

i, j=1

πi ai j ui u j = 1

2δ
uT A2u,

where (A2)i j = πi ai j . Interestingly, this entropy is not of the form
∑n

i=1 hi (ui ), but
it mixes the species. A formal computation shows that

d H

dt
+

n∑

i, j=1

πi ai j

∫

Ω

∇ui · ∇u j dx + 1

δ

n∑

i=1

πi

∫

Ω

ui |∇ pi (u)|2dx = 0.

With λ > 0 being the smallest eigenvalue of A2, we conclude the following entropy
production inequality:

d H

dt
+ λ

n∑

i=1

∫

Ω

|∇ui |2dx + 1

δ

n∑

i=1

πi

∫

Ω

ui |∇ pi (u)|2dx ≤ 0.

Our aim is to prove this inequality for the finite-volume solutions.
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1.2 The Numerical Scheme

A mesh of Ω is given by a set T of open polygonal control volumes, a set E of
edges, and a set P of points (xK )K∈T . We assume that the mesh is admissible in
the sense of Definition 9.1 in [9]. We distinguish in E the interior edges σ = K |L
and the exterior edges such that E = Eint ∪ Eext. For a given control volume K ∈ T ,
we denote by EK the set of its edges. This set splits into EK = Eint,K ∪ Eext,K . For
any σ ∈ E , there exists at least one cell K ∈ T such that σ ∈ EK and we denote
this cell by Kσ . When σ is an interior edge, σ = K |L , Kσ can be either K or L .
For all σ ∈ E , we define dσ = d(xK , xL) if σ = K |L ∈ Eint and dσ = d(xK , σ ) if
σ ∈ Eext,K . Then the transmissibility coefficient is defined by τσ = m(σ )/dσ for all
σ ∈ E . We assume that the mesh satisfies the following regularity constraint:

∃ξ > 0, ∀K ∈ T , ∀σ ∈ EK : d(xK , σ ) ≥ ξdσ . (4)

The size of the mesh is denoted by Δx = maxK∈T diam(K ). Let NT ∈ N be the
number of time steps, Δt = T/NT be the time step size, and tk = kΔt for k =
0, . . . , NT .

Let HT be the linear space of functions Ω → R which are constant on each
K ∈ T . For v ∈ HT , we introduce

DK ,σ v = vK ,σ − vK , Dσ v = |DK ,σ v| for all K ∈ T , σ ∈ EK ,

where vK ,σ is either vL (σ = K |L) or vK (σ ∈ Eext,K ). Finally,we define the (squared)
discrete H 1 norm

‖v‖21,2,T =
∑

σ∈E
τσ (Dσ v)2 +

∑

K∈T
m(K )v2K .

For all K ∈ T and i = 1, . . . , n, u0
i,K denotes the mean value of u0

i over K . The
finite-volume scheme for (1) reads as

m(K )

Δt
(uk

i,K − uk−1
i,K ) +

∑

σ∈EK

F k
i,K ,σ = 0, i = 1, . . . , n, (5)

F k
i,K ,σ = −τσ

(
δDK ,σ uk

i + uk
i,σ DK ,σ pi (u

k)
)

for all K ∈ T , σ ∈ EK , (6)

with uk = (uk
1, . . . , uk

n) and uk
i,σ := min{uk

i,K , uk
i,K ,σ }. As in [1], this definition of

uk
i,σ allows us to prove the nonnegativity of uk

i,K . This property can be also obtained
by an upwind approximation of ui∇ pi (u) in (1).
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1.3 Main Result

The main result of this work is the existence of nonnegative solutions to scheme
(5)–(6), which preserve the entropy production inequality.

Theorem 1 (Existence of discrete solutions)Assume that u0 ∈ L2(Ω)n with u0
i ≥ 0,

δ > 0, ai j > 0, A is positively stable, and (3) holds. Then there exists a solution
(uk

K )K∈T , k=0,...,NT with uk
K = (uk

1,K , . . . , uk
n,K ) to scheme (5)–(6) satisfying uk

i,K ≥ 0
for all K ∈ T , i = 1, . . . , n, and k = 0, . . . , NT . Moreover, the following discrete
entropy production inequality holds:

∑

K∈T
m(K )h(uk

K ) + Δtλ
n∑

i=1

∑

σ∈E
τσ (Dσ uk

i )
2

+ Δt

δ

n∑

i=1

∑

σ∈E
τσπi u

k
i,σ (Dσ pi (u

k))2 ≤
∑

K∈T
m(K )h(uk−1

K ), (7)

where λ denotes the smallest eigenvalue of A2.

We expect that the detailed-balance condition (3) can be replaced by a weak
cross-diffusion condition as in [6]. The positive stability of A implies the parabol-
icity of (1) in the sense of Petrovskii. Indeed, A2, defined by (A2)i j = πi ai j , and
A3 = diag(ui/πi ) are symmetric, positive definite matrices for u ∈ (0,∞)n . Thus,
its product (ui ai j ) has only positive eigenvalues [4, Theorem 7] which proves the
claim. The assumption that the diffusion coefficient δ is the same for all species
is a simplification needed to conclude that h(u) is coercive, h(u) ≥ (λ/2δ)|u|2 for
u ∈ R

n . It can be removed by exploiting the Shannon entropy to show first that ui is
nonnegative, but this requires more technical effort which will be detailed in a future
work.

2 Proof of Theorem 1

We proceed by induction. For k = 0, we have u0
i ≥ 0 by assumption. Assume that

there exists a solution uk−1 for some k ∈ {1, . . . , NT } such that uk−1
i ≥ 0 in Ω ,

i = 1, . . . , n. The construction of a solution uk is split in several steps.
Step 1: Definition of a linearized problem. Let R > 0, we set

Z R := {
w = (w1, . . . , wn) ∈ (HT )n : ‖wi‖1,2,T < R for i = 1, . . . , n

}
,

and let ε > 0 be given. We define the mapping Fε : Z R → R
θn by Fε(w) = wε, with

θ = #T , where wε = (wε
1, . . . , wε

n) is the solution to the linear problem
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ε

⎛

⎝−
∑

σ∈EK

τσ DK ,σ (wε
i ) + m(K )wε

i,K

⎞

⎠ = −
(
m(K )

Δt
(ui,K − uk−1

i,K ) +
∑

σ∈EK

F+
i,K ,σ

)
,

(8)
for K ∈ T , i = 1, . . . , n, and F+

i,K ,σ is defined in (6) with ui,σ replaced by ūi,σ =
min{u+

i,K , u+
i,K ,σ }, where z+ = max{0, z}. Here, ui,K is a function ofw1,K , . . . , wn,K ,

defined by the entropy variables

wi,K = πi

δ
pi (uK ) =

n∑

j=1

πi ai j

δ
u j for all K ∈ T , i = 1, . . . , n. (9)

This is a linear systemwith the invertible coefficientmatrix A2/δ, and so, the function
uK = u(wK ) is well-defined. The existence of a unique solution wε

i to the linear
scheme (8)–(9) is now a consequence of [9, Lemma 3.2].

Step 2: Continuity of Fε. We fix i ∈ {1, . . . , n}. Multiplying (8) by wε
i,K and

summing over K ∈ T , we obtain, after discrete integration by parts,

ε‖wε
i ‖21,2,T = −

∑

K∈T

m(K )

Δt
(ui,K − uk−1

i,k )wε
i,K +

∑

σ∈Eint
σ=K |L

F+
i,K ,σ

DK ,σ wε
i =: J1 + J2.

By the Cauchy–Schwarz inequality and the definition ofF+
i,K ,σ , we find that

|J1| ≤ 1

Δt

( ∑

K∈T
m(K )(ui,K − uk−1

i,K )2
)1/2( ∑

K∈T
m(K )(wε

i,K )2
)1/2

|J2| ≤
( ∑

σ∈E
τσ

(
δDσ ui + ūi,σ Dσ pi (u)

)2
)1/2( ∑

σ∈E
τσ (Dσ wε

i )
2

)1/2

.

Hence, since ui is a linear combination of (w1, . . . , wn) ∈ Z R , there exists a con-
stant C(R) > 0 which is independent of wε such that |J1| + |J2| ≤ C(R)‖wε

i ‖1,2,T .
Inserting these estimations, it follows that ε‖wε

i ‖1,2,T ≤ C(R).
We turn to the proof of the continuity of Fε. Let (wm)m∈N ⊂ Z R be such that

wm → w as m → ∞. The previous estimate shows that wε,m := Fε(wm) is bounded
uniformly in m ∈ N. Thus, there exists a subsequence of (wε,m), which is not rela-
beled, such that wε,m → wε as m → ∞. Passing to the limit m → ∞ in scheme
(8)–(9) and taking into account the continuity of the nonlinear functions, we see
that wε

i is a solution to (8)–(9) for i = 1, . . . , n and wε = Fε(w). Because of the
uniqueness of the limit function, the whole sequence converges, which proves the
continuity.

Step 3: Existence of a fixed point. We claim that the map Fε admits a fixed point.
Weuse a topological degree argument [8], i.e., we prove that deg(I − Fε, Z R, 0) = 1,
where deg is the Brouwer topological degree. Since deg is invariant by homotopy,
it is sufficient to prove that any solution (wε, ρ) ∈ Z R × [0, 1] to the fixed-point
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equation wε = ρFε(wε) satisfies (wε, ρ) /∈ ∂ Z R × [0, 1] for sufficiently large values
of R > 0. Let (wε, ρ) be a fixed point and ρ = 0, the case ρ = 0 being clear. Then
wε

i solves

ε

⎛

⎝−
∑

σ∈EK

τσ DK ,σ (wε
i ) + m(K )wε

i,K

⎞

⎠ = −ρ

(
m(K )

Δt
(uε

i,K − uk−1
i,K ) +

∑

σ∈EK

F+,ε
i,K ,σ

)
,

(10)
for all K ∈ T , i = 1, . . . , n, and F+,ε

i,K ,σ is defined as in (6) with u replaced by uε

which is related to wε by (9). The following discrete entropy production inequality
is the key argument.

Lemma 1 (Discrete entropy production inequality) Let the assumptions of
Theorem 1 hold. Then, for any ρ ∈ (0, 1] and ε > 0,

ρ
∑

K∈T
m(K )h(uε

K ) + εΔt
n∑

i=1

‖wε
i ‖21,2,T + ρΔtλ

n∑

i=1

∑

σ∈E
τσ (Dσ uε

i )
2

+ ρ
Δt

δ

n∑

i=1

∑

σ∈E
τσπi ū

ε
i,σ (Dσ pi (u

ε))2 ≤ ρ
∑

K∈T
m(K )h(uk−1

K ), (11)

with λ > 0 being the smallest eigenvalue of A2 and obvious notations for ūε
i,σ .

Proof We multiply (10) by Δtwε
i,K and sum over i and K ∈ T . This gives, after

discrete integration by parts, εΔt
∑n

i=1 ‖wε
i ‖21,2,T + J3 + J4 + J5 = 0, where

J3 = ρ

n∑

i=1

∑

K∈T
m(K )(uε

i,K − uk−1
i,K )wε

i,K ,

J4 = −ρΔt
n∑

i=1

∑

σ∈E int
σ=K |L

τσ δDK ,σ uε
i wε

i,K ,

J5 = ρΔt
n∑

i=1

∑

σ∈E int
σ=K |L

τσ ūε
i,σ DK ,σ pi (u

ε)DK ,σ wε
i,K .

To estimate J3, we use the convexity of h; for J4, we take into account the symmetry
of τσ with respect to σ = K |L , definition (9) of wε

i and the positive definiteness of
A2; and for J5, we employ definition (9) of wε

i :

J3 ≥ ρ
∑

K∈T
m(K )

(
h(uε

K ) − h(uk−1
K )

)
,

J4 = ρΔt
n∑

i, j=1

∑

σ∈E int
σ=K |L

τσπi ai j DK ,σ uε
i DK ,σ uε

j ≥ ρΔtλ
n∑

i=1

∑

σ∈E
τσ (Dσ uε

i )
2,
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J5 = ρ
Δt

δ

n∑

i=1

∑

σ∈E
τσπi ū

ε
i,σ (Dσ pi (u

ε))2.

Putting all the estimations together completes the proof. �

We proceed with the topological degree argument. Lemma 1 implies that

εΔt
n∑

i=1

‖wε
i ‖21,2,T ≤ ρ

∑

K∈T
m(K )h(uk−1

K ) ≤
∑

K∈T
m(K )h(uk−1

K ).

Then, if we define R := (εΔt)−1/2(
∑

K∈T m(K )h(uk−1
K ))1/2 + 1, we conclude that

wε /∈ ∂ Z R and deg(I − Fε, Z R, 0) = 1. Thus, Fε admits a fixed point.
Step 4: Limit ε → 0. Recall that h(uK ) ≥ λ/(2δ)|uK |2 (note that ui,K ∈ R at this

point). Thus, by Lemma 1, there exists a constant C > 0 depending only on the mesh
but not on ε such that for all K ∈ T and i = 1, . . . , n,

|uε
i,K | ≤ C(λ)

(
∑

K∈T
m(K )h(uk−1

K )

)1/2

.

Thus, up to a subsequence, for i = 1, . . . , n and for all K ∈ T , we infer the existence
of ui,K ∈ R such that uε

i,K → ui,K as ε → 0. We deduce from (11) that there exists a
subsequence (not relabeled) such that εwε

i,K → 0 for any K ∈ T and i = 1, . . . , n.
Hence, the limit ε → 0 in (8) yields the existence of a solution to (8) with ε = 0.

Let i ∈ {1, . . . , n} and K ∈ T such that ui,K = minL∈T ui,L . We multiply (8)
with ε = 0 by Δtu−

i,K with z− = min{0, z} and use the induction hypothesis:

m(K )(u−
i,K )2 − Δt

∑

σ∈EK

τσ (δ + aii ūi,σ )DK ,σ (ui )u
−
i,K

− Δt
∑

j =i

∑

σ∈EK

τσ ai j ūi,σ DK ,σ (u j )u
−
i,K = 0.

The second term is nonpositive since ūi,σ ≥ 0 and DK ,σ (ui ) ≥ 0, by the choice of
K . The last term vanishes since ūi,σ u−

i,K = u+
i,K u−

i,K = 0, by the definition of ūi,σ .
This shows that ui,L ≥ ui,K ≥ 0 for all L ∈ T and i = 1, . . . , n. Passing to the limit
ε → 0 in (11) yields inequality (7), which completes the proof of Theorem 1.
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3 Convergence Analysis and Perspectives

In this section, we sketch the proof of the convergence of the scheme and possible
extensions of the method presented in this paper.

• Let us give the main features of the proof of convergence. First, thanks to the
a priori estimates given by (7) and assumption (4), we prove the existence of
a constant C > 0 independent of Δx and Δt such that for all i = 1, . . . , n and
φ ∈ C∞

0 (QT ), where QT := Ω × (0, T ),

NT∑

k=1

∑

K∈T
m(K )(uk

i,K − uk−1
i,K )φ(xK , tk) ≤ C‖∇φ‖L∞(QT ). (12)

Next, we consider a sequence of admissible meshes (Tη,Δtη)η>0 of QT , indexed
by the size η = {Δx,Δt}, satisfying (4) uniformly in η. For any η > 0, we denote
by uη = (u1,η, . . . , un,η) the piecewise constant (in time and space) finite-volume
solution constructed inTheorem1.Wededuce, thanks to [2, Theorem3.9] and (12),
that there exist nonnegative functions u1, . . . , un such that, up to a subsequence,

ui,η → ui a.e. in QT as η → 0, i = 1, . . . , n.

Moreover, we conclude from (7) that ui,η is uniformly bounded in L∞(0, T ;
L2(Ω)) and L2(0, T ; L p(Ω)) for p < ∞ thanks to (7) and Sobolev embedding.
We deduce from the Riesz–Thorin theorem that (ui,η) is bounded in Lr (QT ) for
some 2 < r < 4 and thus, it is equi-integrable. Thus, applying the Vitali conver-
gence theorem, we infer that, up to a subsequence, ui,η → ui strongly in Lr (QT )

for all r < 4 as η → 0, i = 1, . . . , n. The discrete entropy production inequality
yields a uniform bound of the discrete gradient ∇η of ui,η in L2(QT ); see [5] for
a definition of ∇η. It follows from [5, Lemma 4.4] that, up to a subsequence,

∇ηui,η ⇀ ∇ui weakly in L2(QT ) as η → 0, i = 1, . . . , n.

Finally, following the method developed in [5], we prove that the limit function
u = (u1, . . . , un) is a weak solution to (1)–(2).

• We already mentioned that system (1) can be interpreted as a simplification of the
SKTmodel. In a future work, we will analyze a structure-preserving finite-volume
approximation of the full SKT model. Such a discretization was analyzed in [1],
but only for positive definite diffusion matrices associated to (1). We will extend
the analysis of [1] without this assumption.
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Finite Volume Method for a System
of Continuity Equations Driven
by Nonlocal Interactions

Anissa El Keurti and Thomas Rey

Abstract We present a new finite volumemethod for computing numerical approxi-
mations of a system of nonlocal transport equationmodeling interacting species. This
method is based on the work [F. Delarue, F. Lagoutière, N. Vauchelet, Convergence
analysis of upwind type schemes for the aggregation equation with pointy potential,
Ann. Henri. Lebesgue 2019], where the nonlocal continuity equations are treated
as conservative transport equations with a nonlocal, nonlinear, rough velocity field.
We analyze some properties of the method, and illustrate the results with numerical
simulations.

Keywords Upwind finite volume method · System of aggregation equations ·
Population dynamics · Continuity equations · Measure-valued solutions
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1 A Nonlocal Predator-Prey Model

We consider a system of nonlocal equations modeling the swarming dynamics of
species which interact with each others through attractive/repulsive potentials (such
as predators and preys). The system is an extension of the well-known aggregation
equation [1], and can be written in the following form:

{
∂tρ1 + div(ρ1(∇W1 ∗ ρ1 + ∇K ∗ ρ2)) = 0, ρ1(0, ·) = ρin

1 ,

∂tρ2 + div(ρ2(∇W2 ∗ ρ2 − β∇K ∗ ρ1)) = 0, ρ2(0, ·) = ρin
2 ,

(1)
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where ρ1(t, x) and ρ2(t, x) are probabilitymeasures thatmodel the density of species
1 and 2 (respectively predators and preys), for x ∈ R

d , t ∈ R. This model was intro-
duced in [5], where it was derived from a system of N interacting particles. It has
since been mathematically studied in [2, 6].

The functions Wα, K : R
d → R+, α ∈ {1, 2} denote respectively the intra-

specific interaction potentials of the species α, and the inter-specific interaction
potential. The intra-specific potential Wα can be of attractive (namely radial with
a nonnegative derivative) or repulsive type (radial with a nonpositive derivative),
depending on the gregarious behavior of species α. The potential K is of attractive
type, modeling the fact that species 2 flees species 1 whereas species 1 is attracted
by species 2. The parameter β ∈ [0, 1) expresses the mobility of species 1.

2 Cauchy Theory

Definition 1 A function W : R
d → R is called a pointy potential if it satisfies the

following properties:

1. W is Lipschitz continuous, symmetric and W (0) = 0;
2. W is λ-convex for some λ ≤ 0 (namely W − λ

2 | · |2 is convex);
3. W ∈ C 1(Rd \ {0}).

Let us assume that Wα , α ∈ {1, 2}, and K are pointy potentials as in Definition 1.
These potentials being Lipschitz, there exist ωα,∞ and κ∞ such that for all x �= 0:

|∇Wα(x)| ≤ ωα,∞, |∇K (x)| ≤ κ∞. (2)

Let us also define the macroscopic velocities âρ1 and âρ2 as

âρ1(t, x) := −
∫
Rd

(
∇̂W α(x − y) ρ1(t, y) + ∇̂K (x − y) ρ2(t, y)

)
dy, (3)

âρ2(t, x) := −
∫
Rd

(
∇̂W α(x − y) ρ2(t, y) − β∇̂K (x − y) ρ1(t, y)

)
dy, (4)

where we denoted for a pointy potential W the following extension:

∇̂W (x) =
{

∇Wα(x) for x �= 0,

0 for x = 0.

Existence theory for problem (1) has been studied in [5] in the case of C 1 pointy
potentials. Uniqueness was obtained in [7] by introducing duality solutions. This
approach will allow to prove the convergence of our numerical scheme (7). Using
the theory of Filippov characteristics, one can also prove the following general result:
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Theorem 1 (From [3]) Let Wα , α ∈ {1, 2}, and K be pointy potential that satisfy
(2), and ρin

α ∈ P2(R
d). There exist unique probability measures ρα that are global

distributional solutions to the following system of transport equations:

{
∂tρ1 + div(âρ1ρ1) = 0, ρ1(0, ·) = ρin

1 ,

∂tρ2 + div(âρ2ρ2) = 0, ρ2(0, ·) = ρin
2 .

(5)

3 Numerical Scheme

We shall now apply the numerical scheme introduced in [4] for approximating
solutions to the classical (single species) aggregation equation to the system (1).
Let us introduce a cartesian mesh (CJ )J∈Zd of R

d , with step Δxi in the direction
i ∈ {1, . . . , d}, andΔx = maxΔxi . The center of a given cellCJ will then be defined
by x j := (J1Δx1, . . . , JdΔxd). Let also ei := (0, . . . , 0, 1, 0, . . . , 0) be the i th vec-
tor of the canonical basis.

For an initial probability measure ρin
α ∈ P2(R

d), α ∈ {1, 2}, we define ρ0
α,J as

the cell average values of ρin
α over the cell CJ :

ρ0
α,J = 1

m (CJ )

∫
CJ

ρini
1 (dx) ≥ 0. (6)

Given an approximation (ρα
n
J )J∈Zd of the cell averages of ρα(tn, ·) at a given time

tn = nΔt , we compute ρα
n+1
J as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ1
n+1
J = ρ1

n
J −

d∑
i=1

Δt

Δxi

(
(a1

n
i J )

+ρ1
n
J − (a1

n
i J+ei

)−ρ1
n
J+ei

− (a1
n
i J−ei

)+ρ1
n
J−ei + (a1

n
i J )

−ρ1
n
J

)
,

ρ2
n+1
J = ρ2

n
J −

d∑
i=1

Δt

Δxi

(
(a2

n
i J )

+ρ2
n
J − (a2

n
i J+ei

)−ρ2
n
J+ei

− (a2
n
i J−ei

)+ρ2
n
J−ei + (a2

n
i J )

−ρ2
n
J

)
.

(7)

where the discrete macroscopic velocities are defined as

{
a1ni J = −∑

L∈Zd

(
ρ1

n
L DiW1

L
J + ρ2

n
L Di K L

J

)
,

a2ni J = −∑
L∈Zd

(
ρ2

n
L DiW2

L
J − βρ1

n
K Di K L

J

)
,

(8)

with DiW K
J := ∂xi Ŵ (xJ − xK ) for a pointy potential W .
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Lemma 1 If Wα , α ∈ {1, 2}, and K are pointy potentials and the following CFL
condition holds:

(ωα,∞ + κ∞)

d∑
i=1

Δt

Δxi
≤ 1, (9)

one has the following properties for the scheme (7):

1. For ρin
α ∈ P2(R

d) and ρ0
α,J given by (6), the sequences (ρn

α,J )J∈Zd ,n∈N and
(aα

n
i J )J∈Zd ,n∈N,i=1,...,d satisfy:

ρn
α,J ≥ 0, |aα

n
i J | ≤ (ωα,∞ + κ∞), i = 1, . . . , d,

and for all n ∈ N, ∑
J∈Zd

ρn
α,Jm(CJ ) =

∫
R

ρin
α (dx).

2. Conservation of the weighted center of mass:

∑
J∈Zd

xJ (βρn
1,J + ρn

2,J ) =
∑
J∈Zd

xJ (βρ0
1,J + ρ0

2,J ).

Proof 1. By summing the two equations of (7) over all J ∈ Z
d , one obtains the

mass conservation. Then, writing both identities in (7) as:

ρα
n+1
J = ρα

n
J

[
1 −

d∑
i=1

|aα
n
i J |

] +
d∑

i=1

Δt

Δxi
(aα

n
i J+ei

)−ρα
n
J+ei

+
d∑

i=1

Δt

Δxi
(aα

n
i J−ei

)+ρα
n
J−ei ,

one proves by induction on n that ρn
α,J ≥ 0 for all J ∈ Z

d , n ∈ N under the CFL
condition (9). Indeed, by using the definition (8), one has

|anαi,J
| ≤ (ω∞ + κ∞)

∑
J∈Zd

ρn
α,J = (ω∞ + κ∞)

∑
J∈Zd

ρ0
α,J , i ∈ {1, . . . , d},

which concludes the proof by a convexity argument.
2. Using a discrete integration by parts and (7), one has:

∑
J∈Zd

xJρ
n+1
α,J =

∑
J∈Zd

xJρ
n
α,J −

d∑
i=1

Δt

Δxi

∑
J∈Zd

(
(aα

n
i J )

+ρα
n
J (xJ − xJ+ei )

− (aα
n
i J )

−ρα
n
J (xJ−ei − xJ )

)
.
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Since xJ denote the cell centers, one has∑
J∈Zd

xJ
(
βρn+1

1,J + ρn+1
2,J

) =
∑
J∈Zd

xJ
(
βρn

1,J + ρn
2,J

)

+ Δt
d∑

i=1

∑
J∈Zd

(
βa1

n
i Jρ1

n
J + a2

n
i Jρ2

n
J

)
. (10)

Summing over all the cells in (8), and since ∇Wα and ∇K are odd, one obtains
after reindexing:

∑
J∈Zd

βa1
n
i Jρ1

n
J + a2

n
i Jρ2

n
J =

∑
J∈Zd

∑
L∈Zd

(
βρ1

n
Jρ1

n
L DiW1

L
J + ρ2

n
Jρ2

n
L DiW2

L
J

)
= −

∑
J∈Zd

∑
L∈Zd

(
βρ1

n
Jρ1

n
L DiW1

J
L + ρ2

n
Jρ2

n
L DiW2

J
L

)
= 0

which yields the conclusion when plugged into (10).

We are now ready to prove the convergence of the scheme (7).

Theorem 2 Let us assume that Wα , α ∈ {1, 2} and K are pointy potentials, and that
the following CFL condition holds on the mesh (CJ ):

(ωα,∞ + κ∞)

d∑
i=1

Δt

Δxi
≤ 1.

Let ρin
α ∈ P2(R

d) and ρ0
α,J given by (6) for all J ∈ Z

d and define the empirical
distribution as

ρn
α,Δx =

∑
J∈Zd

ρn
α,J δxJ , n ∈ N,

where ((ρn
α,J )J∈Zd )n∈N is given by (7).

Then ρ1,Δx and ρ2,Δx converge weakly inMb([0, T ] × R
d) towards respectively

ρ1 and ρ2 which are the solutions to (5) as Δx goes to 0.

Proof Let us give the ideas behind this convergence proof, in the unidimensional
case (inspired from [7]).

1. Extraction of a convergent subsequence.
The total variation of ρα,Δx is bounded and we can thus extract a subsequence of
ρα,Δx that converges weakly towards ρα ∈ Mb([0, T ] × R).

2. Modified equations and Taylor expansion.
We write the modified equation satisfied by ρα,Δx in terms of distributions. Let us
consider φ ∈ C∞

c ([0, T ] × R). By using the dual product in sense of distribution
< ·, · >, one has
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< ∂tρα,Δx , φ > + < âα,Δxρα,Δx , ∂xφ >= 0,

where âα,Δx = ∑NT
n=0

∑
J∈Z â

n
α,J1[tn ,tn+1[(t)δxJ (x). Taylor expanding φ allows to

rewrite this equation in terms of distributions. One then bounds the different terms
by using a straightforward adaptation of [7, Lemma 6.2] to this model.

3. Passing to the limit.
We finaly use [7, Lemma 3.2] to pass to the limit. The limit ρα thus satisfies (5).
By uniqueness from Theorem 1, ρα is the unique solution of (1).

4 Numerical Simulations in 2D

We implemented the scheme in 2 dimensions for a square grid and potentials such
as the Newtonian potential N (x) = |x | (pointy and 0–convex), or W = 1 − e−|x |
(pointy and −1–convex). The grid in all the simulations is composed of 50 × 50
points, with Δt = 0.005 (according to the CFL condition (9)).

Fig. 1 Test 1. Newtonian potentialsW1(x) = W2(x) = 0.1|x |, K (x) = |x |, β = 0.3. with a single
predator at the origin, and an uniform distribution of preys as initial data. Isovalues of ρ1 + ρ2 at
times t = 0, 0.03, 0.09 and 7.5
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Fig. 2 Test 2.Newtonian potentialsW1(x) = W2(x) = 0.1|x |, “fly-and-regroup” potential K (x) =
1 − (|x | + 1)e−|x |, β = 0.3.with a single predator at the origin, and an uniform distribution of preys
as initial data. Isovalues of ρ1 + ρ2 at times t = 0, 0.05, 0.1, 0.15, 0.3, 0.6, 1 and 5
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4.1 Test 1. Evading Preys

In Fig. 1, we present simulations made with a Dirac delta as initial data to model a
single predator, and a uniform distribution for preys:

ρin
1 = δ0(x), ρin

2 = 1B (0.2,0.1). (11)

WeuseNewtonianpotentialsW1 = W2 = 0.1N , K = N for inter and intra-specific
interactions, with a mobility β = 0.3. At the beginning of the simulation, we observe
that the predator is getting closer to the preys. When the group of preys is close, the
preys create a circular pattern around the predators in order to run away from him.

4.2 Test 2. A More Realistic Potential for Inter-specific
Interaction

In [6], the authors introduced a potential K that ismore relevant in terms ofmodeling:

K (x) = 1 − (|x | + 1)e−|x |. (12)

When the predator is far from the preys, the inter-specific interaction depends very
weakly on the distance between preys and predator, and is almost constant. When
the predator becomes closer to the preys, they become paralyzed, the potential being
the close to 0. We performed simulations with an initial data given by (11) in Fig. 2.
We observe a similar behavior than in Fig. 1 in short time, but a convergence toward
a single Dirac delta (the predator has gathered all the preys together) in large time.

Acknowledgements TR was partially funded by Labex CEMPI (ANR-11-LABX-0007-01) and
ANR Project MoHyCon (ANR-17-CE40-0027-01).
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AMacroscopic Model to Reproduce
Self-organization at Bottlenecks

Boris Andreianov and Abraham Sylla

Abstract We propose a model for self-organized traffic flow at bottlenecks that
consists of a scalar conservation law with a nonlocal constraint on the flux. The
constraint is a function of an organization marker which evolves through an ODE
depending on the upstream traffic density and its variations.We provewell-posedness
for the problem, construct and analyze a finite volume scheme, perform numerical
simulations and discuss the model and related perspectives.

Keywords LWR traffic model · Nonlocal point constraint · Bottleneck ·
Self-organization · Finite volume scheme
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1 Introduction

The LWR framework is the simplest one that can be used to describemacroscopically
pedestrian/road traffic in a corridor or on a road. It takes the form

∂tρ + ∂x f (ρ) = 0.

Above,ρ = ρ(x, t) ∈ [0, R] is the density of pedestrians/cars at (x, t).We assume
that the flux function f : [0, R] → R is Lipschitz continuous and bell-shaped, which
are commonly used assumptions in traffic dynamics:
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f (ρ) ≥ 0, f (0) = f (R) = 0, ∃!ρ ∈ (0, R), f ′(ρ)(ρ − ρ) > 0 for a.e.ρ ∈ (0, R).

(1)
Point constraintswere introduced in [16, 17] in the LWRmodel in order to account

for localized in space phenomena that may occur at exits—such as traffic lights or
tollgates in the context of road traffic—and which act as obstacles. To do so, one can
impose a localized constraint on the flux such as

f (ρ)|x=0 ≤ q(t).

Oneof the typical features of bothvehicle andpedestrianflows is self-organization,
see [13, 18, 22] for empirical data that put in evidence this phenomenon. Here, we
focus on self-organization near exits. We do not intend to model the different mecha-
nisms behind self-organization, but only to reproduce its phenomenology. In [5] the
authors attempted to reproduce self-organization with a model based on the LWR-
flux constraint framework:

⎧
⎪⎪⎨

⎪⎪⎩

∂tρ + ∂x f (ρ) = 0 R × (0, T )

ρ(x, 0) = ρ0(x) x ∈ R

f (ρ)|x=0 ≤ p

(∫

R

ρ(x, t)μ(x)dx

)

t ∈ (0, T ).

(2)

Above, μ is a weight function, supported in a compact neighborhood upstream
the exit, used to average the density around the exit and the nonincreasing Lipschitz
function p : [0, R] → R

+ models the exit efficiency. This kind of problems has
been tremendously studied in the last decades [2, 6, 14, 16, 19]. In particular, the
authors of [4, 5] were able to reproduce the main effects linked to the “capacity
drop” that are the Braess paradox and the “Faster Is Slower” effect, but not so
much the self-organization. Our first goal is to further advance in this direction.
We introduce a model which interpolates between two states of the traffic (organized
and disorganized) which we represent by the presence of two levels of constraints
and by an organization parameter which evolves through an ODE. This model admits
a natural and efficient approximation strategy, relying on a combination of splitting,
explicit Euler time integration and of a monotone finite volume scheme for LWR. In
passing, we prove well-posedness for our model in Sects. 2–3, but our main interset
lies in the Sects. 4–5 where we perform a test to validate and discuss the model.

2 Notion of Solution and Uniqueness

Our starting point is the model (2) proposed by the authors of [2], see also [4, 5]. To
go further, we introduce two levels of exit efficiencies pmin ≤ pmax (both are required
to be Lipschitz continuous nonincreasing functions) and set
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Fig. 1 Typical behavior of exit efficiencies pmin, pmax (left) and organization-driving function K
in (4) (right)

q(t) = (1 − ω(t))pmin(ξ(t)) + ω(t)pmax(ξ(t)), ξ(t) =
∫

R

ρ(x, t)μ(x)dx, (3)

where ω(t) ∈ (0, 1) is an organization parameter which describes the state of the
traffic and evolves through the ODE

ω̇(t) = K
(
ξ(t), ξ̇ (t)

)
ω(t)(1 − ω(t)). (4)

Mathematically speaking, we only suppose that K ∈ Liploc(R
2). The idea behind

phenomenologically relevant choices of K , see Fig. 1(right), is to allow for pro-
gressive organization of traffic with time, while keeping the possibility of return to
disorganization when sudden and strong variations of the traffic occur; see Sect. 5.
For the sake of being definite, in simulations we will choose K under the form

K (ξ, χ) = C

(
ξ

ξc
− 1

)+ (

1 − χ+

D+
− χ−

D−

)

, (5)

with some positive parameters ξc, C, D+, D− and the notations z+ = max(z, 0),
z− = |z| − z+. This choice will be discussed later. We have the following coupled
PDE-ODE system to study:

{
∂tρ + ∂x f (ρ) = 0 R × (0, T )

f (ρ)|x=0 ≤ q(t) t ∈ (0, T ),
(6)

where q is given by (3)–(4). We will denote by Φ the entropy flux associated with
the Kružkov entropy ρ �→ |ρ − κ|, for all κ ∈ [0, R], see [23]. Following [6, 14,
16], we give the following definition of solution. Let us underline that the below
formulation (i)-(ii)-(iii) is stable with respect to the a.e. convergence of ρ.



246 B. Andreianov and A. Sylla

Definition 1 A couple (ρ, ω) with ρ ∈ L∞(R × [0, T ]) ∩ C([0, T ];L1
loc(R)) and

ω ∈ W1,∞((0, T )) is called an admissible weak solution to the system (3)–(6) with
initial data (ρ0, ω0) if
(i) for all non-negative test functions ϕ ∈ C∞

c (R × [0, T )) and κ ∈ [0, R], the fol-
lowing entropy inequalities are verified:

∫ T

0

∫

R

|ρ − κ|∂t ϕ + Φ(ρ, κ)∂x ϕ dxdt +
∫

R

|ρ0(x) − κ|ϕ(x, 0)dx + 2
∫ T

0
R(κ, q(t))ϕ(0, t)dt ≥ 0,

(7)
where R(κ, q(t)) = f (κ) − min { f (κ), q(t)};
(ii) the following weak constraint inequalities are verified:

−
∫ T

0

∫

R+
ρ∂t (ϕψ) + f (ρ)∂x (ϕψ) dxdt ≤

∫ T

0
q(t)ψ(t)dt, ψ ∈ C∞

c ((0, T );R+), ϕ ∈ C∞
c (R), ϕ(0) = 1;

(8)

(iii) for all t ∈ [0, T ], ω(t) = ω0 +
∫ t

0
K

(
ξ(s), ξ̇ (s)

)
ω(s)(1 − ω(s))ds.

Before we prove stability with respect to initial data and uniqueness for admissible
weak solutions to the system (3)–(6), let us note that we can directly integrate the
ODE (4). This feature is not crucial but it is practical.

Lemma 1 Fix (ρ, ω) an admissible weak solution to the system (3)–(6). Then for
all t ∈ [0, T ],

ω(t) = exp(W (t))(1 + exp(W (t)))−1, W (t) = ln(ω0) − ln(1 − ω0) +
∫ t

0
K

(
ξ(s), ξ̇ (s)

)
ds.

Theorem 1 Suppose that f satisfies (1). Fix ρ1
0 , ρ

2
0 ∈ L1(R; [0, R]) and ω1

0, ω
2
0 ∈

(0, 1). We denote by (ρ1, ω1) and (ρ2, ω2) two admissible weak solutions to the
system (3)–(6) corresponding to the initial data (ρ1

0 , ω
1
0) and (ρ2

0 , ω
2
0), respectively.

Then there exist constants A, α, β, γ such that if we note G(z) = exp
(
βz + γ z2/2

)
,

we have

for a.e. t ∈ (0, T ), ‖ρ1(t) − ρ2(t)‖L1 ≤ ‖ρ10 − ρ20‖L1G(t) + α|W1(0) − W2(0)|
∫ t

0
G(s)ds (9)

and

∀t ∈ [0, T ], |ω1(t) − ω2(t)| ≤
(

|W1(0) − W2(0)|
4

)

+ A
∫ t

0

(
α|W1(0) − W2(0)|(t − s) + ‖ρ10 − ρ20‖L1

)
G(s)ds,

(10)
where W1 and W2 are defined as in Lemma 1. In particular, the system (3)–(6)

admits at most one admissible weak solution.
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Proof First, a stability estimate [6, Proposition. 2.10] characteristic of (2) yields Lip-
schitz continuous dependence q �→ ρ for q ∈ L1(0, T ) and ρ ∈ C([0, T ];L1(R)).
Moreover, the map ω �→ q for ω, q ∈ C([0, T ]) is obviously Lipschitz. Finally, by

exploiting Lemma 1 and the fact that for a.e. t ∈ (0, T ), ξ̇ (t) =
∫

R

f (ρ)μ′(x)dx ,

one can obtain Lipschitz dependence ρ �→ ω, and Gronwall’s lemma concludes.

3 Finite Volume Approximation of the Model

Here, we prove the existence of admissible weak solutions to the system (3)–(6). To
do that, we construct and prove the convergence of an explicit Euler in time scheme
for the ODE (4) combined with a monotone finite volume scheme for the constraint
LWR (6). Fix ρ0 ∈ L1(R; [0, R]) and ω0 ∈ (0, 1). For a fixed spatial mesh size Δx
and time mesh sizeΔt , let x j = jΔx , tn = nΔt . We define the grid cells and N ∈ N

such that T ∈ [NΔt, (N + 1)Δt). We write

R × [0, T ] ⊂
⋃N

n=0

⋃

j∈Z P
n
j+ 1

2
, Pn

j+ 1
2

= (x j , x j+1) × [tn, tn+1).

Denote by
(
ρ0

j+ 1
2

)

j∈Z and
(
μ j+ 1

2

)

j∈Z suitable discretizations of the initial data ρ0

and of the weight function μ; for instance the mean values on each cell (x j , x j+1).

Initialize with w0 = ω0 and ξ 0 =
∑

j∈Z ρ0
j+ 1

2
μ j+ 1

2
Δx .

Fix n ∈ {0, . . . , N − 1}. At each time step, we define a constraint level qn:

qn = (1 − wn)pmin(ξ
n) + wn pmax(ξ

n). (11)

We use this value to update the approximate traffic density with the marching
formula

∀ j ∈ Z, ρn+1
j+ 1

2
= ρn

j+ 1
2

− λ

(

F n
j+1

(

ρn
j+ 1

2
, ρn

j+ 3
2

)

− F n
j

(

ρn
j− 1

2
, ρn

j+ 1
2

))

, λ = Δt/Δx,

(12)

where, givenF a monotone and Lipschitz numerical flux consistent with f , follow-
ing the recipe of [6, 14], we set

F n
j (a, b) = min

{
F (a, b), qn

}
if j = 0, andF n

j (a, b) = F (a, b) if j �= 0. (13)

Then, setting ξ n+1 =
∑

j∈Z ρn+1
j+ 1

2
μ j+ 1

2
Δx , we update the organization parameter

χn+1 =
(
ξn+1 − ξn

)
/Δt, θn+1 = K

(
ξn+1, χn+1

)
wn(1 − wn), wn+1 = wn + θn+1Δt,

(14)
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and finally, define the functions

• ρΔ(x, t) = ρn
j+ 1

2
if (x, t) ∈ P n

j+ 1
2
, qΔ(t) = qn if t ∈ [tn , tn+1)

• χΔ(t), θΔ(t) = χn+1, θn+1 if t ∈ [tn , tn+1), ξΔ(t) = ξ0 +
∫ t

0
χΔ(s)ds, ωΔ(t) = w0 +

∫ t

0
θΔ(s)ds.

Let Δ = (Δx,Δt). For the convergence analysis, we will assume that Δ → 0,
with λ verifying the CFL condition

λL ≤ 1, L = (‖∂F/∂x‖L∞ + ‖∂F/∂y‖L∞
)
. (15)

3.1 Stability and Discrete Entropy Inequalities

Proposition 1 (L∞ stability) Given qn to define the constrained flux in (13), the
scheme (12) is stable:

∀n ∈ {0, . . . , N }, ∀ j ∈ Z, ρn
j+ 1

2
∈ [0, R]. (16)

Proof One can follow the argumentation in [24, Proposition. 3.1], or borrow ele-
ments from [20, Lemma.5.1] and [6, Proposition. 4.2].

We now derive discrete entropy inequalities. These inequalities contain terms that
will help to pass to the limit in the constrained formulation of the conservation law,
as soon as the sequence (qΔ)Δ of constraints is proved convergent as well. Let us
note from now a ∨ b = max(a, b) and a ∧ b = min(a, b).

Proposition 2 (Discrete entropy inequalities) The numerical scheme (11)–(14) ful-
fills the following inequalities for all n ∈ {0, . . . , N − 1}, j ∈ Z and κ ∈ [0, R]:
(
|ρn+1

j+ 1
2

− κ| − |ρn
j+ 1

2
− κ|

)
Δx +

(
Φn

j+1 − Φn
j

)
Δt ≤ R (κ, qn )Δt δ j∈{−1,0} +

(
Φn
0 − Φ

n
0

)
Δt

(
δ j=−1 − δ j=0

)
,

(17)
where

Φn
j = F (ρn

j− 1
2
∨ κ, ρn

j+ 1
2
∨ κ) − F (ρn

j− 1
2
∧ κ, ρn

j+ 1
2
∧ κ)

Φ
n
0 = min{F (ρn

− 1
2
∨ κ, ρn

1
2
∨ κ), qn} − min{F (ρn

− 1
2
∧ κ, ρn

1
2
∧ κ), qn}.

Proof This is a consequence of the scheme monotonicity. When the constraint does
not enter the calculations ie. j /∈ {−1, 0}, the proof follows [20, Lem.5.4]. When the
constraint enters the calculations, the constants κ ∈ [0, R] are no longer stationary
solutions of the scheme. Then, calculations make appear the termR(κ, qn).
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Starting from the marching formula (12) and the discrete entropy inequalities
(17), we can derive approximate versions of (7) and (8). The proofs can be adapted
from the ones of [12, Lem.4.4] or [24, Propositions. 3.3, 3.4].

Proposition 3 (Approximate entropy/constraint inequalities) (i) Fix ϕ ∈ C∞
c (R ×

[0, T );R+), κ ∈ [0, R]. Then there exists a constant Cϕ
1 = Cϕ

1 (R, T,L),
nondecreasing with respect to its arguments, such that

∫ T

0

∫

R

|ρΔ − κ|∂t ϕ + ΦΔ
(
ρΔ, κ

)
∂x ϕdxdt +

∫

R

|ρΔ
0 (x) − κ|ϕ(x, 0)dx + 2

∫ T

0
R (κ, qΔ(t))ϕ(0, t)dt ≥ −Cϕ

1 (Δt + Δx).

(18)
(ii) Fix ψ ∈ C∞

c ((0, T );R+) and ϕ ∈ C∞
c (R) such that ϕ(0) = 1. Then there exists

a constant Cϕ,ψ

2 = Cϕ,ψ

2 (R, T,L, ‖ f ‖L∞), nondecreasing with respect to its argu-
ments, such that

−
∫ T

0

∫

R+
ρΔ∂t (ϕψ) + FΔ(ρΔ)∂x (ϕψ) dxdt ≤

∫ T

0
qΔ(t)ψ(t)dt + Cϕ,ψ

2 (Δx + Δt), (19)

where

ΦΔ
(
ρΔ, κ

) =
∑N−1

n=0

∑

j∈Z Φn
j 1P n

j+ 1
2

(x, t), F Δ(ρΔ) =
∑N−1

n=0

∑

j∈Z F (ρn
j− 1

2
, ρn

j+ 1
2
)1P n

j+ 1
2

(x, t).

The final step is to obtain compactness for the sequences (ρΔ)Δ and (ωΔ)Δ in
order to pass to the limit in (18)–(19).

3.2 Compactness and Convergence

Exploiting the compact embedding of W1,∞(0, T ) in C([0, T ]), we can prove the
existence of ξ, ω ∈ C([0, T ]) such that (up to the extraction of a subsequence) (ξΔ)Δ
and (ωΔ)Δ converge uniformly to ξ and ω, respectively. There are many ways to
prove compactness of the sequence (ρΔ)Δ. For example, one can derive weak BV
estimates [6, 20] or use the singular mapping technique [1, 15]. Here, since the
conservation law in (6) is invariant under a translation in time, we derive local BV
bounds, following [10, Lemma.4.2].

Proposition 4 Assume thatρ0 ∈ BV(R). Fix0 < ε < X and letΩ(ε, X)be the open
subset Ω(ε, X) = (−X,−ε) ∪ (ε, X). There exist two constantsC3 andC4 > 0 such
that for all t ∈ [0, T − Δt),

TV(ρΔ(t)|Ω(ε,X)) ≤ TV(ρ0) + C3

ε
,

∫

Ω(ε,X)

|ρΔ(x, t + Δt) − ρΔ(x, t)|dx ≤ C4Δt.

Therefore, up to a subsequence, (ρΔ)Δ converges a.e. on R × (0, T ) to some ρ ∈
L∞(R × [0, T ]).
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Remark 1 At this point, the link between ξ and ρ is established: for a.e. t ∈ (0, T ),

ξ(t) =
∫

R

ρ(x, t)μ(x)dx .

Theorem 2 Fix ρ0 ∈ L1(R; [0, R]) ∩ BV(R) and ω0 ∈ (0, 1). Suppose that f sat-
isfies (1) and that μ ∈ W2,∞(R−∗). Then under the CFL condition (15), the scheme
(11)–(14) converges to an admissible weak solution to the system (3)–(6).

Proof We show that the couple (ρ, ω) is a solution in the sense of Definition 1. First,
let apply inequality (18) with ϕ ∈ C∞

c (R∗ × [0, T );R+) and κ ∈ [0, R] to obtain
∫ T

0

∫

R

|ρΔ − κ|∂tϕ + ΦΔ(ρΔ, κ)∂xϕdxdt +
∫

R

|ρΔ
0 − κ|ϕ(x, 0)dx ≥ −Cϕ

1 (Δx + Δt).

Then when letting Δ → 0, the a.e. convergence of (ρΔ)Δ to ρ ensures that ρ

verifies (7) away from the interface. Consequently, ρ ∈ C([0, T ];L1
loc(R

∗)), see
[11, Thm.1.2]. Moreover, since ρ is bounded and {x = 0} has a Lebesgue mea-
sure 0, ρ ∈ C([0, T ];L1

loc(R)). It ensures that the equality in Remark 1 actually
holds for all t ∈ [0, T ]. Moreover, since ρ is an entropy solution in R

∗ × (0, T ) to
∂tρ + ∂x f (ρ) = 0, ξ defined in Remark 1 is actually in W1,∞(0, T ) and verifies for
a.e. t ∈ (0, T ),

ξ̇ (t) =
∫

R

f (ρ)μ′(x)dx .

(i)–(ii) The uniform convergence of both (ξΔ)Δ and (ωΔ)Δ ensures the existence of
q ∈ C([0, T ]) such that (qΔ)Δ converges to q a.e. on (0, T ). Consequently, for a.e.
t ∈ (0, T ),

q(t) = (1 − ω(t))pmin(ξ(t)) + ω(t)pmax(ξ(t)),

and this equality actually holds for all t ∈ [0, T ]by continuity. Then by lettingΔ → 0
in (18)–(19), we obtain that (ρ, ω) verifies the entropy inequalities (7) and the weak
constraint inequalities (8).

(iii) An important step towards the assessment of the weak ODE formulation for ω

is to show that (χΔ)Δ converges a.e. to ξ̇ . One way to do that is by using a discrete
integration by parts, assuming that μ ∈ W2,∞(R−∗) (cf. [4]).

Corollary 1 Fix ρ0 ∈ L1(R; [0, R]) ∩ BV(R) and ω ∈ (0, 1). Suppose that f satis-
fies (1) and that μ ∈ W2,∞(R−∗). Then the system (3)–(6) admits a unique admissible
weak solution.

Proof Uniqueness comes from Theorem 1, existence comes from Theorem 2, with
a constructive proof.

Remark 2 Adopting the formalism proposed in [5], one could also prove well-
posedness with fixed point arguments.
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4 Numerical Simulations

We report on numerical experiments with the scheme described in Sect. 3. We take
the normalized uniformly concave flux f (ρ) = ρ(1 − ρ). We choose to use the
Godunov flux at the interface ( j = 0 in (13)) and the Rusanov flux away from the
interface ( j �= 0 in (13)). The function x �→ 2n(x + 1/n)1[−1/n,0](x) (with n = 3)
is issued as weight function. Following [5, Sect. 7], the setup for our simulation is
as follows. We consider the domain of computation [−5, 1], the initial data ρ0(x) =
1[−4,−2](x), ω0 = 0.2 and the efficiencies of the exit pmin, pmax are represented
in Fig. 1(left). For the simulations, we have fixed a locally Lipschitz prefactor K
in (4) with behaviour depicted in Fig. 1(right) and parameters ξc = 1/3, C = 2/3,
D+ = 1/10 and D− = D+/2. The phenomenological features encoded in this choice
will be addressed in Sect. 5.

We first address the error analysis in the above setup. Introduce the relative error
EΔ

ρ = ‖ρΔ − ρΔ/2‖L1((0,T );L1(R)). In Table1, we computed this error for different
number of space cells at the final time T = 17. We deduce that the order of conver-
gence is approximately 0.852.

Now, let us comment on qualitative features of the simulated traffic flow and pro-
vide its interpretation in terms of agents’ behaviors. First, as we can see in Fig. 3,
the introduction of the organization parameter favors the evacuation time. Figure2
highlights the fact that the model reproduces some features expected from self-
organization. At first, the exit flux increases until it reaches the maximum level of

Table 1 Measured errors at time T = 17

Number of
cells

640 1280 2560 5120 10240 20480

EΔ
ρ 1.863 ×

10−1
1.158 ×
10−1

6.507 ×
10−2

3.335 ×
10−2

2.105 ×
10−2

9.501 ×
10−3

Fig. 2 Left: subjective density ξ and organization marker ω. Right: exit flux f (ρ)|x=0− ; dashed
lines correspond to the reference solution in absence of self-organization ω = 0 in (3)
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Fig. 3 The numerically computed solution x �→ ρΔ(x, t) at different fixed times t ; dashed lines
correspond to the reference solution in absence of self-organization ω = 0 in (3)

the exit efficiency. As traffic densifies, the exit flux falls down to the lowest value
of this efficiency, which reflects rapid disorganization, ie., predominance of agents’
individualistic strategies over the rational collective behavior. Then, in the time inter-
val [6, 16], the elevated density upstream has very small variations which leads to the
emergence of a coherent collective behavior of the agents. This is witnessed through
the increase of both the organization marker and the exit flux. We stress out that
without self-organization, the exit flux keeps its minimal value in this time interval.
Then a notable phenomenon seems to take place. In the time interval [15.5, 16.3],
the jam upstream the exit starts to resorb, and the exit efficiency (which is monitored
by the exit flux) slightly falls down while the organization level regresses signifi-
cantly. In other words, the agents abandon collective strategies in rapidly evolving
environments, but this does not affect the traffic dramatically because densities are
also strongly decreased.

5 Conclusions and Perspectives

Themodel we propose here permits a rigorous analysis of well-posedness as well as a
robust and simple numerical approximation. It enriches the qualitative behavior of the
simple LWR-based models for bottlenecks [2, 5, 16], due to its ability to reproduce
a few self-organization features. Let us deeper discuss the model construction, in
particular the role of the function K whose behavior is depicted in Fig. 1(right). Its
key features are as follows:

• invariance of the organization marker ω in the region of low densities;
• rapid decrease of ω for moderate and particularly for high densities, under strong
density variations;

• progressive increase of ω in dense and very dense traffic with small density vari-
ations.
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The idea behind these features is: rapidly changing traffic conditions, at con-
siderable densities, promote individual behavior and rapidly lead to a somewhat
chaotic interactions among agents, thus lowering the exit efficiency; while persistent
coercive traffic conditions, such as a jam, help to emerge and promote a collective
behavior like formation of well-organized queues, the alternate in the order of pas-
sage through the bottleneck, and a higher degree of mutual courtesy among agents;
thus the exit efficiency improves accordingly, which enhances the jam evacuation.
The form (5) provides a simple example of such behavior, which is confirmed by the
simulations of Sect. 4. The parameter ξc has the meaning of activation threshold for
organization/disorganization of the traffic at bottleneck; D+, D− indicate thresholds
of transition from cooperative (low variations of ξ ) to individualistic (higher ones)
dynamics of agents.

One way to improve this model would be to take into account unexpected/rash
behavior of certain agents. Let us recall that unlike fluid mechanics models, traffic
models deal with a relatively small number of agents. In consequence, we would
expect the dynamics to be greatly impacted by the behavior of a few agents. An idea
to model such rash behaviors is to introduce a stochastic term in the definition of the
prefactor K , for example

K (t, ξ, χ) = C

(
ξ

ξc
− 1

)+ (

1 − χ+

D+
− χ−

D−
− X (t)

)

,

where X is a stochastic process modeling the harmful impact of a random number
of mindless agents on the collective dynamics. We plan to study numerically this
variant of the model and provide indications concerning the impact of undisciplined
agents on the evacuation time.

In the forthcoming work [7] we will take inspiration from second-order macro-
scopic models of traffic [8, 25] to model self-organization globally on the road; note
that bottlenecks can be as well modelled with non-local point constraints within such
models, see, e.g., [3]. Mimicking the key elements (3)–(4) of the model we addressed
in the present note,wewill introduce two fundamental graphs fmin ≤ fmax to describe
the two states of the traffic and make the space-and-time dependent organization
parameter act both on the constraint levels (3) and on the fundamental graphs. We
will then have to study a variant of nonlocal LWR model, cf. [9, 21] for related
mathematical and numerical issues.
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Abstract We introduce a three-dimensional Hybrid High-Order method for mag-
netostatic problems. The proposed method is easy to implement, supports general
polyhedral meshes, and allows for arbitrary orders of approximation.
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1 Introduction

LetΩ ⊂ R
3 denote an open, bounded and connected polyhedral domain,with bound-

ary ∂Ω and unit outward normal n. We assume that Ω is topologically trivial, and
that ∂Ω is connected. For any X ⊂ Ω , we denote by (·, ·)X and || · ||X the usual inner
product and norm on L2(X;Rl), l ∈ {1, 2, 3}. The standard magnetostatic problem
consists in finding the magnetic field u : Ω → R

3 such that
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curl u = f in Ω, (1a)

div u = 0 in Ω, (1b)

n × u × n = 0 on ∂Ω, (1c)

whereH(div;Ω) � f : Ω → R
3 denotes the current density and is such that div f =

0 in Ω and f ·n = 0 on ∂Ω . We supplement Problem (1) with another unknown,
namely the potential p : Ω → R, that satisfies p = 0 inΩ . Fromnowon, Problem (1)
refers to this augmented problem with unknowns (u, p). The starting point of our
discretization is the following equivalent weak formulation of Problem (1), originally
introduced in [8, Eq. (58)]: Find (u, p) ∈ X0 × Y0 such that

a(u, v) + b(v, p) = (f, curl v)Ω ∀v ∈ X0, (2a)

−b(u, q) + c(p, q) = 0 ∀q ∈ Y0, (2b)

where

X0 := {v ∈ H(curl;Ω) : n × v × n = 0 on ∂Ω}, Y0 := H 1
0 (Ω),

and the bilinear forms a : H(curl;Ω) × H(curl;Ω) → R, b : H(curl;Ω) ×
H 1(Ω) → R, and c : H 1(Ω) × H 1(Ω) → R are given by

a(w, v) := (curl w, curl v)Ω, b(w, q) := (w,∇ q)Ω, c(r, q) := (r, q)Ω.

(3)
Testing (2a) with v = ∇ p ∈ X0, it is inferred that p = 0 in Ω . The well-posedness
of Problem (2) is then a consequence of the coercivity of a on the subspace of
X0 given by {w ∈ X0 : b(w, q) = 0 ∀q ∈ Y0} = {w ∈ X0 : divw = 0} which,
in turn, follows from the first Weber inequality (see, e.g., [1, Theorem 3.4.3]).

Various discretization methods have been studied in the literature to approximate
the Maxwell equations. We can, in particular, cite the seminal work of [9] on simpli-
cial elements. On more general element shapes, one can mention the Discontinuous
Galerkin method of [11], the Hybridizable Discontinuous Galerkin (HDG) methods
of [10] and [3], or the Virtual Element method of [12].

In this paper, we devise an easy-to-implement Hybrid High-Order (HHO)method
to solve Problem (1). HHO methods have been originally introduced in [6, 7]. Their
connections with HDG methods have been later discussed in [4] in the context of
scalar variable diffusion problems. The method we introduce here shares some sim-
ilarities with the HDG method of [3]. It indeed hinges, as in [3], on face unknowns
for the magnetic field belonging to a subtle subspace of Pk+1(F;R2). However,
there are two main differences between our method and the one in [3]. First, taking
advantage of the fact that Problem (1) is actually first-order, we do not (locally)
reconstruct a discrete curl operator. We hence (i) can consider a smaller local set of
face unknowns, and (ii) we do not have to solve a local problem on each mesh cell
(which may become, for a sequential implementation, rather costly in 3D, especially
for large polynomial degrees). Second, and as opposed to [3] in which the bilinear
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form c is not introduced (therein, p may be nonzero and the authors are also inter-
ested in its approximation, which is not our case), we consider the formulation (2) of
Problem (1). At the discrete level, it enables to improve the stability of the method
without jeopardizing the approximation of u.

The rest of the paper is organized as follows. In Sect. 2 we describe the discrete
setting and our HHO discretization. In Sect. 3 we state the discrete problem and
discuss its well-posedness. Finally, in Sect. 4, we numerically validate the proposed
method.

2 Hybrid High-Order Discretization

2.1 Discrete Setting

We consider sequences of refined meshes that are admissible in the sense of [5,
Definition 1.9]. Each meshTh in the sequence is a finite collection {T } of nonempty,
disjoint, open polyhedra that are assumed to be star-shaped with respect to some
interior point. There holds Ω = ⋃

T∈T h
T with h = maxT∈T h hT , where hT denotes

the diameter of the cell T . For all T ∈ Th , the boundary of T is decomposed into
planar faces collected in the set FT . For admissible mesh sequences, card(FT ) is
bounded uniformly in h. Interfaces are collected in the set F i

h , boundary faces in
the set F b

h , and we define Fh := F i
h ∪ F b

h . For all T ∈ Th and all F ∈ FT , the
diameter of F is denoted hF and the unit normal to F pointing outward T is denoted
nT F . For admissible mesh sequences, hF is uniformly comparable to hT .

2.2 Discrete Unknowns

Let an arbitrary polynomial degree k ≥ 0 be given. For X ∈ {F, T } and, respectively,
d ∈ {2, 3}, and for l ∈ {1, 2, 3}, we denote byPk(X;Rl) the vector space of d-variate,
l-valued polynomial functions on X of total degree at most k. When l = 1, we simply
write P

k(X). The global sets of discrete unknowns for the magnetic field and the
potential are given by

Xk+1
h :=

{

vh = (
(vT )T∈T h , (vF )F∈F h

) : vT ∈ P
k+1(T ;R3) ∀T ∈ Th

vF ∈ ∇τ P
k+2(F) ∀F ∈ Fh

}

,

Yk+1
h :=

{

q
h

= (
(qT )T∈T h , (qF )F∈F h

) : qT ∈ P
k(T ) ∀T ∈ Th

qF ∈ P
k+1(F) ∀F ∈ Fh

}

,

where, for all F ∈ Fh , ∇τ P
k+2(F) denotes the space of (tangential) gradients of

polynomials of degree k + 2 on F . For all vh ∈ Xk+1
h , vh (not underlined) denotes

the function in the broken space Pk+1(Th;R3) such that vh|T := vT for all T ∈ Th .
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Remark 1 In [3], the authors consider face unknowns vF in the larger space

P
k(F;R2) ⊕ ∇τ P̃

k+2(F),

where P̃k+2(F) is the space of homogeneous polynomials of degree k + 2 on F .

We define the interpolators Ik+1
X,h : H 1(Ω;R3) → Xk+1

h and Ik+1
Y,h : H 1(Ω) →

Yk+1
h such that, for any v ∈ H 1(Ω;R3) and q ∈ H 1(Ω),

Ik+1
X,h v :=

((
π k+1
T (v|T )

)
T∈T h

,
(
π

k+1,∇
F γτ (v|F )

)
F∈F h

)
, (4a)

Ik+1
Y,h q :=

((
π k
T (q|T )

)
T∈T h

,
(
π k+1
F (q|F )

)
F∈F h

)
, (4b)

where (i) γτ (v|F ) ∈ L2(F;R2) denotes the tangential trace of v ∈ H 1(Ω;R3) on
F , (ii) for X ∈ {F, T } and q ∈ N, π

q
X denotes, for l ∈ {1, 2, 3}, the L2(X;Rl)-

orthogonal projector onto P
q(X;Rl), and (iii) π

k+1,∇
F denotes the L2(F;R2)-

orthogonal projector onto ∇τ P
k+2(F). In what follows, we denote by π

q
h the global

L2-orthogonal projector such that, for all T ∈ Th , π
q
h|T := π

q
T .

We finally introduce the following global sets of discrete unknowns, that enforce
the zero Dirichlet boundary conditions:

Xk+1
h,0 := {

vh ∈ Xk+1
h : vF ≡ 0 ∀F ∈ F b

h

}
,

Yk+1
h,0 :=

{
q
h

∈ Yk+1
h : qF ≡ 0 ∀F ∈ F b

h

}
.

2.3 Discrete Bilinear Forms

The discrete counterpart of the bilinear form a defined in (3) is the bilinear form
ah : Xk+1

h × Xk+1
h → R given by

ah(wh, vh) := (curlh wh, curlh vh)Ω + sh(wh, vh), (5)

where curlh denotes the broken curl operator on Th and sh : Xk+1
h × Xk+1

h → R is
the stabilization bilinear form such that

sh(wh, vh) :=
∑

T∈T h

∑

F∈F T

h−1
F

(
π

k+1,∇
F (wF − γτ (wT |F )), π

k+1,∇
F (vF − γτ (vT |F ))

)
F .

On the other hand, the discrete coupling bilinear form bh : Xk+1
h × Yk+1

h → R is
given by
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bh(wh, qh) :=
∑

T∈T h

⎛

⎝−(qT , divwT )T +
∑

F∈F T

(
qF ,wT |F ·nT F

)
F

⎞

⎠ . (6)

From the definitions (6) and (4b) of, respectively, bh and Ik+1
Y,h , one can easily prove

the following commutation property: For any q ∈ H 1(Ω),

bh(wh, I
k+1
Y,h q) = (wh,∇ q)Ω for all wh ∈ Xk+1

h . (7)

Finally, the discrete counterpart of the bilinear form c is the bilinear form ch :
Yk+1

h × Yk+1
h → R given by

ch(rh, qh) :=
∑

T∈T h

⎛

⎝(rT , qT )T +
∑

F∈F T

hF (rF , qF )F

⎞

⎠ .

One can easily see that ch(·, ·)1/2 defines a norm on Yk+1
h .

3 Discrete Problem

Our HHO discretization of Problem (2) reads: Find (uh, ph) ∈ Xk+1
h,0 × Yk+1

h,0 such
that

ah(uh, vh) + bh(vh, ph) = (f, curlh vh)Ω ∀vh ∈ Xk+1
h,0 , (8a)

−bh(uh, qh) + ch(ph, qh) = 0 ∀q
h

∈ Yk+1
h,0 . (8b)

Some remarks are in order.

Remark 2 (Well-posedness) At the discrete level, p
h
is a priori nonzero. The well-

posedness of Problem (8) hinges on the following discrete Weber inequality, whose
proof will be given in the forthcoming article [2]: For all (wh, rh) ∈ Xk+1

h,0 × Yk+1
h,0

such that
− bh(wh, qh) + ch(rh, qh) = 0 ∀q

h
∈ Yk+1

h,0 , (9)

it holds
‖wh‖2Ω � ah(wh,wh) + ch(rh, rh). (10)

Note that the commutation property (7) is instrumental to prove (10). Remark, aswell,
that the discrete solution (uh, ph) to Problem (8) satisfies (9). The inequality (10)

implies that |(wh, rh)|2e,h := ah(wh,wh) + ch(rh, rh) defines a norm on the subspace
of Xk+1

h,0 × Yk+1
h,0 given by (9). As a consequence, the bilinear form of Problem (8),

that is
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Table 1 Dimensions of the local sets of face unknowns for the potential (first column) and the
magnetic field (second column), for both our method (left) and the one of [3] (right)

k dim
[
P
k+1(F)

]
dim

[
∇τ P

k+2(F)
]

dim
[
P
k+1(F)

]
dim

[
P
k (F;R2) ⊕ ∇τ P̃

k+2(F)
]

0 3 5 3 5

1 6 9 6 10

2 10 14 10 17

3 15 20 15 26

Ah
(
(wh, rh), (vh, qh)

) := ah(wh, vh) + bh(vh, rh) − bh(wh, qh) + ch(rh, qh),

is coercive on the latter subspace. This is not true if ch is only a semi-norm on Yk+1
h,0 ,

as is the case in [3].

Remark 3 (Algebraic aspects) We point out that all the element unknowns can be
locally eliminated, resulting in a global system written in terms of face unknowns
only. In Table1 we collect the dimensions, for several values of k, of the local sets
of face unknowns for both the potential and the magnetic field, and we provide a
comparison with [3].

Remark 4 (Convergence rates) For smooth enough solutions, the error in discrete
energy-norm |·|e,h is expected to be of order k + 1,whereas an order k + 2 is expected
for the L2-error on the magnetic field. Details will be given in [2]. Recall that we are
not interested here in the approximaton of p = 0, but only in that of u.

4 Numerical Experiments

We let Ω be the unit cube, and we consider the following smooth solution:

u(x1, x2, x3) :=
⎛

⎝
sin(πx2) sin(πx3)
sin(πx1) sin(πx3)
sin(πx1) sin(πx2)

⎞

⎠ . (11)

One can easily verify that u defined by (11) satisfies (1b) and the boundary condi-
tion (1c). The expression of the source term f is inferred from (1a). The numerical
experiments are performed on two mesh families, a cubic one and a regular tetra-
hedral one, as shown on Fig. 1. Element unknowns are locally eliminated, and the
resulting (condensed) global linear system is solved using the SparseLU direct solver
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(a) Cubic (b) Regular tetrahedral

Fig. 1 Mesh families for the numerical tests
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Fig. 2 Errors versus h (left column), solution time (middle column), and number of DoF (right
column) on cubic meshes

of the Eigen library, on an Intel Xeon E5-2680 v4 2.4GHz with 128 Go of RAM.We
display on Figs. 2 and 3 the relative errors as functions of, respectively, the meshsize,
the solution time in seconds, i.e. the time needed to solve the (condensed) global lin-
ear system, and the number of (interface) degrees of freedom (DoF). For both mesh
families, the observed convergence orders are, as expected, (i) k + 1 for the error
ah(uh − Ik+1

X,h u,uh − Ik+1
X,h u)

1/2, and (ii) k + 2 for the error ‖uh − π k+1
h u‖Ω . Figures2

and 3 also clearly exemplify the fact that, whenever the solution is smooth enough
(at least locally), if one wants to increase the accuracy, then raising the polynomial
degree is computationally much more efficient than refining the mesh.
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Hyperbolic Conservation Laws with
Stochastic Discontinuous Flux Functions

Lukas Brencher and Andrea Barth

Abstract Hyperbolic conservation laws are utilized to describe a variety of real-
world applications, which require the consideration of the influence of uncertain
parameters on the solution to the problem. To extend these models, one is often
interested in including discontinuities in the state space to the flux function of the
conservation law. This paper studies the solution of a stochastic nonlinear hyperbolic
partial differential equation (PDE), whose flux function contains random spatial dis-
continuities. The first part of the paper defines the corresponding stochastic adapted
entropy solution and required properties for existence and uniqueness are addressed.
The second part contains the numerical simulation of the nonlinear hyperbolic prob-
lem as well as the estimation of the expectation of the problem via the multilevel
Monte Carlo method.

Keywords Stochastic conservation laws · Discontinuous flux function ·
Stochastic entropy solution · Jump-advection coefficient · Uncertainty
quantification · Finite volume method
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1 Stochastic Scalar Conservation Laws with Discontinuous
Flux Function

In many applications, e.g., two-phase flows in porous media [1], vehicular traffic
flows [2] or sedimentation [6], one is interested in including stochastic discontinu-
ities to the state space of the flux function. In this paper, we consider the nonlinear
hyperbolic PDE with a stochastic flux function (for T ∈ (0,+∞)):
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ut + F(ω, x, u)x = 0 onΩ × R × (0, T ) , (1)

with u(ω, ·, 0) = u0(·) on R. Here, the flux function F : R → R is assumed to
depend discontinuously on the space variable and to be nonlinear. During the last
decades, (deterministic) conservation laws with discontinuous flux functions have
received a lot of attention. When the flux function is sufficiently smooth, i.e, F(x, u)

is locally Lipschitz in u and globally Lipschitz in x , one can use the Kružkov [13]
entropy inequality

∂t |u − m| + ∂x (sgn (u − m) (F(x, u) − F(x, m)))

+ sgn (u − m) ∂x F(x, m) ≤ 0
(2)

to find a weak entropy solution to problem (1). However, when F depends discontin-
uously on the space variable x , the last term of (2) is not well defined. During the last
decades, different criteria were proposed for the right solution concept of entropy
solutions for discontinuous flux functions.

Towers [17] defined a notion of entropy solutions, which is based on the idea of
Klingenberg and Risebro [12], who consider a wave entropy condition to select a
weak entropy solution. The theory in [17] only considers flux functions F(x, u) =
a(x) f (u), where f has the form f (u) = u(1 − u). This theory was extended in [16]
to non-separated variables and can also be stated for multidimensional conservation
laws [16].

A different theory, which we will adapt to in this paper, was introduced by Baiti
and Jenssen [4] and extended by [3]. The main idea is to rewrite the Kruzkov entropy
condition to allow spatial discontinuities in the flux function. This is achieved by
considering the solutions of the stationary problem as adapted entropies instead of the
usual Kruzkov entropies. Thus, this framework allows the number of discontinuities
to be infinite, as no interface condition needs to be imposed.

In the context of (smooth) stochastic conservation laws, Holden and Risebro [10]
and Kim [11] introduced the notion of stochastic weak entropy solutions. Mishra and
Schwab [15] extended this theory to stochastic systems of conservation laws.

2 Stochastic Adapted Entropy Solutions

In this section, we give an existence and uniqueness result for the solution to prob-
lem (1). Therefore, let (Ω,A ,P) be a complete probability space and consider the
nonlinear hyperbolic PDE with a discontinuous random field (for T ∈ (0,+∞)):

ut + (a(ω, x) f (u))x = 0 on Ω × R × (0, T )

u(ω, ·, 0) = u0(·) on R.
(3)
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Here, the initial condition u0 satisfies u0 ∈ L∞(R) and the flux function f : R → R

is assumed to be nonlinear, in particular we consider the Burgers’ flux. The random
field a : Ω × R → R is assumed to depend discontinuously on the spatial variable.
Throughout this section, we make the following assumptions on the flux function
f : R → R and on the discontinuous random field a : Ω × R → R:

(A.1) For almost all ω ∈ Ω , the random field a(ω, ·) is continuous at all points
x ∈ (R \ N (ω)), whereN is a closed set ofmeasure zero, thatmight depend
on ω ∈ Ω .

(A.2) For almost all ω ∈ Ω , the random field admits the following estimates

a−(ω) := inf
x∈R

a(ω, x) > 0 and a+(ω) := ‖a(ω, ·)‖L∞(R) < +∞.

(F.1) f (u) is continuous.
(F.2) There exists a constant um ∈ R such that f is a locally Lipschitz one-to-one

function from (−∞, um] and [um,∞) to [0,∞) (or (−∞, 0]) with f (um) =
0 with common Lipschitz constant L I for all u ∈ I , where I is any bounded
interval in R.

Alternatively, instead of Assumption (F.2), one may assume

(F.2’) f is a locally Lipschitz one-to-one function from R to R with common
Lipschitz constant L I for all u ∈ I , where I is any bounded interval in R.

If the aforementioned assumptions (F.1)–(F.2’) and (A.1)–(A.2) are satisfied, for
any constant α ∈ [0,∞) (or (−∞, 0]), there exist P-a.s. two steady-state solutions
m±

α , with m+
α : R → [0,∞) and m−

α : R → (−∞, 0] of (3), such that

F(ω, x, m±
α (x)) := a(ω, x) f (m±

α (x)) = α for a.e. x ∈ R. (4)

If instead of assumption (F.2’) assumption (F.2) is satisfied, we have m+
α = m−

α .
With these assumptions, we are now able to define the notion of stochastic adapted
entropy solutions.

Definition 1 (Stochastic adapted entropy solutions) Let T > 0 be given.We say that
an L∞(R × [0, T ]) ∩ C0([0, T ], L1

loc(R))-valued random variable u is a stochastic
adapted entropy solution of problem (3) provided that, for α ∈ [0,∞) (or (−∞, 0])
and the corresponding two stochastic steady state solutions m±

α (ω, x) of (3), the
following inequality holds in the sense of distributions:

∂t |u(ω, x, t) − m±
α (ω, x)|+

∂x
[
sgn

(
u(ω, x, t) − m±

α (ω, x)
) (

F(ω, x, u(ω, x, t)) − F(ω, x, m±
α (ω, x))

) ] ≤ 0.
(5)

Theorem 1 (Uniqueness) Let Assumptions (A.1)–(A.2) together with assumptions
(F.1)–(F.2) or (F.1)–(F.2’) be satisfied and set T > 0.
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Further, let u, v ∈ L∞(R × [0, T ]) ∩ C0([0, T ], L1
loc(R)) be two stochastic adapted

entropy solutions with initial data u0, v0 ∈ L∞(R). Then, for a.e. t ∈ [0, T ], we have

∫ b

a
|u(ω, x, t) − v(ω, x, t)|dx ≤

∫ b+M(ω)t

a−M(ω)t
|u0(x) − v0(x)|dx, (6)

for almost all ω ∈ Ω .

Proof Let ω ∈ Ω be fixed. By hypothesis, the flux function F(ω, x, u) = a(ω, x)

f (u) satisfies P-a.s. the assumptions for the uniqueness of a solution to deterministic
scalar conservation laws with discontinuous flux functions via adapted entropies, see
[3, Theorem 4.1].

Theorem 2 (Existence of a stochastic adapted entropy solution) Let Assumptions
(A.1)–(A.2) together with assumptions (F.1)–(F.2) or (F.1)–(F.2’) be satisfied for
almost all ω ∈ Ω and let u0 ∈ L∞(R) with u0(x) ≥ 0. Then for T > 0 and almost
all ω ∈ Ω there exists a stochastic adapted entropy solution to problem (3).

Proof Let ω ∈ Ω be fixed. The existence of a stochastic adapted entropy solution is
then proved identically as for the deterministic case [7, Theorem 3.1].

3 Discontinuous Random Field

The stochastic coefficient in problem (3) should model heterogeneities and/or frac-
tures in a medium. Therefore, we utilize and adapt the random jump coefficient
a, which was introduced (in a slightly modified way) in [5] for an elliptic diffusion
problem. It consists of a (spatial) Gaussian random field with additive discontinuities
on random submanifolds of a domain D ⊂ R.

Definition 2 (Jump-advection coefficient)We consider a randomfieldwith the addi-
tive form

a(ω, x) := a(x) + φ(WD (ω, x)) + P(ω, x),

where a ∈ C(R;R≥0) is a deterministic, uniformly bounded mean function and
φ ∈ C1(R;R>0). For a (zero-mean)Gaussian randomfieldW ∈ L2(Ω; L2(R)) asso-
ciated to a non-negative, symmetric trace class (covariance) operator Q : L2(R) →
L2(R), the random field WD ∈ L2(Ω; L2(R)) is defined as

WD (ω, x) =
⎧
⎨

⎩

W (ω, x), x ∈ D

min(W (ω, x), sup
x∈D

W (ω, x)), x ∈ R \ D .

For the random discontinuities we defineT : Ω → B(D), ω 
→ {T1, . . . ,Tτ } as a
random partition ofD , i.e., theTi are disjoint open subsets ofD withD = ⋃τ

i=1 Ti .
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The number of elements in T is a random variable τ : Ω → N on (Ω,A ,P). For
Dl and Dr being the left and right boundary of D , respectively, we define T0 :=
(−∞,Dl) and Tτ+1 := (Dr ,+∞). The jump heights of the random field are then
given by a sequence (Pi , i ∈ N0) of random variables on (Ω,A ,P) with arbitrary
non-negative distribution(s), which is independent of τ (but not necessarily i.i.d.).
Further, we have

P : Ω × D → R≥0, (ω, x) 
→
τ+1∑

i=0

1T i (x)Pi (ω).

4 Numerical Experiments

In this section, we present numerical simulations of the stochastic Burgers’ equation,
i.e., problem (3) with f (u) = u2

2 . Therefore, we only consider a subset D ⊂ R.
Further, we introduce an approximation of the random field a and discretize the
problem (3) by a Godunov Finite Volume method.

4.1 Approximation of the Random Field

For the continuous part of the random field introduced in Sect. 3, we set ā ≡ 0 and
φ(w) = exp(w), where we assume that the Gaussian field W is characterized by the
Matérn covariance operator QM : L2(D) → L2(D):

[QMϕ](y) :=
∫

D
σ 2 2

1−ν

Γ (ν)

(√
2ν

|x − y|
ρ

)ν

Kν

(√
2ν

|x − y|
ρ

)
ϕ(x)dx, (7)

for ϕ ∈ L2(D), where ν > 0 denotes the smoothness parameter, σ 2 > 0 is the vari-
ance andwith correlation lengthρ > 0.Throughout our experiments,we setσ 2 = 0.1
and ρ = 0.1. Further, Γ is the Gamma function and Kν is the modified Bessel func-
tion of second kind with ν degrees of freedom. The Gaussian field W admits the
Karhunen-Loève expansion and thus is approximated via the truncated decomposi-
tion

W (ω, x) ≈ W̃ (ω, x) :=
K∑

i=1

√
ηi ei (x)w(ω) x ∈ D, K ∈ N, ω ∈ Ω, (8)

where ((ηi , ei ), i ∈ N) denotes the spectral basis of QM . We approximate the eigen-
basis of QM via Nyström’s method [18].

The partitionT is generated by τ ∼ Poi(5) + 2 elements, resulting almost surely
in at least one discontinuity of the random field. Let the jump positions (χi , i ∈ N)
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Fig. 1 Two realizations of the random field a(ω, x) for varying smoothness parameter of the
covariance operator. Left: ν = ∞, right: ν = 1

2

be an i.i.d. sequence of U (D)-random variables, which are independent of τ . The
corresponding jump heights are given by

Pi ∼ U

([
3

4
+ (−1)i 1

2
,
5

4
+ (−1)i 1

2

])
=

{
U

([
1
4 ,

3
4

])
i odd,

U
([

5
4 ,

7
4

])
i even.

(9)

Figure1 shows two different realizations of the random field a(ω, x) for varying
smoothness parameter ν.

4.2 Finite Volume Discretization

For the pathwise spatial discretization, we employ a classical Finite Volume dis-
cretization in conservative form, which is given by

um+1
j := um

j − �t

�x

(
g j+ 1

2
− g j− 1

2

)
, u0

j := 1

�x

∫ x
j+ 1

2

x
j− 1

2

u0(x)dx, (10)

for j ∈ Z. In the presented numerical experiments, the Godunov flux is used. For
an extensive discussion on Finite Volume methods and conservation laws, we refer
to the books of Dafermos and LeVeque [8, 14]. For the temporal discretization, we
employ the Backward Euler time-stepping scheme with an equidistant time step size
�t > 0.

4.3 Multilevel Monte Carlo Estimation

We aim to approximate the stochastic moments of the solution via the multilevel
Monte Carlo method. Therefore, let (ul , l ∈ N) be a sequence of discretizations
converging to the exact solution. For a given discretization level l ∈ N we denote by
EMl the Monte Carlo estimator with Ml ∈ N samples. The multilevel Monte Carlo
estimator of E(uL) is then defined as
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E L(uL) := EM0(u0) +
L∑

l=1

EMl (ul − ul−1). (11)

Here, M0 > · · · > ML are the number of computed samples on each level. For a
detailed discussion on the multilevel Monte Carlo method, we refer to [9].

4.4 Numerical Experiments

For the numerical simulations, we consider the domain D = (0, 1) with T = 1,
the initial condition u0 = 0.3 sin(πx) and apply the numerical methods describe in
the previous subsections to problem (3) with the Burgers’ flux. The level-dependent
spatial step sizes in themultilevelMonteCarlo computation are set to�xl = 2−l�x0.

In Fig. 2 we illustrate the solution of two realizations together with the underlying
random field. The same realizations of the random field are also shown in Fig. 1.
Here, we see the influence of the discontinuities in the random field to the creation
of shocks and we note that regularity of the random coefficient, i.e., the smoothness
of the covariance operator, directly influences the regularity of the solution.

In Fig. 3 we show the multilevel Monte Carlo estimator E L(uL) for L = 8. In
contrast to the realizations presented in Fig. 2, the smoothness of the covariance
operator does not seem to have a major impact on the estimated solution.

In Fig. 4, we present results on the convergence behaviour of the multilevel Monte
Carlo estimation for a smooth and rough covariance operator, i.e., ν = ∞ and ν =
0.5, respectively. Therefore, we consider the error E := E(‖E(u) − E L(uL)‖L1(D )),
where we approximate E(u) by a finer reference solution E L ref(uL ref) and the outer
expectation by a standard Monte Carlo estimate. The observed convergence rate is
in both cases approximately 0.8.

Fig. 2 Two realizations of the solution to problem (3) with the Burgers’ flux. Left: solution with
the underlying smooth random field (ν = ∞). Right: solution with the underlying rough random
field (ν = 0.5)
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Fig. 3 Multilevel Monte Carlo estimate of the solution to problem (3) with the Burgers’ flux. Left:
Estimate for smooth covariance operator (ν = ∞). Right: Estimate for rough covariance operator
(ν = 0.5)

Fig. 4 Convergence of the multilevel Monte Carlo method for different number of levels. Left:
Convergence for smooth covariance operator (ν = ∞). Right: Convergence for rough covariance
operator (ν = 0.5)
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Convergence of a Finite-Volume Scheme
for a Heat Equation with a Multiplicative
Stochastic Force

Caroline Bauzet and Flore Nabet

Abstract We present here the discretization by a finite-volume scheme of a heat
equation perturbed by a multiplicative noise of Itô type and under homogeneous
Neumann boundary conditions. The idea is to adapt well-known methods in the
deterministic case for the approximation of parabolic problems to our stochastic PDE.
In this paper, we try to highlight difficulties brought by the stochastic perturbation
in the adaptation of these deterministic tools.

Keywords Stochastic heat equation · Itô integral · Multiplicative noise · Itô
formula · Predictable process · Finite volume method
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1 Introduction

In this section, we present the stochastic heat equationwe are studying.After deriving
assumptions on the data, we explain the goal of the paper and give the definition of
weak solution we are looking for. More precisely, we are interested in the following
stochastic heat equation set in (0, T ) × Ω × Θ ,

∂t

(
u(t, x, ω) −

∫ t

0
λu(s, x, ω)dW (s)

)
− Δu(t, x, ω) = 0, (1)

whereΩ is an open bounded polygonal subset ofR2, T > 0,W = {Wt ,Ft ; 0 � t �
T } is a standard adapted one-dimensional continuous Brownian motion defined on
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the classical Wiener space (Θ,F ,P) and λ ∈ R. An initial condition is given by a
deterministic function u0 ∈ L2(Ω):

u(0, x, ω) = u0(x), x ∈ Ω, ω ∈ Θ, (2)

and we consider homogeneous Neumann boundary condition:

∇u(t, x, ω) · n(x) = 0, t ∈ (0, T ), x ∈ ∂Ω, ω ∈ Θ, (3)

where n denotes the unit vector to ∂Ω , outward to Ω . In order to make the lecture
more fluent, we omit in the sequel the random variable ω. Note that the present study
can be easily adapted to the case where Ω is a subset of R3 but for the sake of
readability, we restrict the presentation to the 2-dimensional case.

In this paper, the stochastic integral
∫ .

0 λudW is understood in the sense of Itô, so
that due to its non-anticipative construction with simple processes, we must consider
an explicit time-discretization of this object. Note that the unknown u appears in the
stochastic integral, thus the noise is said to be multiplicative, otherwise it is additive.

The numerical analysis of heat equation (and generally second-order parabolic
equations) under stochastic perturbation, random source term or random coefficients
has been the subject of several studies by the way of finite-element approximations
(see [7] for a thorough presentation of the state of the art on this subject). The
aim of the present paper is to expose tools of stochastic calculus used to adapt
known methods in the deterministic case to get the convergence of a suitable finite-
volume scheme for the approximation of problem (1)–(3). This work stands for
an introductive study in order to apprehend more complex problems such as the
finite-volume approximation of stochastic nonlinear degenerate parabolic equations,
having in mind the deterministic case treated by [6].

In what follows, we will show the convergence of a suitable numerical scheme
through a stochastic process u, weak solution of (1)–(3) in the following sense:

Definition 1 Apredictable process u with values in L2(Ω) is aweak solution of (1)–
(3) if u ∈ L2

(
(0, T ) × Θ; H 1(Ω)

) ∩ L∞ (
(0, T ); L2(Ω × Θ)

)
and if it satisfies P-

a.s in Θ and for any ψ ∈ AT = {ϕ ∈ C∞ (
R × R

2
) : ϕ(T, .) = 0} the variational

formulation

∫ T

0

∫
Ω
u(t, x)∂tψ(t, x)dxdt −

∫ T

0

∫
Ω

∇u(t, x) · ∇ψ(t, x)dxdt +
∫
Ω
u0(x)ψ(0, x)dx

=
∫ T

0

∫
Ω

∫ t

0
λu(s, x)dW (s)∂tψ(t, x)dxdt. (4)

Remark 1 The predictability property of u with values in L2(Ω) is a condition
of measurability of the solution u with respect to the filtration F = (Ft )0�t�T ,
which represents the history of the Brownian motion up to time T . It is required
since we consider a multiplicative noise. More precisely, it means that u belongs
to L2

(
(0, T ) × Θ,PT , dt ⊗ P; L2(Ω)

)
where PT denotes the predictable σ -field

generated by (see [8, p. 27])
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{X : (0, T ) × Θ → R : X is left-continuous and ∀t ∈ [0, T ], Xt isFt -measurable} .

We denote by N 2
W (0, T ; L2(Ω)) the space of predictable processes with values in

L2(Ω). Endowedwith the norm ||X ||2 = ∫ T
0

∫
Θ

||X ||2L2(Ω)
dPdt , it is a Hilbert space.

Remark 2 An application of Itô derivation formula (see [3, Theorem 4.17, p. 105])
allows us to remark that the right-hand side of (4) can also be written in the following
manner

∫ T

0

∫
Ω

∫ t

0
λu(s, x)dW (s)∂tψ(t, x)dxdt = −

∫
Ω

∫ T

0
λu(t, x)ψ(t, x)dW (t)dx .

2 Meshes, Scheme and Discrete Norms

We will use a classical two-point flux approximation scheme with an admissible
mesh as in [5]. Firstly, we remind for convenience this definition adapted to our
subset Ω of R2 and give some notations. Secondly, we present the finite-volume
scheme used to approximate the weak solution u of (1)–(3). Thirdly, we introduce
discrete L2(Ω)-norm and H 1(Ω)-seminorm used for the stability results exposed in
the next section.

An admissible meshT is given by a family of disjoint open polygonal subsets of
Ω , called “control volumes” and denoted by K such that:

• Ω = ∪K∈T K ;
• if K , L ∈ T , K 
= L , then K̊ ∩ L̊ = ∅;
• if K , L ∈ T , K 
= L , either the 1-dimensional Lebesgue measure of K ∩ L is 0
or K ∩ L is the edge σ of the mesh separating the control volumes K and L;

• at each K ∈ T , we associate a point xK ∈ K , called the center of K , such that if
K , L are two neighbouring control volumes, the edge σ = K |L which separates
K and L is orthogonal to the straight line going through xK and xL .

Once an admissible finite-volume mesh T of Ω is fixed, we will use in the sequel
the following notations.

Notations

• E[.] denotes the expectation, i.e the integral overΘ with respect to the probability
measure P.

• E is the set of the edges of the mesh T and Eint = {σ ∈ E : σ 
⊂ ∂Ω} the set of
interior edges.

• For any K ∈ T , EK is the set of the edges of the control volume K and mK the
Lebesgue measure of K .

• For any σ = K |L ,mσ is the length of σ and dK |L the distance between the centers
xk and xL .

• h =size(T ) = sup{diam(K ), K ∈ T }, the mesh size.
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In order to compute an approximation of u on [0, T ], we take N ∈ N
∗ and con-

sider a fixed time step Δt = T
N ∈ R

∗+. We first define the set {u0K , K ∈ T } by the
discretization of the initial condition using its mean value over the control volume K ,

u0K = 1

mK

∫
K
u0(x)dx . (5)

The equations satisfiedby the discrete unknowns denoted byunK ,n ∈ {0, . . . , N − 1},
K ∈ T are given by the following explicit scheme

mK

Δt
(un+1

K − unK ) +
∑

σ∈EK∩E int

mσ

dK |L
(unK − unL) = mK

Δt
λunK (Wn+1 − Wn), (6)

where Wn = W (nΔt),∀n ∈ {0, . . . , N }. Note that since the Brownian motion W
is standard, thus W (0) = 0. The random dependence of the discrete unknowns unK
n ∈ {1, . . . , N }, comes from the randomness of the increments Wn+1 − Wn , again
for convenience, we omit the random variable ω and write unK instead of unK (ω). We
define the piecewise constant approximate solution (uΔt

T ) on (0, T ) × Ω × Θ from
the discrete unknowns unK by

uΔt
T (t, x, ω) = unT (x, ω) = unK (ω) = unK , t ∈ [nΔt, (n + 1)Δt), x ∈ K , ω ∈ Θ,

(7)
where (unT )T defined onΩ × Θ is the sequence of the approximate solution at time
tn = nΔt for n ∈ {0, ..., N }.
Remark 3 Let us mention that using properties of the Brownian motion W , for all
K ∈ T and all n ∈ {0, . . . , N }, unK is FnΔt -measurable. Thus, uΔt

T is predictable
with values in L2(Ω) as an elementary process adapted to the filtration (Ft )0�t�T .

We then define for any n ∈ {0, .., N } the following discrete L2(Ω)-norm ||.||L2(Ω)

and H 1(Ω) seminorm |.|21,T for the approximate sequence (unT )T , P-a.s in Θ

||unT ||2L2(Ω) =
∑
K∈T

mK |unK |2 and |unT |21,T =
∑

σ=K |L∈E int

mσ

dK |L
|unK − unL |2.

3 Convergence of the Scheme

In this section, we propose a study of the approximate sequence (uΔt
T ). After the

derivation of boundedness estimates for (uΔt
T ) independent of the discretization

parameters Δt and h, we propose to show the convergence of (uΔt
T ) towards a weak

solution u of (1)–(3) in the sense of Definition 1.

Proposition 1 Let T > 0, T be an admissible mesh, N ∈ N
∗ and Δt = T

N ∈ R
∗+.

Assume that the condition
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Δt

mK

∑
σ∈EK∩E int

mσ

dK |L
� 1

2
, ∀K ∈ T (8)

is satisfied. Then there exists a constant C > 0 only depending on T,Ω, λ and u0
such that

sup
n�N

E
[
||unT ||2L2(Ω)

]
+

N−1∑
n=0

Δt E
[|unT |21,T

]
� C.

Proof Wewill principally use here properties of the BrownianmotionW for the con-
trol of its discrete increments Wn+1 − Wn (see [3, p. 87]). For any n ∈ {0, . . . , N −
1}, note that since E[Wn+1 − Wn] = 0, one gets that for anyFnΔt -measurable ran-
dom variable X : Θ → R, E[(Wn+1 − Wn)X ] = E[Wn+1 − Wn]E[X ] = 0. Thus,
by multiplying (6) by unK and taking the expectation, since a(b − a) = 1

2 (b
2 − a2 −

(a − b)2) for any a, b ∈ R, one gets

mK

2Δt
E

[|un+1
K |2 − |unK |2 − |un+1

K − unK |2] +
∑

σ∈EK∩E int

mσ

dK |L
E

[
(unK − unL)u

n
K

] = 0.

Moreover thanks to (6), by noting that E[(Wn+1 − Wn)2] = Δt , one has

E
[|un+1

K − unK |2] = Δt E
[|λunK |2] + E

⎡
⎣

⎛
⎝ Δt

mK

∑
σ∈EK∩E int

mσ

dK |L
(unK − unL)

⎞
⎠

2⎤
⎦ ,

and one arrives at

mK

2
E

[
|un+1

K |2 − |unK |2
]

+ Δt
∑

σ∈E K ∩E int

mσ

dK |L
E

[
(unK − unL )unK

]

� Δt
mK

2
λ2E

[
|unK |2

]
+ Δt

2

⎛
⎝ Δt

mK

∑
σ∈E K ∩E int

mσ

dK |L

⎞
⎠

⎛
⎝ ∑

σ∈E K ∩E int

mσ

dK |L
E

[
|unK − unL |2

]⎞⎠ .

Summing over K ∈ T and using the condition (8), thanks to classical reorderings
of the summations, we obtain

∑
K∈T

mK E
[|un+1

K |2] + 2Δt
∑

σ=K |L∈E int

mσ

dK |L
E

[|unK − unL |2
]

� (1 + Δtλ2)
∑
K∈T

mK E
[|unK |2] + 1

2
Δt

∑
K∈T

∑
σ∈EK∩E int

mσ

dK |L
E

[|unK − unL |2
]

which leads to

E
[
‖un+1

T ‖2L2(Ω)

]
+ Δt E

[|unT |21,T
]

� (1 + Δtλ2)E
[
‖unT ‖2L2(Ω)

]
. (9)
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Summing (9) over n ∈ {0, · · · ,m}, the discrete Gronwall lemma gives the expected
L∞(0, T ; L2(Ω × Θ)) bound,

E
[
‖umT ‖2L2(Ω)

]
� (1 + Δtλ2)eλ2T ||u0||2L2(Ω), ∀m ∈ 0, . . . , N .

Summing (9) over n ∈ {0, . . . , N − 1} we obtain the L2
(
(0, T ) × Θ; H 1(Ω)

)
bound,

N−1∑
n=0

Δt E
[|unT |21,T

]
�

(
1 + Tλ2(1 + Δtλ2)eλ2T

)
||u0||2L2(Ω).

Remark 4 Let us mention that the stochastic perturbation does not impact the con-
dition (8) on the time and space discretization parameter to get a stability result on
the finite-volume approximation (uΔt

T ). Indeed, the condition is the same as in the
deterministic case (which corresponds to λ = 0).

Remark 5 Note that Proposition 1 also holds for a more general stochastic noise
taking the form

∫ .

0 g(u)dW with g : R → R Lipschitz-continuous. It also implies
boundedness of the sequence (g(uΔt

T )) and so the existence of a weak limit gu in
N 2

W ((0, T ); L2(Ω)) for a subsequence of (g(uΔt
T )). When g is not a linear function,

the convergence result stated in Theorem 1 below requires a compactness tool com-
patible with the random variable in order to affirm that gu = g(u). This extension
will be carried out in a future work.

Theorem 1 For m ∈ N, let Tm be an admissible mesh, Nm ∈ N
∗ and Δtm = T

Nm

satisfying the condition (8). Let (uΔtm
Tm

) be given by (5)–(7) with T = Tm and N =
Nm. Then there exists a subsequence of (u

Δtm
Tm

), still denoted (uΔtm
Tm

), which converges
weakly in L2((0, T ) × Ω × Θ) towards a weak solution u of (1)–(3) in the sense of
Definition 1.

Proof We will only give here the idea of the proof to handle the stochastic term
and refer to [5, Proof of Theorem 18.1 p. 858] for the deterministic contributions.
Let m ∈ N, A be a P-measurable set and ψ ∈ C∞(R × R

2) such that ψ(T, .) = 0
and ∇ψ · n = 0 on (0, T ) × ∂Ω . Since Ω is a polygonal subset of R2, the set of
such functions ψ is dense in the set AT for the L2(0, T ; H 1(Ω))-norm (see [4]).
For the sake of simplicity we shall use the notations T = Tm , h = si ze(Tm) and
Δt = Δtm . We define the piecewise constant in space function ψT on (0, T ) × Ω

by

ψT (t, x) = 1

mBK

∫
BK

ψ(t, y)dy, ∀x ∈ K , t ∈ (0, T ),

where BK ⊂ K is a ball centered at xK and mBK denotes its Lebesgue measure.
We multiply (6) by Δt1AψT (nΔt, xK ), sum the result over n ∈ {0, . . . , N − 1} and
K ∈ T , to get after taking the expectation: T1,m + T2,m = T3,m , where



Convergence of a Finite-Volume Scheme for a Heat Equation … 281

T1,m = E

[
1A

N−1∑
n=0

∑
K∈T

mK (un+1
K − unK )

1

mBK

∫
BK

ψ(nΔt, x)dx

]

T2,m = E

⎡
⎣1A

N−1∑
n=0

Δt
∑
K∈T

∑
σ∈EK∩E int

mσ

dK |L
× (unK − unL)

mBK

∫
BK

ψ(nΔt, x)dx

⎤
⎦

T3,m = E

[
1A

N−1∑
n=0

∑
K∈T

λmKu
n
K (Wn+1 − Wn)

1

mBK

∫
BK

ψ(nΔt, x)dx

]
.

Proposition 1 allows us to extract firstly a subsequence of (uΔt
T ), still denoted (uΔt

T ),
which converges as m → +∞ to an element u in L∞((0, T ); L2(Ω × Θ)) for the
weak-� topology. Secondly, since (uΔt

T ) is bounded in N 2
W (0, T ; L2(Ω)), one can

affirm that u is predictable with values in L2(Ω) (see Remark 1) and that the
previous convergence also holds (up to a subsequence) for the weak topology in
N 2

W (0, T ; L2(Ω)). Now, following [1] (see Remark 6), [2, 5], one shows that

T1,m −−−−→
m→+∞ −E

[
1A

∫ T

0

∫
Ω

u(t, x)∂tψ(t, x)dxdt

]
− E

[
1A

∫
Ω

u0(x)ψ(x, 0)dx

]

T2,m −−−−→
m→+∞ −E

[
1A

∫ T

0

∫
Ω

u(t, x)Δψ(t, x)dxdt

]
.

By adapting the classical result of the two-point flux approximation scheme, one
shows that u ∈ L2((0, T ) × Θ; H 1(Ω)) by introducing a definition of discrete gra-
dient for (uΔt

T ). Since the stochastic integral IT : X �→ ∫ T
0 X (t, x, ω)dW (t) is linear

and continuous from N 2
W (0, T ; L2(Ω)) to L2(Ω × Θ), it is particularly weakly

continuous and so the regularity of ψ gives

E

[
1A

∫
Ω

∫ T

0
uΔt
T (t, x)ψT (t, x)dW (t)dx

]
−−−−−→
m→+∞ E

[
1A

∫
Ω

∫ T

0
u(t, x)ψ(t, x)dW (t)dx

]
.

Using successively Cauchy-Schwarz inequality on Ω × Θ , Itô isometry and Propo-
sition 1, one shows by following [2] in the hyperbolic setting that (using the notation
|Ω| for the area of Ω)

∣∣∣∣∣T3,m − E

[
1A

∫
Ω

∫ T

0
λuΔt

T (t, x)ψT (t, x)dW (t)dx

]∣∣∣∣∣

�
√|Ω|

N−1∑
n=0

⎛
⎝ ∑

K∈T
E

⎡
⎣∫

K

∣∣∣∣∣
∫ (n+1)Δt

nΔt
λunK

(
ψT (nΔt, x) − ψT (t, x)

)
dW (t)

∣∣∣∣∣
2

dx

⎤
⎦

⎞
⎠

1
2

=√|Ω|
N−1∑
n=0

⎛
⎝ ∑

K∈T
E

[∫ (n+1)Δt

nΔt

∫
K

∣∣λunK (ψT (nΔt, x) − ψT (t, x))
∣∣2dxdt

]⎞
⎠

1
2
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�|λ|T√|Ω|||∂tψ ||∞ sup
n�N

E
[
||unT ||2L2(Ω)

] √
Δt −−−−−→

m→+∞ 0.

Thus T3,m −−−−→
m→+∞ E

[
1A

∫
Ω

∫ T

0
λu(t, x)ψ(t, x)dW (t)dx

]
. Finally, for any ψ ∈

AT and any P-measurable set A, one gets

E

[
1A

∫ T

0

∫
Ω
u(t, x)∂tψ(t, x)dxdt

]
+ E

[
1A

∫
Ω
u0(x)ψ(0, x)dx

]

−E

[
1A

∫ T

0

∫
Ω

∇u(t, x) · ∇ψ(t, x)dxdt

]
= −E

[
1A

∫
Ω

∫ T

0
λu(t, x)ψ(t, x)dW (t)dx

]
,

and the result holds using Remark 2. ��
Remark 6 In the deterministic case, Theorem 1 is classically proved bymultiplying
(6) by Δtψ(nΔt, xK ) where xK is the center of the control volume K . Here, the
application of Itô isometry gives us a coefficient

√
Δt which is not sufficient to

compensate the summation over n ∈ {0, · · · , N − 1}. Indeed, in this case there exists
C̃ψ > 0 which only depends on ψ such that

√|Ω|
N−1∑
n=0

( ∑
K∈T

E

[∫ (n+1)Δt

nΔt

∫
K

∣∣λunK (ψ(nΔt, xK ) − ψ(t, x))
∣∣2dxdt

]) 1
2

�
√

Δt
√|Ω||λ|

(
sup
n�N

E
[
||unT ||2L2(Ω)

]) 1
2

C̃ψ

N−1∑
n=0

(Δt + h),

but this last term does not converge to 0 when m tends to +∞ under reasonable
assumptions over h and Δt . Choosing here the mean-value on BK allows us to show
both the convergence of the terms T3,m and T2,m (using for T2,m similar arguments
as in the deterministic framework, see [1, Proposition 3.5]).
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A New Gradient Scheme of a Time
Fractional Fokker–Planck Equation with
Time Independent Forcing and Its
Convergence Analysis

Abdallah Bradji

Abstract We apply the GDM (Gradient Discretization Method) developed recently
in [5, 6] to approximate the time fractional Fokker–Planck equation with time inde-
pendent forcing in any space dimension. Using [5] which dealt with GDM for linear
advection problems, we develop a new fully discrete implicit GS (Gradient Scheme)
for the stated model. We prove new discrete a priori estimates which yield estimates
on the discrete solution in L∞(L2) and L2(H 1) discrete norms. Thanks to these dis-
crete a priori estimates, we prove new error estimates in the discrete norms of L∞(L2)

and L2(H 1). The main ingredients in the proof of these error estimates are the use of
the stated discrete a priori estimates and a comparison with some well chosen aux-
iliary schemes. These auxiliary schemes are approximations of convective-diffusive
elliptic problems in each time level. We state without proof the convergence analysis
of these auxiliary schemes. Such proof uses some adaptations of the [6, Proof of
Theorem 2.28] dealt with GDM for the case of elliptic diffusion problems. These
results hold for all the schemes within the framework of GDM. This work can be
viewed as an extension to our recent one [2].
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∂t u(x, t) − ∇ · (
RL∂

1−α
t κα∇u(x, t) − F(x, t)RL∂1−α

t u(x, t)
)

= g(x, t), (x, t) ∈ Ω × (0, T ), (1)

where Ω is an open polyhedral bounded subset in IRd with d ∈ IN \ {0}, T > 0,
0 < α < 1, κα > 0, F, and g are given functions. Here the operator RL∂1−α

t u(t) is the
Riemann–Liouville derivative defined by ∂t

(
∂−α
t u(t)

)
with ∂−α

t u(t) is the fractional
integral operator:

∂−α
t u(t) = 1

Γ (α)

t∫

0

(t − s)α−1u(s)ds. (2)

Initial condition is given by

u(x, 0) = 0, x ∈ Ω. (3)

Homogeneous Dirichlet boundary conditions are given by

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ). (4)

For the sake of simplicity and clarity of the present contribution, we assume that the
driving force F is independent of time. Equation (1) can be written then as:

∂t u − RL∂
1−α
t ∇ · (κα∇u − Fu) = g.

By acting the operator ∂α−1
t on the both sides of the last equation yields (see [7])

∂α
t u − ∇ · (κα∇u − Fu) = f, (5)

where f = ∂α−1
t g and ∂α

t u is the Caputo derivative of order α given by

∂α
t u(t) = 1

Γ (1 − α)

t∫

0

(t − s)−αut (s)ds. (6)

The case of time dependent driving force F will be addressed in a future work.
We will assume in addition that F ∈ W 1,∞(Ω)

d and divF(x) ≥ 0, for a.e. x ∈ Ω .

The Fokker–Planck equations describe for instance the time evolution of the prob-
ability density function of the position and the velocity of a particle, see [4, 8].
When α tends to one and the diffusion coefficient is constant, we get the standard
Fokker–Planck equation. Several numerical methods are devoted to approximate
Fokker–Planck equations. We quote among them [4, 7] and [8] which dealt respec-
tively with finite element and finite difference methods. In this contribution, we
apply the GDM to approximate the time fractional Fokker–Planck equation with
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time independent forcing in any space dimension. GDM is a general framework
for the discretization and numerical analysis which has been originally designed for
elliptic and parabolic partial differential equations, see [6]. Such framework includes
conforming and nonconforming finite element, mixed finite element, hybrid mixed
mimetic family, some Multi-Point Flux approximation finite volume schemes, and
some discontinuous Galerkin schemes. It has been used successfully to approximate
other types of differential equations, e.g. nonlinear variational inequalities in [1] and
fractional differential equations in [3]. In the present work, we establish a newGS for
the considered model. Such scheme is inspired by a GS which has been developed
recently in [5] for linear advection problems. We develop some new discrete a priori
estimates which serve to prove new error estimates in the discrete norms of L2(H 1)

and L∞(L2) when the exact solution is smooth. These error estimates are proved
thanks to a comparison with well chosen auxiliary schemes. We expect that these
discrete a priori estimates can also be used to prove the convergence of the family
of the approximate solutions towards a unique solution of a weak formulation. This
will be addressed thoroughly in a future work. In fact, almost of the existing works
on the numerical methods for the considered problem, see [7, 8], focus only on
L∞(L2)–error estimate. In [4], there are estimates in some energy–norms ‖ · ‖Hμ/2 ,
where μ ∈ (1, 2) for finite element methods but in one space dimension.

2 Space, Time Discretizations, and Preliminaries

Definition 1 (Definition of an approximate gradient discretization, cf. [6]) LetΩ be
an open domain of IRd , where d ∈ IN \ {0}. An approximate gradient discretization
D is defined by D = (XD ,0,ΠD ,∇D ), where
1. The set of discrete unknowns XD ,0 is a finite dimensional vector space on IR.
2. The linearmappingΠD : XD ,0 → L2(Ω) is the reconstruction of the approximate
function.
3. The gradient reconstruction ∇D : XD ,0 → L2(Ω)d is a linear mapping which
reconstructs, from an element of XD ,0, a “gradient” (vector-valued function) over
Ω . The gradient reconstruction must be chosen such that ‖∇D · ‖L2(Ω)d is a norm on
XD ,0.

In order to analyse the convergence of schemes,we consider the following parameters
related to the approximate gradient discretization D given in Definition 1.

• The coercivity of the discretization is measured via the constant CD given by

CD = max
v∈XD ,0\{0}

‖ΠD v‖L2(Ω)

‖∇D v‖L2(Ω)d
. This yields the following Poincaré inequality:

‖ΠD v‖L2(Ω) ≤ CD ‖∇D v‖L2(Ω)d , ∀v ∈ XD ,0. (7)

• The strong consistency of the discretization is measured through the interpolation
error function SD : H 1

0 (Ω) → [0,+∞) defined by, for all ϕ ∈ H 1
0 (Ω)
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SD (ϕ) = min
v∈XD ,0

(
‖ΠD v − ϕ‖2L2(Ω) + ‖∇D v − ∇ϕ‖2L2(Ω)d

) 1
2
.

• The dual consistency of the discretization is measured through the conformity
error function WD : Hdiv(Ω) → [0,+∞) defined by, for all ϕ ∈ Hdiv(Ω)

WD (ϕ) = max
u∈XD ,0\{0}

1

‖∇D u‖L2(Ω)d

∣∣
∣∣∣∣

∫

Ω

(∇D u(x) · ϕ(x) + ΠD u(x)divϕ(x)) dx

∣∣
∣∣∣∣
.

The discretization of [0, T ] is performed with a constant time step k = T

N + 1
,

where N ∈ IN	, and we shall denote tn = nk, for n ∈ �0, N + 1�. For a discrete

function (vn)N+1
n=0 , we denote by

(
∂1vn

)N+1

n=1 the discrete temporal derivative given by

∂1vn = vn − vn−1

k
. We also denote ∂0vn = vn .

Throughout this paper, the letter C stands for a positive constant which is inde-
pendent of the parameters of the space and time discretizations.

For any n ∈ �0, N�, we use the consistent approximation of ∂α
t u(tn+1) which

is defined as a linear combination of the discrete time derivatives {∂1u(t j+1), j ∈
�0, n�} and it is given by (see [3] and references therein):

∂α
t u(tn+1) =

n∑

j=0

kλn+1
j ∂1u(t j+1) + T

n+1
1 (u), (8)

where

λn+1
j = (n − j + 1)1−α − (n − j)1−α

kαΓ (2 − α)
and |Tn+1

1 (u)| ≤ Ck2−α‖u‖C 2([0,T ]). (9)

The following lemma gives some properties of the coefficients λn+1
j given by (9).

Lemma 1 (Properties of the coefficients λn+1
j , cf. [2]) For any n ∈ �0, N� and for

any j ∈ �0, n�, let λn+1
j be defined by (9). The following properties hold:

k−α

Γ (2 − α)
= λn+1

n > · · · > λn+1
0 ≥ λ0 = T−α

Γ (1 − α)
and

n∑

j=0

kλn+1
j ≤ T 1−α

Γ (2 − α)
.
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3 First Main Result: Formulation of a New GS for (5)
with (3)–(4)

Taking t = tn+1 in (5) and using (8) yield

n∑

j=0

kλn+1
j ∂1u(t j+1) − ∇ · (κα∇u(tn+1) − Fu(tn+1)) = f (tn+1) − T

n+1
1 (u). (10)

We set now a new GS for (5) with (3) and (4) based on the approximation (10).

Definition 2 (Formulation of a GS for (5) with (3)–(4))
Let Ω be a polyhedral open bounded subset of IRd , where d ∈ IN \ {0}, and

∂Ω = Ω \ Ω its boundary. Let D = (XD ,0,ΠD ,∇D ) be a gradient discretization
in the sense of Definition 1. For any n ∈ �0, N� and for any j ∈ �0, n�, let λn+1

j be
defined by (9). We define the following GS as approximation for (5) with (3)–(4):
For any n ∈ �0, N�, find un+1

D ∈ XD ,0 such that, for all v ∈ XD ,0

n∑

j=0

kλn+1
j

(
∂1ΠD u j+1

D ,ΠD v
)

L2(Ω)
+ κα

(∇D un+1
D ,∇D v

)
L2(Ω)d

+ 1

2

(
F · ∇D un+1

D ,ΠD v
)
L2(Ω)

− 1

2

(
FΠD un+1

D ,∇D v
)
L2(Ω)d

+ 1

2

(
div(F)ΠD un+1

D ,ΠD v
)
L2(Ω)

= ( f (tn+1),ΠD v)L2(Ω) , (11)

where u0D = 0.

4 Second Main Results: New a Priori Estimate and Error
Estimate

This section is devoted to analyse the convergence of the GS (11) of Definition 2.

Theorem 1 (New error estimate for GS (11)) Let α ∈ (0, 1) be given. Let Ω be
a polyhedral open bounded subset of IRd , where d ∈ IN \ {0}, and ∂Ω = Ω \
Ω its boundary. Assume that the solution of (5) with (3) and (4) satisfies u ∈
C 2([0, T ];C 2(Ω)). Let k = T

N + 1
, where N ∈ IN \ {0}. We shall denote tn = nk,

for n ∈ �0, N + 1�. For any n ∈ �0, N� and for any j ∈ �0, n�, let λn+1
j be defined

by (9). Let D = (XD ,0,ΠD ,∇D ) be a gradient discretization in the sense of Defi-

nition 1. Then, there exists a unique solution
(
unD

)N+1
n=0 ∈ X N+2

D ,0 for the GS (11) of
Definition 2 and the following L∞(L2) and L2(H 1

0 )–error estimates hold:



290 A. Bradji

N+1
max
n=0

‖ΠD unD − u(tn)‖L2(Ω) +
(

N∑

n=0

k‖∇D unD − ∇u(tn)‖2L2(Ω)d

) 1
2

≤ C(1 + CD )
(
E
k
D (u) + k2−α‖u‖C 2([0,T ]; L2(Ω))

)
, (12)

where for any function u ∈ C ([0, T ]; H 2(Ω)),Ek
D (u) is an upper bound of the error

estimates in discrete norms of W 1,∞(L2) and L∞(H 1
0 )–norms for the auxiliary GS

(21) below, see Lemma 3, and it is given by

E
k
D (u) = max

j∈{0,1} max
n∈� j,N+1�

ED (∂ j u(tn)) (13)

and, for any u ∈ H 2(Ω)

ED (u) = (1 + CD ) (WD (∇u) + WD (Fu)) + (1 + CD + C2
D )SD (u). (14)

To prove Theorem 1, we use the following a priori estimates:

Lemma 2 (New discrete a priori estimates)Under the same hypotheses of Theorem
1, assume that there exists

(
ηn
D

)N+1
n=0 ∈ X N+2

D ,0 such thatη0
D = 0 and for all n ∈ �0, N�

and for all v ∈ XD ,0

n∑

j=0

kλn+1
j

(
∂1ΠD η

j+1
D ,ΠD v

)

L2(Ω)
+ κα

(∇D ηn+1
D ,∇D v

)
L2(Ω)d

+ 1

2

(
F · ∇D ηn+1

D ,ΠD v
)
L2(Ω)

− 1

2

(
F · ΠD ηn+1

D ,∇D v
)
L2(Ω)d

+ 1

2

(
div(F)ΠD ηn+1

D ,ΠD v
)
L2(Ω)

= (
S n+1,ΠD v

)
L2(Ω)

, (15)

whereS n+1 ∈ L2(Ω), for all n ∈ �0, N�, is given. Then, the following L∞(L2) and
L2(H 1

0 )–estimates hold:

N+1
max
n=0

‖ΠD ηn
D ‖L2(Ω) +

(
N+1∑

n=0

k‖∇D ηn
D ‖2L2(Ω)d

) 1
2

≤ C(1 + CD )S , (16)

where S = N
max
n=0

‖S n+1‖L2(Ω).

Proof Sketch for Lemma 2

1. Proof of the L2(H 1
0 )–estimate stated in (16). Taking v = ηn+1

D in (15) and
re-ordering the sum yield
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λn+1
n ‖ΠD ηn+1

D ‖2L2(Ω) + κα‖∇D ηn+1
D ‖2L2(Ω)d ≤ (

S n+1, ΠD ηn+1
D

)
L2(Ω)

+
n∑

j=1

(
λn+1
j − λn+1

j−1

) (
ΠD η

j
D ,ΠD ηn+1

D

)

L2(Ω)
. (17)

Using inequality xy ≤ x2/2 + y2/2, and the facts that λn+1
j − λn+1

j−1 > 0 (this

stems from Lemma 1) and λn+1
j−1 = λn+2

j , inequality (17) implies that

1

2

n+1∑

j=1

λn+2
j ‖ΠD η

j
D ‖2L2(Ω) − 1

2

n∑

j=1

λn+1
j ‖ΠD η

j
D ‖2L2(Ω) + κα‖∇D ηn+1

D ‖2L2(Ω)d

≤ (
S n+1, ΠD ηn+1

D

)
L2(Ω)

. (18)

Multiplying both sides of (18) by 2k and summing the result over n ∈ �0, N�
lead to

N+1∑

j=1

kλN+2
j ‖ΠD η j‖2L2(Ω) + 2κα

N∑

n=0

k‖∇D ηn+1
D ‖2L2(Ω)d

≤ 2k
N∑

n=0

(
S n+1, ΠD ηn+1

D

)
L2(Ω)

. (19)

Using xy ≤ x2/2 + y2/2 and Lemma 1, inequality (19) implies the L2(H 1
0 )–

estimate stated in (16).
2. Proof of the L∞(L2)–estimate stated in (16). Using inequality xy ≤ x2/2 +

y2/2 twice, the Poincaré inequality (7), and Lemma 1, (17) yields

λn+1
n ‖ΠD ηn+1

D ‖2L2(Ω) ≤ (CDS )2

κα

+
n∑

j=1

(
λn+1
j − λn+1

j−1

)
‖ΠD η

j
D ‖2L2(Ω). (20)

Using a mathematical induction on n together with Lemma 1, inequality (20)
yields

‖ΠD ηn+1
D ‖2L2(Ω) ≤ (CDS )2

λ0κα

. This gives the L∞(L2)–estimate stated in (16). �

To prove Theorem 1, we also need to use the following auxiliary GSs: For any
n ∈ �0, N + 1�, find ūnD ∈ XD ,0 such that, for all v ∈ XD ,0

κα

(∇D ūnD ,∇D v
)
L2(Ω)d

+ 1

2

(
F · ∇D ūnD ,ΠD v

)
L2(Ω)

− 1

2

(
FΠD ūnD ,∇D v

)
L2(Ω)d

+ 1

2

(
div(F)ΠD ūnD ,ΠD v

)
L2(Ω)

= (−καΔu(tn) + ∇ · (Fu)(tn),ΠD v)L2(Ω) . (21)
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For any n ∈ �0, N + 1�, the scheme (21) is an approximation of a convective-
diffusive elliptic problem. The following lemma gives some convergences results
for (21):

Lemma 3 (Convergence results for the GSs (21))We consider the same hypotheses
of Theorem 1. Then, for any n ∈ �0, N + 1�, the GS (21) has a unique solution and
the following error estimates hold:

n=N+1
max
n=0

‖∇u(tn) − ∇D ūnD‖L2(Ω) + j=1
max
j=0

n=N+1
max
n= j

‖∂1(u(tn) − ΠD ūnD )‖L2(Ω) ≤ CE
k
D (u).

Proof We will address this in a future paper. It is useful to note that it is possible to
provide an explicit order for Ek

D (u) under some conditions, see [3, Remark 3].

Proof Sketch for Theorem 1

1. Existence and uniqueness for GS (11). They can be justified using the facts
that (11) yields a linear system whose matrix is square and ‖∇D · ‖L2(Ω)d is a
norm.

2. Proof of estimates (12). We follow the following steps:

• First step: comparison between the solution of (21) and the solution of prob-
lem (5) with (3) and (4). Thanks to the uniqueness stated in Lemma 3 together
with (3), we have ū0D = 0. A comparison between the GS (21) and (5) with
(3)–(4) is given in Lemma 3.

• Second step: comparison between the solution of (11) and the auxiliary
scheme (21).We set ηn

D = unD − ūnD . We have then η0
D = 0.Writing now (21)

in the level n + 1, subtracting the result from (11), subtracting
∑n

j=0 kλ
n+1
j(

∂1ū j+1
D , v

)

L2(Ω)
from the both sides of the resulting equation, and using (10)

we find that
(
ηn
D

)N+1
n=0 is satisfying the hypothesis (15) with

S n+1 =
n∑

j=0

kλn+1
j ∂1

(
u(t j+1) − ū j+1

D

)
+ T

n+1
1 (u).

Applying then the discrete a priori estimate (16) and gathering this with
Lemma 1, Lemma 3, and (9) to get

(
N+1∑

n=0

k‖∇D ηn
D ‖2L2(Ω)d

) 1
2

+ N+1
max
n=0

‖ΠD ηn
D ‖L2(Ω)

≤ C(1 + CD )(k2−α‖u‖C 2([0,T ]; C 2(Ω)) + E
k
D (u)).

Gathering this estimate with the fact that u(tn) − unD = u(tn) − ūnD − ηn
D and

Lemma 3 implies the desired estimates (12). This completes the proof of
Theorem 1. �
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5 Conclusion and Perspectives

We applied GDM to approximate a fractional Fokker–Planck equation with time
independent forcing in any space dimension. We established a new fully discrete
implicit GS. To analyse the convergence of this scheme, we first proved new discrete
a priori estimates. Thanks to these discrete a priori estimates, we proved new error
estimates in the discrete norms of L2(H 1) and L∞(L2). This contribution is an
initiation for a future work in which we shall deal with GDM for time and space
fractional Fokker–Planck equations with time dependent forcing.
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The Gradient Discretisation Method
for Two-Phase Discrete Fracture Matrix
Models in Deformable Porous Media

F. Bonaldi, Konstantin Brenner, J. Droniou, and R. Masson

Abstract We consider a two-phase Darcy flow in a fractured porous medium con-
sisting in a matrix flow coupled with a tangential flow in the fractures, described as
a network of planar surfaces. This flow model is also coupled with the mechanical
deformation of the matrix assuming that the fractures are open and filled by the flu-
ids, as well as small deformations and a linear elastic constitutive law. The model is
discretized using the gradient discretization method (Droniou et al. in Mathematics
& applications. Springer, 2018, [1]), which covers a large class of conforming and
non conforming discretizations. This framework allows a generic convergence anal-
ysis of the coupled model using a combination of discrete functional tools. Here, we
describe the model together with its numerical discretisation, and we state the con-
vergence result, whose proof will be detailed in a forthcoming paper. This is, to our
knowledge, the first convergence result for this type of models taking into account
two-phase flows and the nonlinear poro-mechanical coupling. Previous relatedworks
consider a linear approximation obtained for a single phase flow by freezing the frac-
ture conductivity (Girault et al. in Math Models Methods Appl Sci 25:4, 2015, [2]).
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1 Continuous Model

We consider a bounded polytopal domain Ω of Rd , d ∈ {2, 3}, partitioned into a
fracture domain Γ and a matrix domain Ω\Γ . The network of fractures is Γ =⋃

i∈I Γi , where each Γi is planar and has therefore two sides denoted by ± in the
matrix domain, with unit normal vectors n± oriented outward to the sides ± (Fig. 1).
We denote by γ the trace operator on Γ for functions in H 1(Ω) and by �·� the
normal trace jump operator on Γ for functions in Hdiv(Ω\Γ ). We denote by ∇τ the
tangential gradient and by divτ the tangential divergence on the fracture network Γ .
The symmetric gradient operator › is defined such that ›(v) = 1

2 (∇v +t (∇v)) for a
given vector field v.

Let us fix a continuous function d0 : Γ → (0,+∞) with zero limits at ∂Γ \
(∂Γ ∩ ∂Ω) (i.e. the tips ofΓ ) and stricly positive limits at ∂Γ ∩ ∂Ω . Let us introduce
the following function spaces: U0 = {v̄ ∈ (H 1(Ω\Γ ))d | γ∂Ω v̄ = 0 on ∂Ω} for the
displacement vector, and V0 = {v̄ ∈ H 1

0 (Ω) | γ v̄ ∈ H 1
d0

(Γ )} for each phase pressure,
where the space H 1

d0
(Γ ) is made of functions vΓ in L2(Γ ), such that d3/2

0 ∇τ vΓ is in
L2(Γ ), whose traces are continuous at fracture intersections ∂Γi ∩ ∂Γ j and vanish
on the boundary ∂Γ ∩ ∂Ω . The matrix and fracture rock types are denoted by the
indices rt = m and rt = f , respectively, and the non-wetting and wetting phases by
the superscripts α = nw and α = w, respectively.

The PDEs model reads: find the phase pressures p̄α , α ∈ {nw,w}, and the dis-
placement vector field ū, such that p̄c = p̄nw − p̄w and, for α ∈ {nw,w},

Fig. 1 Example of a 2D
domain Ω with its fracture
network Γ , the unit normal
vectors n± at Γ , the phase
pressures p̄α in the matrix
and γ p̄α in the fracture
network, the displacement
vector field ū, the matrix
Darcy velocities qα

m and the
fracture tangential Darcy
velocities qα

f integrated
along the fracture
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t
(
φ̄mSα

m( p̄c)
) + div

(
qα
m

) = hα
m on (0, T ) × Ω \ Γ ,

qα
m = −ηα

m(Sα
m( p̄c))Km∇ p̄α on (0, T ) × Ω \ Γ ,

∂t

(
d̄ f Sα

f (γ p̄c)
)

+ divτ (qα
f ) − �qα

m� = hα
f on (0, T ) × Γ,

qα
f = −ηα

f (S
α
f (γ p̄c))(

1

12
d̄3
f )∇τ γ p̄α on (0, T ) × Γ,

−div
(
ff(ū) − b p̄E

m I
)

= f on (0, T ) × Ω \ Γ

ff(ū) = 2μ ›(ū) + λ div(ū) I on (0, T ) × Ω \ Γ ,

(1)

with ⎧
⎪⎨

⎪⎩

∂t φ̄m = b div∂t ū + 1

M
∂t p̄

E
m on (0, T ) × Ω \ Γ ,

(ff(ū) − b p̄E
m I)n

± = − p̄E
f n

± on (0, T ) × Γ,

d̄ f = −�ū� on (0, T ) × Γ,

and the initial conditions

p̄α|t=0 = p̄α
0 , φ̄m |t=0 = φ̄0

m .

Here, the equivalent pressures pE
m and pE

f are defined, following [3], by

p̄E
m =

∑

α∈{nw,w}
p̄α Sα

m( p̄c) −Um( p̄c), p̄E
f =

∑

α∈{nw,w}
γ p̄α Sα

f (γ p̄c) −U f (γ p̄c),

whereUrt( p̄c) = ∫ p̄c
0 q

(
Snwrt

)′
(q)dq is the capillary energy density function for each

rock type rt ∈ {m, f }. This is a key choice to obtain the energy estimates which are
the starting point for the convergence analysis.

We make the following main assumptions on the data:

• For each phase α ∈ {nw,w} and rock type rt ∈ {m, f }, the mobility function ηα
rt is

continuous non-decreasing and there exist 0 < ηα
rt,min ≤ ηα

rt,max < +∞ such that
ηα
rt,min ≤ ηα

rt(s) ≤ ηα
rt,max for all s ∈ [0, 1].

• For each rock type rt ∈ {m, f }, Snwrt is a non-decreasing Lipschitz continuous
function with values in [0, 1], and Swrt = 1 − Snwrt .

• b ∈ [0, 1] is the Biot coefficient, M > 0 is the Biot modulus, and λ > 0,μ > 0 are
the Lamé coefficients. These coefficients are assumed to be constant for simplicity.

• There exist 0 < φ0
m,min ≤ φ0

m,max < 1 such that φ0
m,min ≤ φ̄0

m(x) ≤ φ0
m,max for a.e.

x ∈ Ω .
• The initial fracture aperture satisfies d̄0

f (x) ≥ d0(x) for a.e. x ∈ Γ .
• The permeability tensor Km is symmetric and uniformly elliptic on Ω .

Definition 1 (Weak solution of the model) A weak solution of the model for
f ∈ L2(Ω)d , hα

m ∈ L2((0, T ) × Ω), and hα
f ∈ L2((0, T ) × Γ ), is given by p̄α ∈

L2(0, T ; V0), α ∈ {nw,w}, and ū ∈ L∞(0, T ;U0), such that for any α ∈ {nw,w},
d̄ 3/2
f ∇τ γ p̄α ∈ L2((0, T ) × Γ ))d and, for all ϕ̄α ∈ C∞

c ([0, T ) × Ω) and all smooth
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functions v̄ : [0, T ] × (Ω \ Γ ) → Rd vanishing on ∂Ω and having finite limits on
each side of Γ ,

T∫

0

∫

Ω

(
−φ̄mS

α
m( p̄c)∂t ϕ̄

α + ηα
m(Sα

m( p̄c))Km∇ p̄α · ∇ϕ̄α
)
dxdt

+
T∫

0

∫

Γ

(
−d̄ f S

α
f (γ p̄c)∂tγ ϕ̄α + ηα

f (S
α
f (γ p̄c))

d̄ 3
f

12
∇τ γ p̄α · ∇τ γ ϕ̄α

)
dσ(x)dt

−
∫

Ω

φ̄0
mS

α
m( p̄0c )ϕ̄

α(0, ·)dx −
∫

Γ

d̄0
f S

α
f (γ p̄0c )γ ϕ̄α(0, ·)dσ(x)

=
T∫

0

∫

Ω

hα
m ϕ̄αdxdt +

T∫

0

∫

Γ

hα
f γ ϕ̄αdσ(x)dt,

(2)

T∫

0

∫

Ω

(
ff(ū) : ›(v̄) − b p̄E

mdiv(v̄)
)
dxdt +

T∫

0

∫

Γ

p̄E
f �v̄�dσ(x)dt

=
T∫

0

∫

Ω

f · v̄dxdt,
(3)

with p̄c = p̄nw − p̄w, d̄ f = −�ū�, φ̄m − φ̄0
m = b div(ū − ū0) + 1

M
( p̄E

m − p̄E,0
m ), d̄0

f

= −�ū0�, where ū0 is the solution of (3) without the time integral and using the
initial equivalent pressures p̄E,0

m and p̄E,0
f obtained from the initial pressures p̄α

0 ∈
V0 ∩ L∞(Ω), γ p̄α

0 ∈ L∞(Γ ), α ∈ {nw,w}.
Remark 1 (Regularity of the displacement field) Notice that ū ∈ L∞(0, T ;U0)

implies d̄ f = −�ū� ∈ L∞(0, T ; L4(Γ )). All the integrals above are thus well-
defined.

2 The Gradient Scheme

The gradient discretization for the mechanics is defined by the vector space of d.o.f.
X0
Du

and

• a symmetric gradient operator ›Du : X0
Du

→ L2(Ω,Sd(R)),
• a displacement function reconstruction operator ΠDu : X0

Du
→ L2(Ω)d ,

• a normal jump function reconstruction operator �·�Du : X0
Du

→ L4(Γ ),
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whereSd(R) is the vector space of real symmetric matrices of size d. Let us define
the divergence operator divDu(·) = Trace(›Du(·)), the stress tensor operator

ffDu(v) = 2μ›Du(v) + λdivDu(v)I,

and the fracture width d f,Du = −�u�Du . It is assumed that ‖v‖Du = ‖›Du(v)‖L2(Ω)

is a norm on X0
Du
.

The gradient discretization (GD) of the Darcy continuous pressure model is intro-
duced in [4] and defined by the vector space of d.o.f. X0

D p
and

• two discrete gradient operators on the matrix and fracture domains

∇m
D p

: X0
D p

→ L∞(Ω)d , ∇ f
D p

: X0
D p

→ L∞(Γ )d−1;

• two function reconstruction operators on the matrix and fracture domains

Πm
D p

: X0
D p

→ L∞(Ω), Π
f
D p

: X0
D p

→ L∞(Γ ),

which are piecewise constant [1, Definition 2.12].

A consequence of the piecewise-constant property is that, for any g : R→ R and v ∈
X0
D p

, we can define g(v) ∈ X0
D p

component-wise and we haveΠ
ρ

D p
g(v) = g(Πρ

D p
v)

for ρ ∈ {m, f }. Fixing a continuous function d0 : Γ → (0,+∞) with zero limits
at the tips of Γ , the vector space X0

D p
is endowed with ‖v‖D p = ‖∇m

D p
v‖L2(Ω)d +

‖d 3
2
0 ∇ f

D p
v‖L2(Γ )d−1 , assumed to define a norm on X0

D p
.

This spatial GD is extended into a space-time GD by complementing it with

• a discretisation 0 = t0 < t1 < · · · < tN = T of the time interval [0, T ];
• interpolators PD p : V0 → X0

D p
and Pm

D p
: L2(Ω) → X0

D p
of initial conditions.

The spatial operators are extended into space-time operators as follows. Let χ

represent either p or u. If w = (wn)
N
n=0 ∈ (X0

Dχ
)N+1, and ΨDχ

is a spatial GDM
operator, its space-time extension is defined by

ΨDχ
w(0, ·) = ΨDχ

w0 and, ∀n ∈ {0, . . . , N − 1} , ∀t ∈ (tn, tn+1], ΨDχ
w(t, ·) = ΨDχ

wn+1.

where, for convenience, the same notation is kept for the spatial and space-time
operators. We also define the discrete time derivative as follows: for f : [0, T ] →
L1(Ω) piecewise constant on the time discretisation, with fn = f|(tn−1,tn ], and using
the same n and t as above, δt f (t) = fn+1− fn

tn+1−tn
.

The gradient scheme for (1) consists in writing the weak formulation (2)–(3) with
continuous spaces and operators substituted by their discrete counterparts, after a
formal integration by part: find pα ∈ (X0

D p
)N+1, α ∈ {nw,w}, and u ∈ (X0

Du
)N+1,

such that for all ϕα ∈ (X0
D p

)N+1, v ∈ (X0
Du

)N+1 and α ∈ {nw,w},
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T∫

0

∫

Ω

(
δt

(
φD Πm

D p
sα
m

)
Πm

D p
ϕα + ηα

m(Πm
D p

sα
m)Km∇m

D p
pα · ∇m

D p
ϕα

)
dxdt

+
T∫

0

∫

Γ

δt

(
d f,DuΠ

f
D p

sα
f

)
Π

f
D p

ϕαdσ(x)

+
T∫

0

∫

Γ

ηα
f (Π

f
D p

sα
f )
d3
f,Du

12
∇ f

D p
pα · ∇ f

D p
ϕαdxdt

=
T∫

0

∫

Ω

hα
mΠm

D p
ϕαdxdt +

T∫

0

∫

Γ

hα
f Π

f
D p

ϕαdσ(x)dt,

(4a)

T∫

0

∫

Ω

(
ffDu (u) : ›Du(v) − b(Πm

D p
pE
m )divDu(v)

)
dxdt

+
T∫

0

∫

Γ

(Π
f
D p

pE
f )�v�Dudσ(x)dt =

T∫

0

∫

Ω

f · ΠDuvdxdt,

(4b)

with the closure equations

⎧
⎪⎪⎨

⎪⎪⎩

pc = pnw − pw, sα
m = Sα

m(pc), sα
f = Sα

f (pc),

pE
m =

∑

α∈{nw,w}
pαsα

m −Um(pc), pE
f =

∑

α∈{nw,w}
pαsα

f −U f (pc),

φD − Πm
D p

φ̄0
m = b divDu(u − u0) + 1

M Πm
D p

(pE
m − pE,0

m ).

(4c)

The initial conditions are given by pα
0 = PD p p̄

α
0 (α ∈ {nw,w}),φ0

m = Pm
D p

φ̄0, and the

initial displacement u0 is the solution of (4b) with the equivalent pressures obtained
from the initial pressures (pα

0 )α∈{nw,w}.

3 Convergence Result

Let (D l
p)l∈N and (D l

u)l∈N be sequences ofGDs.Westate here the assumptions on these
sequences which ensure that the solutions to the corresponding schemes converge.
Most of these assumptions are adaptation of classical GDM assumptions [1], except
for the chain-rule and cut-off properties, whose role is briefly discussed at the end of
the paper; we note that all these assumptions hold for standard discretisations used
in porous media flows.
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Coercivity, consistencyand limit-conformityof (D l
p)l∈N: these properties are omit-

ted since they are similar to those in [4], the only change being the use in the definition
of consistency of the Lr -norm with r > 8, instead of the L2-norm, for the gradient
in the fractures, and the use of fracture fluxes q f vanishing at the fracture tips in the
definition of the limit-conformity.

Chain rule estimate on (D l
p)l∈N: for any Lipschitz-continuous function F : R→

R, there is CF ≥ 0 such that, for all l ∈ N and v ∈ X0
D l

p
, ‖∇m

D l
p
F(v)‖L2(Ω)d ≤

CF‖∇m
D l

p
v‖L2(Ω)d .

Cut-off property of (D l
p)l∈N: for any compact set K ⊂ Ω\Γ and l ∈ N, there exists

ψ l ∈ XD l
p
such that, for l large enough and C ≥ 0 not depending on l: Πm

D l
p
ψ l ≥ 0

on Ω; Πm
D l

p
ψ l ≥ 1 on K ; ‖∇m

D l
p
ψ l‖L2(Ω)d ≤ C ; Π f

D l
p
ψ l = 0; and ∇ f

D l
p
ψ l = 0.

Coercivity of (D l
u)l∈N. It holds

sup
l∈N

max
v∈X0

D l
u
\{0}

‖ΠD l
u
v‖L2(Ω)d + ‖�v�D l

u
‖L4(Γ )

‖v‖D l
u

< +∞. (5)

Consistency of (D l
u)l∈N. For all ū ∈ U0, it holds liml→+∞ SD l

u
(ū) = 0 where

SD l
u
(ū) = min

v∈X0
D l

u

[
‖›D l

u
(v) − ›(ū)‖L2(Ω,Sd (R))

+ ‖ΠD l
u
v − ū‖L2(Ω)d + ‖�v�D l

u
− �ū�‖L4(Γ )

]
.

Limit Conformity of (D l
u)l∈N. Let C∞

Γ (Ω \ Γ ,Sd(R)) denote the vector space
of smooth functions ff(x) from Ω \ Γ to Sd(R) defined as above, and such
that ff+(x)n+ + ff−(x)n− = 0 and (ff+(x)n+)×n+ = 0 for a.e. x ∈ Γ . For all ff ∈
C∞

Γ (Ω \ Γ ,Sd(R)), it holds liml→+∞ WD l
u
(ff) = 0 where

WD l
u
(ff) = max

v∈X0
D l

u
\{0}

1

‖v‖D l
u

[ ∫

Ω

(
ff : ›D l

u
(v) + ΠD l

u
v div(ff)

)
dx

−
∫

Γ

(
(ffn+) · n+�v�D l

u
dσ(x)

]
.

Compactness of (D l
u)l∈N. For any sequence (vl)l∈N with vl ∈ X0

D l
u
for all l ∈ N such

that supl∈N ‖vl‖D l
u
< +∞, the sequences (ΠD l

u
vl)l∈N and (�vl�D l

u
)l∈N are relatively

compact in L2(Ω)d and in Ls(Γ ) for all s < 4, respectively.

We can now state the convergence result.
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Theorem 1 Let tln, n = 0, · · · , Nl and l ∈ N, be a sequence of time discretizations
such that liml→+∞ maxn=0,··· ,Nl−1(t ln+1 − t ln) = 0. Let 0 < φm,min ≤ φm,max < +∞
and assume that, for each l ∈ N, the gradient scheme (4a)–(4b) has a solution pα

l ∈
X0
D l

p
, α ∈ {nw,w}, ul ∈ X0

D l
u
such that

(i) d f,D l
u
(t, x) ≥ d0(x) for a.e. (t, x) ∈ (0, T ) × Γ ,

(ii) φm,min ≤ φD l (t, x) ≤ φm,max for a.e. (t, x) ∈ (0, T ) × Ω .

Then, there exist p̄α ∈ L2(0, T ; V0), α ∈ {nw,w}, and ū ∈ L∞(0, T ;U0) solutions
of the weak formulation (2)–(3) such that for α ∈ {nw,w} and up to a subsequence

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Πm
D l

p
pα
l ⇀ p̄α in L2(0, T ; L2(Ω)),

Π
f
D l

p
pα
l ⇀ γ p̄α in L2(0, T ; L2(Γ )),

ΠD l
u
ul ⇀ ū in L∞(0, T ; L2(Ω)d) weak �,

d f,D l
u
→ d̄ f in L∞(0, T ; L p(Γ )) for 2 ≤ p < 4,

φD l ⇀ φ̄m in L∞(0, T ; L2(Ω)) weak �,

Πm
Dl

p
Sα
m(plc) → Sα

m( p̄c) in L2(0, T ; L2(Ω)),

Π
f
Dl

p
Sα
f (p

l
c) → Sα

f (γ p̄c) in L2(0, T ; L2(Γ )).

The proof of Theorem 1 hinges on the following steps:

• Inferring energy estimates by using suitable test functions;
• Obtaining weak estimates on time derivatives;
• Using the discontinuous Ascoli–Arzelà compactness theorem [1, Theorem C.11]
to prove convergences;

• Identifying the limit fields.

We report here the energy estimate satisfied by the discrete unknowns. For
a piecewise constant function v on [0, T ] with v(t) = vn+1 for all t ∈ (tn, tn+1],
n = 0, · · · , N − 1 and the initial value v(0) = v0, we define the piecewise constant
function v̂ such that v̂(t) = vn for all t ∈ (tn, tn+1]. Upon choosing ϕα = pα in (4a)
and v = δtu in (4b), using the fact that δt (uv)(t) = û(t)δt v(t) + v(t)δt u(t), sum-
ming the corresponding equations, and using the closure equations (4c) along with
the assumptions we made on the data, we obtain the following estimate for the solu-
tions of (4): there is a real number C > 0 depending on the data such that

T∫

0

∫

Ω

δt (φDUm(Πm
D p

pc)) dxdt +
T∫

0

∫

Γ

δt (d f,DuU f (Π
f
D p

pc)) dσ(x)dt

+
T∫

0

∫

Ω

δt

(
1

2

(
ffDu(u) : ›Du(u)

) + 1

2M
(Πm

D p
pE
m )2

)

dxdt

+
∑

α∈{w,nw}

T∫

0

∫

Ω

|∇m
D p

pα|2 dxdt +
∑

α∈{w,nw}

T∫

0

∫

Γ

d3
f,Du

|∇ f
D p

pα|2 dσ(x)dt (6)
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≤ C

⎛

⎝

T∫

0

∫

Ω

f · δtΠDuu dxdt +
∑

α∈{w,nw}

T∫

0

∫

Ω

hα
mΠm

D p
pα dxdt

+
∑

α∈{w,nw}

T∫

0

∫

Γ

hα
f Π

f
D p

pα dσ(x)dt

⎞

⎠ .

The left-hand side of this inequality ismade of positive terms (up to initial conditions,
that appear in the telescopic sums corresponding to the first three terms), with enough
quadratic growth in the unknowns to compensate the linear dependency of the right-
hand side on these unknowns.

The chain-rule estimates and cut-off properties of (D l
p)l∈N are used to prove

estimates on the time-translates of Πm
Dl

p
Sα
m(plc) (which are crucial in establishing

the strong convergence of this quantity). These estimates require to separate the
matrix and fracture components (hence the need for using cut-off test functions in
the scheme), and is based on a dual estimate that requires to use Sα

m(plc) as a test
function and estimate its gradient (which follows from gradient estimates on plc and
the chain-rule estimates).
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A New Optimal L∞(H1)–Error Estimate
of a SUSHI Scheme for the Time
Fractional Diffusion Equation

Abdallah Bradji

Abstract We consider a finite volume scheme, using the general mesh of [8], for
the TFDE (time fractional diffusion equation) in any space dimension. The time
discretization is performed using a uniformmesh.We prove a new discrete L∞(H 1)–
a priori estimate. Such a priori estimate is proved thanks to the use of the new tool
of the discrete Laplace operator developed recently in [7]. Thanks to this a priori
estimate, we prove a new optimal convergence order in the discrete L∞(H 1)–norm.
These results improve the ones of [1, 4] which dealt respectively with finite volume
and GDM (Gradient Discretization Method) for the TFDE. In [4], we only proved
a priori estimate and error estimate in the discrete L∞(L2)–norm whereas in [1]
we proved a priori estimate and error estimate in the discrete L2(H 1)–norm. The a
priori estimate as well as the error estimate presented here were stated without proof
for the first time in [3, Remark 1, p. 443] in the context of the general framework of
GDM and [2, Remark 1, p. 205] in the context of finite volume methods. They also
were mentioned, as future works, in [1, Remark 4.1].

Keywords Time fractional diffusion equation · SUSHI · A priori estimate ·
L∞(H 1)–error estimate

MSC 2010 65M08 · 65M12 · 65M15

1 Problem to Be Solved and Motivation

We consider the following time fractional diffusion equation:

∂α
t u(x, t) − Δu(x, t) = f (x, t), (x, t) ∈ Ω × (0, T ), (1)
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where Ω is an open polygonal bounded subset in IRd , T > 0, 0 < α < 1, and f is a
given function. Here the operator ∂α

t is the Caputo derivative defined by:

∂α
t u(t) = 1

Γ (1 − α)

∫ t

0
(t − s)−αut (s)ds. (2)

Initial condition is given by, for a given function u0 defined on Ω

u(x, 0) = u0(x), x ∈ Ω. (3)

Homogeneous Dirichlet boundary conditions are given by

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ). (4)

Fractional differential equations have been successfully used in theory and they
appear in many areas of application, see [1, 9].

We consider in this note a cell-centered finite volume scheme, using the general
class of meshes introduced in [8], for TFDE. The first aim of this contribution is to
prove a L∞(H 1)–apriori estimate and the secondone is to use thisapriori estimate to
derive an optimal convergence order in the discrete norm of L∞(H 1). This improves
the results of our previous works [1, 3, 4] which dealt with a priori estimate and
error estimate in the discrete norms of L∞(L2) or L2(H 1). As mentioned above in
the Abstract, the a priori estimate as well as the error estimate presented here were
stated without proof for the first time in [3, Remark 1, p. 443] in the context of
the general framework of GDM and in [2, Remark1, p. 205] in the context of finite
volume methods. The proof of a priori estimate and error estimate in a discrete norm
of L∞(H 1) is not straightforward in the sense that the usual techniques do not lead
to such results, we refer to Remark 1 below.

2 Space, Time Discretizations, and the Definition
of a Discrete Gradient

Definition 1 (Space discretization, cf. [8]) Let Ω be a polyhedral open bounded
subset of IRd , where d ∈ IN \ {0}, and ∂Ω = Ω \ Ω its boundary. A discretization
of Ω , denoted by D , is defined as the triplet D = (M ,E ,P), where:

1. M is a finite family of non empty connected open disjoint subsets of Ω (the
“control volumes”) such that Ω = ∪K∈M K . For any K ∈ M , let ∂K = K \ K
be the boundary of K ; let m (K ) > 0 denote the measure of K and hK denote the
diameter of K .
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2. E is a finite family of disjoint subsets of Ω (the “edges” of the mesh), such
that, for all σ ∈ E , σ is a non empty open subset of a hyperplane of IRd , whose
(d − 1)–dimensional measure is strictly positive. We also assume that, for all
K ∈ M , there exists a subset EK of E such that ∂ K = ∪σ∈EK σ . For any σ ∈ E ,
we denote by Mσ = {K , σ ∈ EK }. We then assume that, for any σ ∈ E , either
Mσ has exactly one element and then σ ⊂ ∂ Ω (the set of these interfaces, called
boundary interfaces, denoted by Eext) or Mσ has exactly two elements (the set
of these interfaces, called interior interfaces, denoted by Eint). For all σ ∈ E , we
denote by xσ the barycentre of σ . For all K ∈ M and σ ∈ E , we denote by nK ,σ

the unit vector normal to σ outward to K .
3. P is a family of points of Ω indexed by M , denoted by P = (xK )K∈M , such

that for all K ∈ M , xK ∈ K and K is assumed to be xK–star-shaped, which
means that for all x ∈ K , the property [xK , x] ⊂ K holds. Denoting by dK ,σ the
Euclidean distance between xK and the hyperplane including σ , one assumes that
dK ,σ > 0. We then denote by DK ,σ the cone with vertex xK and basis σ .

The time discretization is performed with a constant time step k = T

N + 1
, where

N ∈ IN�, and we shall denote tn = nk, for n ∈ �0, N + 1�. We denote by ∂1 the

discrete first time derivative given by ∂1v j+1 = v j+1 − v j

k
.

Throughout this paper, the letter C stands for a positive constant independent of
the parameters of the space and time discretizations.

We use the finite volume space considered in [7, Definition 5.1, p. 2037], that
is the space HD ⊂ L2(Ω) of functions which are constant on each control volume
K of M . We associate any σ ∈ Eint with a family of real numbers

(
βK

σ

)
K∈M (this

family contains in general at most d + 1 nonzero elements) such that

1 =
∑
K∈M

βK
σ and xσ =

∑
K∈M

βK
σ xK . (5)

Then, for any u ∈ HD , we set uσ =
∑
K∈M

βK
σ uK , for all σ ∈ Eint and uσ = 0, for all

σ ∈ Eext.
In order to analyze the convergence, we need to consider the size of the discretization
D defined by hD = sup {diam(K ), K ∈ M } and the regularity of the mesh given
by (see [8, (4.1)–(4.2), p. 1025])

θD = max

(
max

σ∈E int ,K ,L∈M
dK ,σ

dL ,σ

, max
K∈M ,σ∈E K

hK
dK ,σ

, max
K∈M ,σ∈E K ∩E int

∑
L∈M |βL

σ | |xσ − xL |2
h2K

)
.

(6)
The scheme we present uses the discrete gradient of [8] which is given by: For
u ∈ HD and for K ∈ M
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∇D u(x) = ∇K u +
( √

d

dK ,σ

(uσ − uK − ∇K u · (xσ − xK ))

)
nK ,σ , a.e. x ∈ DK ,σ ,

(7)

where ∇K u = 1

m(K )

∑
σ∈EK

m(σ ) (uσ − uK ) nK ,σ .

3 Formulation of a Finite Volume Scheme and Statement
of Its Known Convergence Results

Taking t = tn+1 in (1) yields ∂α
t u(tn+1) − Δu(tn+1) = f (tn+1). A consistent approx-

imation for ∂α
t u(tn+1) can be defined as a linear combination of the discrete time

derivatives {∂1u(t j+1), j ∈ �0, n�} and it is given by (see [9, (4.1)–(4.2), p. 836],
[3], and references therein):

∂α
t u(tn+1) =

n∑
j=0

kλn+1
j ∂1u(t j+1) + T

n+1
1 (u), (8)

where

λn+1
j = (n − j + 1)1−α − (n − j)1−α

kαΓ (2 − α)
and |Tn+1

1 (u)| ≤ Ck2−α‖u‖C 2([0,T ]). (9)

The following lemma summarizes some properties of the coefficients λn+1
j given

by (9).

Lemma 1 (Properties of the coefficients λn+1
j , cf. [9]) For any n ∈ �0, N� and for

any j ∈ �0, n�, let λn+1
j be defined by (9). The following properties hold:

k−α

Γ (2 − α)
= λn+1

n > · · · > λn+1
0 ≥ λ0 = T−α

Γ (1 − α)
and

n∑
j=0

kλn+1
j ≤ T 1−α

Γ (2 − α)
.

(10)

We set now a finite volume scheme which is a slight modification for the one
given in [4]: the finite volume space considered in [4] is larger than the one used
here, that is HD . Indeed, the finite volume space of [4] includes in addition to the
unknowns on the centers it contains also unknowns on edges of the control volumes.

Definition 2 (Formulation of a finite volume scheme for (1)–(4)) Let Ω be a poly-
hedral open bounded subset of IRd , where d ∈ IN \ {0}, and ∂Ω = Ω \ Ω its bound-
ary. Let D = (M ,E ,P) be a discretization in the sense of Definition 1. For any
n ∈ �0, N� and for any j ∈ �0, n�, let λn+1

j be defined by (9).We define the following
finite volume scheme as approximation for (1)–(4):
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1. Approximation of initial conditions (3). The discretization of initial conditions
(3) can be performed as: Find u0D ∈ HD such that for all v ∈ HD

(∇D u0D ,∇D v
)
L2(Ω)

= − (
Δu0, v

)
L2(Ω)

. (11)

2. Approximation of (1) and (4). For any n ∈ �0, N�, find un+1
D ∈ HD such that,

for all v ∈ HD

n∑
j=0

kλn+1
j

(
∂1u j+1

D , v
)
L2(Ω)

+ (∇D un+1
D ,∇D v

)
L2(Ω)

= ( f (tn+1), v)L2(Ω) .

(12)

The proof of the L∞(L2)–error estimate of [4] can be modified slightly to get the
following L∞(L2)–error estimate:

n=N+1
max
n=0

‖u(tn) − unD ‖L2(Ω) ≤ C(k2−α + hD )‖u‖C 2([0,T ];C 2(Ω)). (13)

It is also proved (recall that the scheme (11)–(12) can be viewed as a particular of
the one considered in [1] for TFDE) in [1] that the following L2(H 1)–error estimate
holds:

(
N+1∑
n=0

k‖∇u(tn) − ∇D unD ‖2L2(Ω)

) 1
2

≤ C(k2−α + hD )‖u‖C 2([0,T ];C 2(Ω)). (14)

4 The Main Results: L∞(H1)–a Priori Estimate
and L∞(H1)–error Estimate

Our aim in this contribution is to prove that the error estimate (14) is uniform in
time which is confirmed numerically in [1]. We first set this new error estimate in
the following theorem:

Theorem 1 (New L∞(H 1)–error estimate for the scheme (11)–(12)) Let α ∈ (0, 1)
be given. Let Ω be a polyhedral open bounded subset of IRd , where d ∈ IN \ {0},
and ∂Ω = Ω \ Ω its boundary. Assume that the solution of (1)–(4) satisfies u ∈
C 2([0, T ];C 2(Ω)). Let k = T

N + 1
, where N ∈ IN \ {0}. We shall denote tn = nk,

for n ∈ �0, N + 1�. For any n ∈ �0, N� and for any j ∈ �0, n�, let λn+1
j be defined

by (9). Let D = (M ,E ,P) be a discretization in the sense of Definition 1. Assume
that θD satisfies θ ≥ θD .
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Then, there exists a unique solution
(
unD

)N+1
n=0 ∈ H N+2

D for scheme (11)–(12) and
the following L∞(H 1)–error estimate holds:

n=N+1
max
n=0

‖∇u(tn) − ∇D unD ‖L2(Ω) ≤ C(k2−α + hD )‖u‖C 2([0,T ];C 2(Ω)). (15)

To prove Theorem 1, we use the following definition of the discrete Laplace
operator:

Definition 3 (Discrete Laplace operator, cf. [7, Definition 5.3, p. 2038]) Let Ω be
a polyhedral open bounded subset of IRd , where d ∈ IN \ {0}, and ∂Ω = Ω \ Ω its
boundary. Let D = (M ,E ,P) be a discretization in the sense of Definition 1. Let
∇D be the discrete gradient given by (7). Let u ∈ HD , the discrete Laplace operator
of u denoted by ΔD u is the element of HD given by

− (ΔD u, v)L2(Ω) = (∇D u,∇D v)L2(Ω) , ∀v ∈ HD . (16)

To prove Theorem1,wewill also need to use the following newdiscrete L∞(H 1)–
a priori estimate:

Lemma 2 (New L∞(H 1)–a priori estimate for the discrete problem) Under the
same hypotheses of Theorem 1, assume that there exists

(
ηn
D

)N+1
n=0 ∈ H N+2

D such
that for all n ∈ �0, N� and for all v ∈ HD

n∑
j=0

kλn+1
j

(
∂1η

j+1
D , v

)
L2(Ω)

+ (∇D ηn+1
D ,∇D v

)
L2(Ω)

= (
S n+1, v

)
L2(Ω)

, (17)

where S n+1 ∈ L2(Ω), for all n ∈ �0, N�, and η0
D = 0.

Then, the following L∞(H 1)–a priori estimate holds:

N+1
max
n=0

‖∇D ηn
D ‖L2(Ω) ≤ S√

λ0
, (18)

where S = N
max
n=0

‖S n+1‖L2(Ω) and λ0 is the lower bound which appears in (10).

Proof Using the definition (16) of the discrete Laplace operator, the hypothesis (17)
can be written as

n∑
j=0

λn+1
j

(
η
j+1
D − η

j
D , v

)
L2(Ω)

− (
ΔD ηn+1

D , v
)
L2(Ω)

= (
S n+1, v

)
L2(Ω)

. (19)
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Taking v = −ΔD ηn+1
D in (19) and using again the definition (16) imply that

n∑
j=0

λn+1
j

(
∇D (η

j+1
D − η

j
D ),∇D ηn+1

D

)
L2(Ω)

+
∥∥∥ΔD ηn+1

D

∥∥∥2
L2(Ω)

= −
(
S n+1,ΔD ηn+1

D

)
L2(Ω)

.

(20)
Using the Cauchy Schwarz inequality together with inequality xy ≤ x2/2 + y2/2,
(20) implies that

n∑
j=0

λn+1
j

(
∇D (η

j+1
D − η

j
D ),∇D ηn+1

D

)
L2(Ω)

+ 1

2

∥∥ΔD ηn+1
D

∥∥2

L2(Ω)
≤ (S )2

2
. (21)

Re-ordering the sum, inequality (21) gives

λn+1
n ‖∇D ηn+1

D ‖2L2(Ω)
+ 1

2

∥∥∥ΔD ηn+1
D

∥∥∥2
L2(Ω)

≤
n∑
j=1

(λn+1
j − λn+1

j−1)
(
∇D η

j
D ,∇D ηn+1

D

)
L2(Ω)

+ (S )2

2
.

(22)
Using again the Cauchy Schwarz inequality together with inequality xy ≤ x2/2 +
y2/2 and the property (10) (which implies that λn+1

j − λn+1
j−1 > 0), inequality (22)

leads to

‖∇D ηn+1
D ‖2L2(Ω) ≤ 1

λn+1
n

⎛
⎝ n∑

j=1

(λn+1
j − λn+1

j−1)‖∇D η
j
D ‖2L2(Ω) + (S )2

⎞
⎠ . (23)

We prove by mathematical induction on n that, for all n ∈ �1, N + 1�

‖∇D ηn
D ‖2L2(Ω) ≤ (S )2

λ0
. (24)

Taking n = 0 in (23) and using (10) yield (24) for n = 1. Assume now that (24) holds
for n ≤ m and prove it for n = m + 1. Taking n = m in (23) and using the fact that
λm+1
0 > λ0 (see (10)) implies that

‖∇D ηm+1
D ‖2L2(Ω)

≤ (S )2

λm+1
m

(
λm+1
m − λm+1

0

λ0
+ 1

)
≤ (S )2

λm+1
m

(
λm+1
m − λ0

λ0
+ 1

)
= (S )2

λ0
.

This completes the proof of Lemma 2. �

Proof Sketch for Theorem 1

1. Existence and uniqueness for scheme (11)–(12). Are given for instance in [1].
2. Proof of estimate (15). To prove (15), we compare (11)–(12) with the following
auxiliary scheme: For any n ∈ �0, N + 1�, find ūnD ∈ HD such that

(∇D ūnD ,∇D v
)
L2(Ω)

= (−Δu(tn), v)L2(Ω) , ∀v ∈ HD . (25)



312 A. Bradji

– Comparison between the solution of (25) and the solution of problem (1)–(4).
The following convergence results hold, see [5, 8]:

n=N+1
max
n=0

‖∇u(tn) − ∇D ūnD ‖L2(Ω) + n=N+1
max
n=1

‖∂1(u(tn) − ūnD )‖L2(Ω) ≤ ChD ‖u‖C 1([0,T ]; C 2(Ω)).

(26)
– Comparison between the solution of (11)–(12) and the auxiliary scheme (25).
Let us define the auxiliary error ηn

D = unD − ūnD . Comparing (25) with scheme
(11) andusing the fact thatu(0) = u0 (subject of (3)) imply thatη0

D = 0.Writing
now scheme (25) in the level n + 1 and subtracting the result from (12) to get

n∑
j=0

kλn+1
j

(
∂1u j+1

D , v
)
L2(Ω)

+
(
∇D ηn+1

D ,∇D v
)
L2(Ω)

= ( f (tn+1) + Δu(tn+1), v)L2(Ω) .

(27)

Subtracting
n∑
j=0

kλn+1
j

(
∂1ū j+1

D , v
)
L2(Ω)

from both sides of (27), replacing

f (tn+1) + Δu(tn+1) by ∂α
t u(tn+1) (which stems from (1)), and using (8) we

find that
(
ηn
D

)N+1
n=0 ∈ (HD )N+2 is satisfying the hypothesis (17) of Lemma 2

with S n+1 =
n∑
j=0

kλn+1
j ∂1

(
u(t j+1) − ū j+1

D

)
+ T

n+1
1 (u). We are able then to

apply the discrete a priori estimate (18) of Lemma 2 (recall that η0
D = 0) to get

N+1
max
n=0

‖∇D ηn
D ‖L2(Ω) ≤ S√

λ0
. Gathering now this with (10), error estimate (26),

and (9) yields

N+1
max
n=0

‖∇D ηn
D ‖L2(Ω) ≤ C(hD + k2−α)‖u‖C 2([0,T ]; C 2(Ω)). (28)

Gathering (28)with the fact that∇u(tn) − ∇D unD = ∇u(tn) − ∇D ūnD − ∇D ηn
D

and the error estimate (26) imply the desired estimate (15). This completes the
proof of Theorem 1. �

Remark 1 (Both Lemma 2 and Theorem 1 are not straightforward) The a priori
estimate of Lemma 2 is not straightforward in the sense that the usual techniques
do not lead to the optimal estimate (18) (which is an unconditional estimate) in the
L∞(H 1)–norm. The estimate (18) led to prove the optimal convergence order (15).
Indeed, if we take for instance the obvious choice v = ηn+1

D in (17) instead of the
choice v = −ΔD ηn+1

D made in the proof of Lemma 2 and use [3, (27)–(28), p. 443],
we get

‖∇D ηn+1
D ‖2L2(Ω)d ≤

n∑
j=1

(λn+1
j − λn+1

j−1)‖M η j‖2L2(Ω) + C (S )2 ≤ C (S )2

λ0
λn+1
n .

(29)
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This gives, using the fact that λn+1
n is of order k−α , ‖∇D ηn+1

D ‖L2(Ω)d ≤ Ck− α
2 S

which is less accurate then that of (18). In fact estimate ‖∇D ηn+1
D ‖L2(Ω) ≤ Ck− α

2 S
is a conditional convergence. Such conditional convergence can be found for instance
in the stability result [10, Theorem 3.1, p. 1540 ] where the energy ‖ · ‖1 is given by
[10, (3.14), p. 1539], that is ‖ · ‖21 = ‖ · ‖2L2 + kαΓ (2 − α)‖∇ · ‖2L2 and in the error
estimate [10, (3.17), Theorem 3.2, p. 1540 ]. In the context of discontinuous Galerkin
methods, we find similar conditional convergence results in [12]. The subject of error
estimate in energy norm has not attracted the attention it merits yet, see [1, 9, 11].

5 Conclusion and Perspectives

We considered a cell-centered finite volume scheme (see [8, Sect. 3.2, p. 1022]) on
the general mesh introduced in [8] to approximate TFDE in any space dimension.
The formulation of this scheme involves the discrete gradient developed in [8]. One
of the main features of this discrete gradient is that it is stable and consistent. The
discretization in time is uniform. The scheme is a slight modification of the one of
[4] which can be viewed as a pure hybrid scheme. We proved a new L∞(H 1)– a
priori estimate. The proof of this result is not straightforward and it uses the discrete
Laplace operator as a technical tool. The L∞(H 1)– a priori estimate allowed to prove
an optimal convergence rate in the discrete norm of L∞(H 1). Both the L∞(H 1)–
a priori estimate and L∞(H 1)– error estimate improve our previous results of [4]
in which we only proved L∞(L2) error estimate and also improve the results of [1]
which dealt with L2(H 1)– a priori estimate and L2(H 1)– error estimate. We plan to
extend the results of Lemma 2 to the general case η0

D = 0. We plan also to extend
this contribution to schemes with parameters (in particular schemes which use the
Crank-Nicolsonmethod)which use the general frameworkGDM[6] as discretization
in space and we allow a large class of discretizations in time (not only the uniform
case).
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Note on the Convergence of a Finite
Volume Scheme for a Second Order
Hyperbolic Equation with a Time Delay
in Any Space Dimension
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Abstract In this note, we establish a finite volume scheme for a model of a second
order hyperbolic equation with a time delay in any space dimension. This model is
considered in [10, 11] where some exponential stability estimates and oscillatory
behaviour are proved. The scheme we shall present uses, as space discretization,
the general class of nonconforming finite volume meshes of [5]. In addition to the
proof of the existence and uniqueness of the discrete solution, we develop a new
discrete a priori estimate. Thanks to this a priori estimate, we prove error estimates
in discrete seminorms of L∞(H 1

0 ), L∞(L2), and W 1,∞(L2). This work can be viewed
as extension to the previous ones [2, 4] which dealt with the analysis of finite volume
methods for respectively semilinear parabolic equations with a time delay and the
wave equation.

Keywords Hyperbolic delay equation · SUSHI · Discrete a priori estimate ·
Convergence
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1 Problem to Be Solved and Motivation

We consider the following second order hyperbolic equation with a time delay (see
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utt (x, t) − Δu(x, t) + αut (x, t) + βut (x, t − τ) = f (x, t), (x, t) ∈ Ω × (0, T ), (1)

whereΩ is an open polygonal bounded subset in IRd , f is a given function defined on
Ω × (0, T ), and T > 0, α ≥ 0, β ≥ 0, and τ > 0 (the time delay) are given. Initial
conditions are given by, for given functions u0 and u1 defined respectively on Ω and
Ω × (−τ, 0)

u(x, 0) = u0(x), ut (x, t) = u1(x, t), x ∈ Ω, −τ ≤ t ≤ 0. (2)

Homogeneous Dirichlet boundary conditions are given by

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ). (3)

Delay differential equations occur in several applications such as ecology, biol-
ogy, medicine, see [1, 8] and references therein. We also refer to [12] where we find
an explanation for the delay equations. However, the numerical methods which are
carried out with Partial (or Ordinary) Differential Equations are not enough to deal
with Delay Partial Differential Equations, cf. [1, pp. 9–19]. In addition, numerical
methods for the delay equations are well developed for the case of Ordinary Differ-
ential Equations but the subject of numerical analysis for Delay Partial Differential
Equations has not attracted the attention it merits yet, see [1, 13]. In this note, we
consider a finite volume scheme, based on the uses of SUSHI [5] (Scheme Using
Stabilization and Hybrid Interfaces), for the model (1)–(3) in any space dimension.
Such model is considered for instance in [10, (1.12)–(1.16), p. 1563] where some
exponential stability estimates are proved. Equation (1) generalizes then the wave
equation treated in our previous work [4] and differs in the two terms: ut (t) and
the delay term ut (t − τ). The time stepping of the scheme we shall present is Euler
implicit. We prove the existence and unique along with a full convergence analysis
for the scheme. The convergence analysis is performed thanks to a well developed
discrete a priori estimate. One of the main features of SUSHI is that the control
volumes can only be assumed to be polyhedral. In addition to this, the formulation
of SUSHI involves a consistent and stable discrete gradient.

2 Space and Time Discretizations and Some Preliminaries

Definition 1 (Space discretization, cf. [5]) Let Ω be a polyhedral open bounded
subset of IRd , where d ∈ IN \ {0}, and ∂Ω = Ω \ Ω its boundary. A discretization
of Ω , denoted by D , is defined as the triplet D = (M ,E ,P), where:

1. M is a finite family of non empty connected open disjoint subsets of Ω (the
“control volumes”) such that Ω = ∪K∈M K . For any K ∈ M , let ∂K = K \ K
be the boundary of K ; let m (K ) > 0 denote the measure of K and hK denote
the diameter of K .
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2. E is a finite family of disjoint subsets of Ω (the “edges” of the mesh), such
that, for all σ ∈ E , σ is a non empty open subset of a hyperplane of IRd , whose
(d − 1)–dimensional measure is strictly positive. We also assume that, for all
K ∈ M , there exists a subset EK of E such that ∂ K = ∪σ∈EK σ . For any σ ∈ E ,
we denote by Mσ = {K , σ ∈ EK }. We then assume that, for any σ ∈ E , either
Mσ has exactly one element and then σ ⊂ ∂ Ω (the set of these interfaces, called
boundary interfaces, denoted by Eext) or Mσ has exactly two elements (the set
of these interfaces, called interior interfaces, denoted by Eint). For all σ ∈ E , we
denote by xσ the barycentre of σ . For all K ∈ M and σ ∈ E , we denote by nK ,σ

the unit vector normal to σ outward to K .
3. P is a family of points of Ω indexed by M , denoted by P = (xK )K∈M , such

that for all K ∈ M , xK ∈ K and K is assumed to be xK–star-shaped, which
means that for all x ∈ K , the property [xK , x] ⊂ K holds. Denoting by dK ,σ the
Euclidean distance between xK and the hyperplane including σ , one assumes
that dK ,σ > 0. We then denote by DK ,σ the cone with vertex xK and basis σ .

The time discretization is performed with a constrained time step-size k such that
τ

k
∈ IN. We set then k = τ

M
, where M ∈ IN \ {0}. Denote by N the integer part of

T

k
, i.e. N =

[
T

k

]
. We shall denote tn = nk, for n ∈ �−M, N�. As particular cases

t−M = −τ , t0 = 0, and tN ≤ T . One of the advantages of this time discretization is
that the point t = 0 is a mesh point which is suitable since we have Eq. (1) defined
for t ∈ (0, T ) and the second initial condition in (2) is defined for t ∈ (−τ, 0). We
denote by ∂1 and ∂2 the discrete first and second time derivatives given by ∂1v j+1 =
v j+1 − v j

k
and ∂2v j+1 = ∂1(∂1v j+1).

Throughout this paper, the letter C stands for a positive constant independent of
the parameters of discretizations.

We define the discrete space XD ,0 as the set of all v = (
(vK )K∈M , (vσ )σ∈E

)
,

where vK , vσ ∈ IR and vσ = 0 for all σ ∈ Eext. Let HM (Ω) ⊂ L2(Ω) be the space
of functions which are constant on each control volume K of the mesh M . For all
v ∈ XD , we denote by ΠM v ∈ HM (Ω) the function defined by ΠM v(x) = vK , for
a.e. x ∈ K , for all K ∈ M . In order to analyze the convergence, we consider the size
of the discretizationD defined by hD = sup {diam(K ), K ∈ M } and the regularity
of the mesh given by

θD = max

(
max

σ∈E int,K ,L∈M
dK ,σ

dL ,σ

, max
K∈M ,σ∈EK

hK

dK ,σ

)
. (4)

The scheme we consider is based on the discrete gradient of [5]. For u ∈ XD , we
define, for all K ∈ M

∇D u(x) = ∇K u +
( √

d

dK ,σ

(uσ − uK − ∇K u · (xσ − xK ))

)
nK ,σ , a.e. x ∈ DK ,σ ,

(5)
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where∇K u = 1

m(K )

∑
σ∈EK

m(σ ) (uσ − uK ) nK ,σ .Wedefine thebilinear formdefined

onXD × XD by 〈u, v〉F =
∫

Ω

∇D u(x) · ∇D v(x)dx

3 Formulation of a New Finite Volume Scheme
for the Delay Problem (1)–(3)

We now set a formulation of an implicit finite volume scheme for problem (1)–(3).
The unknowns of this scheme are the set

{
un
D ; n ∈ �−M, N�

}
which are expected

to approximate the set of the unknowns
{
u(tn); n ∈ �−M, N�

}
.

1. Approximation of initial conditions (2). The discretization of initial conditions
(2) can be performed as: Find un

D for n ∈ �−M, 0� such that for all v ∈ XD ,0

〈u0
D , v〉F = − (

Δu0,ΠM v
)

L2(Ω)
and 〈∂1un

D , v〉F = − (
Δu1(tn),ΠM v

)
L2(Ω)

, ∀n ∈ �−M + 1, 0�.

(6)
2. Approximation of (1) and (3). For any n ∈ �0, N − 1�, find un+1

D ∈ XD ,0 such
that, for all v ∈ XD ,0

(
∂2ΠM un+1

D ,ΠM v
)

L2(Ω)
+ 〈 un+1

D , v〉F + α
(
∂1ΠM un+1

D ,ΠM v
)

L2(Ω)

+β
(
∂1ΠM un+1−M

D ,ΠM v
)

L2(Ω)
= ( f (tn+1),ΠM v)L2(Ω) . (7)

4 Convergence Order of Scheme (6)–(7)

In addition to the new scheme (6)–(7), we present also its existence, uniqueness, and
convergence order.

Theorem 1 (New error estimates for scheme (6)–(7)) Let Ω be a polyhedral open
bounded subset of IRd , where d ∈ IN \ {0}, and ∂Ω = Ω \ Ω its boundary. Assume

that the solution of (1)–(3) satisfies u ∈ C 3([−τ, T ];C 2(Ω)). Let k = τ

M
, where

M ∈ IN \ {0}. Denote by N the integer part of
T

k
. We shall denote tn = nk, for

n ∈ �−M, N�. As particular cases t−M = −τ and t0 = 0. Let D = (M ,E ,P) be
a discretization in the sense of Definition 1. Assume that θD (given by (4)) satisfies
θ ≥ θD . Let ∇D be the discrete gradient given by (5). Then, there exists a unique
solution

(
un
D

)N

n=−M ∈ X M+N+1
D ,0 for scheme (6)–(7) and the following error estimates

hold:
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• L∞(L2) and L∞(H 1
0 ) error estimates.

n=N
max
n=0

‖u(tn) − ΠM un
D ‖L2(Ω) + n=N

max
n=0

‖∇u(tn) − ∇D un
D ‖L2(Ω) ≤ C(k + hD )‖u‖C 3

([0,T ];C 2(Ω)
).
(8)

• W 1,∞(L2)–estimate.

n=N
max

n=−M+1

∥∥ut (tn) − ΠM ∂1un
D

∥∥
L2(Ω)

≤ C(k + hD )‖u‖C 3([0,T ];C 2(Ω)). (9)

To prove Theorem 1, we need to use the following new discrete a priori estimate:

Lemma 1 (New a priori estimate for the discrete problem)Under the same hypothe-
ses of Theorem 1, assume that there exists

(
ηn
D

)N

n=−M ∈ (
XD ,0

)M+N+1
such that for

all n ∈ �0, N − 1� and for all v ∈ XD ,0

(
∂2ΠM ηn+1

D ,ΠM v
)

L2(Ω)
+ 〈ηn+1

D , v〉F + α
(
∂1ΠM ηn+1

D ,ΠM v
)

L2(Ω)

+β
(
∂1ΠM ηn+1−M

D ,ΠM v
)

L2(Ω)
= (

S n+1,ΠM v
)

L2(Ω)
, (10)

where S n+1 ∈ L2(Ω), for all n ∈ �0, N − 1�. Then, the following estimate holds,
for all J ∈ �1, N�

E
J
D ≤ C

(
(S )2 + 0

max
n=1−M

‖∂1ΠM ηn
D ‖2L2(Ω) + ‖∇D η0

D ‖2L2(Ω)

)
, (11)

where E
J
D = ‖∂1ΠM ηJ

D ‖2L2(Ω) + ‖∇D ηJ
D ‖2L2(Ω) and S = N−1

max
n=0

‖S n+1‖L2(Ω).

Proof The following rules will be useful, for αn
D = ΠM ∂1ηn

D

(
ΠM ∂2 ηn+1

D ,ΠM ∂1 ηn+1
D

)
L2(Ω)

= 1

2k

(
αn+1
D − αn

D , αn+1
D − αn

D

)
L2(Ω)

+ 1

2k

{(
αn+1
D , αn+1

D

)
L2(Ω)

− (
αn
D , αn

D

)
L2(Ω)

}

and 〈 ηn+1
D , ∂1 ηn+1

D 〉F = 1

2k

{〈 ηn+1
D − ηn

D , ηn+1
D − ηn

D 〉F + 〈 ηn+1
D , ηn+1

D 〉F−
〈ηn

D , ηn
D 〉F

}
.

Taking v = ∂1ηn+1
D in (10) and using the previous two rules to get, for all n ∈

�0, N − 1�

‖∂1ΠM ηn+1
D ‖2L2(Ω) − ‖∂1ΠM ηn

D ‖2L2(Ω) + 〈ηn+1
D , ηn+1

D 〉F − 〈 ηn
D , ηn

D 〉F

≤ 2k
(
S n+1, ∂1ΠM ηn+1

D

)
L2(Ω)

− 2kβ
(
∂1ΠM ηn+1−M

D ,ΠM ∂1ηn+1
D

)
L2(Ω)

.

Summing the previous inequality over n ∈ �0, J − 1�, where J ∈ �1, N�, and using
the Cauchy Schwarz inequality yield
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E
J
D ≤ 2S

J−1∑
n=0

k‖∂1ΠM ηn+1
D ‖L2(Ω) + 2β

J−1∑
n=0

k‖∂1ΠM ηn+1−M
D ‖L2(Ω)‖ΠM ∂1ηn+1

D ‖L2(Ω)

+ ‖∂1ΠM η0D ‖2L2(Ω)
+ ‖∇D η0D ‖2L2(Ω)

. (12)

Using twice inequalityab ≤ εa2 + b2/ε,with ε = k/(4τ), and the fact that k/(2τ) =
1/(2M) ≤ 1/2, (12) implies that

E
J
D ≤ C

(
J−1∑
n=1

k‖∂1ΠM ηn
D ‖2L2(Ω)

+ (S )2 + 0
max

n=1−M
‖∂1ΠM ηn

D ‖2L2(Ω)
+ ‖∇D η0D ‖2L2(Ω)

)
.

(13)
This implies in particular that

‖∂1ΠM ηJ
D ‖2

L2(Ω)
≤ C

⎛
⎝J−1∑

n=1

k‖∂1ΠM ηn
D ‖2

L2(Ω)
+ (S )2 + 0

max
n=1−M

‖∂1ΠM ηn
D ‖2

L2(Ω)
+ ‖∇D η0D ‖2

L2(Ω)

⎞
⎠ .

Applying a discrete version for the Gronwall lemma (see for instance [3, Lemma
4.7, p. 1303] and references therein) to this inequality yields, for all J ∈ �1, N�

‖∂1ΠM ηJ
D ‖2L2(Ω) ≤ C

(
(S )2 + 0

max
n=1−M

‖∂1ΠM ηn
D ‖2L2(Ω) + ‖∇D η0

D ‖2L2(Ω)

)
.

This with (13) lead to the the desired estimate (11). �

Proof Sketch for Theorem 1

1. Existence and uniqueness for scheme (6)–(7). The existence and uniqueness
can be justified using the fact that schemes (6) and (7) are finite dimensional linear
systems.
2. Proof of estimates (8)–(9). To prove (8)–(9), we compare (6)–(7) with the
following auxiliary scheme: For any n ∈ �−M, N�, find ūn

D ∈ XD ,0 such that

〈ūn
D , v〉F = (−Δu(tn),ΠM v)L2(Ω) , ∀v ∈ XD ,0. (14)

– Comparison between the solutions of (14) and (1)–(3). The following conver-
gence results hold, see [3–5]:

• Discrete L∞(L2) and L∞(H 1)–error estimates. For all n ∈ �−M, N�

‖u(tn) − ΠM ūn
D ‖L2(Ω) + ‖∇u(tn) − ∇D ūn

D ‖
( L2(Ω))

d ≤ ChD ‖u‖C ([0,T ]; C 2(Ω)).

(15)
• W j,∞(L2)–error estimate, for j ∈ {1, 2}.

N
max

n=−M+2
‖utt (tn) − ∂2ΠM ūn

D ‖L2(Ω) + N
max

n=−M+1
‖ut (tn) − ∂1ΠM ūn

D ‖L2(Ω)

≤ C(hD + k)‖u‖C 3([0,T ]; C 2(Ω)). (16)
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– Comparison between the schemes (6)–(7) and (14). Let us define the error
ηn
D = un

D − ūn
D . Comparing (14) with the first scheme in (6) and using the fact

that u(0) = u0 (see (2)) imply that η0
D = 0. Writing scheme (14) in the level

n + 1 and subtracting the result from (7) to get, for all n ∈ �0, N − 1� and for
all v ∈ XD ,0

(
∂2ΠM un+1

D ,ΠM v
)

L2(Ω)
+ 〈ηn+1

D , v〉F + α
(
∂1ΠM un+1

D ,ΠM v
)

L2(Ω)

+β
(
∂1ΠM un+1−M

D ,ΠM v
)

L2(Ω)
= ( f (tn+1) + Δu(tn+1),ΠM v)L2(Ω) .

Subtracting
(
∂2ΠM ūn+1

D + α∂1ΠM ūn+1
D + β∂1ΠM ūn+1−M

D ,ΠM v
)

L2(Ω)

from the both sides of the previous equation and replacing f (tn+1) + Δu(tn+1)

by utt (tn+1) + αut (tn+1) + βut (tn+1−M) (which stems from (1)), we get, for all
v ∈ XD ,0

(
∂2ΠM ηn+1

D ,ΠM v
)

L2(Ω)
+ 〈ηn+1

D , v〉F + α
(
∂1ΠM ηn+1

D ,ΠM v
)

L2(Ω)

+β
(
∂1ΠM ηn+1−M

D ,ΠM v
)

L2(Ω)
= (

S n+1,ΠM v
)

L2(Ω)
, (17)

with S n = utt (tn) − ∂2ΠM ūn
D + α(ut (tn) − ∂1ΠM ūn

D ) + β(ut (tn−M) − ∂1

ΠM ūn−M
D ).

Since
(
ηn
D

)N

n=−M ∈ (
XD ,0

)N+M+1
is satisfying (17), hence it satisfies the

hypothesis (10) of Lemma 1. Applying now the discrete a priori estimate (11)
of Lemma 1 and using the property η0

D = 0 and (16) together with the triangle
inequality to get, for all J ∈ �1, N�

E
J
D ≤ C(hD + k)2‖u‖2

C 3([0,T ]; C 2(Ω))
+

0∑
n=1−M

k‖∂1ΠM ηn
D ‖2

L2(Ω)
+ ‖∂1ΠM η0D ‖2

L2(Ω)
.

(18)

Let us estimate the terms ‖∂1ΠM ηn
D ‖L2(Ω) involved in rhs (the right hand side)

of (18). We have, for all n ∈ �1 − M, 0�, ∂1ΠM ηn
D = ∂1ΠM un

D − ut (tn) +
ut (tn) − ∂1ΠM ūn

D . This with the triangle inequality and estimate (16)

‖∂1ΠM ηn
D ‖L2(Ω) ≤ ‖∂1ΠM un

D − ut (tn)‖L2(Ω) + C(hD + k)‖u‖C 2([0,T ]; C 2(Ω)).

(19)
Since, for all n ∈ �1 − M, 0�, ∂1un

D satisfies (see the second scheme in (6)) the
same scheme (14) but with u1(tn) in the rhs instead of u(tn), we are able then to
apply estimates (15) on the second scheme in (6) to get, for all n ∈ �1 − M, 0�,

‖u1(tn) − ΠM ∂1un
D ‖L2(Ω) + ‖∇u1(tn) − ∇D ∂1un

D ‖
( L2(Ω))

d ≤ ChD ‖u‖C 1([0,T ]; C 2(Ω)).

This with the fact that u1(tn) = ut (tn), for all n ∈ �1 − M, 0� (see (2)), imply
that
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‖ut (tn) − ΠM ∂1un
D ‖L2(Ω) + ‖∇ut (tn) − ∇D ∂1un

D ‖
( L2(Ω))

d ≤ ChD ‖ u‖C 1([0,T ]; C 2(Ω)).

(20)

Gathering this and (19) implies that
n=0
max

n=1−M
‖∂1ΠM ηn

D ‖L2(Ω) ≤ C(hD + k)

‖u‖C 2([0,T ]; C 2(Ω)). This with (18) yield, for all J ∈ �1, N�

‖∂1ΠM ηJ
D ‖2L2(Ω) + ‖∇D ηJ

D ‖2L2(Ω) ≤ C(hD + k)2‖u‖2
C 3([0,T ]; C 2(Ω))

. (21)

Using now (15), (16), the discrete Poincaré inequality [5, Lemma 5.4], and
(21) yield the desired estimates (8)–(9) when n ∈ �1, N�. The case of (9) when
n ∈ �−M + 1, 0� is a result of (20). The case when n = 0 in (8) can be deduced
from the property η0

D = 0 and estimate (15). �

5 Some Numerical Tests

We consider Ω = (0, 1)2 meshed with the rectangular meshes described as in [7, p.
756–758], with uniform meshes with mesh size h, that is a mesh D = (M ,E ,P)

given by

• M is a set of rectangles M = {Ki j =](i − 1)h, ih[×]( j − 1)h, jh[, (i, j) ∈
� 1, N� × � 1, N�}, where N ∈ IN \ {0} is given and h = 1/N .

• E is the set of the edges of the elements Ki j ofM .
• The family P is the set of points ((i − 1

2 )h, ( j − 1
2 )h), where (i, j) ∈ � 1, N� ×

� 1, N�.

For the sake of simplicity, we will consider the discrete gradient described in

[6, (211)–(212), p. 333]. The exact solution is given by u(x, y, t) = 1

2π2
sin(πx)

sin(πy) cos(π
√
2t) for (x, y, t) ∈ Ω × (− 1√

2
, 1). By this way u is satisfying (1)

with α = β = 1 and τ = 1√
2
. We report the following results obtained using Scilab

https://www.scilab.org/:

k |Error|L∞(H1)
when h = 1/40

Error Order
τ/100 0.006393027957 –

τ/200 0.003232991714 –
τ/400 0.001627837907 0.977229560961
τ/800 0.000820899933 0.992181855205

h |Error|L∞(H1)
when k = τ/2000

Error Order
1/3 0.007766996341 –

1/6 0.002579934118 –
1/12 0.000848217611 1.582714905051
1/24 0.000405860137 1.968918167065

The results of the table in left show that the convergence order in time is one
in | · |L∞(H 1) which supports (8). The table in right shows that the numerical order

https://www.scilab.org/
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in space is not only one as stated in (8) but it approaches two. This confirms the
observation stated in [5, Lines 31–33, p. 1022] where the numerical tests show a
better rate of convergence of the gradient in the case of uniform squares.

6 Conclusion and Perspectives

We established a new finite volume scheme for a model of a second hyperbolic
equation with a time delay involved in the time derivative of the exact solution
in any dimension. Such model is already considered in [10, p. 1563] where some
exponential stability results are proved. A convergence analysis for the numerical
scheme is carried out. One of the interesting paths to be followed in the future is
to use the a priori estimate of Lemma 1 to prove a well posedness for the discrete
problem and to prove the convergence of the family of the approximate solutions
towards the unique solution of a weak formulation. This yields then the existence of
the exact solution of a weak formulation for problem (1)–(3). We also plan to extend
the results to the model of hyperbolic equation in which the delay is involved in the
boundary, see [10, (1.1)–(1.5), p. 1561]. Another task is to consider the case of time
dependent delay.
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A Cell-Centered Finite Volume Method
for the Navier–Stokes/Biot Model

Sergio Caucao, Tongtong Li, and Ivan Yotov

Abstract We develop a cell-centered finite volume method for the Navier–
Stokes/Biot model, based on a fully mixed formulation with weakly symmetric
stresses. The multipoint stress mixed finite element method is employed for the
Navier–Stokes and elasticity equations, while the multipoint flux mixed finite ele-
ment method is used for Darcy’s flow. These methods allow for local elimination
of the fluid and poroelastic stresses, vorticity, and rotation, resulting in a positive
definite finite volume scheme for the fluid and structure velocities and the Darcy
pressure, coupled via Lagrange multipliers on the interface to impose the transmis-
sion conditions.

Keywords Navier–Stokes/Biot · Mixed finite element · Multipoint flux ·
Multipoint stress · Finite volume method

MSC (2010) 65M08 · 65M60 · 74S05 · 76S05 · 76D05

1 Introduction

Modeling of the interaction between a free fluid and adjacent poroelastic media
has been a subject of increased studies in recent years, due to its many applications,
including flows in naturally fractured aquifers or reservoirs, hydraulic fracturing, and
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arterial flows. The free fluid flow is usually modeled by the Stokes or the Navier–
Stokes equations, while the fluid flowwithin the poroelastic media is modeled by the
Biot system of poroelasticity. The latter couples the Darcy model for fluid flow with
elasticity. The two regions are coupled across the interface with kinematic and equi-
librium transmission conditions. The coupledmodel is referred to as fluid-poroelastic
structure interaction. Some recent works on the mathematical and numerical mod-
eling of this problem can be found in [1, 3]. Due to the large size of the resulting
algebraic system, the efficiency of its solution is of critical importance. The methods
in [1, 3] are based on combinations of standard and mixed finite element (MFE)
methods and require solving a large saddle point problem at each time step. Recently
in [6], a fully mixed finite element method for the Stokes-Biot model is studied, that
can be reduced to a cell-centered scheme within each region. Here we develop an
extension of this approach to the Navier–Stokes/Biot model. The efficiency of the
solution of this problem is even more important, since the algebraic system is non-
linear. The approach is based on coupling the multipoint stress MFE method [2] for
a stress-velocity-vorticity formulation of Navier–Stokes and a stress-displacement-
rotation formulation of elasticity with the the multipoint fluxMFEmethod for Darcy
flow [8]. These methods utilize the first order Brezzi-Douglas-Marini space [4] for
the stresses and the Darcy velocity, along with a vertex quadrature rule for some of
the bilinear forms. This allows for efficient local elimination of the stresses, Darcy
velocity, vorticity, and rotation, resulting in a positive definite finite volume scheme
for the fluid and structure velocities and the Darcy pressure, coupled via Lagrange
multipliers on the interface to impose the transmission conditions.

We end this section by introducing some definitions and notation. For a domain
O ⊆ Rn , n ∈ {2, 3}, and p ∈ [1,+∞], we denote by Lp(O) and Ws,p(O) the usual
Lebesgue and Sobolev spaces. If p = 2 we write Hs(O) in place of Ws,2(O). Let
(·, ·)O be the L2(O)-inner product. For Γ ⊂ ∂O , let 〈·, ·〉Γ be the L2(Γ ) inner prod-
uct or duality pairing. ByM andM we will denote the vectorial and tensorial coun-
terparts of the generic scalar functional space M. For any vector field v = (vi )i=1,n ,
we set the gradient, divergence, and tensor-product operators, as

∇v :=
(

∂vi
∂x j

)
i, j=1,n

, div(v) :=
n∑
j=1

∂v j
∂x j

, and v ⊗ w := (viw j )i, j=1,n .

Furthermore, for any tensor field τ := (τi j )i, j=1,n and ζ := (ζi j )i, j=1,n , we let div(τ )

be the divergence operator div acting along the rows of τ , and define the transpose,
the trace, the tensor inner product, and the deviatoric tensor, respectively, as

τ t := (τ j i )i, j=1,n, tr(τ ) :=
n∑

i=1

τi i , τ : ζ :=
n∑

i, j=1

τi j ζi j , and τ d := τ − 1

n
tr(τ ) I,
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where I is the identity matrix in Rn×n . In addition, we recall the space

H(div;O) :=
{
w ∈ L2(O) : div(w) ∈ L2(O)

}
.

The space of matrix valued functions with rows in H(div;O) is denoted by
H(div;O).

2 Model Problem

Let Ω ⊂ Rn , n ∈ {2, 3} be a Lipschitz domain, which is subdivided into two non-
overlapping regions: fluid region Ω f and poroelastic region Ωp. Let Γ f p = ∂Ω f ∩
∂Ωp denote the (nonempty) interface between these regions and letΓ f = ∂Ω f \ Γ f p

and Γp = ∂Ωp \ Γ f p denote the external parts of the boundary ∂Ω . We denote by n f

andnp the unit normal vectorswhich point outward from ∂Ω f and ∂Ωp, respectively,
noting that n f = −np on Γ f p. Let (u�, p�) be the velocity-pressure pair in Ω� with
� ∈ { f, p}, and let ηp be the displacement in Ωp. In addition, μ stands for the fluid
viscosity, ρ f is the density, f� is the body force term, and q� is external source or sink
term.

We assume that the flow in Ω f is governed by the Navier–Stokes equations
with constant density and viscosity, which are written in the following nonstandard
pseudostress-velocity-pressure formulation:

σ f = − p f I + 2μ e(u f ) − ρ f (u f ⊗ u f ), div(u f ) = q f in Ω f × (0, T ],

ρ f

(
∂ u f

∂ t
+ (∇u f )u f

)
− div

( − p f I + 2μ e(u f )
) = f f in Ω f × (0, T ],

(1)
with boundary conditionsσ f n f = 0 onΓ N

f × (0, T ],u f = 0 onΓ D
f × (0, T ], where

σ f is the nonlinear pseudostress tensor, e(u f ) := (∇u f + (∇u f )
t
)
/2 stands for the

deformation rate tensor, Γ f = Γ D
f ∪ Γ N

f , and T > 0 is the final time.
As in [5], we first observe that, due to tr e(u f ) = div(u f ) = q f , there hold

div(u f ⊗ u f ) = (∇u f )u f + q f u f , tr(σ f ) = − n p f + 2μ q f − ρ f tr(u f ⊗ u f ).

(2)
In particular, the pressure p f can be written in terms of u f , σ f and q f as

p f = −1

n

(
tr(σ f ) + ρ f tr(u f ⊗ u f ) − 2μ q f

)
, (3)

and hence, eliminating the pressure p f , which can be recovered by (3), and employing
the identities (2), problem (1) can be rewritten as
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σ d
f = 2μ e(u f ) − ρ f (u f ⊗ u f )

d − 2μ

n
q f I in Ω f × (0, T ],

ρ f
∂ u f

∂ t
− ρ f q f u f − div(σ f ) = f f in Ω f × (0, T ].

(4)

Next, in order to impose weakly the symmetry of σ f , we introduce

γ f := 1

2

(∇u f − (∇u f )
t
)
,

which represents the vorticity (or skew-symmetric part of the velocity gradient).
Instead of (4), in the sequel we consider the problem with unknowns σ f , γ f and u f ,

1

2μ
σ d

f = ∇u f − γ f − ρ f

2μ
(u f ⊗ u f )

d − 1

n
q f I in Ω f × (0, T ],

σ f = σ t
f , ρ f

∂ u f

∂ t
− ρ f q f u f − div(σ f ) = f f in Ω f × (0, T ].

(5)

Next, let σ e and σ p be the elastic and poroelastic stress tensors, respectively,

σ e := λp div(ηp) I + 2μp e(η p), σ p := σ e − αp pp I in Ωp × (0, T ], (6)

where 0 < λmin ≤ λp(x) ≤ λmax and0 < μmin ≤ μp(x) ≤ μmax are theLaméparam-
eters and 0 ≤ αp ≤ 1 is the Biot–Willis constant. The poroelasticity region Ωp is
governed by the quasi-static Biot system:

−div(σ p) = fp, μK−1up + ∇ pp = 0 in Ωp × (0, T ],
∂

∂t

(
s0 pp + αp div(ηp)

) + div(up) = qp in Ωp × (0, T ],
(7)

with boundary conditions up · np = 0 on Γ N
p × (0, T ], pp = 0 on Γ D

p × (0, T ],
ηp = 0 on Γp × (0, T ], where Γp = Γ N

p ∪ Γ D
p , s0 ≥ 0 is a storage coefficient and

K is the symmetric and uniformly positive definite rock permeability tensor.
Next, we introduce the transmission conditions on the interface Γ f p × (0, T ]

[1, 3]:

u f · n f +
(

∂ ηp

∂t
+ up

)
· np = 0, σ f n f + σ pnp = 0,

(σ f n f ) · n f = − pp, (σ f n f ) · t f, j = −μαBJS

√
K−1

j

(
u f − ∂ ηp

∂t

)
· t f, j ,

(8)
where t f, j , 1 ≤ j ≤ n − 1, is an orthogonal system of unit tangent vectors on Γ f p,
K j = (K t f, j ) · t f, j , and αBJS ≥ 0 is an experimentally determined friction coef-
ficient. The first and second equations in (8) correspond to mass conservation and
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conservation ofmomentum onΓ f p, respectively, whereas the third and fourth are bal-
ance of normal fluid stress and the Beaver–Joseph–Saffman (BJS) slip with friction
condition, respectively. Note that the third condition, which also arises in Stokes-
Darcy couplings, implies a pressure jump on the interface. Finally, the above system
of equations is complemented by the initial conditions u f (x, 0) = u f,0(x) inΩ f and
pp(x, 0) = pp,0(x) in Ωp.

3 Weak Formulation

In this section we proceed analogously to [1, Sect. 3] (see also [7]) and derive a weak
formulation of the coupled problem given by (5)–(8). Similarly to [5], we employ
suitable Banach spaces to deal with the nonlinear stress tensor and velocity of the
Navier–Stokes equation, together with the subspace of skew-symmetric tensors of
L
2(Ω f ) for the vorticity:

X f :=
{
τ f ∈ L

2(Ω f ) : div(τ f ) ∈ L4/3(Ω f ) and τ f n f = 0 on Γ N
f

}
,

V f := L4(Ω f ), Q f :=
{
χ f ∈ L

2(Ω f ) : χ t
f = −χ f

}
.

In turn, in order to deal with the unknowns in the Biot region we introduce the Hilbert
spaces:

Xp := H(div;Ωp), Vs := L2(Ωp), Qp :=
{
χ p ∈ L

2(Ωp) : χ t
p = −χ p

}
,

Vp :=
{
vp ∈ H(div;Ωp) : vp · n = 0 on Γ N

p

}
, Wp := L2(Ωp).

Finally, as in [1, 3, 7], we introduce the spaces of traces Λp := H1/2(Γ f p), Λ f :=
[H1/2(Γ f p)]n , andΛs :=

[
H1/2

00 (Γ f p)
]n :=

{
v|Γ f p : v ∈ (H1(Ωp))

n, v = 0 on Γp

}
.

Next, inspired by [1], we introduce the structure velocity us := ∂t ηp ∈ Vs and the
Lagrange multipliers

ϕ := u f |Γ f p ∈ Λ f , θ := us |Γ f p ∈ Λs, and λ := pp|Γ f p ∈ Λp.

We employ a mixed elasticity formulation with weak stress symmetry, introducing
as a new unknown the structure rotation operator

γ p := 1

2

(∇us − (∇us)t
) ∈ Qp,
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and the symmetric and positive definite compliance tensor A,

A(τ ) := 1

2μp

(
τ − λp

2μp + n λp
tr(τ ) I

)
, A−1(τ ) = 2μp τ + λp tr(τ ) I. (9)

From the definition of the elastic and poroelastic stress tensors σ e, σ p, see (6) and
the relation A(σ e) = e(η p), we deduce the identities

div(ηp) = A(αp pp I) : I + A(σ p) : I (10)

and
∂t A(σ p) = ∇ us − γ p − ∂t A (αp pp I). (11)

Then, similarly to [1, 3, 7], we test the first equation of (5), the second equa-
tion of (7), and (11) with arbitrary τ f ∈ X f , vp ∈ Vp, and τ p ∈ Xp, integrate by
parts, utilize the fact that σ d

f : τ f = σ d
f : τ d

f , test the third equation of (7) with
wp ∈ Wp employing (10), and impose the remaining equations weakly, as well as
the symmetry of σ f , σ p, and the transmission conditions in (8) to obtain the follow-
ing variational problem. Find (σ f ,u f , γ f ,ϕ, σ p,us, γ p, θ ,up, pp, λ) : [0, T ] �→
X f × V f × Q f × Λ f × Xp × Vs × Qp × Λs × Vp × Wp × Λp such that for all
(τ f , v f ,χ f ,ψ, τ p, vs,χ p,φ, vp,wp, ξ),

1

2μ
(σ d

f , τ
d
f )Ω f − 〈ϕ, τ f n f 〉Γ f p + (u f ,div τ f )Ω f

+ ρ f

2μ
((u f ⊗ u f )

d, τ f )Ω f + (γ f , τ f )Ω f = − 1

n
(q f , tr(τ f ))Ω f ,

ρ f (∂t u f , v f )Ω f − ρ f (g f u f , v f )Ω f − (div σ f , v f )Ω f = (f f , v f )Ω f ,

(σ f , χ f )Ω f = 0,

(∂t A(σ p + αp pp I), τ p)Ωp − 〈θ, τ pnp〉Γ f p + (us , div τ p)Ωp + (γ p, τ p)Ωp = 0,

(div σ p, vs)Ωp = (fp, vs)Ωp ,

(σ p, χ p)Ωp = 0,

μ (K−1up, vp)Ωp − (pp, div vp)Ωp + 〈λ, vp · np〉Γ f p = 0,

(s0 ∂t pp,wp)Ωp + αp (∂t A(σ p + αp pp I),wp I)Ωp + (wp, div up)Ωp = (qp,wp)Ωp ,

〈ϕ · n f + (
θ + up

) · np, ξ〉Γ f p = 0,

〈σ pnp, φ〉Γ f p − μ αBJS

n−1∑
j=1

〈
√
K−1

j (ϕ − θ) · t f, j , φ · t f, j 〉Γ f p + 〈λ, φ · np, 〉Γ f p = 0,

〈σ f n f ,ψ〉Γ f p + μαBJS

n−1∑
j=1

〈
√
K−1

j (ϕ − θ) · t f, j , ψ · t f, j 〉Γ f p + 〈λ.ψ · n f 〉Γ f p = 0.

(12)
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For the well posedness of the problem, compatible initial data is needed for all
variables. It can be obtained from u f,0 and pp,0 using that the equations without time
derivatives hold at t = 0, see [1, 6].

4 Numerical Method

We employ a mixed finite element approximation of the weak formulation (12). Let
T f

h and T p
h be affine finite element partitions of Ω f and Ωp, respectively, which

may be non-matching along the interface Γ f p. For the spatial discretization, we
consider the conforming finite element spaces X f h × V f h × Q f h = BDM1 − P0 −
P1, Xph × Vsh × Qph = BDM1 − P0 − P1, and Vph × Wph = BDM1 − P0, where
BDM1 denotes the first order Brezzi-Douglas-Marini space [4]. For the Lagrange
multiplier spaces on Γ f p we take Λ f h = X f h n f , Λsh = Xph np, and Λph = Vph ·
np, resulting in Λ f h × Λsh × Λph = Pdc

1 − Pdc
1 − Pdc

1 . For the time discretization
we employ the backward Euler method. The straightforward application of the MFE
method results, on each time step, in a large 11-field saddle point problem. In order
to reduce the computational cost, we employ the vertex quadrature rule for some
of the terms in (12), which allows for local elimination of certain variables. For a
pair of tensor or vector valued functions (ϕ, ψ) and a linear operator L , define the
quadrature rule

(L(ϕ), ψ)Q,Ω�
:=

∑
E∈T �

h

(L(ϕ), ψ)Q,E =
∑
E∈T �

h

|E |
s

s∑
i=1

L(ϕ(ri )) : ψ(ri ),

where � ∈ { f, p}, s = 3 on triangles, s = 4 on tetrahedra or rectangles, and ri are
the vertices of E . The quadrature rule is applied to the terms

(σ d
f , τ

d
f )Ω f , (γ f , τ f )Ω f , (σ f ,χ f )Ω f , (∂t A(σ p + αp pp I), τ p + αpwp I)Ωp ,

(γ p, τ p)Ωp , (σ p,χ p)Ωp , (K−1up, vp)Ωp .

Since the BDM1 degrees of freedom on each edge of face can be associated with
the vertices, the quadrature rule results in block-diagonal stress and Darcy velocity
matriceswith oneblockper vertex. Thereforeσ f ,σ p, andup canbe easily eliminated.
The resultingmatrices for the vorticity γ f and the rotation γp are also block-diagonal,
due the quadrature rule and the vertex degrees of freedom of these variables. They
can also be eliminated, resulting in a cell-centered positive definite system for u f ,
us , and pp, coupled through the Lagrange multipliers ϕ, θ , and λ. After solving this
system, the rest of the variables are recovered from their elimination expressions.
We refer to [6] for further details. The numerical method for the Stokes-Biot model
is analyzed in [6], where first order convergence for all variables in their natural
norms is shown. The analysis of the method presented in this paper for the nonlinear
Navier–Stokes/Biot model will be developed in future work.
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5 Numerical Results

In this section we study numerically the convergence in space, using unstructured
triangular grids. The total simulation time is T = 0.01s and the time step is Δ t =
10−3 s, which is sufficiently small, so that the time discretization error does not affect
the convergence rates. The domain is Ω = Ω f ∪ Γ f p ∪ Ωp, where Ω f = (0, 1) ×
(0, 1), Γ f p = (0, 1) × {0}, and Ωp = (0, 1) × (−1, 0). We take Γ D

f = (0, 1) × {1}
and Γ D

p = (0, 1) × {−1}. The solution in the Navier–Stokes region is

u f = π cos(π t)

( −3x + cos(y)
y + 1

)
, p f = exp(t) sin(π x) cos

(π y

2

)
+ 2π cos(π t).

The Biot solution is chosen accordingly to satisfy the interface conditions (8):

pp = exp(t) sin(π x) cos
(π y

2

)
, up = − 1

μ
K∇ pp, ηp = sin(π t)

( −3x + cos(y)
y + 1

)
.

We run a sequence of mesh refinements with non-matching grids along Γ f p. The
results are reported on Table1.We note that the displacement at tn is recovered by the
formula ηn

p = Δt un
s + ηn−1

p . As expected, we observe at least first order convergence
for all subdomain variables in their natural norms. The Lagrangemultiplier variables,
which are approximated in Pdc

1 − Pdc
1 − Pdc

1 , exhibit second order convergence in the
L2-norm on Γ f p, which is consistent with the order of approximation.
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Abstract We consider DDFV discretization of the Navier-Stokes equations where
the convection fluxes are computed by means of B-schemes, generalizing the clas-
sical centered and upwind discretizations. This study is motivated by the analysis of
domain decomposition approaches. We investigate on numerical grounds the con-
vergence of the method.
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1 Introduction

We consider the incompressible Navier-Stokes problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tu + (u · ∇)u − div(σ (u, p)) = f in Ω × [0, T ],
div(u) = 0 in Ω × [0, T ],

u = 0 on ∂Ω × [0, T ],
u(0) = uini t in Ω,
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where Ω is an open connected bounded polygonal domain of R2, f ∈ (L2(Ω))2

and uini t ∈ (L∞(Ω))2 given. The unknowns u : Ω × [0, T ] → R
2 and p : Ω ×

[0, T ] → R are respectively the velocity and the pressure; σ(u, p) = 2
ReDu − pId

stands for the stress tensor, and Re > 0 is the Reynolds number. Here and below,
the strain rate tensor is defined by the symmetric part of the velocity gradient
Du = 1

2 (∇u + t∇u).
The Discrete Duality Finite Volume (DDFV) approach is quite appealing because

it applies to very general meshes and it mimics at the discrete level the dual properties
of the continuous differential operators. The introduction of the DDFV formalism
dates back to [3, 5, 9], in order to approximate anisotropic diffusion problems on
general meshes, including non-conformal and distorted meshes. DDFV schemes
require unknowns on both the vertices and centers of primal control volumes; in
particular, for the Stokes and Navier-Stokes problems it leads naturally to staggered
discretizations of velocity and pressure; see [1, 4, 6, 10]. This work is motivated by
the analysis of DDFV domain decomposition methods for (1). In contrast to direct
methods, domain decomposition methods, in which the computational domain is
decomposed into smaller subdomains, are naturally parallel; this makes those meth-
ods interesting for high performance computing perspectives. The classical Schwarz
algorithm was proposed in 1870 by H. A. Schwarz for the Laplace problem and
further studied in 1990 by P.-L. Lions, see [12, 13]. This approach has been adapted
to many problems and motivates a huge literature.

In [7], we investigated non overlapping Schwarz algorithms in the DDFV frame-
work for the Navier-Stokes system. The convergence analysis of the Schwarz itera-
tions reveals a complex interplay between the design of the transmission conditions
and the definition of the numerical fluxes. It turns out that the discrete limit problem
does not coincide with the “standard” DDFV scheme on the entire domain; instead
fluxes near the interface need to bemodified.We are going to show, based on numeri-
cal experiments, that the modified scheme still provides a good approximation of the
solution of (1) on Ω . Note that it is also possible to modify the fluxes of the domain
decomposition method in order to restore a given DDFV scheme on Ω . These con-
siderations rely on the formalism on B-schemes [2, 8] which allows us to consider
general convection fluxes.

2 The DDFV Framework

We consider a domain Ω that can be seen as the union of two subdomains that share
a common interface denoted by Γ .

Meshes: The complete description of the DDFV scheme for the 2DNavier-Stokes
problem can be found in [6, 11]. A DDFV mesh is a pair (T,D); T combines the
primal meshM ∪ ∂M (whose cells are denoted by K), and the dual meshM∗ ∪ ∂M∗,
(whose cells K∗ are built around the vertices xK∗ of the primal mesh).
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Fig. 1 Left: A diamond D = Dσ,σ∗ with σ /∈ ∂Ω . Right: A diamond D = Dσ,σ∗ with σ ∈ ∂Ω

The primal mesh M consists of disjoint polygons K called “primal cells”, whose
union covers Ω . The symbol ∂M denotes the set of edges of primal mesh included
in ∂Ω , that are considered as degenerated primal cells. We associate to each K a point
xK, called “center”. For the cells of the boundary, the point xK is situated at the middle
point of the edge. For all the neighbors volumes K and L, we suppose that ∂K ∩ ∂L is
a segment that we call σ = K|L, edge of the primal mesh M.

From this primal mesh, we build the associated dual mesh. A dual cell K∗ is
associated to a vertex xK∗ of the primal mesh. The dual cells are obtained by joining
the centers of the primal cells that have xK∗ as vertex. Then, the point xK∗ is called
center of K∗. We will distinguish interior dual mesh, for which xK∗ does not belong
to ∂Ω , denoted by M∗ and the boundary dual mesh, for which xK∗ belongs to ∂Ω ,
denoted by ∂M∗. We denote with σ ∗ = K∗|L∗ the edges of the dual mesh.

Next, D stands for the diamond mesh, whose cells D = Dσ,σ∗ are built such
that their principal diagonals are a primal edge σ and a dual edge σ ∗. Thus a
diamond is a quadrilateral with vertices xK, xL, xK∗ and xL∗ . Note that we have
Ω = ⋃

D∈D D. We distinguish the diamonds that intersect the interface Γ as
DΓ = {Dσ,σ ∗ ∈ D, such that σ ⊂ Γ }.

For a diamond cell D we note by mD its measure, mσ the length of the primal edge
σ , mσ∗ the length of the dual edge σ ∗, nσK the unit vector normal to σ oriented from
xK to xL, nσ∗K∗ the unit vector normal to σ ∗ oriented from xK∗ to xL∗ . We denote also
its sides by s and their measure by ms; see Fig. 1 for an illustration.

Finally, we denote by fK (resp. fK∗ ) the mean-value of the source term f on K ∈ M
(resp. on K∗ ∈ M∗ ∪ ∂M∗).

Unknowns: The DDFV method for Navier-Stokes problem uses staggered
unknowns. We associate to every K ∈ M ∪ ∂M an unknown uK ∈ R

2, to every
K∗ ∈ M∗ ∪ ∂M∗ an unknown uK∗ ∈ R

2 for the velocity and to every D ∈ D an
unknown pD ∈ R for the pressure. Those unknowns are collected in the families:

uT = (
(uK)K∈(M∪∂M), (uK∗)K∗∈(M∗∪∂M∗)

) ∈ (
R

2
)T

and pD = ((pD)D∈D) ∈ R
D.
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We define the subspace of
(
R

2
)T

that takes into account Dirichlet boundary condi-
tions:

E0 = {uT ∈ (
R

2
)T

, s. t. ∀K ∈ ∂M, uK = 0 and ∀K∗ ∈ ∂M∗, uK∗ = 0}.

For v ∈ (H 2(Ω))2, we set PT
c (v) = (

(v(xK))K∈M∪∂M , (v(xK∗))K∗∈M∗∪∂M∗
)
.

Discrete operators:We define a piecewise constant approximation of the gradient
operator denoted by ∇D : (

R
2
)T → (M2(R))D,

∇DuT := 1

2mD

[
mσ (uL − uK) ⊗ nσK + mσ∗(uL∗ − uK∗) ⊗ nσ∗K∗

]
, ∀D ∈ D.

To work with the Navier-Stokes problem, we also need to define the discrete strain
rate tensor DD : uT ∈ (R2)T �→ (DDuT)D∈D ∈ (M2(R))D, such that:

DDuT = ∇DuT + t (∇DuT)

2
, for D ∈ D,

the discrete stress tensor σD : (uT, pD) ∈ (
R

2
)T × R

D �→ (σ D(uT, pD))D∈D ∈
(M2(R))D

σ D(uT, pD) = −
(

2

Re
DDuT − pDId

)

, for D ∈ D,

and the discrete divergence of a vector field of (R2)T as divD : uT ∈ (R2)T �→
(divDuT)D∈D ∈ R

D with divDuT = Tr(∇DuT) for any D ∈ D.

To treat convection terms, it is convenient to define the scalar velocity fluxes
FσK and Fσ∗K∗ ; their definition comes from [11], up to the boundary terms. They are

approximations of the fluxes:
∫

σ

(u · nσK) � FσK(uT) and
∫

σ ∗
(u · nσ∗K∗) � Fσ∗K∗(uT).

By defining msGs,D = ms
uK + uK∗

2
· nsD, for the primal edges, we impose:

mσ FσK = −
∑

s∈∂D∩K
msGs,D,

see Fig. 1. The velocity fluxes FσK and Fσ∗K∗ are conservative, that is to say FσK =
−FσL, ∀σ = K|L and Fσ∗K∗ = −Fσ∗L∗ , ∀σ ∗ = K∗|L∗. Next, since

∫

K(u · ∇)v =∑
σ⊂∂K

∫

σ
(u · nσK)v holds for any K ∈ M, we approximate the convection terms as

follows ∫

K
(u · ∇)v �

∑

σ⊂∂K

mσ FσK

(
vK + vL

2

)

,

with a centered discretization for v. For the dual edges the definition is similar.
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3 DDFV Scheme for the Navier-Stokes Equations

The DDFV scheme under consideration is obtained by an implicit Euler time dis-
cretization, except for the nonlinear term,which is linearized by using a semi-implicit
approximation. Let N ∈ N

∗. We note δt = T
N and tn = nδt for n ∈ {0, . . . , N }. We

look for u[0,T ]
T = (un)n∈{0,...N } ∈ (

E0
)N+1

and p[0,T ]
D = (pn)n∈{1,...N } ∈ (RD)N+1, and

the scheme is initialized with u0 = P
T
c u0 in E0.

To simplify the notations, we denote (un+1, pn+1)with (uT, pD) and (un, pn)with
(ūT, p̄D) that at each time step are known. Given (ūT, p̄D), we look for (uT, pD) ∈
E0 × R

D such that:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mK

uK

δt
+

∑

σ∈∂K

mσFσ K = mKfK + mK

ūK

δt
∀K ∈ M

mK∗
uK∗

δt
+

∑

σ ∗∈∂K∗
mσ∗Fσ ∗K∗ = mK∗fK∗ + mK∗

ūK∗

δt
∀K∗ ∈ M∗

mDdiv
D(uT) = 0 ∀D ∈ D

∑

D∈D
mDp

D = 0,

(P̃)

The total fluxes Fσ K,Fσ ∗K∗ read

mσFσ K = −mσσ
D(uT, pD)nσK +

[

mσ FσK

(
uK + uL

2

)

+ m2
σ

2RemD

Bσ K(uK − uL)

]

,

mσ∗Fσ ∗K∗ = −mσ∗σ D(uT, pD)nσ∗K∗

+
[

mσ∗ Fσ∗K∗

(
uK∗ + uL∗

2

)

+ m2
σ∗

2RemD

Bσ ∗K∗(uK∗ − uL∗)

]

.

They are the sum of a “diffusion” term, discretized by means of the DDFV opera-
tors defined in Sect. 2, and a “convection” term, approximated through general B-
schemes, as in [2, 8]. It means that the latter are written as a centered discretization
plus a diffusive perturbation, which depends on a certain function B. The definition
of the velocity fluxes FσK, Fσ∗K∗ comes from the literature and it can be found in Sect.
2; they are computed with the velocity of the previous time step. We now need to
define the matrices Bσ K, Bσ ∗K∗ .

Definition of the diffusive perturbations to the convection fluxes
Our study is motivated by domain decomposition purposes: the domain Ω is seen as
the union of two subdomains that share a common interface Γ . A specific definition
of the total fluxes is required on the interface, as a trace of the iteration process [7].
The diamonds ofΩ which cross the interfaceΓ are split into two boundary diamonds
on the subdomains; they share the primal edge σ , which lies on the interfaceΓ , while
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the dual edge σ ∗ is divided into σ ∗ ∩ K and σ ∗ ∩ L, see Fig. 1. The convergence of
the Schwarz algorithm amounts to re-glue the two pieces of such diamonds. This
entails the following properties on the total fluxes

mσFσ K = −mσFσL

mσ∗Fσ ∗K∗ = mσ∗∩KFσ∗∩K,K∗ + mσ∗∩LFσ∗∩L,K∗
(2)

which are not naturally satisfied. Relations (2) lead to algebraic constraints, which,
in turn, modify the definition of the coefficients Bσ K, Bσ ∗K∗ on the interface. In partic-
ular it leads to work with matrix-valued Bσ K, Bσ ∗K∗ . Therefore, for the primal mesh,
we have

Bσ K :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B

(
2RemD

mσ

FσK

)

Id ∀Dσ,σ∗ ∈ D \ DΓ

2RemD

m2
σ

(

AKAL +
(
1

2
mσ FσK

)2

Id

)

A−1 − P ∀Dσ,σ∗ ∈ DΓ

(3)

with P = Id + nσK ⊗ nσK for σ = K|L and

AK := m2
σ

2RemD∩K

(

P + B

(
2RemD∩K

mσ

FσK

)

Id

)

, A := AK + AL.

For the dual mesh, we have

Bσ ∗K∗ =

⎧
⎪⎪⎨

⎪⎪⎩

B

(
2RemD

mσ∗
Fσ∗K∗

)

Id, ∀Dσ,σ∗ ∈ D \ DΓ

mσ∗∩K
mσ∗

B

(
2RemD∩K
mσ∗∩K

Fσ∗∩K

)

Id + mσ∗∩L
mσ∗

B

(
2RemD∩L
mσ∗∩L

Fσ∗∩L

)

Id, ∀Dσ,σ∗ ∈ DΓ

(4)

where, for Dσ,σ∗ ∈ DΓ , we set mσ∗∩KFσ∗∩K = −msGs,D − 1

2

∑

σ⊂K∗∩Γ

mσ∩K∗ ūK∗ · nσK.

Therefore the details of the fluxes depend on the function B which appears in
these definitions. On the interior diamondsD \ DΓ , for both primal and dual meshes,
standard choices are B(s) = 0 which leads to the centered scheme, or B(s) = 1

2 |s|,
which corresponds to the upwind scheme. We refer the reader to [11] for the analysis
of the DDFV scheme for (1) with the upwind scheme on the entire domain Ω . This
result generalizes as follows.

Theorem 1 Let T be a mesh that satisfies inf-sup stability condition and let B be an
even Lipschitz continuous function such that B(s) ≥ 0, ∀s ∈ R. Then, the problem
(P̃) is well-posed.

The hypothesis of inf-sup stability ([1]) on the mesh can be dropped by stabilizing
the incompressibility constraint. For the proof, we refer the reader to [7].
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4 Numerical Results

In this Section, the scheme (P̃) is validated by some numerical experiments. The
computational domain isΩ = [−1, 1] × [0, 1] and the interfaceΓ is placed at x = 0.
For the tests, we give the expression of the exact solution (u, p), from which we
deduce the source term f. We compare the L2-norm of the error (difference between a
centered projection of the exact solution and the approximated solution obtainedwith
DDFV scheme) for the velocity (denoted Ervel), the velocity gradient (Ergradvel)
and the pressure (Erpre). The error estimates are discussed by working with a family
of meshes (see Fig. 2), obtained by refining successively and uniformly the original
mesh. The sub-index in the name of the mesh denotes the level of refinement, i.e.
Meshk1 represents the coarse mesh of a family of refined meshes (Meshkm)m . More
precisely, Meshkm is obtained by dividing by two all the edges of Meshkm−1. The
meshes in those examples are non conformal.

We consider the following exact solutions to (1):

u(t, x, y) =
(−2π cos(πx) sin(2πy) exp(−5ηtπ2),

π sin(πx) cos(2πy) exp(−5ηtπ2)

)

,

p(t, x, y) = −π2

4
(4 cos(2πx) + cos(4πy)) exp(−10tηπ2).

(5)

The final time is T = 0.3 and we fix δt = 1.5 × 10−3, η = Re = 1, and B(s) =
1
2 |s|. In Tables1 and 2, we observe convergence of order 1 for the L2 norm of the
velocity, the H 1 norm of the velocity and for the L2 norm of the pressure. Those
results are comparable to the ones presented in [11]. This underlines that the presence
of the interface Γ and the modified fluxes that appear in (3), (4) do not influence the
convergence results. The solution of (P̃) is a good approximation of the solution of
(1).

(a) Mesh1
1 (b) Mesh2

1

Fig. 2 Coarse level of refinement of the meshes on Ω
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Table 1 Test (5) on Mesh1m , m = 1, . . . 5

Mesh NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio

Mesh11 896 2.414E−002 − 8.568E−002 − 1.178 −
Mesh12 3300 6.921E−003 1.80 3.726E−002 1.20 0.507 1.21

Mesh13 12644 2.938E−003 1.23 1.861E−002 1.00 0.186 1.44

Mesh14 49476 1.493E−003 0.97 9.281E−003 1.00 6.850E−002 1.44

Mesh15 195716 6.802E−004 1.13 4.594E−003 1.01 2.772E−002 1.30

Table 2 Test (5) on Mesh2m , m = 1, . . . 5

Mesh NbCell Ervel Ratio Ergradvel Ratio Erpre Ratio

Mesh21 924 8.288E−002 − 0.147 − 5.130 −
Mesh22 3332 1.923E−002 2.10 5.596E−002 1.39 2.025 1.34

Mesh23 12612 4.691E−003 2.03 2.425E−002 1.20 0.674 1.58

Mesh24 49028 1.811E−003 1.37 1.135E−002 1.09 0.214 1.65

Mesh25 193284 7.725E−004 1.23 5.460E−003 1.05 7.083E−002 1.59
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Interface Conditions for Arbitrary Flows
in Coupled Porous-Medium and
Free-Flow Systems

Elissa Eggenweiler and Iryna Rybak

Abstract Physically consistent interface conditions are important for accuratemath-
ematical modelling and numerical simulation of flow and transport processes in cou-
pled free-flow and porous-medium systems. Traditional coupling concepts are valid
for simplified cases only, such as flows parallel to the fluid-porous interface or very
specific boundary value problems. This severely limits the range of applications that
can be accurately modelled. Evidently, there is a need for more general interface
conditions to couple free flow to porous-medium flow. In this paper, we propose new
coupling conditions for arbitrary flow directions and periodic porous media. These
conditions are derived by the theory of homogenisation and boundary layers and are
applicable to general filtration problems. The derived set of coupling conditions are
validated by comparison of pore-scale to macroscale numerical simulations.
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1 Introduction

Fluid flows in coupled free-flow and porous-medium domains appear routinely in
environmental settings, technical applications and biological systems. The correct
specification of interface conditions at the fluid-porous interface is crucial for phys-
ically consistent model formulation and accurate numerical simulation of applica-
tions. Flows parallel to the porous layer are well studied in the last decades, however
the correct choice of coupling conditions for arbitrary flows is still an open question.
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The Stokes–Darcy problem containing the Stokes equations in the free-flow
domain, Darcy’s law in the porous medium and an appropriate set of coupling condi-
tions at the fluid-porous interface is the most studied one in the literature, both from
modelling and numerical sides [1, 3, 5, 9]. Usually, the conservation of mass, the
balance of normal forces and a variant of the Beavers–Joseph interface condition [2,
10, 13] on the tangential velocity are considered. The last condition was postulated
for flows parallel to the fluid-porous interface, but it is often applied for other flow
regimes, e.g. for industrial filtration [4]. We have shown in [6, 12] that the Beavers–
Joseph condition is not valid for such flow situations. Recently, an alternative set of
interface conditions has been proposed for the forced infiltration [3], however these
interface conditions are restricted to a very specific boundary value problem. The
coupling conditions presented in [1] contain several unknown parameters which still
need to be fitted. Coupling conditions developed in [11] are not validated for arbitrary
flows to the interface. Therefore, a need exists for new interface conditions which
are valid for arbitrary flow directions, do not include any fitting parameter and are
not restricted to a specific choice of boundary conditions.

In the paper, we propose interface conditions to couple Stokes equations and
Darcy’s law for flows arbitrary to the interface. These coupling conditions are derived
using homogenisation and boundary layer theory. All effective model parameters
are computed using geometrical information of the flow system. We validate the
developed interface conditions by comparison of the pore-scale resolved model to
the macroscale Stokes–Darcy model.

2 Mathematical Models

We consider single-phase incompressible fluid flow at low Reynolds numbers. From
the pore-scale perspective, the flow in the whole fluid domain (free-flow region �ff

and pore space �ε
pm of the porous medium) is described by the Stokes equations.

From the macroscale perspective, two different models are applied in the free-flow
region �ff and the porous-medium domain �pm together with an appropriate set of
interface conditions on the fluid-porous interface � (Fig. 1, left).

Pore-Scale Model

The fluid flow in domain�ε = �ff ∪ �ε
pm is governed by the non-dimensional steady

Stokes equations with the no-slip condition on the boundary of the solid inclusions

∇·uε = 0 in �ε,

−∇·T(uε, pε) = f in �ε,

uε = 0 on ∂�ε \ ∂� ,

(1)

whereuε and pε are the non-dimensional pore-scale velocity and pressure,T(u, p) =
2D (u) − pI is the stress tensor,D (u) = 1

2

(
∇u + (∇u)

T
)
is the rate of strain tensor,
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I is the identity tensor, f is the external force and ∂� is the external boundary of
the coupled domain (Fig. 1, left). To obtain a closed formulation of the pore-scale
problem (1) boundary conditions on the external boundary ∂� are needed, e.g. (14).

Resolving the detailed pore geometry and solving problem (1) is computationally
very expensive for realistic applications. Therefore, macroscale models where the
pore-scale information is kept in and reflected in effective parameters are required.

Macroscale Model

The non-dimensional steady Stokes equations describe the flow in the free-flow
domain

∇·uff = 0 and − ∇·T(uff , pff) = f in �ff , (2)

where uff is the fluid velocity, pff is the fluid pressure and f is the external force.
The Darcy equations, also in dimensionless form, characterise the flow through

the porous medium

∇·upm = q and upm = −K∇ ppm in �pm, (3)

where upm is the velocity of the fluid through the porousmedium, ppm is the pressure,
K is the effective permeability tensor and q is the source term.

The boundary conditions on the external boundary ∂� are

uff = uff on ∂�ff \ �, upm·n = upm on ∂�pm \ �, (4)

where n is the unit outward normal vector from the domain � = �ff ∪ �pm on its
boundary and the functions uff and upm are given.

To complete the mathematical description of the coupled problem, interface con-
ditions on � are required. The most commonly used interface conditions, both for
mathematical modelling and numerical simulation, are the conservation of mass

uff ·n� = upm·n� on �, (5)

the balance of normal forces

− n�·T
(
uff , pff

) ·n� = ppm on �, (6)

and the Beavers–Joseph condition [2] for the tangential component of velocity

(uff − upm)·τ� + 2
√
K

α
n�·D

(
uff

) ·τ� = 0 on �, (7)

where n� and τ� are the unit normal and tangential vectors at the interface �

accordingly (Fig. 1, left), and α > 0 is the Beavers–Joseph parameter which needs
to be determined for each flow scenario.



348 E. Eggenweiler and I. Rybak

x1

x2

Σ
∂Ω

0 L

H

−h

Ωff

Ωε
pm

nΣ

y2

0
y1

1S

Z+ = (0, 1) × (0,∞)

Z− = ∪∞
k=1(Yf − (0, k))

y = x
εε = L

Yf − (0, 1)

Yf − (0, 2)

Fig. 1 Schematic pore-scale geometry (left) and boundary layer stripe Zbl = Z+ ∪ S ∪ Z− (right)

3 Homogenisation and Boundary Layers

To derive new interface conditions for the macroscale coupled problem, we use the
theory of homogenisation and boundary layers [8, 9]. Therefore, we consider porous
media with periodic arrangement of solid grains (Fig. 1, left). We define the unit cell
Y = (0, 1)d with respect to the smallest repetitive unit of the pore geometry, where
d is the number of space dimensions. In the manuscript, we consider d = 2. Each
unit cell consists of the solid part Ys and the fluid part Yf = Y \ Ys (Table1). We
introduce the scale separation parameter ε = �/L which denotes the ratio between
the characteristic pore size � to the length L of the domain (Fig. 1). The porous
structure is defined through periodic repetition of the scaled unit cell εY .

We follow the classical procedure of homogenisation [8] and study the behaviour
of the solutions to the pore-scale problem (1) when ε → 0. We get the following
asymptotic expansions for the velocity uε and the pressure pε in the pore space�ε

pm:

uε(x) = ε2u0(x, y) + O(ε3), pε(x) = p0(x, y) + εp1(x, y) + O(ε2),

u0(x, y) = −
2∑
j=1

w j (y)
∂ppm(x)

∂x j
, p0(x, y) = ppm(x), p1(x, y) = −

2∑
j=1

π j (y)
∂ppm(x)

∂x j
,

Table 1 Boundary layer constants and permeability values for different porous-mediumgeometries

Ys

Yf

k11 1.99 · 10−2

k12 1.37 · 10−9

M1,bl
1 −4.77 · 10−2

M2,bl
1 −5.25 · 10−7

Ys

Yf

k11 1.23 · 10−2

k12 2.69 · 10−3

M1,bl
1 −3.10 · 10−2

M2,bl
1 −3.33 · 10−3
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where x ∈ �ε
pm, y = x/ε, u0 and p1 are 1-periodic in y.

The pair {w j , π j } are the solutions to the following cell problems for j = 1, 2:

	yw j − ∇yπ
j = −e j , ∇y · w j = 0 in Yf,

∫

Yf

π j dy = 0,

w j = 0 on ∂Yf \ ∂Y and {w j , π j } is 1-periodic in y,
(8)

where e j denotes the standard j th unit vector.
As a result of the homogenisation, Darcy’s law (3) is obtained in the porous

medium�pm. The effective permeability tensor is given byK = ε2(ki j )i, j=1,2, where

ki j =
∫

Yf

w j
i dy, i, j = 1, 2. (9)

Derivation of Interface Conditions
To derive effective interface conditions on� we need an approximation of the veloc-
ity uε and the pressure pε in the whole flow region �ε. Therefore, we start with the
following one

uε ≈ H(x2)uff + H(−x2)

⎛
⎝−ε2

2∑
j=1

w j ∂p
pm

∂x j

⎞
⎠ in �ε,

pε ≈ H(x2) p
ff + H(−x2)

⎛
⎝ppm − ε

2∑
j=1

π j ∂p
pm

∂x j

⎞
⎠ in �ε, (10)

where H is the Heaviside function. However, this approximation does not provide
continuity of velocity trace across the interface�. Therefore, we establish continuity
of traces with the help of the boundary layer problems for j = 1, 2 similar to [3, 9]:

−	y β j,bl + ∇y ω j,bl = 0 and ∇y · β j,bl = 0 in Z+ ∪ Z−,

[[β j,bl ]]S = k2 je2 − w j on S,

[[(∇y β j,bl − ω j,bl I)e2]]S = −(∇y w j − π j I)e2 on S,

β j,bl = 0 on fluid-solid interface, {β j,bl , ω j,bl} is 1-periodic in y1.

(11)

The boundary layer problem (11) is constructed on the infinite stripe Zbl = Z+ ∪
S ∪ Z− (Fig. 1, right) and we define [[β]]S = β(·,+0) − β(·,−0). The boundary
layer velocity β j,bl and pressure ω j,bl stabilise exponentially towards zero when
y2 → −∞ and towards the constants M j,bl , M j,bl

ω when y2 → +∞, e.g. [3]:

M j,bl = (M j,bl
1 , 0) =

(∫ 1

0
β

j,bl
1 (y1,+0) dy1, 0

)
, M j,bl

ω =
∫ 1

0
ω j,bl(y1,+0)dy1.
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The new, improved approximation of velocity and pressure in �ε is given by

uε ≈ H(x2)uff + H(−x2)

⎛
⎝−ε2

2∑
j=1

w j ∂p
pm

∂x j

⎞
⎠ + ε2

2∑
j=1

β j,bl ∂p
pm

∂x j

∣∣∣∣∑,

pε ≈ H(x2) p
ff + H(−x2)

⎛
⎝ppm − ε

2∑
j=1

π j ∂p
pm

∂x j

⎞
⎠ + ε

2∑
j=1

ω j,bl ∂p
pm

∂x j

∣∣∣∣∑.

(12)

The next step is to correct the counter-flow effects resulted from adding the boundary
layer terms to approximations (10). Thus, we subtract the properly scaled boundary
layer constants in the free-flow region �ff from approximations (12). To obtain an
accurate approximation of the solution to problem (1), additional corrections of the
velocity and pressure (12) in terms of boundary layer problems are needed.

Using homogenisation and the discussed boundary layer problems we recovered
the conservation of mass condition (5), the balance of normal forces (6) and derived
a new interface condition for the tangential component of velocity

uff ·τ� =
2∑
j=1

ε2M j,bl ∂p
pm

∂x j
·τ� on �. (13)

Equation (13) gives a relation between the tangential free-flow and porous-medium
velocity uff · τ� = upm · τ� + C withC = ∑2

j=1 ε2(M j,bl
1 + k1 j )

∂ppm

∂x j
for τ� = e1.

The conditions (5), (6), (13) are valid for arbitrary flow directions to the interface.

4 Model Validation

Tovalidate the interface conditions (5), (6), (13)we comparemacroscale to pore-scale
numerical simulations.We consider the free-flowdomain�ff = (0, 1) × (0, 0.5), the
porous medium �pm = (0, 1) × (−0.5, 0) and the interface � = (0, 1) × {0}. The
porousmedium is periodic andwe study twogeometrical configurationswith 20 × 10
equidistantly aligned circular and elliptic solid inclusions (Table1, Fig. 2a, b). For
each porous-medium configuration we solve the pore-scale problem (1) with the
following boundary conditions

uε = (0.5, 0) on {x2 = H}, uε = 0 on ∂� \ {x2 = H}. (14)

The computations of problem (1), (14) are performed with FreeFEM++ [7] using
the Taylor–Hood (P2/P1) finite elements and a mesh with approx. 500 000 elements.

The corresponding boundary conditions on the external boundary for the
macroscale problem (2), (3) in the absence of sources (f = 0, q = 0) read
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uff = (0.5, 0) on {x2 = H}, uff = 0 on ∂�ff \ ({x2 = H} ∪ �),

upm = 0 on ∂�pm \ �.
(15)

On the fluid-porous interface � we apply both, the traditional interface condi-
tions (5)–(7) and the newly derived conditions (5), (6), (13).

The finite volume method with staggered grids [14] and the grid size h = 1/100
is used to discretise the coupled Stokes–Darcy problem. The effective permeability
tensor K is obtained for each geometrical configuration by solving the cell prob-
lems (8) and applying formula (9). The boundary layer constants needed in Eq. (13)
are computed numerically using a cut-off stripe as proposed in [3]. The cell and the
boundary layer problems are solved using FreeFEM++ [7]. The fluid part of the unit
cell is partitioned into approx. 35 000 elements, the one of the stripe into approx.
125 000 elements. The boundary layer constants and permeability values for the
considered geometrical configurations are presented in Table1.

The pore-scale velocity fields for circular and elliptic inclusions are presented
in Fig. 2a, b. To evaluate the validity of the proposed interface condition (13) we
provide cross-sections for the tangential velocity component u1 for both geometrical
configurations in Fig. 2c, d, e.
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Fig. 2 Pore-scale velocity fields (a), (b) and comparison of pore-scale to macroscale simulation
results for circular (c), (d) and elliptic (e) inclusions
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We observe (Fig. 2c, d, e) that the simulation results of the Stokes–Darcy model
with the newly derived interface conditions (profile: SD, new IC) are in good agree-
ment with the pore-scale simulations (profile: pore-scale) for all geometries and
cross-sections. The classical interface conditions (5)–(7) are very sensitive to the
choice of the Beavers–Joseph parameter α (see e.g. profile: SD, α = 0.1) and it is
not clear which α to choose [6].

5 Conclusion

In this paper, new interface conditions for arbitrary flows to porous media are pro-
posed. These coupling conditions are derived using the theory of homogenisation and
boundary layer correctors. The Stokes–Darcy model with new interface conditions
is validated numerically against the pore-scale resolved model. The advantage of the
proposed interface conditions is that they are rigorously derived, more accurate than
the classical ones and no fitting of the Beavers–Joseph parameter α is needed. Com-
putational complexity of the new interface conditions is practically the same as of the
classical conditions. The cell problems (8) have to be solved to obtain the effective
permeabilityK for both approaches and the solution of the additional boundary layer
problems (11) to determine M j,bl is computationally cheap.
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On the Convergence Rate of the
Dirichlet-Neumann Iteration for Coupled
Poisson Problems on Unstructured Grids

Morgan Görtz and Philipp Birken

Abstract Weconsider thermalfluid structure interactionwith apartitioned approach,
where typically, a finite volume and a finite element code would be coupled. As a
model problem, we consider two coupled Poisson problems with heat conductivities
λ1, λ2 in one dimension on intervals of length l1 and l2. Hereby, we consider linear
discretizations on arbitrary meshes, such as finite volumes, finite differences, finite
elements. For these, we prove that the convergence rate of the Dirichlet-Neumann
iteration is given by λ1l2/λ2l1 and is thus independent of discretization and mesh.

Keywords Dirichlet-Neumann iteration · Thermal Fluid-Structure-Interaction ·
Partitioned Approach · Convergence Rate

1 Introduction

We are concerned with thermal fluid structure interaction, also called conjugate heat
transfer. This occurs in many applications, for example gas quenching, which is an
industrial heat treatment of metal workpieces [8] or the cooling of rocket nozzles
[10, 11]. Here, we follow a partitioned approach [4], where different codes for the
sub-problems are reused and the coupling is done by a master program which calls
interface functions of the segregated codes. This allows to reuse existing software for
each sub-problem, in contrast to a monolithic approach, where a new code is tailored
for the coupled equations.
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The standard solution method within a partitioned approach is the Dirichlet-
Neumann iteration. To satisfy coupling conditions at the interface, the subsolvers are
iterated by providing Dirichlet and Neumann data for the other solver in a sequential
manner, giving rise to its name. In particular for the interaction of a compressible
flow with a structure, the default implementation would be a finite volume method
for the fluid and a finite element method for the structure.

The convergence rate for the interaction of a flexible structurewith a fluid has been
analyzed in [14]. There, the added mass effect is proven to be dependent on the step
size for compressible flows and independent for incompressible flows. Furthermore,
for incompressible fluids it is known that the ratio of densities of the materials plays
an important role [1, 3]. Finally, the Dirichlet-Neumann iteration was reported to be
a very fast solver for thermal coupling of the compressible Navier-Stokes equations
with a nonlinear heat equation to model steel [2].

A simplified model of this interaction that allows for analysis are two coupled
linear heat equations with constant material coefficients that jump across the inter-
face. A semidiscrete Dirichlet-Neumann method using implicit Euler in time was
analyzed for domains of different length in [9]. Using Fourier analysis, it was proved
that for large �t , the convergence rate is approximately the quotient of heat con-
ductivities, but that for small �t , this has to be multiplied by the square root of
the quotient of thermal diffusitivites. A fully discrete analysis with equidistant mesh
widths and domains of equal sizewas performed in [12, 13], which shows two impor-
tant differences to the semidiscrete one. Firstly, the Fourier analysis breaks down for
c = �t/�x2 < 1. In the limit c → 0, the fully discrete analysis shows that interest-
ingly, the limit of the convergence rate for a finite volume finite element coupling
is zero, whereas for coupled finite element methods, it is the quotient another set
of material parameters. Secondly, the convergence rate in the limit c → ∞, differs
from the semidiscrete analysis as well: It is now the aspect ratio in the mesh at the
interface times the quotient of heat conductivities. Finally, we would like to point
out that the numerical results do not show an influence of the size of the domains.
This is notable, since this was proven to be the case for waveform variants of this
method [5].

Summarizing, this leaves a number of questions open. In this article we take a step
back and consider two coupledLaplace problemswith a jump in heat conductivities at
the interface. As it turns out, the convergence rate of the discrete Dirichlet-Neumann
iteration in 1D can be completely analyzed, almost irrespective of discretization
employed and on any mesh! While the quotient of heat conductivities remains a
crucial number, the ratio of lengths of the domains suddenly plays a role [6].

The problem we analyze is the one dimensional transmission problem. Given are
two connected intervals �1 = [a, x�] and �2 = [x�, b]. To make the notation easier
extendable to the multidimensional case, we also introduce the interface � = {x�}.
The transmission problem in one dimension is given by

λi u
′′
i (x) = fi (x), x ∈ �i , (1)

u1(x) = u2(x), x ∈ �, (2)
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λ1u
′
1(x) = λ2u

′
2(x), x ∈ �, (3)

u1(a) = 0, u2(b) = 0, i = 1, 2. (4)

Here, λi are the respective heat conductivities and the fi (x) ares forcing functions.

2 Dirichlet-Neumann Iteration

The algorithm starts with an initial guess of u2(x�). With this approximation we
solve a Dirichlet problem on �1, which will give us a function u11. We then solve the
problem on�2 with aNeumann condition on�, given by λ1

λ2
(u11)

′(x�). The solution to

this problem us called u12. This process continues with u
k
1 and u

k
2 being the functions

for the kth iteration. The continuous Dirichlet-Neumann iteration can thus be written
as:

Given u02(x�), solve in sequence the following problems:

λ1(u
k+1
1 )′′(x) = f1(x), x ∈ [a, x�]

uk+1
1 (a) = u1(a) and uk+1

1 (x�) = uk2(x�)
(5)

λ2(u
k+1
2 )′′(x) = f2(x), x ∈ [x�, b]

(uk+1
2 )′(x�) = λ1

λ2
(uk1)

′(x�) and uk+1
2 (b) = u2(b).

(6)

Each iteration requires us to solve twoPoisson equations, onewithDirichlet boundary
conditions and one with a Dirichlet and a Neumann boundary condition.

Now we formulate a discrete version on an abstract level. A linear discretization
of the Dirichlet problem on �1 can be written as the following linear system:

λ1A
(1)ūk+1

1 = b(1)u1(a) + f̄ (1) − λ1A
(1)
� uk2�

, (7)

where ūk+1
1 and f̄ (1) are the discrete representations of uk+1

1 and f1. Similarly, a
linear discretisation of the Neumann problem on �2 has an additional unknown on
the interface and can be written as:

λ2

[
A(2) A(2)

�

d(2) d(2)
�

] [
ū2k+1

uk+1
�

]
=

[
b(2)u(b) + f̄ (2)

f (2)
� − f (1)

� + λ1d(1)ūk+1
1 + λ1d

(1)
� uk�,

]
(8)

where ūk+1
2 and f̄ (2) are the discrete representation of uk+1

2 and f2. Additionally, we
assume that the discretization has a nodal value associated with the boundary and
call that uk� . Furthermore,

d(1)uk� + d(1)
� ūk+1

1 ≈ (uk+1
1 )′(x�) (9)
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and
d(2)uk+1

� + d(2)
� ūk+1

2 ≈ (uk+1
2 )′(x�) (10)

are discrete approximations of the derivatives at the interface.
Combining these discretisation into one linear system results in a description of

one step of the discrete Dirichlet-Neumann iterion. Given uk� , solve:

⎡
⎣ λ1A(1) 0 0

0 λ2A(2) λ2A
(2)
�

−λ1d(1) λ2d(2) λ2d
(2)
�

⎤
⎦

⎡
⎣ūk+1

1

ūk+1
2

uk+1
�

⎤
⎦ =

⎡
⎣b(1)u1(a) − λ1A

(1)
� uk� + f̄ (1)

b(2)u2(b) + f̄ (2)

f (2)
� − f (1)

� + λ1d
(1)
� uk�

⎤
⎦ . (11)

Here, we consider in several different discretizations. Firstly, a finite volume
discretization based on control volumes Ck = [xk−1/2, xk+1/2] on which we have

∫
Cl

(λu′(x))′dx = λu′(xk+1/2) − λu′(xk−1/2).

We then use the numerical flux

λu′(xk+1/2) ≈ Fk+0.5 = λ
uk+1 − uk

�xk
,

which gives a second order approximation, see Fig. 1. The derivative approximations
(9) and (10) are then given by integrating over the first cell:

∫ x1/2

a
u′′dx = u′(x1/2) − u′(a) =

∫ x1/2

a
f dx .

Approximating u′(x1/2) by the numerical flux function gives

d(1) = (1, 0, . . . , 0)T /�x, d(1)
� = −1/�x1.

Secondly, we consider standard linear finite elements. There, the derivative
approximations are obtained from the weak form by integration by parts and inte-
grating over [a, a + �x]. This results in the exact same algebraic expression as
above.

Fig. 1 The numerical flux,
Fk+0.5, is the slope of the
dashed line
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Finally, there are second order central differences, with the derivative approxima-
tions given by a onesided second order difference.

3 Analysis of Convergence Rate

To find the convergence rate of the Dirichlet-Neumann algorithm we first have to
determine the iteration matrix. Instead of analyzing the matrix in (11), it is better
to reformulate the problem in terms of the interface unknown uk� only. In the one
dimensional case considered here, this reduces the iterationmatrix to a scalar,making
the computation of the spectral radius trivial. We thus have an iteration

uk+1
� = �uk� + α, α independent on k. (12)

To get an expression for uk+1
� , we start by taking the Schur compliment of (11) with

respect to this unknown. With this we get an equation for uk+1
� :

Suk+1
� = f (2)

� − f (1)
� + λ1d

(1)
� uk� − (−λ1d

(1))(λ1A
(1))−1(b(1)u1(a) + f̄ (1) − λ1A

(1)
� uk�)

−(λ2d
(2))(λ2A

(2))−1(b(2)u2(b) + f̄ (2)),

S = λ2d
(2)
� − (λ2d

(2))(λ2A
(2))−1(λ2A

(2)
� ).

Next we put everything that does not dependent on k into a new constant α1.

Suk+1
� = λ1(d

(1)
� − (d(1))(A(1))−1(A(1)

� ))uk� + α1

⇒ uk+1
� = λ1

λ2

d(1)
� − (d(1))(A(1))−1(A(1)

� )

d(2)
� − (d(2))(A(2))−1(A(2)

� )
uk� + α,

where α is again independent of k. From this we get the iteration matrix

� = λ1

λ2

d(1)
� − d(1)(A(1))−1A(1)

�

d(2)
� − d(2)(A(2))−1A(2)

�

. (13)

The convergence rate is then μ = |�|.
First, we present a proof for the asymptotic convergence rate under the weak

assumption that we have convergent discretizations and additional assumptions on
the discretization at the boundary.

Theorem 1 (Aymptotic convergence rate) Consider linear discretizations for the
problems (5)–(6)with n1, respectively n2 unknowns. Let these be convergent in spaces
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V1 and V2. Let furthermore the boundary conditions at the interface be enforced
strongly and the derivative approximations (9)–(10) be convergent. If these dis-
cretisations are used in the Dirichlet-Neumann algorithm, (11), then the asymptotic
convergence rate is

lim
n1,n2→∞ μ =

∣∣∣∣λ1l2
λ2l1

∣∣∣∣ .
Proof The convergence rate is given by (13). We first analyze the nominator:

d(1)
� − d(1)(A(1))−1A(1)

� = d(1)
� + d(1) ȳ,

with A(1) ȳ = −A(1)
� . By (7), A(1) ȳ = −A(1)

� , is a discretisation of:

y′′(x) = 0, y(a) = 0 and y(x�) = 1,

which has the solution y(x) = (x − a)/ l1 with derivative y′(x) = 1/ l1. Since the
discretization is convergent, the discrete approximation yh converges to y.We further
note that

d(1)
� + d(1) ȳ = d(1)

� yh(x�) + d(1) ȳ (14)

is a convergent discrete approximation of y′(x�). Thus

lim
n1→∞ d(1)

� yh(x�) + d(1) ȳ = 1/ l1.

Next we analyze the denominator:

d(2)
� − d(2)(A(2))−1A(2)

� = d(2)
� + d(2) z̄,

with A(2) z̄ = −A(2)
� . We discretize the following differential equation with the Neu-

mann discretisation, see (8):

z′′(x) = 0, z′(x�) = − 1

l2
, z(b) = 0,

where the exact solution is z(x) = b−x
l2

with z′(x) = 1/ l2. The corresponding system
defining the coefficients z̄ of this discretisation is:

[
A(2) A(2)

�

d(2) d(2)
�

] [
z̄

zh(x�)

]
=

[
0

− 1
l2

]
,

where we see that the first equation is the definition of z̄. Because this is a convergent
discretization and the last equation is a convergent approximation of z′(x�):
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lim
n2→∞ d(2)

� + d(2)ḡ = − 1

l2
. (15)

Combining (13), (14) and (15) finishes the proof. �

The assumptions in this theorem hold for any of the discretizations mentioned.
Note in particular that no assumptions are made on the derivatives of the numer-
ical solution, but only on the derivative approximations used within the Dirichlet-
Neumann iteration. The finite volume discretization as described does not use a
reconstruction procedure and thus the corresponding solution has a zero derivative
at the boundary. This is not a problem for the theorem and infact, the derivative
approximation in the algorithm comes from the flux.

For specific discretizations, it is possible to prove that the asymptotic rate is
attained all the time.

Corollary 1 If the discretisations in Theorem1approximate a function inP1 exactly,
then the convergence rate of the discrete Dirichlet-Neumann iteration is

μ =
∣∣∣∣λ1l2
λ2l1

∣∣∣∣ .
Proof Follow the proof of Theorem 1 and remove all the limits by using the extra
condition. �

This is the case for the linear finite elements, the second order central differences
and for the finite volume discretization with an additional reconstruction procedure.

4 Numerical Results

We tested four different strategies when choosing the grids x I s and yI s for each
test performed. The first strategy is the equidistant distribution. The second strategy
is using pseudo-random uniform distribution, the third has grid points concentrated
around the interface, x� , and the fourth has grid points concentrated around the
boundary points a and b. The points for the second and third strategy are generated
by starting with an equidistant mesh on [0, 1]. These points are then put into the
functions:

fl(x) = ex − 1

e − 1
and fu(x) = f −1

l (x) = ln(x(e − 1) + 1). (16)

This creates new sets that are either concentrated around 0 ( fl ) or 1 ( fu). Next the
values in the sets are sorted, scaled, and offset to be between the wanted boundary
values. For the third strategy we used fu for the x I

i s and fl for the yIi s, the fourth is
vice versa.
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Fig. 2 Exact solution and discrete solution after 1, ..., 4 iterations. Left: FDM-FVM coupling on
equidistant mesh on the domain [0, 2], [2, 3]. Right: FEM-FVM coupling with λ1 = 1, λ2 = 2 and
mesh following (16) on the domain [0, 1], [1, 2]

Three tests were performed using an implementation in Python [7]. The first
test varied λ1, λ2, the second l1, l2, and the third the resolutions n1 and n2. In all
tests we set λ1 = λ2 = 1, l1 = l2 = 1 and n1 = n2 = 100 unless stated otherwise.
Furthermore, we choose f1(x) = sin x and f2(x) = cos(3x). The numerical and
exact solution is visualised in Fig. 2.

For each test we computed the observed convergence rate as:

max
k=0,...,9

∣∣∣∣ ek
ek−1

∣∣∣∣ ,

where ek = |uk(x�) − u(x�)|. These tests were performed for all possible combina-
tions involving the three discretizations

• linear finite elements
• second order central differences
• finite volumes with a central flux.

In all cases, the difference between the convergence rate and λ1l2
λ2l1

was negligible.
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Optimized Overlapping DDFV Schwarz
Algorithms

Martin J. Gander, Laurence Halpern, Florence Hubert, and Stella Krell

Abstract We introduce an overlapping optimized Schwarz methods in the DDFV
framework for an anisotropic diffusion equation, and we show that a discrete and
bounded domain convergence analysis is important to get best performance for strong
anisotropy.

Keywords DDFV schemes · Anisotropic diffusion · Domain decomposition
method

1 Introduction

We are interested in parallel solvers for the anisotropic diffusion problem

L(u) := −div(A∇u) + ηu = f in Ω, u = 0 on ∂Ω, (1)

with (x, y) ∈ Ω �→ A(x, y) =
(
Axx Axy

Axy Ayy

)
, η > 0, (2)
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L

Ω1
Ω2

Γ1Γ2

u2,li−1

u2,li

u2,k∗
i

Γ2

ψ2,k∗
i

Fig. 1 Left: example of overlappingmeshes, primalmeshesM j are shown. Right: detailed notation
near the interface Γ2

where A is a uniformly symmetric positive definite matrix. Non-overlapping opti-
mized Schwarz methods have been developed for (1) discretized with Discrete Dual-
ity Finite Volume (DDFV) schemes [6], because these techniques are especially
well suited for anisotropic diffusion [7], [3], [1]. Since overlap in general greatly
enhances the performance of Schwarz algorithms, we introduce and test here a new,
optimized overlapping DDFV Schwarz algorithm, and we show that a discrete and
bounded domain convergence analysis is important to get best performance for strong
anisotropy.

2 Optimized Overlapping Schwarz Algorithm

For simplicity, we describe the algorithm for two rectangular subdomains with
overlap, Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 �= ∅, with interfaces Γ j = ∂Ω j \ ∂Ω j ∩ ∂Ω , see
Fig. 1. A general parallel1 Schwarz method on these two subdomains is given by
solving for n = 1, 2, . . . the subdomain problems

Lunj = f in Ω j , unj = 0 on ∂Ω j ∩ ∂Ω,

B1un1 = B1u
n−1
2 on Γ1, B2un2 = B2u

n−1
1 on Γ2.

If we choose for the transmission operators B j the identity, we obtain the classical
Schwarz method. If we choose B j := Axx∂n j + P(∂y) with P(∂y) = p − q Ayy∂yy ,
we obtain the so called optimized Schwarz methods [4], with Robin (q = 0) or
Ventcell (q �= 0) transmission conditions and overlap L ,

Axx∂xun1(L , y) + Pun1(L , y) = Axx∂xu
n−1
2 (L , y) + Pun−1

2 (L , y),
−Axx∂xun2 (0, y) + Pun2(0, y) = −Axx∂xu

n−1
1 (0, y) + Pun−1

1 (0, y).
(3)

1Or alternating if B2un1 is transmitted on Γ2, leaving the rest unchanged.



Optimized Overlapping DDFV Schwarz Algorithms 367

The convergence, discretization and optimization of such algorithms in the nonover-
lapping case were studied in [6]; we study here for the first time the overlapping
case.

3 DDFV Discretization

We now describe the DDFV Schwarz algorithm for overlapping subdomains and
decompositions using the notation from [2], see Fig. 2.

The meshes: for j = 1, 2, the primal meshM j is a set of disjoint open polygonal

control volumes k ⊂ Ω j such that ∪k = Ω j . We denote by ∂M j the set of edges of
the control volumes inM j included in ∂Ω j , and by ∂MΓ j the subset of ∂Ω j of edges
of primal boundary cells related to the interfaceΓ j = ∂Ω j ∩ Ωi (i.e. in what follows,
i = 2 if j = 1, and i = 1 if j = 2). We assume that each edge of Γ j corresponds to
an edge ofMi . We use the same notation for the dual mesh,M∗

j , ∂M
∗
j and ∂M∗

Γ j
. We

define the diamond cells dσ,σ ∗ as the quadrangles whose diagonals are a primal edge
σ = k|l = (xk∗ , xl∗) and a corresponding dual edge σ ∗ = k∗|l∗ = (xk, xl). The set
of diamond cells is called the diamond mesh, denoted byD j .

For any V inM j ∪ ∂M j orM∗
j ∪ ∂M∗

j , we denote by mV its Lebesgue measure,
by EV the set of its edges, and DV := {dσ,σ ∗ ∈ D j , σ ∈ EV }. For d = dσ,σ ∗ with
vertices (xk, xk∗ , xl, xl∗), we denote by xd the center of d, that is the intersection of
the primal edge σ and the dual edge σ ∗, bymd its measure, bymσ the length of σ , by
mσ ∗ the length of σ ∗, bymσk∗ the length of ∂k∗ ∩ Ω j , bymσl

the length of d ∩ ∂Ω j ,
and by mσk

the length of [xk, xd]. nσk is the unit vector normal to σ oriented from
xk to xl, and nσ ∗k∗ is the unit vector normal to σ ∗ oriented from xk∗ to xl∗ .

uk∗ ∈ M∗
uk ∈ M

uk ∈ ∂M

uk∗ ∈ ∂M∗

σ∗ xd σ

nσ∗,k∗

nσ,k dσ,σ∗

uk∗
ul∗

uk

ul

uk

uk∗

ul∗

ul

nσ∗,k∗

nσ,k

Fig. 2 Left: primal mesh and some dual cells. Right: diamond cell dσ,σ ∗
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For σ = ∂MΓ j , there exists D̃ ∈ Di whose vertices are xki
, xk∗ , xl, xl∗ with xki

∈
Ωi .We denote by the half-diamondDi the trianglewhose vertices are xki

, xk∗ , xl∗ and
by the half-diamondD j the triangle whose vertices are xk j

, xk∗ , xl∗ , where k j ∈ M j

such that σ ∈ ∂k j . Then let D = Di ∪ D j and DΓ j be the set of these diamonds.

The unknowns: the DDFV method associates to all primal control volumes k ∈
M j ∪ ∂M j an unknown value u j,k, and to all dual control volumes k∗ ∈ M∗

j ∪ ∂M∗
j

an unknown value u j,k∗ . To handle the transmission condition on Γ j , we also require
a flux unknown ψ j,k∗ per boundary dual cell k ∈ ∂M∗

Γ j
. We denote the approx-

imate solution on the mesh T j by uT j
= ((u j,k)k∈(M j∪∂M j), (u j,k∗)k∗∈(M∗

j∪∂M∗
j )
,

(ψ j,k∗)k∗∈∂M∗
Γ j

)) ∈ R
T j . When f is a continuous function, we define for all control

volumes c ∈ T j , fT j
= ( fc) by fc := f (xc).

Operators. DDFV schemes can be described by two operators: a discrete gradient
∇D j and a discrete divergence divT j , which are dual to each other, see [2]. Let ∇D j :
uT j

∈ R
T j �→ (∇DuT j

)
D∈D j

∈ (R2)D j and divT j : ξD j = (ξd)D∈D j �→ divT j ξD j

∈ R
T j be defined as

∇DuT j
:= 1

2mD
((ul − uk)mσnσk + (ul∗ − uk∗)mσ ∗nσ ∗k∗) , ∀D ∈ D j ,

divkξD j := 1

mk

∑
D∈Dk

mσ (ξd,nσk), ∀k ∈ M j , and divkξD j = 0,∀k ∈ ∂M j ,

divk
∗
ξD j := 1

mk∗

∑
D∈Dk∗

mσ ∗(ξd,nσ ∗k∗), ∀k∗ ∈ M∗
j ∪ ∂M∗

j .

DDFV scheme on Ω j for Ventcell boundary conditions on Γ j .

For uT j ∈ R
T j , fT j ∈ R

T j and hT j ∈ R
∂MΓ j ∪∂M∗

Γ j , we denote by LT j

Ω j

(uT j , fT j , hT j ) = 0 the linear system

−divk
(
AD∇DuT j

) + ηku j,k = fk, ∀ k ∈ M j , (4)

−divk
∗ (

AD∇DuT j

) + ηk∗u j,k∗ = fk∗ , ∀ k∗ ∈ M∗
j , (5)

−
∑

D∈Dk∗

mσ ∗

mk∗

(
Ad∇DuT j ,nσ ∗k∗

)−mσk∗

mk∗
ψ j,k∗ +ηk∗u j,k∗ = fk∗ ,∀k∗ ∈ ∂M∗

Γ j
, (6)

(
Ad∇DuT j ,nσl

) + Λ
∂MΓ j

l (u∂MΓ j
) = h j,l, ∀ l ∈ ∂MΓ j , (7)

ψ j,k∗ + Λ
∂M∗

Γ j

k∗ (u∂M∗
Γ j

) = h j,k∗ , ∀ k∗ ∈ ∂M∗
Γ j

, (8)

u j,k = 0, ∀ k ∈ ∂M j ∩ ∂Ω, u j,k∗ = 0, ∀ k∗ ∈ ∂M∗
j ∩ ∂Ω, (9)

The transmission operators Λ
∂MΓ j and Λ

∂M∗
Γ j are defined by

Λ
∂MΓ j

ls
(u∂MΓ j

) := pu j,ls − Ayy
q

mσs

(
u j,ls+1

−u j,ls

mσk∗
s+1

− u j,ls −u j,ls−1

mσk∗
s

)
,
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for s = 1, . . . , N j , with u j,l0 = u j,lN j+1
= 0, and for s = 2, . . . , N j by

Λ
∂M∗

Γ j

k∗
s

(u∂M∗
Γ j

) := pu j,k∗
s
− Ayy

q
mσk∗s

( u j,k∗
s+1

−u j,k∗
s

mσs
− u j,k∗

s
−u j,k∗

s−1

mσs−1

)
.

Note that the edges σ1, . . . , σN j have been sorted such that σs ∩ σs+1 �= ∅, and
xk∗

s
, xk∗

s+1
are the vertices of σs , where xk∗

s
= σs ∩ σs−1. Note also that u j,k∗

1
=

u j,k∗
N j+1

= 0 because of the homogeneous boundary condition on ∂Ω . Equations

(4)–(6) correspond to approximations of the equation after integration on M j , M∗
j

and ∂M∗
j ; equations (7) and (8) stem from the transmission condition on ∂MΓ j and

∂M∗
Γ j
; equation (9) corresponds to the Dirichlet boundary condition on ∂Ω . One can

show that this discrete formulation is well posed, see [6, Theorem 3.1].

DDFV Schwarz algorithm. The DDFV optimized Schwarz algorithm performs
for an arbitrary initial guess h0T j

∈ R
∂MΓ j ∪∂M∗

Γ j , ( j, i) = (1, 2) or ( j, i) = (2, 1) and
l = 1, 2, . . . the following steps:

• Compute the solutions ul+1
T j

∈ R
T j of LT j

Ω j
(ul+1

T j
, fT j , h

l
T j

) = 0.

• Then, we define P∂M∗
Γ j

(ul+1
T i

) on the vertices of the interface Γ j

as follows: for xk∗
j
∈ ∂M∗

Γ j
, there exists a unique vertex xk∗ ∈ M∗

i such that xk∗
j
=

xk∗ , we set ul+1
k∗
j

= ul+1
k∗ .

• Then, we define P∂MΓ j
(ul+1

T i
) on the interface Γ j as follows.

For D ∈ DΓ j , there exist two half-diamonds Di and D j such that D = Di ∪ D j .
We define Pσ (ul+1

T i
) = ul such that

(
Adi

∇Di ul+1
T i

,nσli

) =
(
Ad j

∇D j ul+1
T j

,nσl j

)
.

• We evaluate the flux unknowns. For xk∗
j
∈ ∂M∗

Γ j
, there exists a unique vertex

xk∗ ∈ M∗
i such that xk∗

j
= xk∗ . We set K∗

i = K∗ ∩ (Ωi \ Ω j )

mσk∗

mk∗
i

ψ l+1
i,k∗ = −

∑
D∈Dk∗

i

mσ ∗

mk∗
i

(
Ad∇Dul+1

T i
,nσ ∗k∗

i

) +ηk∗ul+1
i,k∗

i
− fk∗

i
.

• We evaluate the new interface values hl+1
T j

by

hl+1
j,l = − (

Ad∇Dul+1
T i

,nσli

) + Λ
∂MΓ j

l (P∂MΓ j
(ul+1

T i
)), ∀l ∈ ∂MΓ j , (10a)

hl+1
j,k∗ = −ψ l+1

i,k∗ + Λ
∂M∗

j,Γ

k∗ (P∂M∗
Γ j

(ul+1
T i

)), ∀k∗ ∈ ∂M∗
Γ j

. (10b)
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4 Convergence Factors

We now give the convergence factors of the DDFV Schwarz algorithm for a rectan-
gular two subdomain decomposition, Ω := (−a1, a2) × (0, b), Ω1 := (−a1, L) ×
(0, b) and Ω2 := (0, a2) × (0, b), L ≥ 0 being the overlap size.

Continuous case. The error enj := u − unj satisfies homogeneous Dirichlet bound-
ary conditions, and can thus be expanded in a Fourier sine series, enj (x, y) =∑

k∈E ê
n
j (x, k) sin ky with the set E := πN+

b . A direct computation with

r(k) :=
√

ηAxx + k2 det A

Axx
(11)

leads to the continuous convergence factors for classical and optimized Schwarz:

ρcla
c,a = sinh(r(a2 − L))

sinh(r(L + a1))

sinh(ra1)

sinh(ra2)
, (12)

ρc,a = ρcla
c,a

P − Axxr coth((a2 − L)r)

P + Axxr coth((a1 + L)r)

P − Axxr coth(a1r)

P + Axxr coth(a2r)
. (13)

Discrete case on aCartesianmesh. Let themesh sizes be (hx , hy), andMj = N jhx ,
L = Mhx . When Axy = 0, the equations for the primal and dual unknowns decouple
into two finite difference schemes of order 2: the primal unknowns are solutions of a
cell-centered (CC) scheme, and the dual unknowns are solutions of a vertex centered
(VC) scheme. Using again Fourier analysis, with the notation

α(k) := 4Ayy

hy
2 sin2( khy

2 ), μ(k) := h2x
Axx

(α(k) + η),

λ(k) := 1 + μ(k)
2 −

√
μ(k) + μ(k)2

4 ∈ (0, 1), r̃(k) := − ln λ(k) > 0,
(14)

the discrete convergence factor for classical Schwarz for both CC and VC is

ρcla
d,M = sinh((M2 − M)r̃)

sinh((M1 + M)r̃)

sinh(M1r̃)

sinh(M2r̃)
. (15)

For optimized Schwarz, with P(k) := p + qα(k), we get for VC and CC

ρdvc,M = ρcla
d,M

P− Axx
hx

sinh r̃ coth((M2−M)r̃)

P+ Axx
hx

sinh r̃ coth((M1+M)r̃)

P− Axx
hx

sinh r̃ coth(M1r̃)

P+ Axx
hx

sinh r̃ coth(M2r̃)
,

ρdcc,M = ρcla
d,M

P−2 Axx
hx

tanh r̃
2 coth((M2−M)r̃)

P+2 Axx
hx

tanh r̃
2 coth((M1+M)r̃)

P−2 Axx
hx

tanh r̃
2 coth(M1r̃)

P+2 Axx
hx

tanh r̃
2 coth(M2r̃)

.
(16)

We also obtain the classical unbounded domain convergence factors ρcla
c,∞, ρc,∞, ρcla

d,∞
ρdvc,∞, and ρdcc,∞ from the bounded ones in (12), (13), (15) and (16) by passing to
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the limit as a1, a2 and M1, M2 go to infinity, which greatly simplifies the expressions,
see [5, Sect. 5] for the continuous case. Since the convergence speed of the methods
is bounded by the largest contraction factor over all k, we further introduce the
corresponding upper case quantity R := supk∈E |ρ|, and add a superscript R∗, p∗
and q∗ to denote the quantities obtained when R has been minimized using p and q.

5 Importance of a Bounded Domain Discrete Analysis

For isotropic diffusion, bounded and unbounded domain analyses both at the con-
tinuous and discrete level give very similar optimized parameters (p∗, q∗) as in the
non-overlapping case [6]. We show now that for anisotropic diffusion the discrete
bounded domain analysis gives much more accurate predictions (p∗

dvc,M , q∗
dvc,M ),

and (p∗
dcc,M , q∗

dcc,M ). We choose Axx = 16, Ayy = 1 and Axy = 0, and decompose
the domainΩ := (−1, 1) × (0, 1) into two subdomainsΩ1 := (−1, L) × (0, 1) and
Ω2 := (0, 1) × (0, 1). We choose for the mesh sizes hx = hy = h and for the over-
lap L = h. We also compute the numerically best working transmission parame-
ters (p∗

dvc,num, q∗
dvc,num), and (p∗

dcc,num, q∗
dcc,num) by minimizing the numerical error

remaining after n = 50 alternating Schwarz iterationswith random initial guess solv-
ing directly the homogeneous error equations, and the corresponding numerical con-
vergence factor R∗

num := (||en||/||e1||) 1
n−1 where ||en|| denotes the L2 norm of the

error en on the interface of the subdomains. We see in Table1 in the top part that
for VC the optimized parameters (p∗, q∗) are quite different for the bounded and
unbounded analysis, and there is also a difference between discrete and continuous
analysis. The asymptotic growth rate is however the same for all different analysis
types, just the constant differs. The theoretically optimized convergence factors R∗
in the bottom part of Table1 on the left, and the numerically measured convergence
factors R using the theoretically optimized parameters in the bottom part of Table1

Table 1 Axx = 16, Ayy = 1, Ventcell coefficients, vertex centered (VC)

Theoretical and best numerical parameters

h p∗
c,∞ p∗

c,a p∗
dvc,∞ p∗

dvc,M p∗
vc,num q∗

c,∞ q∗
c,a q∗

dvc,∞ q∗
dvc,M q∗

vc,num

2−3 13.3040 20.6673 12.1818 19.7453 19.7200 0.2137 0.1661 0.2623 0.1995 0.1997

2−4 15.8876 22.9419 14.7928 21.5210 21.4130 0.1391 0.1132 0.1688 0.1393 0.1395

2−5 18.4998 26.0734 17.5707 24.6458 24.5234 0.0936 0.0769 0.1089 0.0921 0.0926

2−6 21.2112 29.6330 20.6142 28.4895 28.2013 0.0647 0.0531 0.0707 0.0602 0.0604

Theoretical convergence factors Numerically measured convergence factors

h R∗
c,∞ R∗

c,a R∗
dvc,∞ R∗

dvc,M Rc,∞ Rc,a Rdvc,∞ Rdvc,M R∗
vc,num

2−3 0.0049 0.0012 0.0027 0.0003 0.0154 0.0013 0.0205 0.0003 0.0003

2−4 0.0161 0.0079 0.0111 0.0043 0.0183 0.0079 0.0138 0.0042 0.0041

2−5 0.0347 0.0223 0.0280 0.0159 0.0338 0.0222 0.0274 0.0159 0.0156

2−6 0.0596 0.0440 0.0541 0.0371 0.0561 0.0439 0.0526 0.0370 0.0360
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Table 2 Axx = 16, Ayy = 1, Ventcell coefficients, cell centered (CC)

Theoretical and best numerical parameters

h p∗
c,∞ p∗

c,a p∗
dcc,∞ p∗

dcc,M p∗
cc,num q∗

c,∞ q∗
c,a q∗

dcc,∞ q∗
dcc,M q∗

cc,num

2−3 13.6259 21.0138 12.4676 19.9705 19.9264 0.2015 0.1568 0.2441 0.1837 0.1840

2−4 16.0014 23.1167 15.0389 21.8064 21.7329 0.1363 0.1105 0.1601 0.1315 0.1316

2−5 18.5257 26.1345 17.8211 24.9634 24.8306 0.0932 0.0763 0.1041 0.0878 0.0882

2−6 21.2157 29.6388 20.8856 28.5642 28.5642 0.0648 0.0531 0.0678 0.0577 0.0579

Theoretical convergence factors Numerically measured convergence factors

h R∗
c,∞ R∗

c,a R∗
dcc,∞ R∗

dcc,M Rc,∞ Rc,a Rdcc,∞ Rdcc,M R∗
cc,num

2−3 0.0058 0.0016 0.0032 0.0005 0.0137 0.0017 0.0193 0.0005 0.0005

2−4 0.0167 0.0084 0.0121 0.0049 0.0182 0.0084 0.0141 0.0049 0.0048

2−5 0.0349 0.0226 0.0297 0.0172 0.0338 0.0226 0.0293 0.0172 0.0169

2−6 0.0596 0.0440 0.0566 0.0392 0.0563 0.0439 0.0549 0.0391 0.0381

Table 3 Axx = 16, Ayy = 1, DDFV with VC and CC coefficients from the discrete bounded
domain analysis, and best working ones for DDFV
h p∗

dvc,M q∗
dvc,M Rdd fv,num p∗

dcc,M q∗
dcc,M Rdd fv,num p∗

dd fv,num q∗
dd fv,num R∗

dd fv,num

2−3 19.7453 0.1995 0.0369 19.9705 0.1837 0.0314 20.6898 0.1836 0.0242

2−4 21.50210 0.1393 0.0780 21.8064 0.1315 0.0713 22.1314 0.1324 0.0676

2−5 24.64583 0.0921 0.1326 24.8306 0.0878 0.1278 24.8414 0.0891 0.1258

2−6 28.4895 0.0602 0.1906 28.5642 0.0577 0.1909 28.2904 0.0593 0.1881

on the right clearly show that the best results are obtained for the discrete bounded
domain analysis technique, very close to the numerically optimized R∗

vc,num . The
results in Table2 for CC are similar, only the q∗ are a bit smaller, and convergence
is slightly slower for CC than for VC. Table3 shows the results for DDFV which
computes both VC and CC interlaced simultaneously.We see that both the optimized
parameters from the VC and CC discrete and bounded domain analysis give very
good performance, the CC ones just being a little better.

To conclude, we presented a first step for the design and analysis of optimized
overlapping DDFV Schwarz methods for anisotropic diffusion. Using the fact that
for rectangular meshes the primal and dual unknowns decouple, we computed two
convergence factors, whosemaximum represents an upper bound on the convergence
of theDDFVSchwarzmethod.Our analysiswill allowus to study anisotropicmeshes,
and we will also investigate the influence of non-matching meshes in the different
subdomains. Finally, a theoretical optimization of the coupled convergence factors
in the parameters is needed to get closed formulas for the optimized parameters.
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Model Adaptation of Balance Laws
Based on A Posteriori Error Estimates
and Surrogate Fluxes

Jan Giesselmann and Hrishikesh Joshi

Abstract In this proceeding, we present model adaptation for hyperbolic balance
laws based on a posteriori error estimates. The model adaptation is carried out by
decomposing the computational domain and choosing to solve either the full system
or a simpler reduced system. The decision is made based on error estimates con-
structed employing the relative entropy framework which allows us to bound the
difference between the numerical solution to the reduced system and the exact solu-
tion to the full system. Furthermore, the use of surrogate fluxes in the simple model
constructed by machine learning is proposed to further reduce the computational
expenses.

Keywords Model adaptation · Hyperbolic balance laws · A posteriori error
estimates · Surrogate fluxes · Machine learning

1 Introduction

Amotivating example for the model adaptation strategy presented here is modelling
of chemically reacting flows. They can be modelled using Euler equations with
source terms, whereby we solve for mass balance of each constituent, conservation
of total momentum and total energy. In this description, the source terms in the
equations of mass balance describe reactions between the constituents. For details on
themodelling of chemically reacting flows and their analysis the interested reader can
refer to [1–3]. As the constituent species react, the system is driven towards chemical
equillibrium and as a result the source terms vanish. From whence, it is no longer
neccessary to solve the full system of equations. The full system of equations is from
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hereon referred to as the complex system. In such instances, when the system is close
to chemical equillibrium, the governing equations can be simplified by projecting
the system on the equillibrium manifold without introducing significant errors, i.e
the set of states for which the reaction terms vanish. This gives rise to a reduced
simple system. Model adaptation can be carried out by exploiting this structure. The
idea is to decompose the computational domain and then solve the complex system
wherever neccessary and the simple system everywhere else. It is important to note
that to calculate the flux function of the simple system, a mapping is needed from
the state space of the simple system to the equillibriummanifold in the state space of
the complex system. We refer to this mapping as theMaxwellian, which is given by
the solution of a non-linear system of equations. In the case of chemically reacting
flows, pressure is calculated as part of this system.

We propose model adaptation consisting of a twofold approach. Firstly, we con-
struct a posteriori error estimates, i.e. bounds for the difference between the numerical
solution of the simple system and the exact solution of the complex system based
on the relative entropy framework. Secondly, in order to further reduce the computa-
tional expenses we propose constructing an approximateMaxwellian by employing
machine learning.

The structure of this paper is as follows: in Sect. 2, the framework is described
abstractly. In Sect. 3, the a posteriori error estimates are presented. Lastly, in Sect. 4,
convergence and construction of the approximate Maxwellian is discussed.

2 Abstract Form

2.1 Balance Laws

The complex system of partial differential equations in an abstract form is given by

∂tU +
∑

α

∂xα
Fα(U) = 1

ε
R(U),U : Rd × R

+ → R
N , (1)

where ε > 0,R,F : RN → R
N .

Employing some projection matrix P : RN → R
n such that PR(U) = 0 and u :=

PU, we get
∂tu +

∑

α

∂xα
PFα(U) = 0, u : Rd × R

+ → R
n. (2)

TheMaxwellian, i.e. the map from the state space of the simple system to the equil-
librium manifold in the state space of the complex system is given by

R(M(u)) = 0, PM(u) = u. (3)

In the limit ε → 0, system (2) reduces to the simple system given by
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∂tu +
∑

α

∂xα
PFα(M(u)) = 0. (4)

3 A Posteriori Error Analysis

To carry out model adaptation we need to decide which model to solve where. We
do this based on the bounds for the difference between the numerical solution of
the simple system and the exact solution of the complex system. It is well-known
that solutions to hyperbolic partial differential equations develop discontinuities in
finite time, and hence one looks for entropy admissible weak solutions [4]. It is
also known that entropy admissible weak solutions for systems are not unique [5].
However, based on the relative entropy framework it can be shown that weak-strong
uniqueness holds when a Lipschitz continuous solution exists. In a similar vein, it
can be shown that solutions of the complex system converge to that of the simple
system for vanishing ε as long as a Lipschitz solution to (4) exists. For more details
about the relative entropy framework, the reader is referred to [6].

In this section, the posteriori error estimates are presented. For the sake of sim-
plicity of presenting the a posteriori analysis we restrict ourselves to one spatial
dimension. First the entropic structure is outlined followed by the construction of
the error estimates.

3.1 Relative Entropy Framework

The complex system is equipped with a strictly convex entropy-entropy flux pair
(H(U), Q(U)) which satisfies

D H(U)DF(U) = D Q(U). (5)

Furthermore, smooth solutions of (1) satisfy

∂t H(U) + ∂x Q(U) = 1

ε

∂H(U)

∂U
· R(U) ≤ 0. (6)

As in [6], we assume that for the simple system, theMaxwellian induces an entropy-
entropy flux pair via η(u) := H(M(u)), q(u) := Q(M(u)). Thus smooth solutions
satisfy

∂tη(u) + ∂xq(u) = 0. (7)
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Remark 1 The assumption that the Maxwellian composed with the entropy and
entropy flux of the complex system induces an entropy-entropy flux pair (η, q) on
the state space of the simple system is one of the fundamental ingredients in the con-
vergence analysis [6] andwhich we employ in our numerical analysis. This condition
is natural since the state space of the simple system is a submanifold (parameterized
by the Maxwellian) of constrained equilibrium in the state space of the complex
system.

Definition 1 The relative entropy and relative entropy flux between states U,V ∈
R

N are defined as

H(U|V) = H(U) − H(V) − ∂H

∂U
(V) (U − V) , (8)

Q(U|V) = Q(U) − Q(V) − ∂H

∂U
(V) (F (U) − F (V)) . (9)

Furthermore, strict convexity of H implies that for some c ≥ 0

H(U|V) ≥ c |U − V|2 . (10)

3.2 Reconstruction

The relative entropy framework requires one of the solutions to be Lipschitz continu-
ous. As the exact solution can be discontinous, we introduce a Lipschitz reconstruc-
tion of the numerical solution. For more details on reconstruction of Discontinuous
Galerkin solutions, the reader is referred to [7, 8].
Let U be the exact solution to (1), let Uh be some numerical solution to (1), let Ûh

be its reconstruction, furthermore let uh be some numerical solution to (4) and let ûh
be its reconstruction. Employing triangle inequality, we can bound the error between
the numerical solution to the simple system and the exact solution to the complex
system as

||U − M(uh)|| ≤ ||U − M (̂uh)|| + ||M (̂uh) − M(uh)||. (11)

The second term is explicitly computable and the first will be bounded by the error
estimates.
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3.3 Error Estimates

3.3.1 Computational Domain Decomposition

Let the computational domain beR, assuming we solve the simple system on�s and
solve the complex system on �c where, �c ∪ �s = R and for simplicity �c ∩ �s =
{xq} /∈ int (�c), int (�s). The Lipschitz reconstruction of the numerical solution
satisfies a perturbed system of partial differential equations.
The reconstruction of the numerical solution of the complex system Ûh satisfies

∂t Ûh + ∂xF(Ûh) − 1

ε
R(Ûh) =: rc, Ûh : �c × R

+ → R
N ,

where rc is the discretization residual in the complex system. Similarly, the recon-
struction of the numerical solution of the simple system ûh satisfies

∂t ûh + ∂xPF(M (̂uh)) =: rs, ûh : �s × R
+ → R

n,

where rs is the discretization residual in the simple system.

Theorem 1 Let U : R × R
+ → R

N be the exact solution to (1). Let Ûh be the Lip-
schitz reconstruction of the numerical solution of (1) on �c and let ûh be the Lips-
chitz reconstruction of the numerical solution of (4) on �s . We assume that for some
ν = ν(M)

−
(

∂H

∂U
(U) − ∂H

∂U
(M (PU))

)
· (R(U) − R (M (PU))) ≥ ν |U − M(PU)|2

(12)
for U ∈ R

N . Furthermore, let for any U,V ∈ R
N

−
(

∂H

∂U
(U) − ∂H

∂U
(V)

)
· (R(U) − R(V)) ≥ 0. (13)

Then, we have

∫

�c

∣∣U − Ûh

∣∣2 dx
∣∣∣∣
t

+
∫

�s

|U − M (̂uh)|2 dx
∣∣∣∣
t

(14)

≤ (
I + Dc + Ds + Ms + CQ

)
exp

(
max(Cc,Cs + 1 + |P|)

c
t

)
,

where

I =
∫

�s

H(U|M (̂uh))

∣∣∣∣
x,t=0

dx +
∫

�c

H(U|Ûh)

∣∣∣∣
x,t=0

dx,



380 J. Giesselmann and H. Joshi

Dc =
∫ t

0

∫

�c

∣∣∇2
UH(Ûh)rc

∣∣2 dx dτ,

Ds =
∫ t

0

∫

�s

∣∣∇2
uη(̂uh)rs

∣∣2 dx dτ,

Ms = ε

ν

∫ t

0

∫

�s

|∂x (∇uη(̂uh)) · P∇UF(M (̂uh))|2 dx dτ,

CQ =
∫ t

0
Q(U|M (̂uh))

∣∣∣∣
xq ,τ

dτ −
∫ t

0
Q(U|M (̂uh))

∣∣∣∣
xq ,τ

dτ,

Cc = ∣∣∣∣∂x
(∇UH(Ûh)

)∇2
UF(Ûh)

∣∣∣∣∞ +
∣∣∣∣

∣∣∣∣
1

ε
R(Ûh)∇3

UH(Ûh)

∣∣∣∣

∣∣∣∣∞
,

Cs = ∣∣∣∣∂x (∇u(η(̂uh)))∇2
u (PF(̂uh))

∣∣∣∣∞ .

One can note that the D terms are the discretization errors and the term Ms is the
modelling error in the simple system. More details and analysis of the estimates will
be provided in [9].

4 ApproximateMaxwellian

As discussed previously, theMaxwellian needs to be employed to calculate the flux
in the simple system. Calculating the Maxwellian can be expensive as a non-linear
system of equations needs to be solved. Hence to further reduce the computational
expenses when solving the simple system an approximate Maxwellian M̃ can be
devised whereby we solve the following system of equations

∂t ũ + ∂xPF(M̃(ũ)) = 0, ũ : R × R
+ → R

n. (15)

To this end, error analysis of the system using an approximate Maxwellian is pre-
sented in Sect. 4.1, followed by a discussion about the construction of an approximate
Maxwellian in Sect. 4.2.

4.1 Convergence Analysis

The relative entropy framework requires an entropy-entropy flux pair such that the
compatibility condition (5) is satisfied. Hence, it is desirable for the approximate
Maxwellian to be defined so that for some Q̃ the following holds

D H(M̃(ũ))DF(M̃(ũ)) = D Q̃(M̃(ũ). (16)
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But it is unclear how to define such a Q̃. Hence, the compatibility condition can be
approximately satisfied by employing Q such that

D H(M̃(ũ))DF(M̃(ũ)) − D Q(M̃(ũ)) =: δη(ũ). (17)

Here δη is the mismatch in the compatibility condition when an approximate
Maxwellian and the definition of original entropy flux is used.
Furthermore, let η̃(ũ) := H(M̃(ũ)), q̃(ũ) := Q(M̃(ũ)), then any Lipschitz contin-
uous ũ of (15) satisfies

∂t η̃(ũ) + ∂x q̃(ũ) = −δη(ũ)∂x ũ. (18)

Theorem 2 Let u : R × R
+ → R

n be the exact solution to (4) on � and let ũ be a
Lipschitz continuous solution of (15) on �. Then, we have

∫

�

∣∣∣M(u) − M̃(ũ)

∣∣∣
2
dx

∣∣∣∣
t

≤
(
Ĩ + M̃

)
exp

(
C̃

c
t

)
, (19)

where c is a non-negative constant as in (10) and

Ĩ = ∫
�
H(M̃(ũ)|M(u))

∣∣∣∣
x,t=0

dx,

C̃ = ∣∣∣∣∂x (∇u(η(ũ)))∇2
u (PF(ũ))

∣∣∣∣∞ ,

M̃ = ∫ t
0

∫
�

∣∣δη(ũ)∂x ũ
∣∣ dx dτ.

Moreover, if
∣∣∣
∣∣∣M(u) − M̃(ũ)

∣∣∣
∣∣∣∞ ≤ εM̃ and

∣∣∣
∣∣∣DM(u) − D M̃(ũ)

∣∣∣
∣∣∣∞ ≤ εDM̃ then

∣∣∣∣δη

∣∣∣∣∞ ≤ CεM̃εDM̃ , where C is bounded by the maximum of the absolute values

of eigenvalues of DF. Furthermore, as δη vanishes M̃ converges to M and the solu-
tion of system using the approximate Maxwellian (15) converges to the solution of
system using the exact Maxwellian (4).

4.2 Construction of an Approximate Maxwellian

The approximateMaxwellian should be constructed such that the resulting numerical
solution is as close as possible to the numerical solution if the original system would
have been employed. For this, the quantity δη needs to beminimized. An approximate
Maxwellian should be constructed by balancing the computational resources needed
to evaluate it and its distance to the exact Maxwellian.

Previous research investigates the stability properties due to a change in the flux
based on standard Riemann semigroup in [10]. But in our case, the approximate
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Maxwellian should be devised by accounting for the structure of δη as discussed in
Sect. 4.1. Furthermore, in the case of chemically reacting flows, physical constraints
such as positivity (e.g. density, total energy, temperature), compliance with the pres-
sure law and positive entropy dissipation should be satisfied. Moreover, according to
the definition the source terms should vanish on the equillibriummanifold in the state
space of the complex system. When M̃ is constructed extra attention has to be paid
to ensure this structure is preserved. If M̃ does not exactly satisfy these constraints it
will lead to added contributions to δη. The distance of the approximateMaxwellian to
the exactMaxwellian can be kept small if the mismatch in the constraints is bounded
and small or if M̃ exactly satisfies the constraints.

One approach to construct M̃ is to employ machine learning techniques such as
neural networks. Neural networks are trained on some training data sets, and then
are used as black boxes for new data. Generally the neural nets are constructed by
minimizing some loss function on training data sets such as the L2 error between
the outputs produced by the neural networks and the expected exact values. As a
result even though the neural nets are constructed on training data sets which satisfy
the constraints, the outputs produced by the neural networks on the new data do not
necessarily satisfy them. Hence we need to employ machine learning techniques that
account for the constraints on the data sets.

In [11] machine learning techniques were developed where natural symmetries of
systems such as rotational, translational invariance are preserved. In [12] constraint
aware neural networks were developed termed as Constraint Resolving layer method
(CRes), in which an extra constraint layer is added to produce a constraint compliant
neural network. This requires the constraint to be re-written in a form like that in
the implicit function theorem. A second approach is to add penalty terms to the
loss function, which is then minimized. In this approach the constraints may not be
exactly satisfied.

In the instance of chemically reacting flows the CRes method can be employed,
whereby a series of constraint layers are implemented in the neural network for each
of the constraints. With this approach a M̃ can be constructed which is mass, energy
conservative and compliant with the pressure law. A sequence of constraint layers
can be employed as the outputs can be calculated sequentially. But vanishing source
terms on the equillibrium manifold cannot be enforced as the constraint cannot be
written in the required format. But this precise information is provided to us by the
error estimates. Furthermore, a constraint can be added as a penalty term to the loss
function to minimize the distance of Ũ from the equillibrium manifold. With such
an approach an approximateMaxwellian can be constructed that is close to the exact
one and also satisfies the desirable constraints.

The strategy described scales down the computational resources needed by car-
rying out model adaptation and employing machine learning to construct an approx-
imate mapping.

Remark 2 In assessing the computational efficiency of the model adaptive scheme
compared to solving the complex system everywhere one needs to compare the costs
and savings. The costs consists of computing the reconstruction (local, involves
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matrix vectormultiplication) and computing the residual (evaluating non-linear func-
tions). The savings result from being able to avoid stiff source terms in areas where
the simple system is solved. Thus, in these areas explicit schemes can be used instead
of implicit schemes, such that no non-linear function needs to be solved in time step-
ping. Note that the non-linear function whose roots need to be found in each time
step is the same as the one evaluated in computing residuals. By how much the gains
outweigh the costs depends on the complexity of this non-linear function, e.g. for
chemical reacting flows it depends on the number and the complexity of the chemical
reactions.

More details and numerical results and computational resource analysis will be
presented in [9].

Acknowledgements This research is supported by the German Research Foundation (DFG) grant
GI1131/1-1: Dynamical, spatially heterogeneous model adaptation in compressible flows.

References

1. Bothe, D., Dreyer,W.: Continuum thermodynamics of chemically reacting fluid mixtures. Acta
Mech. 226, 1757–1805 (2015)

2. Hantke, M., Müller, S.: Analysis and simulation of a new multi-component two-phase flow
model with phase transitions and chemical reactions. Quart. Appl. Math. 76, 253–287 (2018)

3. Müller, I., Müller, W.H.: Fundamentals of thermodynamics and applications, 1st edn. Springer,
Berlin (2009)

4. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics, 3rd edn. Grundlehren
der Mathematischen Wissenschaften, vol. 325. Springer, Berlin (2010)

5. De Lellis, C., Székelyhidi, L.: On admissibility criteria for weak solutions of the Euler equa-
tions. Arch. Ration. Mech. Anal. 95, 225–260 (2010)

6. Tzavaras, A.: Relative entropy in hyperbolic relaxation. Commun.Math. Sci 3, 119–132 (2005)
7. Giesselmann, J., Makridakis, C., Pryer, T.: A posteriori analysis of discontinuous Galerkin

schemes for systems of hyperbolic conservation laws. SIAM J. Numer. Anal. 53, 1280–1303
(2015)

8. Giesselmann, J., Pryer, T.: A posteriori analysis for dynamic model adaptation problems in
convection dominated problems. Math. Models Methods Appl. Sci. 27, 2381–2423 (2017)

9. Giesselmann, J., Joshi, H.: A posteriori error analysis for model adaptation of hyperbolic
systems with relaxation, in preparation

10. Bianchini, S., Colombo, R.M.: On the stability of the standard Reimann semigroup. Proc.
Amer. Math. Soc. 130, 1961–1973 (2002)

11. Zhang, L., Han, J.,Wang,H., Saidi,W.A., Car, R.,Weinan, E.: End-to-end symmetry preserving
inter-atomic potential energy model for finite and extended systems. NIPS. 31 (2018)

12. Magiera, J., Ray,D.,Hesthaven, J.S., Rohde, C.: Constraint-aware neural networks forRiemann
problems. J. Comput. Phys. 409 (2020)



Robust Newton Solver Based on Variable
Switch for a Finite Volume Discretization
of Richards Equation

Sabrina Bassetto, Clément Cancès, Guillaume Enchéry, and Quang Huy Tran

Abstract We propose an efficient nonlinear solver for the resolution of the Richards
equation. It is based on variable switching and is easily implemented thanks to a
fictitious variable allowing to describe both the saturation and the pressure.Numerical
experiments show that our method enables to use Newton’s method with large time
steps, reasonable number of iterations and in regions where the pressure-saturation
relationship is given by a graph.

Keywords Degenerate parabolic equation · Nonlinear solver · Variable switch
MSC (2010) 65M08 · 65N08 · 35Q30

1 Finite Volume Approximation of the Richards Equation

The Richards equation is often used to model unsaturated flows in a porous medium
Ω ⊂ R

d (1 ≤ d ≤ 3). The fluid occupying the pore space is described by the pressure
p ∈ R of the water phase and the water saturation s ∈ [0, 1], which represents the
volume ratio of water in the pore space. The conservation law for the water volume
then writes
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∂t (φ s) − div

(
λ

μ
kr (s)(∇ p − �g)

)
= 0 in Ω × R+, (1)

where φ ∈ (0, 1) is the porosity ofΩ , λ its intrinsic permeability,μ the water viscos-
ity, � the water density and g the gravitational acceleration. The relative permeabil-
ity function kr : [0, 1] → R

+ is continuous and nondecreasing, and we denote by
srw = max{s | kr (s) = 0} the residual water saturation. The saturation s and pressure
p are linked pointwise by the relation

s = S (p) in Ω × R+, (2)

whereS : R → [0, 1] is nondecreasing and satisfiesS (p) = 1 − srn if p ≥ pb, srn
denoting the residual saturation of air, pb the entry pressure and S (p) → srw as
p → −∞. We assume that S is C1 and convex on (−∞, ps), and C1 and concave
on (ps,+∞) for some ps ≤ 0. We denote by ss = S (ps). The above assumptions
on kr andS are satisfied by the classical Brooks-Corey and van Genuchten-Mualem
models respectively given by

krBC(s) = s
3+ 2

n
eff , SBC(p) =

⎧⎨
⎩
srw + (1 − srn − srw)

(
p
pb

)−n
if p ≤ pb,

1 − srn if p > pb,
(3)

kr vGM(s) = s
1
2
eff{1 − [1 − s

1
m
eff ]m}2, SvGM(p) =

⎧⎨
⎩
srw + 1−srn−srw[

1+
∣∣∣ α

ρg p
∣∣∣n]m if p ≤ pb,

1 − srn if p > pb,
(4)

where seff = s−srw
1−srn−srw

and, for the van Genuchten-Mualem model, m = 1 − 1
n and

pb = 0 Pa. Dirichlet boundary conditions are imposed on a part Γ D of ∂Ω , while
inflow Neumann boundary conditions are imposed on the complement Γ N = ∂Ω \
Γ D:

p = pD on Γ D × R+, − λ

μ
kr (s)(∇ p − �g) · n = qN on Γ N × R+, (5)

with qN ≤ 0. Finally, the system is closed by prescribing an initial saturation profile

s(·, 0) = s0 in Ω, with 0 ≤ s0 ≤ 1. (6)

We refer to [2] for further details on the modeling and to [1] for the well-posedness
of the problem.
The problem (1), (2), (5), and (6) is discretized by means of a finite-volume scheme:
an upstream mobility is used for convection and a two-point flux approximation
(TPFA) for the capillary diffusion. Let (T ,E , (xK )K∈T ) be a finite volume mesh
of Ω fulfilling the classical orthogonality condition required for the consistency of
TPFA. Since this notion is classical, we remain sloppy here on the definition and
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refer to [6, Definition 9.1] for details. Let us just mention that T denotes the set
of the cells, while the set of the edges E is partitioned into the set of the inter-
nal edges Eint = {σ ∈ E | σ = K |L = ∂K ∩ ∂L}, the set of the Dirichlet bound-
ary edges E D

ext = {σ ∈ E | σ ⊂ Γ D}, and the set of the Neumann boundary edges
E N
ext = {σ ∈ E | σ ⊂ Γ N }. We denote by EK = {σ ∈ E | σ ⊂ ∂K }. For the time

discretization, we allow for non-uniform time steps τn = tn − tn−1, n ≥ 1. At ini-
tial time t = 0, s0 is discretized into s0K = 1

|K |
∫
K s0. For σ ∈ Eint ∪ E D

ext, σ ∈ EK ,
we define the mirror value unK ,σ of unK across σ by unK ,σ = unL if σ = K |L ∈ Eint

and unK ,σ = unσ = 1
τn |σ |

∫
σ

∫ tn

tn−1 uD if σ ∈ E D
ext. The conservation of the water phase

is discretized into

φK
snK − sn−1

K

τn
|K | +

∑
σ∈EK

Fn
Kσ = 0, K ∈ T , n ≥ 1. (7)

The expression of the fluxes relies on a unique upwinding for capillary diffusion and
for gravitationally induced convection, that is

Fn
Kσ =

{
Aσ

{
kr nσ,up

μ
[ (pnK − pnK ,σ ) + ρg (zK − zK ,σ ) ]

}
if σ ∈ Eint ∪ E D

ext,

1
τn

∫ tn

tn−1

∫
σ
qN if σ ∈ E N

ext,
(8)

where

kr
n
σ,up =

{
kr (snK ) for (pnK − pnK ,σ ) + ρg (zK − zK ,σ ) ≥ 0,

kr (snK ,σ ) otherwise,
(9)

Aσ =
{
mσ

λK λL
λLdK ,σ +λK dL ,σ

if σ = K ∩ L ,

mσ
λK
dK ,σ

if σ ∈ E D
ext,

(10)

with λK = λ(xK ), dK ,σ = |xK − xL | if σ = K |L ∈ Eint, dK ,σ = dist(xK , σ ) if σ ∈
E D
ext and mσ is the Lebesgue measure of the edge σ . The discrete water saturation

and pressure are related cellwise by the relation

snK = S (pnK ), K ∈ T , n ≥ 1. (11)

The scheme (7)–(11) admits a unique discrete solution
(
snK , pnK

)
K∈T for all n ≥ 1

and converges as the mesh size and the time step tend to 0 (this will be proved in a
forthcoming work). In this contribution, we rather focus on the practical resolution
of the nonlinear system (7)–(11) via an iterative method. For our works, we choose to
use Newton’s method. Notice that the physical models presented above, both feature
two difficulties for Newton’s method: the function SBC is Lipschitz continuous but
notC1 and the mobility function kr vGM is singular at s = 1 − srn where the derivative
blows up.
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2 Fictitious Variable and Newton’s Method

A natural approach to solve the nonlinear system (7)–(11) is to choose (pK )K∈T
as a primary unknown and to solve the corresponding nonlinear system thanks to
Newton’s method (or alternatively some modified Picard’s method, see e.g. [9]).
However, the choice of the pressure as the primary variable is known to be inefficient
for dry soils s � 1 where they are outperformed by schemes using s as primary vari-
able. On the other hand, the knowledge of the saturation is not sufficient to describe
the pressure in saturated regions where s = 1. This motivated the introduction of
schemes based on variable switching between s and p, see [5, 7]. Our approach is
based on [3] and can be seen as a reformulation of the variable switch which makes
its implementation much easier. Unlike in [3], we do not use the Kirchhoff transform
which cannot be easily computed for the van Genuchten-Mualem model. The idea
is to choose a parametrization of the graph {p,S (p)}, i.e. to choose two functions
s : I → [srw, 1 − srn] and p : I → R such that s(u) = S (p(u)) for all u ∈ I ⊂ R.
Such a parametrization is not unique: one can for instance choose I = R, p = Id and
s = S , or p = (Id + S )−1 and s = (Id + S −1)−1 so that s′(u) + p′(u) = 1 for all
u ∈ R. Here, we rather set I = (srw,+∞) and

s(u) =
⎧⎨
⎩
u if u ≤ us,

S

(
ps + u − us

S ′(p−
s )

)
if u ≥ us,

p(u) =
⎧⎨
⎩
S −1(u) if u ≤ us,

ps + u − us
S ′(p−

s )
if u ≥ us.

(12)
whereS ′(p−

s ) denotes the limit ofS ′(p) as p tends to ps from below. Since (ps, us)
is the inflexion point of S , both s and p are C1 and concave, and even C2 if S is
given by (4). Moreover, for all p ∈ R, there exists a unique u ∈ (srw,+∞) such that
(p,S (p)) = (p(u), s(u)).
Choosing u as a primary variable in the scheme (7)–(11) amounts to search for
un = (

unK
)
K∈T such that snK = s(unK ) and pnK = p(unK ) for all K ∈ T . Equation (11)

is then automatically satisfied. The resulting system Fn(un) = 0 made of NT =
Card(T ) nonlinear equations admits a unique solution un since it is fully equivalent
to (7)–(11). However, the nonlinear change of variable to pass from pn = (

pnK
)
K∈T

to un as primary variable strongly impacts the nonlinear solver. Our approach is
based on Newton’s method, that is detailed in Algorithm 1 and that include the
following procedures in order to handle difficulties which are inherent to the chosen
petro-physical models.

• check() and update()
The law of the relative permeability kr , in the van Genuchten-Mualem case (4),
has very large derivative values, which can be equal to ∞ for s → 1. In order to
overcome this difficulty, we approximate kr vGM, during Newton’s iterations, for
s ∈ N = [slim, 1], with a polynomial k̃r vGM(s) of second degree which satisfies the
following conditions: kr (slim) = k̃r vGM(slim), k ′

r (slim) = k̃r
′
vGM(slim), k ′′

r (slim) =
k̃r

′′
vGM(slim). The idea is to progressively increase the value of slim in order to
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recover the real law at convergence. The function check() verifies the error we
commit in the approximation. If this error is smaller than a fixed tolerance, namely
|kr vGM(1) − k̃r vGM(1)| < εkvGMr

, it returns true, false otherwise. At each Newton’s
iteration, we increase the value of slim thanks to the function update(). The incre-
ment speed depends on the norm of the residual. Let us call δsw,max = 1 − srn − slim.
If

∥∥Fn(un,i )
∥∥∞ > εF vGM we set δsw,max = δsw,max · ω and δsw,max = δ2sw,max

otherwise,
with ω < 1.

• truncation()

Since Fn is not necessarily C1 (SBC is not C1 in the Brooks and Corey case),
following [8, 10], the Newton increment is truncated near the inflection point ss,
as described in Algorithm 2.

• decreaseDeltaT ime() and increaseDeltaT ime()
In our numerical tests, we increase the time step in such a way that Δtn+1 =
min(Δtmax , α

+
Δt · Δtn) and decrease it in such a way that Δtn+1 = max(α−

Δt ·
Δtn,Δtmin) with α+

Δt > 1 and α−
Δt < 1. If Δtmin is reached, the simulation stops.

Initialization:
i = 0;
un,0 = un−1;
while[(∥∥Fn(un,i )

∥∥∞ ≥ ε ∧ i ≤ imax
) ∨ ¬ check()

]
do

solve J(un,i−1)δn,i + Fn(un,i−1) = 0 ;
for K ∈ T do

truncation();

un,i
K = max(srw, un,i−1

K + δ
n,i
K );

end
i = i + 1;
update();

end
if i > imax then

decreaseDeltaT ime();
restart while loop ;

else
un = un,i ;
n = n + 1;
increaseDeltaT ime();

end
Algorithm 1: Practical resolution of the system

Fn(un) = 0, where J is the Jacobian matrix.

for K ∈ T do
if ss − δ

n,i
K < un,i−1

K ≤ ss then
δ
n,i
K = ss − un,i−1

K + εδ ;

else if ss ≤ un,i−1
K < ss − δ

n,i
K

then
δ
n,i
K = ss − un,i−1

K − εδ ;
end

end
Algorithm 2: Detail of the funct-

ion truncation(), where εδ � 1.
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3 Numerical Results

For the numerical validation of our scheme, we consider two tests inspired from those
proposed in [4]. These two tests make use of the classical Brooks and Corey and Van
Genuchten-Mualem models. For the simulations we take the following parameters:
ε = 10−12, imax = 500, εkvGMr

= 10−3, εF vGM = 10−9, εδ = 10−6, α−
Δt = 0.5, ω =

0.07. As in [4], our aim is here just to improve the robustness of the Newton’s
algorithm when used with the TPFA scheme. Therefore, our study here focuses on
the corresponding nonlinear system even if more accurate schemes could be used
to better take into account the heterogeneities, in particular the ones related to the
capillary pressures.

3.1 Test 1 with the Brooks and Corey model

In this test we simulate a vertical drainage through a layered soil Ω = [0 m, 2 m]
from initially saturated conditions during a time interval [0, T ]with T = 105 · 104 s.
At the initial time the pressure varies with respect to the height of the column, that
is p0(z) = −�g(z − 2), where � = 103 kg · m−3 and g = 9.81 ms−2. During the
simulation, we impose a Dirichlet boundary condition pD = 0 Pa on the bottom
of the column and a no-flow boundary condition on the top. The soil is made of
two rock types: RT1 for 0 m < z < 0.6 m and 1.2 m < z < 2 m, and RT2 for
0.6 m < z < 1.2 m. Their hydraulic properties are given in Table1. Simulations are
performed on a mesh with 1000 cells and an initial time step Δtini = 2000 s which
increases after the first time iteration up to Δtmax = 2 · Δtini using α+

Δt = 1.2. The
truncation procedure, detailed inAlgorithm2, is activated duringNewton’s iterations.
Table2 gives the average number of iterations of the nonlinear solvers used here and
in [4] along with the number of time steps.
Note that a coarser mesh has been used in [4] for this test. Solutions obtained at
the final time are shown in Fig. 1. In some areas, pressures are higher than the entry
pressure and the saturation-pressure relationship is there no more a function. The
problemcan still be solved thanks to the use of the parametrization technique. Figure2
shows the evolution of the average Newton’s convergence rate given, for a time step

Table 1 Hydraulic properties for Test 1

1 − srn srw pb[Pa] n λ[m2] φ

RT1 1.0 0.2 −3.4301 ·
103

1.5 10−11 0.35

RT2 1.0 0.1 −1.4708 ·
103

3.0 10−9 0.35
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Table 2 Performances of the nonlinear (nl) solvers for Test 1

� Total nl iterations � Time iterations

Our method 1118 265

Method proposed in [4]
(coarser mesh)

4469 (inner iterations) 300

0 1 2

0.2

0.4

0.6

0.8

1

z-Axes
0 1 2

−5

0

·103

z-Axes

10 · t 50 · t 100 · t 150 · t 200 · t 265 · t

Fig. 1 Evolution in time of the saturation on the left and of the pressure on the right
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Fig. 2 Test 1: evolution of the average Newton’s convergence rate during time iterations

n, by CV n
rate = 1

Nn
iter

∑Nn
iter

i=1
log10‖F n(un,i )‖∞
log10‖F n(un,i−1)‖∞

. The rate is on the whole equal to 2.

Negative rates are due to residual normswhich are greater than one at some iterations.

3.2 Test 2 with the Van Genuchten-Mualem model

In this test, starting from an initially very dry layered domain, Ω = [0 m, 1 m] ×
[−3 m, 0 m], made of sand and clay, water flows from the top of the structure as
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Table 3 Hydraulic properties for Test 2

RT1 (Sand) RT2 (Clay)

1 − srn 1.0 1.0

srw 0.0782 0.2262

n 2.239 1.3954

λ [m2] 6.3812 · 10−12 1.5461 · 10−13

α [m−1] 2.8 1.04

slim 0.985 0.985

φ 0.3658 0.4686

Fig. 3 Configuration of the
domain for Test 2

shown in Fig. 3. The hydraulic properties of the rock types are given in Table3. The
initial pressure is set to −47.088 · 105 Pa. A no-flow boundary condition is applied
everywhere except on the top sand surface where the water flux rate is equal to
0.5 m/day. The simulation is performed on a mesh composed of a 100 × 60 cells
during a time interval [0, T ] with T equal to one day. We use an initial time step
Δtini = 25 · 102 swhich increases after the first time iteration up toΔtmax = 3 · Δtini
using α+

Δt = 2.
During this simulation, the relative permeability is approximated following the strat-
egy which has been previously described and activating the check() and update()
procedures. The truncation method is not required here becauseSvGM isC2. Table4
gives the average number of iterations of the nonlinear solvers used here and in [4]
along with the number of time steps. Solutions obtained at the final time are shown in
Fig. 4. Figure5 shows the evolution of the average Newton’s convergence rate which
is slightly bigger than 1. The loss of the quadratic convergence may be due to the
low regularity of the laws and to the use of the approximation k̃r vGM .
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Table 4 Performances of the nonlinear (nl) solvers for Test 2

� Total nl iterations � Time iterations

Our method 151 13

Method proposed in [4] 482 (inner iterations) 24

Fig. 4 At the final time for Test 2: s obtained in [4] (left) and with our solution (right)

Fig. 5 Test 2: evolution of
the average Newton’s
convergence rate during time
iterations
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Acceleration of Newton’s Method Using
Nonlinear Jacobi Preconditioning

Konstantin Brenner

Abstract For mildly nonlinear systems, involving concave diagonal nonlinearities,
semi-global monotone convergence of Newton’s method is guarantied provided that
the Jacobian of the system is an M-matrix. However, regardless this convergence
result, the efficiency of Newton’s method becomes poor for stiff nonlinearities. We
propose a nonlinear preconditioning procedure inspired by the Jacobi method and
resulting in a new system of equations, which can be solved by Newton’s method
much more efficiently. The obtained preconditioned method is shown to exhibit
semi-global convergence.

Keywords Mildly nonlinear systems · Newton’s method · Nonlinear
preconditioning · Monotone convergence
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1 Introduction

Let N be a positive integer, we consider the problem of finding u ∈ (
R

+)N
satisfying

f (u) + Au = b, (1)

where A belongs to the set of real N × N matrices, denoted in the following by
M(N ), b ∈ (

R
+)N

and the mapping f is defined by

f : u �→ ( f1(u1), . . . fN (uN ))T
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with fi strictly increasing continuous functions fromR
+ toR+ satisfying fi (0) = 0.

More precisely we will assume the following:

(A1) For 1 ≤ i ≤ N , fi is strictly increasing, concave and belongs to C1 on
(0,+∞).

(A2) For any u > 0 the matrix f ′(u) + A is an M-matrix in the sense of the
definition below.

(A3) The matrix A has zero diagonal elements.

Definition 1 We say that A is an M-matrix if A is invertible, A−1 ≥ 0, and ai, j ≤ 0
for i, j = 1, . . . , N with i 	= j .

We remark that the derivatives of fi are potentially unbounded at the origin.
The system (1) can be found in numerical modeling of flow and transport pro-

cesses. In particular it arises from the discretization of the nonlinear evolutionary
PDEs of the form

∂tβ(u) + div (vu − λ∇u) = γ (u), (2)

where v is some given velocity field. Applying the backward Euler scheme and some
space discretization method to (2) one typically get the discrete problem of the form

β(unh) − β(un−1
h )

Δt
+ M−1Sunh = γ (unh) + σ n

h , (3)

where unh, u
n−1
h ∈ R

N are the vectors of the discrete unknowns associated with two
sequential time steps, while M and S are respectively the mass and the stiffness
matrices, and the vector σ n

h contains boundary data.
To fix the ideas let’s assume that the Dirichlet boundary conditions are imposed.

Several space discretization methods provide (possibly under some geometrical con-
dition on the mesh) that the matrix M−1S is anM-matrix. In the presence of diffusion
(that is λ > 0), the examples of such monotone discretization schemes is the stan-
dard finite volume method with two-point flux approximation and P1 finite element
method with mass lumping under the Delaunay condition on the underlying mesh
(see [3]). Let us mention that the monotone discretizations are not only beneficial
to the nonlinear solver (as it is going to be discussed in this paper), but also allow
to preserve the local maximum principle on the discrete level, thus avoiding any
spurious oscillations of the discrete solution. Let D denote the diagonal of M−1S
and let A = Δt

(
M−1S − D

)
. Setting

f (u) = β(u) + Δt (Du − γ (u))

the system (3) can be written as (1).
Given the assumption (A1) on the mapping f , and thus on the nonlinearities β(u)

and γ (u), several physical models are relevant. Such models are for example the
porous media equation [6], models of transport in porous media with adsorption
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(using e.g. the Freundlich isotherm [1]), the Richards’ equation [2, 5] or the Dupuit-
Forchheimer equation [1] (provided that convection is discretized using an explicit
scheme). Let us further remark that the analysis and the algorithms presented in
this paper can be extended to the Hele-Shaw or Stefan like problems where β(u) is
no longer a function, but rather a monotone graph of the form f (u) = ζH(u) + f̃ ,
where f̃ is a function satisfying the assumption (A1), ζ is a positive real number
and H(u) denotes the multivalued Heaviside graph. In [2] this type of nonlinearity
has been addressed trough the parametrization of f , that is a couple of the functions
τ → (u(τ ), v(τ ))with v(τ ) ∈ f (u(τ )) for all τ . The problemhas been then rewritten
in terms of the new variable τ .

Due to its quadratic convergence, Newton’s method is a very popular tool that
can be used to solve the systems (1) numerically; moreover under assumptions (A1)

and (A2) one can show that Newton’s method converges monotonically toward any
strictly positive solution u
 as soon as the initial guess u0 satisfies 0 < u0 ≤ u
. This
semi-global convergence result is based on the concavity of the underlying functional
and the non-negativity of the inverse of it’s Jacobian; it is in fact a straightforward
adaptation of the convergence results from [4] (see also Proposition 1 below) to the
concave setting.

Despite an available convergence result, the numerical evidences presented in
[2] suggest that the efficiency of Newton’s method applied to (1) can be very poor
especially for stiff problems with f ′(0) = +∞. To give an example let γ (u) = 0
and β(u) = u

1
m ,m ≥ 1 (this choice corresponds to the porous media equation [6]). It

is demonstrated in the numerical Sect. 3 that the convergence of Newton’s method is
slow;moreover the number of Newton’s iterations required to solve the system grows
withm. The numerical experiment also demonstrates that the efficiency of Newton’s
method can be greatly improved by a simple change of the variable v = β(u). Let us
note that forRichards-like parabolic-elliptic problemswithβ ′(u) = 0 for u ≥ us > 0
the similar change-of-variable trick can be performed using the variable switching
technique as suggested in [2]. Compared to the initial formulation of (1) the drawback
of the change-of-variable approaches is that the concavity of the problem is lost, and
therefore the monotone convergence is no longer guarantied.

In this article we reformulate the system (1) in a way that accelerates convergence
of Newton’s method while preserving concavity of the problem. More precisely we
replace the system (1) by a different one having the same solution set but is easier
to solve using Newton’s method. Since the modified system is similar to the one
obtained in Jacobi method, we refer to our approach as to Jacobi preconditioned
Newton’s method.

The mapping f is diagonal, strictly increasing and continuous and therefore
admits an inverse denoted g = f −1. We consider the following left-preconditioned
and right-preconditioned problems

Fl(u) := u − g(b − Au) = 0 (4)



398 K. Brenner

or
Fr (u) := u + Ag(u) − b = 0. (5)

Under the assumption (A1) the function g is increasing and convex, and therefore
F
(u), 
 = l, r remains concave; moreover the derivative of g is finite for all u ∈
(R+)N and it can be shown that F ′


(u) exists and is an M-matrix for all u ∈ (R+)N .
This implies monotone convergence of Newton’s method applied to (4) and (5) for
any initial guess u0 satisfying F
(u0) ≤ 0. The numerical experiment shows (see
Sect. 3) that performance of the preconditioned methods turns out to be superior
compare to the original formulation of (1), or alternatively to the change-of-variable
approaches.

The reminder of the article is organized as follows. In Sect. 2, startingwith conver-
gence result from [4], we prove monotone convergence of Newton’s method applied
to the problem (1) in its original formulation and applied to the preconditioned prob-
lems (4) and (5). Section3 is deduced to the numerical experiment.

2 Main Results

Let us first present the adaptation of the convergence result 13.3.4 from [4] to the
case of concave mappings.

Theorem 1 (Convergence of Newton’s method) Let F be a continuous
G-differentiable concave mapping from (R+)N to R

N and let F ′(u) be an M-
matrix for all u ∈ (R+)N . Assume in addition that there exist u
 ∈ (R+)N satisfying
F(u
) = 0 and u0 ∈ (R+)N such that F(u0) ≤ 0. Then the sequence

un+1 = un − F ′(un)−1F(un), n ≥ 0 (6)

is well defined, satisfies

un ≤ un+1 ≤ u
, F(un) ≤ 0

and is convergent. If in addition there exists an invertible P ∈ M(N ) such that
F ′(un)−1 ≥ P ≥ 0 for all n ≥ 0, then the sequence un converges to u
.

Let us denote Fu(u) = f (u) + Au − b, based on the assumptions (A1) and (A2),
it can be shown that the solution of (1) exists and is unique; in addition under the
same assumptions it follows from Theorem 1 that Newton’s method applied to (1)
converges monotonically provided that u
 > 0 and Fu(u0) ≤ 0. More precisely the
following proposition holds.

Proposition 1 (Convergence of the original formulation) Assume that b > 0, then
there exists the unique solution u
 to (1) satisfying u
 > 0; moreover there exists u0
such that Fu(u0) ≤ 0 and Newton’s iterates (6) are well defined and monotonically
converge to u
. �



Acceleration of Newton’s Method Using Nonlinear Jacobi Preconditioning 399

We remark that if f ′(0) = +∞ the assumptionb > 0 cannot be avoided, therefore
Newton’s method can not be applied to Fu(u) = 0 unless the solution is strictly
positive. In contrast the preconditionedmethods canbe appliedwithout any additional
restrictions on f ′ or on the sign of the solution. Convergence of the preconditioned
methods is summarized by the following proposition, which relies on the assumption
(A3) ensuring the concavity of F
 and the M-matrix property of F ′


, 
 = l, r .

Proposition 2 (Convergence of the preconditioned methods) The mappings Fl and
Fr satisfy the assumptions of Theorem 1 with u0 = 0; moreover for all u ∈ (R+)N

the matrix F ′

(u), 
 = l, r is such that F ′


(u) ≤ I ≤ F ′

(u)−1. �

3 Numerical Experiment

Let us consider the porous medium equation (see [6])

∂tβ(u) − ∂2
xxu = 0 (7)

on (0, 1) × (0, T ). The nonlinearity in the accumulation term is given by β(u) =
u1/m with m > 1. We consider the Neumann boundary conditions

∂xu(0, t) = −q, ∂xu(1, t) = 0, for all t ∈ (0, T )

with q > 0, and the constant initial condition u(x, 0) = u0 > 0. The value of u0 is
going to be chosen close to zero leading to “an almost traveling wave solution”. For
m = 10, q = 104, T = 1.2 10−2 and NT = 100 the approximate profile of β(u) at
different time steps is exhibited at the right side of Fig. 2.

Equation (7) is discretized using the standard implicit in time finite volume
method. Let the positive integers N and NT denote the number of cells and the

total number of time steps, let h = 1

N
be the cell size and Δt = T

NT
be the size of

the time step. For all cells i and time steps n the discretized version of (7) reads

β(uni ) + Δt

h2
∑

j∈N i

(uni − unj ) = β(un−1
i ) + Δt

h
q δi,1, (8)

where δi,1 stands for the Kronecker symbol and where Ni denotes the set of the
neighbors of the cell i . Let L denote the tridiagonal matrix associated to the dis-
cretization of the diffusion operator and D be it’s diagonal. We denote by bn the
right-hand-side of (8). The system (8) results in the following problem, which has
to be solved for each time step

(β(u) + Du) + (L − D) u = bn. (9)
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It is easy to show that f (u) = β(u) + Du and A = L − D satisfy the assumptions
(A1)–(A3).

The objective of the numerical experiment is to evaluate the efficiency ofNewton’s
method (NM) applied to left and right-preconditioned problems

Fn
l (u) := u − g (bn − Au) = 0 (10)

and
Fn
r (u) := u + Ag(u) − bn = 0. (11)

Those preconditionedmethods are compared, in terms of the performance, with three
more standard approaches specified below.
u−formulation: NM applied to (9) in the original form

Fn
u (u) := β(u) + Lu − bn = 0 (12)

In view of Proposition 2 this method is monotonically convergent provided that the
initial guess satisfy F(u0) ≤ 0.
v−formulation: The problem (9) is reformulated with respect to the variable v with
u = β−1(v) and NM is applied to

Fn
v (v) := v + Lβ−1(v) − bn = 0 (13)

τ−formulation: Following [2] we introduce the function pair τ → (u(τ ), v(τ ))

such that for all τ it holds v(τ ) = β(u(τ )) and max
(
u′(τ ), v′(τ )

) = 1. Then NM is
applied to

Fn
τ (τ ) := v(τ ) + Lu(τ ) − bn = 0. (14)

At each time step n and for each of the formulations (10)–(14) the sequence of the
approximate solutions

(
ξ n
k

)
k
(where ξ denotes an appropriate primary variable) is

computed using Newton’s method until the stopping criterion ‖Fn

 (ξ n

k )‖∞ < ε is
satisfied for some small predefined tolerance ε. As the initial guess we use the value
of the variable obtained at the previous time step (this value will differ between
the formulations). This choice of the initial guess is motivated by the following
observation.

Remark 1 Under the given initial and boundary conditions the solution of (7) sat-
isfies ∂t u ≥ 0. This property is reproduced by the discrete solution un resulting
from u−formulation and the preconditioned methods. For 
 = u, r, l, let un denote
an approximate solution of Fn


 (u) = 0, then one can show that Fn

 (un−1) ≤ 0, and

therefore un0 = un−1 provides the appropriate choice of the initial guess.

In the following we present the results of the numerical experiment. The test case
is configurated as follows: in order to allow for the use of u−formulation we chose
strictly positive initial condition β(u0) = 10−10, we set q = 104, T = 1.2 10−2,
NT = 100 and we let the parameter m take values in the set {4, 8, 16, 32}. For a
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given value of m, the tolerance ε and a specific solution method 
, we denote by(
un,

m,ε

)
n∈{1,...,NT } ∈ R

N the approximate solution of (9).
The methodology of the study is similar to [2], that is for each value of m we

compute, using τ−formulation and the tolerance εre f = 10−10, the reference solu-

tion denoted by
(
unm,re f

)

n∈{1,...,NT }
. Then, for each solution method (10)–(14) and for

the tolerance values of ε ∈ {10−1, 10−2, 10−4, 10−6, 10−8}, we perform the compu-
tations measuring the total number of Newton’s iteration, required CPU time and the
relative deviation from the reference solution measured in terms of the conservative
variable β(u


m,ε)

err 

m,ε = ‖β(un,


m,ε) − β(unm,re f )‖L∞(0,T ;L1(0,1))

‖β(unm,re f )‖L∞(0,T ;L1(0,1))
.

Performance comparison. The first set of tests is performed using the fixed mesh
size parameter N = 100. In accordance with the results reported in [2], Fig. 1 witness
the qualitative differences in the performance of u, v and τ -formulations. Compared
to the original u-formulation, the formulation using v as the primary variable is
few time faster, it also performs slightly better then τ -formulation for the moderate
values of m. However, in contrast with τ -formulation, none of the formulations u
or v is robust with respect to the variation of m. Finally, Fig. 2 shows a relatively
similar behavior of τ -formulation and the preconditioned methods, with the latter
ones requiring a slightly fewer number of iterations.

Computational overhead due to local problem solution. It can be observed on
Figs. 1 and 2 that preconditioned Newton’s methods require less iterations then the
other formulations. However, each iteration of the preconditioned method requires
to evaluate the function g, and therefore to solve the set of the scalar nonlinear
equations. Those computations, performed again using Newton’s method, result in a
certain computational overhead which has to be accounted for. To access the overall

Fig. 1 Relative error err

m,ε as the function of the average number of Newton’s iterations per time

step. Left: for v-formulation (solid blue) and u-formulation (dashed blue). Right: for v-formulation
(blue) and τ -formulation (magenta)
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Fig. 2 Left: relative error err

m,ε as the function of the average number of Newton’s iterations per

time step for τ -formulation (magenta), left-preconditioned (black) and right-preconditioned (red)
Newton’s method (magenta). Right: Approximate solution at different time steps

Fig. 3 Relative error errv,
m,ε as the function of CPU time for different grid sizes. Left: left-
preconditioned NM (solid lines) and τ -formulation (dashed lines). Right: right-preconditioned NM
(solid lines) and τ -formulation (dashed lines)

computational effort required by the preconditioned methods we present the analysis
in terms of the CPU time. Figure3 shows, for different values of the mesh size
parameter N ∈ {200, 400, 800, 1200}, the comparison of the left (respectively right)
preconditioned NMwith the method based on τ -formulation. In can be observed that
for the small problems (N � 400) τ -formulation outperforms the preconditioned
NM due to the computational overhead related to the latter ones. In turn, for larger
problems the preconditioned methods became advantages due to a smaller number
of the linear problem solves.
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A Finite Volume Method for a
Convection-Diffusion Equation
Involving a Joule Term

Caterina Calgaro and Emmanuel Creusé

Abstract This work is devoted to a Finite Volume method to approximate the solu-
tion of a convection-diffusion equation involving a Joule term. We propose a way
to discretize this so-called “Joule effect” term in a consistent way with the non lin-
ear diffusion one, in order to ensure some maximum principle properties on the
solution. We then investigate the numerical behavior of the scheme on two original
benchmarks.

Keywords Finite volume scheme · Joule term · Maximum principle
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1 Introduction

In this work, we are interested in a convection-diffusion equation involving a Joule
term, given by:

∂t u + ∇ · (u v) + 2λ |∇u|2 − λ∇ · (u ∇u) = f in Ω×]0, T [, (1)

u(x, 0) = u0(x) in Ω, (2)

where Ω is a polygonal open bounded subset of R
2, T ∈ R

+∗ , λ ∈ R
+∗ , v is a

divergence-free velocity field, and f the right-hand-side. The system (1)–(2) is com-
pleted with boundary conditions, given by:
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u(x, t) = uD(x, t) ∀ x ∈ �D, ∀t ∈]0, T [,
∇u(x, t) · n = 0 ∀ x ∈ �N , ∀t ∈]0, T [, (3)

where uD is a given function corresponding to non homogeneous Dirichlet boundary
conditions, �D ∪ �N = � = ∂Ω and �D ∩ �N = ∅.

System (1)–(3) (with f = 0) can be derived in the context of low-Machmodeling.
Taking into account the compressible Navier-Stokes system where an asymptotic
development of the pressure with respect to the Mach number is done, we start by
considering the mass conservation equation

∂tρ + ∇ · (ρ V) = 0,

where ρ(x, t) is the density and V(x, t) the velocity field of the fluid. In the case of
the ideal gas law P0 = R ρ u,where u(x, t), P0 > 0 and R > 0 stand respectively for
the temperature, the constant thermodynamic pressure and the ideal gas constant, a
solenoidal velocity field v(x, t) can be introduced. It is shown in [3] that the change of
variable v = V − λ ∇u leads to equation (1), where λ > 0 is a fixed constant which
depends on the constant heat conductivity k > 0 in the nonstandard constraint

P0∇ · V = R ∇ · (k∇u)

introduced in the low-Mach model. In [3] a particular dynamic viscosity is also
introduced, defined by μ(u) = −λ ln u, in order to remove the O(λ2) terms in the
momentum equation. With this choice, μ(u) is strictly positive if and only if u ∈
(0, 1). However, in this work we assume only that there exist two real numbers m
and M such that 0 < m ≤ u0(x) ≤ M < +∞ a.e. x ∈ Ω .

From the theoretical point of view, several results have been obtained for the
system (1)–(3). For instance, the local-in-time existence of strong solutions has been
established in [3] in the framework of a coupling with the Navier-Stokes system.
In particular, a maximum-principle has been derived (see [6], Theorem 5.1). This
formulation is also related to others obtained in the context of the so-called ghost
effect system, where a thermal stress term is added to the right-hand-side of the
momentum equation, for which some results on the existence and uniqueness of
solutions are available [9, 10].

From the numerical point of view, in the context of Finite Volume schemes, an
important question to be addressed consists in the way to discretize the Joule term
|∇u|2 arising in (1) in each control volume, in a consistent way with the non linear
diffusion one. It has to be done in order to ensure some properties on the numerical
solution, such as some maximum principles which hold at the continuous level.
Several possibilities have already been investigated in the context of the electrical
conductivity (see for example [1, 4, 5]) but, to our knowledge, never for the model
(1)–(3).

In this work, we present a finite volume scheme for the discretization of (1)–(3)
which has been initially introduced in [2]. The aim of the present contribution is to
give some results in the case f �= 0, and to investigate the efficiency of the derived
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scheme (aswell as a variant one) on two original benchmarks.More precisely, we first
illustrate our theoretical results on a discontinuous solution submitted to a solenoidal
convective velocity field. Then, we consider a regular analytical solution for which
the right-hand-side is positive, in order to investigate the lower bound preserving
property of the numerical solution as well as the convergence process.

2 Finite Volume Scheme

2.1 Notations

As usual, the discretization in space is based on a triangulation T of the domain
Ω ⊂ R

2, a family E of edges and a set P = (xK )K∈T of points of Ω defining an
admissible mesh in the sense of Definition 3.1 in [7]. We recall that the admissibility
ofT implies that the straight line between two neighboring centers of cells xK and xL
is orthogonal to the edge σ ∈ E such that σ = K ∩ L (and which is noted σ = K |L)
in a point xσ .

The set of interior (resp. boundary) edges is denoted by Eint = {σ ∈ E ; σ �⊂ �}
(resp. Eext = {σ ∈ E ; σ ⊂ �}). Among the outer edges, there are EN =
{σ ∈ E ; σ ⊂ �N } and ED = {σ ∈ E ; σ ⊂ �D}. For all K ∈ T , we denote by
EK = {

σ ∈ E ; σ ⊂ K
}
the edges of K , Eint

K = Eint ∩ EK , Eext
K = Eext ∩ EK , EN

K =
EN
K ∩ EK and ED

K = ED
K ∩ EK .

The measure of K ∈ T is denoted bymK and the length of σ bymσ . For σ ∈ Eint

such that σ = K |L , dσ denotes the distance between xK and xL and dK ,σ the distance
between xK and σ . For σ ∈ Eext

K , we note dσ the distance between xK and σ . For

σ ∈ E, the transmissibility coefficient is given by τσ = mσ

dσ

. Finally, for σ ∈ EK , we

denote by nK ,σ the exterior unit normal vector to σ . The size of the mesh is given
by:

h = max
K∈T

diam(K ).

We define a partition of the time interval (0, T ) such that 0 = t0 < · · · < tn < · · · <

t N = T (N ∈ N
∗), and we denote Δtn = tn+1 − tn for 0 ≤ n ≤ N − 1. Here, unK

denotes the value of the numerical solution unh = (unK )K∈T in K and in the time
interval [tn, tn+1].

2.2 The Finite Volume Scheme 1

The Finite Volume scheme for the discretization of (1)–(3) is given by integrating
(1) on a control volume K to obtain:
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mK
un+1
K − unK

Δtn
+

∑

σ∈EK
vnK ,σ uK

n+1
σ,+ + 2λmK JK (un+1

h ) + λ
∑

σ∈EK
Fn+1
K ,σ

= mK f n+1
K ∀ K ∈ T ,

(4)
with

vnK ,σ =
∫

σ

v(x, tn) · nK ,σ dγ (x) and f n+1
K = 1

mK

∫

K
f (x, tn+1) dx.

Here, uK
n+1
σ,+ is defined for σ ∈ EK by:

uK
n+1
σ,+ =

{
un+1
K if vnK ,σ ≥ 0,

un+1
K ,σ otherwise,

with

un+1
K ,σ =

⎧
⎪⎨

⎪⎩

un+1
L for σ ∈ Eint

K such that σ = K |L ,

un+1
D (xσ ) for σ ∈ ED

K ,

un+1
K for σ ∈ EN

K .

The numerical flux Fn+1
K ,σ is an approximation of the exact flux of the non linear

diffusion term through the edge σ , given classically by:

Fn+1
K ,σ = τσ

2

(
(un+1

K )2 − (un+1
K ,σ )2

)
. (5)

Concerning the Joule term,JK (un+1
h ) is an approximationof 1

mK

∫
K |∇u(x, tn+1)|2dx.

Afirst ideamaybe to consider a schemealso centered for this term, in order to increase
the accuracy of the approximation, by following the piecewise discrete gradient intro-
duced in [8], for instance. Nevertheless, we have shown in [2] that with this choice, a
discrete maximum principle is only verified under very restrictive conditions on the
initial data. A more effective approach is to consider an upwind discretization of the
Joule term defined by:

JK (un+1
h ) = 1

mK

∑

σ∈EK

τσ

(
(un+1

K − un+1
K ,σ )+

)2
, (6)

where we use the notation a+ = max(0, a). Let us note that the discretization is
implicit in time, in order to allow some maximum principle results without any
restriction on the time step. We give now the main result:

Theorem 1 We assume that

0 < m ≤ u0K ≤ M ∀K ∈ T and 0 < m ≤ unD(xσ ) ≤ M, ∀σ ∈ ED, ∀n = 1, · · · , N .

We suppose moreover that:
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f nK ≥ 0 ∀K ∈ T , ∀n = 1, . . . , N .

Then the scheme (4) admits at least one solution that satisfies:

m ≤ unK ≤ M + T || f ||L∞(Ω×[0,T ]), ∀K ∈ T , ∀n = 1, . . . , N . (7)

Proof The proof consists in an extension of the proof of Theorem 3.1 in [2]
established in the case f ≡ 0, noticing in particular that ((un+1

K − un+1
K ,σ )+)2 = 0 if

un+1
K ≤ un+1

K ,σ . First, we prove that for any solution of (4), estimation (7) holds. Then,
we use a topological degree argument to establish the existence of the solution.

Remark 1 In the case f nK ≤ 0, a similar result can also be obtained. Concerning
the upper bound, it can easily be proved that any solution of (4) satisfies unK ≤ M,

∀K ∈ T , ∀n = 1, . . . , N . Concerning the lower bound, the time T has to be chosen
sufficiently small to ensure that unK > 0, ∀K ∈ T , ∀n = 1, . . . , N and to be able to
prove the existence of the solution.

2.3 A Variant: Scheme 2

Here, we propose a variant of the previous numerical scheme. First, we would like
to suggest a centered treatment of the Joule term instead of (6). It is worth noticing
that |∇u|2 = ∇ · (u ∇u) − u Δu, then we propose the following definition:

JK (un+1
h ) = 1

mK

∑

σ∈EK

τσ u
n+1
σ

(
un+1
K ,σ − un+1

K

) − 1

mK
un+1
K

∑

σ∈EK

τσ

(
un+1
K ,σ − un+1

K

)
,

where un+1
σ is an approximation of un+1 at xσ defined by: un+1

σ = un+1
K + un+1

K ,σ

2
.

Finally we obtain:

JK (un+1
h ) = 1

2mK

∑

σ∈EK

τσ (un+1
K ,σ − un+1

K )2.

With this choice, if we hope to achieve a maximum principle without restrictions
on the data, we need to reach a balance between the Joule term and the diffusive one.
Thus, instead of (5), we propose to define the numerical flux for the diffusion term
through the edge σ by:

Fn+1
K ,σ = τσ u

n+1
σ (un+1

K − un+1
K ,σ ),
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where un+1
σ is another approximation of un+1 at xσ defined this time by: un+1

σ =
max(un+1

K , un+1
K ,σ ). Provided this balance between the diffusion term and the Joule

one, Theorem 1 occurs.

3 Benchmarks

3.1 Maximum Principle: Case f = 0

This first benchmark consists in solving (1)–(3) with Ω = [0; 1]2 for 0 ≤ t ≤ T =
0.1, with f ≡ 0, λ = 2, �D = �, �N = ∅ and ∀t ∈ [0; T ]:

uD(x, t) =
{
1 if x ∈ �\�H ,

M if x ∈ �H , M > 1,

where �H = {1} × (0, 3; 0, 7). Moreover, the given velocity field v(x, t) is given by:

v(x, t) = 5
√
t e−25‖x−c‖2

(−y + c2
x − c1

)
, ∀x = (x, y)T ∈ Ω, ∀t ∈ [0, T ],

with c = (c1, c2)T = (0.5, 0.5)T . Since f ≡ 0, Theorem 1 can be applied, so that
the numerical solution should be bounded between 1 and M , what we aim to illus-
trate here. The simulations are performed on a triangulation T corresponding to
h = 3.62 · 10−2. Since both schemes are implicit in time, a Newton solver is imple-
mented associated with the adaptive time step Δtn to compute un+1

h from unh from
(4). Iterations are performed until the accuracy on the residual in l∞-norm is less
than 10−10. If it is not the case after 15 iterations, the time step is divided by 2 and
the resolution is done again. Conversely, the solver tries to multiply by a factor 2 the
time step periodically, which in any case remains bounded by h in order to preserve
the accuracy in time. Several values of M are considered from M = 2 to M = 50.
Results are displayed in Table1. On the one hand, it is observed that the numerical
solution is bounded between 1 and M whatever the value of M chosen, as theoret-
ically expected. On the other hand, we investigate the time steps Δtmin and Δtmax ,
corresponding respectively to the smallest and the largest value ofΔtn used in [0, T ].
First, it can be seen that the higher M is, the smaller Δtmin and Δtmax have to be
in order to ensure the convergence process. Then, we remark that Scheme 1 leads
to a value of Δtmax roughly ten times larger than the one used for Scheme 2, and
consequently to a faster computation of the solution on the interval [0, T ].
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Table 1 Verification of the maximum principle according to M . � : it is satisfied

M = Scheme 1 Scheme 2

Δtmin Δtmax Δtmin Δtmax

2 � 6.25 × 10−5 5.00 × 10−4 � 7.81 × 10−6 1.56 × 10−5

10 � 3.91 × 10−6 3.13 × 10−5 � 1.95 × 10−6 3.91 × 10−6

20 � 1.95 × 10−6 1.56 × 10−5 � 6.25 × 10−7 2.50 × 10−6

50 � 4.88 × 10−7 7.81 × 10−6 � 2.50 × 10−7 5.00 × 10−7

3.2 Convergence Rate and Maximum Principle: Case f �= 0

Now, we want to investigate numerically the convergence rate of the schemes on a
regular solution and to illustrate Theorem 1 in one case corresponding to f �= 0. To
do that, we consider the exact solution uex given by:

uex (x, t) = sin
(
t + π

6

)
(5 − x2(x + y)2)

for x = (x, y)T ∈ Ω = [0; 1]2 and 0 ≤ t ≤ T = 0.1, where the given velocity field
is:

v(x, t) = cos(t)

( −x2(x − 1)2(y − 1)(y − 0.5)y
y2(y − 1)2(x − 1)(x − 0.5)x

)
, ∀x = (x, y)T ∈ Ω, ∀t ∈ [0, T ].

In the computation, we define�N = {0} × [0, 1] and�D = �\�N . We set λ = 1 and
the value of f in (1) is being computed accordingly. It can easily be checked that
f ≥ 0 in Ω × [0, T ], so that Theorem 1 ensures that the numerical solution uh has
to remain bounded from below during the whole simulation by:

m = min
x∈Ω

uex (x, 0) = 0.5. (8)

Simulations are performed on triangulations Ti (i = 1, . . . 6), so that h = 0.145
for T1, and the value of h is twice smaller for Ti than for Ti−1 (2 ≤ i ≤ 6). First, we
observe that whatever the simulation considered, uh remains bounded from below
bym defined by (8), as theoretically expected. Then, the error in L∞(0, T ;Ω) norm
is plotted in Fig. 1 as a function of the mesh size h, in log-log scale. We observe that
both schemes are first-order accurate in space. This behavior was clearly expected
because of the upwind treatment of the convective term, but also because of the
upwind choice in the Joule term (in Scheme 1) or in the diffusion term (in Scheme
2), required to obtain the estimation (7). We observe that the convergence rate is
the same and that Scheme 1 leads to a value of Δtn two orders of magnitude larger
than the one used for Scheme 2 in order to make the Newton algorithm converging,
even if Scheme 2 seems a little bit more accurate than Scheme 1. The advantage of
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Fig. 1 Errors in
L∞(0, T ; Ω) norm

10−2 10−1
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Scheme 2
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Scheme 1 is confirmed also considering smaller values of λ, or smaller magnitude
of v or uex . Finally, other schemes have been proposed and analyzed in [2]. Even
if they are of order two in the case v = 0, they verify the maximum principle only
under very restrictive conditions on the magnitude of M − m.
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On the L2 Stability of Finite Volumes
for Stationary First Order Systems

Michaël Ndjinga and Sédrick Kameni Ngwamou

Abstract The aim of this paper is two-folds. Firstly we study first order stationary
systems of PDEs of the form

∑
k Ak∂kU + KU = 0 with K ≯ 0 on Rd . We prove

that the classical assumption K > 0 is not necessary for the well-posedness of the
system and is violated in the particular case of the first order Poisson problem.
Secondly we prove the L2 stability of the finite volume discretisations provided
the term KU is appropriately discretised on faces. Our result relies on a discrete
Gagliardo-Nirenberg-Sobolev inequality to be submitted [15].

Keywords First order systems · Elliptic systems · Finite volume method · Source
upwinding

MSC (2010) 35F45 · 35J46 · 35J05 · 65N08 · 65N12

1 Introduction

Let d ∈ N∗. We consider symmetric systems of first order PDEs

d∑

k=1

Ak∂kU (x) + KU (x) = F(x), (1)
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with unknown U ∈ L2(Rd ), where Ak , k = 1, . . . d , and K are m × m matrices and
F ∈ L2(Rd ). (1) takes the conservative form∇ × F (U ) + KU = F with linear flux
F (U )n = A(n)U and jacobian matrix A(n) = ∑d

k=1 nkAk where n = (n1, . . . , nd ).
The classical theory of Friedrichs systems ([9, 11] Sect. 5) covers the case of

symmetric systems with K > 0, using a variational formulation and Lax-Milgram
theorem. The coercivity required for the Lax-Milgram theorem is a consequence of
the assumption K > 0.

In several important cases however, one has to consider systems (1) with K ≯ 0.
The first class of examples are conservation laws with source term in the stationary
regime. In the particular case of gas dynamics, taking into account a friction force
[6], a Coriolis force [1] or a chemical reaction ([12] Chap.2 Sect. 5) yields K ≯ 0.

The second class consists in the mixed formulation of stationary diffusion prob-
lems∇ × (D∇u) = f . The prototypical example of diffusion equation is the Poisson
problem whose first order reduction is given in Example 1. Finite volume schemes
for stationary diffusion on unstructured meshes can have a very complex design
(see for instance [10]). The authors however believe that the discretisation of the
mixed formulation of stationary diffusion on unstructured meshes will yield sim-
pler schemes with smaller stencils and linear systems that are larger but with better
condition number

(
O

(
1
h

)
instead of O

(
1
h2

))
.

The main objective of this paper is to lay the ground for the numerical analysis
of finite volume methods for stationary first order systems with K ≯ 0. In this first
account of our research we set the problem on Rd and emphasize the importance
at both continuous and discrete level of a proper handling of the order 0 term KU ,
which plays an important role in the well-posedness and stability analysis.

We quickly review in Sect. 2 the well-posedness of the problem (1) on Rd . We
prove thatK > 0 is not a necessary condition but only a particular case. There is even
no need for K to be invertible as shown in Theorem 1 and Corollary 2. In this short
paper we investigate only the case Ω = Rd but the well-posedness results extend to
the case of bounded Ω if the BNB theorem [9] is used instead of the Lax-Milgram
theorem.

Then in Sect. 3 we study finite volume discretisations of the problem (1) and prove
their stability. We consider first order upwind type schemes for the order 1 terms as
often done for transient hyperbolic systems [16, 18] without source term. Source
upwinding is usually performed in the hyperbolic community to guarantee a good
capture of stationary states using transient schemes (well-balanced property) [2, 4,
13, 14] or an asymptotic preserving property [6, 13]. The assumption K > 0 yields
a straightforward proof of L2 stability (Theorem 3). However in the case K ≯ 0,
one needs a discrete Gagliardo-Nirenberg-Sobolev inequality and an appropriately
discretisation of the term KU on the faces of the mesh (Theorem 4).
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2 The Continuous Setting

In this section we give without proof two Theorems (1 and 2) that are straightforward
applications of the Fourier transform on system (1) as done in [17] Sect. 3.1.

Existence of solutions to (1) is guaranteed provided −iA(ξ) + K is an invertible
matrix for almost every ξ ∈ Rd and (−iA(ξ) + K)−1F̂ ∈ L2(Rd )m.

Theorem 1 (Existence for first order systems) Let A1, . . . ,Ad ,K bem × mmatrices
and F ∈ L2(Rd )m such that

(−iA(ξ) + K)−1 F̂(ξ) ∈ L2(Rd )m. (2)

Then (1) admits a unique solution U ∈ L2(Rd )m.

Corollary 1 (Case of Friedrichs’ systems)AssumeAk , k = 1, . . . , d andK are sym-
metric matrices, and that K > 0. Then for any F ∈ L2(Rd )m, the system (1) admits
a unique solution U in L2(Rd )m.

Proof We prove that σmin(iA(ξ) + K)−1 ∈ L∞(Rd ) and then apply Theorem 1.
Since Ak , k = 1, . . . , d and K are symmetric matrices, they are diagonalisable with
real eigenvalues in an orthonormal basis of Rd and therefore

∀X ∈ Cm, t X̄ AkX ∈ R, k = 1, . . . , d ,

∀X ∈ Cm, t X̄ KX ∈ R,

from which we deduce

∀X ∈ Cm, ξ ∈ Rd |t X̄ (iA(ξ) + K)X | = |it X̄ A(ξ)X + t X̄ KX )| ≥ λmin(K)||X ||2.

Since

∀X ∈ Cm, ξ ∈ Rd |t X̄ (iA(ξ) + K)X | ≤ ||X || ||(iA(ξ) + K)X ||,

we deduce

∀X ∈ Cm, ξ ∈ Rd λmin(K)||X ||2 ≤ ||X || ||(iA(ξ) + K)X ||

and finally since K > 0 implies λmin(K) > 0 we deduce

σmin(iA(ξ) + K)−1 ≤ 1

λmin(K)
.

Hence σmin(iA(ξ) + K)−1 ∈ L∞(Rd ). As a consequence for any F ∈ L2(Rd )m,
||(iA(ξ) + K)−1F̂ ||2 ≤ σmin(iA(ξ) + K)−1||F̂ ||2 ∈ L2(Rd ) and Theorem 1 yields the
existence of a unique solution U in L2(Rd )m to the system (1). �
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Example 1 (First order reduction of the Poisson problem) The first order reduction
of the Poisson problem −�u = f amounts to defining v = ∇u and to solve the
symmetric system

(
0 −∇×

−∇ 0

) (
u
v

)

+
(
0 0
0 Id

)(
u
v

)

=
(
f
0

)

. (3)

The system (3) takes the form (1) with the following symmetric jacobian and singular
friction matrices as well as right hand side function

APoisson(ξ) =
(
0 tξ

ξ 0

)

, KPoisson =
(
0 0
0 Id

)

, FPoisson(x) =
(−f (x)

0

)

. (4)

We cannot use Corollary 1 for the well-posedness of system (3) since K ≯ 0.
Theorem 1 should be used instead.

Corollary 2 (Existence for first order Poisson system) Let d ∈ N∗, f ∈ L2(Rd ) such
that

f̂

||ξ ||2 ∈ L2(ξ),
f̂

||ξ ||2 ξ ∈ L2(ξ)d . (5)

Let the matrices Apoisson(ξ),Kpoisson and Fpoisson(ξ) defined in (4). Then the system
(3) admits a unique solution (u, v) ∈ L2(Rd )d+1.

Proof Since (−iAPoisson(ξ) + KPoisson)
−1 F̂Poisson(ξ) = f̂ (ξ)

||ξ ||2
(

1
−iξ

)

, according to

Theorem (1), the assumptions Corollary 2 yield the existence of a unique solution in
L2(ξ) × L2(ξ) (actually H 1(ξ) × L2(ξ)). �

The assumption (5) on f in Corollary (2) is to be compared with assumption (6)
when the original second order problem is solved in L2.

Theorem 2 (Existence for Poisson equation in L2 ) Let d ∈ N∗, f ∈ L2(Rd ) such
that

f̂

||ξ ||2 ∈ L2(ξ). (6)

Then there exists a unique u ∈ L2(Rd ) such that−�u = f in theweak (distributional)
sense.

Corollary 2 has more stringent assumptions than Theorem 2. Indeed the first order
reduction require that v = ∇u ∈ L2(R)d , hence the solution u given in Corollary (2)
is actually inH 1. The first order reduction is not able to represent very weak solutions
u /∈ H 1. However this should not be a serious issue since H 1 is the usual solution
space in classical variational formulations.
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3 The Discrete Setting

In this section we consider the system (1) with symmetric matrices A1, . . . ,Ad and
K . We propose a numerical method that is stable under a similar assumption on
A1, . . . ,Ad ,K as that of Theorem 1.

Using a finite volume discretisation, Rd = ∪i∈NCi is decomposed into polygo-
nal cells Ci with volume vi > 0. Neighbouring cells Ci and Cj are separated by an
interface fij having measure sij > 0 and unit normal nij oriented from Ci towards Cj

(nji = −nij). The distance between the centers of mass of two neighbouring cells is
noted dij. The set ν(i) contains all the indices j such that Cj and Ci have a common
interface. si = ∑

j∈ν(i) sij is the perimeter of the cellCi. We recall that Green theorem
yield ∀i ∈ N,

∑
j∈ν(i) sijnij = 0.

We consider a finite volume discretisation where the unknown U (x) is approxi-
mated by apiecewise constant functionU taking the valueUi on the cellCi. Similarly,
the right hand side function F(x) is approximated by a piecewise constant function
G taking the value Fi on the cell Ci.

We propose to use an upwind scheme for the fluxes and an upwind scheme for
the friction term KU :

1

vi

∑

j∈ν(i)

sijFij + 1

si

∑

j∈ν(i)

sijKUij = Fi, (7)

where the numerical fluxes Fij and the source interfacial state Uij take the upwind
form:

Fij = F (Ui) + F (Uj)

2
nij + DF

ij

Ui −Uj

2
= F (Ui) − A(nij) − DF

ij

2
(Ui −Uj)

(8)

Uij = Ui +Uj

2
+ DK

ij

Ui −Uj

2
= Ui −

Im − DK
ij

2
(Ui −Uj), (9)

where DF
ij is the flux upwind matrix which is assumed to satisfy DF

ji = DF
ij . The

choice DF
ji = |A(nij)| gives the classical upwind scheme flux. DF

ij is the source
upwind matrix. The interfacial states Uij and Uji are identical provided DK

ji = −DK
ij .

The choice DK
ij = Im gives the classical centered scheme Uij = Ui 
= Uji = Uj for

the source term KU .

Lemma 1 Let A1, . . . ,Ad andK be symmetric matrices. Consider ameshM , where
each interface fij is associated with a flux upwind matrix Dij and a source upwind
matrix DK

ij such that

DF
ij = DF

ji , DK
ji = DK

ij (10)

Then any solution of the numerical scheme (7), (8) and (9) satisfies
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∑

i∈N
vi
tUiKUi + 1

2

∑

fij

sij
t(Ui −Uj)

(

DF
ij −

viK(Im − DK
ij )

si

)

(Ui −Uj) =
∑

i∈N
vi
tUiFi . (11)

Proof Using the expressions (8) and (9), (7) becomes

1

vi

∑

j∈ν(i)

−sij
A(nij) − DF

ij

2
(Ui −Uj) + 1

si

∑

j∈ν(i)

sijK

(

Ui −
Im − DK

ij

2
(Ui −Uj)

)

= Fi

∑

j∈ν(i)

sij
si
KUi −

(
sij
vi

A(nij) − DF
ij

2
+ sij

si
K

Im − DK
ij

2

)

(Ui −Uj) = Fi

KUi −
∑

j∈ν(i)

(
sij
vi

A(nij) − DF
ij

2
+ sij

si
K

Im − DK
ij

2

)

(Ui −Uj) = Fi.

After taking the inner product with viUi we obtain

vi
tUiKUi −

∑

j∈ν(i)

sij
tUi

(
A(nij) − DF

ij

2
+ vi

si
K

Im − DK
ij

2

)

(Ui −Uj) = vi
tUiFi.

Since A(nji) = −A(nij), DF
ji = DF

ij and DK
ji = DK

ij , summing over i yields

∑

i∈N
vi

tUiKUi −
∑

fij

sij
t(Ui +Uj)A(nij)(Ui −Uj) + sij

t(Ui −Uj) (12)

(−siDF
ij + viK(Im − DK

ij )

2si

)

(Ui −Uj) = vi
tUiFi.

We have t(Ui +Uj)A(nij)(Ui −Uj) = tUiA(nij)Ui − tUjA(nij)Uj since A(nij) is a
symmetric matrix and thus (13) becomes

∑

i∈N
vi

tUiKUi − 1

2

∑

fij

sij(
tUiA(nij)Ui − tUjA(nij)Uj) + sij

t(Ui −Uj)

(−siDF
ij + viK(Im − DK

ij )

si

)

(Ui −Uj) = vi
tUiFi,

which in turn yields

∑

i∈N
vi

tUiKUi −
∑

i

tUiA(
∑

j∈ν(i)

sijnij)Ui −
∑

fij

sij
t(Ui −Uj)

(−siDF
ij + viK(Im − DK

ij )

2si

)

(Ui −Uj) = vi
tUiFi,
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and since
∑

j∈ν(i) sijnij = 0 (Green theorem) we finally obtain (11). �

We can now prove the stability of the scheme where the source are centered
provided K > 0 and that the fluxes are upwind (∀U ∈ Rm, tUDF

ij U ≥ 0).

Theorem 3 (Stability of the source centered scheme forK > 0) Let A1, . . . ,Ad and
K be symmetric matrices. Assume K > 0. Consider a meshM , where each interface
fij is associated with a flux upwind matrix Dij and a source upwind matrix DK

ij such
that

DF
ij = DF

ji , DF
ij ≥ 0, DK

ij = Im (13)

Then any solution of the numerical scheme (7), (8) and (9) satisfies

||U ||2 ≤ 1

λmin(K)
||F̄ ||2. (14)

Proof The result is a straightforward application of the Lemma 1.
From the assumptions DK

ij = Im, (11) yields

∑

i∈N
vi

tUiKUi + 1

2

∑

fij

sij
t(Ui −Uj)D

F
ij (Ui −Uj) =

∑

i∈N
vi

tUiFi.

Since DF
ij ≥ 0, we have

∑

i∈N
vi

tUiKUi ≤
∑

i∈N
vi

tUiFi

The inequality (14) is a consequence of Cauchy-Schwarz inequality and of tUKU ≥
λmin(K)||U ||22. �

We can also prove the stability of a scheme where the term KU is upwinded
appropriately. This result however requires a discrete Gagliardo-Nirenberg-Sobolev
inequality on Rd . We recall that the continuous Gagliardo-Nirenberg-Sobolev
inequality ||u||p∗ ≤ C||∇u||p is valid on Rd for 1 ≤ p < d and p∗ = dp

d−p (see The-
orem 9.9 in [7]). The literature on finite volume methods present discrete inequali-
ties Gagliardo-Nirenberg-Sobolev on bounded domains Ω and p = 2 [3, 8], except
[5] which concerns a modified Galiardo-Nirenberg-Sobolev on so-called admissible
meshes.

Theorem 4 (Stability of the source upwinded scheme) Let d > 2, A1, . . . ,Ad and
K be symmetric matrices. Consider a meshM , where each interface fij is associated
with a flux upwind matrix Dij and a source upwind matrix DK

ij such that

DF
ij = DF

ji , DK
ji = DK

ij . (15)
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Assume a discrete Gagliardo-Nirenberg-Sobolev inequality (d > 2):

∃C > 0, ||U ||22d
d−2

≤ C
∑

fij

sij
dij

t||Ui −Uj||2 (16)

Assume that

∃α > 0,
1

2
λmin

(

DF
ij − viK(Im − DK

ij )

si

)

≥ α

dij

Then any solution of the numerical scheme (7), (8) and (9) satisfies

λmin(K)||U ||22 + 1

C
||U ||22d

d−2
≤ ||G ||2||U ||2. (17)

Proof The result is a straightforward application of the Lemma 1. �

4 Conclusion and Perspectives

First order systems with K ≯ 0 are of particular interest in many applications. We
studied some first order upwind type methods for stationary first order systems. The
present study emphasised the importance of upwinding the term KU in order to
obtain a stable discretisation.

We proposed simple finite volume methods applicable to second order elliptic
equation via a first order reduction. These methods are based on upwinding both zero
and first order terms. The stability result relies on a new discrete Sobolev-Gagiardo-
Nirenberg inequality onRd [15], which implies the various discrete Sobolev inequal-
ities on bounded domains one can find in the literature [3, 8].
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A New Class of L2-Stable Schemes
for the Isentropic Euler Equations
on Staggered Grids

Michaël Ndjinga and Katia Ait-Ameur

Abstract Staggered schemes for compressible flows are highly non linear and the
stability analysis has historically been performed with a heuristic approach and the
tuning of numerical parameters [12]. We investigate the L2-stability of staggered
schemes by analysing their numerical diffusion operator. The analysis of the numer-
ical diffusion operator gives new insight into the scheme and is a step towards a
proof of linear stability or stability for almost constant initial data. For most classical
staggered schemes [9–11, 14], we are able to prove the positivity of the numerical
diffusion only in specific cases (constant sign velocities). We then propose a class of
linearly L2-stable staggered schemes for the isentropic Euler equations based on a
carefully chosen numerical diffusion operator. We give an example of such a scheme
and present some first numerical results on a Riemann problem.
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1 Introduction

As an introduction to the issue, we consider a 1D conservative non linear hyperbolic
system

∂tU (x, t) + ∂x F(U )(x, t) = 0, (1)

with unknown vector U ∈ R
m and Lipschitz flux F : Rm → R

m with
real-diagonalisable Jacobian matrix A(U ) = ∇U F(U ) ∈ R

m×m .
When approximating smooth solutionsU of (1) by a consistent numerical method

on a regular mesh with space step �x , the semi-discrete equations approximate to
the first order in �x the following perturbed version of Eq. (1):

∂tUΔx + ∂x F(UΔx) = D(UΔx ,�x) + o(�x), (2)

where UΔx is the numerical solution and D is a second order differential operator.
When the flux function F is linear, linear numerical methods yield a linear dif-

fusion operator D(U,�x) = �x∂x (D∂xU ). The matrix D comes from the upwind
(off-centered) contributions of the discrete equations and gives a first insight into
the scheme precision and stability. In the non linear case (F Lipschitz), the numer-
ical diffusion operator can often be approximated to the first order by a non linear
diffusion operator:

D(U,�x) = �x∂x (D(U )∂xU ) + o(�x). (3)

This is the case for instance for colocated schemes based on characteristic upwinding
such as Godunov [6], Roe [15], VFRoe [13] or VFFC [4] schemes where the non
linear numerical diffusion tensor is D(U ) = |A(U )|.

We recall that in the case of symmetric hyperbolic systems (t A(U ) = A(U )), any
entropy solution to (1) preserves the L2 norm (see [5] Example 3.2 in the Introduction
chapter) and we would like the discrete L2 norm of any scheme to be bounded as
well. In the case of non-symmetric systems, one first symmetrises the system using
entropic variables V (U ) = ∇s(U ) where s a strictly convex entropy of the system
(1) is assumed to exist (see [5] Theorem 3.2 in the introduction chapter). The new
symmetric system:

∂t V + Ā(V )∂x V = 0, with t Ā = Ā (4)

is linearly L2-stable. Any numerical scheme yields a numerical diffusion D̄(V ) in
the symmetrised basis and we require that the diffusion operator D̄ have positive
symmetric part: t D̄ + D̄ ≥ 0.

In this first account of our research,we investigate thewave systemwhich raises an
issue that will remain with the more complex fluid model: the numerical treatment of
the mass balance equation yields a non classical diffusion operator. In order to obtain
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a straightforwardly stable scheme we propose a new discretisation with positive
numerical diffusion.

In Sect. 2, we determine the numerical diffusion of the staggered schemes and
show it does not straightforwardly yield a linear stability. We then present a new
class of staggered schemes and prove their linear stability in Sect. 3. Some first
numerical results are given in Sect. 4.

2 The Numerical Diffusion of Staggered Schemes
for the Linear Wave System

For compressible flows at low Mach numbers, it is customary to approximate the
Euler system by the wave system (see for instance [2, 3]). The linear wave system is
the first order reduction of the classical linear wave equation ∂t tρ − c2∂xxρ = 0 and
can be written in the following conservative form:

{
∂tρ + ∂xq = 0
∂t q + c2∂xρ = 0

. (5)

The analysis of the wave system can be extended to the Euler system but the calcu-
lations are lengthier and do not help the understanding of the main result.

The wave system (5) is a linear PDE system and the characteristic based upwind
method is linear. Therefore the finite volume upwind scheme yields a classical linear
diffusion operator (3) with constant diffusion tensor: D = cId .

The upwind scheme can be proven to be stable. However the amount of numerical
diffusion is proportional to the sound speed c and for lowMach number flows where
q � ρc the schemes based on characteristics upwinding are not able to capture nearly
incompressible solutions (see [2, 3] for more details).

On the contrary, staggered schemes are known to be more precise for low Mach
number flows in practice and are very popular in the thermal hydraulics community
[14]. However, their stability analysis has historically been based on heuristics [12].
Yet the conservative staggered schemes presented in [9, 10] is proven to be entropic
and to satisfy a kinetic energy preservation [11]. Likewise in [1], the authors present
a kinetic scheme on staggered grids for the barotropic Euler equations and derive
stability conditions which preserve the positivity of the density and the decay of
the discrete global entropy and satisfy a kinetic energy preservation. Unfortunately
the boundedness of the entropy does not necessarily imply the boundedness of the
solution. Indeed a strictly convex function is not necessarily bounded below. This
is in particular the case for the full Euler system since the entropy involves the
function—ln which is strictly convex but not bounded below (see [5] Example 3.3 in
the introduction chapter). In the next subsectionwe show that the first order perturbed
Eq. (2) associated to staggered schemes yields not the classical diffusion operator (3)
but instead a strongly non linear numerical diffusion operator.
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2.1 The Staggered Scheme of Herbin et al.

Using staggered schemes, the density and pressure are located on cells and the veloc-
ity on faces (nodes in 1D) [7, 8]. The momentum variable is usually split as a prod-
uct between the density and the velocity: q = ρu. The main difference between the
various staggered schemes is the treatment of the convection term ρu ⊗ u in the
momentum equation. Since we work with the wave system, they differ only by the
use of u (non conservative approach, see [14] Sect. 11.2) or ρu as main variable.
We consider the staggered scheme of [11] which is conservative and entropic. For
simplicity, we present the semi-discrete equations of the fully implicit variant ([10]
Sect. 3, [9] Sect. 2.1) for the 1D wave system:

⎧⎨
⎩

∂tρi + 1
�x (ρ

up
i+ 1

2
ui+ 1

2
− ρ

up
i− 1

2
ui− 1

2
) = 0

∂t

(
ρ̄i+ 1

2
ui+ 1

2

)
+ c2 1

�x (ρi+1 − ρi ) = 0.
(6)

The mass flux ρu at the cell interfaces is defined using an upwind density ρ
up
i+ 1

2

defined as:

ρ
up
i+ 1

2
=

{
ρi if ui+ 1

2
> 0

ρi+1 if ui+ 1
2

≤ 0

= ρi + ρi+1

2
+ sign(ui+ 1

2
)
ρi − ρi+1

2
, (7)

which is the sum of a centered and an upwind term.
The expression of ρ̄i+ 1

2
in the discrete momentum equation amounts to an average

of the neighbouring densities

ρ̄i+ 1
2

= 1

2
(ρi + ρi+1). (8)

2.2 The Numerical Diffusion

In this section, we assume that the exact solution is smooth and we determine the
numerical diffusion of the scheme (6). The first order momentum perturbed equation
is straightforward:

∂t (ρu)(xi+ 1
2
, t) + c2∂xρ(xi+ 1

2
, t) = c2

2
(Δx)∂xxρ(xi+ 1

2
, t) + O(Δx2).
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After some calculations, we find that the mass flux is given to the first order:

ρ
up
i+ 1

2
ui+ 1

2
− ρ

up
i− 1

2
ui− 1

2

Δx
= ∂x (ρu)(xi , t) − Δx

2
sign(u(xi , t))∂x (u∂xρ)(xi , t) + O(Δx2).

Hence the following result on the numerical diffusion operator of the staggered
scheme (6).

Theorem 1 (Numerical diffusion of staggered schemes) The second order pertur-
bation operator associated to the staggered scheme (6) on a 1D regular mesh with
space step Δx is the strongly non linear operator:

D(U,Δx) = �x

(
sign(u) 0

0 1

)
∂x

[(
u 0
c2 0

)
∂x

(
ρ

q

)]
+ o(�x). (9)

The numerical diffusion associated to the mass conservation law is the term
sign(u)∂x(u∂xρ) and is decoupled from the momentum diffusion. The linear sta-
bility analysis of such a strongly non linear diffusion is not classical and we are not
aware of any reference in the litterature.

If we assume that u does not change sign then the diffusion term simplifies to the
weakly non linear diffusion term ∂x (|u|∂xρ)which involves a positive diffusion coef-
ficient |u|. Theweakly non linear diffusion term ∂x (|u|∂xρ) can be linearised around a
constant state (ρ0, u0 
= 0 as ∂x (|u0|∂xρ) + ∂x (|u|∂xρ0) = |u0|∂xxρ). Hence if u > 0
or u < 0 the mass equation has a positive contribution on the diagonal of the numer-
ical diffusion tensor D and thus has a stabilising effect.

If we allow u to change sign then the multiplication with sign(u) makes things
more complicated and we can not rule out potential instabilities. The linearisation is
not trivial, even taking u smooth enough, since the function sign(u) is not continuous.
The consistency analysis is only a first step that requires smooth solutions but the
final goal of capturing discontinuous weak solutions with velocity that change sign
will raise even more issues.

3 A New Class of Schemes for the Isentropic Euler
Equations

We now propose a class of staggered schemes for conservation laws (1) which
admits a classical diffusion operator (3) and such that the diffusion tensor satisfies:
D̄ + t D̄ ≥ 0. We will prove that these schemes are linearly L2-stable.

We specify this new class in the particular case of the following 1D isothermal
Euler equations in conservative form:
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⎧⎨
⎩

∂tρ + ∂xq = 0

∂t q + ∂x
q2

ρ
+ ∂x p = 0.

(10)

which takes the form (1) with

U =
(

ρ

q

)
, F(U ) =

(
q

q2

ρ
+ p,

)
.

The results can be extended to themultidimensional Euler system but the calculations
are lengthier and do not help the understanding of the main properties.

We consider the class Stag of discrete staggered conservative schemes of the
form:

U ′
i (t) + Fi,i+1 − Fi−1,i

Δx
= 0, with: Ui =

(
ρi

qi+ 1
2

)
, and: (11)

Fi,i+1 = F(Ui ) + F(Ui+1)

2
+ DStag(Ui ,Ui+1)

Ui −Ui+1

2
, (12)

where DStag is a 2 × 2 matrix-valued function. An example of a scheme in the class
Stag is the staggered centered scheme, which correspond to the case DStag = 0.

Schemes of the class Stag admit a classical diffusion operator (3).

Theorem 2 (Classical diffusion of Stag schemes) Let DStag : R2 → R
2×2 be a

matrix valuedLipschitz function. A staggered conservative scheme (11)with a numer-
ical flux Fi,i+1 of the form (12) admits the following classical diffusion operator

D(U,Δx) = Δx∂x (DStag(U,U )∂xU ) + o(�x).

on a regular mesh with space step Δx.

Schemes of the class Stag are L2-stable.

Theorem 3 (L2-stability of Stag schemes) A staggered conservative scheme (11)
with a numerical flux Fi,i+1 of the form (12) such that the diffusion operator DStag

satisfies: D̄Stag + t D̄Stag ≥ 0, is linearly L2-stable.

Proof After the symmetrisation (4) and linearisation, the isentropic Euler system
takes the form:

∂t V̄ + Ā(V0)∂x V̄ = 0, V̄ =
(

cρ
q − ρu0

)

We consider V̄ a solution of the conservative scheme:

V̄ ′
i (t) + F̄i,i+1 − F̄i−1,i

Δx
= 0, where: F̄i,i+1 = Ā(V0)

V̄i + V̄i+1

2
+ D̄Stag(V0)

V̄i − V̄i+1

2
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We compute the evolution in time of ||V̄ ||22 using the symmetry of Ā(V0) and the
positiveness of D̄Stag(V0).

1

2

d||V̄ ||22
dt

= V̄ · dV̄
dt

=
∑
i

Δx V̄i · dV̄i

dt
= −

∑
i

V̄i · (F̄i,i+1 − F̄i−1,i )

= −1

2

∑
i

V̄i · Ā(V0)(V̄i+1 − V̄i−1) − 1

2

∑
i

V̄i · D̄Stag(V0)(V̄i − V̄i+1)

+ 1

2

∑
i

V̄i · D̄Stag(V0)(V̄i−1 − V̄i )

Since: Ā(V0) = t Ā(V0), we have:
∑

i V̄i · Ā(V0)(V̄i+1 − V̄i−1) = 0, and:

1

2

d||V̄ ||22
dt

= −1

2

∑
i

(V̄i − V̄i+1) · D̄Stag(V0)(V̄i − V̄i+1)

Since: D̄Stag(V0) + t D̄Stag(V0) ≥ 0 , we obtain: 1
2
d||V̄ ||22
dt ≤ 0. �

Corollary 1 The numerical scheme (11)–(12) based on the following numerical

flux: Fi,i+1 =
(

q̄i+ 1
2

q̄2
i+1

ρi+1
+ pi+1

)
, with:

q̄i+ 1
2

= qi+ 1
2
+ (|u| − u)

ρi − ρi+1

2

q̄2
i+1

ρi+1
=

q2
i+ 1

2

ρi
+ (|u| − u)

qi+ 1
2
− qi+ 3

2

2

where u is the Roe average velocity [15]: u =
q
i+ 1

2√
ρi

+
q
i+ 3

2√
ρi+1√

ρi+√
ρi+1

, is linearly L2-stable.

Proof The diffusion operator of the proposed scheme is:

DStag =
( |u| − u 1

−c2 − u2 |u| + u

)
, D̄Stag =

(|u| c
−c |u|

)
. (13)

Since DStag verifies the property of Theorem 3, this numerical scheme is linearly
L2-stable.

In the next section, we implement an implicit version of this new numerical
scheme.
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4 Numerical Results and Conclusion

We assess the robustness of our new staggered scheme on a compressible fluid with
isothermal equation of state p = ρc2 where the sound speed is c = 300m/s. We
consider aRiemann problem for the isentropic Euler system (10)with left state (ρL =
10
9 , qL = 100ρL) and right state (ρR = ρL

2 , qR = −100ρL). The solution displays
a rarefaction (smooth) wave followed by a (discontinuous) shock wave. Our new
method is able to capture both waves in a distinct and stable way. In a forthcoming
longer paper we will present the details of the 2D version of the scheme and study
its entropic character.
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Convergence of a TPFA Finite Volume
Scheme for Mixed-Dimensional Flow
Problems

Wietse M. Boon and Jan M. Nordbotten

Abstract A two-point flux approximation (TPFA) finite volume method is con-
sidered for mixed-dimensional fracture flow problems. Its construction is based on
applying a face-based quadrature rule to a conforming, mixed finite element scheme
of lowest order. A concise argument shows linear convergence in theory, which we
confirm in practice by a numerical experiment.

Keywords Mixed-dimensional · Fracture flow · Mixed finite element · Two-point
flux approximation
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1 Introduction

Problems involving geometric features with high aspect ratios, such as (thin) aquifers
[5], fractures [10], or faults [7], are often favorably modeled with the feature being
of a topologically lower dimension than that of the ambient domain. The case of
fracture networks is particularly appealing in this context, since the intersection
of fractures (and the intersection of intersections) can be treated consistently in a
recursive manner [3]. In recent work, the authors have exploited this perspective to
derive and analyze mixed-finite element (MFE) methods for flow in fractured porous
media.

As with many low-order mixed finite element methods, the method discussed
above allows for the derivation of a finite volume variant. Having this possibility
is a noteworthy advantage since finite volume methods may be preferred in certain
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applications for several reasons. First, due to the fewer degrees of freedom and
resulting definite system, finite volume methods are still considered computationally
favorable in reservoir simulation practice [6]. Furthermore, thefinite volume structure
allows for the incorporation of upstream weighting, which is important in order to
capture accurately flow and transport phenomena for coupled problems (see e.g. [9]).

There are two main ways of deriving finite volume methods from mixed-finite
element methods. The most straight-forward approach, which we will follow in this
paper, is to consider the Raviart–Thomas (RT0) spaces for flux, and use a face-
based quadrature to obtain a two-point flux approximation (TPFA) scheme. This
construction is originally due to Russell and Wheeler [11], and was further refined
by Baranger et al. [1]. In the context of fractured porous media, it leads to a method
structurally similar to the method introduced by Karimi-Fard et al. [8]. A more
elaborate approach, outside the scope of this paper, is to base the construction on
Brezzi–Douglas–Marini (BDM1) elements for flow and apply corner-based quadra-
ture to reduce the scheme to a multi-point flux approximation (MPFA) type finite
volume method (see e.g. [13]). This construction is advantageous for problems with
anisotropy in the permeability coefficients, as well as for more complex grids (e.g.
quadrilateral grids). In the context of fractured porous media, this approach leads to
a method similar to the MPFA method presented by Sandve et al. [12].

In this paper, we thus present the TPFA hybridization of RT0-based mixed-finite
element methods for mixed-dimensional flow problems. This has several implica-
tions. Firstly, it directly establishes a finite volume scheme in this setting. Secondly,
it shows the close connection between mixed-dimensional flowmodels and the equi-
dimensional model discretized byKarimi-Fard et al. [8], and thus also giving a notion
of convergence for that discretization. Thirdly, we note that the TPFA-type discretiza-
tions can be advantageous as preconditioners for the MFE discretzations [4].

2 Mixed-Dimensional Flow Model

In this section, we present the fracture flow model and introduce the notational con-
ventions this work adheres to. We start by defining the mixed-dimensional geometry
obtained after dimensional reduction of all fractures and intersections. Afterwards,
the model equations are described, both in their strong form and the corresponding
variational formulation.

2.1 Geometry and Notation

We follow the notation introduced in [3]. Consider a bounded Lipschitz domain
Y ⊂ R

n with n ∈ {2, 3}. Each fracture included in Y is represented by a (n − 1)-
dimensional manifold Ωi with i its index from the set I n−1. For simplicity, we
assume that all fractures have zero curvature. We identify the intersection of multiple
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fractures as a (n − 2)-manifold Ωi with index i ∈ I n−2. In the case that n = 3, the
same reasoning is applied oncemore at the intersection point of intersection lines, and
we introduce a 0-manifoldΩi therewith i ∈ I 0. The remaining regions of the domain
Y corresponding to the bulk (or matrix) of the medium, are considered n-manifolds
in their own right and we refer to these as Ωi with i ∈ I n .

The set of indexes encompassing all manifolds is then defined as I := ⋃n
d=0 I

d

and we let di denote the dimension of manifold Ωi . At times, we employ binary
relations in the superscript of index sets to denote certain subsets. For example, let
I d>0 := ⋃n

d=1 I
d and I d<n := ⋃n−1

d=0 I
d .

We have an additional interest in the boundaries of manifolds that coincide with
lower-dimensional neighbors because these form the location at which we will
impose coupling conditions. For that purpose, we use the notation Γ j for an interface
of dimension d j that satisfies the following two properties. First, an index ǰ ∈ I d j

exists such that Γ j coincides physically withΩ ǰ . Secondly, an index ĵ ∈ I d j+1 exists
such thatΓ j ⊆ ∂Ω ĵ . Note the use of the hat and check notation to refer to higher- and
respectively lower-dimensional neighbors. The set of all interface indexes is denoted
by J .

Fracture tips are then characterized for each Ωi , with di < n, as the part of its
boundary that does not coincide with a lower-dimensional neighbor or the boundary
of the domain Y . Since we impose no-flux conditions at these tips, we refer to this
part of the boundary as ∂uΩi .

Next,we impose the key restriction that the collection ofmanifolds forms adisjoint
decomposition of the original domain Y in the sense that

Y =
⋃

i∈I
(Ωi ∪ ∂uΩi ). (1)

In order to keep track of the interfaces Γ j that are relevant for a manifold Ωi , we
introduce the following index sets:

Ĵi := { j ∈ J | ǰ = i}, J̌i := { j ∈ J | ĵ = i}. (2)

In short, Ĵi and J̌i contain the indexes of interfaces that connect Ωi to its higher- and
respectively lower-dimensional neighbors with codimension one. It follows naturally
that J̌i = ∅ for i ∈ I 0 and Ĵi = ∅ for i ∈ I n .

We impose a final restriction on the geometry, namely that Ĵi is non-empty for all
i ∈ I d<n . In otherwords, all lower-dimensionalmanifolds are located at the boundary
of a higher-dimensional neighbor of codimension one.
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2.2 Model Equations

We introduce the fracture flow problem in three steps. Starting with the strong form
of the equations, we then introduce the relevant function spaces, and conclude the
section with the corresponding variational formulation.

For each manifold Ωi with i ∈ I , let pi denote the scalar pressure. Moreover, for
i ∈ I d>0, let ui denote the tangential velocity as a di -vector, obtained after integra-
tion over the cross-section of the thin inclusion. For a precise presentation of the
dimensional reduction that leads to the definition of this variable, we refer the reader
to [3].

The model problem is then given by the following three equations, describing
Darcy’s law tangential to each manifold, normal to each interface, and mass conser-
vation, respectively.

ui + K‖∇i pi = 0, in Ωi , i ∈ I d>0, (3a)

n j · u ĵ + K⊥(p ǰ − p ĵ ) = 0, on Γ j , j ∈ J, (3b)

∇i · ui −
∑

j∈ Ĵi

n j · u ĵ = fi , on Ωi , i ∈ I. (3c)

Here, n j is the unit vector normal to Γ j and oriented outward with respect to Ω ĵ .
Moreover, ∇i is the del operator on Ωi given by its tangential bundle. It follows by
definition that the first term in the final equation is zero for i ∈ I 0. Moreover, we
note that Ĵi = ∅ for i ∈ I n , and hence the second term in this equation is zero for
the top-dimensional subdomains.

Additionally, K‖ is the effective tangential permeability given by a di × di sym-
metric, positive definite tensor and K⊥ is the effective, normal permeability given
by a positive scalar on each interface Γi . We remark that all scalings with apertures
and other small cross-sectional measures are thus incorporated in these effective
permeabilities.

We set homogeneous pressure boundary conditions on the boundary ∂Y . Together
with the no-flux condition at fracture tips, we thus close the system with

pi = 0, on ∂Y, (3d)

n · ui = 0, on ∂uΩi , ∀i ∈ I d<n . (3e)

Next,wepresent the function spaces thatweuse to pose the variational formulation
of (3). It is convenient to collect the variables into the mixed-dimensional functions
u ∈ U and p ∈ P defined as

u|Ωi := ui , p|Ωi := pi ,
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with the corresponding function spaces given by

U :=
∏

i∈I d>0

{ui ∈ H(div,Ωi )| n j · ui ∈ L2(Γ j ), ∀ j ∈ J̌i }, P :=
∏

i∈I
L2(Ωi ).

Here, H(div,Ωi ) denotes the space of square integrable vector fields with square
integrable divergence and we thus consider its subspace with well-defined normal
trace onΓ . The two spaces are related by themixed-dimensional divergence operator
D· : U → P, which is defined such that

(D · u)|Ωi := ∇i · ui −
∑

j∈ Ĵi

n j · u ĵ , ∀i ∈ I.

Finally, we have all the ingredients to state the variational formulation of (3):
Find (u, p) ∈ U × P such that

(K−1
‖ u, ũ)Ω + (K−1

⊥ n · u,n · ũ)Γ − (D · ũ, p)Ω = 0, ∀ũ ∈ U, (4a)

(D · u, p̃)Ω = (f, p̃)Ω, ∀p̃ ∈ P. (4b)

Here, the inner products are naturally defined as the sum over all manifolds Ωi or
interfaces Γ j . Moreover, n · u represents the normal trace of the Darcy velocity u ĵ
on each Γ j with j ∈ J . Finally, f is the source function defined such that f|Ωi = fi .

As observed in [3], this system has a typical saddle point structure, andwe identify
the bilinear forms a : U × U → R and b : U × P → R as

a(u, ũ) := (K−1
‖ u, ũ)Ω + (K−1

⊥ n · u,n · ũ)Γ , b(u, p) := (D · u, p)Ω. (5)

3 Discretization

In this section,we introduce the discretization of themodel problem. Startingwith the
generation of the mesh, we continue with a description of a low-order mixed finite
element method. Through hybridization, we then obtain the desired finite volume
method.

For each i ∈ I let Ωh,i be a regular tesselation of Ωi consisting of di -simplices.
We assume that all grids are matching in the sense that each interface mesh Γh, j is
defined as the trace mesh of Ωh, ĵ . Moreover, each element e in Γh, j is physically
colocated with a unique element ě of the lower-dimensional neighbor Ωh, ǰ . Finally,
to ensure consistency of the TPFA scheme, we only consider K -orthogonal grids.
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3.1 Mixed Finite Element Method

With the mesh defined, we now introduce the stable finite element pair of lowest
order that forms a discrete subspace of U × P:

Uh :=
∏

i∈I d>0

RT0(Ωh,i ), Ph :=
∏

i∈I
P0(Ωh,i ), (6)

In other words, the flux space is given by the Raviart–Thomas(–Nedelec) elements
for di ∈ {2, 3} and the linear Lagrange element for di = 1. Hence, this space has
one degree of freedom per (di − 1)-dimensional face in the meshes with di > 0. The
pressure space is defined as the piecewise constants and therefore has one degree of
freedom per element in all dimensions.

Theorem 1 A constant C > 0 exists such that the mixed finite element solution
(uh, ph) satisfies

‖u − uh‖Ω + ‖p − ph‖Ω ≤ Ch
(‖u‖H 1(Ω) + ‖n · u‖H 1(Γ ) + ‖p‖H 1(Ω)

)
(7)

Proof See [3], Theorem 3.4. �

3.2 Finite Volume Method

In this section,we consider the techniquedescribedby [1, 2] to construct aTPFAfinite
volume scheme. During this procedure, the bilinear form a from (5) is replaced by a
simpler form aL . Its diagonal structure then allows us to eliminate the flux variables
and obtain a TPFA finite volume scheme.

We first introduce a few necessary definitions. For each element e ∈ Ωh,i , let xe be
its circumcenter. In other words, xe is the center of the unique di -sphere that passes
through its vertices. We limit our exposition to the case in which xe lies in the interior
of e. This is the case if, for example, the mesh Ωh,i consists of simplices with acute
angles. Moreover, to ensure consistency of TPFA, we herein consider the simpler
case in which K‖ is isotropic, i.e. a positive scalar field on each Ωi with i ∈ I d>0.

Given an element element e1 in the mesh Ωh,i with i ∈ I d>0, let σ be one of
its faces. We remark that σ is a (di − 1)-simplex, by construction. Using this face
as a base, we construct a di -simplex by connecting it with the circumcenter xe1 . If
applicable, the procedure is repeated for the second element e2 in the mesh that has σ

as a face. The patch Lσ is then defined as the union of these constructed sub-simplices
bordering on σ .

Geometrically, we observe that the measure of the patch Lσ is given by

|Lσ | = 1

di
|σ ||lσ |, (8)
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with lσ defined as the distance between the two adjacent circumcenters for internal
faces. For boundary faces, lσ is the distance between σ and the circumcenter xe1 .

Next, we use the disjoint patches Lσ to construct the following, piecewise constant
function space UL :

UL :=
∏

i∈I d>0

{vL ∈ L2(Ωi )
di : vL |Lσ

= cσnσ with cσ ∈ R, ∀σ ∈ Fi }. (9)

Here, nσ denotes the unique normal vector associated with face σ and Fi is the set
of all faces of Ωh,i . The associated projection operator ΠL : Uh → UL is defined as

(ΠLvh)|Lσ
= (vh · nσ )|σ nσ , ∀σ ∈

⋃

i∈I d>0

Fi . (10)

We are now ready to define the bilinear form aL : Uh × Uh → R as

aL(uh, ũh) :=
∑

i∈I d>0

⎛

⎝(di K
−1
‖ ΠLuh,i ,ΠL ũh,i )Ωi +

∑

j∈ J̌i

〈K−1
⊥ n · uh,i ,n · ũh,i 〉Γ j

⎞

⎠ .

(11)
Note the scaling with the dimension di in the first term. We elaborate the reason for
this in Remark 1 at the end of the section.

Due to the structure of the bilinear form aL , we can now eliminate the flux variable
to obtain a linear system in pressure only. In particular, we invert the corresponding,
diagonal matrix AL to obtain the system

BTA−1
L Bph = fh . (12)

Here, B is the matrix associated with the bilinear form b and ph and fh are the vector
representations of ph and f. After solving for the pressure ph , wemay then reconstruct
uh by setting uh := A−1

L Bph .

Theorem 2 A constant C > 0 exists such that the finite volume solution (uh, ph)
satisfies

‖u − uh‖Ω + ‖p − ph‖Ω ≤ Ch
(‖u‖H 1(Ω) + ‖n · u‖H 1(Γ ) + ‖p‖H 1(Ω)

)
. (13)

Moreover, the system in (12) is symmetric and positive definite.

Proof In [1], it is shown that the replacement of a with aL introduces a consistency
error of the same order as the approximation error inRT0. Hence, a triangle inequality
on each d-dimensional mesh with (7) from Theorem 1 provides (13).

Symmetry of BTA−1
L B is apparent. Due to the inf-sup condition on b (see [3]), it

follows that Bph = 0 implies ph = 0. In turn, the system is positive definite. �
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Remark 1 We conclude this section by showing how the use of aL leads to the
two-point flux approximation (TPFA) of the tangential Darcy’s law. Let the mesh
Ωh,i be given with i ∈ I d>0 and let (ũh, ph) ∈ RT0(Ωh,i ) × P0(Ωh,i ). Starting with
the weak formulation, we use the divergence theorem and (8) to derive:

(di K
−1
‖ ΠLuh,ΠL ũh)Ωi = (∇ · ũh, ph)Ωi

=
∑

e∈Ωh,i

〈peh, ũh · ne,σ 〉∂e

=
∑

e∈Ωh,i

〈peh,ΠL ũh · ne,σ 〉∂e

=
∑

σ∈F i

〈pe1h ne1,σ + pe2h ne2,σ ,ΠL ũh〉σ

=
∑

σ∈F i

di
|lσ | (p

e1
h ne1,σ + pe2h ne2,σ ,ΠL ũh)Lσ

.

Here, peh is the evaluation of ph in element e and pe2h is zero if the face σ is on
the boundary. Moreover, ne1,σ denotes the unit vector that is normal to σ , oriented
outward with respect to element e1.

It follows that using aL from (11) is equivalent to imposing the TPFA stencil:

ΠLuh = K‖
pe1h ne1,σ + pe2h ne2,σ

|lσ | , on Lσ . (14)

4 Numerical Experiment

To confirm the convergence of both numerical schemes, we show the numerical
results using test cases designed to highlight some of the typical challenges associated
with fracture flow simulation. First, we will introduce the set-up and describe the
chosen parameters therein are discussed afterwards, followed by an evaluation of the
results.

Let the domain Y be the unit square and the fractures given as depicted in Fig. 1
(left). A pressure drop is simulated by imposing unit pressure at the top and zero pres-
sure at the bottom boundary. On the remaining sides, a no-flow boundary condition
is imposed. For simplicity, the source function f is set to zero.

Let us continue by defining the parameters for the test cases. We set K‖ to the
2 × 2 identity tensor in the bulk and we set K‖ = 102 in the fractures. We investigate
two cases by varying the effective normal permeability. Flow into the fractures is
stimulated in Case 1 by setting K⊥ to 102. On the other hand, we set K⊥ to 1 in Case
2 to capture the influence of blocking features and resulting pressure discontinuities.
Finally, the normal permeabilities at the intersection are set to one in both cases, for
simplicity.
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Fig. 1 (Left) The square domain contains an intersection and multiple fracture endings. (Right)
The error in the energy norm decreases linearly with the mesh size (h) for the mixed finite element
method (FEM) and the TPFA finite volume scheme (FVM) in both test cases

The numerical experiments were performed on six consecutively refined grids.
All solutions were then compared to the solution on the finest grid using the norms
from Theorems 1 and 2. The results for each case are shown in Fig. 1 (right). As
expected, the results show that both methods converge linearly for both cases, with
the TPFA variant suffering a modest loss of accuracy.
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A Relaxation Method for the Simulation
of Possibly Non-hyperbolic Polymer
Flooding Models with Inaccessible Pore
Volume Effect
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Quang-Huy Tran, and Christophe Berthon

Abstract Polymer flooding models used in the simulation of enhanced oil recovery
of reservoirs commonly involve a system of conservation laws that may be ill-posed,
especially when an inaccessible pore volume (IPV) empirical law is considered.
Depending on the IPV law, the flowmodel is eitherweakly hyperbolicwith resonance
or non-hyperbolic with complex eigenvalues. In this paper, we propose a Suliciu-
type relaxation, which unconditionally ensures hyperbolicity for any IPV law. This
approximation gives rise to a new numerical scheme, which is compared with the
classical upwind scheme and the exact solution whenever possible.

Keywords Polymer flooding · Exclusion volume · Relaxation method · Weakly
hyperbolic and non-hyperbolic systems

MSC (2010) 65M08 · 65N08 · 37D50

1 Polymer Flooding Models with IPV Effect

We are interested in the simulation of enhanced oil recovery (EOR) using polymers.
Polymers are injected in the oil field to increase the water viscosity, thus reducing
water-oil interfaces instabilities and improving oil recovery. To highlight the diffi-
culties associated with this problem, let us consider a simplified model describing
the incompressible flow of a water-polymer mixture and oil in a 1-D porous medium.
This simplified model reads [9]
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∂t (s) + ∂x ( f ) = 0, (1a)

∂t (sc) + ∂x ( fcγ ) = 0, (1b)

where s(x, t) ∈ [0, 1] denotes the water saturation and c(x, t) ∈ [0, 1] the polymer
mass fraction. In (1), polymer molecules are assumed to be in the water phase only
and to not adsorb on the rock. The water fractional flux f is a function of s and c,
given by

f (s, c) = Λw(s)/Rm(c)

Λw(s)/Rm(c) + Λo(1 − s)
, (2)

inwhich the smooth functionsΛw(s) andΛo(1 − s) represent the (known)mobilities
of the water and oil phases. Rm(c) is the mobility reduction factor of the water phase.
In real applications, it depends on the polymer adsorption and on the water shear
thinning. Here, we consider the analytical formula

Rm(c) = 1 + a1c + a2c
2 + a4c

15/4, a1,2,4 ≥ 0, (3)

due to de Gennes [5]. When Rm ≡ 1, the fractional flux f does not depend on c
and boils down to the Buckley-Leverett one. In the general case, f is an S-shaped
function of s at fixed c and a non-increasing function of c at fixed s.

The acceleration factor γ expresses the inaccessible pore volume (IPV) effect and
has to be supplied as a function of (s, c). Once an IPV law γ (s, c) is selected, system
(1) becomes algebraically closed and can be put under the abstract form

∂tw + ∂x f(w) = 0, (4)

withw = (s, sc)T and f = ( f, fcγ )T . The question then arises as to the hyperbolicity
of (4). In other words, it is essential to know if the Jacobian matrix ∇wf(w) has
real eigenvalues corresponding to wave propagation speeds and has a basis of real
eigenvectors. The answer depends on the IPV law under consideration. Below are
the three most well-known cases.

• No IPV, i.e.,
γ (s, c) ≡ 1. (5)

Then, model (1) coincides with the Keyfitz–Kranzer system [8], which is weakly
hyperbolic in the following sense: the eigenvalues are always real, equal to λc =
f/s =: u (c-wave) and λs = ∂s f = u + s∂su (s-wave); but on the resonance curve
Γ = {(s, c) | ∂su = 0} where the eigenvalues λc = λs collapse to each other, the
basis of eigenvectors is lost. For some initial data, the Riemann problem may
have several solutions. Isaacson and Temple [7] advocated an additional entropy
condition to recover uniqueness.

• Percolation IPV, i.e.,

γ (s, c) = s

s − s•
, s• ∈ (0, 1), (6)
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was proposed in [1] to keep the system hyperbolic for s ∈ [s�, 1] where s� ∈
(s•, 1] is the irreducible water saturation. Then, system (1) exhibits a similar
weakly hyperbolic behavior: the eigenvalues are always real, equal to λc = γ u
(c-wave) and λs = u + s∂su + (γ − 1)c∂cu (s-wave), where u := f/s; but on
Γ = {(s, c) | s∂s(γ u) + (γ − 1)c∂c(γ u) = 0} where they collapse to each other,
the basis of eigenvectors is lost. Again, resorting to an additional entropy condi-
tion similar to [7], it is still possible to recover uniqueness for the solution of the
Riemann problem.

• Constant IPV, i.e.,
γ (s, c) ≡ γ∗ > 1. (7)

Then, system (1) is not hyperbolic, in the sense that the eigenvalues may become
complex. More accurately, this is shown [1] to occur on the manifold Γ =
{(s, c) | ∂su = 0} (the resonance curve for the no-IPV law) for γ∗ = 1 + η when
η > 0 is small enough. Unfortunately, this IPV law is still widely used by reservoir
engineers and implemented with the upwind scheme. For some initial data, they
observe polymer accumulation at the saturation front, which gives rise to very high
mass fractions and numerical instabilities.

Under relevant physical justifications, other IPV laws are derived in [6] to avoid
possible δ-shock solutions when s• is greater than the irreducible saturation. The
latter IPV laws are not studied in this work.

The no IPV law (5) and the percolation IPV law (6) are equivalent, up to a change
of variables. This result seems to have never been formally stated before.

Theorem 1 Setting (S, C) = (s/γ, γ c) = (s − s•, γ c)andF(S,C) = f (s, c), sys-
tem (1) using the percolation IPV law (6) can be transformed into

∂t (S) + ∂x (F) = 0, (8a)

∂t (SC) + ∂x (FC) = 0, (8b)

which is system (1) using the no IPV law (5).

Proof By (1a), we have ∂tS = ∂t (s − s•) = ∂t s = −∂x f = −∂xF, hence (8a). From
SC = (s/γ )(γ c) = sc and FC = fcγ , we see that (8b) is none other than (1b). �

Because of the possibly non-hyperbolic nature of the original model (1), it is dif-
ficult to design a reliable and robust numerical scheme [4, 6]. Here, we propose a
new relaxation scheme based on the Suliciu relaxation method [10]. Our motivation
is to supply practitioners with a numerical method whose stability is always guar-
anteed by the very fact that it can be interpreted as the Godunov scheme applied to
a hyperbolic approximation of the original model. This is important for engineers.
In this respect, our approach bears some similarities with Baudin et al.’s work [2]
where the hyperbolicity of the original model is not taken for granted.
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2 A Relaxation Method Ensuring Hyperbolicity

The first step toward building a new numerical scheme is to rewrite (1) under a form
that better separates transportation from acceleration, namely,

∂t (s) + ∂x (su) = 0, (9a)

∂t (sc) + ∂x (scu + q) = 0, (9b)

where q(s, c) = (γ − 1)scu will be called the IPV deviation. In (9), which looks
more like a hydrodynamics model, the genuine nonlinearities are encapsulated in
the functions u(s, c) and q(s, c). In the second step, we attempt to circumvent these
nonlinearities by approximating (9) by the relaxation model

∂t (s) + ∂x (sU ) = 0, (10a)

∂t (sc) + ∂x (scU + Q) = 0, (10b)

∂t (sU ) + ∂x (sU
2 − a2/s) = ε−1s(u(s, c) −U ), (10c)

∂t (sQ) + ∂x (sQU + b2c) = ε−1s(q(s, c) − Q), (10d)

where ε > 0 is the relaxation time, a and b are relaxation coefficients to be chosen
later. The variables (U, Q) are relaxation counterparts of (u, q) and should be seen
as independent of (s, c). System (10) can be abstractly reformulated as

∂tW + ∂xF(W) = ε−1sR, (11)

with W = (s, sc, sU, sQ)T , F = (sU, scU + Q, sU 2 − a2/s, SQU + b2c)T and
R = (0, 0, u −U, q − Q)T . The benefits of working with (11) are numerous.

Lemma 1 For s > 0 and a, b > 0, the Jacobian matrix ∇WF(W) has real eigen-
values with a basis of eigenvectors. The eigenfields, given by λU± = U ± a/s
and λQ± = U ± b/s, are all linearly degenerated and have Riemann invariants
IU± = {c, Q,U ± a/s} and IQ± = {s,U, Q ± bc}.
Proof Calculations are easier to perform in the set of variables V = (s, c,U, Q)T

and with the quasi-linear form ∂tV + J∂xV = ε−1R, where the matrix J can be
shown to have the four eigenvalues λU± and λQ±. In this set of variables, the right

eigenvectors are given by rU± = (
1, 0,±a/s2, 0

)T
and rQ± = (0, 1, 0,±b)T , from

which linear degeneracy and various sets of Riemann invariants can be deduced. �

Linear degeneracy and explicit knowledge of Riemann invariants make the Rie-
mann problem easy to solve. Before giving the details of the numerical scheme, we
have to make sure that (11) is a dissipative approximation to (4).

Theorem 2 At the first order in ε ↓ 0, the first two components w = (s, sc) of the
relaxation solution W of (11) solve the equivalent equation
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∂tw + ∂x f(w) = ε∂x (sP−1DP∂xw), (12)

where

P =
[

1 0
−cs s

]
, D = 1

s3

[
a2 − s4(∂su)2 − s2∂cu∂sq −∂cu(s2∂su + ∂cq)

−s2∂sq(s2∂su + ∂cq) b2 − s2∂sq∂cu − (∂cq)2

]
.

Furthermore, it is possible to choose a, b > 0 large enough such that D has
positive eigenvalues, in which case the relaxation approximation is dissipative.

Proof Inserting the Chapman-Enskog expansions U = u + εU1 and Q = q + εQ1

into the first two equations of (10) and moving the terms in ε to the right-hand side,
we obtain the equivalent equation

∂tw + ∂x f(w) = ε∂x

{[
s 0
sc 1

] [−U1

−Q1

]}
= ε∂x

{
sP−1

[−U1

−Q1

]}
. (13)

Inserting the Chapman-Enskog expansionsU = u + εU1 and Q = q + εQ1 into the
last two equations of (10) yields the zeroth-order approximations −sU1 = ∂t (su) +
∂x (su2 − a2/s) and −sQ1 = ∂t (sq) + ∂x (squ + b2c). Using (9), we can express
∂t (su) + ∂x (su2) and ∂t (sq) + ∂x (squ) as combinations of ∂xu and ∂xq. Expanding
these derivatives, we end up with

[−U1

−Q1

]
= ˜D ∂x

[
s
c

]
= ˜D

[
1 0

−c/s 1/s

]
(P−1P) ∂x

[
s
sc

]
= DP ∂xw, (14)

with

˜D = 1

s3

[
a2 − s4(∂su)2 − s2∂cu∂sq −s2∂cu(s2∂su + ∂cq)

−s2∂sq(s2∂su + ∂cq) s2(b2 − s2∂sq∂cu − (∂cq)2)

]
.

Combining (13) and (14) leads to the desired result. To prove that a, b can be chosen
large enough so that D has positive eigenvalues, see Baudin et al. [2]. �

In view of Lemma 1 and Theorem 2, it seems that we run into trouble when s = 0.
The issue of void has been addressed in other contexts byBouchut [3]. Here, the same
methodology will be applied: we consider that the parameters a and b are transported
at the water velocity. For the sake of brevity, we have written our relaxation system
(11) without this trick and do not provide more details here.

For convenience, the parameters a and b are also selected such that a > b in order
to enforce the ordering λU− < λQ− < λQ+ < λU+ of eigenvalues. To go from time
tn to time tn+1 = tn + Δt , we follow the two-stage procedure:

1. Free evolution: ε = +∞. The relaxation model (10) is solved without the source
terms, starting from the initial data Wn and for the time lapse equal to Δt . The
solution obtained is designated byWn+1,−. At the discrete level in space, this is
achieved by the Godunov scheme subject to an appropriate CFL condition.
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2. Projection to equilibrium: ε = 0. We keep the first two components ofWn+1,−,
that is, (s, sc)n+1 = (s, sc)n+1,− but replace the last two components by their
equilibrium values (sU, sQ)n+1 = (sn+1u(sn+1, cn+1), sn+1q(sn+1, cn+1)).

3 Numerical Validation

We consider a 1-D test configuration that represents water and polymer injection in
an oil saturated plug. The domain has length L = 1 and is meshed with 1000 uniform
cells, each of size Δx = 0.001. At the initial time, the plug is initialized at

(s, c)(x, t = 0) =
{

(1, 10−4) if x < 0.1,

(s� = 0.1, 0) if x > 0.1.

On the left boundary, we prescribe the Dirichlet condition (s, c)(x = 0, t) =
(1, 10−4). On the right boundary, we impose a homogeneous Neumann condition.
This scenario corresponds to a water and polymer injection through a well located
at x = 0.1 with an injection speed u = 1 in an oil-saturated plug. The plug cor-
responds to the slice [0.1, 1.0] of the computational domain. The simulations are
stopped at time T = 0.4 and we plot the saturation and mass fraction profiles along
the computational domain.

Using s� = 0.1 as the irreducible water saturation and assuming that the residual
oil saturation is equal to 0, we consider a very simple Brooks-Corey model with the
exponent equal to 2 for water and oil and unity maximum relative permeabilities.
In other words, the phase mobilities are Λw(s) = (

s−s�
1−s�

)2 and Λo(1 − s) = ( 1−s
1−s�

)2.
For the mobility reduction Rm , we consider the formula (3) with coefficients a1 =
2.0 · 103, a2 = 2.8 · 106, a4 = 9.0 · 1019/2. These values are adapted from the fitted
experimental data given in [4] to fit to our dimensionless system. This configuration
is simulated with the percolation IPV model (6) and the constant IPV model.

For the first case, we use the percolation IPV given by formula (6) with s• = 0.05.
The simulation is performedwith the upwind scheme andwith our relaxation scheme.
The results are compared with the exact solution and plotted in Fig. 1. The solution
structure is the following: for 0.1 < x < 0.59we have a rarefactionwave (s-wave), at
x = 0.59 we have the contact discontinuity (c-wave) with the resonance embedded,
then for x = 0.63 we have a shock wave (s-wave). The results obtained with the
relaxation scheme and the upwind scheme are quite similar. The contact discontinuity
is poorly resolved because it is smeared. In fact, at this point we have the resonance,
the s-wave and the c-wave have the same speed, the s-wave is no longer genuinely
nonlinear and the rarefaction and the contact discontinuity are not clearly separated
by the numerical schemes. Concerning themass fraction profile, with this IPVmodel,
it decreases slightly in the rarefaction wave and there is no polymer accumulation
(or higher mass fraction) at the contact discontinuity, which is not the physically
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Fig. 1 Water saturation profiles (left) and polymer mass fraction (right) obtained with the perco-
lation IPV law at time T = 0.4
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Fig. 2 Water saturation profiles (left) and polymer mass fraction (right) obtained with the constant
IPV law at time T = 0.4

expected behavior. Nevertheless, this accumulation can be observed for other initial
data.

For the second case, we use the constant IPV γ = 1.2. The results are plotted in
Fig. 2. The simulation is performed with the upwind scheme and with our relaxation
scheme. For this case with a non-hyperbolic region, there is no known exact solution.
The solution structure is the following: for 0.1 < x < 0.49 we have a rarefaction
wave (s-wave), for 0.49 < x < 0.6 we have an accumulation of water, followed by a
peak in polymer concentration at x = 0.6 due to hyperbolicity loss. In fact, compared
with the previous case, the contact discontinuity catches the shock waves and this
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yields to the hyperbolicity loss and a δ−shock. At this point, the polymer mass
fraction is supposed to be infinite. The relaxation scheme and the upwind scheme
give equivalent results. The polymer mass fraction peak is about 5 times higher than
the initial left mass fraction. This shows that for some given initial data, we can obtain
very different results with different IPVmodel. Thus, validating the numerical results
is a difficult task in our context. Until now, there was nomathematical hint to validate
or reject the solution provided by the upwind scheme.With our relaxation model, we
prove formally that the solution obtained here by both scheme is a dissipative limit
of the polymer flooding solution and that it can be considered by physicists.

4 Conclusion

In this paper, we have introduced a simplified polymer flooding model and two IPV
laws for polymers. The polymerfloodingmodel iswell- or ill-posed, depending on the
IPV law. It is either weakly hyperbolic with a resonance region, or non-hyperbolic.
To approximate numerically its solutions, we proposed a relaxation model that is
unconditionally hyperbolic for any IPV model. We proved that this relaxation model
is linearly degenerated and that the Riemann problem solutions are easy to compute.
We also proved that the relaxationmodel is a dissipative approximation of the original
model for a small enough relaxation time. The associated numerical scheme provides
relevant results in resonant and non-hyperbolic cases. Future works will strive: (i) to
reduce the numerical diffusion in the resonance regions, (ii) to try other IPV laws and
compute reference solutions, and (iii) to take into account the polymer adsorption
and shear thinning effects in the mobility reduction function.
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The FVC Scheme on Unstructured
Meshes for the Two-Dimensional Shallow
Water Equations

Moussa Ziggaf, Mohamed Boubekeur, Imad kissami, Fayssal Benkhaldoun,
and Imad El Mahi

Abstract The fluid flow transport and hydrodynamic problems often take the form
of hyperbolic systems of conservation laws. In this work we will present a new
scheme of finite volume methods for solving these evolution equations. It is a fam-
ily of finite volume Eulerian–Lagrangian methods for the solution of non-linear
problems in two space dimensions on unstructured triangular meshes. The proposed
approach belongs to the class of predictor-corrector procedures where the numeri-
cal fluxes are reconstructed using the method of characteristics, while an Eulerian
method is used to discretize the conservation equation in a finite volume framework.
The scheme is accurate, conservative and it combines advantages of the modified
method of characteristics to accurately solve the non-linear conservation laws with
a finite volume method to discretize the equations. The proposed Finite Volume
Characteristics (FVC) scheme is also non-oscillatory and avoids the need to solve
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a Riemann problem. Several test examples will be presented for the shallow water
equations. The results will be compared to those obtained with the Roe.

Keywords Shallow water equations · Finite volume method · Method of
characteristics · FVC scheme · Unstructured meshes

1 Introduction

Incompressible Navier–Stokes equations have been widely used in the literature to
simulate water flows including eddy diffusion and Coriolis forces, see for example
[6, 16]. However, for free-surface flows these models often become complicated
due to the presence of moving boundaries within the flow domain and also due to
the inclusion of hydrostatic pressure. Under certain assumptions these models can
be replaced by the well-established shallow water equations. Indeed, the shallow
water equations can be derived by depth-averaging the three-dimensional Navier–
Stokes equations assuming that the pressure is hydrostatic and the vertical scale is far
smaller than the horizontal scale, see [1]. In their depth-averaged form, shallowwater
equations havebeenused tomodelmanyengineeringproblems inhydraulics and free-
surface flows including tides in coastal regions, rivers, open channel flows, etc. see
for instance [5, 11]. Developing highly accurate numerical solvers for shallow water
equations presents a challengedue to the non-linear aspect of these equations and their
coupling through the source terms. More precisely, the difficulty in these models lies
in the coupling terms involving some derivatives of the physical variables that make
the system non-conservative and sometimes non-hyperbolic. A class of Eulerian–
Lagrangian methods have also been used in [4] to solve the two-dimensional shallow
water equations. This method avoids the solution of Riemann problem and belongs
to the finite volume predictor-corrector type methods. The predictor stage uses the
method of characteristics to reconstruct the numerical fluxes whereas the corrector
stage recovers the conservation equations in the finite volume framework. Numerical
results reported in [4] for two-dimensional shallow water equations demonstrate that
this method is robust and more accurate than the Roe and SRNH schemes, but
this previous work was limited to the Cartesian mesh. In this paper, the method is
extended to the unstructuredmesh. The results presented here show highly accurate
solution by using our proposed finite volume characteristics method and confirm its
capability to provide accurate and efficient simulations using unstructured meshes
for shallowwater flows, including Coriolis forces. This paper is organized as follows.
The rotating shallow water equations and their projected speed model are presented
in Sect. 2. In Sect. 3, the numerical method is formulated for the reconstruction of the
FVC scheme. The Sect. 4 is devoted to numerical results for several test examples for
partial dam-break problem and rotating shallow water equations. Finally, the Sect. 5
contains concluding remarks and perspectives.
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2 Mathematical Model

2.1 The Rotating Shallow Water Model

The shallow water equations for the free-surface flow in two dimensions with the
Coriolis forces are formulated as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂th + ∂x(hu) + ∂y(hv) = 0

∂t(hu) + ∂x(hu
2 + 1

2
gh2) + ∂y(huv) = fchv

∂t(hv) + ∂x(huv) + ∂y(hv
2 + 1

2
gh2) = −fchu

(1)

where g is the gravitational acceleration, fc is the Coriolis force, h is the water depth,
u and v are the depth-averaged velocities. It is well known that the system (1) is
strictly hyperbolic with real and distinct eigenvalues. The conservative form of (1)
is

∂tW + ∇ · F(W ) = Q(W ) (2)

W =
⎛

⎝
h
hu
hv

⎞

⎠, F(W ) =
⎛

⎝

⎛

⎝
hu

hu2 + 1
2 gh

2

huv

⎞

⎠ ,

⎛

⎝
hv
huv

hv2 + 1
2 gh

2

⎞

⎠

⎞

⎠

T

, Q(W ) =
⎛

⎝
0

fchv
−fchu

⎞

⎠

The system of Eq. (2) has to be solved in a bounded spatial domain Ω , with given
boundary and initial conditions.

2.2 Construction of the Projected Speed Model

In this section we adopt the same calculation techniques used in the Sect. 2 of [4] in
order to get the projected speed model. The differential form of the projected speed
model is ⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂h

∂t
+ ∂huη

∂η
= 0,

∂huη

∂t
+ ∂

∂η

(

huη
2 + 1

2
gh2

)

= fchuτ ,

∂huτ

∂t
+ ∂

∂η

(
huηuτ

) = −fchuη,

(3)

The system (3) can be rewritten as a transport equation form

∂U
∂t

(t,X ) + uη(t,X )
∂U
∂η

(t,X ) = F(U, fc), ∀ X = (x, y) ∈ Ω ⊂ R
2, t > t0 (4)
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with, U =
⎛

⎝
h
uη

uτ

⎞

⎠ ,

(
uτ

uη

)

=
(
vnx − uny
unx + vny

)

, and F(U, fc) =
⎛

⎝
−h∂η(uη)

−g∂η(h) + fcuτ

−fcuη

⎞

⎠

The system of Eq. (4) is used only to reconstruct the numerical fluxes while the finite
volume method is applied directly to the conservative system (2), see [3, 14].

3 Finite Volume Characteristics Scheme

In this section we present the finite volume characteristics method for the numerical
solution of the shallow water Eq. (1). The method consists of two steps and can
be interpreted as a predictor-corrector approach. The first step deals with the finite
volume discretization of the equations whereas in the second step, the reconstruction
of the numerical fluxes is discussed.

3.1 Finite Volume Discretization

The classical finite volume discretization of the system (2) without the bathymetry
terms is the volume integral over the total volume of the cell Ti, which gives

dWi

dt
+ 1

|Ti|
∑

j∈N (i)

|γij|Φ(Wij,nij) = Qi (5)

where Wi = 1

|Ti|
∫

Ti

WdV , Φ(Wij,nij) � 1

|γij|
∫

γij

F(W ) · nijdσ,

|Ti| denotes the area of the cell Ti and γij is the edge surrounding the cell Ti andN (i) is
the neighbouring triangles of the cell Ti.Φ(Wij,nij) is the numerical flux computed at
the interface between the cells i and j. The intermediate solutionWij is reconstructed
using the characteristic method in the predictor stage. The time discretization of (5)
is performed by a first order explicit Euler scheme. The time domain is divided into
N subintervals [tn, tn+1] with time step Δt = tn+1 − tn for n = 0, 1, . . . ,N . Wn is
the value of a generic function W at time tn. The fully-discrete formulation of the
system (2) is given by

Wn+1
i = Wn

i − Δt

|Ti|
∑

j∈N (i)

|γij|Φ(Wn
ij ,nij) + ΔtQn

i (6)
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3.2 Flux Construction

In the present study, we reconstruct the numerical flux Φ(Wn
ij ,nij) using the method

of characteristics. The fundamental idea of this method is to impose a regular grid at
the new time level and to backtrack the flow trajectories to the previous time level, for
more details see [13, 15]. At the previous time level, the quantities that are needed
are evaluated by interpolation from their known values on a regular grid.

3.2.1 Method of Characteristics

The characteristic curves associated with the Eq. (4) are solutions of the initial-value
problem

{ dX c(t)

dt
= uη(t,X

c(t)) · n t ∈ [tn, tn + αΔt], α > 0

X c(tn + αΔt) = X ∗ (7)

The solution of (7) can be expressed in an integral form as

X c(tn) = X ∗ −
∫ tn+αΔt

tn

uη(s,X
c(s)) · n ds (8)

This integral can be calculated using the integral approximation methods. In our
simulations we used a first-order Euler method to approximate the integral in (8).
The numerical fluxes in (6) are reconstructed using the solution of the transport
Eq. (4) which is given by

U(tn + αΔt,X ∗) = U(X c(tn)) +
∫ tn+αΔt

tn

F(U(X c(s), s), fc) ds (9)

where U(tn + αΔt,X ∗) is the solution at the characteristic feet. It is computed by
interpolation of the departure pointX c(tn) on themesh. we used the scattered interpo-
lation methods proposed in [2]. The integral in (9) is calculated using the mind-point
rule. This approximation is formulated as

Un
ij = Û

n

ij + αΔtF(Û
n

ij, fc) (10)

where Û
n

ij is the interpolated solution.ToapproximateF(U, fc), (i.e. ∂η(uη), ∂η(h), . . .)
we need to approximate these derivatives at the interfaces, for that we use the dia-
mond cell as expressed in Fig. 1. For more details see the Sect. 3.1.1.2 of [9]. The
gradient value at the interface is

∇uij = 1

2μSRNL

{
(uS − uN )nLR |γLR | + (uR − uL)nij|γij|

}
(11)
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Fig. 1 Diamond cell in 2D

where μSRNL is the area of the co-volume SRNL. After the discretization of the source
term F(U, fc), the district equations system (10) can be written as

hnij = ĥnij − αΔtĥnij∇ ˆ(uη)
n
ij

(uη)
n
ij = ˆ(uη)

n
ij − αgΔt∇ĥnij + αΔtfc ˆ(uτ )

n
ij

(uτ )
n
ij = ˆ(uτ )

n
ij − αΔtfc ˆ(uη)

n
ij

Once these projected states are calculated, the states Wij are recovered by using the
transformations, unij = (uη)

n
ijnx − (uτ )

n
ijny, vnij = (uτ )

n
ijnx + (uη)

n
ijny

� The FVC scheme on unstructured meshes for the present model

∣
∣
∣
∣
∣
∣
∣

Wn
ij = (hnij hniju

n
ij hnijv

n
ij)

T , Φ(Wn
ij ,nij) = F(Wn

ij ) · nij
Wn+1

i = Wn
i − Δt

|Ti|
∑

j∈N (i)

|γij|Φ(Wn
ij ,nij) + ΔtQn

i

4 Results

In this section we perform numerical tests with our Finite Volume Characteristics
scheme on unstructured meshes for the two-dimensional shallow water equations.
In all our computations a fixed Courant number CFL = 0.8 and α = 1.2, are used
while the time step Δt is varied according to the stability condition

Δt = CFL
mini |γij|√

2αλn
ij

, λn
ij = max

p
{|unpi +

√
(ghnpi)|, |vnpj +

√
(ghnpj)|}. The used com-

puter is an Intel Core i7-8565U CPU @ 1.80GHz × 8, with 15 GB RAM.
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4.1 Accuracy Test Example

The accuracy of the proposed unstructured FVC scheme for a shallow water system
is checked, it is compared to the analytical solution. We solve the shallow water Eq.
(1) without source terms in the squared domain Ω = [0, 100] × [0, 100] with initial
solution for the water depth as the dam-break problem h(0, x, y) = 4m, (x, y) <

(0, 0); h(0, x, y) = 2m, (x, y) > (0, 0); and u(0, x, y) = v(0, x, y) = 0m/s. We
also compare the results obtained using our FVC scheme on an unstructured mesh
to those obtained using the well established Roe scheme in [12]. The results pre-
sented in the table below are obtained with the relative L1-error norm corresponding

to the water depth defined as

∑Nele
i=1 |Ti||hni − h(tn, xi, yi)|
∑Nele

i=1 |Ti||h(tn, xi, yi)|
, where hni and h(tn, xi, yi)

are respectively, the computed and exact water depth at the cell Ti, and Nele denotes
the total number of cells. The Relative L1-error is obtained for the accuracy test
example at time t = 5.5s using the Roe and FVC schemes for different unstruc-
tured mesh. We remark that the relative L1-error for the FVC scheme is smaller than
for Roe scheme, but the convergence order is still the same and it is close to 1 (Fig. 2).

# Cells Roe FVC
L1-error L1-error

2592 2.0867 × 10−2 1.5695 × 10−2

5000 1.7154 × 10−2 1.1913 × 10−2

10082 1.3389 × 10−2 8.3061 × 10−3

20073 1.0112 × 10−2 5.1472 × 10−3

Fig. 2 Convergence rates and L1-error. Comparison between FVC and Roe schemes on an unstruc-
tured mesh using the same code structure
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4.2 Circular Dam-Break Problem

This benchmark was used in [4] to represent the FVC scheme on structured Cartesian
mesh. We solve the shallow water Eq. (1) on a flat bottom in the spatial domain
Ω = [−10, 10] × [−10, 10] equipped with the following initial conditions

h(0, x, y) = 1 + 1

4

(

1 − tanh

(√
ax2 + by2 − 1

c

))

, u(0, x, y) = v(0, x, y) = 0m/s ,

where a = 5
2 , b = 2

5 , and c = 0.1, g = 1m/s2 and fc = 1Kg m/s2 as in [4] (Fig. 3).
The domainΩ is discretized with unstructured triangular mesh of 10052 cells. In this
simulation we applied the Neumann conditions on all boundaries (see the Sect. 7.5.2
in [10]).

As it can be clearly seen, the results obtained using FVC scheme on unstructured
mesh are very similar to those performed with FVC on structured Cartesian mesh
(see Sect. 4.2 in [4]). The rotational movement due to the effect of Coriolis forces
provides an ellipsoid profile, which implies non radial symmetry.

4.3 Partial Dam-Break Problem

This benchmark consists of studying the torrential flow (i.e. Froude number Fr > 1)
due to a partial and asymmetrical dam-break. This benchmark was proposed in [7].
Let’s study a basin 200m wide, 200m long and flat bottom, without friction. Water
is retained in the left part of the basin.

Fig. 3 Water depth obtained at different times, using FVC on unstructured mesh (first line) and
FVC on a Cartesian mesh (second line)
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Fig. 4 Partial dam-break
domain

The thickness of the dam is 10m on the flow direction. see Fig. 4. Initially hr/hl =
0.5 is fixed with hl = 4m as water depth in the reservoir and hr = 2m as the water
level downstreamof the dam.Thewater in the basin is at rest at t = 0.When the region
occupied by the fluid is bordered by a solid surface, the fluid can not pass through
it. Its speed is necessarily zero in the direction perpendicular to the surface. On the
other hand, it is not necessarily null in the tangential directions. In this simulation, a
no-slip boundary condition is imposed on all walls see Sect. 3.2 in [8]. The domain
studied was discretized in 20002 non-uniform cells. The duration of simulation is
8.2 s counted from the partial dam break.

Fig. 5 Water depth for the partial dam-break problem on flat bottom obtained at different times
(t = 2.2, 6.2 and 8.2 s ) using FVC scheme on an unstructured mesh
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Fig. 6 Velocity fields and contours for the partial dam-break problem corresponding to the water
depth represented in the Fig. 5

5 Conclusion

Afinite volume-characteristicsmethod to solve two-dimensional shallowwater equa-
tions on unstructured meshes has been presented (Fig. 6). This method combines the
advantages of the finite volume discretization and the method of characteristics, it
solves also steady flows without large numerical errors and compute the numerical
flux corresponding to the real state ofwater flowwithout relying onRiemann problem
solvers. The reasonable accuracy can be obtained easily and no special treatment is
needed to maintain a numerical balance, because it is performed automatically in the
integrated numerical flux function. Finally, the proposed approach does not require
either non-linear solution of algebraic equations or special front tracking techniques.
Furthermore, it has strong applicability to various problems in rotating shallowwater
flows as shown in the numerical results. The outlook of this work is to extend this
approach to amulti-layersmodel of shallowwater equationswith a bathymetrywhere
we can guarantee a balance between the gradient flux and the source term. In a further
step, we will work on coupling this model with the transport convection equation.
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Numerical Analysis of a Finite Volume
Scheme for the Optimal Control of
Groundwater Pollution

Catherine Choquet, Moussa Mory Diédhiou, and Houssein Nasser El Dine

Abstract This paper is devoted to an optimal control problem of the underground
water contaminated by agricultural pollution, the spatiotemporal objective taking
into account the trade-off between the fertilizer used by the farmer to increase profits
and the cleaning costs which are necessary to treat the water before it is distributed to
users. The constraint is a hydrogeological model for the spread of the pollution in the
aquifer which consists in a system of a parabolic partial differential equation and an
elliptic equation. Hydrogeological and economic modelling are thus combined in the
problem.Wepropose afinite volume schemebased on a two-point flux approximation
with upwind mobilities of an optimal control. Numerical simulations are provided
to illustrate the 2D and 3D optimal solutions.

Keywords Optimal control problem · Hydrogeological state equations ·
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1 Introduction

The preservation of water resources is a major issue in view of the growing world
population. This water resource is today threatened by different kinds of pollution.
In Europe, for instance, agriculture is the main pollutant source, with 50–80% of the
total nitrogen and phosphorus loaded with fresh water (see [6]). According to the
report of the parliamentary office for the evaluation of scientific choices (see [10]),
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the cost of denitrification of water is around half euro per cubic meter. For finding a
compromise between the benefits and the cleaning costs, a recent model is derived
in [8] through an optimal control formulation.

Hydrogeologically, modelling the spread of a miscible pollutant in groundwater
amounts to model the flow of incompressible miscible fluids in porous media. Here
convection-diffusion and reaction phenomena are taken into account in order to be
more realistic. The economic point of view consisting in finding an optimal policy by
taking into account the costs of decontamination is classical. Nevertheless, most of
the existing models do not depend on space and are thus unrealistic especially due to
the delay between the application of any policy and its effects induced by the small
flow speed in aquifers (see [4, 7]). Here the space dependence is fully included in
the model. Many of the economic models are also restricted to linear state equations,
when in reality the hydrogeological modelling leads to strongly nonlinear equations
governing the transport of pollutant in the groundwater. Recents works of Comte
and al. in [1, 8] have taken into account both the dependence on space and a more
realistic (nonlinear) equation of state for modelling the transport and the diffusion of
pollutant in the groundwater. Theworks [1, 8] aremainly devoted to themathematical
analysis of the problem, providing existence, uniqueness and asymptotic results. Our
work may be viewed as the numerical implementation of the theoretical results in
[1]. In [8], a mixed finite element scheme was proposed and used to get numerical
illustrations, the implementation being done with FreeFEM. The few test cases are
very academic and limited to the two-dimensional framework and to very short time
scales, far from the scale at which the problem needs to be studied, from at least a
few months to several years.

Here rather, we propose a finite volume architecture embedded in an iterative
fixed point approximation to handle the full 3D optimal control problem. Notice also
that the scheme has been built to withstand the strong parameter and scale contrasts
induced by concrete applications.

The paper is organized as follows. In Sect. 2 we present the optimal control
problem and introduce the adjoint problem which will be used for the next. Our
numerical scheme is presented. In Sect. 3, some numerical tests are performed to
illustrate the solution of the optimal control problem.

2 Presentation of the Problem

We consider Ω ⊂ R
d , d ∈ N, d ≤ 3, a bounded domain, representing an area con-

taining both the area affected by the pollution and the groundwater collection wells.
We assume that the boundary ∂Ω of Ω is such that ∂Ω ∈ C 1. In the case of the 3D
example treated in the last section, the boundary of Ω is divided into six subsets for
taking into account different physical boundary conditions, namely ∂Ω = ∪6

i=1Γi

where Γ1, Γ2, Γ3, Γ4 are the laterals faces and respectively Γ5, Γ6 are the top, bottom
face. The time horizon is denoted by T , with 0 < T < ∞. We set ΩT = Ω×]0, T [.
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2.1 The Optimal Control Problem

Let p̄ > 0 be the maximal pollution load. The quantity p̄ is for instance the maximal
fertilizer load that can be applied on the field. Such a quantity exists due to obvious
practical constraints imposed to the farmer. The natural admissible set of control is
defined as

E = {
p ∈ L2(ΩT ); 0 ≤ p(t, x) ≤ p̄ a.e. inΩT

}
.

We consider a standard central planner objective, which is written as (see [11])

J (p) =
∫ T
0

(∫
L f (x, p(t, x))dx − ∫

Ω D(x, c(t, x))dx

)
e−ρt dt − ς

∫
Ω D(x, c(T, x))dx e−ρT ,

where functions f and D respectively model the benefit of the farmer and the clean-
ing costs depending on the position of the production wells and on the pollutant
concentration in the groundwater c,L ⊂ Ω is a specific localization of the fertilizer
load, ρ is the social discount rate, 0 < ρ < 1, and ς is the weight of the terminal
costs.

The problem is to find maxp∈E J (p) subject to state constraints

div(v) = θ, v = −κ∇φ in ΩT , (1)

Rψ∂t c + div(vc) = −r(c) + XL p, vc = −S(v)ψ∇c + cv in ΩT , (2)

completed by the following initial condition c|t=0 = c0 and boundary conditions

{
v · n = 0, vc · n = 0 on Γ0 = Γ2 ∪ Γ4 ∪ Γ5 ∪ Γ6,

φ = 0, vc · n = f1 on Γ = Γ1 ∪ Γ3,
(3)

where n is the outward normal to the boundary, v is the Darcy velocity, r(c) is the
chemical reaction term, S(v) = Sm × IRd + Sp(v) is a nonlinear dispersion tensor
depending on the longitudinal and transverse components of the dispersion and of
the Darcy velocity, κ is the mobility of the fluid in the soil, XL is the characteristic
function of the set L , θ(x) is a source term and f1 is the Neumann condition on
Γ . Other parameters are R > 0, a so-called retardation factor due to the possible
instantaneous reactions, Sm > 0 the diffusion coefficient ψ > 0.

2.2 The Adjoint Problem

The existence and the uniqueness of the solution of the optimal control problem
introduced in Sect. 2.1 is proved in [1]. Its characterization using the necessary opti-
mality conditions of the first order thus makes sense. Cancelling the variations of
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the Lagrangian associated to the problem with respect to the control p, to the state
variable c and to the final state c(T, x), respectively provides the terminal condition,
the optimality condition (8), the adjoint equation (6) and the boundary conditions in
(7) below. With the state equations, we get the adjoining problem equivalent to the
optimal control problem, which is to find (φ, c, μ) such that

div(v) = θ, v = −κ∇φ, (4)

Rψ∂t c + div(vc) = −r(c) + XL p, vc = −S(v)ψ∇c + cv, (5)

Rψ∂tμ + div(vμ) = −r ′(c) − (Rψρ + θ)μ + ∂cD(x, c), vμ = −S(v)ψ∇μ − μv, (6)

in ΩT , completed by the following initial condition and boundary condition

⎧
⎪⎨

⎪⎩

v · n = 0, vc · n = 0, vμ · n = 0 on Γ0,

φ = 0, vc · n = f1, vμ · n = f2 on Γ,

c|t=0 = c0, Rψμ|t=0 = ς∂cD(·, c|t=T ),

(7)

∂p f (x, p) = μ. (8)

Notice that we have used a time variable change in the adjoint unknown so that its
terminal condition appears as an initial condition.

We are going to construct a finite volume scheme on an orthogonal admissible
mesh coupledwith an iterative fixed point algorithm for the approximation of (4)–(8).
Here, for the sake of the simplicity in the notations, we treat the case where

κ = k × IRd , S(v) = Sm × IRd + Sp(v), Sp(v) = 0,

where k and Sm are given positive real numbers.We finally introduce some physically
relevant assumptions for our system.

(H1) The function θ is a nonnegative such that θ∗ ≤ θ(x) ≤ θ∗.
(H2) The functions f1, and f2 belong to L2(Γ1 ∪ Γ3).
(H3) The reaction function r belongs to C 1.
(H4) The benefit function f is strictly concave and belongs to C 1.
(H5) The function D is bounded and continuous such that ∂D

∂c ≥ 0 and ∂2D
∂c2 ≥ 0.

2.3 The Numerical Scheme

In this section, we explicit the discretization of the adjoint problem (4)–(7) using a
finite volume scheme [9]. The nonlinear coupling between (5) and (6) through (8) is
handled with an iterative fixed point algorithm. The complete approximation scheme
is described in the present subsection. Notice that the mathematical analysis of the
scheme is postponed to a forthcoming paper.
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Let T be a regular and admissible mesh of the domaine Ω , constituting of open
convex polygons called control volumes with maximum size (diameter) h. For all
K ∈T , let xK denote the center of K , N (K ) the set of the neighbours of K i.e the
set of cells of T which have a common interface with K , by Nint (K ) the set of
the neighbours of K located in the interior of T , by Next (K ) the set of edges of K
on the boundary ∂Ω . Furthermore, for all L ∈ Nint (K ) denote by dK ,L the distance
between xK and xL , by σK ,L the interface between K and L , by ηK ,L the unit normal
vector to σK ,L outward to K . And for all σ ∈ Next (K ), denote by dK ,σ the distance
from xK to σ . For all K ∈ T , we denote by |K | the measure of K .
The admissibility of T implies that Ω = ∪K∈T K ∩ L = ∅ if K , L ∈ T , there
exists a finite sequence of points (xK )K∈T and the straight line xK xL is orthogonal
to the edge σK ,L . We also need some regularity property for the mesh:

min
K∈T ,L∈N (K )

dK ,L/diam(K ) ≥ ϑ, for some ϑ ∈ R
+.

Let NT be the number of time steps. We set �t = T
NT

, tn = n�t, 0 ≤ n ≤ NT .

A finite volume scheme for the discretization of the problem (4)–(8) is given
by the following set of equations with unknowns P = (pm,n

K )K∈T , Φ = (φK )K∈T ,
C = (cm,n

K )K∈T , n ∈ [0, NT ] andΥ = (μ
m,n
K )K∈T , n ∈ [0, NT ], for all K ∈ T and

for all n ∈ [0, NT ], for all m ∈ N.

cm,0
K = 1

|K |
∫

K
c0(x) dx, p0,nK = 1

|K |
∫

K
p0(x) dx, (9)

−
∑

L∈N (K )

|σK ,L |φL − φK

dK ,L
= |K |θK , (10)

Rψ |K |c
m,n+1
K − cm,n

K

�t
− ψS(v)

∑

L∈N (K )

|σK ,L |c
m,n+1
L − cm,n+1

K

dK ,L
(11)

−
∑

L∈N (K )

|σK ,L |φL − φK

dK ,L
cm,n+1
K = −|K |

(
r(cm,n

K ) − pm,n
K

)
+ |∂K ∩ ∂Ω| f1,

Rψ |K |μ
m,n+1
K − μ

m,n
K

�t
− ψS(v)

∑

L∈N (K )

|σK ,L |μ
m,n+1
L − μ

m,n+1
K

dK ,L
(12)

+
∑

L∈N (K )

|σK ,L |φL − φK

dK ,L
μ
m,n+1
K = −|K |r ′(cm,n+1

K ) − (Rψρ + θK )μ
m,n
K

+ ∂cD(cm,N−n
K ) + |∂K ∩ ∂Ω| f2,

pm+1,n
K = (

f ′)−1
(μ

m+1,n
K ), for m ∈ N. (13)

A proper convergence of the latter scheme ensures the following existence result for
the optimal control problem (the proof is postponed to a forthcoming paper):
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Theorem 1 Assume the weak convergence of (φK ), (cm,n
K ), (μ

m,n
K ) in L2(0, T ;

H 1(Ω)), the convergence of (cm,n
K ) and (μ

m,n
K ) in L2(ΩT ) as m → ∞, NT → ∞,

supk∈T |K | → 0. Then there exist φ ∈ L∞(0, T ; H 1
Γ (Ω)), c ∈ L2(0, T ; H 1(Ω))

and μ ∈ L2(0, T ; H 1(Ω)) that constitute a weak solution of the system (4)–(8) in
the following sense: for all (ϕ,Φ) ∈ H 1

Γ (Ω) × L2(0, T ; H 1(Ω))

∫

Ω

κ∇φ∇ϕ dx =
∫

Ω

θϕ dx,

Rψ

∫ T

0

∫

Ω

∂t cΦ +
∫ T

0

∫

Ω

S(v)ψ∇c · ∇Φ dxdt −
∫ T

0

∫

Ω

cv · ∇Φ dxdt

= −
∫ T

0

∫

Ω

(
r(c) + XL p

)
Φ +

∫ T

0

∫

Γ

f1Φ dσ dt,

Rψ

∫ T

0

∫

Ω

∂tμΦ +
∫ T

0

∫

Ω

S(v)ψ∇μ · ∇Φ dxdt +
∫ T

0

∫

Ω

μv · ∇Φ dxdt

= −
∫ T

0

∫

Ω

(
r ′(c) + (Rψρ + θ)μ − ∂cD(x, c)

)
Φ +

∫ T

0

∫

Γ

f2Φ dσ dt.

3 Numerical Tests

In this part, we present some results obtained with two Python codes of the algorithm
described in Sect. 2.3, respectively for the 2D and for the 3D setting. The number of
loops (that is the number of incrementsm in (13)) necessary to arrive at the stopping
criterion for the fixed point is denoted by NN . Namely NN = minm∈N{m + 1}, such
as ||pm+1

h − pmh || ≤ ε where ε is a given threshold.
We chose the same data characterizing the porous medium structure of the under-

ground as in [8]. But, for showing in a simple way the qualitative realism of the
results, we include two parameters, respectively α in the function f and β in D, for
weighting respectively the benefit linked with the pollution and the cleaning costs. In
the example of the agricultural pollution, α represents the price of cultivated species
per tonne and β will take into account the production flow rate of the well and cost
of treatment per cubic meter:

Sp = 0, Sm = 0.01, R = 1, k = 39.04, ψ = 0.3, ρ = 0.05, Ω = [0, 1] × [0, 1] × [0, 1],
r(c) = c2, f (p) = α

ln(p)
10−3 XL , D(c) = βc2XW , p0 = 0.005

�t = 0.01, dx = dy = dz = 1/N

the set W corresponding to the water production wells area, with N = 30 charac-
terizing the space discretization. The initial spreading p0 and W are represented in
Fig. 1.

We present two tests: Test 1 (α = 1, β = 1) produced the Figs. 2 and 3, Test 2
(α = 0.5, β = 1) produced the Figs. 4 and 5.
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Fig. 1 2D and 3D computational domains with the initial position of the spreading area and the
production well W . We note that the vertical section in the middle of the well of the 3D domain
relative to the y axis corresponds to the 2D domain

Fig. 2 Test 1. The optimal amount of fertilizer to be load at time T = 1 day with a stop criterion
ε = 5.10−6 in the 2D and 3D schemes at NN = 9

For example for the Test 1, we find that with a stop threshold of ε = 5.10−6, our
2D and 3D programs turned 9 times (NN = 9). At the end, we observe that the
amount of optimal fertilizer to be spread over the entire field evolves with time. We
choose to represent the optimal solution for the fertilizer application with respect
to the trade-off modelled by the functional J at time T = 1 day. We also note the
absence of fertilizer prescribed around the production well both in the 2D and 3D
settings see Fig. 2. This fact which is of course explained by the compromise between
benefit and cleaning costs. This same trade-off explains that, when inTest 1wemake
the choice to greatly favor the farmer (see α = 1 relative to (α = 0.5) in Test 2 ), the
amount of fertilizer load is larger, with a maximum quantity close to pmax � 0.00008
at NN = 9, while in Test 2, the maximum quantity of fertilizer is reduced to half
pmax � 0.00004 at NN = 7.

Conclusion: From a qualitative point of view, the scheme gives satisfactory results.
The Figs. 3 and 5 show the same convergence errors from NN = 6 to NN = 9 as
much as in 2D and 3D. Although the scheme is convergent, the number of iterations
needed for the fixed point part is very dependent on the functions appearing in
functional J (for instance NN = 6 to NN = 9 for Test 1 and Test 2 respectively).
This is where an improvement of the schema must be implemented.
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Fig. 3 Test 1. Error ||pm+1
h − pmh || in the 2D scheme (left) and 3D scheme (right) at NN = 9

Fig. 4 Test 2. The optimal amount of fertilizer to be load at time T = 1 day with a stop criterion
ε = 5.10−6 in the 2D and 3D schemes at NN = 7

Fig. 5 Test 2. Error ||pm+1
h − pmh || in the 2D scheme (left) and 3D scheme (right) at NN = 7
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1 Linear Hyperbolic Systems in Space and Time

We consider the linear evolution equation in a bounded Lipschitz domain Ω ⊂ R
d

M∂tu(t) + Au(t) + Du(t) = f t ∈ (0, T ) , u(0) = u0 (1)

subject to initial and boundary conditions corresponding to a hyperbolic system with
u(t, x) ∈ R

m , M, D ∈ L∞(Ω,Rm×m
sym ), and the first-order differential operator

Ay =
d∑

j=1

Bj∂ jy , Bj = (Bjkl)k,l=1,...,m ∈ R
m×m
sym , j = 1, . . . , d .

Defining Bn = ∑d
j=0 n j B j for the normal vector n = (n j ) j=1,...,d a.e. on ∂Ω we

observe

(
Ay, z

)
Ω

+ (
y, Az

)
Ω

=
∑

jkl

B jkl

((
∂ j yk, zl

)
Ω

+ (
yk, ∂ j zl

)
Ω

)

=
∑

jkl

B jkl

∫

Ω

∂ j (ykzl) dx =
∑

jkl

B jkl

∫

∂Ω

n j (ykzl) dx

= (
Bny, z

)
∂Ω

= (
y, Bnz

)
∂Ω

, y, z ∈ C1(Ω;Rm) .

In order to obtain a well-defined hyperbolic system, boundary conditions have to be
imposed. Therefore, ∂Ω is decomposed into boundary parts Γk such that

(
Ay, y

)
Ω

= 0 if (Bny)k = 0 on Γk , k = 1, . . . ,m .

For a solution in the space-time cylinder Q = (0, T ) × Ω wedefine discrete approxi-
mationsuh and Lh of the solutionu and the operator L = M∂t + A + Dwith suitable
ansatz and test spaces Vh,Wh ⊂ L2(Ω,Rm) solving

uh ∈ u0 + Vh : (
Lhuh, wh

)
Q = (

f, wh
)
Q , wh ∈ Wh (2)

such that the limit h → 0 yields a weak solution of (1) characterized by

(
u, L∗w

)
Q

= (f, w)Q + (
u0, w(0)

)
Ω

− (g, w)(0,T )×∂Ω , w ∈ V ∗ (3)

with boundary data g, the adjoint operator L∗ = −M∂t − A + D, and the test space

V ∗ = {
w ∈ C1(Q;Rm) ∩ C0(Q;Rm) : w(T ) = 0 ,

(Bnw)k = 0 on (0, T ) × Γk , k = 1, . . . ,m
}
.
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This setting applies towave equationswith damping. It can be extended to impedance
boundary conditions of Robin type as it is now explained for a special case.

Our basic example is the acoustic wave equation for velocity v and pressure p

ρ ∂tv − ∇ p = f0 in (0, T ) × Ω ,

∂t p − κ∇ · v = 0 in (0, T ) × Ω ,

v(0) = v0 in Ω at t = 0 ,

p(0) = p0 in Ω at t = 0 ,

p(t) = pD(t) on ΓD for t ∈ (0, T ) ,

n · v(t) = gN(t) on ΓN for t ∈ (0, T ) ,

n · v(t) + ζ p(t) = gR(t) on ΓR for t ∈ (0, T )

(4)

with the density ρ, permeability κ , impedance ζ = √
κρ, initial values (v0, p0), and

boundary conditions (pD, gN, gR) on ΓN ∪ ΓD ∪ ΓR = ∂Ω .
This extends to visco-acoustics using the retarded material law

∂t p(t) = κ∇ · v(t) +
∫ t

0
∂tκ(t − s)∇ · v(s) ds , κ(s) =

r∑

j=1

κ j exp
(

− s

τ j

)

with permeability κ = κ0 + κ1 + · · · + κr and relaxation times τ1, . . . , τr > 0. This
model approximates dispersive wave propagation within a given frequency range,
see [5, Chap. 5] for the corresponding visco-elastic Maxwell model for Generalized
Standard Linear Solids. Defining

p j (t) =
∫ t

0
exp

(
s − t

τ j

)
κ j∇ · v(s) ds , j = 1, . . . , r , p = p0 + · · · + pr

results in the first-order system for linear visco-acoustic waves

ρ ∂tv − ∇(p0 + · · · + pr ) = f0 ,

∂t p0 − κ0∇ · v = 0 ,

∂t p j − κ j∇ · v + τ−1
j p j = 0 , j = 1, . . . , r,

corresponding to m = d + 1 + r components with

u = (
v, p0, . . . , pr

)�
, f = (

f0, 0, . . . , 0
)�

, g = (
pDn, gN + gR, . . . , gN + gR)�,

Mu =

⎛

⎜⎜⎜⎜⎝

ρv
κ−1
0 p0

...

κ−1
r pr

⎞

⎟⎟⎟⎟⎠
, Au = −

⎛

⎜⎜⎜⎝

∇ p
∇ · v

...

∇ · v

⎞

⎟⎟⎟⎠ , DVu =

⎛

⎜⎜⎜⎜⎜⎝

0
0

(κ1τ1)
−1 p1

...

(κr τr )
−1 pr

⎞

⎟⎟⎟⎟⎟⎠
, DRu =

⎛

⎜⎜⎜⎜⎜⎝

0
ζ p0
ζ p1
...

ζ pr

⎞

⎟⎟⎟⎟⎟⎠
,

Bnu = (
pn, v · n, . . . , v · n)� , 〈Du, w〉 = (DVu, w)Q + (DRu, w)(0,T )×∂ΓR
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on the boundaries Γ j = ΓD for j = 1, . . . , d and Γd+1+ j = ΓN ∪ ΓR for j = 0,
. . . , r , where (2) and (3) are complemented by a boundary integral on (0, T ) × ∂ΓR.
The boundary data (pD, gN, gR) are extended to ∂Ω by zero.

2 Space-Time Discontinuous Galerkin Methods

We use tensor product space-time cells based on a decomposition in time

0 = t0 < t1 < · · · < tN = T , Ih = (t0, t1) ∪ · · · ∪ (tN−1, tN ) ⊂ I = (0, T ) ,

combined with decompositions in space Ωn,h = ⋃
K∈K n

K into open cells K ⊂ Ω ⊂
R

d with skeleton ∂Ωn,h = Ω \ Ωn,h for n = 1, . . . , N . This defines the set of space-
time cells

R = {
R = (tn−1, tn) × K : K ∈ Kn , n = 1, . . . , N

}
,

and we obtain a decomposition Qh = ⋃
R∈R

R of the space-time cylinder Q = I × Ω .

For every R = (tn−1, tn) × K we select polynomial degrees pR = pn,K ≥ 1 in time
and qR = qn,K ≥ 0 in space. In (tn−1, tn) we define the discontinuous space

Yn,h =
∏

K∈K n

Pqn,K (K ;Rm) ⊂ P(Ωn,h;Rm) ⊂ L2(Ω;Rm) ,

a positive definite approximation Mn,h ∈ L∞(Ω;Rm×m
sym ) of M , and the projection

Πn,h : L2(Ω;Rm) → Yn,h with

(
Mn,hΠn,hy, zh

)
Ω

= (
Mn,hy, zh

)
Ω

, y ∈ L2(Ω;Rm) , zh ∈ Yn,h .

For the variational problem (2), we define the discontinuous ansatz and test spaces

Vh =
{

vh ∈
∏

R=(tn−1,tn)×K∈R
PpR ⊗ PqR (K ;Rm) ⊂ P(Qh;Rm) :

vh(0) = 0 for t = 0 , vn,h(tn−1) = Πn,hvn−1,h(tn−1) for n = 2, . . . , N
}

,

Wh =
∏

R=(tn−1,tn)×K∈R
PpR−1 ⊗ PqR (K ;Rm) ⊂ P(Qh;Rm) ⊂ L2(Q;Rm) .

By construction, we have ∂t Vh = Wh in Ih and dim Vh = dimWh .
We define the discrete operator Lh = Mh∂t + Ah + Dh by the uniformly posi-

tive definite operator Mh ∈ L∞(Ω;Rm×m
sym ) with Mh |(tn−1,tn) = Mn,h , a positive semi-
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definite operator Dh ∈ L∞(Ω;Rm×m
sym ), and the discontinuous Galerkin approxima-

tion [2] with full upwind flux Ah |(tn−1,tn) = An,h ∈ L
(
Yn,h,Yn,h

)
given by

(
An,hyh, zh

)
Ω

= −(∇ · vh,K , qh,K
)
Ωh,h

− (∇ ph,K , wh,K
)
Ωh,h

−
∑

K∈K n,h

∑

F∈F K

1

ζK + ζKF

([ph]K ,F + ζKF nK · [vh]K ,F , qK ,h + ζKnK · wh,K
)
F

for yh = (vh, p0,h, . . . , pr,h), zh = (wh, q0,h, . . . , qr,h) ∈ Yn,h with ph = p0,h + · · ·
+ pr,h , qh = q0,h + · · · + qr,h , where ζK = √

(κρ)|K is the impedance and FK ⊂
∂K are the set of faces. For inner faces F ⊂ Ω let KF be the neighboring cell
such that F = ∂K ∩ ∂KF , and we define [ph]K ,F = pKF ,h − pK ,h and [vh]K ,F =
vKF ,h − vK ,h . On boundary faces F ⊂ ∂Ω , we set ζKF = ζK , for F ⊂ ΓD we set
nK · [vh]K ,F = 0 and [ph]K ,F = −2ph , for F ⊂ ΓN we set nK · [vh]K ,F = −2nK ·
vh and [ph]K ,F = 0, and for F ⊂ ΓR we setnK · [vh]K ,F = −2nK · vh and [ph]K ,F =
−2ph .

Inf-sup stability of the Petrov–Galerkin approximation (2) can be provided for
fixed polynomial degrees pR ≡ p, qR ≡ p [1, Lemma 3], and a Strang-type argu-
ment as in [4, Theorem 10] yields convergence for consistent data. If the solution
is sufficiently regular, convergence of order (�t)p + (�x)q in the graph norm of
the operator is achieved [1, Theorem 1]. For a discontinuous Galerkin formulation
also in time, inf-sup stability is also established for the fully adaptive case in [8,
Theorem 3.1].

3 Application to a Benchmark Configuration in Geophysics

The discretization method is evaluated for an application to the Marmousi bench-
mark, see Fig. 1 for the configuration and [8, Chap. 5.2] for the parameters.

In order to avoid artificial reflections from the boundary of the computational
domain, an absorbing boundary layer of width 
 > 0 is included. There we select
a reduced velocity by scaling the material parameters ρ and κ j depending on the
distance s < 
 to the boundary with an increasing function γ with γ (s) ∈ (0, 1) for
s < 
 and γ (s) = 1 for s ≥ 
, so that the impedance remains constant, i.e.,

c̃ = γ (s)c , ρ̃ = ρ/γ (s) , κ̃ j = γ (s)κ j . (5)

A wave signal is initiated by a local source at (tS, xS) ∈ Q, and the reflections
of the wave at material interfaces are measured at receivers xR0 , . . . , xRm ∈ Ω . The
overall adaptive space-time solution method is realized as follows:
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Fig. 1 Distribution of the wave velocity cp = √
κ/ρ for the Marmousi benchmark [7] with absorb-

ing boundary layers (5). We use the domain Ω = (0, 6) × (−3, 0) [km2], homogeneous Neumann
boundary conditions on the surface (x2 = 0), andotherwisemixedboundary conditionswith gR = 0.
Absorbing boundary layers are included at the left and the right side for x1 < 1 and x1 > 5

1. We start with a coarse initial low order approximation choosing pR = qR = 1.
2. After solving the forward problem, the dual solution is approximated with respect

to a goal functional measuring the error with respect to the receiver positions.
3. The error is estimated by a dual-weighted error indicator with a rough estimate

for the interpolation error of the dual solution.
4. The polynomial degrees are refined and derefined with respect to the local

weighted residuals of the error indicator.
5. The overall scheme is repeated up to a sufficiently small value of the error indi-

cator.

The resulting seismograms are presented in Fig. 2 and for a single receiver in Fig. 3;
time slices of the solution are shown in Fig. 4.

More details of the adaptive strategy and the parallel multigrid preconditioner
using coarsening first in space and then in time are presented in [1, 2]. Moreover, the
method extends to the full wave form inversion, where the full space-time solution
is required for the adjoint problem backward in time, see [3].
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adaptive method, 147 456 space-time cells, 26 080 416 Dofs, pR ∈ {0,1,2,3}, qR ∈ {1,2,3}
adaptive method, 1 179 648 space-time cells, 71 228 754 Dofs, pR ∈ {0,1,2}, qR ∈ {1,2}
reference, 995 328 cells in space, 2048 time steps, 2 038 431 744 space-time Dofs, pK ≡ 2

Fig. 2 Seismograms for the adaptive results compared with a reference solution on a very fine
mesh computed with a time stepping scheme [6]. The wave is initiated by an impulse of wavelet
form in space and time centered at (tS, xS) = (0.15, (1,−0.25)), the pressure is evaluated at the
receiver positions between xR, j = (3,−0.25), . . . , (5,−0.25). The differences of the solutions are
illustrated in more detail in Fig. 3

uniform, 147 456 space-time cells, 3 538 944 Dofs, pR ≡ 1, qR ≡ 1
adaptive method, 147 456 space-time cells, 10 139 958 Dofs, pR ∈ {0,1,2}, qR ∈ {1,2}
adaptive method, 147 456 space-time cells, 26 080 416 Dofs, pR ∈ {0,1,2,3}, qR ∈ {1,2,3}
uniform, 1 179 648 space-time cells, 28 311 552 Dofs, pR ∈ {0,1,2}, qR ∈ {1,2}
adaptive method, 1 179 648 space-time cells, 71 228 754 Dofs, pR ∈ {0,1,2}, qR ∈ {1,2}
reference, 995 328 cells in space, 2048 time steps, 2 038 431 744 space-time Dofs, pK ≡ 2

Fig. 3 Seismograms at the first receiver for different p-adaptive meshes, starting with the coarse
problem results with a rough approximation and comparisonwith the reference solution.We observe
that the adaptive results on level 3 (with maximal polynomial degree pR = 3) and on level 4 (with
maximal polynomial degree pR = 2) are close to the reference solution with only a very small
fraction of space-time degrees of freedom
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Fig. 4 Pressure distribution for theMarmousi benchmark anddistribution of the polynomial degrees
qR ∈ {0, 1, 2, 3} of the adaptive method at time t = 0.4, 1.6, 2.4, 3.6 [s]
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A Hybrid Discontinuous Galerkin
Method for Transport Equations
on Networks

Herbert Egger and Nora Philippi

Abstract We discuss the mathematical modeling and numerical discretization of
transport problems on one-dimensional networks. Suitable coupling conditions are
derived that guarantee conservation of mass across network junctions and dissipation
of a mathematical energy which allows us to prove existence of unique solutions. We
then consider the space discretization by a hybrid discontinuous Galerkin method
which provides a suitable upwind mechanism to handle the transport problem and
allows to incorporate the coupling conditions in a natural manner. In addition, the
method inherits mass conservation and stability of the continuous problem. Order
optimal convergence rates are established and illustrated by numerical tests.

Keywords Hybrid discontinuous Galerkin methods · Transport problems · Partial
differential equations on networks

MSC (2010) 65M08 · 65N08 · 35Q30

1 Introduction

Partial differential equations on networks arise in various applications including traf-
fic flow, gas or water supply networks, and elastic multi-structures; see [6, 9, 10]
for mathematical background, further applications, and references. In this paper, we
study scalar conservation laws on one dimensional network structures describing,
e.g., the transport of a chemical substance in a flow through a network of pipes. A
linear advection equation is used to model the transport within the pipes and appro-
priate coupling conditions are formulated to describe the mixing of flows and the
conservation of mass at network junctions. For the semi-discretization in space, we
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consider a hybrid discontinuous Galerkin method which turns out to be particularly
well-suited for dealing with the hyperbolic nature of the problem as well as the cou-
pling conditions at network junctions. Stability and conservation of the semi-discrete
scheme and order optimal error estimates are established.

The rest of the paper is structured as follows: In Sect. 2, we introduce the basic
notation and then give a complete formulation of the considered problem.Aparticular
choice is made for the coupling conditions which allows us to prove conservation of
mass and stability of the overall system. In Sect. 3, we introduce the discretization
and establish conservation, discrete stability, and error estimates. Some numerical
tests are presented in Sect. 4 for illustration of our results.

2 Notation and Problem Formulation

Following the notation of [3], the topology of the pipe network is described by a
finite, directed, and connected graph G = (V ,E ) with vertex set V = {v1, . . . , vn}
and set of edges E = {e1, . . . , em} ⊂ V × V . For any vertex v ∈ V , let E (v) denote
the set of edges having v as a vertex. We then distinguish between inner vertices, i.e.
pipe junctions, V0 = {v ∈ V : |E (v)| ≥ 2} and boundary vertices V∂ = V \V0. For
any edge e = (vi , v j ), we define ne(vi ) = −1 and ne(v j ) = 1 to indicate the start and
the end point of the edge, and we set ne(v) = 0 if v /∈ e. We further identify e with
the interval (0, �e) of positive length �e and denote by L2(e) = L2(0, �e) the space
of square integrable functions on the edge e ∈ E , and by

L2(E ) = L2(e1) × · · · × L2(em) = {u : ue ∈ L2(e) for all e ∈ E }

the corresponding space on the network.Here and below, ue = u|e denotes the restric-
tion of a function defined over the network to a single edge e. We use

‖u‖2L2(E ) =
∑

e∈E
‖ue‖2L2(e) and (u, w)L2(E ) =

∑

e∈E
(ue, we)L2(e)

to denote the natural norm and scalar product of L2(E ) and define by

H s
pw(E ) = {u ∈ L2(E ) : ue ∈ H s(e) for all e ∈ E }

the broken Sobolev spaces which are equipped with the canonical norms

‖u‖2H s
pw(E ) =

∑

e∈E
‖ue‖2H s (e).

Let us note that H 0
pw(E ) = L2(E ). For s > 1/2 the functions u ∈ H s

pw(E ) are con-
tinuous along edges e ∈ E but may be discontinuous across junctions v ∈ V0.
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On every edge (pipe) e of the network, the transport shall be described by

ae(x)∂t u
e(x, t) + ∂x (b

eue(x, t)) = 0, x ∈ e, t > 0, (1)

ue(x, 0) = ue
0(x), x ∈ e. (2)

Here ue = u|e is the concentration of the substance in pipe e, ae = a|e represents the
cross sectional area of the pipe, and be = b|e is the given volume flow rate.

Assumption 1 We assume a, b ∈ H 1
pw(E )with ae(x) ≥ a0 > 0 and be constant on

every edge. Moreover, we require flow conservation at junctions, i.e.,

∑

e∈E (v)

bene(v) = 0 for all v ∈ V0. (C)

The conditions on b characterize an incompressible background flow. By the above
assumption, we can associate a unique flow direction to every edge e. We then
define for every vertex v ∈ V the sets of edges E in(v) = {e ∈ E (v) : bene(v) > 0}
and E out(v) = {e ∈ E (v) : bene(v) < 0} having flow into or out of the vertex. We
further splitV∂ into the sets of inflow and outflowverticesV in

∂ = {v ∈ V∂ : bene(v) <

0 for e ∈ E (v)} and V out
∂ = {v ∈ V∂ : bene(v) > 0 for e ∈ E (v)}. The local transport

problems (1)–(2) are then complemented by coupling and boundary conditions

ue(v, t) = ûv(t) for all v ∈ V , e ∈ E out(v), t > 0 (3)

with auxiliary vertex values ûv defined for t ≥ 0 by the relations

ûv(t) = gv(t), (4)

for all inflow vertices v ∈ V in
∂ . On the remaining vertices v ∈ V0 ∪ V out

∂ , we set

∑

e∈E in(v)

bene(v)ûv(t) =
∑

e∈E in(v)

bene(v)ue(v, t). (5)

For convenience of notation, we write û = (ûv)v∈V in the sequel.

Remark 1 From Assumption 1, we deduce that
∑

e∈E in(v) bene(v) > 0, so that ûv is
well-defined for all v ∈ V and can thus be eliminated using conditions (4) and (5).
Furthermore, the value ûv is a convex combination, i.e., a mixture, of the concentra-
tions ue(v) in the flows entering the junction v. Using condition (C), one can also
see that the mass at inner vertices is conserved, more precisely

∑

e∈E out(v)

bene(v)ûv(t) = −
∑

e∈E in(v)

bene(v)ue(v, t) for all v ∈ V0. (6)

The transport problem on networks is now fully described by the system (1)–(5). The
number and type of coupling and boundary conditions turns out to be appropriate to
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guarantee stability and well-posedness of the problem and to ensure conservation of
mass across network junctions.

Theorem 1 Let Assumption 1 hold and tmax > 0. Then for any g ∈ W 2,1(0, tmax;V in
∂ )

and u0 ∈ H 1
pw(E ), satisfying (3)–(5) for t = 0with some û(0) = û0 ∈ R

|V |, the prob-
lem (1)–(5) has a unique solution u ∈ C1([0, tmax]; L2(E )) ∩ C0([0, tmax]; H 1

pw(E ))

and û ∈ C0([0, tmax];R|V |). Moreover, the conservation property

d

dt

∫

E
a(x)u(x, t) dx = −

∑

v∈V ∂

bene(v)ue(v, t)

holds as well as the energy identity

d

dt
‖a1/2u‖2L2(E ) = −

∑

v∈V out
∂

|bene(v)||ue(v)|2 +
∑

v∈V in
∂

|bene(v)||gv|2

−
∑

v∈V 0

∑

e∈E in(v)

|bene(v)||ue(v) − ûv|2.

Proof The energy identity can be derived directly from (1)–(5) and establishes sta-
bility of the evolution problem. Existence of a unique solution then follows from the
Lumer-Phillips theorem and semigroup theory [5, 11]; a detailed proof can be found
in [12]. Related results can also be found in [2, 3, 8, 10]. �
Remark 2 Let us note that for junctions with more than two inflow pipes, the last
term in the energy estimate does in general not vanish and represents physical dissi-
pation, i.e., loss of information, due to mixing.

3 A Hybrid Discontinuous Galerkin Method

We now formulate a discontinuous Galerkin method for the semi-discretization of
problem (1)–(5); see [1, 7] for a general introduction. Hybridization introduces addi-
tional unknowns û at the grid points of the mesh which play a similar role as the
auxiliary mixing values in the coupling conditions (3). The spatial grid is defined by

Th = {T e
i = (xe

i−1, xe
i ) : i = 1, . . . , Me, xe

0 = 0, xe
Me = �e, e ∈ E }

with local and global mesh size denoted by he
i = xe

i − xe
i−1 and h = max he

i . As
approximation spaces for the concentration field, we choose

Wh = {wh ∈ L2(E ) : wh |T ∈ Pk(T ) for all T ∈ Th},

i.e., spaces of piecewise polynomials of degree ≤ k, which may formally take mul-
tiple values at grid points. We introduce grid dependent scalar products
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(u, w)T h =
∑

T ∈T h

(u, w)L2(T ), 〈u, w〉∂T h =
∑

T ∈T h

u(xi−1)w(xi−1) + u(xi )w(xi ),

whereT = (xi−1, xi ), and associatednorms‖w‖2T h
= (w, w)T h and‖w‖2∂T h

= 〈w, w〉∂T h .
The corresponding broken Sobolev spaces over the mesh Th are denoted by

H s
pw(Th) = {w ∈ L2(E ) : w|T ∈ H s(T ) for all T ∈ Th}.

We further introduce the spaces of hybrid variables

Ŵh = R
M̂ and Ŵ 0

h = {ŵ ∈ Ŵh : ŵv = 0 for all v ∈ V in
∂ }

with M̂ = |V | + ∑
e∈E (Me − 1) denoting the total number of grid points. Note that

grid points associated to the same junction v ∈ V are identified. For the numerical
approximation of (1)–(5), we then consider the following semi-discrete scheme.

Problem 1 Find uh ∈ C1([0, tmax]; Wh) and ûh ∈ C([0, tmax]; Ŵh) such that (uh(0),
wh)T h = (u0, wh)T h for all wh ∈ Wh , and such that ûv

h(t) = gv(t) for all v ∈ V in
∂ as

well as
(a∂t uh(t), wh)T h + bh(uh(t), ûh(t); wh, ŵh) = 0 (7)

holds for all wh ∈ Wh and ŵh ∈ Ŵ 0
h and all 0 ≤ t ≤ tmax, with bilinear form

bh(uh, ûh; wh, ŵh) = −(buh, ∂x wh)T h + 〈bn u∗
h, wh − ŵh〉∂T h + 〈bn ûh, ŵh〉V out

∂
,

(8)
and upwind value bn u∗

h = max(bn, 0)uh + min(bn, 0)ûh in flow direction.

As noted in [4], the hybrid variable ûh can be eliminated from the system resulting
in a standard discontinuous Galerkin discretization with upwind fluxes. At network
junctions v ∈ V0, the hybrid variable ûv

h is determined by a discrete version of the
coupling condition (5). Let us summarize some basic properties of the scheme.

Lemma 1 The bilinear form bh is semi-elliptic on the discrete spaces, i.e.,

bh(wh, ŵh; wh, ŵh) = 1

2

∥∥|b|1/2(wh − ŵh)
∥∥2

∂T h
+ 1

2

∥∥|b|1/2ŵh
∥∥2
V out

∂
∀wh ∈ Wh, ŵh ∈ Ŵ 0

h .

As a consequence, Problem 1 is uniquely solvable. Moreover, the solution satisfies

d

dt

∫

E
a(x)uh(x, t) dx = −

∑

v∈V ∂

bene(v)ue
h(v, t)

for all 0 ≤ t ≤ tmax, as well as the discrete energy identity

d

dt
‖a1/2uh‖2T h

+ ∥∥|b|1/2(uh − ûh)
∥∥2

∂T h
+ ∥∥|b|1/2ûh

∥∥2
V out

∂

= ∥∥|b|1/2g
∥∥2
V in

∂

.
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Finally, let (u, û) be a sufficiently regular solution of (1)–(5) and set ûxi = u(xi ) at
grid points xi in the interior of the edges. Then

(a∂t u(t), wh)T h + bh(u(t), û(t); wh, ŵh) = 0

for all wh ∈ Wh, ŵh ∈ Ŵ 0
h and all 0 ≤ t ≤ tmax, i.e., the method is consistent.

Proof The semi-ellipticity of bh follows by standard arguments; see e.g. [1, 3]. As
a consequence of this identity and Assumption 1, ûh can be eliminated algebraically
and the discrete problem can be turned into a linear ordinary differential equation.
Existence of a unique solution then follows by the Picard-Lindelöf theorem. The
conservation property and the energy identity follow by appropriate testing. �

Remark 3 The discretization inherits most of the properties from the continuous
problem. The dissipation terms in the energy estimate are partly due to possible
jumps across network junctions, which are present also on the continuous level, and
partly due to jumps at interior vertices, which are caused by numerical dissipation
due to the upwind mechanism in the discontinuous Galerkin method.

We are now in the position to establish order optimal a-priori error estimates.

Theorem 2 Let (u, û) denote a sufficiently regular solution of the system (1)–(5)
and let (uh, ûh) be the semi-discrete solution defined by Problem 1. Then

‖u − uh‖L∞(0,tmax;L2(E )) ≤ Cmaxhk+1‖u‖W 1,1(0,tmax;H k+1
pw (T h)),

with constant Cmax only depending on the bounds for the coefficient a and tmax.

Proof As usual, the proof is based on an error splitting

‖u − uh‖L∞(0,tmax;L2(E )) ≤ ‖ηh‖L∞(0,tmax;L2(E )) + ‖εh‖L∞(0,tmax;L2(E ))

into projection error ηh = u − πhu and discrete error εh = πhu − uh . Similar to [13],
we use a particular projection πh : H 1

pw(E ) → Wh defined for any T e
i ∈ Th by

πhw(xe
i,out) = w(xe

i,out) and
∫

T e
i

(w − πhw)p dx = 0 ∀p ∈ Pk−1(T
e

i ).

Here xe
i,out is the outflow point of the element T e

i = (xe
i−1, xe

i ), i.e., xe
i,out = xe

i if
be > 0 and xe

i,out = xe
i−1 otherwise. By standard estimates for this projection, we

obtain

‖ηh‖L∞(0,tmax;L2(E )) ≤ chk+1‖u‖L∞(0,tmax;H k+1
pw (T h)) ≤ Chk+1‖u‖W 1,1(0,tmax;H k+1

pw (T h)),

where we used the continuous embedding of W 1,1 into L∞ for the second step.
Further define π̂huv = ûv for vertices v ∈ V of the network and π̂huxe

i = u(xe
i ) for
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interior grid points xe
i on edge e. We abbreviate ε̂h = π̂hu − ûh , η̂h = û − π̂hu, and

denote by η∗
h the upwind value as in the definition of the method. Note that η̂h = 0

and η∗
h = 0 by construction. Using consistency of the discrete problem, we get

(a∂tεh(t), wh)T h + bh(εh(t), ε̂h(t); wh, ŵh)

= (a∂tηh(t), wh)T h + bh(ηh(t), η̂h(t); wh, ŵh)

for all wh ∈ Wh , ŵh ∈ Ŵ 0
h , and 0 ≤ t ≤ tmax. Testing with wh = εh and ŵh = ε̂h

yields

1

2

d

dt
‖a1/2εh‖2T h

= −bh(εh, ε̂h; εh, ε̂h)︸ ︷︷ ︸
≤0

+(a∂tηh, εh)T h + bh(ηh, η̂h; εh, ε̂h)

≤ (a∂tηh, εh)T h − (bηh, ∂xεh)T h︸ ︷︷ ︸
=0, (proj.)

+〈bn η∗
h︸︷︷︸

=0

, εh − ε̂h〉∂T h + 〈bn η̂h︸︷︷︸
=0

, ε̂h〉V out
∂

≤ c‖∂tηh‖T h ‖a1/2εh‖T h .

Note that the constant c only depends on the bound for a. Integrating this inequality in
time, using εh(0) = 0, taking themaximumover all 0 ≤ t ≤ tmax on the left hand side,
and using Hölder and Young inequalities on the right hand side then allows to bound
the L∞(0, tmax; L2(E )) norm of the discrete error εh by the W 1,1(0, tmax; L2(E ))

norm of the projection error ηh . �

Remark 4 Using the semi-ellipticity of the discrete bilinear form, it is possible to
obtain similar bounds also for the error ε̂h = π̂hu − ûh = û − ûh at the grid points. A
sub-sequent time discretization, e.g., by implicit Runge-Kutta methods, can also be
analyzedwith standard arguments; see [1, 13]. Since the problem is one-dimensional,
the computational overhead of an implicit time integration scheme is negligible.

4 Numerical Tests

For our numerical tests, we consider the following network topology.

v1 v2

v3

v4

v5 v6
e1

e2

e3
e4

e5

e6

e7

We set �e = 1 and ae = 1 for all edges, and choose be1 = 2, be2 = be3 = 1,
be4 = be5 = 0.5, be6 = 1.5, and be7 = 2 for which condition (C) is satisfied. We
further choose ue

0 = 0 as initial conditions and gv1(t) = t2/25 as inflow boundary
condition, such that the compatibility condition ue1

0 (0) = gv1(0) is satisfied. The
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2−5 0.0000 1.9725

Fig. 1 Left: Snapshot of the exact solution u (blue) and the hybrid dG solution uh for mesh size
h = 1 (red, dashed). The discontinuity at network junctions is clearly visible. Right: Error and
convergence rates for time horizon tmax = 5. As expected we observe second order convergence

solution for this problem can be computed analytically and one can verify that
u ∈ W 1,1(0, tmax; H 2

pw(Th)). From the estimates of Theorem 2, we therefore expect
second order convergence when discretizing with piecewise polynomials of order
k = 1. For time integration, we utilize an implicit Euler method with sufficiently
small step size τ ≤ h2, such that time discretization errors are negligible, and we use

err = max
0≤tn≤tmax

‖Ihu(tn) − un
h‖L2(E )

as a measure for the error, where Ihu denotes the element-wise linear interpola-
tion. As expected, the convergence rates observed in our numerical tests coincide
with predictions from Theorem 2. The solution plot in Fig. 1 clearly illustrates the
discontinuity of the analytical solution at network junctions.
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MUSCL Discretization for the Fluid Flow
Convection Operator on Staggered
Meshes

A. Brunel, R. Herbin, and J.-C. Latché

Abstract We propose in this paper a second order discretization of the momentum
convection operator for fluid flow simulation on staggered quadrangular or hexahe-
dral meshes. The velocity is approximated by the Rannacher-Turek finite element.
The implemented MUSCL-like approach is of algebraic type, in the sense that the
limitation procedure does not invoke any slope reconstruction, and is independent
from the geometry of the cells. The derived discrete convection operator applies
both to constant or variable density flows; we perform here numerical tests for the
barotropic and incompressible Navier-Stokes equations.

Keywords Convection operator · Fluid flow · MUSCL · Staggered grid

MSC (2010) 65M08 · 76M12

1 Introduction

Several works combining a finite element approximation of diffusion terms with
a finite volume discretization for the convection operator may be found in the lit-
erature. The implementation of such a technique to obtain monotone schemes for
convection-diffusion equations may be found for instance in [1–3]. Since finite-
volume convection operators (with suitable upwinding) also enjoy desirable L2-
stability properties, they have been used for the discretization of the Navier-Stokes
equations, preferably for compatible accuracy, i.e., low order, approximations. An
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application of this strategy for the discretization of stationary incompressible Navier-
Stokes equations by Crouzeix-Raviart finite elements may be found in [4]; exten-
sion to quasi-incompressible unsteady flows, both with the Crouzeix-Raviart and
Rannacher-Turek finite elements, is performed in [5]. These two works only con-
sider a first order upwinding technique, and our aim in this paper is to develop a
second order convection operator, based on an algebraic MUSCL-like technique [6].
The obtained operator is quite general, in the sense that it may be applied to incom-
pressible constant or variable density flows as well as to compressible flows, either
for Navier-Stokes or Euler equations. We show here some numerical applications for
the barotropic and the incompressible Navier-Stokes equations.

The continuous momentum convection operator that we consider here takes the
following generic form ∂t (ρu) + div(ρu ⊗ u) where ρ is the fluid density and u the
velocity. It may be recast under the form of a transport operator (which is central for
its stability) provided that a mass balance equation holds, that is

∂tρ + div(ρu) = 0, (1)

which we suppose here. The problem in which the convection operator is involved
is supposed to be posed over Ω × [0, T ) where Ω ⊂ R

d (with d = 2, 3) is an open
bounded domain of boundary ∂Ω and [0, T ) is a finite time interval.

2 Space and Time Discretizations

We first define a primal mesh M by splitting Ω into a finite family of disjoint
quadrangles (if d = 2) or hexahedra (if d = 3) denoted by K and called control
volumes or cells. We then denote by E the set of faces of the mesh M; for K ∈ M,
E(K ) stands for the set of faces of K and we thus have ∂K = ∪σ∈E(K )σ . Any face
σ ∈ E is either a part of the boundary of Ω , i.e., σ ⊂ ∂Ω , in which case σ is said to
be an external face, or there exists (K , L) ∈ M2 with K �= L such that K ∩ L = σ :
we denote in this case σ = K |L and σ is said to be an internal face. We denote by
Eext and Eint the set of external and internal faces. For K ∈ M and σ ∈ E, we denote
by |K | the measure of K and |σ | the (d − 1)-measure of the face σ .

The discretization is staggered in the sense that the scalar and vector unknowns
are not colocated. Indeed, the pressure and density unknowns are associated with the
cells of the primal meshM and denoted by pK , ρK while the degrees of freedom for
the velocity are defined on a dual mesh using the Rannacher-Turek non-conforming
low-order finite element approximation [7] and are denoted uσ = (uσ,1, . . . , uσ,d).
The dual mesh is constructed as follows: if K ∈ M is a rectangle or a rectangular
cuboid, we denote by xK the mass center of K and we construct DK ,σ as the cone
with basis σ and with vertex xK ; this definition is extended to a general cell K , by
supposing that K is split in the same number of sub-cells (the geometry of which
does not need to be specified) and with the same connectivity. We now define Dσ ,
the dual cell of basis σ , as Dσ = DK ,σ ∪ DL ,σ if σ = K |L ∈ Eint and Dσ = DK ,σ if
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Fig. 1 Primal and dual
meshes for the
Rannacher-Turek elements

Dσ

Dσ

σ = K|MK

M

L

σ
=
K|Lε =Dσ |Dσ

σ ∈ E(K ) ∩ Eext; its measure is denoted by |Dσ |. We then denote by Ẽ(Dσ ) the set
of dual faces of Dσ , and by ε = Dσ |Dσ ′ the face separating two dual cells Dσ and
Dσ ′ . All the components of the velocity are then approximated on each face of the
mesh, and their degrees of freedom are identified to the mean value of the velocity
component over the face.An example of the discretizationwith a few control volumes
is given on Fig. 1.

Finally, a constant time step denoted by δt is used for the time discretization, and
for 0 ≤ n ≤ N = T/δt , we define tn = n δt .

3 A Second Order Discrete Convection Operator

Let us first address the discretization of the mass balance equation (1) over the primal
mesh. Mimicking the divergence theorem, the discrete divergence reads (dropping
the time exponents for short), for K ∈ M:

div(ρu)K = 1

|K |
∑

σ∈E(K )

FK ,σ (2)

where FK ,σ stands for the (primal) numerical mass flux across σ outward K and is
defined by:

∀σ = K |L ∈ Eint, FK ,σ = |σ |ρσuσ · nK ,σ (3)

with nK ,σ the normal vector to the face σ outward K .
The dual mass fluxes Fσ,ε for σ ∈ E and ε ∈ Ẽ(Dσ ), ε ⊂ K are constructed from

these primal fluxes so as to ensure that a discrete mass balance holds over the dual
mesh Dσ ; this is obtained by computing the face densities ρDσ

and the mass fluxes
Fσ,ε as a linear combination of the densities in the primal cells adjacent to σ and the
mass fluxes through the primal faces of K , respectively; we refer to [8] for the exact
expressions.
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These dual fluxes are then used for the definition of the discrete momentum
convection operator, i.e., the discretization of the continuous term div(ρuiu). For
1 ≤ i ≤ d and σ ∈ E, the term div(ρuiu)σ reads:

div(ρuiu)σ = 1

|Dσ |
∑

ε∈Ẽ(Dσ )

Fσ,εuε,i (4)

where uε,i is an approximation of ui over the face ε; it is obtained by the algebraic
MUSCL-like technique introduced in [6], which implements the following proce-
dure. Let us consider the explicit part of the convection term

Tσ,i = ρn
Dσ
unσ,i − δt div(ρnuni u

n)σ .

The discrete convection operator is said to be monotone if the term Tσ,i can be
written as a convex combination of degrees of freedom of uni ; for instance, such a
property would ensure a discrete maximum principle for the transport equation, or
a convection-diffusion equation with a suitable (only available on specific meshes)
discretization of the diffusion term. Such a formulation of the term Tσ,i is possible
by using the discrete mass balance over Dσ if the following condition holds for each
ε ∈ Ẽint such as ε = Dσ |Dσ ′ :

∃ασ
ε ∈ [0, 1], ∃σ̃ ∈ E such that uε,i − uσ,i =

∣∣∣∣
ασ

ε (uσ,i − uσ̃ ,i ) if Fσ,ε ≥ 0,
ασ

ε (uσ̃ ,i − uσ,i ) otherwise,
(5)

together with the following CFL condition:

CFL = max
σ∈E

{ δt

|Dσ |
∑

ε∈Ẽ(Dσ )

|Fσ,ε|
} ≤ 1. (6)

We now deduce from the relation (5) a constructive process to compute the quan-
tities uε,i . Let ε be an internal face separating an upwind dual cell Dσ− from the
downstream dual cell Dσ+ (i.e., Fσ−,ε ≥ 0). Let us now choose two sets Nε(Dσ−)

andNε(Dσ+) of neighbouring dual cells of Dσ− and Dσ+ respectively. The following
assumptions are then a transcription of Condition (5):

∃ Dσ ∈ Nε(Dσ+) such that uε,i ∈ I1 = [uσ ,i , uσ ,i + ξ+

2
(uσ+,i − uσ ,i )]; (7a)

∃ Dσ ∈ Nε(Dσ−) such that uε,i ∈ I2 = [uσ−,i , uσ−,i + ξ−

2
(uσ−,i − uσ ,i )]; (7b)

where ξ+ and ξ− are two numerical parameters lying in the interval [0, 2].
Here we choose Nε(Dσ+) = {Dσ−}. Concerning Nε(Dσ−), several choices are

possible; we choose here the opposite cell to Dσ+ with regard to Dσ− , which means
that if Dσ− and Dσ+ share the primal face ε, we choose the cell Dσ ′ such that Dσ ′



MUSCL Discretization for the Fluid Flow Convection Operator … 501

shares a face ε′ with Dσ− and ε and ε′ share no vertex. With these choices, the
upwind value is always admissible, and in fact it is the only admissible cell if the
two parameters are chosen equal to 0.

We are now in position to give the algorithm used to compute the quantities uε,i :

1. Compute a tentative value uε,i with a convex combination of the values (e.g. the
centered choice) in the surrounding faces.

2. Evaluate Fσ,ε to determine the upwind face Dσ− and the downwind face Dσ+ ,
and choose accordingly the neighbouring sets Nε(Dσ−) and Nε(Dσ+).

3. Compute an admissible interval I1 ∩ I2 for uε,i by (7).
4. Compute uε,i by projecting the tentative value uε,i into the interval obtained in

the previous step.

Since this procedure is not linear, we cannot expect to derive an explicit formula
to compute the values of the coefficients aσ

ε . Their evaluation is however useless
for an explicit scheme: indeed, the presented algorithm univocally defines the value
uε,i . However, for this reason, we cannot easily define an implicit-in-time MUSCL
scheme (this would require an iterative process for each time step).

4 Numerical Tests

The computations presented here are performed with the open-source CALIF3S
software developed at IRSN [9].

4.1 Compressible Navier-Stokes Equations

We first show an application to the barotropic compressible case:

∂t (ρui ) + div(ρuiu) + ∂i p − div(μ(∇u + ∇ut ))i = 0 (i ∈ [[1, d]]) (8a)

∂t (ρ) + div(ρu) = 0 (8b)

p = aργ , a > 0, γ ≥ 1. (8c)

where p stands for the pressure.

The scheme—A first-order forward Euler time-discretization of System (8) reads:

∀K ∈ M,
1

δt
(ρn+1

K − ρn
K ) + div(ρnun)K = 0, (9a)

For 1 ≤ i ≤ d, ∀σ ∈ E,

1

δt
(ρn+1

Dσ
un+1

σ,i − ρn
Dσ
unσ,i ) + div(ρnuni u

n)σ
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+ (∇p)nσ,i − div(μ(∇un + ∇(un)t ))σ,i = 0, (9b)

∀K ∈ M, pn+1
K = a (ρn+1

K )γ , (9c)

with the previously described discrete convection terms andwith the discrete pressure
gradient and momentum diffusion term as given in [10]. Second order in time is
obtained by using the Heun scheme, which reads

W n+ 1
3 = S(W n), W n+ 2

3 = S(W n+ 1
3 ), W n+1 = 1

2
(W n + W n+ 2

3 ),

whereW n = (ρn, un, pn) is the vector of unknowns at step n and S(W n) is obtained
by one step of the forward Euler (9) The Heun scheme is used in the following
numerical test.

Translated standing vortex—Here we assess the convergence rate of the proposed
scheme on a test case built to this purpose. We first derive an analytical solution
of the steady barotropic Euler equations consisting in a standing vortex; then this
solution is made unsteady by adding a constant velocity translation. A solution for
the Navier-Stokes equations is finally derived by compensating the viscous forces
(that appear on the left hand side of equation (8a)) with a source term. We refer to
[11] for the expression of this solution.

The viscosity μ is chosen so that the Reynolds number is equal to 50, a = 9.81/2
and γ = 2. The domain is the square Ω = [−1.2, 2]2 and the computation is run on
the time interval [0, 0.8]. Uniform n × n grids are used, starting from n = 32 and
doubling the number of control volumes in each direction up to n = 256 mesh. The
time step is set to 0.03125 × h, with h = 3.2/n, which yields a CFL number with
respect to the celerity of the fastest wave close to 0.01 (the material velocity and
the speed of sound are in the range of 1.45 and 0.76 respectively); this low value of
the CFL number is imposed by the explicit discretization of the diffusion term (the
constraint stems from the necessity to be stable up to the finest mesh).

On Fig. 2, we draw the L1 norm of the numerical error for the velocity and the
density as a function of the mesh step. This error is obtained by taking the difference
between the computed velocity or density at the final time and the piecewise constant
function defined by taking on each dual cell the value of the continuous solution at the
cell center. The measured convergence orders are close to 1.8 and 2 for the velocity
and the density respectively.

4.2 Incompressible Navier-Stokes Equation

We now turn to the incompressible Navier-Stokes equations (with ρ = 1):

∂t ui + div(uiu) + ∂i p − div(μ(∇u + ∇ut ))i = 0 (i ∈ [[1, d]]), (10a)

div(u) = 0. (10b)



MUSCL Discretization for the Fluid Flow Convection Operator … 503

Fig. 2 L1 norm error for the MUSCL scheme for the velocity and the density. Here h′ =
maxK∈M diam(K ) = √

2h

The scheme—This system is solved using a projection scheme, which consists in
the two following steps:

Prediction step—Solve for ũn+1:
For 1 ≤ i ≤ d, ∀σ ∈ E,

1

δt

(
ũn+1

σ,i − un
σ,i

)
+ div(ũn

i u
n)σ

+(∇p)nσ,i − div(μ(∇ũn+1 + (∇ũn+1
)t ))σ,i = 0.

(11a)

Correction step—Solve for pn+1 and un+1:
For 1 ≤ i ≤ d, ∀σ ∈ E,

1

δt
(un+1

σ,i − ũn+1
σ,i ) + (∇pn+1)σ,i − (∇pn)σ,i = 0,

(11b)

∀K ∈ M, div(un+1)K = 0. (11c)

The convection terms are defined in the previous section, with the density set to 1 in
the mass flux. We refer once again for short to [10] for the definition of the discrete
pressure gradient and the momentum diffusion term.

Flow past a cylinder—We consider here a flow past a cylinder studied in a literature
benchmark [12]. The geometry of the domain is given in [12, Fig. 1]. The present
test corresponds to the Test Case 2D-2 of [12]. The viscosity μ is chosen so that
the Reynolds number is equal to 5000, so the convection is strongly dominant. The
computations are performedusing avery coarse gridwith 4033 cells, representative of
whatmay be encountered in very complex 3D industrial simulations.We compare the
results with the present convection scheme with the results obtained with (implicit-
in-time) upwind and centered convection operators.

The main quantities of interest are the pressure difference ΔP between the front
and end points of the cylinder, the Strouhal number, the maximum drag coefficient
and the maximal and minimal lift coefficients. They are gathered in Table1 and
Table2, together with reference values obtained with a converged-in-space compu-
tation. Even if the convergence is far from being reached with the (intentionally) very
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Table 1 ΔP and Strouhal number

Reference
ΔPmax St
3.33080 0.3371

Scheme ΔPmax St
Upwind 2.37020 0.2304

Centered 2.00400 0.2591

MUSCL 2.63470 0.2660

Table 2 Lift and drag coefficients

Reference
cd,max cl,max cl,min

3.46088 2.8479 –2.78536

Scheme cd,max cl,max cl,min

Upwind 3.23544 0.52157 –0.51295

Centered 3.18728 0.10793 –0.16129

MUSCL 3.42478 1.23162 –1.16792

coarse mesh used in this study, theMUSCL scheme seems able to capture at least the
order of magnitude of the reported quantities. This is supported by an examination of
the computed flow structure: the vortex shedding phenomenon is qualitatively repro-
duced by theMUSCL schemewhile the upwind and centered ones yield, respectively,
unrealistic small and large recirculation zones.
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An Active Flux Method for Cut Cell
Grids

Christiane Helzel and David Kerkmann

Abstract We present recent work in progress towards the development of a third
order accurate Cartesian grid cut cell method for the approximation of hyperbolic
conservation laws in complex geometries. Our cut cell method is based on the Active
Flux method of Eymann and Roe, a new finite volume method, which evolves both
cell average values and point values of the conserved quantities. The evolution of the
point values leads to an automatic stabilisation of the cut cell update, i.e. the method
is stable for time steps that are appropriate for the regular cells. While most of the
existing cut cell stabilisation methods lead to a loss of accuracy, we show that it is
possible to obtain third order accurate results. In this contribution we restrict our
considerations to the linear transport equation in one and two space dimensions.

Keywords Cartesian cut cell method · Finite volume method · Active Flux
method · High-order methods

MSC (2010) 65M08 · 65M12 · 65M25 · 35L65 · 35L04

1 Introduction

The Active Flux method, first introduced by Eymann and Roe [3], is a new finite
volume method that offers efficient third order computations. Its very local stencil
is a very attractive feature that might simplify the treatment of the boundary of a
complex geometry. Previous works have defined Active Flux methods in one and
two space dimensions [3, 4]. Two-dimensional methods have been derived both for
triangular [4] and for rectangular grids [1, 5]. The latter form the basis for our cut
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cell method. To lay the foundations, we focus on the advection equation in one and
two space dimensions.

This work is organised as follows: In Sect. 2 we discuss the Active Flux method
for cut cells in one dimension. We provide accuracy and stability results. Section3 is
concerned with the method in two dimensions. We adapt the Cartesian grid method
to cut cell grids and have a first look at accuracy and stability.

2 Active Flux for Cut Cells in One Space Dimension

2.1 Regular Grid

The Active Flux method in one space dimension uses not only the cell averages, but
also point values of the conserved quantity at the interface as the degrees of freedom.
Therefore, not only a definition of the numerical flux, but also the update of the
point values is required for the construction of one time step. Let Qn

i denote the cell
average and Qn

i− 1
2
denote the left interface point value of cell i at time tn . For this

work, the advection equation qt + f (q)x = 0, f (q) = aq for a ∈ R will be our test
model. Without loss of generality let a > 0. The Active Flux method is defined by
the following steps:

1. Reconstruct a uniquely defined parabola qrec in each cell with the cell average
and the two interface values that border the cell.

2. Define the interface updates through an evolution operator that approximates the
exact evolution. In our case, by the method of characteristics, the exact solution at
time level tn+1 = tn + Δt is q(x, tn + Δt) = q(x − aΔt, tn). The new interface
value Qn+1

i− 1
2
will be the evaluation of the reconstruction at the corresponding

position.
3. Approximate the flux over an interface xi− 1

2
at time tn with Simpson’s rule:

1

Δt

∫ Δt

0
f (q(xi− 1

2
, tn + t))dt ≈ 1

6

(
f (Qn

i− 1
2
)) + 4 f (Q

n+ 1
2

i− 1
2
)) + f (Qn+1

i− 1
2
))

)
=: Fn

i− 1
2

(1)
The new cell interface value Qn+1

i− 1
2
is used in the flux formulation. The middle

value Q
n+ 1

2

i− 1
2
is obtained in the same way as Qn+1

i− 1
2
by replacing Δt with Δt

2 in step

2. Notice that for one-dimensional linear problems, the flux approximation by
Simpson’s rule is exact for quadratic reconstructions, as it can be transformed to
an integral in space [5]:

1

Δt

∫ Δt

0
f (q(xi+ 1

2
, tn + t))dt = 1

Δt

∫ x
i+ 1

2

x
i+ 1

2
−aΔt

qrec(x, tn)dx (2)
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Fig. 1 Active Flux method. Left: Reconstruction in one cell (here in a reference cell). Right: Point
evaluation and flux computation

4. Perform the usual finite volume update

Qn+1
i = Qn

i − Δt

Δx

(
Fn
i+ 1

2
− Fn

i− 1
2

)
. (3)

Figure1 illustrates the method. This method is third order accurate. The local trun-
cation error is given in Sect. 2.3. The time step restriction for this method reads

aΔt ≤ Δx . (4)

2.2 Artificial Cut Cell

Consider a one-dimensional grid xi− 1
2
, i = 0, . . . , n + 1, with cell interface values

Qi− 1
2
and cell average values Qi . Let xi+ 1

2
− xi− 1

2
= Δx ∀i ∈ {0, . . . , n + 1} \ {k}.

Let xk+ 1
2
− xk− 1

2
= αΔx for α ∈ (0, 1). Cell k will be referred to as the small cell.

As cells in one dimension can only be cut into smaller cells, this corresponds to the
only cut cell situation. Following the steps from above, we naturally obtain a cut cell
method by defining the treatment of steps 3 and 4 for the cut cell. The natural time
step restriction if we maintain the local stencil becomes

aΔt < αΔx . (5)

Depending on the signs of aΔt − αΔx and aΔt − 2αΔx , the evaluations of the
reconstruction for the required flux quadrature points at interface k + 1

2 will be
done in cell k or k − 1. The case aΔt − αΔx < 0 satisfies condition (5) and can
be described as an irregular grid case. In cut cell applications, the size of the small
cell can be orders of magnitude smaller than the standard cell size, i.e. α � 1. In
that case, the update of the interface as well as the middle value needed for the flux
will be taken from the reconstruction in cell k − 1. The third possibility combines
both previous cases in having one evaluation in each cell. Figure2 shows all cases.
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Fig. 2 Extracts from one-dimensional cut cell grids. Left: both characteristics origin in the small
cell. Center: one of the characteristics origins in the small cell. Right: no characteristic origins in
the small cell

In the interesting cases, where aΔt − 2αΔx > 0, the approximation to the flux
at the interface k + 1

2 is no longer exact since the integrand consists of a piecewise
quadratic function that is continuous, but not differentiable at xk− 1

2
. To study the

accuracy in more detail, we state the local truncation errors.

2.3 Local Truncation Error

Let

qn
i = 1

Δxi

∫ x
i+ 1

2

x
i− 1

2

q(x, tn)dx

be the cell average of the exact solution at time tn , qn
i− 1

2
= q(xi− 1

2
, tn) and F̃i− 1

2
the

numerical flux obtained by replacing the numerical values Qn
i and Qn

i− 1
2
by the exact

values qn
i and qn

i− 1
2
for all i . Let γ = aΔt

Δx be the CFL number for a grid of some

standard cell size Δx .

Definition 1 The local truncation error in cell i is defined as

τi :=
qn+1
i − qn

i + Δt
Δxi

(
F̃i+ 1

2
− F̃i− 1

2

)

Δt
. (6)

Lemma 1 The local truncation error of the Active Flux method on a regular sized
grid reads

τi = 1

24
aΔx3γ (1 − γ )2

∂4

∂x4
q(xi , tn) + O(Δx4). (7)

On a cut cell grid, as described in Sect. 2.2, one obtains one out of three possible
schemes (cf. Fig. 2). We will only inspect the case Δx > aΔt > 2αΔx and give an
argument for the other two cases.
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Lemma 2 The local truncation error of the Active Flux method in the small cell k,
as defined above, in the case Δx > aΔt > 2αΔx reads

τk =
(

− 5

72
− 5

24
α − 5

36
α2 + 1

4
(1 + α) γ − 1

6
γ 2

)
aΔx2

∂3

∂x3
q(xk , tn) + O(Δx3). (8)

The local truncation error in cell k + 1 in the same case reads

τk+1 =
(

5

72
+ 5

24
α + 5

36
α2 − 1

4
(1 + α)γ + 1

6
γ 2

)
aαΔx2

∂3

∂x3
q(xk+1, tn) + O(Δx3).

(9)

Proof The proofs of Lemmata 1 and 2 are done by using the Taylor series expansion
and are ommited due to their lengths.

It is clearly visible that the method reduces to second order in the small cell k and
its right neighbour k + 1. This reduces the convergence order to two if measured in
the L∞ norm, but not if measured in the L1 norm. This loss of accuracy was also
observed in numerical simulations.

Remark 1 Notice that the error in cell k + 1 will influence the flux at the interface
xk+ 3

2
and will thus propagate to cell k + 2 by a certain percentage that depends on

γ . The same effect will happen for cell k + 2 and the flux at xk+ 5
2
one time step later.

This means that the error in cell k + 1 will spread out to all other n − k = O( 1
Δx )

cells over time. Even though the one-step-errorΔtτk+1 = O(Δx3) is created in every
time step, the error in cell k + 1 (and all subsequent cells) will be bounded through
this harmonic property and one can confirm third order convergence even in cell
k + 1. The same effect does not appear in the cut cell in this situation because the
cell average Qk is never used as can be seen from the right plot of Fig. 2. For the
other cases (left and center plot of Fig. 2) the effect takes place and third order is
obtained.

To obtain third order in the L∞ norm, one can replace Simpson’s rule by an exact
integration that can for example be carried out by an iterative Simpson’s rule.

2.4 Stability

In order to study the linear stability of the one-dimensional Active Flux method in
the presence of small cells we write the method in the matrix-vector form

Qn+1 = AQn,

where the vector Qn contains all degrees of freedom at time level tn . The method
is Lax-Richtmyer stable iff ‖An‖ is bounded independently of n. Using the Jordan
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Fig. 3 Results of a linear stability analysis of the one-dimensional Active Flux method with regular
cells (left), one small cell (center) and an alternation of small and regular cells (right). The CFL
number used is 0.9. The cut cell size is α = 0.05 for every cut cell

decomposition of A, one can show that asymptotic stability is equivalent to the condi-
tion |λ| ≤ 1 for all eigenvalues λ of A and if |λ| = 1, then the geometric and algebraic
multiplicity need to match [6]. While we do not have an analytical formula for the
eigenvalues, we compute eigenvalues (using Python) for different grids. Results are
shown in Fig. 3. In the left plot we show eigenvalues of the matrix A which describes
the regular Active Flux method without small cells. In the central plot we show the
situation with one small cell of size αΔx < 1

2aΔt . In the right plot we show the
eigenvalues for the resulting method on a grid for which every second grid cell is a
small cell. In all situations Simpson’s rule provides a stable method for time steps
that correspond to the usual CFL condition (4) of the regular part of the grid.

Note that linear stability of the Active Flux method with exact integration is easy
to show, since exact evolution does not increase the total variation. However, in more
general situations, it might not be possible to use exact integration. Therefore, it is
important to know that Simpson’s rule, while degrading the accuracy in the small
cell, leads to a stable method.

3 Active Flux for Cut Cells in Two Space Dimensions

In the original work by Eymann and Roe, a triangular grid was used for the two-
dimensional Active Flux method [4]. Recently, a Cartesian grid version was devel-
oped by Barsukow et. al [1] as well as Helzel, Kerkmann and Scandurra [5]. The
latter will be the basis for our cut cell approach. This method follows the same pro-
cedure as already explained in the one-dimensional approach. We will briefly cover
all changes. Details will be found in future publications.

We study the advection equation in two dimensions

qt + aqx + bqy = 0, (x, y) ∈ Ω, t > 0, (10)
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Fig. 4 Degrees of freedom in the two-dimensional Active Flux method for all possible cut cells

for a spatial domain Ω , a, b ∈ R. Inflow and outflow boundary conditions are
imposed.

1. In two space dimensions, cut cells can have various shapes. In this work, we
restrict ourselves to cut cells with straight boundary segments. We also require
that our grid is fine enough so each cell is only crossed by a maximum of one
connected boundary path. Figure4 shows a representative for each possible shape.
The degrees of freedomare placed in a naturalway along the boundaries. The solid
dots indicate point values sitting on the interface. As the cells have a different
amount of degrees of freedom, different reconstructions have to be used. All
reconstructions use only the degrees of freedom that belong to the respective cell
and give a third order approximation of the exact solution.

2. The exact evolution leads to the formula q(x, y, tn + Δt) = q(x − aΔt, y −
bΔt, tn) which is used for the update of the degrees of freedom on the inter-
face.

3. The flux computation now uses a two-dimensional version of Simpson’s rule. The
required point values are found in the same way as in the one-dimensional case
through the formula given in 2.

Remark 2 A similar transformation to Eq. (1) can be performed in two dimensions.
Except for a = 0 or b = 0, the resulting spatial area will overlap multiple cells.
Therefore, Simpson’s rule is now no longer exact even for regular Cartesian grid
cells. To perform an exact integration, one will have to iteratively integrate over the
correct cell parts.

4. The finite volume update reads

Qn+1
i, j = Qn

i, j − Δt

|Ωi, j |
s∑

m=1

Fn
m · νm (11)

where s denotes the number of cell boundary faces and νm denotes the outer
normal.
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Fig. 5 Left: Coarse cut cell grid. Right: Estimated error of convergence for θ = π/12, π/6, π/4

3.1 Accuracy Study

Let θ ∈ (0, π/4] be an angle, δ ∈ (0, 1) an offset,
Ω = [0, 1]2 ∩ {(x, y) | y − tan(θ)(x − δ) > 0 ∧ y − δ − tan(θ)x < 0} a channel in
two dimensions and a = cos(θ) and b = sin(θ) velocities parallel to the channel
walls. The setup and an example of a cut cell grid are shown in Fig. 5 (left).

We impose inflowboundary conditions for x = 0 and y = 0 and outflowboundary
conditions for x = 1 and y = 1. Since the flow is parallel to the channel walls, there
is no flow across them. The initial condition reads

q0(x, y) = 5 exp(−100(x + y − 0.7)2). (12)

We use Δt = 0.7max{Δx
a ,

Δy
b } and the final time T = 0.4. A similar test using a

discontinuous Galerkin cut cell method is performed in [2].
We estimate the order of convergence by the solution to the least square problem

that is given by fitting a straight line to the logarithmic errors. We test for various
offsets δ and angles θ . The results for some values of θ and δ = 0.2001 using exact
integration are shown in Fig. 5 (right). The results for all other tested values look
very similar but cannot be presented here due to the limited amount of space. The
method remains stable and accurate for any cut cell size. Third order is achieved in
the L1 norm and second order or better is achieved in the L∞ norm. In these tests,
the size of the smallest cut cell varied between a factor of 10−3 to 10−8 compared to
the regular cells.

4 Conclusions

Wepresent a third order accurate finite volume cut cell method for the linear transport
equation in one and two space dimensions. It is based on the Active Flux method and
appears to be uniformly stable with regard to a time step determined by the size of the
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Cartesian grid cells.More details of themethod, in particular for the two-dimensional
case, will be presented in a later publication. We plan to extend the method to more
complicated geometries and equations, such as the linear transport equation with
spatially varying velocity field, the linear acoustic equations and ultimately non-
linear equations.
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Finite Volume Discretisation of Fracture
Deformation in Thermo-poroelastic
Media

Ivar Stefansson, Inga Berre, and Eirik Keilegavlen

Abstract This paper presents a model where thermo-hydro-mechanical processes
are coupled to a deformationmodel for preexisting fractures. Themodel is formulated
within a discrete-fracture-matrix framework where the rock matrix and the fractures
are considered as individual subdomains, and interaction between them takes place
on the matrix-fracture interfaces. A finite volume discretisation implemented in the
simulation toolbox PorePy is presented and applied in a simulation showcasing the
effects of the different mechanisms on fracture deformation governed by contact
mechanics, as well as their different timescales.

Keywords Thermo-poroelasticity · Porous media · Contact mechanics ·
Fractures · Mixed-dimensional

1 Introduction

We consider the simulation of fully coupled thermo-hydro-mechanical (THM)
dynamics in fractured porous media, where the fractures can undergo sliding if the
shear forces on the fracture planes are sufficient to overcome frictional resistance.
These processes are highly relevant for several subsurface applications, including
geothermal energy extraction, storage of CO2 and energy and groundwater manage-
ment. Our simulation approach is based on threemain ingredients: First, conservation
of mass, energy and momentum is preserved under discretisation by the employment
of a fully coupled finite volume (FV) approach approach for the governing equations.
Second, the network of fractures, which act asmain conduits for fluid flow and energy
transport, is explicitly represented in the simulation model. Specifically, the fractures
are represented as lower-dimensional manifolds that are embedded in the host porous
medium, thus the simulation model is defined on a mixed-dimensional geometry.
Third, the sliding of fractures is modelled as a frictional contact problem, which is
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solved by an active set approach. The discretisation of the contact problem benefits
from the finite volume approach, which directly provides discrete representations
of displacements as well as of mechanical, fluid and thermal forces on the fracture
surfaces. Furthermore, the explicit degrees of freedom for fluid pressure inside the
fractures allow us to capture the critical interplay between elevated fluid pressures
and fracture deformation.

2 Model

We consider a mixed-dimensional geometry which is decomposed in subdomains of
different dimensions representing the host porousmediumand the lower-dimensional
planar fractures, and separated by interfaces, see [5] for details. Variables and gov-
erning equations are defined on subdomains and interfaces, with full flexibility to
vary the type and number of variables and equations between geometric objects. The
framework accommodates heterogeneous and multiphysics models, with a natural
treatment of modelling and discretisation of mixed-dimensional problems.

We denote a subdomain by �i and its boundary by ∂�i , and identify the vari-
ables defined within it by subscript i . Where convenient, we will denote the higher-
dimensional matrix domain by �h and lower-dimensional fracture domains by �l ,
as indicated in Fig. 1.

∂�i may be divided into the external boundary ∂�e
i and the internal fracture

boundary ∂�
f
i , which coincides geometrically with both the immersed fracture

domain�l and the interface between�h and�l . This interface is denoted by � j , and
the associated variables identified by subscript j . The two sides of the fracture are
denoted by + and −, as shown in Fig. 1. Projection of variables from the interface
to the subdomains is performed by �

j
h and �

j
l , respectively, whereas �

j
h and �

j
l

project from the subdomains to the interface.

Fig. 1 Schematic representation of a fracture �l and a matrix subdomain �h to the left. The two
subdomains are separated by the interface, whose two sides are denoted by �+ and �−. Also shown
are the projection operators used for transfer of variables between the subdomains and the interface.
To the right, we show the block structure of the matrix resulting from a fully implicit discretisation
of Eqs. 1–5
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For�h , the primary variables are displacement u, fluid pressure p and temperature
T. The fluid flux and the advective and conductive heat fluxes are denoted by v , w
and q , respectively. The definition of the parameters used in the following may be
found in the repository at [8].

Assuming all external source and sink terms to be zero, conservation of momen-
tum, mass and energy in �h can be written as [9]

∇ ·
[
D
2

(∇u + ∇uT ) − αpI − βs K (T − T0)I
]

= 0,

(
φc + α − φ

K

)
∂p

∂t
+ α

∂(∇ · u)

∂t
− φβ f

∂T

∂t
− ∇ · K

μ
∇ p = 0,

ρeCe
∂T

∂t
+ βs K T0

∂(∇ · u)

∂t
− φβ f T0

∂p

∂t
+ ρ f C f v · ∇T − ∇ · κe∇T = 0.

(1)

Similarly, conservation of mass and energy in �l and fracture intersection domains
�x is given by

a∗c f
∂p

∂t
+ ∂a∗

∂t
− a∗β f

∂T

∂t
− ∇ · a∗K

μ
∇ p = �

j
i v j ,

a∗ρ f C f
∂T

∂t
− a∗β f T0

∂p

∂t
+ a∗ρ f C f v · ∇T − ∇ · a∗κ f ∇T = �

j
i (q j + w j ).

(2)

Here, the specific volume a∗ accounts for the extension in the collapsed dimension(s),
while subscript 0 denotes the initial value and f , s and e indicate fluid, solid and
effective parameters, respectively.

Denoting the trace operator by tr(·), the conditions on � j are the three flux
relationships:

v j = −K j (�
j
l pl − �

j
htr(ph)),

q j = −κ j (�
j
l Tl − �

j
htr(Th)),

w j =
{

ρ f C f v j�
j
htr(Th) if v j > 0,

ρ f C f v j�
j
l Tl if v j ≤ 0.

(3)

Eqs. 1–3 are complemented by the internal boundary conditions tr(uh) = �
j
hu j ,

vh · n = �
j
hv j , qh · n = �

j
hq j and wh · n = �

j
hw j on ∂�

f
h , and standard Dirichlet

and Neumann conditions on the external boundaries.
The fracture deformation is described by relations between the contact traction

on the fracture surface, T , and the jump in displacement over the fracture. Denoting
the displacements on the two sides of the interface by u+

j and u−
j , the displacement

jump is [[u j ]] = �
j
l

(
u+
j − u−

j

)
, and [[δu]] denotes its increment. [[u]] is also related

to the aperture a and specific volume: for �l , we set a∗ = a = [[u]]n + a0, with a0
denoting the initial aperture. When computing a for�x , we use the mean of a for the
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adjacent cells of the intersecting fractures. Similarly, a∗ is the product of the adjacent
fracture apertures.

Since the fracture deformation depends on the traction caused by the contact
between the two surfaces, we subtract the contribution from the pressure pl on the
fracture surfaces. Thus, the interface tractions on the two fracture surfaces and the
traction balance are

T+
j = �

j
hσ · n|∂�+

h
,

T−
j = �

j
hσ · n|∂�−

h
,

�
j
l (T − plnl) = T+

j = −T−
j ,

(4)

with nl equalling the outward normal on the + side. Denoting tangential and normal
components of vectors on the fracture by subscripts τ and n, respectively, the fracture
deformation for �l is governed by three non-penetration relations and three friction
law constraints:

[[u]]n ≤ 0 ||T τ || ≤ −FTn
Tn[[u]]n = 0 ||T τ || < −FTn → [[δu]]τ = 0

Tn ≤ 0 ||T τ || = −FTn → ∃ ζ ∈ R
− : T τ = ζ [[δu]]τ ,

(5)

with F denoting the friction coefficient of the fracture. Further detail on the fracture
deformation is found in [2, 4].

3 Discretisation

Applying Implicit Euler for the temporal discretisation, the scalar conservation Eqs. 1
and 2 are discretised using a Multi-Point Flux Approximation [1] for the conduc-
tive terms and a first order upwind scheme for the advective term. The momentuum
conservation equation and the ∇· u terms in the scalar conservation laws are dis-
cretised using the FV scheme introduced in [6]. The scheme, termed Multi-Point
Stress Approximation (MPSA), is based on local momentum conservation and is
formulated in terms of discrete cell centred pressures and displacement unknowns.
Originally developed for the pure hydro-mechanical problem, the coupled discreti-
sation approach can readily be extended to the THM case [7].

Thanks to the structure provided by the mixed-dimensional framework, the dis-
cretisation of the coupling fluxes of Eq.3 consists of two simple tasks. Discrete
projection operators transfer variables from higher-dimensional faces and lower-
dimensional cells to the interface cells. The interface fluxes are then discretised
directly using the projected variables, see [5].

The traction balance and fracture deformation relations of Eqs. 4 and 5 are for-
mulated in terms of displacement and traction on the fracture surfaces. The former is
included as a primary interface variable, and thus directly available. While the latter
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is not a primary variable, the FV framework is formulated in terms of face tractions,
implying that in the discrete setting, the surface traction can be readily reconstructed
from the primary variables. Specifically, we apply available discretisation operators
to get contributions to the stress from displacements, pressures and temperatures in
�h , the interface variable u j , and conditions on external boundaries.

For the discretisation of the fracture deformation relations we first reformulate
Eq.5 as two nonlinear complementary functions and compute their derivatives. A
semismooth Newton scheme is applied on the basis of the three sets

In = {b ≤ 0}
Iτ = {|| − T τ + c∗[[δu]]τ || < b

}
A = {|| − T τ + c∗[[δu]]τ || ≥ b > 0

}
,

(6)

which correspond to fracture cells which are open, sticking and sliding, respectively.
c∗ denotes a numerical parameter and b = F (−Tn + c∗[[u]]n) is the friction bound.
For each fracture cell ν, this results in the following cell-wise constraints when
computing iterate k + 1 from the current iterate k:

T k+1 = 0 ν ∈ In
[[uk+1]]n = 0 ν ∈ Iτ ∪ A

[[δuk+1]]τ + (F[[δuk]]τ /bk)T k+1
n = [[δuk]]τ ν ∈ Iτ

T k+1
τ + Lk[[δuk+1]]τ + F skT k+1

n = rk + bk sk ν ∈ A.

(7)

The coefficients L , s and r are functions of [[δuk]]τ , [[uk]]n and T k , and can thus be
computed from the previous iterate and time step. For further details of the discreti-
sation and implementation of the fracture deformation equations, we refer to [2].

In terms of implementation, we mention that the mixed-dimensional framework
allows us to discretise each term for each subdomain or interface independently. We
may thereby break the highly complex task of discretising the contact conditionswith
a coupled THMstress down inmanageable tasks. For the global discretisationmatrix,
this manifests as a two-level block structure. The first level has the subdomains on
the diagonal and interfaces on the off-diagonals. The second level corresponds to
the primary variables, and has coupling terms between different variables on the
off-diagonals, see Fig. 1.

The model is implemented for two- and three-dimensional problems in the open
source simulation toolbox PorePy presented in [5], and run scripts for the example
simulation presented in the following section may be found in the repository [8]. The
simplicial spatial grid is constructed such that the lower-dimensional cells coincide
with higher-dimensional faces through a back-end to Gmsh [3].
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4 Results

To demonstrate the applicability of the model and discretisation, we present simu-
lations of THM and fracture deformation effects for a 2d domain containing seven
fractures, see Fig. 2 for the geometry and numbering of the fractures. The setup is
designed to expose the method to a wide range of physical driving forces and thus
probe the stability and performance of the simulation model.

Starting out from a homogeneous initial state for all primary variables, the sim-
ulation consists of four phases, where we study the effect of sequentially adding
different driving forces. In phase I, the deformation is caused by a boundary dis-
placement of (0.002,−0.005)T m applied at the top. To allow the system to reach
equilibrium, this phase lasts from t = −10 000 s to t = 0 s. In phase II, a pressure
gradient is applied from left to right. At the end of the phase, at t = 0.02 s, the
pressure has virtually reached a steady state, see Fig. 2. In phase III, we reduce the
temperature at the left boundary of from 0 to −100 ◦C and in phase IV we increase
it to 100 ◦C, thus exploring both thermal expansion and contraction. At the end of
each of the two last phases, at t = 2.5 s and t = 5 s, the domain has reached a close
to uniform temperature.

For the end of each of the simulation phases, Fig. 3 shows the deformation state,
i.e. whether [[u]]n and [[u]]τ are nonzero for each fracture cell. These show that the
state changes for all fractures, and that for each phase, at least three fractures change
their state. Figure4 shows the norm of [[u]]n and [[u]]τ on each fracture throughout
the simulation. Because of the time scale difference, the pressure phase is shown in
the left plot and the temperature phase in the right one. The former shows gradual and
moderate deformation for the fractures which have nonzero jumps at the end of phase
I, and onset of sliding for fracture 3. The latter shows more complex deformation,
displaying non-monotone jump evolution for several fractures, e.g. fracture 3 first
opening and subsequently closing, and fracture 7 undergoing the reverse process.

Figure4 also displays the number of Newton iterations required for convergence
for each of the time steps.While fairly stable results are demonstrated, some increase
may be observed whenever the fracture state changes more markedly, e.g. when the
cooling is introduced at the onset of phase IV.

Fig. 2 The equilibrated
pressure state at the end of
phase II
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Fig. 3 The deformation state of the fractures at the end of the four phases

Fig. 4 Norm of displacement jumps at each fracture and number of Newton iterations for each time
step. Phase II is shown to the left, with the state at the end of phase I shown at t = 0, and phases III
and IV to the right. Normal jumps are shown in dashed lines and tangential jumps in solid lines
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5 Conclusion

A FV framework for simulation of thermo-poroelasticity fully coupled to fracture
deformation is presented. The contact mechanics problem is naturally discretised in
terms of displacement and traction at the fracture faces, exploiting the availability of
these in the FV formulation of the THM problem. A numerical example exhibiting
complex THM interactions and fracture dynamics demonstrates both the range of
the processes captured by the model, and its applicability for challenging problems.
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A Control Volume Finite Element
Formulation with Subcell Reconstruction
for Phase-Field Fracture

Juan Michael Sargado

Abstract We present a control volume finite element formulation for phase-field
brittle fracture based on unstructured simplex meshes. Linear finite elements are
employed for the linear momentum equation, while a cell-centered finite volume
method based on the two-point flux approximation scheme is used to discretize the
phase-field equation. Additionally, we perform linear reconstruction of the phase-
field variable over subcells of the original control volumes in order to better model
gradient discontinuities. This yields a higher order scheme that also gives more
conservative predictions of critical loads compared to existing low-order methods.

Keywords Damage · Brittle fracture · Finite volume · Finite element
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1 Introduction

The simulation of fracture evolution in solids presents unique challenges due to
the generally a priori unknown nature of crack propagation paths, and the possible
occurrence of topological changes in the form of crack branching and coalescence.
Variational phase-field models [2] address these issues by modeling fractures as dif-
fuse entities through a scalar phase-field variable φ ∈ [0, 1], where 0 and 1 represent
respectively the fully intact and broken states. This results in the regularization of
displacement discontinuities across fractures and eliminates the need to explicitly
track the evolution of lower-dimensional entities (i.e. crack surfaces), at the cost of
introducing an additional equation governing phase-field evolution. The latter is in
turn parametrized by a length scale that controls the amount of crack regularization.
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In the classical second-order formulation of Bourdin-Francfort-Marigo [2], the
phase-field profile contains gradient discontinuities or kinks at locations correspond-
ing to fully developed cracks. Such features are difficult to reproduce with conven-
tional low-order finite element schemes and may lead to inaccurate solutions unless
aggressive mesh refinement is performed with respect to the phase-field length scale.
On the other hand, a discretization framework combining P1 finite elements for the
linear momentum balance and cell-centered (P0) finite volumes for the phase-field
equation was proposed in a recent work [12]. This can be interpreted as a vari-
ant of the control volume finite element method in the sense of [9], and is based
on the idea that phase-field regularization of fractures eliminates crack tip stress
singularities [13]. Consequently, mesh size restrictions related to the accuracy of
numerical results become tied to the problem of resolving gradient discontinuities
in the phase-field. As the two-point flux approximation scheme implicitly allows
for gradient discontinuities within the control volumes themselves, the presence of
kinks in the phase-field profile is naturally handled by the cell-centered FV formu-
lation in conjunction with TPFA. This in turn leads to better accuracy of numerical
solutions over the same mesh compared to a linear FE approximation of both the dis-
placement and phase-field. Furthermore the formulation is computationally cheap,
as global matrices arising from the former scheme are considerably sparser then their
FE counterparts.

Previous works have shown that FV schemes of higher order can be obtained by
means of reconstruction techniques [3, 5, 6]. In this study, we seek to improve upon
the formulation given in [12] by performing linear reconstructions of the phase-
field over subcells of the original control volumes. While this generally yields a
discontinuous representation of the phase-field across subcells within a given control
volume, said approach nevertheless better models kinks at locations corresponding
to fully developed fractures resulting in more accurate predictions with regard to
critical loads.

2 Model Equations

In the phase-field approach to brittle fracture, a regularized total energy functional
pertaining to a homogeneous body Ω is assumed to exist which consists of bulk and
surface terms together with the external work due to applied forces, i.e.

Π� (u, φ) =
∫

Ω

ψ (ε (u) , φ) dΩ +
∫

Ω

Gc

(
φ2

2�
+ �

2
∇φ · ∇φ

)
dΩ

−
∫

Ω

b · u dΩ −
∫

∂Ω t

t · u d∂Ω

(1)

wherein u and φ are respectively the displacement and phase-field variables,ψ (ε, φ)

is the damage-dependent bulk energy density with ε denoting the symmetric small-
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strain tensor,Gc is the critical energy release rate and � is the phase-field regularization
parameter. In particular we adopt the following form for ψ from Amor et al. [1] that
approximates unilateral contact of fracture surfaces:

ψ (ε, φ) = ψ−
0 (ε) + g (φ)ψ+

0 (ε) = κ

2
〈tr ε〉2− + g (φ)

[κ

2
〈tr ε〉2+ + μεD : εD

]
.

(2)
In the above expression, 〈•〉± = 1

2 (• ± |•|), tr denotes the trace and εD is the devi-
atoric strain. Material constants κ and μ refer respectively to the bulk and shear
moduli, while g (φ) is an energy degradation function that is monotonically decreas-
ing with g (0) = 1 and g (1) = g′ (1) = 0.Wemake use of the quadratic degradation
function g (φ) = (1 − φ)2 in the current study due to its simplicity and general famil-
iarity with the research community, however alternative forms have been recently
introduced in order to improve accuracy of numerical simulations [11].

Energy balance implies δΠ� = 0 for any variation δu and δφ in the arguments of
Π�. This leads to a strongly coupled system of equations, given in weak form as

∫
Ω

[
σ−
0 (ε) + g (φ) σ+

0 (ε)
] : δε dΩ =

∫
Ω

b · δu dΩ +
∫

∂Ω t

t · δu dΩ (3)
∫

Ω

g′ (φ)ψ+
0 (ε) dΩ +

∫
Ω

Gc

(
1

�
φ δφ + �∇φ · ∇δφ

)
dΩ = 0. (4)

Equation (3) corresponds to the balance of linear momentum, where the positive and
negative elastic stress projections are derived from (2) and given by

σ+
0 = κ〈tr ε〉+I + μεD σ−

0 = κ〈tr ε〉−I, (5)

where I is the 2nd order identity tensor. On the other hand, (4) governs the evolution
of φ by imposing incremental energy balance with respect to crack growth.

It has been pointed out in [2] that while (1) is non-convex with respect to the
pair (u, φ), fixing either u or φ restores convexity of the energy with respect to the
remaining argument which allows the coupled system of equations to be solved via
an alternate minimization strategy. In order to enforce irreversibility of crack growth,
we use a history fieldH (t) = maxs∈[0,t] ψ+

0 (ε (s)) in place ofψ+
0 in the phase-field

equation [7]. Recasting (4) in strong form yields the PDE

Gc�∇2φ − Gc

�
φ = g′ (φ)H in Ω , (6)

together with the Neumann boundary condition ∇φ · n = 0 on ∂Ω . By integrating
the above expression over some internal subdomain Ωk and applying the divergence
theorem, we obtain the control volume form

∫
Ωk

g′ (φ)H dΩ +
∫

Ωk

Gc

�
φ dΩ −

∫
∂Ωk

Gc�∇φ · n dΓ = 0. (7)
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3 Numerical Discretization

We employ a finite element discretization of the linear momentum equation in which
displacements are approximated using piecewise linear basis functions over unstruc-
tured simplex meshes. The discrete residual corresponding to (3) is then given by

r u (ε, φ) =
∫

Ω

BT
[
σ−
0 (ε) + g (φ) σ+

0 (ε)
]
dΩ −

∫
Ω

NTb dΩ −
∫

∂Ω t

NTt dΩ,

(8)
in which the matrices N and B are defined as

NI =
[
NI 0
0 NI

]
BI =

⎡
⎣ NI,x 0

0 NI,y

NI,y NI,x

⎤
⎦ , I = 1, . . . ,m (9)

with m being the number of nodes in the mesh, and NI the basis function associ-
ated with node I . Meanwhile, the control volume form of the phase-field equation
is approximated via a cell-centered FV scheme, with the surface integral in (7) dis-
cretized using classical TPFA. That is, the normal flux qi

k through face Γ i
k of an

interior cell Ωk is constructed using the phase-field value φk at the cell center Ωk ,
and its value φi

k at the center of adjoining control volume Ω i
k across Γ i

k . Denot-
ing by φ̄i

k the value of φ on Γ i
k and assuming that φi

k > φ̄i
k > φk , the flux can be

approximated as

qi
k = Gck�k

φ̄i
k − φk

‖x̄ik − xk‖‖Γ i
k ‖ = Gc

i
k�

i
k

φi
k − φ̄i

k

‖xik − x̄ik‖
‖Γ i

k ‖, (10)

wherein xk , xik and x̄
i
k are respectively the centers of Ωk , Ω i

k and Γ i
k , and ‖Γ i

k ‖ is the
measure of Γ i

k . Combining the two expressions for qi
k in (10) yields

qi
k = T i

k

(
φi
k − φk

)
, (11)

in which the transmissibility coefficient associated with the surface Γ i
k is given by

T i
k = ‖Γ i

k ‖
‖x̄ik − xk‖
Gck�k

+ ‖xik − x̄ik‖
Gc

i
k�

i
k

. (12)

3.1 Discontinuous Representation of φ Over Ωk

In classical cell-centeredFV, the primary unknown is usually assumed to be piecewise
constant over the control volumes. Such assumption is however not optimal when
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dealing with the fracture phase-field model used in the current study, as it is known
that the solution to (6) for a fully developed crack contains gradient discontinuities
in the form of cusps. Instead, we incorporate the latter knowledge into the numerical
formulation by assuming φ to be linear over subcells of the original control volume.
This implies that φ is generally discontinuous across said subcells.

Let Ω̂ i
k be a subcell of Ωk (triangle in 2D, tetrahedron in 3D) with apex at xk and

base coinciding with face Γ i
K so that

⋃N
i=1 Ω̂ i

k = Ωk . By combining (10) and (12),
we obtain the phase-field value at Γ i

k as

φ̄i
k = φk + Ri

k

(
φi
k − φk

)
, (13)

where the factor Ri
k is given by

Ri
k = ‖x̄ik − xk‖

Gck�k‖Γ i
k ‖T

i
k . (14)

As φ is assumed linear over Ω̂ i
k , its value at the center of Ω̂ i

k can be calculated as

φ̂i
k = wφk + (1 − w) φ̄i

k (15)

in which w = 1/ (D + 1), with D being the problem dimensionality. Combining the
above expression with (13) yields

φ̂i
k = φk + (1 − w) Ri

k

(
φi
k − φk

)
. (16)

Using the above approximation for volume integrals, the residual corresponding to
the discrete form of (7) for an interior cell Ω i

k becomes

rk =
N∑
i=1

[
g′

(
φ̂i
k

)
ψ0 (εk) + Gck

�k
φ̂i
k

]
‖Ω̂ i

k‖ +
N∑
i=1

T i
k

(
φk − φi

k

) = 0. (17)

As the linear reconstruction of φ over subcell Ω̂ i
k involves the same set of unknowns

φk and φi
k that are used to approximate the flux through Γ i

k , the sparsity profile for
the resulting global coefficient matrix is identical to the case where φ is assumed
constant over Ωk . However said coefficient matrix becomes non-symmetric owing
to the factor ‖x̄ik − xk‖ being present in Ri

k .

4 Numerical Results

We consider two numerical examples. The first involves solution of the phase-field
equation in 1D with an internal condition corresponding to a fully developed crack,
whereas the second example deals with the well-known Miehe shear benchmark



532 J. M. Sargado

FE
FV
current method
analytical solution

φ

0

0.2

0.4

0.6

0.8

1

x
−10 −5 0 5 10

h/ℓ

|| φ
 - 
φ h

 || L
2

10−4

10−3

0.01

0.1

1

0.1 1

Fig. 1 Phase-field profile for bar with crack at x = 0, obtained with linear finite elements, classical
cell-centered finite volumes and the current method for a mesh consisting of 21 cells. Inset shows
convergence behavior of the aforementioned methods with respect to mesh refinement

problem. The proposed formulation is implemented in the open-source multiphysics
frameworkBROOMStyx [10] togetherwith othermethods in order to compare results
and run times. All simulations are carried out on a shared-memory parallel computer
equipped with a 6-core processor running at 3.20GHz base frequency.

4.1 Stationary Crack in 1D

For a uniform cylindrical bar having endpoints at x ± 10 and fully cut by a crack
at x = 0, the corresponding phase-field profile for � = 1 is given by φ (x) =
exp (− |x |), which solves the homogeneous BVP

φ′′ (x) − φ (x) = 0 ∀x ∈ (−10, 10) , φ′ (±10) = 0, φ (0) = 1. (18)

Following [12], we run simulations on a sequence of mesh refinements to determine
convergence rates. L2-norms of errors with respect to the analytical solution are
plotted in Fig. 1, along with the superposed solutions from P1-FE, cell-centered FV
and the current method for a particular mesh refinement. We can observe that the
proposed formulation displays a higher rate of convergence compared to classical
P1-FE and cell-centered FV methods.

4.2 Miehe Shear Benchmark

We investigate performance of the proposedmethod in simulating a benchmark prob-
lem from [8] involving fracture propagation in a notched square specimen subjected
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Fig. 2 Miehe shear benchmark problem showing geometry and boundary conditions (left), and
typical unstructured mesh (right)

to shearing boundary conditions. The relevant geometry is shown in Fig. 2 along
with a typical discretization used for analysis. The problem domain is discretized
using unstructured simplex meshes that constitute admissible FV discretizations in
the sense of [4]. Said meshes incorporate the initial fracture and are locally pre-
refined around the expected crack path such that cells in the refined region have
sides of length �/n, with n ∈ {1, 2, 4, 8}. The following material parameters are
used: E = 210 GPa, ν = 0.3, Gc = 2.7 N/mm and � = 0.0075 mm. Furthermore,
the prescribed horizontal displacement at the top surface is applied in increments
of 1 × 10−4 mm up to ux = 0.0085 mm, and thereafter in smaller increments of
1 × 10−5 mm up to the final displacement of U = 0.0125 mm. For comparison, we
also carry out simulations using an equal-order (P1) FE discretization of the coupled
system (3)–(4) in addition to the FE-FV formulation discussed in [12] on the same
set of discretizations.

Run times and resulting peak loads for different mesh refinements in conjunction
with the aforementioned methods are shown in Table1, where it can be seen that for
a given value of �/h the proposed method (designated CVFE-LR) gives consistently
lower predictions of peak loads compared to both a pure FE discretization of the
coupled system and the FE-FV formulation described in [12]. The same trend can be
observed in the post-peak behavior of the resulting load-displacement curves that are
plotted in Fig. 3. In particular the post-peak curves for FE-FE at �/h = 8, FE-FV at
�/h = 4 andCVFE-LR at �/h = 1 are in near vicinity of each other, notwithstanding
over-/undershoots in the latter due to relative mesh coarseness. This result is in line
with behavior predicted in Fig. 1, which shows similar error norms for the respective
combination of �/h values and formulations.
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Table 1 Summary of results for the Miehe shear benchmark

Formulation �/h nDOF Run time (h : min : s) Peak load (N)

FE-FE 2 47,941 1 : 13 : 49 408.86

FE-FE 4 143,198 5 : 25 : 43 394.56

FE-FE 8 475,827 26 : 44 : 26 387.90

FE-FV 1 24,445 0 : 20 : 35 401.46

FE-FV 2 63,696 1 : 05 : 49 389.00

FE-FV 4 190,641 4 : 35 : 34 377.44

FE-FV 8 634,050 20 : 56 : 22 377.37

CVFE-LR 1 24,445 0 : 21 : 44 380.97

CVFE-LR 2 63,696 1 : 00 : 17 374.73

CVFE-LR 4 190,641 4 : 17 : 43 368.96

CVFE-LR 8 634,050 19 : 31 : 18 371.20

CVFE-LR, ℓ/h = 1
CVFE-LR, ℓ/h = 2
CVFE-LR, ℓ/h = 4
CVFE-LR, ℓ/h = 8
FE-FV, ℓ/h = 1
FE-FV, ℓ/h = 2
FE-FV, ℓ/h = 4
FE-FV, ℓ/h = 8
FE-FE, ℓ/h = 2
FE-FE, ℓ/h = 4
FE-FE, ℓ/h = 8

Lo
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Fig. 3 Truncated load displacement curves for the Miehe shear benchmark with varying levels of
mesh refinement for a fixed value of �

End-of-simulation phase-field profiles for the threemethods at the aforementioned
�/h ratios are displayed in Fig. 4. The simulated crack paths are nearly identical for
all three cases, however a finer discretization of the domain with respect to the phase-
field length scale results in a smoother crack trajectory. In particular the crack path
predicted by the current method using amesh refinement of �/h = 1 contains a lot of
small twists, resulting in oscillatory behavior of the corresponding load-displacement
curve in Fig. 3.
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(a) (b) (c)

Fig. 4 Final crack trajectories corresponding to an upper boundary displacement of ux = 0.0125
mm for a the current method with �/h = 1 b cell-centered FV with �/h = 4, and c P1-FE with
�/h = 8
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A Conservative Phase-Field Model
for Reactive Transport

Carina Bringedal

Abstract We present a phase-field model for single-phase flow and reactive trans-
port where ions take part in mineral precipitation/dissolution reactions. The evolving
interface between fluid and mineral is approximated by a diffuse interface, which
is modeled using an Allen–Cahn equation. As the original Allen–Cahn equation is
not conservative, we apply a reformulation ensuring conservation of the phase-field
variable and address the sharp-interface limit of the reformulated model. This model
is implemented using a finite volume scheme and the discrete conservation of the
reformulated Allen–Cahn equation is shown. Numerical examples show how the
discrete phase-field variable is conserved up to the chemical reaction.

Keywords Allen–Cahn · Reactive transport · Discrete conservation
MSC (2010) 76D05 · 74N20 · 65M08

1 Introduction

We consider single-phase flow with solute transport, where ions can form a mineral
and hence leave the fluid phase. Also, minerals in the mineral phase can dissolve,
releasing ions to the fluid phase. We account for the time evolution of the mineral
and fluid phases. This evolution is not known a-priori as it depends on the consid-
ered reactions, hence we obtain a free-boundary problem. In [10], existence and
uniqueness of a weak solution for such a free-boundary model is proved in a one-
dimensional domain. In [8] a free-boundary model for precipitation and dissolution
is included in a two-dimensional model using a level-set formulation.

C. Bringedal (B)
Stuttgart Center for Simulation Technology (SimTech),
Institute for Modelling Hydraulic and Environmental Systems (IWS),
University of Stuttgart, Pfaffenwaldring 5a, 70569 Stuttgart, Germany
e-mail: carina.bringedal@iws.uni-stuttgart.de

Computational Mathematics (CMAT), Hasselt University, Hasselt, Belgium

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2020
R. Klöfkorn et al. (eds.), Finite Volumes for Complex Applications IX - Methods,
Theoretical Aspects, Examples, Springer Proceedings in Mathematics & Statistics 323,
https://doi.org/10.1007/978-3-030-43651-3_50

537

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43651-3_50&domain=pdf
mailto:carina.bringedal@iws.uni-stuttgart.de
https://doi.org/10.1007/978-3-030-43651-3_50


538 C. Bringedal

These approaches apply a sharp interface between the mineral and fluid. Alterna-
tively, the transition between mineral and fluid can be considered as diffuse. Diffuse-
interface models for reactive and diffusive transport have been formulated and ana-
lyzed in [9, 11], and later extended to fluid flow in [2]. In these papers the original
Allen–Cahn equation [1] describes the evolution of the diffuse interface.

The Allen–Cahn equation is derived from mean-curvature flow. Hence, the inter-
face can evolve due to curvature effects, which may be desirable from a chemical
point of view [13]. It fulfills the max/min principle, but is in its original form not con-
servative meaning that the volume of the considered phases will not remain constant.
Reformulations to ensure conservation of the phases for other applications have been
suggested and analyzed in the form of a nonlocal term or a Lagrange multiplier [4,
7, 12]. These papers do not consider mineral precipitation/dissolution, but we will
base on their work to find a reformulation applicable to these processes.

The structure of the paper is as following: In Sect. 2 we present the original
phase-field model from [2] that we will build upon, while in Sect. 3 the conservative
reformulation and its sharp-interface limit is addressed. Section4 formulates a finite
volume scheme andwe show that the reformulatedAllen–Cahn equation is discretely
conservative. Finally we show some numerical examples in Sect. 5.

2 The Original Phase-Field Model and Its Sharp-Interface
Limit

The original model, as formulated in [2] is, for x ∈ Ω , t > 0:

λ2∂tφ + γ P ′(φ) = γ λ2∇2φ − 4λφ(1 − φ)
1

u∗ f (u), (1a)

∇ · (φv) = 0, (1b)

ρ f ∂t (φv) + ρ f ∇ · (φv ⊗ v) = −φ∇ p + μ f φ∇2(φv) − 1

λ
g(φ)v + 1

2
ρ f v∂tφ,

(1c)

∂t
(
φ(u − u∗)

) + ∇ · (φvu) = D∇ · (φ∇u). (1d)

Here, Ω is the combined fluid and mineral domain and hence constant in time.
The phase field φ approaches 1 in the fluid and 0 in the mineral while λ denotes
the width of the diffuse zone separating the two phases. The double-well potential
is P(φ) = 8φ2(1 − φ)2 and γ is the diffusivity of the interface. Further, v is the
fluid velocity and p the pressure, while ρ f and μ f are the constant fluid density
and viscosity. Since the flow equations are solved also for the mineral part of the
domain, themonotonously decreasing interpolation term g(φ) fulfilling g(1) = 0 and
g(0) > 0 is included to ensure zero flow in the mineral. The solute concentration is
denoted as u, D is its diffusivity, and the constant mineral concentration is u∗. The
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mineral precipitation and dissolution reaction rate is f (u) = k(u2/u2eq − 1), where
ueq is a given equilibrium concentration and k a reaction constant.

The sharp-interface limit of themodel (1) is derived bymatched asymptotic expan-
sions in [2]. The background of this procedure can be found in [3]. We let Ω f (t)
denote the domain where φ → 1 and Ωm(t) where φ → 0 as λ → 0. By separating
between these two regions, the model (1) reduces to

∇ · v = 0 in Ω f (t), (2a)

ρ f ∂tv + ρ f ∇ · (v ⊗ v) + ∇ p = μ f ∇2v in Ω f (t), (2b)

∂t u + ∇ · (vu) = D∇2u in Ω f (t), (2c)

v = 0, in Ωm(t), (2d)

as λ → 0. Through inner expansions and hence investigating the behavior near the
diffuse transition zone, it is found that, as λ → 0 [2]:

vn = −γ κ − 1

u∗ f (u) on Γ (t), (3a)

v = 0 on Γ (t), (3b)

vn(u
∗ − u) = n · D∇u on Γ (t), (3c)

where vn is the normal velocity of the interface Γ (t) and the curvature κ introduces
the curvature-driven motion. The normal vector n points into the mineral.

However, it is clear from (3a) that the interface evolution is not conservative as the
curvature-driven motion will alter the size of the fluid/mineral domains. By applying
homogeneous Neumann boundary conditions on ∂Ω we obtain

d

dt

∫

Ω

φdx =
∫

Ω

(
− 1

λ2
γ P ′(φ) − 4

λ
φ(1 − φ)

1

u∗ f (u)

)
dx,

which is non-zero even without chemical reactions.

3 Conservative Phase-Field Model

We now formulate a conservative phase-field model based on the reformulation con-
sidered in [12] for phase separation, where also well-posedness of the reformulation
was assessed. We replace the phase-field equation (1a) by

λ2∂tφ + γ P ′(φ) = γ λ2∇2φ − 4λφ(1 − φ)
1

u∗ f (u) + γ

|Ω|
∫

Ω

P ′(φ)dx, (4)

where |Ω| is the size of the considered domain. TheEqs. (1b)–(1d) are left unchanged.
The reformulated Eq. (4) fulfills the global conservation property:
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d

dt

∫

Ω

φdx =
∫

Ω

(
−4

λ
φ(1 − φ)

1

u∗ f (u)

)
dx. (5)

Now the curvature-driven motion does not affect the total amount of φ anymore.
Interpreting the integratedphasefield as porosity,means that porosity canonly change
due to the mineral precipitation and dissolution.

We address the sharp-interface limit of the reformulated phase-field equation
(4) by following similar steps as in [4], where a conservative Allen–Cahn equation
without chemical reactions was addressed. The Eq. (4) is first split in two equations:

λ2∂tφ + γ P ′(φ) = γ λ2∇2φ − 4λφ(1 − φ)
1

u∗ f (u) + γ λξ(t), (6a)

ξ(t) = 1

λ

1

|Ω|
∫

Ω

P ′(φ)dx. (6b)

The integral in (6b) is small and will decrease as λ decreases. Hence, it is shown in
[4] that ξ(t) = O(λ0) as λ → 0. The lowest order terms of the outer expansions of
(6a) still lead to φ approaching 0 and 1 in the mineral and fluid domains as earlier.

For the inner expansions [3], following steps similar as in [2, 4], we arrive at

vn = −γ (κ − κ) − 1

u∗ f (u) on Γ (t),

where κ is the average curvature along Γ (t). Hence, the interface velocity is still
driven by both the chemical reaction and by curvature, but where the curvature-
driven movement now fulfills conservation of the phase-field parameter. This motion
redistributes the mineral towards constant curvature; that is, towards bubbles [13].

4 Conservative Numerical Discretization

We apply a standard finite-volume scheme on an admissible mesh E [5], and forward
or backward Euler in time with constant time step size Δt . For each element K ∈ E ,
the discretization for the phase-field equation (4) reads

λ2|K |φ
n+1
K − φn

K

Δt
+ |K |γ P ′(φ�

K ) = γ λ2
∑

L∈N (K )

|σK ,L |F�
K ,L

−4λ|K |φ�
K (1 − φ�

K )
f (u�

K )

u∗ + |K | γ

|Ω|
∑

J∈E
|J |P ′(φ�

J ), (7)

where |K | is the measure of element K . Further, N (K ) refers to the neighboring
elements of K and |σK ,L | is the measure of the edge σK ,L between element K and a
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neighbor L . The integral
∫
Ω
P ′(φ)dx is approximated by the sum

∑
J∈E |J |P ′(φ�

J ).
The superscript � is either n or n + 1 when forward or backward Euler is applied,
respectively. The fluxes F�

K ,L approximate the diffusive flux ∇2φ and are given by

F�
K ,L = φ�

L − φ�
K

dK ,L
,

where dK ,L is the Euclidean distance between the points xK ∈ K and xL ∈ L . Obvi-
ously we have F�

K ,L = −F�
L ,K on interior edges. As we will apply homogeneous

Neumann boundary conditions for φ, Fσ ≡ 0 for edges σ ∈ ∂Ω .

Theorem 1 The scheme (7) is globally conservative (up to the chemical reaction)
under homogeneous Neumann boundary conditions on φ when the two terms con-
cerning P ′(φ) are either both solved explicitly or both implicitly.

Proof We sum over all K ∈ E . Since F�
K ,L = −F�

L ,K on internal edges and Fσ = 0
on boundary edges, the contribution from the diffusive flux vanishes. Hence,

∑

K∈E
|K |φn+1

K =
∑

K∈E
|K |φn

K + Δtγ

λ2

∑

K∈E
|K |

(
1

|Ω|
∑

J∈E
|J |P ′(φ�

J ) − P ′(φ�
K )

)

−4Δt

λ

∑

K∈E
|K |φ�

K (1 − φ�
K )

f (u�
K )

u∗ .

Since
∑

K∈E |K | 1
|Ω|

∑
J∈E |J |P ′(φ�

J ) = ∑
J∈E |J |P ′(φ�

J ) as
∑

K∈E |K | = |Ω|, the
two terms concerning P ′(φ) cancel each other when they are evaluated at the same
time level tn or tn+1. Hence

∑

K∈E
|K |φn+1

K =
∑

K∈E
|K |φn

K − 4Δt

λ

∑

K∈E
|K |φ�

K (1 − φ�
K )

f (u�
K )

u∗ ,

which means that the scheme is globally conservative in case of f (u) = 0, and the
integrated value of φ can only change due to the chemical reactions. �

Remark 1 We here only address the non-linear terms fully explicit and implicit, but
mention that also a convex-concave splitting would be discretely conservative when
the same elements in the two terms concerning P ′(φ) are chosen as explicit/implicit.

5 Numerical Examples

We consider two numerical examples in 2D: In the first the Allen–Cahn equation is
applied to a circular mineral, while in the second example we consider also (1b)–
(1d), where flow through a channel with a dissolving mineral layer is addressed.
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Equations (1b)–(1d) are discretized with a FV scheme similar as in (7) with u and p
at nodes xK and velocity on a dualmesh for the edgemidpoints. The full system is also
conservative. The numerical examples use uniform, rectangular meshes. The meshes
fulfill max{Δx,Δy} < λ/4 to ensure proper resolution of the diffuse interface. For
all presented results we use γ = 1 and λ = 0.1, but the results are qualitatively the
same for other choices. All non-linear systems of equations are solved iteratively
using Newton’s method. Note that for the implicit phase-field equation, the Jacobian
is full since every element depends on all the other elements (c.f. (7)).

5.1 Circular Mineral

The unwanted behavior of the non-conservative Allen–Cahn equation is especially
visible for a circular mineral, as the constant curvature of the diffuse interface zone
causes the mineral to shrink without the presence of any chemical reaction.

We initialize the square Ω = [0, 1]2 with a phase field depicting a mineral of
radius 0.4 centered in the middle of the square. Homogeneous Neumann conditions
are used on all sides. We use the strategy described in [2] to initialize the phase field.
No chemical reactions are included.

Figure1 shows the integrated phase field over time. In the standard Allen–Cahn
model themineral disappears. For the conservative formulation, the changes in poros-
ity are 5.2 × 10−9 and 4.9 × 10−11 for the explicit and implicit formulation, respec-
tively. The changes for the implicit formulation can be connected to the tolerance of
the Newton iterations, while the changes for the explicit are mainly an artifact of the
explicit time stepping as instabilities evolved.

Fig. 1 The integral of the
phase field; i.e., porosity, as a
function of time. The two
lines for conservative
implicit and explicit are
lying on top of each other
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5.2 Flow Through a Dissolving Channel

We consider a channel Ω = [0, 1] × [0, 0.1] with a prescribed parabolic inflow pro-
file with vmax = 1 on the left side and a constant pressure p = 0 on the right side.
Initially, a mineral layer of width 0.025 is at the top and bottom of the channel, and
the fluid is saturated with the equilibrium concentration ueq = 0.5. Due to symmetry
we only consider the lower half of the channel. At the left inlet a Dirichlet condition
of u = 0.25 is applied, triggering mineral dissolution. We consider three cases:

(1) The original model (1), solved fully coupled with backward Euler.
(2) The conservative model (4), (1b)–(1d), solved fully coupled with backward

Euler.
(3) The conservativemodel (4), (1b)–(1d), solved fully coupledwith backwardEuler

except for the two terms concerning P ′(φ), which are both solved explicitly.

The resulting non-linear system of equations is solved with Newton’s method. In the
second case the Jacobian for the phase-field equation is full. Although the third case
gives cheaper Newton iterations, a small time-step size is needed for stability.

In all three cases the mineral dissolves. However, the speed and location of the
dissolution vary due to differences in curvature behavior. Figure2 (left) shows the
porosity minus the accumulated reactive term ((5) integrated in time) as function of
time for each of the three cases, which should be (close to) zero. Figure2 (right)
shows the across-channel integral of 1-φ, giving the mineral width, at t = 0.3.

From Fig. 2 (left) it is clear that the non-conservative formulation (1) gradu-
ally gives a nonphysical porosity. The conservative implicit formulation (2) has a
nonphysical change in porosity of 6.5 × 10−11 throughout the simulation, which
can be connected to the tolerance used for the Newton iterations. Despite apply-
ing Δt = 10−5 for the conservative explicit formulation (3), only solutions up to
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Fig. 2 Left: Changes in porosity not coming from the chemical reaction over time. The dotted line
is hidden behind the solid line. Right: Mineral width along the x-axis of case (2) in blue; black lines
show difference between case (1) or (3) and (2), at time t = 0.3
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t = 0.35 could be obtained due to instabilities, and a nonphysical change in porosity
of 7.9 × 10−8 is observed at this time. The conservative explicit case (3) also shows
some difference in curvature behavior compared to case (2) (Fig. 2, right).

6 Discussion and Conclusion

We have formulated a conservative phase-field model for flow and reactive transport
with amineral precipitation and dissolution reaction. The sharp-interface limit shows
how the interface evolution still includes curvature-drivenmotion as well as reaction-
driven motion, but where the curvature-driven motion is now conservative.

A standard FV scheme on an admissible mesh ensures the discrete conservation
of the phase-field variable (up to the chemical reaction) as long as a consistent
explicit/implicit choice ismade for the non-linear terms. However, the explicit choice
needs a very small time step to avoid numerical instabilities. For the implicit choice
the Jacobian is full, giving expensive Newton iterations. It would be beneficial to
rather use an iterative scheme like the L-scheme [6] for the non-linear solving steps.
A concave-convex splitting of the non-linearity could also be beneficial.

Finally, we note that the reformulated phase-field model can be upscaled similarly
as in [2], hence giving a two-scale (pore-Darcy) model where the phase field is
updated locally. The conservation property is then achieved for each local pore.
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A Fully Conforming Finite Volume
Approach to Two-Phase Flow in
Fractured Porous Media

Samuel Burbulla and Christian Rohde

Abstract In many natural and technical applications in porous media fluid’s flow
behavior is highly affectedby fractures.Manyapproaches employmixed-dimensional
models thatmodel thin features as dimension-reducedmanifolds. Following this idea,
we consider porous media where dominant heterogeneities are geometrically repre-
sented by sharp interfaces.Wemodel incompressible two-phase flow in porousmedia
both in the bulk porous medium and within the fractures. We present a reliable and
geometrically flexible implementation of a fully conforming finite volume approach
within the DUNE framework for two and three spatial dimensions. The implemen-
tation is based on the new dune-mmesh grid implementation that manages bulk
and surface triangulation simultaneously. The model and the implementation are
extended to handle fracture junctions. We apply our scheme to benchmark cases
with complex fracture networks to show the reliability of the approach.
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1 Introduction

The numerical simulation of flow in fractured porous media is a challenging task.
Hence, many approaches use discrete fracture-matrix models where fractures are
represented by lower-dimensional interfaces. However, the representation of lower-
dimensional computational grids that are coupled with a surrounding bulk grid raises
a lot of geometrical difficulties. For instance, in conforming approaches, the lower-
dimensional grid has to coincide with facets of the bulk mesh.
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We follow a conforming approach, because the implementation of the coupling
is restricted only to the facets that coincide with the lower-dimensional grid. In
order to provide a tool for conforming discretizations in a general framework, we
introduce the new DUNE grid implementation dune-mmesh. It is a grid manager
for triangulations in 2D and 3D and can export a predescribed set of facets as a
separate network grid. We have implemented a model for incompressible two-phase
flow in fractured porous media on the basis of a conforming discretization using
dune-mmesh and give some details about this method in the following.

2 Governing Equations

We consider convection-dominated two-phase flow in porous media in the so-called
fractional flow formulation, see Eq. (1) below, [12]. This formulation of the two-
phase flowmodel leads to a nonlinear mixed hyperbolic-elliptic system of equations.
It allows to exploit numerical stabilization techniques as developed for nonlinear
conservation laws.

Fractional Flow Formulation for Two-Phase Flow in Porous Media

Let � ∈ R
d be an open and bounded domain and tend > 0. Neglecting capillary

pressure, two-phase flow in porous media is governed for the unknowns (wetting
phase) saturation S : � × (0, tend) → [0, 1], total velocity v : � × (0, tend) → R

d

and global pressure P : � × (0, tend) → R by

(φS)t + div F(S, v) = qw,

v + λ(S)K(∇P − G(S)g) = 0,

div(v) = qw + qn,

⎫
⎪⎬

⎪⎭
in � × (0, tend). (1)

The flux function is defined by

F(S, v) := f (S)v − f (S)λn(S)K(ρn − ρw)g.

The gravity term in front of the acceleration vector g ∈ R
d is given by G(S) :=

(λw(S)ρw + λn(S)ρn)/λ(S), f (S) := λw(S)/λ(S) is the fractional flow function and
λ(S) := λw(S) + λn(S) is the totalmobility. The phasemobility function isλα(Sα) =
kα(Sα)/μα , where kα(Sα) is the relative permeability of phase α ∈ {w, n}. Further
physical parameters are the porosity φ = φ(x) ∈ (0, 1], the constant phase densities
ρα > 0, the dynamic viscosities μα and the symmetric and positive definite intrinsic
permeability tensor K = K(x) ∈ R

d×d . The function qα : � × (0, tend) → R is a
source or sink term. Appropriate initial and boundary conditions have to be added.

Fractional Flow Formulation in a Fractured Porous Medium

If the fractures’s apertures are small compared to the overall size of �, it is justified
to model them as lower dimensional manifolds to reduce the computational effort
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for representing them [9]. A mathematical model to describe two-phase flow in
fractured porous media on the basis of a discrete fracture network approach can
be formulated as follows [8]. Let tend > 0, � ⊂ R

d open and bounded and � ⊂ �

open with Hd(�) = 0, Hd−1(�) > 0, where Hd is the d-dimensional Hausdorff
measure. We look for S, v, P and S�, v�, P� such that S, v, P satisfy (1) in (� \ �)◦
and S�, v�, P� satisfy

(φ f ωS�)t + divτ F�(S�, v�) = �F(S, v) · n� + q�
w ,

v� + λ f (S�)K f
τ ω(∇τ P� − G f (S�)gτ ) = 0,

divτ (v�) = �v · n� + q�
w + q�

n ,

⎫
⎪⎬

⎪⎭
in � × (0, tend), (2)

where F�(S�, v�) := f f (S�)v� − f f (S�)λ
f
n (S�)K f

τ ω(ρn − ρw)g. The superscript
f indicates the physical parameters defined on �, the subscript τ the tangential pro-
jection onto �, n denotes a normal to the fracture and ω : � → R

>0 defines the
aperture of the fracture at a given position. The systems (1), (2) are closed by the
transmission conditions

F(S, v) · n = F f (S�, v) · n,

η{{v · n}} = �P� + ωG f (S�)(g · n),

{{P}} − P� = η

12
�v · n�

⎫
⎪⎪⎬

⎪⎪⎭

at � (3)

with η := ω
λ f (S�)

(K f
n )−1 and appropriate initial data and boundary conditions. For

x ∈ � we define �φ� := limε↓0 φ(x + εn) − limε↓0 φ(x − εn) and {{φ}} := 1
2 limε↓0

φ(x + εn) + 1
2 limε↓0 φ(x − εn).

Ω Γ

At junctions of the fracture network we suppose

n∑

k=1

F�k (S�k , v�k ) · n�k = 0, (4)

n∑

k=1

v�k · n�k = 0, (5)

P�i = P� j for 1 ≤ i < j ≤ n, (6)
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where �k, 1 ≤ k ≤ n, are the fracture angles at the junction. The assumption of
the continuity of phase pressure is reasonable if all fractures have the same high
permeability compared to the bulk medium.

3 Discretization

We discretize the mixed-dimensional equations in (1)–(6) by a fully conforming
finite volume approach. Thereby, we are able to ensure basic properties like mass
conservation and we can take care of the hyperbolicity in the Eqs. (1a), (2a). The
conforming discretization allows to not only model open fractures, but also barriers
for the fluid flow that have a lower permeability than the bulkmedium. The numerical
method is extended to handle intersections of multiple fractures.

Elliptic Equations

In order to discretize the elliptic part of the model we plug together pressure and
velocity equations. The finite volume approach for the divergence constraint (1c)
reads ∫

T
qw + qn =

∑

e∈E(T )

|e|ve · nTe

where ve is a suitable approximation of v on e. A common choice for ve is the two
point flux approximation (TPFA) [4] defined by Eq. (1b). We extend the standard
formulation of the normal velocity by the gravity terms. Then, it reads

ve · nTe := −TT,T ′
(
(PT ′ − PT ) − GT,T ′ · g).

Here, the transmissibility TT,T ′ is given by

TT,T ′ := TTTT ′

TT + TT ′
with Ti := nieλ(Si )Ki di

‖di‖2

where di := me − mi is the distance vector between the center of the facet e and
the cell centers, i ∈ {T, T ′}, and ST denotes the saturation value in cell T . The
gravitational influence GT,T ′ is

GT,T ′ := GT − GT ′ , GT := dTG(ST ).

This TPFA-based discretization is consistent for isotropic intrinsic permeabilities
if we locate the pressure values PT at the circumcenters of the tetrahedral cells [4].
This is still valid for the coupling to the fracture network as the circumcenters of the
lower-dimensional grid elements are located at the orthogonal connection line of the
circumcenters of the two adjacent bulk cells.
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At facets that coincide with a lower-dimensional fracture element T� , we include
the coupling conditions of the reduced model. Therefore, we introduce intermediate
pressure values P1|γ1 and P2|γ2 at the boundaries of the bulk medium next to the
fracture. A condition for these values can be stated by

vi · ni |γi = −Ti
(
(Pi |γi − Pi ) − Gi · g), i = 1, 2.

The coupling conditions for velocity and pressure in (3) can be used to eliminate the
intermediate values. Defining G� := ω

2G
f (S�)n and the fracture transmissibility

α f := 2/η = 2λ f (S�)K f
n /ω we obtain

v1 · n1|γ1 = T1α f

T1T2 + α f (2(T1 + T2) + 3α f )

×
⎡

⎣

⎛

⎝
2T2 + 3α f

T2

−3(T2 + α f )

⎞

⎠ ·
⎛

⎝
P1
P2
P�

⎞

⎠ +
⎛

⎝
T2 + 3α f

2T2

T2 + 3α f

⎞

⎠ ·
⎛

⎝
G1 · g
G2 · g
G� · g

⎞

⎠

⎤

⎦ .

Hyperbolic Saturation Equations

In order to solve the hyperbolic saturation equation appropriately, we employ a finite
volume scheme with a suitable numerical flux.

For an initial value problem in conservation like (1a) the corresponding (implicit)
finite volume scheme can be written as

S(n+1)
T = S(n)

T − tn
|T |

∑

e∈E(T )

|e|ge(S(n+1)
T , S(n+1)

T ′ ) +
∫

T
qw, (n ≥ 0),

S(0)
T = 1

|T |
∫

T
S0,

where ge(·, ·) is a numerical flux that is consistent with the flux function at the
corresponding intersection e, i.e. ge(S, S) = F(S, ve) · ne. Because the flux function
F is non-convex in the first argument, a simple upwinding is not sufficient.We choose
the Godunov flux that results from an exact solution of the Riemann problem.

Generalization of the Scheme to Networks

The discretizations presented so far are applicable to the bulk problem and the surface
fracture problem. As we consider networks of fractures we generalize the finite
volume scheme for the network situation. Therefore, we use the assumptions we
made in (4)–(6).

When we consider two subdomains with different rock types, e.g. with different
permeability, the flux function becomes discontinuous at the interface. We define the
flux as the unique solution ḡ(Sl , Sr ) satisfying

ḡ(Sl, Sr ) := gl(Sl , S
∗) = gr (S∗, Sr ) (7)



552 S. Burbulla and C. Rohde

for some intermediate value S∗ [11]. Here, g◦(S, S) = F◦(S, ve) · ne for ◦ = l, r . In
case of a junction we propose a new idea analogously to the idea in (7). We introduce
an intermediate value S∗ and fix its value by the mass conservation condition in (4)
on a discrete level by

k∑

i=1

gi (STi , S
∗) = 0,

where gi (S, S) = Fi (S, vi ) · nTie . For this definition, we can show the existence of
S∗ ∈ [0, 1] and the uniqueness of the resulting fluxes.

The pressure continuity (6) allows to assume that there is a unique pressure value
P∗ at the intersection. We require that the discrete normal velocity vk · nke satisfies

vk · nke = −Tk
(
(P∗ − Pk) − Gk · g), k = 1, . . . , n,

and using the second equation of (5) we obtain

P∗ =
∑n

k=1 Tk(Pk + Gk · g)
∑n

k=1 Tk
.

4 Implementation

We implemented our method from Sect. 3 within the software framework DUNE on
the basis of the discretization module DuMux [5]. The implementation applies to 2D
and 3D domains. All equations are solved monolithically by a fully implicit time
discretization.

The New DUNE Grid Implementation dune-mmesh

We have initiated the implementation of an own DUNE [1] grid module which
is tailored for mixed-dimensional, conforming discretizations. Thus, we present the
newDUNEgrid implementationdune-mmesh [3]which is awrapper ofCGAL[13]
triangulations acting as a DUNE grid. It is implemented for spatial dimension d =
2, 3 and gives access to all the capabilities of the underlying CGAL triangulations.
The grid implementation is extended by an interface grid implementation that exports
a predescribed set of facets as a separate DUNE grid. With this approach we can use
dune-mmesh as computational grid for both the bulk and the surface problem. The
interface grid is directly integrated in the CGAL grid wrapper implementation and
provides access to all neighbor relationships easily. One of the main advantages of
the strong coupling of the two grids is the simultaneous remeshing of the bulk and
the interface grid, e.g. during adaptation.

dune-mmesh is the first DUNE grid implementation that is capable of exporting
a predescribed set of facets as a separate surface grid. Furthermore, with our interface
grid implementation,we add a newnetwork grid implementation to theDUNE frame-
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work where cells can have multiple neighbors at the same facet. The implementation
will be further improved, but we can already imagine dune-mmesh to be used in
several applications where mixed-dimensional problems are solved on the basis of
various conforming discretizations. A first open-source release of dune-mmesh is
available implementing the grid wrapper for CGAL triangulations and the interface
grid [3].

Numerical Experiments

We apply our implementation to complex networks showing the reliability of the
approach. We performed various test cases in two and three space dimensions for
several fracture configurations.

Benchmark Test From [6]

To validate the numerical solver we use test case 5.1 from [6] applied to a 3D
domain. Consider a rectangular domain � = (0, 1) × (−4, 4) × (0, 1) that is cut by
a diagonal fracture� = {x = −0.1y + 0.5} ∩ �with apertureω = 0.01.We choose
K = I, S0 = 0.8 for y < 0 and K = 2I, S0 = 0.1464 for y > 0 both in the bulk
and the fracture. Furthermore, we set φ = 1 everywhere, kn(S) = S, kw(S) = 1 −
S, ρw = 2, ρn = 1, μw = μn = 1, g = (0,−1, 0)T and v ≡ 0. The solution shows
the expected rarefaction wave between S = 0.8 to S = 0.5 and a steady discontinuity
at y = 0.5 (Fig. 1).

Fig. 1 We use a Riemann problem as benchmark with a diagonal fracture cutting the domain. The
solution at t = 1.5 shows the expected rarefaction wave and the steady discontinuity. The plot over
line shows the saturation along the fracture’s centerline
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Fig. 2 Gravity-inducedwetting of a fracture network for t ∈ {10, 320, 800, 2220} s. In comparison,
on the right-hand side, the same setup with Richards equation for t = 2220 s

Realistic Test Case with Complex Fracture Network

In Fig. 2we consider thewetting of a fracture networkwith the dynamics driven by the
density difference of the twophases for realistic physical parameters. Eleven fractures
with apertures between 1.46×10−6 m and 1.61×10−6 m are placed in a cubic domain
of size 1.5cm × 3cm. We choose ρw = 1000 kgm−3, ρn = 100 kgm−3, μw = μn =
1 × 10−3 kgm−1 s−1,K = 1 × 10−13 m2,K f = 5 × 10−9m2,φ = 0.2,φ f = 0.8 and
aquadratic relative permeability law.We set no-flowboundary conditions everywhere
except at the two fracture endings at the top where we prescribe a Dirichlet boundary
value (S, P) = (1, 100 Pa) at the left and (S, P) = (0, 0 Pa) at the right tip. For
comparison, we add the result for the same setup with a linear relative permeability
law and ρn = ρw where the system collapses to the Richards equation.

5 Outlook

We plan to integrate the expansion of fractures by coupling the scheme with the
moving mesh concept developed in [2]. The movement of the fracture tip will be
obtained by the integration of a phase-field model on the microscale locally around
the fracture tips [7, 10].

Acknowledgements Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation)—Project Number 327154368—SFB 1313.
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Method for the Two-Phase Flow Model
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Abstract We propose an application of the new monotone embedded discrete frac-
ture method (mEDFM) [13] to the two-phase flow model. The new method for
modelling of flows in fractured media consists in coupling of the embedded discrete
fracture method (EDFM) with the nonlinear monotone finite volume (FV) scheme
with two-point flux approximation, which preserves non-negativity of the discrete
solution. The resulting method combines effectiveness and simplicity of the standard
EDFM approach with accuracy and physical relevance of the nonlinear FV schemes
for non-orthogonal grids and anisotropic media. Numerical experiments show that
the two-phase flow modelling with the mEDFM provides much more accurate solu-
tion compared to the conventional EDFM, and is in a good agreement with the
discrete fracture method, which directly applies the nonlinear FV method to a grid
with fractures explicitly represented by 3D cells.

Keywords Finite volume method · Nonlinear discretization scheme · Fracture
modelling · Embedded discrete fracture model · Flows in porous media ·
Two-phase flows

MSC (2010) 76S05 · 76M12 · 76T99

K. D. Nikitin (B) · R. M. Yanbarisov
Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Gubkina st. 8,
Moscow, Russia
e-mail: nikitin.kira@gmail.com

R. M. Yanbarisov
e-mail: ruslan.yanbarisov@gmail.com

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2020
R. Klöfkorn et al. (eds.), Finite Volumes for Complex Applications IX - Methods,
Theoretical Aspects, Examples, Springer Proceedings in Mathematics & Statistics 323,
https://doi.org/10.1007/978-3-030-43651-3_52

557

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43651-3_52&domain=pdf
mailto:nikitin.kira@gmail.com
mailto:ruslan.yanbarisov@gmail.com
https://doi.org/10.1007/978-3-030-43651-3_52


558 K. D. Nikitin and R. M. Yanbarisov

1 Introduction

A significant amount of world’s hydrocarbon reserves lies in reservoirs with fractures
of various length scales.

One of popularmethods of accounting fractures is the embedded discrete fractures
method (EDFM). The method was first proposed in [7] as a hierarchical approach
to modelling fractures in porous media. Small fractures were accounted implicitly
by their effective properties, while large fractures were considered explicitly. This
method canbe coupledwith any approach such as the dual-porosity dual-permeability
method and others. The idea of representing large-scale fractures by embedded grids
independent of the reservoir gridswas presented in [8]. The family of EDFMmethods
was further developed in [4, 5, 10].

In EDFM fractures are considered as surfaces with prescribed apertures, and the
connecting term between fractures and surrounding rock matrix can be derived by
dimensionality reduction [6].

The original EDFMwas proposed for the structured grid and isotropicmedia, thus
the conventional linear two-point flux approximation (TPFA) schemewas used for all
discrete fluxes. However, it is well known that the linear TPFA lacks approximation
on non-K-orthogonal grids. One popular alternative to the linear TPFA is the linear
multi-point flux approximation [1], which is second-order accurate, but may be non-
monotone for the cases with anisotropic media, which often coexists with fractures.

In our previous work [13] we proposed the monotone embedded discrete fractures
method (mEDFM) which couples the original EDFM approach with two advanced
nonlinear schemes: themonotone two-point flux approximation (NTPFA) [3] and the
compact multi-point flux approximation (NMPFA) satisfying the discrete maximum
principle (DMP) [2, 9]. The importance of the monotone and DMP schemes for the
multi-phase flow models was studied in [11].

In this paper we consider the application of the mEDFM to the two-phase flows
in porous media and compare the results with the original EDFM and with the
discrete fracture method, which assumes explicit representation of fractures by the
computational grid and uses the similar nonlinear scheme for the flux discretization.

2 Two-Phase Flow Model

The basic equations for the two-phase flow in a domain Ω ⊂ R
3 are the following:

1. Mass conservation for each phase:

∂ραϕSα

∂t
+ div (ραuα) = qα, α = w, o. (1)

2. Darcy’s law:
uα = −λαK (∇ pα − ραg∇z) , α = w, o. (2)
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3. Two fluids fill the voids:
Sw + So = 1. (3)

4. Pressure difference between phases is given by the capillary pressure pc =
pc(Sw):

po − pw = pc. (4)

Here K is the absolute permeability tensor, ϕ(p) is the porosity, g is the grav-
ity term, z is the depth. For the phase α we have denoted: the pressure pα

(unknown), the saturation Sα (unknown), the Darcy’s velocity uα (unknown), the
density ρα(p) = ρα,0/Bα(p), the formation volume factor Bα(p), the mobility
λα(p, S) = krα(S)/μα(p), the relative permeability krα(S), the viscosityμα(p), and
the source/sink well term qα (e.g. the injector or producer wells).

For the boundaries we consider no-flow condition, and for the wells the simple
Peaceman formula is used [14]. For a cell T with center xT connected to the well we
have:

qα(x) = ραkrα
μα

W I
(
pbh − p − ραg(zbh − z)

)
δ(x − xT ), (5)

where pbh is the bottom hole pressure, zbh is the depth of the bottom hole,W I is the
well index, which does not depend on the properties of fluids, but depends on the
properties of the media, δ is the Dirac delta function.

3 Embedded Discrete Fracture Method

For representation of the fractured reservoir we use two types of media: the matrix
domain Ωm ⊂ R

3 and the fractures domain Ω f ⊂ R
3 represented by n f virtual

domains Ω f =
n f⋃
i=1

Ω f,i .

Each fracture Ω f,i is considered as the surface extruded on the fracture aperture
w f,i . We assume that the fractures permeability and porosity are significantly larger
than that of the porous media.

Next we define mass balance equation (1) for each of the domains Ωm , Ω f [5]:

∂ραϕmSmα
∂t

+ div
(
ραumm

α

) + div
(
ραum f

α

) = qm
α , in Ωm, α = w, o, (6)

∂ραϕ f S f
α

∂t
+ div

(
ραu f m

α

) + div
(
ραu f f

α

) = q f
α , in Ω f , α = w, o, (7)

where umm
α is the cell-to-cell Darcy’s flux identical to (2) for pressure pm and satu-

ration Sm defined in the matrix, u f f
α is the similar flux for the fractures domain for
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Fig. 1 Darcy fluxes for a
fracture in porous media:
cell-to-cell (green),
cell-to-fracture (blue) and
intra-fracture (red)
exchanges

F
i

T
−

T
+

+,i
−,i

T T

unknowns p f and S f defined in fractures, and um f
α = −u f m

α is the additional flow
between the matrix and the fractures.

On the discrete level, for each grid cell T there is a set of the matrix unknowns
pmα,T , S

m
α,T , and n f,T fracture unknowns p f

α, fi
, S f

α, fi
, where n f,T is the number of

fractures Fi inside the cell.
The fully implicit scheme is used for the solution of the coupled equations. For

the spatial discretization we use the finite volume method, however instead of one
flux we need to approximate three types of fluxes u∗ in Eqs. (6) and (7), which are
schematically presented in Fig. 1. We use the following space discretizations for the
fluxes (colors correspond to the ones in the figure):

• For the cell-to-cell flux between cells T+ and T− we use the nonlinear TPFA
scheme [3] both for the pressure (including capillary) and the gravity terms:

div
(
ραumm

α

) ≈ upw
[
ρn+1

α (pm)λn+1
α (Sm, pm),

(
M+(pm)pm+ − M−(pm)pm−

)]

− upw
[
ρn+1

α (pm)λn+1
α (Sm, pm),

(
M+(z)ρ+gz+ − M−(z)ρ−gz−

)]
.

• For the fracture-to-cell flux within cell T we use the conventional linear TPFA:

div
(
ραum f

α

) ≈ upwm f

[
ρn+1

α (p)λn+1
α (S, p), Mmf

T

(
pm − p f

) ]

− upwm f

[
ρn+1

α (p)λn+1
α (S, p), Mmf

T

(
ρmgzm − ρ f gz f

) ]
.

• For the intra-fractureflux between virtual fracture cells T−,i and T+,i (intersection
of the fracture Fi with cells T− and T+, respectively) we also use the linear TPFA:

div
(
ραu f f

α

) ≈ upw
[
ρn+1

α (p f )λn+1
α (S f , p f ), M f f

(
p f

+ − p f
−
) ]

− upw
[
ρn+1

α (p f )λn+1
α (S f , p f ), M f f (ρ+gz+ − ρ−gz−)

]
.

Here, M±(p) are the coefficients of the nonlinear discretization scheme, M∗ are
the EDFM coefficients presented in [13], and ‘upw’ are the upwind functions:
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upw
[
f (C), v

] =
{
f (C+)v, v ≥ 0,
f (C−)v, v < 0,

upwm f

[
f (C), v

] =
{
f (Cm)v, v ≥ 0,
f (C f )v, v < 0,

The resulting system of algebraic equations is nonlinear due to nonlinearity of
the two-phase flow model, and the Newton method is used to solve it. Using the
nonlinear flux discretization scheme does not introduce additional complexity for
the nonlinear solver. However, in spite of being formally two-point, the nonlinear
scheme produces a multi-point stencil for the Jacobian matrix, which results in more
expensive linear system solution (on average, extra 25–100%) compared to the linear
TPFA scheme. For more details about the Newton method and the construction of
the Jacobian matrix for the nonlinear scheme we refer to [12].

4 Numerical Experiment for Two-Phase Flow

For the numerical experiment we simulate the two-phase flow for a standard five-spot
problem with two wells in the opposite corners of a rectangular domain, and add two
fractures as shown in Fig. 2.

The permeability tensor for the porous media is full anisotropic:

K
m = Rz(−α)

⎛
⎝

k1 0 0
0 k2 0
0 0 k3

⎞
⎠ Rz(α), Rz(α) =

⎛
⎝

cosα sin α 0
− sin α cosα 0

0 0 1

⎞
⎠ ,

where k1 = 103 [md], k2 = k3 = 102 [md], α = π
4 , and the porosity is φm = 0.15.

The permeability tensor for the fractures is scalar K f = k f
I, k f = 106 [md],

w f = 0.13 [ft] and the porosity is φ f = 0.15.
Domain dimensions are: [0, 100] × [0, 100] × [0, 10] ft. Tables for capillary

pressure and relative permeabilities are similar to the two-phase flow experiments
from [12]. For the wells we set the bottom hole pressures pinj = 4100 [psi] and

Fig. 2 Setup for the
five-spot problem with two
fractures
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Fig. 3 Oil and water rates for EDFM, mEDFM (NTPFA) and DFM-FV (NTPFA) solutions

pprod = 3900 [psi]. The initial pressure is p0 = 4000 [psi], and the initial saturation
is S0 = 0.15.

We simulate water injection for 90 days with time step �t = 1 day and compare
three solutions: (1) the EDFM solutionwith the linear TPFA discretization for all flux
types, (2) the mEDFM solution with the NTPFA discretization, and (3) the discrete
fracture method (DFM-FV) solution with the NTPFA scheme, which directly applies
the original FV discretization for the mesh with cut-cells and a thin layer of 3D cells
representing the fracture.

Water and oil rates for the producer well are shown in the Fig. 3. The mEDFM and
the DFM-FV schemes produce very close results with similar rates and breakthrough
times since the NTPFA scheme provides the approximation for non-K-orthogonal
grids. On the contrast, the original EDFM provides a different solution, with 40%
larger breakthrough time.

Figure4 shows the oil pressure and the water saturation fields at the time T = 45
days. One can see that the mEDFM (NTPFA) and the DFM-FV methods produce
almost identical results, whereas the EDFM solution is noticeably different from
them. It should be noted that the DFM-FV requires gridmodification to take fractures
into account explicitly, whichmay complicate the reservoir simulation. ThemEDFM
provides a viable alternative.
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EDFM:

mEDFM:

DFM-FV:

Fig. 4 Oil pressure (left) and water saturation (right) fields for the two-phase flow, T = 45 days.
Top: EDFM solution; middle: mEDFM (NTPFA) solution; bottom: DFM-FV (NTPFA) solution
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5 Conclusion

We present the application of the new monotone embedded discrete fracture method
(mEDFM) for the two-phase flows in fractured media. The method combines the
EDFM approach with the monotone nonlinear two-point flux approximation.

Numerical experiments show that in anisotropic media the two-phase flow mod-
ellingwith themEDFMprovides the accurate solution (in contrast to the conventional
EDFM), and is in a good agreement with the discrete fracturemethod, which assumes
explicit representation of the fractures by the grid.
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A Robust VAG Scheme for a Two-Phase
Flow Problem in Heterogeneous Porous
Media

Konstantin Brenner, R. Masson, and E. H. Quenjel

Abstract A positive Vertex Approximate Gradient (VAG) scheme is proposed to
discretize the total velocity formulation of two-phase Darcy flow problems in het-
erogeneous porous media. The discretization is based on the physical variables and
allows for multiple rock types with highly contrasted petrophysical and hydrody-
namical properties. The numerical experiment shows that, compared to the Phase
Potential Upwind (PPU) version of VAG scheme, this new discretization is more
robust and efficient in terms of nonlinear convergence.

Keywords Two-phase Darcy flow · Finite volume scheme · Heterogeneous
capillary pressure · VAG scheme
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1 Introduction

Weapply theVertexApproximateGradient (VAG) discretization [4] to the two-phase
Darcy flow problem written in the total velocity formulation [2]. The choice of the
numerical scheme is motivated by the ability of the VAG discretization to properly
capture saturation jumps across different rock types. An upwind approximation [7]
of the capillary diffusion term with respect to the capillary VAG fluxes is proposed in
order to avoid possible undershoots and overshoots of the saturation, that could result
from the nonmonotonicity of theVAGcapillary fluxes. The time integration is chosen
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implicit to avoid severe time step restrictions in high velocity regions. For stability
reasons, the pressure and saturation are fully coupled to account for the nonlinear
transmission conditions at different rock type interfaces [1]. The resulting discretiza-
tion can be viewed as an extension of the Hybrid Upwind (HU) transport scheme
to the VAG discretization. The HU scheme was developed in the framework of the
Two-Point Flux Approximation [6] in order to improve the convergence of the non-
linear solver. The authors used only one unknown per rock type interface, typically
the saturation or the capillary pressure, whereas our discretization uses both pressure
and saturation interface variables. This latter approach allows to accurately represent
the capillary barriers. The positive approximation of the transport and capillary dif-
fusion terms ensure a discrete maximum principle on the saturations. Following [3],
our choice of the primary unknowns at interface nodes between different rock types
is based on a generalization of variable switch techniques which allows to stabilize
Newton’s method. As shown in the numerical section, this new HU VAG discretiza-
tion provides faster nonlinear convergence than the VAG discretization based on the
Phase Potential Upwinding (PPU) [3].

2 Two-Phase Darcy Flow Model

Let tf > 0 and Ω be a bounded domain of Rd (d ≥ 1) such that Ω = ⋃
rt∈RT Ω rt ,

where RT is the set of rock types. The total velocity formulation of the two-phase
Darcy flow model reads

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

φ(x)∂tsnw + div
(
f nwVT − DΛ(x)

(∇pc + (ρw − ρnw)g
)) = 0,

divVT = 0,

VT = Vnw + Vw = − ∑

α∈{nw, w}
ηα(x, sα)Λ(x)(∇pα − ραg),

pc = pnw − pw ∈ P̃c(x, snw),

snw + sw = 1,

(1)

with {nw, w} denoting the set of non-wetting andwetting phases. In (1), φ(x) denotes
the porosity, sα the phase saturation,Λ(x) the permeability tensor, pα the phase pres-
sure, VT the total velocity, and pc the capillary pressure. The phase density ρα is
assumed constant. The gravity acceleration vector is denoted by g and its norm by
g. The phase mobility function ηα(x, sα) is defined as the ratio of the relative per-
meability of the phase over its viscosity. Let P̃c(x, s) denote the monotone graph
extension of the capillary pressure function (see [1]). It is assumed that P̃c and
ηα are spatially homogeneous in each subdomain Ωrt , rt ∈ RT ; in addition we
assume that the total mobility function η(x, s) = ηnw(x, s) + ηw(x, 1 − s) verifies
η(x, s) ≥ ηmin > 0. We then denote by f nw the non-wetting phase fractional flow
function f nw(x, s) = ηnw(x, s)/η(x, s), and by D(x, s) the capillary diffusion coeffi-
cient D(x, s) = ηw(x, 1 − s)f nw(x, s). The system (1) is completed by some initial
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distribution of snw and the boundary conditions

Vα · n = 0 on Γ N × (0, tf ), pα = pα
Dir on Γ Dir × (0, tf ) for α ∈ {nw, w},

where n is the outward normal to Γ N , and ∂Ω = Γ N ∪ Γ Dir with
∣
∣Γ Dir

∣
∣ > 0.

3 Positive VAG Discretization for Two-Phase Darcy Flows

3.1 VAG Mesh, Fluxes and Pore Volumes

The VAG discretization considers generalized polyhedral meshes of Ω [4]. Let us
briefly recall some notations. Let M be the set of polyhedral cells of Ω . For each
k ∈ M we denote the set of nodes of the cell k by Vk and we also denote by V =⋃

k∈M Vk the set of all vertices of the mesh, and by Ms the subset of cells sharing
the node s ∈ V . Note that the mesh is supposed to be conforming w.r.t. the partition
of Ω in subdomains Ωrt, rt ∈ RT , and w.r.t. the partition {Γ N , Γ Dir} of ∂Ω . We

then denote by VDir the set of nodes located at Γ
Dir

.
Let XD = {vk ∈ R, vs ∈ R, for k ∈ M , s ∈ V } be the vector space of degrees

of freedom (d.o.f.). The VAG scheme is a control volume scheme in the sense that
it results, for each d.o.f. not located at the Dirichlet boundary, in a volume balance
equation. The twomain ingredients are therefore the conservative fluxes and the pore
volumes. For uD ∈ XD , the VAG fluxes Fk,s(uD ) connect the cell k ∈ M to its nodes

s ∈ Vk . They can be expressed as Fk,s(uD ) =
∑

s′∈V k

T
s,s′
k (uk − us′), with (T

s,s′
k )s,s′∈V k

a symmetric positive definite matrix obtained from the P1 finite element subspace
defined on a tetrahedral submesh ofM .

As described in [3], the portions φk,s of each cell’s pore volume
∫
k φ(x)dx is dis-

tributed to its nodes s ∈ Vk \ VDir. We then define φk = ∫
k φ(x)dx − ∑

s∈V k\VDir
φk,s

as the remaining cell pore volume.

3.2 Choice of the Primary Unknowns

We recall that the mesh is conforming w.r.t. the rock type subdomains, therefore a
single rock type rtk is assigned to each cell k ∈ M .We denote byχs = {rtk , k ∈ Ms}
the set of rock types surrounding the node s ∈ V , andwe setχk = {rtk} for all k ∈ M .

The choice of the primary variables follows the variable switching strategy intro-
duced in [3]. We use the pressure of the non-wetting phase as the first primary vari-
able for all d.o.f.; then for the cells and the nodal d.o.f. associated with a single rock
type the second primary unknown is the saturation, while for the nodes s located
at rock type interfaces we invoke the variable switching based on a parametriza-
tion of P̃c,rt , rt ∈ χs. For such nodes we construct a set of non-decreasing con-
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Fig. 1 Phase pressure and
saturation discrete unknowns
in the four cells sharing the
vertex s. Each color
represents a possible
different rock type

tinuous functions Pc,χs(τ ) and
(
Snw

χs,rt(τ ))
)
rt∈χs

defined for τ ∈ [0, 1] and satisfy-

ing Pc,χs(τ ) ∈ P̃c,rt(Snw
χs,rt(τ )) for all rt ∈ χs and τ ∈ [0, 1]; in addition we require

Pc,χs(τ ) + ∑
rt∈χs

Snw
χs,rt(τ ) to be strictly increasing. We note that this parametrization

allows to deal both with a vanishing capillary diffusion and the capillary barriers.
The functions τ �→ Pc,χs(τ ),

(
Snw

χs,rt(τ ))
)
rt∈χs

have to be chosen carefully in order to
improve the nonlinear solver and we refer to [3] for a detailed discussion. In order to
unify the notations, for the cells or the nodes associated with a single rock type, we
introduce a trivial parametrization defined by Snw

χ,rt(τ ) = τ for χ reduced to a single
rock type.

Given the primary unknowns pnwD = (pnwν )ν∈M ∪V and τD = (τν)ν∈M ∪V , we
define ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pc,D = (pc,ν)ν∈M ∪V , with pc,ν = Pc,χν
(τν),

pwD = (pwν )ν∈M ∪V , with pwν = pnwν − pc,ν ,
Φα

D = pα
D + ραgZD , with ZD = (zν)ν∈M ∪V ,

sαk = Sα
χk ,rtk (τk), k ∈ M ,

sαk,s = Sα
χs,rtk (τs), s ∈ V , k ∈ Ms.

To sum up, as exhibited in Fig. 1, the discrete phase pressure is single-valued for all
d.o.f. while the saturation is single-valued for all cells (and single rock type nodes)
and multi-valued at any node sharing multiple rock types.

3.3 Hybrid Upwinding (HU) VAG Scheme for the Diphasic
Model

The gravity and capillary gradient fluxes are defined by

Gk,s = (ρnw − ρw)gFk,s

(
ZD

)
, Ck,s = Fk,s(pc,D ).

Let us introduce the total velocity fluxesVT
k,s = VT

k,s(p
nw
D , τD ), for all k ∈ M , s ∈ Vk ,

as well as the following discrete phase saturation functions at each d.o.f.

γ α
k (τ ) = Sα

χk ,rtk (τ ), k ∈ M , γ α
s (τ ) =

∑

k∈M s

φk,s

φs
Sα

χs,rtk (τ ), s ∈ V \ VDir.
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with φs = ∑
k∈M s

φk,s. For N ∈ N
∗, we consider the time subdivision t0 = 0 < t1 <

· · · < tn−1 < tn · · · < tN = tf of [0, tf ]. We denote the time steps byΔtn = tn − tn−1

for all n = 1, · · · ,N . In the sequel, we omit the time superscript tn in the flux
terms. Then, for a given τ 0

D ∈ [0, 1]M ∪V , the scheme consists in finding (pnw,n
D , τ n

D ),
solutions of the following system of equations for α ∈ {nw, w}:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φk

Δtn

(
γ α
k (τ n

k ) − γ α
k (τ n−1

k )
)

+
∑

s∈V k

f nwk,s VT
k,s + Dcap

k,sCk,s + Dg
k,sGk,s = 0, k ∈ M ,

φs

Δtn

(
γ α
s (τ n

s ) − γ α
s (τ n−1

s )
)

−
∑

k∈M s

f nwk,s VT
k,s + Dcap

k,s Ck,s + Dg
k,s Gk,s = 0, s ∈ V \ VDir,

pnw,n
s = pnws,Dir, τ n

s = τs,Dir, s ∈ VDir.

(2)

Summing the conservation equations over the phases α ∈ {nw, w} provides the dis-
crete divergence-free property of the total velocity fluxes

∑

s∈V k

V T
k,s = 0 for all k ∈ M ,

∑

k∈M s

VT
k,s = 0 for all s ∈ V \ VDir. (3)

Fractional flow term: We first specify two expressions of VT
k,s using the upwind

mobilities

VT
k,s =

∑

α∈{nw, w}
ηα
rtk (s

α
k )Fk,s(Φ

α
D )+ − ηα

rtk (s
α
k,s)Fk,s(Φ

α
D )−, (4)

with x± = max(±x, 0), or alternatively, using the cell mobilities

VT
k,s =

∑

α∈{nw, w}
ηα
rtk (s

α
k )Fk,s(Φ

α
D ). (5)

This last choice is expected to be more stable than (4). Then, the fractional flow
fluxes are defined by

f nwk,s VT
k,s = f nwk (snwk ) (VT

k,s)
+ − f nwk (snwk,s) (VT

k,s)
−.

Capillary term: The capillary gradient flux is not monotone. To tackle this issue,
we perform a positive correction as follows

Dcap
k,sCk,s = ηnw

rtk (snwk )ηw
rtk (s

w
k,s)

ηrtk (s
nw,n−1
k )

C+
k,s − ηnw

rtk (snwk,s)η
w
rtk (s

w
k )

ηrtk (s
nw,n−1
k )

C−
k,s. (6)

Gravity term: The gravity contribution is defined similarly as in (6).
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Remark 3.1 Note that the explicit approximation ηrtk (s
nw,n−1
k ) is considered in (6).

This choice improves the nonlinear convergence without involving any restriction
on the time step.

We now state two properties of the scheme (2) and (3) that can be proved assuming
that the capillary functions are bounded. We refer to [5] for the proof.

Proposition 3.1 Let τ 0
D ∈ [0, 1]M ∪V , then, every solution (pnw,n

D , τ n
D ), to the system

(2) and (3) ensures τ n
D ∈ [0, 1]M ∪V , meaning that the saturations and the capillary

pressure satisfy the physical bounds.

Proposition 3.2 Let τ 0
D ∈ [0, 1]M ∪V and let us assume that the total velocity fluxes

are given. Then, the saturation equation (2) admits a solution τ n
D .

4 Numerical Results

We test the ability of the introduced HU VAG scheme to simulate oil migration in a
fractured reservoir. It is compared to the PPU VAG version [3] which upwinds the
phase mobility w.r.t the phase potential. The domain is Ω = (0, 100m)3 contain-
ing a network of planar fractures of aperture 1cm (see Fig. 2). The matrix porosity
is set to φm = 0.2 and the fracture porosity to φf = 0.4. The matrix permeability
is isotropic and set to Λm = 10−16 m2 while the fracture tangential permeability
is set to Λf = 10−10 m2. The oil density is ρnw = 700Kg/m3 and the water den-
sity is ρw = 1000Kg/m3. The oil viscosity is set to μnw = 0.005Pa.s and the water
viscosity is μw = 0.001Pa.s. The fracture and matrix relative permeabilities are
given by kα

r,f (s
α) = (sα)1.2 and kα

r,m(sα) = (sα)2, α = nw,w. The capillary pressure
is Pc,m(snw) = −104 log(1 − snw) in the matrix and Pc,f (snw) = −103 log(1 − snw)

in the fracture network. The domain is meshed using a tetrahedral mesh with 47670
cells and 1670 fracture faces. The reservoir is initially saturated with water. Dirichlet

Fig. 2 Test case
configuration
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Fig. 3 Oil saturation volumes in the matrix (left) and in the fracture network (right) as a function
of time obtained for the PPU and HU-EtaKs VAG schemes

Fig. 4 Oil saturation volumes in the matrix (left) and in the fracture network (right) as a function
of time obtained for the HU VAG schemes with EtaKs and EtaK

Table 1 Number of the time steps NΔt , number of the time step chops Nchop, average number of
Newton iterations per time step NNewton, average number of GMRES iterations per Newton step
NGMRes and CPU time for the three VAG schemes

Scheme NΔt Nchop NNewton NGMRes CPU (s)

PPU VAG 106 8 6.7 14.7 507

HU-EtaKs VAG 82 0 3.9 13.4 205

HU-EtaK VAG 82 0 4.0 13.9 203

boundary conditions are imposed at the top boundary with a wetting phase pres-
sure of 1 MPa and sw = 1, while at the lower boundary, intersected by the fracture
network, we impose pw = 4 MPa and the capillary pressure resulting in the matrix
saturation snw equal to 0.9. The lateral boundaries are assumed impervious and the
final time is fixed to tf = 3600 days. The time stepping is defined by Δt1 = Δtinit
and for all n ≥ 1 by Δtn+1 = max(Δtmax, 1.2Δtn), in case of a successful time step
Δtn, and Δtn+1 = 0.5Δtn, if Newton’s method fails to converge in 25 iterations. We
have used the values Δtinit = 0.01 and Δtmax = 100 days.



572 K. Brenner et al.

Fig. 5 Oil saturation in the matrix for snw > 0.25 and in the fractures at final time obtained for the
PPU (left) and HU-EtaKs (middle) and HU-EtaK (right) VAG schemes

Fig. 6 Total number of
Newton iterations as a
function of time for the three
VAG schemes

We display in Figs. 3, 4, 5 and 6 and Table1 the results obtained for the PPU
and HU VAG discretizations corresponding to the upwind mobility (4) labeled with
HU-EtaKs and the centered one (5) labeled with HU-EtaK. Figure3 shows a very
good match between the PPU and HU-ETaKs schemes while Figs. 4 and 5 exhibit
small differences in the matrix between both HU VAG schemes.

The increased robustness of the nonlinear convergence provided by the HU VAG
schemes compared with the PPU version is clearly seen in this Table1 as well as in
Fig. 6.

In conclusion, the positive HU VAG scheme provides similar solutions than the
PPU version and exhibits an additional robustness in terms of nonlinear convergence
for the simulation of highly heterogeneous media. Let us refer to [5] for more test-
cases including large fracture networks.

Acknowledgements This work was supported by the French National Research Agency under the
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Design of Coupled Finite Volume
Schemes Minimizing the Grid
Orientation Effect in Reservoir
Simulation

Karine Laurent, Éric Flauraud, Christophe Preux, Quang Huy Tran,
and Christophe Berthon

Abstract In this paper, we present and compare two nine-point finite volume
schemes to reduce the so-called grid orientation effect (GOE) which occurs in the
simulation of unstable two phase flow in porous media. The first scheme is a more
classical nine-point schemewith one tuning parameter whereas the second one, more
original, uses two parameters (one per direction). A numerical test problem testify
to the improvement brought by the new scheme.

Keywords Grid orientation effect · Reservoir simulation · Finite volume
schemes · Nine-point scheme

MSC (2010) 35Q35 · 65M08 · 76S05

1 Introduction

In oil reservoir simulation, engineers are often faced with a phenomenon called grid
orientation effect (GOE). This unpleasant effect arises when coupled finite volume
schemes are used on structured grids in order to simulate the thrust of a viscous
fluid (oil) by a less viscous one (water), which is typical of an injection scenario
for enhanced oil recovery. The GOE gives rise to a more or less marked distortion
of the computed solution whereas, in particular, the exact solution is radial. As a
consequence, the simulation of predicted production of a well also depends on the
grid orientation and may not be accurate. Since the 1970s, a wide range of ideas
have explored to reduce the GOE. The literature on this problem is so vast that we
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cannot claim to provide an exhaustive review. One of the precursors is Yanosik &
McCracken [6], who developed a nine-point (9P) scheme obtained by superimposing
two five-point (5P) schemes associated with two square grids rotated by π/4 relative
to each other. By involving diagonal neighbors into the stencil, the resulting scheme
significantly reduces the GOE over square meshes and met an instant success. Two
generalizations of this 9P scheme to rectangularmesheswere then proposed in [4] and
in [1]. The difference between these twoversions lies in theweighting heuristic for the
diagonal cells. Since then, the 9P philosophy has been extended to other porous two-
phase models, for example to account for dispersion [5]. The objectionable aspect of
these works is that the error analysis—whenever available—is only concerned with
the pressure, while the quantity of interest is the saturation. In [2], R. Eymard et al.
designed another 9P scheme and propose a weighting parameter for the saturation
equation discretization over square meshes. This methodology is more satisfactory
from the theoretical standpoint. However, since the basic idea is to request that
the diffusion matrix of the equivalent equation be invariant by a π/4-rotation, the
extension to rectangular meshes does not seem obvious.

In this paper, we present and compare two 9P schemes on a two-phase flow
problem. The first one, defined in Sect. 3.1 and called 9P1s, has a scalar tuning
parameter θ that allows several “historical” schemes such as [1, 4, 6] to appear as
special cases of a unified framework. The second one, defined in Sect. 3.2 and called
9P2s, has two scalar tuning parameters (θx , θy), a novelty that we introduce in order
to further reduce the GOE. Finally, in Sect. 4 numerical results on radial problem
confirm the ability of the 9P2s scheme to further reduce the GOE on rectangular
meshes compared to the 9P1s scheme.

2 The Two-Phase Flow Model

Let � ⊂ R
2 be a bounded open connected domain with a regular boundary. The

two-phase flow is characterized by the common pressure p(x, t) > 0 and the water
saturation s(x, t) ∈ [0, 1], where x = (x, y) ∈ � and t ≥ 0 are respectively space
and time variables. These quantities of interest solve

u = −κλ(s)∇p, (1a)

div(u) = q, (1b)

φ∂t s + div( f (s)u) = qw, (1c)

where the total velocity u(x, t) is given by the Darcy’s law (1a), and

λ(s) = κr,w(s)

μw
+ κr,o(1 − s)

μo
(2)
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is the total mobility. From now on, Eq. (1b) is referred to as the pressure equation,
since it gives−div(κλ(s)∇p) = q when combinedwith (1a). The symbol κ stands for
the permeability tensor, restricted here to be a scalar. The water relative permeability
κr,w(s) is an increasing function of s, while the oil relative permeability κr,o(1 − s) is
a decreasing function of s. Moreover, the two scalars μw > 0 and μo > 0 denote the
water and oil viscosities. The quantity φ(x) ∈ [0, 1] represents the (known) porosity
of the medium. Here, without loss of generality, we impose φ ≡ 1.

The water fractional flow f (s) in (1c) is defined as

f (s) = κr,w(s)/μw

κr,w(s)/μw + κr,o(1 − s)/μo
, (3)

where we have set κr,w(s) = κ
�
r,w κ∗

r,w(s) and κr,o(1 − s) = κ
�
r,o κ∗

r,o(1 − s). The nor-
malized relative permeabilities κ∗

r,w(s) and κ∗
r,o(1 − s) are assumed to be in [0, 1],

while κ
�
r,w and κ

�
r,o are given dimensionless constants. The water fractional flow f

is a smooth positive and non-decreasing function of s, i.e., f ≥ 0 and f ′ ≥ 0 for
s ∈ [0, 1]. It can be put under the reduced form

f (s) = Mκ∗
r,w(s)

Mκ∗
r,w(s) + κ∗

r,o(1 − s)
, where M = μoκ

�
r,w

μwκ
�
r,o

(4)

is the mobility ratio between the displacing water and the displaced oil. M measures,
in some sense, the stiffness of the problem. Indeed, as soon as M is larger than
some critical threshold, the system (1) turns out to be unstable and thus amplifies the
numerical errors. In such a context, the errors due to theGOEmay become prevailing.
In the right-hand sides of (1), q and qw are source terms expressing the produced or
injected total and water flow in the domain.

3 Nine-Point Finite Volume Methods

Usually, system (1) is discretized in time using the IMPES technique where the
pressure p is solved implicitly in a first step and the saturation s is solved explicitly
(at least for the convectionpart) in a second step.Adopting a semi discrete formulation
in space, the IMPES scheme reads

un+1 = −κλ(sn)∇pn+1, (5a)

div(un+1) = qn+1, (5b)

�t−1(sn+1 − sn) + div( f (sn)un+1) = qn+1
w , (5c)

where the time-step �t > 0 must be restricted by a CFL-like condition. Regarding
the discretization in space of the two divergence operators in (5), there are two finite
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volume schemes, one for the pressure equation (5b) and another one for the saturation
equation (5c). In this section, we describe two discretizations in space, namely: (i) in
Sect. 3.1, the 9P1s scheme which makes use of one scalar parameter; (ii) in Sect. 3.2,
the 9P2s scheme which makes use of two scalar parameters.

The domain � is divided into uniform rectangular cells Ki, j = (xi−1/2, xi+1/2)

× (y j−1/2, y j+1/2) of side lengths (xi+1/2 − xi−1/2, y j+1/2 − y j−1/2) = (�x,�y) ∈
(R+∗ )2. We denote by xi, j = (xi , y j ) the center of the cell Ki, j .

3.1 A Nine-Point Scheme with One Parameter θ

The approximation of the Eq. (5b) with a nine-point finite volume scheme gives the
discrete flux balance

Fθ
i+1/2, j − Fθ

i−1/2, j + Fθ
i, j+1/2 − Fθ

i, j−1/2

+ Fθ↗
i+1/2, j+1/2 − Fθ↗

i−1/2, j−1/2 + Fθ ↖
i−1/2, j+1/2 − Fθ ↖

i+1/2, j−1/2 = �x�y qi, j ,
(6)

in the cell Ki, j , where the numerical fluxes are defined by

Fθ
i+1/2, j = κ˜λ(sni, j , s

n
i+1, j )[z − 2θ(z + z−1)](pn+1

i, j − pn+1
i+1, j ), (7a)

Fθ
i, j+1/2 = κ˜λ(sni, j , s

n
i, j+1)[z−1 − 2θ(z + z−1)](pn+1

i, j − pn+1
i, j+1), (7b)

Fθ↗
i+1/2, j+1/2 = κ˜λ(sni, j , s

n
i+1, j+1)θ(z + z−1) (pn+1

i, j − pn+1
i+1, j+1), (7c)

Fθ ↖
i−1/2, j+1/2 = κ˜λ(sni, j , s

n
i−1, j+1)θ(z + z−1) (pn+1

i, j − pn+1
i−1, j+1). (7d)

The total mobilities are approximated between two cells using a harmonic average
˜λ(sL , sR) = 2λ(sL)λ(sR)/[λ(sL) + λ(sR)]. z is the ratio between the mesh sizes z =
�y/�x . The selected orientation of the eight numerical fluxes (7) is displayed in
Fig. 1. The arrows ↗ and ↖ indicate the direction in which the flux takes a positive
value. Finally, qi, j is an approximation of the source term q in Ki, j .

Fig. 1 Nine-point stencil (left) and orientation of numerical fluxes (right)
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Once the pressure field is computed, the saturation equation (5c) can be discretized
with a scheme having a similar nine-point and eight-flux structure. Rearranged as a
discrete balance, the update of saturation takes the form

�x�y�t−1(sn+1
i, j − sni, j ) + Gθ

i+1/2, j − Gθ
i−1/2, j + Gθ

i, j+1/2 − Gθ
i, j−1/2

+ Gθ↗
i+1/2, j+1/2 − Gθ↗

i−1/2, j−1/2 + Gθ ↖
i−1/2, j+1/2 − Gθ ↖

i+1/2, j−1/2 = �x�y qw;i, j ,
(8)

where the fluxes are upwinded as

Gθ
i+1/2, j = f (sni, j )[Fθ

i+1/2, j ]+ + f (sni+1, j )[Fθ
i+1/2, j ]−, (9a)

Gθ↗
i+1/2, j+1/2 = f (sni, j )[Fθ↗

i+1/2, j+1/2]+ + f (sni+1, j+1)[Fθ↗
i+1/2, j+1/2]−, (9b)

where [F]+ = max(F, 0) and [F]− = min(F, 0) are respectively the positive and
negative parts of F . The upwinding for Gθ

i, j+1/2 and Gθ ↖
i−1/2, j+1/2 are similar. The

term qw;i, j expresses an approximation of the source term.
The crucial point of this scheme is the choice of the parameter θ which determines

the accuracy of the method. Some values have been proposed in the literature [1, 4,
6] and in [3] we propose a rigorous approach to deduce an optimal value of θ which
decreases as much as possible the anisotropy of the numerical saturation error when
the exact solution is radial. This parameter is given by

θ	 = 1

4

(

�x + �y
√

�x2 + �y2
− 1

)

. (10)

Note that, for a square mesh (�x = �y = h), the optimal value degenerates to

θ	 =
√
2 − 1

4
≈ 0.103553, (11)

which coincides with the parameter recommended in [2].

3.2 A Nine-Point Scheme with Two Parameters θx and θy

In this second and new scheme, we introduce two parameters instead of one. After
all, since we have two privileged directions x, y, two grid-steps �x,�y, it seems
natural to have θx , θy in the definition of the scheme. However, the introduction of
these two parameters forces us to modify the definition of the fluxes in the balance
equation (6) and in particular the diagonal fluxes. Then the numerical fluxes (7) are
now defined as linear combinations of the standard two-point flux approximations
used in the 5P scheme. In other words,
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Fθ
i+1/2, j = (1 − 4θx )Fi+1/2, j , Fθ

i−1/2, j = (1 − 4θx )Fi−1/2, j , (12a)

Fθ
i, j+1/2 = (1 − 4θy)Fi, j+1/2, Fθ

i, j−1/2 = (1 − 4θy)Fi, j−1/2, (12b)

Fθ↗
i+1/2, j+1/2 = θy Fi, j+1/2 + θx Fi+1/2, j+1 + θx Fi+1/2, j + θy Fi+1, j+1/2, (12c)

Fθ↗
i−1/2, j−1/2 = θy Fi−1, j−1/2 + θx Fi−1/2, j + θx Fi−1/2, j−1 + θy Fi, j−1/2, (12d)

Fθ ↖
i−1/2, j+1/2 = θy Fi, j+1/2 − θx Fi−1/2, j+1 − θx Fi−1/2, j + θy Fi−1, j+1/2, (12e)

Fθ ↖
i+1/2, j−1/2 = θy Fi+1, j−1/2 − θx Fi+1/2, j − θx Fi+1/2, j−1 + θy Fi, j−1/2, (12f)

where θ is now defined as the vector (θx , θy) and

Fi+1/2, j = κ˜λ(sni, j , s
n
i+1, j ) z (pn+1

i, j − pn+1
i+1, j ),

Fi, j+1/2 = κ˜λ(sni, j , s
n
i, j+1) z

−1 (pn+1
i, j − pn+1

i, j+1).

Once the pressure field is computed, the saturations are deduced from the Eq. (8)
with the upwinded fluxes (9) in which (7) are replaced by (12). Once again in [3], an
analysis of the saturation error is carried out in order to define two optimal parameters
θx and θy in the sense that theyminimize the anisotropy of the error when the solution
is radial. The optimal values of these parameters are given by

θ	
x (z, ω) =

√
1 + ω2(zω2 + 1) − (1 + zω3)

8zω
, θ	

y(z, ω) = zθ	
x (z, ω)

ω
, (13)

where

ω(z) =

⎧

⎪

⎨

⎪

⎩

7z/2 if 0 ≤ z ≤ 2/7,

1 if 2/7 ≤ z ≤ 7/2,

2z/7 otherwise.

For a square mesh (�x = �y), we have z = ω = 1 and recover θ
	
x = θ

	
y = θ	 =√

2−1
4 .

4 Numerical Results

The numerical test presented in this chapter is inspired by [2]. The problemmodels a
water injector well placed at the center of a homogeneous domain � = [−0.5, 0.5]2
initially saturated with oil. Consider the system

u = −λ(s)∇p, (14a)

∂t s + div( f (s)u) = δ 0, (14b)

div (u) = δ 0, (14c)
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in � × [0, T ], T = 0.05, with the initial data s(x, t = 0) = 0 in �. In (14),
q = qw = δ 0 are Dirac sources expressing water injection at x = 0. The absolute
permeability has been assigned the constant value κ = 1, while the relative perme-
abilities are

κr,w(s) = s2 and κr,o(1 − s) = (1 − s)2. (15)

As a consequence, the water fractional flux is

f (s) = Ms2

Ms2 + (1 − s)2
, with M = μo

μw
. (16)

Setting μo = 200 and μw = 1 results in M = 200, which is a highly unfavorable
mobility ratio. The system (14) is completed with the following boundary condition

− λ(s)∇p · n = 1

2πr
er · n, (17)

wheren denotes the unit outward normal vector of ∂�. System (14)with the boundary
condition (17) has an analytical radial solution (see [2, 3]).

In Figs. 2 and 3, we plot the isovalues of the saturation and the profiles of the
saturation along the x-axis, y-axis and the diagonal-axis for the 5P scheme, the
9P1s scheme and the 9P2s scheme. The simulations are run on two uniform grids:
a 201 × 201 square mesh (Fig. 2) and a 201 × 601 rectangular mesh (Fig. 3). We
note that for the square mesh (Fig. 2), the two 9P schemes suppress the GOE which
on observes with the 5P scheme. Besides, the saturation profiles obtained with the
9P1s and 9P2s schemes are similar and close to the analytical solution which is not
surprising since both schemes use the same optimal value for θ	 (11). However, for
the rectangular mesh, the numerical solution with the 9P1s scheme is more diffused
in the x-direction and becomes oval while it remains more radial with the 9P2s
scheme. Indeed, the saturation profiles obtained with the 9P2s scheme are closed
to the analytical solution in the three directions. Thus, this simple test shows the
improvement brought by the new scheme to better mitigate the GOE on rectangular
meshes.
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Fig. 2 Saturation contours (top) and saturation profiles (bottom) on square mesh (�x = �y) for
the 5P scheme (left), 9P1s scheme (middle) and 9P2s scheme (right)

Fig. 3 Saturation contours (top) and saturation profiles (bottom) on rectangular mesh (�x = 3�y)
for the 5P scheme (left), 9P1s scheme (middle) and 9P2s scheme (right)
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A Comparison of Consistent
Discretizations for Elliptic Problems
on Polyhedral Grids

Øystein S. Klemetsdal, Olav Møyner, Xavier Raynaud, and Knut-Andreas Lie

Abstract In this work, we review a set of consistent discretizations for second-
order elliptic equations, and compare and contrast them with respect to accuracy,
monotonicity, and factors affecting their computational cost (degrees of freedom,
sparsity, and condition numbers). Our comparisons include the linear and nonlinear
TPFA method, multipoint flux-approximation (MPFA-O), mimetic methods, and
virtual element methods. We focus on incompressible flow and study the effects of
deformed cell geometries and anisotropic permeability.

Keywords Reservoir simulation · Elliptic discretizations · Finite volumes ·
TPFA · NTPFA · MPFA · MFD · VEM
MSC (2010) 76S05 · 35L65 · 65M08 · 35J15

1 Introduction

Models of petroleum reservoirs with complex geology tend to have gridswith general
hexahedral or polyhedral cell geometries and tensor permeabilities. The standard two-
point flux-approximation (TPFA) method is only consistent for K-orthogonal grids
in which the principal directions of the permeability tensor align with vectors joining
cell and face centroids.1 Simulationmodels are often the result of upscaling [9],which
tends to generate nonzero off-diagonal permeabilities, and as a rule, simulation grids
will not be K-orthogonal, at least in some parts of the reservoir. The TPFA method
is then not consistent and convergent, and will introduce grid-orientation effects that
adversely affect the accuracy. Much research has therefore been devoted to develop
consistent methods on non-K-orthogonal grids.

1Other choices of primary pressure points are also possible, e.g., circumcenter for triangular grids.
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The multipoint flux-approximation (MPFA) scheme [1] accounts for transversal
pressure variations by introducing auxiliary pressure points at the cell interfaces,
which are coupled inside local interaction regions that together form a dual grid.
MPFAmethods retain the same low number of unknowns as TPFA, but have a larger
stencil and can be somewhat cumbersome to implement for complex grids.

Mimetic methods [5] also introduce auxiliary pressure points to ensure consis-
tency, which are kept as primary unknowns. An inherent free stabilization param-
eter gives a variety of specific schemes that reduce to other known discretizations
on simple grids [15]. The main drawbacks of mimetic methods are that they use
a mixed-hybrid formulation and involve significantly more unknowns than cell-
centered methods. Mimetic methods have later been developed into virtual element
methods (VEM) [2, 3], which constitute a uniform and flexible framework for higher-
order discretizations on general polyhedral cells. MPFA,mimetic, and VEM are only
conditionally monotone and may introduce nonphysical pressure oscillations. The
nonlinear two-point scheme (NTPFA) [17, 19, 20] uses pressure-dependent trans-
missibilities to define a consistent and monotone method, but requires the solution
of a nonlinear system of equations.

In this work, we compare the performance of these methods applied to the type of
grid models encountered in real reservoir simulation using the open-source MRST
software [14]. Our test cases involve deformed cell geometries and anisotropic per-
meabilities. The paper can therefore be seen as an update of [15] and [12]. Further
comparisons can be found in, e.g., [8].

2 Consistent Discretizations on Polyhedral Grids

For simplicity, we consider incompressible single-phase flow,

∇ · v = q, v = −K∇ p, x ∈ Ω ⊂ R
d . (1)

Discretized by amesh consisting of nc polygonal or polyhedral cellsΩi with constant
permeability Ki on each, the control-volume formulation of (1) reads

∫

∂Ωi

v · n ds =
∫

Ωi

q dx = qi . (2)

Methods differ in the way they approximate the flux across intercell faces. Consider
two neighboring cells as in Fig. 1, with common interface Γi j . The normal vector
ni, j points from Ωi to Ω j , and similarly, n j,i = −ni, j . For the flux vi, j across Γi j in
the direction of ni, j , local conservation of mass requires vi, j = −v j,i .

Discrete conservation of mass is a natural requirement, and also necessary to
avoid nonphysical solutions in multiphase simulations; consistency is needed for a
correct solution, typically used together with coercivity to prove convergence [5, 20];
whereas monotonicity is desirable to produce physically meaningful solutions with
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Fig. 1 Two neighboring
cells and geometric
quantities used to discretize
the flux vi, j

properties inherent to elliptic problems [10]. For linear discretizations, a sufficient
condition for monotonicity is that the discretization produces a so-called M-matrix.
Lack of coercivity may nonetheless lead to convergence breakdown, even for consis-
tent methods [6]. We present a set of consistent discretization methods for (1), and
discuss some of these properties; see Fig. 3 for a schematic comparison.

2.1 Two-Point Flux-Approximation

With an auxiliary pressure point πi, j at the centroid of Γi j , we can use a one-sided
finite-difference to approximate the pressure gradient in Darcy’s law,

vi, j =
∫

Γi, j

v · ni, j ds ≈ |Γi, j |
cTi, jKini, j

|ci, j |2 (pi − πi, j ) = Ti, j (pi − πi, j ). (3)

Here, Ki is the constant value of K on Ωi , and Ti, j is referred to as the one-sided
transmissibility. Imposing flux continuity across interfaces, vi j = vi, j = −v j,i , and
continuity of face pressures, πi j = πi, j = π j,i , gives the system

∑nc

j=1
Ti j (pi − p j ) = qi , Ti j = (

T−1
i, j + T−1

j,i

)−1
, i = 1, . . . , nc, (4)

where Ti j is the transmissibility. If these cells do not share an interface, the trans-
missibility Ti j is zero. This yields an M-matrix, which guarantees that the method
is monotone. However, the TPFA method is only consistent for K-orthogonal grids,
for which a sufficient condition is that Kini, j is parallel to ci, j for all cells.

2.2 Multipoint Flux Approximation

For a consistent method, one must account for pressure gradients parallel to cell
faces. MFPA-O constructs an interaction region around each grid node and defines
linear basis functions for pressure inside, with pressure continuity at face centroids
and flux continuity across face patches. Continuity and mass conservation gives a
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Fig. 2 The NTPFA vector
li, j = Kini, j

consistent method, with unknown cell pressures and face pressures along the outer
boundary. This gives a denser linear system than for TPFA. However, the method is
only monotone under specific conditions, and we can not expect it to be monotone
for very skewed grid cells and/or severely anisotropic permeabilities [10]. See, e.g.,
[1, 7] for more details of MPFA schemes.

2.3 Nonlinear Two-Point Flux Approximation

The NTPFA method [17, 19, 21] also uses additional points to estimate fluxes,

vi, j = Ti, j (p)pi − Tj,i (p)p j .

The transmissibilities Ti, j are positive functions that depend on one or more pres-
sure values, giving a nonlinear method. To derive such a scheme, we consider the
vector li, j = Kini, j , (see Fig. 2). Whereas TPFA approximates li, j using only vector
components normal to the interface, NTPFA uses a decomposition onto a basis of d
vectors in d spatial dimensions. This is used to obtain consistent discretizations of
vi, j and v j,i , with vi j taken as a convex combination of these. The result is a consistent
and monotone two-point flux approximation, where the transmissibilities depend on
pressure values not included in the two-point stencil.

2.4 Mimetic Finite Differences

TPFA and MPFA-O can be seen as special cases of a wider family of mass-
conservative schemes written in so-called hybrid formulation

vi = Ti (ei pi − πi ), in Ωi .

Here, vi is the vector of fluxes across the n f cell faces, ei = (1, . . . , 1)T ∈ R
n f ,

πi is the vector of face pressures, and Ti is a matrix of one-sided transmissibil-
ities. Discrete mass conservation and flux continuity is imposed through separate
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Fig. 3 Schematic overview of key properties of the methods compared in this paper

equations, see e.g., [15] for details. This formulation can be interpreted as a first-
order mimetic finite difference method, where different choices of the inner product
matricesMi = T−1

i lead to different special cases (e.g., TPFA or MPFA-O, see [15,
16]).

2.5 The Virtual Element Method

In their present formulation, neither of the methods mentioned so far are easily
extended to higher order. By using moments of the solution as degrees of freedom, it
is possible to obtain a unified, higher-order framework for general polyhedral grids
called the virtual element method (VEM) [2, 3]. Herein, we use this method as an
example of a finite element-type discretization for polyhedral grids. This formulation
is not locally conservative, and the result must be postprocessed in order to be used
in transport simulations. Alternatively, it is possible to use a mixed formulation [4].
We will denote first- and second-order VEM by VEM1 and VEM2, respectively.

3 Numerical Experiments

All discretizations are implemented in MRST [14]. Full codes for the following two
examples are available online,2 and [11] gives a more elaborate description.

2https://bitbucket.org/strene/compare-elliptic/

https://bitbucket.org/strene/compare-elliptic/
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Fig. 4 Pressure solutions for the monotonicity test; white cells indicate negative pressure

Fig. 5 Fraction and magnitude of negative pressure values for the solutions in the monotonicity
test on the Cartesian mesh. Magnitude of negative pressure = 100

∑
pi<0 |pi |

/ ∑
i |pi |

3.1 Monotonicity

The fundamental elliptic maximum principle of (1) implies that if there is a sin-
gle source within the domain, the pressure will decrease monotonically towards the
boundary. To assess deviations from monotonicity, we consider anisotropic perme-
ability Kx/Ky = 500, rotated by an angle π/8, and three different meshes: 51 × 51
Cartesian, honeycombed PEBI, and a rotated Cartesian mesh aligned with the prin-
cipal axes of K. We place a point source at the origin, and impose zero pressure
boundary conditions. Figure4 reports approximate solutions. All consistent meth-
ods, except NTPFA, give oscillations along the minor principal axis of K. Figure5
reports fraction and magnitude of negative pressures values.

NTPFA and TPFA are monotone by construction and have no cells with negative
pressure. VEM1 has the highest fraction of negative pressures, but the magnitude
is lower than for MFD and MPFA. MPFA has the highest magnitude of negative
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Table 1 Key characteristics of the discrete systems for the monotonicity example: number of
primary unknowns (dof), number of nonzero entries in discretization matrix (nnz), average number
of nonzero entries per unknown (ratio = nnz/dof), and condition number (cond)

Points for unknowns Calculation dof nnz Ratio cond

TPFA Cells 51· 51 2601 12801 4.92 1.45e+03

NTPFA Cells 51· 51 2601 17208 6.62 2.83e+03

MPFA Cells + outer faces 512 + 2 · 4 · 51 3009 23209 7.71 1.69e+03

MFD Faces 2 · 51 · 52 − 4 · 51 5100 35096 6.88 7.01e+03

VEM1 Vertices 52 · 52 2704 22704 8.40 5.08e+04

VEM2 Cells + faces + vertices 522 + 512 + 2 · 51 · 52 10609 162817 15.35 1.07e+06

Fig. 6 Near-well case: K is
log-normal, Kx/Ky = 3,
rotated π/6 in the xy-plane.
Fractures in black, topmost
well-cell in red at the
fracture intersection

pressures. VEM2 yields far better results in terms of physically meaningful pressure
fields, even though the method is not guaranteed to be monotone.

Table1 reports characteristics of the linear systems on the Cartesian mesh. MPFA
has almost twice asmanynonzero entries per unknownasTPFA, but similar condition
number. NTPFA has a sparsity pattern similar to MPFA. MFD is less dense than for
MFPA, but has three times higher condition number. VEM1has fewer unknowns than
MPFA, denser stencil, and condition number O(10) larger than the other. VEM2’s
stencil is more than three times denser than TPFA, with O(103) larger condition
number. Results are similar on the rotated mesh. On the PEBI mesh, MFD and VEM
are significantly denser, in particular MFD and VEM2, because the PEBI mesh has
1.5 as many faces as the Cartesian.

3.2 Near-Well Simulation

Grid blocks in real field models usually represent upscaled volumes containing sig-
nificant permeability variation. We consider a near-well region with a vertical well,
modelled as a source injecting 1 PV over 0.1 yrs. Two fractures intersect the well,
modelled as volumetric objects with a much higher permeability (Fig. 6). Constant
pressure is imposed on the vertical sides, with no-flow top/bottom. All the consistent
schemes predict similar outflow through the four vertical sides, withVEM1 deviating
most (7%) from the other four. TPFA differs with as much as 20%, which is reason
for serious concern, if used for upscaling.
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Table 2 Key characteristics of the discrete systems for the near-well example

dof nnz Ratio cond

TPFA 2465 19809 8.04 1.11e+04

NTPFA 2465 33608 13.63 3.26e+05

MPFA 8507 98579 11.59 6.74e+04

MFD 9658 130438 13.51 2.94e+09

VEM1 5274 170618 32.35 2.22e+11

VEM2 30173 2495409 82.70 1.44e+12

Fig. 7 Sparsity patterns from the near-well example, with different colors for each type of dof

Table2 confirms that differences in algebraic complexity are accentuated com-
pared to the 2D cases. VEM is very dense, with VEM2 having a ratio of 82.7. All
methods have significantly higher condition numbers, with MFD and VEM being
more ill-conditioned than the other methods. Figure7 reports sparsity patterns. Since
TPFA is not consistent on this grid, the converged NTPFA discretization is similar
to that of MPFA instead of TPFA. VEM2 has a face-pressure block equal to MFD,
and a node-pressure block equal to that of VEM1.

4 Closing Remarks

The novelty herein is that we compare a large set of discretizations on the same
problem, with access to complete source codes. Our experiments here and in [12] do
not clearly point to one preferred method that is significantly better than the others.
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TPFA is inconsistent and has grid orientation effects, but is monotone and gives
sparse matrices with low condition numbers. Consistent methods are convergent and
reduce grid orientation effects, but have monotonicity issues and give denser and
more ill-conditioned linear systems, particularly for VEM. NTPFA is monotone but
requires the solution of a nonlinear system and is, in our experience, significantly
less robust than e.g., mimetic methods. Our best advice is to compute representative
flow solutions with more than one consistent scheme and use the results to estimate
the level of error that may arise because of anisotropic permeability and skew and
irregular cell geometries. For multiphase simulations, one should assess the quality
of the resulting flow fields using e.g., flow diagnostics [14]: sweep, drainage, and
well-pair regions, well-allocation factors, time-of-flight, and residence time distribu-
tions. In addition, one should also investigate the number and size of the connected
components in the computed flux fields, as these will affect convergence behavior of
nonlinear solvers used in each time step of a multiphase simulation [13, 18].
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Global Implicit Solver for Multiphase
Multicomponent Flow in Porous Media
with Multiple Gas Phases and General
Reactions

Markus M. Knodel, Serge Kräutle, and Peter Knabner

Abstract Multiphase multicomponent flow processes in porous media have to be
considered to study the efficiency of mineral trappingmechanisms for climate killing
gas storage in deep layers. Robust predictions ask for the solution of large nonlin-
ear coupled systems of diffusion-advection-reaction (partial differential) equations
containing equilibrium reactions. In that we elaborate the fully globally implicit
Kräutle-Knabner PDE reduction method (cf. a former paper Kräutle and Knabner in
Water Resour Res 43(3):W03429 [8]) for the case of multiple gas phases, we solve
the arising Finite Element discretized/Finite Volume stabilized equations by means
of a semismooth nested Newton solver.We present preliminary simulation results for
the case of mutual injection of CO2, CH4 and H2S into deep layers and investigate
the arising mineral trapping scenario. Our methods are applicable also to other fields
such as nuclear waste storage or oil recovery.

Keywords PDE reduction method · Nested Newton · Equilibrium reactions · CO2
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1 Introduction

To study the efficiency of trapping mechanisms (mineral trapping) for CO2 storage
in deep layers, multiphase multicomponent flow processes in porous media [1, 2]
have to be considered. The precise prediction of gas and liquid flow asks for the
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solution of large nonlinear coupled systems of diffusion-advection-reaction partial
differential equations (PDEs), algebraic equations (AEs) and ordinary differential
equations (ODEs). The choice of a suitable formulation of the equations is important
for efficient numerical solution.We apply the fully globally implicit Kräutle-Knabner
PDE reductionmethod (“KKPRM”, published in former papers [5, 8]) which enables
to eliminate the equilibrium reactions based upon specific variable transformations.
Separating the resulting remaining PDE/ODE/AE system into a global and a local
system, we apply a semismooth nested Newton solver method [7] which enables fast
and efficient computation of the dynamics of the system by means of the application
of parallel solvers to the Finite Element discretized/Finite Volume stabilized [3]
PDE system. Our computations of the behavior of the concentrations of the different
species of the multiphase multicomponent flow are highly resolved in space and
time. We extend the mineral trapping scenario of the predecessor of this study, the
“Brunner/Knabner-paper” (BKP) [4] to the case of an arbitrary number of species
in gaseous phase. Namely, we present first results for the case of the injection of
various gas species. Whereas our results are so far preliminary, our techniques allow
for predictions in very complex scenarios and are applicable also for similar cases
such as nuclear waste storage and oil recovery. As a side effect, we are on the way
to compute the present Sin benchmark [9].

2 Mathematical Model and Global Implicit Solver

If we denote α = g, �, s as the gaseous, liquid and solid phase, the PDEs describing
multicomponent multiphase flow in porous media (with porosity φ) with general
reactions, i.e. the reactive transport, read for Iα concentrations cα = (c1α, . . . , cIαα )

∂t (φsα ciα) + ∇ · (qα c
i
α +jiα) = f iα, i = 1, 2, . . . , Iα. (1)

For gas and liquid phase, we have saturation sα , Darcy velocity qα , diffusive flux jα .
For all states (g, �, s), the right hand side fα describes kinetic and equilibrium
reactions. We define the transport operator Lα (with mole fractions χα = cα /ρmol

α )

Lα cα = ∇ · (−ρmol
α Dα∇ χα +qα cα

)
(2)

for gaseous and liquidphasewhich also comprises thediffusion-dispersion tensor Dα .
For detailed formulae, parameter and further variable definitions, we refer to the BKP
[4]. The complete system of equations does not consist only of the PDEs (1), but
in addition of ODEs and AEs. These ODEs and AEs result from the equations of
state (EOS) for the gaseous and liquid phase, the equilibrium reactions, and relations
between different components. The phenomena described by means of AEs are:
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• The equilibrium reactions (which are vector-valued, also the coefficients):

– We have exchange g ↔ � ( gas–liquid). Henry’s law is a realization:

Φex
eq := pg −Hχ �

!= 0 (Henry constantH, partial gas pressurepg). (3)

(H: diagonal matrix.) For CO2 exchange, other laws such as the experimentally
based spline description derived by Spycher-Pruess [10] should be used.

– The law ofmass action (LaMA) is applied for all reactions in and between liquid
and solid phase, with vector of equilibrium constants K and stoichiometric
matrix S: Aquatic reactions between different aqueous species � ↔ � Φmob,
sorption reactions between aqueous species and nonmineral solids: � ↔ s����min:
Φsorp, and mineral reactions between aqueous species and mineral solids � ↔
smin Φmin , hence (details: BKP, note: ln(c�) = (ln(c1�), . . . , ln(c

I�
� ))):

Φ�s
eq = (Φmob,Φsorp,Φmin)

e.g. Φmob := (ST )mob
� ln(c�) − ln(Kmob)

!= 0 .

(4)

• The EOS for gas: The most simple version is the ideal gas law, Peng-Robinson is
more involved already. Experimentally based splines such as the EOS of Duan-
Moeller (strictly speaking: only pure CO2 injection) are the most realistic ones.

• For the EOS of the liquid, in “simple” cases such as the Sin benchmark [9],
constant molar mass density of the liquid phase can be used. However, more
involved experimentally based spline descriptions exist, namely Garcias law if we
consider only CO2 exchange. (All our EOS are scalar-valued.)

We may write the final equation system in compact form1

∂t (φsg cg) + Lg cg = φs�Sexg Req (5)

∂t (φs� c�) + L� c� = φs� Skin� Rkin +φs�S
eq
� Req (6)

∂t (φs� cs) = φs� Skins Rkin +φs�Seqs Req (7)

Φex
eq(cg, c�) = 0 (8)

Φ�s
eq(c�, cs) = 0 (9)

ρmol
α − fα(cα) = 0 (α = g, � for the EOS). (10)

The aim of the KKPRM [5, 8] is to remove the equilibrium reactions and thus
reduce the number of PDEs to enhance efficiency and accuracy.We construct orthog-
onal matrices (basis of complete space, S�

α = Sα Aα: linear independent part of Sα ,
the linear dependent parts are shifted to the Aα = ((S∗

α)T (S∗
α))(S∗

α)T (Sα)) [6]:

(S⊥
α )T S∗

α = 0 (B⊥
α )T Bα = 0 (standard choice: Bα = S∗

α). (11)

1Besides the relations for molar and mass densities and (also capillary) pressures in g and � phase.
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Multiplying (5)–(7) with ((S⊥
α )T B⊥

α )−1(S⊥
α )T resp. (BT

α S∗
α)−1 BT

α and transforming
the concentrations to reaction invariant η and reaction participating ξ components

ηα = ((S⊥
α )T B⊥

α )−1(S⊥
α )T cα ξα = (BT

α S∗
α)−1 BT

α cα (12)

transfers the PDEs (several matrix combinations collapse) to the structure (excerpt):

∂t (φsgξ
ex
g ) + Lgξ

ex
g = φs� Rex

eq

∂t (φs�η�) + L�η� = 0
∂t

(
φs�ξ

ex
�

) + L�ξ
ex
� = φs� Rex

eq + φs� Aex
� Rkin .

←−

−1

+
(13)

The directly afore indicated subtractions in (13) are the core of the KKPRM. The
subtractionprocedureleadstoastronglyreducednumbero f PDEs. The sub-system
(13) reduces to (the remaining equations for the unknowns Rex

eq can be dropped):

∂t (φs�η�) + L�η� = 0 (14)

∂t
(
φs�ξ

ex
�

) − ∂t (φsgξ
ex
g ) + L�ξ

ex
� − Lgξ

ex
g = φs� Aex

� Rkin . (15)

Widening the BKP algorithm, we split the remaining equation system and the
variables into local and global parts with the global system and the global variables

ρmol
� − f�(c�) = 0

Φex
eq(cg, c�) = 0

∂t (φsg ηg) + Lg ηg = 0

∂t (φs� ηs) = 0

∂t (φs� η�) + L� η� = 0

∂t

(
φs� ξ ex

� +φsg ξ̂
ex

g

)

+L� ξ ex
� +Lg ξ̂

ex

g = φs� Aex
� Rkin

∂t

(
φs�ξ̄

sorp
B

)
+ L� ξ

sorp
� = φs� A

sorp
�−s Rkin

∂t

(
φs�ξ̄

min
B

)
+ L� ξmin

� = φs� Amin
� Rkin

∂t
(
φs� ξ kin

�

) + L� ξ kin
� = φs� Akin

� Rkin

ξ̄
sorp
B − ξ

sorp
� + ξ sorp

s = 0

ξ̄
min
B − ξmin

� + ξmin
s = 0.

Ξ glob =

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

p̃c
p̃partial
g

ηg

ηs

η�

ξ ex
�

ξ
sorp
�

ξmin
�

ξ kin
�

ξ̄
sorp

ξ̄
min

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

(16)

The global system consists out of the PDEs, the liquid EOS, and the gas exchange
equilibrium reactions (Henry’s law and/or Spycher-Pruess). New (not part of BKP)
equations are indicated in red, and we use ξ̂

g

ex = − ξ g
ex for comparison purposes
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with the BKP. The local system contains the law φcap for the capillary pressure pc,
various relations between the variables, and the LaMA based equilibrium reactions
for liquid-solid interactions. The local system and local variables read

φcap(sg, pc) = 0

p̃totalg −
Ig∑

i=0

p̃ig = 0

ρmol
g − fg(cg) = 0

ppartial
g ρmol

g − cg ptotalg = 0

p̃c − p̃totalg + p� = 0

Φmob(c�) = 0

Φsorp(c�, cnms ) = 0

Φmin(c�, cmin
s ) = 0

∂t
(
φs� ξ kin

s

) = φs� Akin
s Rkin

ρmass
g,� −

Ig,�∑

i=1

Micig,� = 0

ρmol
� −

I�∑

i=1

ci� = 0.

Ξ loc =

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

sg
p̃totalg

ρmol
g

ξ̂
ex

g

p�

ξmob
�

ξ sorp
s

ξmin
s

ξ kin
s

ρmass
g,�

ρmol
�

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

(17)

We apply a semismooth nested Newton solver [7] to solve the coupled system of
local and global equations and variables (cf. former papers [4, 5, 8]). The Newton
iterator for the local problem (at each grid point) is nested in the Newton iterator for
the global problem. The resolution function ∂ Ξ loc

∂ Ξ glob is indispensable and relates global
and local variables based upon the relation of global and local system. Finally, we
note the retransformation to get the entire physical concentrations

cg = −Sexg ξ̂
ex

g + B⊥
g ηg (18)

c� = Sex� ξ ex
� + Smob

� ξmob
� +Ssorp� (ξ̄

sorp
B + ξ sorp

s ) (19)

+Smin
� (ξ̄

min
B + ξmin

s ) + (S∗)kin� ξ kin
� +B⊥

� η�

cs =
(
c����min

cmin
s

)
=

(
Ssorps ξ sorp

s +(S∗)kins ξ kin
s +B⊥

s ηs

ξmin
s

)
(20)

where c����min
s indicates the nonmineral solids and cmin

s the mineral ones.
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Caring for code-reusabilty, we implemented the afore explained algorithm into
our parallel M++ [11] based RICHY++ framework. The discretization is performed
by means of adaptive implicit Euler in time and Finite Elements in space where we
use Finite Volume stabilization for the advective parts [3]. To solve the equation
system arising from the global Newton, we use BiCGStab as LinearSolver with a
SuperLU preconditioner. The simulation presented in this study was performed at
a 600 × 100 m sized 2D computational domain constructed by means of rectangles
with size 20 × 20m (squares). The number of Degrees of Freedom (DoFs) reads:

DoFs
Level global local
0 2,790 2,976
1 10,065 10,736
2 38,115 40,656
3 148,215 158,096

3 Simulations/Results

We display preliminary results for the relevant case of mineral trapping for the injec-
tion of various gas species into deep layers.2 Our case mixes elements of the BKP
[4] with elements from the Sin benchmark [9]. We take the chemistry of BKP, but
we add two additional gases. Most values which were used in the BKP [4] are still
used. For the new parameters, we use in major part those given by the Sin benchmark
description [9] and in part, we use heuristic values for parameters.

COg
2 ←→ CO�

2 (21)

CHg
4 ←→ CH �

4 (22)
H2S

g ←→ H2S
� (23)

CO�
2 + H2O ←→ HCO−

3 + H+ (24)
H2S

� ←→ H+ + HS− (25)

Calcite + H+ ←→ Ca2+ + HCO−
3 (26)

MinA + 3H+ ←→ Me3+ + SiO2 (27)

MinB + 2H+ ←→ Me3+ + HCO−
3 . (28)

The blue lines in Eqs. (21)–(28) arise from the BKP case, the red ones from the
Sin benchmark. All 3 gases are injected into the porous domain (note that the Sin
benchmark does not contain gas injection).We use Spycher-Pruess for CO2 exchange
andHenry’s law for CH4 andH2S exchange. Even thoughwe use in part still heuristic
parameters and still use the spline-based Garcias law EOS for the fluid which only

2Note that the terminus “gas injection” in our context always means that the gas is injected in purely
dissolute form, but switches into equilibrium state within each time step.
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COg
2 CHg

4 H2Sg H2O

CO2 CH4 H2S HCO−
3

H+ Ca2+ Me3+ SiO2

HS− Calcite MinA MinB

ρmol
g ρmass

g ρmol ρmass

ptotalg p sg time

Fig. 1 “Merging” of theBKPwith elements from theSin benchmark: three gas injection (CO2,CH4,
H2S) into deep layers and mineral trapping. Spatial refinement level 3 (only a part of 600 × 100 m
domain visible). Boundary conditions: Neumann flux x = 0 m, z≤ 12.5m; Dirichlet (initial values)
x = 600 m; else no flux. Screenshot: t = 5.7 · 105 s, corresponding to about nine days

considers the CO2 exchange (instead of the even simpler constant liquid density
fluid EOS as applied by the Sin benchmark), and we also still apply the spline based
Duan-Moeller gas EOS rather than ideal gas law or Peng-Robinson, our simulations
are already close to the real case of gas injection into deep layers. Figure1 displays
a screenshot of the corresponding simulation.
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4 Summary, Conclusions and Outlook

We are working on multiphase multicomponent flow in porous media with general
equilibrium and kinetic reactions. To evaluate the highly complex equations, we
apply the globally implicit solver for multiphase multicomponent flow based on the
refined KKPRM [8]. We presented the extension of the BKP [4] from one to various
gas species which get injected into deep layers leading to mineral trapping. We
presented first results with various gases, gas liquid exchange, and mineral trapping.
Such computations are at the high end of present technology and therefore, our
present example already demonstrates the efficiency of our approach. We intend
to apply our approach also to the Sin Benchmark [9], which does not contain gas
injection, but more complex chemistry. To this end, we plan extended studies of our
code concerning also numerical grid convergence and weak and strong scaling.

Even though so far in part we still use heuristic parameters, our approach likely is
one of the very first successful application of globally implicit solvers for the case of
the injection and reactive transport of multiple gas phases into deep layers of porous
media inducing mineral trapping and we are approaching highly realistic scenarios.

Acknowledgements M.M.K. thanksEtienneAhusborde,Université de Pau et des Pays de l’Adour,
France, and Florian Frank, Universität Erlangen, for very stimulating discussions on the subject.
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Abstract We investigate a partitioned coupling scheme applied to a system of free
flow over a porous medium. The coupling scheme follows a partitioned approach
which means that the flow fields in the two domains are solved separately and infor-
mation is exchanged over the sharp interface that separates the free-flow and the
porous-medium domain. Technically, the coupling is realized via the open-source
library preCICE, employing a pure black-box approach such that different solver
frameworks can be used with highly specialized solvers in each of the flow domains.
We investigate the partitioned coupling approach numerically by comparing it to a
monolithic coupling scheme with respect to convergence and accuracy. This is the
first time a partitioned black-box coupling is used for coupling free flow and porous-
media flow. The coupling approach is numerically validated and different partitioned
coupling approaches are compared with each other.
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1 Introduction

Many real-world applications involve flow in different media such as the flow of
water over a river bed or the flow of air over fabric for drying. These cases represent
coupled multiphysics systems with free flow in one part and flow through a porous
medium (soil or fabric) in the other part, potentially with multiple fluid phases.

We want to simulate these kinds of problems numerically. Solving the equations
monolithically usually requires direct linear solvers or the development of specialized
preconditioners due to the poor condition number of the systemmatrix [1]. However,
this can be very restrictive due to time and memory requirements and prevents the
reuse of solvers that are already highly specialized for one of the flow regimes.
Thus, partitioned methods that solve the flows in both domains based on domain
decomposition ideas are a popular alternative. Partitioned approaches for porous-
media applications have been extensively employed and analyzed for finite element
discretizations, see for example [3, 6, 7] and the references therein.

In this work, we investigate a partitioned coupling procedure that is not limited to
a particular type of numerical discretization for the flow problems, but uses a “black-
box” approach. The flow problems in each of the domains are solved separately. Data
are exchanged between the twodomains and post-processed in a suitablewayuntil the
underlying fixed-point problem is solved accurately enough. This procedure is based
on ideas that are especially popular for fluid-structure interaction [5]. The respective
interface quasi-Newton methods have not gotten much attention for porous-media
applications yet.

For integrating the partitioned coupling into our simulation framework DuMux

[8, 10], we use the open-source software library preCICE [2]. preCICE allows for an
easy integration of the coupling procedure into existing codes such that these codes
can be easily reused. An overview over the capabilities of preCICE can be found
in [2]. This is the first time a partitioned black-box coupling is used for coupling
free flow and porous-media flow. The coupling approach is validated and different
partitioned coupling approaches are compared with each other.

The structure of this paper is as follows: First, we shortly introduce the govern-
ing equations and the coupling conditions on the domain interface. Afterwards, we
briefly describe the spatial discretization methods used for each subdomain which
is followed by the presentation of the coupling procedure and numerics. We present
numerical results for a simple stationary test case and end with a conclusion and
outlook.

2 Problem Description

We solve a flow problem on the domain Ω with suitable boundary conditions on the
domain boundary Γ = ∂Ω . This domain can be split into two subdomains Ωff and
Ωpm with Ω = Ωff ∪ Ωpm, see Fig. 1. In domain Ωff , free flow is considered while
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 ff

 pm n

Interfacein

Fig. 1 An example of the domainΩ split into the subdomains with free flowΩff and porous-media
flow Ωpm. The sharp interface Γin separating the subdomains is highlighted in red

domainΩpm corresponds to a porous medium. The two subdomains are separated by
a sharp interfaceΓin = Ωff ∩ Ωpm. Suitable coupling conditions have to be employed
at the interface Γin.

We are solving for velocitiesu and the pressure p inΩff while p is the only primary
variable in Ωpm. The problems are stationary and incompressible. The influence of
gravity can be neglected. Problem dependent parameters are the viscosity μ and the
permeability tensor K. We consider an isotropic and homogeneous porous medium.
The normal vector n on the interface Γin points from the free-flow domain into the
porous-medium domain and t is a unit tangential vector at the interface. Subscripts
pm (porous medium) and ff (free flow) are added where necessary.

2.1 Governing Equations

We solve the incompressible Stokes equations,

∇ ·uff = 0, (1a)

(uff · ∇)uff + μ

�
Δuff = − 1

�
∇ pff , (1b)

in the free-flow domain Ωff for modeling mass (1a) and momentum conservation
(1b). � is the fluid density.

In the porous-medium domain Ωpm, we solve

∇ · upm = 0, (2a)

−K
μ

∇ ppm = upm, with K =
(
K11 K12

K21 K22

)
=

(
K 0
0 K

)
, (2b)

which describes again mass conservation (2a) and momentum conservation mod-
eled by Darcy’s law (2b). Note that (2a) and (2b) can be summarized to be
−∇ · K

μ
∇ ppm = 0, i.e., upm is actually not a primary, but an auxiliary variable.
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2.2 Coupling Conditions

In order to ensure consistency,weneed to enforce coupling conditions on the interface
Γin. We do so by applying the following conditions:

uff · n = upm · n, (3a)

n · (
�uffuff

T − μ
(∇ uff + (∇ uff)

T
)) · n + pff = ppm, (3b)(

−
√
K11

αBJS
(∇ uff + (∇ uff)

T )n − uff

)
· t = 0. (3c)

The equations describe the conservation ofmass (3a) and the balance of normal forces
(3b). The last condition is the Beavers–Joseph–Saffman slip condition [11] which
contains the problem-dependent parameter αBJS > 0. Note that the last condition is
in fact a boundary condition for the free-flow domain.

3 Solvers and Partitioned Setup

We use standard finite volume methods for the spatial discretization of the flow
problems. In the free-flow domain, the inherently stable staggered grid approach [9]
is used while in the porous-medium domain, a standard cell-centered finite volume
method is used. We solve the subproblems in both domains using DuMux [8, 10], an
open-source toolbox for flow and transport in porous media.

For the partitioned coupling scheme, we solve the flow problems on the two
subdomains via two different solvers. The solver referred to as FF solves the free-
flow problem on Ωff and the second solver referred to as PM solves the porous-
medium problem on Ωpm. We iterate between the two solvers until convergence of
the interface values. More details about this procedure can be found in [2, 5] and the
references therein.

Let k be the iteration index. Given the normal velocity ukpm,Γin
at the interface Γin

and the boundary condition (3c), the free-flow solver computes a new flow state that
leads to a new pressure pk+1

ff,Γin
on the interface. In the same way, the porous-medium

solver computes a new flow state leading to a new normal velocity uk+1
pm,Γin

on the

interface based on the pressure pk+1
ff,Γin

specified on the interface with this setting, the
interface coupling conditions can be interpreted as a fixed-point problem

PM(FF(upm,Γin)) = upm,Γin ⇔ R(upm,Γin) := PM(FF(upm,Γin)) − upm,Γin = 0
(4)

that should recover the monolithic solution when the residual R is zero.
Weuse (i) serial-implicit couplings, see Fig. 2, and (ii) a parallel-implicit coupling,

see Fig. 3. In the serial coupling the solvers compute a new solution sequentiallywhile
for the parallel coupling the two solvers compute a new solution concurrently. Both
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Fig. 2 Serial-implicit coupling: The free-flow solver (FF) computes a new flow state given the
normal velocity ukpm,Γin

. The pressure pk+1
ff,Γin

is used in the coupling condition of the porous-medium

solver (PM) computing a newflow state. The post-processing scheme (Post) gets the velocity ũkpm,Γin

and computes a newvelocity uk+1
pm,Γin

based on the current value and a history of previous input values

Fig. 3 Parallel-implcit coupling: The free-flow solver (FF) and the porous-medium solver (PM)
compute a new pressure p̃kff,Γin

and a new velocity ũkpm,Γin
based on previous values ukpm,Γin

and

pkff,Γin
. The resulting values p̃kff,Γin

and ũkpm,Γin
are used by the post-processing scheme (Post) in

order to obtain pk+1
ff,Γin

and uk+1
pm,Γin

based on the current values and a history of previous input values

coupling types correspond to a fixed-point iteration accelerated by a so-called post-
processing Post as shown in Figs. 2 and 3. We use the relative convergence measure

‖pk+1
ff,Γin

− pkff,Γin
‖2 < ε · ‖pk+1

ff,Γin
‖2 and ‖ũkpm,Γin

− ukpm,Γin
‖2 < ε · ‖ũkpm,Γin

‖2, (5)

in the serial-implicit case and

‖ p̃kff,Γin
− pkff,Γin

‖2 < ε · ‖ p̃kff,Γin
‖2 and ‖ũkpm,Γin

− ukpm,Γin
‖2 < ε · ‖ũkpm,Γin

‖2, (6)

for the parallel-implicit case. The tolerance ε > 0 is user-defined.
In this work, we choose the inverse least squares interface quasi-Newton method

as post-processing method. The method approximates the inverse of the Jacobian
of the interface problem (4) based on the given input/output data pairs and carries
out a norm minimization in order to compute an improved solution for the interface
values. We refer to the overview paper of Degroote [5] for more information about
this method while implementation details are given in the corresponding preCICE
publication [2].
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To validate and analyze the partitioned setup, we compare it to a monolithic
coupling approach that is part of DuMux [10]. The monolithic coupling solves the
flow problem on the whole domain Ω in one single system. The resulting linear
system of equations is solved with a direct solver since it is too ill-conditioned to
be solved iteratively. This comes at the cost of limited flexibility, as one cannot
easily reuse existing solvers, together with larger memory requirements and worse
complexity compared to the partitioned coupling.

4 Numerical Results

We simulate a pressure-driven horizontal free flow over a porous medium. The free-
flow domain Ωff = [0, 1] × [1, 2] and the porous-medium domain Ωpm = [0, 1] ×
[0, 1] feature the same spatial extent.We use equidistant grids with N = 40 grid cells
in each spatial dimension and the same number of grid cells in the free-flow grid and
the porous-medium grid. This way, we avoid possible errors introduced due to data
mapping between non-matching grids. The superscript part and mono corresponds
to a solution computed using the partitioned or the monolithic coupling. No-flow/no-
slip conditions hold at the upper boundary ofΩff while fixed-pressure conditions are
set at the left and right boundaries. All sides of Ωpm (except the coupling interface)
are closed with no-flow conditions.

The pressure difference driving the flow in Ωff is set to Δp = 10−9Pa. The per-
meability is set to K = 10−6m2 and we set the Beavers–Joseph–Saffman parameter
to αBJS = 1.0. The density and the viscosity of the fluid are ρ = 103kg/m3 and
μ = 10−3Pa · s. The initial velocities and initial pressure are zero in both domains.
The flows in the free-flow and the porous-medium domain are solved with DuMux.
The partitioned coupling is realized via preCICEwith ε = 10−8 while themonolithic
coupling uses the coupling capabilities of DuMux. The system of equations is solved
using Newton’s method and the linear system of equations is solved using the direct
solver provided by UMFPACK [4].

In Fig. 4 we present the convergence behavior for the serial-implicit coupling
(case a, Fig. 2), the serial-implicit coupling with interchanged order of the solvers
(case b, similar to Fig. 2, but with pk+1

ff,Γin
= Post(FF(PM(pkff,Γin

)))) and the parallel-
implicit coupling (Fig. 3, case c). All employed coupling approaches converge and
reach the defined tolerance within at most 7 iterations. The coupling in case a needs
one iteration less than case b. This is due to the initialization of the solvers with zero
initial conditions which means that the solver PM does not compute any flow in the
first iteration for case b. This could be improved by providing better initial data on
the coupling interface. However, case b shows a monotonous convergence behavior
and also converges to much smaller residuals for the pressure. The coupling in case
c needs the most coupling iterations, but is still able to reach the defined tolerance.
This behavior is also expected since the parallel-implicit coupling is more “loose”
than the serial couplings, but allows the concurrent execution of both solvers.
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ũkpm,in

Fig. 4 We plot the relative residuals computed according to (5) (case a and b) and (6) (case c) for
the user-given tolerance ε = 10−8. The residuals are plotted for a serial-implicit coupling as in Fig. 2
(case a), serial-implicit coupling with interchanged order of solvers (case b) and parallel-implicit
coupling (case c) as described in Fig. 3

Table 1 Relative differences between the monolithic and partitioned solution for ε = 10−8 and
the three different couplings employed. The partitioned solutions coincide for at least 8 significant
digits due to ε. The differences have been computed using single precision floating point numbers
and thus the errors coincide for all cases

case ‖umono
ff − upartff ‖rel∞ ‖umono

pm − upartpm ‖rel∞ ‖pmono
ff − ppartff ‖rel∞ ‖pmono

pm − ppartpm ‖rel∞
a/b/c 3.906576E-03 1.011851E-06 3.971279E-05 2.092258E-06

In Table1 we present the relative differences between the solutions obtained with
the partitioned and the monolithic coupling. All three partitioned couplings types
give very similar results such that the errors are identical relative to the monolithic
solution which is not unexpected as ε = 10−8. The errors are reasonably small, but
it stands out that the errors in the free-flow domain Ωff are bigger than in the porous-
medium domain Ωpm. The coupling conditions are possibly handled in a slightly
different way in the partitioned approach than in the monolithic one.

So far, the monolithic approach has been faster than the partitioned approach, but
the implementation of the partitioned approach within DuMux has not been opti-
mized yet. In particular, the same direct solver is employed for the two subproblems.
Assuming roughly the same number of unknowns n/2 in the porous medium and the
free flow-domain and that the computational effort in 2d for a typical band matrix
is n2, using only direct solvers requires 2(n/2)2 = n2/2 per iteration and yields a
computational benefit only if two or less iterations are sufficient. Therefore we do
not report any CPU times for the studied cases.
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5 Conclusion and Outlook

In this work, we have investigated a partitioned black-box coupling scheme for free-
flow and porous-media applications where the two flow regimes are separated by a
sharp interface. Iterative partitioned coupling schemes with an inverse least squares
interface quasi-Newton method as post-processing have been employed.

All investigated couplings types converge to the desired tolerance with different
iteration counts. The serial-implicit coupling solving the free-flow problem needs the
least (5) iterations while the parallel-implicit coupling needs the most (7) iterations
for our test case. The serial-implicit coupling solving the porous-medium problem
first shows the best convergence behavior.

When comparing the solution obtained from the partitioned coupling scheme
with a monolithic coupling, we obtain reasonably small errors that coincide for the
studied couplings. The deviations in the free-flow domain are larger than in the
porous-medium domain which might be caused by a slightly different handling of
the coupling conditions in the implementation and should be further investigated.

Futureworkwill focus onunderstandingwhat introduces the errors in the free-flow
domain. We will investigate further coupling procedures and other post-processing
methods, parallel simulation at higher resolution and higher Reynolds numbers as
well as time-dependent flows. Moreover, we are interested in studying the influence
of the execution order of solvers and other coupling conditions.We plan to utilize the
black-box nature of the coupling by using different solvers in the different domains
which would also include unstructured and non-matching grids. This will allow to
increase the efficiency of the partitioned approach.

Acknowledgements This work has been funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation)—Project Number 327154368—SFB 1313.
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Abstract We study and compare different discretizations of the van Roosbroeck
system for charge transport in bulk semiconductor devices that can handle nonlinear
diffusion. Three common challenges corrupting the precision of numerical solutions
will be discussed: boundary layers, discontinuities in the doping profile, and corner
singularities in L-shaped domains. The most problematic of these challenges are
boundary layers in the quasi-Fermi potentials near ohmic contacts, which can have
a drastic impact on the convergence order.
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1 Introduction

The present paper aims at comparing different discretization philosophies for semi-
conductor problems. We study three major challenges for recent finite element and
finite volume schemes which are designed to deal with nonlinear diffusion in a
thermodynamic consistent way and are based on quasi-Fermi potentials as primary
variables. In particular, we study the error and convergence rate of the numerical solu-
tions in the presence of: boundary layers, discontinuous doping profile and corner
singularities.
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2 Modelling Semiconductors with Ohmic Contacts

2.1 Stationary van Roosbroeck System

The van Roosbroeck system is a drift-diffusion model, which describes the recom-
bination and transport of charge carriers driven by diffusion and by electric fields
within a semiconductor device. It consists of three nonlinear, coupled partial differ-
ential equations for the electrostatic potentialψ : Ω → R aswell as the non-negative
electron and hole densities n : Ω → R

+ and p : Ω → R
+, namely a Poisson equa-

tion and two continuity equations. We consider a homogeneous material and some
domain Ω ⊆ R

d for d ∈ {1, 2, 3} in an isothermal setting. Then the stationary van
Roosbroeck system is given by the system of elliptic partial differential equations

−∇ · (ε0εr∇ψ) = q
(
C + p(ψ, ϕp) − n(ψ, ϕn)

)
, (1a)

∇ · jn = +qR, (1b)

∇ · jp = −qR, (1c)

where q denotes the elementary charge, ε0 is the vacuum permittivity and εr is the
relative permittivity of the material. The recombination rate R and the charge-carrier
currents jn , jp depend on the solution n, p, ψ and vanish in thermal equilibrium. The
given doping concentration C : Ω → R (intentionally introduced impurities) varies
spatially and can have discontinuities. The equations of state are given by

n(ψ, ϕn) = NcF

(
q(ψ − ϕn) − Ec

kBT

)
, (2a)

p(ψ, ϕp) = NvF

(
q(ϕp − ψ) + Ev

kBT

)
, (2b)

where the statistical distribution function F relates the electron and hole densities
n, p to the quasi-Fermi potentials ϕn, ϕp. Working with quasi-Fermi potentials has
all the advantages mentioned in the introduction, in particular from a modeling and
computational point of view. Furthermore, we set the recombination rate to zero as
it plays a minor role for most of our considerations.

The effective density of states for electrons in the conduction band Nc and holes in
the valence band Nv as well as the corresponding band-edge energies Ec, Ev and the
band gap Eg = Ec − Ev arematerial parameters and assumed to be spatially constant
in this paper. Temperature and the Boltzmann constant are denoted with T and kB .
The three most important reference cases for the statistical distribution functions are
the Boltzmann, Blakemore and Fermi-Dirac function. For each distribution function,
the corresponding current densities in (1b) and (1c) are



Challenges in Drift-Diffusion Semiconductor Simulations 617

jn = −qμnn∇ϕn = −qμnn∇ψ + qDn∇n, (3a)

jp = −qμp p∇ϕp = −qμp p∇ψ − qDp∇ p. (3b)

Using the thermal voltageUT = kBT
q , the diffusion coefficients Dn, Dp are linked to

the carrier mobilities μn, μp via generalized Einstein relations

Dn

μn
= UT g

(
ηn

)
,

Dp

μp
= UT g

(
ηp

)
, g(η) = F (η)

F ′(η)
, (4)

where g is the diffusion enhancement as motivated in [8].
The system (1) is supplied with mixed Dirichlet-Neumann boundary conditions.

3 Discretization of the van Roosbroeck System Using
Potentials

In the following we are going to explain standard discretization methods to solve the
van Roosbroeck system.

3.1 Finite Element Method

AssumeΩ ⊂ R
2 is a polygonal domain and letTh be an admissible decomposition of

Ω into Ntria triangles and Nvert vertices, such that Ω = ⋃Ntria
t=1 τt for τt ∈ Th . Similar

as in [2], we solve the stationary van Roosbroeck system (1) using a standard P1 finite
element method. We seek the electrostatic potential and the quasi-Fermi potentials
uh = (ψh, ϕh

n , ϕ
h
p) ∈ V h , such that the van Roosbroeck system can be written in the

weak form as

0 =
∫

Ω

(
ε0εr∇ψh · ∇vi − q

(
C + p(ψh, ϕh

p) − n(ψh, ϕh
n )

)
vi

)
dx, (5a)

0 =
∫

Ω

(
qμnn(ψh, ϕh

n )∇ϕh
n · ∇v j − qR

(
n(ψh, ϕh

n ), p(ψ
h, ϕh

p)
)
v j

)
dx, (5b)

0 =
∫

Ω

(
qμp p(ψ

h, ϕh
p)∇ϕh

p · ∇vk + qR
(
n(ψh, ϕh

n ), p(ψ
h, ϕh

p)
)
vk

)
dx, (5c)

for all suitable test functionsvh = (vi , v j , vk) ∈ V h ,whereV h ∼= R
Nvert×3 is the 3Nvert

dimensional space of vectorial continuous functions which are piecewise linear on
each triangle τt .
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3.2 Finite Volume Method

In this section, we present a Voronoï finite volume technique [4, 6, 7]. Similar as for
finite elements, we start by partitioning the domain Ω into non-intersecting, convex
polyhedral control volumes ωk such that Ω = ⋃Nvert

k=1 ωk . We associate with each
control volume ωk a node xk ∈ ωk . For every boundary intersecting control volume,
we demand that this node lies on the boundary xk ∈ ∂Ω ∩ ωk . Assuming the partition
is admissible [3], i.e. for two adjacent control volumes ωk and ωl , the edge xkxl of
length hkl is orthogonal to ∂ωk ∩ ∂ωl , the normal vectors to ∂ωk can be calculated
by νkl = (xl − xk)/‖xl − xk‖. We note that the variables (ψ, ϕn, ϕp) are of interest
only at the nodes, not at the edges.

For each control volume ωk , the finite volume discretization is given by the three
equations:

∑

ωl∈N (ωk )

|∂ωk ∩ ∂ωl | jψ;k,l = q|ωk |
(
Ck + p(ψk, ϕp;k) − p(ψk, ϕn;k)

)
, (6a)

∑

ωl∈N (ωk )

|∂ωk ∩ ∂ωl | jn;k,l = +q|ωk |R(ψk, ϕn;k, ϕp;k), (6b)

∑

ωl∈N (ωk )

|∂ωk ∩ ∂ωl | jp;k,l = −q|ωk |R(ψk, ϕn;k, ϕp;k). (6c)

We denote with N (ωk) the set of all control volumes neighboring ωk . In 2D, the
measure |∂ωk ∩ ∂ωl | corresponds to the length of the boundary line segment and in
3D to the area of the intersection of the boundary surfaces.

The unknownsψk , ϕn;k ,ϕp;k correspond to the electrostatic potential as well as the
quasi-Fermi potentials for electrons and holes evaluated at node xk . To approximate
the fluxes in (6) using generalF , ideas from [1] are useful to derive a finite volume
scheme for convection-diffusion problems in a thermodynamically consistent way
by averaging the nonlinear diffusion term appropriately.

4 Numerical Examples

In this section, we are going to present numerical solutions of the van Roosbroeck
system via FE and the Scharfetter-Gummel FV discretization. We focus on two
challenges, which have an impact on the convergence rate of solutions: the size of a
boundary layer and the regularity of the doping. Since in this section we are mostly
concerned with numerical solutions, we will drop the superindex h. If necessary,
we replace it with the acronym of the corresponding discretization method. Also we
remind the reader that we solve the van Roosbroeck system without recombination,
i.e., R ≡ 0. Throughout this section, we use the Blakemore distribution function.
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4.1 Resolution of Boundary Layer

In Fig. 1 the densities n, p and the doping C are shown for the two cases κ =
5 · 102 and κ = 5 · 105 at Vext = 3V. Note that in both cases, the hole density p
has a boundary layer at x = 0 and the electron density n has a boundary layer
at x = 0.3µm. This boundary layer, however, is on the length scale of λD and
therefore nicely resolved by the mesh. On the level of the plot, the difference in
solutions corresponding to the two alternative doping profiles is not visible. In the
left panel of Fig. 2 we show the potentials (ψ, ϕn, ϕp) for Vext = 3V. While the
electrostatic potential in both cases is a rather smooth function (blue line), the quasi-
Fermi potentials have a boundary layer of size �J (green and red line) that can not be
resolved on any of the uniform meshes. This logarithmic boundary layer is predicted
by our analysis in [5]. As one can see in Fig. 2 (middle and right panel), the solution
effectively jumps within the last interval before the ohmic contact.
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Fig. 1 1D electron and hole densities n, p and doping C at bias Vext = 3V shown (left) with
κ = 500 and (right) with κ = 5 · 105, the former yielding a smooth doping profile and the latter
practically a discontinuous one
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Fig. 2 1D quasi-Fermi potentials of electrons and holes ϕn, ϕp and electrostatic potential ψ (left)
with bias Vext = 3V as well as boundary layers in the electron quasi-Fermi potential ϕn near
x = 0.3µm for different mesh resolutions h (middle) for finite element and (right) Scharfetter-
Gummel type finite volume discretization for κ = 500
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4.2 Regularity of the Doping

Next, we discuss the influence of the smoothness of the doping on the convergence
order for the different discretizationmethods.Wheneverwecompare a coarse discrete
solution (of size 2h) to a finer one (of size h), we restrict the finer solution to the
coarser mesh. Then we can subtract uh from u2h and slightly abusing the notation
write ‖uh − u2h‖ for the corresponding norm. Provided that the doping is sufficiently
smooth and the carrier densities converge sufficiently fast, then the FV discretization
of the Poisson equation is second order accurate, see the convergence for n, p, ψ
in the top right panel of Fig. 3. When the doping is discontinuous (κ = 5 · 105), the
bottom row in Fig. 3 shows that also the convergence order of the FV electrostatic
potential becomes linear, which is plausible by standard FE error estimates. From
Fig. 3 it appears that while the error in the FE method is dominated by the quasi-
Fermi potentials, the error in the FV method is dominated by the lack of regularity
in the doping.
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Fig. 3 L2 convergence rates in 1D for solution (left) of the FE discretization and (right) of the FV
discretization with κ = 500 in the top row and for κ = 5 · 105 in the bottom row at Vext = 3V
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4.3 Corner Singularities and Boundary Adapted Meshes

Semiconductor devices may often be angular-shaped. However, in particular L-
shaped domains pose numerical difficulties which we would like to study for the
FE and FV methods. We consider a two-dimensional L-shaped domain

Ω = [0, 2L]2 \ [0, L]2 ⊂ R
2, (7)

and impose ohmic contacts at the boundaries (x, 0) and (0, y) for L ≤ x, y ≤ 2L .
All other boundaries are suppliedwith homogeneous Neumann boundary conditions.
The p-i-n doping concentration C : Ω → R is given by

C(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

+C0 0 ≤ x ≤ L/2,

−C0 0 ≤ y ≤ L/2,

+2C0(L − x)/L L/2 < x ≤ L ,

−2C0(L − y)/L L/2 < y ≤ L ,

0 otherwise

(8)

with x = (x, y) and as before L = 10−7m = 0.1µmandC0 = Cm = 1023 m−3.With
this choicewe ensure that the convergence order does not suffer from the regularity of
the doping. However, constructing a non-convex domain with a corner angle ϑ = θπ

and θ = 3/2 imposes a corner singularity of the form ψ(x) ∼ r1/θ as r → 0 for
r = √

(x − x0)2 + (y − y0)2 at x0 = y0 = 0.1µm.
The upper left panel of Fig. 4 shows the convergence of the electron quasi-Fermi

potentials at Vext = 3V,where the FE and FV are compared on a sequence of uniform
and a sequence of boundary adapted meshes. As in 1D, the FV method converges
quadratically. Furthermore, for the FV discretization the error seems not to be influ-
enced very much by the boundary adapted meshes. In contrast, the FE method again
has a lower convergence order and local adaptivity improves the L2 error of the
solution by about one order of magnitude.

The lower panels of Fig. 4 show the solutions at Vext = 0.2V, where the boundary
layer is moderate and solutions are closer to thermal equilibrium. Hence, the lower
left panel shows the general tendency to have lower errors. However, the convergence
is slower with an order betweenO(h) andO(h4/3), indicating a stronger influence of
the corner singularity. This effect is even more pronounced in the lower right panel,
in which for all the used methods the convergence of the electrostatic potential nicely
follows the O(h4/3) order predicted by the error analysis of the corner singularity.
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Fig. 4 Convergence of solutions on different meshes as a function of relative triangle size h = 2−�

for a electron quasi-Fermi potential ϕn at Vext = 3V, b electrostatic potential ψ at Vext = 3V, c
electron quasi-Fermi potential ϕn at Vext = 0.2V, d electrostatic potential ψ at Vext = 0.2V

5 Conclusion

Summarizing, in 2D both FE and FV discretizations deliver reasonable results.While
the finite volume scheme often shows better convergence rates, the finite element
method can be drastically improved by using meshes which are finer near ohmic
contacts. We clearly observe that depending on the potential and the selected bias,
the error is dominated by the boundary layer or the corner singularity. While the FV
method generally handles the boundary layer well, the FE method in 2D introduces
extra oscillations in the boundary layer, see [5] for details.
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Unipolar Drift-Diffusion Simulation
of S-Shaped Current-Voltage Relations
for Organic Semiconductor Devices
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Abstract We discretize a unipolar electrothermal drift-diffusion model for organic
semiconductor devices with Gauss–Fermi statistics and charge carrier mobilities
having positive temperature feedback. We apply temperature dependent Ohmic con-
tact boundary conditions for the electrostatic potential and use a finite volume based
generalized Scharfetter-Gummel scheme. Applying path-following techniques we
demonstrate that the model exhibits S-shaped current-voltage curves with regions of
negative differential resistance, only recently observed experimentally.

Keywords Non-isothermal drift-diffusion · Organic semiconductors · Finite
volumes · Generalized Scharfetter-Gummel scheme · Path following
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1 Introduction

The temperature activated hopping transport of charge carriers in organic semicon-
ductors results in a strong interplay between electric current and heat flow. It gives rize
to interesting phenomena like S-shaped Current-Voltage (CV) relations with regions
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of negative differential resistance in Organic Light Emitting Diodes (OLEDs) [12] or
leads to inhomogeneous luminance in large-area OLEDs. Moreover, electrothermal
effects influence the performance of transistors [10].

As demonstrated in [12], p-Laplace thermistor models that describe the total
current and heat flow in a device, are able to capture the positive temperature feedback
in OLEDs. Especially, they can reproduce experimentally observed S-shaped CV-
relations and inhomogeneous current density and temperature distributions in large-
area OLEDs. But, details such as separate electron and hole current flow, generation-
recombination and related heat productions, as well as energy barriers at material
interfaces cannot be included.

In this paper, we present a numerical approximation of an electrothermal drift-
diffusion model for organic semiconductor devices and study its ability to reproduce
S-shaped CV-relations. For simplicity, for this proof of concept we use vertically
layered device structures.

2 Electrothermal Drift-Diffusion Description of Organic
Semiconductor Devices

We restrict our considerations to the unipolar (n-doped) case, for the full model see
[3]. Then the electrothermal behavior is described in a drift-diffusion setting by PDEs
for the electrostatic potentialψ , the electrochemical potentialϕn , and the temperature
T . In the device domain Ω we consider the stationary coupled system

−∇ · (ε∇ψ) = q(C − n),

−∇ · jn = 0, jn = −qnμn∇ϕn,

−∇ · (λ∇T ) = qnμn|∇ϕn|2 =: H.

(1)

This system results from the coupling of a generalized, unipolar van Roosbroeck
system and a heat flow equation that includes the Joule heating as heat source.
The dielectric permittivity is denoted by ε = ε0εr , q is the elementary charge, C
represents the doping density, and λ is the thermal conductivity.

Additionally we take into account the specialities of organic semiconductors,
namely (i) the statistical relation between chemical potential and charge carrier den-
sity is given by Gauss–Fermi integrals leading to bounded charge carrier densities
and (ii) a mobility function μn depending on temperature, density, and electric field
strength. Themobility laws are fitted froma numerical solution of themaster equation
for the hopping transport in a disordered energy landscape with a Gaussian density
of states [11]. The charge carrier density n in (1) is given by

n = Nn0(T )G
(q(ψ − ϕn) − EL(T )

kBT
; σn(T )

kBT

)
, (2)
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where kB is Boltzmann’s constant. We assume that the parameters EL (lowest unoc-
cupied molecular orbital level), σ 2

n (its variance), and Nn0 (total density of transport
states) are only weakly temperature dependent such that we neglect this weak tem-
perature dependence in our investigations. We set

ηn = ηn(ψ, ϕn, T ) := q(ψ − ϕn) − EL

kBT
, sn = sn(σn, T ) := σn

kBT
.

The function G : R × [0,∞) → (0, 1) is defined by the Gauss–Fermi integral

G(ηn, sn) := 1√
2π

∫ ∞

−∞
exp

(
−ξ 2

2

)
1

exp (snξ − ηn) + 1
dξ.

According to [11], the mobility μn = μn(T, n, |∇ψ |) is a temperature, density and
electric field strength dependent function of the form

μn(T, n, F) = μn0(T ) × g1(n, T ) × g2(F, T ), μn0(T ) = μn0c1 exp
{−c2s

2
n

}
.

(3)
For the considerations of our paper we set g1 = g2 ≡ 1 and take only the positive
temperature feedback μn0 into account. System (1), (2) is closed by mixed boundary
conditions for the drift-diffusion system combined with Robin boundary conditions
for the heat flow equation modeling a heat sink with fixed temperature Ta .

In [9] the solvability of the bipolar system including the full mobility functions
(weak solutions of continuity equations and Poisson equation, entropy solution of
the heat flow equation) is established.

In the non-isothermal case, the modeling of (ideal) Ohmic contacts requires local
charge neutrality at the contact for the actual temperature dependent state (ψ, ϕn, T ).
For an applied voltage V , this leads to the nonlinear relation at the contactsΓDi ⊂ ∂Ω

for the prescribed value ψ0 = ψ − V :

CDi (ψ; V, T ) := C − Nn0G
(q(ψ − V ) − EL

kBT
; σn

kBT

)
= 0. (4)

A straightforward generalization of the computational approach for the isothermal
case would result in the necessity to update ψ0 for each modification of the tem-
perature T , leading to an additional iterative loop for the determination of each bias
solution. To avoid this iteration, we use (4) directly as a nonlinear Dirichlet bound-
ary condition for the electrostatic potential ψ depending on T and treat it with the
nonlinear solver along with all other nonlinearities.

3 Discretization Scheme

We use a finite volume method and partition the computational domain Ω by a
Voronoi mesh with m Voronoi volumes {Vl}l=1,...,m and accompanying collocation
points {xl}. The potentials ψ , ϕn , and the temperature T are evaluated at each node
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xl . The discretized system corresponding to (1) is derived by integrating the equa-
tions over each Voronoi volume Vl , applying Gauss’s theorem, and then suitably
approximating the boundary and volume integrals. We also add the subscript l in all
quantities to denote their corresponding numerical values at xl . In what follows, we
will assume that the material parameters ε, μn0, Nn0, and λ are constant, otherwise,
suitable averages have to be used.

The resulting surface integrals are split into two parts: integrals over interfaces
between two adjacent Voronoi boxes and integrals over boundary parts of the device:

∫

∂Vl

−ε∇ψ · ν dΓ =
∑

Vr∈N (Vl )

∫

∂Vl∩∂Vr

−ε∇ψ · ν dΓ +
∫

∂Vl∩∂Ω

−ε∇ψ · ν dΓ,

∫

∂Vl

− jn · ν dΓ =
∑

Vr∈N (Vl )

∫

∂Vl∩∂Vr

− jn · ν dΓ +
∫

∂Vl∩∂Ω

− jn · ν dΓ,

∫

∂Vl

−λ∇T · ν dΓ =
∑

Vr∈N (Vl )

∫

∂Vl∩∂Vr

−λ∇T · ν dΓ +
∫

∂Vl∩∂Ω

−λ∇T · ν dΓ.

Here N (Vl) stands for the set of Voronoi volumes Vr which are adjacent to the
Voronoi volume Vl . The integrals over interfaces ∂Vl ∩ ∂Vr must be treated specif-
ically in order to maintain the consistency of the numerical solution, whereas the
surface integrals over ∂Vl ∩ ∂Ω are evaluated by quadrature rules after replacing the
normal flux in the integrand by the corresponding boundary condition.

Numerical fluxes through interfaces ∂Vl ∩ ∂Vr . Whereas the integrals of
−ε∇ψ · ν and −λ∇T · ν over the interface ∂Vr ∩ ∂Vl are approximated by the con-
ventional finite difference approximations

∫

∂Vr∩∂Vl

−ε∇ψ · ν dΓ ≈ mes (∂Vr ∩ ∂Vl)

|xl − xr | ε (ψl − ψr )

(similarly for −λ∇T · ν), the corresponding integrals in the continuity equations
require some extra effort

∫

∂Vr∩∂Vl

jn · ν dΓ ≈ mes (∂Vr ∩ ∂Vl)

|xl − xr | J l;rn ,

where the numerical fluxes J l;rn are determined by a modification of the Scharfetter-
Gummel scheme based on averaging of inverse activity coefficients introduced in
[6] and discussed with respect to degenerate semiconductors in [4, 5]. We introduce
some notation for the definition of the expressions J l;rn :

ψl,r := ψl+ψr

2
, ϕn;l,r := ϕn;l+ϕn;r

2
, Tl,r := Tl + Tr

2
, Ul,r

T := kBTl,r
q

, sl,rn := σn

kBTl,r
,

ηn;l := ηn
(
ψl , ϕn;l , Tl,r

)
, ηn;r := ηn

(
ψr , ϕn;r , Tl,r

)
, η

l,r
n := ηn

(
ψl,r , ϕn;l,r , Tl,r

)
,

nl,r :=Nn0G
(
η
l,r
n ; sl,rn

)
, μ

l,r
n := μn0

(
Tl,r

)
.
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With the abovedefinitions and theBernoulli function, B (x) = x
exp(x)−1 , the numerical

fluxes J l;rn have the form

J l;rn = −qNn0μ
l,r
n Ul,r

T

G
(
ηl,r
n ; sl,rn

)

exp
(
ηl,r
n

)
[
eηn;l B

(
ψl − ψr

Ul,r
T

)
− eηn;r B

(
−ψl − ψr

Ul,r
T

)]
.

For the discretization of the full bipolar model taking into account the complete
mobility functions from organics including the factors g1 and g2 we refer to [3].

Numerical treatment of the boundary conditions on ∂Vl ∩ ∂Ω . The realiza-
tion of no-flux and Robin boundary conditions is based on the evaluation of the
corresponding surface integrals by a midpoint quadrature rule. Dirichlet boundary
conditions are implemented using the Dirichlet penalty method: We replace the
Dirichlet boundary conditions for ϕn by jn · ν + Π(ϕn − V ) = 0, and treat them
like Robin boundary conditions. The penalty parameter Π is a large number which
results in marginalizing the normal flux contributions. In order to approximate the
nonlinear Dirichlet boundary condition (4), we use a similar idea. We replace (4) by
−ε∇ψ + ΠCDi (ψ; V, T ) = 0 and treat the resulting boundary condition as a non-
linear Robin boundary condition. Using this approach, the nonlinearity (4) can be
treated without any additional iteration along with all the other nonlinearities in the
resulting system of equations by the general Newton solver coupled to a parameter
embedding scheme.

Volume integrals. For the integral of the charge density C − n we use the mid-
point rule. The Joule heat integral H is approximated using the fluxes J l;rn ,

∫

Vl

(C − n) dx ≈ mes (Vl) (Cl − nl),

∫

Vl

H dx ≈
∑

Vr∈N (Vl )

mes (∂Vl ∩ ∂Vr )

2d
J l;rn

(
ϕn;l − ϕn;r

)
,

(5)

where d denotes the space dimension. Here, we followed the idea proposed in [1] and
exploited in [7] allowing to evaluate the Joule heating approximation for electrons
and holes by edge contributions.

Path-following method for calculation of S-shaped CV-curves. For a device
with two Dirichlet boundary parts ΓD1 and ΓD2 , where on ΓD2 the potential is set to
zero and onΓD1 to the (spatially constant) externally applied voltage V , we determine
the CV-relation by calculating the current over ΓD1 . Since organic semiconductors
show a pronounced electrothermal feedback that can lead to S-shaped CV-relations,
a voltage controlled simulation is unable to cover the full characteristic, since at
the lower turning point of the S-curve one would not find a point on the curve
with increased voltage and only slightly increased current and related temperature,
see e.g. Fig. 1a. For such voltage values, only points on the upper branch of the S-
curve are available, related to very different current and temperature values. In other
words, for increasing voltage, if at all the method would converge, one could only
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jump to the upper part of the S-curve and the (unstable) region of negative differ-
ential resistance of the S-curve is impossible to resolve. Therefore we implemented
a path-following method to trace the S-curve. With the discrete equations for all
Voronoi boxes {Vl} we arrive at a system of 3m coupled nonlinear algebraic equa-
tions for u = (ψl, ϕn;l , Tl)l=1,...,m of the form F(u, V ) = 0, F : R3m × R → R

3m .
We adapt the technique described in [7, Sect. 5] which was used in [12] to simulate S-
shaped CV-relations for organic LEDs resulting from an electrothermal modeling by
p-Laplace thermistor models to the drift-diffusion setting.

4 Simulation Results

The finite volume method has been implemented in the prototype semiconductor
device simulator ddfermi [2] which is based on the PDE solution toolbox pdelib [8].

We give a proof of concept that electrothermal drift-diffusion models from Sect. 2
can exhibit S-shaped CV-relations and restrict our simulations to a 340nm thick,
uniformly n-doped layer that is contacted by two metal layers. Due to the high
conductivity of the metal layers we assume that the potential is constant here and
neglect the metal layer entirely. Instead, we prescribe Dirichlet boundary conditions
on the parts ΓD1 and ΓD2 . On ΓD2 the potential is set to zero and on ΓD1 to the
externally applied voltage V . We determine the CV-relation of the organic device by
calculating the current overΓD1 .We found a parameter range leading to a pronounced
occurrence of S-shaped CV-relations. The used parameters are collected in Table1.

To discuss the phenomenon of S-shaped CV-relations and their appearance in
dependence on physical parameters, we present two types of parameter variations.
In Fig. 1a, b we study the influence of the disorder parameter σn on the electrothermal
interaction in the device. The resulting CV-relations are depicted in Fig. 1a, b shows
the maximal device temperature over the applied voltage. Whereas for σn = 0.05 eV
no S-shaped CV-relation occurs, although such behavior evolves for higher σn . With
increasing σn the first turning point of the curve moves to a higher applied voltage
but the related current density decreases and the ‘S’ becomes more pronounced.
Figure1c contains CV-relations for a variation of the thermal outcoupling conditions
realized by Robin boundary conditions of the form λ∇T · ν + κ(T − Ta) = 0 on
∂Ω for different values of κ . Better cooling broadens the ‘S’, for the two turning

Table 1 Simulation parameters

Parameter Value Parameter Value Parameter Value

ε 4.0 ε0 EH 0.0 eV Nn0 1021 cm−3

λ 0.4Wm−1K−1 Ta 220K μn0 0.8cm2V−1s−1

κ 103 . . . 105Wm−2K−1 c1 1.0 doping 5 · 1018 cm−3

σn 0.05 . . . 0.08eV c2 0.4 thickness 340nm
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Fig. 1 CV-characteristics using the electrothermal drift-diffusion model for different disorder
parameters σn a, b shows the resulting maximal temperature in the device for κ = 104 W/(m2K).
c Depicts CV-curves for different thermal outcoupling regimes and σn = 0.08 eV

points the applied voltage as well as the current density increase. The exemplary
variations of physical parameters show that the complex nonlinear interplay leads to
strong variations in the shape of the CV-characteristics.

5 Conclusion and Remarks

We presented a discretization scheme for the electrothermal drift-diffusionmodel (1)
for organic semiconductor devices. We formulated temperature dependent nonlinear
Dirichlet boundary conditions for the electrostatic potential (4) at Ohmic contacts,
which take into account the shift of the equilibrium potential due to changing device
temperature.

We used a finite volume based generalized Scharfetter-Gummel scheme imple-
mented in the prototype semiconductor device simulator ddfermi [2] on top of the
PDE solver toolbox pdelib [8]. Via a path-following technique, we demonstrated that
the model and its discretization for certain parameters exhibit the phenomenon of an
S-shaped CV-relation with regions of negative differential resistance. The ability to
simulate S-shapedCV-relations using drift-diffusion type electrothermalmodels is to
our knowledge a novelty. Although CV-relations have been observed experimentally
in [12], there is a need to be properly modeled in order to understand and optimize
the device behavior.

Besides device characteristics, our model (1) and its discretization are capable
to describe the spatially resolved electrothermal behavior of real 3D organic semi-
conductor devices in terms of charge carrier densities, current densities, potentials,
temperature distributions. Figure2 compares the produced Joule heat densities for an
organic thin-film transistor with fixed source-drain voltage of 1V when the channel
is opened by raising the gate voltage from 0V (left) to 1V (right).

Simulations for real organic device structures and realistic physical parameters
help to estimate the region of a stable working regime guaranteeing the absence of
material destruction due to overheating. Furthermore, the description of the spatially
resolved electrothermal behavior of real devices is very important for understanding
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Fig. 2 Simulated Joule heat densities [W/cm3] (source terms in the heat flow equation) in an organic
transistor that demonstrate the change of the electrothermal regime when opening the channel by
increasing the gate voltage from 0V (left) to 1V (right) for a fixed source-drain voltage of 1V

the effect of thermal switching, device degradation, device breakdown and local
heating (hot spots) in large area devices.

Acknowledgements The authors gratefully acknowledge the funding by the German Research
Foundation (DFG)underGermany’sExcellenceStrategy–TheBerlinMathematicsResearchCenter
MATH+ (EXC-2046/1, project ID: 390685689) in project AA2-1 and AA2-6.

References

1. Bradji, A., Herbin, R.: Discretization of coupled heat and electrical diffusion problems by
finite-element and finite-volume methods. IMA J. Numer. Anal. 28, 469–495 (2008)

2. Doan, D.H., Farrell, P., Fuhrmann, J., Kantner,M., Koprucki, T., Rotundo, N.: ddfermi – a drift-
diffusion simulation tool (2019). https://doi.org/10.20347/WIAS.SOFTWARE.DDFERMI

3. Doan, D.H., Fischer, A., Fuhrmann, J., Glitzky, A., Liero, M.: Drift-diffusion simulation of
S-shaped current-voltage relations for organic semiconductor devices. WIAS-Preprint 2630,
Berlin (2019)

4. Farrell, P., Koprucki, T., Fuhrmann, J.: Computational and analytical comparison of flux dis-
cretizations for the semiconductor device equations beyond Boltzmann statistics. J. Comput.
Phys. 346, 497–513 (2017)

5. Farrell, P., Rotundo, N., Doan, D., Kantner, M., Fuhrmann, J., Koprucki, T.: Drift-diffusion
models. In: Piprek, J. (ed.) Handbook of Optoelectronic Device Modeling and Simulation,
chap. 50, vol. 2, pp. 733–771. CRC Press Taylor & Francis (2017)

6. Fuhrmann, J.: Comparison and numerical treatment of generalised Nernst-Planck models.
Comput. Phys. Commun. 196, 166–178 (2015)

7. Fuhrmann, J., Glitzky, A., Liero, M.: Hybrid finite-volume/finite-element schemes for p(x)-
Laplace thermistor models. In: Cancès, C., Omnes, P. (eds.) Finite Volumes for Complex
Applications VIII-Hyperbolic, Elliptic and Parabolic Problems: FVCA 8, Lille, France, June
2017, pp. 397–405. Springer International Publishing, Cham (2017)

8. Fuhrmann, J., Langmach, H., Liero, M., Streckenbach, T., Uhle, M.: pdelib – FVM and FEM
toolbox for partial differential equations (2019). http://pdelib.org

9. Glitzky, A., Liero, M., Nika, G.: An existence result for a class of electrothermal drift-diffusion
models with Gauss–Fermi statistics for organic semiconductor devices. WIAS-Preprint 2593,
Berlin (2019)

10. Klinger,M.P., Fischer, A., Kleemann, H., Leo, K.: Non-linear self-heating in organic transistors
reaching high power densities. Sci. Rep. 8, 9806 (2018)

https://doi.org/10.20347/WIAS.SOFTWARE.DDFERMI
http://pdelib.org


Unipolar Drift-Diffusion Simulation of S-Shaped Current-Voltage … 633

11. Kordt, P., Bobbert, P., Coehoorn, R., May, F., Lennartz, C., Andrienko, D.: Organic light emit-
ting diodes. In: Piprek, J. (ed.) Handbook of Optoelectronic Device Modeling and Simulation,
chap. 15, vol. 1, pp. 473–522. CRC Press Taylor & Francis (2017)

12. Liero, M., Fuhrmann, J., Glitzky, A., Koprucki, T., Fischer, A., Reineke, S.: 3D electrothermal
simulations of organic LEDs showing negative differential resistance. Opt. Quantum Electron
49, 330/1–330/8 (2017)



A Second Order Numerical Scheme
for Large-Eddy Simulation
of Compressible Flows

B. Gamal, L. Gastaldo, J.-C. Latché, and D. Veynante

Abstract In the context of large eddy simulation of turbulent flows, the control of
kinetic energy seems to be an essential requirement for a numerical scheme. We
propose in this paper a formally second order non-dissipative scheme dedicated to
the numerical simulation of the filtered Naviers-Stokes equations for compressible
flows. The spatial discretization is staggered and based on the so-calledMarker-And-
Cell (MAC) scheme. A MUSCL-like technique is used for convection operators of
the mass and the internal energy balance equations in order to preserve the positivity
of the density and of the internal energy. Time discretization is performed with the
Heun scheme. A kinetic energy conservation identity at discrete level is proved. The
good behaviour of the scheme is assessed on the simulation of compressible decaying
isotropic turbulence.

Keywords Large eddy simulation · Compressible flows · Explicit scheme

1 Introduction

Large-eddy simulation (LES) has gained a great success in simulating practical flows
where the Reynolds numbers are usually very high. In such a method, the large scale
fluid motions are computed explicitly from the filtered Navier-Stokes equations, as
in DNS, while small-scale effects are modeled.
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Let Ω be an open bounded domain of Rd with 1 ≤ d ≤ 3, a flow variable φ is
decomposed into filtered (large-scale structures) and residual (small structures) terms
by means of a filtering operation φ = φ̄ + φ′ where:

φ̄(x, t) ≡
∫

Ω

GΔ(r, x)φ(x − r, t) dr (1)

denotes the spatial filtering of φ andGΔ is the filter function that determines the scale
of the resolved structures. In practice, the filter is usually the grid filter, with the filter
width Δ being a measure of local grid size. For compressible flow, the density-
weighted (Favre) filtering is applied, i.e., φ̃ = (ρφ)/ρ, ρ being the filtered density.
When Favre filtered, the spatially filtered Navier-Stokes equations for compressible
flows take the form:

∂tρ + div(ρṽ) = 0 (2a)

∂t (ρṽ) + div(ρṽ ⊗ ṽ) = −∇ p + divτ (2b)

∂t (ρẽ) + div(ρ ṽ̃e) + p diṽv = τ : ∇ṽ − divq (2c)

p = (γ − 1) ρẽ (2d)

where t stands for the time, p, ṽ and ẽ are respectively the filter pressure, velocity and
internal energy, γ denotes the heat capacity ratio. Only impermeability conditions
are considered for short, and initial conditions ρ0, ẽ0 and ṽ0 are such that ρ0 ≥ 0 and
ẽ0 ≥ 0.

The viscous stress tensor could be seen as composed by a computable and an unre-
solved or subgrid-scale (SGS) part τ = τ − σ̃ . The computable part τ i j is defined
as:

τ i j = 2μ

[
S̃i j − 1

3
δi j

∑
k

T r (̃S)

]
, 1 ≤ i, j ≤ d (3)

where μ is the “computable” turbulent viscosity and S̃ is the mean rate-of-strain
tensor defined as S̃ = 1/2

(∇ṽ + ∇ t ṽ
)
. The SGS turbulent shear stress σ̃ can not be

calculated directly and therefore is modelled in terms of resolved quantities by the
Boussinesq’s eddy viscosity model:

− σ̃i j = 2μSGS

[
S̃i j − 1

3
δi j

∑
k

T r (̃S)

]
, 1 ≤ i, j ≤ d (4)

where μSGS is the SGS turbulent viscosity.
Analogously, the heat flux q could be decomposed into a computable part q̃ and

ans SGS part Q:

q = q̃ + Q = μγ

Pr
∇ ẽ + μSGSγ

Prt
∇ ẽ (5)
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where Pr and Prt are respectively the laminar and the turbulent Prandtl numbers.
The Smagorinsky model is used for the SGS turbulent viscosity computation, in

order to close the system:
μSGS = ρ(CsΔ)2|S̄| (6)

where Cs is a model parameter.

In the context of LES of turbulent flows, the control of kinetic energy is an essen-
tial requirement for a numerical scheme in order to guarantee not only stability but
also physical reliability of the results. The aim of this paper is to propose an as
less dissipative as possible scheme for the resolution of System (2). The developed
scheme is staggered and based on the so-called Marker and Cell (MAC) space dis-
cretization. Time-stepping is performed with the Heun scheme. This scheme enjoys
some stability properties: the density, the internal energy and the pressure are shown
to be non-negative at the discrete level. The conservation of discrete kinetic energy
is also proved up to residual terms which may be explicited in Theorem 3.

This paper is organized as follows. The scheme is introduced in Sect. 2, some
stability results including kinetic energy identity are given in Sect. 3. Finally, Sect. 4
presents the large eddy simulation of compressible decaying isotropic turbulence.

2 The Numerical Scheme

Mesh and notations—Let Ω be the computational domain (suitable for the dis-
cretization by a cartesian grid). A discretization (M ,E ) of Ω with a staggered
rectangular grid (or MAC grid), involves a primal grid M which consists in a con-
forming structured partition ofΩ in rectangles (d = 2) or rectangular parallelepipeds
(d = 3), possibly non uniform. A generic cell of this grid is denoted by K . The set
of all the edges of this mesh is denoted by E , with E = Eint ∪ Eext, where Eint (resp.
Eext) are the edges of E that lie in the interior (resp. on the boundary) of the domain.
The set of the edges (resp. the internal and boundary edges) that are orthogonal to
the i th vector of the orthonormal basis of Rd , e(i), is denoted by E (i) (resp. E (i)

int and
E (i)
ext ), for 1 ≤ i ≤ d.
For σ ∈ Eint, we write σ = K |L if σ = ∂K ∩ ∂L . The outward normal vector to

a face σ of K is denoted by nK ,σ . For K ∈ M and σ ∈ E , |K | denotes the measure
of K and |σ | the (d − 1)-measure of the face σ . We denote by dK ,σ , ∀K ∈ M and
∀σ ∈ E , the Euclidean distance between the center xK of the cell and the edge σ .
We define dσ = dK ,σ + dL ,σ if σ ∈ Eint and dσ = dK ,σ if σ ∈ Eext.

A dual cell Dσ associated to an edge σ ∈ E is defined as follows:

– if σ = K |L ∈ Eint then Dσ = DK ,σ ∪ DL ,σ , where DK ,σ (resp. DL ,σ ) is the half-
part of K (resp. L) adjacent to σ (see Fig. 1);

– if σ ∈ Eext is adjacent to the cell K , then Dσ = DK ,σ .
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K L
  ′

nK, D D ′


n ,

Fig. 1 Notations for control volumes and edges—left: primal mesh, right: dual mesh for the first
component of the velocity

For each velocity component i , the domain Ω is thus partitioned in dual cells: Ω =
∪σ∈E (i) Dσ . The i th partition is referred to as the i th dual mesh, associated to the i th
velocity component, in a sense which is clarified below. The set of the edges of the
i th dual mesh is denoted by Ẽ (i). The dual edge separating two duals cells Dσ and
Dσ ′ is denoted by ε = σ |σ ′. The set of edges of a primal cell K and of a dual cell
Dσ are denoted by E (K ) and Ẽ (Dσ ) respectively.

The discrete unknowns for the i th component of the velocity are associated to the
i th dualmesh and are denoted by (ui,σ )σ∈E (i) . The scalar unknowns (pressure, internal
energy, density) are associated to the primal cells and are denoted respectively by
(pK )K∈M , (eK )K∈M .and (ρK )K∈M .

Let notice that, in the following, the filter notations are omitted for the sake of
clarity.

Description of the scheme—Let us consider a partition 0 = t0 < t1 < . . . <

tN = T of the time interval (0, T ), which we suppose uniform, and let δt = tn+1 − tn
for n = 0, 1, · · · , N − 1 be the (constant) time step. The time integration is per-
formed by the second order Heun scheme (which falls in the class of Runge-Kutta
schemes), the step n of which may be described throughout three fractional steps
described hereafter. The first step reads:

Wn = (ρn, en, pn, vn) being known,

First step−Compute W(1) = (ρ(1), e(1), p(1), v(1)), by:
W(1) = S (Wn) (7a)

where the relation W(1) = S (Wn) means that the left-hand side is obtained by
applying the standard first-order in time explicit scheme to an initial data given by
Wn , which reads:

1

δt
(ρ

(1)
K − ρn

K ) + divK (ρn vn) = 0, ∀K ∈ M (8a)

1

δt
(ρ

(1)
K e(1)

K − ρn
K e

n
K ) + divK (ρn en vn) + pnK divK (vn)

= (τ (vn) : ∇vn)K − div(q)K , ∀K ∈ M (8b)

ρ(1)
σ v(1)

σ,i − ρn
σ v

n
σ,i

δt
+ divσ (ρnvnvni ) + (∇pn)σ,i = div(τ (vn))σ,i , ∀σ ∈ E (i)

int (8c)



A Second Order Numerical Scheme for Large-Eddy … 639

p(1)
K = (γ − 1) ρ

(1)
K e(1)

K , ∀K ∈ M (8d)

The terms introduced for each discrete equation will be defined in the following.
Note that, to cope with impermeability conditions, the momentum balance equation
is not written on the boundary dual cells, and the velocity (in fact, the normal velocity,
due to the arrangement of the unknowns) on the boundary edges is just set to zero.
The second step of the numerical scheme is analogous to the first one:

Second step−Compute W(2) = (ρ(2), e(2), p(2), v(2)), by: (9a)

W(2) = S (W(1))

Finally, the last step of the algorithm allows to write the n + 1 unknows as a linear
combination of the n and (2) unknows:

Last step−Compute ρn+1, en+1, pn+1 and un+1
i , 1 ≤ i ≤ d by:

ρn+1
K = 1

2
(ρn

K + ρ
(2)
K ), ∀K ∈ M (10a)

ρn+1
K en+1

K = 1

2

(
ρn
K enK + ρ

(2)
K e(2)

K

)
, ∀K ∈ M (10b)

ρn+1
Dσ

vn+1
i,σ = 1

2

(
ρn
Dσ
vni,σ + ρ

(2)
Dσ

v(2)
i,σ

)
, ∀σ ∈ E (i)

int (10c)

pn+1
K = (γ − 1) ρn+1

K en+1
K ∀K ∈ M (10d)

Let us now detail the discrete balance equations involved in (7) (analogously in (9)).

Discrete mass balance—The convection term of Eq. (8a) reads:

|K | divK (ρ v) =
∑

σ∈E (K )

FK ,σ , with FK ,σ = |σ | ρσ vK ,σ · nK ,σ (11)

where FK ,σ stands for the mass flux across σ outward K and vK ,σ = vσ,i e(i)

for σ ∈ E (i). The density at the face σ = K |L , ρσ , is approximated by a sec-
ond order MUSCL-like interpolation: ∀K ∈ M and ∀σ ∈ E (K ) ∩ Eint, there exists
αK

σ ∈ [0, 1] and MK
σ ∈ M such that (see [2] for more details):

ρσ − ρK =
∣∣∣∣∣
αK

σ (ρK − ρMK
σ
) if vnK ,σ ≥ 0,

αK
σ (ρMK

σ
− ρK ) otherwise.

(12)

Discrete internal energy balance—Equation (8b) is an approximation of the
internal energy balance over the primal cell K . The convection operator is defined
as follows:

|K | divK (ρ v e) =
∑

σ∈E (K )

FK ,σ eσ (13)
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where the discretization of the internal energy at the primal faces uses the same
MUSCL technique as for the density to ensure the positivity of the convection
operator.

The viscous dissipation term (τ (vn) : ∇vn)K and the viscous diffusion term
div(τ (vn))σ,i of the momentum balance equation are defined so that they satisfy
the following two constraints (see [3] for more details):

• non-negativity of the dissipation: (τ (vn) : ∇vn)K ≥ 0, ∀K ∈ M ;
• consistency of the diffusion and the dissipation, in the following sense:

−
d∑

i=1

∑
σ∈E (i)

int

|Dσ | div(τ (vn))σ,i vσ,i =
∑
K∈M

|K |(τ (vn) : ∇vn)K (14)

i.e., the discrete analogue of the identity
∫

Ω

div(τ (v) · v = −
∫

Ω

τ (v) : ∇v.

For the heat diffusion term, the usual finite volume scheme based on a two-point
approximation of the fluxes is used, ∀K ∈ M :

div(q)K = −γ

(
μ

Pr
+ μSGS

Prt

)
(Δe)K = γ

(
μ

Pr
+ μSGS

Prt

) ∑
σ∈E (K )

|σ |
dσ

(eK − eL)

(15)
With this definition, the Laplace operator is monotone [3], i.e.,:

∑
K∈M

−γ

(
μ

Pr
+ μSGS

Prt

)
(Δe)K (−e−

K ) ≥ 0, (16)

where e−
K = −min(eK , 0). This property is necessary to ensure the positivity of the

internal energy.

Discrete momentum balance—We now turn to the discrete momentum balance
(8c). Following [4], the density on the dual cells is given by the following weighted
average:

|Dσ | ρDσ
= |DK ,σ | ρK + |DL ,σ | ρL , for σ = K |L ∈ E (K ) (17)

The discrete divergence operator on the dual mesh is given by:

divDσ
(ρ v vi ) =

∑
ε∈Ẽ (i)(Dσ )

Fσ,εvε,i (18)

where Fσ,ε is the mass flux through the dual face ε outward Dσ and the centered
choice is made for the approximation of vε,i . The discrete mass flux Fσ,ε is evaluated
as linear combination, with constant coefficients, of the primal mass fluxes at the
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neighboring faces, in such a way that a discrete mass balance over the dual cells
holds [2, 4].

The term (∇p)σ,i stands for the i th component of the discrete pressure gradient
at the face σ . The gradient operator is built as the transpose of the discrete operator
for the divergence of the velocity on the primal mesh (i.e., the operator obtained by
setting ρ = 1 in the divK (ρv) operator defined by (11)):

(∇p)nσ,i = |σ |
|Dσ | (pnL − pnK ) nK ,σ · e(i), for σ = K |L , 1 ≤ i ≤ d (19)

3 Stability Results

First, we verify that at the discrete level, the numerical schemepreserves the positivity
of the density and of the internal energy (and thus of the pressure) [2].

Theorem 1 (Positivity of the density) Let 0 ≤ n ≤ N − 1, and let assume that ρn >

0 (i.e., for all K ∈ M ,ρn
K > 0) and that the time step satisfies the following condition,

∀K ∈ M :

δt ≤ min

[ |K |∑
σ∈E (K )

|σ | (1 + αK
σ )(vnK ,σ )+

,
|K |∑

σ∈E (K )
|σ | (1 + αK

σ )(v(1)
K ,σ )+

]

(20)
where, for a ∈ R, a+ ≥ 0 is defined by a+ = max(a, 0) and αK

σ is introduced in (12).
Then a solution to the scheme (7)–(10) satisfies ρn+1 > 0.

Theorem 2 (Positivity of the internal energy) Let assume that en > 0 (i.e., enK > 0,
∀K ∈ M ), 0 ≤ n ≤ N − 1, and that the CFL condition (20) holds. In addition, let
the the time step satisfy the following condition ∀K ∈ M :

δt ≤ min

[ |K | ρnK

(γ − 1) ρnK

∑
σ∈E (K )

|σ | (vnK ,σ )+ +
∑

σ∈E (K )
(1 + αK

σ ) (Fn
K ,σ )+

,

|K | ρ
(1)
K

(γ − 1) ρ
(1)
K

∑
σ∈E (K )

|σ | (v(1)K ,σ
)+ +

∑
σ∈E (K )

(1 + αK
σ ) (F(1)

K ,σ
)+

]

Then the solution to the scheme (7)–(10) satisfies en+1 > 0.

At the continuous level, the kinetic energy balance is obtained by taking the inner
product of the momentum balance equation by the velocity and using twice the mass
balance equation. At the discrete level, the computation is essentially the same for
the convection term, provided that a momentum balance and a mass balance hold on
the same cell, which is ensured by construction of the dual densities and mass fluxes
((17) and (18)).
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Theorem 3 (Discrete kinetic energy balance) A solution to the scheme (7)–(10)
satisfies the following equality, for 1 ≤ i ≤ d, σ ∈ E (i)

int and 0 ≤ n ≤ N − 1:

1

2

|Dσ |
δt

[
ρn+1
Dσ

(vn+1
σ,i )2 − ρn

Dσ
(vnσ,i )

2
]

+ 1

4

∑
ε∈Ẽ (i)(Dσ )

Fn
σ,εv

n
σ,i v

n
σ ′,i + |Dσ | (∇p)nσ,i v

n
σ,i − |Dσ | divτ (vn)σ,i v

n
σ,i

+ 1

4

∑
ε∈Ẽ (i)(Dσ )

F (1)
σ,ε v

(1)
σ,i v

(1)
σ ′,i + |Dσ | (∇p)(1)σ,i v

(1)
σ,i − |Dσ | divτ (v(1))σ,i v

(1)
σ,i = −Rn+1

σ,i

with

Rn+1
σ,i = 1

4

|Dσ |
δt

ρ
(2)
Dσ

[
(vn+1

σ,i − v(2)
σ,i )

2 − (v(1)
σ,i − v(2)

σ,i )
2
]

+1

4

|Dσ |
δt

[
ρn
Dσ

(vn+1
σ,i − vnσ,i )

2 −ρ
(1)
Dσ

(vnσ,i − v(1)
σ,i )

2
]

The residual terms Rn+1
σ,i may be seen as a numerical dissipation term, which is shown

numerically to be second order in time.

4 Numerical Simulation

The scheme under consideration has been developed in the CALIF3S open-source
software [1] of the French Institut de Sûreté et de Radioprotection Nucléaire (IRSN).

The test case presented here is the LES of decaying isotropic turbulence.
The numerical simulations are performed in a triply periodic box [0, 2π ] with

32 cells per axes. The initial velocity field is prescribed using the Random Fourier
Method (RFM) that provides a synthetic turbulent velocity field enforcing the Passot-
Pouquet model for energy spectrum:

E(k) = 16

√
2

π

v2rms

κe

(
κ

κe

)4

exp

[
−2

(
κ

κe

)2
]

where κe is the wave number at which the most energetic scales occurs and vrms is the
root mean square of velocity fluctuations. The initial fields for the internal energy,
pressure and density are set uniform. The initial turbulent Mach number is set to
Mt = 0.4, and the turbulent Reynolds number is set to ReT = 2742.

The time step is computed in order to have a CFL number equal to 1/4. The
numerical results are compared to the DNS data of Spyropoulos and Blaisdell [5].
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Fig. 2 Energy spectra (left side) and time evolution on density fluctuations (right side). In blue:
first-order upwind scheme for comparison

The left part of Fig. 2 shows the comparison between numerical and DNS energy
spectra at two different times t/τt = 2.217 and t/τ = 4.434, where τt is the integral
time scale. The right part of Fig. 2 shows the time evolution of density fluctuations.
The numerical results are in good agreement with data of literature.
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Abstract In this paper, we develop a numerical scheme for the solution of the cou-
pled Stokes and Navier-Stokes equations with constitutive equations describing the
flow of viscoelastic fluids. The space discretization is based on the so-calledMarker-
And-Cell (MAC) scheme. The time discretization uses a fractional-step algorithm
where the solution of the Navier-Stokes equations is first obtained by a projection
method and then the transport-reaction equation for the conformation tensor is solved
by a finite-volume scheme. In order to obtain consistency, the space discretization
of the divergence of the elastic part of the stress tensor in the momentum balance
equation is derived using aweak form of theMAC scheme. For stability and accuracy
reasons, the solution of the transport-reaction equation for the conformation tensor
is split into pure convection steps, with a change of variable from c to log(c), and a
reaction step, which consists in solving one ODE per cell via an Euler scheme with
local sub-cycling. Numerical computations for the Stokes flow of an Oldroyd-B fluid
in the lid-driven cavity at We = 1 confirm the scheme efficiency.
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1 Introduction

We consider viscoelastic models for polymeric incompressible liquids. Let Ω be a
parallelepiped of Rd , d ∈ {2, 3} and (0, T ), T > 0, a finite time interval. The fluid
is governed by the following system of equations:

ρ(∂tu + ξu · ∇u) = −∇p + div τ s(u) + div τ p, τ p = ηp

λ
f(c)(c − Id), (1a)

div u = 0, (1b)

∂tc + u · ∇c − (∇u) c − c (∇u)t + 1

λ
g(c)(c − Id) = 0, (1c)

where the vector-valued function u is the velocity of the fluid, p is the pressure, τ s =
ηs(∇u + (∇u)t ) is the Newtonian stress tensor for the solvent with ηs its viscosity.
The constant coefficients ρ, ηp and λ are the fluid density, the polymer viscosity and
the polymer retardation time. The tensor τ p is the part of the stress accounting for
the presence of polymers and c is the conformation tensor. The coefficient ξ is zero
for the unsteady Stokes equations and ξ = 1 for the Navier-Stokes equations. The
functions f(c) and g(c) depend on the model. For example (see [1] for a review), the
Oldroyd-Bmodel is given by f(c) = g(c) = Id, and the Fene-CRmodel corresponds
to f(c) = g(c) = b

b−tr(c) Id, with b a real number greater than the space dimension.
This system must be complemented by initial conditions for the velocity and the
conformation tensor, and by suitable boundary conditions. Here, we suppose for
short that the velocity is prescribed over the whole boundary and that the normal
velocity vanishes everywhere on the boundary. The dimensionless parameters that
characterize these types of flows are the Reynolds number, Re = ρUL/(ηs + ηp),
and the Weissenberg number, We = λU/L , where U and L are the characteristic
velocity and length scale.

Here, we develop a numerical scheme for the solution of System (1) based on
the following technology. The space discretization is based on the so-called Marker-
And-Cell (MAC) scheme. Previous work on MAC schemes for viscoelastic flows
can be found in [7], in the context of finite differences and in [4], in the context
of finite volumes, both on uniform grids. The time discretization uses a fractional-
step algorithm where the solution of the Navier-Stokes equations (1a), (1b) is first
obtained by a standard projectionmethod and then the transport-reaction equation for
the conformation tensor (1c) is solved by a finite-volume scheme. The development
of this scheme faces two essential difficulties. Firstly, we use a weak formulation
of (1a) for the discretization of the term div τ p, which yields an essential ingredient
for the scheme stability and a built-in Lax-Wendroff weak consistency property (see
[5]). Secondly, the solution of Equation (1c) requires special care due to the stiffness
of the term (∇u) c + c (∇u)t . In the spirit of [8], the solution procedure for Equation
(1c) is split in pure convection steps, with a change of variable from c to log(c), and
a reaction step, which consists in solving one ODE per cell thanks to the piecewise
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constant discretization of c. In contrast with [8], these ODEs are solved directly for c,
and not log(c), so as to avoid any artificial introduction of nonlinearities. We further
use a local time step for each cell, which ensures the scheme stability and prevents
a blow-up of the CPU cost.

2 The Numerical Scheme

Let M be a MAC mesh (see [6]) of Ω . The discrete pressure and conformation
unknowns are associated with the cells of the meshM and are denoted by {pK , K ∈
M } and {cK , K ∈ M }. E and Eint are, respectively, the sets of all (d − 1)-faces
σ of the mesh and of the interior faces (i.e. the faces which are not included in
the boundary). For 1 ≤ i ≤ d, we denote by E (i)

int the subset of the faces that are
perpendicular to the i th unit vector of the canonical basis ofRd . The discrete velocity
unknowns approximate the normal velocity to the mesh faces. Since the velocity is
prescribed on the whole boundary, the degrees of freedom for the i th component of
the velocity are associated to E (i)

int and read (uσ,i )σ∈E (i)
int
.

Let us consider a uniform partition 0 = t0 < t1 < . . . < tN = T of (0, T ) with a
constant time step δt . The pressure correction scheme consists in the following two
steps:

Prediction step− Solve for ũn+1 :
For 1 ≤ i ≤ d, ∀σ ∈ E (i)

int ,

ρ

δt

(
ũn+1

σ,i − unσ,i

) + ξ ρdivσ (ũn+1
i un) − divσ,i τ s(ũn+1)

−divσ,i τ
n
p + ∇σ,i (p

n) = 0.
(2a)

Correction step− Solve for pn+1 and un+1 :
For 1 ≤ i ≤ d, ∀σ ∈ E (i)

int ,
ρ

δt
(un+1

σ,i − ũn+1
σ,i ) + ∇σ,i (p

n+1 − pn) = 0, (2b)

∀K ∈ M , divK (un+1) = 0. (2c)

In the prediction step, the tensor τ n
p is computed as a function of the conformation

tensor by τ n
pK = ηpK

λK
f(cnK ) (cnK − Id), for K ∈ M .

The discretization of the constitutive equation (1c) is split into pure advection
steps and a local ODE, which is a strategy already adopted in [8]. This allows us to
preserve the positivity of c and obtain good accuracy. Furthermore,we use a change of
variables for the advection steps and change the conformation tensor into the matrix
logarithm of the conformation tensor [4]. The result is the following “Strang-log”
scheme:
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Advection I− Solve for cn+ 1
3 :

∀K ∈ M ,
1

δt/2

(
log c

n+ 1
3

K − log cnK
)

+ divK (un+1 log c
n+ 1

3
K ) = 0, (3a)

ODE− Set cK (tn) = c
n+ 1

3
K and solve for cn+ 2

3 = cK (tn + δt) :
∀K ∈ M , ∂tcK − (∇Kun+1) cK − cK

(∇Kun+1
)t + 1

λK
g(cK )(cK − Id) = 0,

(3b)

Advection II−Solve for cn+1 :
∀K ∈ M ,

1

δt/2

(
log cn+1

K − log c
n+ 2

3
K

)
+ divK (un+1 log cn+1

K ) = 0. (3c)

Transport steps are discretized by a standard first-order upwind scheme. The local
ODE (3b) is solved using a first-order Euler scheme, with a local sub-time step.
Two versions are tested: the fully implicit scheme and a version where the term
(∇Kun+1) cK + cK

(∇Kun+1
)t

is explicit, while the other ones are still implicit.
From a theoretical point of view, both variants seem to have the same stability prop-
erties, i.e. to preserve the positive definite character of the conformation tensor for a
small enough (sub-) time step, depending on the velocity gradient. However, numer-
ical tests show that the implicit version is more stable.

Most discrete operators involved in the scheme are standard and we refer to [6]
for their detailed definition. We focus in the next section on the discretization of the
divergence of the stress tensor in the momentum balance equation.

3 The Total Stress Divergence Term

The aim of this section is to define the divergence term divσ,i (T) of the total Cauchy
stress tensor T = −pId + τ s(ũ) + τ p. We want this quantity to satisfy a discrete
analogue of the identity:

∫

Ω

div(T) · u = −
∫

Ω

T(u) : ∇u. (4)

This relation is crucial to derive a scheme that preserves a free energy estimate at the
discrete level [2]. In addition, if the discrete gradient of the interpolation of a regular
function converges to the continuous gradient in L∞-weak 
, which is the case here
(with, in fact, a strong L∞ convergence), then the identity (4) readily yields the Lax-
Wendroff consistency of the discretization of the term divσ,i (τ

n
p). The strategy to

obtain (4), already used in [6] for Newtonian fluids, is to recast the MAC scheme
under a weak form. For clarity, we only address the two-dimensional case here. The
extension to the three-dimensional case is presented in [6].
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The discrete velocity gradient—Here, we detail the discretization of terms asso-
ciated to the x-component of the velocity, using the notations of Fig. 1. Inside the
computational domain, the discrete partial derivatives of this velocity component are
defined as follows:

– Let the primal cells be denoted by Ki, j = (xi− 1
2
, xi+ 1

2
) × (y j− 1

2
, y j+ 1

2
). The dis-

crete derivative involved in the divergence (so, for the velocity x-component, only
∂M
x ux ) is defined over the primal cell by, ∀x ∈ Ki, j :

∂M
x ux (x) =

ux
i+ 1

2 , j
− ux

i− 1
2 , j

hx
i

. (5)

– For the other derivatives (so, for the velocity x-component, only ∂M
y ux ), we intro-

duce a fourth mesh which is vertex-centred, and we denote by K xy the generic cell
of this newmesh, with K xy

i− 1
2 , j− 1

2
= (xi−1, xi ) × (y j−1, y j ). Then, ∀x ∈ K xy

i− 1
2 , j− 1

2
:

∂M
y ux (x) =

ux
i− 1

2 , j
− ux

i− 1
2 , j−1

hy
j− 1

2

. (6)

The only necessary extension of this definition to cope with boundaries concerns the
definition of ∂M

y ux over a half vertex-centered cell associated with a vertex lying on
a horizontal boundary. In this case, we use the usual “fictitious cell trick” in order to
apply Relation (6): an external cell, of zero y-dimension, is added to the mesh and
the horizontal velocity in this cell is set to the prescribed Dirichlet value, or to zero
for the test functions defined below. Extending these definitions to the y-component
of the velocity, the discrete diffusion tensor can be defined as:

∇M ũ =
[

∂M
x ũx ∂M

y ũx

∂M
x ũ y ∂M

y ũ y

]
, τM (ũ) = ηs

(∇M ũ + (∇M ũ)t
)
. (7)

: Ki, j

M
x ux =

ux
i+ 1

2 , j
−ux

i− 1
2 , j

hxi

: Kxy
i− 1

2 , j−
1
2

M
y ux =

ux
i− 1

2 , j
−ux

i− 1
2 , j−1

hy
j− 1

2xi− 3
2

xi− 1
2

xi+ 1
2

y j− 3
2

y j− 1
2

y j+ 1
2

ux
i− 1

2 , j
ux
i+ 1

2 , j

ux
i− 1

2 , j−1

hxi

hy
j− 1

2

Fig. 1 Discrete partial derivatives of the x-component of the velocity
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Finite-volume test functions—Let us denote byI x ⊂ N
2 (resp.I y ⊂ N

2) the set
of pairs (i, j) such that xi− 1

2 , j (resp. xi, j− 1
2
) is the mass center of a vertical (resp.

horizontal) face of themesh. For (i, j) ∈ I x , we denote byφx(i− 1
2 , j) the test function

associated with the degree of freedom of the x-component of the velocity located at
xi− 1

2 , j . This discrete function is defined by:

(φx,(i− 1
2 , j))x

k− 1
2 ,�

= δik δ
j
� , ∀(k, �) ∈ I x and (φx,(i− 1

2 , j))
y
k,�− 1

2
= 0, ∀(k, �) ∈ I y .

Its non-zero partial derivatives are ∂M
x φx,(i− 1

2 , j) and ∂M
y φx,(i− 1

2 , j) and are given
by (5) and (6), respectively. Since the velocity is prescribed on the boundary, no
equation is written on the half-dual cells associated to external faces, so no definition
is required for the corresponding test functions.

Discrete viscous diffusion and pressure gradient—The discrete divergence of the
stress tensor for the solvent is defined by the following weak formulation:

∀(i, j) ∈ I x , −(divτ s(ũ))x
i− 1

2 , j
= 1

|K x
i− 1

2 , j
|
∫

Ω

τM
s (ũ) : ∇M φx,(i− 1

2 , j). (8)

Similarly, identifying p with its associated piecewise constant function, we have for
the pressure gradient:

∀(i, j) ∈ I x , (∇p)x
i− 1

2 , j
= −1

|K x
i− 1

2 , j
|
∫

Ω

p ∂M
x φx,(i− 1

2 , j) (9)

It is shown in [6] that Equation (8) yields the usual finite-volume formulation of the
MAC scheme. The same holds for the definition (9) of the pressure gradient.

Polymeric stress tensor divergence—This formulation naturally extends to the
discretization of the divergence of the polymeric stress tensor. To do so, we first
associate the discrete polymeric stress τ p to a piecewise function over the primary
cells by:

∀x ∈ Ki, j , τ p(x) = ηp

λ
f(ci, j )(ci, j − Id).

Then we set:

∀(i, j) ∈ I x , −(divτ p)
x
i− 1

2 , j
= 1

|K x
i− 1

2 , j
|
∫

Ω

τ p : ∇M φx,(i− 1
2 , j). (10)

An easy computation shows that this relation may be recast as a finite volume for-
mulation, in the sense that the right-hand side may be seen as a sum over the faces of
K x

i− 1
2 , j

of a discretization of the flux associated to divτ p, i.e. the integral of the first

component of τ p nK ,σ . However, as usual when such a duality technique is used,
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the approximation of the tensor at the horizontal faces may seem strange: indeed,
it is a convex combination of the unknown in the two neighbouring cells, but with
coefficients which are not those which would be given by a linear interpolation.

4 Numerical Tests

We compare the proposed scheme to results from the literature for the flow of an
Oldroyd-B fluid in lid-driven cavity with aWeissenberg number equal to 1. The com-
putational domain is Ω = (0, 1)2 and the velocity is prescribed on the whole bound-
ary: u = (

8 x2 (1 − x)2
(
1 + tanh(8t − 4)

)
, 0

)t
on (0, 1) × {1}, u = 0 otherwise.

The fluid is initially at rest and the conformation tensor is set to identity. The com-
putation is performed up to t = 30. The constant coefficients in System (1) are set
to ρ = 1, ηs = 0.5, ηp = 0.5 and λ = 1. We use a sequence of successively refined
meshes: the coarsest three ones are uniform 64 × 64, 128 × 128 and 256 × 256
cells; the four other ones, denoted by Mn, n = 1, . . . , 4, use a uniform step equal to
1/(256 n) in the x-direction and a splitting in the y-direction with a first step equal to
0.004/n, a last step equal to 0.001/n and a constant ratio between two consecutive
steps. The number of cells for the M4mesh is close to 5.2 million. The sub-time-step
for the solution of the ODE (3b) is set to δt/ne with ne the smallest integer number
such that δt/ne ≤ 1/(2m ||∇Kun+1||∞), with m = 10 for the uniform meshes and
m = 200 (to force convergence) for the Mn meshes; this time-step is small enough
to preserve the positive definiteness of the conformation tensor when solving (3b) by
a backward Euler scheme. Computations are run (in parallel for Meshes Mn) with
the open-source CALIF3S software developed at IRSN [3]. The CPU-time used for
the solution of the ODE remains almost negligible (less than 3% of the total time),
so a more sophisticated algorithm would not enhance the scheme efficiency.

We first describe the results obtained with the three coarsest meshes, with a time-
step equal to 0.01. In any case, computations reach a steady state. For the first
component of the velocity along the line x = 0.5 (Fig. 2, left), the steady state values
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Fig. 2 Left: first component of the velocity along the line x = 0.5 -Right: second component of
the velocity along the line y = 0.75
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Fig. 3 Conformation tensor component cxx along the line y = 0.975 (left) and y = 1 (right)

are almost independent from themesh, and in close agreementwith those given in [8].
The convergence for the second component of the velocity along the line y = 0.75
(Fig. 2, right) is a little bit slower: in the eyeball norm, convergence is obtained with
the 256 × 256mesh and the solution slightly differs from [8]. Themost difficult point
of this computation consists in obtaining an accurate estimation of the conformation
tensor near the lid, and we investigate this issue with the Mn meshes. First of all,
we observe that the time-step must be considerably reduced to obtain a stationary
solution: δt = 0.001 for the M1, M2 and M3 meshes, and δt = 0.0005 for the M4
mesh. With a larger times-step, low-frequency instabilities (period in range of 1s)
develop from the top-right corner, and remain confined in an area very close to the
lid and included in the right half of the cavity. We plot in Fig. 3 the computed value
of cxx along the lines y = 0.975 and y = 1. At y = 0.975, convergence seems to be
almost achieved. The picture is completely different at y = 1: first, the profile of cxx
dramatically changes from y = 0.975; second, the maximum value, obtained close
to x = 0.5, increases when refining the mesh (multiplication by a 1.6 factor when
dividing the space step by 2 for M2, M3 and M4).

References

1. Bird, R.B., Wiest, J.M.: Constitutive equations for polymeric liquids p. 25
2. Boyaval, S., Lelièvre, T., Mangoubi, C.: Free-energy-dissipative schemes for the Oldroyd-B

model. Math. Model. Numer. Anal. 43, 523–561 (2009)
3. CALIF3S: A software components library for the computation of fluid flows. https://gforge.irsn.

fr/gf/project/califs
4. Fattal, R., Kupferman, R.: Time-dependent simulation of viscoelastic flows at highWeissenberg

number using the log-conformation representation (2005)
5. Gallouët, T., Herbin, R., Latché, J.C., Mallem, K.: Convergence of the MAC scheme for the

incompressible Navier-Stokes equations. Found. Comput. Math. 18(1), 249–289 (2018)
6. Grapsas, D., Herbin, R., Kheriji, W., Latché, J.C.: An unconditionally stable staggered pressure

correction scheme for the compressible Navier-Stokes equations. SMAI J. Comput. Math. 2,
51–97 (2016)

https://gforge.irsn.fr/gf/project/califs
https://gforge.irsn.fr/gf/project/califs


A Marker-and-Cell Scheme for Viscoelastic Flows on Non Uniform … 653

7. Oishi, C., Martins, F., Tom, M., Cuminato, J., McKee, S.: Numerical solution of the extended
pom-pom model for viscoelastic free surface flows. J. Non-Newton. Fluid Mech. 166(3), 165–
179 (2011)

8. Pan, T.W., Hao, J., Glowinski, R.: On the simulation of a time-dependent cavity flow of an
Oldroyd-B fluid. Int. J. Numer. Methods Fluids 60, 791–808 (2009)



A Numerical Convergence Study of Some
Open Boundary Conditions for Euler
Equations

C. Colas, M. Ferrand, J.-M. Hérard, Olivier Hurisse, E. Le Coupanec,
and Lucie Quibel

Abstract We discuss herein the suitability of some open boundary conditions. Con-
sidering the Euler system of gas dynamics, we compare approximate solutions of
one-dimensional Riemann problems in a bounded sub-domain with the restriction
in this sub-domain of the exact solution in the infinite domain. Assuming that no
information is known from outside of the domain, some basic open boundary con-
dition specifications are given, and a measure of the L1-norm of the error inside
the computational domain enables to show consistency errors in situations involving
outgoing shock waves, depending on the chosen boundary condition formulation.
This investigation has been performed with Finite Volume methods, using approxi-
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mate Riemann solvers in order to compute numerical fluxes for inner interfaces and
boundary interfaces.

Keywords Finite volumes · Approximate Riemann solver · Open boundary
conditions · Euler equations · Compressible flow

MSC (2010) 65M08 · 65N08 · 76N15

1 Introduction

Concerning computational fluid dynamics, industrial simulations are frequently per-
formed with a partial or total unknown fluid state outside of the computational
domain. How are boundary conditions dealt with when no information is known
outside? Here the one-dimensional Euler equations governing inviscid compressible
fluid flows are considered. The unknowns ρ, u, P respectively denote the density,
the velocity and the pressure of the fluid, while the momentum is Q = ρu. The total

energy E is such that E = ρ
(
u2

2 + ε
)
. The internal energy ε(P, ρ) is prescribed by

the EOS (EquationOf State). In the sequel, we denote byW = (ρ, Q, E)t the conser-
vative variable, Y = (s, u, P)t the non-conservative variable, with s the entropy, and
F (W) = (Q, Qu + P, (E + P) u)t the flux function, so that the set of governing
equations reads:

∂tW + ∂x F (W) = 0. (1)

The speed of sound, denoted by c, is such that c2 =
(

P
ρ2 − ∂ε(P,ρ)

∂ρ

)
/
(

∂ε(P,ρ)

∂P

)
.

There exists a huge literature on open boundary problems [6, 10–12]. Among
these, one pioneering work on boundary conditions for bounded domain may be
found in [1]. Actually, the present work addresses the issue of open numerical bound-
ary conditions to getwaves outside of the computational domain and canbe connected
to the work of [7]. The solution of Euler system (1) is sought in R × (0, T ), with
time T ∈ R

∗+, without boundary conditions, see [14]. This solution, expected to be
known and unique, is denoted by W exact

Ω∞ (x, t) for (x, t) ∈ R × (0, T ).

In contrast, the numerical approximations, denoted by WΔx,Δt
Ω (x, t) for (x, t) ∈

Ω × (0, T ), are performed in a bounded computational sub-domain Ω � Ω∞ (see
Fig. 1) with prescribed open inlet/outlet boundary conditions on ∂Ω .

For this purpose, artificial boundaries are introduced on ∂Ω . Then, numerical
boundary conditions, depending on the time and space steps, must be prescribed on
∂Ω . When (Δx,Δt) → (0, 0), we assume that some (unique) converged approxi-
mation, denoted by W 0,0

Ω (x, t) for (x, t) ∈ Ω × (0, T ), is obtained. Eventually, we
wonder whether W 0,0

Ω (x, t) for (x, t) ∈ Ω × (0, T ), coincides with the restriction
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Fig. 1 Bounded
computational domain
Ω � Ω∞, with Ω∞ a spatial
infinite domain

of the exact solution to Ω , W exact
Ω∞ (x, t) for (x, t) ∈ Ω × (0, T ), or not. In the latter

case, the converged approximation W 0,0
Ω will be said to be non-consistent.

For the Euler system (1), a measure of a subsonic state in the last inner cell N
(eigenvalues λ1(Wn

N ) < 0 and λ2,3(Wn
N ) > 0) at a right outlet will require one scalar

external information, whereas in the supersonic case (λ1,2,3(Wn
N ) > 0), the upwind

state will be privileged. Actually, we recall that in the subsonic case, the approach
of [4, 5] may provide some way to cope with the lack of information.

A first drawback of the latter approach is that the sign of eigenvalues may easily
change: signs of eigenvalues λk(Wn

N ) are not necessarily representative of what
happens really at the right boundary when computing true waves associated with
the 1D Riemann problem with the initial condition: W L = Wn

N and W R = Wn
ext

(unless whenWn
ext = Wn

N ). A very instructive example is given in [7] Sect. 3.2, while
restricting on a scalar problem (Burgers equation). A second question is: assuming
that nothing is known about the exterior stateWn

ext , how does the solution, inside the
computational sub-domain, depend on the choice of Wn

ext?
Herein, the aim consists in testing suitable numerical boundary conditions in the

sense that they converge towards the—not necessarily regular—exact solution.

2 Finite Volume Method

Webriefly recall the basis of the explicit finite volume schemeVFRoe-ncv, an approx-
imate Godunov scheme using non conservative variables [8, 9]. For the sake of sim-
plicity, regular meshes of the one-dimensional computational domain are considered
of size Δx = xi+1/2 − xi−1/2, i ∈ {1, ..., N }, and Δtn = tn+1 − tn is the time step,
n ∈ N. The time step is given by someCFL condition in order to gain stability. LetWn

i

be an approximation of the mean value
1

Δx

∫ xi+1/2

xi−1/2

W(x, tn)dx . Time-space integra-

tion of system (1) over
[
xi−1/2, xi+1/2

] × [
tn, tn+1

]
provides the standard following

scheme:
Δx(Wn+1

i − Wn
i ) + Δtn

(
gn
i+ 1

2
− gn

i− 1
2

)
= 0, (2)
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where gni+1/2 is the numerical flux through the interface
{
xi+1/2

} × [
tn, tn+1

]
. For

so-called spatially first-order scheme, gni+1/2 = g(Wn
i ,W

n
i+1). The numerical flux

gni+1/2 is obtained by solving the linearized Riemann problem:

⎧⎪⎨
⎪⎩

∂tY + B(Ỹ)∂xY = 0,

Y(x, tn) =
{
Yn

i if x < xi+ 1
2
,

Yn
i+1 if x > xi+ 1

2
,

(3)

where Ỹ = (Yn
i + Yn

i+1)/2 and B(Y) stands for the following matrix:

B(Y) = (∂YW)−1 ∂W F(W)∂YW .

Once the exact solution Y �
(
x−xi+1/2

t ;Yn
i ,Y

n
i+1

)
of problem (3) is computed, the

numerical flux is defined as:

gn
i+ 1

2
= g(Wn

i ,W
n
i+1) = F(W(Y �(0;Yn

i ,Y
n
i+1)). (4)

This numerical flux will be used for both inner interfaces and boundary interfaces.

3 Numerical Boundary Conditions for Outgoing Waves

We propose numerical artificial boundary conditions when no information is given
on the open boundary of the computational sub-domain. One possible approach is to
determine an artificial state Wn

ext in the virtual cell, symmetric of the boundary cell
Wn

i , outside of the sub-domain. The numerical boundary flux is then obtained by
gn1/2 = g(Wn

ext,1,W
n
1) and gnN+1/2 = g(Wn

N ,Wn
ext,N ). In the following, we assume

that the exterior state is connected to the interior state either by a rarefaction wave
or a shock wave.

3.1 Outgoing Rarefaction Wave

a. Formulation assuming the invariance of the interior state BC0

The first boundary condition, widely used in industrial simulations, simply consists
in taking the interior state Wn

i of the boundary cell at each time step tn

Wn
ext = Wn

N . (5)
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The numerical boundary flux thus reads gnN+1/2 = g(Wn
N ,Wn

N ) = F(Wn
N ). This

technique does not need any knowledge about the wave structure.

b. Formulation using the wave structure and an extrapolation
of the interior state BCr

The second boundary condition is built by using the two associated Riemann invari-
ants of the regular wave and a third additional scalar relation. Note that, for an ideal
gas, the exact velocity profile is linear w.r.t. x at time tn . Thus, for an ideal gas EOS
such that ρε = P/(γ − 1), with γ > 1, we get:

ρn
ext = ρn

N

(
1 − γ − 1

2

unN−1 − unN
cnN

) 2
γ−1

, Pn
ext = Pn

N

(
1 − γ − 1

2

unN−1 − unN
cnN

) 2γ
γ−1

and unext = 2unN − unN−1. The numerical boundary flux is computed by gnN+1/2 =
g(Wn

N ,Wn
ext ). This technique connects the interior state with the exterior virtual

state by using the rarefaction wave structure.

3.2 Outgoing Shock Wave

c. Formulation assuming the invariance of the interior state BC0

Same as for rarefaction wave, see case a. (5).

d. Formulation using the far-field state BCs

The boundary interior cell N is connected with the right initial stateW 0
R by a virtual

exterior cell of physical size αL , with L the domain length and α ∈ R
∗+ a parameter,

see Fig. 1. Inspired by [3], this exterior stateWn
ext is updated with the numerical flux

and the known state W 0
R such that:

αL
(
Wn

ext − Wn−1
ext

) + Δtn−1
(
g(Wn−1

ext ,W 0
R) − g(Wn−1

N ,Wn−1
ext )

) = 0. (6)

This technique gives the following asymptotic update of the exterior state Wn
ext

when α → +∞ for a finite time stepΔtn−1: lim
α→+∞Wn

ext = Wn−1
ext . The exterior state

is steady and therefore equal to its initial state W0
ext , which is the right state W 0

R .
The numerical boundary flux thus yields: gnN+1/2 = g(Wn

N ,W 0
R). This asymptotic

boundary condition amounts to impose, in the virtual exterior cell, the right stateW 0
R

known from the initial condition of the Cauchy problem.
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4 Numerical Results

We discuss below some results of this preliminary study. Other results with distinct
EOS are available in [2]. Two subsonic test cases, corresponding to 1D Riemann
problems with a diatomic ideal gas EOS (γ = 7

5 ), are performed with CFL=0.5.
The first one is a pure left outgoing 1-rarefaction wave with the initial condition:

{
(ρL , uL , PL) = (

1 kg/m3, 0m/s, 105 Pa
)
,

(ρR, uR, PR) = (
0.5 kg/m3, 242.2m/s, 3.789 × 104 Pa

)
.

The second one is a pure right outgoing 3-shock wave with the initial condition:

{
(ρL , uL , PL) = (

1 kg/m3, 418.3m/s, 2.75 × 105 Pa
)
,

(ρR, uR, PR) = (
0.5 kg/m3, 0m/s, 105 Pa

)
.

The numerical convergence of the scheme, when waves are gone out of the bounded
computational domain Ω = (−200m, 200m), is measured with the L1-norm of the
error.

For smooth waves, the boundary conditions BC0 and BCr enable to guarantee
consistency when waves are going out (t0 < t < t1) or are gone out (t > t1) of Ω .
The numerical errors and the rates of convergence are collected in Table1 and Fig. 2
for an outgoing rarefactionwave, and in Table2 and Fig. 3when thewhole rarefaction
wave has left the computational domain. As expected for an ideal gas EOS [8], the
numerical rates of convergence for variables (u, P) are approximately 0.85—close
to 1—when t < t1 (see Table1), and thus similar to those arising for t < t0, see
[8, 9]. Table2 shows greater orders of convergence which may be due to the fact that
the exact solution becomes fully constant for t > t1. The BCr condition gives very
similar errors and does not provide more accurate approximations.

In contrast, the BC0 condition does not ensure the consistency of the scheme
for an outgoing shock wave (at t > t0, shock is outside of Ω), see Fig. 4: clearly,
approximate solutions converge towards another solution when (Δx,Δt) → (0, 0).

Table 1 BC0: L1 convergence orders for the rarefaction wave at t0 < t < t1
Δx (m) N ρ L1-error ρ cnv.

order
u L1-error u cnv.

order
P
L1-error

P cnv.
order

5e−1 800 5.172e−3 8.868e−3 2.371e−3

2.5e−1 1600 2.925e−3 0.8221 5.009e−3 0.8241 1.335e−3 0.8243

1.25e−1 3200 1.631e−3 0.8426 2.798e−3 0.8403 7.478e−4 0.8402

6.25e−2 6400 8.984e−4 0.8605 1.550e−3 0.8518 4.194e−4 0.8516

3.125e−2 12800 4.891e−4 0.8774 8.548e−4 0.8587 2.379e−4 0.8582

1.5625e−2 25600 2.691e−4 0.8621 4.714e−4 0.8588 1.386e−4 0.8579

7.8125e−3 51200 1.489e−4 0.8533 2.617e−4 0.8491 8.461e−5 0.8474
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Fig. 2 BC0: L1 convergence curves for the rarefaction wave at t0 < t < t1

Table 2 BC0: L1 convergence orders for the rarefaction wave at t > t1
Δx (m) N ρ L1-error ρ cnv.

order
u L1-error u cnv.

order
P
L1-error

P cnv.
order

5e−1 800 1.279e−3 2.462e−4 2.562e−4

2.5e−1 1600 6.755e−4 0.9211 1.284e−4 0.9384 1.337e−4 0.9383

1.25e−1 3200 3.522e−4 0.9395 6.557e−5 0.9700 6.826e−5 0.9700

6.25e−2 6400 1.823e−4 0.9502 3.265e−5 1.0061 3.399e−5 1.0061

3.125e−2 12800 9.423e−5 0.9521 1.565e−5 1.0608 1.629e−5 1.0609

1.5625e−2 25600 4.904e−5 0.9420 6.962e−6 1.1687 7.247e−6 1.1687

7.8125e−3 51200 2.604e−5 0.9134 2.551e−6 1.4486 2.655e−6 1.4486

103 104 105
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Fig. 3 BC0: L1 convergence curves for the rarefaction wave at t > t1
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Fig. 4 BC0: L1 convergence curves for the shock wave at t > t0

Fig. 5 BCs: L1 convergence curves for the shock tube at t > t0

The BCs boundary condition, for a finite value of the parameter α > 0, is still not
consistent, see Fig. 5. At the limit α → +∞, the asymptotic condition BCs allows
to retrieve the consistency of the approximate solution with the exact solution.

Further works aim at considering another boundary condition for outgoing shock
waves based on an imposed scalar value outside and the Rankine-Hugoniot relations.
The issue of the supersonic shock wave case and of the dependence on the scheme
[13] are being examined. To our knowledge, this measured loss of consistency has
not been pointed out before.
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Simulation of a Liquid-Vapour
Compressible Flow by a Lattice
Boltzmann Method

Philippe Helluy, Olivier Hurisse, and Lucie Quibel

Abstract This work is devoted to the numerical resolution of a compressible three-
phase flow with phase transition by a Lattice-Boltzmann Method (LBM). The flow
presents complex features and large variations of physical quantities. The LBM is a
robust numerical method that is entropy stable and that can be extended to second
order accuracy without additional numerical cost. We present preliminary numerical
results, which confirm its competitiveness compared to other Finite Volumemethods.

Keywords Lattice Boltzmann method · Compressible flow · Phase transition
MSC (2010) 35Q79 · 76M12 · 76M28

1 Introduction

In this work, we are interested in the numerical resolution of a hyperbolic system
arising in thermohydraulics. The objective is to compute a three-phase flow made
of liquid water, vapour and an inert gas (such as air, for instance). Because of the
envisaged range of pressure and temperature, there can be phase transition between
the liquid and its vapour.

The Equation Of State (EOS) is complex and presents large variations of the
thermodynamical parameters. It can be obtained from physical experiments and tab-
ulations. It generally leads to very costly numerical methods, where most of the time
is spent in the evaluation of the EOS. In addition, if because of the approximation
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the EOS does not satisfy some convexity properties, the resulting system of con-
servation laws may not be hyperbolic and thus unstable. Here we use a simplified
pressure law obtained from an entropy optimization procedure. The pressure lawwas
first described in [1]. By construction, it ensures a convex hyperbolic domain and
thus stability of some classical Finite Volume (FV) schemes such as Godunov-type
schemes [7] or the Bouchut kinetic scheme [2].

The standard FVmethod is only first order. Its accuracy can be improved by slope
reconstruction/limitation techniques. But this induces a cost and a more difficult
parallelization because the computation stencil is enlarged.

In this work, we replace the FV scheme by a Lattice Boltzmann Method (LBM).
The LBM is based on an abstract kinetic representation of the hyperbolic system.
Then the scheme is a succession of free transport steps solved by an exact charac-
teristic shift and relaxation operations that are local to the cell. This makes the LBM
very efficient and easy to parallelize. In addition, by simply changing the relaxation
parameter, it is possible to adjust the numerical viscosity of the LBM and to achieve
second order with no additional cost.

We apply the whole approach for computing a vapour explosion test case.

2 Kinetic Approximation of Conservation Laws

2.1 Vectorial Kinetic Approximation with Over-Relaxation

In this work, we are interested in the numerical resolution of a hyperbolic system
arising in thermohydraulics. The vector of unknown is denoted u(x, t) ∈ R

m . The
system has the general form

∂tu + ∂x f(u) = 0. (1)

The flux f is a smooth function R
m �→ R

m satisfying the hyperbolicity property:
its jacobian matrix f ′(u) is diagonalizable with real eigenvalues for all u in the
hyperbolicity domain C , which is assumed to be convex. The relaxation approach,
introduced by Jin and Xin [9], consists in replacing (1) by an extended system of the
form

∂tu + ∂xz = 0, (2)

∂tz + λ2∂xu = μ. (3)

The speed λ is a positive constant. The new vector z is called the approximated flux.
The source term μ is designed in such a way that z � f(u). We introduce a time step
Δt > 0 and the Dirac comb:

Ψ (t) =
∑

i∈Z
δ(t − iΔt).
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The source term μ is then defined by

μ(x, t) = ΩΨ (t)
(
f(u(x, t)) − z(x, t−)

)
, I ≤ Ω ≤ 2I.

In the more general case, Ω is a matrix called the relaxation matrix. Inequalities on
matrices have to be understood, as usual, in the sense of the associated quadratic
forms. From the distribution theory, we see that at time t = iΔt , z is discontinuous:
z(x, t+) �= z(x, t−), and

z(x, t+) = Ωf(u(x, t)) + (I − Ω)z(x, t−).

If the relaxationmatrixΩ = I, we recover in this way the classical first order splitting
Jin-Xin algorithm, where z = f(u) at the end of each time step. The over-relaxation
corresponds to Ω = 2I. It can be proved that the resulting scheme is a second order
O(Δt2) approximation of (1). See [3, 5], for instance, and included references.

We can diagonalize the linear hyperbolic operator arising from the left-hand side
of (2)–(3). In thisway,weobtain a kinetic interpretation of the Jin-Xin approximation.
For this, we consider the change of variables

k+ = u
2

+ z
2λ

, k− = u
2

− z
2λ

.

u = k+ + k−, z = λk+ − λk−.

Then we get
∂tk+ + λ∂xk+ = r+, ∂tk− − λ∂xk− = r−, (4)

where
r±(x, t) = ΩΨ (t)

(
keq,±(u(x, t−)) − k±(x, t−)

)
,

and the “Maxwellian” states keq,± are given by

keq,±(u) = u
2

± f(u)

2λ
.

In other words, from these calculations, we see that most of the time, the kinetic
variables k+ and k− satisfy free transport equations at velocity ±λ, with relaxation
to equilibrium at each time step.

2.2 Equivalent Equation

The equivalent equation allows to better understand the effect of the relaxationmatrix
Ω . Let us introduce the “flux error” y := z − f(u). The following result holds:
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Theorem 1 If the relaxation matrix satisfies I < Ω < 2I and if y = 0 at the initial
time, then, up to second order terms in O(Δt2), u is a solution of the following system
of conservation laws

∂tu + ∂x f(u) = Δt∂x

(
(Ω−1 − 1

2
I)(λ2I − f ′(u)2)∂xu

)
+ O(Δt2).

Remark 1 The proof is based on standard Taylor expansions. For a rigorous for-
mulation and proof, we refer to [4]. The approach is classical in the analysis of the
Lattice Boltzmann Method (LBM). See also for instance [5, 6, 10].

Remark 2 The above analysis allows to recover formally the so-called
sub-characteristic condition. Assuming that I < Ω < 2I, the second order (“vis-
cous”) terms have the good sign, which ensures stability of themodel, if the following
matrix is positive:

V(u) = λ2I − f ′(u)2 > 0. (5)

3 Numerical Methods

Our objective is to design a specific Lattice Boltzmann Method (LBM) for approxi-
mating three-phase flow. For comparison, we need a classical finite volume method,
which we describe now.

3.1 Finite Volume Method

The finite volume scheme (FV scheme in the sequel) is constructed for approximating
the solutions of (1). We denote by Δx the space step and by Δt the time step. We
assume that the space step and the time step are related by a Courant–Friedrichs–
Lewy (CFL) relation Δt = β Δx

λ
, where β > 0 is the CFL number. We use the same

velocity λ in the FV and LBM methods for defining the CFL number. Because of
the sub-characteristic condition (5), λ is larger than the wave speeds of (1). We thus
expect that the FV scheme will be stable at least for β < 1.

We look for an approximation

un
i � 1

Δx

∫ xi+1/2

xi−1/2

u(x, tn)dx � u(xi , tn), xi = iΔx, tn = nΔt.

We consider the FV scheme

un+1
i − un

i

Δt
+ f(un

i ,u
n
i+1) − f(un

i−1,u
n
i )

Δx
= 0.
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The numerical flux f(·, ·) is the Rusanov flux given by

f(u, v) = f(u) + f(v)
2

− max(ρ(f ′(u)), ρ(f ′(v)))
2

(v − u),

where ρ(M) is the spectral radius of matrixM.

3.2 Lattice Boltzmann Method (LBM)

In the LBM scheme, we assume that the CFL number β = 1. This allows to solve
the free transport steps exactly. More precisely, if we also denote by un

i , z
n
i , k

±,n
i the

approximation of u, z and k± at points xi and time tn, the transport step is given by
simple shift operations, which solve the free transport equations (4) exactly

k−,n+1−
i = k−,n

i+1, k+,n+1−
i = k+,n

i−1.

Then, one takes

un+1
i = k−,n+1−

i + k+,n+1−
i , zn+1−

i = −λk−,n+1−
i + λk+,n+1−

i .

The relaxation step is then

zn+1
i = zn+1−

i + Ω(un+1
i )

(
f(un+1

i ) − zn+1−
i

)
.

4 Application to a Three-Phase Flows

We wish to apply the above theory to a compressible three-phase flow model (two
gases and a liquid). Because of strong variations in pressure and temperature, the
liquid will undergo phase transition, which requires a proper mathematical model.
The unknowns are the density ρ, the velocity u, the pressure p, the internal energy
e and the mass fraction of the inert gas ϕ = ϕ3. The total energy E is the sum of the
internal energy and the kinetic energy: E = ρe + 1

2ρu
2. The pressure Equation Of

State (EOS) is of the form p = p(ρ, e, ϕ). The three-phase flow model is a system
of conservation laws of the form (1) with

u = (ρ, ρu, ρE, ρϕ)ᵀ, f(u) = (ρu, ρu2 + p, (ρE + p)u, ρuϕ)ᵀ.

Now we sketch the practical construction of the three-phase pressure law. This
construction has to be done with care in order to ensure that the hyperbolicity domain
C is convex. The general principles are mainly given in [1, 8]. We consider a mixture
of three phases (1), (2) and (3) representing the vapour, the liquid and the non-
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Table 1 Left: physical parameters for the three phases. Right:initial data for the vapor explosion
test case

param. vapour (1) liquid (2) gas (3)

γi 1.3 3 1.4

πi (Pa) 0 8533 × 105 0

Ci (J.kg
−1.K−1) 1615.38 1400 719.28

Qi (J.kg
−1) 1.892 × 106 −1.1148 × 106 0

s0i 583.46 16658.99 263.62

liquid (L) air (R)

ρ 554.09 1.186245

e 1161999.729 210749.040

ϕ 10−6 1 − 10−6

condensable gas (air), respectively. The liquid is not miscible with the two others,
while the vapour and the gas are miscible. We only admit phase transition between
vapour (1) and liquid (2). Each phase obeys a stiffened gas Equation Of State (EOS),
where the entropy function is defined by

si (τi , ei ) = Ci ln((ei − Qi − πiτi )τ
γi−1
i ) + s0i i = 1, 2, 3. (6)

In this formula,Ci is the specific heat at constant volume, Qi is the heat of formation,
πi is the reference pressure and s0i the reference entropy. The specific energy is
noted ei and the specific volume τi is the inverse of the density 1/ρi . Some possible
parameters are given in Table1.

The mass fractions of the phases are noted ϕi , the volume fractions, αi and the
energy fractions, ζi . The phase specific volumes τi and energies ei are related to the
mixture specific volume τ and energy e by

τi = αi

ϕi
τ, ei = ζi

ϕi
e.

The mass fraction ϕ3 of the inert gas is supposed to be fixed and given. We thus
introduce the vector of the unknown fractions Y = (ϕ1, ϕ2, α1, α2, α3, ζ1, ζ2, ζ3).

The unknown fractions satisfy the following constraints

Y ∈ Q := [0, 1]8 ∩ {α1 = α3, α1 + α2 = 1, ϕ1 + ϕ2 + ϕ3 = 1, ζ1 + ζ2 + ζ3 = 1}.

These constraints are justified by the fact that the two gases are perfectly miscible
(Dalton’s law) and that the liquid and the gases are non-miscible. Themixture entropy
is then given by a convex optimization problem:

s(τ, e, ϕ3) = max
Y∈Q

3∑

i=1

ϕi si (
αi

ϕi
τ,

ζi

ϕi
e).

Once the optimization problem is solved, the temperature T and the pressure p of
the mixture are then given by
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T = 1/
∂s

∂e
p = T

∂s

∂τ
.

We have no place to detail the computations. We refer to [1]. The major advantage
of the above construction is that it ensures that the hyperbolicity domain is convex.

5 Vapour Explosion Test

We consider a test case relevant for thermohydraulics. This is quite a realistic mod-
elling of a sudden depressurization of a heated liquid in a pipe. The left (L) part of
the pipe is filled with pressurized heated water. The right (R) part of the pipe is filled
with air at ambient temperature and pressure. The numerical parameters are summed
up in Table1.

At time t = 0, the liquid-air separation is removed. We plot several physical
quantities at time t = 1.2ms. We observe a complex wave structure. From left to
right: a rarefaction wave running into the liquid, a slower vaporization wave running
into the liquid, a contact wave, and finally a shock wave running into the air. Let us
remark the presence of a non-standard split wave made of two simple waves. This
is a typical feature of Riemann problems with non-convex equations of state arising
from phase transition problematics.

On Fig. 1, we compare the numerical solutions obtained by the FV and the LBM
schemes. The LBM is tested with an over-relaxation parameter Ω = I (first order)
and Ω = 1.9I (improved precision). The second order LBM scheme with Ω = 2I
is unstable here, which is not surprising because there is a shock wave to capture.
The results of the LBM scheme with Ω = I are not plotted because they are almost
superimposed with the results of the first order FV scheme. We observe a better
precision of the improved LBM scheme with Ω = 1.9I: the simple waves are better
resolved. We observe small oscillations in the discontinuities. It is not surprising
because Ω = 1.9I corresponds almost to a second order scheme without limiters.
We are currently working on a better strategy for adapting locally the value of Ω for
suppressing oscillations.

6 Conclusion

We have constructed a numerical scheme based on the LBM. This scheme is faster
and more precise than a classical FV method. It has been successfully validated
on a complex three-phase flow with phase transition. It is possible to adjust its
precision and stability thanks to the over-relaxation parameter Ω , with no additional
computational cost. In future works we will study strategies for completely avoiding
numerical oscillations in shock waves. This can certainly be achieved because the
LBM scheme with Ω = I is free of oscillations and entropy-dissipative.
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Fig. 1 Numerical solution of the Riemann problem described in Table1. Top left: density, top right:
pressure, bottom left: temperature, bottom right: vapour mass fraction. Comparison between the
Finite Volume and Lattice Boltzmann Method with Ω = 1.9I on a mesh with 2000 cells
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Abstract In this contribution we present a local discontinuous Galerkin (LDG)
pressure-correction scheme for the incompressible Navier–Stokes equations. The
scheme does not need penalty parameters and satisfies the discrete continuity equa-
tion exactly. The scheme is especially suitable for two-phase flow when used with
a piecewise-linear interface construction (PLIC) volume-of-fluid (VoF) method and
cut-cell quadratures.
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1 Introduction

Sharp interfacemodels for incompressible two-phase flows have gained in popularity
in recent years. These models combine incompressible flows in the bulk domains
with jump conditions along the interfaces that separate the fluids, which model fluid
interactions and surface effects, like surface tension.

Discontinuous Galerkin methods are a popular choice for solving incompressible
flow problems due to their local mass conservation property and potentially high
order of convergence.
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Designing schemes for solving such two-phase flows presents several challenges.
The choice of method for the phase transport has implications for the interface rep-
resentation and conservation properties. Volume-of-fluid [11] methods are conserva-
tive but their interface representations is in general non-continuous, while level-set
methods have continuous interface representations, but are not conservative by them-
selves. There are several further methods that combine features from or generalize
volume-of-fluid and level-set methods, but these are comparatively more complex.
Incompressible flow problems have a saddle-point structure, which can make them
computationally difficult/expensive to solve. Splitting methods like the various pro-
jectionmethodswhere introduced to decouple the problems into simpler ones. Projec-
tions methods replace the saddle-point problem with a advection-diffusion equation
for the velocity and Poisson problem for the pressure, which are computationally
simpler to solve. But for most discontinuous Galerkin discretizations the discrete
continuity equation is not satisfied without some postprocessing techniques like the
H(div) reconstruction presented in [9]. Stability in regards to high coefficient ratios
and strong surface effects are further issues that need to be addressed.

We present a discontinuous Galerkin pressure-correction method for incompress-
ible two-phase flow that is robust in regards to coefficient ratios. The scheme is sim-
ple to implement and has shown good results for benchmarks problems and some
numerical experiments with realistic data.

This contribution is structured as follows: We first briefly present the model for
incompressible two-phase flow without phase transitions. Next we give some nota-
tion, present the modified LDG method without penalization introduced in [8] and
present the newLDGpressure-correction scheme for incompressible two-phaseflows
based on it. Then we present numerical experiments for benchmark problems from
the literature [7]. Lastly we give some concluding remarks and an outlook on further
work.

2 Model

The model we consider is a simplification of the sharp interface model presented in
[10] without phase transitions. Let � ⊂ R

n , n = 2, 3 be a bounded domain, which
is divided into two disjunct phases: at time t , phase i = 1, 2 occupies subdomain
�i (t) ⊂ �. The boundary between the phase is the (phase) interface �(t) := ∂�1 ∩
∂�2.

Let u denote the velocity field, p the pressure field, ν the outer normal on�1, κ the
mean curvature of �(t) and �q� := q2 − q1 the jump of the variable q across �(t). In
addition the constants �1, �2 > 0 denote the densities, μ1, μ2 > 0 the viscosities of
the phases, g the gravitational acceleration and σ the coefficient of surface tension.
In the following we drop the indices on density and viscosity and keep in mind that
these coefficients depend on the phase.

Then the model is given by the incompressible Navier–Stokes equations in each
phase,
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∂t (�u) + ∇ ·(�u ⊗ u + T) = �g

∇ ·u = 0

}
in �1,�2 , (1)

with the stress tensor T = pI − 2µDu, Du = S(∇u) := (∇u + ∇u�)/2,
augmented with the following jump conditions

�T�ν = −σκν

�u� = 0

}
on �. (2)

Additionally we impose either no-slip or free-slip conditions on the boundary of �.

3 Discretization

To discretize the model above we employ a primal LDG method [2]. It can be for-
mulated in terms of a discrete gradient operator that is composed of the elementwise
gradient and a lifting of the jumps into the piecewise discrete space. By constructing
the liftings one order higher than the used discrete space the method is rendered
stable without penalty parameters [8]. From these building blocks we construct an
incremental pressure-projection scheme that satisfies the discrete continuity equa-
tion.

Since we require strict mass-conservation we choose to use a PLIC-VoF method
[5, 11]. These methods have the disadvantage that the reconstructed interface is in
general not continuous and its curvature needs further approximations [3], but is
mass conservaftive.

We chose this LDG method because with the discrete gradients and no penalty
terms no (explicit) evaluations of integrals over element boundaries are needed. In
our experience the non-continuous discrete interface reconstructions on the inter-
element boundaries lead to issues around the interface.

3.1 Notation and Liftings

To derive the discretization we first introduce some notation. Let Th be a triangu-
lation of � into elements E . By 	 I

h we denote the set of all interior intersections
e of elements E−, E+ ∈ Th with e = E− ∩ E+ �= ∅, by 	D

h the set of all intersec-
tions with Dirichlet boundary values, by 	N

h the set of intersections with Neumann
boundary values and by 	h = 	 I

h ∪ 	D
h ∪ 	N

h the set of all intersections.
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For e ∈ 	 I
h , with e = E− ∩ E+, we introduce the jump and the average

�u� = u|E− − u|E+ , (3a)

⟪u⟫ = 1
2

(
u|E− + u|E+

)
(3b)

We define the discrete spaces of piecewise polynomials of degree ≤ k

Vd
k = {

v ∈ [L2(�)]d | v|E ∈ [Pk(E)]d , E ∈ Th
}

(4)

andVk = V1
k in the scalar case. The piecewise L

2 inner product over Th is given by

〈
v,w

〉 =
∑
E∈Th

〈
v,w

〉
E =

∑
E∈Th

∫
E
v · w (5)

The gradient lifting operators R : Vk �→ Vd
k+1 and Ra : Vk �→ Vd

k+1 are defined
by 〈

R(�v�),w
〉 =

∑
e∈	 I

h

∫
e
�v�⟪w⟫ · ne , (6a)

〈
Ra(�v�),w

〉 = 〈
R(�v�),w

〉 + ∑
e∈	D

h

∫
e
(v − a)w · ne , (6b)

for all w ∈ Vd
k+1. Similarly, the divergence lifting operators M : Vd

k+1 �→ Vk , Mb :
Vd

k+1 �→ Vk are defined by

〈
M(�v�), w

〉 =
∑
e∈	 I

h

∫
e
�v� · ne ⟪w⟫ , (7a)

〈
Mb(�v�), w

〉 = 〈
M(�v�), w

〉 + ∑
e∈	D

h

∫
e
(v − b) · ne w , (7b)

for all w ∈ Vk . Here a,b are the respective Dirichlet boundary conditions.
With the liftings we can now define the lifted DG gradient and divergence

∇v = ∇hv − R(�v�), ∇gv = ∇hv − Rg(�v�), v ∈ Vk, (8a)

∇·v = ∇h ·v − M(�v�), ∇g ·v = ∇h ·v − Mg(�v�), v ∈ Vd
k . (8b)

The lifted derivatives with homogeneous Dirichlet boundary (a = 0,b = 0) satisfy
the following discrete integration-by-parts identities, as shown in [6]:
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〈∇0 ·v, w
〉 = −〈

v,∇w
〉

(9a)〈∇·v, w〉 = −〈
v,∇0w

〉
(9b)

for all v ∈ Vd
k+1,w ∈ Vk . This means the lifted derivatives are adjoint to each other.

These identies are useful for defining of projection methods with respect to the lifted
derivatives.

3.2 Unpenalized LDG Scheme

As a simple example we now consider the discretization of the Poisson equation
−
u = f with homogeneous Dirichlet boundary data. The modified LDG method
[8] reads: Find u ∈ Vk such that〈∇0u,∇0v

〉 = 〈
f, v

〉 ∀v ∈ Vk . (10)

This scheme with order k + 1 liftings is stable without adding penalty terms and can
also be written in a “strong”-form by using the integration-by-parts identity (9b)

− 〈

0u, v

〉 := −〈∇·∇0u, v
〉 = 〈

f, v
〉 ∀v ∈ Vk . (11)

3.3 Two-Phase LDG Scheme

We now present our primal LDG pressure-correction scheme for two-phase flow.
The scheme first split into an explicit (linearized) advection step for the momen-

tum/velocity and the phase transport and an implicit Stokes step. Because themomen-
tum and the phase interface are transported at the same rate, we can formulate the
explicit step in the velocity, which alsomeans this part of the scheme does not depend
on the phase interface. The Stokes step is then further split into an implicitmomentum
step, a pressure Poisson step and an update step.

To sharply resolve the phases the terms containing a phase dependent coefficient
are integrated using cut-cell quadratures. The cut-cell quadratures are constructed by
cutting the elements containing an interface reconstruction with its interface recon-
struction, subtriangulating the part of each phase and using standard simplex quadra-
tures in the subtriangulations. Surface tension effect are included by integration of
the jump condition over segments of the interface reconstruction. Using the lifted
derivatives we eliminate (explicit) evaluations of integrals containing phase depen-
dent coefficients along element boundaries, which in our experience can cause insta-
bilities.

To simplify the presentation we restrict ourself to first order time stepping (IMEX
Euler) and assume the phase transport/interface reconstruction is given: Let �n+1

h
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denote the set of all interface reconstruction at time tn+1 and κn+1 the approximated
interface mean curvature at time tn+1.

The complete scheme for the velocity and pressure at time tn+1 then reads as:
Find un+1 ∈ Vd

k+1, p
n+1 ∈ Vk such that

1


t

〈
û∗ − un, v

〉 − 〈
un ⊗ wn,∇v

〉 +∑
e∈	h

∫
e
Fe(un;wn) · v = 〈

g, v
〉
, (12a)

1


t

〈
�(u∗ − û∗

), v
〉 − 〈

2µ S(∇0u∗),∇0v
〉 = −〈∇ pn, v

〉 + ∑
γ∈�n+1

h

∫
γ

σκn+1v·nγ ,

(12b)〈 1
�

∇ p∗,∇q
〉 = 1


t

〈∇0 ·u∗, q
〉
, (12c)

un+1 = u∗ + 
t

�
∇ p∗ , pn+1 = pn + p∗ , (12d)

for all v ∈ Vd
k+1, q ∈ Vk . Here Fe is a suitable numerical flux (e.g. local Lax-

Friedrichs flux), wn = un is the transport velocity and all terms in Eqs. (12b), (12c)
containing �, µ are integrated with cut-cell quadratures with respect to �n+1

h .
We note that here the lifted gradient/divergence maps into the dg space with

increased/decreased polynomial order of its argument function space (e.g. ∇0u ∈
Vd×d

k+2 , ∇0 ·u ∈ Vk,).
The resulting discrete velocity field is exactly divergence-free with respect to the

discrete lifted divergence operator for arbitrary density ratios (up to the accurracy of
the solver used). Applying the discrete DG divergence to the velocity field update
and using Eq. (9a) recovers Eq. (12c).

4 Numerical Experiments

The scheme has been implemented in DUNE-FEM [4], which is part of the DUNE
(Distributed and Unified Numerics Environment) framework [1]. The discretization
used here are orthonormalP2 (resp.P1) dg elements for the velocity (resp. pressure)
on a cartesian grid for space and a BDF2 scheme for time stepping. The implicit
substeps are solved with a GMRES preconditioned with either an incomplete LU -
or LDLT-decomposition. The phase transport is solved using a VoF method with a
geometric flux, also implemented in DUNE.

We consider the benchmark problems presented in [7]. The general setup is the
following: The computational domain is given by � = [0, 1] × [0, 2] ⊂ R

2, �2 is a
circular subdomainwith diameter d = 0.5 centered at (0.5, 0.5)� and�1 := � \ �2.
The no-slip boundary condition is prescribed at the top and bottom boundaries, the
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Table 1 Physical parameters and dimensionless numbers defining the test cases. Re = �1Ugd/µ1,
Eo = �1U2

g d/σ , Ug = √
gd

Case �1 �2 µ1 µ2 g σ Re Eo �1/�2 µ1/µ2

1 1000 100 10 1 0.98 24.5 35 10 10 10

2 1000 1 10 0.1 0.98 1.96 35 125 1000 100

Fig. 1 Bubble shape of test case 1 (left) and test case 2 (right) at the final time t = 3 on a cartesian
mesh with 80 by 160 cells

free-slip condition is prescribed on the vertical boundaries and the system is initially
at reset.

The fluid coefficients for the test problems are given in Table 1. Test case 1 results
in a ellipsoidal bubble, while in test case 2 the bubble gets deformed significantly
and eventually break ups occur. Our results are in good agreement for the shape
(see Fig. 1), the rise velocity and the center of mass of the bubble with the results
presented in [7]. The ‘circularity’ can not be compared directly since our interface
representation makes measuring the perimeter of the bubble difficult, nonetheless it
is in general agreement.

Figure2 shows an experiment of the effect of droplet merging on a super-
hydrophobic surface in a water-steam system in free-fall. The initial configuaration
consist of two equal-sized droplets, two unequal-sized droplets and a single droplet
as reference. When droplets of similar size merge the force of surface tension is
strong enough that the droplet “jumps”.

5 Conclusions and Outlook

In this contribution we presented a primal local discontinuous Galerkin pressure cor-
rection scheme suitable for two-phase flows with high density and viscosity ratios.
The interface is sharply resolved by using cut-cell quadratures. Numerical experi-
ments show that the scheme agrees with other results presented in the literature.
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Fig. 2 Pressure profile of water droplets in a steam atmosphere on super-hydrophobic surface
(contact angle α = 165◦) in free fall on a cartesian mesh with 300 by 100 cells, h = 10−4m

Further work includes extending the model and the scheme to include the effects
of phase transition and investigating if other, more compact, DG methods can recast
in the same form as the presented LDG method.
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High-Order Numerical Methods
for Compressible Two-Phase Flows

Ksenia Kozhanova, Eric Goncalves, and Yannick Hoarau

Abstract We study the numerical methods to solve stiff two-phase flow problem
which involves strong shock and expansion waves. In particular we focus the present
study on high order reconstruction techniques coupled with HLLC and KNP numer-
ical flux formulations associated to a four-equation model. These numerical methods
are first tested on 1-D expansion tube case to investigate the accuracy of the schemes.
The originality of our project is to construct a high-order numerical tool for solving
the 2-D problem of two-phase shock-interface interaction with high density ratio
between the phases. This paper presents the intermediate results with tests of low
density ratio.

Keywords Two-phase flows · Hyperbolic system · Shock-interface interaction ·
High-order numerical schemes

MSC (2010) 65M99 · 76M12 · 76T99

1 Introduction

The importance of two-phase fluid flow modelling arises from many practical appli-
cations, from hydraulic turbines to power generation plants. However, the hyperbolic
nature of the system describing such a flow make it extremely complicated task for
numerical methods, especially for the cases with high density ratio and strong shock
waves. There is a variety of methods to solve these problems, e.g. the sharp interface
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or the diffuse interface methods. In the latter, the material interface can be captured
by introducing a non-conservative transport equation for the void fraction. Yet, these
methods can lead to spurious oscillations of the solution near the interface [14]. In
this paper we consider a four-equation model [6, 7] and aim to establish the effect
of numerical scheme on the basis of inviscid applications. The solver is based on
an explicit finite volume method with different numerical schemes. Previous work
have shown that simple MUSCL-based schemes do not perform well in the liquid-
gas problems with strong shocks and expansion waves [6]. Thus, our focus is on
high-order spatial resolution techniques coupled with HLLC and KNP flux approxi-
mations other than classicalMUSCLmethods. Only intermediate result of air-helium
bubble interaction is presented here.

2 Mathematical Model

This section discusses the mathematical representation of the homogeneous com-
pressible approach based on a 4-equation system. This system consists of three
conservation laws for the mixture quantities and a fourth equation for the void-ratio
α. Using conservative variables representation, i.e. w = (ρ, ρ

−→
V , ρE, α), in 2D it

can be written as
∂ρ

∂t
+ div(ρ

−→
V ) = 0

∂(ρ
−→
V )

∂t
+ div(ρ

−→
V ⊗ −→

V + P Id) = 0

∂(ρE)

∂t
+ div(ρ

−→
V H) = 0

∂α

∂t
+ −→

V .grad(α) = Kdiv(
−→
V )

(1)

where
−→
V = (u, v) denotes the centre of mass velocity, E = e + V 2/2 is the total

energy of mixture and H = h + V 2/2 is the enthalpy of this mixture. The reflection
of the change in each phase volume and speed of sound c of pure phases l, v are
included into the term K ,

K = ρl c2l − ρvc2v
ρl c2l
1−α

+ ρvc2v
α

where ρ is the density of corresponding pure phase. We use the equations of state
(EOS) for stiffened gas to close the system and relate the pressure and temperature
to the internal energy and density. This system (1) is of hyperbolic nature and the
mixture speed of sound follows the Wallis formulation [8].
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3 Numerical Discretization

The matrix form of 4-equation model (1) in 1D is,

∂w

∂t
+ ∂(F(w))

∂x
= S(w) (2)

where F is the convective flux, S(w) is the source term and w is the vector of
conserved variables and the void ratio. Using the finite volumemethod, we discretize
the computational domain into regular meshes, i.e. Δx for space and Δt for time.
Thus, Eq. (2) can be reformulated into its general discreet form,

Δx
wn+1

j − wn
j

Δt
+ Fn

j+1/2 − Fn
j−1/2 = Snj Δx (3)

where j and n stand for discretization in space and time, respectively.
We are looking to approximate the numerical flux Fn

j+1/2 and Fn
j−1/2 through

the cell interface by using the solution to the Riemann problem or any other fully
numerically resolved technique. The difficulty arises due to the non-conservative
form of Eq. (1) and the existence of the source term. Two formulations of numerical
flux are proposed in the present paper: a modification of classical HLLC numerical
flux formulation with special treatment of the source term, see Eqs. 3.15–3.16 in [6],
and KNP scheme [13].

The second-order accuracy in space and time is achieved by using MUSCL Han-
cock (MH) [9] predictor-corrector scheme. The predictor step for the cell values
W j is performed by using half the full time step. Thus, the new cell values W̃ j are
computed as following,

W̃ j = W j − Δt

2Δx
AW δW j − Δt

2
S, (4)

where W is a vector of reconstruction variables, AW is a coefficient matrix, which
depends on the choice of variables set, S is a source term and δW j is a slope limiter.
Importantly, the conservative or characteristic sets of reconstruction variables require
the analytical derivation of Jacobian matrices in place of A. The predictor step (4) is
followed by the classical computation of time-centered interface values, which are
then used to derive interface fluxes (see Eqs. 14–16 in [9]). Finally, the solution is
advanced over the full time-step.

Our strategy is to improve the spatial order by finding suitable high order recon-
struction method, i.e. by changing the calculation of the slope limiter δW j . The
first candidate is piecewise parabolic method (PPM) [10], which is based on piece-
wise parabolic interpolation and has 4th order of accuracy for smooth solutions. The
interface value wj+ 1

2
is computed as,

wj+ 1
2

= 7

12
(wj + wj+1) − 1

12
(wj+2 + wj−1), (5)
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This value is then applied to wL , j and wR, j−1 for almost all j (where underscripts
L and R are standing for the left and right interface neighbours, respectively, for the
cell value wj ). Two particular cases may occur in the areas where the interpolation
function takes on the values outside the interval betweenwL , j andwR, j . The first one
arises when wj is a local minimum or maximum, where the interpolation function
will be set constant. The second case is when wj is inside the required interval, but
close enough to the left or right variable. This situation is treated by monotonicity
preserving technique, which is based on resetting one or both values of wL and wR .
The resetting strategy is applied according to,

wL , j ← wj ,wR, j ← wj if (wR, j − wj )(wj − wL , j ) ≤ 0

wL , j ← 3wj − 2wR, j if (wR, j − wL , j )(wj − 1
2 (wL , j + wR, j )) >

(wR, j−wL , j )
2

6

wR, j ← 3wj − 2wL , j if − (wR, j−wL , j )
2

6 >

(wR, j − wL , j )(wj − 1
2 (wL , j + wR, j ))

(6)

Furthermore, we can improve this procedure by introducing the so-called narrow
profile method, where we reset the values for wL , j and wR, j if j th zone is inside
discontinuity. In this case formulation (5) is replaced by

wL , j ← wd
L , j = wj−1 + 1

2
Δmwj−1, wR, j ← wd

R, j = wj+1 − 1

2
Δmwj+1 (7)

HereΔmwj ensures that the discontinuities have sharper representation andwj+1/2

falls inside the interval between wj and wj+1,

Δmwj = min(|Δwj |, 2|wj − wj−1|, 2|wj − wj−1|)sgn(Δwj )

if (wj+1 − wj )(wj − wj−1) > 0

= 0 otherwise

(8)

The alternative approach is weighted essentially non-oscillatory class of schemes
(WENO). The present work considers only 3rd and 5th order ofWENO, with several
recent developments which allow to keep constant order of the scheme at all nodes.
Among the advantages of WENO method we are mostly interested in smoother data
dependence, which is expected to result in less oscillations, but at the same time
sharper representation.

We denote ω0,1,2 and q0,1,2 as weights and third-order linear reconstruction in
three stencils of chosen set of variables, respectively. The fifth-order reconstruction
then states [5],

wj+ 1
2

=
2∑

k=0

ωkqk, with ωk = αk

α0 + α1 + α2
and αk = Ck

(ε + I Sk)2
(9)
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where Ck (C0 = 0.1, C1 = 0.6, C2 = 0.3) is the optimal weight parameter to
achieve fifth-order upstream central difference approximation. Quantity ε is intro-
duced to avoid zero in denominator and I Sk is the smoothness indicator, computed
as a sum of L2 norms. The above formulation has been a subject to many research
papers concerning the way to choose ε and the computation of smoothness indicator
function.

The non-sensitivity to the ε number in the interval between 10−5 and 10−7 has been
demonstrated by [5]. However, [1] showed that in the optimal weights calculation,
the choice of ε becomes crucial due to the convergence to zero of other terms in
denominator in smooth regions of the flow. More precisely, ε has a strong effect on
the order of convergence of the resulting scheme and, moreover, the ENO behaviour
of the scheme can be diminished by choosing ε to be too large.

The alternative derivation of weights along with appropriate value for ε has been
proposed by [2] to achieve fifth order of reconstruction. A modified smoothness
indicator formulation is,

I SZ
k = I Sk + ε

I Sk + |I S0 − I S2| + ε
(10)

Due to the non-uniformity of the flow solution and/or finite grid size, we always have
variation between I Sk and I SZ

k , which can lead to the relatively large deviation of the
weights values ωk from optimal weights Ck . In fact, it can be proven that the better
accuracy of the scheme achieved by having a smallest possible difference between
ωk and Ck .

This problem has been addressed in [3], where authors propose another alternative
derivation of smoothness indicator function, based on the analysis of uniformity of
I Sk ,

I SSZ
k = R0Amin(I S0, . . . , I Sr−1) + I Sk , where R0 = min(βk)

max(βk) + ε′ (11)

with ε′ = 10−10 set to avoid zero in denominator. R0 is chosen in a way to ensure
the uniform nature of I Sk and A can be chosen up to 100 to preserve ENO property.
We set A = 10.

Using this improvement, we have the possibility to choose between approaches
of [2, 5].

4 Numerical Results

This section presents the numerical results obtained using methods presented above.
All reconstructions have been applied to the primitive variables, i.e. W = (ρ, u, v,
P, α), except for the PPM, where characteristic variables have been used. This
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choice is based on our previously performed study which demonstrated stable non-
oscillating behaviour by using these variables. The directional splitting method has
been used in order to tackle two-dimensional case.

The first case is the double rarefaction case proposed by [15], which has been
used for the numerical schemes validation, namely, its accuracy and robustness. This
test consists in a one meter long tube filled of water with a small fraction of gas α =
0.01. An initial velocity discontinuity is located in the middle of the tube (± 2 m/s).
The obtained numerical solution presents two expansion waves, which corresponds
to the physical nature of the test and has been modelled by using different mesh size,
i.e. 1000, 2000 and 4000 cells. The reference solution has been computed on 32000
nodes. The results has been compared at the final time t = 3.2 ms.

The solution computed on the coarsest mesh demonstrated fairly sharp approx-
imation in good agreement with the reference solution, except by using WENO5
JS [5], which has symmetrical oscillations. On the other hand, the grid refinement
revealed the oscillating nature of PPM reconstruction. However, we observed good
robust performance by using 5th orderWENO scheme coupled with HLLCMH, par-
ticularly with improved derivation of smoothness indicator as in formulation (11),
where we set ε = 10−20 (WENO SZ). This configuration provided the solution pro-
files slightly sharper than WENO with smoothness indicators computed as per (10),
(WENO5 Z). The WENO3 scheme led to the diffusive results in all tests.

We continue the numerical study bymoving to 2D shock-bubble interaction, using
the air-helium configuration. This problem has been investigated by many authors
since the experimental study of Haas and Sturtevant in 1987. The helium bubble has
the initial diameter of 4 cm and is impacted by the normal shock wave moving at the
Mach number 1.175. The EOS parameters are presented in Table1:

The volume fraction α in this case is the volume fraction of the lighter gas in a
carrier gas. We perform the calculations in a half-domain due to the symmetry of
the problem. Simulations have been done using the uniform mesh discretization of
4000 × 400 cells and the time step of 2.510−9 s. All computations led to the correct
bubble shape evolution compared to the experimental results.

The bubble is first flattened in shock propagation direction and becomes kidney
shaped due to the formation of a high speed air jet at the upstream interface. The
jet impingement on the downstream interface induces the formation of the counter-
rotatingvortical structures responsible for the bubble elongation.Thedensity gradient
modulus presented on the Fig. 1 at the time 0.05ms compares the performance of the

Table 1 Air-Helium EOS parameters and post-shock condition

γ P∞ ρ

Air 1.4 0Pa 1.163kg/m3

Helium 1.648 0Pa 0.16kg/m3

P ρ u

Post-shock 1.444 105 Pa 1.51 kg/m3 93.65 m/s
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Fig. 1 Air-helium bubble interaction, density gradient, numerical schemes comparison (left to
right, top to bottom): HLLC MH vanAlbada, HLLC MH WENO3, KNP MH WENO5 SZ, HLLC
MH PPM, HLLC MH WENO5 JS, HLLC MH WENO5 SZ, mesh 4000× 400, dt = 2.5e–9, T =
0.05 ms

schemes. The strong diffusive effect of WENO3 reconstruction is observed imme-
diately, where the vortices of the bubble interface have been smoothed considerably.
Slightly less diffusive result has been obtained by using KNP flux formulation, how-
ever, this led to the oscillations inside the bubble interface. The same result has been
observed by applying other reconstruction techniques to KNP. The PPM with MH
method showed notably sharper bubble interface but with yet even stronger oscilla-
tions. On the other hand,WENO5 techniques provided accurate sharp reconstruction
of the bubble with reproducing the detailed vortices along the bubble surface when
coupled with HLLC flux approximation, particularly WENO SZ scheme.

The extension of these methods to the high density ratio case is currently being
studied. We have achieved third-order accuracy to this date.



692 K. Kozhanova et al.

5 Conclusion

Thepresentwork has been focused onhigh-order numerical schemeswith application
to two-phase flows, which are known to be difficult to solve numerically. This paper
presents intermediate results with low density ratio between the phases. Particularly,
we performed the implementation and computations using PPM, WENO numerical
reconstructions with HLLC and KNP flux approximations. Our simulations demon-
strated very diffusive results of KNP flux formulation and WENO3 reconstruction.
PPM method led to sharper but oscillating results. High order WENO5 strategies
provided detailed correct interface reconstruction.

Further work is going to be based on the implementation of different classes of
flux formulation. The additional modifications of high order schemes are going to
be studied, which would allow the computation for the cases with high density ratio.
A detailed convergence analysis is going to be presented.

Acknowledgements This work has been fully supported by French ANR (ANR-18-CE46-0009).
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A Python Framework for Solving
Advection-Diffusion Problems

Andreas Dedner and Robert Klöfkorn

Abstract This paper discusses a Python interface for the recently published Dune-
Fem-DG module which provides highly efficient implementations of the Discontin-
uous Galerkin (DG) method for solving a wide range of non linear partial differential
equations (PDE). Although the C++ interfaces of Dune-Fem-DG are highly flexible
and customizable, a solid knowledge of C++ is necessary to make use of this power-
ful tool. With this work easier user interfaces based on Python and the Unified Form
Language are provided to open Dune-Fem-DG for a broader audience. The Python
interfaces are demonstrated for both parabolic and first order hyperbolic PDEs.
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In this paper we introduce a Python layer for the Dune-Fem-DG1 module [6] which
is available open-source. The Dune-Fem-DG module is based on Dune [3] and
Dune-Fem [10] in particular and makes use of the infrastructure implemented by
Dune-Fem for seamless integration of parallel-adaptive Finite Element based dis-
cretization methods.Dune-Fem-DG focuses exclusively on Discontinuous Galerkin
(DG) methods for various types of problems. The discretizations used in this module
are described by two main papers, [8] where we introduced a generic stabilization
for convection dominated problems that works on generally unstructured and non-
conforming grids and [5] where we introduced a parameter independent DG flux
discretization for diffusive operators.

1https://gitlab.dune-project.org/dune-fem/dune-fem-dg.git.
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DG methods have been studied intensively by many other groups and many soft-
ware packages exist. However, most of these packages do not combine the following
features: unstructured grids for 2, and 3 space dimensions, grid adaptivity, paral-
lel computing capabilities, and open-source licenses. Besides Dune-Fem-DG a few
alternatives exists, for example, deal.II ([2]), feel++ ([13]), or Nektar++ ([12]).

Dune-Fem-DG has been used in several applications (see [6] for a detailed list),
most notably a comparison with the production code of the GermanWeather Service
COSMO has been carried out for test cases for atmospheric flow ([4]). The focus
of the implementation is on Runge–Kutta DG methods using mainly a matrix-free
approach to handle implicit time discretizations which is a method especially used
for convection dominated problems.

A strength of the Dune-Fem-DGmodule is the general application area, i.e. con-
vection dominated as well as diffusion dominated problems, for 1, 2, and 3d models,
including parallelization and local grid adaptivity. A shortcoming so far has been the
template heavy and relatively complicated C++ user interfaces for implementing new
models and applications or coupling of such. Recent development has therefore been
focused on adding a Python layer on top of Dune-Fem-DG allowing user friendly
model description based on the Unified Form Language (UFL) [1] and code genera-
tion. Low level Python bindings were introduced for the Dune grid interface in [11]
and a detailed tutorial providing high level access toDune-Fem is also available [9].
These bindings can now be used together with the efficient and flexible DG methods
available in Dune-Fem-DGmaking it easy to solve very complex coupled nonlinear
PDEs.

The paper is organized as follows. In Sect. 1 we describe the DG discretizations.
In Sect. 2 we introduce the newly developed Python based model interface. In Sect. 3
we investigate the performance impact of using Python scripting and conclude with
discussing the extensibility of the approach in Sect. 4.

1 Governing Equations and Discretization

Weconsider a general class of time dependent nonlinear advection-diffusion-reaction
problems for a vector valued function U : (0, T ) × Ω → Rr with r ∈ N

+ compo-
nents of the form

∂tU = L (U) := −∇ · (
Fc(U) − Fv(U,∇U)

) + Si (U) + Se(U) in (0, T ] × Ω

(1)

in Ω ⊂ Rd , d = 1, 2, 3. Suitable initial and boundary conditions have to be added.
Fc describes the convective flux, Fv the viscous flux, Si a stiff source term and Se a
non-stiff source term. Note that all the coefficients in the partial differential equation
are allowed to depend explicitly on the spatial variable x and on time t but to simplify
the presentation we suppress this dependency in our notation. Also note that any one
of these terms is also allowed to be zero.
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For the discretizationwe use amethod of lines approach based on first discretizing
the differential operator in space using a DG approximation and then solving the
resulting system of ODEs using a time stepping scheme.

Given a tessellation Th of the domain Ω with ∪K∈T h K = Ω we introduce
a piecewise polynomial space Vh = {v ∈ L2(Ω,Rr ) : v|K ∈ [Pk(K )]r , K ∈ Th}
for some k ∈ N, where on simplicial elements Pk(K ) is a space containing poly-
nomials up to degree k. Other basis functions and element types could be chosen
as well but we focus on this case for simplicity of the presentation. In addition, we
denote with �i the set of all intersections between two elements of the grid Th and
accordingly with � the set of all intersections, also with the boundary of the domain
Ω .

We discretize the spatial operator L (U) in (1) with either Dirichlet, Neumann,
or Robin type boundary conditions by defining for all basis functions ϕ ∈ Vh ,
〈ϕ,Lh(Uh)〉 := 〈ϕ, Kh(Uh)〉 + 〈ϕ, Ih(Uh)〉 with the element integrals

〈ϕ, Kh(Uh)〉 :=
∑

K∈T h

∫

K

(
(F̂c(Uh) − F̂v(Uh,∇Uh)) : ∇ϕ + S(Uh) · ϕ

)
, (2)

with S(Uh) = Si (Uh) + Se(Uh) and the surface integrals (by introducing appropri-
ate numerical fluxes F̂c, F̂v for the convection and diffusion terms, respectively)

〈ϕ, Ih(Uh)〉 :=
∑

e∈�i

∫

e

({{F̂c(Uh, [[Uh]]e)T : ∇ϕ}}e + {{F̂v(Uh,∇Uh)}}e : [[ϕ]]e
)

−
∑

e∈�

∫

e

(
F̂c(Uh) − F̂v(Uh,∇Uh)

) : [[ϕ]]e, (3)

with {{V }}e, [[V ]]e denoting the average and jump of V over e, respectively. The
convective numerical flux F̂c can be any appropriate numerical flux e.g. the local
Lax–Friedrichs flux. Awide range of diffusion fluxes F̂v can be found in the literature
and many of these fluxes are available in Dune-Fem-DG (cf. [5, 6]).

A range of different ODE solvers are available most based around Strong Stability
Preserving Runge–Kutta methods (SSP-RK) (for details see [6]). The results and
implementation techniques presented in this paper can be applied to explicit, implicit,
or semi-implicit methods and mostly a matrix-free implementation of the discrete
operator Lh is used. In addition, assembled operators are available.

Whenusing semi-implicit time stepping, the operatorL is split such thatL (U) =
Le(U) + Li (U) with

Le(U) := −∇ · Fc(U) + Se(U) and Li (U) := ∇ · Fv(U,∇U)
) + Si (U)

where Le is treated explicitly and is Li is treated implicitly.
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2 Python Model Interface

In this section we describe the interface to implement a new problem by providing
functions describing the analytical model in its strong form (1). We start with a
conservation law using the example of the Euler equations of gas dynamics with an
ideal gas lawwere the pressure is given by p = (γ − 1)(ε − 1

2ρ|v|2)with ε being the
internal energy, ρ the density, v the velocity, and the adiabatic constant γ = 1.4. The
model is given by a class with some static methods, i.e., F_c(t,x,U) returning
the analytic flux as a matrix for given state vector U . For the DG approximation
the numerical flux is also required. The simplest flux is given by the local Lax–
Friedrichs scheme which requires (in addition to Fc) the maximum wave speed in
a given direction n. In the case of the Euler equations the maximum wave speed

is |v · n| + c where v is the velocity and c =
√

γ
p
ρ
is the speed of sound. The

corresponding class method is maxLambda. In addition boundary conditions have
to be provided in the model class. Below is an example implementation:

class CompressibleEuler:
def toPrim(U): # auxiliary function

v = as_vector( [U[i]/U[0] for i in range(1,3)] )
pressure = 0.4*(U[3]-dot(v,v)*U[0]/2)
return U[0], v, pressure

def F_c(t,x,U):
rho , v, p = Model.toPrim(U)
return as_matrix([ [rho*v[0], rho*v[1]],

[rho*v[0]*v[0]+p, rho*v[0]*v[1]], [rho*v[0]*v[1],
rho*v[1]*v[1]+p],

[(U[3]+p)*v[0], (U[3]+p)*v[1]] ])
boundary = {range(1,5): lambda t,x,U: U}
def maxLambda(t,x,U,n):

rho , v, p = Model.toPrim(U)
return abs(dot(v,n)) + sqrt(1.4*p/rho)

To set up the grid, space, and DG operator is straightforward as shown in the
following code snippet:

gridView = structuredGrid([-1,-1],[1,1],[40 ,40])
space = dgonb( gridView , order=3, dimRange=4)
uh = space.interpolate([1.4,0,0,1], name=’uh’)
operator = femDGOperator(Model , space , limiter=None)

Finally Dune-Fem implements a number of time stepping algorithms, e.g.,
explicit, implicit, and IMEXRKmethods. For the above model (containing no diffu-
sive flux) the default is an explicit SSP-RK method. A complete time loop is shown
next:

stepper = femdgStepper(order=3, operator=operator)
t = 0
while t < 0.1:

operator.setTime(t)
t += stepper(uh , dt=0.001)

Instead of using a fixed time step�t = 0.001 we can let the scheme choose a time
step based on the CFL condition which is chosen using the maxSpeedmethod. The
only required change is to remove the dt parameter in the stepper call.
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To stabilize theDGmethodwe use limiters and to reduce computational cost these
are only applied in cells flagged by a troubled cell indicator. We use a indicator based
on jumps over inflow edges of the cell [8]. This requires some additional methods:
the velocity velocity(t,x,U) and an interfacial quantity jump(U,V)—we
use the relative pressure jump to correctly detect shock waves. Finally, we also apply
the limiter in cells where the solution takes on non physical values i.e. ρ ≤ 0 and
p ≤ 0:

def velocity(t,x,U):
return Model.toPrim(U)[1]

def jump(U,V):
pL = Model.toPrim(U)[3]
pR = Model.toPrim(V)[3]
return (pL - pR)/(0.5*(pL + pR))

def physical(U):
rho , _, p = Model.toPrim(U)
return conditional( rho>1e-8, conditional( p>1e-8, 1, 0 ),

0 )

To solve a problem with a discontinuous solution (here a radially symmetric
Riemann problem) we just need to change the initial conditions and change the value
of the limiter parameter when setting up the operator:

x = SpatialCoordinate(space)
uh.interpolate( conditional(dot(x,x)<0.1,

as_vector([1,0,0,2.5]), as_vector([0.125 ,0,0,0.25])) )
operator = femDGOperator(Model , space , limiter="MinMod")
operator.applyLimiter(uh)

The code for the time loop remains the same as above.
To add diffusion and source terms only requires some additional methods on the

model class: def S_e(t,x,U,DU), def S_i(t,x,U,DU), and
def F_v(t,x,U,DU). Here is an example of an advection diffusion reaction
problemwith three chemical components c1, c2, c3 each satisfying ∂t ci + ∇ · (vci ) =
�ci + Se(c1, c2, c3). The reaction rates are not very high so that we can treat the
source term explicitly:

class Model:
transportVelocity = computeVelocity ()
def S_e(t,x,U,DU):

P1 = as_vector([0.1,0.1]) # midpoint of first source
P2 = as_vector([0.9,0.9]) # midpoint of second source
f1 = conditional(dot(x-P1 ,x-P1) < 0.1**2, 1, 0)
f2 = conditional(dot(x-P2 ,x-P2) < 0.1**2, 1, 0)
f = conditional(t<5, as_vector([f1 ,f2 ,0]),

as_vector([0,0,0]))
r = 10*as_vector([U[0]*U[1], U[0]*U[1], -2*U[0]*U[1]])
return f - r

def F_c(t,x,U): return as_matrix([ [*
(Model.velocity(t,x,U)*u)] for u in U ])

def maxLambda(t,x,U,n): return
abs(dot(Model.velocity(t,x,U),n))

def velocity(t,x,U): return Model.transportVelocity
def F_v(t,x,U,DU): return 0.02*DU
def physical(U): return

conditional(U[0]>=0,1,0)*conditional(U[1]>=0,1,0)*\
conditional(U[2]>=0,1,0)

boundary = {range(1,5): as_vector([0,0,0])}
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Fig. 1 The three components of the chemical reaction system (left to right) at t = 10

The velocity field is given by v = ∇ × Ψ where Ψ solves −�Ψ = f with zero
boundary conditions. We use a standard finite element scheme to compute Ψ

def computeVelocity ():
psiSpace = lagrange(gridView , order=1, dimRange=1)
Psi = psiSpace.interpolate(0,name="streamFunction")
u,v,x = TrialFunction(psiSpace), TestFunction(psiSpace),

SpatialCoordinate(psiSpace)
form = ( inner(grad(u),grad(v)) - 2*sin(x[0])*sin(x[1]) *

v[0] ) * dx
streamScheme = galerkin([form == 0,

DirichletBC(streamSpace ,[0]) ])
streamScheme.solve(target=Psi)
return as_vector([-Psi[0].dx(1),Psi[0].dx(0)])

Setting up the spatial operator and the stepper is done as above:

operator = femDGOperator(Model , space , limiter="scaling")
stepper = femdgStepper(order=3, operator=operator)

where we use a scaling limiter to maintain positivity of all three reactants [7]. The
velocity field consists of four rotors and in the top right and bottom left corners the
concentration of c1, c2 is slowly increased over time up to t = 5. Through the flow
and diffusion process c1, c2 both increase in the center of the domain leading to a
production of c3 as shown in Fig. 1.

3 Efficiency of Python Based Auto-Generated Models

While Python is easy to use, its flexibility can lead to some deficiencies when it
comes to performance. InDune-Python andDune-FemPy a just-in-time compilation
concept is used to create Pythonmodules based on the static C++ type of every object
used [11]. This way we avoid virtualization of the Dune interfaces. It is therefore
interesting to investigate the performance of this approach by comparing it to the
previously hand-coded pure C++ version described in [6].

As a test example we choose a standard Riemann problem for the Euler equa-
tions solved on a series of different grid resolutions using quadratic basis functions, a



A Python Framework for Solving Advection-Diffusion Problems 701

Table 1 Performance comparison of the C++ and the Python code for a simple test example solving
the Euler equations in 2d with an explicit time stepping

SPGrid
code \ #el
C++

Python

C++ / Python

1024 4096 16384
7.19 57.45 464.85
7.04 56.29 457.23

1.02 1.02 1.017

ALUGrid
code \ #el
C++

Python

C++ / Python

1024 4096 16384
12.72 106.08 884.28

13.32 110.48 924.81

0.955 0.96 0.956

minmod limiter, and explicit RK3 time stepping.Weuse two different grid implemen-
tation, a dedicated Cartesian grid (SPGrid) and a fully unstructured grid (ALUGrid)
(Table1).

We observe that for the Cartesian grid, SPGrid, we consistently achieve a small
improvement of 2% while for the unstructured grid, ALUGrid, we observe a perfor-
mance decrease of about 4%. This can be explained with the fact that for SPGrid
all code can be inlined in the just-in-time compiled Python module. For ALUGrid,
where a library exists, this is not so straight forward. In the future we will experiment
with link time optimization and try to reduce implementation of small code snippets
in the ALUGrid library.

4 Extensibility

In this paper we could only sketch the concepts behind the new Python bindings
for Dune-Fem-DG. The Dune-Fem framework on which this is based, provides
a significant amount of flexibility which we could not describe here in any detail.
For example, changing the underlying grid implementation to a locally adaptive
triangular grid or even a polygonal grid is straightforward as is changing the discrete
function space. We are currently in the process of extending our DG implementation
to work with polygonal grids. In a first step we show in Fig. 2 results for the radial
Riemann problemmentioned in Sect. 2. In the Python code one only needs to change
the grid implementation and use the finiteVolume space instead of the dgonb
space.

from dune.polygongrid import voronoiDomain , polygonGrid
boundingBox = numpy.array([ [-1,-1], [1,1] ])
gridView = polygonGrid( voronoiDomain(160000 , boundingBox) )
space = finiteVolume( gridView , dimRange=4)

Other fluxes for discretizing both the advection and diffusion terms are also avail-
able and can be easily used by providing suitable parameters during the construction
of the DG operator. In addition the Python bindings provided for Dune-Fem [9] can
be used to solve additional problems as shown in chemical reaction example.
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Fig. 2 Finite volume scheme for the Euler equations on a polygonal grid

We plan to improve the extensibility of the package further by providing simple
hooks for users to implement their own numerical fluxes and to customize the avail-
able limiters, e.g., implementing their own troubled cell indicators. This will either
be achieved through additional code generation where this is possible or through
user written simple C++ functions for more complex problems. The use of code gen-
eration (or direct C++ implementations) is crucial for the parts of the discretization
described above since these are used during the evaluation of the operator and are
thus time critical. Other parts of the algorithm can be easily implemented on the
Python side with only a very minor reduction to computational efficiency. This is for
example the case for the time stepping scheme. It is already now straightforward to
implement additional time stepping schemes directly within Python as shown below
using the example of an explicit Runge–Kutta (RK) method:

# given: operator, cfl, explicit RK (A,b,c), discrete functions rhs, k[:]
operator.stepTime(0,0)
operator(uh ,k[0])
dt = cfl*operator.timeStepEstimate[0]
for i in range(1,len(A)): rhs.assign(uh)

for j in range(i): rhs.axpy(dt*A[i][j],k[j])
operator.stepTime(c[i],dt)
operator(rhs ,k[i])

for i in range(len(b)): uh.axpy(dt*b[i],k[i])
operator.applyLimiter(uh)

In the future we plan to investigate bindings for other ODE solvers available
through Python.
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3-Dimensional Particulate Flow
Modelling Using a Viscous Penalty
Combined with a Stable Projection
Scheme

L. Batteux, J. Laminie, J.-C. Latché, and P. Poullet

Abstract We introduce a strategy for the simulation a particulate flow in a
3-dimensional domain. The particles are assumed to be rigid, and the homogeneous
fluid flow to be governed by the incompressibleNavier–Stokes equations. The system
is solved using a predictor-corrector scheme for the Navier–Stokes equations with
variable density. The latter scheme is adapted to take into account the solid domain by
adopting a volume penalization method. In order to advect efficiently the particles,
the approximation of the mass balance equation is carried out by an anti-dissipative
scheme similar to the Ultra-Bee scheme. We conclude with numerical tests in the
context of particulate flows.

Keywords 65M08 · 76D05 · 76T20

1 Introduction

This work is focused on the modelling of fluid–solid systems in a 3-dimensional
domain. To reproduce faithfully the fluid–solid interactions is a problem of large
interest due to numerous processes in industrial applications. There are several meth-
ods to attempt to model such a problem, but in this study, one considers rigid solid
inclusions in an incompressible viscous fluid flow and one enforces a strong coupling
between both phases. The motion of the solid domain may then be described using
Newton laws for rigid bodies. As we are concerned with the efficiency and compu-

L. Batteux (B) · J. Laminie · P. Poullet
LAMIA, Université des Antilles, Campus de Fouillole, 97157
Pointe-à-Pitre, Guadeloupe FWI, France
e-mail: lea.batteux@univ-antilles.fr

P. Poullet
e-mail: pascal.poullet@univ-antilles.fr

J.-C. Latché
IRSN, BP13115 St-Paul-lez-Durance Cedex, France
e-mail: jean-claude.latche@irsn.fr

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2020
R. Klöfkorn et al. (eds.), Finite Volumes for Complex Applications IX - Methods,
Theoretical Aspects, Examples, Springer Proceedings in Mathematics & Statistics 323,
https://doi.org/10.1007/978-3-030-43651-3_67

705

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43651-3_67&domain=pdf
mailto:lea.batteux@univ-antilles.fr
mailto:pascal.poullet@univ-antilles.fr
mailto:jean-claude.latche@irsn.fr
https://doi.org/10.1007/978-3-030-43651-3_67


706 L. Batteux et al.

tational costs, we resort to an Eulerian formulation for the fluid flow and extend the
fluid problem inside the solid domain in the manner of fictitious domain methods.
In our case we enforce some kind of Brinkmann law inside the solid domain by
adopting the H1-penalty method [1]. In practice, it will come down to penalizing the
tensor of deformation term where the particles are in the non-homogeneous Navier–
Stokes equations. Let us denote by Ω the domain containing the particulate flow.
The continuous problem is given by:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂ρ

∂t
+ ∇ · (ρu) = 0 in R

+ × Ω

∂(ρu)

∂t
+ ∇ · (ρu ⊗ u) − 2∇ · (μ(ρ)D(u)) + ∇ p = f in R

+ × Ω

∇ · u = 0 in R
+ × Ω

(1)

with the unknowns being the density ρ, velocity u and pressure p. The source term
is denoted by f and contains the forces applied to the particles among other exterior
forces. The advection of the rigid particles is carried out by the mass balance equa-
tion rather than Newton laws. The viscosity μ is continuously dependent on ρ, and
taking μ → ∞ inside the solid domain allows for the penalization of the tensor of
deformation rate D(u). We aim to tend towards ‖D(u)‖L2(Ωs (t)) = 0 which is equiv-
alent to a rigid motion velocity field inside the particles Ωs(t). The system of Eq. (1)
is complemented with initial conditions for (ρ,u).

The flow being incompressible, one often resorts to a projection scheme [4, 7]
to solve problem (1). Many variants can be found in the literature especially when
considering multiphase flows. However a lot of problems remain open regarding
the stability or convergence of those schemes. Again, for efficiency reasons we will
rely on the scheme introduced in [8]. In this article, the authors circumvent the
relatively expensive computational cost of the elliptic pressure problem of standard
projection problem for incompressible variable density flows, by switching to an
approximate and more efficient formulation of the latter. In this paper, we adapt
the scheme presented in [8] for finite elements to the MAC discretization, while
keeping the same stability properties. Additionally, the discontinuity and the jumps
of viscosity along the fluid/solid interface require an accurate tracking of the surface
of the particles. To this end, we replace the discrete mass balance equation with an
anti-diffusive advection scheme introduced in [3] that is similar to the Ultra-Bee
method. The scheme is adapted to the dimension d = 3 by considering an alternate
direction variant.

In the following section we introduce the notations, meshes as well as the full
discrete scheme. In a final section we carry out and comment on the simulation of
the fall of a rigid sphere.
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2 Numerical Method

Let 0 = t0 < t1 < · · · < tN = T be a uniform partition of the time interval [0, T ].
We note δt = T/N the time step so that tn = nδt , for n ∈ �0, N�. The incremental
projection scheme from [8] reads,

ρn+1 − ρn

δt
+ ∇ · (ρn+1un) = 0 in Ω (2a)

ρn+1un+1 − ρnun

δt
+∇ · (ρn+1un+1 ⊗ un)

−∇ · ((μn+1D(un+1))) + ∇(2pn− pn−1) = fn+1 in Ω

un+1 = 0 on ∂Ω

(2b)

−δt

χ
�(pn+1 − pn) = −∇ · un+1 in Ω (2c)

un+1 = un+1 − δt

χ
∇(pn+1 − pn) in Ω (2d)

for any time increment tn+1. We denote f(tn+1) = fn+1 and we take χ = minx∈Ωρ0.
We aim to compute the sequence of discrete solution (un+1,un+1, pn+1, ρn+1) for
n ≥ 0. For each time step, the density is advected in (2a) by the divergence free
velocity from the previous step, un . It follows with the calculation of a tentative
velocity un+1 by solving Eq. (2b). Using the Helmholtz decomposition of L2(Ω),
the substep (2c) acts as the projection of un+1 on H = {u ∈ L2(Ω), ∇ · u = 0, u ·
n|∂Ω

= 0} to get a corrected divergence–free velocity un+1 in (2d). The specificity
(and interest) of the present scheme is to replace the actual density by the constant
coefficientχ ; indeed, a direct adaptation of the classic incremental projection scheme
[7] to nonhomogeneous fluids would result in a variable Poisson problem of the form
∇ · ((ρn+1)−1∇�n+1) = 0 with Neumann boundary conditions. For discontinuous
densities with a high ρmax/ρmin ratio, this problem can be expensive to solve due to
its ill-conditioned status.

2.1 Notations, Mesh and Discrete Projection Scheme

The domain Ω is discretized according to a staggered MAC mesh D = (M ,E ) so
the scheme (2) can benefit from the infsup stability property. Let the primal gridM
consist in a conforming structured partition of Ω using rectangular parallelepipeds
elements. The parallelepipeds are defined as primal cells and noted K . Therefore we
have ∪K∈M K = Ω . We may assume that the faces of the primal cells are normal to
the vectors of the standard basis ofR3, denoted by (e1, . . . , ed). A face of the primal
cell K ∈ M will be noted σ ∈ E (K ), E (K ) referring to the set of all faces of K .
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DσDσ
σ = K|L

K

L

σ

σ = K|L

σ
uσ · e2×

uσ · e2×

ε = σ |σ

DK,σ
ρK , pK×

Fig. 1 2-dimensional representation of (M , E )

The staggered grid is completed by defining the dual grid E as the set of all edges
of M : {σ ∈ E (K )|K ∈ M }. We note E = Eint ∪ Eext, where Eint (resp. Eext) are
the edges of E that lie in the interior (resp. on the boundary) of the domain. The set
of faces that are orthogonal to the i th unit vector ei of the canonical basis of Rd is
denoted by E (i), for i = 1, . . . , d. Correspondingly we introduce E (i)

int = Eint ∩ E (i),
E (i)
ext = Eext ∩ E (i) so E (i) = E (i)

int ∪ E (i)
ext .

For σ ∈ Eint, we note σ = K |L for (K , L) ∈ M 2 such that ∂K ∩ ∂L = σ and
we associate the dual cell Dσ with DK ,σ ∪ DL ,σ , where DK ,σ (resp. DL ,σ ) is the
half-part of K (resp. L) adjacent to σ . If σ ∈ Eext is adjacent to the cell K , then
Dσ = DK ,σ . We can define Ω from the dual mesh: Ω = ∪σ∈E i Dσ , i = 1, . . . , d. A
dual face separating two duals cells Dσ and Dσ ′ is denoted by ε = σ |σ ′. In agreement
with the staggered MAC scheme, we will define the unknowns (ρ, p) on the primal
grid and the i th component of the velocity on E (i) in such a way that we deal
with quantities (ρK , pK )K∈M and (uσ )σ∈E . The grids and notations for d = 2 are
illustrated in Fig. 1.

The discretization of problem (2) begins with the discrete approximation of the
mass balance Eq. (2a). For K ∈ M , we resort in the classic way to the divergence
formula for the computation of (2a) integrated over the primal cell K . This yields:

ρn+1
K − ρn

K

δt
+ 1

|K |
∑

σ∈E (K )

σ∈E (i)
int

Fn+1
K ,σ = 0,

(3)

where Fn+1
K ,σ refers to the mass flux across the primal face σ outward K . In Sect. 2.2,

we introduce the two techniques we adopt to compute Fn+1
K ,σ ; namely the classic

upwind scheme and an antidiffusive scheme inspired by [3].
Let us focus on the discretization of the prediction step. For σ = K |L ∈ E (i)

int , the
approximation of (2b) is obtained by integrating the i th prediction equation over the
associated dual cell Dσ . In order for the scheme to be stable and provide the desired
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estimates for the unknowns, we must pay a particular attention to the discretization
of the convective term in (2b):

1

|Dσ |
∫

Dσ

(
(ρn+1un+1 − ρnun)/δt + ∇ · (ρn+1un+1 ⊗ un)

)
· ei dx

so that the discretization of the prediction step is compatible with the the discrete
mass balance. This yields an approximation of the form:

(ρn+1
Dσ

un+1
σ − ρn

Dσ
unσ )/δt + 1

|Dσ |
∑

ε∈E (Dσ )

Fn+1
σ,ε un+1

ε,i

where the values for the density on Dσ , denoted ρDσ
(resp. the fluxes on the dual

faces σ , noted as Fn+1
σ,ε ) are given as functions of the density on the primal cells K , L

(resp. the fluxes on the primal faces). This is achieved by averaging the discrete mass
balance over K and L to obtain a consistent mass balance equation on Dσ . Therefore
we define |Dσ |ρn

Dσ
= |DK ,σ |ρn

K + |DL ,σ |ρn
L . The dual fluxes Fn+1

σ,ε are defined as
the average of the fluxes on matching primal faces-the primal faces with coinciding
outward normals [5, 9]. The approximation un+1

ε,i of the i th component of the velocity
valued on the dual face ε is obtained by the upwind scheme. Finally the discrete i th
prediction step is given by

(ρn+1
Dσ

un+1
σ −ρn

Dσ
unσ )/δt + 1

|Dσ |
∑

ε∈E (Dσ )

Fn+1
σ,ε un+1

ε,i

−(∇ · (μn+1D(un+1)))Dσ
+ (∇(2pn − pn−1))Dσ

= f n+1
σ

with |Dσ | f n+1
σ = ∫

Dσ
fn+1dx. The remaining terms are discretized in a straightfor-

wardway,with (∇(2pn − pn−1))Dσ
approximated by (|σ |/|Dσ |)(ϕn

L − ϕn
K )nK ,σ · ei ,

if we note ϕn = 2pn − pn−1 and define nK ,σ as the normal to the face σ outward K .
For the viscous term, precautions must be taken given the discontinuous nature of
the viscosity. It comes down to the discretization of the following term:

−
∫

∂Dσ

μn+1D(un+1) : (nε,σ ⊗ ei )dx

Therefore involving the value ofμε , the viscosity evaluated at the faces of Dσ . In our
case we average the viscosity over Dσ and D′

σ associated to the dual edge ε = σ |σ ′,
and denoted μDσ

and μD′
σ
. We define μDσ

the same way ρDσ
was defined in the

predictive step.However onemay resort toVOF (Volumeof Fluid) techniques-among
others-for the computation of με [10]. We refer to [6] for the detailed approximation
of the viscous term.



710 L. Batteux et al.

2.2 Antidiffusive Transport Scheme for the Particles

For the advection of the density we resort on one hand to the classic upwind scheme,
and on the other hand to an antidiffusive transport technique we introduce below. As
stated in the previous section, the difference in those methods primarily involves the
computation of Fn+1

K ,σ in (3).
For the upwind scheme the latter is defined as Fn+1

K ,σ = |σ |ρn+1
σ unK ,σ with unK ,σ =

unσnK ,σ · ei when σ ∈ E (i). The updated density at the face σ = K |L , denoted ρn+1
σ ,

is given by:

ρn+1
σ =

{
ρn+1
K , unK ,σ ≥ 0

ρn+1
L , otherwise

However in the context of the non-homogeneous Navier–Stokes equations penal-
ized by the H1–penalty method, this approximation of the mass balance generates a
large numerical diffusion around the solid phase (as observed in Sect. 3). We replace
the diffusive upwind technique for the transport of the density with an antidiffusive
scheme (AD–scheme) based on [2, 3] and adapted to the dimension d = 3 of the
problem by considering an alternate directions variant.

Let us focus on the transport of the density by the AD–scheme in the direction
ei . For K ∈ M we note ρ∗

K the updated value of the density on K computed from
its previous value ρK . Let (K−, K+) ∈ M 2 so that the primal cells K−, K , K+ are
consecutive and such that σ− = K−|K and σ+ = K |K+ are in E (i). We reorder
the cells by imposing nK ,σ+ · ei ≥ 0 and nK ,σ− · ei ≤ 0. For the time being, Let us
assume that the velocities are positive. The transport of the density in i th direction
is carried out by:

ρ∗
K = ρK − δt |σ |

|K | ((ρσ+uσ+ − ρσ−uσ−) − (uσ+ − uσ−)ρK )

where uσ+ (resp. uσ−) is the value of the i th component of the velocity on σ+ ( resp.
σ−). The density on the faces σ+ and σ−, noted ρσ+ and ρσ− , are to be determined.
An equivalent formulation yields:

ρ∗
K = ρK + νσ+(ρK − ρσ+) + νσ−(ρσ− − ρK )

by defining νσ+ = δt |σ |uσ+/|K | and νσ− = δt |σ |uσ−/|K | as local Courant num-
bers. We compute the value ρσ+ in such a way that ρ∗

K is a convex combina-
tion of ρK− , ρK , ρK+ . Let us note �a, b� = [min(a, b),max(a, b)]. It then comes
down to the projection of the downwind value on σ+ (ρK+ in this case) on
�ρK , ρK+� ∩ �ρK , ρK + (1 − νσ−)/νσ+(ρK − ρK−)� using the classic minmod for-
mula. We carry out a similar process for any values of u on faces σ+, σ−[2]. We
extend the advection to other directions to obtain the alternate direction variant of
the AD–scheme.
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3 Numerical Test—Dropping a Ball in a Viscous Fluid

We drop a rigid heavy sphere in a viscous fluid and observe it reaching its terminal
velocity. We define the fluid by setting ρ f = μ f = 1. The gravity constant g = 9.81
is applied to the ball. The sphere with radius r = 0.08 and density ρs = 100 is falling
down the rectangular domain [0, 1] × [0, 1] × [0, 3] to which we applied channel–
flow boundary conditions. We take μs = 104 for the penalty viscosity. For the time
step we will be using δt = 0.001. The spatial step h is such that h = maxi=x,y,z hi =
1/50. For the initial data at t = 0, the fluid is considered at rest and the particle
located at its initial position (0.5, 0.5, 1). We take p−1 = 0 and compute p0 and u0

by projection of the initial velocity on H.
In this particular test we resort to the upwind scheme for the approximation

of fluxes on the primal faces. However this technique can produce a large dif-
fusion (Fig. 2) of the discontinuous quantities and a deformability of the particle
(that is ensured by a well-advected viscosity), thus resulting in an incorrect ter-
minal velocity. The advection of the solid phase requires an antidiffusive scheme
as introduced in Sect. 2.2, for which we carry out the following 1-dimensional
numerical test; the transport of a discontinuous density along the dimensional
domain [0, 2] and over the time interval [0, 2]. For the discretization steps we
take h = 0.005 and δt = 0.02. The initial density is defined as 0.3(1[0.1,0.5](x) +
1[1.0,1.5](x)) and is advected by the velocity u(t, x) = 3

2π max(arctan(103(x − t −
1)), arctan(−103(x − t − 1/10))). The former has been chosen to obtain sudden
sign changes, and thus should advect the step-function back and forth. The shape
of step function of the density is modified only by the reduction of the plateau (see
Fig. 3). No numerical diffusion is added by the scheme and the bounds of the density
remain the same.

In a second experiment, we study the behaviour of a droplet carried by the incom-
pressible velocity field (− sin(x) cos(y), sin(y) cos(x)) for (x, y) in the

Fig. 2 Velocity component in the z-direction for the upwind scheme at t = 0.01, 0.02, 0.05, 0.07
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Fig. 3 State of the density (red line) at times t = 0.0, 0.22, 0.56. The figure also illustrates the
velocity (dashed blue line) to highlight the change of sign of the velocity

Fig. 4 State of the droplet and density values (colorbar) at times t = 0.025, 0.25, 0.375. For t = 0
we take ρ(t, x) = 100 inside the droplet and zero everywhere else

2-dimensional domain [0, π ]2. Let h = 0.005 and δt = 0.0025. The droplet at
t = 0.0 is defined as a ball with radius 0.3 and position (π/3, π/3). While no rigid
constraint is imposed on the droplet, we observe little diffusion and the conservation
of density bounds over time (Fig. 4).
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Data Assimilation for Ocean Drift
Trajectories Using Massive Ensembles
and GPUs

Håvard H. Holm, Martin L. Sætra, and André R. Brodtkorb

Abstract In this work, we perform fully nonlinear data assimilation of ocean drift
trajectories using multiple GPUs. We use an ensemble of up to 10,000 members and
the sequential importance resampling algorithm to assimilate observations of drift
trajectories into the underlying shallow-water simulation model. Our results show an
improved drift trajectory forecast using data assimilation for a complex and realistic
simulation scenario, and the implementation exhibits good weak and strong scaling.

Keywords Particle filters · Finite-volume methods · Shallow-water simulations
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1 Introduction

We present a proof-of-concept framework for performing fully nonlinear data assim-
ilation of ocean drift trajectories into a shallow-water model. Forecasting drift tra-
jectories in the ocean is an integral part of offshore preparedness services, and the
forecasts are used in, e.g., search and rescue operations, oil spill tracking, and opera-
tions involving large floating structures [1]. Our approach is to usemassive ensembles
of simplified ocean models and assimilate observations using a particle filter based
on the sequential importance resampling algorithm [2]. We first generate a massive
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ensemble of perturbed ocean states and simulate each ensemble member forward in
time until we have an observation. Next, we use the particle filter to discard ensemble
members that match poorly with the observation, and then reinitialize the discarded
members based on the simulated states that have a good match. We continue the
simulation until the next available observation and repeat the process.

Particle filters as used here are embarrassingly parallel and require synchroniza-
tion only when resampling individual ensemble members. We therefore use MPI
to distribute ensemble members to different nodes, and each member is simulated
forward in time using a modern explicit finite-volume scheme. The scheme is imple-
mented on the GPU in a massively data-parallel fashion and includes all the complex
source terms required for oceanographic simulations of real-world domains [3].

Our experiments show significantly increased forecast skill compared to both
deterministic and Monte Carlo simulations, and we are able to run experiments with
10,000 ensemble members on the Nvidia DGX-2 server, which has 16 GPUs [4].
The implementation exhibits good weak and strong scaling and is possible to extend
with more complex perturbation methods with minimal effort.

2 Data Assimilation of Ocean Drift Observations

Sequential importance resampling is an example of a particle filter for fully non-
linear data assimilation (see the recent review paper by Vetra-Carvalho et al. [5]
on ensemble-based data assimilation techniques). A benefit of the algorithm is that,
contrary to e.g., the ensemble Kalman filter [6], it does not manipulate variables of
individual simulations that match well with available observations. This means that
the resulting ensemble contains ocean states that are consistent with respect to the
physics of the model. Furthermore, particle filters do not make any assumptions on
linearity in the physical model or Gaussian probability distributions. However, the
algorithm requires a large number of ensemble members as the probability that an
individual ensemble member matches an observation is small. In fact, the required
number of members increases exponentially with the number of observations [2, 7].
This means that it is most suitable for nonlinear problems with few observations,
which is the typical situation for our target application area.

General ocean circulation models, such as ROMS [8], conserves mass, three
dimensional momentum, salinity, and temperature, and operational setups typically
require large computational resources to run even a single simulation. Herein, we
investigate using simplified ocean models through the two-dimensional shallow-
water equations, which were used operationally in the early days of computational
oceanography [9]. These simplifiedoceanmodels are suitable for short-term forecasts
in which the ocean can be modeled as a barotropic fluid, and they can be efficiently
simulated using GPUs. A further challenge is that even the operational models often
have limited forecast abilities due to uncertain initial conditions, model parameters
and forcing. By using a simplified model instead of the full three dimensional equa-
tions, we can afford to run a much larger ensemble of perturbed ocean states that can
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give us a more detailed description of the uncertainties in ocean forecasts that can
be used as a complement to the current operational methods [10].

We have developed a GPU-based simulation framework that uses operational
ocean forecasts for initial and boundary conditions, bathymetry, and forcing [3].
The framework is an extension of the high-resolution, central-upwind finite-volume
scheme proposed by Chertock et al. [11], which is well-balanced with respect to
steady states in which the Coriolis force balances a non-zero momentum and water
surface displacement (the geostrophic balance). The scheme uses H as the water
depth, η as the deviation from mean sea level, and hu and hv as the momentum
along the abscissa and ordinate, respectively. We can perturb this ocean state using
the approach in [12], in which we first generate a smooth random field, Δη, for
each ensemble member, representing deviations of the ocean surface elevation. We
continue by computing the momentum required to balance this perturbation, namely

Δhu j,k = −gHj,k

f j,k

Δη j,k+1 − Δη j,k−1

2Δy
, Δhv j,k = gHj,k

f j,k

Δη j+1,k − Δη j−1,k

2Δx
,

(1)

and finally add these perturbations to the state variables.
Using the perturbations from (1), we generate an ensemble of ocean states

and use the ensemble ψn = {ψn
0 , ψn

1 , ..., ψn
N } at time tn as an approximation to

the probability density function (pdf) p(ψn) of our ocean state. If we have an
observation yn of part of the state (e.g., one drift trajectory), we can improve the
probabilistic forecast by using the conditional pdf p(ψn|yn). Using Bayes theo-
rem, p(ψn|yn) = p(yn|ψn)p(ψn)/p(yn), we can write p(ψn|yn) as a weighted
ensemble1:

p(ψn|yn) ∝
N∑

i=1

p(yn|ψn
i )

∑N
j=1 p(y

n|ψn
j )

δ(ψn − ψn
i ) =

N∑

i=1

wn
i δ(ψ

n − ψn
i ), (2)

in which δ is the Dirac’s delta function. The weights, wn
i , reflect how well ensemble

member i matches the observation, and members with very low weights have a
negligible contribution to p(ψn|yn). Sequential importance resampling therefore
discards members with low weights and duplicates members with high weights to
maintain a higher sample density in the high-probability areas.

A challenge with sequential importance resampling is the so-called curse of
dimensionality, as we are operating in a very high-dimensional space. The parti-
cle filter is prone to ensemble collapse, in which the ensemble quickly reduces into
only a very few significant states and thereby only has marginally better predictive
skill than a purely deterministic simulation [2, 7]. This means that we need a much
larger number of ensemble members compared to the number of observations. A
major benefit, however, is that the particle filter makes no changes to the states of

1We have ignored the marginal probability as it only serves as a normalization constant.
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Fig. 1 Algorithmic overview of the simulation, data assimilation and drift trajectory forecast.
Straight lines are deterministic simulation, wiggly lines are perturbations, and dashed lines show
ensemble members that are kept during the resampling phase

individual ensemble members during the data assimilation phase. This means that
the perturbation strategy is not limited by the data assimilation method.

Figure1 gives an overview of the ensemble prediction system used in this paper.
We use the sea-surface elevation and vertically integrated ocean currents from the
operational ocean forecast provided by the ROMS-based NorKyst-800 model sys-
tem [13] as initial and boundary conditions, and give an independent perturbation
to each ensemble member to represent the uncertainty in the initial condition. Fur-
thermore, we also use the same bathymetry and wind forcing as NorKyst-800. The
true drift trajectories are generated by OpenDrift [14] using the vertically integrated
ocean currents from the hourly NorKyst-800 data, which means that the underlying
physical model for the simulated truth is significantly different from our much sim-
pler shallow-water model. From these drift trajectories, we estimate the underlying
direction and velocity of the ocean currents and use this as an observation in the
particle filter. We assume that the observations contain a Gaussian error with stan-
dard deviation σ and that they are independent from each other. The weight of each
ensemble member is then computed as

wi = α · exp
(

−0.5

(‖obs − sim‖
σ

)2
)

, (3)

in which we use the Euclidean norm to compute the distance between the observed
and simulated momentum. Furthermore, α is the normalization constant such that∑Ne

i=1 wi = 1. There are several strategies for choosing which ensemble members
to discard and duplicate (see [2] and references therein), and we use the residual
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resampling scheme [15]. Between observation times, each ensemble member runs
independently and deterministically, which means that we need to perturb the dupli-
cated ensemble states during the resampling stage.

3 Results

We test our ensemble prediction system using a domain along the coast of Northern
Norway. The domain consists of 315 × 630 grid cells with 800m horizontal reso-
lution, which is the same horizontal resolution as the operational ocean circulation
model that we use for initial and boundary conditions. We run 48 h of data assim-
ilation and use the final observed positions for the drifters as initial positions for
24 h trajectory forecasts. To avoid that the ensemble collapses during resampling,
we need to balance the number of drifters we observe with the ensemble size. Here
we run experiments with 1000 and 10,000 ensemble members and limit ourselves to
four drifters. All experiments are run on an Nvidia DGX-2 server, equipped with 16
Tesla V100 GPUs and two CPUs, each with 24 cores.

Ensemble forecasts of drift trajectories We run three different experiments to
illustrate the effect of data assimilation on forecasting of drift trajectories. The first
is a Monte-Carlo experiment, meaning that we do not assimilate any observations
during the first 48 h. The second and third experiments are with data assimilation,
and we use observations to run a particle filter every 30min and 5min, respectively.
Figure2 shows the domain and the drift trajectories used as the truth.

Figure3 shows the forecasted drift trajectories for the four drifters in each of the
three ensemble experiments with 1000 members, compared to a single deterministic
forecast in green (dashed) and the truth in red (dash-dotted) . The results showvariable
impact from data assimilation between the drifters. We see most positive effect for
drifters three and four, andmarginal improvement for drifter two,whereas the forecast
for drifter one seems tobeworsewith data assimilation.The initial forecast for thefirst
hour for drifter one, however, is significantly improved by the data assimilation, but
ourmodel is unable to capture the downward turn shortly into the forecast. Thismakes

Fig. 2 Drift trajectories of
four drifters over a three day
period shown in the
computational domain used
in all our experiments. Red
and yellow colors indicates
strong and weak currents,
respectively. Dots mark start
positions and crosses end
positions, and the values
along the axes are in km
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Fig. 3 Ensemble forecasts of drift trajectories with 1000 members in light blue, with the red
(dash-dotted) line representing the truth, the green (dashed) line as the deterministic forecast, and
the dark blue line as the ensemble mean. The four drifters are shown in separate rows, with the
columns representing the three different experiments. From left to right: Monte Carlo without data
assimilation, assimilation of observations every 30min, and assimilation of observations every
5min. The distance between the markers along the axis are one km

the ensemble perform worse in the long run when compared to the deterministic
forecast. The results for drifters three and four show improvements when using
observations in intervals of five minutes compared to 30min. Finally, Fig. 4 shows
how increasing the ensemble size to 10,000 members significantly improves the
forecast for drifter 2. Increasing the ensemble size increases the sampling of the pdf,
and thereby also the chance that the true state is better represented by the ensemble.
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Fig. 4 Ensemble forcasting with 1000 ensemblemembers (left) and 10,000members (right).When
using 10,000 ensemble members, the forecast is significantly improved for drifter 2, while the effect
is smaller for the other three drifters
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Fig. 5 The graphs show weak and strong scaling, using 1–16 GPUs on an Nvidia DGX-2 server.
The top dotted line illustrates perfect strong scaling

Weak and strong performance scalingWeevaluate the ensemble-level parallel per-
formance bymeasuring the time spent in the data assimilation and forecasting parts of
the code, running one hour of data assimilation with observations every five minutes
and one hour of drift forecast. Note that the forecast contains no communication and
should therefore show close to perfect scaling, whereas the data assimilation includes
serial resampling and communication. For the weak scaling experiment, we fix the
per-process ensemble size at 20 members and increase the number of processes from
one to 16. In the strong scaling experiment, the global ensemble size is fixed at 960
members and we vary the number of processes on which they are distributed. Each
process utilizes one GPU. The results are shown in Fig. 5, with both experiments
showing a 14× speedup by using 16 GPUs for the forecast. The speedup for data
assimilation is nearly as good as the forecast, which means that the data assimilation
does a good job preserving the parallel performance.
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4 Discussion and Summary

We have presented a framework for fully nonlinear data assimilation of ocean drift
trajectories into a shallow-water model. The framework is implemented using the
GPU for the shallow-water simulation and MPI for distribution of, and communi-
cation between, ensemble members. Our experiments show significantly increased
forecast skill for simulations with data assimilation, and we are able to run over
10,000 ensemblemembers on the Nvidia DGX-2with 16GPUs. The results indicate,
as expected, that data assimilation with 10,000 members based on 5min sampling of
the observed drifter positions yields a better forecast than 5min sampling with 1000
members.

The results presented herein show that the data assimilation increases the forecast
skill for three of four drifters. The forecast skill for drifter one, however, appears to
be unaffected by the data assimilation, and we believe this is caused by a local pre-
dominant baroclinic ocean dynamic, which is not captured by our current simplified
model. It will be an important future development to see what criteria are significant
for the data assimilation to be most effective, and perhaps include a multi-layer or
reduced-gravity model which can represent such dynamics better.

The simple perturbation strategy presented in this paper adds a smooth pertur-
bation to the sea-surface level and computes the momentum required to keep the
perturbation in geostrophic balance. An important extension will be to conduct more
experiments with more sophisticated perturbation methods and stochastic placement
of the ocean eddies, as well as perturbation of the tidal wave phase.
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Application of an Unstructured Finite
Volume Method to the Shallow Water
Equations with Porosity for Urban Flood
Modelling

Abdelhafid Moumna, Imad Kissami, Imad Elmahi, and Fayssal Benkhaldoun

Abstract We present a finite volume model for the simulation of floods in urban
areas. The model consists of the two-dimensional shallow water equations with
variable horizontal porosity which is introduced in order to reflect the effects of
obstructions. An extra porosity source term appears in the momentum equations.
The main advantage of this model is the significant reduction of the computational
cost while preserving an acceptable level of accuracy. The finite volumemethod uses
a modified Roe’s scheme involving the sign of the Jacobian matrix in the system
for the discretization of gradient fluxes. The performance of the numerical model
is demonstrated by comparing the results obtained using the proposed method to
laboratory experiments for a flow problem over an array of obstacles.
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1 Introduction

Mathematical modelling of shallowwater flows is based on the formulation and solu-
tion of the appropriate equations of continuity and momentum. In general, hydro-
dynamical flows represent a three-dimensional turbulent Newtonian flow in com-
plicated geometrical domains. The cost of incorporating three-dimensional data in
natural water courses is often excessively high. Computational efforts needed to
simulate three-dimensional turbulent flows can also be significant. In view of such
considerations, many researchers have tended to use rational approximations in order
to develop two-dimensional hydrodynamical models for water flows. Indeed, under
the influence of gravity, many free-surfacewater flows can bemodeled by the shallow
water equations with the assumption that the vertical scale is much smaller than any
typical horizontal scale. The shallow water equations in depth-averaged form have
been successfully applied to many engineering problems and their application fields
include a wide spectrum of phenomena other than water waves.

The recent interest for flood simulation involving urbanized areas has also drawn
the attention to the possible use of modified shallow water models with porosity for
large scale flood simulations involving urbanized areas. Here, the porosity accounts
for the reduction in storage and in the exchange sections due to the presence of
buildings and other structures in the flood plain. The concept of porosity leads to
a modification of the propagation equations (flux and source terms), an additional
source term appears in the momentum equations. The porosity coefficient can be
calculated by the ratio of the area available for the flow over the total area. Although
similar in their structure to the source terms induced by the topographic gradient,
the source term induced by the porosity also requires specific treatment of both
momentum and continuity equations. The modified shallow water equations with
porosity were first introduced in a simplified form by Defina et al. [4] and later
modified by Hervouet et al. [5]. In this sense, it should be mentioned the work by
Soares-Frazao et al. [8], who have proposed a finite volume solver for the two-
dimensional shallow water equations with porosity based on the HLL scheme.

In the current study, a finite volume method is proposed for the numerical sim-
ulation of transient flows involving porosity variations. The method consists of a
predictor stage where the numerical fluxes are constructed and a corrector stage to
recover the conservation equations. The sign matrix of the Jacobian matrix is used
in the reconstruction of the numerical fluxes. The method has been investigated in
[2] for solving the canonical shallow water models without accounting for porosity
variation. The current study presents an extension of this method to transient flows
involving porosity variation in the water flows.
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2 Shallow Water Equations in Porous Media

The shallowwater equations with porosity are obtained by depth-averaging the three-
dimensional incompressible Navier-Stokes equations under the assumptions that the
vertical component of acceleration has a negligible effect on the water pressure (i.e.,
the pressure is hydrostatic). These equations can be written in conservation form as

∂

∂t
(φh) + ∂

∂x
(φhu) + ∂

∂y
(φhv) = 0 (1)

∂
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(φhu) + ∂
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(φhu2 + 1

2
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ρ
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ρ

where t is the time variable, (x, y)T the space coordinates, (u, v)T the depth-averaged
water velocity, h the water depth, Z the bottom topography, g the gravitational accel-
eration and φ the porosity. The value of φ lies between 0 and 1, φ = 1means no solid
structures in the control volume, and φ = 0 means no water in the control volume.
Note also that for a constant porosity φ, Eq. (1) reduce to the conventional shallow
water equations widely investigated in computational hydraulics.

The variables Z and φ can be involved in the system to have a homogeneous
system by adding the following two equations ∂Z

∂t = 0 and ∂φ

∂t = 0, expressing the
fact that the bottom Z and the porosity φ depend only on the space variables.

τf ,x and τf ,y are the components of the bed friction stress, they are defined by

τf ,x

ρ
= φgh

η2|U |
h4/3

u,
τf ,y

ρ
= φgh

η2|U |
h4/3

v (2)

where η represents the Manning friction coefficient and ρ the water density.
τd ,x and τd ,y represent the drag force components that water exerts on obstructions

when it is in motion, it is a parallel and opposite force to the flow. This additional
drag source term can be expressed, as [8], by

τd ,x

ρ
= 1

2

NhLx
A

Cx|U |u, τd ,y

ρ
= 1

2

NhLy
A

Cy|U |v (3)

where Cx, Cy are the drag coefficients following the two horizontal directions x and
y respectively, |U | is the averaged velocity modulus of the water, Lx, Ly are the
obstructions projection lengths inside the urban region in the x and y directions,
and A is the area of a region in which there are N obstructions, each of them with a
horizontal surface S. In this situation the surface porosity is given by φ = 1 − NS/A.

For simplicity in the presentation, Eq. (1) are reformulated in a compact vector
form as
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∂W
∂t

+ ∂F(W)
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= S1(W) + S2(W) (x, y) ∈ Ω (4)

where W is the vector of variables representing conserved quantities, S1(W) and
S2(W) define the source terms in the system (1), F(W) andG(W) are the advection
flow functions.
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3 Application of the SRNH Scheme

3.1 Finite Volume Discretization

The finite volume method is based on two main steps: the discretization of the
computational domain into a finite number of control volumes, and the integration
of the system of equations on each control volume.

To discretize the space domain Ω̄ = Ω ∪ Γ we use conforming triangular ele-
ments Ti such as Ω̄ = ∪Ne

i=1Ti, with Ne is the total number of elements. Each triangle
represents a control volume and the variables are located at the geometric centres of
the cells. Hence, a finite volume discretization of (4) yields

∂Wi

∂t
+ 1

|Ti|
∑
j∈N (i)

∫
Γij

F (W;n) dσ = 1

|Ti|
∫
Ti

S1(W) dV + 1

|Ti|
∫
Ti

S2(W) dV

(5)
where |Ti| is the area of the element Ti andN (i) the set of neighboring cells of Ti,Wn

i
an average value of the solutionW in Ti andF (W;n) is the physical flux function.
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Using these notations, the semi-discrete equations (5) become

∂Wi

∂t
= − 1

|Ti|
∑
j∈N (i)

F
(
Wij;nij

) ∣∣Γij

∣∣ + S1i + S2i. (6)

The spatial discretization of the system (4) is complete once a reconstruction is
chosen for the numerical fluxes and source terms in (6).

3.2 Discretization of the Gradient Fluxes

In this section, we extend and apply the NonHomogeneous Riemann Solver (SRNH)
to the discretization of the shallow water system with porosity. Recall that the SRNH
scheme is dedicated to the approximation of the hydrodynamic part of the system
and the source terms coming from the bed variations and drag forces. It consists
in two stages, a predictor stage in which the state variables on each interface of
the mesh are evaluated by solving a Riemann problem projected along the normal
and the tangential using an upwind scheme, and a corrector stage in which the time
incrementation is performed by calculating the physical flux at the average states
obtained in the predictor stage.

Let us then consider the advection part of equations (4) with the source terms of
bed variations and drag forces

∂W
∂t

+ ∂F(W)

∂x
+ ∂G(W)

∂y
= S1(W) (7)

Using the expressions of the normal velocity uη = unx + vny and tangential velocity
uτ = −uny + vnx, we can reformulate the projected equations associated with (7) as
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∂Z

∂t
= 0,

∂φ

∂t
= 0.

Notice that the last two equations in (8) have been included in the system to
formulate the projected system in an advection form without source terms. Thus, an
equivalent system of (8) can also be rewritten in a vector form as
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Step 1:Predictor Stage

The predictor stage of the (SRNH) scheme consists in using the projected system to
compute the average states Un

ij on each interface Γij between two control volumes Ti
and Tj. It is formulated using an upwinding as

Un
ij = 1

2

(
Un

i + Un
j

)
− 1

2
sgn

[
Aη

(
U

)] (
Un

j − Un
i

)
. (10)

In (10), the sign matrix of the Jacobian is defined by

sgn
[
Aη

(
U

)] = R(U) sgn
[
Λ(U)

]
R−1(U),

withΛ is the diagonalmatrix of eigenvalues, andR is the right eigenvectormatrix.
This sign matrix must be evaluated in the averaged state of Roe U given in [1].

Step 2:Corrector Stage

The predictor stage (10) makes it possible to determine the projected convective
states Un

ij on each interface Γij. The non-projected conservative states Wn
ij are then

reconstructed using the transformations u = uηnx − uτny and v = uηny + uτnx.
The incremental step is then written using the physical flux evaluated on these

conservative states.With a first order Euler method for time integration, the corrector
stage writes

Wn+1
i = Wn

i − Δt

|Ti|
∑
j∈N (i)

F (Wn
ij; nij)|Γij| + ΔtSn1i. (11)

The treatment of the source terms in the shallow water equations presents a chal-
lenge in many numerical methods, compare [2, 3, 7] among others. In our solver,
the source term approximation Sn1i in the corrector stage is reconstructed in such a
way to ensure a well balanced scheme preserving positivity of the water depth. For
the details on the reconstruction, the reader can refer to [1].
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4 Numerical Results and Examples

To assess the performance of our method and the model, we present numerical simu-
lations of floods due to dam-break in a channel containing a simplified city. We also
compare the computed results to those obtained using the conventional shallowwater
equations and experimental data [6]. The simulations have been performed using a
time stepsize Δt that is adjusted at each step according to the stability condition

Δt = Crmin
Γij

(
|Ti| + ∣∣Tj

∣∣
2

∣∣Γij

∣∣maxp
∣∣(λp)ij

∣∣
)

,

where Γij is the edge between two cells Ti and Tj, (λp)ij denotes the pth eigenvalue
evaluated on Γij and Cr the Courant number taken here equal to 0.8.

This test case was proposed by the team of the Catholic University of Louvain to
simulate the risks of floods. Inside the channel, a simplified city is arranged with a
set of buildings distributed in staggered rows (see the left Fig. 1). The channel has a
length L = 36m and a width l = 3.6m. A section narrowing and a door are arranged
in order to simulate dam-break.

In the area containing the buildings, the porosity coefficient φ is computed by

φ = 1 − S

St
= 1 − 22 ∗ 0.32

1.92
= 0.45.

For the rest of the channel, φ takes the value 1. The right Fig. 1 shows a 2D distri-
bution of the porosity in the channel. The break is located at the gate of the channel
which is kept open and a rate Q = 0.09m3/s is imposed there. The Manning’s coef-
ficient is taken equal to 0.01s/m1/3. The walls are considered solid, while Neumann
conditions are imposed at the exit of the channel.

We compare two models with free surface: the first is Classical Saint-Venant
model, noted STVC, which considers that buildings are represented by solid bound-
aries. These buildings are therefore not meshed but taken into consideration in the
boundary conditions. The second model is Saint-Venant with porosity, noted STVP.
This model as already indicated considers the entire channel in the generation of
the mesh, including the urban areas. The areas of the simplified city (buildings) are
taken into consideration by defining in these zones a porosity φ �= 1 (here φ = 0.45)

X

Y

0 5 10

-1

0

1

φ = 0.45φ = 1

Fig. 1 Experimental device (left) and 2D distribution of the porosity in the channel (right)
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Fig. 2 Mesh used by the STVP (left) and STVC (right) models
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Fig. 3 Profiles of the free surface at physical time t = 400 s along the axis y = 0m

in these zones. Figure 2 shows the meshes used for both STVP and STVC models,
containing respectively 6082 and 16232 elements.

In the Fig. 3, we present the free surface at the physical time t = 400 s along
the axis y = 0m. A comparison is made between the classical Saint-Venant model
(STVC), the Saint-Venant model with porosity (STVP) with and without loss of
charge, and experimental data. It is clear from the figure that the STVC model gives
consistent results with the experimental one.

Figure 3 also shows that although the simulation of the STVP model generally
finds the behavior of the flow, the profile of the free surface obtained by neglecting
the head losses (Sx = Sy = 0) is quite different from the experimental one, which
shows that the porosity is not sufficient to represent the influence of the urban area.

The interest of taking into account the head loss terms is also clearly illustrated
in the figure. Taking (Sx = 4, Sy = 2), we see that the profile of the free surface is
significantly improved.

Figure 4 shows the velocity fields obtained by the two models STVC and STVP.
It is clear that the STVC simulation gives results very close to the experimental
measurements, so it can be used as a reference for the validation of the STVP model.
In the left Fig. 4, one observes the good behavior of the flow at the crossroads.
The extension of the very low velocity zone, located downstream the city, is also
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Fig. 4 Velocity fields obtained by the STVP (left) and the STVC (right)

well simulated, but the orientation of the velocity vectors is a little different in the
two simulations. On a large scale, the two simulated velocity fields are very close.
The main characteristics of the flow can be assumed to be well reproduced by the
simulation of the STVP model.

5 Conclusions

A study of flood risks in channels with urbanized areas was considered. As an alter-
native to the classical Saint-Venantmodel, we proposed amodel of Saint-Venant with
porosity. This new model does not require the consideration of urban areas in the
mesh generation, but rather a variable porosity is introduced. The test case considered
as well as the comparisons with the experimental data, showed the performance of
the STVP model and the developed finite volume solver. These results also showed
that the porosity alone cannot adequately represent the flow in the crossroads and
that the head loss terms are necessary in the model.
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Abstract In this paper, we propose a semi-implicit well-balanced scheme for the
Ripa model based on a two-speed relaxation. The method both preserves equilib-
ria and has an implicit step that reduces to the inversion of a constant Laplacian.
Numerical simulations show that the scheme well capture low-Froude flows.
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1 Introduction

To discretize two-scale hyperbolic problems with a good accuracy, several methods
have been proposed and are generally based on semi-implicit schemes to prevent us
from the fast scale stringent stability condition. In [1, 2], such a scheme have been
proposed and it is based on very recent relaxation method and a dynamical splitting.
This method allows to adapt the time discretization to the regime and the implicit step
just reduces to the inversion of a discrete Laplacian with constant coefficient. In this
paper, we adapt this numerical scheme to the Ripa model with topography, which
describes shallow-water flows with horizontal temperature gradients. In the Ripa
model, the fast scale dynamics are perturbative gravity waves around an equilibrium
and the slow scale dynamics is the convection. Here equilibria are balance between
the pressure gradient and the topography source term. In addition to the implicit
treatment of the perturbative waves, the scheme has to preserve the equilbria so to
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prevent the generation of spurious waves around them. This is the so-called well-
balanced property.

We consider the one-dimensional Ripa model [3]:

⎧
⎨

⎩

∂t h + ∂x (hu) = 0,
∂t (hu) + ∂x (hu2 + p(h,�)) = −gh�∂x z,
∂t (h�) + ∂x (h�u) = 0,

(1)

where h(x, t) is the water height, u(x, t) the velocity, �(x, t) the temperature and
z(x) the topography and the pressure law is given by: p(h,�) = g� 1

2h
2, with g

the gravity constant. This system is hyperbolic and has three characteristic speeds:
� = {u − c, u, u + c}, with c = √

gh�.We introduce the Froude number Fr = u/c,
which describes the ratio between the two velocity scales. We are interested into
perturbations of stationary solutions. These solutions are obtained by the balance law
between pressure force and source term: ∂x p = −gh�∂x z. Hereafter we consider
the following three families of equilibria, with zero velocity:

⎧
⎨

⎩

u = 0,
� = cst,
h + z = cst,

⎧
⎨

⎩

u = 0,
z = cst,
� h2

2 = cst,

⎧
⎨

⎩

u = 0,
h = cst,
z + h

2 ln(�) = cst.
(2)

The first aim is to write a scheme that preserves these steady states. Indeed, if the
scheme does not preserve the steady states, spurious velocity and pressure modes
would appear and would destroy the accuracy of the scheme for small velocity (low
Froude regime). The second aim is to capture the dynamics near an equilibrium with
an acceptable cost. For example, we consider the following perturbation O(Fr) of
the first steady equilibria with Fr � 1. In that case, the perturbation has a small
amplitude but moves with a large propagation speed of order O(1/Fr). Therefore,
implicit schemes are usually required to filter these small fast waves.

2 Two-Speed Relaxation System

To simplify the implicit treatment of the dynamics,wepropose a relaxationmodel that
linearizes the fast scale associated to the gravity waves. We introduce two additional
unknows�(x, t) and v(x, t) and consider the following extended hyperbolic system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂t h + ∂x (hv) = 0,
∂t (hu) + ∂x (huv + �) = −gh∂x z,
∂t (h�) + ∂x (h�v) = 0,

∂t� + v ∂x� + hmλ2∂xv = 1
ε

(
p(h,�) − �

)

∂t v + v ∂xv + 1
hm

∂x� = − h
hm
g�∂x z + 1

ε

(
v − u

)

(3)



Semi-implicit Two-Speed Well-Balanced Relaxation Scheme for Ripa Model 737

with hm > 0 and λ > 0 are constant relaxation parameters and where ε > 0 is the
relaxation parameter. This system is an approximation of (1) in the limit ε tends to
zero. This result can be shown formally.

Proposition 1 As ε → 0, the relaxation system (3) is consistent at first order in ε

with

⎧
⎨

⎩

∂t h + ∂x (hu) = ε ∂x (β(∂x p + gh∂x z)),
∂t (hu) + ∂x (hu2 + �

g
2 h

2) = −hg�∂x z + ε ∂x (uβ(∂x p + gh∂x z)) + ε∂x (γ ∂xu)

∂t (h�) + ∂x (h�u) = ε∂x (�β(∂x p + gh∂x z)) ,

(4)

with β =
(

h
hm

− 1
)
, γ = (

hmλ2 − hc2
)
.

The proof is based on a classical Chapman-Enskog expansion detailed for the Euler
system case in [2]. Note that an equilibrium given by ∂x p = −gh�∂x z and u = 0
is still a steady state of the first order approximation (4) of the relaxation system.
It is not the case for all the relaxation models like the Jin-Xin relaxation used in
[1]. This property is necessary, but not sufficient, to obtain a well-balanced scheme
since we will discretize the relaxation system (3) and not the original one. In [2], the
entropy stability of (4) is analysed. This computation adapted to our model gives the
following stability conditions: β ≥ 0, γ ≥ 0.

3 Semi-implicit Scheme

The structure of the relaxation system (3) enables us to devise a semi-implicit scheme
with a simple implicit part. This scheme is based on a splitting method between the
different time-scale dynamics contained in (3).We split system (3) into the convection
part (C), the gravity waves part (W) and the relaxation part (R):

(C)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t h + ∂x (hv) = 0,
∂t (hu) + ∂x (huv + F2�) = −F2 gh�∂x z,
∂t (h�) + ∂x (h�v) = 0,
∂t� + v∂x� + hmλ2∂xv = 0
∂t v + v∂xv + F2

hm
∂x� = −F2 h

hm
g�∂x z

(W )

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂t h = 0,
∂t (hu) + (1 − F2) (∂x� + hg∂x z) = 0,
∂t h� = 0
∂t� + (1 − F2)hmλ2∂xv = 0

∂t v + (1 − F2)
(

1
hm

∂x� + h
hm
g∂x z

)
= 0

(R)

{

∂t� = 1

ε
(p(h,�) − �) , ∂t v = 1

ε
(u − v) ,
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where F = max
(
Fmin,min

(
u√
h�g

, 1
))

is an estimation of the global Froude num-

ber. Introduced in [4], this dynamic splitting allows to adapt itself to the dynamics.
In practice, the relaxation step (R) is treated as a projection: � = p(h,�) and

v = u. The key point is the discretization of the waves part (W) with an implicit
solver. First, we note that ∂t h = 0 so that the topography source term can be treated
explicitly. The construction of the implicit scheme is based on the following remark:
the equations on v and � form a linear independent system. We can thus discretize
all the equations of (W) with an implicit Euler scheme and then we get an implicit
elliptic problem on �n+1 by plugging the expression of vn+1 in the � equation. This
elliptic problem is linear and has constant coefficient. After solving this problem, we
obtain �n+1 and then vn+1 and (hu)n+1 can be computed with an explicit cost. For
the spatial discretization, we use a classical finite volume scheme for the elliptic part
and the central flux for the first derivative. The final algorithm writes:

• Step 1: solve

(

�n+1
j − (1 − F2)2
t2λ2

�n+1
j+1 − 2�n+1

j + �n+1
j−1


x2

)

=

�n
j − 
t (1 − F2)λ2

vnj+1 − vnj−1

2
x
(1 − F2)2
t2λ2 1


x

(
Sn
j+ 1

2
− Sn

j− 1
2

)
,

with
Sn
j+ 1

2
= hn

j+ 1
2
�n

j+ 1
2

z j+1 − z j

x

, (5)

where the quantities h j+ 1
2
and � j+ 1

2
will be define below.

• Step 2: compute

vn+1
j = vnj − (1 − F2)


t

hm

�n+1
j+1 − �n+1

j−1

2
x
− (1 − F2)


t

hm

g

2

(
Sn
j+ 1

2
− Sn

j− 1
2

)
,

(hu)n+1
j = (hu)nj − 
t (1 − F2)

�n+1
j+1 − �n+1

j−1

2
x
− g
t

2
(1 − F2)

(
Sn
j+ 1

2
− Sn

j− 1
2

)
.

4 Well-Balanced Fluxes

The convective part (C) is discretized with a first order explicit finite volume scheme.
The numerical flux for the transport terms is constructed so that it preserves the steady
states and this will provide the value of h j+ 1

2
and � j+ 1

2
. Following [5, 6], the idea

consists in splitting the flux and then using a specific numerical fluxes for each part.
Here, we propose to decompose the flux term in three parts:



Semi-implicit Two-Speed Well-Balanced Relaxation Scheme for Ripa Model 739

⎛

⎜
⎜
⎜
⎜
⎝

∂x (hv),
∂x (huv + F2�)

∂x (h�v)
v∂x� + hmλ2∂xv
v∂xv + F2

hm
∂x�

⎞

⎟
⎟
⎟
⎟
⎠

= ∂x

⎛

⎜
⎜
⎜
⎜
⎝

hv
huv + F2�

h�v
0
0

⎞

⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎝

0
0
0

v∂x�
v∂xv

⎞

⎟
⎟
⎟
⎟
⎠

+ ∂x

⎛

⎜
⎜
⎜
⎜
⎝

0
0
0

hmλcv
1
hm
F2�

⎞

⎟
⎟
⎟
⎟
⎠

= ∂x Fc + F∗
nc + ∂x F�a

For the non-conservative part F∗
nc, we use a non-conservative upwind scheme. For the

linear acoustic part F�a , we propose a modified acoustic flux that takes into account
spatial variation due to the source term using the Jin-Levermore method [7]. The
linear acoustic part writes:

∂t� + hmλ2∂xv = 0, ∂t v + F2 1

hm
∂x� = 0,

and can be diagonalized as follows:

{
∂t

( hmλ

F v − �
) − Fλ∂x

( hmλ

F v − �
) = 0,

∂t
( hmλ

F v + �
) + Fλ∂x

( hmλ

F v + �
) = 0.

To define the intermediate value of � and v in the fluxes at node x j+ 1
2
, we thus

consider the upwinded quantities:

{( hmλv
F − �

)

j+ 1
2

= hmλ

F v(x+
j+ 1

2
) − �(x+

j+ 1
2
),

( hmλv
F + �

)

j+ 1
2

= hmλ

F v(x−
j+ 1

2
) + �(x−

j+ 1
2
).

(6)

Following [7] and as already done for the Euler gravity system in [8], we precise
these formula by considering the possible spatial variation of � at equilibria:

�(x j ) ≈ �(x−
j+ 1

2
) − 
x

2
∂x�(x j+ 1

2
) ≈ �(x−

j+ 1
2
) + 
x

2
h(x j+ 1

2
)�(x j+ 1

2
)g∂x z(x j+ 1

2
).

We define similarly �(x+
j+ 1

2
). Then plugging these values in (6) and considering

v(x+
j+ 1

2
) = v(x j+1) and v(x−

j+ 1
2
) = v(x j ), we obtain at the discrete level:

{( hmλv
F − �

)

j+ 1
2

= hmλ

F v j+1 − � j+1 + 
x
2 h j+ 1

2
� j+ 1

2
g z j+1−z j


x ,
( hmλv

F + �
)

j+ 1
2

= hmλ

F v j + � j − 
x
2 h j+ 1

2
� j+ 1

2
g z j+1−z j


x .
(7)

Then we obtain the following intermediate values for the modified acoustic fluxes:

⎧
⎨

⎩

v∗
j+ 1

2
= 1

2

(
v j+1 + v j

) − F
2hmλc

(
� j+1 − � j + gh j+ 1

2
� j+ 1

2
(z j+1 − z j )

)
,

�∗
j+ 1

2
= 1

2

(
� j+1 + � j

) − hmλc
2F

(
v j+1 − v j

)
.
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Finally, for the convection part, we use an upwind scheme at the velocity v∗
j+ 1

2
for

the quantities h, hu, h� and we use �∗
j+ 1

2
for the pressure term.

To ensure the well-balanced property, we consider the following discretization
for the source terms [8]:

Sj = −g
1

2

(
Sj+ 1

2
+ Sj− 1

2

)
. (8)

where Sj+ 1
2
are defined in (5).

Proposition 2 Considering that u j = 0, v j = 0 and � j = 1
2g� j h2j , the schemes

for the convective part (C) and for the wave part (W) are well-balanced for the three
type of steady states:

{
� j = cst,
h j + z j = cst,

{
z j = cst,
� j (h j )

2/2 = cst,

{
h j = cst,
z j + h j ln(� j ) = cst,

(9)

if we choose in the scheme

h j+ 1
2

= 1

2
(h j + h j+1), � j+ 1

2
=

{
� j+1−� j

ln(� j+1)−ln(� j )
, if � j+1 �= � j ,

� j , if � j+1 = � j .

Indeed, with this choice, then v∗
j+ 1

2
= 0 for all the steady-states. Consequently, all

the transport terms at velocity v∗
j+ 1

2
in (C) vanish. It remains to prove that the balance

between the pressure term (�∗
j+ 1

2
− �∗

j− 1
2
)/
x = (�n

j+1 − �n
j−1)/(2
x) and the

source term. This follows from the choice (8).We do not detail the computation here.
For the implicit scheme for (W ), the preservation of these steady states results from
this balance between discret gradient pressure and the source term and also from the
centered discretization.

5 Numerical Results

First, we consider a classical test case for well-balanced schemes. The initial data
is taken as a steady state and we compare the classical Rusanov scheme with the
semi-implicit two-speed well-balanced scheme (SI two-speed WB) on a large time
interval [0, T f ]. The CFL condition of our scheme is given by


t ≤ 
x

maxx |u(t, x) + F(t)
√
h(t, x)�(t, x)g| .


t ≤ 
x

max j | u j + F(t)
√
h j� j g |
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The parameter F(t) depends on an important parameter Fmin. If u = 0, there is
still a small part of the gravity wave dynamics which is explicit and generates a CFL
condition:
t ≤ 
x/(Fmin

√
h�g). Hence, decreasing this parameterFmin increases

the time step. We remark also that when Fmin = 1, the scheme is explicit. The initial
data are given by u0(x) = v0(x) = 0, �0(x) = 1

2�0(x)h0(x)2 with the following
topography z(x), initial water height h0(x) and temperature �0(x):

(ST 1) z(x) = 0.1 + Gx0,σ (x), h0(x) = 8.0 − z(x), �0(x) = 1,
(ST 2) z(x) = 1, h0(x) = 1.0 + 0.2Gx0,σ (x), �0(x) = 1

gh0(x)2
,

(ST 3) z(x) = x(1 − x), h0(x) = 1, �0(x) = 2e−x(1−x).

with G(x, σ ) = 1√
2πσ

exp(− (x−x0)2

σ
) and σ = 0.06. We consider g = 1, Nc = 200

cells and T f = 20. The results are given in the table below.
The results show that the SI two-speedWB is exactly well-balanced in the explicit

version (Fmin = 1). In the semi-implicit case, it is more complicated. At the theoreti-
cal level the scheme is well-balanced, but the implicit part generates very small errors
close to machine precision and these errors are slowly propagated. The scheme does
not preserve the steady states exactly. However, we remark that with Fmin = 0.005,
the errors are very small (between 1.0E−11 and 1.0E−13) with a time step 200 larger
than the one of the explicit schemes. In the following, we will show that the scheme
well capture the flow around steady states and that these perturbative errors does not
deteriorate the results contrary to classical non well-balanced schemes.


t /Error Tests Explicit Rusanov SI two-speed WB
(Fmin = 1)

SI two-speed WB
(Fmin = 0.1)

SI two-speed WB
(Fmin = 0.005)

ST1 Error h 1.5E−2 1.5E−17 1.5E−13 3.6E−13

Error u 5.9E−3 1.5E−15 4.8E−11 6.7E−13

Error � 0.0 0.0 0.0 0.0

t 8.1E−4 7.1E−4 7.1E−3 1.42E−1

ST2 Error h 9.3E−2 0.0 6.4E−11 8.4E−12

Error u 7.3E−9 0.0 8.7E−13 1.3E−13

Error � 0.13 1.8E−17 8.2E−11 6.0E−12


t 2.5E−3 2.3E−3 2.3E−2 4.7E−1

ST3 Error h 0.59 0.0 7.1E−9 1.38E−12

Error u 0.65 1.6E−15 1.0E−9 4.4E−14

Error � 0.19 0.0 9.4E−9 1.4E−12


t 2.4E−3 1.8E−3 1.8E−2 0.49

Then we introduce a perturbation in the (ST3) test-case, h0(x) = 1 + 0.001
G0.8,σ (x), on the domain is [0, 3]. In Fig. 1, we compare the explicit Rusanov scheme
with the SI two-speed WB scheme. We observe that the non-WB explicit Rusanov
scheme is not able to capture the physical perturbation: the scheme creates a numer-
ical perturbation larger that the physical one (in red), for 1200 cells, or with the same
size (in blue) with 12000 cells. The SI two-speedWB scheme does not create numer-
ical perturbations and capture correctly the physical perturbation with a coarser grid.
The results are better with 600 cells and the SI two-speed WB scheme that with
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Fig. 1 Left: explicit Rusanov scheme; In green the initial data. In red the solution on a semi-coarse
grid (1200 cells), in blue the solution on a fine grid (12,000 cells). Right: SI two-speedWB; in green
the initial data. In red the solution on a coarse grid (600 cells), in blue the solution on a semi-coarse
grid (4800 cells)

12,000 cells with the non-WB Rusanov scheme. Additionally, the results obtained
with the SI two-speed WB scheme are given with a 10 times larger time step than
the explicit one. We cannot increase too much the time step here since the implicit
part of the schemes would create numerical diffusion on the gravity wave part.

6 Conclusion

In this paper, we propose a semi-implicit relaxation scheme for the Ripa model, that
is well-adapted to treat the low-Froude regime. Indeed, we are able to take very large
time steps compared to the gravity waves time scale and the accuracy of the scheme
is independent of the Froude number. The two-speed relaxation allows to have an
implicit step with a constant linear Laplacian. Additionally the scheme is able to
preserve non-trivial steady states with a very good accuracy, with small errors for
very large time steps. However the scheme is not able to treat wet/dry transitions.
The 2D extension has been performed for the Euler system in [2]. In the future, we
propose to extend the method to flows around equilibria MHD system.
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Kinetic Over-Relaxation Method for the
Convection Equation with Fourier Solver

Romane Hélie, Philippe Helluy, Emmanuel Franck, and Laurent Navoret

Abstract In this paper, we apply the CFL-less kinetic over-relaxation scheme pre-
sented in Coulette et al. (Comput Fluids 190:485–502 [1]) to the convection equation
in two space dimensions. The method is a succession of free-transport steps and col-
lisions steps. The free transport steps are solved with Fourier discretization. The
collision steps are solved with over-relaxation for achieving high order. The method
reaches six-order accuracy when using palindromic composition method. We apply
the method to the guiding-center model in plasma physics.
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1 Introduction

The kinetic over-relaxation method [1] is a time semi-discrete method based on
the approximation of a non-linear convection equation by a set of linear transport
equations with constant velocities. Very efficient, CFL-less, and accurate transport
solvers like Fourier methods can be used. Moreover, the over-relaxation technic lead
to second-order accuracy in time. Even higher order can be achieved by composition
methods. In this paper, we apply these methods to the convection equation in two-
dimension and we show that it is particularly appropriate to solve the guiding center
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model,where the convectionvelocityfield is givenby a solution to aPoisson equation.
The guiding center model is a simplified model to describe the two-dimensional
dynamics of the charge density in a Tokamak. The particles are confined in the
toroidal room thanks to a large external magnetic field B. Among several dynamics,
this magnetic field leads to the so-called E × B drift of the particles, where E is the
self-induced electric field. This model is also equivalent to the 2d incompressible
Euler equation in the vorticity formulation. The dynamics result in very fine scale
structures and thus require very accurate solvers.

2 Kinetic Over-Relaxation Approximation
of the Convection Equation

We consider the following convection equation:

∂tρ(t, x) + ∇ · (ρ(t, x) a(t, x)
) = 0, (1)

where a(t, x) ∈ R
d is the velocity field and ρ(t, x) ∈ R is the convected density.

To solve this convection equation with non-constant velocity field, the relax-
ation method consists in approximating it with several transport equations at con-
stant velocities. More precisely, we introduce a kinetic vector f(t, x) = ( f1(t, x),
f2(t, x), . . . , fN (t, x)) ∈ R

N , whose components are associated to different veloci-
ties (λλλ1, . . . ,λλλN ) ∈ (Rd)N . To a given kinetic vector f(t, x), we associate a macro-
scopic density

ρf(t, x) =
N∑

i=1

fi (t, x).

The numerical scheme is devised such that ρf is an approximation of the solution
ρ. To this end, for any given density ρ ∈ R, we introduce the so-called equilibrium
kinetic vector feq[a,ρ] that satisfies the following consistency relations:

ρ =
N∑

i=1

f eq[a,ρ],i , ρa =
N∑

i=1

λλλi f
eq
[a,ρ],i . (2)

The scheme is based on a time discretization of the following equation:

∂t f +
d∑

k=1

ΛΛΛk∂xk f = 1

ε

(
feq[a,ρf ] − f

)
,

whereΛΛΛk = diag((λλλ1)k, . . . , (λλλ2)k) are N × N diagonal matrices, for k = 1, . . . , d,
and where ε > 0 is a small parameter that controls the distance to the equilibria
set. In the time-discretization, the time-dependent relaxation operator in the r.h.s. is
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replaced by a projection onto the equilibria set or a symmetry with respect to the
equilibria set or a combination of the two.

The time semi-discretization of the over-relaxation scheme writes as follows.
We start from the equilibrium distribution associated with the initial data: f(0, x) =
feq[a(0,x),ρ0(x)]. Then, at each time stepΔt > 0, starting from f(t, x), we compute f(t +
Δt, x) in two steps:

1. (transport step) advect the several kinetic components fi with their respective
velocities λλλi ∈ R

d

f ∗
i (t + Δt, x) = fi (t, x − Δtλλλi ), ∀i ∈ {1, . . . , N },

which is also denoted in compact form: f∗(t + Δt, .) = T (Δt)f(t, .).
2. (over-relaxation step) compute ρf∗(t+Δt,.) and then perform the following relax-

ation

f(t + Δt, .) = f∗(t + Δt, x) + ω
(
feq[a(t+Δt,.),ρf∗ (t+Δt,.)] − f∗(t + Δt, x)

)
,

with ω ∈ [1, 2] a given parameter, also denoted: f(t + Δt, .) = Rωf∗(t + Δt, .).
For ω = 1, we obtain the projection onto the equilibria set and for ω = 2, we get
the symmetry w.r.t the equilibria set.

The combination of these two steps writes as follows:

f(t + Δt, .) = M1(Δt)f(t, .), with M1(Δt) =
(
Rω ◦ T (Δt)

)
,

Then ρf is a first-order approximation of the solution ρ to (1) for ω < 2 and a
second-order approximation if ω = 2. We refer the reader to [1, 2] as regards the
corresponding equivalent equation. From this equivalent equation, we can infer the
so-called sub-characteristic condition that ensures the dissipativity of the second-
order term in the expansion.

As presented in [1], higher-order time discretization can be devised by considering
the following second-order time-symmetric operator:

M2(Δt) =
(
T

(
Δt

4

)
◦ R2 ◦ T

(
Δt

2

)
◦ R2 ◦ T

(
Δt

4

))
,

and then using a palindromic composition method

Mp(Δt) = M2(s0Δt) ◦ M2(s1Δt) ◦ · · · ◦ M2(spΔt),

where si = sp−i , for i = 0, . . . , p. We will consider the fourth-order Suzuki scheme
(p = 4) and the sixth order Kahan-Li scheme (p = 8). We refer to [1] for the expres-
sion of the corresponding parameters.
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This numerical scheme has the advantage to concentrate all the non-linear opera-
tors in a local step, while the transport step becomes fully linear. Therefore, CFL-less
method can be employed to make these transport steps. A semi-Lagrangian scheme
has been used in [2]. On non-Cartesian meshes, implicit Discontinuous Galerkin
method with upwind fluxes can be used as proposed in [1]. Here, we consider a
Fourier discretization of the transport equation, ensuring a spectral accuracy.

In the sequel, we will use the so-called [D2Q4] kinetic approximation (N = 4).
It consists in introducing the four velocities directed along the Cartesian axes:

λλλ1 =
[
λ

0

]
, λλλ2 =

[
0
λ

]
, λλλ3 =

[−λ

0

]
, λλλ4 =

[
0

−λ

]
,

with λ > 0 and then we define the kinetic equilibrium vector:

f eq[a,ρ],i = ρ

4
+ ρ(a · λλλi )

2λ2
, ∀i ∈ {1, 2, 3, 4}.

This is the only solution to consistency relations (2), which satisfies symmetries. The
sub-characteristic condition writes in that case: λ > max[0,T ]×	 ||a(t, x)||, where
[0, T ] × 	 is the computational domain.

We will also consider the [D2Q5] kinetic approximation (N = 5), where a fifth
central null velocity is added:

λλλ1 =
[
λ

0

]
, λλλ2 =

[
0
λ

]
, λλλ3 =

[−λ

0

]
, λλλ4 =

[
0

−λ

]
, λλλ5 =

[
0
0

]
.

where λ > 0. The kinetic equilibrium vector has to satisfy consistency relations (2):

ρ = f eq[a,ρ],1 + f eq[a,ρ],2 + f eq[a,ρ],3 + f eq[a,ρ],4 + f eq[a,ρ],5,

ρa1 = λ( f eq[a,ρ],1 − f eq[a,ρ],3), ρa2 = λ( f eq[a,ρ],2 − f eq[a,ρ],4).

This system is underdetermined. As already proposed in [2] for the one-dimensional
case, we consider the following decomposition based on a flux-splitting

f eq[a,ρ],i = ρ (λλλi · a)+ , ∀i ∈ {1, 2, 3, 4}, f eq[a,ρ],5 = ρ −
4∑

i=1

f eq[a,ρ],i ,

where for any v ∈ R, v+ = max{v, 0} stands for the positive part of v or canbe approx-
imated by a smooth version v+ = (v + Hr (v))/2 where Hr (v) are Halley’s functions
defined recursively by: H0(x) = 1, Hr+1(x) = Hr (x)(Hr (x)2 + 3x2)/(3Hr (x)2 +
x2). The sub-characteristic condition is the same as for the [D2Q4] approximation.
As explained in [2], this scheme is expected to be more precise and better captures
unidirectional flows.
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3 Numerical Results

In this section, we validate the numerical scheme on two test-cases: the rotation
advection test-case and the Kelvin-Helmholtz test-case for the guiding-center model.
In these two test-cases, the transport part T (Δt) is discretized with a Fourier method.

3.1 Rotation Test-Case

We consider the convection equation (1) where the velocity field is given by
a(x) = x⊥. This velocity field is divergence free: ∇ · a = 0. Therefore, the con-
vection equation (1) is equivalent to the advection equation:

∂tρ(t, x) + a(x) · ∇ρ(t, x) = 0,

and the exact solution is just the rotation of the initial density around the origin.
In the following, we consider the domain 	 = [−1, 1] × [−1, 1] and the exact

solution:

ρ(t, x) = 1

2π
exp

(
−‖R(t)(x − x0)‖2

σ 2

)
.

where σ = 0.1 and x0 = (0.5, 0) and R(t) is the rotation matrix of angle t . We use
Nx = Ny = 200 discretization points in each direction.

Figure1 (left) shows that the [D2Q4] scheme is first order accurate with the
relaxation parameter ω = 1.95. Second order accuracy is achieved with ω = 2 for
both [D2Q4] and [D2Q5] using the M1 operator. As expected, we also note that the
[D2Q5] is more accurate than the [D2Q4] scheme.

Fig. 1 L2 error between the exact and the numerical solution obtained as function of the time step.
Left: Comparison between q = 4 ([D2Q4]) and q = 5 ([D2Q5], r = 4) for different ω. Right:
Comparison between different splitting operators when using the [D2Q5] method (r = 4) with a
Kahan-Li palindromic composition and ω = 2. Parameters: λ = 2.1, Nx = Ny = 200
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In Fig. 1 (right), we observe that the M2 operator is required to obtain the sixth-
order accuracy of the Kahan-Li composition method. Using the M1 operator leads to
a second order operator and the Strang splitting MS

2 (Δt) = (
T

(
Δt
2

) ◦ R2 ◦ T
(

Δt
2

))

to a fourth-order accuracy only.
As regards the computational time, we observe in Table1 that considering M1 is

1.26 times more efficient than considering M2 when ω = 2. Indeed, both methods
are of order 2 and M1 requires less transport steps. However, using M2, we can
use the Suzuki or the Kahan-Li composition methods that are respectively 22 and
34 times faster. For these comparisons, we use the [D2Q5] method. The [D2Q4]
method seems just as fast even though it requires more transport steps. Although
more accurate, the [D2Q5] is slowed down by the evaluation of the Halley functions.

3.2 Kelvin-Helmholtz Test-Case

We consider the guiding center model that describes the two-dimensional dynamics
of electrons resulting from the E × B drift due to a large magnetic field. Their charge
density is denoted ρ(t, x) > 0 and the guiding center model writes:

∂tρ + E⊥ · ∇ρ = 0, (3)

−Δφ = ρ0 − ρ, E = −∇φ. (4)

where E(t, x) ∈ R
d the electric field andφ(t, x) ∈ R the electric potential.ρ0(t) > 0

denotes the ion background charge density, which is supposed homogeneous. Actu-
ally, this model is equivalent to the 2d incompressible Euler equation in the vorticity
formulation. Here we consider a square domain	with periodic boundary conditions
and we thus assume that ρ0(t) equals the average of the density over the domain:
ρ0(t) = 1

|	|
∫
	

ρ(t, x)dx .

Since E = −∇φ, the advection vector field E⊥ is divergence free. The transport
equation is thus equivalent to the conservative convection equation

∂tρ + ∇ · (ρE⊥) = 0, (5)

Unlike the previous advection equations presented so far, here the advection field
depends on the density itself. Therefore, the over-relaxation scheme is slightly mod-
ified and writes:

1. (transport step) f ∗(t + Δt, .) = T (Δt)f(t, .),
2. (Poisson step) compute ρf∗(t+Δt , .) and then find φ∗(t + Δt, .) by solving the

Poisson equation and then a(t + Δt, .) = E∗(t + Δt, .)⊥.
3. (over-relaxation step) f (t + Δt, .) = Rω f ∗(t + Δt, .).

Note that both the transport step and the Poisson equation can be solved using a
Fourier discretization in the square domain.
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As already considered in [3–5], theKelvin-Helmholtz instability test-case consists
in considering the following initial condition:

ρini t (x, y) = sin x + ε cos(ky),

in the domain [0, 2π ] × [0, 2π/k], with periodic boundary conditions, and where
k ∈ R is the perturbation wave number and ε > 0 is the perturbation amplitude.
This is a perturbation of the stationary solution ρ0(x) = sin x and φ0(x) = − sin x .
According to [4], there exists a critical wave number ks = 1 such that an instability
develops only for k < ks . The instability rates are not known explicitly. However,
we can compute them numerically.

We look for solutions of the form

ρ(x, y, t) = ρ0(x) + ερ1(x, y, t), φ0(x, t) = φ0(x) + ε φ1(x, y, t)

where ρ1(x, y, t) = ρ̃1(x) exp(iky) exp(−iωt), φ1(x, y, t) = φ̃1(x) exp(iky)
exp(−iωt). Following [4], it can be proved that φ̃1 solves the generalized eigen-
value problem:

φ′
0

(
∂x2 φ̃1 − k2φ̃1

)
+ φ̃1ρ

′
0 = −ω/k φ′

0

(
∂x2 φ̃1 − k2φ̃1

)
, (6)

in which ω/k stands for the eigenvalue. As explained in [4], it can be proved that
unstable solutions, corresponding to ω/k with positive imaginary part, exist if and
only if k < ks = 1. For k near ks , a first order approximation of the instability rate
can be computed: ω/k = 2(ks − k)i. Alternatively, we can also compute the insta-
bility rate by solving (6) numerically using a finite difference method. Introducing
a space step Δx = 1/N with N ∈ N and the corresponding spatial discretization of
the interval [0, 1], xi = iΔx , we consider the approximate solution Φ1 ∈ C

N , such
that (Φ1)i ≈ φ̃1(xi ) and which solves the following problem

C
(
D + (1 − k2)Id

)
Φ1 = ω/k

(
D − k2Id

)
Φ1, (7)

where C = diag(cos(x1), . . . , cos(xN )) is diagonal matrix and D is discrete Lapla-
cian matrix with periodic boundary conditions. Therefore, assembling A = C (D+
(1 − k2)Id

)
and B = (

D − k2Id
)
, we just have to compute numerically the eigen-

values of the matrix B−1A and then keep the one with the largest imaginary part.
In Fig. 2 (left) is plotted the time evolution of the k-th Fouriermode of the potential.

The instability rate fits perfectly with the expected one obtained solving (7). In the
middle and right are plotted the contour lines of the density with the first-order
scheme M1 and the Kahan-Li composition methods. This illustrates the need to use
high order scheme to capture the small structures.
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Fig. 2 (Kelvin-Helmholtz, k = 0.95, ε = 10−4, Nx = Ny = 200,Δt = 0.01, [D2Q5], r = 4, λ =
2.02) Left: Time evolution of the k-th Fourier mode of the potential (in blue) and the straight line
with slope Im(ω) = 0.08185 (in orange) with Kahan-Li, ω = 2. Middle and left: Contour lines of
the density at final time T = 200 with ω = 2, Kahan-Li (middle) and ω = 1.95, M2 (right)

4 Conclusion

In this paper, we show that the kinetic over-relaxation method enables to devise
numerical schemes for the convection equation based on Fourier discretization. The
proposed method is optimally high-order accurate in space and can reach sixth order
time accuracy with the Kahan-Li composition method. Unless high order schemes
require more intermediate transport steps, the computational cost can be drastically
decreased. Moreover, the method has been extended to the non-linear guiding center
model. This is the first step before the extension tomore complex advection equations
like the gyro-kinetic equation in plasma physics.
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Cell-Centered Finite Volume Method
for Regularized Mean Curvature Flow
on Polyhedral Meshes

Jooyoung Hahn, Karol Mikula, Peter Frolkovič, Martin Balažovjech,
and Branislav Basara

Abstract A cell-centered finite volume method is used to numerically solve a reg-
ularized mean curvature flow equation on polyhedral meshes. It is based on an over-
relaxed correctionmethod used previously for linear diffusion problems. An iterative
nonlinear Crank-Nicolson method is proposed to obtain the second-order accuracy
in time and space. The proposed algorithm is used for three-dimensional domains
decomposed for parallel computing for two examples that numerically verify the
second order accuracy on polyhedral meshes.

Keywords Regularized mean curvature flow · Polyhedral meshes · Over-relaxed
correction method · Nonlinear Crank-Nicolson method
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1 Introduction

A finite volume method to solve the level set formulation of regularized mean cur-
vature flow [15] on a bounded Lipschitz continuous domain Ω ⊂ R

3 is presented:

∂φ

∂t
= |∇φ|ε∇ ·

( ∇φ

|∇φ|ε
)

, |∇φ|ε = (ε2 + |∇φ|2)1/2, (1)
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where the regularization parameter ε > 0 is used as a small constant [6]. The initial
and Dirichlet boundary conditions are defined by

φ(x, 0) = φ0(x), x ∈ Ω,

φ(x, t) = φb(x, t), (x, t) ∈ ∂Ω × (0,T ]. (2)

The level set form of mean curvature flow equation and its modifications are exten-
sively used in numerical applications like the filtering or segmentation in image pro-
cessing [11], the G-equation in combustion models of computational fluid dynamics
[16], and the interface problems in material science; see more details in [8, 14, 17]
and the references therein.

To solve (1) numerically and to develop related mathematical theories, several
methods are used: the finite difference [13, 17], the finite element [3], and the finite
volume methods [7, 11, 19]. In this paper, a method based on a cell-centered finite
volume method is proposed in order to use the smallest number of unknowns on a
polyhedron mesh. For a spatial discretization, one of practically used algorithms in
computer-aided engineering to discretize an elliptic operator on polyhedron meshes,
so-called over-relaxed correction method, is considered [4, 12], because a formal
expansion of the right-hand side of (1) is a combination of a Laplacian and a non-
linear term of second order derivatives; see more details in [18]. For a temporal
discretization, a nonlinear Crank-Nicolson method [1] is considered in order to have
the second order accuracy with a time step size proportional to the space discretiza-
tion step. In such a way, the proposed method can be conveniently combined with
second order accurate methods for an advective or normal flow equation [9, 10],
e.g., for the G-equation model [16]. We also use a deferred correction method [2] in
order to achieve computational efficiency with a 1-ring face neighborhood structure
on domains decomposed for parallel computing.

The paper is organized as follows. In Sect. 2.1, we derive the spatial discretiza-
tion based on the over-relaxed correction method. In Sect. 2.2, the iterative nonlinear
Crank-Nicolson method is proposed. In Sect. 3, the experimental order of conver-
gence for two exact solutions on two computational domains is presented.

2 Cell-Centered Finite Volume Method

The computational domain Ω ⊂ R
3 is discretized by open non-overlapping polyhe-

dral cells Ωp and I is the set of cell indices. We indicate a set Np as adjacent cell
indices to Ωp, where the cells Ωq, q ∈ Np have a non-zero area intersection with Ωp.
An internal face, the result of such intersection, is denoted by ef ⊂ ∂Ωq ∩ ∂Ωp and
the set of all internal faces in a mesh is denoted by F . We similarly define a set B
as the index set of all boundary faces eb ⊂ ∂Ωp ∩ ∂Ω for p ∈ I . The face indices of
a cell Ωp, p ∈ I belong either to the set Fp ⊂ F or to the set Bp ⊂ B. A numerical
solution at time t is represented by unknowns φp ≈ φ(xp, t), where xp is the center
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of cell Ωp. The Dirichlet boundary condition in (2) is evaluated at the centers xb of
boundary faces eb, i.e., φb = φb(xb, t).

We integrate (1) on Ωp, p ∈ I ,

∫
Ωp

1

|∇φ|ε
∂φ

∂t
=

∫
Ωp

∇ · (g∇φ) =
∑

f ∈Fp∪Bp

∫
ef

g∇φ · n, (3)

where g = |∇φp|−1
ε , andn is an outward normal vector.An approximation of gradient

∇φ on a cell Ωp, ∇φp ≈ ∇φ(xp, t), is computed by an inverse distance weighted
least-squares minimization [5, 12]:

∇φp ≡ Lp(φp, φb) = argmin
y∈R3

⎛
⎝ ∑

q∈Np∪Bp

|dpq|−2(φp + y · dpq − φq)
2

⎞
⎠ . (4)

The notation dαβ ≡ xβ − xα for directional vectors is used throughout the paper.
In Sect. 2.1, we present a spatial discretization of (3), including an approximation

of normal flux g∇φ · n. Afterwards, in Sect. 2.2, we discuss a temporal discretization.

2.1 Over-Relaxed Correction Method

In a derivation of spatial discretization, we follow mostly [4, 12]. We assume that
all variables are continuous at the face centers xf , f ∈ F , and we denote their values
by the subscript f . For an internal face ef , the normal flux in (3) at time t is first
approximated by

f ∈ Fp ⇒
∫
ef

g∇φ · n ≈ gf ∇φf · npf , (5)

where npf is the outward normal vector to the face such that |npf | = |ef |.
We use an orthogonal decomposition of the vector dpq with respect to npf and tf ,

npf ⊥ tf , written formally in the form

dpq = gf
cf

npf − tf , (6)

where

cf = gf
npf · npf

npf · dpq
, tf =

(
npf

|npf | · dpq

)
npf

|npf | − dpq.
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Fig. 1 In a, the notation for
an internal face ef , f ∈ Fp is
shown, and dp′p ⊥ npf . In b,
the notation for a boundary
face eb, b ∈ Bp is shown with
the gray region being outside
of the computational
domain, and dp′p ⊥ npb

(b)(a)

Note that tf = dp′p in Fig. 1a. Rewriting (6) as gf npf = cf (dpq + tf ), we can derive
the approximation:

gf ∇φf · npf ≈ cf
(
φq − φp + ∇φf · tf

)
. (7)

The face gradient ∇φf is approximated from gradients in the adjacent cells,

∇φf = ωqf ∇φp + ωpf ∇φq, ωpf + ωqf = 1, ωpf = |dpf |
|dpf | + |dqf | .

Similarly, for a boundary face, the normal flux g∇φ · n in (3) is approximated by

b ∈ Bp ⇒
∫
eb

g∇φ · n ≈ gp∇φp · npb. (8)

Using analogous orthogonal decomposition of dpb in Fig. 1b, and gpnpb = cb(dpb +
tb), where npb ⊥ tb, it gives us a discretization:

gp∇φp · npb ≈ cb(φb − φp + ∇φp · tb), (9)

where

cb = gp
npb · npb

npb · dpb
, tb =

(
npb

|npb| · dpb

)
npb

|npb| − dpb.

Note that tb = dp′p in Fig. 1b.
Substituting (5), (7), (8), and (9) in (3), and assuming a constant approximation

of φp and ∇φp on a cell Ωp in the left hand side of (3), we have the final spatial
discretization:

|Ωp|
|∇φp|ε

d

dt
φp =

∑
f ∈Fp

cf (φq − φp + ∇φf · tf ) +
∑
b∈Bp

cb(φb − φp + ∇φp · tb). (10)
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2.2 Iterative Nonlinear Crank-Nicolson Method

Let us denote a time step as Δt, and φn
p ≈ φ(xp, nΔt), p ∈ I , and n ∈ N. The values

given by the initial condition in (2) are denoted by φ0 = (φ0
1 , . . . , φ

0
|I |)T. To compute

φn, we use a nonlinearCrank-Nicolsonmethodwith a deferred correctionmethod [2].
For n ≥ 1 and k ≥ 1, the method to solve (10) is presented:

|Ωp|
Δt

(
φn,k
p − φn−1

p

)
= 1

2

∑
f ∈Fp

α
n,k−1
pf

(
φn,k
q − φn,k

p + ∇φ
n,k−1
f · tf

)

+ 1

2

∑
b∈Bp

α
n,k−1
pb

(
φn
b − φn,k

p + ∇φn,k−1
p · tb

)

+ 1

2

∑
f ∈Fp

αn−1
pf

(
φn−1
q − φn−1

p + ∇φn−1
f · tf

)

+ 1

2

∑
b∈Bp

αn−1
pb

(
φn−1
b − φn−1

p + ∇φn−1
p · tb

)
, (11)

where α
n,k−1
pf ≡ cn,k−1

f |∇φn,k−1
p |ε and αn−1

pf ≡ cn−1
f |∇φn−1

p |ε, for f ∈ Fp ∪ Bp. Note

that ∇φn,k−1
p ≡ Lp(φn,k−1

p , φn
b) and ∇φn−1

p ≡ Lp(φn−1
p , φn−1

b ). Moreover, for k = 0

the values are determined from the previous time step, e.g., α
n,0
pf = αn−1

pf . For each
n and k, one has to solve a system (11) of linear algebraic equations, where the
elements of the matrix for the system can change with each n and k. Note that the
original nonlinear Crank-Nicolson method [1] should use the terms ∇φ

n,k
f · tf and

∇φ
n,k
b · tb in (11) instead of ∇φ

n,k−1
f · tf and ∇φ

n,k−1
b · tb, respectively. However,

using the original form brings computational difficulties in general when practical
industrial problems are solved because of a larger number of non-zero coefficients
in the matrix and a larger communication cost for parallel computing. Therefore, the
iterative deferred correction method is used in (11).

Rewriting (11) formally as a matrix equation An,k−1φn,k = F(φn,k−1), the k th

iteration is stopped at the smallest Kn such that a residual error is smaller than a
chosen error bound η:

1

|I |
∑
p∈I

∣∣∣(An,Knφn,Kn − F(φn,Kn)
)
p

∣∣∣ < η. (12)

Then, we define φn ≡ φn,Kn .
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3 Numerical Experiments

Two exact solutions of themean curvature flow equation are used in order to check the
experimental order of convergence (EOC) of proposed algorithm (11). The numerical
solutions are computed for two domains using polyhedral meshes generated by AVL
FIRETM in Fig. 2. For all examples in this paper, we use the threshold η = 10−10

in (12) to stop the iteration. Moreover, we stop the iterations if k > 100 in (11). The
EOC is computed by using an average discretization size,

h = 1

|I |
∑
p∈I

|Ωp|1/3 , (13)

and four meshes for which h is decreasing. In Fig. 2, the polyhedral mesh in the cube
domain Ω1 is shown with h = 1.90 × 10−1 and we use the related finer meshes with
the average discretization sizes h = 9.52 × 10−2, 4.76 × 10−2, and 2.48 × 10−2.
The polyhedral mesh in the domainΩ2 of more complex shape has h = 6.64 × 10−2

and the related finer meshes have h = 4.17 × 10−2, 2.27 × 10−2, and 1.29 × 10−2.
Four types of the norms are used to compute the EOC. The errors E2 and E∞ are the
L2((0,T ) × Ω) and L∞(0,T ;L2(Ω)) norms of the difference between the exact and
the numerical solutions, respectively. The errorsG2 andG∞ are the L2((0,T ) × Ω)3

and L∞(0,T ;L2(Ω)3) norms of the difference between the gradient of the exact and
the numerical solutions, respectively.

The two exact solutions of (1) for ε = 0 on the domains in Fig. 2 are used:

φi(x, t) =
( |x|2

4
+ t

)i/2

, (14)

where (x, t) ∈ Ωi × [0,T ], i = 1, 2, and T = 0.16. Note that the regularization
parameter in (11) is chosen as ε = h2. The functions φ0 and φb in the initial and
boundary conditions are obtained from the given exact solution.

Fig. 2 A half cut view of polyhedral meshes in a cube domain Ω1 = [−1.25, 1.25]3 ⊂ R
3 (left)

and in a domain Ω2 of a complex shape (right)
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Table 1 The EOC of numerical solution of (1) using the exact solution in (14) with i = 1 on Ω1
(top) and Ω2 (bottom) is presented by using the iterative nonlinear Crank-Nicolson method (11)

N E2 EOC E∞ EOC G2 EOC G∞ EOC

1 3.54 ×
10−3

9.41 ×
10−3

2.36 ×
10−2

6.60 ×
10−2

2 7.39 ×
10−4

3.36 2.15 ×
10−3

3.17 9.58 ×
10−3

1.93 3.00 ×
10−2

1.69

3 2.08 ×
10−4

2.09 7.59 ×
10−4

1.72 4.46 ×
10−3

1.26 1.72 ×
10−2

0.92

4 4.70 ×
10−5

2.64 2.35 ×
10−4

2.08 1.86 ×
10−3

1.55 8.24 ×
10−3

1.30

N E2 EOC E∞ EOC G2 EOC G∞ EOC

1 7.03 ×
10−4

2.01 ×
10−3

1.03 ×
10−2

3.61 ×
10−2

2 2.30 ×
10−4

2.40 8.58 ×
10−4

1.82 4.92 ×
10−3

1.59 2.21 ×
10−2

1.05

3 5.43 ×
10−5

2.38 3.49 ×
10−4

1.49 2.05 ×
10−3

1.45 1.22 ×
10−2

0.98

4 1.73 ×
10−5

2.03 1.44 ×
10−4

1.56 9.67 ×
10−4

1.33 7.19 ×
10−3

0.93

Table 2 The EOC of numerical solution of (14) with i = 2 on Ω1 (top) and Ω2 (bottom) is
presented by using the iterative nonlinear Crank-Nicolson method (11)

N E2 EOC E∞ EOC G2 EOC G∞ EOC

1 5.02 ×
10−3

1.49 ×
10−2

4.79 ×
10−2

1.24 ×
10−1

2 1.06 ×
10−3

3.33 2.81 ×
10−3

3.57 1.88 ×
10−2

2.01 4.99 ×
10−2

1.94

3 3.01 ×
10−4

2.08 8.94 ×
10−4

1.89 7.73 ×
10−3

1.46 2.26 ×
10−2

1.31

4 8.60 ×
10−5

2.22 2.74 ×
10−4

2.09 3.15 ×
10−3

1.59 9.85 ×
10−3

1.47

N E2 EOC E∞ EOC G2 EOC G∞ EOC

1 9.72 ×
10−4

2.58 ×
10−3

1.41 ×
10−2

3.92 ×
10−2

2 2.91 ×
10−4

2.58 8.03 ×
10−4

2.51 6.68 ×
10−3

1.59 2.02 ×
10−2

1.42

3 6.08 ×
10−5

2.59 1.79 ×
10−4

2.48 2.46 ×
10−3

1.65 7.99 ×
10−3

1.53

4 2.10 ×
10−5

1.88 6.64 ×
10−5

1.76 1.15 ×
10−3

1.35 3.83 ×
10−3

1.30
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In Tables1 and 2, the EOC of numerical solutions of (14) with i = 1 and i = 2 are
presented, respectively. We choose the time step Δt = T/2N−1 for N ∈ {1, 2, 3, 4},
where N = 1 for the coarsest mesh and N = 4 for the finest mesh. The iterative
nonlinear Crank-Nicolson method (11) shows EOC � 2 in the error norms E2 and
E∞ on Ω1 and the EOC is larger than 1 in the error norms G2 and G∞. Note that
in the case of domain Ω2, the EOC is partially influenced by the nontrivial task of
approximating the curved shape of ∂Ω2 with polyhedral meshes.

4 Conclusion

We present a cell-centered finite volume method for the regularized mean curvature
flow equation, which is suitable on polyhedral meshes. The numerical experiments
for the chosen examples indicate a convergence rate of around 2. Consequently, the
proposed method can use the time step proportional to the average discretization size
to obtain the second order accurate method in time and space.

Acknowledgements The work was supported by grants VEGA 1/0709/19 and 1/0436/20 and
APVV-0522-15.
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A Fully Eulerian Finite Volume Method
for the Simulation of Fluid-Structure
Interactions on AMR Enabled Quadtree
Grids

Michel Bergmann, Antoine Fondanèche, and Angelo Iollo

Abstract We present a versatile fully Eulerian method for the simulation of fluid-
structure interactions. The model equations are solved using a finite-volume scheme
on a compact and possibly dynamic quadtree stencil. The structure geometry is
followed using a level-set model and a distance function. A regularized Heaviside
function that allows to discriminate between the fluid and the elastic phases is then
defined with respect to the moving structure. The elastic deformation of the struc-
ture is described according to the backward characteristics which are in turn used
to express the Cauchy stress tensor of a two-parameter Mooney-Rivlin material.
The numerical model is validated with respect to the literature and an example of
application is detailed.

Keywords Fluid-structure interaction · Finite volume · Eulerian model ·
Quadtree grids
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1 Introduction

The simulation of Fluid-Structure Interactions (FSI) is of interest in a wide range
of application fields, from engineering to medecine. For instance, the simulation of
a flow around a wind turbine blade [1] or a blood flow in a thoracic aorta [2] is an
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essential support for a quantitative understanding of complex phenomena. Among
all the studies dealing with this problem, there are two categories of approaches to
deal with the deforming structure.

The first approach is based on body-fitted or interface-tracking methods, such as
Arbitrary Lagrangian-Eulerian (ALE) [3, 4] and Deforming Spatial-Domain/Space-
Time (DSD/ST) [5, 6] methods. This kind of methods is interesting since effi-
cient specialized techniques for solving both flow and structural sub-problems can
be employed. However, the implementation of a fluid-structure coupling scheme
requires a mesh adapted to the geometry and when the material has large defor-
mations remeshing and partitioning is complex and computationally expensive. The
second approach is based on fictitious domainmethods, such as the immersed bound-
ary (IB) methods introduced by Peskin [7, 8], or cut-cell methods [9]. This type of
methods offers a good trade-off between accuracy and practicability of the simulation
since they do not require remeshing.

Traditionally, fluid dynamics is represented through Eulerian approaches, while
structural dynamics is modeled using Lagrangian methods. Here, we develop a fully
Eulerian method for simulating the interaction between a viscous incompressible
fluid and an hyperelastic Mooney-Rivlin material on quadtree grids. In the context
of interface-capturing methods for the simulation of multiphase flows, the governing
equations for the whole system are solved in a monolithic way, by using a single-
continuum model for the whole domain. Using a regularized Heaviside function
which depends on the level-set function, this diffuse-interface method guarantees
the continuity of the solution at the interface. Rigid bodies are taken into account
with the Brinkmann penalization method [10].

2 The Fully Eulerian FSI Model

A computational domain � is divided into three subdomains related to the different
media such that� = � f ∪ �s ∪ �e. We denote by f , e and s the subscripts refering
to the fluid, rigid solid and elastic material respectively. As depicted in Fig. 1, the
boundaries of the deformable and non-deformable bodies are called �s(t) = ∂�s(t)
and �e(t) = ∂�e(t) respectively.

2.1 The Governing Equations

The interaction between an incompressible viscous fluid, a rigid non-deformable
body and an hyperelastic structure is governed by the following system of PDEs:

{
ρ f

(
∂u f

∂t + (u f · ∇)u f

)
= −∇ p + ∇ · σ f (u f ) in � f (t),

∇ · u f = 0 in � f (t),
(1a)
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Fig. 1 Sketch of the FSI
set-up

Ωf

Γs(t)

Γe(t)

Ωe

Ωs

ρe

(∂ue

∂t
+ (ue · ∇)ue

)
= −∇ p + ∇ · σ e in �e(t), (1b)⎧⎨

⎩
u f = ue on �e(t),
σ f · ne = σ e · ne on �e(t),
ue = us on �s(t),

(1c)

where the density ρ, the velocity field u, and the stress tensor σ are defined individu-
ally for each medium, and p is the pressure. The details concerning the stress tensors
will be given in the following section. This system is composed of three subproblems
(1a), (1b) and (1c) which are related to the fluid dynamics, the equation of motion
for the elastic structure and the coupling conditions at the fluid/solid interfaces �e

and �s . The quantity us refers to the imposed velocity of the rigid interface.

2.2 The Monolithic Approach

We develop an Eulerian method for simulating fluid-structure interactions which
includes hyperelastic materials. In Lagrangian approaches, the hyperelastic consti-
tutive law is defined from the deformation gradient tensorF = [∇X]whereX denotes
the coordinates in the current domain �e(t), with respect to the reference domain.
Instead, in the present Eulerian representation, the deformation of the elastic mate-
rial is described using backward characteristics Y : [0, T ] × �e(t) −→ �e(t = 0),
being the inverse transformation of X, i.e. Y(t, X(t, ξ)) = ξ and X(t, Y(t, x)) = x,
for all ξ ∈ �e(0) and x ∈ �e(t).

Instead of considering the system (1), we solve the whole fluid-structure system
in a “monolithic” way, by using a single-continuum model for the entire domain �:

ρ
(∂u

∂t
+ (u · ∇)u

)
= −∇ p + ∇ · σ (u,ψ) + χs

ε
(us − u) (2a)

∇ · u = 0 (2b)

∂ψ

∂t
+ ∇ · (u ⊗ ψ) = 0 (2c)
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where the vectorψ = (φ, Y)T contains the quantities involved to describe the defor-
mation of the elastic material, namely the level-set function φ being the Euclidian
distance to the interface �e(t), and the backward characteristics Y. These quantities
are transported in time with velocity u in entire� according to Eq. (2c). The pressure
p is defined in the whole domain, making no distinction between media.

The interface �e(t) is diffused on a small narrow band using a regularized Heav-
iside function χ̃e = χ̃e(φ) defined as a continuous function satisfying χ̃e = 1 inside
the elastic material, χ̃e = 0 inside the fluid, and 0 < χ̃e < 1 in a small narrow band
of the interface. This ensures that the solution is continuous accross �e(t) and the
coupling constraints (1c) are hence properly satisfied. In that continuum formula-
tion, the physical quantities (i.e. velocity, viscosity, and density) are defined in � as
a mixture between fluid and elastic quantities as:

u = (1 − χ̃e)u f + χ̃eue

μ = (1 − χ̃e)μ f + χ̃eμe

ρ = (1 − χ̃e)ρ f + χ̃eρe

We consider a visco-hyperelastic model in which the solid deformation is described
for two-parameterMooney-Rivlinmaterials. TheCauchy stress tensor is expressed as:

σ (u,ψ) = μ(∇u + ∇uT ) + χ̃e(φ)σ e(Y) (3)

The elastic stress tensor depends on the left Cauchy-Green deformation tensor B =
FFT = [∇Y]−1[∇Y]−T and its inverse:

σ e(Y) = −(2c1 I1 − 2c2 I2)I + 2c1B − 2c2B−1 (4)

where I1 and I2 are the first and second invariants of B and c1, c2 > 0 are empirical
constants of the material related to the shear modulus G = 2(c1 + c2). This kind of
model is particularly adapted to material which undergoes large deformations.

The rigid material is taken into account in (2a) using a penalization method [10],
via a permeability parameter ε � 1. The characteristic function χs is 1 inside �s

and 0 elsewhere.

3 Discretization of the Governing Equations

3.1 Time Integration

The momentum (2a) and transport (2c) equations are solved independently, in a
decoupled way. First, the backward characteristics Y and the level-set function φ

are transported from time tn to time tn+1 using a two-stage Runge-Kutta scheme.
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These quantities are then used for the computation of the elastic stress tensor σ e (4).
Then, the fractional time step method introduced by Chorin [11] and Temam [12]
is considered. We use a second-order Gear scheme as a time discretization of the
prediction step. To guarantee the mass conservation, a projection/correction step is
performed as in [13].

3.2 Finite Volume Discretizations

We perform a graded quadtree discretization of the whole computational domain �.
Thanks to the library PABLO, as a part of Bitpit library,1 we get access to an opti-
mized tool for storing the data structure. This library allows an efficient Adaptative
Mesh Refinement (AMR) to adapt the mesh dynamically to the solution, in order to
preserve high accuracy during the whole simulation. For the domain decomposition,
the number of communications between processors is limited to only one layer of
ghost cells, which results in the development of compact numerical schemes. The
finite-volume discretizations involved are:

• the divergence operator
A second order quadrature formula is used for the approximation of the surface
integrals. The divergence of a vector field v is then computed in a cell �i as:

(∇ · v)i = 1

|�i |
∫

∂�i

v · n ds = 1

|�i |
∑
f ⊂∂�i

v f c · n f | f |

where f denotes a face of the cell boundary ∂�i and n f is the unitary outward
normal vector of f . |�i | and | f |denotes the area of cell�i and the length of the face
f respectively. The face-center quantity v f c is interpolated thanks to Gaussian-
type Radial Basis Functions (RBF) within the compact stencil composed of all
cells surrounding the face.

• the Laplacian operator
We use the diamond finite volume scheme proposed by [14, 15]. The face-center
normal derivative is approximated as a linear combination involving the cells of
the compact stencil of the face.

• the convective/transport numerical flux
For any scalar function ϕ, the computation of ∇ · F(ϕ) where F(ϕ) = Uϕ is
inspired of the compact third order CWeno introduced by [16]. The conservative
form is considered since the mass conservation is preserved after the projection
step (∇ ·U = 0). This corrected face-center velocity denoted byU f c is then used
for the calculation of the flux. A linear piecewise polynomial ϕ̃ is reconstructed
using ϕ and its gradient. For any face f = ∂�in ∩ ∂�out , we denote by n f the
normal vector pointing from �in to �out and x f c the center of f . The quantity ϕ f c

1https://optimad.github.io/bitpit.

https://optimad.github.io/bitpit
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is interpolated from both sides of the face, namely we have ϕ− := ϕ|�in (x f c) and
ϕ+ := ϕ|�out (x f c). Finally, the monotone Rusanov numerical flux is employed,
which has the form:

F (ϕ+, ϕ−) = 1

2
U f c(ϕ

+ + ϕ−) − 1

2
|U f c|(ϕ+ − ϕ−). (5)

4 Results

4.1 A Solid Deformation in a Lid-Driven Cavity Flow

A validation of the model is performed on uniform cartesian grids. The FSI test case
is based on the lid-driven cavity flow test. We perform a fully Eulerian simulation of
a deformable solid immersed in a lid-driven cavity flow. In a cavity � = [0, 1]2, an
elastic cylinder is immersed in a fluid of density ρ f = 1 and viscosity μ f = 0.01.
Initially, the centroid of the cylinder is xc(t = 0) = (0.6, 0.5)T and its diameter is
0.4. The densities and viscosities of the elastic structure and fluid are identical, i.e.
ρe = ρ f and μe = μ f . The elastic structure is a Neo-Hookean material (c2 = 0) for
which the shear modulus is set to G = 0.1. The results are compared with previous
works (Sugiyama [17] and Deborde [18]) in Fig. 2.

x-position of the centroid
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Fig. 2 Approximated position of the centroid over time in the lid-driven cavity flow test. The
simulations are run for different levels of refinement
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Fig. 3 Y-component of the velocity for the oscillating membrane in glycerin test after 3 periods of
oscillations. The dynamic AMR mesh is shown in background

4.2 Hyperelastic Oscillating Membrane in Glycerin

Inside a 3 cm by 3 cm cavity, an hyperelastic membrane (rubber type, G = 1MPa)
is immersed inside glycerin (ρ f = 1.26 g cm−3, μ f = 1.49 Pa s). The membrane is
1.95 cm long and the thickness varies between 1.2 and 1.7 mm. The membrane
is actuated with gradual speed by an oscillating rigid cylindrical holder which is
positioned on the right tip of the membrane. The simulations are performed on
quadtree grids, using a frequent dynamic adaptation of the mesh according to the
level-set function φ, see Fig. 3.

5 Conclusions and Prospects

In this work we proposed a finite-volume scheme for solving the single-continuum
model (2). In Sect. 3.2, we introduced the numerical Rusanov (Local Lax-Friedrichs)
flux to compute the convective/transport flux (see (5)). In this formulation, the sta-
bilization is simply performed according to the normal face-center velocity U f c,
without considering the velocity of the waves which propagate inside the material.
Hence, the numerical scheme is stable only for moderately stiff material (as in test
4.1) or for high viscosities (as in test 4.2) since wave and fluid velocities are similar.
Ongoing work is carried out to develop a new scheme for which the flux is stabilized
for stiff non-viscous materials.
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Lukáčová-Medvid’ová, Mária, 25

M
Mahi, Imad El, 455
Masson, R., 295, 565
Mathis, Hélène, 75
May, Sandra, 39
Mehl, Miriam, 605
Merdon, Christian, 103, 113
Mikula, Karol, 755
Milani, Riccardo, 93
Mokhtari, O., 645
Mory Diédhiou, Moussa, 467
Moumna, Abdelhafid, 725
Møyner, Olav, 585

N
Nabet, Flore, 213, 275
Nasser El Dine, Houssein, 467
Nasseri, Y., 123
Natale, Andrea, 193
Navoret, Laurent, 735, 745
Ndjinga, Michaël, 415, 425
Ngwamou, Sédrick Kameni, 415
Nika, Grigor, 625
Nikitin, Kirill D., 557
Nordbotten, Jan M., 203, 435

P
Peschka, Dirk, 615
Philippi, Nora, 487
Poullet, P., 705
Preux, Christophe, 445, 575



775

Q
Quenjel, E. H., 565
Quibel, Lucie, 655, 665
Quintard, M., 645

R
Radu, Florin A., 203
Raynaud, Xavier, 585
Rey, Thomas, 233
Rohde, Christian, 547
Rybak, Iryna, 345

S
Sætra, Martin L., 715
Sargado, Juan Michael, 527
Scotti, Anna, 55
Stefansson, Ivar, 519
Sylla, Abraham, 243

T
Todeschi, Gabriele, 193
Tran, Quang Huy, 385, 445, 575

V
Veynante, D., 635

W
Weishaupt, Kilian, 605
Wieners, Christian, 477

Y
Yanbarisov, Ruslan M., 557
Yotov, Ivan, 325

Z
Ziegler, Daniel, 477
Ziggaf, Moussa, 455
Zurek, Antoine, 223


	Organization
	Program Chairs
	Program Committee

	Preface
	Contents
	 Invited Contributions
	 Interplay Between Diffusion Anisotropy and Mesh Skewness in Hybrid High-Order Schemes
	1 Introduction
	2 Regular Skewed Mesh Sequences
	3 Oblique Elliptic Projector on Skewed Elements
	4 Analysis of HHO Schemes on Skewed Meshes
	4.1 Local Space and Potential Reconstruction
	4.2 Local Bilinear Form
	4.3 HHO Scheme and Error Estimate

	5 Numerical Evaluation of the Effects of Diffusion Anisotropy and Mesh Skewness
	5.1 Test A: Anisotropic Diffusion Tensor
	5.2 Test B: Skewed Mesh
	5.3 Test C

	6 Conclusion
	References

	 mathcalK-Convergence of Finite Volume Solutions of the Euler Equations
	1 Introduction
	2 Euler Equations and Dissipative Solutions
	3 A Finite Volume Method Based on the Brenner Model
	4 mathcalK-Convergence
	References

	 Time-Dependent Conservation Laws  on Cut Cell Meshes and the Small Cell Problem
	1 Introduction
	1.1 The Small Cell Problem

	2 Approaches for Solving the Small Cell Problem
	2.1 Accuracy Considerations
	2.2 FV Schemes for Solving the Small Cell Problem
	2.3 DG Schemes for Solving the Small Cell Problem

	3 A Mixed Explicit Implicit Scheme
	3.1 Flux Bounding
	3.2 Accuracy

	4 DoD Stabilization
	4.1 Problem Setup in 1d
	4.2 The Case of Piecewise Constant Polynomials in 1d
	4.3 The Case of Piecewise Linear Polynomials in 1d
	4.4 The Scheme in 2d

	References

	 Reactive Flow in Fractured Porous Media
	1 Introduction
	2 Reactive Flow
	2.1 Reactive Model
	2.2 Porosity and Permeability Model
	2.3 Transport Model
	2.4 Darcy Model
	2.5 The Complete Model

	3 A Reduced Model for the Fracture
	3.1 Coupling Conditions for the Equi-dimensional Model
	3.2 The Reduced Variables
	3.3 Reduced Transport Model
	3.4 Aperture and Permeability Models

	4 Conclusion
	References

	 Numerical Schemes for Semiconductors Energy-Transport Models
	1 Energy-Transport Models
	2 Numerical Schemes
	3 Discrete Entropy Inequality
	4 Numerical Experiments
	References

	 Theoretical Aspects
	 Compatible Discrete Operator Schemes for the Steady Incompressible Stokes  and Navier–Stokes Equations
	1 Introduction
	2 Space Discretization
	2.1 Discrete Functional Spaces and Differential Operators
	2.2 Discrete Bilinear Form

	3 Numerical Results
	3.1 Stokes Equations
	3.2 Navier–Stokes Equations

	References

	 On the Significance of Pressure-Robustness for the Space Discretization of Incompressible High Reynolds Number Flows
	1 Introduction
	1.1 Pressure-Robustness and Velocity-Equivalence
	1.2 Pressure-Robustness and Vorticity Equation
	1.3 Pressure-Robustness and H(div)-Conforming FEM Spaces

	2 How Do Strong Gradient Field Forces Develop in High Reynolds Number Flows Incompressible Flows?
	3 Numerical Example—The Chorin Vortex
	References

	 Well-Balanced Discretisation  for the Compressible Stokes Problem  by Gradient-Robustness
	1 Introduction
	1.1 The Steady Compressible Stokes Equations
	1.2 Divergence-Free Part and Helmholtz Projector

	2 Well-Balanced Bernardi–Raugel Finite Element—Finite Volume Method
	2.1 Notation and Upwind Divergence
	2.2 An Iterative Algorithm

	3 Numerical Examples
	3.1 No-Flow Over Mountains
	3.2 Convergence Study and Pressure-Robustness
	3.3 Asymptotic Convergence to Stokes System

	References

	 A Second Order Consistent MAC Scheme for the Shallow Water Equations on Non Uniform Grids
	1 Introduction
	2 The Numerical Scheme
	3 Stability and Consistency
	4 Numerical Tests
	References

	 Post-processing of Fluxes for Finite Volume Methods for Elliptic Problems
	1 Introduction
	2 Finite Volume Methods for the Diffusion Equation
	3 Post-processing of the Fluxes for Reconstructing a Flow Density
	3.1 Minimal l2 Norm (KR Method)
	3.2 Consistency Condition (C Method)
	3.3 Introducing Auxiliary Cell-Centered Unknowns  (A Method)

	4 Numerical Tests in 2D
	5 Summary
	References

	 Exponential Decay to Equilibrium  of Nonlinear DDFV Schemes  for Convection-Diffusion Equations
	1 Motivation
	2 Presentation of the Numerical Scheme
	2.1 Meshes and Notations
	2.2 Discrete Unknowns and Discrete Operators
	2.3 The Scheme

	3 Main Results
	4 Numerical Experiments
	References

	 Linfty Bounds for Numerical Solutions  of Noncoercive Convection-Diffusion Equations
	1 Introduction
	2 Study of a Particular Case
	3 Proof of Theorem 1
	References

	 On Four Numerical Schemes  for a Unipolar Degenerate Drift-Diffusion Model
	1 Introduction
	2 TPFA Finite Volume Approximations
	2.1 Main Results

	3 A Numerical Example
	References

	 Non-isothermal Scharfetter–Gummel Scheme for Electro-Thermal Transport Simulation in Degenerate Semiconductors
	1 Introduction
	2 Non-isothermal Drift-Diffusion System
	2.1 Kelvin Formula for the Thermopower
	2.2 Drift-Diffusion Currents and Heat Generation Rate

	3 Finite Volume Discretization
	3.1 Generalized Scharfetter–Gummel Scheme
	3.2 Structure-Preserving Properties

	4 Numerical Simulation of a Heterojunction Bipolar Transistor
	5 Conclusions
	References

	 Entropy Diminishing Finite Volume Approximation of a Cross-Diffusion System
	1 Finite Volume Approximation of a Cross Diffusion System
	2 Some Pieces of Numerical Analysis
	3 Numerical Results
	References

	 TPFA Finite Volume Approximation  of Wasserstein Gradient Flows
	1 Gradient Flows' Time Discretization
	2 Finite Volume Discretization
	3 Numerical Results
	References

	 Free Energy Diminishing Discretization of Darcy-Forchheimer Flow in Poroelastic Media
	1 Introduction
	2 Model for Darcy-Forchheimer Flow in Poroelastic Media
	2.1 The Gradient Flow Structure of the Model

	3 Numerical Discretization
	3.1 Semi-discrete Approximation in Variational Form
	3.2 Fully Discrete Approximation in Variational Form

	4 Existence, Uniqueness, and Stability
	References

	 Energy Stable Discretization  for Two-Phase Porous Media Flows
	1 Immiscible Two-Phase Flows in Porous Media
	2 An Energy Stable Finite-Element Scheme
	3 Numerical Results
	References

	 A Finite-Volume Scheme  for a Cross-Diffusion Model Arising  from Interacting Many-Particle Population Systems
	1 Introduction
	1.1 Presentation of the Model
	1.2 The Numerical Scheme
	1.3 Main Result

	2 Proof of Theorem 1
	3 Convergence Analysis and Perspectives
	References

	 Finite Volume Method for a System  of Continuity Equations Driven  by Nonlocal Interactions
	1 A Nonlocal Predator-Prey Model
	2 Cauchy Theory
	3 Numerical Scheme
	4 Numerical Simulations in 2D
	4.1 Test 1. Evading Preys
	4.2 Test 2. A More Realistic Potential for Inter-specific Interaction

	References

	 A Macroscopic Model to Reproduce Self-organization at Bottlenecks
	1 Introduction
	2 Notion of Solution and Uniqueness
	3 Finite Volume Approximation of the Model
	3.1 Stability and Discrete Entropy Inequalities
	3.2 Compactness and Convergence

	4 Numerical Simulations
	5 Conclusions and Perspectives
	References

	 A Three-Dimensional Hybrid High-Order Method for Magnetostatics
	1 Introduction
	2 Hybrid High-Order Discretization
	2.1 Discrete Setting
	2.2 Discrete Unknowns
	2.3 Discrete Bilinear Forms

	3 Discrete Problem
	4 Numerical Experiments
	References

	 Hyperbolic Conservation Laws with Stochastic Discontinuous Flux Functions
	1 Stochastic Scalar Conservation Laws with Discontinuous Flux Function
	2 Stochastic Adapted Entropy Solutions
	3 Discontinuous Random Field
	4 Numerical Experiments
	4.1 Approximation of the Random Field
	4.2 Finite Volume Discretization
	4.3 Multilevel Monte Carlo Estimation
	4.4 Numerical Experiments

	References

	 Convergence of a Finite-Volume Scheme for a Heat Equation with a Multiplicative Stochastic Force
	1 Introduction
	2 Meshes, Scheme and Discrete Norms
	3 Convergence of the Scheme
	References

	 A New Gradient Scheme of a Time Fractional Fokker–Planck Equation with Time Independent Forcing and Its Convergence Analysis
	1 Problem to Be Solved and Motivation
	2 Space, Time Discretizations, and Preliminaries
	3 First Main Result: Formulation of a New GS for (5)  with (3)–(4)
	4 Second Main Results: New a Priori Estimate and Error Estimate
	5 Conclusion and Perspectives
	References

	 The Gradient Discretisation Method  for Two-Phase Discrete Fracture Matrix Models in Deformable Porous Media
	1 Continuous Model
	2 The Gradient Scheme
	3 Convergence Result
	References

	 A New Optimal Linfty(H1)–Error Estimate of a SUSHI Scheme for the Time Fractional Diffusion Equation
	1 Problem to Be Solved and Motivation
	2 Space, Time Discretizations, and the Definition  of a Discrete Gradient
	3 Formulation of a Finite Volume Scheme and Statement  of Its Known Convergence Results
	4 The Main Results: Linfty(H1)–a Priori Estimate  and Linfty(H1)–error Estimate
	5 Conclusion and Perspectives
	References

	 Note on the Convergence of a Finite Volume Scheme for a Second Order Hyperbolic Equation with a Time Delay in Any Space Dimension
	1 Problem to Be Solved and Motivation
	2 Space and Time Discretizations and Some Preliminaries
	3 Formulation of a New Finite Volume Scheme  for the Delay Problem (1)–(3)
	4 Convergence Order of Scheme (6)–(7)
	5 Some Numerical Tests
	6 Conclusion and Perspectives
	References

	 A Cell-Centered Finite Volume Method for the Navier–Stokes/Biot Model
	1 Introduction
	2 Model Problem
	3 Weak Formulation
	4 Numerical Method
	5 Numerical Results
	References

	 Convergence Study of a DDFV Scheme for the Navier-Stokes Equations Arising in the Domain Decomposition Setting
	1 Introduction
	2 The DDFV Framework
	3 DDFV Scheme for the Navier-Stokes Equations
	4 Numerical Results
	References

	 Interface Conditions for Arbitrary Flows in Coupled Porous-Medium and Free-Flow Systems
	1 Introduction
	2 Mathematical Models
	3 Homogenisation and Boundary Layers
	4 Model Validation
	5 Conclusion
	References

	 On the Convergence Rate of the Dirichlet-Neumann Iteration for Coupled Poisson Problems on Unstructured Grids
	1 Introduction
	2 Dirichlet-Neumann Iteration
	3 Analysis of Convergence Rate
	4 Numerical Results
	References

	 Optimized Overlapping DDFV Schwarz Algorithms
	1 Introduction
	2 Optimized Overlapping Schwarz Algorithm
	3 DDFV Discretization
	4 Convergence Factors
	5 Importance of a Bounded Domain Discrete Analysis
	References

	 Model Adaptation of Balance Laws Based on A Posteriori Error Estimates and Surrogate Fluxes
	1 Introduction
	2 Abstract Form
	2.1 Balance Laws

	3 A Posteriori Error Analysis
	3.1 Relative Entropy Framework
	3.2 Reconstruction
	3.3 Error Estimates

	4 Approximate Maxwellian
	4.1 Convergence Analysis
	4.2 Construction of an Approximate Maxwellian

	References

	 Robust Newton Solver Based on Variable Switch for a Finite Volume Discretization of Richards Equation
	1 Finite Volume Approximation of the Richards Equation
	2 Fictitious Variable and Newton's Method
	3 Numerical Results
	3.1 Test 1 with the Brooks and Corey model
	3.2 Test 2 with the Van Genuchten-Mualem model

	References

	 Acceleration of Newton's Method Using Nonlinear Jacobi Preconditioning
	1 Introduction
	2 Main Results
	3 Numerical Experiment
	References

	 A Finite Volume Method for a Convection-Diffusion Equation  Involving a Joule Term
	1 Introduction
	2 Finite Volume Scheme
	2.1 Notations
	2.2 The Finite Volume Scheme 1
	2.3 A Variant: Scheme 2

	3 Benchmarks
	3.1 Maximum Principle: Case f=0
	3.2 Convergence Rate and Maximum Principle: Case f neq0

	References

	 On the L2 Stability of Finite Volumes  for Stationary First Order Systems
	1 Introduction
	2 The Continuous Setting
	3 The Discrete Setting
	4 Conclusion and Perspectives
	References

	 A New Class of L2-Stable Schemes  for the Isentropic Euler Equations  on Staggered Grids
	1 Introduction
	2 The Numerical Diffusion of Staggered Schemes  for the Linear Wave System
	2.1 The Staggered Scheme of Herbin et al.
	2.2 The Numerical Diffusion

	3 A New Class of Schemes for the Isentropic Euler Equations
	4 Numerical Results and Conclusion
	References

	 Convergence of a TPFA Finite Volume Scheme for Mixed-Dimensional Flow Problems
	1 Introduction
	2 Mixed-Dimensional Flow Model
	2.1 Geometry and Notation
	2.2 Model Equations

	3 Discretization
	3.1 Mixed Finite Element Method
	3.2 Finite Volume Method

	4 Numerical Experiment
	References

	 A Relaxation Method for the Simulation of Possibly Non-hyperbolic Polymer Flooding Models with Inaccessible Pore Volume Effect
	1 Polymer Flooding Models with IPV Effect
	2 A Relaxation Method Ensuring Hyperbolicity
	3 Numerical Validation
	4 Conclusion
	References

	 The FVC Scheme on Unstructured Meshes for the Two-Dimensional Shallow Water Equations
	1 Introduction
	2 Mathematical Model
	2.1 The Rotating Shallow Water Model
	2.2 Construction of the Projected Speed Model

	3 Finite Volume Characteristics Scheme
	3.1 Finite Volume Discretization
	3.2 Flux Construction

	4 Results
	4.1 Accuracy Test Example
	4.2 Circular Dam-Break Problem
	4.3 Partial Dam-Break Problem

	5 Conclusion
	References

	 Numerical Analysis of a Finite Volume Scheme for the Optimal Control of Groundwater Pollution
	1 Introduction
	2 Presentation of the Problem
	2.1 The Optimal Control Problem
	2.2 The Adjoint Problem
	2.3 The Numerical Scheme

	3 Numerical Tests
	References

	 Space-Time Discontinuous Galerkin Methods for Linear Hyperbolic Systems and the Application to the Forward Problem in Seismic Imaging
	1 Linear Hyperbolic Systems in Space and Time
	2 Space-Time Discontinuous Galerkin Methods
	3 Application to a Benchmark Configuration in Geophysics
	References

	 A Hybrid Discontinuous Galerkin Method for Transport Equations  on Networks
	1 Introduction
	2 Notation and Problem Formulation
	3 A Hybrid Discontinuous Galerkin Method
	4 Numerical Tests
	References

	 MUSCL Discretization for the Fluid Flow Convection Operator on Staggered Meshes
	1 Introduction
	2 Space and Time Discretizations
	3 A Second Order Discrete Convection Operator
	4 Numerical Tests
	4.1 Compressible Navier-Stokes Equations
	4.2 Incompressible Navier-Stokes Equation

	References

	 An Active Flux Method for Cut Cell Grids
	1 Introduction
	2 Active Flux for Cut Cells in One Space Dimension
	2.1 Regular Grid
	2.2 Artificial Cut Cell
	2.3 Local Truncation Error
	2.4 Stability

	3 Active Flux for Cut Cells in Two Space Dimensions
	3.1 Accuracy Study

	4 Conclusions
	References

	 Practical Examples
	 Finite Volume Discretisation of Fracture Deformation in Thermo-poroelastic Media
	1 Introduction
	2 Model
	3 Discretisation
	4 Results
	5 Conclusion
	References

	 A Control Volume Finite Element Formulation with Subcell Reconstruction for Phase-Field Fracture
	1 Introduction
	2 Model Equations
	3 Numerical Discretization
	3.1 Discontinuous Representation of φ Over Ωk

	4 Numerical Results
	4.1 Stationary Crack in 1D
	4.2 Miehe Shear Benchmark

	References

	 A Conservative Phase-Field Model  for Reactive Transport
	1 Introduction
	2 The Original Phase-Field Model and Its Sharp-Interface Limit
	3 Conservative Phase-Field Model
	4 Conservative Numerical Discretization
	5 Numerical Examples
	5.1 Circular Mineral
	5.2 Flow Through a Dissolving Channel

	6 Discussion and Conclusion
	References

	 A Fully Conforming Finite Volume Approach to Two-Phase Flow in Fractured Porous Media
	1 Introduction
	2 Governing Equations
	3 Discretization
	4 Implementation
	5 Outlook
	References

	Monotone Embedded Discrete Fracture Method for the Two-Phase Flow Model
	1 Introduction
	2 Two-Phase Flow Model
	3 Embedded Discrete Fracture Method
	4 Numerical Experiment for Two-Phase Flow
	5 Conclusion
	References

	 A Robust VAG Scheme for a Two-Phase Flow Problem in Heterogeneous Porous Media
	1 Introduction
	2 Two-Phase Darcy Flow Model
	3 Positive VAG Discretization for Two-Phase Darcy Flows
	3.1 VAG Mesh, Fluxes and Pore Volumes
	3.2 Choice of the Primary Unknowns
	3.3 Hybrid Upwinding (HU) VAG Scheme for the Diphasic Model

	4 Numerical Results
	References

	 Design of Coupled Finite Volume Schemes Minimizing the Grid Orientation Effect in Reservoir Simulation
	1 Introduction
	2 The Two-Phase Flow Model
	3 Nine-Point Finite Volume Methods
	3.1 A Nine-Point Scheme with One Parameter θ
	3.2 A Nine-Point Scheme with Two Parameters θx and θy

	4 Numerical Results
	References

	 A Comparison of Consistent Discretizations for Elliptic Problems  on Polyhedral Grids
	1 Introduction
	2 Consistent Discretizations on Polyhedral Grids
	2.1 Two-Point Flux-Approximation
	2.2 Multipoint Flux Approximation
	2.3 Nonlinear Two-Point Flux Approximation
	2.4 Mimetic Finite Differences
	2.5 The Virtual Element Method

	3 Numerical Experiments
	3.1 Monotonicity
	3.2 Near-Well Simulation

	4 Closing Remarks
	References

	 Global Implicit Solver for Multiphase Multicomponent Flow in Porous Media with Multiple Gas Phases and General Reactions
	1 Introduction
	2 Mathematical Model and Global Implicit Solver
	3 Simulations/Results
	4 Summary, Conclusions and Outlook
	References

	 Partitioned Coupling Schemes  for Free-Flow and Porous-Media Applications with Sharp Interfaces
	1 Introduction
	2 Problem Description
	2.1 Governing Equations
	2.2 Coupling Conditions

	3 Solvers and Partitioned Setup
	4 Numerical Results
	5 Conclusion and Outlook
	References

	 Challenges in Drift-Diffusion Semiconductor Simulations
	1 Introduction
	2 Modelling Semiconductors with Ohmic Contacts
	2.1 Stationary van Roosbroeck System

	3 Discretization of the van Roosbroeck System Using Potentials
	3.1 Finite Element Method
	3.2 Finite Volume Method

	4 Numerical Examples
	4.1 Resolution of Boundary Layer
	4.2 Regularity of the Doping
	4.3 Corner Singularities and Boundary Adapted Meshes

	5 Conclusion
	References

	 Unipolar Drift-Diffusion Simulation  of S-Shaped Current-Voltage Relations  for Organic Semiconductor Devices
	1 Introduction
	2 Electrothermal Drift-Diffusion Description of Organic Semiconductor Devices
	3 Discretization Scheme
	4 Simulation Results
	5 Conclusion and Remarks
	References

	 A Second Order Numerical Scheme  for Large-Eddy Simulation  of Compressible Flows
	1 Introduction
	2 The Numerical Scheme
	3 Stability Results
	4 Numerical Simulation
	References

	 A Marker-and-Cell Scheme  for Viscoelastic Flows on Non  Uniform Grids
	1 Introduction
	2 The Numerical Scheme
	3 The Total Stress Divergence Term
	4 Numerical Tests
	References

	 A Numerical Convergence Study of Some Open Boundary Conditions for Euler Equations
	1 Introduction
	2 Finite Volume Method
	3 Numerical Boundary Conditions for Outgoing Waves
	3.1 Outgoing Rarefaction Wave
	3.2 Outgoing Shock Wave

	4 Numerical Results
	References

	 Simulation of a Liquid-Vapour Compressible Flow by a Lattice Boltzmann Method
	1 Introduction
	2 Kinetic Approximation of Conservation Laws
	2.1 Vectorial Kinetic Approximation with Over-Relaxation
	2.2 Equivalent Equation

	3 Numerical Methods
	3.1 Finite Volume Method
	3.2 Lattice Boltzmann Method (LBM)

	4 Application to a Three-Phase Flows
	5 Vapour Explosion Test
	6 Conclusion
	References

	 Discontinuous Galerkin Method  for Incompressible Two-Phase Flows
	1 Introduction
	2 Model
	3 Discretization
	3.1 Notation and Liftings
	3.2 Unpenalized LDG Scheme
	3.3 Two-Phase LDG Scheme

	4 Numerical Experiments
	5 Conclusions and Outlook
	References

	 High-Order Numerical Methods  for Compressible Two-Phase Flows
	1 Introduction
	2 Mathematical Model
	3 Numerical Discretization
	4 Numerical Results
	5 Conclusion
	References

	 A Python Framework for Solving Advection-Diffusion Problems
	1 Governing Equations and Discretization
	2 Python Model Interface
	3 Efficiency of Python Based Auto-Generated Models
	4 Extensibility
	References

	 3-Dimensional Particulate Flow Modelling Using a Viscous Penalty Combined with a Stable Projection Scheme
	1 Introduction
	2 Numerical Method
	2.1 Notations, Mesh and Discrete Projection Scheme
	2.2 Antidiffusive Transport Scheme for the Particles

	3 Numerical Test—Dropping a Ball in a Viscous Fluid
	References

	 Data Assimilation for Ocean Drift Trajectories Using Massive Ensembles and GPUs
	1 Introduction
	2 Data Assimilation of Ocean Drift Observations
	3 Results
	4 Discussion and Summary
	References

	 Application of an Unstructured Finite Volume Method to the Shallow Water Equations with Porosity for Urban Flood Modelling
	1 Introduction
	2 Shallow Water Equations in Porous Media
	3 Application of the SRNH Scheme
	3.1 Finite Volume Discretization
	3.2 Discretization of the Gradient Fluxes

	4 Numerical Results and Examples
	5 Conclusions
	References

	 Semi-implicit Two-Speed Well-Balanced Relaxation Scheme for Ripa Model
	1 Introduction
	2 Two-Speed Relaxation System
	3 Semi-implicit Scheme
	4 Well-Balanced Fluxes
	5 Numerical Results
	6 Conclusion
	References

	 Kinetic Over-Relaxation Method for the Convection Equation with Fourier Solver
	1 Introduction
	2 Kinetic Over-Relaxation Approximation  of the Convection Equation
	3 Numerical Results
	3.1 Rotation Test-Case
	3.2 Kelvin-Helmholtz Test-Case

	4 Conclusion
	References

	 Cell-Centered Finite Volume Method  for Regularized Mean Curvature Flow  on Polyhedral Meshes
	1 Introduction
	2 Cell-Centered Finite Volume Method
	2.1 Over-Relaxed Correction Method
	2.2 Iterative Nonlinear Crank-Nicolson Method

	3 Numerical Experiments
	4 Conclusion
	References

	 A Fully Eulerian Finite Volume Method for the Simulation of Fluid-Structure Interactions on AMR Enabled Quadtree Grids
	1 Introduction
	2 The Fully Eulerian FSI Model
	2.1 The Governing Equations
	2.2 The Monolithic Approach

	3 Discretization of the Governing Equations
	3.1 Time Integration
	3.2 Finite Volume Discretizations

	4 Results
	4.1 A Solid Deformation in a Lid-Driven Cavity Flow
	4.2 Hyperelastic Oscillating Membrane in Glycerin

	5 Conclusions and Prospects
	References

	Appendix  Author Index
	Author Index



