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Abstract. Group Technology (GT) is a manufacturing philosophy that explores
similarities in product and process design. Starting from a binary machine-part
matrix, the objective is to form clusters, made up of families of parts and
machine cells aiming to minimize the number of voids and exceptional elements
in the cells. Since this is a combinatorial problem, the proposed hybrid genetic
algorithm (GA) finds good solutions with a partial greedy population that uses
similarities with machines and with parts. A local search k-means based method
can recreate cells with small movements among machine assignments. The
proposed framework performance presents good results, most of them over-
coming literature classic problems solutions, when considering the group
effectiveness indicator. The results are presented and discussed.

Keywords: Genetic algorithm � Local search � Group Technology � K-means �
Cell Formation Problems

1 Introduction

The Group Technology (GT) is a manufacturing philosophy based on the principle of
identifying and grouping machines and parts by similarity, leading the production
systems to obtains advantages throughout all stages of design and manufacturing [1].

Applying the GT in a productive process will result in a binary machine-part
incidence matrix. The cellular manufacturing layout consists in to arrange these ele-
ments into cells, seeking to minimize extracellular movements and maximize the
intracellular ones. The Manufacturing Cell Formation Problems - MCPF’s are con-
sidered NP-arduous because of their combinatorial nature and the literature related
presents a considerable number of methods applied in their solution, where some of the
best known and used for quality comparison are: rank order clustering – ROC [2],
modified rank order clustering – MODROC [3], GA [4], SA [5], which uses the
grouping efficacy index to measure the grouping effectiveness.

In clustering problems, the modified algorithms with local search techniques are
inserted in basic heuristics, overcoming them in terms of grouping effectiveness. The
proposed framework employs these hybridizations in a GA, in the search for solutions
for the MCFPs, being specifically the method k-means the one chosen to improve the

© Springer Nature Switzerland AG 2020
Z. Anisic et al. (Eds.): IJCIEOM 2019, LNMUINEN, pp. 60–68, 2020.
https://doi.org/10.1007/978-3-030-43616-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43616-2_7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43616-2_7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43616-2_7&amp;domain=pdf
https://doi.org/10.1007/978-3-030-43616-2_7


individuals of the population. As objective function, the coefficient of effectiveness,
known in the literature as being a good index of clusters of cellular performance, is
applied as well as being used in the GT problems used to compare results.

2 Machine-Part Cell Formation Problem

Group Technology gives similar treatment to similar elements, that is, it divides the
manufacture into small groups (cells) of machines that will process pieces with greater
similarity between themselves (families).

Thus, the parts of that family will always be processed by the same machines and
tool changes will have reduced configuration time, also reflecting in the same way in
the processing time of the system.

The application of the GT in a production system consists of asserting several steps
and, in an inner process of the Production Flow Analysis (AFP), a binary matrix is
generated relating existing pieces and the corresponding machines that process them.
This matrix is called incidence, and at this stage it is necessary to relate those of greater
similarity so that the parts families and machine cells are constructed, knew as Man-
ufacturing Cell Formation Problem (MCFP).

With the main objective of assigning machines to cells and parts for families, this
arrangement needs a function to guide the performance of these groupings. Some are
well known, such as the use of machines [6], clustering efficiency [7], clustering
efficacy [8], etc. According to [6], two are the most used: efficiency and effectiveness of
grouping.

The grouping efficacy (µ) mentioned below is adopted for two reasons: first
because it overcomes the weaker discriminating power of grouping efficiency measure
by assigning equal weight for the number of voids and the number of exceptional
elements; the second is because the results obtained in the works used as performance
comparison apply this group quality indicator. This measure is defined as follows:

l ¼ e� e0
eþ ev

ð1Þ

where e is the total number of operations (1’s) in the given matrix, ev is the number of
voids (0’s in the diagonal groups), and e0 is the number of exceptional elements (1’s
out the diagonal groups).

Also, [9] and [10] justify this index adoption since it: incorporates both the with-in
cell machine use and the inter-cell movement; generates block diagonal matrices which
are interesting in practice; is independent from the number of cells, among others.

In the Fig. 1, there is a one-piece binary incidence matrix. Reordered, to form
machine cells and parts families, it has voids (in green) and exceptional elements (in
red). An empty means that although machine and part have been assigned the
respective cell and family, the machine will not process the part. An exceptional
element implies intercellular movement, since the part will have some processing in
another cell, increasing the processing time, among other complications.
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Considering the example in the Fig. 1, the Eq. 2 shows the calculus of grouping
efficacy (µ) coefficient, since the e, e0 and ev can be easily found:

l ¼ 18� 3
18þ 3

¼ 0; 7143 ¼ 71; 43% ð2Þ

3 The Proposed Heuristic for Cell Formation Problems

The framework presented in this paper solves MCFP problems by applying a hybrid
genetic algorithm that uses a local search method to refine the solutions.

With an initial population partially formed by a greedy constructor method, the
convergency can be reached faster than only using random construction methods. In
addition, procedures are used to accelerate these convergences, like the neighborhood
research, where an GA solution is used as a starting point for another algorithm: a local
search method as the k-means algorithm, applied to a chromosome, trying to improve
its cluster efficiency.

3.1 The Genetic Algorithm with Local Search

Combining the survival of individuals with each other and inspired by natural and
genetic selection mechanisms. This general theory of systems with robust adaptation
finds an excellent practical application in the optimization of mathematical functions.

GAs differ from other heuristics by having distinct characteristics: act on a set of
points (population) and not on isolated points; operate in a space of coded solutions and
not directly in the search space; they need, as information, only the value of an
objective function (function of adaptability or suitability); use probabilistic transitions
rather than deterministic rules [11].

Briefly, a GA begins with an initial population and the adaptation of the chro-
mosomes is calculated. Genetic operators are applied to selected individuals (a better
adaptation implies a greater chance of selection), based on their suitability, and a new
generation of individuals is created. This procedure will be repeated until some final
criterion is reached.

Fig. 1. Example of a reordered two cell incidence matrix.
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In the population, each individual is represented by a chromosome, denoting viable
solutions to the problem. Thus, to this framework, each gene is a cell or family and
each locus, a machine or part (depending on the portion of the analysed chain), thus
having length equal to the number of machines plus the number of pieces presented in
the M � N matrix, as it can be seen in Fig. 2.

As mentioned, some genetic operators will be used: cloning, crossover and
mutation. Cloning consists in the inclusion of the individual in the next generation. In
other hand, crossover combines information of chromosomes from selected individu-
als, generating new ones. Otherwise, with low probabilistic rate, the mutation randomly
disrupts the machine-cell designation, trying to avoid local maxima. The selection
technique is the Roulette Method [6], with selection proportional to the fitness.

After selection, as can be seen in Fig. 3, and occurring only in the chromosomes’
“machine” portion, the genetic combination draws a cut position where the data origins
from one parent and after, from the other one. A constructor algorithm, driven by these
cells’ segments, will construct the families’ ones.

The refinement of the individuals is used before a new iteration starts. As men-
tioned, the procedure is the k-means, which is a non-hierarchical method that aims to
produce partitions in a set of objects with prior knowledge of the quantity of these.

The procedure starts with k-centroids defined at random, and, in successive itera-
tions, each element is grouped according to some criterion, such as least squares.
Because it is an iterative method, centroids are constantly recalculated until they no
longer change.

Just as the calculation of the distance between the points is necessary, since
cohesive groups are desired around a common point (centroid), it is also necessary to

Fig. 2. Example of a chromosome denoting the two-cell formation shown in Fig. 1.

Fig. 3. The genetic operators: crossover and mutation.
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calculate the similarity between the machines. This coefficient calculation consists in
the coincidences between them, so a XNOR logic (Eq. 3) between the binary vectors is
calculated, where a nonzero bit in Sij indicates that both machines are equal in terms of
part processing, so the sum of the elements of Sij implies that the higher the result, the
greater the similarity between the evaluated elements (vectors Ri and Rj in Eq. 3).

Sij ¼ Ri XNOR Rj
� � ð3Þ

With a totally generated chromosome, the k-means algorithm starts from known
centroids: the cells already characterized. The objective is to carry out movements, in
order to improve these groupings. Because it is costly, this local search has a stop
criterion of only 1 iteration.

The centroids calculation promotes exchanges based on the distances between the
elements. After reconstruction of the “machines” chromosomes fraction, the con-
structor procedure creates the “pieces” segment. Recalculating the adaptation, if better
than the original, will replace it in the current population.

3.2 The Greedy Constructive Heuristic

Like the genetic operators, also the greedy algorithm of manufacturing cell formation
will only act on the chromosomes’ machine segment and so, it begins by calculating
the distance matrix between the machines, where each row of the incidence matrix is a
n-dimensional point. The Eq. 4 shows the distance equation, where xi and yi are the
vectors; i = {1,…n} is the position index of the vectors.

d ¼
Xn
i¼1

xi � yik k ð4Þ

For the initial cells’ formation, 5 pairs of machines are grouped with great distances
from each other, where a random choice will compose the first cell.

The other cells will only have a single machine: that one which accumulates the
biggest distance between all the already allocated, for all the cells. Once defined all
these seeds of cells, the algorithm designates each not yet allocated machine to that cell
with the shortest accumulated distance to its members. In cases of tie, a random choice
is made. In cases of tie, a random choice is made.

3.3 The Part-Segment Constructor Algorithm

Based on the calculation grouping efficiency’s coefficient [3], the training strategy of
[9] that tries to maximize the grouping coefficient considering the association of a part
to a family. This iterative procedure, as presented by the authors in Eq. 5, computes the
effect of allocating each piece to a family. As such, the one that maximizes the function
is chosen and ends when there are no more allocations to be made.
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F� ¼ arg max
N1 � Nout

1;F

N1 þNin
0;F

( )
ð5Þ

where N1 is the total number of operations (1’s) in the given matrix, Nin
1;F is the number

of voids (0’s in the diagonal groups for the association of a part i to a family f), and Nout
1;F

is the number of exceptional elements (1’s out the diagonal groups for the same
association of a part i to a family F).

4 Method and Computational Results

The method applied by the framework consists in to form an initial population which
has half part of the individuals made by a greedy method that uses similarities of parts
and machines to compose the chromosomes. The complement of the population is
formed by individuals of random constitution, aiming to counterbalance the homogeny
generated by the other method of formation.

The test-bed of the work consists in the application of the framework on 25
problems provided by [6] and related in Table 1.

Table 1. Problems obtained from the literature for analysis.

Problems Autor (source) Size

p01 King and Nakornchai [7] 5 � 7
p02 Waghodekar and Sahu [8] 5 � 7
p03 Seifoddini [9] 5 � 18
p04 Kusiak and Cho [10] 6 � 8
p05 Kusiak and Chow [11] 7 � 11
p06, p07 Chandrasekharan and Rajagopalan [12] 8 � 20
p08 Mccormick et al. [13] 16 � 24
p09 Srinlvasan et al. [14] 16 � 30
p10 King [2] 16 � 43
p11 Carrie [1] 18 � 24
p12 Mosier and Taube [15] 20 � 20
p13 Kumar et al. [16] 20 � 23
p14 Carrie [1] 20 � 35
p15, p16, p17, p18, p19 Chandrasekharan and Rajagopalan [12] 24 � 40
p20 Paydar [17] 27 � 27
p21 Carrie [1] 28 � 46
p22 Kumar and Vannelli [18] 30 � 41
p23 Stanfel [9] 30 � 50
p24 Paydar [17] 53 � 37
p25 Chandrasekharan and Rajagopalan [12] 100 � 40
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The authors also analyze the results form GA [4], Zodiac [19], Grafics [20], MST
[21], GATSP [22]. Their own proposal, here denominate G&R is also compared with
this framework results, all related in Table 2. The formation of a population is 5% of
the best individuals (clones), 50% of selected individuals for crossing, and the rest,
with 80% random and 20% greedy formation. The population size is 150 individuals,
regardless of the size of the problem, as well as the mutation rate, equals to 2%. For
each problem, 20 rounds of the GA are performed, statistics are generated and com-
parative data between the framework results and the literature are also related.

The implementation of the framework is done in Python language on a i7-7700HQ
notebook, with 2.8 GHz and 16 GBytes of RAM. Although not being the scope of the
work, the implementation of algorithms in Python is feasible for building the necessary
programming codes, being free of easy access to documentation, as well as good
libraries of functions already created, such as Numpy, for example.

Table 2. Comparison between cluster efficiency indexes obtained from the literature, by
different methods and the presented framework.

Ca Literature best efficiency grouping index Best Diff Generationsc Time (s)

Zodiac Grafics MST GAtsp GA G&R Ftnsb (%) Min Avg Max Min Avg Max

p1 2 73,68 73,68 73,68 81,25 10,27 0 0,0 0 0,01 0,01 0,02

p2 2 56,52 60,87 62,50 62,5 69,57 11,31 0 0,0 0 0,01 0,01 0,02

p3 2 77,36 77,36 77,36 79,59 79,59 0,00 0 0,0 0 0,02 0,03 0,04

p4 2 76,92 76,92 76,92 76,92 76,92 0,00 0 0,0 0 0,01 0,02 0,02

p5 3 39,13 53,12 46,88 50,00 53,13 56,25 5,87 0 1,0 2 0,02 0,06 0,09

p6 3 85,24 85,24 85,24 85,24 85,25 85,25 85,25 0,00 0 0,0 0 0,03 0,03 0,05

p7 2 58,33 58,13 58,72 58,33 55,91 58,72 58,72 0,00 0 0,5 1 0,03 0,05 0,07

p8 6 32,09 45,52 48,70 52,58 51,96 −1,18 1 14,5 41 0,19 1,36 3,64

p9 4 67,83 67,83 67,83 67,83 67,83 0,00 1 1,0 1 0,14 0,14 0,15

p10 5 53,76 54,39 54,44 53,89 54,86 54,86 0,00 2 3,3 5 0,32 0,47 0,76

p11 6 41,84 48,91 44,20 54,46 54,95 0,90 2 29,5 98 0,25 2,73 8,75

p12 5 21,63 38,26 37,12 34,16 42,94 43,36 0,98 6 6,0 6 0,59 0,59 0,59

p13 5 38,66 49,36 43,01 46,62 39,02 49,65 49,25 −0,81 2 3,2 6 0,24 0,35 0,61

p14 4 75,14 75,14 75,14 75,28 66,30 76,22 76,14 −0,10 1 1,0 1 0,16 0,17 0,20

p15 7 85,11 85,11 85,11 85,11 85,11 85,11 0,00 1 1,0 1 0,25 0,26 0,29

p16 7 73,51 73,51 73,51 73,03 73,03 73,51 73,51 0,00 1 1,4 2 0,25 0,32 0,42

p17 9 20,42 20,42 51,81 49,37 37,62 51,97 52,83 1,65 2 5,5 15 0,48 1,15 2,86

p18 9 18,23 44,51 44,72 44,67 34,76 47,06 47,5 0,93 16 72,8 129 3,02 12,98 22,86

p19 9 17,61 41,67 44,17 42,50 34,06 44,87 45,45 1,29 25 72,8 129 4,64 13,10 23,05

p20 4 52,14 41,37 51,00 54,27 54,31 0,07 3 13,1 32 0,41 1,50 3,55

p21 9 33,01 32,86 40,00 44,62 46,91 5,13 70 109, 148 14,93 22,95 30,97

p22 11 33,46 55,43 55,29 53,8 40,96 58,48 61,27 4,77 3 6,8 15 0,88 1,82 3,79

p23 11 21,11 47,96 46,3 45,93 37,55 50,51 58,82 16,45 6 50,1 139 1,84 13,78 38,77

p24 2 52,21 52,21 56,42 59,16 4,86 10 77,6 145 1,89 13,39 24,65

p25 10 83,66 83,92 83,92 84,03 83,90 84,03 84,03 0,00 1 1,9 2 0,78 1,19 1,32
aNumber of cells;
bThe best results obtained during the application of the framework on the problems in the several consecutive rounds;
cNumber of generations to obtain de better efficiency index (a).
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Also, operating on some of the problems studied, [23] obtained similar values to
those found here. Although with a different strategy, they also considered the Euclidean
distances between machines and, subsequently, cells.

5 Conclusion

In this study, a hybrid genetic algorithm is proposed with the objective of maximizing
clustering efficiency in cell manufacturing problems, of NP-hard combinatorial nature.
To obtain good solutions in reasonable computational time, local search techniques
associated with genetic algorithms are applied. The present framework also proposes
strategies of combined greedy and random formation for the initial populations, as well
as constructive procedures of individuals managed by biased rules of pre-optimization,
obtaining very satisfactory results in the questions of grouping of efficiency and
computational time, pointing very favorable perspectives of using this structure in
solving this type of problem.

The maximization of clustering efficiency performed by this framework is com-
pared with 6 other proposals. Briefly, it is assumed that all the average values obtained
exceeded the other applied methods mean values. Moreover, for 88% of the problems,
the efficiency indicators were equal to or better than the best known in the literature
(52% already in the first performed generation). Still, for more than half of the prob-
lems, the results surpassed those then known values of the literature, as show in
Table 2.

In the formation of the initial population, it is observed that the greedy constructive
algorithm consumes more processing time than the random one, besides taking the set
of individuals to have a greater homogeneity. Furthermore, greater uniformity leads to
worse results from construction, which reinforces the decision to define a randomness
rate of 80% and 20% of greedy formation. In addition, in this composition, the best
results already appear in the first iterations (initial generation and first iteration),
without further improvements in the following iterations, of each test.

The k-means local search algorithm did not imply significant differences in the
results when applied with rates higher than 75%, on the individuals generated in the
current population. Thus, since its interference in computational cost is directly linked
to the increase of this rate, it was limited to this value.

The Python language is a bit slower than compiled languages, but it is free, easy to
develop, with ample support material, and the time taken to get the results is satis-
factory. Moreover, the local research combined with a good construction procedure,
even being computationally expensive, allow an accelerated convergence in the search
for good solutions of these types of problems.
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