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Abstract. This study is focusing on presenting an online machine learning
algorithm that benefits from sequential data of IoT devices in the smart grid.
This method provides the smart grid operator with the historical data of gen-
eration units of a smart grid that is connected to the IEEE 33-bus test system.
The proposed smart grid consists of two photovoltaic cells, two wind turbines, a
microturbine, a fuel cell and an electric car the behaviour of which is considered
similar to that of a storage unit. In the training phase, the optimized generation
units’ data is used to form a regressive model of every unit’s behaviour.
Afterwards, the model is used to predict the behaviour of every unit in the next
24 h. The optimized operation data is used to solve the optimal power flow
(OPF) problem. The output of OPF is useful in monitoring the stability of the
smart grid, calculating power losses and locating possible faults. Moreover, the
proposed framework benefits from the online discrepancy test (ODIT) method,
which uses the data of the machine learning method to form a baseline for
anomaly detection. The advantage of this method is that it minimizes false
alarms and it eliminates false data in anomaly detection. The implementation of
the proposed solution methodology has proven to be effective in regards with
execution-time reduction and accuracy.

Keywords: Energy management � IoT � Machine learning � Microgrid �
Security

1 Introduction

1.1 Background

Since the 21st century, the advancements in electronic communication technology have
resolved most of the technical and economic limitations of the electric grid. This is the
distinction between an electric grid and a smart grid. A smart grid is an electric grid that
benefits from a communication infrastructure among its constituting units; i.e. smart
meters, smart appliances and renewable energy resources [1]. Thus, finding the optimal
energy dispatch of the generation units is a great matter of concern. Several studies
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have introduced different solution methodologies in this regard. It is a known fact that
meteorological phenomena i.e. wind speed and solar irradiation have a sequential
pattern. Historical analysis of other smart grid components such as electric load and
market price show that they also have sequential behavior. Therefore, machine learning
algorithms have turned into a popular choice for predicting the behaviour of the
aforementioned units/ aspects of the smart grid. Figure 1 present the increasing trend in
the popularity of addressing IoT-related security issues in smart grids.

A smart IoT-based grid is subject to various security challenges such as imper-
sonation, eavesdropping, data tampering, availability and denial of service issues, etc.
[2]. Since IoT devices are vulnerable to cyber-attacks the main problem that needs to be
addressed is: “what if the IoT devices’ data in the smart grid is hacked/ manipulated?”
This justifies the existence of adversarial machine learning algorithms. If the manip-
ulated data is not detected through a reliable and quick mechanism, the repercussions
can inflict economic and technical cost to the smart grid. That is why addressing
security issues in smart grids have been a popular topic in recent years. In [3] the
authors used wide and deep convolutional neural networks to analyze the periodicity
and non-periodicity in electrical energy consumption. The findings of this study have
been used in anomaly detection (electricity theft) of a smart grid. In the study presented
in [4] the availability of fine-grained time series data has been introduced as a game
changer at the distribution systems level. This issue has prevented effective application
of complex machine learning algorithms on grid operation. In this paper, the deep
generative adversarial network (GAN) is introduced for learning the conditional
probability distribution of real datasets. Article [5] presents adversarial machine
learning, whereby models are fooled through malicious input, either for financial gain
or to cause system disruption. This paper has presented simulation results that show the
effect of adversarial machine learning on the operation of smart energy systems and has
proposed directions for future research related to detection and defense mechanisms for

Fig. 1. Related Literature Publications in the Last 10 Years

320 M. Pourbehzadi et al.



such attacks. In [6] it is described that detecting False Data Injection (FDI) attacks by
current bad data detection systems is impossible. Ergo, three various supervised
learning techniques are presented, the accuracy of which are tested on the IEEE 14-bus,
IEEE 57-bus and IEEE 118-bus test systems. The authors of [7] have proposed a new
metric for the smart grid that is called the entropic state. This metric has two main
purposes. First, it provides an indication of the grid’s health on cycle-to-cycle basis.
Second, it can be used to detect FDI attacks. The idea of this paper comes from the
mentality of addressing state estimation in smart grids and cognitive dynamic systems
at the same time.

The aforementioned literature review along with other studies lead us to the con-
clusion that in regards to adversarial machine learning you can take two main
approaches. (1) Designing a robust machine learning algorithm and (2) Detecting
attacks and mitigating them. The latter provides us from benefiting current machine
learning techniques and is the general approach that has been taken into account. In this
study, a regressive model has been introduced to substitute the time-consuming and off-
line optimization method that is widely used for energy management in smart grids.
Afterwards, the output of this model is given to the OPF solver to gain the power loss
and voltage diagram of the main network. The security of the proposed framework is
guaranteed using the online discrepancy test (ODIT). The distinction of this method
lies within the fact that it eliminates false data, thus avoiding adversarial machine
learning while minimizing false alarms.

1.2 Contributions

The present study has major contributions in regards to optimized operation and the
OPF of smart grids. The outline of the contributions can be mentioned as follows:

• Presenting an online machine learning regressive method to find the optimized
energy dispatch of a microgrid

• Presenting a machine learning based method for addressing the OPF problem
• Avoiding adversarial machine learning using the ODIT

The rest of the paper is organized as follows. In Sect. 2, the problem formulation is
stated. Section 3 covers the solution framework implementation. Finally, the con-
cluding remarks can be found in Sect. 4.

2 Problem Formulation

This section presents the operation cost minimization formulation and its associated
constraints. The formulation is valid for a 24-h period and the proposed MG is con-
sisted of a MT, a FC, two PVs, two WTs, a BAT and the main grid.
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2.1 Cost Function

The cost function of the proposed MG is formulated as described in Eq. (1). Equa-
tions (1a–1j) express the detailed value of each term in Eq. (1):

F Xð Þ ¼ MðP
T

t¼1
CostÞ ¼ PT

t¼1

ðCosttWinds þCosttPVs þCosttFC þ
CosttMT þCosttBAT þCosttGridÞ

¼ MðP
T

t¼1
ð½P
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2.2 Constraints

Considering the above formulation, X denotes the decision variables’ vector, which is
mainly consisted of two elements. The first element is that is constituted from the grid,
battery, fuel cell and micro turbine’s power. Note that since the renewable energy
sources are not dispatchable; meaning that the main aim is to benefit their output power
the most, they are not being considered as decision variables. The next element of the
decision variable vector is Ug specifying the ON/OFF status of the fuel cell and micro
turbine. One of the other coefficients in (1) is Uet, defining the battery charge status.
This variable is equal to −1, when the battery is discharging and it equals 1 during the
charging process. In order to demonstrate the battery state when the battery is neither
being charged nor discharged, Uet equals zero. Note that the term SU/SD denotes the
startup/shutdown cost of the MT or FC depending on the index. Also here, “a” denotes
number of WTs, “b” is for number of PVs, “c” denotes number of FCs, “d” is for MTs
and “e” stands for BAT numerator.

The main constraints that are associated with the proposed MG optimized operation
are analyzed in this section. The most important constraint in this problem is the power
balance constraint as described below:

• Power/Load Balance Constraint

The load and supply balance equation is considered as the major constraint that
must be fulfilled. This constraint is formulated as Eq. (2):

PNWTs

a¼1
Pt
WTsa þ

PNPVs

b¼1
Pt
PVsb þ

PNFC

c¼1
utc � Pt

FCc
þ

PNMT

d¼1
utd � Pt

MTd þ
PNBat

e¼1
Max ute; 0

� �� Pt
BATe þPt

Grid ¼
PNLOAD

f¼1
Pt
Load �

PNBat

e¼1
Min ute; 0

� �� Pt
BATe

ð2Þ

• Battery Constraint

The utilization of energy storage systems in the proposed MG leads to some
constraints that are mainly associated with the batteries’ state of charge (WtBAT), the
charge/discharge rate (Pch/dch), their corresponding boundaries and the batteries’
efficiency (g). These constraints are described in Eqs. (3–8):

Wt
BAT ¼ Wt�1

BAT þ gch � Pt
ch � time� 1

gdch
� Pt

dch � time ð3Þ

WBATe;min �Wt
BATe �WBATe;max ð4Þ

Pt
ch �Pch;max ð5Þ
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Pt
dch �Pdch;max ð6Þ

Pt
ch ¼ Max ute; 0

� �� Pt
BATe ð7Þ

Pt
dch ¼ �Min ute; 0

� �� Pt
BATe ð8Þ

The limitations on the maximum and minimum levels of output powers of the fuel
cell, the micro turbine, the grid and the battery must be taken into account, as described
in Eqs. (9)–(12).

utc � Pt
FCc;min

�Pt
FCc

� utc � Pt
FCc;max

ð9Þ

utd � Pt
MTd;min �Pt

FCc
� utd � Pt

MTd;max ð10Þ

Pt
Grid;min �PGrid �Pt

Grid;max ð11Þ

ute � Pt
BATe;min �Pt

BATe � ute � Pt
BATe;max ð12Þ

3 Solution Implementation

3.1 Machine Learning Substitution for Optimization Algorithm

Classical operation of microgrids is usually performed via solving the optimal dispatch
of the system whilst considering the constraints explained in Sect. 2. Figure 2 illus-
trates the traditional chronology of microgrid operation.

In this study, we have utilized the output of a solution methodology called the bird
mating optimization (BMO) algorithm. The fundamental of this algorithm is based on
the mating of birds. Male or female birds choose their elite mate or mates based on a
series of preferences. This mating behaviour is scored in a descending order and it will
be considered as the fitness function of the algorithm of the initial population. Detailed
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description of the BMO algorithm can be found in [8]. After implementing the BMO
algorithm on the proposed microgrid and analyzing the results, it came to the authors’
attention that the temporal behaviour of different units can be considered as training
data for a regression-based supervised machine learning algorithm. Therefore, the
optimization section in Fig. 2 was substituted with the machine learning algorithm.

The distribution of various constituting units of the microgrid on the IEEE 33-bus
test system is illustrated in Fig. 3.

Considering the constraints of buses and lines in Fig. 3, it is obligatory that the OPF
problem be solved for the IEEE 33-bus test system. Note that the dotted line illustrates
the traveling path of the electric vehicle. Similar to the observations of the BMO
algorithm, the OPF output has a temporal response as well. Ergo, the output data can be
used to train another supervised machine learning algorithm to substitute the OPF
calculations. It must be noted that the main motive for such substitutions lies within the
fact that the traditional methods have two main deficiencies: (1) their performance is
dependent on the initial population and (2) The computational complexity of these
solutions is very high.

3.2 Online Discrepancy Test

It is a known fact that IoT devices are vulnerable to cyber attacks. The main question is:
how can we avoid the manipulated data in machine learning? two main approaches can
be taken: (1) Designing a robust machine learning algorithm and (2) Detecting attacks
and mitigating them. The latter provides us from benefiting current machine learning
techniques and is the general approach that has been taken into account. In this study, a
regressive model has been introduced to substitute the time-consuming and off-line
optimization method that is widely used for energy management in smart grids.
Afterwards, the output of this model is given to the OPF solver to gain the power loss
and voltage diagram of the main network. The security of the proposed framework is
guaranteed using the online discrepancy test (ODIT). Detailed description of the ODIT
can be found in [9]. The distinction of this method lies within the fact that it eliminates

WT

PV

WT

PV

MT

FC

BAT

PEV

PEV

Fig. 3. Proposed microgrid topography
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false data, thus avoiding adversarial machine learning while minimizing false alarms.
The final scheme of the proposed operational framework is illustrated in Fig. 4.

There are two important factors in regards to the final scheme of the system as
illustrated in Fig. 4. (1) Both the optimization and OPF sections have substituted via
regression methods. (2) The ODIT is used to declare any possible anomalies. The
yellow surge signs in Fig. 4 show the possible parts of the scheme that can be subject to
cyber attacks. The attack can occur in the optimization or OPF section, which supplies
the training data for the regression method or it can occur on the system after the
machine learning substitution. In either case, the ODIT’s strategy is to get constant
feedbacks from the actual values and the forecasted values and make a decision on the
existence of anomalous activities using a cumulative criterion [9].

4 Conclusion

With the emergence and development of telecommunication technologies, a new
generation of electric grid has been born; i.e. “the smart grid”. Smart grids have
facilitated several energy management limitations of classic grids. In this regard, two
main points must be taken into consideration:

• The repetitive patterns of renewable energy resources such as solar irradiation and
wind speed can be modeled using a regressive machine learning technique. Fur-
thermore, other aspects that form the energy management of smart grid have a
sequential pattern. For example the energy price and load demand are lower in the
beginning and at the end of the day while they both have peaks sometime around
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noon. This justifies the usage of machine learning algorithms as a substitute for
current off-line meta-heuristic algorithms that require high number of iterations to
converge to the global optimal operation point.

• The security aspects of machine learning- based models in IoT systems. If the
machine learning algorithm is fooled with false or manipulated data, then the final
output of the computations will be false. This can lead to serious financial or even
life-threatening consequences. In order to address this issue it is necessary to pro-
vide an anomaly detection method that is both quick and reliable.

Finally, The findings of this work can be summarized as follows:
We presented an online machine learning algorithm to substitute the optimized

operation and optimized power flow of a smart grid. The benefits of using machine
learning algorithms in energy management of smart grids can be reflected in addressing
computational complexities in: (1) Time: Reducing the operation time and anomaly
detection time. (2) Space: Real-life systems are large-scaled and solving the opti-
mization problem for a grid-connected smart grid is mathematically complex.

We introduced an online anomaly detection method to detect and mitigate cyber
attacks to IoT devices in smart grid so that: (1) the false alarms are minimized. (2) The
false data is eliminated.
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