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Abstract. The recursion theorem of Richard Dedekind is fundamen-
tal for the recursive definition of mappings on natural numbers since it
guarantees that the mapping in mind exists and is uniquely determined.
Usual set-theoretic proofs are partly intricate and become lengthy when
carried out in full detail. We present a simple new proof that is based on
a relation-algebraic specification of the notions in question and combines
relation-algebraic laws and equational reasoning with Scott induction.
It is very formal and most parts of it consist of relation-algebraic cal-
culations. This opens up the possibility for mechanised verification. As
an application we prove a relation-algebraic version of the Dedekind iso-
morphism theorem. Finally, we consider two variants of the recursion
theorem to deal with situations which frequently appear in practice but
where the original recursion theorem is not applicable.

1 Introduction

The so-called recursion theorem of Richard Dedekind, first formulated and
proved in [6], pertains to the method of recursively defining mappings f : N → A
on the set of natural numbers N by first defining the value of f(0) (in [6] f(1),
since there the natural numbers start with 1) and then defining the value of
f(n+1) (in [6] f(n′), with n′ as the successor of n) subject to the value of f(n),
for an arbitrary natural number n ∈ N. It states that there exists precisely one
such mapping and this guarantees the correctness of the method. Besides the
Peano axioms, Dedekind’s original proof (see [6], Satz 126) decisively depends
on the linear ordering of the natural numbers which, in contrast with modern
approaches, is specified before addition is introduced. About fifty years later
proofs have been published which do not use the order but are based only on
the zero/one element and the successor mapping, that is, on the vocabulary of
the Peano axioms. Two of them can be found in [9,11]. The reader interested in
the history of the Dedekind recursion theorem is referred to [7,8], for example.

Nowadays the Dedekind recursion theorem is frequently presented using Pea-
no structures. These are algebraic structures (N, z, s) with a non-empty carrier
set N , an element z ∈ N (the zero element) and a mapping s : N → N (the
successor mapping) such that the following three axioms hold:
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∀x, y ∈ N : s(x) = s(y) ⇒ x = y
¬∃x ∈ N : s(x) = z
∀A ∈ 2N : z ∈ A ∧ (∀x ∈ A : s(x) ∈ A) ⇒ A = N

⎫
⎬

⎭
(1)

Then the recursion theorem states that, given a Peano structure (N, z, s), a non-
empty set A, an element c ∈ A and a mapping F : A → A, there exists precisely
one mapping f : N → A with the following two properties:

f(z) = c ∀x ∈ N : f(s(x)) = F (f(x)) (2)

Modern proofs of the recursion theorem define the mapping f of (2) as a
relation, viz. as the intersection of all relations R with source N and target
A such that z R c and for all x ∈ N and y ∈ A from xR y it follows that
s(x)R F (y). For example, in [3], pages 346–348, the partly intricate proof that
this intersection in fact is a univalent and total relation (that is, a mapping) and
satisfies the two formulae of (2) is carried out in great detail.

Specifying the notions in question in the language of relation algebra and
combining relation-algebraic calculations with Scott induction, in Sect. 3 of this
paper we present a new proof of the Dedekind recursion theorem that is simpler
than the purely set-theoretic proof of [3] or similar proofs. A further advantage
of the new proof is that it is very formal and most parts of it consist of equational
reasoning. This opens up the possibility for its mechanised verification by means
of a theorem-proving tool. As an application of our relation-algebraic version of
the recursion theorem we present in Sect. 4 a relation-algebraic version of the
Dedekind isomorphism theorem, i.e., prove that all (relational) Peano structures
are isomorphic. Finally, in Sect. 5 we consider two cases of recursive definitions of
mappings which frequently appear in practice but where the original Dedekind
recursion theorem is not applicable since either the mapping f to be defined is
not unary or the result of f(s(x)) depends not only on the value of f(x) but
also on x. For each case we give an example and prove a corresponding variant
of the relation-algebraic recursion theorem.

2 Mathematical Preliminaries

We assume the reader to be familiar with the basic concepts of partially ordered
sets and complete lattices, including monotone mappings on them, basic fixpoint
theory (fixpoint calculus) and the construction of direct products. Otherwise we
refer to standard textbooks on ordered sets and lattices, e.g., [4,5], and to [13].

Given a partially ordered set (A,≤) that is a complete lattice, we denote the
least element of A by the symbol ⊥, the least upper bound of the subset B of A
by

⊔
B and the greatest lower bound of B by B. Alfred Tarski’s well-known

fixpoint theorem (see [16]) states that each monotone mapping f : A → A has
a least fixpoint, denoted as μ(f), and μ(f) = {x ∈ A | f(x) ≤ x} holds.
For proving properties of μ(f) we will apply the principle of Scott induction,
sometimes also called computational induction or fixpoint induction. Usually the
principle is formulated for complete partial orders (CPOs), that is, for partially
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ordered sets with a least element and the property that each chain possesses a
least upper bound. See [10], for example. Scott induction also works in the case
of complete lattices, since complete lattices are CPOs.

Assume (A,≤) to be a complete lattice. Then a predicate P on its carrier
set A is called admissible (for Scott induction) if for every chain C in (A,≤) the
following implication is true: if for all x ∈ C it holds P (x), then P (

⊔
C) holds,

too. Now, Scott induction states that for each monotone mapping f : A → A
and each admissible predicate P on A from the two conditions

P (⊥) ∀x ∈ A : P (x) ⇒ P (f(x)) (3)

it follows that P (μ(f)). The left condition of (3) is called the induction base and
the right one the induction step with induction hypothesis P (x). Besides the
above version we will also apply a version which in [10] is called simultaneous.
We consider the case of two complete lattices (A,≤1) and (B,≤2) with least
elements ⊥1 ∈ A and ⊥2 ∈ B and two monotone mappings f1 : A → A and
f2 : B → B only. Then if P is an admissible predicate on the direct product
A × B, which is ordered by the product order (that is, by (x1, x2) ≤ (y1, y2) iff
x1 ≤1 y1 and x2 ≤2 y2, for all x1, y1 ∈ A and x2, y2 ∈ B), then from the two
conditions

P (⊥1,⊥2) ∀x ∈ A, y ∈ B : P (x, y) ⇒ P (f1(x), f2(y)) (4)

it follows that P (μ(f1), μ(f2)). This principle is obtained from the original one
by taking in (3) the least element (⊥1,⊥2) of the product lattice (A × B,≤) as
⊥ and the product of the two mappings f1 : A → A and f2 : B → B, defined by

f1 ⊗ f2 : A × B → A × B (f1 ⊗ f2)(x, y) = (f1(x), f2(y)),

as mapping f . Namely, from the monotonicity of f1 with respect to ≤1 and of
f2 with respect to ≤2 and the definition of the product order ≤ it follows that
f1 ⊗ f2 is monotone with respect to ≤ and μ(f1 ⊗ f2) = (μ(f1), μ(f2)).

Given complete lattices (A,≤1) and (B,≤2), a predicate P on the carrier set
A×B of the product lattice (A×B,≤) is admissible (for the simultaneous Scott
induction described by (4)) if there exist

⊔
-distributive mappings α : A → C

and β : B → C into a complete lattice (C,≤3) such that P (x, y) iff α(x) ≤3 β(y),
for all x ∈ A and y ∈ B, or P (x, y) iff α(x) = β(y), for all x ∈ A and y ∈ B. See
e.g., [10] for a proof of this property.

We assume the reader also to be familiar with the basic concepts of
(axiomatic) relation algebra as introduced in [15] by Alfred Tarski. Otherwise
we refer again to standard textbooks, e.g., to [12,14].

As in [14] we work with typed relations. For given sets (or objects in case
of axiomatic relation algebra) A and B we denote the set of all relations with
source A and target B by [A ↔B] and write R : A ↔B instead of R ∈ [A ↔ B].
As operations and predicates on relations we use transposition RT, complemen-
tation R , union R ∪ S, intersection R ∩ S, composition R ;S, inclusion R ⊆ S
and equality R = S, and as special relations we use the empty relation O, the
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universal relation L and the identity relation I. As usual, in the latter cases we
overload the symbols, i.e., avoid the binding of types to them, since all types can
be derived from the context by means of the typing rules of the operations. All
basic relation-algebraic laws we will apply in the remainder of the paper are well
known for set-theoretic relations; their proofs from the axioms of an (axiomatic)
relation algebra can be found in [14], for example.

Many important properties of relations can be specified in a quantifier-
free manner using (conjunctions of) inclusions and equations between relation-
algebraic expressions only. In this paper we will use that a relation R : A ↔B is
univalent iff RT ;R ⊆ I, total iff R ; L = L or, equivalently, iff I ⊆ R ;RT, injective
iff R ;RT ⊆ I and surjective iff RT ; L = L or, equivalently, iff I ⊆ RT ;R. For all
R and S the following implication is shown in [14] as Proposition 4.2.2.iv:

R ⊆ S ∧ S univalent ∧ R total =⇒ R = S. (5)

Other results of [14] we will apply are Proposition 4.2.2.iii, stating that

Q univalent =⇒ R ;Q ∩ S = (R ∩ S ;QT) ;Q, (6)

for all Q, R and S, and Proposition 2.4.2.i, stating that

(Q ∩ R ; L) ;S = Q ;S ∩ R ; L, (7)

for all Q, R and S.
We also need relational vectors, which are relations v : A ↔B with v = v ; L,

and relational points, which are injective and surjective relational vectors. In case
of set-theoretic relations a little reflection shows that v : A↔ B is a relational
vector iff there exists a subset V of the set A such that v = V ×B, and it is a
relational point iff additionally V is a singleton set. Hence, a set-theoretic rela-
tional vector models a subset of its source and a set-theoretic relational point
models an element of its source. Therefore, the targets are irrelevant and in most
applications, also of (axiomatic) relation algebra, relational vectors and points
are from a set [A ↔11], where 11 is a singleton set (a specific object, respectively).
In this case the demand v = v ; L can be dropped, since it holds because the
identity relation and the universal relation from [11↔11] coincide.

To treat mappings with more than one argument relation-algebraically, we
will use constructions related to direct products, viz. projection relations, prod-
ucts and pairings. Their formal introduction is postponed to Sect. 5.

3 Relation-Algebraic Version of the Recursion Theorem

In this section we formulate the recursion theorem of Dedekind in the language of
relation algebra and present a proof that combines relation-algebraic calculations
and Scott induction. We start with the following definition of a relational Peano
structure. In a similar form its axioms can be found already in [2]. Since the
Dedekind recursion theorem is a theorem on sets, in Definition 3.1 and all results
we will prove in the remainder of the paper we consider relations as set-theoretic
ones. But we will use only the operations of (axiomatic) relation algebra and its
laws. As a consequence, our results remain true in this more general setting.
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Definition 3.1. A triple (N, z, S) is called a relational Peano structure if N is
a non-empty set, z : N ↔11 is a relational point, S : N ↔ N is a univalent, total
and injective relation, S ; z = O and for all relational vectors v : N ↔11 from
z ∪ ST; v ⊆ v it follows that v = L.

Compared with the notion of a Peano structure formulated in the introduction
we see that the relational point z : N ↔11 models the zero element and the
univalent, total and injective relation S : N ↔N equals the injective successor
mapping. The equation S ; z = O is the relation-algebraic version of the second
formula of (1) and that for all relational vectors v : N ↔11 from z ∪ ST; v ⊆ v it
follows v = L is the relation-algebraic version of the third formula of (1). To be
able to prove totality of relations by means of Scott induction, in the next lemma
(following [2]) we specify the last axiom of a relational Peano structure as a least
fixpoint equation. Notice, that in the remainder of the paper monotonicity of a
mapping on relations always supposes inclusion as order.

Lemma 3.1. Assume z : N ↔11 to be a relational vector, S : N ↔ N to be a
relation and the mapping g to be defined as follows:

g : [N ↔11] → [N ↔11] g(v) = z ∪ ST; v (8)

Then g is monotone. Furthermore, we have μ(g) = L iff for all relational vectors
v : N ↔11 from z ∪ ST; v ⊆ v it follows that v = L.

Proof. The monotonicity of the mapping g follows from the monotonicity of
union and composition. To show the second claim, we calculate as follows:

μ(g) = L ⇐⇒ ⋂{v ∈ [N ↔11] | g(v) ⊆ v} = L fixpoint theorem
⇐⇒ ⋂{v ∈ [N ↔11] | z ∪ ST; v ⊆ v} = L by (8)
⇐⇒ ∀ v ∈ [N ↔11] : z ∪ ST; v ⊆ v ⇒ v = L ��

Having specified Peano structures in the language of relation algebra, we now
consider the two formulae of the recursive definition of the mapping f : N → A
via (2). If we model the element z ∈ N by the relational point z : N ↔11 of a
relational Peano structure (N, z, S), use the univalent, total and injective relation
S : N ↔ N instead of the injective successor mapping s : N → N , model the
element c ∈ A by the relational point c : A ↔11, take the mapping F : A → A
as univalent and total relation from [A ↔A] and take the mapping f : N → A
as univalent and total relation from [N ↔A], then the two formulae of (2) are
relation-algebraically specified as follows:

z ; cT ⊆ f S ; f = f ;F (9)

As next result we show how the two formulae of (9) can be specified by a single
fixpoint equation.

Lemma 3.2. Assume (N, z, S) to be a relational Peano structure, c : A ↔11 to
be a relational point, F : A ↔ A to be univalent and total and the mapping h to
be defined as follows:

h : [N ↔ A] → [N ↔ A] h(X) = z ; cT ∪ ST ;X ;F (10)
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Then h is monotone and μ(h) : N ↔ A is total. Furthermore, for all univalent
and total relations f : N ↔ A the two formulae of (9) hold iff f = h(f).

Proof. The monotonicity of the mapping h follows again from the monotonicity
of union and composition.

With regard to the totality of the relation μ(h) we prove μ(g) ⊆ μ(h) ; L, with
the mapping g defined by (8). We apply Scott induction (of the form (4)) with
the predicate P on the direct product [N ↔11] × [N ↔ A] defined by P (v,X) iff
v ⊆ X ; L, for all relational vectors v : N ↔11 and relations X : N ↔ A. Since the
two equations α(v) = v and β(X) = X ; L define two

⋃
-distributive mappings

α : [N ↔11] → [N ↔11] and β : [N ↔A] → [N ↔11], respectively, the predicate
P is admissible due to the criterion mentioned in Sect. 2.

A proof of the induction base P (O,O) is trivial. For a proof of the induction
step, assume an arbitrary relational vector v : N ↔11 and an arbitrary relation
X : N ↔A such that P (v,X) holds. Then we get P (g(v), h(X)) by the following
calculation:

g(v) = z ∪ ST ; v by (8)
⊆ z ∪ ST ;X ; L as P (v,X)
= z ∪ ST ;X ;F ; L F total
= z ; L ∪ ST ;X ;F ; L z relational point (i.e., vector)
= z ; cT ; L ∪ ST ;X ;F ; L c relational point (i.e., surjective)
= (z ; cT ∪ ST ;X ;F ) ; L
= h(X) ; L by (10)

Therefore, we have P (μ(g), μ(h)), i.e., μ(g) ⊆ μ(h) ; L. Now, L = μ(h) ; L follows
from the last axiom of a relational Peano structure and Lemma3.1.

For a proof of the remaining claim, assume an arbitrary univalent and total
relation f : N ↔ A to be given. To show implication “=⇒”, suppose the two
formulae of (9) to be true. We start with the following calculation:

h(f) = z ; cT ∪ ST ; f ;F by (10)
= z ; cT ∪ ST ;S ; f second formula of (9)
⊆ z ; cT ∪ f S univalent
= f first formula of (9)

In combination with Tarski’s fixpoint theorem from h(f) ⊆ f we get μ(h) ⊆ f .
Now, the desired equation f = h(f) follows from the univalence of f , the totality
of μ(h), inclusion μ(h) ⊆ f and implication (5). With regard to implication
“⇐=”, assume f = h(f). The following proof of the first formula of (9) uses
definition (10) of the mapping h and f = h(f):

z ; cT ⊆ z ; cT ∪ ST ; f ;F = h(f) = f
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The second formula of (9) is shown by the following calculation:

S ; f = S ;h(f) as f = h(f)
= S ; (z ; cT ∪ ST ; f ;F ) by (10)
= S ; z ; cT ∪ S ;ST ; f ;F
= S ;ST ; f ;F axiom S ; z = O
= f ;F S total and injective ��

Notice, that in this proof only the univalence of the relation f is used. But from
μ(h) ⊆ f and the totality of μ(h) the totality of f follows. For F only totality
is applied. Now, we are able to prove the following relation-algebraic version of
the recursion theorem of Dedekind. Here univalence of F is used, too.

Theorem 3.1. Let (N, z, S) be a relational Peano structure, c : A ↔11 be a
relational point and F : A ↔ A be univalent and total. Then there exists precisely
one univalent and total relation f : N ↔ A that satisfies the two formulae of (9),
viz. the least fixpoint μ(h) of the mapping h of (10).

Proof. From Lemma 3.2 we already know that μ(h) is total. To prove that μ(h)
is also univalent, we use Scott induction (of the form (3)) with the predicate P
on the set [N ↔ A] defined by P (X) iff XT ;X ⊆ I, for all relations X : N ↔A.
To verify that P is admissible, assume the subset C of [N ↔ A] to be a chain
of univalent relations. Then the following calculation shows that also the union
(i.e., least upper bound)

⋃ C is a univalent relation:

(
⋃ C)T ; (

⋃ C) = (
⋃{RT | R ∈ C}) ; (

⋃ C)
=

⋃{RT ; (
⋃ C) | R ∈ C}

=
⋃{⋃{RT ;S | S ∈ C} | R ∈ C}

⊆ I see below

The last step uses
⋃{RT ;S | S ∈ C} ⊆ I, for all relations R ∈ C. This inclusion

holds as, given any R ∈ C, it holds that RT ;S ⊆ I, for all relations S ∈ C. The
latter, in turn, follows from the chain property of C and since all relations of C
are univalent. Namely, given any S ∈ C, in case R ⊆ S we get RT ;S ⊆ ST ;S ⊆ I
and in case S ⊆ R we get RT ;S ⊆ RT ;R ⊆ I.

A proof of the induction base P (O) is obvious. To show the induction step,
assume an arbitrary relation X : N ↔ A with P (X). Then P (h(X)) holds
because of the following calculation:

h(X)T;h(X) = (z ; cT ∪ ST ;X ;F )T ; (z ; cT ∪ ST ;X ;F ) by (10)
= (c ; zT ∪ FT ;XT ;S) ; (z ; cT ∪ ST ;X ;F )
= c ; zT; z; cT ∪ c ; zT;ST;X ;F ∪

FT;XT;S ; z ; cT ∪ FT;XT;S ;ST;X ;F
⊆ I see below.

Concerning the last step, c ; zT; z ; cT ⊆ c ; L ; cT = c ; cT ⊆ I uses that c is a rela-
tional point (i.e., an injective relational vector). Equation c ; zT;ST;X ;F = O
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follows from zT;ST = (S ; z)T = O, where the axiom S ; z = O of a relational
Peano structure is applied. Also FT;XT;S ; z ; cT = O follows from this axiom.
Finally, for FT ;XT ;S ;ST ;X ;F ⊆ FT ;XT ;X ;F ⊆ FT ;F ⊆ I we use that
S is injective, X is univalent (due to the induction hypothesis P (X)) and F is
univalent.

Because of μ(h) = h(μ(h)) and since μ(h) is univalent and total, from impli-
cation “⇐=” of Lemma 3.2 we get that the two formulae of (9) hold for the univa-
lent and total relation μ(h), that is, we have z ; cT ⊆ μ(h) and S ;μ(h) = μ(h) ;F .

To show that μ(h) is the only univalent and total relation from [N ↔ A] that
satisfies the two formulae of (9), let an arbitrary univalent and total relation
f : N ↔ A be given such that z ; cT ⊆ f and S ; f = f ;F . Then implication “=⇒”
of Lemma 3.2 shows f = h(f), from which μ(h) ⊆ f follows. This inclusion, the
univalence of f , the totality of μ(h) and implication (5) yield μ(h) = f . ��
The proofs of Lemma 3.2 and Theorem 3.1 contain the decisive ideas which also
will be used in Sect. 5 for proving the variants of Theorem3.1 we have mentioned
in the introduction.

4 An Application: The Isomorphism Theorem

Besides the recursion theorem a second important result of [6] is the nowadays
called Dedekind isomorphism theorem (see [6], Satz 132). In modern terminology
it says that for each pair of Peano structures (N, z, s) and (N1, z1, s1) there exists
a bijective mapping Φ : N → N1 with the following two properties:

Φ(z) = z1 ∀x ∈ N : Φ(s(x)) = s1(Φ(x)) (11)

When translated into the language of relation algebra with relational Peano
structures (N, z, S) and (N1, z1, S1), the bijective mapping Φ : N → N1 becomes
a univalent, total, injective and surjective relation Φ : N ↔ N1 for which the
following relation-algebraic versions of the two formulae of (11) hold:

z ; zT1 ⊆ Φ S ;Φ = Φ ;S1 (12)

To prove the existence of such a relation Φ, we consider the monotone mapping h
of (10), where the set A is instantiated by N1, the relational point c is instantiated
by z1 : N1 ↔11 and the relation F is instantiated by S1 : N1 ↔ N1. So, the
mapping we consider is given as follows:

h1 : [N ↔N1] → [N ↔N1] h1(X) = z ; z1T ∪ ST ;X ;S1 (13)

Furthermore, we define Φ as least fixpoint of h1, i.e. by Φ := μ(h1) : N ↔ N1.
Then from Theorem 3.1 we get that Φ is the only univalent and total relation
from [N ↔ N1] that satisfies the two formulae of (12). So, it remains to verify
Φ as injective and surjective. To this end, we consider the following monotone
mapping h2 (that is again a specific instance of the mapping h of (10)):

h2 : [N1 ↔ N ] → [N1 ↔ N ] h2(Y ) = z1 ; zT ∪ ST
1 ;Y ;S (14)
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It is easy to verify that the mapping t : [N ↔ N1] → [N1 ↔ N ], defined by
t(X) = XT for all X : N ↔N1, is a lower adjoint of a Galois connection between
the complete lattices ([N ↔ N1],⊆) and ([N1 ↔N ],⊆) and that t ◦ h1 = h2 ◦ t.
Hence, the μ-fusion theorem of the fixpoint calculus (see [13]) yields

ΦT = μ(h1)
T = t(μ(h1)) = μ(h2).

This equation and the univalence and totality of μ(h2) (a consequence of The-
orem 3.1) yield the injectivity and surjectivity of Φ. Altogether, we have shown
the following relation-algebraic version of the Dedekind isomorphism theorem.

Theorem 4.1. Assume (N, z, S) and (N1, z1, S1) to be relational Peano struc-
tures. Then there exists precisely one univalent, total, injective and surjective
relation Φ : N ↔ N1 that satisfies the two formulae of (12), viz. the least fixpoint
μ(h1) of the mapping h1 of (13).

5 Variants of the Relation-Algebraic Recursion Theorem

When defining a mapping on natural numbers (or on a Peano structure) recur-
sively, it frequently possesses, besides the argument that controls the recursion,
additional arguments. An example is the following recursive definition of the
addition-mapping add : N × N → N on a Peano structure (N, z, s), where the
first argument of add controls the recursion:

∀ y ∈N : add(z, y) = y ∀x ∈N, y ∈N : add(s(x), y) = s(add(x, y)) (15)

Since the original Dedekind recursion theorem only treats the recursive definition
of unary mappings, it cannot immediately be applied to show that there exists
precisely one mapping add : N ×N → N for which the two formulae of (15)
hold. Therefore, in the following we present a corresponding variant – in terms
of sets as well as in terms of relation algebra. To simplify the presentation, we
consider mappings of the kind f : N ×B → A only. Taking B as a direct product∏n

i=1 Bi, this also covers the case of mappings with more than two arguments.
The set-theoretic variant of the Dedekind recursion theorem we have in mind

is as follows: Let (N, z, s) be a Peano structure, A and B be non-empty sets and
mappings d : B → A and G : A → A be given. Then there exists precisely one
mapping f : N × B → A that satisfies the following two formulae:

∀ y ∈ B : f(z, y) = d(y) ∀x ∈ N, y ∈ B : f(s(x), y) = G(f(x, y)) (16)

If this statement is translated into the language of relation algebra, with a rela-
tional Peano structure (N, z, S) and the mappings d and G as univalent and
total relations, then we obtain the following variant of Theorem3.1.

Theorem 5.1. Assume (N, z, S) to be a relational Peano structure and d :
B ↔ A and G : A ↔ A to be univalent and total. Then there exists precisely
one univalent and total relation f : N × B ↔ A that satisfies the following two
formulae:

[[z ; L, d] ⊆ f (S ⊗ I) ; f = f ;G (17)



24 R. Berghammer

The construction [[z ; L, d] of the first formula of (17) is known as the left pairing
or strict join of the point z ; L : N ↔ A and the relation d : B ↔A. Using point-
wise notation, it relates (x1, x2) ∈ N ×B with y ∈ A iff x1 (z ; L) y and x2 d y. In
other words, it relates (x1, x2) with y iff x1 is the zero element and d maps x2 to
y. The construction S ⊗ I of the second formula of (17) is called the product or
parallel composition of the relations S : N ↔ N and I : B ↔B. In a point-wise
notation it relates (x1, x2) ∈ N × B with (y1, y2) ∈ N × B iff x1 S y1 and x2 I y2.
Hence, the relation S ⊗ I : N × B ↔ N × B is the relational counterpart of the
product s ⊗ I : N × B → N × B of the successor mapping s : N → N with the
identity relation / mapping on the set B in the sense of Sect. 2.

Using relation-algebraic specifications of the two projection relations, left
pairings and products and following the lines of the proof of Theorem3.1, also
Theorem 5.1 can be proved with purely relation-algebraic means. To do so, we
start with the relation-algebraic definitions [[z ; L, d] := π ; z ; L∩ρ ; d : N × B ↔ A
of the left pairing and S ⊗ I := π ;S ;πT ∩ ρ ; I ; ρT : N × B ↔N × B of the
product, where π : N × B ↔N and ρ : N × B ↔B are the projection relations
of the direct product N ×B. Up to isomorphism, the latter are specified relation-
algebraically by the following four axioms (see also [2,14]):

πT ;π = I ρT ; ρ = I π ;πT ∩ ρ ; ρT = I πT ; ρ = L (18)

From the first three formulae of (18) we get that the projection relations π and
ρ are univalent, total and surjective. The definition of the left pairing [[z ; L, d]
and the univalence of ρ and d imply

[[z ; L, d]T ; [[z ; L, d] ⊆ (ρ ; d)T ; ρ ; d = dT ; ρT ; ρ ; d ⊆ I,

such that [[z ; L, d] is univalent. Also the product S ⊗ I is univalent, since its
definition and the univalence of π and S imply

(S ⊗ I)T ; (S ⊗ I) ⊆ (π ;S ;πT)
T

;π ;S ;πT = π ;ST ;πT ;π ;S ;πT ⊆ π ;πT

and its definition and the univalence of ρ imply

(S ⊗ I)T ; (S ⊗ I) ⊆ (ρ ; ρT)
T

; ρ ; ρT = ρ ; ρT ; ρ ; ρT ⊆ ρ ; ρT

such that the third formula of (18) yields (S ⊗ I)T ; (S ⊗ I) ⊆ π ;πT ∩ ρ ; ρT = I.
Similar calculations show that S ⊗ I is total and injective.

After these preparations we are able to prove Theorem 5.1 with relation-
algebraic means. The idea is the same as in case of Theorem 3.1. We define an
appropriate monotone mapping on the set [N × B ↔ A] and verify that its least
fixpoint satisfies the desired properties. Concretely, we consider the least fixpoint
μ(h3) : N × B ↔A of the following monotone mapping:

h3 : [N × B ↔A] → [N × B ↔ A] h3(X) = [[z ; L, d] ∪ (S ⊗ I)T ;X ;G (19)

The proof that μ(h3) is the only univalent and total relation from [N × B ↔A]
that satisfies the two formulae of (17) is given by the following four lemmas.
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Lemma 5.1. The relation μ(h3) is total.

Proof. Besides the mapping h3 of (19) we additionally consider the mapping g of
(8) and show π ;μ(g) ⊆ μ(h3) ; L using Scott induction (of the form (4)). Then the
totality of the projection relation π : N × B ↔N and the last axiom of a Peano
structure in combination with Lemma 3.1 yield L = π ; L = π ;μ(g) ⊆ μ(h3) ; L.

For the Scott induction we use the admissible predicate P on the direct prod-
uct [N ↔11] × [N × B ↔ A] defined by P (v,X) iff π ; v ⊆ X ; L, for all relational
vectors v : N ↔11 and relations X : N × B ↔A. The induction base P (O,O)
is obvious. To show the induction step, assume an arbitrary relational vector
v : N ↔11 and an arbitrary relation X : N × B ↔A with P (v,X). Then the
following calculation shows P (g(v), h3(X)):

π ; g(v) = π ; (z ∪ ST ; v) by (8)
= π ; z ∪ π ;ST ; v
= (π ; z ; L ∩ ρ ; d ; L) ∪ (π ;ST ∩ ρ ; L) ; v z vector and ρ, d total
= (π ; z ; L ∩ ρ ; d) ; L ∪ (π ;ST ∩ ρ ; L) ; v by (7)
= [[z ; L, d] ; L ∪ (π ;ST ∩ ρ ; L) ; v definition left pairing
= [[z ; L, d] ; L ∪ (π ;ST ∩ ρ ; ρT ;π) ; v last formula of (18)
= [[z ; L, d] ; L ∪ (π ;ST ;πT ∩ ρ ; ρT) ;π ; v π univalent and (6)
= [[z ; L, d] ; L ∪ (π ;S ;πT ∩ ρ ; ρT)T ;π ; v
= [[z ; L, d] ; L ∪ (S ⊗ I)T;π ; v definition product
⊆ [[z ; L, d] ; L ∪ (S ⊗ I)T;X ; L by P (v,X)
= [[z ; L, d] ; L ∪ (S ⊗ I)T;X ;G ; L G total
= ([[z ; L, d] ∪ (S ⊗ I)T;X ;G) ; L
= h3(X) ; L by (19) ��

Lemma 5.2. The relation μ(h3) is univalent.

Proof. We use Scott induction (of the form (3)) with the admissible predicate
P on the set [N × B ↔A] defined by P (X) iff XT ;X ⊆ I, for all relations
X : N × B ↔ A. The induction base P (O) is obvious. To verify the induction
step, let an arbitrary relation X : N × B ↔ A be given such that P (X) is true.
To get P (h3(X)), we start with the calculation

h3(X)T;h3(X) = ([[z ; L, d] ∪ (S ⊗ I)T;X ;G)
T
; ([[z ; L, d] ∪ (S ⊗ I)T;X ;G)

= [[z ; L, d]T; [[z ; L, d] ∪ [[z ; L, d]T; (S ⊗ I)T;X ;G ∪
GT ;XT ; (S ⊗ I) ; [[z ; L, d] ∪ GT ;XT ; (S ⊗ I) ; (S ⊗ I)T;X ;G

⊆ I ∪ (GT ;XT ; (S ⊗ I) ; [[z ; L, d])T ∪ GT ;XT ; (S ⊗ I) ; [[z ; L, d]

using the definition (19) of the mapping h3, some basic laws of relation algebra,
that [[z ; L, d], G and X are univalent (X because of the induction hypothesis
P (X)) and that S ⊗ I is injective. Now, the definitions of S ⊗ I and [[z ; L, d], the
univalence of π and the axiom S ; z = O of a relational Peano structure imply

(S ⊗ I) ; [[z ; L, d] ⊆ π ;S ;πT ;π ; z ; L ⊆ π ;S ; z ; L = O (20)

and in combination with the above calculation we get P (h3(X)). ��
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Lemma 5.3. The relation μ(h3) satisfies the two formulae of (17).

Proof. Using the definition of the mapping h3 by (19) and that μ(h3) is a fixpoint
of h3 we obtain

[[z ; L, d] ⊆ [[z ; L, d] ∪ (S ⊗ I)T ;μ(h3) ;G = h3(μ(h3)) = μ(h3),

such that μ(h3) satisfies the first formula of (17). The calculation

(S ⊗ I) ;μ(h3) = (S ⊗ I) ;h3(μ(h3)) μ(h3) fixpoint
= (S ⊗ I) ; ([[z ; L, d] ∪ (S ⊗ I)T ;μ(h3) ;G) by (19)
= (S ⊗ I) ; [[z ; L, d] ∪ (S ⊗ I) ; (S ⊗ I)T;μ(h3) ;G
= O ∪ (S ⊗ I) ; (S ⊗ I)T;μ(h3) ;G by (20)
= μ(h3) ;G S ⊗ I total, inj.

shows that μ(h3) satisfies the second formula of (17), too. ��
Lemma 5.4. Assume f : N × B ↔ A to be univalent and total. If it satisfies
the two formulae of (17), then f = μ(h3).

Proof. We start with the calculation

h3(f) = [[z ; L, d] ∪ (S ⊗ I)T ; f ;G by (19)
⊆ f ∪ (S ⊗ I)T ; f ;G first formula of (17)
= f ∪ (S ⊗ I)T ; (S ⊗ I) ; f second formula of (17)
⊆ f S ⊗ I univalent

and get μ(h3) ⊆ f due to Tarski’s fixpoint theorem. This, the univalence of f ,
the totality of μ(h3) (i.e., Lemma 5.1) and implication (5) yield μ(h3) = f . ��
A second situation in which the original Dedekind recursion theorem is not
applicable is given when the result of the expression f(s(x)) not only depends
on the value of f(x) but also on x. The following recursive definition of a mapping
sum : N → N that computes the sum

∑n
i=z i by means of the addition-mapping

add of (15) is an example for this:

sum(z) = z ∀x ∈ N : sum(s(x)) = add(sum(x), s(x))

Such a situation also requires a generalisation of the original Dedekind recursion
theorem. The mapping F has to be binary and of type F : A × N → A and the
recursive definition (2) of f : N → A changes to the following one:

f(z) = c ∀x ∈ N : f(s(x)) = F (f(x), x) (21)

When translated into the language of relation algebra, the statement that there
exists precisely one mapping f : N → A that satisfies the two formulae of (21),
leads to the following second variant of Theorem3.1.
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Theorem 5.2. Assume (N, z, S) to be a relational Peano structure, c : A ↔11
to be a relational point and F : A × N ↔ A to be univalent and total. Then
there exists precisely one univalent and total relation f : N ↔ A that satisfies
the following two formulae:

z ; cT ⊆ f S ; f = [f, I]] ;F (22)

Also Theorem 5.2 uses a relation-algebraic notion we have not introduced in
Sect. 2. This is the right pairing or fork [f, I]] of the two relations f : N ↔ A
and I : N ↔N . Relation-algebraically it is defined by [f, I]] := f ;πT ∩ I ; ρT =
[[fT, IT]T : N ↔ A × N, where π : A × N ↔A and ρ : A × N ↔ N are now the
projection relations of the direct product A × N ; see again [2,14]. From the
definition of right pairings (generalising that of [f, I]] to arbitrary relations with
the same source) and the axioms (18) we get that right pairings of univalent
relations are univalent and a composition with a univalent relation from the
left distributes over right pairings. These are the only new relation-algebraic
properties we will use in the following proof of Theorem5.2. Concretely, we
show that the least fixpoint μ(h4) : N ↔A of the monotone mapping

h4 : [N ↔A] → [N ↔A] h4(X) = z ; cT ∪ [ST;X,ST]] ;F (23)

is the only univalent and total relation from [N ↔ A] that satisfies the two for-
mulae of (22). As in case of Theorem 5.1 this is obtained by four lemmas.

Lemma 5.5. The relation μ(h4) is total.

Proof. By means of the mapping g of (8) and Scott induction (of the form (4))
we show μ(g) ⊆ μ(h4) ; L, since then the totality of μ(g) yields L = μ(h4) ; L.
We apply the admissible predicate P on the direct product [N ↔11] × [N ↔A]
defined by P (v,X) iff v ⊆ X ; L, for all relational vectors v : N ↔11 and relations
X : N ↔A. The induction base P (O,O) is obvious. To verify the induction step,
let an arbitrary relational vector v : N ↔11 and an arbitrary relation X : N ↔ A
be given such that P (v,X) holds. Then we have P (g(v), h4(X)) due to the
following calculation:

g(v) = z ∪ ST ; v by (8)
⊆ z ∪ ST ;X ; L by P (v,X)
= z ∪ ST; (X ∩ ρT;π) ; L last formula of (18)
= z ∪ ST; (X ;πT ∩ ρT) ;π ; L π univalent and (6)
= z ∪ ST; [X, I]] ;π ; L definition right pairing
= z ∪ [ST;X,ST]] ;π ; L prop. right pairing (S inj.)
= z ; cT ; L ∪ [ST;X,ST]] ;π ; L z and c relational points
= z ; cT ; L ∪ [ST;X,ST]] ;F ; L π and F total
= (z ; cT ∪ [ST;X,ST]] ;F ) ; L
= h4(X) ; L by (23) ��

Lemma 5.6. The relation μ(h4) is univalent.
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Proof. We use Scott induction (of the form (3)) with the admissible predicate P
on the set [N ↔ A] defined by P (X) iff XT ;X ⊆ I, for all relations X : N ↔A.
The induction base P (O) holds trivially. To show the induction step, let an
arbitrary relation X : N ↔ A with P (X) be given. For P (h4(X)) we then start
with the following calculation that uses the definition of h4 via (23):

h4(X)T;h4(X) = (z ; cT∪ [ST;X,ST]] ;F )T; (z ; cT ∪ [ST;X,ST]] ;F )
= c ; zT; z ; cT ∪ c ; zT ; [ST ;X,ST]] ;F ∪

FT; [ST ;X,ST]]T; z ; cT ∪ FT; [ST;X,ST]]T; [ST ;X,ST]] ;F
= c ; zT; z ; cT ∪ c ; zT; [ST;X,ST]] ;F ∪

(c ; zT; [ST;X,ST]];F )T ∪ FT; [ST;X,ST]]T; [ST ;X,ST]] ;F

From the proof of Theorem 3.1 we know already the inclusion c ; zT ; z ; cT ⊆ I.
That the second and third expression of the above union are empty follows from

zT; [ST ;X,ST]] = zT; (ST ;X ;πT ∩ ST; ρT) ⊆ zT;ST ;X ;πT = O,

where the definition of [ST ;X,ST]] and the axiom S ; z = O of a relational Peano
structure are applied. To conclude the proof of h4(X)T;h4(X) ⊆ I we calculate

FT; [ST;X,ST]]
T
; [ST;X,ST]] ;F ⊆ FT;F ⊆ I,

where the right pairing [ST;X,ST]] is univalent as its components ST ;X and
ST are univalent due to the injectivity of S and the induction hypothesis P (X)
and F is univalent by assumption. ��
Lemma 5.7. The relation μ(h4) satisfies the two formulae of (22).

Proof. The first formula of (22) holds due to

z ; cT ⊆ z ; cT ∪ [ST;μ(h4), ST]] ;F = h4(μ(h4)) = μ(h4),

where the definition (23) of the mapping h4 and that μ(h4) is a fixpoint of h4

are applied. By means of the calculation

S ;μ(h4) = S ;h4(μ(h4)) μ(h4) fixpoint
= S ; (z ; cT ∪ [ST;μ(h4), ST]] ;F ) by (23)
= S ; z ; cT ∪ S ; [ST;μ(h4), ST]] ;F
= S ; [ST;μ(h4), ST]] ;F as S ; z = O
= S ;ST; [μ(h4), I]] ;F prop. right pairing (S inj.)
= [μ(h4), I]] ;F S total and injective

the second formula of (22) is verified. ��
Lemma 5.8. Assume f : N ↔ A to be univalent and total. If it satisfies the two
formulae of (22), then f = μ(h4).
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Proof. First, we calculate as follows:

h4(f) = z ; cT ∪ [ST; f, ST]] ;F by (23)
⊆ f ∪ [ST; f, ST]] ;F first formula of (22)
= f ∪ ST; [f, I]] ;F property right pairing (S injective)
= f ∪ ST;S ; f second formula of (22)
= f S univalent

This yields μ(h4) ⊆ f due to Tarski’s fixpoint theorem. From this inclusion, the
univalence of f , the totality of μ(h4) (i.e., Lemma 5.5) and implication (5) we
get μ(h4) = f . ��

6 Concluding Remarks

In this paper we have presented a simple new proof of the Dedekind recursion
theorem that is based on a relation-algebraic specification of the notions in ques-
tion and combines relation-algebraic laws and equational reasoning with Scott
induction. As a simple application and using the same means, we also have shown
the Dedekind isomorphism theorem. Finally, we have treated two cases where
the original Dedekind recursion theorem is not applicable and have presented
two variants of the relation-algebraic version of the recursion theorem. Their
proofs are variations of that of the latter theorem.

It is interesting to look at how Dedekind in [6] treats mappings with more
than one argument. From his explanations to the definition of addition and mul-
tiplication (see [6], Erklärung 135 and Erklärung 147) it becomes clear that he
implicitly uses currying and uncurrying. For example, in case of addition he does
not define a binary operation. Instead of that he fixes a natural number m and
then uses Satz 126 to define recursively a unary mapping that yields for each
natural number n the sum m + n. In Erklärung 147 he explicitly speaks of an
infinite set of new mappings on N found in such a way. Also in the proof of
Satz 4 of [9], where again addition is recursively defined, implicitly currying and
uncurrying are used. These approaches can be generalised as given below.

Consider the recursive definition

g(z) = d ∀x ∈ N : g(s(x)) = G ◦ g(x) (24)

of a mapping g : N → AB , where (N, z, s) is a Peano structure and the mappings
d : B → A and G : A → A are given. Since g is unary, the original Dedekind
recursion theorem shows that (24) has a unique solution. We have to instantiate
in (2) the set A by the set of mappings AB , the element c by the mapping d, the
mapping F by the higher-order mapping F : AB → AB with F (h) = G ◦ h, for
all h ∈ AB , and the mapping f by the mapping g. From the unique solution g of
(24) we then obtain the unique solution f of (16) via uncurrying, i.e., by defining
f : N × B → A as f(x, y) = g(x)(y), for all x ∈ N and y ∈ B, or, shorter,
by f := curry−1(g), where curry−1 is the inverse of the well-known bijective
currying-mapping curry . The definition of f and curry−1 and the formulae of
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(24) allow to show that f satisfies the two formulae of (16). That it is the only
mapping with this property can be shown by means of the definition of f and
curry , the formulae of (24) and curry−1(curry(h)) = h, for all h : N × B → A.

All proofs of Sect. 3 to Sect. 5 are very formal and its decisive parts consist of
equational reasoning using laws of relation algebra. These are ideal prerequisites
for mechanised theorem proving. Concerning mathematical theorems, in the last
years especially the proof assistant tools Coq and Isabelle/HOL have been used
in this respect. A prominent example is the formal verification of Atle Selberg’s
elementary proof of the Prime Number Theorem in Isabelle/HOL; see [1]. For
the future we also plan a mechanised verification of the proofs of this paper using
Coq or Isabelle/HOL.

Acknowledgement. I thank the referees for carefully reading the paper and for their
very valuable suggestions.
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