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Abstract. Higher-order intuitionistic logic categorically corresponds to
toposes or triposes; here we address what are toposes or triposes for
higher-order substructural logics. Full Lambek calculus gives a frame-
work to uniformly represent different logical systems as extensions of it.
Here we define higher-order Full Lambek calculus, which boils down to
higher-order intuitionistic logic when equipped with all the structural
rules, and give categorical semantics for (any extension of) it in terms
of triposes or higher-order Lawvere hyperdoctrines, which were origi-
nally conceived for intuitionistic logic, and yet are flexible enough to
be adapted for substructural logics. Relativising the completeness result
thus obtained to different axioms, we can obtain tripos-theoretical com-
pleteness theorems for a broad variety of higher-order logics. The frame-
work thus developed, moreover, allows us to obtain tripos-theoretical
Girard and Kolmogorov translation theorems for higher-order logics.

1 Introduction

Propositional logic corresponds to a class of algebras; for example, the algebras
of classical intuitionistic logic are Heyting algebras. What are, then, the algebras
of predicate logic? There is seemingly no agreed concept of algebras of predicate
logic. Cylindric algebras [11] give a candidate for it. It is not very clear how far
and how uniformly cylindric algebraic semantics can be extended so as to treat
different sorts of logical systems, especially substructural logics (linear, relevant,
fuzzy, etc.). Lawvere’s hyperdoctrines [18] give another concept of algebras of
predicate logic, and may be seen as a categorical extension of cylindric alge-
bras (see, e.g., Jacobs [13], which gives a fibrational understanding of cylindric
algebras; fibrations and hyperdoctrines as indexed categories are connected with
each other via the Grothendieck construction). From an algebraic point of view,
a hyperdoctrine is a fibred algebra, i.e., an algebra indexed by a category:

P : Cop → Alg.

Alg is a category of algebras of propositional logic (e.g., Heyting algebras or BI-
algebras as in Biering et al. [2]). There are logical conditions to express quantifiers
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and others as we shall detail below. The intuitive meaning of the base category C
is the category of types (aka. sorts) or domains of discourse, and then P (C) is the
algebra of predicates on a type C. And P is called a predicate functor. Roughly,
if a propositional logic L is complete with respect to a variety AlgL, then the
corresponding fibred algebras P : Cop → AlgL yield complete semantics for
the predicate logic that extends L. This may be called completeness lifting: the
completeness of propositional logic with respect to Alg lifts to the completeness
of predicate logic with respect to P : Cop → Alg. While this completeness lifting
is demonstrated for first-order logic in [21], in the present paper, we demonstrate
completeness lifting for higher-order logic of different sorts.

In order to represent different logical systems in a uniform setting, we rely
upon the framework of substructural logics over Full Lambek calculus FL and
their algebras (see, e.g., Galatos-Jipsen-Kowalski-Ono [8]); FL algebras (defined
below) play the rôle of Alg above. Diverse logical systems can be represented as
axiomatic extensions of FL, including classical, intuitionistic, fuzzy, relevant,
paraconsistent, and linear logics. In this field, there are vital developments
of the correspondence between cut elimination and algebraic completion (see
Ciabattoni-Galatos-Terui [3], which focus upon the propositional case, but might
possibly be extended to the first-order and higher-order cases via the framework
of substructural hyperdctrines). In this paper we think of higher-order Full Lam-
bek calculus, which boils down to higher-order intuitionistic logic (as in Lambek-
Scott [17]) when equipped with all the structural rules, and give hyperdoctrine
semantics for (any extension of) it. Lawvere’s hyperdoctrines were originally for
intuitionistic logic; yet they are flexible enough so as to be adapted for a variety of
substructural logics as we shall see below. Note that, whilst toposes are impred-
icative, triposes can have their type theories predicative (e.g., Martin-Löf); the
two-level structure of triposes allows more flexibility than toposes do.

There is a tight connection between toposes and higher-order hyperdoctrines,
which are also called triposes (for triposes, see, e.g., Hyland-Johnstone-Pitts [12]
and Pitts [26]; there are actually several non-equivalent definitions of triposes; we
simply call higher-order hyperdoctrines triposes). Indeed, toposes and triposes
correspond to each other via the two functors of taking subobject hyperdoctrines
and of the tripos-to-topos construction (see, e.g., Coumans [4] and Frey [10]);
note that the subobject functor Sub of a topos plays the rôle of a predicate
functor P above. Both toposes and (intuitionistic) higher-order hyperdoctrines
give complete semantics for higher-order intuitionistic logic; the completeness
result of this paper generalises this classic result quite vastly in terms of higher-
order substructural hyperdoctrines or triposes. The contributions of this paper
may be summarised succinctly as follows: (i) higher-order completeness via Full
Lambek triposes, which can be instantiated for a broad variety of logical systems;
(ii) tripos-theoretical Girard’s ! translation and Kolmogorov’s ¬¬ translation
theorems for higher-order logic, in which the internal language of triposes is at
work. As illustrated by the translation theorems, the general framework of the
present paper allows us to compare different categorical logics within the one



Higher-Order Categorical Substructural Logic 189

setting (many categorical logics have only been developed locally so far; there
has been no global framework to compare them in the same setting).

The rest of the paper is organised as follows. We first present the syntax
of Higher-order Full Lambek calculus HoFL, which obtains by adapting higher-
order intuitionistic logic to Full Lambek calculus FL. And we introduce the
concept of Full Lambek tripos (FL tripos for short; aka. higher-order FL hyper-
doctrine; for brevity we use the former terminology), thereby obtaining the
higher-order completeness theorem for HoFL. Finally, our general framework
thus developed is applied, via the internal language of FL triposes, to the cate-
gorical analysis of Girard’s and Kolmogorov’s translation for higher-order logics.

2 Higher-Order Full Lambek Calculus

In this section we introduce Higher-order Full Lambek calculus HoFL, which
extends quantified FL as in Ono [23,24] so that HoFL equipped with all the
structural rules boils down to higher-order intuitionistic logic, the logic of toposes
(see Lambek-Scott [17], Jacobs [13], or Johnstone [15]). Our presentation of
HoFL, especially its type-theoretic part, follows the style of Pitts [25]; thus we
write, e.g., “t : σ [Γ ]” and “ϕ [Γ ]”, rather than “Γ � t : σ” and “Γ � ϕ”,
respectively, where t is a term of type σ in context Γ , and ϕ is a formula in
context Γ .

HoFL is a so-called “logic over type theory” or “logic-enriched type theory” in
Aczel’s terms; there is an underlying type theory, upon which logic is built (see,
e.g., Jacobs [13]). To begin with, let us give a bird’s-eye view of the structure of
HoFL. The type theory of HoFL is given by simply typed λ-calculus with finite
product types (i.e., 1 and ×; these amount to the structure of CCCs, cartesian
closed categories), and moreover, with the special, distinguished type

Prop

which is a “proposition” type, intended to represent a truth-value object Ω on
the categorical side. The logic of HoFL is given by Full Lambek calculus FL. The
Prop type plays the key rôle of reflecting the logical or propositional structure
into the type or term structure: every formula or proposition ϕ may be seen as a
term of type Prop. This is essentially what the subobject classifier Ω of a topos
E is required to satisfy, that is,

SubE(-) � HomE(-, Ω).

Spelling out the meaning of this axiom in logical terms, we have got

Pred(σ) � Term(σ,Prop)

which means the structure of predicates on each type σ (or context Γ in general)
is isomorphic to the structure of terms from σ to Prop. The logical meaning of Ω
may thus be summarised by a sort of reflection principle, namely the reflection of
the propositional structure into the type structure, which may also be called the
“propositions-as-terms” or “propositions-as-functions” correspondence, arguably
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lying at the heart of higher-order categorical logic, for Ω would presumably be
the raison d’être of higher-order categorical logic (toposes are CCCs with Ω).

The power type Pσ of a given type σ can be defined in the present framework
as σ → Prop; the comprehension term {x : σ | ϕ} : Pσ and the membership
predicate s ∈ t : Prop are definable via λ-abstraction or currying (categorically,
transposing) and λ-application (categorically, evaluation), respectively. That is,
{x : σ | ϕ} may be defined as λx : σ. ϕ where ϕ is seen as a term of type Prop, and
also s ∈ t may be defined as ts where t : σ → Prop and s : σ. These definable
operations allow us to express set-theoretical reasoning in higher-order logic.
There is, of course, some freedom on the choice of primitives, just as toposes can
be defined in terms of either subobject classifiers or power objects. All this is
to facilitate an intuitive understanding of the essential features of higher-order
logic; we give a formal account below.

The syntactic details of HoFL are as follows. HoFL is equipped with the
following logical connectives of Full Lambek calculus:

⊗,∧,∨, \, /, 1, 0,	,⊥,∀,∃.

The non-commutativity of HoFL gives rise to two kinds of implication (\ and
/). We have basic variables and types, denoted by letters like x and σ, respec-
tively. And as usual x : σ is a formal expression to say that a variable x is of
type σ. Note that every variable must be typed in HoFL, unlike untyped FL.
A context is a finite list of typings of variables: x1 : σ1, ..., xn : σn which is
often abbreviated as Γ . Formulae and terms are then defined within specific
contexts. There are relation symbols and function symbols, both in context:
R(x1, ..., xn) [x1 : σ1, ..., xn : σn] is a formal expression to say that R is a rela-
tion symbol with variables x1, ..., xn of types σ1, ..., σn respectively; and also
f : τ [x1 : σ1, ..., xn : σn] is a formal expression to say that f is a function
symbol with its domain (the product of) σ1, ..., σn and with its codomain τ .

The type constructors of HoFL are product ×, function space →, and the
proposition type Prop, which is a nullary type constructor. The term construc-
tors of × and → are as usual: pairing 〈-, -〉 and (first and second) projections
π1, π2 for product ×, and λ-abstraction and λ-application for function space →.
The term constructors of Prop are all the logical connectives of Full Lambek
calculus as listed above, the relation symbols taken to be of type Prop and thus
working as generators of the terms of type Prop. Formulae in context, ϕ [Γ ], and
terms in context, t : τ [Γ ], are then defined in the usual, inductive manner (our
terminology and notation mostly follow Pitts [25]; we are extending his frame-
work so as to encompass higher-order substructural logics). Finally, sequents in
contexts are defined as:

Φ � ϕ [Γ ]

where Γ is a context, Φ is a finite list of formulae ϕ1, ..., ϕn, and all the formulae
involved are in context Γ .

So far we have not touched upon any axiom (or inference rule) involved. In
the following, we first give axioms for terms, and then for sequents. The axioms
for × and → are as usual (see, e.g., Pitts [25]). The axiom for Prop is as follows:
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ϕ � ψ [Γ ] ψ � ϕ [Γ ]

ϕ = ψ : Prop [Γ ]
(prop)

This axiom relates the structure of propositions to that of terms, thus guarantee-
ing the aforementioned “propositions-as-functions” correspondence for higher-
order categorical logic. There are several standard rules for contexts and substi-
tution, which are the same as those in Pitts [25] (we do not repeat them here,
referring to the Sect. 2 of Pitts [25] for the details). We now turn to inference
rules for sequents. We first have the identity and cut rules as follows:

ϕ � ϕ [Γ ]
(id)

Φ1 � ϕ [Γ ] Φ2, ϕ, Φ3 � ψ [Γ ]

Φ2, Φ1, Φ3 � ψ [Γ ]
(cut)

where ψ may be empty; this applies to the following L (Left) rules as well. Note
that HoFL has no structural rule other than the cut rule. The rules governing
the use of the logical connectives are as follows.

Φ, ϕ, ψ, Ψ � χ [Γ ]

Φ, ϕ ⊗ ψ, Ψ � χ [Γ ]
(⊗L)

Φ � ϕ [Γ ] Ψ � ψ [Γ ]

Φ, Ψ � ϕ ⊗ ψ [Γ ]
(⊗R)

Φ, ϕ, Ψ � χ [Γ ]

Φ, ϕ ∧ ψ, Ψ � χ [Γ ]
(∧L1)

Φ, ϕ, Ψ � χ [Γ ]

Φ, ψ ∧ ϕ, Ψ � χ [Γ ]
(∧L2)

Φ � ϕ [Γ ] Φ � ψ [Γ ]

Φ � ϕ ∧ ψ [Γ ]
(∧R)

Φ, ϕ, Ψ � χ [Γ ] Φ, ψ, Ψ � χ [Γ ]

Φ, ϕ ∨ ψ, Ψ � χ [Γ ]
(∨L)

Φ � ϕ [Γ ]

Φ � ϕ ∨ ψ [Γ ]
(∨R1)

Φ � ϕ [Γ ]

Φ � ψ ∨ ϕ [Γ ]
(∨R2)

Φ � ϕ [Γ ] Ψ1, ψ, Ψ2 � χ [Γ ]

Ψ1, Φ, ϕ\ψ, Ψ2 � χ [Γ ]
(\L)

ϕ, Φ � ψ [Γ ]

Φ � ϕ\ψ [Γ ]
(\R)

Φ � ϕ [Γ ] Ψ1, ψ, Ψ2 � χ [Γ ]

Ψ1, ψ/ϕ, Φ, Ψ2 � χ [Γ ]
(/L)

Φ, ϕ � ψ [Γ ]

Φ � ψ/ϕ [Γ ]
(/R)

Ψ1, Ψ2 � ϕ [Γ ]

Ψ1, 1, Ψ2 � ϕ [Γ ]
(1L) � 1 [Γ ]

(1R)

0 � [Γ ]
(0L)

Φ � [Γ ]

Φ � 0 [Γ ]
(0R)

Φ � � [Γ ]
(�R)

Φ1, ⊥, Φ2 � ϕ [Γ ]
(⊥L)

Φ1, ϕ, Φ2 � ψ [x : σ, Γ ]
Φ1,∀σxϕ,Φ2 � ψ [x : σ, Γ ]

(∀L)
Φ � ϕ [x : σ, Γ ]
Φ � ∀σxϕ [Γ ]

(∀R)
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Φ1, ϕ, Φ2 � ψ [x : σ, Γ ]
Φ1,∃σxϕ,Φ2 � ψ [Γ ]

(∃L)
Φ � ϕ [x : σ, Γ ]

Φ � ∃σxϕ [x : σ, Γ ]
(∃R)

There are eigenvariable conditions on the quantification rules: x must not appear
as a free variable in the bottom sequents of the ∀R and ∃L rules. We write ∀x
and ∃x when the type of x is obvious. These are all of the rules of HoFL; the
provability of sequents in context is defined in the usual way. The essential differ-
ence from the first-order case is the existence of function and truth value types;
they are what make the logic higher-order, enabling set-theoretical reasoning.

For a collection X of axiom schemata (which we often simply call axioms),
let us denote by HoFLX the axiomatic extension of HoFL via X. In particular,
we can recover higher-order intuitionistic logic as HoFLecw, i.e., by adding to
HoFL the exchange, weakening, and contraction rules (as axiom schemata).

Lemma 1. The following sequents-in-context are deducible in HoFL:

– (i) ϕ ⊗ (∃xψ) � ∃x(ϕ ⊗ ψ) [Γ ] and ∃x(ϕ ⊗ ψ) � ϕ ⊗ (∃xψ) [Γ ];
– (ii) (∃xψ) ⊗ ϕ � ∃x(ψ ⊗ ϕ) [Γ ] and ∃x(ψ ⊗ ϕ) � (∃xψ) ⊗ ϕ [Γ ]

where it is supposed that ϕ does not contain x as a free variable, and Γ contains
type declarations on those free variables that appear in ϕ and ∃xψ.

As explained in [21], typed logic allows domains of discourse to be empty; they
must be non-empty in the Tarski semantics. A type σ can be interpreted as an
initial object in a category. We need no ad hoc condition on domains of discourse
if we work with typed logic. This is due to Joyal as noted in Marquis and Reyes
[19]. Proof-theoretically, the following is not deducible in HoFL: ∀xϕ � ∃xϕ [ ].
Still the following is deducible: ∀xϕ � ∃xϕ [x : σ, Γ ]. That is, we can prove the
sequent above when a type σ is inhabited (see [21] for more details).

3 Full Lambek Tripos

The algebras of propositional FL are FL algebras, the definition of which is
reviewed below. The algebras of first-order FL are arguably FL hyperdoctrines;
note that complete FL algebras only give us completeness in the presence of
the ad hoc condition of so-called safe valuations (cf. [24]), and yet FL hyperdoc-
trines allow us to prove completeness without any such ad hoc condition, and
at the same time, to recover the complete FL algebra semantics as a special,
set-theoretical instance of the FL hyperdoctrine semantics (in a nutshell, the
condition of safe valuations is only necessary to show completeness with respect
to the restricted class of FL hyperdoctrines with the category of sets their base
categories). In this section we define FL triposes, which are arguably the (fibred)
algebras of higher-order FL, and prove higher-order completeness, again with-
out any ad hoc condition such as safe valuations or Henkin-style restrictions on
quantification (set-theoretical semantics is only complete under this condition).
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Definition 2. (A,⊗,∧,∨, \, /, 1, 0,	,⊥) is an FL algebra iff the following hold:

– (A,⊗, 1) is a monoid; 0 is a distinguished element of A;
– (A,∧,∨,	,⊥) is a bounded lattice;
– for any a ∈ A, a\(-) : A → A is a right adjoint of a ⊗ (-) : A → A:

a ⊗ b ≤ c iff b ≤ a\c for any a, b, c ∈ A;
– for any b ∈ A, (-)/b : A → A is a right adjoint of (-) ⊗ b : A → A: a ⊗ b ≤

c iff a ≤ c/b. for any a, b, c ∈ A.

A homomorphism of FL algebras is required to preserve all the operations of FL
algebras. Let FL denote the category of FL algebras and their homomorphisms.

FL is an algebraic category (namely, a category monadic over the category
of sets; see [1]), and then an axiomatic extension FLX of FL corresponds to an
algebraic subcategory of FL, which shall be denoted FLX . Note that algebraic
categories are called varieties or equational classes in universal algebra.

Definition 3. An FL (Full Lambek) hyperdoctrine is a contravariant functor

P : Cop → FL

such that the base category C of P is a category with finite products, and that
the following conditions (to express quantifiers) are satisfied:

– For any projection π : X × Y → Y in C, P (π) : P (Y ) → P (X × Y ) has a
right adjoint, denoted ∀π : P (X × Y ) → P (Y ). And the corresponding Beck-
Chevalley condition holds, i.e., the following diagram commutes for any arrow
f : Z → Y in C (π′ : X × Z → Z below denotes a projection):

P (X × Y ) P (Y )

P (X × Z) P (Z)
�

P (X×f)

�∀π

�
P (f)

�
∀π′

– For any projection π : X ×Y → Y in C, P (π) : P (Y ) → P (X ×Y ) has a left
adjoint, denoted ∃π : P (X × Y ) → P (Y ). The corresponding Beck-Chevalley
condition holds:

P (X × Y ) P (Y )

P (X × Z) P (Z)
�

P (X×f)

�∃π

�
P (f)

�
∃π′

Furthermore, the Frobenius Reciprocity conditions hold: for any projection
π : X × Y → Y in C, any a ∈ P (Y ), and any b ∈ P (X × Y ),

a ⊗ (∃πb) = ∃π(P (π)(a) ⊗ b)
(∃πb) ⊗ a = ∃π(b ⊗ P (π)(a)).
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The logical reading of the Beck-Chevalley conditions above is that substitu-
tion commutes with quantification.

Now, FL triposes are defined as FL hyperdoctrines with their base categories
CCCs, and with truth-value objects Ω (i.e., representability via Ω ∈ C):

Definition 4. An FL (Full Lambek) tripos, or higher-order FL hyperdoctrine,
is an FL hyperdoctrine P : Cop → FL such that:

– The base category C is a CCC (Cartesian Closed Category);
– There is an object Ω ∈ C such that

P � HomC(-, Ω).

We then call Ω the truth-value object of the FL tripos P . Given a set X of
axioms, an FLX tripos is defined by replacing FL above with FLX .

For an FL tripos P , each P (C) is called a fibre of the FL tripos P from
a fibrational point of view; intuitively, P (C) may be seen as the algebra of
propositions on a type or domain of discourse C. Note that it is also possible to
define FL triposes in terms of fibrations, even though the present formulation in
terms of indexed categories would be categorically less demanding.

FL tripos semantics for HoFL is defined as follows.

Definition 5. Let P : Cop → FL be an FL tripos. An interpretation [[-]] of
HoFL in the FL tripos P is defined as follows. Types and atomic symbols are
interpreted in the following way:

– each basic type σ is interpreted as an object [[σ]] in C;
– product and function types, σ × τ and σ → τ , are interpreted, as usual, by

categorical product and exponentiation;
– each function symbol f : τ [Γ ] is interpreted as an arrow

[[f : τ [Γ ]]] : [[Γ ]] → [[σ]]

in C; if the context Γ is x1 : σ1, ..., xn : σn, then [[Γ ]] denotes [[σ1]]× ...× [[σn]];
– each relation symbol R [Γ ] is interpreted as an element [[R [Γ ]]] in the corre-

sponding fibre P ([[Γ ]]) of the FL tripos P at [[Γ ]].

Terms and their equality are interpreted in the following, inductive manner:

– [[x : σ [Γ1, x : σ, Γ2]]] is defined as the following projection in C:

π : [[Γ1]] × [[σ]] × [[Γ2]] → [[σ]].

– [[f(t1, ..., tn) : τ [Γ ]]] is defined as the following arrow in C:
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[[f ]] ◦ 〈[[t1 : σ1 [Γ ]]], ..., [[tn : σn [Γ ]]]〉
where f : τ [x1 : σ1, ..., xn : σn], and t1 : σ1 [Γ ], ..., tn : σn [Γ ] (note also that
〈[[t1 : σ1 [Γ ]]], ..., [[tn : σn [Γ ]]]〉 denotes the product/pairing of arrows in C).

– λ-abstraction, λ-application, projections, and pairing are interpreted, as
usual, by categorical transpose, evaluation, projections, and pairing in the
base CCC C, respectively;

Formulae are interpreted in the following, inductive manner:

– [[R(t1, ..., tn) [Γ ]]] is defined as

P (〈[[t1 : σ1[Γ ]]], ..., [[tn : σn[Γ ]]]〉)([[R [x : σ1, ..., xn : σn]]])

where R is a relation symbol in context x1 : σ1, ..., xn : σn.
– [[ϕ ⊗ ψ [Γ ]]] is defined as [[ϕ [Γ ]]] ⊗ [[ψ [Γ ]]]. The other binary connectives

∧,∨, \, / are interpreted in a similar way. [[1 [Γ ]]] is defined as the monoidal
unit of P ([[Γ ]]). The other constants 0,	,⊥ are interpreted in a similar way.

– [[∀xϕ [Γ ]]] is defined as ∀π([[ϕ [x : σ, Γ ]]]) where π : [[σ]] × [[Γ ]] → [[Γ ]] is a
projection in C, and ϕ is a formula in context [x : σ, Γ ]. Similarly, [[∃xϕ [Γ ]]]
is defined as ∃π([[ϕ [x : σ, Γ ]]]).

Prop and its terms are then interpreted as follows:

– Prop is interpreted as the truth-value object Ω of the FL tripos P :

[[Prop]] = Ω;

– each formula ϕ : Prop [Γ ], regarded as a term of type Prop, is interpreted
as the element of HomC([[Γ ]], Ω) which corresponds to [[ϕ [Γ ]]] ∈ P ([[Γ ]]) in
the defining isomorphism P � HomC(-, Ω) of the FL tripos P ; in a nutshell,
[[ϕ : Prop [Γ ]]]’s and [[ϕ [Γ ]]]’s are linked via the isomorphism.

Finally, the validity of sequents in context is defined as follows:

– ϕ1, ..., ϕn � ψ [Γ ] is valid in an interpretation [[-]] in an FL tripos P iff the
following holds in P ([[Γ ]]):

[[ϕ1 [Γ ]]] ⊗ ... ⊗ [[ϕn [Γ ]]] ≤ [[ψ [Γ ]]].

In case the right-hand side of a sequent is empty, ϕ1, ..., ϕn � [Γ ] is valid in
[[-]] iff [[ϕ1 [Γ ]]] ⊗ ... ⊗ [[ϕn [Γ ]]] ≤ 0 in P ([[Γ ]]). In case the left-hand side of
a sequent is empty, � ϕ [Γ ] is valid in [[-]] iff 1 ≤ [[ϕ[Γ ]]] in P ([[Γ ]]). When Φ
consists of ϕ1, ..., ϕn, let [[Φ [Γ ]]] denote [[ϕ1 [Γ ]]] ⊗ ... ⊗ [[ϕn [Γ ]]].

An interpretation of HoFLX in an FLX tripos is defined by replacing FL and
HoFL above with FLX and HoFLX , respectively.

The categorical conception of interpretation encompasses set-theoretical
interpretations and forcing-style model constructions. First of all, interpreting
logic in the 2-valued tripos HomSet(-,2) (where 2 is the two-element Boolean
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algebra) is precisely equivalent to the standard Tarski semantics. Yet there is a
vast generalisation of this: given a quantale Ω, the representable functor

HomSet(-, Ω) : Setop → FL

forms an FL tripos, which gives rise to a universe of quantale-valued sets via the
generalised tripos-to-topos construction as in [21]; if Ω is a locale in particular
(i.e., complete Heyting algebra), it is known that HomSet(-, Ω) yields Sh(Ω)
(i.e., the sheaf topos on Ω). This sort of FL tripos models of set theory could
hopefully be applied to solve consistency problems for substructural set theories
(especially, Cantor-�Lukasiewicz set theory).

Note that the base category of an FL tripos is used to interpret the type
theory of HoFL, and the value category is used to interpret the logic part of
HoFL. In the following, we first prove soundness and then completeness.

Proposition 6. If Φ � ψ [Γ ] is provable in HoFL (resp. HoFLX), then it is
valid in any interpretation in any FL (resp. FLX) tripos.

Proof. Let P be an FL or FLX tripos, and [[-]] an interpretation in P . Soundness
for the first-order part can be proven in essentially the same way as in [21]; due
to space limitations, we do not repeat it, and focus upon Prop, which is the most
distinctive part of higher-order logic. So let us prove that the rule for the Prop
type preserves validity. Suppose that

[[ϕ [Γ ]]] ≤ [[ψ [Γ ]]]

and that
[[ψ [Γ ]]] ≤ [[ϕ [Γ ]]].

It then follows that
[[ϕ [Γ ]]] = [[ψ [Γ ]]].

Note that this is a “propositional” equality, i.e., an equality in the fibre P ([[Γ ]])
of propositions on [[Γ ]]. Since we have the following isomorphism

P ([[Γ ]]) � HomC([[Γ ]], [[Prop]])

the equality above, together with the definition of the interpretation of terms of
type Prop, tells us that

[[ϕ : Prop [Γ ]]] = [[ψ : Prop [Γ ]]].

Note that this is a “functional” equality, i.e., an equality in HomC([[Γ ]], [[Prop]]).
Thus, the propositional equality implies the functional equality (via the iso-
morphism above), and this is exactly what it is for the Prop rule to preserve
validity. ��

For the sake of a completeness proof, let us introduce the syntactic tripos
construction (for logic over type theory), which is the combination of the syntac-
tic category construction (for type theory) and the Lindenbaum-Tarski algebra
construction (for propositional logic):
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Definition 7. The syntactic tripos of HoFL is defined as follows. Let us first
define the syntactic base category C: an object is a context Γ (up to α-
equivalence); an arrow from Γ to Γ ′ is a list of terms (up to equality on terms)

[t1, ..., tn]

where t1 : σ1 [Γ ], ..., tn : σn [Γ ] and Γ ′ is supposed to be x1 : σ1, ..., xn : σn.
Composition is defined via substitution. The syntactic tripos PHoFL : Cop → FL
is then defined as follows. Given an object Γ in C, let FormΓ denote the set of
formulas in context Γ , and then define

PHoFL(Γ ) = FormΓ / ∼
where ∼ is an equivalence relation on FormΓ defined as follows: for ϕ,ψ ∈
FormΓ , ϕ ∼ ψ iff ϕ � ψ [Γ ] and ψ � ϕ [Γ ] are provable in HoFL. The arrow part
of PHoFL is defined as follows. Let [t1, ..., tn] : Γ → Γ ′ be an arrow in C where Γ ′

is x1 : σ1, ..., xn : σn. Then we define PHoFL([t1, ..., tn]) : PHoFL(Γ ′) → PHoFL(Γ )
by

PHoFL([t1, ..., tn])(ϕ [Γ ′]) = ϕ[t1/x1, ..., tn/xn] [Γ ]

where it is supposed that t1 : σ1 [Γ ], ..., tn : σn [Γ ], and that ϕ is a formula in
context x1 : σ1, ..., xn : σn. The syntactic tripos PHoFLX

of HoFLX is defined
just by replacing FL and HoFL above with FLX and HoFLX , respectively.

The syntactic tripos of higher-order logic is the fibrational analogue of the
Lindenbaum-Tarski algebra of propositional logic; each fibre PHoFL(Γ ) of the
syntactic tripos PHoFL is the Lindenbaum-Tarski algebra of formulae in context
Γ . The syntactic tripos of HoFL has the universal mapping property that inherits
from the syntactic base category of the underlying type theory of HoFL, and also
from the fibre-wise Lindenbaum-Tarski algebras of the logic part of HoFL. We
of course have to verify that the syntactic tripos PHoFL indeed carries an FL
tripos structure; this is the crucial part of the completeness proof.

Lemma 8. The syntactic tripos PHoFL : Cop → FL (resp. FLX) defined above
is an FL (resp. FLX) tripos. In particular, the base category is a CCC, and there
is a truth-value object Ω ∈ C such that

PHoFL � HomC(-, Ω).

Proof. The existence of products and exponentials in C is guaranteed by the
existence of product types and function space types in the type theory of
HoFL. Substitution commutes with all the logical connectives. This means that
P ([t1, ..., tn]) defined above is a homomorphism; so P is a contravariant functor.

P has quantifier structures as follows. Let π : Γ ×Γ ′ → Γ ′ denote the projec-
tion in C defined above, and consider P (π), which has right and left adjoints in
the following way. Recall Γ is x : σ1, ..., xn : σn. Let ϕ ∈ P (Γ × Γ ′); we identify
ϕ with the equivalence class to which ϕ belongs. Define ∀π : P (Γ ×Γ ′) → P (Γ ′)
by

∀π(ϕ) = ∀x1...∀xnϕ.
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We also define ∃π : P (Γ × Γ ′) → P (Γ ′) by ∃π(ϕ) = ∃x1...∃xnϕ. Then, ∀π and
∃π give the right and left adjoints of P (π), respectively.

We can verify the Beck-Chevalley condition for ∀ as follows. Let ϕ ∈ P (Γ ×
Γ ′), π : Γ ×Γ ′ → Γ ′ a projection in C, and π′ : Γ ×Γ ′′ → Γ ′′ another projection
in C for objects Γ, Γ ′, Γ ′′ in C. Then,

P ([t1, ..., tn]) ◦ ∀π(ϕ) = (∀x1...∀xnϕ)[t1/y1, ..., tn/ym]

where Γ is supposed to be x1 : σ1, ..., xn : σn, Γ ′ is y1 : τ1, ..., ym : τm,
and t1 : τ1 [Γ ′′], ..., tm : τm [Γ ′′]. Likewise we have ∀π′ ◦ P ([t1, ..., tn])(ϕ) =
∀x1...∀xn(ϕ[t1/y1, ..., tn/ym]). The Beck-Chevalley condition for ∀ thus follows.
The Beck-Chevalley condition for ∃ can be verified in a similar way. The two
Frobenius Reciprocity conditions for ∃ follow immediately from Lemma 1.

In the following we prove the existence of a truth-value object Ω. Let

Ω = x : Prop.

Note that, since the objects of the base category are contexts rather than types,
we cannot take Ω to be Prop per se; yet x : Prop practically means the same
thing as Prop, thanks to α-equivalence required. We now have to show that for
each context Γ ,

P (Γ ) � HomC(Γ, x : Prop)

and this correspondence yields a natural transformation. The required isomor-
phism is given by mapping

ϕ [Γ ] ∈ P (Γ )

to
ϕ : Prop [Γ ] ∈ HomC(Γ, x : Prop).

Note that ϕ above is actually an equivalence class, and yet the above mapping
is well defined, and also that ϕ : Prop [Γ ] is actually a list consisting of a single
term ϕ : Prop [Γ ]. This mapping is an isomorphism by the definition of terms
of type Prop. Let us denote the above mapping by

PaFΓ : P (Γ ) → HomC(Γ, x : Prop)

with the idea of “Propositions-as-Functions” in mind. The naturality of this
correspondence then means that the following diagram commutes for any arrow
[t1, ..., tn] : Γ ′ → Γ in C:

P (Γ ) HomC(Γ, x : Prop)

P (Γ ′) HomC(Γ ′, x : Prop)
�

P ([t1,...,tn])

�PaFΓ

�
HomC([t1,...,tn],x:Prop)

�
PaFΓ ′
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By the following calculation:

HomC([t1, ..., tn],Prop) ◦ PaFΓ (ϕ [Γ ]) = HomC([t1, ..., tn],Prop)(ϕ : Prop [Γ ])
= ϕ[t1/x1, ..., tn/xn] : Prop [Γ ′]
= PaFΓ ′(ϕ[t1/x1, ..., tn/xn] [Γ ′])
= PaFΓ ′ ◦ P ([t1, ..., tn])(ϕ [Γ ])

we obtain the commutativity of the diagram and hence the naturality of the
“propositions-as-functions” correspondence. ��

It is straightforward to see that if Φ � ψ [Γ ] is valid in the canonical interpre-
tation in the syntactic tripos PHoFL (resp. PHoFLX

), then it is provable in HoFL
(resp. HoFLX). And this immediately gives us completeness via the standard
counter-model argument. Hence the higher-order completeness theorem:

Theorem 9. Φ � ψ [Γ ] is provable in HoFL (resp. HoFLX) iff it is valid in any
interpretation in any FL (resp. FLX) tripos.

This higher-order completeness theorem can be applied, with a suitable choice
of axioms X, for any of classical, intuitionistic, fuzzy, relevant, paraconsistent,
and (both commutative and non-commutative) linear logics; higher-order com-
pleteness has not been known for these logics except the first two. The concept
of (generalised) tripos, therefore, is so broadly applicable as to encompass most
logical systems. Modal logics also can readily be incorporated into this frame-
work by working with modal FL rather than plain FL. Coalgebraic dualities for
modal logics (see, e.g., [14,16,20,22]) then yield models of modal triposes for
them; these modal issues are to be addressed in subsequent papers.

4 Girard and Kolmogorov Translation for Triposes

We finally analyse Kolmogorov’s double negation ¬¬ translation (Kolmogorov
found it earlier than Gödel-Gentzen; see Ferreira and Oliva [7]) and Girard’s
exponential ! translation from a tripos-theoretical point of view.

Propositional Kolmogorov translation algebraically means that, for any Heyt-
ing algebra A, the doubly negated algebra ¬¬A, defined as {a ∈ A | ¬¬a = a},
always forms a Boolean algebra. This ¬¬ construction extends to a functor from
the category HA of Heyting algebras to the category BA of Boolean algebras.
And then the categorical meaning of first-order Kolmogorov translation is that,
for any first-order IL hyperdoctrine P : Cop → HA (where IL denotes intuition-
istic logic), the following composed functor

¬¬ ◦ P : Cop → BA

forms a first-order CL hyperdoctrine (where CL denotes classical logic) as in
[21]. Yet this strategy does not extend to the higher-order case: in particular,
although the base category does not change in the first-order case, in which types
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and propositions are separated, it must nevertheless be modified in the higher-
order case, in which types and propositions interact via Prop or Ω. Technicalities
involved get essentially more complicated in the higher-order case. Still, we can
construct from a given IL tripos P : Cop → HA a CL tripos

P¬¬ : Cop
¬¬ → BA.

For the sake of the description of C¬¬ (and P¬¬), however, we work within the
internal language HoFLP of the tripos P : Cop → FL: in HoFLP , we have types
C and terms f corresponding to objects C and arrows f in C, respectively, and
also formulae R on a type C ∈ C corresponding to elements R ∈ P (C).

Now we define the translation on the internal language HoFLP of the tripos
P which allows us to describe the double negation category C¬¬ mentioned
above. The basic strategy of translation is this: we leave everything in HoFLP

as it is, unless it involves the proposition type Ω of HoFLP ; and if something
involves Ω, we always put double negation on it. Formally it goes as follows:

Definition 10. We recursively define the translation on HoFLP as follows.

– If ϕ : Ω [Γ ] then we put ¬¬ on every sub-formula of ϕ (do the same for ϕ
seen as formulae).

– If t : σ [Γ, x : Ω,Γ ′] then we replace every occurrence of x in t by ¬¬x.
– If t : Ω × σ [Γ ] then t translates into 〈¬¬π1t, π2t〉; if t : σ × Ω [Γ ] then t

translates into 〈π1t,¬¬π2t〉.
– If t : σ [Γ, x : Ω × σ, Γ ′] then we replace every occurrence of x in t by

〈¬¬π1x, π2x〉; if t : σ [Γ, x : σ × Ω,Γ ′] then we replace every occurrence of x
in t by 〈π1x,¬¬π2x〉.

– If t : σ → Ω [Γ ] then t translates into λx : σ.¬¬tx; if t : Ω → σ [Γ ] then t
translates into λx : Ω.t¬¬x.

– If t : σ [Γ, x : σ → Ω,Γ ′] then we replace every occurrence of x in t by
λy : σ.(¬¬x)y; if t : σ [Γ, x : Ω → σ, Γ ′] then we replace every occurrence of
x in t by λy : Ω.x¬¬y.

– Finally, if t : σ [Γ ] and no Ω appears in it, then t translates into itself.

The double negation category C¬¬ is then defined as follows: the objects of
C¬¬ are contexts in HoFLP up to α-equivalence (which are essentially the same
as objects in C), and the arrows of C¬¬ are the translations of lists of terms in
HoFLP up to equality on terms, with their composition defined via substitution
as usual. This intuitively means that those arrows in C that involve Ω are double
negated in C¬¬ whilst the other part of C¬¬ remains the same as that of C (to
give the rigorous definition of this, we work within the internal language). Then
it is not obvious that C¬¬ forms a category again, let alone a CCC. Thus:

Lemma 11. C¬¬ defined above forms a category, in particular a CCC.

Proof. Since everything involving Ω is doubly negated, we have to verify that all
of the relevant categorical structures, that is, composition, identity, projection,
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paring, evaluation, and transpose, preserve or respect double negation. Here we
just give several sample proofs to show essential ideas.

Consider the case of composition. We think of single terms for simplicity. The
composition of arrows t : σ [x : Ω] and s : σ′ [y : σ] in C¬¬ (which may be seen
as t : Ω → σ and s : σ → σ′ in terms of the original category C) is defined as
s[t/y] : σ′ [x : Ω], where every occurrence of x in s[t/y] must have been replaced
by ¬¬x (for s[t/y] to be in C¬¬); this is true because every occurrence of x in t is
replaced by ¬¬x by the definition of arrows in C¬¬. Likewise, the composition of
arrows t : σ′ [x : σ] and s : Ω [y : σ′] in C¬¬ is defined as s[t/y] : Ω [x : σ], where
every sub-formula of s[t/y] is doubly negated by the assumption of s, t ∈ C; and
hence s[t/y] ∈ C. More complex cases can be proven in a similar way.

Consider the case of identity. Think of an identity on Ω, which is given
by ¬¬x : Ω [x : Ω]. Given t : Ω [y : σ′] in C¬¬, (¬¬x) ◦ t is defined as
(¬¬x)[t/x] : Ω [y : σ′], which equals ¬¬t : Ω [y : σ′]. By t ∈ C¬¬, t can
be written as ¬¬t′, and so ¬¬t = ¬¬¬¬t′ = ¬¬t′ = t. Hence (¬¬x) ◦ t = t.
Likewise, given t : σ′ [y : Ω] in C¬¬, t ◦ ¬¬x is defined as t[¬¬x/y] : σ′ [x : Ω];
since every occurrence of y in t is replaced by ¬¬y because t ∈ C¬¬ and since
¬¬¬¬ is equivalent to ¬¬, we have t[¬¬x/y] = t, whence t ◦ ¬¬x = t. More
complex cases can be shown in a similar manner.

To show the existence of finite products and exponentials involving Ω (oth-
erwise it is trivial), it is crucial to check that doubly negated projection, pairing,
evaluation, and transpose still play their own rôles, just as doubly negated iden-
tity still plays the rôle of identity as we have shown above. ��

Finally we obtain the following, tripos-theoretical Kolmogorov translation
theorem for higher-order logic, which may also be seen as a translation from
classical set theory to intuitionistic set theory (since higher-order logic is basi-
cally set theory in logical form).

Theorem 12. Let P : Cop → HA be an IL tripos, and C¬¬ the double negation
category as defined above. Then, P¬¬ defined as

HomC¬¬(-, Ω) : C¬¬ → BA

forms a CL tripos, called the double negation tripos of P .

Proof. C¬¬ is a CCC by the lemma, and P¬¬ is represented by Ω. This completes
the higher-order part of the proof. Concerning the first-order part, the existence
of quantifiers follows from this fact: if ϕ admits the double negation elimination,
then ¬¬∀xϕ and ¬¬∃xϕ are equivalent to ∀x¬¬ϕ and ∃x¬¬ϕ, respectively. ��

Note that the hyperdoctrinal Kolmogorov translation does not reduce to
the construction of toposes via double negation topology because there are
more triposes than toposes in the adjunction between them (all toposes come
from triposes, but not vice versa). Moreover, our hyperdoctrinal method is
designed modularly enough to be applicable to Girard’s translation as well as
Kolmogorov’s. Although Glivenko-type theorems have been shown for substruc-
tural propositional and first-order logics (see Ferreira-Ono [6] and Galatos-Ono
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[9]), no such result is known for higher-order logic (as to the first-order case, [21]
is typed and categorical while [6] is single-sorted and proof-theoretical).

An exponential ! on an FL algebra A is defined as a unary operation satis-
fying: (i) a ≤ b implies !a ≤!b; (ii) !!a =!a ≤ a; (iii) !	 = 1; (iv) !a⊗!b =!(a ∧ b)
(Coumans, Gehrke, and van Rooijen [5]). We denote by FL!

c the category of com-
mutative FL algebras with !, which are algebras for intuitionistic linear logic. FL!

c

triposes give sound and complete semantics for higher-order intuitionistic linear
logic. The Girard category C! of an FL!

c tripos P : Cop → FL!
c is defined by

replacing double negation in the above definition of C¬¬ with Girard’s expo-
nential !. The following is the hyperdoctrinal Girard translation theorem for
higher-order logic, which can be shown in basically the same way as above; no
such higher-order translation has been known so far.

Theorem 13. Let P : Cop → FL!
c be an FL!

c tripos (for intuitionistic linear
logic), and C! the Girard category of P . Define

P! = HomC!(-, Ω) : C! → HA.

Then, P! forms an IL tripos (i.e., FL!
ecw tripos), called the Girard tripos of P .
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1. Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories. Wiley,
Hoboken (1990)

2. Biering, B., Birkedal, L., Torp-Smith, N.: BI-hyperdoctrines, higher-order separa-
tion logic, and abstraction. ACM TOPLAS 29(5), 24 (2007)

3. Ciabattoni, A., Galatos, N., Terui, K.: Algebraic proof theory for substructural
logics. Ann. Pure Appl. Logic 163, 266–290 (2012)

4. Coumans, D.: Canonical extensions in logic - some applications and a generalisation
to categories. Ph.D. thesis, Radboud Universiteit Nijmegen (2012)

5. Coumans, D., Gehrke, M., van Rooijen, L.: Relational semantics for full linear
logic. J. Appl. Logic 12, 50–66 (2014)

6. Farahani, H., Ono, H.: Glivenko theorems and negative translations in substruc-
tural predicate logics. Arch. Math. Logic 51, 695–707 (2012)

7. Ferreira, G., Oliva, P.: On the relation between various negative translations. Logic
Constr. Comput. 3, 227–258 (2012)

8. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic
Glimpse at Substructural Logics. Elsevier, Amsterdam (2007)

9. Galatos, N., Ono, H.: Glivenko theorems for substructural logics over FL. J. Symb.
Logic 71, 1353–1384 (2016)

10. Frey, J.: A 2-categorical analysis of the tripos-to-topos construction
arXiv:1104.2776

http://arxiv.org/abs/1104.2776


Higher-Order Categorical Substructural Logic 203

11. Henkin, L., Monk, J.D., Tarski, A.: Cylindric Algebras. North-Holland, Amsterdam
(1971)

12. Hyland, M., Johnstone, P.T., Pitts, A.: Tripos theory. Math. Proc. Cambridge
Philos. Soc. 88, 205–232 (1980)

13. Jacobs, B.: Categorical Logic and Type Theory. Elsevier, Amsterdam (1999)
14. Johnstone, P.T.: Stone Spaces. CUP, Cambridge (1982)
15. Johnstone, P.T.: Sketches of an Elephant. OUP, Oxford (2002)
16. Kupke, C., Kurz, A., Venema, Y.: Stone coalgebras. Theoret. Comput. Sci. 327,

109–134 (2004)
17. Lambek, J., Scott, P.J.: Introduction to Higher-Order Categorical Logic (1986)
18. Lawvere, F.W.: Adjointness in foundations. Dialectica 23, 281–296 (1969).

Reprinted with the author’s retrospective commentary. In: Theory and Applica-
tions of Categories, vol. 16, pp. 1–16 (2006)

19. Marquis, J.-P., Reyes, G.: The history of categorical logic: 1963–1977. In: Handbook
of the History of Logic, vol. 6, pp. 689–800. Elsevier (2011)

20. Maruyama, Y.: Natural duality, modality, and coalgebra. J. Pure Appl. Algebra
216, 565–580 (2012)

21. Maruyama, Y.: Full lambek hyperdoctrine: categorical semantics for first-order
substructural logics. In: Libkin, L., Kohlenbach, U., de Queiroz, R. (eds.) WoLLIC
2013. LNCS, vol. 8071, pp. 211–225. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39992-3 19

22. Maruyama, Y.: Duality theory and categorical universal logic. EPTCS 171, 100–
112 (2014)

23. Ono, H.: Algebraic semantics for predicate logics and their completeness. RIMS
Kokyuroku 927, 88–103 (1995)

24. Ono, H.: Crawley completions of residuated lattices and algebraic completeness of
substructural predicate logics. Stud. Logica 100, 339–359 (2012)

25. Pitts, A.: Categorical logic, Chap. 2. In: Handbook of Logic in Computer Science,
vol. 5. OUP (2000)

26. Pitts, A.: Tripos theory in retrospect. Math. Struct. Comput. Sci. 12, 265–279
(2002)

https://doi.org/10.1007/978-3-642-39992-3_19
https://doi.org/10.1007/978-3-642-39992-3_19

	Higher-Order Categorical Substructural Logic: Expanding the Horizon of Tripos Theory*-3pt
	1 Introduction
	2 Higher-Order Full Lambek Calculus
	3 Full Lambek Tripos
	4 Girard and Kolmogorov Translation for Triposes
	References




