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Preface

This volume contains the proceedings of the 18th International Conference on
Relational and Algebraic Methods in Computer Science (RAMiCS 2020), which was to
be held at École polytechnique in Palaiseau, close to Paris, during April 8–11, 2020.
The conference was postponed to October due to the COVID-19 pandemic and was
ultimately held virtually during October 26–29, 2020.

The RAMiCS conferences aim to bring a community of researchers together to
advance the development and dissemination of relation algebras, Kleene algebras, and
similar algebraic formalisms. Topics covered range from mathematical foundations to
applications such as conceptual and methodological tools in computer science and
beyond. More than 25 years after its formation in 1991 in Warsaw, Poland initially as
“Relational Methods in Computer Science” RAMiCS remains a main venue in this
field. The series merged with the workshops on Applications of Kleene Algebra in
2003 and adopted its current name in 2009. Previous events were organized in
Dagstuhl, Germany (1994), Paraty, Brazil (1995), Hammamet, Tunisia (1997),
Warsaw, Poland (1998), Québec, Canada (2000), Oisterwijk, The Netherlands (2001),
Malente, Germany (2003), St. Catharines, Canada (2005), Manchester, UK (2006),
Frauenwörth, Germany (2008), Doha, Qatar (2009), Rotterdam, The Netherlands
(2011), Cambridge, UK (2012), Marienstatt, Germany (2014), Braga, Portugal (2015),
Lyon, France (2017), and Groningen, The Netherlands (2018).

RAMiCS 2020 attracted 29 submissions, of which 20 were selected for presentation
by the Program Committee. Each submission was evaluated according to high aca-
demic standards by at least three independent reviewers and scrutinized further during
two weeks of intense electronic discussion. The organizers are very grateful to all
Program Committee members for this hard work, including the lively and constructive
debates, as well as to the external reviewers for their generous help and expert judg-
ments. Without this dedication we could not have assembled such a high-quality
program; we hope that all authors have benefitted from these efforts.

Apart from the submitted articles, this volume features the abstracts of the pre-
sentations of the three invited speakers. The three abstracts are on “Probabilistic
bisimulation with silent moves” by Christel Baier, TU Dresden, Germany; “Weighted
automata and quantitative logics” by Manfred Droste, University of Leipzig, Germany;
and “Combining probabilistic and non-deterministic choice via weak distributive laws”
by Daniela Petrisan (joint work with Alexandre Goy), Université Paris Diderot, France.
We are delighted that all three invited speakers accepted our invitation to present their
work at the conference.

Last, but not least, we would like to thank the members of the RAMiCS Steering
Committee for their support and advice. We gratefully acknowledge financial and
administrative support by the Chaire Ingénerie des Systémes Complexes and by the
Department of Computer Science of École polytechnique.



We also appreciate the excellent facilities offered by the EasyChair conference
administration system and Alfred Hofmann’s help in publishing this volume with
Springer. Finally, we are indebted to all authors and participants for supporting this
conference.

February 2020 Michael Winter
Uli Fahrenberg

Peter Jipsen
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Probabilistic Bisimulation with Silent Moves

Christel Baier

Institute for Theoretical Computer Science, Technische Universität Dresden
christel.baier@tu-dresden.de

Abstract. Formal notions of bisimulation relations are a key concept of con-
currency theory to equate, respectively distinguish processes according to the
behaviour they exhibit when interacting with other processes, taking the step-
wise behaviour of processes as a reference. Speaking roughly, bisimilar pro-
cesses can mutually simulate each other by mimicking their visible stepwise
behaviour. While notions of strong bisimilarity rely on the assumption that all
transitions are visible, a variety of weaker notions of bisimilarity have been
proposed that abstract away from internal computations (“silent moves” in the
jargon of van Glabbeek). Analogous notions have been introduced for proba-
bilistic automata and related models that share the idea that probabilistically
bisimilar processes induce the same distributions over visible steps, and thus
have the same observable quantitative behaviour.
The talk will first give a brief summary of classical results of concurrency

theory on bisimulation relations with silent moves and their logical characteri-
zations. The second part will report on analogous results in the probabilistic
setting and recent results on the probabilistic bisimulation spectrum with silent
moves.



Weighted Automata and Quantitative Logics

Manfred Droste

Institut für Informatik, Universität Leipzig, Germany
droste@informatik.uni-leipzig.de

Quantitative models and quantitative analysis in Computer Science are receiving
increased attention. The goal of this talk is to investigate quantitative automata and
quantitative logics. Weighted automata on finite words have already been investigated
in seminal work of Schützenberger (1961) [15]. They consist of classical finite auto-
mata in which the transitions carry weights. These weights may model, e.g., the cost,
the consumption of resources, or the reliability or probability of the successful exe-
cution of the transitions. This concept soon developed a flourishing theory, as is
exemplified and presented in the books [1, 7, 9, 11, 13, 14,].

We investigate weighted automata and their relationship to weighted logics. For
this, we present syntax and semantics of a quantitative logic; the semantics counts ‘how
often’ a formula is true in a given word. Our main result [5], extending the classical
result of Büchi [2] and Elgot [10], shows that if the weights are taken from an arbitrary
semiring, then weighted automata and a syntactically defined fragment of our weighted
logic are expressively equivalent. A corresponding result holds for infinite words.
Moreover, this extends to quantitative automata investigated by Chatterjee, Doyen and
Henzinger [3, 4] with (non-semiring) average-type behaviors, or with discounting or
limit average objectives for infinite words [8]. Finally, recall that by fundamental
results of Schützenberger [16] and McNaughton and Papert [12] from the 1970s, the
classes of first-order definable and aperiodic languages coincide. Very recently, this
equivalence could be extended to weighted automata [6].
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Combining Probabilistic
and Non-deterministic Choice
Via Weak Distributive Laws

Daniela Petrisan

joint work with Alexandre Goy
University Paris Diderot

petrisanirif.fr

Combining probabilistic choice and non-determinism is a long standing and chal-
lenging problem in denotational semantics. At a category theoretic level computational
effects can be modeled using monads. In this particular instance one can use the
powerset monad for non-determinism and the finite distribution monad for probabilistic
choice. The problem with combing the two effects stems from the fact that the cor-
responding monads do not compose well. One way to compose monads is via dis-
tributive laws, but as shown in Varacca’s PhD thesis [8], there is no distributive law
of the powerset monad over the distribution monad. This entails in particular that the
powerset monad does not lift to a monad on the category of convex (or barycentric)
algebras – the Eilenberg-Moore algebras for the finite distribution monad. Neverthe-
less, various workarounds have been proposed [1, 2, 5–9, ]. On the category of convex
algebras one can define a monad that maps a convex algebra to the set of its convex
subsets. This induces the composite monad of convex sets of distributions. In domain
theory [5] this corresponds to the power Kegelspitzen construction.

In this talk we show the existence of a weak distributive law of the powerset monad
P over the finite distribution monad D. Since the finite distribution functor preserves
weak pullback it has a canonical extension to the category of sets and relations. This
induces a distributive law of the powerset monad P over the finite distribution functor
D. Using results from mathematical optimization, we show that this natural transfor-
mation interacts well with the multiplication of D. We therefore obtain a canonical
weak distributive law in the sense of [3, 4]. As a consequence, we retrieve the
well-known convex powerset monad as a weak lifting of the powerset monad to the
category of convex algebras.

We provide applications to the study of trace semantics and behavioral equiva-
lences of systems with an interplay between probability and non-determinism.
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Commutative Doubly-Idempotent
Semirings Determined by Chains

and by Preorder Forests

Natanael Alpay and Peter Jipsen(B)

Chapman University, Orange, CA, USA
jipsen@chapman.edu

Abstract. A commutative doubly-idempotent semiring (cdi-semiring)
(S,∨, ·, 0, 1) is a semilattice (S,∨, 0) with x ∨ 0 = x and a semilattices
(S, ·, 1) with identity 1 such that x0 = 0, and x(y ∨ z) = xy ∨ xz holds
for all x, y, z ∈ S. Bounded distributive lattices are cdi-semirings that
satisfy xy = x ∧ y, and the variety of cdi-semirings covers the variety of
bounded distributive lattices. Chajda and Länger showed in 2017 that
the variety of all cdi-semirings is generated by a 3-element cdi-semiring.
We show that there are seven cdi-semirings with a ∨-semilattice of height
less than or equal to 2. We construct all cdi-semirings for which their
multiplicative semilattice is a chain with n + 1 elements, and we show
that up to isomorphism the number of such algebras is the nth Catalan
number Cn = 1

n+1

(
2n
n

)
. We also show that cdi-semirings with a complete

atomic Boolean ∨-semilattice on the set of atoms A are determined by
singleton-rooted preorder forests on the set A. From these results we
obtain efficient algorithms to construct all multiplicatively linear cdi-
semirings of size n and all Boolean cdi-semirings of size 2n.

Keywords: Idempotent semirings · Distributive lattices · Preorder
forests

1 Introduction

The structure of distributive lattices is well understood since every distributive
lattice is a subalgebra of a product of the 2 element lattice, i.e., a subalgebra of
a Boolean lattice. The situation is more complicated for idempotent semirings
(A,∨, ·, 0, 1), defined by the identities

(x ∨ y) ∨ z = x ∨ (y ∨ z) x ∨ y = y ∨ x x ∨ 0 = x x ∨ x = x x0 = 0 = 0x
(xy)z = x(yz) x1 = x = 1x (x ∨ y)z = xz ∨ yz x(y ∨ z) = xy ∨ xz.

Note that xy stands for x · y, x0 = 1 and xn+1 = xnx. The subclass of com-
mutative doubly idempotent semirings, or cdi-semirings for short, is obtained by
adding the identities xy = yx and x2 = x. Even for this much smaller class
of cdi-semirings there is no general structure theory. The classes of idempotent
c© Springer Nature Switzerland AG 2020
U. Fahrenberg et al. (Eds.): RAMiCS 2020, LNCS 12062, pp. 1–14, 2020.
https://doi.org/10.1007/978-3-030-43520-2_1
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2 N. Alpay and P. Jipsen

semirings and cdi-semirings are defined by a list of identities, hence they are
varieties, i.e., closed under products, subalgebras and homomorphic images.

Since we are also assuming · is commutative and idempotent, there are two
underlying semilattice orders x ≤ y ⇐⇒ x ∨ y = y and x � y ⇐⇒ xy = x.
A cdi-semiring is a bounded distributive lattice if and only if the two orders
coincide, or equivalently if the absorption laws x ∨ xy = x and x(x ∨ y) = x
hold. While the variety of cdi-semirings is quite special, it includes all distributive
lattices and is small enough that there is hope for a general description of its
finite members.

The aim of this paper is to give structural descriptions for some subclasses of
cdi-semirings. In particular, we show in Sect. 2 that there are, up to isomorphism,
only seven cdi-semirings of height 2. In Sect. 3 we give a complete description of
the finite cdi-semirings for which the monoidal semilattice order � is a chain (i.e.,
linearly-ordered). Finally, in Sect. 4 we describe all finite Boolean cdi-semirings
by certain preorder forests on the set of atoms.

Recall that Kleene algebras are idempotent semirings with a unary operation
x∗ such that (i) 1 ∨ x ∨ x∗x∗ = x∗, (ii) xy ≤ y =⇒ x∗y = y and (iii)
yx ≤ y =⇒ yx∗ = y hold. It is well known that the class KA of all Kleene
algebras is not closed under homomorphic images, hence (ii), (iii) cannot be
replaced by identities and the class KA of Kleene algebras is only a quasivariety.
Our first observation is that the results in this paper also apply to a special class
of Kleene algebras.

Lemma 1. Let V be the variety of idempotent semirings that satisfy x2 ≤ 1∨x,
and define a unary ∗ on members of V by the term x∗ = 1∨x. Then V ⊆ KA, and
cdi-semirings are precisely the members of V that satisfy the identities xy = yx
and x2 = x.

Proof. We first prove that V ⊆ KA by showing that x2 ≤ 1 ∨ x and x∗ = 1 ∨ x
imply (i)–(iii) in the definition of Kleene algebras. Let A ∈ V and x, y ∈ A. Then

1 ∨ x ∨ x∗x∗ = 1 ∨ x ∨ (1 ∨ x)(1 ∨ x) = 1 ∨ x ∨ x2 = 1 ∨ x = x∗.

Assuming xy ≤ y, we have y∨xy = y and x∗y = (1∨x)y = y∨xy = y. Similarly
yx ≤ y ⇒ yx∗ = y.

For the last part, observe that all cdi-semirings are members of V since x2 = x
implies x2 ≤ 1 ∨ x. 	


There are two 3-element cdi-semirings, and in [1] it is proved that the variety
CDI of cdi-semirings is generated by one of them, denoted by S3, (the other
one is the 3-element distributive lattice). In the literature of semirings there
are several definitions depending on whether the algebra contains an identity
and/or a zero element. Polin [10] studied minimal varieties of semirings without
0, 1 as constant operations. A variety is minimal if it has no proper subvarieties
other than the variety of one-element algebras. Polin showed there are 8 minimal
varieties of semirings (without 0, 1) generated by 2-element semirings and 2
countable sequences of minimal varieties of rings generated by finite prime fields
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and by finite prime additive cyclic groups with constantly zero multiplication. If
the constants are included, then there are still the two countable sequences and
only one more minimal variety: the variety of bounded distributive lattices.

McKenzie and Romanovska [6] proved that the variety of doubly idempotent
semirings without 0, 1 has exactly 4 proper subvarieties: the trivial variety, the
variety of distributive lattices (without constants for top, bottom), the variety
of semilattices (defined by xy = x∨y), and the join of the previous two varieties,
called distributive bisemilattices and defined as commutative doubly idempotent
semirings (without constants) where x ∨ yz = (x ∨ y)(x ∨ z). When 0 is in the
signature of semirings with 0 ∨ x = x and x0 = 0, then the distributivity of ∨
over · implies the absorption laws since

x ∨ xy = (x ∨ x)(x ∨ y) = x(x ∨ y) = (x ∨ 0)(x ∨ y) = x ∨ 0y = x ∨ 0 = x.

Hence the variety of distributive bisemilattices with 0 coincides with the variety
of distributive lattices with 0. Likewise the identity xy = x∨ y implies 0 = x0 =
x ∨ 0 = x hence the variety of semilattices coincides with the trivial variety. So
with constants, the variety CDI has only two subvarieties, namely the variety
of bounded distributive lattices, generated by the 2-element lattice 2 and the
variety of one-element algebras.

2 Cdi-Semirings of Height Two

Recall that in an idempotent semiring S, the join-semilattice order is denoted
by x ≤ y. If (S,≤) is a linear order (or chain for short) then the height of S is
|S| − 1. In general the height of an idempotent semiring is the maximal height
over all subchains of (S,≤). The top element in the ≤-order is denoted by �.

It follows from a result of Stanovsky [11] about idempotent residuated lattices
that there are only a small number of cdi-semirings of height 2. The proof below
is self-contained and constructs all nonisomorphic cdi-semirings of height ≤ 2.

Recall that an atom of a poset with bottom element 0 is an element a �= 0
such that x < a implies x = 0.

Fig. 1. All cdi-semirings of height 2 or less, ordered by ≤ and �, with 1 marked by •.
The top row are bounded distributive lattices, hence ≤ and � coincide.
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Theorem 2. There are, up to isomorphism, seven cdi-semirings of height two
or less (Fig. 1).

Proof. Let S be a cdi-semirings of height ≤ 2. For any elements x, y ∈ S such
that x ∈ {0, 1} or y ∈ {0, 1} the multiplication xy is fixed by the semiring axioms
and xx = x, hence the structure of S is determined by the join-semilattice order
and the products of distinct elements x, y ∈ S \{0, 1}. If S has height 0, it is the
one-element semiring (0 = 1), and if S has height 1, it is the 2-element lattice
with 0 �= 1. In the remaining cases, S has height 2, so let A be the set of atoms
of S.

If |A| = 1, then S has three elements and either A = {1} or A = {a} for
some a �= 1. Therefore S is S3 or 3.

If |A| = 2, then A = {1, a} for some a �= 1 or A = {a, b} for a �= 1 and b �= 1.
In the first case a� = a(1 ∨ a) = a∨ a = a, and in the second case a, b ≤ � = 1,
hence ab ≤ a, b and it follows that ab = 0. Therefore S is S4 or 2 × 2.

If |A| ≥ 3, then we have distinct elements a, b, c ∈ A. If � = 1 then as in the
previous case ab = 0 and similarly ac, bc = 0. We also have b∨ c = 1 since S has
height 2. But now 0 = ab ∨ ac = a(b ∨ c) = a1 = a contradicts the assumption
that a is an atom, hence we conclude that � �= 1 and therefore 1 is an atom.
Since S has height 2, we have a ∨ 1 = � = b ∨ 1 and

ab ∨ b = ab ∨ 1b = (a ∨ 1)b = (b ∨ 1)b = b ∨ b = b.

It follows that ab ≤ b, and similarly ab ≤ a, hence ab = 0. In the case when
A = {1, a, b} we again have a� = a as well as b� = b, therefore S is S5.

In all other cases |A| > 3, hence we have distinct 1, a, b, c ∈ A and a∨ 1 = �.
The same argument as above shows that ab = 0 and ac = 0, so

0 = ab ∨ ac = a(b ∨ c) = a� = a(a ∨ 1) = a ∨ a = a

which again contradicts the assumption that a is an atom, so no further cdi-
semirings of height 2 exist. 	


3 Catalan Semirings

As mentioned in the introduction, cdi-semirings have a multiplicative semilattice
order defined by x � y if and only if x · y = x. A cdi-semiring is called a Catalan
semiring if this multiplicative order is a chain. A search with Prover9/Mace4 [5]
shows there are 1, 1, 2, 5, 14, 42 such cdi-semirings of size up to 6. This sequence
coincides with the sequence of Catalan numbers Cn = 1

n+1

(
2n
n

)
[8] and our next

result shows that this coincidence continues for all n. Using a result of [2] we
construct all finite Catalan semirings by defining a Catalan sum c© on this class.
To distinguish the operations and constants in several semirings, we superscript
them with the name of the semiring.

Let A and B be two Catalan semirings and define C = A c© B to be the
structure over the disjoint union of A and B given in the following way. Then
0C = 0A, 1C = 1A and the operations are given by
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x ∨C y =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∨A y if x, y ∈ A\{0}
x ∨B y if x, y ∈ B

1B ∨B y if x ∈ A\{0}, y ∈ B

1B ∨B x if x ∈ B, y ∈ A\{0}
y if x = 0A

x if y = 0A

x ·C y =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x ·A y if x, y ∈ A\{0}
x ·B y if x, y ∈ B

y if x ∈ A\{0}, y ∈ B

x if x ∈ B, y ∈ A\{0}
0A if x = 0A or y = 0A

Recall that for two partially ordered sets P1, P2 the ordinal sum P1 ⊕ P2

is given by the disjoint union of P1, P2 with every element of P1 below every
element of P2. Using this construction, the multiplicative semilattice of C is
simply the ordinal sum {0A} ⊕ (B,�) ⊕ (A \ {0A},�), and the join-semilattice
of C is described by Fig. 2. Note that if A or B is a one-element algebra, the
underlying lattice of A c© B is the ordinal sum of the lattices of A and B.

The next lemma is proved in [2] for finite commutative Catalan idempotent
residuated lattices. Every finite idempotent semiring uniquely expands to a finite
residuated lattice, hence we can state the result in the following way.

Lemma 3. (i) If A,B are finite Catalan semirings then A c© B is a Catalan
semiring of size |A| + |B|.

(ii) Suppose C is a finite Catalan semiring of cardinality n ≥ 2. Then C = A c©B
for a unique pair A,B of smaller Catalan semirings.

Proof. (i) Assume that A,B are finite Catalan semirings and let C = A c© B.
Then by construction, C has a linear monoidal order �C, and ≤C is a join-
semilattice order (Fig. 2). Hence ·C and ∨C are associative, commutative and
idempotent. The least element of the lattice order (C,≤C) is the least element
of the monoidal order (C,�C). Thus all we need to prove in order to show that
C is a Catalan semiring is distributivity, i.e. x(y ∨ z) = xy ∨ xz. In principle
there are eight cases to check, but when x, y, z are all in either A or B then
distributivity holds. By commutativity of ∨ there are four cases left to check:

1. Let x ∈ A \ {0A}, and y, z ∈ B. Then x(y ∨ z) = x(y ∨B z) = y ∨B z and
xy ∨ xz = y ∨B z since y, z � x.

2. Let y ∈ A \ {0A} and x, z ∈ B. Then x(y ∨ z) = x(1B ∨B z) and xy ∨ xz =
x ∨B xz = x(1B ∨B z).

3. Let x, y ∈ A \ {0A}, and z ∈ B. Then x(y ∨ z) = x(1B ∨B z) = 1B ∨B z and
xy ∨ xz = xy ∨B z = 1B ∨B z.

4. Let y, z ∈ A \ {0A}, and x ∈ B. Then x(y ∨ z) = x(y ∨A z) = x and
xy ∨ xz = x ∨B x = x.

Finally, when one of x, y, z is 0A then the distributivity also holds.
(ii) Assume C is a finite nontrivial Catalan semiring, hence the ⊆-semilattice

order is a chain. Let b ∈ C be the unique atom in this chain, and define the sets
B = {x ∈ C : b ≤ x} and A = C \ B. The operations ·,∨ are defined on A
and B by restriction from C. To show that these operations are well defined,
it suffices to show that A,B are closed under ·C,∨C. This is true for ·C since
x ·C y ∈ {x, y}. Moreover, B is closed under ∨C since it is upward closed.
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Suppose that b ≤ x ∨ y and x �= 0C �= y. Since b is an atom of (C,�), we
have b � x, y. If xy = x, then b = xb ≤ x(x ∨ y) = x2 ∨ xy = x ∨ x = x by
distributivity and idempotency. Similarly, if xy = y then b ≤ y. Also, if x = 0C

then b ≤ x ∨ y = y, and if y = 0C then b ≤ x ∨ y = x. Hence if x ∨ y ∈ B,
then x ∈ B or y ∈ B, thus A is closed under ∨C. Let A and B be the Catalan
semirings with the operations ·,∨ induced by restriction of ·C,∨C. Note that
0A = 0C and 0B = b. The identity elements A,B are defined below.

We now want to show that B is an interval of (C,�C). If b′ ∈ B then b ≤ b′,
and b � x � b′ implies that b = xb ≤ xb′ = x, hence x ∈ B. Since C is finite, it
follows that for some c ∈ C we have B = {x : b � x � c}. Hence for every x ∈ B
we have xc = x, i.e., 1B = c is the identity of B. If 1C ∈ B, then c = 1C and
A = {0C} and otherwise 1C is the identity of A. The elements of A \ {0C} are
linearly ordered by �C and they are above the interval of (B,�).

Let x ∈ A \ {0C}, then cx = c and 0C ≤ c. For y ∈ B if x ≤ y, then
c = cx ≤ cy = y, hence c is above every element of A and any element of B
that is above some element of A \ {0C} is above c. Moreover, for y ∈ B and
x ∈ A \ {0C}, we have x ≤ x∨ y ∈ B. Thus c ≤ x∨ y and therefore c∨ y ≤ x∨ y.
Since x ≤ c, we have x ∨ y ≤ c ∨ y, hence x ∨ y = c ∨ y. It follows that
C = A c© B. 	


For n, i > 0, the Catalan semiring Cn
i is defined to be the ith Catalan semiring

with n elements, starting with the one-element Catalan semiring C1
1. The next

Catalan semiring would be C2
1 = C1

1 c©C1
1, the two-element distributive lattice.

The two 3-element cdi-semirings are C3
1 = C1

1 c© C2
1 and C3

2 = C2
1 c© C1

1. In
general, the Catalan semirings Cn

i of size n are built by constructing all Catalan
sums of algebras A and B of size n − k and k respectively, as k ranges from 1
to n − 1 (see Fig. 2). This yields the following result.

Theorem 4. The number of Catalan semirings with n + 1 elements, up to iso-
morphism, is the nth Catalan number Cn = 1

n+1

(
2n
n

)
.

Proof. Let CS(n) denote the number of Catalan semirings of cardinality n. The
result is proved by induction. The sequence 〈Ci : i ≥ 0〉 of Catalan numbers
is determined recursively by C0 = 1 and Cn+1 =

∑n
i=0 CiCn−i. Obviously,

CS(1) = 1 = C0. Suppose now that n ≥ 1 and CS(n) = Cn−1. Using the
preceding lemma and the induction hypothesis, we have that

CS(n+ 1) =
n∑

k=1

CS(k) ·CS(n+ 1 − k) =
n∑

k=1

Ck−1Cn−k =
n−1∑

i=0

CiCn−1−i = Cn.

	

The number of algebras for each size (up to isomorphism), along the number

of cdi-semirings and distributive lattices, tell us how many cdi-semirings are
described using the result. As one can see from the table below, this result helps
us to understand a big portion of the cdi-semirings for small number of elements
(Table 1).
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Fig. 2. The Catalan sum C = A c© B

Table 1. Number of algebras up to isomorphism with n elements

# of elements n = 1 2 3 4 5 6 7 8

# of distr. lattices 1 1 1 2 3 5 8 15

# of Catalan semirings 1 1 2 5 14 42 132 429

# of cdi-semirings 1 1 2 6 20 77 333 1589

The construction of finite Catalan semirings is very efficient and can be imple-
mented, for example, with the following short Python program that computes all
Catalan semirings of size ≤ n. The output (after conversion to TikZ) is shown in
Fig. 3. The black dot marks the identity element and the elements are numbered
in increasing order of the multiplicative semilattice. Note that these algebras are
rigid (i.e., have trivial automorphism group) and are all pairwise nonisomorphic.

def catalan_sum(A,B):

# A,B are tuples with A[0] a list of upper covers, topologically sorted

# A[1]=[s[0],...,s[n-1]] a permutation of range(n) s.t. x*y=x iff s[x]<=s[y]

# A[2]=[p[0],...,p[n-1]] a list of coordinates p[i]=(x,y) for display

m = len(A[0])

n = len(B[0])

id_B = B[1].index(n-1)

uc = [A[0][0]+([m] if n!=1 or m==1 else [])] + A[0][1:-1]\

+ ([A[0][-1]+[id_B+m]] if m!=1 else [])\

+ [[x+m for x in u] for u in B[0]]

s = [0] + [x+n for x in A[1][1:]] + [x+1 for x in B[1]]

x = A[2][-1][0] if m==1 or n==1 else max([p[0] for p in A[2]]) + 1

y = (A[2][-1][1] + 1) if m==1 or n==1 else \

max(1, A[2][-1][1] - B[2][id_B][1] + 1)

pos = A[2] + [(B[2][0][0]+x, 1 if m!=1 and n!=1 else B[2][0][1]+y)] + \

[(p[0]+x,p[1]+y) for p in B[2][1:]]

return (uc,s,pos)

def catalan_semirings(n):

# calculate all Catalan semirings of size 1 to n

if n==0: return [[([[]],[0],[(0,0)])]]

CL = catalan_semirings(n-1)

return CL + [[catalan_sum(A,B) for i in range(len(CL))

for A in CL[i] for B in CL[n-1-i]]]
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Fig. 3. ≤-order of Catalan semirings of size ≤ 6
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4 Boolean Cdi-Semirings and Directed Graphs

An idempotent semiring is Boolean if its join-semilattice is the reduct of a
Boolean algebra. In this section we analyze the structure of finite Boolean cdi-
semirings. We use ideas from the theory of Boolean algebras with operators and
relation algebras [3,4] to recover the semiring operations from a ternary rela-
tion on the atoms of the Boolean algebra. Lemma 5 below is a standard result
that states this works in general for nonassociative nonunital complete atomic
Boolean idempotent semirings. These algebras are also known as nonassociative
atomic Boolean quantales. A nonassociative quantale B = (B,

∨
, ·) is a complete

join-semilattice (B,
∨

) with a binary operation · such that x(
∨
Y ) =

∨
y∈Y xy

and (
∨
Y )x =

∨
y∈Y yx for all x ∈ B and Y ⊆ B. A quantale in addition satisfies

the identity (xy)z = x(yz). By completeness, every quantale has a least and a
greatest element, denoted by 0 and � respectively. The complete distributivity
of · over

∨
implies x0 = 0 = 0x. If it also has a left identity 1x = x and/or right

identity x1 = x then it is a left/right unital quantale. Hence a join-complete
idempotent semiring is the same as a unital quantale. As for semirings, a quan-
tale is Boolean if its join-semilattice order is that of a complete Boolean algebra,
and atomic if every nonzero element has an atom below it. The set of atoms of
B is denoted by At(B).

Lemma 5. 1. Let B be a nonassociative atomic Boolean quantale with A =
At(B) and define a ternary relation R ⊆ A3 by R(x, y, z) ⇐⇒ x ≤ yz. Then
for all b, c ∈ B,

bc =
∨

{x : ∃y ≤ b∃z ≤ c R(x, y, z)}.

2. Suppose R ⊆ A3 is a ternary relation on a set A, and define B = (P(A),
⋃
, ·)

where for Y,Z ∈ P (A)

Y · Z = {x : ∃y ∈ Y ∃z ∈ Z R(x, y, z)}.

Then B is a nonassociative atomic Boolean quantale.

As in the theory of Boolean algebras with operators or modal logic, the
relational structure A = (A,R) from the preceding lemma is called the atom
structure or Kripke frame of the Boolean quantale B. Correspondence theory
from modal logic also applies to Boolean quantales. For example, B is commu-
tative if and only if R(x, y, z) ⇔ R(x, z, y) for all x, y ∈ At(B). It is convenient
to split associativity into two inequalities (ab)c ≤ a(bc), called subassociativity,
and (ab)c ≥ a(bc), called supassociativity, where a, b, c ∈ B.

Theorem 6. Let B be a nonassociative atomic Boolean quantale with R defined
on A = At(B) as in the preceding lemma. Then for x, y, z ∈ A, B is
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(i) mult. idempotent ⇔ R(x, x, x) & (R(x, y, z) ⇒ x = y or x = z)
(ii) subassociative ⇔ (R(u, x, y)&R(w, u, z) ⇒ ∃v(R(v, y, z)&R(w, x, v)))
(iii) left unital ⇔ ∃I ⊆ A(x = z ⇔ ∃y ∈ I R(x, y, z))
(iv) right unital ⇔ ∃I ⊆ A(x = y ⇔ ∃z ∈ I R(x, y, z))

Proof. (i) Assume B in multiplicatively idempotent, let x, y, z ∈ A = At(B) be
atoms and assume x ≤ yz. Then y ∨ z = (y ∨ z)2 = y2 ∨ yz ∨ z2 = y ∨ z ∨ yz.
Therefore yz ≤ y ∨ z. Since x ≤ yz we have x ≤ y ∨ z, and we assumed x, y, z
are atoms, hence it follows that x = y or x = z.

Now suppose R(x, x, x) and (R(x, y, z) ⇒ x = y or x = z) holds for all atoms
x, y, z ∈ A. Then by Lemma 5.1, for any c ∈ B we have c ≤ cc since R(x, x, x)
holds for all atoms x ≤ c. Now let x be an atom such that x ≤ c · c. Again by
Lemma 5.1, x ≤ y · z for some atoms y, z ≤ c, therefore R(x, y, z) holds and by
assumption x = y or x = z. Hence x ≤ c and it follows that cc = c.

(ii) Since all variables in subassociativity are distinct, this property holds for
all elements of B if and only if it holds for all atoms. Now let x, y, z ∈ A. Then
(xy)z ≤ x(yz) is equivalent to w ≤ (xy)z ⇒ w ≤ x(yz) for all w ∈ A. This in
turn is equivalent to

∃u ∈ A (u ≤ xy & w ≤ uz) ⇒ ∃v ∈ A (v ≤ yz & w ≤ xv).

The first existential quantifier can move out of the premise to the front of the
formula and switches to a universal quantifier, hence the formula translates to
the given condition for R.

(iii) If B is left unital then it has a 1 such that 1b = b for all b ∈ B and we
can define I = {z ∈ A : z ≤ 1}. For atoms x, z ∈ A if x = z then x = 1z ≤ 1z,
so by Lemma 5.1 there exists an atom y ∈ I such that x ≤ yz, which shows
R(x, y, z). Conversely, assume x ≤ yz where y ∈ I. Then yz ≤ 1z = z implies
x ≤ z and since both are atoms, x = z. This proves the forward direction of (iii).

Now assume a set I ⊆ A with the given property exists and define 1 =
∨
I.

It suffices to show that z = 1z for all atoms z ∈ A since this equality lifts to
all of B. Let x ≤ 1z, then by Lemma 5.1 x ≤ yz for some y ∈ I. Hence x = z,
which shows that z is the only atom below 1z. It follows that z = 1z.

(iv) This proof is similar to (iii). 	

From now on a ternary relation R is called commutative, (multiplicatively)

idempotent, subassociative or (left/right) unital if its corresponding Boolean
quantale has the same property.

We now observe that if multiplication is idempotent then the ternary relation
can be replaced by two reflexive binary relations P and Q. In the commutative
case they coincide, so the structure of nonassociative Boolean cdi-semirings is
determined by a single reflexive relation Q. The proof follows directly from the
formula R(x, y, z) ⇒ x = y or x = z.
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Lemma 7. An idempotent ternary relation R ⊆ A3 is definitionally equivalent
to a pair of reflexive binary relations P,Q ⊂ A2 via the definitions

(Pdef) P (x, y) ⇔ R(x, y, x) (Qdef) Q(x, y) ⇔ R(x, x, y)
(Rdef) R(x, y, z) ⇔ (x = y & Q(y, z)) or (x = z & P (z, y)).

Moreover, the relation R is commutative if and only if P = Q.

The existentially quantified subassociative property for ternary relation is not
easy to work with, hence it is noteworthy that, in the presence of idempotence,
subassociativity can be replaced by the following three universal formulas for P
and Q.

Theorem 8. An idempotent ternary relation R ⊆ A3 is subassociative if and
only if the corresponding reflexive relations P,Q satisfy

(P1) P (x, y) & P (y, z) ⇒ P (x, z) i.e. P-transitivity
(P2) Q(x, y) & Q(x, z) ⇒ Q(y, z) or P (z, y)
(P3) P (x, y) & Q(y, z) & x �= y ⇒ P (x, z)

To characterize supassociativity of R, it suffices to interchange P , Q in these
conditions to obtain (P′

1), (P′
2), (P′

3). Hence R is associative if and only if P , Q
satisfy all six conditions.

Proof. Suppose (P1)–(P3) hold and recall that subassociativity of R is given by

R(u, x, y)&R(w, u, z) ⇒ ∃v(R(v, y, z)&R(w, x, v)).

Assume R(u, x, y) and R(w, u, z) holds. From (Rdef) we get

[u = x & Q(x, y) or u = y & P (y, x)] and
[w = u & Q(u, z) or w = z & P (z, u)].

We consider 4 cases, with the aim of showing that in each case there exists a v
that satisfies the conclusion of subassociativity, i.e.,

[(A) v = y & Q(y, z) or (B) v = z & P (z, y)] and
[(C) w = x & Q(x, v) or (D) w = v & P (v, x)].

Case 1: Suppose u = x, Q(x, y), w = u and Q(u, z). Then we have u = x = w,
Q(x, y) and Q(x, z). From (P2) we deduce Q(y, z) or P (z, y), and we want to find
v such that [(A) or (B)] and [(C) or (D)]. If Q(y, z) holds, we choose v = y, then
(A) and (C) hold, and if P (z, y), we choose v = z, then (B) and (C) hold.

Case 2: Suppose u = y, P (y, x), w = u and Q(u, z). Then u = w = y
and P (y, x) and Q(y, z) holds. Taking v = y we get v = y and Q(y, z) and
w = v and P (v, x). Hence (A) and (D) are true.
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Case 3: Suppose u = x, Q(x, y), w = z and P (z, u), hence P (z, x). First,
assuming z �= x, we have P (z, x), Q(x, y) so by (P3) it follows that P (z, y). Now
choosing v = z shows (B) and (D) hold.

If remains to handle the case when z = x. Since Q(x, y) and Q(x, x) hold,
(P2) implies Q(y, x) or P (x, y). In case Q(y, x) holds we choose v = y to get (C)
and (A) (since z = x). In the other case P (x, y) holds, and then we choose v = x
to get (B) and (D).

Case 4: Suppose u = y, P (y, x), w = z and P (z, u), hence P (z, y). From (P1)
(transitivity) we deduce P (z, x). Now taking v = z we see that (B) and (D) are
true.

Hence in all four cases we have proved subassociativity.
Conversely, assume that subassociativity holds for R:

R(u, x, y)&R(w, u, z) ⇒ ∃v(R(v, y, z)&R(w, x, v)).

We show that (P1)–(P3) hold.
For (P1) assume P (x, y) and P (y, z). Then we have R(x, y, x) and R(y, z, y)

by definition of P . Matching R(y, z, y) & R(x, y, x) to the premise of subasso-
ciativity with u := y, x := z, w := x and z := x, there exists v such that
R(v, y, x) and R(x, z, v) holds. By idempotence of R and Theorem 6(i) it follows
that x = z or x = v hold and hence we get P (x, z) (from x = z or from (Pdef)
and R(x, z, x)).

For (P2) assume Q(x, y) and Q(x, z). By definition of Q we get R(x, x, y) and
R(x, x, z). Let u := x and w := x, then by subassociativity there exists v such
that R(v, y, z) and R(x, x, v) holds. By idempotence there are two options for v:
if v = y we have Q(y, z) and if v = z we have P (z, y). Hence (P2) holds.

For (P3) assume Q(y, z) and P (x, y) and x �= y hold. From the definition of
Q and P we get R(y, y, z) and R(x, y, x). Let u := y, x := y, y := z, w := x and
z := x, then by subassociativity there exists v such that R(v, z, x) and R(x, y, v)
hold. Since x �= y, it follows from R(x, y, v) and by mult. idempotent that v = x,
so P (x, z) follows from the first conjunct. Hence (P3) is true. 	

Corollary 9. An atomic Boolean idempotent quantale is determined by two
reflexive binary relations P , Q on its set of atoms such that the condition (P1),
(P2), (P3), (P′

1), (P′
2), (P′

3) from the previous theorem hold.

However the conditions (P1), (P2), (P3) are nonintuitive, and it is fortunate
that in the commutative case they reduce to a much simpler pair of axioms.
Recall that a preorder is a reflexive transitive binary relation and a partial order
is a preorder that is antisymmetric: P (x, y) & P (y, x) ⇒ x = y. A forest is a
partial order such that

(∗) P (x, y) & P (x, z) ⇒ P (y, z) or P (z, y)

i.e., all the elements above a given element are linearly ordered. A forest can
have many connected components, each of which is a tree. If each tree has a
top element (called the root) then forest is said to be rooted. Finite forests are
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always rooted and they are easy to enumerate up to isomorphism. In fact they
are in one-one correspondence with finite trees since one can add a new root to
convert any forest into trees with one more element. The number of finite trees
with n unlabeled elements (i.e., up to isomorphism) is the sequence A00081 [7].

A preorder P ⊂ A2 is determined by the equivalence relation ≡ = P ∩ P−1

and the induced partial order on the set of equivalence classes P/ ≡.
A preorder forest is a preorder that satisfies property (∗) and it is rooted if

each component has a largest equivalence class. Finite preorder forests are always
rooted, and the number of finite preorder forests with n unlabeled elements (i.e.,
up to isomorphism) is also easy to count, given by the sequence A052855 [9].
Finally, a preorder forest is said to have singleton roots if it is rooted and all
largest equivalence classes contain only one element.

Theorem 10. Atomic Boolean commutative idempotent unital quantales are
definitionally equivalent to preorder forests with singleton roots.

In the finite case these algebras are Boolean cdi-semirings, hence all finite
Boolean cdi-semirings can be constructed by enumerating preorder forests with
singleton roots.

Proof. Let P, Q be the reflexive binary relations on the atoms that exist by
idempotence. From commutativity it follows that P = Q hence (P2) reduces to
(∗) and (P1) implies (P3). This means the relation P is a preorder forest. For
any atom z below 1, P (z, x) implies R(z, x, z), and it follows from unitality that
x = z. Hence z is a unique maximal element of the preorder.

Conversely, from a preorder forest with singleton roots we define I to be the
set of all roots of the forest to get a unit element for the quantale. 	


Figure 4 shows the preorder forests with singleton roots up to cardinality
4. They correspond to Boolean semirings of size 2, 4, 8 and 16. It is interesting
to note that there are 1, 2, 5, 14, . . . such semirings of each size, but this is not
related to the Catalan numbers since the sequence continues with 41 followed
by 127 (while the Catalan numbers are 42, 132).

Fig. 4. Preorder forests with singleton roots represented by black dots
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Note that every finite forest is a preorder forest with singleton roots, and
it is interesting to investigate the multiplicative semilattices obtained from spe-
cific finite forests. As a simple example, the forests where each component is a
singleton poset correspond to cdi-semirings that are Boolean lattices.

5 Conclusion

In the theory of rings and other algebras, multiplicatively idempotent elements
often play a central role in controlling some structural aspects of the algebra.
The structure of idempotent semirings in general is quite challenging, but with
suitable restrictions some nice characterizations can be found. Here we consid-
ered commutative doubly idempotent semirings of height ≤2, or with a mul-
tiplicative linear order or with a Boolean join-semilattice. In each case it was
possible to give detailed descriptions of the finite members that allow them to
be enumerated easily up to isomorphism. It is likely that some of the techniques
explored here can be applied to larger classes of idempotent semirings by, for
example, weakening the assumption of commutativity or allowing distributive
join-semilattices.
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Abstract. The recursion theorem of Richard Dedekind is fundamen-
tal for the recursive definition of mappings on natural numbers since it
guarantees that the mapping in mind exists and is uniquely determined.
Usual set-theoretic proofs are partly intricate and become lengthy when
carried out in full detail. We present a simple new proof that is based on
a relation-algebraic specification of the notions in question and combines
relation-algebraic laws and equational reasoning with Scott induction.
It is very formal and most parts of it consist of relation-algebraic cal-
culations. This opens up the possibility for mechanised verification. As
an application we prove a relation-algebraic version of the Dedekind iso-
morphism theorem. Finally, we consider two variants of the recursion
theorem to deal with situations which frequently appear in practice but
where the original recursion theorem is not applicable.

1 Introduction

The so-called recursion theorem of Richard Dedekind, first formulated and
proved in [6], pertains to the method of recursively defining mappings f : N → A
on the set of natural numbers N by first defining the value of f(0) (in [6] f(1),
since there the natural numbers start with 1) and then defining the value of
f(n+1) (in [6] f(n′), with n′ as the successor of n) subject to the value of f(n),
for an arbitrary natural number n ∈ N. It states that there exists precisely one
such mapping and this guarantees the correctness of the method. Besides the
Peano axioms, Dedekind’s original proof (see [6], Satz 126) decisively depends
on the linear ordering of the natural numbers which, in contrast with modern
approaches, is specified before addition is introduced. About fifty years later
proofs have been published which do not use the order but are based only on
the zero/one element and the successor mapping, that is, on the vocabulary of
the Peano axioms. Two of them can be found in [9,11]. The reader interested in
the history of the Dedekind recursion theorem is referred to [7,8], for example.

Nowadays the Dedekind recursion theorem is frequently presented using Pea-
no structures. These are algebraic structures (N, z, s) with a non-empty carrier
set N , an element z ∈ N (the zero element) and a mapping s : N → N (the
successor mapping) such that the following three axioms hold:

c© Springer Nature Switzerland AG 2020
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∀x, y ∈ N : s(x) = s(y) ⇒ x = y
¬∃x ∈ N : s(x) = z
∀A ∈ 2N : z ∈ A ∧ (∀x ∈ A : s(x) ∈ A) ⇒ A = N

⎫
⎬

⎭
(1)

Then the recursion theorem states that, given a Peano structure (N, z, s), a non-
empty set A, an element c ∈ A and a mapping F : A → A, there exists precisely
one mapping f : N → A with the following two properties:

f(z) = c ∀x ∈ N : f(s(x)) = F (f(x)) (2)

Modern proofs of the recursion theorem define the mapping f of (2) as a
relation, viz. as the intersection of all relations R with source N and target
A such that z R c and for all x ∈ N and y ∈ A from xR y it follows that
s(x)R F (y). For example, in [3], pages 346–348, the partly intricate proof that
this intersection in fact is a univalent and total relation (that is, a mapping) and
satisfies the two formulae of (2) is carried out in great detail.

Specifying the notions in question in the language of relation algebra and
combining relation-algebraic calculations with Scott induction, in Sect. 3 of this
paper we present a new proof of the Dedekind recursion theorem that is simpler
than the purely set-theoretic proof of [3] or similar proofs. A further advantage
of the new proof is that it is very formal and most parts of it consist of equational
reasoning. This opens up the possibility for its mechanised verification by means
of a theorem-proving tool. As an application of our relation-algebraic version of
the recursion theorem we present in Sect. 4 a relation-algebraic version of the
Dedekind isomorphism theorem, i.e., prove that all (relational) Peano structures
are isomorphic. Finally, in Sect. 5 we consider two cases of recursive definitions of
mappings which frequently appear in practice but where the original Dedekind
recursion theorem is not applicable since either the mapping f to be defined is
not unary or the result of f(s(x)) depends not only on the value of f(x) but
also on x. For each case we give an example and prove a corresponding variant
of the relation-algebraic recursion theorem.

2 Mathematical Preliminaries

We assume the reader to be familiar with the basic concepts of partially ordered
sets and complete lattices, including monotone mappings on them, basic fixpoint
theory (fixpoint calculus) and the construction of direct products. Otherwise we
refer to standard textbooks on ordered sets and lattices, e.g., [4,5], and to [13].

Given a partially ordered set (A,≤) that is a complete lattice, we denote the
least element of A by the symbol ⊥, the least upper bound of the subset B of A
by

⊔
B and the greatest lower bound of B by B. Alfred Tarski’s well-known

fixpoint theorem (see [16]) states that each monotone mapping f : A → A has
a least fixpoint, denoted as μ(f), and μ(f) = {x ∈ A | f(x) ≤ x} holds.
For proving properties of μ(f) we will apply the principle of Scott induction,
sometimes also called computational induction or fixpoint induction. Usually the
principle is formulated for complete partial orders (CPOs), that is, for partially
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ordered sets with a least element and the property that each chain possesses a
least upper bound. See [10], for example. Scott induction also works in the case
of complete lattices, since complete lattices are CPOs.

Assume (A,≤) to be a complete lattice. Then a predicate P on its carrier
set A is called admissible (for Scott induction) if for every chain C in (A,≤) the
following implication is true: if for all x ∈ C it holds P (x), then P (

⊔
C) holds,

too. Now, Scott induction states that for each monotone mapping f : A → A
and each admissible predicate P on A from the two conditions

P (⊥) ∀x ∈ A : P (x) ⇒ P (f(x)) (3)

it follows that P (μ(f)). The left condition of (3) is called the induction base and
the right one the induction step with induction hypothesis P (x). Besides the
above version we will also apply a version which in [10] is called simultaneous.
We consider the case of two complete lattices (A,≤1) and (B,≤2) with least
elements ⊥1 ∈ A and ⊥2 ∈ B and two monotone mappings f1 : A → A and
f2 : B → B only. Then if P is an admissible predicate on the direct product
A × B, which is ordered by the product order (that is, by (x1, x2) ≤ (y1, y2) iff
x1 ≤1 y1 and x2 ≤2 y2, for all x1, y1 ∈ A and x2, y2 ∈ B), then from the two
conditions

P (⊥1,⊥2) ∀x ∈ A, y ∈ B : P (x, y) ⇒ P (f1(x), f2(y)) (4)

it follows that P (μ(f1), μ(f2)). This principle is obtained from the original one
by taking in (3) the least element (⊥1,⊥2) of the product lattice (A × B,≤) as
⊥ and the product of the two mappings f1 : A → A and f2 : B → B, defined by

f1 ⊗ f2 : A × B → A × B (f1 ⊗ f2)(x, y) = (f1(x), f2(y)),

as mapping f . Namely, from the monotonicity of f1 with respect to ≤1 and of
f2 with respect to ≤2 and the definition of the product order ≤ it follows that
f1 ⊗ f2 is monotone with respect to ≤ and μ(f1 ⊗ f2) = (μ(f1), μ(f2)).

Given complete lattices (A,≤1) and (B,≤2), a predicate P on the carrier set
A×B of the product lattice (A×B,≤) is admissible (for the simultaneous Scott
induction described by (4)) if there exist

⊔
-distributive mappings α : A → C

and β : B → C into a complete lattice (C,≤3) such that P (x, y) iff α(x) ≤3 β(y),
for all x ∈ A and y ∈ B, or P (x, y) iff α(x) = β(y), for all x ∈ A and y ∈ B. See
e.g., [10] for a proof of this property.

We assume the reader also to be familiar with the basic concepts of
(axiomatic) relation algebra as introduced in [15] by Alfred Tarski. Otherwise
we refer again to standard textbooks, e.g., to [12,14].

As in [14] we work with typed relations. For given sets (or objects in case
of axiomatic relation algebra) A and B we denote the set of all relations with
source A and target B by [A ↔B] and write R : A ↔B instead of R ∈ [A ↔ B].
As operations and predicates on relations we use transposition RT, complemen-
tation R , union R ∪ S, intersection R ∩ S, composition R ;S, inclusion R ⊆ S
and equality R = S, and as special relations we use the empty relation O, the
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universal relation L and the identity relation I. As usual, in the latter cases we
overload the symbols, i.e., avoid the binding of types to them, since all types can
be derived from the context by means of the typing rules of the operations. All
basic relation-algebraic laws we will apply in the remainder of the paper are well
known for set-theoretic relations; their proofs from the axioms of an (axiomatic)
relation algebra can be found in [14], for example.

Many important properties of relations can be specified in a quantifier-
free manner using (conjunctions of) inclusions and equations between relation-
algebraic expressions only. In this paper we will use that a relation R : A ↔B is
univalent iff RT ;R ⊆ I, total iff R ; L = L or, equivalently, iff I ⊆ R ;RT, injective
iff R ;RT ⊆ I and surjective iff RT ; L = L or, equivalently, iff I ⊆ RT ;R. For all
R and S the following implication is shown in [14] as Proposition 4.2.2.iv:

R ⊆ S ∧ S univalent ∧ R total =⇒ R = S. (5)

Other results of [14] we will apply are Proposition 4.2.2.iii, stating that

Q univalent =⇒ R ;Q ∩ S = (R ∩ S ;QT) ;Q, (6)

for all Q, R and S, and Proposition 2.4.2.i, stating that

(Q ∩ R ; L) ;S = Q ;S ∩ R ; L, (7)

for all Q, R and S.
We also need relational vectors, which are relations v : A ↔B with v = v ; L,

and relational points, which are injective and surjective relational vectors. In case
of set-theoretic relations a little reflection shows that v : A↔ B is a relational
vector iff there exists a subset V of the set A such that v = V ×B, and it is a
relational point iff additionally V is a singleton set. Hence, a set-theoretic rela-
tional vector models a subset of its source and a set-theoretic relational point
models an element of its source. Therefore, the targets are irrelevant and in most
applications, also of (axiomatic) relation algebra, relational vectors and points
are from a set [A ↔11], where 11 is a singleton set (a specific object, respectively).
In this case the demand v = v ; L can be dropped, since it holds because the
identity relation and the universal relation from [11↔11] coincide.

To treat mappings with more than one argument relation-algebraically, we
will use constructions related to direct products, viz. projection relations, prod-
ucts and pairings. Their formal introduction is postponed to Sect. 5.

3 Relation-Algebraic Version of the Recursion Theorem

In this section we formulate the recursion theorem of Dedekind in the language of
relation algebra and present a proof that combines relation-algebraic calculations
and Scott induction. We start with the following definition of a relational Peano
structure. In a similar form its axioms can be found already in [2]. Since the
Dedekind recursion theorem is a theorem on sets, in Definition 3.1 and all results
we will prove in the remainder of the paper we consider relations as set-theoretic
ones. But we will use only the operations of (axiomatic) relation algebra and its
laws. As a consequence, our results remain true in this more general setting.
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Definition 3.1. A triple (N, z, S) is called a relational Peano structure if N is
a non-empty set, z : N ↔11 is a relational point, S : N ↔ N is a univalent, total
and injective relation, S ; z = O and for all relational vectors v : N ↔11 from
z ∪ ST; v ⊆ v it follows that v = L.

Compared with the notion of a Peano structure formulated in the introduction
we see that the relational point z : N ↔11 models the zero element and the
univalent, total and injective relation S : N ↔N equals the injective successor
mapping. The equation S ; z = O is the relation-algebraic version of the second
formula of (1) and that for all relational vectors v : N ↔11 from z ∪ ST; v ⊆ v it
follows v = L is the relation-algebraic version of the third formula of (1). To be
able to prove totality of relations by means of Scott induction, in the next lemma
(following [2]) we specify the last axiom of a relational Peano structure as a least
fixpoint equation. Notice, that in the remainder of the paper monotonicity of a
mapping on relations always supposes inclusion as order.

Lemma 3.1. Assume z : N ↔11 to be a relational vector, S : N ↔ N to be a
relation and the mapping g to be defined as follows:

g : [N ↔11] → [N ↔11] g(v) = z ∪ ST; v (8)

Then g is monotone. Furthermore, we have μ(g) = L iff for all relational vectors
v : N ↔11 from z ∪ ST; v ⊆ v it follows that v = L.

Proof. The monotonicity of the mapping g follows from the monotonicity of
union and composition. To show the second claim, we calculate as follows:

μ(g) = L ⇐⇒ ⋂{v ∈ [N ↔11] | g(v) ⊆ v} = L fixpoint theorem
⇐⇒ ⋂{v ∈ [N ↔11] | z ∪ ST; v ⊆ v} = L by (8)
⇐⇒ ∀ v ∈ [N ↔11] : z ∪ ST; v ⊆ v ⇒ v = L ��

Having specified Peano structures in the language of relation algebra, we now
consider the two formulae of the recursive definition of the mapping f : N → A
via (2). If we model the element z ∈ N by the relational point z : N ↔11 of a
relational Peano structure (N, z, S), use the univalent, total and injective relation
S : N ↔ N instead of the injective successor mapping s : N → N , model the
element c ∈ A by the relational point c : A ↔11, take the mapping F : A → A
as univalent and total relation from [A ↔A] and take the mapping f : N → A
as univalent and total relation from [N ↔A], then the two formulae of (2) are
relation-algebraically specified as follows:

z ; cT ⊆ f S ; f = f ;F (9)

As next result we show how the two formulae of (9) can be specified by a single
fixpoint equation.

Lemma 3.2. Assume (N, z, S) to be a relational Peano structure, c : A ↔11 to
be a relational point, F : A ↔ A to be univalent and total and the mapping h to
be defined as follows:

h : [N ↔ A] → [N ↔ A] h(X) = z ; cT ∪ ST ;X ;F (10)
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Then h is monotone and μ(h) : N ↔ A is total. Furthermore, for all univalent
and total relations f : N ↔ A the two formulae of (9) hold iff f = h(f).

Proof. The monotonicity of the mapping h follows again from the monotonicity
of union and composition.

With regard to the totality of the relation μ(h) we prove μ(g) ⊆ μ(h) ; L, with
the mapping g defined by (8). We apply Scott induction (of the form (4)) with
the predicate P on the direct product [N ↔11] × [N ↔ A] defined by P (v,X) iff
v ⊆ X ; L, for all relational vectors v : N ↔11 and relations X : N ↔ A. Since the
two equations α(v) = v and β(X) = X ; L define two

⋃
-distributive mappings

α : [N ↔11] → [N ↔11] and β : [N ↔A] → [N ↔11], respectively, the predicate
P is admissible due to the criterion mentioned in Sect. 2.

A proof of the induction base P (O,O) is trivial. For a proof of the induction
step, assume an arbitrary relational vector v : N ↔11 and an arbitrary relation
X : N ↔A such that P (v,X) holds. Then we get P (g(v), h(X)) by the following
calculation:

g(v) = z ∪ ST ; v by (8)
⊆ z ∪ ST ;X ; L as P (v,X)
= z ∪ ST ;X ;F ; L F total
= z ; L ∪ ST ;X ;F ; L z relational point (i.e., vector)
= z ; cT ; L ∪ ST ;X ;F ; L c relational point (i.e., surjective)
= (z ; cT ∪ ST ;X ;F ) ; L
= h(X) ; L by (10)

Therefore, we have P (μ(g), μ(h)), i.e., μ(g) ⊆ μ(h) ; L. Now, L = μ(h) ; L follows
from the last axiom of a relational Peano structure and Lemma3.1.

For a proof of the remaining claim, assume an arbitrary univalent and total
relation f : N ↔ A to be given. To show implication “=⇒”, suppose the two
formulae of (9) to be true. We start with the following calculation:

h(f) = z ; cT ∪ ST ; f ;F by (10)
= z ; cT ∪ ST ;S ; f second formula of (9)
⊆ z ; cT ∪ f S univalent
= f first formula of (9)

In combination with Tarski’s fixpoint theorem from h(f) ⊆ f we get μ(h) ⊆ f .
Now, the desired equation f = h(f) follows from the univalence of f , the totality
of μ(h), inclusion μ(h) ⊆ f and implication (5). With regard to implication
“⇐=”, assume f = h(f). The following proof of the first formula of (9) uses
definition (10) of the mapping h and f = h(f):

z ; cT ⊆ z ; cT ∪ ST ; f ;F = h(f) = f
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The second formula of (9) is shown by the following calculation:

S ; f = S ;h(f) as f = h(f)
= S ; (z ; cT ∪ ST ; f ;F ) by (10)
= S ; z ; cT ∪ S ;ST ; f ;F
= S ;ST ; f ;F axiom S ; z = O
= f ;F S total and injective ��

Notice, that in this proof only the univalence of the relation f is used. But from
μ(h) ⊆ f and the totality of μ(h) the totality of f follows. For F only totality
is applied. Now, we are able to prove the following relation-algebraic version of
the recursion theorem of Dedekind. Here univalence of F is used, too.

Theorem 3.1. Let (N, z, S) be a relational Peano structure, c : A ↔11 be a
relational point and F : A ↔ A be univalent and total. Then there exists precisely
one univalent and total relation f : N ↔ A that satisfies the two formulae of (9),
viz. the least fixpoint μ(h) of the mapping h of (10).

Proof. From Lemma 3.2 we already know that μ(h) is total. To prove that μ(h)
is also univalent, we use Scott induction (of the form (3)) with the predicate P
on the set [N ↔ A] defined by P (X) iff XT ;X ⊆ I, for all relations X : N ↔A.
To verify that P is admissible, assume the subset C of [N ↔ A] to be a chain
of univalent relations. Then the following calculation shows that also the union
(i.e., least upper bound)

⋃ C is a univalent relation:

(
⋃ C)T ; (

⋃ C) = (
⋃{RT | R ∈ C}) ; (

⋃ C)
=

⋃{RT ; (
⋃ C) | R ∈ C}

=
⋃{⋃{RT ;S | S ∈ C} | R ∈ C}

⊆ I see below

The last step uses
⋃{RT ;S | S ∈ C} ⊆ I, for all relations R ∈ C. This inclusion

holds as, given any R ∈ C, it holds that RT ;S ⊆ I, for all relations S ∈ C. The
latter, in turn, follows from the chain property of C and since all relations of C
are univalent. Namely, given any S ∈ C, in case R ⊆ S we get RT ;S ⊆ ST ;S ⊆ I
and in case S ⊆ R we get RT ;S ⊆ RT ;R ⊆ I.

A proof of the induction base P (O) is obvious. To show the induction step,
assume an arbitrary relation X : N ↔ A with P (X). Then P (h(X)) holds
because of the following calculation:

h(X)T;h(X) = (z ; cT ∪ ST ;X ;F )T ; (z ; cT ∪ ST ;X ;F ) by (10)
= (c ; zT ∪ FT ;XT ;S) ; (z ; cT ∪ ST ;X ;F )
= c ; zT; z; cT ∪ c ; zT;ST;X ;F ∪

FT;XT;S ; z ; cT ∪ FT;XT;S ;ST;X ;F
⊆ I see below.

Concerning the last step, c ; zT; z ; cT ⊆ c ; L ; cT = c ; cT ⊆ I uses that c is a rela-
tional point (i.e., an injective relational vector). Equation c ; zT;ST;X ;F = O
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follows from zT;ST = (S ; z)T = O, where the axiom S ; z = O of a relational
Peano structure is applied. Also FT;XT;S ; z ; cT = O follows from this axiom.
Finally, for FT ;XT ;S ;ST ;X ;F ⊆ FT ;XT ;X ;F ⊆ FT ;F ⊆ I we use that
S is injective, X is univalent (due to the induction hypothesis P (X)) and F is
univalent.

Because of μ(h) = h(μ(h)) and since μ(h) is univalent and total, from impli-
cation “⇐=” of Lemma 3.2 we get that the two formulae of (9) hold for the univa-
lent and total relation μ(h), that is, we have z ; cT ⊆ μ(h) and S ;μ(h) = μ(h) ;F .

To show that μ(h) is the only univalent and total relation from [N ↔ A] that
satisfies the two formulae of (9), let an arbitrary univalent and total relation
f : N ↔ A be given such that z ; cT ⊆ f and S ; f = f ;F . Then implication “=⇒”
of Lemma 3.2 shows f = h(f), from which μ(h) ⊆ f follows. This inclusion, the
univalence of f , the totality of μ(h) and implication (5) yield μ(h) = f . ��
The proofs of Lemma 3.2 and Theorem 3.1 contain the decisive ideas which also
will be used in Sect. 5 for proving the variants of Theorem3.1 we have mentioned
in the introduction.

4 An Application: The Isomorphism Theorem

Besides the recursion theorem a second important result of [6] is the nowadays
called Dedekind isomorphism theorem (see [6], Satz 132). In modern terminology
it says that for each pair of Peano structures (N, z, s) and (N1, z1, s1) there exists
a bijective mapping Φ : N → N1 with the following two properties:

Φ(z) = z1 ∀x ∈ N : Φ(s(x)) = s1(Φ(x)) (11)

When translated into the language of relation algebra with relational Peano
structures (N, z, S) and (N1, z1, S1), the bijective mapping Φ : N → N1 becomes
a univalent, total, injective and surjective relation Φ : N ↔ N1 for which the
following relation-algebraic versions of the two formulae of (11) hold:

z ; zT1 ⊆ Φ S ;Φ = Φ ;S1 (12)

To prove the existence of such a relation Φ, we consider the monotone mapping h
of (10), where the set A is instantiated by N1, the relational point c is instantiated
by z1 : N1 ↔11 and the relation F is instantiated by S1 : N1 ↔ N1. So, the
mapping we consider is given as follows:

h1 : [N ↔N1] → [N ↔N1] h1(X) = z ; z1T ∪ ST ;X ;S1 (13)

Furthermore, we define Φ as least fixpoint of h1, i.e. by Φ := μ(h1) : N ↔ N1.
Then from Theorem 3.1 we get that Φ is the only univalent and total relation
from [N ↔ N1] that satisfies the two formulae of (12). So, it remains to verify
Φ as injective and surjective. To this end, we consider the following monotone
mapping h2 (that is again a specific instance of the mapping h of (10)):

h2 : [N1 ↔ N ] → [N1 ↔ N ] h2(Y ) = z1 ; zT ∪ ST
1 ;Y ;S (14)
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It is easy to verify that the mapping t : [N ↔ N1] → [N1 ↔ N ], defined by
t(X) = XT for all X : N ↔N1, is a lower adjoint of a Galois connection between
the complete lattices ([N ↔ N1],⊆) and ([N1 ↔N ],⊆) and that t ◦ h1 = h2 ◦ t.
Hence, the μ-fusion theorem of the fixpoint calculus (see [13]) yields

ΦT = μ(h1)
T = t(μ(h1)) = μ(h2).

This equation and the univalence and totality of μ(h2) (a consequence of The-
orem 3.1) yield the injectivity and surjectivity of Φ. Altogether, we have shown
the following relation-algebraic version of the Dedekind isomorphism theorem.

Theorem 4.1. Assume (N, z, S) and (N1, z1, S1) to be relational Peano struc-
tures. Then there exists precisely one univalent, total, injective and surjective
relation Φ : N ↔ N1 that satisfies the two formulae of (12), viz. the least fixpoint
μ(h1) of the mapping h1 of (13).

5 Variants of the Relation-Algebraic Recursion Theorem

When defining a mapping on natural numbers (or on a Peano structure) recur-
sively, it frequently possesses, besides the argument that controls the recursion,
additional arguments. An example is the following recursive definition of the
addition-mapping add : N × N → N on a Peano structure (N, z, s), where the
first argument of add controls the recursion:

∀ y ∈N : add(z, y) = y ∀x ∈N, y ∈N : add(s(x), y) = s(add(x, y)) (15)

Since the original Dedekind recursion theorem only treats the recursive definition
of unary mappings, it cannot immediately be applied to show that there exists
precisely one mapping add : N ×N → N for which the two formulae of (15)
hold. Therefore, in the following we present a corresponding variant – in terms
of sets as well as in terms of relation algebra. To simplify the presentation, we
consider mappings of the kind f : N ×B → A only. Taking B as a direct product∏n

i=1 Bi, this also covers the case of mappings with more than two arguments.
The set-theoretic variant of the Dedekind recursion theorem we have in mind

is as follows: Let (N, z, s) be a Peano structure, A and B be non-empty sets and
mappings d : B → A and G : A → A be given. Then there exists precisely one
mapping f : N × B → A that satisfies the following two formulae:

∀ y ∈ B : f(z, y) = d(y) ∀x ∈ N, y ∈ B : f(s(x), y) = G(f(x, y)) (16)

If this statement is translated into the language of relation algebra, with a rela-
tional Peano structure (N, z, S) and the mappings d and G as univalent and
total relations, then we obtain the following variant of Theorem3.1.

Theorem 5.1. Assume (N, z, S) to be a relational Peano structure and d :
B ↔ A and G : A ↔ A to be univalent and total. Then there exists precisely
one univalent and total relation f : N × B ↔ A that satisfies the following two
formulae:

[[z ; L, d] ⊆ f (S ⊗ I) ; f = f ;G (17)
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The construction [[z ; L, d] of the first formula of (17) is known as the left pairing
or strict join of the point z ; L : N ↔ A and the relation d : B ↔A. Using point-
wise notation, it relates (x1, x2) ∈ N ×B with y ∈ A iff x1 (z ; L) y and x2 d y. In
other words, it relates (x1, x2) with y iff x1 is the zero element and d maps x2 to
y. The construction S ⊗ I of the second formula of (17) is called the product or
parallel composition of the relations S : N ↔ N and I : B ↔B. In a point-wise
notation it relates (x1, x2) ∈ N × B with (y1, y2) ∈ N × B iff x1 S y1 and x2 I y2.
Hence, the relation S ⊗ I : N × B ↔ N × B is the relational counterpart of the
product s ⊗ I : N × B → N × B of the successor mapping s : N → N with the
identity relation / mapping on the set B in the sense of Sect. 2.

Using relation-algebraic specifications of the two projection relations, left
pairings and products and following the lines of the proof of Theorem3.1, also
Theorem 5.1 can be proved with purely relation-algebraic means. To do so, we
start with the relation-algebraic definitions [[z ; L, d] := π ; z ; L∩ρ ; d : N × B ↔ A
of the left pairing and S ⊗ I := π ;S ;πT ∩ ρ ; I ; ρT : N × B ↔N × B of the
product, where π : N × B ↔N and ρ : N × B ↔B are the projection relations
of the direct product N ×B. Up to isomorphism, the latter are specified relation-
algebraically by the following four axioms (see also [2,14]):

πT ;π = I ρT ; ρ = I π ;πT ∩ ρ ; ρT = I πT ; ρ = L (18)

From the first three formulae of (18) we get that the projection relations π and
ρ are univalent, total and surjective. The definition of the left pairing [[z ; L, d]
and the univalence of ρ and d imply

[[z ; L, d]T ; [[z ; L, d] ⊆ (ρ ; d)T ; ρ ; d = dT ; ρT ; ρ ; d ⊆ I,

such that [[z ; L, d] is univalent. Also the product S ⊗ I is univalent, since its
definition and the univalence of π and S imply

(S ⊗ I)T ; (S ⊗ I) ⊆ (π ;S ;πT)
T

;π ;S ;πT = π ;ST ;πT ;π ;S ;πT ⊆ π ;πT

and its definition and the univalence of ρ imply

(S ⊗ I)T ; (S ⊗ I) ⊆ (ρ ; ρT)
T

; ρ ; ρT = ρ ; ρT ; ρ ; ρT ⊆ ρ ; ρT

such that the third formula of (18) yields (S ⊗ I)T ; (S ⊗ I) ⊆ π ;πT ∩ ρ ; ρT = I.
Similar calculations show that S ⊗ I is total and injective.

After these preparations we are able to prove Theorem 5.1 with relation-
algebraic means. The idea is the same as in case of Theorem 3.1. We define an
appropriate monotone mapping on the set [N × B ↔ A] and verify that its least
fixpoint satisfies the desired properties. Concretely, we consider the least fixpoint
μ(h3) : N × B ↔A of the following monotone mapping:

h3 : [N × B ↔A] → [N × B ↔ A] h3(X) = [[z ; L, d] ∪ (S ⊗ I)T ;X ;G (19)

The proof that μ(h3) is the only univalent and total relation from [N × B ↔A]
that satisfies the two formulae of (17) is given by the following four lemmas.
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Lemma 5.1. The relation μ(h3) is total.

Proof. Besides the mapping h3 of (19) we additionally consider the mapping g of
(8) and show π ;μ(g) ⊆ μ(h3) ; L using Scott induction (of the form (4)). Then the
totality of the projection relation π : N × B ↔N and the last axiom of a Peano
structure in combination with Lemma 3.1 yield L = π ; L = π ;μ(g) ⊆ μ(h3) ; L.

For the Scott induction we use the admissible predicate P on the direct prod-
uct [N ↔11] × [N × B ↔ A] defined by P (v,X) iff π ; v ⊆ X ; L, for all relational
vectors v : N ↔11 and relations X : N × B ↔A. The induction base P (O,O)
is obvious. To show the induction step, assume an arbitrary relational vector
v : N ↔11 and an arbitrary relation X : N × B ↔A with P (v,X). Then the
following calculation shows P (g(v), h3(X)):

π ; g(v) = π ; (z ∪ ST ; v) by (8)
= π ; z ∪ π ;ST ; v
= (π ; z ; L ∩ ρ ; d ; L) ∪ (π ;ST ∩ ρ ; L) ; v z vector and ρ, d total
= (π ; z ; L ∩ ρ ; d) ; L ∪ (π ;ST ∩ ρ ; L) ; v by (7)
= [[z ; L, d] ; L ∪ (π ;ST ∩ ρ ; L) ; v definition left pairing
= [[z ; L, d] ; L ∪ (π ;ST ∩ ρ ; ρT ;π) ; v last formula of (18)
= [[z ; L, d] ; L ∪ (π ;ST ;πT ∩ ρ ; ρT) ;π ; v π univalent and (6)
= [[z ; L, d] ; L ∪ (π ;S ;πT ∩ ρ ; ρT)T ;π ; v
= [[z ; L, d] ; L ∪ (S ⊗ I)T;π ; v definition product
⊆ [[z ; L, d] ; L ∪ (S ⊗ I)T;X ; L by P (v,X)
= [[z ; L, d] ; L ∪ (S ⊗ I)T;X ;G ; L G total
= ([[z ; L, d] ∪ (S ⊗ I)T;X ;G) ; L
= h3(X) ; L by (19) ��

Lemma 5.2. The relation μ(h3) is univalent.

Proof. We use Scott induction (of the form (3)) with the admissible predicate
P on the set [N × B ↔A] defined by P (X) iff XT ;X ⊆ I, for all relations
X : N × B ↔ A. The induction base P (O) is obvious. To verify the induction
step, let an arbitrary relation X : N × B ↔ A be given such that P (X) is true.
To get P (h3(X)), we start with the calculation

h3(X)T;h3(X) = ([[z ; L, d] ∪ (S ⊗ I)T;X ;G)
T
; ([[z ; L, d] ∪ (S ⊗ I)T;X ;G)

= [[z ; L, d]T; [[z ; L, d] ∪ [[z ; L, d]T; (S ⊗ I)T;X ;G ∪
GT ;XT ; (S ⊗ I) ; [[z ; L, d] ∪ GT ;XT ; (S ⊗ I) ; (S ⊗ I)T;X ;G

⊆ I ∪ (GT ;XT ; (S ⊗ I) ; [[z ; L, d])T ∪ GT ;XT ; (S ⊗ I) ; [[z ; L, d]

using the definition (19) of the mapping h3, some basic laws of relation algebra,
that [[z ; L, d], G and X are univalent (X because of the induction hypothesis
P (X)) and that S ⊗ I is injective. Now, the definitions of S ⊗ I and [[z ; L, d], the
univalence of π and the axiom S ; z = O of a relational Peano structure imply

(S ⊗ I) ; [[z ; L, d] ⊆ π ;S ;πT ;π ; z ; L ⊆ π ;S ; z ; L = O (20)

and in combination with the above calculation we get P (h3(X)). ��
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Lemma 5.3. The relation μ(h3) satisfies the two formulae of (17).

Proof. Using the definition of the mapping h3 by (19) and that μ(h3) is a fixpoint
of h3 we obtain

[[z ; L, d] ⊆ [[z ; L, d] ∪ (S ⊗ I)T ;μ(h3) ;G = h3(μ(h3)) = μ(h3),

such that μ(h3) satisfies the first formula of (17). The calculation

(S ⊗ I) ;μ(h3) = (S ⊗ I) ;h3(μ(h3)) μ(h3) fixpoint
= (S ⊗ I) ; ([[z ; L, d] ∪ (S ⊗ I)T ;μ(h3) ;G) by (19)
= (S ⊗ I) ; [[z ; L, d] ∪ (S ⊗ I) ; (S ⊗ I)T;μ(h3) ;G
= O ∪ (S ⊗ I) ; (S ⊗ I)T;μ(h3) ;G by (20)
= μ(h3) ;G S ⊗ I total, inj.

shows that μ(h3) satisfies the second formula of (17), too. ��
Lemma 5.4. Assume f : N × B ↔ A to be univalent and total. If it satisfies
the two formulae of (17), then f = μ(h3).

Proof. We start with the calculation

h3(f) = [[z ; L, d] ∪ (S ⊗ I)T ; f ;G by (19)
⊆ f ∪ (S ⊗ I)T ; f ;G first formula of (17)
= f ∪ (S ⊗ I)T ; (S ⊗ I) ; f second formula of (17)
⊆ f S ⊗ I univalent

and get μ(h3) ⊆ f due to Tarski’s fixpoint theorem. This, the univalence of f ,
the totality of μ(h3) (i.e., Lemma 5.1) and implication (5) yield μ(h3) = f . ��
A second situation in which the original Dedekind recursion theorem is not
applicable is given when the result of the expression f(s(x)) not only depends
on the value of f(x) but also on x. The following recursive definition of a mapping
sum : N → N that computes the sum

∑n
i=z i by means of the addition-mapping

add of (15) is an example for this:

sum(z) = z ∀x ∈ N : sum(s(x)) = add(sum(x), s(x))

Such a situation also requires a generalisation of the original Dedekind recursion
theorem. The mapping F has to be binary and of type F : A × N → A and the
recursive definition (2) of f : N → A changes to the following one:

f(z) = c ∀x ∈ N : f(s(x)) = F (f(x), x) (21)

When translated into the language of relation algebra, the statement that there
exists precisely one mapping f : N → A that satisfies the two formulae of (21),
leads to the following second variant of Theorem3.1.
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Theorem 5.2. Assume (N, z, S) to be a relational Peano structure, c : A ↔11
to be a relational point and F : A × N ↔ A to be univalent and total. Then
there exists precisely one univalent and total relation f : N ↔ A that satisfies
the following two formulae:

z ; cT ⊆ f S ; f = [f, I]] ;F (22)

Also Theorem 5.2 uses a relation-algebraic notion we have not introduced in
Sect. 2. This is the right pairing or fork [f, I]] of the two relations f : N ↔ A
and I : N ↔N . Relation-algebraically it is defined by [f, I]] := f ;πT ∩ I ; ρT =
[[fT, IT]T : N ↔ A × N, where π : A × N ↔A and ρ : A × N ↔ N are now the
projection relations of the direct product A × N ; see again [2,14]. From the
definition of right pairings (generalising that of [f, I]] to arbitrary relations with
the same source) and the axioms (18) we get that right pairings of univalent
relations are univalent and a composition with a univalent relation from the
left distributes over right pairings. These are the only new relation-algebraic
properties we will use in the following proof of Theorem5.2. Concretely, we
show that the least fixpoint μ(h4) : N ↔A of the monotone mapping

h4 : [N ↔A] → [N ↔A] h4(X) = z ; cT ∪ [ST;X,ST]] ;F (23)

is the only univalent and total relation from [N ↔ A] that satisfies the two for-
mulae of (22). As in case of Theorem 5.1 this is obtained by four lemmas.

Lemma 5.5. The relation μ(h4) is total.

Proof. By means of the mapping g of (8) and Scott induction (of the form (4))
we show μ(g) ⊆ μ(h4) ; L, since then the totality of μ(g) yields L = μ(h4) ; L.
We apply the admissible predicate P on the direct product [N ↔11] × [N ↔A]
defined by P (v,X) iff v ⊆ X ; L, for all relational vectors v : N ↔11 and relations
X : N ↔A. The induction base P (O,O) is obvious. To verify the induction step,
let an arbitrary relational vector v : N ↔11 and an arbitrary relation X : N ↔ A
be given such that P (v,X) holds. Then we have P (g(v), h4(X)) due to the
following calculation:

g(v) = z ∪ ST ; v by (8)
⊆ z ∪ ST ;X ; L by P (v,X)
= z ∪ ST; (X ∩ ρT;π) ; L last formula of (18)
= z ∪ ST; (X ;πT ∩ ρT) ;π ; L π univalent and (6)
= z ∪ ST; [X, I]] ;π ; L definition right pairing
= z ∪ [ST;X,ST]] ;π ; L prop. right pairing (S inj.)
= z ; cT ; L ∪ [ST;X,ST]] ;π ; L z and c relational points
= z ; cT ; L ∪ [ST;X,ST]] ;F ; L π and F total
= (z ; cT ∪ [ST;X,ST]] ;F ) ; L
= h4(X) ; L by (23) ��

Lemma 5.6. The relation μ(h4) is univalent.
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Proof. We use Scott induction (of the form (3)) with the admissible predicate P
on the set [N ↔ A] defined by P (X) iff XT ;X ⊆ I, for all relations X : N ↔A.
The induction base P (O) holds trivially. To show the induction step, let an
arbitrary relation X : N ↔ A with P (X) be given. For P (h4(X)) we then start
with the following calculation that uses the definition of h4 via (23):

h4(X)T;h4(X) = (z ; cT∪ [ST;X,ST]] ;F )T; (z ; cT ∪ [ST;X,ST]] ;F )
= c ; zT; z ; cT ∪ c ; zT ; [ST ;X,ST]] ;F ∪

FT; [ST ;X,ST]]T; z ; cT ∪ FT; [ST;X,ST]]T; [ST ;X,ST]] ;F
= c ; zT; z ; cT ∪ c ; zT; [ST;X,ST]] ;F ∪

(c ; zT; [ST;X,ST]];F )T ∪ FT; [ST;X,ST]]T; [ST ;X,ST]] ;F

From the proof of Theorem 3.1 we know already the inclusion c ; zT ; z ; cT ⊆ I.
That the second and third expression of the above union are empty follows from

zT; [ST ;X,ST]] = zT; (ST ;X ;πT ∩ ST; ρT) ⊆ zT;ST ;X ;πT = O,

where the definition of [ST ;X,ST]] and the axiom S ; z = O of a relational Peano
structure are applied. To conclude the proof of h4(X)T;h4(X) ⊆ I we calculate

FT; [ST;X,ST]]
T
; [ST;X,ST]] ;F ⊆ FT;F ⊆ I,

where the right pairing [ST;X,ST]] is univalent as its components ST ;X and
ST are univalent due to the injectivity of S and the induction hypothesis P (X)
and F is univalent by assumption. ��
Lemma 5.7. The relation μ(h4) satisfies the two formulae of (22).

Proof. The first formula of (22) holds due to

z ; cT ⊆ z ; cT ∪ [ST;μ(h4), ST]] ;F = h4(μ(h4)) = μ(h4),

where the definition (23) of the mapping h4 and that μ(h4) is a fixpoint of h4

are applied. By means of the calculation

S ;μ(h4) = S ;h4(μ(h4)) μ(h4) fixpoint
= S ; (z ; cT ∪ [ST;μ(h4), ST]] ;F ) by (23)
= S ; z ; cT ∪ S ; [ST;μ(h4), ST]] ;F
= S ; [ST;μ(h4), ST]] ;F as S ; z = O
= S ;ST; [μ(h4), I]] ;F prop. right pairing (S inj.)
= [μ(h4), I]] ;F S total and injective

the second formula of (22) is verified. ��
Lemma 5.8. Assume f : N ↔ A to be univalent and total. If it satisfies the two
formulae of (22), then f = μ(h4).



Treatment of the Recursion Theorem 29

Proof. First, we calculate as follows:

h4(f) = z ; cT ∪ [ST; f, ST]] ;F by (23)
⊆ f ∪ [ST; f, ST]] ;F first formula of (22)
= f ∪ ST; [f, I]] ;F property right pairing (S injective)
= f ∪ ST;S ; f second formula of (22)
= f S univalent

This yields μ(h4) ⊆ f due to Tarski’s fixpoint theorem. From this inclusion, the
univalence of f , the totality of μ(h4) (i.e., Lemma 5.5) and implication (5) we
get μ(h4) = f . ��

6 Concluding Remarks

In this paper we have presented a simple new proof of the Dedekind recursion
theorem that is based on a relation-algebraic specification of the notions in ques-
tion and combines relation-algebraic laws and equational reasoning with Scott
induction. As a simple application and using the same means, we also have shown
the Dedekind isomorphism theorem. Finally, we have treated two cases where
the original Dedekind recursion theorem is not applicable and have presented
two variants of the relation-algebraic version of the recursion theorem. Their
proofs are variations of that of the latter theorem.

It is interesting to look at how Dedekind in [6] treats mappings with more
than one argument. From his explanations to the definition of addition and mul-
tiplication (see [6], Erklärung 135 and Erklärung 147) it becomes clear that he
implicitly uses currying and uncurrying. For example, in case of addition he does
not define a binary operation. Instead of that he fixes a natural number m and
then uses Satz 126 to define recursively a unary mapping that yields for each
natural number n the sum m + n. In Erklärung 147 he explicitly speaks of an
infinite set of new mappings on N found in such a way. Also in the proof of
Satz 4 of [9], where again addition is recursively defined, implicitly currying and
uncurrying are used. These approaches can be generalised as given below.

Consider the recursive definition

g(z) = d ∀x ∈ N : g(s(x)) = G ◦ g(x) (24)

of a mapping g : N → AB , where (N, z, s) is a Peano structure and the mappings
d : B → A and G : A → A are given. Since g is unary, the original Dedekind
recursion theorem shows that (24) has a unique solution. We have to instantiate
in (2) the set A by the set of mappings AB , the element c by the mapping d, the
mapping F by the higher-order mapping F : AB → AB with F (h) = G ◦ h, for
all h ∈ AB , and the mapping f by the mapping g. From the unique solution g of
(24) we then obtain the unique solution f of (16) via uncurrying, i.e., by defining
f : N × B → A as f(x, y) = g(x)(y), for all x ∈ N and y ∈ B, or, shorter,
by f := curry−1(g), where curry−1 is the inverse of the well-known bijective
currying-mapping curry . The definition of f and curry−1 and the formulae of
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(24) allow to show that f satisfies the two formulae of (16). That it is the only
mapping with this property can be shown by means of the definition of f and
curry , the formulae of (24) and curry−1(curry(h)) = h, for all h : N × B → A.

All proofs of Sect. 3 to Sect. 5 are very formal and its decisive parts consist of
equational reasoning using laws of relation algebra. These are ideal prerequisites
for mechanised theorem proving. Concerning mathematical theorems, in the last
years especially the proof assistant tools Coq and Isabelle/HOL have been used
in this respect. A prominent example is the formal verification of Atle Selberg’s
elementary proof of the Prime Number Theorem in Isabelle/HOL; see [1]. For
the future we also plan a mechanised verification of the proofs of this paper using
Coq or Isabelle/HOL.

Acknowledgement. I thank the referees for carefully reading the paper and for their
very valuable suggestions.

References

1. Avigad, J., Donnelly, K., Gray, D., Raff, P.: A formally verified proof of the prime
number theorem. ACM Trans. Comput. Log. 9(1:2), 1–23 (2007)

2. Berghammer, R., Zierer, H.: Relational algebraic semantics of deterministic and
nondeterministic programs. Theor. Comput. Sci. 43, 123–147 (1986)

3. Berghammer, R.: Mathematik für die Informatik, 3rd edn. Springer, Heidelberg
(2019). https://doi.org/10.1007/978-3-658-16712-7

4. Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society Colloquium
Publications, American Mathematical Society, New York (1967)

5. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cam-
bridge University Press, Cambridge (2002)

6. Dedekind, R.: Was sind und was sollen die Zahlen? Vieweg, Braunschweig (1888)
7. Kolman, V.: Zahlen. Walter de Gruyter, Berlin (2016)
8. Lamm, C.: Karl Grandjot und der Dedekindsche Rekursionssatz. Mitt. DMV 24(1),

37–45 (2016)
9. Landau, E.: Grundlagen der Analysis. Akademische Verlagsgesellschaft, Leipzig

(1930)
10. Loeckx, J., Sieber, K.: The Foundations of Program Verification, 2nd edn. Wiley,

Chichester (1987)
11. Lorenzen, P.: Die Definition durch vollständige Induktion. Monatsh. Math. Phys
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14. Schmidt, G., Ströhlein, T.: Relations and Graphs. Monographs on Theoretical

Computer Science EATCS. Springer, Heidelberg (1993). https://doi.org/10.1007/
978-3-642-77968-8

15. Tarski, A.: On the calculus of relations. J. Symb. Log. 6(3), 73–89 (1941)
16. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math.

5(2), 285–309 (1955)

https://doi.org/10.1007/978-3-658-16712-7
https://doi.org/10.1007/978-3-642-77968-8
https://doi.org/10.1007/978-3-642-77968-8


Hardness of Network Satisfaction
for Relation Algebras with Normal

Representations

Manuel Bodirsky and Simon Knäuer(B)
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Abstract. We study the computational complexity of the general net-
work satisfaction problem for a finite relation algebra A with a normal
representation B. If B contains a non-trivial equivalence relation with a
finite number of equivalence classes, then the network satisfaction prob-
lem for A is NP-hard. As a second result, we prove hardness if B has
domain size at least three and contains no non-trivial equivalence rela-
tions but a symmetric atom a with a forbidden triple (a, a, a), that is,
a �≤ a◦a. We illustrate how to apply our conditions on two small relation
algebras.

1 Introduction

Many computational problems in temporal and spatial reasoning can be for-
mulated as network satisfaction problems for a fixed finite relation alge-
bra [Dün05,RN07,BJ17]. Famous examples of finite relation algebras that have
been studied in this context are the Point Algebra, the Left Linear Point
Algebra, Allen’s Interval Algebra, RCC5, and RCC8, just to name a few;
much more material about relation algebras can be found in [HH02]. Robin
Hirsch [Hir96] asked in 1996 the Really Big Complexity Problem (RBCP): can
we classify the computational complexity of the network satisfaction problem
for every finite relation algebra? For example, the network satisfaction problem
for the Point Algebra and the Left Linear Point Algebra are polynomial-time
tractable [VKvB89,BK07], while it is NP-complete for the other relation alge-
bras mentioned above [All83,RN99]. A finite relation algebra with an undecid-
able network satisfaction problem has been found by Hirsch [Hir99].

An important notion in the theory of representability of finite relation alge-
bras are normal representations, i.e., representations that are fully universal,
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square, and homogeneous [Hir96]. The network satisfaction problem for a rela-
tion algebra with a normal representation can be seen as the constraint sat-
isfaction problem for an infinite structure B that is homogeneous and finitely
bounded (these concepts from model theory will be introduced in Sect. 3). The
network satisfaction problem is in this case in NP and a complexity dichotomy
has been conjectured [BPP14]. There is even a promising candidate condition
for the boundary between NP-completeness and containment in P; the condition
can be phrased in several equivalent ways [BKO+17,Bod18]. However, this con-
jecture has not yet been verified for the homogeneous finitely bounded structures
that arise as the normal representation of a finite relation algebra.

We present some first steps towards a solution to the RBCP for relation
algebras A with a normal representation B. Our approach is to study the auto-
morphism group Aut(B) of B and to identify properties that imply hardness.
Because of the homogeneity of B, one can translate back and forth between
properties of A and properties of Aut(B). For example, Aut(B) is primitive if
and only if A contains no equivalence relation which is different from the trivial
equivalence relations Id and 1. Specifically, we show that the network satisfaction
problem for A is NP-complete if

– Aut(B) is primitive, |B| > 2 and A has a symmetric atom a with a forbidden
triple (a, a, a), that is, a �≤ a ◦ a (Sect. 5);

– Aut(B) has a congruence with at least two but finitely many equivalence
classes (Sect. 6).

In our proof we use the so-called universal-algebraic approach which has
recently led to a full classification of the computational complexity of constraint
satisfaction problems for B if the domain of B is finite [Bul17,Zhu17]. The cen-
tral insight is that the complexity of the CSP is for finite B fully determined
by the polymorphism clone Pol(B) of B. This result extends to homogeneous
structures with finite relational signature (more generally, to ω-categorical struc-
tures [BN06]). Both of our hardness proofs come from the technique of factor-
ing Pol(B) with respect to a congruence with finitely many classes, and using
known hardness conditions from corresponding finite-domain constraint satis-
faction problems. The article is fully self-contained: we introduce the network
satisfaction problem (Sect. 2), normal representations (Sect. 3), and the universal
algebraic approach (Sect. 4).

2 The (General) Network Satisfaction Problem

Network satisfaction problems have been introduced in [LM94], capturing
well-known computational problems, e.g., for Allen’s Interval Algebra [All83];
see [Dün05] for a survey. An algebra in the sense of universal algebra is a set
together with operations on this set, each equipped with an arity n ∈ N. In this
context, operations of arity zero are viewed as constants. The type of an alge-
bra is a tuple that represents the arities of the operations. For the definitions
concerning relation algebras, we basically follow [Mad06].
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Definition 1. Let D be a set and E ⊆ D2 an equivalence relation. Let
(P(E);∪,̄ , 0, 1, Id,� , ◦) be an algebra of type (2, 1, 0, 0, 0, 1, 2) with the follow-
ing operations:

1. A ∪ B := {(x, y) | (x, y) ∈ A or (x, y) ∈ B},
2. Ā := E \ A,
3. 0 := ∅,
4. 1 := E,
5. Id := {(x, x) | x ∈ D},
6. A� := {(x, y) | (y, x) ∈ A},
7. A ◦ B := {(x, z) | ∃y ∈ D : (x, y) ∈ A and (y, z) ∈ B}.
A subalgebra of (P(E);∪,̄ , 0, 1, Id,� , ◦) is called a proper relation algebra.

A representable relation algebra is an algebra of type (2, 1, 0, 0, 0, 1, 2) that
is isomorphic (as an algebra) to a proper relation algebra. We denote algebras
by bold letters, like A; the underlying domain of an algebra A is denoted with
the regular letter A. An algebra A is finite if A is finite. We do not need the
more general definition of an (abstract) relation algebra (for a definition see for
example [Mad06]) because the network satisfaction problem for relation algebras
that are not representable is trivial. We use the language of model theory to
define representations of relation algebras; the definition is essentially the same
as the one given in [Mad06].

Definition 2. A relational structure B is called a representation of a relation
algebra A if

– B is an A-structure with domain B (i.e., each element a ∈ A is used as a
relation symbol denoting a binary relation aB on B);

– there exists an equivalence relation E ⊆ B2 such that the set of relations of
B is the domain of a subalgebra of (P(E);∪,̄ , 0, 1, Id,� , ◦);

– the map that sends a ∈ A to aB is an isomorphism between A and this
subalgebra.

Remark 3. For a relation algebra A = (A;∪,̄ , 0, 1, Id,� , ◦) the algebra
(A;∪,̄ , 0, 1) is a Boolean algebra. With respect to this algebra there is a partial
ordering on the elements of a relation algebra. We denote this with ⊆ since in
proper relation algebras this ordering is with respect to set inclusion. The min-
imal non-empty relations with respect to ⊆ are called the atomic relations or
atoms; we denote the set of atoms of A by A0.

Definition 4. Let A be a relation algebra. An A-network (V ; f) is a finite set
of nodes V together with a function f : V × V → A.

Let B be a representation of A. An A-network (V ; f) is satisfiable in B if
there exists an assignment s : V → B such that for all x, y ∈ V

(s(x), s(y)) ∈ f(x, y)B.

An A-network (V ; f) is satisfiable if there exists some representation B of A
such that (V ; f) is satisfiable in B.
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Definition 5. The (general) network satisfaction problem for a finite relation
algebra A, denoted by NSP(A), is the problem of deciding whether a given A-
network is satisfiable.

3 Normal Representations and CSPs

We recall a connection between network satisfaction problems and constraint
satisfaction problems that is presented in more detail in [BJ17,Bod18].

Definition 6 (from [Hir96]). Let A be a relation algebra. An A-network (V ; f)
is called atomic if the image of f only contains atoms and if

f(a, c) ⊆ f(a, b) ◦ f(b, c).

The last line ensures a “local consistency” of the atomic A-network with
respect to the multiplication rules in the relation algebra A. This property is in
the literature sometimes called “closedness” of an A-network [Hir97].

Definition 7 (from [Hir96]). A representation B of a relation algebra A is
called

– fully universal if every atomic A-network is satisfiable in B;
– square if 1B = B2;
– homogeneous if every isomorphism of finite substructures of B can be

extended to an automorphism;
– normal if it is fully universal, square and homogeneous.

If a relation algebra A has a normal representation B then the problem of
deciding whether an A-network is satisfiable in some representation reduces to
a question whether it is satisfiable in the concrete representation B. Such deci-
sion problems are known as constraint satisfaction problems, which are formally
defined in the following.

Definition 8. Let B be a τ -structure for a finite relational signature τ . The
constraint satisfaction problem of B is the problem of deciding for a given finite
τ -structure C whether there exists a homomorphism from C to B.

To formulate the connection between NSPs and CSPs, we have to give a
translation between networks and structures. On the one hand we may view
an A-network (V ; f) as an A-structure C with domain C := V where (a, b) ∈
f(a, b)C. On the other hand we can transform an A-structure C into an A-
network (V ; f) with V = C and by defining the network function f(x, y) for
x, y ∈ C as follows: let X be the set of all relations that hold on (x, y) in C. If
X is non-empty we define f(x, y) :=

⋃
X; otherwise f(x, y) := 1.

Proposition 9 (see [Bod18]). Let B be a normal representation of a finite
relation algebra A. Then NSP(A) and CSP(B) are the same problem (up to the
translation showed above).
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The following is an important notion in model theory and the study of
infinite-domain CSPs. Let F be a finite set of finite τ -structures. Then Forb(F)
is the class of all finite τ -structures that embed no C ∈ F . A class C of finite
τ -structures is called finitely bounded if C = Forb(F) for a finite set F . A struc-
ture B is called finitely bounded if the class of finite structures that embed into
B is finitely bounded.

Proposition 10 (see [Bod18]). Let A be a finite relation algebra with a normal
representation B. Then B is finitely bounded and CSP(B) and NSP(A) are in
NP.

4 The Universal Algebraic Approach

This section gives a short overview of the important notions and concepts for
the universal-algebraic approach to the computational complexity of CSPs.

4.1 Clones

We start with the definition of an operation clone.

Definition 11. Let B be some set. Then O(n)
B denotes the set of n-ary opera-

tions on B and OB :=
⋃

n∈N
O(n)

B . A set C ⊆ OB is called a operation clone
(on B) if it contains all projections and is closed under composition, that is, for
every f ∈ C and all g1, . . . , gk ∈ C the n-ary operation f(g1, . . . , gk) with

f(g1, . . . , gk)(x1, . . . , xn) := f(g1(x1, . . . , xn), . . . , gk(x1, . . . , xn))

is also in C . We denote the k-ary operations of C by C [k].

Definition 12. Let B be a relational structure. Then f preserves a relation R
of B if the component-wise application of f on tuples r1, . . . , rk ∈ R results
in a tuple of the relation. If f preserves all relations of B then f is called a
polymorphism of B. The set of all polymorphisms of arity k ∈ N is denoted by
Pol(k)(B) and Pol(B) :=

⋃
k∈N

Pol(k)(B) is called the polymorphism clone of B.

Polymorphisms are closed under the composition and a projection is always
a polymorphism, therefore a polymorphism clone is indeed an operation clone.

Definition 13 Let C and D be operation clones. A function μ : C → D is called
minor-preserving if it maps every operation to an operation of the same arity
and satisfies for every f ∈ Polk(C ) and all projections p1, . . . , pk ∈ Pol(n)(B)
the following identity:

μ(f(p1, . . . , pk)) = μ(f)(p1, . . . , pk).
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Operation clones C on countable sets B can be equipped with the following
complete ultrametric d. Assume that B = N. For two polymorphisms f and g of
different arity we define d(f, g) = 1. If f and g are both of arity k we have

d(f, g) := 2−min{n∈N|∃s∈{1,...,n}k:f(s) �=g(s)}.

The following is a straightforward consequence of the definition.

Lemma 14. Let D be an operation clone on B and C an operation clone on C
and let ν : D → C a map. Then ν is uniformly continuous (u.c.) if and only if

∀n ≥ 1 ∃ finite F ⊂ D∀f, g ∈ D (n) : f |F = g|F ⇒ ν(f) = ν(g).

In order to demonstrate the use of polymorphisms in the study of CSPs we
have to define primitive positive formulas. Let τ be a relational signature. A
first-order formula ϕ(x1, . . . , xn) is called primitive positive if it has the form

∃xn+1, . . . , xm(ϕ1 ∧ · · · ∧ ϕs)

where ϕ1, . . . , ϕs are atomic formulas, i.e., formulas of the form R(y1, . . . , yl)
for R ∈ τ and yi ∈ {x1, . . . , xm}, of the form y = y′ for y, y′ ∈ {x1, . . . xm},
or of the form false and true. We have the following correspondence between
polymorphisms and primitive positive formulas (or relations that are defined by
them). Note that all of the statements in the following hold in a more general
setting, but we only state them here for normal representations of finite relation
algebras.

Theorem 15 (follows from [BN06]). Let B be a normal representation of a
finite relation algebra A. Then the set of primitive positive definable relations in
B is exactly the set of relations that are preserved by Pol(B).

A special type of polymorphism plays an important role in our analysis.

Definition 16. Let f be an n-ary operation on a countable set X. Then f is
called cyclic if

∀x1, . . . xn ∈ X : f(x1, . . . , xn) = f(xn, x1 . . . , xn−1).

We write Proj for the operation clone on a two-element set that consists of
only the projections.

Theorem 17 (from [BK12,BOP18]). Let C be an operation clone on a finite
set C. If there exists no minor-preserving map C → Proj then C contains for
every prime p > |C| a p-ary cyclic operation.

Note that every map between operation clones on finite domains is uniformly
continuous.

Theorem 18 (from [BOP18]). Let B be normal representation of a finite rela-
tion algebra. If there is a uniformly continuous minor-preserving map Pol(B) →
Proj, then CSP(B) is NP-complete.
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4.2 Canonical Functions

Let B be a normal representation of a finite relation algebra A.

Definition 19. Let a1, . . . , ak ∈ A. Then (a1, . . . , ak)B denotes a binary rela-
tion on Bk such that for x, y ∈ Bk

(a1, . . . , ak)B(x, y) :⇔
∧

i∈{1,...,k}
aB

i (xi, yi).

Recall that A0 denotes the set of atoms of a representable relation algebra A.

Definition 20. Let x, y ∈ Bk. Since B is square there are unique a1, . . . , ak ∈
A0 such that (a1, . . . , ak)B(x, y). Then we call (a1, . . . , ak)B the configuration
of (x, y). If a1, . . . , ak ∈ X ⊆ A0 then (a1, . . . , ak) is called an X-configuration.

We specialise the concept of canonical functions (see, e.g., [BP16]) to our
setting.

Definition 21. Let f be a k-ary operation on B. Let X ⊆ A0 and let T be the
set of all X-configurations. Then f is called X-canonical if there exists a map
f : T → A0 such that for every (a1, . . . , ak) ∈ T and (x, y) ∈ (a1, . . . , ak)B we
have (f(x), f(y)) ∈ (

f(a1, . . . , ak)
)B. If X = A0 then f is called canonical.

An operation f : Bn → B is called conservative if for all x1, . . . , xn ∈ B

f(x1, . . . , xn) ∈ {x1, . . . , xn}.

If B is a finite structure such that every polymorphism of B is conservative, then
CSP(B) has been classified already before the proof of the Feder-Vardi conjec-
ture, and there are several proofs [Bul03,Bul14,Bar11]. The polymorphisms of
normal representations of finite relation algebras satisfy a strong property that
resembles conservativity.

Proposition 22. Let B be a normal representation. Then every f ∈ Pol(n) is
edge-conservative, that is, for all x, y ∈ Bn with configuration (a1, . . . , an)B it
holds that

(f(x), f(y)) ∈
⎛

⎝
⋃

i∈{1,...,n}
ai

⎞

⎠

B

.

Proof. By definition, b :=
⋃

i∈{1,...,n} ai is part of the signature of B. Moreover,
for every i ∈ {1, . . . , n} we have that (xi, yi) ∈ bB by the assumption on the
configuration of x and y. Then (f(x), f(y)) ∈ bB because f preserves bB. ��
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5 Finitely Many Equivalence Classes

In the following, A denotes a finite relation algebra with a normal representa-
tion B.

Theorem 23. Suppose that e ∈ A is such that eB is a non-trivial equivalence
relation with finitely many classes. Then CSP(B) is NP-complete.

Proof. We use the notation n := 1\e. Let {c1, . . . , cm} be a set of representatives
of the equivalence classes of eB. We denote the equivalence class of ci by ci. A
k-ary polymorphism f ∈ Pol(B) induces an operation f of arity k on C =
{c1, . . . , cm} in the following way:

f(d1, . . . dk) := f(d1, . . . dk)

for all d1, . . . dk ∈ {c1, . . . cm}. This definition is independent from the choice of
the representatives since the polymorphisms preserve the relation eB. We denote
the set of all operations that are induced in this way by operations from Pol(B)
by C . It is easy to see that C is an operation clone on a finite set. Moreover,
the mapping μ : Pol(B) → C defined by μ(f) := f is a minor-preserving map.
To show that μ is uniformly continuous, we use Lemma 14; it suffices to observe
that if two k-ary operations f, g ∈ Pol(B) are equal on F := {c1, . . . , cm}, then
they induce the same operation on the equivalence classes.

Suppose for contradiction that C contains a p-ary cyclic operation for every
prime p > m.

Case 1: m = 2. By assumption there exists a ternary cyclic operation f ∈ C .
Since eB is non-trivial, one of the equivalence classes of eB must have size at
least two. So we may without loss of generality assume that c1 contains at least
two elements. Let c′

1 ∈ c1 with c1 �= c′
1. We have that f(c1, c1, c2) = f(c2, c1, c1)

which means that
(
f(c1, c1, c2), f(c2, c1, c1)

) ∈ eB. (1)

On the other hand (n, Id, n)B
(
(c1, c1, c2), (c2, c1, c1)

)
. Since f is an edge conser-

vative polymorphism we have that
(
f(c1, c1, c2), f(c2, c1, c1)

) ∈ (n ∪ Id)B. (2)

Combining (1) and (2) we obtain that

f(c1, c1, c2) = f(c2, c1, c1). (3)

Similarly, f(c2, c1, c1) = f(c1, c2, c1). Since f preserves the equiva-
lence relation eB we also have

(
f(c1, c2, c1), f(c′

1, c2, c1)
) ∈ eB. But then

(f(c2, c1, c1), f(c′
1, c2, c1)) ∈ eB holds. Also note that (n, n, Id)B

(
(c2, c1, c1),

(c′
1, c2, c1)

)
implies that

(
f(c2, c1, c1), f(c′

1, c2, c1)
) ∈ (n ∪ Id)B. These two

facts together imply f(c2, c1, c1) = f(c′
1, c2, c1). By (3) and the transitivity
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of equality we get f(c1, c1, c2) = f(c′
1, c2, c1). But this is impossible because

(e, n, n)B
(
(c1, c1, c2), (c′

1, c2, c1)
)

implies that f(c1, c1, c2) �= f(c′
1, c2, c1).

Case 2: m > 2. Let f be a p-ary cyclic operation for some prime p > m.
Consider the representatives c1, c2 and c3. By the cyclicity of f we have

f(c1, c2, . . . , c1, c2, c3) = f(c3, c1, c2 . . . , c1, c2)

and therefore
(
f(c1, c2, . . . , c1, c2, c3), f(c3, c1, c2 . . . , c1, c2)

) ∈ eB. (4)

On the other hand,

(n, n, n, . . . , n, n)B
(
(c1, c2, . . . , c1, c2, c3), (c3, c1, c2 . . . , c1, c2)

)

and since f preserves nB we get that
(
f(c1, c2, . . . , c1, c2, c3), f(c3, c1, c2 . . . , c1, c2)

) ∈ nB,

contradicting (4).
We showed that there exists a prime p > m such that C does not contain a

p-ary cyclic polymorphism and therefore Theorem 17 implies the existence of a
(uniformly continuous) minor-preserving map ν : C → Proj. Since the composi-
tion of uniformly continuous minor-preserving maps is again uniformly continu-
ous and minor-preserving, there exists a uniformly continuous minor-preserving
map ν ◦ μ : Pol(B) → Proj. This map implies the NP-hardness of CSP(B) by
Theorem 18. ��

6 No Non-trivial Equivalence Relations

In this section A denotes a finite relation algebra with a normal representation
B with |B| > 2.

Definition 24. The automorphism group Aut(C) of a relational structure C is
called primitive if Aut(C) does not preserve a non-trivial equivalence relation,
i.e., the only equivalence relations that are preserved by Aut(C) are Id and C2.

Proposition 25. Let a be an atom of A. If Aut(B) is primitive then a ⊆ Id
implies a = Id.

Proof. If a � Id then
c := Id∪(a ◦ 1 ◦ a)

would be such that cB is a non-trivial equivalence relation. ��
Proposition 26. Let a be a symmetric atom of A with a ∩ Id = 0. If Aut(B)
is primitive then aB ◦ aB �= Id.
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Proof. Assume for contradiction aB ◦ aB = IdB. This implies (Id ∪a)B ◦
(Id ∪a)B ⊂ (Id ∪a)B and therefore (Id∪a)B is an equivalence relation. Since
B is primitive (Id∪a)B = B2. By assumption B contains at least 3 elements.
These elements are now all connected by the atomic relation aB. This is a con-
tradiction to our assumption aB ◦ aB = IdB. ��
Higman’s lemma states that a permutation group G on a set B is primitive if and
only if for every two distinct elements x, y ∈ B the undirected graph with vertex
set B and edge set

{{α(x), α(y)} | α ∈ G
}

is connected (see, e.g., [Cam99]). We
need the following variant of this result for Aut(B); we also present its proof
since we are unaware of any reference in the literature. If a ∈ A then a sequence
(b0, . . . , bn) ∈ Bn+1 is called an a-walk (of length n) if (bi, bi+1) ∈ aB for every
i ∈ {0, . . . , n − 1} (we count the number of traversed edges rather than the
number of vertices when defining the length).

Lemma 27. Let a ∈ A be a symmetric atom of A with a ∩ Id = 0 and suppose
that Aut(B) is primitive. Then there exists an aB-walk of even length between
any x, y ∈ B. Moreover, there exists k ∈ N such that for all x, y ∈ B there exists
an aB-walk of length 2k between x and y.

Proof. If R is a binary relation then Rk = R◦R◦· · ·◦R denotes the k-th relational
power of R. The sequence of binary relations Ln := IdB ∪⋃n

k=1(a
B)2k is non-

decreasing by definition and terminates because all binary relations are unions
of at most finitely many atoms. Therefore, there exists k ∈ N such for all n ≥ k
we have Ln = Lk. Note that Lk is an equivalence relation, namely the relation
“there exists an aB-walk of even length between x and y”. Since B is primitive
Lk must be trivial. If Lk = B2 then there exists an aB-walk of length 2k between
any two x, y ∈ B and we are done. Otherwise,

Lk = {(x, x) | x ∈ B} = IdB .

Since a is symmetric aB ◦ aB �= 0 and aB ◦ aB contains therefore an atom.
But then aB ◦ aB ⊆ Lk implies by Proposition 25 aB ◦ aB = Lk. This is a
contradiction to Proposition 26. ��
Lemma 28. Let a ∈ A be a symmetric atom of A such that Aut(B) is primitive
and (a, a, a) is forbidden. Then all polymorphisms of B are {Id, a}-canonical.

In the proof, we need the following notation. Let a1, . . . , ak ∈ A be such that
a1 = . . . = aj and aj+1 = . . . = ak. Instead of writing (a1, . . . , an)B we use the
shortcut (a1|jaj+1)B.

Proof (of Lemma 28). The following ternary relation R on B is primitive positive
definable in B.

R :=
{
(x1, x2, x3) ∈ B3 | (a ∪ Id)B(x1, x2) ∧ (a ∪ Id)B(x2, x3) ∧ aB(x1, x3)

}

Observe that c ∈ R if and only if aB(c1, c2) ∧ IdB(c2, c3) or IdB(c1, c2) ∧
aB(c2, c3).
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Let f be a polymorphism of B of arity n. Let x, y, u, v ∈ Bn be arbitrary
such that (x, y) and (u, v) have the same {Id, a}-configuration. Without loss of
generality we may assume that (a|j Id)B(x, y) and (a|j Id)B(u, v). Now consider
p, q ∈ Bn such that (Id |ja)B(p, q) holds.

Note that by the edge-conservativeness of f the following holds:

(f(x), f(y)) ∈ (a ∪ Id)B, (f(u), f(v)) ∈ (a ∪ Id)B and (f(p), f(q)) ∈ (a ∪ Id)B.

By Lemma 27 there exists a k ∈ N such that for every i ∈ {1, . . . , n} there
exists an aB-walk (s0i , . . . , s

k
i ) with s0i = yi and sk

i = pi. Now consider the
following walk in Bn:

(a|j Id)B(x, y)

(Id |ja)B
(
y, (s01, . . . s

0
j , s

1
j+1, . . . s

1
n)

)

(a|j Id)B
(
(s01, . . . s

0
j , s

1
j+1, . . . s

1
n), (s11, . . . s

1
j , s

1
j+1, . . . s

1
n)

)

...

(a|j Id)B((si
1, . . . s

i
j , s

i+1
j+1, . . . s

i+1
n ), (si+1

1 , . . . si+1
j , si+1

j+1, . . . s
i+1
n ))

(Id |ja)B((si+1
1 , . . . si+1

j , si+1
j+1, . . . s

i+1
n ), (si+1

1 , . . . si+1
j , si+2

j+1, . . . s
i+2
n ))

...

(a|j Id)B((sk−1
1 , . . . , sk−1

j , sk
j+1, . . . , s

k
n), p)

(Id |ja)B(p, q)

Every three consecutive elements on this walk are component wise in the
relation R. Since R is primitive positive definable the polymorphism f preserves
R by Theorem 15. This means that f maps this walk on a walk where the atomic
relations are an alternating sequence of aB and IdB, which implies

(f(x), f(y)) ∈ aB ⇔ (f(p), f(q)) ∈ IdB .

If we repeat the same argument with a walk from q to v we get:

(f(p), f(q)) ∈ aB ⇔ (f(u), f(v)) ∈ IdB .

Combining these two equivalences gives us

(f(x), f(y)) ∈ aB ⇔ (f(u), f(v)) ∈ aB.

Since the tuples x, y, u, v ∈ Bn were arbitrary this shows that f is {Id, a}-
canonical. ��
Theorem 29. Let Aut(B) be primitive and let a be a symmetric atom of A
such that (a, a, a) is forbidden. Then CSP(B) is NP-hard.
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Fig. 1. Multiplication tables of relation algebras #13 (left) and #17 (right).

Proof. By Lemma 28 we know that all polymorphisms of B are {a, Id}-canonical.
This means that every f ∈ Pol(B) induces an operation f of the same arity on
the set {a, Id}. Let C2 be the set of induced operations. Note that C2 is an
operation clone on a Boolean domain. The mapping μ : Pol(B) → C2 defined by
μ(f) := f is a uniformly continuous minor-preserving map.

Assume for contradiction that there exists a ternary cyclic polymorphism s
in C2. Let x, y, z ∈ B3 be such that

(a, a, Id)B(x, y),

(Id, a, a)B(y, z),

and (a, Id, a)B(x, z).

By the cyclicity of the operation s and the edge-conservativeness of s we have
that either

(s(x), s(y)) ∈ aB, (s(y), s(z)) ∈ aB and (s(x), s(z)) ∈ aB

or
(s(x), s(y)) ∈ IdB, (s(y), s(z)) ∈ IdB and (s(x), s(z)) ∈ IdB .

Since (a, a, a) is forbidden, the second case holds. Note that A must have an
atom b �= Id such that the triple (a, a, b) is allowed, because otherwise a would
be an equivalence relation. Now consider u, v, w ∈ B3 such that

(a, a, Id)B(u, v),

(Id, a, a)B(v, w),

and (a, b, a)B(u,w).

Since s is {a, Id}-canonical and with the observation from before we have

(s(u), s(v)) ∈ IdB and (s(v), s(w)) ∈ IdB .

Now the transitivity of equality contradicts (s(u), s(w)) ∈ (a ∪ b)B.
We conclude that C2 does not contain a ternary cyclic operation. Since the

domain of C2 has size two, Theorem 17 implies the existence of a u.c. minor-
preserving map ν : C2 → Proj. The composition ν ◦ μ : Pol(B) → Proj is
also a u.c. minor-preserving map and therefore by Theorem 18 the CSP(B) is
NP-hard. ��
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7 Examples

Andréka and Maddux classified small relation algebras, i.e., finite relation alge-
bras with at most 3 atoms [AM94]. We consider the complexity of the network
satisfaction problem of two of them, namely the relation algebras #13 and #17
(we use the enumeration from [AM94]). Both relation algebras have normal rep-
resentations (see below) and fall into the scope of our hardness criteria. Cristani
and Hirsch [CH04] classified the complexities of the network satisfaction prob-
lems for small relation algebras, but due to a mistake the algebras #13 and #17
were left open.

Example 1 (Relation Algebra #13). The relation algebra #13 is given by the
multiplication table in Fig. 1. This finite relation algebra has a normal represen-
tation B defined as follows. Let V1 and V2 be countable, disjoint sets. We set
B := V1 ∪ V2 and define the following atomic relations:

IdB := {(x, x) ∈ B2},

aB := {(x, y) ∈ B2 \ IdB | (x ∈ V1 ∧ y ∈ V1) ∨ (x ∈ V2 ∧ y ∈ V2)},

bB := {(x, y) ∈ B2 \ IdB | (x ∈ V1 ∧ y ∈ V2) ∨ (x ∈ V2 ∧ y ∈ V1)}.

It is easy to check that this structure is a square representation for #13. More-
over, this structure is fully universal for #13 and homogeneous, and therefore a
normal representation.

Note that the relation (Id∪ a)B is an equivalence relation where V1 and
V2 are the two equivalence classes. Therefore we get by Theorem 23 that the
(general) network satisfaction problem for the relation algebra #13 is NP-hard.
We mention that this result can also be deduced from the results in [BMPP19].

Example 2 (Relation Algebra #17). The relation algebra #17 is given by the
multiplication table in Fig. 1. Let N = (V ;EN) be the countable, homogeneous,
universal triangle-free, undirected graph (see [Hod97]), also called a Henson
graph. We use this Henson graph to obtain a square representation B with
domain V for the relation algebra #17 as follows:

IdB := {(x, x) ∈ V 2},

aB := {(x, y) ∈ V 2 | (x, y) ∈ EN},

bB := {(x, y) ∈ B2 \ IdB | (x, y) �∈ EN}.

This structure is homogeneous and fully universal since N is homogeneous and
embeds every triangle free graph. It is easy to see that there exists no non-trivial
equivalence relation in this relation algebra. For the atom a the triangle (a, a, a)
is forbidden, which means we can apply Theorem 29 and get NP-hardness for
the (general) network satisfaction problem for the relation algebra #17. Also in
this case, the hardness result can also be deduced from the results in [BMPP19].
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8 Conclusion and Future Work

To the best of our knowledge the computational complexity of the (general)
network satisfaction problem was previously only known for a small number of
isolated finite relation algebras, for example the point algebra, Allens interval
algebra, or the 18 small relation algebras from [AM94]. Both of our criteria,
Theorems 23 and 29, show the NP-hardness for relatively large classes of finite
relation algebras. In Sect. 7 we applied these results to settle the complexity
status of two problems that were left open in [CH04].

To obtain our general hardness conditions we used the universal algebraic
approach for studying the complexity of constraint satisfaction problems. This
approach will hopefully lead to a solution of Hirsch’s RBCP for all finite relation
algebras A with a normal representation B. It is also relatively easy to prove that
the network satisfaction problem for A is NP-complete if B has an equivalence
relation with an equivalence class of finite size larger than two. Hence, the next
steps that have to be taken with this approach are the following.

– Classify the complexity of the network satisfaction problem for finite relation
algebras A where the normal representation has a primitive automorphism
group.

– Classify the complexity of the network satisfaction problem for relation alge-
bras that have equivalence relations with infinitely many classes of size two.

– Classify the complexity of the network satisfaction problem for relation alge-
bras that have equivalence relations with infinitely many infinite classes.
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Abstract. We present an algebra for the classical database operators.
Contrary to most approaches we use (inner) join and projection as the
basic operators. Theta joins result by representing theta as a database
table itself and defining theta-join as a join with that table. The same
technique works for selection. With this, (point-free) proofs of the stan-
dard optimisation laws become very simple and uniform. The app-
roach also applies to proving join/projection laws for preference queries.
Extending the earlier approach of [16], we replace disjointness assump-
tions on the table types by suitable consistency conditions. Selected
results have been machine-verified using the CALCCHECK tool.

1 Introduction

The paper deals with an algebra for the classical operators of relational algebra
as used in databases. While in most approaches the join operator is defined
as a combination of direct product, selection and projection, we take a different
approach, using (inner) join and projection as the basic operators. Theta joins are
incorporated by simply representing (mathematically) theta as a database table
itself and defining theta-join as a join with that table. The same can be done with
selection by representing the corresponding condition as the table of all tuples
that satisfy it. With this, (point-free) proofs of the standard laws become very
simple and uniform. The approach is also suitable for proving join/projection
laws for preference queries.

The paper builds upon [16]. While many of the laws there required disjoint-
ness of the types of the tables involved, we are here more general and replace
disjointness of types by suitable consistency conditions. Technically, we extend
the techniques there by deploying variants of the split and glue operators intro-
duced in [3,4]. This allows point-free formulations of the new conditions and
corresponding point-free proofs of the ensuing laws. Selected results have been
machine-verified using the CALCCHECK tool [9,10].

2 Preliminaries

Our approach is based on the algebra of binary relations, see e.g. [17]. A binary
relation between sets M and N is a subset R ⊆ M × N . We denote the empty
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relation ∅ by 0 and the universal relation M×N by TM×N , omitting the subscript
when it is clear from the context. Domain, codomain and relational composition ;
are defined as usual, the latter binding stronger than union and intersection. The
converse of R is R� ⊆ N × M , given by R� = {(y, x) | (x, y) ∈ R}.

If M = N then R is called homogeneous. In this case there is the identity
relation 1M = {(x, x) |x ∈ M}, which is neutral w.r.t. ; . If M is clear from the
context we omit the subscript M .

A test over M is a sub-identity P ⊆ 1 which encodes the subset {x | (x, x) ∈
P}. The negation ¬P of test P is the complement of P relative to 1, i.e., 1 − P ,
where − is set difference. It encodes the complement of the set encoded by P .
When convenient we do not distinguish between tests and the encoded sets.

Domain and codomain can be encoded as the tests

�R = R ; TN×M ∩ 1M , R� = TM×N ; R ∩ 1N . (1)

We list a few properties of domain; symmetric ones hold for the codomain
operator which, however, we do not use in this paper. For proofs see [6].

Lemma 2.1. Consider relations R,S and test P .
1. �(R∪S) = �R∪�S. Hence � is isotone, i.e., monotonically increasing, w.r.t. ⊆.
2. �R ; R = R and ¬�R ; R = 0.
3. �P = P . (stability)
4. �R = 0 ⇔ R = 0. (full strictness)
5. �(P ; R) = P ; �R. (import/export)
6. �(R ; S) = �(R ; �S). (locality)
7. R ; P ∩ S = (R ∩ S) ; P = R ∩ S ; P . (restriction)

3 Typed Tuples

In this section we present the formal model of database objects as typed tuples.
The types represent attributes, i.e., columns of a database relation. Conceptually
and notationally, we largely base on [11].

Definition 3.1. Let A be a set of attribute names and (DA)A∈A be a family of
nonempty sets, where for A ∈ A the set DA is called the domain of A.
1. The set U =df

⋃

A∈A
DA is called the universe.

2. A type T is a subset T ⊆ A.
3. A T -tuple is a mapping t : T → U where ∀A ∈ T : t(A) ∈ DA. For T = ∅ the

only T -tuple is the empty mapping ∅.
4. The domain DT for a type T is the set of all T -tuples, i.e., the Cartesian

product DT = Π
A∈T

DA.

5. For a T -tuple t and a sub-type T ′ ⊆ T we define the projection πT ′(t) to T ′

as the restriction of the mapping t to T ′. By this π∅(t) = ∅. Projections π are
not to be confused with the Cartesian product operator Π .

6. A set of tuples of the same type is called a table and is relationally encoded
as a test.
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7. For a tuple t and a table P of T -tuples we introduce the abbreviations

t ::T ⇔df t ∈ DT , P ::T ⇔df P ⊆ DT .

Definition 3.2. Two tuples ti ::Ti (i = 1, 2) are called matching, in signs t1#t2,
iff πT (t1) = πT (t2), where T =df T1∩T2. In this case we define t1�� t2 =df t1∪t2.
The join of nonmatching tuples is undefined. If T = ∅, i.e., the types Ti are
disjoint, then the ti are trivially matching. The empty tuple ∅ matches every
tuple and hence is the neutral element of ��.

The join of two types T1, T2 is the union of their attributes, i.e., T1��T2 =df

T1 ∪ T2. For tables Pi ::Ti (i = 1, 2), the join��, binding stronger than union and
intersection, is defined as the set of all matching combinations of Pi-tuples:

P1��P2 =df {t ::T1��T2 | πTi
(t) ∈ Pi (i = 1, 2)}

= {t1�� t2 | ti ∈ Pi (i = 1, 2), t1 # t2}.

When we want to avoid numerical indices we use the convention that table P
has type TP , etc. The table {∅} is the neutral element of �� on tables.

Lemma 3.3. DT1��T2 = DT1 ��DT2 . Hence T2 ⊆ T1 ⇒ DT1 ��DT2 = DT1 .

Proof. Immediate from the definition of type join and Definition 3.1.4. ��
Lemma 3.4. Consider tables P ::TP , Q ::TQ and an arbitrary type T ′.
1. Every tuple is characterised by its projections: for t ∈ DTP ��TQ

we have t =
πTP

(t)��πTQ
(t). For t, u ∈ DTP ��TQ

this entails t = u ⇔ πTP
(t) = πTP

(u) ∧
πTQ

(t) = πTQ
(u).

2. Projection sub-distributes over join: πT ′(P ��Q) ⊆ πT ′(P )��πT ′(Q).
3. If TP ∩ TQ = ∅ then this strengthens to an equality.

Proof.
1. Straightforward calculation.
2. By distributivity of restriction over union, for any two matching tuples t1, t2

(not necessarily from P,Q) we have πT ′(t1 �� t2) = πT ′(t1) �� πT ′(t2). Hence
if we take matching t1 ∈ P, t2 ∈ Q, then t =df πT ′(t1 �� t2) ∈ πT ′(P �� Q).
Because πT ′(t1�� t2) = πT ′(t1)��πT ′(t2), also t ∈ πT ′(P )��πT ′(Q).

3. t ∈ πT ′(P )��πT ′(Q)
⇔ ∃u, v : u ∈ P ∧ v ∈ Q ∧ t = πT ′(u)��πT ′(v) {[ definition of join ]}
⇒ ∃u, v : u ∈ P ∧ v ∈ Q ∧ t = πT ′(u��v) {[ u # v by TP ∩ TQ = ∅ ]}
⇒ t ∈ πT ′(P ��Q) {[ definitions ]} �

Lemma 3.5. For Pi ::Ti (i = 1, 2) with disjoint Ti, i.e., with T1 ∩ T2 = ∅, the
join P1��P2 is isomorphic to the Cartesian product of P1 and P2.

Proof. For t ∈ P1 �� P2, the conditions πTi
(t) ∈ Pi(i = 1, 2) are independent.

Hence all elements of P1 can be joined with all elements of P2. Thus, by definition,

t ∈ P1��P2 ⇔ πT1(t) ∈ P1 ∧ πT2(t) ∈ P2 ⇔ (πT1(t), πT2(t)) ∈ P1 × P2. �
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Lemma 3.6 [16]. The following laws hold:
1. �� is associative, commutative and distributes over ∪.
2. �� is isotone in both arguments.
3. Assume Pi, Qi ::Ti (i = 1, 2). Then the following interchange law holds:

(P1 ∩ Q1)��(P2 ∩ Q2) = (P1��P2) ∩ (Q1 ��Q2).

4. For P,Q ::T we have P ��Q = P ∩ Q. In particular, P ��P = P .

4 The θ-Join

For simplicity we restrict ourselves to θ-joins with binary relations θ. Assume
tables P ::TP , Q ::TQ with TP ∩ TQ = ∅ as well as A ∈ TP , B ∈ TQ and a
binary relation θ ⊆ DA × DB . Note that the assumptions imply A �= B1. We
want to model an expression that in standard database theory would be written
“P ��θ(P.A,Q.B) Q”. The corresponding table contains exactly those tuples t of
table P ��Q in which the values t(A) ∈ P.A and t(B) ∈ Q.B (remember that t
is a function from attribute names to values) are in relation θ.

The idea is to consider θ mathematically again as table of type A��B. Then
the above expression can simply be represented as P ��θ��Q.

Example 4.1. Here is a simple database of persons and ages with > as θ.

P : Name1 Age1
A 50
B 55
C 60

<: Age1 Age2
50 55
50 60
55 60

Q: Age2 Name2
50 E
55 F
55 G

P ��Q: Name1 Age1 Age2 Name2
A 50 50 E
A 50 55 F
A 50 55 G
B 55 50 E
B 55 55 F
B 55 55 G
C 60 50 E
C 60 55 F
C 60 55 G

P �� <: Name1 Age1 Age2
A 50 55
A 50 60
B 55 60

< ��Q: Age1 Age2 Name2
50 55 F
50 55 G

P �� < ��Q: Name1 Age1 Age2 Name2
A 50 55 F
A 50 55 G ��

1 With this we follow the SQL standard. Note, however, that P �� θ �� Q is defined
even if this disjointness condition does not hold. It is not even necessary to require
A �= B, although having A = B is not interesting.
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We use our view of the θ-join for algebraic proofs of two standard optimisation
rules for projections applied to joins.

Theorem 4.2.
1. If Q ::L ⊆ TP then πL(P ��Q) = πL(P )��Q.
2. Assume TP ∩ TQ = ∅ and θ ::L for some L ⊆ TP ∪ TQ. This means that θ is

to provide the “glue” between the type-disjoint P and Q. Set LP =df TP ∩ L
and LQ =df TQ ∩ L. Then we have the transformation rule

πL(P ��θ��Q) = πLP
(P )��θ��πLQ

(Q) (push projection over join).

Proof.
1. (⊆) Immediate from Lemma 3.4.2 and πL(Q) = Q by Q ::L.

(⊇)

πL(P )
= πL(P ��DP ) {[ definition of DP ]}
= πL(P ��DP ��DL) {[ assumption L ⊆ TP , definition of DL ]}
= πL(P ��DL) {[ definition of DP ]}
= πL(P ��(Q ∪ Q)) {[ Boolean algebra, setting

X =df DL − X for X ::L ]}
= πL(P ��Q) ∪ πL(P ��Q)) {[ distributivity of join and projection ]}
⊆ πL(P ��Q) ∪ (πL(P )��πL(Q)) {[ Lemma 3.4.2 ]}
= πL(P ��Q) ∪ (πL(P ) ∩ πL(Q)) {[ Lemma 3.6.4 ]}
⊆ πL(P ��Q) ∪ πL(Q) {[ Boolean algebra ]}
= πL(P ��Q) ∪ Q {[ πL(Q) = Q by Q ::L ]}

By Lemma 3.6.4 and shunting we obtain from this πL(P )��Q = πL(P )∩Q ⊆
πL(P ��Q).

2. πL(P ��θ��Q)
= πL(P ��Q��θ) {[ associativity and commutativity of �� ]}
= πL(P ��Q)��θ {[ Part 1 ]}
= πL(P )��πL(Q)��θ {[ assumption TP ∩ TQ = ∅ with Lemma 3.4.3 ]}
= πL(P )��θ��πL(Q) {[ associativity and commutativity of �� ]}
= πLP

(P )��θ��πLQ
(Q) {[ P ::TP , Q ::TQ, definition of projection ]} �

5 Selection as Join

Since the representation of the θ-join as a join with θ has proved useful, we will
now treat selection σC(P ) for table P and condition C analogously. A condition,
i.e., a predicate on tuples, is simply represented as a subset C ⊆ DL for some
type L, which means C ::L. Conjunction and disjunction of C,C ′ ::L are then
represented by C ��C ′ and C∪C ′, resp. (see Lemma 3.6.4). For P ::T and L ⊆ T ,
we can now just set σC(P ) =df P ��C.

Lemma 5.1. Assume again P ::T .
1. Selections commute, i.e., σC(σC′(P )) = σC′(σC(P )).
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2. Selections can be combined, i.e., σC(σC′(P )) = σC��C′(P ).
3. If C uses only attributes from L ⊆ T , i.e., C ⊆ DL, then πL(σC(P )) =

σC(πL(P )).

Proof.
1. Immediate from associativity/commutativity of ��.
2. Ditto.
3. By definitions, Theorem 4.2.1 and definitions again:

πL(σC(P )) = πL(P ��C) = πL(P )��C = σC(πL(P )). �

6 Inverse Image and Maximal Elements

The tools developed in the preceding sections will now be applied to a subfield
of database theory, namely to preference queries. They serve to remedy a well
known problem for queries with hard constraints, by which the objects sought in
the database are clearly and sharply characterised. If there are no exact matches
the empty result set is returned, which is very frustrating for users.

Instead, over the last decade queries with soft constraints have been studied.
These arise from a formalisation of the user’s preferences in the form of partial
strict orders [12,13]. Instead of returning an empty result set, one can then
present the user with the maximal or “best” tuples w.r.t. her preference order.

We now show how to express the maximality operator algebraically and then
prove a sample optimisation rule for it. The idea has already been described
thoroughly in the predecessor paper [16]; hence we only give a brief presentation
of it. After that we develop substantially new laws for it. The main ingredient
is an inverse image operator on relations.

Definition 6.1. For a type T a T -relation is a homogeneous binary relation R
on DT ; we abbreviate this by R ::T 2. In analogy to the notation in Sect. 2 we
also write TT instead of DT ×DT . For a relation R ::T 2 the image of a test P ::T
under R is obtained using the forward diamond operator as

||R〉〉P =df {(x, x) | ∃y ∈ P : xR y} = �(R ; P ).

Two immediate consequences of the definition and Lemma 2.1 are

||0〉〉P = 0, ||T〉〉P =
{

DT if P �= 0,
0 otherwise. (2)

The inverse image of a set P under a relation R consists of the elements
that have an R-successor in P , i.e., are R-related to some object in P . Assume
that R is a strict order (irreflexive and transitive), which is the case in our
application domain of preferences. Then the inverse image of P consists of the
tuples dominated by some tuple in P . This allows the following definition.
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Definition 6.2. For a relation R ::T 2 and a set P ::T the R-maximal objects
of P form the relative complement of the set of R-dominated objects, viz.

R � P =df P ∩ ¬||R〉〉P.

The mnemonic behind the � symbol is that in an order diagram for a prefer-
ence relation R the maximal objects within P are the peaks in P ; rotating the
diagram clockwise by 90◦ puts the peaks to the right. Hence R � P might also
be read as “R-peaks in P”. From (2) we obtain

0 � P = P, T � P = 0. (3)

A central ingredient for the preference approach is a possibility for defining
complex preference relations out of simpler ones. An example would be “I prefer
cars that are green and, equally important, have low fuel consumption”. The
following sections deal with such construction mechanisms, notably with the
join of relations.

7 The Join of Relations

Definition 7.1. The join R1��R2 :: (T1��T2)2 of relations Ri ::T 2
i (i = 1, 2) is

t (R1��R2)u ⇔df πT1(t)R1 πT1(u) ∧ πT2(t)R2 πT2(u).

Example 7.2. We model the above simple database of cars. Consider the set
A = {Col,Fuel} of attribute names with DCol = {black, blue, green, red,white}
and DFuel = {4.0, 4.1, . . . , 9.9, 10.0}. The comparison relation RCol is given by
the Hasse diagram

green
�� ��

blue red white

black

�� ���

while as RFuel we choose > . A user uttering the preference RCol does not like
black at all, likes green best and otherwise is indifferent about blue, red,white.
Hence s (RCol �� RFuel) t iff the colour of t is closer to green than that of s and
the fuel value of t is less than that of s. ��
Definition 7.3. Based on join we can define the two standard preference con-
structors ⊗ of Pareto and & of prioritised composition as

R ⊗ S =df (R��(1 ∪ S)) ∪ ((1 ∪ R)��S),
R&S =df (R��T) ∪ (1��S).

Pareto composition corresponds to the product order on pairs, with two varia-
tions: it does not consider pairs, but tuples from which parts are extracted by
the projections involved in ��; moreover, it is more liberal than the product of
strict orders, since it also admits equality in one part of the tuples as long as
there is a strict order relation between the other parts. Prioritised composition
corresponds to the lexicographic order on pairs.
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We seek a set of algebraic laws that allow proving optimisation rules similar
to “push projection over join” from Theorem4.2.2. As an example consider tables
P ::TP , Q ::TQ and a preference relation R ::T 2

P . Then we would like to show

(R��TQ) � (P ��Q) = (R � P )��Q (4)

under suitable side conditions on P,Q,R. The preference R �� TQ, which also
occurs as a part of the & constructor, expresses that the user does not care
about the attributes in TQ and is only interested in the TP part. Therefore the
preference query can be pushed to that part as shown on the right hand side.
This may speed up the query evaluation considerably.

To achieve the mentioned algebraic laws we need to investigate the interaction
between the �� and � operators involved. Of particular importance are so-called
interchange laws: the above rule can, by (3), be written as

(R��TQ) � (P ��Q) = (R � P )��(0 � Q);

a maximum between joins is equal to a join between maxima2.

8 Split, Glue and Pair Relations

To formulate and prove rules about the join of relations in an algebraic style
we bring the pointwise definition into a more manageable point-free form. For
this we deploy techniques from [3,4]. First we introduce relations for connecting
tuples and pairs of tuples.

Definition 8.1. For types T1, T2 we define split � and its converse glue � with
the functionalities

T1��T2
�T1×T2

⊆ DT1��T2 × (DT1 × DT2),

T1× T2
�T1��T2

⊆ (DT1 × DT2) × DT1��T2 .

Again we suppress the type indices for readability. The behaviour is given by

t � (t1, t2) ⇔df (t1, t2) � t ⇔df t1 = πT1(t) ∧ t2 = πT2(t).

Hence � relates every tuple to all its possible splits into matching pairs of
subtuples. The definition is stronger than the corresponding one in [3,4], and
this results in more useful laws which are detailed below: [3,4] allow arbitrary
splittings on the left and right of � ; �, whereas ours are “synchronised” by the
projections so that the same splits are used on the left and right. By the difference
in approach the forward interchange rule of Theorem9.2 does not hold in their
setting. For the purposes of database algebra, however, the stronger definition
is quite adequate.

While split and glue tell us how to decompose or recompose tuples or tuple
parts, we also want to relate corresponding parts “in parallel”.
2 We use this example only for motivation; strictly speaking an interchange law needs

to have the same variables on both sides.
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Definition 8.2. A pair relation over types T1, T2 is a subset of (DT1 × DT2) ×
(DT1 ×DT2). The parallel product R1×R2 of relations Ri ::T 2

i is the pair relation

(t1, t2) (R1 × R2) (u1, u2) ⇔df t1 R1 u1 ∧ t2 R2 u2.

By 1T1×T2 we denote the identity pair relation. When the Ti are clear from the
context we omit the type index.

The parallel product is a standard construct in relation algebra; it occurs, for
instance, in [2] and [7] and is also called a Kronecker product [8]. With its help
we can express the lifting of join to relations in Definition 7.1 more compactly.

Lemma 8.3. The join of relations Ri ::T 2
i can be expressed point-free as

R1��R2 =df � ; (R1 × R2) ; � .

The proof is immediate from the definitions. From this relational represen-
tation it follows that join is strict w.r.t. 0 and distributes through union in both
arguments. We note that for relational tests P,Q the lifting P �� Q is a test in
the algebra of relations. Details are given in Lemma10.5.

Next to this, we also use the concept of tests for pair relations. These are
again sub-identities, i.e., subsets of 1T1×T2 ; as usual they are idempotent and
commute under ; (e.g. [5]). The parallel product of tests is a test in the set of
pair relations.

Definition 8.4. Another test in the set of pair relations is the lifted matching
check T1©# T2 : for tuples ti, ui ::Ti

(t1, t2) T1©# T2 (u1, u2) ⇔df t1 = u1 ∧ t2 = u2 ∧ t1 # t2.

To ease notation, we suppress the type indices.

We now present the essential laws for all these constructs.

Lemma 8.5.
1. � = �

� .
2. � ; � = ©# and hence � ; � ⊆ 1.
3. � ; � = 1.
4. ©# ; � = � and symmetrically � ; ©# = �.
5. � and � are deterministic and injective; in addition � is total and � is

surjective.
6. � ; C ; � ⊆ R ⇔ ©# ; C ; ©# ⊆ � ; R ; �. In particular,

� ; C ; � ⊆ � ; D ; � ⇔ ©# ; C ; ©# ⊆ ©# ; D ; ©# .
7. � ;T ; � = T.
8. � ; C ; ©# ; T ; � = � ; C ; � ;T.

Proof. The proofs of Parts 1—3 are straightforward pointwise calculations.
4. By 2 and 3, ©# ; � = � ; � ; � = � ; 1 = �.
5. These are standard relation-algebraic consequences of Parts 1—3.
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6. By isotony, Part 2, isotony and Parts 4 and 3,

� ; C ; � ⊆ R ⇒ � ;� ; C ; � ;� ⊆ � ; R ; �
⇔ ©# ; C ; ©# ⊆ � ; R ; � ⇒ � ; ©# ; C ; ©# ; � ⊆ � ;� ; R ; � ;�
⇔ � ; C ; � ⊆ R.

For R = � ;D ; � the second claim results again by Part 2.
7. This is direct by totality of � and surjectivity of � (Part 5).
8. By Parts 2 and 7, � ; C ; ©# ; T ; � = � ; C ; � ;� ;T ; � = � ; C ; � ;T. ��
Lemma 8.6
1. 1T1×T2 = 1T1 × 1T2 .
2. TT1 × TT2 is the universal pair relation.
3. The operators × and ∩ satisfy an equational interchange law:

(R1 ∩ R2) × (S1 ∩ S2) = (R1 × S1) ∩ (R2 × S2).

4. The operators × and ; satisfy an equational interchange law:

(R1 ; R2) × (S1 ; S2) = (R1 × S1) ; (R2 × S2).

Again, the proofs are straightforward calculations. In addition, we have the
following result.

Lemma 8.7. Identity and top behave nicely w.r.t. ��, i.e., 1T1 �� 1T2 = 1T1��T2 .
Similarly, TT1 ��TT2 = TT1��T2 ; equivalently, � ;TT1×T2 ; � = TT1��T2 .

Proof. For the first claim we calculate, using Lemmas 8.3, 8.6.1 and 8.5.3,

1T1 �� 1T2 = � ; (1T1 × 1T2) ; � = � ; 1T1×T2 ; � = � ;� = 1T1��T2 .

The second claim was shown in Lemma 8.5.7. ��

9 Interchange Laws for Join

We have already seen some interchange laws. It turns out that join inherits many
of them, sometimes as inclusions rather than equations.

Lemma 9.1. Relations Ri, Si ::T 2
i satisfy the equational interchange law

(R1��R2) ∩ (S1��S2) = (R1 ∩ S1)��(R2 ∩ S2).Proof.

(R1��R2) ∩ (S1��S2)
= � ; (R1 × R2) ; � ∩ � ; (S1 × S2) ; � {[ Lemma 8.3 ]}
= � ; ((R1 × R2) ∩ (S1 × S2)) ; � {[ determinacy of � and

injectivity of � (Lemma 8.5.5) ]}
= � ; ((R1 ∩ S1) × (R2 ∩ S2)) ; � {[ ×-∩-interchange (Lemma 8.6) ]}
= (R1 ∩ S1)��(R2 ∩ S2) {[ Lemma 8.3 ]} �
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Theorem 9.2 (Forward Interchange). Relations Ri, Si ::T 2
i satisfy the

inclusional interchange law

(R1��R2) ; (S1��S2) ⊆ (R1 ; S1)��(R2 ; S2).

Proof. We calculate as follows.

(R1��R2) ; (S1��S2)
= � ;(R1 × R2) ; � ;� ; (S1 × S2) ; � {[ Lemma 8.3 ]}
⊆ � ;(R1 × R2) ; 1 ; (S1 × S2) ; � {[ Lemma 8.5.2 ]}
= � ;(R1 × R2) ; (S1 × S2) ; � {[ neutrality of 1 ]}
= � ;((R1 ; S1) × (R2 ; S2)) ; � {[ ; -×-interchange (Lemma 8.6.3) ]}
= (R1 ; S1)��(R2 ; S2) {[ Lemma 8.3 ]} �

Using this we can show a subdistribution law for domain over join.

Theorem 9.3. For Ri ::T 2
i (i = 1, 2) the domain of their join satisfies

�(R1��R2) ⊆ �R1���R2.

Proof. By (1) and Lemma 8.7, Theorem 9.2, ��-∩-interchange (Lemma 9.1) and
(1):

�(R1��R2) = (R1��R2) ; (TT1 ��TT2) ∩ (1T1 ��1T2)⊆ ((R1 ; TT1)��(R2 ; TT2)) ∩ (1T1 ��1T2)
= (R1 ; TT1 ∩ 1T1)��(R2 ; TT2 ∩ 1T2) = �R1���R2 �

Next we present conditions under which these inclusions become equations.

10 Compatibility and Matching

Definition 10.1
1. We call R1, R2 weakly matching if for all xi ∈ �Ri (i = 1, 2) with x1 #x2 there

are yi ::Ti (i = 1, 2) with y1 # y2 and xi Ri yi. This means that starting from
matching tuples one can always reach corresponding matching tuples via the
Ri.

2. R1, R2 are strongly matching if for all xi ∈ �Ri (i = 1, 2) with x1#x2 all tuples
yi ::Ti (i = 1, 2) with xi Ri yi satisfy y1 # y2. This means that starting from
matching tuples all corresponding tuples reachable via the Ri are matching
again.

We want to find algebraic characterisations of these forms of matching.

Definition 10.2. Relations R1, R2 are forward compatible iff

©# ; (R1 × R2) ⊆ (R1 × R2) ; ©# ,

and backward compatible iff (R1 × R2) ; ©# ⊆ ©# ; (R1 × R2). Finally, R1 and R2

are compatible iff they are forward and backward compatible.
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We can now give point-free characterisations of matching.

Lemma 10.3
1. All test relations are compatible with each other.
2. Two relations are strongly matching iff they are forward compatible.
3. R1, R2 are weakly matching iff ©# ; (�R1 × �R2) ⊆ �((R1 × R2) ; ©# ) iff �(©# ;

(R1 × R2)) ⊆ �((R1 × R2) ; ©# ).
4. Strongly matching relations are also weakly matching.

Proof.
1. For test relations P,Q the relation P × Q is a test in the algebra of pair

relations. Since ©# is a test there too, they commute, which means forward
and backward compatibility of P and Q.

2. Straightforward predicate calculus with the definitions.
3. Ditto for the first inclusion. The second one results from the first by distribu-

tivity of domain over × and the import/export law of Lemma2.1.5.
4. Immediate from the second inclusion of Part 3 and isotony of domain. ��

Now we can show a reverse interchange law between �� and ;.

Theorem 10.4. (Backward Interchange). Let Ri, Si ::T 2
i . If R1, R2 are for-

ward compatible or S1, S2 are backward compatible then

(R1 ; S1)��(R2 ; S2) ⊆ (R1��R2) ; (S1��S2).

In particular, if R1, R2 or S1, S2 are tests then the inclusion holds.

Proof. We assume R1, R2 to be forward compatible.

(R1 ; S1)��(R2 ; S2)
= � ;(R1 ; S1) × (R2 ; S2) ; � {[ Lemma 8.3 ]}
= � ;(R1 × R2) ; (S1 × S2) ; � {[ ; -×-interchange (Lemma 8.6.4) ]}
= � ; ©# ;(R1 × R2) ; (S1 × S2) ; � {[ Lemma 8.5.4 ]}
⊆ � ;(R1 × R2) ; ©# ; (S1 × S2) ; � {[ forward compatibility ]}
= � ;(R1 × R2) ; � ;� ;(S1 × S2) ; � {[ Lemma 8.5.2 ]}
= (R1��R2) ; (S1��S2) {[ Lemma 8.3 ]}
The proof under backward compatibility of S1, S2 is symmetric. ��
Finally, we show the announced result on the join of tests.

Lemma 10.5. If Pi ::Ti (i = 1, 2) are tests then P1 ��P2 ::T1 ��T2 is a test with
¬(P1��P2) = ¬P1��1T2 ∪ 1T1 ��¬P2, where ¬P = 1 − P .

Proof. First,

(P1��P2) ; (¬P1��1T2 ∪ 1T1 ��¬P2)
= {[ distributivity ]}

(P1��P2) ; (¬P1��1T2) ∪ (P1��P2) ; (1T1 ��¬P2)
⊆ {[ forward interchange (Theorem 9.2) ]}
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(P1 ; ¬P1)��(P2 ; 1T2) ∪ (P1 ; 1T1)��(P2 ; ¬P2)
= {[ Pi tests and strictness of join ]}

0T1��T2

Second,

P1��P2 ∪ ¬P1��1T2 ∪ 1T1 ��¬P2

= {[ Boolean algebra and distributivity of join ]}
P1��P2 ∪ ¬P1��P2 ∪ ¬P1��¬P2 ∪ P1��¬P2 ∪ ¬P1��¬P2

= {[ distributivity of join and Boolean algebra ]}
1T1 ��P2 ∪ 1T1 ��¬P2

= {[ distributivity of join and Boolean algebra ]}
1T1 ��1T2

= {[ Lemma 8.7 ]}
1T1��T2 �

11 About Weak Matching

We have seen that strong matching turns��-; -interchange from inclusion to equa-
tion form (Lemma 10.3, Theorems 9.2 and 10.4). We now show that weak match-
ing does the same for distributivity of domain over join.

Theorem 11.1. Weakly matching Ri ::T 2
i satisfy �R1���R2 ⊆ �(R1��R2).

Proof. By Lemmas 8.3, 8.5.4, weak matching with Lemma 10.3.3, domain repre-
sentation (1), isotony, Lemmas 8.5(8,3) and 8.3 with domain representation (1):

Weak matching is even equivalent to distributivity of domain.

Theorem 11.2. If �R1���R2 ⊆ �(R1��R2) then R1, R2 are weakly matching.

Proof. We first prove that an injective relation S and an arbitrary relation R
satisfy S ;�(S�;R) = �R ;S. By domain representation (1), then by R ;(S ;T∩1) =
R ∩ T ; S� and laws of �, right distributivity due to injectivity of S, P� = P for
any test P and domain representation (1):

S ; �(S� ; R) = S ; (S� ; R ; T ∩ 1) = S ∩ T ; R
� ; S

= (1 ∩ T ; R
�) ; S = (1 ∩ R ; T) ; S = �R ; S.

To prove the theorem, we assume �R1 ���R2 ⊆ �(R1 ��R2) and prove ©# ; (�R1 ×
�R2) ⊆ �((R1 × R2) ; ©# ) (see Lemma 10.3.3).
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©# ; (�R1 × �R2)
= ©# ; (�R1 × �R2) ; ©# {[ ©# and �R1 × �R2 are tests, idempotence

and commutativity of tests ]}
= � ;� ;(�R1 × �R2) ; � ;� {[ Lemma 8.5.2 ]}
= � ;(�R1���R2) ; � {[ Lemma 8.3 ]}
⊆ � ;�(R1��R2) ; � {[ assumption and isotony ]}
= � ;�(� ;(R1 × R2) ; �) ; � {[ Lemma 8.3 ]}
= �((R1 × R2) ; �)� ;� {[ Lemma 8.5(1,5) and preliminary result ]}
= �((R1 × R2) ; ©# ; �) ; ©# {[ Lemma 8.5(2,4) ]}
⊆ �((R1 × R2) ; ©# ) {[ �(R ; S) ⊆ �R, ©# is a test and isotony ]} �

12 Join and Maximal Elements

We now study how join and the maximum operator interact. First we show an
interchange law for join and diamond.

Lemma 12.1. For Ri ::T 2
i and Pi ::Ti (i = 1, 2),

||R1��R2〉〉(P1��P2) ⊆ ||R1〉〉P1�� ||R2〉〉P2.

If the Ri ; Pi are weakly matching then this strengthens to an equality.

Proof. By definition of inverse image, Theorem 9.2 with Lemma 10.3.1 and The-
orem 10.4, Theorem 9.3 and definition of inverse image:

||R1 ��R2〉〉(P1��P2) = �((R1��R2) ; (P1��P2)) = �((R1 ; P1)��(R2 ; P2))
⊆ �(R1 ; P1)���(R2 ; P2) = ||R1〉〉P1�� ||R2〉〉P2)

The claim when the Ri ;Pi are weakly matching follows by using Theorem11.1
in the third step. ��

This is used to derive an interaction law for join and maximum.

Lemma 12.2. Consider tables P ::TP , Q ::TQ and relations R ::T 2
P and S ::T 2

Q

such that R ; P and S ; Q are weakly matching. Then

(R��S) � (P ��Q) = (R � P )��Q ∪ P ��(S � Q).

Proof.
(R��S) � (P ��Q)

= (P ��Q) − ||R��S〉〉(P ��Q) {[ definition of � ]}
= (P ��Q) − (||R〉〉P �� ||S〉〉Q) {[ Lemma 12.1 ]}
= (P ��Q) ; ¬(||R〉〉P �� ||S〉〉Q) {[ definition of − ]}
= (P ��Q);

(¬||R〉〉P ��1Q ∪ 1P ��¬||S〉〉Q)
{[ complement of test (Lemma 10.5) ]}

= (P ; ¬||R〉〉P )��(Q ; 1Q)
∪ (P ; 1P )��Q ; ¬||S〉〉Q)

{[ distributivity and interchange laws of
Theorems 9.2 and 10.4, since P, Q are tests ]}

= (R � P )��Q ∪ P ��(S � Q) {[ neutrality of 1 and definition of � ]} �
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Corollary 12.3. Consider tables P ::TP , Q ::TQ and a relation R ::T 2
P such that

R ; P and TQ ; Q are weakly matching. Then

(R��TQ) � (P ��Q) = (R � P )��Q.

Proof. Immediate from Lemma 12.2, (3), strictness of �� and neutrality of 0. ��
This shows (4)—the only question is how to establish weak matching. For

this we introduce a sufficient condition.

Definition 12.4. Assume tables P ::TP , Q ::TQ. We call P joinable with Q if
P ⊆ ||#〉〉Q, where # is the matching relation between tuples. Pointwise, P is
joinable with Q iff ∀ p ∈ P : ∃ q ∈ Q : p # q. Informally this means that every
tuple in P has a join partner in Q.

Lemma 12.5. If P is joinable with Q then R;P and TQ ;Q are weakly matching.

Since the proof needs additional notions we defer it to the Appendix.
Now we can state an optimisation rule involving a θ-join.

Theorem 12.6. Consider P ::TP , Q ::TQ, R ::T 2
P as well as θ :: {A}��{B} with

A ∈ TP , B ∈ TQ with TP ∩ TQ = ∅. If P is joinable with θ��Q then

(R��Tθ��Q) � (P ��θ��Q) = (R � P )��θ��Q.

This is immediate from Lemma 12.5 and Corollary 12.3.
Without the premise of joinability the theorem need not hold.

Example 12.7. Choose, for instance, θ as equality and TP = {A}, P = {1, 2},
TQ = {B}, Q = {1} as well as DA = DB = {1, 2}. Here {2} has no join partner
in θ��Q. Now for a preference R with 1R 2 we have the differing expressions

(R��Tθ��Q) � (P ��θ��Q) = (R��Tθ��Q) � {(1, 1)} = {(1, 1)},

(R � P )��θ��Q = {2}��θ��{1} = 0. ��

13 Conclusion and Outlook

We have presented a new and simple approach to an algebraic treatment of
the theta join in databases. This is a piece that was missing in the predecessor
paper [16], because there mostly only joins of tables with disjoint attribute sets
were treated. However, overlapping types are mandatory for coping with theta
joins. And so other important outcomes of the present paper are the more liberal
notions of weak and strong matching of binary relations over database tuples.

With the help of the developed tools we have algebraically proved the cor-
rectness of two sample optimisation rules, namely “push projection over join”
and “push preference over join”.
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Further work will be to treat the large catalogue of preference optimisation
rules in [14] with these techniques. This also concerns the complex preference
relation constructors of Pareto and prioritised composition. In fact, the relation
R��TU in Theorem 12.6 is equal to the prioritised preference R & 0.

The present treatment was performed in the setting of concrete binary rela-
tions. While mostly point-free, some of the basic lemmas in Sect. 3 still were
proved in a pointwise fashion. A next step to a more abstract view would be to
axiomatise the projections and then reason point-free in terms of these. Another
more abstract approach could be based on the concept of typed join algebras
from the predecessor paper [16].

Acknowledgement. Helpful comments were provided by Patrick Roocks, Andreas
Zelend and the anonymous referees.

14 Appendix

For types TP , TQ we use the notion of a direct product of DP and DQ (e.g. [17]).
This is a pair (ρP , ρQ) of relations with ρP ⊆ (DP × DQ) × DP and ρQ ⊆
(DP × DQ) × DQ such that

ρ�
P ; ρP = 1, ρ�

Q ; ρQ = 1,

ρP ; ρ�
P ∩ ρQ ; ρ�

Q = 1, ρ�
P ; ρQ = T.

Using this concept the parallel product can be represented as

P × Q = ρP ; P ; ρ
�
P ∩ ρQ ; Q ; ρ

�
Q. (5)

The following properties of direct products are used in the main proof3:

ρP ; T = T = ρQ ; T, (6)

(R1 ; ρ
�
P ∩ R2 ; ρ

�
Q) ; (ρP ; S1 ∩ ρQ ; S2) = R1 ; S1 ∩ R2 ; S2. (7)

Proof of Lemma 12.5. The proof consists in showing ©# ; (�(R ;P )×�(TQ ;Q)) ⊆
�(((R ;P )×(TQ ;Q));©# ) (see Lemma 10.3.3). We do this by showing the stronger
property �(R ;P )×�(TQ ;Q) ⊆ �(((R ;P )×(TQ ;Q)) ;©# ), from which the original
claim follows by ©# ⊆ 1 and isotony of ;.

Since “joinable” is defined with # and the formula to prove uses ©# , we have
to make a connection between the two:

©# = �(ρP ; # ∩ ρQ). (8)

3 Equation (7) is valid for concrete relations. For abstract relations, only ⊆ holds.
This phenomenon is called unsharpness in the literature (an early mention is [18], a
further elaboration [1]). The situation is similar with Lemma 8.6.4. The paper [15]
constructs an RA that does not satisfy sharpness.
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This is analogous to the conversion of a relation to a vector explained in [17],
which would give ©# ; T = (ρP ; # ∩ ρQ) ; T. The inverse transformation is
# = ρ�

P ; (©# ; T ∩ ρQ). Both equations are easily verified. Using restriction
(Lemma 2.1.7) and Boolean algebra, the second one can be simplified to # =
ρ�

P ;©# ;ρQ. Then by Definition 12.4 and the definition of diamond (Definition 6.1)
P is joinable with Q iff

P ⊆ �(ρ�
P ; ©# ; ρQ ; Q). (9)

Now we calculate as follows.

�(R ; P ) × �(TQ ; Q)
= {[ distributivity of domain over × ]}

�((R ; P ) × (TQ ; Q))
= {[ (5) ]}

�(ρP ; R ; P ; ρ�
P ∩ ρQ ; TQ ; Q ; ρ�

Q)
⊆ {[ Boolean algebra and isotony of � ]}

�(ρP ; R ; P ; ρ�
P)

= {[ locality (Lemma 2.1.6) ]}
�(ρP ; R ; P ; �(ρ�

P))
= {[ ρP is surjective, hence ρ�

P is total ]}
�(ρP ; R ; P ; 1)

= {[ neutrality of 1 and (9) with Boolean algebra ]}
�(ρP ; R ; P ; �(ρ�

P ; ©# ; ρQ ; Q))
= {[ locality (Lemma 2.1.6) twice ]}

�(ρP ; R ; P ; ρ�
P ; �(©# ; ρQ ; Q))

= {[ domain representation (1) ]}
�(ρP ; R ; P ; ρ�

P ; (©# ; ρQ ; Q ; T ∩ 1))
= {[ ©# is a test, restriction (Lemma 2.1.7) and neutrality of 1 ]}

�(ρP ; R ; P ; ρ�
P ; (ρQ ; Q ; T ∩ ©# ))

= {[ R1 ; (R2 ; T ∩ R3) = (R1 ∩ T ; R�
2) ; R3 for all R1, R2, R3,

laws of converse and Q is a test ]}
�((ρP ; R ; P ; ρ�

P ∩ T ; Q ; ρ�
Q) ; ©# )

= {[ (6) ]}
�((ρP ; R ; P ; ρ�

P ∩ ρQ ; TQ ; Q ; ρ�
Q) ; ©# )

= {[ (5) ]}
�(((R ; P ) × (TQ ; Q)) ; ©# ) ��
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Abstract. In this paper, we investigate diagrams, namely functors from
any small category to a fixed category, and more particularly, their bisim-
ilarity. Initially defined using the theory of open maps of Joyal et al., we
prove two characterisations of this bisimilarity: it is equivalent to the
existence of a bisimulation-like relation and has a logical characterisa-
tion à la Hennessy and Milner. We then prove that we capture both path
bisimilarity and strong path bisimilarity of any small open maps situa-
tion. We then look at the particular case of finitary diagrams with values
in real or rational vector spaces. We prove that checking bisimilarity and
satisfiability of a positive formula by a diagram are both decidable by
reducing to a problem of existence of invertible matrices with linear con-
ditions, which in turn reduces to the existential theory of the reals.

Keywords: Open maps · Diagrams · Path logic · Existential theories

1 Introduction

Diagrams in a category, namely functors from any small category to this specified
category, are essential objects in category theory. Numerous basic constructions
in category theory can be seen as a limit or colimit of a suitable diagram. How-
ever, their usefulness is not limited to those.

In the context of directed algebraic topology (see [7] for a textbook), Dubut et
al. used diagrams with values in a category of modules to encode local geometric
properties of a directed space and their evolution [5]. The domains of those
diagrams are given by directed paths of the space and their extensions, while the
diagrams themselves map such a path to some homology modules describing the
default of directed homotopy of the space. It was then observed that a suitable
notion of bisimilarity of diagrams, using the general theory of open maps from
[10] was the right notion to compare such defaults of dihomotopy.

In the first part of this paper, we propose to look at the general theory
of bisimilarity of diagrams, extending it to any category of observations. After
describing the original definition using open morphisms (Sect. 2.2), we describe
two equivalent characterisations. First (Sect. 2.3), it is equivalent to the existence
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of a relation, similar to history preserving bisimulations of event structures from
[14]. This result generalises a result from [5]. Secondly (Sect. 3), it has a logical
characterisation, similar to a Hennessy-Milner theorem: two diagrams are bisim-
ilar if and only if they both satisfy the same formulae of a path logic. We finally
prove in Sect. 4 that we capture path and strong path bisimilarities of any open
map situation [10] as the bisimilarity of a suitable notion of diagrams.

In a second part, we consider two decision problems for a class of diagrams
with values in real or rational vector spaces, used in [5] for describing defaults
of dihomotopy of geometric models of truly concurrent systems (See Sect. 5).
For those diagrams, we prove in Sect. 7 that bisimilarity and the satisfaction of
a positive formula are both decidable by reduction to a problem of invertible
matrices, itself reduced to the existential theory of the reals (Sect. 6).

Existing Work: This theory of bisimilarity of diagrams is intimately related to
categorical theories of bisimulations. If the relation with open maps is developed
in Sects. 2.2 and 4, its relation with coalgebra is less clear. Relations between
open maps and coalgebra are investigated in [11,19], however those cannot be
applied in general to a category of diagrams. The main problem is that diagrams
are not naturally coalgebras in general, and so there is no clear relationship
between open maps as described in Sect. 2.2, and coalgebra homomorphisms
(also called coverings of processes in [18]). Another important related line of
work is the theory of bisimilarity of presheaves [4], which considers similar objects
(presheaves are particular cases of diagrams), but from a very different point of
view.

2 Bisimilarity and Bisimulations of Diagrams

Diagrams with values in a fixed category A are functors F : C −→ A from any
small category to A. If A is thought as a category of “observations” and C as the
category of executions of a system, a diagram encodes the trace of observations
along every execution (typically, a label), and its actions on morphisms of C
encodes how these observations change when the system evolves.

In this section, we describe the original form of the bisimilarity from [5],
defined as the existence of a span of particular morphisms of diagrams having
some lifting properties. We then develop an equivalent characterization using
relations, similar to bisimulations of event structures as introduced in [14].

2.1 Category of Diagrams

The original definition of bisimilarity of diagrams was designed using particular
morphisms of diagrams. Such a morphism, say from the diagram F : C −→ A to
the diagram G : D −→ A is a pair (Φ, σ) with Φ : C −→ D a functor and σ is a
natural isomorphism from F to G ◦ Φ. The composition (Ψ, τ) ◦ (Φ, σ) is defined
as (Ψ ◦ Φ, (τΦ(c) ◦ σc)c object of C). We denote this category by Diag(A).
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Example 1. Throughout the next two sections, we will develop a particular
example of diagrams in which transition systems can be encoded. This example
will allow us to relate constructions in diagrams to classical constructions in
concurrency theory. From now, we fix a set L called the alphabet. Such a set
induces a poset (which can be seen as a category) AL whose elements are the
finite words on L and whose order is the prefix order. A transition system T on
L produces a diagram FT : CT −→ AL as follows. The category CT is formed by
considering as objects the runs of T , that is, sequences i

a1−→ q1
a2−→ . . .

an−−→ qn

of transitions of T where i is the initial state, and by ordering them by prefix.
FT then maps a run to its sequence of labels. This construction extends to a
functor Π from the category TS(L) of transition systems on L to the category
Diag(AL). Conversely, a diagram F : C −→ AL produces a transition system T
as follows. First, such a diagram can be identified with a diagram with values in
TS(L) by identifying a word a1.a2. . . . .an with the finite linear transition system
0 a1−→ 1 a2−→ . . .

an−−→ n. T is then obtained by forming the colimit of this diagram
in TS(L). This extends to a functor Γ from Diag(AL) to TS(L). Note that
Γ ◦ Π is the unfolding of transition systems and that Γ is the left adjoint of Π.

The reason why we need natural isomorphisms in the definition of a mor-
phism of diagram is not clear yet, as the only isomorphisms in the category AL

are the identities. This will be illustrated in the case where A is a category of
vector spaces. Intuitively, two isomorphic vector spaces represent the same kind
of observations (in the case of directed algebraic topology, the same kind and
number of holes), which we do not want to discriminate.

2.2 Open Morphisms of Diagrams

The original idea from [5] was to compare diagrams similarly to transition sys-
tems using the theory of [10]. Let us call branch a diagram from n to A for
n ∈ N, where n is the poset (seen as a category) {1, . . . , n} with the usual
ordering. An evolution of a diagram F : C −→ A is then a morphism from
any branch to F . Much as transition systems and executions, a morphism of
diagrams (Φ, σ) from F : C −→ A to G : D −→ A maps evolutions of F to
evolutions of G: if (Ψ, τ) is an evolution of F , i.e., a morphism from a branch
to F , then (Φ, σ) ◦ (Ψ, τ) is an evolution of G. Then morphisms act as partic-
ular simulations of diagrams. The idea from [10] was to provide conditions on
morphisms for them to act as particular bisimulations. The general idea is that
a morphism induces a bisimulation if it lifts evolutions of G to evolutions of F .
In the context of diagrams, this will be defined using extensions of branches.
An extension of a branch B : n −→ A is a morphism of diagrams (Π, θ) from
B : n −→ A to a branch B′ : n′ −→ A, with n′ ≥ n such that:

– for every i ≤ n, B(i) = B′(i),
– for every i ≤ j ≤ n, the morphism B′(i ≤ j) of A is equal to B(i ≤ j),
– for every i ≤ n, Π(i) = i,
– for every i ≤ n, θi = idB(i).
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Fig. 1. Extension of branches

Those conditions mean that the restriction of B′ to n is B and that the
morphism (Π, θ) is the inclusion of B in B′ (Fig. 1).

Following [10], we then say that a morphism (Φ, σ) from F : C −→ A to
G : D −→ A is open if for every diagram of the form (in plain):

B F

B′ G

(Π, θ) (Φ, σ)

(Ψ, τ)

(Ψ ′, τ ′)

∃

where (Π, θ) is an extension of branches, there is an evolution of F (in dots)
which makes the two triangles commute. This means that if we can extend an
evolution of F , mapped on an evolution of G by (Φ, σ), as a longer evolution of
G, then we can extend it as a longer evolution of F that is mapped to this longer
evolution of G. This means in particular that F and G have exactly the same
evolutions. As observed in [5], the definition of an open map can be simplified
as follows:

Theorem 1. A morphism (Φ, σ) is open if and only if:

– Φ is surjective on objects, i.e., for every object d of D, there is an object c of
C such that Φ(c) = d,

– Φ is a fibration, i.e., for every morphism of D of the form j : Φ(c) −→ d′,
there is a morphism i : c −→ c′ of C such that Φ(i) = j.

Following [10], we say that two diagrams F : C −→ A and G : D −→ A are
bisimilar if there is a span of open morphisms between them, that is, a diagram
H : E −→ A and two open morphisms, one from H to F , one from H to G.

Example 2. In the case of diagrams in AL, the notion of open morphisms is
related to the notion of open morphisms of transition systems as defined in [10].
First, an open morphism f : T −→ S between transition systems always induces
an open morphism Π(f) : Π(T ) −→ Π(S) between the associated diagrams.
In particular, if two transition systems are bisimilar then their diagrams are
bisimilar. The converse also holds but proving it using open morphisms is hard
(the reason will be explained later). For example, we may expect that an open
morphism of diagrams of the form Φ : F −→ Π(T ) induces an open morphism
between transition systems Γ (Φ) : Γ (F ) −→ Γ ◦ Π(T ), but that is not true in
general.
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2.3 Bisimulations of Diagrams

In this section, we generalise a notion of bisimulation relations from [5], which
is equivalent to the existence of a span of open morphisms. This result is an
equivalent of Theorem 3.1 in [18] in the context of open maps of diagrams.

A bisimulation R between two diagrams F : C −→ A and G : D −→ A
is a set of triples (c, f, d) where c is an object of C, d is an object of D and
f : F (c) −→ G(d) is an isomorphism of A such that:

– for every (c, f, d) in R and i : c −→ c′ ∈ C, there exist j : d −→ d′ ∈ D and
g : F (c′) −→ G(d′) ∈ A such that g ◦ F (i) = G(j) ◦ f and (c′, g, d′) ∈ R,

c′

c

F (c′)

F (c)

G(d′)

G(d)

d′

d

i F (i)

f

jG(j)

g

– symmetrically, for every (c, f, d) in R and j : d −→ d′ ∈ D, there exist
i : c −→ c′ ∈ C and g : F (c′) −→ G(d′) ∈ A such that g ◦ F (i) = G(j) ◦ f and
(c′, g, d′) ∈ R,

– for all c ∈ C, there exists d and f such that (c, f, d) ∈ R,
– for all d ∈ D, there exists c and f such that (c, f, d) ∈ R.

Theorem 2. Two diagrams are bisimilar if and only if there is a bisimulation
between them.

Example 3. In the case of diagrams in AL, a bisimulation between diagrams
Π(T ) and Π(S) is just a rephrasing for a path bisimulation in the sense of [10]
between the transition systems T and S. In the particular case of transition
systems, the existence of a path bisimulation is equivalent to the existence of
a strong path bisimulation and is equivalent to the existence of a bisimulation.
Consequently:

Proposition 1. Two transition systems T and S are bisimilar if and only if the
diagrams Π(T ) and Π(S) are bisimilar.

3 Diagrammatic Path Logic

In this section, we focus on a logical characterization of bisimilarity of diagrams.
The logic used, which we call diagrammatic path logic, is similar to the logic
introduced in [9] for transition systems, or to path logics developed in [10]. A
formula in this logic allows one to express that a diagram has some kind of
evolutions or not.

The formulae used are generated by the following grammar:

Object formulae: S ::= [x]P x ∈ Ob(A)
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Morphism formulae: P ::= 〈f〉P |?S | ¬P |
∧

i∈I

Pi f ∈ Mor(A) and I a set

where Ob(A) is the class of objects of A and Mor(A) is its class of morphisms.
Intuitively, the object formula [x]P means that the current object is isomor-

phic to x, and the morphism formula 〈f〉P means that from the current object,
one can fire a transition labelled by a morphism equivalent (in the sense of
matrices, or conjugate in the language of group theory) to f . Observe that we
have arbitrary conjunctions, in particular infinite and empty (we will denote the
empty conjunction by 	).

Example 4. In the case of diagrams in AL, [w]	 means that the current run is
labeled by the word w and 〈w ≤ w′〉	 means that the current run is labeled by
w and that it can be extended to a run labeled by w′. The idea is very similar to
the Hennessy-Milner logic [9] and the forward path logic [10]. The next theorem
proves that, for two transition systems, satisfying the same Hennessy-Milner
formulae, forward path formulae or path formulae is the same as their diagrams
satisfying the same diagrammatic formulae.

For a diagram F : C −→ A, an object c of C, and an isomorphism f of A
of the form f : F (d) −→ x for some d and x, we define F, c |= S for an object
formula S and F, f, d |= P for a morphism formula P by induction on S (resp.
P ) as follows:

– F, f, c |= 	 always,
– more generally, F, f, c |= ∧

i∈I

Pi iff for all i ∈ I, F, f, c |= Pi,

– F, c |= [x]P iff there exists an isomorphism f : F (c) −→ x of A such that
F, f, c |= P ,

– for every g : x −→ x′, F, f, c |= 〈g〉P iff there exists i : c −→ c′ in C and an
isomorphism h : F (c′) −→ x′ such that h ◦ F (i) = g ◦ f and F, h, c′ |= P ,

F (c) F (c′)

x x′

F (i)

h

g

f

– F, f, c |= ?S iff F, c |= S,
– F, f, c |= ¬P iff F, f, c 
|= P .

We say that a diagram F : C −→ A is logically simulated by another
diagram G : D −→ A if for every object c of C, there exists an object d of D
such that for all object formula S, F, c |= S iff G, d |= S. Two diagrams F and
G are logically equivalent if F is logically simulated by G and vice-versa.

Theorem 3. Two diagrams are bisimilar iff they are logically equivalent.
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4 Relation to Path Bisimilarities of Open Maps
Situations

In Sect. 2.2, we understood bisimilarity of diagrams using branches, as the exis-
tence of a span of open maps. In the context of [10], it means that diagrams,
together with their subcategory of branches is an open map situation. Con-
cretely, an open map situation is a category M, called the category of systems
(in our case Diag(A)), together with a subcategory P ↪→ M, said of paths
(here the subcategory of branches). Another typical example is the category of
transition systems TS(L) with its subcategory of finite linear systems.

In [10], two notions of bisimulations between objects of M are described: the
path bisimulations and the strong path bisimulations. However, for them
to make sense, some conditions on the open map situation are required: P need
to be small and P and M must have a common initial object, which we denote
by I. For example, the open maps situation of transition systems satisfies those
requirements, while the one of diagrams does not in general (smallness is the
issue).

Concretely, a path bisimulation R between objects X and Y of M is a set of
pairs of morphisms of the form (x : P −→ X, y : P −→ Y ) for some object P of
P such that:

– The pair of initial morphisms (I → X, I → Y ) belongs to R.
– For every (x : P −→ X, y : P −→ Y ) in R, and for every morphisms p : P −→

Q of P and x′ : Q −→ X with x′ ◦ p = x, there is a morphism y′ : Q −→ Y
such that y′ ◦ p = y and (x′, y′) ∈ R.

– Symmetrically, swapping the roles of X and Y .

Furthermore, we say that R is strong if it additionally satisfies that for every
(x : P −→ X, y : P −→ Y ) in R, and for every morphism p : Q −→ P of P,
(x ◦ p, y ◦ p) ∈ R.

It has to be remarked that those bisimulations induce different notions of
bisimilarity in general. Furthermore, they both are different to the existence of
a span of open morphisms, although strong path bisimilarity coincide with this
existence in many concrete cases [6]. In the case of transition systems and finite
linear systems, those three notions coincide.

We propose now to characterise those two notions of bisimulations using
diagrams, namely, we will now describe two functors Ex : M −→ Diag(P) and
Ex : M −→ Diag(P) such that the existence of a path (resp. strong path)
bisimulation between X and Y is equivalent to the fact that Ex(X) and Ex(Y )
(resp. Ex(X) and Ex(Y )) are bisimilar as diagrams.

First, Ex(X) is the functor from P ↓ X, the category of morphisms from any
objects of P to X and commutative triangles, to the category P which maps any
morphism x : P −→ X to P and every commutative triangles x′ ◦ p = x to p.

Theorem 4. X and Y are path bisimilar if and only if Ex(X) and Ex(Y ) are
bisimilar.
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Given a category C, we denote by Zig(C) the category whose objects are
those of C and whose morphisms are generated by those of C and those of Cop.
This naturally extends to an endofunctor Zig : Cat −→ Cat. We then define
Ex = Zig(Ex) from Zig(Ex(X)) to Zig(P).

Theorem 5. X and Y are strong path bisimilar if and only if Ex(X) and Ex(Y )
are bisimilar.

Remark 1. This pattern of characterising a notion bisimilarity as bisimilarity of
suitable diagrams whose domain is a category of “runs” and whose codomain is
a category of “observations” is more general than for (strong) path bisimilarity
of open maps situations, and can be pursued for Higher-Dimensional Automata
[8,13] for example.

5 Interlude

In the first part of the paper, we focused on the general theory of bisimilarity
of diagrams and its relationship with usual notions of bisimilarity of transition
systems (and so of process algebra). In the second part of the paper, we would
like to turn our attention to other kinds of diagrams that appeared in the theory
of directed algebraic topology [5]. While diagrams in Sect. 4 were typically with
values in a category of words, we will now consider diagrams with values in
modules on a ring. More precisely, we will focus on the following two problems
for such diagrams:

– bisimilarity: given two diagrams, are they bisimilar?
– diagrammatic model-checking: given a diagram F , an object c of its

domain and a state formula S, does F, c � S hold?

The difficulty of those problems lies in the possibility to decide whether
two modules are isomorphic, problem which does not appear in the context of
process algebras and transition systems. Indeed, it is known that those problems
are decidable in the category of transition systems (see [16] for a dynamic list
of such (un)decidability results), while they would be undecidable for diagrams
with values in groups and group morphisms because it is undecidable whether
two groups are isomorphic. In this paper, we will focus on the category of finite
dimensional real or rational vector spaces and matrices.

More precisely, we will stick to finitary diagrams and finitary positive for-
mulae defined as follows. By a finitary diagram F , we mean the following
data:

– a finite poset (C,≤), the domain,
– for every element c of C, a natural number F (c) (which stands for the real

vector space R
F (c)),

– for every pair c ≤ c′ of C, a matrix F (c ≤ c′) of size F (c) × F (c′), with
coefficients in rational numbers, presented as the list of all its elements, such
that:
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– F (c ≤ c) is the identity matrix,
– for every triple c ≤ c′ ≤ c′′, F (c ≤ c′′) = F (c′ ≤ c′′).F (c ≤ c′), where ‘.’

denotes the matrix multiplication.

In short, a finitary diagram is a functor from a finite poset to the category
of matrices with coefficients in rational numbers. One may argue that those
assumptions are not reasonable, because they are not satisfied by the diagrams
from Sect. 4 as soon as there is a loop. The reason is that when deciding this
bisimilarity, there are two problems: finding out how to relate the executions and
constructing the bisimulation, in particular, the isomorphism part. Loops make
the first part difficult, because this relation is necessarily infinite in this case.
In this paper, we want to focus on the second problem because: (1) reducing
the problem of existence of a bisimulation to a problem of isomorphisms in a
category is the main difference from existence of bisimulation for process algebra,
(2) solving this question addresses the problem of comparing natural homologies
of geometric models of true concurrency from [5].

We call finitary formulae, the formulae generated by the following gram-
mar:

Object formulae: S ::= [n]P n ∈ N

Morphism formulae: P ::= 〈M〉P |?S | ¬P | 	 | P1 ∧ P2

where M is a matrix with coefficients in rational numbers. Here, [n]P stands
for [Rn]P which makes finitary formulae diagrammatic formulae in real vector
spaces. This time, since we only have finitely branching diagrams, we only con-
sider finite conjunctions. We will more particularly consider positive formulae,
i.e., formulae without any occurrences of the negation. For example, a formula of
the form 〈M1〉 . . . 〈Mk〉	 means that there is a sequence of matrices N1, . . . , Nk

in the diagrams where Ni is equivalent to Mi, and those equivalences are natural
(in the categorical meaning).

In this case, bisimilarity and model checking problems become a problem of
existence of invertible matrices satisfying some linear conditions, as we will see
in Sect. 7. In Sect. 6, we will start by proving that this problem of matrices can
be encoded in the existential theory of the reals, which is known to be decidable.

6 Existential Theory of Invertible Matrices

In the present section, we focus on an existential theory of matrices. We first
recall the case of the existential theory of the reals, which is known to be decid-
able. We then introduce the existential theory of invertible matrices in R and Q

and we finally prove the decidability of their satisfiability problems.

6.1 The Existential Theory of Some Rings

Designing algorithms for finding solutions of equations is an old problem in
mathematics. The famous Hilbert’s tenth problem posed the problem for poly-
nomial equations in integers, but the question can be asked for other rings.
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Tarski in [17] solved this question for real numbers: the first-order logic of real
closed fields is decidable, although the solution is of non-elementary complex-
ity. Several improvements have been made: it was proved to be in EXPSPACE
in [2] and that the existential theory of the reals is in PSPACE in [3]. On the
contrary, Matiyasevich’s negative answer of the tenth problem [12], means that
the existential theory of the integers is undecidable. In particular, since it is
possible to express that a rational number is an integer (using possibly universal
quantifiers), the full first-order logic of the rationals is undecidable. However, it
is still an open question whether its existential fragment is decidable or not.

6.2 Theory of Matrices

In this section, we will consider a logic of matrices that will be expressible in
the existential theory of the reals. It will be the main ingredient to decide some
problems in diagrams with values in vector spaces. Namely, we consider formulae
of the form:

∃n1X1. . . . .∃nk
Xk.

m∧

j=1

Pj(X1, . . . , Xk)

where:

– ni ≥ 0, is a natural number,
– Xi is a variable ranging over invertible matrices of dimension ni,
– Pj is a predicate of the form A.Xi = Xk.B for some i, k and matrices A,

B with coefficients in rational numbers, A and B are of size nk × ni, and
. denotes the matrix multiplication. We call it the existential theory of
invertible matrices.

We will consider the following decision problem: given such a formula, is
it satisfiable, that is, are there matrices M1, ..., Mk, with Mi of size ni × ni,
invertible such that for every j, Pj(M1, ...,Mk) is true?

We may ask this question for matrices Mi in coefficients in real or rational
numbers. We will prove that both problems actually coincide and are decidable
in PSPACE.

6.3 Decidability in R

We stick here to the case of real numbers. We prove that we have a reduction to
the existential theory of the reals. Given a formula

Φ = ∃n1X1. . . . .∃nk
Xk.

m∧

j=1

Pj(X1, . . . , Xk)

we will construct a formula Ψ in the existential theory of the reals which is
satisfiable if and only if Φ is.

First, for every variable Xi, check if it appears in some Pj . If not, forget
it. Indeed, if it does not appear in any predicate, then we can just choose the
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identity. Then, for every other quantifier ∃ni
Xi, we fix 2.n2

i fresh first-order
variables xr,s

i and yr,s
i for r, s ∈ {1, ..., ni}. Let Xi be the matrix of size ni × ni

whose coefficients are xr,s
i , and Yi whose coefficients are yr,s

i . Developing A.Xi =
Xj .B leads to njni linear equations on the variables xr,s

i and xr,s
j . So every

predicate Pj induces a set Lj of linear equations. It remains to express that Xi

is invertible in the first-order logic. The idea is to express that Yi is its inverse.
Developing Xi.Yi = Id and Yi.Xi = Id, leads to 2.n2

i polynomial equations on
the variables xr,s

i and yr,s
i . Let Si be the set of these equations. We denote by Ψ

the formula:

∃x1,1
1 . . . . ∃xnk,nk

k .∃y1,1
1 . . . . ∃ynk,nk

k .

k∧

i=1

Si ∧
m∧

j=1

Lj

Ψ is of polynomial size on the size of Φ: indeed, the only problem might be
that we fix 2n2

i variables while ni is of size log(ni), which may say that we fix an
exponential number of variables. The point is that if we fixed those 2n2

i variables,
then it means that Xi appears in some Pj , and that the matrices appearing in
Pj have a polynomial size in ni. Consequently, we fix only a polynomial number
of variables.

Theorem 6. Ψ is satisfiable in the existential theory of the reals iff Φ is sat-
isfiable in the existential theory of invertible matrices with coefficients in real
numbers. Consequently, the existential theory of invertible matrices with coeffi-
cients in real numbers is decidable in PSPACE.

6.4 The Rational Case

As we have seen previously, first-order theories of rationals are in general harder
than those in reals. But there are some algebraic problems that are known to
coincide when considering real and rational numbers. Given a linear system
with coefficients in rational numbers, Gaussian elimination works independently
of the coefficient field. Consequently, the real subspace FR of solutions of this
system has the same dimension as the rational subspace FQ of solutions of the
system. Actually, FR ∩ Q

n = FQ and they have a common basis whose vectors
are with coefficients in rational numbers. Similarly, the problem of equivalence of
matrices coincides in the fields of real and rational numbers. Given two matrices
A and B with coefficients in rational numbers, A and B are equivalent if there
are two invertible matrices X and Y such that A.X = Y.B. This problem is also
solvable using Gaussian elimination by computing the rank of A and B, which
is independent of the coefficient field. Our problem is a generalization of the
equivalence problem and it is not surprising that the same kind of results hold:

Theorem 7. A formula Φ is satisfiable in the existential theory of invertible
matrices with coefficients in real numbers if and only if it is satisfiable in the
existential theory of invertible matrices with coefficients in rational numbers.
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7 Decidability in Diagrams

Finally, we prove two decidability results for bisimilarity of diagrams and dia-
grammatic logic using the existential theory of invertible matrices. In this section,
we consider diagrams with values in real vector spaces (or rational, but as we
have seen in the previous section, both theories will coincide). We prove the
decidability of the following two problems:

– bisimilarity: given two finitary diagrams, are they bisimilar?
– diagram model-checking: given a finitary diagram F , an object c of its

domain and a positive finitary state formula S, does F, c � S hold?

7.1 Decidability of Bisimilarity

We start with the bisimilarity problem. Assume given two finitary diagrams
F and G, with domain (C,≤) and (D,�) respectively. The idea is to non-
deterministically construct a bisimulation R, that is, a set of triples (c,M, d)

Algorithm 1. Bisimilarity of finitary diagrams
Require: Two finitary diagrams F : C −→ A and G : D −→ A.
Ensure: Answer Yes iff F and G are bisimilar.
1: S := C ∪ D; R := ∅; lin := ∅; var := ∅;
2: while S is non empty do
3: Pick some c ∈ S. Let us assume that c ∈ C, the other case is symmetric.
4: Non-deterministically choose d ∈ D with F (c) = G(d) = n.
5: if d does not exist then FAIL end if ;
6: Create a fresh variable X and add the pair (X, n) to var;
7: Add (c, X, d) to R and do not mark it;
8: while there is a non-marked element in R do
9: Pick a non-marked element (c, X, d) ∈ R, with F (c) = G(d) = n;

10: Mark (c, X, d);
11: Non-deterministically choose a relation

Q ⊆ {(c′, d′) | (c < c′ ∧ d � d′) ∨ (c ≤ c′ ∧ d ≺ d′)}
such that for every c′ > c, there is d′ � d with (c′, d′) in Q, and symmetrically;

12: S := S \ ({c′ | c′ ≥ c} ∪ {d′ | d′ � d})
13: for all (c′, d′) in Q do
14: Check if F (c′) = G(d′) = m, otherwise FAIL;
15: Create a fresh variable X ′ and add the pair (X ′, m) to var;
16: Add (c′, X ′, d′) to R and do not mark it;
17: Add the equation G(d � d′).X = X ′.F (c ≤ c′) to lin;
18: end for
19: end while
20: end while
21: Let Φ be the formula of the theory of invertible matrices quantified by ∃nX for

every (X, n) ∈ var and whose predicates are the linear equations from lin.
22: return YES if Φ is valid, FAIL otherwise.
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where M is a matrix with coefficients in real (or rational) numbers satisfying
the properties of a bisimulation from Sect. 2. The only exception is that we will
not guess explicitly the matrices M , but a formula in the existential theory of
invertible matrices that encodes the fact that there exist some matrices M such
that the bisimulation constructed satisfies those properties.

Consider the Algorithm 1 written in pseudo-code. It maintains the bisimula-
tion R and two sets var, encoding the variables of the formula we are constructing
and lin, encoding its predicates.

The algorithm always terminates. First, the innermost while loop terminates
since after every loop an element (c,X, d) is marked and only elements of the
form (c′,X ′, d′) with either c < c′ and d � d′ or c ≤ c′ and d ≺ d′ are added.
The outer loop terminates since after every loop at least one element of S is
removed.

Assume that there is an execution of the algorithm that answers Yes. Let
R and Φ constructed during this execution. Since the algorithm answers Yes,
the formula Φ is satisfiable, that is, for every (X,n) ∈ var, there is an invertible
matrix MX of size n × n such that for every equation A.X = X ′.B in lin,
A.MX = MX′ .B holds. Let R′ be the set {(c,MX , d) | (c,X, d) ∈ R}. Then by
construction of R and Φ, R′ is a bisimulation between F and G.

Assume that there is a bisimulation R′ between F and G. We show that there
are non-deterministic choices that lead to the answer Yes. The idea is to ensure
that every (c,X, d) that belongs to R at some point corresponds to an element
(c, f, d) of R′. To ensure this, we must:

1. when choosing d in line 7, choose it such that there is (c, f, d) ∈ R′. It exists
by definition of a bisimulation.

2. when choosing Q in line 17, choose it in such a way that for every (c′, d′) ∈ Q,
there is (c′, f ′, d′) in R′ and that the element (c, f, d) ∈ R′ corresponding to
(c,X, d) satisfies that G(d ≤ d′) ◦ f = f ′ ◦ F (c ≤ c′). Such a Q always exists
since R′ is a bisimulation.

With this, the algorithm does not FAIL and the formula Φ is valid: the
assignment that map X to the corresponding f satisfies Φ. Consequently, the
algorithm answers Yes. Finally, this algorithm non-deterministically construct
in exponential space a formula of exponential size in the size of the data. By The-
orem 5, this algorithm is in NEXPSPACE. Consequently, by Savitch’s theorem
[15], since NEXPSPACE = EXPSPACE:

Theorem 8. Knowing if two finitary diagrams are bisimilar in real or in ratio-
nal numbers is decidable in EXPSPACE.

Example 5. Consider the two finitary diagrams at the end of this Section, F on
the left, G on the right. Let us apply a few steps of the algorithm on those two
diagrams:

1. Pick a and choose 0. At this point S = {1, 2, b, c, d}, var = [(X1, 1)] and
R = [(0,X1, a)] (we will only write the unmarked elements).
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2. Pick (0,X1, a) and choose Q = {(1, c), (2, d), (0, b)}. At this point, S = ∅,
var = [(X1, 1); (X2, 2); (X3, 1); (X4, 1)], R = [(1,X2, c); (2,X3, d); (0,X4, b)]
and lin = [

(
0
2

)
.X1 = X2.

(
1
0

)
; 6.X1 = X3; 2X1 = X4].

3. Pick (2,X3, d) and choose Q = ∅. At this point, R = [(1,X2, c); (0,X4, b)].
4. Pick (1,X2, c) and choose Q = {(2, d)}. At this point,

var = [(X1, 1); (X2, 2); (X3, 1); (X4, 1); (X5, 1)],

R = [(0,X4, b), (2,X5, d)] and

lin = [
(
0
2

)
.X1 = X2.

(
1
0

)
; 6.X1 = X3; 2X1 = X4;

(
4 3

)
.X2 = X5.

(
1 1

)
].

5. . . .

At the end, the algorithm produces

var = [(X1, 1); (X2, 2); (X3, 1); (X4, 1); (X5, 1); (X6, 2); (X7, 1); (X8, 1)]

and their linear equations:

lin = [
(
0
2

)
.X1 = X2.

(
1
0

)
; 6.X1 = X3; 2X1 = X4;

(
4 3

)
.X2 = X5.

(
1 1

)
;

(
0
1

)
.X4 = X6.

(
1
0

)
; 3.X4 = X7;

(
4 3

)
.X6 = X8.

(
1 1

)
].

The induced problem of invertible matrices is satisfiable, which means that both
diagrams are bisimilar.

0 1 2

1 2 1( 1
0

) (
1 1

)

a b c d

1 1 2 1(
2

) ( 0
1

) (
4 3

)

7.2 Decidability of the Model Checking

Starting with a finitary diagram F , an element c of its domain, and a positive
finitary object formula S, we inductively construct two lists, initially empty, as
previously:

– var of pairs (X,n) where X is a variable and n an integer. This will stand
for ∃nX.

– lin of equations A.X = Y.B where X and Y are variables and A and B are
matrices.

The formula S is of the form [n]P . We first check if n = F (c). If it is not the
case then we fail. Otherwise, let X be a fresh variable. Add the pair (X,n) to
var. Continue with F , c, X, and P .

Now, assume that we consider the following data: a finitary diagram F , an
element of its domain c, an X with (X,n) in var for some integer n and a positive
finitary morphism formula P . Several cases:
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– if P =?S′, continue with F , c and S′,
– if P = 	, stop,
– if P = P1∧P2, first continue with F , c, X and P1. When this part terminates,

continue with F , c, X and P2,
– if P = 〈M〉P ′, with M of size n1 × n2. If n1 
= F (c), then we fail. Otherwise,

non-deterministically choose an element c′ ≥ c, with F (c′) = n2. If such a c′

does not exist, then we fail. Then, create a fresh variable X ′, add (X ′, n2) to
var and M.X = X ′.F (c ≤ c′) to lin. Finally, continue with F , c′, X ′ and P ′.

If the algorithm does not fail, construct a formula Φ from var and lin as
previously and check if it is satisfiable using the existential theory of invertible
matrices. The formula Φ is non-deterministically constructed in polynomial time
and so is of polynomial size. So, this algorithm is in NPSPACE and again, by
Savitch’s theorem [15], since NPSPACE = PSPACE:

Theorem 9. Knowing if a finitary diagram satisfies a positive finitary formula
(either in real or in rational numbers) is decidable in PSPACE.

Example 6. Let us consider the following positive finitary formula

φ = [1]〈( 1
0

)〉〈( 1 1
)〉	.

It is not hard to check that F, 0 � φ, and so that G, a � φ (you can unroll the
algorithm, the identities will give a solution of the problem of matrices). Let H
be the following diagram:

0 1 2

1 2 1( 1
0

) (
0 1

)

We will show that H, 0 
� φ, and that H is not bisimilar to F and G. Let us
unroll the algorithm on H, 0 and φ. We are in the first case, and we create a
fresh variable X1 and var := [(X1, 1)]. We then continue the algorithm with H,
0, X1 and 〈( 1

0

)〉〈( 1 1
)〉	. We are then in the last case, and we can only choose

1 without failing. So, var = [(X1, 1); (X2, 2)] and lin = [
(
1
0

)
.X1 = X2.

(
1
0

)
].

We continue with H, 1, X2 and 〈( 1 1
)〉	. We still are in the last case and

we can only choose 2 without failing. So, var = [(X1, 1); (X2, 2); (X3, 1)] and
lin = [

(
1
0

)
.X1 = X2.

(
1
0

)
;
(
1 1

)
.X2 = X3.

(
0 1

)
]. Let us prove that we cannot

solve this problem of invertible matrices. If we could, we would have that:

X1 =
(
1 1

)
.
(
1
0

)
.X1 =

(
1 1

)
.X2.

(
1
0

)
= X3.

(
0 1

)
.
(
1
0

)
= 0

which is impossible since X1 must be invertible.
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8 Future Work

As a future work, we would like to investigate the case of diagrams with values
in Z-modules (that is, Abelian groups), i.e., diagrams with values in matrices
whose coefficients are integers, for which the existential theory is undecidable,
but for which we can still decide some problems of matrices. Another interesting
direction is the relation between our algorithm of Sect. 7 to find a bisimulation
and the final chain algorithm [1], which we let for a future work.

References
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Abstract. We introduce iposets—posets with interfaces—equipped
with a novel gluing composition along interfaces and the standard par-
allel composition. We study their basic algebraic properties as well as
the hierarchy of gluing-parallel posets generated from singletons by fini-
tary applications of the two compositions. We show that not only series-
parallel posets, but also interval orders, which seem more interesting
for modelling concurrent and distributed systems, can be generated, but
not all posets. Generating posets is also important for constructing free
algebras for concurrent semirings and Kleene algebras that allow com-
positional reasoning about such systems.

1 Introduction

This work is inspired by Tony Hoare’s programme of building graph models of
concurrent Kleene algebra (CKA) [14] for real-world applications. CKA extends
the sequential compositions, nondeterministic choices and unbounded finite iter-
ations of imperative programs modelled by Kleene algebra into concurrency,
adding operations of parallel composition and iteration, and a weak interchange
law for the sequential-parallel interaction. Such algebras have a long history in
concurrency theory, dating back at least to Winkowski [38]. Commutative Kleene
algebra—the parallel part of CKA—has been investigated by Pilling and Con-
way [3]. A double semiring with weak interchange—CKA without iteration—has
been introduced by Gischer [10]; its free algebras have been studied by Bloom and
Ésik [1]. CKA, like Gischer’s concurrent semiring, has both interleaving and true
concurrency models, that is, shuffle as well as pomset languages. Series-parallel
pomset languages, which are generated from singletons by finitary applications
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of sequential and parallel compositions, form free algebras in this class [21,25]
(at least when parallel iteration is ignored). The inherent compositionality of
algebra is thus balanced by the generative properties of this model. Yet despite
this and other theoretical work, applications of CKA remain rare.

One reason is that series-parallel pomsets are not expressive enough for
many real-world applications: even simple producer-consumer examples cannot
be modelled [27]. Tests, which are needed for the control structure of concurrent
programs, and assertions are hard to capture in models of CKA (see [19] and
its discussion in [20]). Finally, it remains unclear how modal operators could be
defined over graph models akin to pomset languages, which is desirable for con-
current dynamic algebras and logics beyond alternating nondeterminism [9,31].

A natural approach to generating more expressive pomset languages is to
“cut across” pomsets in more general ways when (de)composing them. This can
be achieved by (de)composing along interfaces, and this idea can be traced back
again to Winkowski [38]; see also [4,6,28] for interface-based compositions of
graphs and posets, or [15,29,30] for recent interface-based graph models for CKA.
As a side effect, interfaces may yield notions of tests, assertions or modalities.
When they consist of events, cutting across them presumes that they extend in
time and thus form intervals. Interval orders [7,37] of events with duration have
been applied widely in partial order semantics of concurrent and distributed
systems [17,22,23,33–36] and the verification of weak memory models [13], yet
generating them remains an open problem [18].

Our main contribution lies in a new class and algebra of posets with interfaces
(iposets) based on these ideas. We introduce a new gluing composition that acts
like standard serial po(m)set composition outside of interfaces, yet glues together
interface events, thus composing events that did not end in one component with
those that did not start in the other one. Our definitions are categorical so that
isomorphism classes of posets are considered ab initio. Their decoration with
labels is then routine, so that we may focus on posets instead of pomsets.

Our technical results concern the hierarchy of gluing-parallel posets generated
by finitary applications of this gluing composition and the standard parallel com-
position of po(m)sets, starting from singleton iposets.1 Thus all series-parallel
pomsets can be generated, but also all interval orders are captured at the sec-
ond alternation level of the hierarchy. Beyond that, we show that the gluing-
parallel hierarchy does not collapse and that posets with certain zigzag-shaped
induced subposets are excluded. A precise characterisation of the generated (i)
posets remains open. Series-parallel posets, by comparison, exclude precisely
those posets with induced N-shaped subposets; interval orders those with induced
subposets 2+2, which makes the two classes incomparable. Iposets thus retain
the pleasant compositionality properties of series-parallel pomsets and the wide
applicability of interval orders in concurrency and distributed computing.

In addition, we establish a bijection between isomorphism classes of interval
orders and certain equivalence classes of interval sequences [33], and we study
the basic algebraic properties of iposets, including weak interchange laws and a

1 There is only one singleton poset, but with interfaces, there are four singleton iposets.
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Levi lemma. The relationship between gluing-parallel ipo(m)set languages and
CKA is left for another article.

2 Posets and Series-Parallel Posets

A poset (P,≤P ) is a set P equipped with a partial order ≤P ; a reflexive, tran-
sitive, antisymmetric relation on P (for which we often write ≤). A morphism
of posets P and Q is an order-preserving function f : P → Q, that is, x ≤P y
implies f(x) ≤Q f(y). Posets and their morphisms define the category Pos.

A poset is linear if each pair of elements is comparable with respect to its
order. We write < for the strict part of ≤. We write [n], for n ≥ 1, for the discrete
n-poset ({1, . . . , n},≤), which satisfies i ≤ j ⇔ i = j. Additionally, [0] = ∅.

The isomorphisms in Pos are order bijections: bijective functions f : P → Q
for which x ≤P y ⇔ f(x) ≤Q f(y). We write P ∼= Q if posets P and Q are
isomorphic. We generally consider posets up-to isomorphism and assume that
all posets are finite.

Concurrency theory often considers (isomorphism classes of) posets with
points labelled by letters from some alphabet, which represent actions of some
concurrent system. These are known as partial words or pomsets. As we are
mainly interested in structural aspects of concurrency, we ignore such labels.

Series-parallel posets form a well investigated class that can be generated
from the singleton poset by finitary applications of two compositions. Their
labelled variants generalise rational languages into concurrency. For arbitrary
posets, these compositions are defined as follows.

Definition 1. Let P1 = (P1,≤1) and P2 = (P2,≤2) be posets.

1. Their serial composition is the poset P1;P2 = (P1 � P2,≤1 ∪ ≤2 ∪ P1 × P2).
2. Their parallel composition is the poset P1 ⊗ P2 = (P1 � P2,≤1 ∪ ≤2).

Here, � means disjoint union (coproduct) of sets. We generalise serial compo-
sition to a gluing composition in Sect. 4, after equipping posets with interfaces.

Serial and parallel compositions respect isomorphism, and [n+m] is isomor-
phic to [n] ⊗ [m] with isomorphism ϕn,m : [n + m] → [n] ⊗ [m] given by

ϕn,m(i) =

{
i[n] if i ≤ n,

(i − n)[m] if i > n .

Also note that parallel composition is the coproduct in Pos, hence ⊗ is also
defined for morphisms.

By definition, a poset is series-parallel (an sp-poset) if it is either empty or
can be obtained from the singleton poset by applying the serial and parallel
compositions a finite number of times. It is well known [12,32] that a poset is
series-parallel iff it does not contain the induced subposet N =

( · �� ·
· ��

����� ·
)
.2

2 This means that there is no injection f from N satisfying x ≤ y ⇔ f(x) ≤ f(y).
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Fig. 1. The producer-consumer example.

Sp-po(m)sets form double monoids with respect to serial and parallel com-
position, and with the empty poset as shared unit—in fact the free algebras in
this class. Compositionality of the recursive definition of sp-po(m)sets is thus
reflected by the compositionality of their algebraic properties, which is often
considered desirable for concurrent systems [36]. Yet sp-posets are, in fact, too
compositional for many applications: even simple consumer-producer problems
inevitably generate N’s [27], as shown in Fig. 1 that contains the N spanned by
c1, c2, p2, and p3 as an induced subposet among others.

3 Interval Orders and Interval Sequences

Interval orders [7,37] form another class of posets that are ubiquitous in con-
current and distributed computing. Intuitively, they are isomorphic to sets of
intervals on the real line that are ordered whenever they do not overlap.

Definition 2. An interval order is a relational structure (P,<) with < irreflex-
ive such that w < y and x < z imply w < z or x < y, for all w, x, y, z ∈ P .

Transitivity of < follows. An alternative geometric characterisation is that inter-
val orders are precisely those posets that do not contain the induced subposet
2+2 =

( · �� ·
· �� ·

)
.

The intuition is captured by Fishburn’s theorem [7], which implies that a
finite poset P is an interval order if and only if it has an interval representation:
a pair of functions b, e : P → Q into some linear order (Q,<Q) such that
b(x) <Q e(x) for all x ∈ P , and x <P y iff e(x) <Q b(y) for all x, y ∈ P . By the
first condition, pairs (b(x), e(x)) correspond to intervals I(x) = [b(x), e(x)] in Q;
by the second condition, x <P y iff I(x) lies entirely before I(y) in Q.

We write ρI(P ) for the set of interval representations of P . Each representa-
tion can be rearranged so that all endpoints of intervals are distinct ([11], Lemma
1.5). We henceforth assume that all interval presentations have this property. It
then holds that |Q| = 2|P |, and we can fix Q as the target type of any interval
representation of P .

Finally, with relation � on the set of maximal antichains of poset P given by

A � B ⇔ (∀x ∈ A \ B.∀y ∈ B \ A. x < y),

it is known that P is an interval order if and only if � is a strict linear order [8].
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Interval orders occur implicitly in the ST-traces of Petri nets [33]. In a pure
order-theoretic setting, these are interval sequences, that is, sequences of b(x)
and e(x), with x from some finite set P , in which each b(x) occurs exactly once
and each e(x) at most once and only after the corresponding b(x). An interval
sequence is closed if each e(x) occurs exactly once [33,36]. An interval trace [18]
is an equivalence class of interval sequences modulo the relations b(x)b(y) ≈
b(y)b(x) and e(x)e(y) ≈ e(y)e(x) for all x, y ∈ P . We write ≈∗ for the congruence
generated by ≈ on interval sequences. We identify interval sequences and interval
traces with the Hasse diagrams of their linear orders over Q.

Lemma 3. Let P be an interval order and (b, e) ∈ ρI(P ). Then (Q,<Q) is a
closed interval sequence.

Proof. Trivial. ��

We write σ(b,e)(P ) for the interval sequence of interval order P and (b, e) ∈ ρI(P ),
and Σ(P ) for the set of all interval sequences of interval representations of P .

Lemma 4. If σ ∈ Σ(P ) and σ ≈∗ σ′, then σ′ ∈ Σ(P ).

Proof. We show that σ ∈ Σ(P ) and σ ≈ σ′ imply σ′ ∈ Σ(P ). Suppose that
σ = σ1b(x)b(y)σ2 and σ′ = σ1b(y)b(x)σ2 and that (b, e) ∈ ρI(P ) generates σ.
Then (b′, e) with

b′(z) =

⎧⎪⎨
⎪⎩

b(y), if z = x,

b(x), if z = y,

b(z), otherwise

is in ρI(P ), as b′(x) <Q e(x), b′(y) <Q e(y) and, for all v, w ∈ P , v <P w ⇔
e(v) <P b(w) still holds. In addition, (b′, e) generates σ′. An analogous result for
σ = σ1e(x)e(y)σ2 and σ′ = σ1e(y)e(x)σ2 holds by opposition. The result for ≈∗

then follows by a simple induction. ��

Lemma 5. Let P be an interval order. If (b, e), (b′, e′) ∈ ρI(P ) assign b and e
to elements of P in interval sequences, then σ(b,e)(P ) ≈∗ σ(b′,e′)(P ).

Proof. Let ≺1 and ≺2 be the orderings of the interval sequences for (b, e) and
(b′, e′) in Q. Then b(x) ≺1 e(x) and b(x) ≺2 e(x) for all x ∈ X, and, for all
x, y ∈ X, e(x) ≺1 b(y) ⇔ e(x) ≺2 b(y). It follows that there is no b(z) in ≺1 or
≺2 between the positions of e(x) in ≺1 and ≺2 and, by opposition, there is no
e(z) in ≺1 or ≺2 between the positions of b(x) in ≺1 and ≺2. But this means
that the positions of e(x) and b(x) can be rearranged by ≈∗. ��

Proposition 6. If P is an interval order and (b, e) ∈ ρI(P ), then
[σ(b,e)(P )]≈∗ = Σ(P ). The mapping ϕ defined by ϕ(P ) = [σ(b,e)(P )]≈∗ is a
bijection.

Proof. By Lemmas 4 and 5, and by properties of interval representations. ��
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Fig. 2. Eight of 25 different iposets based on poset N.

4 Posets with Interfaces

An element s of poset (P,≤) is minimal (maximal) if v �< s (v �> s) holds for all
v ∈ P . We write Pmin (Pmax) for the sets of minimal (maximal) elements of P .

Definition 7. A poset with interfaces (iposet) consists of a poset P together
with two injective morphisms

[n] s
����

�� [m]t
�����

�
P

such that s[n] ⊆ Pmin and t[m] ⊆ Pmax.

Injection s : [n] → P represents the source interface of P and t : [m] → P its
target interface. We write (s, P, t) : n → m for the iposet s : [n] → P ← [m] : t.

Figure 2 shows some examples of iposets. Elements of source and target inter-
faces are depicted as filled half-circles to indicate the unfinished nature of the
events they represent.

Next we define a sequential gluing composition on iposets whose interfaces
agree and we adapt the standard parallel composition of posets to iposets.

Definition 8. Let (s1, P1, t1) : n → m and (s2, P2, t2) : � → k be iposets.

1. For m = �, their gluing composition is the iposet (s1, P1 �P2, t2) : n → k with
P1 � P2 =

(
(P1 � P2)/t1(i)=s2(i),≤1 ∪ ≤2 ∪ (P1 \ t1[m]) × (P2 \ s2[m])

)
.

2. Their parallel composition is the iposet (s, P1 ⊗ P2, t) : n + � → m + k with
s = (s1 ⊗ s2) ◦ ϕn,l and t = (t1 ⊗ t2) ◦ ϕm,k.

Parallel composition of iposets thus puts components “side by side”: it is the
disjoint union of posets and interfaces. Gluing composition puts iposets “one
after the other”, P1 before P2, but glues their interfaces together (and adds
arrows from all points in P1 that are not in its target interface to all points in
P2 that are not in its source interface). As explained in the introduction, it thus
glues events which did not end in P1 with those that did not start in P2. Figures 3
and 4 show examples. The filled half-circles in source and target interfaces are
glued to unfilled circles in these diagrams.
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Fig. 3. Two different decompositions of the N.

Fig. 4. Four gluings of different Ns with interfaces.

We define identity iposets idn = (id, [n], id) : n → n, for n ≥ 0. For conve-
nience, we generalise this notation to other discrete posets with interfaces: for
k, � ≤ n, we write kid�

n for the iposet (fn
k , [n], fn

� ) : k → �, where fn
k : [k] → [n]

is the (identity) injection x �→ x (similarly for fn
� ). Hence idn = nidn

n.

Proposition 9. Iposets form a small category with natural numbers as objects,
iposets (s, P, t) : n → m as morphisms, � as composition, and identities idn.

Checking the associativity and unit laws is routine. The following example
shows that gluing composition is not commutative, as expected:

0id11 � 1id01 = 0id01 = ( · ) �= ( · �� · ) = 1id01 � 0id11 .

Fig. 5. Non-isomorphic gluings of symmetric parallel compositions.
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Perhaps more unexpectedly, parallel composition need not be commutative,
as the namings of interfaces in P ⊗ Q may differ from those in Q ⊗ P . One can
of course rename interfaces using symmetries: iposets (s, [n], t) : n → n with s
and t bijective. Yet Fig. 5 shows two parallel compositions where renaming of
interfaces and gluing with another iposet yields non-isomorphic posets.

The iposets P : n → m, Q : k → � are mapped by ⊗ to P ⊗Q : n+k → m+�,
which has the signature of a tensor on the small category of Proposition 9. Yet
gluing and parallel composition need not satisfy an interchange law:

(0id01 ⊗ 0id01) � (0id01 ⊗ 0id01) =
( · ��

����
� ·

· ��
����� ·

)
�=

( · �� ·
· �� ·

)
= (0id01 � 0id01) ⊗ (0id01 � 0id01) .

Hence ⊗ is not a tensor, and iposets do not form a (strict) monoidal category
(let alone a PROP). This situation differs from gluing compositions where inter-
faces of iposets are defined by all minimal and maximal elements [38], and also
from sequential compositions with interfaces similar to ours but where interfaces
disappear and no other order is induced [6,28]. All of these give rise to PROPs.

Instead of the interchange law above, we will state a lax interchange law
in Proposition 12; the precise categorical relation between gluing and parallel
composition is left open for future work. What we will need here is that iposets
with ⊗ form a graded monoid over N ×N, i.e., that there is a grading function
(a monoid morphism) from iposets into N × N.

Proposition 10. Iposets form an N × N-graded monoid with composition ⊗
and unit id0.

The grading function maps an iposet P : n → m to the tuple (n,m), with
addition on tuples defined component-wise. The proof is routine.

A morphism of iposets is a commuting diagram

[n] s ��

ν

��

P

f

��

[m]t��

μ

��

[n′]
s′

�� P ′ [m′]
t′

��

where ν and μ are strictly order preserving with respect to <N and f is an
order morphism between P and P ′. Intuitively, iposet morphisms are thus order
morphisms that also preserve interfaces and their order in N. We write iPos for
the so-defined category.

An iposet morphism (ν, f, μ) is an isomorphism if ν, f and μ are order
isomorphisms. Hence n = n′, m = m′, ν = id : n → n, and μ = id : m → m
in the diagram above. In particular, iposets related by a symmetry (s, [n], t) :
n → n need not be isomorphic. We write P ∼= Q if there exists an isomorphism
ϕ : P → Q. The following lemma shows ⊗ and � respect isomorphisms.

Lemma 11. Let P, P ′, Q,Q′ be iposets. Then P ∼= P ′ and Q ∼= Q′ imply
P ⊗ Q ∼= P ′ ⊗ Q′ and P � Q ∼= P ′ � Q′.
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Proof. Let ϕ : P → P ′ and ψ : Q → Q′ be (the poset components of)
isomorphisms. Define the functions ϕ ⊗ ψ : P � Q → P ′ � Q′ and ϕ � ψ :
(P � Q)/tP (i)=sQ(i) → (P ′ � Q′)/tP ′ (i)=sQ′ (i) as

(ϕ� ψ)(x) =

{
ϕ(x) if x ∈ P,

ψ(x) if x ∈ Q ,

for � ∈ {⊗, �}. First, ϕ ⊗ ψ is obviously an isomorphism. Second, ϕ � ψ is well-
defined because ϕ ◦ tP (i) = ψ ◦ sQ(i) for all i ∈ [m], and easily seen to be an
isomorphism as well. ��

We write P � Q if there is a bijective (on points) morphism ϕ : Q → P
between iposets P and Q. Intuitively, P � Q if P has more arrows and is there-
fore less parallel than Q, while interfaces are preserved. Similar relations on
posets and pomsets, sometimes called subsumption, are well studied [10,12]. In
particular, � is a preorder on (finite) iposets and a partial order up-to isomor-
phism.

Proposition 12. For iposets P, P ′, Q,Q′, the following lax interchange law
holds:

(P ⊗ P ′) � (Q ⊗ Q′) � (P � Q) ⊗ (P ′ � Q′) .

Proof. Let P� = (P ⊗ P ′) � (Q ⊗ Q′) and Pr = (P � Q) ⊗ (P ′ � Q′). First,
P� = (P � Q)/tP ≡sQ

� (P ′ � Q′)/tP ′ ≡sQ′ = (P � Q � P ′ � Q′)tP ≡sQ,tP ′ ≡sQ′ = Pr,
by definition of ⊗. Hence both posets have the same points, and we may choose
ϕ : Pr → P� to be the identity. It remains to show that ϕ is order preserving,
which means that every arrow in Pr must be in P�.

Hence suppose x ≤Pr
y, that is, x ≤P�Q y or x ≤P ′�Q′ y. In the first case, if

x ≤P y or x ≤Q y, then x ≤P⊗P ′ y or x ≤Q⊗Q′ y and therefore x ≤P�
y; and

if x ∈ P \ tP and y ∈ Q \ sQ, then x ∈ P � P ′ \ tP⊗P ′ and y ∈ Q � Q′ \ sQ⊗Q′

and therefore x ≤P�
y, too. The second case is symmetric. Thus x ≤P�

y holds
in any case. ��

In sum, the algebra of iposets is similar to a concurrent monoid [14], but �
is a partial operation with many units idk. As ⊗ is not a tensor, the categorical
structure of iposets is somewhat unusual and deserves further exploration.

Proposition 13. Pos embeds into iPos as iposets with both interfaces [0], and
likewise for morphisms. The so-defined inclusion functor J : Pos → iPos is fully
faithful and the left adjoint to the forgetful functor F : iPos → Pos that maps
(s, P, t) to P . The category Pos is therefore coreflective in iPos. Under J , serial
(parallel) composition of posets becomes � (⊗) of iposets.

Proof. It is clear that J is a functor. It is full because any morphism f̃ from P :
0 → 0 to Q : 0 → 0 in iPos must have the form (∅, f, ∅) = Jf for some f in Pos.
It is faithful because Jf = (∅, f, ∅) = (∅, g, ∅) = Jg implies f = g. For P ∈ Pos
and Q̃ ∈ iPos, J induces a natural bijection J : Pos(P, FQ̃) ∼= iPos(JP, Q̃), hence
J and F are indeed adjoint. The observations about � and ⊗ are clear. ��
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5 Further Properties of Iposets

We now derive further algebraic properties of iposets before turning to the iposets
generated by gluing and parallel composition from singletons.

For an iposet P with order relation ≤ we write ‖ = �≤ ∩ �≥. Hence x ‖ y if
and only if x and y are incomparable and therefore independent.

First, in addition to the lax interchange in Proposition 12, we present an
equational interchange law as a witness that the equational theory of iPos given
by the laws in Propositions 9 and 10 is not free. The lemmas that follow then
show that this law is the only non-trivial additional identity.

Proposition 14 (Interchange). For all iposets P , Q and k, � ∈ {0, 1},

(kid11 ⊗ P ) � (1id�
1 ⊗ Q) = kid�

1 ⊗ (P � Q) .

Proof (sketch). The interface between kid11 and 1id�
1 forces these iposets to be

glued separately to the rest in the gluing composition (kid11 ⊗ P ) � (1id�
1 ⊗ Q). ��

On the one hand, the singleton iposets mentioned therefore do not interfere
with compositions. On the other hand, Proposition 14 shows that some iposets
can be decomposed both with respect to � and ⊗.

Let S = {kid�
1 | k, � = 0, 1} denote the set of singleton iposets and C1 ={

P1 ⊗ · · · ⊗ Pn

∣∣ P1, . . . , Pn ∈ S
}

the set of discrete iposets. The next lemma
shows a kind of converse to the previous one: if an iposet is both �-decomposable
and ⊗-decomposable, then all components but one must be in S.

Lemma 15 (Decomposition). Let P = P1⊗P2 = Q1�Q2 such that P1 �= id0,
P2 �= id0, and Q1 �= kidn

n, Q2 �= nidk
n for any k ≤ n. Then P1 ∈ C1 or P2 ∈ C1.

Proof. Suppose P1 /∈ C1 and P2 /∈ C1. Then P contains a 2+2: there are w, x ∈ P1

and y, z ∈ P2 for which w <P x, y <P z, w ‖P y, w ‖P z, x ‖P y, and x ‖P z.
If w, y /∈ Q2, then w, y ∈ Q1 \ tQ1 . As Q2 �= nidk

n for any k ≤ n, there must
be an element v ∈ Q2 \ sQ2 . But then w ≤P v and y ≤P v, which yields arrows
between w ∈ P1 and y ∈ P2 that contradict P = P1 ⊗P2. A dual argument rules
out that x, z /∈ Q1.

It follows that w ∈ Q2 or y ∈ Q2. Assume, without loss of generality, that
w ∈ Q2. Then x ∈ Q2 \ sQ2 because w <P1 x. Now if also y ∈ Q2, then by the
same argument, z ∈ Q2 \ sQ2 . Hence Q2 contains two different points that are
not in its starting interface; and as Q1 \ tQ1 is non-empty, this again establishes
a connection between x ∈ P1 and z ∈ P2 which cannot exist. Hence y /∈ Q2, but
then y ∈ Q1 \ tQ1 , so that y ≤P x, which contradicts x ‖P y. ��

The next lemma generalises Levi’s lemma for words [26].

Lemma 16 (Levi property). Let P � Q = U � V . Then there is an R so that
either P = U � R and R � Q = V , or U = P � R and R � V = Q.
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Proof (sketch). Obviously, P � Q and U � V have the same carrier set. By the
assumption it is partitioned into three (disjoint) sets such that either P = U �R
and R � Q = V , or U = P � R and R � V = Q. In the first case, it follows that
P � Q = U � R � Q and it remains to show that P � Q = U � R � Q. If there are
no interfaces, this is easy to see; otherwise, the proof is somewhat more tedious.
The proof for the second case is similar. ��

It is instructive to find the two cases in the decomposition of N in Fig. 3.
Levi’s lemma is a factorisation property: every P � Q = U � V factorises

either as U �R �Q or as P �R �V . Hence gluing decompositions are equal up-to
associativity (and unit laws). For parallel composition, a Levi property as above
does not hold, so we state a decomposition lemma directly:

Lemma 17. Assume P1 ⊗ · · · ⊗ Pn = Q1 ⊗ · · · ⊗ Qm, where each Pi and Qj

are (weakly) connected and not equal to id0. Then n = m, and there exists a
permutation σ : [n] → [n] such that Pi = Qσ(i) for each i ∈ [n].

Proof. Let P = P1 ⊗ · · · ⊗ Pn, then P1, . . . , Pn are the connected components of
P , but so are Q1, . . . , Qm; the claim follows. ��

The lemmas in this section are helpful for characterising the iposets generated
by � and ⊗ from singletons. This is the subject of the next section.

6 Generating Iposets

Recall that S is the set of singleton iposets. It contains the four iposets 0id01,
0id11,

1id01 and 1id11, that is,

[0] → [1] ← [0] , [0] → [1] ← [1] , [1] → [1] ← [0] , [1] → [1] ← [1] ,

with mappings uniquely determined. We are interested in the sets of iposets
generated from singletons using � and ⊗. Strictly speaking, 0id01 should not
count as a generator: it is equal to 0id11 � 1id01 by Proposition 14. We may view S
as a (directed) graph or quiver on vertices 0, 1.

Definition 18. The set of gluing-parallel iposets ( gp-iposets) is the smallest
set that contains the empty iposet id0 and the singleton iposets in S and that is
closed under gluing and parallel composition.

Theorem 19. The gp-iposets are freely generated by the graph S in the vari-
ety of small categories (viewed as partial algebras) satisfying the equations of
Propositions 9, 10 and 14.

Proof (sketch). Suppose (A, �,⊗, (1i)i≥0) is any category on N satisfying the
equations of Propositions 9, 10 and 14. Let ϕ : S → A be any graph morphism
that maps 0 to 0 and 1 to 1. We need to show that ϕ extends to a unique iposet
morphism ϕ̂.
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We can generate any idn from parallel compositions of id1. For any i ≥ 0, we
map ϕ̂(idi) �→ 1i, and we map any other singleton p ∈ S as ϕ̂(p) = ϕ(p). For
complex iposets we proceed by induction on the number of elements, assuming
that homomorphism laws hold for iposets with n elements.

If the top composition of the size n+1 iposet P is �, then an inductive appli-
cation of Lemma 16 implies that the �-decomposition of P is unique (up to
associativity and unit laws), and we use associativity of � to establish the
homomorphism property of ϕ̂. For ⊗ we proceed likewise, using the unique-
decomposition property of Lemma 17. Finally, if the top composition is ambigu-
ous, then Lemma 15 forces the configuration in which Proposition 14 can be
applied, yielding a parallel composition of the same size. Finally, this extension
is unique, as it was forced by the construction.

For a more detailed proof, care need to be taken because morphisms between
partial algebras need to be compatible with the definedness conditions of partial
operations. The notion of free partial algebra can be found in Burmeister’s lec-
ture notes [2]. Categories are single-sorted partial algebras through their object-
free axiomatisation [24]. ��

Next we define hierarchies of iposets generated from S. (Removing 0id01 from
S would change the hierarchy only for at most the first two alternations of � and
⊗.) For any Q ⊆ iPos and � ∈ {⊗, �}, let

Q� = {P1 � · · · � Pn | n ∈ N, P1, . . . , Pn ∈ Q} .

Then define C0 = D0 = S and, for all n ∈ N,

C2n+1 = C⊗
2n , D2n+1 = D�

2n , C2n+2 = C�
2n+1 , D2n+2 = D⊗

2n+1

(this agrees with the C1 notation used earlier). Finally, let

S̄ def=
⋃
n≥0

Cn =
⋃
n≥0

Dn

be the set of all iposets generated from S by application of ⊗ and �.

Lemma 20. For all n ∈ N, Cn ∪ Dn ⊆ Cn+1 ∩ Dn+1.

Proof. We need to check the inclusions Cn ⊆ Cn+1, Dn ⊆ Dn+1, Cn ⊆ Dn+1 and
Dn ⊆ Cn+1. The first two are trivial by construction. For the third one, note
that C0 ⊆ C�

0 = S� = D�
0 = D1. Since Cn is constructed from C0 by the same

alternations of ⊗ and � as Dn+1 is constructed from D1, the inclusion holds. The
proof of the fourth inclusion is similar. ��

Theorem 21. An iposet is in C2 if and only if it is an interval order.

Proof. For the forward direction, suppose P � Q ∈ C2. First it is clear that all
elements of C1 are interval orders, so we will be done once we can show that the
gluing composition of two interval orders is an interval order. This is precisely the
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Fig. 6. Two interval orders and their concatenation: above as iposets, below using their
interval representations. (Labels added for convenience.)

proof of Lemma 15: if P �Q contains a 2+2, then so do P or Q. Yet we also give
a direct construction: Let σP be the interval sequence for interval representation
(bP , eP ) of P : n → m and σQ the interval sequence for interval representation
(bQ, eQ) of Q : m → k. Then concatenate σP and σQ, rename bP , bQ as b and
eP , eQ as e, delete e(tP (i)), b(sQ(i)) and replace e(sQ(i)) with e(tP (i)) for each
i ∈ [m]. This yields the interval sequence for interval representation (b, e) of
P � Q and P � Q is therefore an interval order. Figure 6 gives an example.

For the backward direction, let P be an interval order and AP its set of
maximal antichains. Then AP is totally ordered by the relation � defined in
Sect. 3. Now write AP = {P1, . . . , Pk} such that Pi � Pj for i < j. Then each
Pi is an element of S⊗. Write s1 : [n1] → P ← [nk+1] : tk for the sources and
targets of P .

For i = 2, . . . , k, let [ni] = Pi−1 ∩ Pi be the overlap and si : [ni] ↪→ Pi,
ti−1 : [ni] ↪→ Pi−1 the inclusions. Together with s1 and tk this defines iposets
si : [ni] → Pi ← [ni+1] : ti. (Note that s1 : [n1] → P1 because P1 is the minimal
element in AP ; similarly for tk : [nk+1] → Pk.) It is clear that P = P1 � · · · � Pk;
see also [16, Prop. 2]. ��

In order to compare with series-parallel posets, we construct a similar hier-
archy for these. Let T0 = U0 = S0 = {0id01} and, for all n ∈ N,

T2n+1 = T ⊗
2n , U2n+1 = U�

2n , T2n+2 = T �
2n+1 , U2n+2 = U⊗

2n+1 .

Then, because any element of any Tn or Un has empty interfaces and because �
is serial composition for all iposets with empty interfaces, we see that

S̄0
def=

⋃
n≥0

Tn =
⋃
n≥0

Un
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is the set of series-parallel posets. Note that Tn ⊆ Cn and Un ⊆ Dn for all n,
hence also S̄0 ⊆ S̄. Now S̄0 contains precisely the N-free posets whereas N is an
interval order. Therefore N ∈ C2, which implies the next lemma. On the other
hand, we will show below that S̄0 �⊆ Cn for any n.

Lemma 22. C2 �⊆ S̄0.

Lemma 23. C1 ∪ D1 � C2 ∩ D2, i.e., there is an iposet with two non-trivial
different decompositions.

Proof. Directly from Proposition 14. ��

Next we show that the Cn hierarchy is infinite, by exposing a sequence of
witnesses for C2n−1 � C2n for all n ≥ 1.

Let Q = 0id01, P1 = Q � Q, and for n ≥ 1, Pn+1 = Q � (Pn ⊗ Pn). Note that
all these are series-parallel posets. Graphically:

P1 = ( · �� · ) P2 =
( · �� ·

·
�����
����

�
· �� ·

)
P3 =

⎛
⎜⎜⎜⎜⎝

· �� ·
·

�����
����

�
· �� ·

·
������

		�
��

�
· �� ·

·
�����
����

�
· �� ·

⎞
⎟⎟⎟⎟⎠ . . .

Lemma 24. Pn ∈ C2n \ C2n−1 for all n ≥ 1.

Proof. By induction. For n = 1, P1 /∈ C1, but Q ∈ C0 ⊆ C1 and hence P1 =
Q � Q ∈ C2 = C�

1 .
Now for n ≥ 1, suppose C2n−1 �� Pn ∈ C2n. We use Lemma 15 to show that

Pn ⊗ Pn ∈ C2n+1 \ C2n: Obviously Pn ⊗ Pn ∈ C2n+1 = C⊗
2n. If Pn ⊗ Pn ∈ C2n =

C�
2n−1, then Pn ⊗ Pn = Q1 � · · · � Qk for some Q1, . . . , Qk ∈ C2n−1. Yet Pn /∈ C1,

which contradicts Lemma 15.
Now to Pn+1 = Q � (Pn ⊗ Pn). Trivially, Pn+1 ∈ C2n+2 = C�

2n+1. Suppose
Pn+1 ∈ C2n+1 = C⊗

2n. Pn+1 is connected, hence not a parallel product, so that
Pn+1 must already be in C2n = C�

2n−1 and therefore Pn+1 = R1 � R2. Then, by
Levi’s lemma, there is an iposet S such that either Q = R1�S and S�(Pn⊗Pn) =
R2 or R1 = Q � S and S � R2 = Pn ⊗ Pn. In the second case, S � R2 = Pn ⊗ Pn,
which again contradicts Lemma 15; in the first case, both R1 and S must be
single points (with suitable interfaces), so that either R1 = 0id11 and R2 = Pn+1

(with an extra starting interface) or R1 = Q and R2 = Pn ⊗ Pn. This shows
that Pn+1 = Q� (Pn ⊗Pn) is the only non-trivial �-decomposition of Pn+1. Thus
Pn ∈ C2n−1, a contradiction, and therefore Pn+1 /∈ C2n+1. ��

Corollary 25. C2n−1 � C2n for all n ≥ 1, hence the Cn hierarchy does not
collapse, and neither does the Dn hierarchy.

Proof. The last statement follows from D2n−2 ⊆ C2n−1 � C2n ⊆ D2n+1. ��
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Corollary 26. For all n ∈ N, S̄0 �⊆ Cn and S̄0 �⊆ Dn.

Proof. As explained already above, Pn ∈ S̄0 for all n. This and Lemma 24 imply
the first statement. The second one follows from Cn ⊆ Dn+1. ��

We have seen that the Cn and Dn hierarchies are properly infinite and contain
the set of sp-posets only in the limit S̄ =

⋃
n≥0 Cn =

⋃
n≥0 Dn.

Finally, we turn to the question of characterising this limit S̄ geometrically.
Given that a poset is series-parallel if and only if if it does not contain an induced
subposet isomorphic to N, we aim for a similar characterisation of gp-(i)posets
using forbidden subposets. We expose five such subposets, but leave the question
of whether there are others to future work.

Define the following five posets on six points:

NN =
( · �� ·

· ��
����� ·

· ��
����� ·

)
M =

( · �� ·
· ��

����� ·
· ��

����� ·

)
W =

( · �� ·
· ��

����� ·
· �� ·

�����

)

3C =
( · ��

		�
��

� ·
· ��

����� ·
· ��

����� ·

)
LN =

( · �� · �� ·
· ��



������� · �� ·
)

Proposition 27. If P ∈ S̄, then P does not contain NN, M, W, 3C, or LN as
an induced subposet.

Proof. We only show the proof for NN; the others are very similar and are left
to the reader. We can assume that P is connected. We use structural induction,
noting that all P ∈ S are NN-free, so it remains to show that P � Q is NN-free
whenever P and Q are.

By contraposition, suppose P � Q contains the induced sub-NN

⎛
⎝ a �� b

c ��

������ d
e ��

��				 f

⎞
⎠.

Then we show that either P or Q also have an induced sub-NN.
Assume first that a ∈ Q. Then a ≤Q b, hence also b ∈ Q, but b /∈ Qmin, that

is, b /∈ sQ. Now e �≤P�Q b, which forces e ∈ tP and therefore e ∈ Q. This in turn
implies that d, f ∈ Q and in particular e ≤Q f . Thus f /∈ Qmin and therefore
f /∈ sQ, which forces c ∈ tP and therefore c ∈ Q. This shows that the NN lies
entirely in Q.

Finally assume that a /∈ Q. Then a ∈ P \ tP , and as a �≤P�Q d and a �≤P�Q f ,
we must have d, f ∈ sQ and therefore d, f ∈ P . This forces c, e ∈ P and in
particular e ≤P f . Thus e /∈ Pmax, whence e /∈ tP . This in turn forces b ∈ sQ

and therefore b ∈ P . This shows that NN lies entirely in P . ��

7 Experiments

We have encoded most of the constructions in this paper with Python to exper-
iment with gluing-parallel (i)posets. Notably, Proposition 27 is, in part, a result
of these experiments.3 Our prototype is rather inefficient, which explains why
some numbers are “n.a.”, that is, not available in Table 1.
3 Our software is available at http://www.lix.polytechnique.fr/∼uli/posets/.

http://www.lix.polytechnique.fr/~uli/posets/
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Table 1. Different types of posets with n points: all posets; sp-posets; gp-posets;
(weakly) connected gp-posets; iposets with starting interfaces only; iposets; gp-iposets.

n P(n) SP(n) GP(n) GPC(n) SIP(n) IP(n) GPI(n)

0 1 1 1 1 1 1 1

1 1 1 1 1 2 4 4

2 2 2 2 1 5 17 16

3 5 5 5 3 16 86 74

4 16 15 16 10 66 532 419

5 63 48 63 44 350 n.a 2980

6 318 167 313 233 n.a n.a 26566

Using procedures to generate non-isomorphic posets of different types, we
have used our software to verify that

1. all posets on five points are in S̄ and therefore gp-posets;
2. NN, M, W, 3C, and LN are the only six-point posets that are not in S̄.

We provide tables of gluing-parallel decompositions of posets in an extended
version [5] to prove these claims.

We have also used our software to count non-isomorphic posets and iposets of
different types, see Table 1. We note that P and SP are sequences no. A000112
and A003430, respectively, in the On-Line Encyclopedia of Integer Sequences
(OEIS).4 Sequences GPC, SIP, IP, and GPI are unknown to the OEIS.

The single iposet on two points which is not gluing-parallel is the symmetry
[2] : 2 → 2 with s(1) = 1, s(2) = 2, t(1) = 2, and t(2) = 1. The prefix of GP we
were able to compute equals the corresponding prefix of sequence no. A079566
in the OEIS,(see footnote 4) which counts the number of connected (undirected)
graphs which have no induced 4-cycle C4. We leave it to the reader to ponder
upon the relation between gp-posets and C4-free connected graphs.
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Abstract. Lenses are a useful algebraic structure for giving a unifying
semantics to program variables in a variety of store models. They support
efficient automated proof in the Isabelle/UTP verification framework. In
this paper, we expand our lens library with (1) dynamic lenses, that
support mutable indexed collections, such as arrays, and (2) symmetric
lenses, which allow partitioning of a state space into disjoint local and
global regions to support variable scopes. From this basis, we provide
an enriched program model in Isabelle/UTP for collection variables and
variable blocks. For the latter, we adopt an approach first used by Back
and von Wright, and derive weakest precondition and Hoare calculi. We
demonstrate several examples, including verification of insertion sort.

1 Introduction

The use of algebraic structures for derivation of verification tools using theo-
rem provers has been shown to be a successful and flexible approach [1–4]. It
allows us to precisely and abstractly characterise the formal semantics of a spec-
trum of languages utilising different computational paradigms, including hybrid
systems, concurrency, pointers, and probability. Once a suitable algebraic struc-
ture is fixed, a large array of axiomatic verification calculi can be generated,
including Hoare logic [1], differential dynamic logic [4], separation logic [2], and
rely-guarantee calculus [3]. This approach has significant advantages over con-
crete intermediate verification languages (IVLs) [5,6], since it allows us to unify
languages and verification calculi at the algebraic level, and so promotes reuse.

Nevertheless, the underlying algebras for program verification largely focus on
the point-free programming operators – those that do not explicitly characterise
program variables – such as sequential composition (�) and non-deterministic
choice (�). Kleene Algebra with Tests (KAT) [3,7], for example, can charac-
terise every operator of imperative while-programs, but is not sufficient to fully
capture assignment, substitution, frames, and local variable blocks. Operators
that manipulate the store via variables have to be defined in the model rather
than the algebra [1,3]. This technically hampers the reuse of theorems across
various languages. At the same time, an algebra of state should allow efficient
use of automated proof facilities, so as to support scalable verification tools.
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Lenses [8–10] allow us to characterise variables as abstract algebraic objects,
which can be composed and manipulated. They provide a generic founda-
tion for verification tools that can maximise proof automation in tools like
Isabelle [11,12]. Although originating from a different intellectual stream [8],
lenses are essentially Back and von Wright’s variable manipulation functions [13].
However, lenses are also equipped with several operators that allow us to com-
pose state space query operations in sequence and in parallel, for example.
Lenses are the foundation for state modelling in our verification framework,
Isabelle/UTP [10,14,15], which allows the use of UTP semantic models in devel-
oping program verification tools.

In previous work [10], we showed how lenses capture a variety of store models.
In this paper, we extend our basic lens model in two ways. Firstly, we develop
support for indexed collections, which requires the development of dynamic
lenses. Secondly, we add support for local variables, for which we harness the
work of Hoffmann et al. on symmetric lenses [16] that allow us to partition the
state space into global and local variable scopes. This allows us to determine
whether a particular assignment can be moved outside of a block. From this
foundation, we adapt Back and von Wright’s block operators [13], and prove
Hoare logic theorems. Symmetric lenses allow us to unify a variety of variable
block approaches, including extensible records [17] and list-based stacks [18].

In order to illustrate these features, consider the insertion sort algorithm:

Example 1.1 (Insertion Sort).

function insertion-sort(arr : [int ]array)
var i , j : nat •
for i := 1 to (length(arr) − 1)do

j := i �

while (0 < j ∧ arr [j ] < arr [j − 1]) do
(arr [j − 1], arr [j ]) := (arr [j ], arr [j − 1]) � j := j − 1

od od

It introduces two local variables, i and j , that are used to index into the
array. The outer loop iterates through the list using i , and the inner loop inserts
element i in the correct position into arr [0...i−1], using j to count down. To give
this a semantics, we need to (1) allow assignment to the indices of a collection,
and (2) extend the state space to add i and j as local variables. Our goal is
to support this abstract algorithmic presentation directly in our tool, through a
shallow embedding, and provide syntax-directed reasoning support.

Our approach reduces reasoning about programs to proving properties of the
state space. It is therefore applicable to any language semantics with an explicit
state space model, including reactive [11] and hybrid languages [4,19]. The app-
roach is therefore abstract, but also maximises Isabelle’s proof automation.

The structure of this paper is as follows. After consideration of related work in
Sect. 2, we describe how lenses give an algebraic semantics to variables in Sect. 3.
In Sect. 4 we give an overview of Isabelle/UTP. In Sect. 5, we consider how a state
space can be manipulated using lens operators. In Sect. 6 we describe dynamic

https://github.com/isabelle-utp/utp-main/blob/bee1f650ce9a5f2f6faf7e5d76da99d4265cd5f0/utp/examples/insertion_sort.thy
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lenses, which are needed for collections, like arrays. In Sect. 7, we describe our
algebraic characterisation of symmetric lenses, and exhibit several models. In
Sect. 8, we use symmetric lenses to implement local variable blocks. In Sect. 9
we use all the aforementioned results to verify insertion sort in Isabelle/UTP.
Finally, in Sect. 10, we conclude.

All definitions and theorems are mechanised in Isabelle/UTP, and are often
accompanied by an icon ( ) linking to the corresponding repository artefact.

2 Related Work

Isabelle/UTP [10,14,15,20] is a semantic framework for verification tools based
in Hoare and He’s Unifying Theories of Programming (UTP) [21]. It is broadly
comparable to IVLs like Boogie [5] and Why3 [6], but harnesses algebraic
and denotational semantic techniques, for application to languages of multiple
paradigms. The UTP relational program model is built as a shallow embed-
ding [20] in Isabelle/HOL, and so we compare with similar techniques in this
prover.

Simpl is an IVL developed by Schirmer in Isabelle/HOL [17,22]. It is used in
the AutoCorres verification platform [23] that was applied in the seL4 project1. It
uses state monads augmented with exceptions to model low-level code. Our aim
is to support the features and efficiency of Simpl, but using relational calculus
and algebra to characterise language features abstractly so that they can be
transferred between semantic models. Their work does not provide an algebraic
semantics for variables, which we provide by lenses, but their comprehensive
study of state space modelling techniques is a strong foundation for us [22].

Dongol et al. [24] characterise variables algebraically using Cylindric Kleene
Lattices, which extend Kleene algebra with Cylindrification to support quan-
tification. This, in turn, allows expression of both frames and local variable
blocks. Their work is largely complementary to ours, since we focus on the alge-
braic semantics of the variables themselves. They use ordinals as indices into
an implicit state space, whereas we characterise the state space explicitly. Our
use of lenses also allows us to harness type checking and proof automation in
Isabelle.

3 State Space Modelling with Lenses

Here, we review lenses [10], which give algebraic semantics to variables. Novelties
include the list-lens and a more precise presentation compared to previous work
[10]. We use the notation X : V =⇒ S when X is a lens that characterises a
V -shaped subregion of a state space S . For instance, in a state space A×B , we
can define two lenses: fstAB : A =⇒ A × B and sndAB : B =⇒ A × B , that select
the respective components. As usual [8], we define lenses using two functions:

1 The seL4 microkernel verification project: http://sel4.systems.

http://sel4.systems
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Definition 3.1. A lens is a quadruple X � (V ,S , get, put), where V and S are
non-empty sets called the view type and state space, respectively, and get : S → V
and put : S → V → S are total functions. We often subscript get and put with
the name of a lens. We define createX v � putX (εs • s ∈ S ) v , which constructs
an arbitrary, but fixed, state using Hilbert’s choice (ε) and puts v into it.

For example, fstAB � (A,A × B , λ(x , y) • x , λ x ′ (x , y) • (x ′, y)), selects and
updates the first element of a pair, leaving the second element unchanged. Lenses
provide an intuitive and obvious way to model variables in a state space (cf. [13,
18]), which can be queried and updated using the two functions. Intuitively, we
can think of them as pointers to distinct regions of a memory store modelled
by S . As previously highlighted [10,22], there are a variety of possible memory
models, and lenses provide a uniform algebraic interface for them.

Lenses provide the starting point for the UTP relational calculus [21], which
has a model for imperative programs, including operators like sequential compo-
sition (P � Q), conditional (P � b �Q), and assignment (x := e). Assignment is
polymorphic over any lens x , provided that e matches its view type (see Sect. 4).

The behaviour of lenses is constrained by three intuitive axioms:

get (put s v) = v (L1) put (put s v ′) v = put s v (L2) put s (get s) = s (L3)

L1 states that a value put can be retrieved. L2 states that an earlier put is
overwritten by a later put. L3 states that retrieving a value and then putting
it back yields the original state. We distinguish total lenses, that obey all three
axioms, from partial lenses that obey only L1 and L2. The fst and snd lenses
are both total. A further example of a total lens is the total function lens:

fun-lensB (x : A) � (B ,A → B , λ f • f x , λ f v • f (x := v))

It points to the value associated with a particular domain element x . It is useful,
for instance, when the state space has type Name → Value, which associates a
named variable with a value in a given universe. The get function simply applies
f , and the put function updates the value associated with x . It is clear that this
lens obeys all three laws. We also define a relation called independence, X �� Y ,
that characterises when two lenses view disjoint regions of the state space:

X �� Y � ∀(s, u, v) •
⎛
⎝

putX (putY s v) u = putY (putX s u) v
∧ getX (putY s v) = getX s
∧ getY (putX s u) = getY s

⎞
⎠ if SX = SY

It is defined only when the state spaces are the same: SX = SY . X and Y
are independent provided applications of put commute, and each get function is
unaffected by the corresponding put function. If X and Y are both total lenses,
then the second and third conjuncts can be omitted. X �� Y means that X and
Y do not interact, for example fun-lensB (i) �� fun-lensB (j ), provided that i �= j .

Partial lenses, which do not obey L3, are motivated by partial structures,
such as arrays and heaps. The cells of an array can be modelled using list lenses:

https://github.com/isabelle-utp/utp-main/blob/f3e03d5c8ce6893399af117ee80c13c6a198d9b4/optics/Lens_Laws.thy
https://github.com/isabelle-utp/utp-main/blob/bee1f650ce9a5f2f6faf7e5d76da99d4265cd5f0/optics/Lens_Instances.thy#L17
https://github.com/isabelle-utp/utp-main/blob/bee1f650ce9a5f2f6faf7e5d76da99d4265cd5f0/optics/Lens_Laws.thy#L309
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list-lensA(i : N) � (A, [A]list, λ xs • xs ! i , λ xs v • xs[i := v ])

A lens list-lensA(i) : A =⇒ [A]list points to the ith element of an inductive list
of values drawn from A. The HOL operator xs ! i returns the ith element of xs,
or an arbitrary element of A if i ≥ #xs, where #xs is the length. The operator
xs[i := v ] updates the ith element to take value v . If xs is not long enough to
hold v , it is first expanded by filling in the extra elements with arbitrary values.
Here, list-lens and fun-lens are both examples of lenses indexed by a set. As for
fun-lens, we have it that list-lensB (i) �� list-lensB (j ) provided that i �= j .

Clearly, list-lens satisfies both L1 and L2: we can always place a value in the
ith component, potentially several times, and retrieve it. However, it does not
satisfy L3. When a list is too short (i ≥ #xs), list-lens(i) returns an arbitrary
value, which, if placed at i , alters the list structure and violates L3. Consequently,
whilst fun-lens is a total lens, list-lens is only partial, and the same follows for
data structures like partial functions. Nevertheless, as we shall see, partial lenses
are sufficient to support most of the laws we need for verification calculi.

A useful class of state space is induced by records. In Isabelle/UTP, we can
define a state type rec-typ � [x1 : A1 · · · xm : Am ] for m fields, each with a given
type. Technically, it is isomorphic to a product type A1 × · · · × Am , but with
named lenses for manipulating each field. The alphabet command automates
the creation of these lenses, and generates theorems that xi �� xj for any i �= j .

State types can also be extended: rec-typ2 � rec-typ + [y1 : B1 · · · yn : Bn ],
which allows hierarchy. This approach is used in the IVL Impl [17] to represent
local variables, and here we adopt a similar approach. The lenses are polymor-
phic: xi : Ai =⇒ [α]rec-typ-ext, where the parameter α allows application of xi to
both rec-typ and extensions thereof, such as rec-typ2 with α ∼= Am+1 × · · ·×An .
This is important, as it means that the same lens name can be used in different
state spaces: xi can both have the type Ai =⇒ rec-typ and Ai =⇒ rec-typ2.

4 Relational Programs in Isabelle/UTP

In this section, we briefly introduce the foundations of Isabelle/UTP, which is a
shallow embedding of UTP [21] in Isabelle/HOL. UTP is based on a variant of
Tarski’s relational calculus [25] where each relation is “alphabetised”, meaning it
is parameterised by the set of variables to which it can refer. In Isabelle/UTP,
we instead opt to have relations parameterised by their state space type S , and
variables are then lenses viewing this type. We can therefore use the Isabelle type
system to ensure well-formedness: only relations and predicates with compatible
alphabets can be composed using the Boolean and relational connectives.

Expressions are total functions: [V ,S ]expr � (S → V ), for some state space S
and type V . Operators can be pointwise lifted and applied to them, for example,
if e, f : [N,S ]expr, then e+f denotes λ s : S • e s+f s. If x and y are lenses, then
we can use them in expressions: x + y denotes λ s : S • getx s + gety s. We can
determine whether e depends on part of the state using the unrestriction [10]:

https://github.com/isabelle-utp/utp-main/blob/bee1f650ce9a5f2f6faf7e5d76da99d4265cd5f0/optics/Lens_Instances.thy#L17
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Definition 4.1. (x � e) � (∀(s, v) • e (putx s v) = e s)

Lens x is unrestricted in e, written x � e, when updating its value using put has
no effect on the valuation of e. This can occur, for example, when x is a variable
that e does not refer to. Unrestriction distributes through lifted functions [10].

Substitutions between two states spaces are modelled with functions, σ :
S1 → S2. A substitution can be updated using σ(x �→ e). A heterogeneous sub-
stitution can be constructed using �x1 �→ e1, · · · , xn �→ en�, when xi : Ai =⇒ S2
and ei : [Ai ,S1]expr, which is a set of simultaneous updates. A homogeneous sub-
stitution, where S1 = S2, can be constructed similarly but using square brackets:
[x �→ e, · · · ]. The difference between these two is that the former gives arbitrary
values to unassigned variables, whereas the latter copies the original values.
Substitutions can also be composed function-wise, σ ◦ ρ, which corresponds to
applications of the updates in ρ followed by those in σ.

We can apply a substitution to an expression using σ † e � e ◦ σ, which
likewise composes the substitution and expression functions. Although this may
seem redundant, it is useful to distinguish a separate operator to enable bespoke
rewrite laws in Isabelle. Then, we can obtain the traditional substitution oper-
ator: p[e/x ] � [x �→ e] † p. Substitutions then obey a number of useful laws:

Theorem 4.2. If x and y are partial lenses, then the following laws hold:

σ(x �→ e, y �→ f ) = σ(y �→ f , x �→ e) if x �� y (1)
σ(x �→ e, x �→ f ) = σ(x �→ f ) (2)

σ(x �→ v) ◦ ρ = (σ ◦ ρ)(x �→ (σ † v)) (3)
σ(x �→ e) † x = e (4)
σ(x �→ v) † e = σ † e if x � e (5)

Substitution updates commute when made to independent lenses (1), and can
cancel earlier ones (2). Substitutions can be composed, and (3) shows how to pull
out a variable update to the left-most substitution. These laws can be used to
show that [x �→ u] ◦ [y �→ v ] is equivalent to [x �→ u[v/y ], y �→ v ], when x �� y .
Substitution application distributes through functions in the obvious way, and
can be applied to variable expressions (4). If x is unrestricted in an expression,
then any assignment to this variable can be dropped (5).

We define predicates, [S ]pred � [bool,S ]expr, relations, [S1,S2]rel � [S1 ×
S2]pred, and the usual operators over them. Predicates and relations are ordered
by refinement (
). We import theorems for structures like complete lattices,
quantales, and Kleene algebras [2,3,10]. With substitutions, it is easy to define
a generalised assignment operator, in the style of Back and von Wright [13]: 〈σ〉,
which lifts a substitution to a relation in the obvious way. This satisfies a useful
law, 〈σ〉 � 〈ρ〉 = 〈ρ ◦ σ〉, which allows us to combine sequential assignments.
Assignments can then be constructed with x := e � 〈[x �→ e]〉, and combin-
ing with non-deterministic choice (�) we define non-deterministic assignment:
x := ∗ �

�

v∈Vx
x := v . These definitions satisfy the laws of programming [26].

https://github.com/isabelle-utp/utp-main/blob/f3e03d5c8ce6893399af117ee80c13c6a198d9b4/utp/utp_unrest.thy#L50
https://github.com/isabelle-utp/utp-main/blob/bee1f650ce9a5f2f6faf7e5d76da99d4265cd5f0/utp/utp_subst.thy
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5 State Space Manipulation

Here, we show how to manipulate state spaces, and coerce variables and expres-
sions between them. We use two additional relations, that are defined using get
and put [10]: (1) X � Y : the view of lens X is contained within the view of Y ;
(2) X ≈ Y : the views of X and Y are isomorphic. These are both heterogeneous
operators that can relate lenses with different view types. Relation � forms a
preorder and ≈ is an equivalence relation. Ordering is needed because lenses can
characterise both variables and sets thereof. We compose lenses, thus combining
their respective views, using the pairing operator:

Definition 5.1 (Lens Pairing).

X ⊕ Y �
(
VX × VY ,SX , (λ s • (getX s, getY s)),
(λ s (u, v) • putX (putY s v) u)

)
when SX = SY ,X �� Y

Lens pairing combines two independent lenses with the same state space, creating
a lens whose view type is VX × VY . The get function pairs the results of the
get functions for X and Y , while its put function puts each element using the
respective put. Using this, a set of variables, {x , y , z} can be characterised by
a lens, for example, by the summation x ⊕ y ⊕ z . Moreover, we have it that
X � X ⊕ Y , since X ⊕ Y views more of the state space than X .

We define two basic total lenses: 1S � (S ,S , λ s • s, λ s v • v) whose view
and state space are identical, and 0S � ({∅},S , λ s • ∅, λ s v • s), whose view
type is unitary. Intuitively, 1 characterises the entirety of S , and 0 characterises
none of it, and cannot distinguish any states. Consequently, we have 0 � X and
X � 1 , since these are the least and most distinguishing lenses, respectively.

For variable blocks, we need expansion and contraction of the state space, for
both lenses and expressions. For lenses, we define the composition and quotient:

Definition 5.2 (Lens Composition and Quotient).

X ; Y �
(
VX ,SY , getX ◦ getY ,
(λ s v • putY s (putX (getY s) v))

)
when SX = VY

X /Y �
(
VX ,VY , getX ◦ createY ,
(λ s v • getY (putX (createY s) v))

)
when SX = SY

X ; Y has been previously defined [8]. It selects a subregion V1, characterised by
X : V1 =⇒ V2, of a larger region V2, characterised by Y : V2 =⇒ S . Intuitively,
Y denotes a sub-space of S , X is a variable of this sub-space, and so X ; Y � Y .
We sometimes write obj:attr for the composition attr ; obj .

We believe the quotient operator, X /Y is novel2. Provided that X : V1 =⇒ S
is constructed by composition of Y : V2 =⇒ S and Z : V1 =⇒ V2, we have it
that X /Y = Z . The get function first creates an arbitrary state and populates
the V2 region with the incoming state. It then uses the getX function to obtain

2 The similarly named quotient lens of Foster et al. [9] is a rather different concept.

https://github.com/isabelle-utp/utp-main/blob/bee1f650ce9a5f2f6faf7e5d76da99d4265cd5f0/optics/Lens_Algebra.thy#L38
https://github.com/isabelle-utp/utp-main/blob/bee1f650ce9a5f2f6faf7e5d76da99d4265cd5f0/optics/Lens_Algebra.thy#L83
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the V1 element. The assumption is that all the information needed to construct
a V1 can be obtained from V2. The put function creates an S element, uses putX
to update this with v : V1, and finally applies getY to obtain a V2 element.
Again, the assumption is that putX will only manipulate data within V1.

Lens quotient gives rise to some useful, and intuitive, properties.

Theorem 5.3. (X ; Y )/Y = X (X /X ) = 1 X /1 = X

The first identity gives the intuition of quotient: it removes the second element
of a composition. The second identity shows that if we remove a lens from itself,
then only a residual 1 remains. The third identity shows that removal of 1 has
no effect, because of course X ; 1 = X .

In addition, we need to expand and contract the state space of expressions:

Definition 5.4. We fix X : S1 =⇒ S2, expressions e : [A,S1]expr and f :
[B ,S2]expr, and define: e ↑X � e ◦ getX and f ↓X � f ◦ createX

Here, X is a lens that describes how S1 is embedded into a larger space S2. The
first operator, e ↑X , extends the state space of e to be S2, and the second, f ↓X ,
restricts it to be S1. These operators coerce an expression to have a different type,
for use in a context with a different state space. They satisfy several theorems.

Theorem 5.5 (State Space Extension and Restriction).

(f e1 · · · en) ↑A = f (e1 ↑A · · · en ↑A)
x ↑A = A:x

A �� B ⇒ B � (e ↑A)

(f e1 · · · en) ↓A = f (e1 ↓A · · · en ↓A)
x ↓A = x/A

(e ↑A) ↓A = e

Both extension and restriction distribute through function application in the
obvious way. Extension of a lens expression entails a lens composition, and
restriction entails a lens quotient. If we extend an expression’s state space, e ↑A,
then the resulting expression does not depend on a lens B that is independent of
A. The reason is that the original state space of e is characterised by A. Finally,
we have it that restriction is the inverse of extension. The converse theorem does
not hold, because restricting a state space may result in a loss of information.

We can define e� � e ↑ fst, e� � e ↓ fst, and e� � a ↑ snd, that characterise
relational preconditions and postconditions. Specifically, e� lifts an expression on
S to one on S × S , thus turning a predicate into a relation. We can characterise
initial and final variables, x� and x�, in the style of notations like Z. We can
also define weakest preconditions, P wp b � (P � b�)�, and also the Hoare triple,
{ p }Q { r } � (p� ⇒ q�) 
 Q . These definitions admit, as theorems, the usual
laws [27,28]. For example, we have the assignment law, { p[v/x ]} x := v { p },
for any lens x , and the more general {σ † p } 〈σ〉 { p }.

https://github.com/isabelle-utp/utp-main/blob/bee1f650ce9a5f2f6faf7e5d76da99d4265cd5f0/optics/Lens_Algebra.thy#L402
https://github.com/isabelle-utp/utp-main/blob/bee1f650ce9a5f2f6faf7e5d76da99d4265cd5f0/utp/utp_alphabet.thy
https://github.com/isabelle-utp/utp-main/blob/bee1f650ce9a5f2f6faf7e5d76da99d4265cd5f0/utp/utp_hoare.thy
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6 Dynamic and Collection Lenses

In this section we give semantics to the notation x [i ], which refers to the ith
element of a collection x . We model x with a lens that points to a collection, such
as a list, and i with an index expression. The generality of the lens axioms means
that we can define x [i ] itself to be a type of lens, which we call the collection lens.
Consequently, we can manipulate it like any other lens, employing the theorems
of Sect. 4. In order to define this, we first need to define dynamic lenses:

Definition 6.1. We fix sets A and B that denote elements and collections, and
a set I of indices. We assume a family of I -indexed lenses F : I → (A =⇒ B)
and an expression e : B → I . A dynamic lens is defined as follows:

dyn-lensF e � (A,B , λ s • getF(e s) s, λ s v • putF(e s) s v)

Intuitively, a dynamic lens points to the eth element of the indexed lens F .
Since e is an expression, it can change value, and consequently the current index
depends on the state space. The get and put function both instantiate the indexed
lens with e applied to the current state, and then apply its respective get and
put function. From this definition, we can prove the following closure theorem:

Theorem 6.2. We assume that, for all i : I , e does not refer to F i , that is
(F i) � e, and F i is a partial or total lens. We can then show that dyn-lensF e
is a partial or total lens, respectively.

The intuition is that F i must satisfy the lens axioms, for all indexes, and the
index expression e should not itself refer to the F i , to avoid self references. From
this definition, we can now define collection lenses:

Definition 6.3 (Collection Lenses). We fix F : I → (A =⇒ B), a lens
indexed by the set I . Then, given a lens x : B =⇒ S , for some state space S ,
and an index expression e : S → I , a collection lens is defined as follows:

x [e] � dyn-lens (λ i : I • F i ; x ) e

The collection lens, x [e], is a dynamic lens where the underlying indexed lens
F is applied after selection of the collection location in the lens x . It is clear
that Theorem 6.2 can be applied here too, provided that x is also a total lens.
The intuition of the collection lens is perhaps clearer if we consider a concrete
example where F = fun-lens. In this case, we can prove the following identity:

(x [i ] := e) = (x := x (i := e))

An assignment to x [i ] frames the remainder of the state, and thus x takes its
original value with the i index updated. We can also derive the identity:

(x [i ] := e � x [j ] := f ) = (x [j ] := f � x [i ] := e)

whenever i �= j , x [i ] � f , and x [j ] � e, by using the generalised assignment laws.

https://github.com/isabelle-utp/utp-main/blob/bee1f650ce9a5f2f6faf7e5d76da99d4265cd5f0/utp/utp_collection.thy#L9
https://github.com/isabelle-utp/utp-main/blob/bee1f650ce9a5f2f6faf7e5d76da99d4265cd5f0/utp/utp_collection.thy#L12
https://github.com/isabelle-utp/utp-main/blob/bee1f650ce9a5f2f6faf7e5d76da99d4265cd5f0/utp/utp_collection.thy#L47
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In Isabelle/UTP, we make F an overloaded polymorphic constant that asso-
ciates a suitable indexed lens to a collection type. In many situations, x [e] is a
partial lens, since it is only meaningful when x is a collection where the key e is
defined. For example, the assignment (arr [j − 1], arr [j ]) := (arr [j ], arr [j − 1]) in
Example 1.1 is meaningful only when j < #arr . Thus, when verifying programs
with collection lenses, it is necessary to guard them with definedness predicates.

7 Symmetric Lenses

Symmetric lenses [16] stand in contrast to the lenses that were introduced in
Sect. 3, which are “asymmetric” because, once a view has been extracted from
a source, it is not possible to reconstruct the source from the view alone [16].
Symmetric lenses are effectively lenses of type V × C =⇒ S , where C is the
“complement” of V with respect to S – the remainder of S once V is removed.
In general, it is not possible to compute the complement of an asymmetric lens.
Symmetric lenses thus capture the notion of partitioning the state into disjoint
regions. These regions are represented by two lenses, which we refer to as the
view and the coview, and for a given symmetric lens X , we write VX and CX to
represent them. Such a partitioning of the state space is fundamental to framing
of certain variables, and allows us to distinguish the global and local store.

To characterise symmetric lenses, we must capture both the disjointness of
the view and coview, and the fact that, taken together, they cover the state
space. Coverage is captured by first combining the view and coview into a pairing
VX ⊕ CX , and requiring that this covers the state space. Such a definition is
provided for by the concept of bijective lenses, defined below.

Definition 7.1. A partial bijective lens satisfies L1, and also put s v = put s ′ v .
A (total) bijective lens satisfies L1, and also put s (get s ′) = s ′.

For total bijective lenses, we require that getting the view of s ′ and putting it into
s replaces the whole of s with s ′. For a partial lens, get may return an incorrect
value for states outside its domain, so a partial bijective lens is characterised by
put s v = put s ′ v . This captures the property that put replaces the state space,
without constraining get. A bijective lens fulfils all the axioms of a partial or
total lens, but it is sufficient to require L1, so the overall definition of a bijective
lens is as shown above. We can now define symmetric lenses:

Definition 7.2. A (partial) symmetric lens X � (V, C) over a state space S is
a pair of (partial) total lenses, V : V1 =⇒ S and C : V2 =⇒ S such that (1)
V �� C, and (2) V⊕C is a (partial) bijective lens. We denote the set of symmetric
lenses between V1 × V2 and S with the notation [V1,V2] ⇐⇒ [S ].

As an example of a symmetric lens, consider X � (fstA, sndB ). These lenses are
clearly independent, and fstA ⊕ sndB provides a view of the entire product, so
it is a bijective lens. Thus, X is a (total) symmetric lens.

A more interesting example is the list symmetric lens, the view and coview
of which are the head and tail of a list. Formally, they are the head lens, hdA :

https://github.com/isabelle-utp/utp-main/blob/bee1f650ce9a5f2f6faf7e5d76da99d4265cd5f0/optics/Lens_Laws.thy#L233
https://github.com/isabelle-utp/utp-main/blob/bee1f650ce9a5f2f6faf7e5d76da99d4265cd5f0/optics/Lens_Symmetric.thy
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A =⇒ [A]list, and the tail lens, tlA : [A]list =⇒ [A]list. The head lens is defined
in terms of the list lens: hdA � list-lensA(0). The tail lens is defined as tlA �
([A]list, [A]list, tl , λ xs v • hd xs�v). It gets the tail of the list, and puts xs as the
tail of the new list, preserving the old head. These lenses are independent, since
they operate on different parts of a list. The head lens, as an instance of the list
lens, is a partial lens, since it is not defined for an empty list. The list symmetric
lens is thus an example of a partial symmetric lens, since putting a list head and
tail replaces the whole list. We note that the tail lens has the same view and
source types. This is an important property for allowing variable blocks based
on such symmetric lenses to be recursed on [18], as we discuss in Sect. 8.

Another symmetric lens is induced by record state spaces, each of which
induces two regions: the base region, which consists of the defined fields
(x0 · · · xm), and the extension region, with any additional fields (y0 · · · yn). These
can be characterised by base : rec-typ =⇒ [α]rec-typ-ext and more : α =⇒
[α]rec-typ-ext, where base �� more and base ⊕ more is a bijective lens. Conse-
quently, for a record we define all � (base,more), which forms a total symmetric
lens. Moreover, we have it that xi � base, for 0 ≤ i ≤ m, and yj � more, for
0 ≤ j ≤ n.

The polymorphic nature of a record lens means that type coercions can be
handled easily, as the following theorem shows.

Theorem 7.3. xi ; base = xi and xi/base = xi whenever xi � base

Composition and quotient using the base lens corresponds to moving it into and
out of an extended state space. Since xi : Vi =⇒ [α]rec-typ-ext is polymorphic,
such a coercion yields the same lens but with a different type. These laws are
important for when moving a global variable into a local scope in Sect. 8.

8 Variables Blocks

Having defined symmetric lenses, and demonstrated several models, we now
use these to characterise local variable blocks. The basic idea is to implement
operators analogous to begin and end from Back and von Wright [13, § 5.6], that
grow and shrink the state space with additional variables.

Here, however, we fix a symmetric lens X : [S2,C ] ⇐⇒ [S1] to give a concrete
semantics to scope expansion and contraction. Intuitively, S2 is the global state
space, S1 extends S2 with local variables, and C is the complement of S2 wrt. S1.
Then we have it that VX characterises the global state region of S1, and CX the
local state region. The symmetric lens allows us to distinguish global and local
variables, so that we can determine whether an assignment can be moved outside
a block or not. Unlike [13], where types are implicit, we have to explicitly handle
type coercion when a variable and expression moves between state spaces.

We give the following program that swaps two variables as a running example:

Example 8.1. swap(x , y : int) � var z : int • (z := y � y := x � x := z )

https://github.com/isabelle-utp/utp-main/blob/bee1f650ce9a5f2f6faf7e5d76da99d4265cd5f0/utp/examples/local_var.thy
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It creates a third variable, z , and then uses this as a temporary store in which
to place the value of y . We show how this can be modelled and verified in
Isabelle/UTP, with the aim of supporting the larger insertion sort example in
Sect. 9. We first define substitutions that extend and contract the state space.

Definition 8.2 (Extension and Contraction Substitutions).

extX � �VX �→ v, CX �→ εv • v ∈ V2� conX � �v �→ VX �

Here, extX : S2 → S1 and conX : S1 → S2 are heterogeneous substitutions.
Extension assigns the original state (v : S2) to the view lens (VX ), and assigns
an arbitrary but fixed element of C to the coview lens. Effectively this extends
the state space, retaining the values for the global variables, and assigning an
arbitrary value to the local ones. Contraction, conversely, assigns the view lens
to the entire state lens, leading to the loss of the local state. Extension and
contraction satisfy the theorem below:

Theorem 8.3. Any symmetric lens X satisfies conX ◦ extX = idS2

Specifically, if we extend a state space and then contract it, we always get the
original state space back. The converse of this law does not hold since contracting
a state space, of course, loses the local state stored in the coview. Moreover, the
law only follows for total symmetric lenses since extending and then contract-
ing using a partial lens can alter the state. It is now straightforward to define
relations that open and close a block using the substitutions:

Definition 8.4 (Blocks). openX � 〈extX 〉 � CX := ∗ closeX � 〈conX 〉
Here, openX : [S2,S1]rel first extends the state space and then non-
deterministically assigns a value to the coview, replacing the arbitrary but fixed
value. Also, closeX simply contracts the state space. We prove a useful law:

Theorem 8.5. Any symmetric lens X satisfies openX � closeX = II.

Aside from being an important property of variable blocks, this law allows us to
introduce a local variable block at any point in a program, which can facilitate
step-wise refinement. We now prove three algebraic laws for variable blocks and
assignments, which are adapted from [13, page 102].

Theorem 8.6 (Variable Block Laws).

x := v � openX = openX � VX :x := (v ↑ VX ) (6)

y := v � closeX = closeX when y � CX (7)

x := v � closeX = closeX � (x/VX ) := (v ↓ VX ) when x � VX , CX � v (8)

An assignment to a global variable x can be pushed into a variable block (6).
We have to coerce both the variable and the assigned expression using lens
composition and the state space extension operators, respectively. An assignment
to a local variable y � CX at the end of a block is lost (7). An assignment to a

https://github.com/isabelle-utp/utp-main/blob/bee1f650ce9a5f2f6faf7e5d76da99d4265cd5f0/utp/utp_blocks.thy#L15
https://github.com/isabelle-utp/utp-main/blob/bee1f650ce9a5f2f6faf7e5d76da99d4265cd5f0/utp/utp_blocks.thy#L28
https://github.com/isabelle-utp/utp-main/blob/bee1f650ce9a5f2f6faf7e5d76da99d4265cd5f0/utp/utp_blocks.thy#L55
https://github.com/isabelle-utp/utp-main/blob/bee1f650ce9a5f2f6faf7e5d76da99d4265cd5f0/utp/utp_blocks.thy#L75
https://github.com/isabelle-utp/utp-main/blob/bee1f650ce9a5f2f6faf7e5d76da99d4265cd5f0/utp/utp_blocks.thy#L91
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Fig. 1. Modelling swap, and its properties in Isabelle/UTP

global variable in a block can be moved past the end (8). Again, it is necessary to
coerce the variable and expression, using lens quotient and state space restriction,
this time to contract the state space. Moreover, this law only applies when the
expression does not refer to local variables, given by the condition CX � v . These
latter two laws show how the symmetric lens allows us to distinguish local and
global variables. We can also derive a Hoare logic law for variable blocks:

Theorem 8.7. If { p ↑ VX }S { q ↑ VX } then { p } openX � S � closeX { q }
The intuition is that p and q must be augmented with additional variables in
the enlarged state space, and references to global variables must be type cast.

We can now model the algorithm in Example 8.1. First, we need to create
global and local state spaces and a suitable symmetric lens. The global state
space can be described by global � [x : int , y : int ], as explained in Sect. 3. This
gives rise to base : global =⇒ [α]global-ext and more : α =⇒ [α]global-ext, which
together form a symmetric lens all . Moreover, the local state can be described by
the record local � global+ [z : int ], and so we specialise global ’s base lens, base,
to have type global =⇒ local. In Isabelle/UTP, local can be generated on-the-fly
in a record block, to support the syntax given in Example 8.1. This approach,
using extensible records for variable blocks, is used in Simpl [17].

An implementation is shown in Fig. 1, along with several theorems. We con-
struct global using the alphabet command, and then define swap, with a near
identical representation to Example 8.1. The decorations &z and U(·) are hints
to parser with no semantic content. The machinery for creating local and instan-
tiating the symmetric lens is hidden behind the var construct, though we have
to explicitly state that we are using the all symmetric lens from the global state
space. We then prove three theorems. The first one calculates a weakest precon-
dition, the second a Hoare triple, and the final one shows that swap can actually
be replaced by a simultaneous assignment, assuming this is supported.

While the use of records in blocks provides strong typing, the fact that the
all symmetric lens changes the type of the state space means it cannot be used
in recursive functions. This was previously observed by Back and Preoteasa [18].
To handle recursion, the symmetric lens must describe a global state with the
same type as the overall state space (which includes both global and local). As
mentioned previously, (hdA, tlA) is such a lens, and so is its converse (tlA, hdA).

https://github.com/isabelle-utp/utp-main/blob/f3e03d5c8ce6893399af117ee80c13c6a198d9b4/utp/examples/local_var.thy
https://github.com/isabelle-utp/utp-main/blob/bee1f650ce9a5f2f6faf7e5d76da99d4265cd5f0/utp/utp_blocks.thy#L103
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Fig. 2. Insertion sort in Isabelle/UTP

This symmetric lens creates variable blocks that push an arbitrary value onto
the start of a list, creating a stack semantics.

The fact that the list symmetric lens forms a partial lens creates the need
for domain checks when variables in the list are accessed. Such checks can be
avoided by using a state space with a function from natural numbers to values
instead of a list. We define head and tail lenses on such a state space as follows:

hdfA � (A,N → A, λ f • f 0, λ f v n • v �n = 0� f n)

tlfA � (N → A,N → A, λ f n • f (n + 1), λ f v n • f 0�n = 0� f (n − 1))

These head and tail lenses are total lenses, since they are defined on a total
function. We can thus define a total symmetric lens using them in a similar
way to the list symmetric lens. These lenses can also be lifted to a state space
with additional global state in a similar way to the list symmetric lens. We have
mechanised these definitions in Isabelle/UTP and proved the resultant lens is
indeed a total symmetric lens. We have also proved properties for a swap function
using this symmetric lens as we did for the record symmetric lens. This shows
the flexibility of our lens-based approach to local variables: list or function lenses
can be used where support for recursion is required, while record lenses can be
used where the added structure of Isabelle’s type system is desired.

9 Insertion Sort

Here, we show how we have used the collected results of the previous sections
to verify the insertion sort algorithm in Isabelle/UTP. We model the algorithm
using both collection lenses and symmetric lens variable blocks, as shown in
Fig. 2. In order to ease verification, we split the algorithm into two definitions:
one for the inner loop (insert-elem), and one for the outer loop (insertion-sort).
Both are specified as functions that take the list to be sorted, xs, as a parameter.

https://github.com/isabelle-utp/utp-main/blob/f3e03d5c8ce6893399af117ee80c13c6a198d9b4/utp/examples/insertion_sort.thy
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Fig. 3. Insertion sort verification

The syntax of the program broadly follows that given in Example 1.1. The
only significant deviation is that we have manually constructed a symmetric lens
lv that uses an explicit local state space. This is so that i and j can be referred
to as global names in the Isabelle theory, to enable description of the invariants.
The outer program itself operates on a state space where only arr is present,
and the other variables are introduced by open and close.

As usual [1], our loop construct supports invariant annotation, using the invr
keyword. The invariant of the inner loop (I xs) is not shown due to its complexity.
The outer loop invariant states that (1) 0 < i ≤ #arr , it is within the array
bounds; (2) the array in the range 0 · · · i−1 is sorted; and (3) arr is a permutation
of the original list xs. The function sorted : [A]list → bool determines that a list
is sorted by a predefined total order on A, and perm : [A]list → [A]list →
bool states two lists have the same elements, including repetitions. Both of the
latter functions are provided as part of the Isabelle/HOL library. Function nths :
[A]list → [nat ]set → [A]list gives the elements of a list described by an index set.

The program is verified using Hoare logic as shown in Fig. 3. The proof is
quite long, due to the number of proof obligations, and some manual effort is
required. This seems mainly due to missing lemmas, and so in future the proof
should be more automated (cf. [12]). Nevertheless, for now we omit details of the
proof steps. The first Hoare triple demonstrates that the inner loop preserves
the invariant of the outer loop. The outer loop shows that, when provided with
a non-empty list a sorted permutation of xs is returned in arr .

10 Conclusions

In this paper we have shown how lenses support modelling and verification of
algorithms in the Isabelle/UTP tool [11]. We introduced dynamic lenses, that
allow us to handle collections, and symmetric lenses, that allow partitioning of
the state space into disjoint regions. Collection lenses allow us to generically char-
acterise a variety of different indexed collection types in Isabelle/UTP, including
arrays and maps. Symmetric lenses [16] allow us to characterise state partition-
ing, and we have used them here to distinguish local and global variables scopes.
Due to typed nature of our state spaces, coercions are necessary when moving
between scopes, which we can also handle using lenses. Our conclusion is that
algebraic characterisation in this way is both flexible and practical, as our verifi-
cation of insertion sort demonstrates. Moreover, since our characterisation sits at

https://github.com/isabelle-utp/utp-main/blob/f3e03d5c8ce6893399af117ee80c13c6a198d9b4/utp/examples/insertion_sort.thy
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the state space level, our results are applicable to paradigms beyond imperative
programming, such as reactive [11] and hybrid programming [4,19].

In future work, we will explore symmetric lenses and their properties further.
We note that there are several different models for symmetric lenses, including
extensible records, lists, and total functions, each with unique advantages. We
can use extensible records to support variables with native type checking, but
they cannot support recursion, as for example required by quicksort, due to a
priori bounding of the state space. In contrast, list and function symmetric lenses
overcome this limitation, but require a fixed element type. Our mechanisation
thus allows us chose the best model for a particular circumstance. In the future,
we will perform a detailed comparison of the different models.
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Abstract. FL2-algebras are lattice-ordered algebras with two sets of
residuated operators. The classes RA of relation algebras and GBI of gen-
eralized bunched implication algebras are subvarieties of FL2-algebras.
We prove that the congruences of FL2-algebras are determined by the
congruence class of the respective identity elements, and we character-
ize the subsets that correspond to this congruence class. For involutive
GBI-algebras the characterization simplifies to a form similar to relation
algebras.

For a positive idempotent element p in a relation algebra A, the dou-
ble division conucleus image p\A/p is an (abstract) weakening relation
algebra, and all representable weakening relation algebras (RWkRAs)
are obtained in this way from representable relation algebras (RRAs).
The class S(dRA) of subalgebras of {p\A/p : A ∈ RA, 1 ≤ p2 = p ∈ A} is a
discriminator variety of cyclic involutive GBI-algebras that includes RA.
We investigate S(dRA) to find additional identities that are valid in all
RWkRAs. A representable weakening relation algebra is determined by
a chain if and only if it satisfies 0≤1, and we prove that the identity 1≤0
holds only in trivial members of S(dRA).

Keywords: Relation algebras · Residuated lattices · Bunched
implication algebras

1 Introduction

Tarski defined a relation algebra (A,∧,∨,¬,⊤,⊥, ; ,⌣ , 1, 0) to be an algebra that
satisfies a short list of identities that hold in all algebras of binary relations on a
set: (A,∧,∨,¬,⊤,⊥) is a Boolean algebra, (A, ; , 1) is a monoid, ; and ⌣ distribute
over ∨, x;⊥ = ⊥ = ⊥;x, 0 = ¬1, x⌣⌣ = x, (xy)⌣ = y⌣x⌣ and x⌣ · ¬(xy) ≤ ¬y.

An interesting generalization is to consider algebras of weakening closed
binary relations on partially ordered sets P=(P, ≤). A relation R⊆P 2 is weakening
closed or a weakening relation if x′

≤ x R y ≤ y′ implies x′ R y′, or equivalently,
≤;R;≤ ⊆ R. The collection of all weakening relations on P is denoted Wk(P). If
R is weakening closed, so is its complement-converse Rc⌣

= {(y, x) | (x, y) ∉ R}.
This unary operation is denoted by ∼R.

c© Springer Nature Switzerland AG 2020
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Weakening relations are also closed under union, intersection, Heyting impli-
cation → (= residual of intersection), relation composition ; and residuals \, / of
composition. The partial order relation ≤ is a weakening relation and, since it is
the identity of composition, it is denoted by 1. The complement-converse of 1 is
denoted by 0. The full weakening relation algebra on a poset P is

Wk(P) = (Wk(P),∩,∪,→, P 2,∅, ; , ∼, 1, 0).

The residuals \, / are omitted since they are definable via x \ y = ∼(∼y;x)
and x / y = ∼(y; ∼x). The variety RWkRA of representable weakening relation
algebras is generated by the class {Wk(P) | P is a poset}. When the poset is
an antichain, or equivalently, when ≤ is the identity relation then Wk(P) is the
usual full relation algebra Rel(P ) since in this case R→∅=Rc is the complement
of R, and ∼(Rc) = R⌣ is the converse of R. Hence RWkRA contains the variety
RRA of all representable relation algebras (which is generated by all full relation
algebras).

Some applications of weakening relation algebras were given by Stell [22,23]
in the area of image processing and hypergraphs. Since the lattice reducts of
weakening relation algebras are Heyting algebras rather than Boolean algebras,
weakening relations can be thought of as intuitionistic relations.

The variety RWkRA retains many of the algebraic properties of RRA, as
shown in [8] and reviewed in Sect. 3. The aim of this paper is to investigate
the identities that hold in RWkRA. We do this in the more general context of
generalized bunched implication algebras, residuated lattices, and FL2-algebras
(defined below) in order to point out some of the syntactic symmetries of weaken-
ing relation algebras and to relate this variety to some other well-studied classes
of algebras.

A residuated lattice is of the form (A,∧,∨, ·, \, /, 1) such that (A,∧,∨) is a
lattice, (A, ·, 1) is a monoid, and for all x, y, z ∈A the residuation property holds:

xy ≤ z ⇐⇒ x ≤ z/y ⇐⇒ y ≤ x\z.

A full Lambek algebra or FL-algebra (A,∧,∨, ·, \, /, 1, 0) is a residuated lattice
with an additional constant 0, hence FL-algebras are also called pointed resid-
uated lattices. The residuation property implies that x(y ∨ z) = xy ∨ xz and
(x ∨ y)z = xz ∨ yz hence FL-algebras include idempotent semirings as reducts.
In fact any finite idempotent semiring expands uniquely to an FL-algebra in
which 0 is the bottom element. Hence FL-algebras are closely related to many
computational algebraic theories, such as Kleene algebras, Kleene lattices and
Pratt’s action algebras.

FL-algebras and their reducts cover the algebraic semantics of a large num-
ber of logics, including classical propositional logic, intuitionistic logic, relevance
logic, multi-valued logic, Hajek’s basic logic, abelian logic, BCK-logic and many
others. However they do not capture bunched implication logic or the logic
of relation algebras (also known as arrow logic). Bunched implication logic is
an integral part of separation logic, a Hoare logic for reasoning about pointer
structures and concurrent programs [19–21]. Generalized bunched implication



Weakening Relation Algebras and FL2-algebras 119

algebras were defined in [7] to provide a common algebraic version of bunched
implication algebras and relation algebras.

In this paper we introduce FL2-algebras in order to give a new defini-
tion of relation algebras and bunched implication algebras that exposes inter-
esting symmetries of both algebraic theories. A FL2-algebra is of the form
A = (A,∧,∨,◇,→,←, t, f, ·, \, /, 1, 0) such that

At = (A,∧,∨,◇,→,←, t, f) and A1 = (A,∧,∨, ·, \, /, 1, 0)

are both FL-algebras. We call At the logical reduct and A1 the dynamic reduct
of A. The class of all FL-algebras can be defined by identities, hence it and the
class FL2-algebras are varieties, denoted by FL and FL2 respectively. To reduce
the number of parentheses, we adopt the convention that · binds stronger than
\, / followed by ◇, ∧,∨ and →,←.

Define ¬x = x → f , ⌐x = f ← x, ∼x = x\0 and −x = 0/x. An FL2-algebra is
involutive if ∼−x = x = −∼x, f -involutive if ¬⌐x = x = ⌐¬x, and doubly involutive
if all four identities hold. An FL2-algebra is cyclic if ∼x = −x, f -cyclic if ¬x = ⌐x,
and doubly cyclic if both hold.

Relation algebras are well known examples of doubly cyclic FL2-algebras. In
fact they are term-equivalent to the subvariety defined by the identities x ∧ y =
x ◇ y (hence y ← x = x→ y and At is a Boolean algebra) and ¬∼(xy)=(¬∼y)(¬∼x).
The operation ¬∼x is the converse of relation algebras, usually written x⌣.

A generalized bunched implication (GBI-)algebra (A,∧,∨,→,⊤, ·, \, /, 1) is
defined as a Brouwerian algebra (A,∧,∨,→,⊤) such that (A,∧,∨, ·, \, /, 1) is a
residuated lattice. Equivalently a GBI-algebra is an FL2-algebra that satisfies
x ∧ y = x ◇ y, t = f and 0 = 1. A bunched implication algebra, or BI-algebra, is a
commutative GBI-algebra (i.e., xy = yx) that has been expanded by a constant
⊥ denoting the least element of the lattice. Alternatively, it is an FL2-algebra
that satisfies x∧ y =x◇ y, f ≤x, 0= 1 and xy = yx. Since the logical constants t, f
are the top and bottom elements in this algebra they are usually denoted by ⊤,
⊥.

An interesting subclass of cyclic GBI-algebras is the variety of symmetric
Heyting relation algebras or SHRAs [23], defined by adding the identity ∼ ¬
(xy) ≤ (∼ ¬ y)(∼ ¬ x). This identity holds in all representable weakening relation
algebras, hence RWkRA is a subvariety of SHRA.

Another subvariety of FL2-algebras is the variety of skew relation algebras [6],
defined in this setting as Boolean involutive FL2-algebras. As mentioned before,
the variety of relation algebras is obtained by adding the identity (xy)⌣ = y⌣x⌣

where x⌣ = ¬∼x ([6], Cor. 29).
We provide a simpler characterization of the congruences of GBI-algebras

in Sect. 3 (using congruence terms that have only one parameter), which also
reveals hidden symmetries in the description given in [8]. Towards that goal,
we first provide this description in the more natural and symmetric setting of
FL2 in Sect. 2, and this is our main reason for introducing FL2. Equivalent
characterizations are provided in Lemma3 (in a fully symmetric setting), which
then specialize to two distinct characterizations in Corollaries 9 and 10 (one for
the congruence filters of 1 and one for the congruence filters of ⊤).
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All FL2-algebras can be constructed by selecting two pointed residuated lat-
tices that have a common underlying lattice. If the lattice is non-distributive,
then the resulting FL2-algebra is outside the variety of GBI-algebra. One of
the appeals of GBI-algebras in computer science is the fact that they provide
the means to study both the logical and the dynamic aspect of situations. Of
course in GBI the logical part is restricted to intuitionistic logic, but FL2 allows
for considering cases where the logical part is any substructural logic, such as
linear logic, relevance logic or a particular fuzzy logic. Methods for combining
logics have been studied extensively, and FL2 is an example of fusion of logics
as described by Gabbay in [5]. The results in the first half of this paper provide
some insight into the algebraic structure of the fusion of two substructural logics.

The models of relevance logic RW, namely distributive cyclic involutive resid-
uated lattices, are exactly the implication subreducts of de Morgan BI-algebras,
namely the extension of BI where the dynamic part is involutive. In [3] it is shown
that the addition of a Boolean negation to de Morgan BI-algebras results in a
non-conservative extension called classical BI. A display calculus for this logic
shows remarkable symmetry between the classical logic part and the involutive
dynamic part of this logic. The setting of FL2 is well suited to studying weaker
versions of this logic that omit some rules like contraction and/or weakening. It
is also worth noting that classical BI-algebras coincide with commutative skew
relation algebras (defined in [6]).

In Sect. 4 we recall the definition of discriminator variety and some results
about weakening relation algebras from [8]. Finally, Sect. 5 defines the double-
division conucleus construction and shows that the image of the variety of rela-
tion algebras under this construction produces a class of GBI-algebras that is a
non-Boolean analogue to Tarski’s variety of abstract relation algebras.

Throughout the paper we make use of elementary properties of the residuals,
such as x(x\y) ≤ y, x ≤ xy / y, x(y ∨ z)w = xyw ∨ xzw and that residuals are
order-reversing in the “denominator” or antecedent and order-preserving in the
“numerator” or consequent.

2 Congruences of FL2-algebras

An algebraic theory determines a category in which all models of the theory are
objects and the morphisms are homomorphisms between the algebraic models.
The kernel {(x, y) : h(x) = h(y)} of a homomorphism h : A→B is a congruence
relation (i.e., an equivalence relation that is preserved by all algebraic operations)
on A, and an important step in understanding the structure of the category is
to be able to describe the lattice of congruences Con(A) on each object A.

An FL2-algebra A has two residuated lattices as reducts, hence any congru-
ence on A is a residuated lattice congruence. The description of congruences in
residuated lattices is due to Blount and Tsinakis [2]. Here we use a version of
this result that appears in [9].
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An algebra is said to be c-regular if c is a constant in the algebra and each
congruence of the algebra is determined by its c-congruence class. Residuated
lattices are 1-regular since for a congruence θ on a residuated lattice L

x θ y ⇐⇒ x/y ∧ y/x ∧ 1 ∈ [1]θ

where [1]θ = {z ∈ L : zθ1} is the 1-congruence class of θ. If we define x ≤θ y by
x ≤ z and z θ y for some z ∈L, or equivalently by x θ w and w ≤ y for some w ∈L,
then x θ y ⇐⇒ x ≤θ y and y ≤θ x, hence the above equivalence follows from the
observation that

x ≤θ y ⇐⇒ 1 ≤θ y/x ⇐⇒ y/x ∧ 1 θ 1.

Instead of the right residual / one could also use the left residual \ for this
equivalence. Rather than working with 1-congruence classes, it is convenient to
use certain filters.

Recall that a filter of a lattice L is a subset F such that x∧ y, a∨x ∈F for all
x, y ∈ F and a ∈ L. For x ∈X ⊆ L let ↑x = {y ∈ L : x ≤ y} be the principal (lattice)
filter generated by x and ↑X = ⋃x∈X↑x.

A congruence filter of a residuated lattice or FL-algebra is a subset of the
form F = ↑([1]θ). This is a lattice filter since the congruence class of 1 is closed
under meet. It is also a union of θ-classes since ≤θ is transitive. The class [1]θ
can be recovered from F since [1]θ = {x : x, 1/x ∈ F}.

It is easy to check that

1, xy, λa(x) := a\xa, ρa(x) := ax/a ∈ F for all x, y ∈ F and a ∈ L.

Note that the closure of F under the conjugation terms ax/a, a\xa is equivalent
to the following normality conditions (where quantifiers range over F ):

(λa) ∀x∃x′, ax′
≤ xa and (ρa) ∀x∃x′, x′a ≤ ax.

A filter F is said to satisfy (λ) if (λa) holds for all a ∈L and likewise for (ρ). The
set of congruence-filters of L is denoted by CF(L).

Theorem 1 ([9]). For a residuated lattice or FL-algebra A, a subset F is a
congruence-filter if and only if F is a lattice filter and a submonoid of A that
satisfies (λ) and (ρ).

Moreover, Con(A) is isomorphic to the lattice CF(A) of congruence-filters
via the bijection θ ↦ ↑([1]θ) and F ↦ {(x, y) : x/y, y/x ∈ F}.

Since there are two signatures for FL-algebras, there are two ways to charac-
terize the congruences of an FL2-algebra, either by congruence 1-filters ↑([1]θ)
or by congruence t-filters ↑([t]θ). We usually drop the prefix “congruence”, and
mostly work with 1-filters. However all results can be translated to t-filters by
interchanging the operation symbols of the two signatures.

For FL2 we need the following stronger t-normality conditions to determine
the 1-filters (the quantifiers range over the filters). For any a ∈A,

(Ua) ∀x∃x1, x1a ≤ xt ◇ a, (U ′
a) ∀x∃x2, ax2 ≤ a ◇ xt,

(Va) ∀x∃x3, x3t ◇ a ≤ ax, (V ′
a) ∀x∃x4, a ◇ x4t ≤ xa.
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A filter satisfies (U) if (Ua) holds for all a ∈ A, and the same for (U ′), (V ) and
(V ′). The conjunction of these four conditions is referred to as (UVa) or, if they
hold for all a, as (UV ).

Lemma 3 below shows that (UVa) is indeed stronger than (λa), (ρa). With
the help of normality we can derive several other variants of the inequations in
(UVa) such as ∀x∃x′, x′a≤a◇ tx. We will use these variations occasionally in the
following lemma about some useful two-parameter conditions. For a, b∈A define

∀x∃x1, x2, x1(a ◇ b) ≤ xa ◇ b and x2(a ◇ b) ≤ a ◇ xb, (Qa,b)
∀x∃x1, x2, a ◇ x1b ≤ xa ◇ b and x2a ◇ b ≤ a ◇ xb, (Ra,b)
∀x∃x1, x2, x1(a→ b) ≤ a→ xb and x2(a← b) ≤ xa← b. (Sa,b)

Lemma 2. The condition (UV ) implies (Q), (R) and (S).

Proof. We first derive (Ra,b) from (V ′
a) and (Ub). Given x ∈ F , there exist x1, x4 ∈

F such that (reading from right to left)

a ◇ x1b ≤ a ◇ (x4t ◇ b) = (a ◇ x4t) ◇ b ≤ xa ◇ b.

By a similar calculation using (V ′
b ) and (U ′

a), there exist x2, x4 ∈ F such that
x2a ◇ b ≤ a ◇ x4t ◇ b ≤ a ◇ xb.

Next we derive (Qa,b) from (Rt,a) and (Rt,a◇b). Given x ∈ F , there exist
x1, x2 ∈ F with

x1(a ◇ b) = t ◇ x1(a ◇ b) ≤ x2t ◇ (a ◇ b) = (x2t ◇ a) ◇ b ≤ (t ◇ xa) ◇ b = xa ◇ b.

For (Sa,b) the relevant calculation shows there exist x1, x2, x3, x4 ∈ F such that

a ◇ x4(a→ b) ≤ a ◇ (a→ b)x3 ◇ t ≤ a ◇ (a→ b) ◇ x1t ≤ b ◇ x1t ≤ bx2 ◇ t ≤ xb,

hence for all x ∈F there exists x1 ∈F such that x1(a→ b)≤a→xb. The remaining
inequalities are derived in a similar way. ��

We also consider the conditions

(λ′
a) ∀x∃x′, x′t ◇ a ≤ a ◇ xt and (ρ′

a) ∀x∃x′, a ◇ x′t ≤ xt ◇ a.

As before, (λ′) means that (λ′
a) holds for all a, and likewise for (ρ′).

Lemma 3. We have the following implications between the above conditions.

1. (U) and (V ) ⇒ (ρ) 2. (U ′) and (V ′) ⇒ (λ)
3. (U ′) and (V ) ⇒ (ρ′) 4. (U) and (V ′) ⇒ (λ′).

Moreover, the following sets of conditions are equivalent:

5. (U), (U ′), (V ), (V ′), that is (UV )
6. (U), (V ), (λ), (λ′), (ρ′) 7. (U ′), (V ′), (ρ), (λ′), (ρ′)
8. (U ′), (V ), (λ), (ρ), (ρ′) 9. (U), (V ′), (λ), (ρ), (λ′).
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Proof. For (1) we have for all x ∈F there exist x1, x3 ∈ F such that x1a ≤ x3t ◇
a ≤ ax. For (2) there exist x2, x4 ∈ F such that ax2 ≤ a ◇ x4t ≤ xa. For (3), we
have x3t ◇ a ≤ ax2 ≤ a ◇ xt, while for (4) a ◇ x4t ≤ x1a ≤ xt ◇ a.

That (5) implies (6) follows from (1–4). For the converse, (λ′), (U), (λ) imply
ax′′
≤ x1a ≤ x′t ◇ a ≤ a ◇ xt, giving (U ′), and (λ), (V ), (ρ′) imply a ◇ x′t ≤ x3t ◇

a ≤ ax ≤ xa, yielding (V ′). The equivalence of (5) and (7) is analogous.
That (5) implies (8) follows from (1–4). For the converse, (ρ′), (U ′), (ρ) show

x′′a ≤ ax2 ≤ a ◇ x′t ≤ xt ◇ a, yielding (U), and (λ), (V ), (ρ′) show a ◇ x′t ≤
x3t ◇ a ≤ ax ≤ xa giving (V ′). Likewise (5) and (9) are equivalent. ��
Theorem 4. For an FL2-algebra A, a subset F is the 1-filter of some congru-
ence θ of A if and only if F is a lattice filter and a ·, 1-submonoid of A that
satisfies (UV ), or any of the equivalent conditions 6.–9. of Lemma 3.

Proof. Assume F = ↑([1]θ) is the 1-filter of some FL2-congruence θ. As observed
earlier, F is a lattice filter that contains 1, so if x, y ∈F then there exist u, v ∈ [1]θ
with u ≤ x, v ≤ y and 1 · 1 θ uv ≤ xy, hence xy ∈F showing that F is a submonoid.
Next we prove (Ua) x1a ≤ xt ◇ a. For a ∈A and x ∈F there exists y ∈F such that
y ≤ x and y ∈ [1]θ. Now

1 θ y ⇒ t θ ty ⇒ a = t ◇ a θ yt ◇ a ⇒ 1 ≤ a/a θ (yt ◇ a)/a ≤ (xt ◇ a)/a.

Hence (xt ◇ a)/a ∈ F using the observation that if 1 ≤ uθv ≤ w then w ∈ ↑([1]θ).
Letting x1 = (xt ◇ a)/a, we obtain x1a ≤ xt ◇ a.

For (V ′
a) a ◇ x4t ≤ xa we use the following calculation.

1 θ y ⇒ a θ ya ⇒ t ≤ a→ a θ a→ ya ⇒ 1 ≤ t/t θ (a→ ya)/t ≤ (a→ xa)/t,

hence (a → xa)/t ∈ F , and choosing x4 = (a → xa)/t implies a ◇ x4t ≤ xa. The
conditions (U ′

a) and (V ) are proved in a similar way.
Conversely, assume F is a lattice filter with 1, xy ∈ F for all x, y ∈ F and

(UV ) holds. Define θ ={(a, b) : a/b, b/a ∈F}. This relation is reflexive since 1 ∈F ,
transitive since (x/y)(y/z) ≤ x/z, and obviously symmetric. Assuming a θ b, it
suffices to show

(a ∧ c)/(b ∧ c), (a ∨ c)/(b ∨ c), (a ◇ c)/(b ◇ c), (c ◇ a)/(c ◇ b) ∈ F,

ac/bc, ca/cb, (a/c)/(b/c), (c/a)/(c/b), (a\c)/(b\c), (c\a)/(c\b) ∈ F and
(a→ c)/(b→ c), (c→ a)/(c→ b), (a← c)/(b← c), (c← a)/(c← b) ∈ F

since interchanging a, b the same statements follow from b θ a, hence θ is com-
patible with all FL2 operations.

From a θ b we obtain a/b, b/a ∈ F and since F is a filter a/b ∧ 1 ∈ F . The
calculation for compatibility of meet is as follows:

(a/b ∧ 1)(b ∧ c) ≤ (a/b)b ∧ 1c ≤ a ∧ c

hence a/b ∧ 1 ≤ (a ∧ c)/(b ∧ c) ∈F . The calculation for join is the same, using the
distribution of · over ∨.
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It is remarkable that all the remaining statements can be deduced from (UV ).
Lemma 3 shows that (λ), (ρ) follow and, by Lemma2 conditions (Q), (R), (S)
also hold. The implication a/b ∈ F ⇒ ac/bc ∈ F is easy since (a/b)bc ≤ ac follows
from (a/b)b ≤ a. However a/b ∈ F ⇒ ca/cb ∈ F uses (ρc) with x = a/b, so there
exists x′

∈ F such that

x′cb = (x′c)b ≤ (c(a/b))b = c((a/b)b) ≤ ca

and therefore x′
≤ ca/cb implies ca/cb ∈ F . Similarly the implication a/b ∈ F ⇒

(a/c)/(b/c) ∈ F is easy since a/b ≤ (a/c)/(b/c) holds, while for b/a ∈ F ⇒
(c/a)/(c/b) ∈ F we use (ρc/b) with x = b/a to get x′

∈ F such that

x′(c/b)a ≤ (c/b)(b/a)a ≤ (c/b)b ≤ c

and then x′
≤ (c/a)/(c/b) implies (c/a)/(c/b) ∈ F .

From a/b ∈ F and (Qb,c) we obtain x1 ∈ F such that x1(b ◇ c) ≤ (a / b)b ◇
c ≤ a ◇ c hence (a ◇ c)/(b ◇ c) ∈ F . Similarly (Sc,b) is used to find x1 ∈ F such
that x1(c → b) ≤ c → (a/b)b ≤ c → a, which shows that (c → a)/(c → b) ∈ F . For
(a→ c)/(b→ c) ∈ F we use (Ra,b→c) and x = b/a ∈ F to get x1 ∈ F with

a ◇ x1(b→ c) ≤ (b/a)a ◇ (b→ c) ≤ b ◇ (b→ c) ≤ c

hence x1 ≤ (a → c)/(b → c) ∈ F . The remaining terms are shown to be in F by
mirror-image arguments, so θ is a congruence for the FL2-algebra A.

It remains to show that F =↑([1]θ). If a θ 1 then by definition of θ, a = a/1∈F
hence ↑([1]θ)⊆F . Conversely, given a∈F we need to find c∈F such that 1 θ c ≤ a.
By assumption 1 ∈F so we can take c = a∧ 1 ∈F , in which case 1 ≤ 1/c. It follows
that 1/c and c/1 are in F , hence 1 θ c. ��
Note that join is only used to prove compatibility of join, hence the result gen-
eralizes to a meet-semilattice version of FL2. The theorem also applies to the
FL-algebra subvariety defined by xy = x ◇ y (thus 1 = t, / =←, \ =→), hence the
result implies Theorem 1. It is also possible to prove a congruence characteriza-
tion for nonassociative FL2-algebras using the techniques of [10].

Since relation algebras and bunched implication algebras are subvarieties of
FL2-algebras, the description of the congruence filters also applies to them. While
the congruences of relation algebras have been well understood since the 1950s
[16], for bunched implication algebras a description first appeared in [8]. However,
the description and the proof given here are both simpler and more general.
Because of the symmetry in the signature of FL2-algebras, we immediately get
the following result. Consider the conditions

(Ūa) ∀x∃x1, x1◇a ≤ (x◇1)a, (Ū ′
a) ∀x∃x2, a◇x2 ≤ a(x◇1),

(V̄a) ∀x∃x3, (x3◇1)a ≤ a◇x, (V̄ ′
a) ∀x∃x4, a(x4◇1) ≤ x◇a.

Collectively we refer to them as (UVa) or, if they hold for all a, as (UV ). Similarly
we have conditions (λ̄), (ρ̄), (λ̄′), (ρ̄′).
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Corollary 5. For an FL2-algebra A, a subset G is the t-filter of some congru-
ence θ of A if and only if G is a lattice filter and a ◇, t-submonoid of A that
satisfies (UV ).

Solving (Ua) for x1 yields x1 ≤ua(x) := (xt◇a)/a. Given that F is assumed to
be upward closed, demanding the existence of an element x1 ∈F is equivalent to
asking that ua(x) is in F . Translating the remaining three conditions, we obtain
that they are equivalent to closure under the terms

ua(x) = (xt ◇ a)/a, u′
a(x) = a\(a ◇ xt),

va(x) = (ax← a)/t, v′
a(x) = (a→ xa)/t.

As noted above, condition (UVa) for a filter is equivalent to the filter being
closed under the unary terms ua, u′

a, va and v′
a. It is an interesting problem

to determine if these terms can be applied in a specific order, and how they
interact with submonoid generation and closure under meets. We leave this for
future research.

The condition (λa) can be expressed in a concise way by noting that

∀x ∈ F ∃x′
∈ F, ax′

≤ xa ⇐⇒ ∀x ∈ F, xa ∈ ↑(aF ) ⇐⇒ Fa ⊆ ↑(aF ).

Hence (λa), (ρa) are equivalent to ↑(aF )=↑(Fa). The same argument proves the
following result.

Corollary 6. A lattice filter F in an FL2-algebra satisfies (UVa) if and only if
↑(a ◇ Ft) = ↑(Fa) = ↑(aF ) = ↑(Ft ◇ a).

Likewise, ↑(a(F ◇ 1)) = ↑(F ◇ a) = ↑(a ◇ F ) = ↑((F ◇ 1)a) is equivalent to the
condition (UVa) holding for F .

The characterization of congruences by 1-filters simplifies a bit when applied
to algebras where [1]θ has a least element for all congruences, as is the case
for finite algebras. An element c ∈ A is central if ca = ac for all a ∈ A, negative
if c ≤ 1 and idempotent if cc = c. A congruence element is a central negative
idempotent element. The join and the product of two congruence elements is
again a congruence element. It is a well known corollary of Theorem 1 that for a
finite residuated lattice or FL-algebra, the congruence lattice is dually isomorphic
to the lattice (CE(A), ·,∨) of congruence elements [9]. The dual isomorphism
between CE(A) and the filter lattice CF(A) is given by a↦ ↑a and F ↦

∧
F .

In an FL2-algebra an element c is t-central if a ◇ ct = ac = ca = ct ◇ a for all
a ∈A and 1-central if a(c◇ 1)= a◇ c= c◇ a= (c◇ 1)a. A 1-congruence element is a
t-central negative idempotent element and a t-congruence element is a 1-central
negative idempotent element.

Corollary 7. For an FL2-algebra A in which all 1-congruence classes have a
least element, the lattice CE1(A) of 1-congruence elements is dually isomorphic
to the lattice CF1(A) of 1-filter elements.



126 N. Galatos and P. Jipsen

Let A be an FL2-algebra and A1 its FL-algebra reduct with ∧,∨, ·, \, /, 1, 0.
The isomorphism between the lattice CF(A1) of congruence filters and the lattice
Con(A1) of congruences restricts to an isomorphism between lattice CF1(A) of
1-filters of A and its congruence lattice Con(A). The above characterization also
applies to the t-filters of A, hence the lattice CFt(A) of t-filters is isomorphic
to Con(A) as well. The next result shows how to map between corresponding
1-filters and t-filters without having to construct the congruence relation. As in
Lemma 2, the condition (UV ) has the following consequence:

∀x∃x1, x2, x1 ◇ ab ≤ (x ◇ a)b and x2 ◇ ab ≤ a(x ◇ b). (Q′
a,b)

Theorem 8. For FL2-algebras there is a one-one correspondence between 1-
filters and t-filters via the mutually inverse lattice isomorphisms F ↦ ↑(Ft) and
G↦ ↑(G ◇ 1).

Proof. Let G be a t-filter of an FL2-algebra, and define F = ↑(G ◇ 1). Then 1 ∈F
since t ∈G, and for u, v ∈ F there exist x, y ∈G such that x ◇ 1 ≤ u and y ◇ 1 ≤ v.
Using (Q′

1,y◇1) there exists x′
∈G such that

x′
◇ y ◇ 1 = x′

◇ 1(y ◇ 1) ≤ (x ◇ 1)(y ◇ 1) ≤ uv,

and since G is closed under ◇, x′
◇ y ∈G implies uv ∈F . Next we show (Ua) holds

for F . Since G is a t-filter, (UV ) holds for G. From u ∈ F we obtain x ∈G such
that x ◇ 1 ≤ u. By (Ūt), (λ̄) and (V̄a) there exist x1, x3, x

′
∈G with

(x3 ◇ 1)a ≤ a ◇ x′
≤ x1 ◇ a = (x1 ◇ t) ◇ a ≤ (x ◇ 1)t ◇ a ≤ ut ◇ a,

hence choosing u1 = x3 ◇ 1 we have found u1 ∈ F such that u1a ≤ ut ◇ a. The
conditions (U ′), (V ), (V ′) can be derived in a similar way. The proof that ↑(Ft)
is a t-filter for any 1-filter F follows by symmetry.

It remains to check that F = ↑(G ◇ 1) ⇐⇒ ↑(Ft) =G. Assume F = ↑(G ◇ 1)
and let x ∈ ↑(Ft). Then there exists u ∈ F such that ut ≤ x. Since u ∈ F we have
y ◇ 1 ≤u for some y ∈G. By (Ūt) there exists y1 ∈G such that y1 = y1 ◇ t ≤ (y ◇ 1)t.
It follows that (y ◇ 1)t ∈G, and since (y ◇ 1)t ≤ ut ≤ x we have x ∈G. This show
↑(Ft) ⊆ G. Now let x ∈ G, and note that by (V̄t) there exists x3 ∈ G such that
(x3 ◇ 1)t ≤ t ◇ x = x. Taking u = x3 ◇ 1 we have u ∈ F and ut ≤ x, hence x ∈ ↑(Ft).
We conclude that ↑(Ft)=G. The reverse implication follows by symmetry of the
signature. ��

This correspondence restricts to a bijection between 1-congruence elements
c and t-congruence elements d: c↦ ct and d↦ d ◇ 1.

3 Congruences in GBI-algebras

The results in this section can be specialized to various subvarieties of FL2. For
example, for GBI-algebras, we can characterize the 1-filters by taking multipli-
cation to be · and meet to be ◇. Note that the constant t is denoted by ⊤ for
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GBI-algebras because it is always the top element of the algebra. Since ∧ is
commutative, conditions (λ′), (ρ′) are automatically satisfied and (6) and (7) of
Lemma 3 apply. We state the characterization explicitly.

Corollary 9. The 1-filters of a GBI-algebra A are the filter submonoids that
are closed under the terms

ua(x) = (x ⊤ ∧a)/a, va(x) = (a→ ax)/ ⊤ and λa(x) = a\xa,

or equivalently by the terms

u′
a(x) = a\(a ∧ x⊤), v′

a(x) = (a→ xa)/ ⊤ and ρa(x) = ax/a.

Equivalently, they are the filter submonoids that satisfy, for all a ∈A,

(Ua) ∀x∃x1, x1a ≤ x ⊤ ∧a, (Va) ∀x∃x3, x3 ⊤ ∧a ≤ ax, (λa) ∀x∃x′, ax′
≤ xa

or equivalently the conditions

(U ′
a) ∀x∃x2, ax2 ≤ a ∧ x⊤, (V ′

a) ∀x∃x4 a ∧ x4 ⊤ ≤xa, (ρa) ∀x∃x′, x′a ≤ ax.

Likewise, we can characterize the ⊤-filters by taking multiplication to be ◇
and meet to be ·, in which case (λ), (ρ) are automatically satisfied, the condition
of F being a submonoids with respect to ∧ holds, and (8) and (9) of Lemma3
give short descriptions. To clarify that we are using a different interpretation of
the operations · and ◇, we place a bar over the terms and conditions. Conditions
(λ̄), (ρ̄) are satisfied by the commutativity of meet.

Note that translating the FL2 condition (V̄a) to a term produces v̄a(x) =
1→ (a ∧ x)/a (in the GBI language). This simplifies to v̄a(x) = 1→ (x/a) since
1→ (a ∧ x)/a = 1→ (a/a ∧ x/a) = (1→ a/a) ∧ (1→ x/a) and ⊤ ≤ 1→ (a/a).

Corollary 10. The ⊤-filters of a GBI-algebra A are the filters that are closed
under the terms

ū′
a(x) = a→ a(x ∧ 1), v̄a(x) = 1→ (x/a) and λ̄′

a(x) = 1→ a\(x ∧ 1)a,

or equivalently by the terms

ūa(x) = a→ (x ∧ 1)a, v̄′
a(x) = 1→ (a\x) and ρ̄′

a(x) = 1→ a(x ∧ 1)/a.

Equivalently, they are the filter submonoids that satisfy, for all a ∈A,

(Ūa) ∀x∃x1, x1 ∧ a ≤ (x ∧ 1)a, (V̄ ′
a) ∀x∃x4, a(x4 ∧ 1) ≤ x and

(ρ̄′
a) ∀x∃x′, (x′

∧ 1)a ≤ a(x ∧ 1),

or equivalently the conditions

(Ū ′
a) ∀x∃x2, a ∧ x2 ≤ a(x ∧ 1), (V̄a) ∀x∃x3, (x3 ∧ 1)a ≤ x and

(λ̄′
a) ∀x∃x′, a(x′

∧ 1) ≤ (x ∧ 1)a.
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In a GBI-algebra, by Theorem 4 and Corollary 6 the 1-filters are the sub-
monoid filters F satisfying ↑(Fa) = ↑(aF ) = ↑(a ∧ F⊤), for all a ∈ A; an ele-
ment c is a 1-congruence element iff it is negative, idempotent and ⊤-central:
ca = ac = a ∧ c⊤, for all a ∈ A. Likewise, ⊤-filters are the filters G satisfying
↑(a(G ∧ 1)) = ↑((G ∧ 1)a) = ↑(G ∧ a), for all a ∈A; an element d is a ⊤-congruence
element iff it is 1-central: a(c ∧ 1) = (c ∧ 1)a = c ∧ a, for all a ∈A.

For involutive GBI-algebras the characterization simplifies even further. The
following result from [8] shows that the characterization of t-filters does not
require any parameters in this case.

Theorem 11. For an involutive GBI-algebra, a lattice filter F is a ⊤-filter if
and only if for all x ∈ F it follows that ¬∼x,¬−x, ∼(⊤(−x)⊤) ∈ F.

Involutive GBI-algebras include all relation algebras and all representable
weakening relation algebras. Several results from relation algebras generalize to
the setting of involutive GBI-algebras and other varieties of bunched implication
algebras. For example, the term ∼(⊤(−x)⊤) in the previous result is the dual
of Tarski’s term ⊤x⊤ that is used to characterize congruence ideals in relation
algebras.

4 Discriminator Varieties of GBI-algebras

Recall that an algebra is subdirectly irreducible if it has a smallest nontrivial con-
gruence. For FL2-algebras Theorem 4 and Corollary 5 imply that this property
is the same as having a smallest nontrivial 1-filter or, equivalently, a smallest
nontrivial t-filter. For example, this makes it easy to compute all finite subdi-
rectly irreducible bunched implication algebras. Since they have lattice reducts,
Jónsson’s Lemma [14] implies that two nonisomorphic finite subdirectly irre-
ducible BI-algebras generate distinct subvarieties, i.e., there exists an identity
that holds in one of them and fails in the other. The same observations apply to
finite FL2-algebras.

Relation algebras form a discriminator variety, which means that the variety
is generated by a class of algebras which have a ternary discriminator term
t(x, y, z) such that for all algebras in this generating class

t(x, y, z) =

{
x if x ≠ y

z otherwise.

For relation algebras such a term is given by

t(x, y, z) = ((⊤; (x ⊕ y);⊤) ∧ x) ∨ (¬(⊤; (x ⊕ y);⊤) ∧ z)

where x ⊕ y = (x ∨ y) ∧ ¬(x ∧ y) is the symmetric difference operation.
Discriminator varieties are well behaved in the sense that all subvarieties are

also discriminator varieties (with the same term t) and all their subdirectly irre-
ducible members are simple, i.e., the congruence lattice has only two elements,
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namely the identity congruence and the top congruence that relates all pairs.
In addition, every subalgebra of a simple member is simple, and every finite
member is a direct product of simple members. For relation algebras, simplicity
is characterized by the Tarski rule x ≠ ⊥ ⇒ ⊤x ⊤ =⊤.

An interesting question is whether there are other prominent subvarieties
of FL2-algebras that are discriminator varieties. This is not the case for the
variety of BI-algebras since it contains the subvariety of Heyting algebras, defined
relative to FL2 by x ∧ y = xy = x ◇ y. Heyting algebras are not a discriminator
variety because, e.g., the 3-element Heyting algebra is not simple.

The full weakening relation algebras Wk(P) for any poset P satisfy the
Tarski rule (since composition and ⊤ are the same as for relation algebras), but
the term t(x, y, z) has to be constructed differently since negation is not classical.
The following dual form has the required property:

t′(x, y, z) = (c(x↔ y) ∧ z) ∨ (¬c(x↔ y) ∧ x)

where x↔y = (x→y)∧ (y→x) and c(x)=⊤\x/⊤. The term c is known as a (dual)
unary discriminator [12] since it satisfies c(⊤) = ⊤ and for x ≠ ⊤, c(x) = ⊥, i.e., it
behaves like a dual Tarski rule, also known as a Baaz Delta [1] in fuzzy logic.
Some concepts from relation algebra need to be dualized since in the theory of
relation algebras ideals and atoms are more suitable concepts, but in the weaker
(noninvolutive) theories of BI-algebras and FL2-algebras, filters are needed to
characterize the congruences. It is easy to check that t′ is a discriminator in all
full weakening relation algebras, hence the variety RWkRA generated by them is
a discriminator variety.

In [8] it is shown that RWkRA = SP ({Wk(P) : P is a poset}), hence every
member of RWkRA is embedded in an algebra of relations and deserves to be
called representable. In other words, RWkRA is analogous to the variety RRA of
representable relation algebras. Since RRA is not finitely axiomatizable and can
be defined from RWkRA by adding a single equation, it follows that RWkRA is
also not finitely axiomatizable. A natural problem is to define a finitely based
variety WkRA analogous to Tarski’s variety RA of relation algebras. The variety
SHRA defined in [23] is too large since it fails some short identities that hold
in all full weakening relation algebras. It is also not known whether SHRA is a
discriminator variety.

In the next section we recall a construction from [8] that generalizes the
double coset construction of relation algebras. Applying this construction to RA
leads to a variety S(dRA) of cyclic involutive GBI-algebras that contains RA ∪
RWkRA and is properly contained in SHRA. Currently no (finite) axiomatization
is known for S(dRA) but we obtain several identities that hold in all its members.

5 The Double Division Conuclei Construction

The process of factoring a set by an equivalence relation is captured at the level
of relation algebras by a construction described in [15]. In a relation algebra A,
let e be an idempotent (ee = e) symmetric (e = e⌣) element and eAe = {exe : x∈A}.
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Then eAe = (eAe,∧,∨,¬e, e ⊤ e,⊥, ·,⌣ , e,¬ee) is a relation algebra, where ¬ex =
¬x∧e⊤e. For group relation algebras this construction is known as a double coset
relation algebra, and in this case e ≥ 1. In [8] this construction is generalized to
residuated lattices and GBI-algebras for arbitrary positive idempotents p=p2 ≥ 1.
Given such an element p, let δp(x) = p\x/p and note that this double division
operation is a conucleus, i.e., an interior operator that satisfies δp(x)δp(y) ≤
δp(xy). This holds because δp(x) = δ′(δ′′(x)) where δ′(x) = p\x and δ′′(x) = x/p,
both of which are conuclei, and this property is preserved under composition.
By a version of [9, Prop. 3.41] without the identity, the conucleus image δ(A) of
a residuated lattice is a residuated lattice (δ(A),∧δ,∨, ·, \δ, /δ) possibly without
an identity, where x∗δ y=δ(x∗y) for ∗∈{∧, \, /}. For the conucleus image δp(A),
the element p is the identity element: p\x/p ≤ (p\x/p)p since p is positive, and
(p\x/p)pp = (p\x/p)p ≤ p\x hence (p\x/p)p ≤ p\x/p. An even easier way to show
this is to make use of the result from [8] that δp(A) = {pxp : x ∈A}.

The double division conucleus δp is of special interest for relation algebras
since a positive idempotent p in a full relation algebra Rel(P ) on a set P is a
preorder P= (P,	) (i.e., p=	 is reflexive and transitive). If we assume p∧p⌣ =1,
then P is a poset and it follows that the full weakening relation algebra Wk(P)
is equal to δp(Rel(P )). This shows that the variety RWkRA contains all double
division conucleus images of members of RRA. For any class K of GBI-algebras
we define dK = {δp(A) : A ∈ K, 1 ≤ p2 = p ∈ A}. In [8] it is proved that if V is
a variety of bounded GBI-algebras with ⊤\x/⊤ as unary discriminator on the
subdirectly irreducible members then S(dV) is a discriminator variety with the
same unary discriminator term. Applying this result to the variety RA results in
the discriminator variety S(dRA) that contains both RA and RWkRA.

For an element x in a GBI-algebra, define the domain d(x) = x⊤∧ 1 and the
range r(x) = ⊤x ∧ 1. In [13] it was shown that RWkRA satisfies the standard
domain and range identities d(x)x = x and xr(x) = x, as well as the identity
⊤x ⊤ x ⊤ = ⊤ x⊤. Stell’s results in [23] about SHRA, together with the fact that
the latter contains RWkRA, imply that RWkRA satisfies the inequality ∼¬ (xy)≤
(∼ ¬ y)(∼ ¬ x). Mace4 [18] shows that these identities do not hold in all cyclic
involutive GBI-algebras. The 3-element �Lukasiewicz algebra L = {0 < a < 1} with
aa=0 is a commutative (hence cyclic) involutive BI-algebra and taking x=a gives
counterexamples for the first three identities below. The last identity fails with
x=1 in the 4-element Boolean commutative involutive BI-algebra B={0<1,¬1<⊤}
where (¬1)(¬1) = 1 and ∼1 = 1, ∼ ¬ 1 = ¬1.

Theorem 12. The identities

d(x)x = x, xr(x) = x, ⊤x ⊤ x ⊤ = ⊤ x ⊤ and ∼ ¬ (xy) ≤ (∼ ¬ y)(∼ ¬ x)

hold in S(dRA).

Proof. Let x be an element in δp(A) for some relation algebra A and positive
idempotent p ∈A. The identity element of δp(A) is p, hence d(x) = x⊤∧ p. Since
p ≥ 1, d(x)x ≥ (x⊤∧ 1)x = x where the last equality holds because it already
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holds in RA. The opposite inequality holds since d(x) ≤ p, and p is the identity
element. The proof for r(x) is similar.

Although a conucleus can in principle map the top element of A to a smaller
element, this is not the case for δp since p ⊤ p = ⊤ is in the image of δp. Hence
the third identity is true since it evaluates the same way in A as in δp(A).

For the fourth identity, let x, y∈δp(A). Applying ∼ on both sides and reversing
the inequality ∼¬(xy)≤(∼¬y)(∼¬x) we get the equivalent version ¬x+¬y≤¬(xy),
where x+y=∼((∼y)(∼x)) is the dual product. Since x≤¬y ⇔ y≤¬x holds in Heyting
algebras, the inequality becomes xy ≤ ¬(¬x + ¬y). The definition of ¬x in δp(A)
is δp(xc) where xc is the complement in A. Hence we get the equivalent version
xy ≤ δp((¬x + ¬y)c) = p\(¬x + ¬y)c/p. Using residuation this is equivalent to
pxyp≤ (¬x+¬y)c and to xy ≤ (δp(xc)+δp(yc))c since xy ∈δp(A), hence pxyp=xy.
Using de Morgan’s law xy = (xc + yc)c in RA and applying complements on
both sides the equation is equivalent to δp(xc) + δp(yc) ≤ xc + yc, where the last
inequality holds because δp is decreasing. ��

These identities are easily derived from the equational basis of RA, but some
of these derivations make use of identities that do not hold in all algebras of weak-
ening relations. It would be interesting to find an equational basis for S(dRA).
The inequality in Theorem12 might be part of such a basis, while the other
three identities are perhaps derivable from other identities that still need to be
discovered.

An example of an identity that holds in all relation algebras but is not pre-
served by double division conuclei is (x∧1)(y∧1)=x∧y∧1. Some new identities
have nontrivial models RWkRA. For example it is proved in [8] that 0 ≤ 1 holds
in Wk(P) if and only if P is a chain. Here we note that the opposite inequality
cannot hold in S(dRA).

Lemma 13. If A ∈ S(dRA) satisfies 1 ≤ 0 then A is trivial.

Proof. Suppose 1 ≤ 0 holds in δp(A) for some relation algebra A and positive
idempotent p ∈A. Then p≤∼p in A. Applying complementation on both sides we
get p⌣ ≤ pc, or equivalently p⌣ ∧ p = ⊥. Since p is positive, 1 ≤ p⌣ hence it follows
that 1 = ⊥, forcing A to be trivial. ��

This shows that the 3-element Sugihara chain [9] is not in S(dRA) since it
satisfies 0 = 1. However the 4-element Sugihara chain is representable by the
following 4 relations on the rationals Q: {∅, <, ≤,Q2}.

Another problem is to find small algebras that are in S(dRA) but not in
RWkRA. Of course many small nonrepresentable relation algebras are known,
but they must have at least 16 elements. It is currently not known if there are
smaller examples in S(dRA).

6 Conclusion

We have shown that several concepts from relation algebras can be lifted to more
general settings where they apply to other classes of algebras that occur in logic
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and computer science. While the variety of FL2-algebras is somewhat general, it
is a convenient setting for results about congruences since the symmetry of the
two sets of connectives allows for shorter proofs. Adapting the characterization
of FL2 congruences to GBI-algebras produces a description that is significantly
simpler than the previous results in [8]. The variety RWkRA of representable
weakening relation algebras is a subvariety of cyclic involutive FL2 and general-
izes RRA from relations over sets to weakening relations over posets. We defined
a discriminator variety S(dRA) of cyclic involutive GBI-algebras that contains
RA ∪RWkRA and showed that it satisfies some identities that hold in both rela-
tion algebras and weakening relation algebras.

We thank the referees for the interesting comments and corrections that have
substantially improved this paper.
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Abstract. We give a simple relation-algebraic semantics of read and
write operations on associative arrays. The array operations seamlessly
integrate with assignments in computation models supporting while-
programs. As a result, relation algebras can be used for verifying pro-
grams with associative arrays. We verify the correctness of an array-based
implementation of disjoint-set forests with a naive union operation and
a find operation with path compression. All results are formally proved
in Isabelle/HOL.

1 Introduction

Relations, relation algebras, Kleene algebras and similar structures have been
used for various aspects of program semantics, in particular, to model control
flow, refinement and data structures [1,18,23,32]. For example, the control-flow
of while-programs can be modelled in Kleene algebras with tests, where the
Kleene star is used to define the semantics of while-loops [2,21]. Program trans-
formations and refinements can be carried out algebraically; for example, see
[2,20]. On the data side, relations are intimately connected with graphs through
their adjacency matrices, whence the data-flow of graph algorithms can be mod-
elled using relation algebras, frequently extended by a Kleene star to describe
transitive closure [3–6,14,19,25]. Relations as a generalisation of functions are
also useful for the specification and derivation of functional programs [7].

Hoare logic [16] is commonly used for verifying programs. A verification con-
dition generator automatically derives from the structure of the program a collec-
tion of statements whose proof implies correctness of the program. When applied
to graph algorithms using a relation algebra to represent graphs, the verification
conditions are simply relation-algebraic formulas. They can be discharged by a
combination of manual and automated reasoning in relation algebras [6].

When modelling graphs, the operations of relation algebras work on entire
relations. This abstract view is useful for specification and verification, but typ-
ically not intended directly for implementation. Efficient algorithms are often
expressed at a lower level, in particular, using arrays. For example, the pseudo-
code for disjoint-set forests in [10] uses two arrays: one for the rank of a node
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and one for its parent. A difference between these arrays is that the rank of a
node is a natural number while the parent of a node is also a node.

An associative array is just a finite mapping from a set of indices to a set of
values, hence a relation. The term ‘array’ often implies that the set of indices is
an interval of integer numbers, but it can be an arbitrary finite set for associative
arrays. The rank array of a disjoint-set forest maps nodes to natural numbers,
making it a heterogeneous relation. The parent array maps nodes to nodes, which
gives a homogeneous relation.

In the present paper, we focus on associative arrays with the same index
and value sets. We do not assume any specific structure on the index/value set.
In this context we give a simple relation-algebraic semantics of reading from
and writing to an array. These access operations can occur in assignments in
while-programs, and are therefore amenable to the usual verification techniques.
The generated verification conditions are relation-algebraic formulas using the
semantics of the array operations.

As a case study, we implement disjoint-set forests in a way that is close to the
pseudo-code in [10] and verify their correctness in Isabelle/HOL. This facilitates
the use of relation-algebraic reasoning about algorithms expressed at a low level.

The contributions of this paper are:

– A simple relation-algebraic semantics of selective read and write in associative
arrays.

– Verification of the correctness of disjoint-set forests in Kleene relation alge-
bras.

– Constructive proof of a theorem of Kleene relation algebras using an imper-
ative program.

– Formalisation of the above and all other results in Isabelle/HOL.

Proofs are omitted in this paper and can be found in the Isabelle/HOL theory
file available at http://www.csse.canterbury.ac.nz/walter.guttmann/algebra/.

In Sect. 2 we discuss related approaches. Section 3 introduces the algebraic
framework for the remainder of this paper including relation algebras and Kleene
algebras. We give a simple semantics of read and write access to associative arrays
in Sect. 4 and discuss basic properties. The semantics of disjoint-set forests is
provided in Sect. 5. Forming the main part of this paper, Sect. 6 describes our
Isabelle/HOL verification of the total correctness of the make-set, find-set and
union-sets operations on disjoint-set forests.

2 Related Work

The semantics of array or general state access is well understood and has been
described in many different formalisms. We discuss a selection of these related
works. An early example are the a and c functions in [24] for updating and
reading state vectors, which map variables to values. Arrays are modelled as
mappings in [17] and selective array updates are defined as updates of map-
pings. Such updates are more formally defined in [31]. A relational definition of

http://www.csse.canterbury.ac.nz/walter.guttmann/algebra/
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functional overriding is given in [33] and extended to override relations in the
second edition of this book. Overwriting one relation with another also appears
in [26] where it is used for pointer structures. Axioms for state attributes and
array access are given in [1]; some of these are used for lenses [12]. A definition
of general updates in Kleene algebras with domain is given in [11]. The relation-
algebraic semantics given in the present paper specialises definitions given in the
last five references to selective array updates studied in the first three references.

Relation-algebraic methods have been used for the description and verifi-
cation of numerous algorithms, in particular, on graphs as mentioned in the
introduction. Especially relevant to the present work on disjoint sets are rela-
tional formalisations of forests and reachability; for example, see [4,25,32]. Also
relevant are relational models of stores modelling pointer structures and using
relational overwrite operations [25–28].

There are several formally verified implementations of disjoint-set forests. A
persistent version of the data structure is verified in Coq by [9]. The specification
is in terms of predicate logic and the implementation is based on a mathematical
model of ML including references. See [22] for a verification using separation logic
in Isabelle/HOL also based on a logical specification. Program complexity and
correctness of an OCaml implementation is proved in [8] using separation logic in
Coq based on a predicate-logic specification. See the latter paper for an overview
of other formal verifications and further related works. The present paper gives
a relation-algebraic specification and proof, which does not cover complexity of
the union and find operations.

3 Relation Algebras and Kleene Algebras

This section presents the algebraic structures used in this development including
relation algebras and Kleene algebras and basic properties [20,32,34].

A semilattice (S,�) is a set S with a binary operation � that is associative,
commutative and idempotent. In a semilattice the binary relation � defined by
x � y ⇔ x � y = y is a partial order called the semilattice order. The operation
� is �-isotone and gives the �-least upper bound or join of two elements.

A bounded semilattice (S,�,⊥) is a semilattice (S,�) with a constant ⊥ that
is a unit of �. It follows that ⊥ is the �-least element of S.

A lattice (S,�,�) comprises two semilattices (S,�) and (S,�) such that the
absorption laws x� (x� y) = x = x� (x� y) hold. The operation � is �-isotone
and gives the �-greatest lower bound or meet of two elements.

A bounded lattice (S,�,�,⊥,�) comprises two bounded semilattices (S,�,⊥)
and (S,�,�) such that (S,�,�) is a lattice. It follows that � is the �-greatest
element of S and a zero of �, and that ⊥ is a zero of �.

A lattice is distributive if the law x � (y � z) = (x � y) � (x � z) holds. In a
lattice this law is equivalent to its dual x � (y � z) = (x � y) � (x � z).

A Boolean algebra (S,�,�, ,⊥,�) is a bounded lattice (S,�,�,⊥,�) that
is distributive with a unary operation satisfying the laws x � x = � and
x � x = ⊥. The operation is �-antitone.
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A monoid (S, ·, 1) is a set S with a binary composition operation · that is
associative and a constant 1 that is a left unit and a right unit of ·.

An idempotent semiring (S,�, ·,⊥, 1) is a bounded semilattice (S,�,⊥) and
a monoid (S, ·, 1) such that · distributes over � and ⊥ is a left zero and a right
zero of ·. The operation · is �-isotone.

A relation algebra (S,�,�, ·, , T,⊥,�, 1) is a Boolean algebra (S,�,�, ,⊥,�)
and an idempotent semiring (S,�, ·,⊥, 1) with a unary transposition operation
T satisfying the laws:

(x � y)T = xT � yT xTT
= x

(x · y)T = yT · xT (x · y) � z � x · (y � (xT · z))

It follows that the operation T is �-isotone. A relation algebra satisfies the Tarski
rule if � · x · � = � for each x �= ⊥.

A Kleene algebra (S,�, ·, ∗,⊥, 1) is an idempotent semiring (S,�, ·,⊥, 1) with
a unary iteration operation ∗ satisfying the laws:

1 � (y · y∗) = y∗ z � (y · x) � x ⇒ y∗ · z � x

1 � (y∗ · y) = y∗ z � (x · y) � x ⇒ z · y∗ � x

The operation ∗ is �-isotone. It describes iterations with zero or more steps; the
related operation x+ = x · x∗ describes iterations with one or more steps.

A Kleene relation algebra (S,�,�, ·, , T, ∗,⊥,�, 1) comprises a relation alge-
bra (S,�,�, ·, , T,⊥,�, 1) and a Kleene algebra (S,�, ·, ∗,⊥, 1).

An element x ∈ S of a relation algebra S is called reflexive if 1 � x, transitive
if x · x � x, symmetric if xT = x, an equivalence if x is reflexive and transitive
and symmetric, total if 1 � x ·xT, surjective if 1 � xT ·x, univalent if xT ·x � 1,
injective if x · xT � 1, bijective if x is injective and surjective, a mapping if x is
univalent and total, a vector if x · � = x, a point if x is a vector and bijective,
and an arc if x · � and xT · � are bijective.

An element x ∈ S of a Kleene relation algebra S is called acyclic if x+ � 1.
In this paper we work in a Kleene relation algebra S that satisfies the Tarski

rule. For proving termination of programs we assume that S is finite.
The main model of Kleene relation algebras are binary relations over a set

A, that is, subsets of A × A. In this model � is union, � is intersection,
is complement, � is subset, ⊥ is the empty set, � is A × A, · is relational
composition, T is relational transposition, 1 is the identity relation, ∗ is reflexive
transitive closure, + is transitive closure, and the Tarski rule holds.

We finally characterise vectors, points and arcs among the binary relations
over A. A vector is a relation B×A for a subset B ⊆ A; hence vectors represent
subsets of the base set such as a set of nodes in a graph. A point is a relation
{a} × A for an element a ∈ A; hence points represent elements of the base set
such as nodes in a graph. An arc is a relation {(a, b)} for elements a, b ∈ A; hence
arcs represent pairs of elements from the base set such as edges in a graph.
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4 Associative Array Access

An array maps indices to values and therefore can be modelled as a binary
relation between two sets. Under our assumption that indices and values come
from the same set A, we can use binary relations on A and work with these using
relation algebra. Because an array associates exactly one value to every index,
the relation is a mapping in the relation-algebraic sense, that is, univalent and
total. A relation that is just univalent corresponds to a partially defined array
which associates at most one value to every index. An index or a value is an
element of A, which can be modelled in relation algebras as a point. A relation
that is just a vector corresponds to a set of indices or values.

These observations underlie the following simple semantics of array access.
Let x, y and z be elements of a relation algebra such that y and z are points.
The element x models the associative array, y corresponds to an index and z
corresponds to a value. The array x[y �→ z] obtained by updating array x at
index y to new value z is:

x[y �→ z] = (y � zT) � (y � x)

To understand this definition it is helpful to consider the matrix representation
of the relation modelling the array x. A vector describes a set of rows of the
matrix and a point describes a single row. The point y refers to the row at the
corresponding index. Its complement y refers to all the other rows. The formula
y � x specifies that in all other rows x is left unchanged. The formula y � zT

specifies that row y is updated to value z. Since z is a point, which refers to row,
we take its transposition zT, which refers to the column of the matrix at the
corresponding value. In terms of binary relations, y � zT constructs a relation
containing a single pair of the index y and the value z. In relation algebras
y � zT = y · zT is an arc for points y and z.

For example, consider the following relations x, y and z on A = {1, 2, 3}
given as Boolean matrices:

x =

⎛
⎝

0 0 1
0 1 0
0 0 0

⎞
⎠ y =

⎛
⎝

0 0 0
1 1 1
0 0 0

⎞
⎠ z =

⎛
⎝

1 1 1
0 0 0
0 0 0

⎞
⎠

Relation x represents a partially defined array that maps index 1 to value 3 and
index 2 to value 2, point y represents index 2 and point z represents value 1.
The updated array still maps index 1 to value 3, but maps index 2 to value 1:

y � zT =

⎛
⎝

0 0 0
1 0 0
0 0 0

⎞
⎠ y � x =

⎛
⎝

0 0 1
0 0 0
0 0 0

⎞
⎠ x[y �→ z] =

⎛
⎝

0 0 1
1 0 0
0 0 0

⎞
⎠

Reading the value x[y] of the associative array x at index y is done by:

x[y] = xT · y
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The composition of a relation with a vector always gives a vector. If x is inter-
preted as a transition relation, xT ·y is a vector corresponding to the successors of
the point y under a transition step according to x. In the matrix representation
of an array, this is just the value of x at row y. If the array associates exactly
one value to every index, the result is the unique value associated with index y,
represented as a point.

Continuing the previous example, the value of x at index y is 2 and the value
of x at index z is 3:

xT =

⎛
⎝

0 0 0
0 1 0
1 0 0

⎞
⎠ x[y] =

⎛
⎝

0 0 0
1 1 1
0 0 0

⎞
⎠ x[z] =

⎛
⎝

0 0 0
0 0 0
1 1 1

⎞
⎠

The following result shows basic preservation properties of these write and
read operations on arrays. It uses the above equational definitions without
implicitly assuming that y and z are points. Part 1 is similar to [26, Lemma
2.7].

Theorem 1.

1. x[y �→ z] is univalent if x is univalent, y is a vector and z is injective.
2. x[y �→ z] is total if x is total, y is a vector and z is surjective.
3. x[y �→ z] is a mapping if x is a mapping, y is a vector and z is bijective.
4. x[y] is injective if x is univalent and y is injective.
5. x[y] is surjective if x is total and y is surjective.
6. x[y] is bijective if x is a mapping and y is bijective.
7. x[y] is a point if x is a mapping and y is a point.
8. x[y] = z ⇔ y � x = y · zT if y and z are points.

5 Disjoint Sets

A disjoint-set data structure keeps track of a set of elements that is partitioned
into disjoint sets [13]. The basic operations are to initialise elements to be in
their own singleton sets, to form the union of two sets and to look up which set
an element belongs to.

The semantics of a disjoint-set data structure with elements from A is an
equivalence relation on A. The disjoint sets are just the equivalence classes of
the relation. A particular representative from each class identifies a set.

An element of a relation algebra is an equivalence if it is reflexive, tran-
sitive and symmetric. The �-least equivalence is the identity relation 1. The
�-greatest equivalence is the universal relation �. Equivalences are closed under
the operations � and T and, in Kleene relation algebras, under ∗ and +.

Following [10] we implement the data structure as a disjoint-set forest. Each
equivalence class corresponds to a tree in the forest. Singleton sets correspond
to empty trees, which contain one node. Each tree in the forest has a root and
is directed. Each node in a tree has a unique parent node; the root is its own
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parent. The root of a tree represents the corresponding equivalence class. An
edge from a node to its parent points towards the root of the tree, which can be
reached by successively following parents.

Disjoint-set forests can be modelled in Kleene relation algebras as follows. An
element x ∈ S of a Kleene relation algebra S is called a forest if x is a mapping
and x � 1 is acyclic. Requiring x to be a mapping ensures that each node has a
unique parent. It remains to ensure that there are no cycles. We cannot require
that x is acyclic because every root has itself as its parent, which corresponds
to a loop in the graph. However, x � 1 removes all loops, so we require that the
result is acyclic. Related helpful lemmas are x∗ = (x � 1)∗ and x∗ � 1 = x+ � 1.

In a forest x, it is possible to reach from a node every other node in the same
component tree by going towards its root and then back to the desired node.
This defines a relation fc(x) on the nodes of the forest, namely the relation of
being in the same component:

fc(x) = x∗ · xT∗

Properties of this construction are given in the following result.

Theorem 2.

1. fc(x) is an equivalence if x is univalent.
2. fc is �-increasing, that is, x � fc(x).
3. fc is �-isotone.
4. fc(fc(x)) = fc(x) if x is univalent.
5. fc(x)∗ = fc(x)+ = fc(x) if x is univalent.
6. fc(⊥) = fc(1) = 1.
7. fc(�) = �.

6 Verifying Disjoint-Set Forests in Isabelle/HOL

For implementing the operations on disjoint-set forests and verifying their cor-
rectness we use a Hoare-logic library of Isabelle/HOL [29,30], which we have
extended from partial correctness to total correctness [15]. The library supports
while-programs, which have to be annotated with a precondition, a postcondi-
tion, and an invariant and a variant for each while-loop. From this, verification
conditions are automatically generated.

Program variables can range over arbitrary HOL types. We write programs in
the context of a class specifying the axioms of Kleene relation algebras, the Tarski
rule and a finite universe for total correctness. Hence program variables range
over elements from the universe of the class, which models the corresponding
algebraic structure. Reasoning about these variables to discharge verification
conditions is performed in the same context using existing libraries for Kleene
algebras and relation algebras and newly derived theorems.

While-programs supported by the Hoare-logic library feature while-loops,
conditionals, sequential composition and assignments as basic statements. We
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introduce new notation for array read and write operations, which are automat-
ically translated to basic relation-algebraic expressions according to Sect. 4. The
assignment x[y] := z is translated to the assignment x := x[y �→ z]. The read
expression x[y] can be used directly on the right-hand side of assignments and
in conditions, except we modify its syntax to x[[y]] to avoid ambiguity with list
syntax. This paper uses x[y] except in Isabelle/HOL code which uses x[[y]].

6.1 The Make-Set Operation

As a warm-up we implement the make-set operation of disjoint-set forests and
prove its correctness. It is usually applied to each element when the data struc-
ture is initialised. Until the initialisation is complete, the underlying associative
array is partial. Make-set puts an element x into its own singleton equivalence
class by setting the parent of x to itself which creates an empty tree:

theorem make set:1

“VARS p2

[ point x ∧ p0 = p ]3

p[x] := x4

[ make set postcondition p x p0 ]”5

apply vcg tc simp6

by (simp add: ...) – names of four lemmas omitted7

Line 2 declares variables that are changed by the program and therefore need
to be part of the state, in this case only p which contains the parent array. The
variables x and p0 are universally quantified variables of the theorem; because
they are not changed they do not need to be part of the state. The variable p0
transports the initial value of p to the postcondition, where it can related to the
final value of p. Line 3 gives the precondition, which requires x to be a point, rep-
resenting an element of the set partitioned by the data structure. Line 4 updates
the parent array to make x the root of a tree. Line 5 gives the postcondition,
which is discussed below. Line 6 generates the verification condition, which for
this small program is a single goal, and applies some simplifications to it:

point x ∧ p0 = p ⇒ make set postcondition p[x �→ x] x p

Line 7 proves this goal by invoking the simplifier with additional lemmas. The
postcondition has two parts:

make set postcondition p x p0 ⇔ x � p = x · xT ∧ x � p = x � p0

The first condition x � p = x · xT states that the parent array contains x at
index x. It is equivalent to p[x] = x by Theorem 1.8. The second condition
x � p = x � p0 states that the parent array remains unchanged at all indices
different from x.

The precondition and postcondition can be strengthened by adding p � 1.
As a consequence, when a disjoint-set forest is initialised each equivalence class
constructed by make-set is a singleton.
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The method vcg tc simp generates conditions that prove total correctness.
Since the above program does not contain any while-loops, there are no condi-
tions related to its termination.

We use a basic Hoare-logic library which does not support the definition
of procedures. So that other programs can use a disjoint-set operation such as
make set, we extract an Isabelle/HOL function from the above proof using a
technique of [15]. Specifically, the above total-correctness theorem implies:

lemma make set exists: “point x ⇒ ∃p′ . make set postcondition p′ x p”
using tc extract function make set by blast

This is a consequence of how total correctness is defined on the underlying oper-
ational semantics. Hence we can introduce the following Isabelle/HOL function:

definition “make set p x = (SOME p′ . make set postcondition p′ x p)”

The construct SOME y. P (y) yields some element y that satisfies P (y). In order
to reason about this function in other programs we derive the following property:

lemma make set function:
assumes “point x” and “p′ = make set p x”
shows “make set postcondition p′ x p”
– proof omitted

6.2 The Find-Set Operation

We next implement the find-set operation of disjoint-set forests and verify its
correctness. The find-set operation computes the representative of the equiva-
lence class an element belongs to. We first demonstrate a basic implementation
of find-set and then extend it by path compression. The pseudo-code in [10] uses
recursion whereas we use a while-loop. The find-set operation follows the chain
of parents from a node x to the root of its tree:

theorem find set:1

“VARS y2

[ find set precondition p x ]3

y := x;4

WHILE y �= p[[y]]5

INV { find set invariant p x y }6

VAR { card {z . z � pT∗ · y} }7

DO y := p[[y]]8

OD9

[ find set postcondition p x y ]”10

apply vcg tc simp11

– proof of three verification conditions omitted12

In line 4, variable y is initialised with the start node x. The while-loop stops
when it finds a node that is its own parent in line 5. Otherwise it continues with
the parent of the current node in line 8.
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The precondition requires that p is a forest (representing the disjoint sets)
and x is a point (representing a node in the forest):

find set precondition p x ⇔ forest p ∧ point x

Every while-loop in the program needs to be annotated with an invariant. In
this case, the invariant requires the precondition and that y is a point reachable
from x along a chain of parents:

find set invariant p x y ⇔ find set precondition p x ∧ point y ∧ y � pT∗ ·x
Vector pT∗ · x contains all successors of x under zero or more transitions of p.
The postcondition states that y is a point and the root of the tree containing x:

find set postcondition p x y ⇔ point y ∧ y = root p x

The root of a node x in the disjoint-set forest represented by p is the unique
node that has a loop and is reachable from x along a chain of parents:

root p x = (pT∗ · x) � ((p � 1) · �)

The vector (p � 1) · � contains all roots of the forest p, constructed from the
relation p � 1 containing all loops of p. Part 1 of the following result gives an
equivalent characterisation. Part 2 shows that following the parents of roots one
or several times gives the roots again. We discuss part 3 below.

Theorem 3.

1. root p x = (p � 1) · pT∗ · x.
2. root p x = p[root p x] = pT∗ · (root p x) if p is univalent.
3. root p x is a point if p is a forest and x is a point.

Because the above program contains one while-loop, three verification con-
ditions are generated: one to establish the loop invariant before execution of the
while-loop, one to maintain the loop invariant across execution of the body of
the while-loop, and one to show the postcondition at the end of the while-loop.
For partial correctness, the generated conditions are:

1. find set precondition p x ⇒ find set invariant p x x
2. find set invariant p x y ∧ y �= p[[y]] ⇒ find set invariant p x p[[y]]
3. find set invariant p x y ∧ y = p[[y]] ⇒ find set postcondition p x y

To maintain the invariant we can assume that the condition of the while-loop
holds. To show the postcondition we can assume that the condition of the while-
loop does not hold. For total correctness, the first and third verification con-
ditions are the same but maintenance of the invariant is modified taking into
account the variant of the while-loop:

2. find set invariant p x y ∧ y �= p[[y]] ∧ card {z . z � pT∗ · y} = n ⇒
find set invariant p x p[[y]] ∧ card {z . z � pT∗ · pT · y} < n
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Every while-loop in the program needs to be annotated with a variant. The
variant is an expression that yields a natural number depending on the program
variables. The value of this expression decreases after execution of the body of
the loop. Because it is a natural number, it will decrease only a finite number
of times which ensures termination of the while-loop. The variable n transports
the initial value of the variant from the assumption to the conclusion, where it
is compared with the final value of the variant.

For the above program, the variant is the number of elements in the algebra
below pT∗ · y. The expression pT∗ · y is a vector representing the set of nodes
reachable from y by successively following parents. The variant is an order-
preserving expression that turns this vector into a natural number. This works
because the algebra is finite.

We now discuss Theorem 3.3, which states that the root of the tree containing
point x in the forest p is a point, that is, a vector representing a single node.
This result could be proved by working with the definitions of roots, points and
forests. We give a different proof based on find-set. Observe that this operation
computes the desired root and the postcondition states it is a point. Moreover the
precondition of find-set contains just the assumptions of Theorem 3.3. Hence this
result immediately follows from total correctness of find-set. In Isabelle/HOL,
similarly to make-set discussed in Sect. 6.1 we obtain:

lemma find set exists:
“find set precondition p x ⇒ ∃y . find set postcondition p x y”
using tc extract function find set by blast

Theorem 3.3 then is a simple consequence:

lemma root point: “forest p ∧ point x ⇒ point (root p x )”
using find set exists find set precondition def find set postcondition def
by simp

Essentially this is a constructive proof using the imperative programs supported
by the Hoare-logic library. This method does not necessarily reduce the amount
of work needed for proving a result but shifts the work to the correctness proof of
a program. However, once the correctness proof is established it saves additional
work. Moreover, this approach facilitates computational reasoning.

6.3 Path Compression

Path compression is a technique to decrease the depth of the disjoint-set forest,
which makes subsequent find-set operations faster. The idea is to change the
parent of every node encountered during the execution of find-set to the root
of the tree. Because the root is known only after the chain of parents has been
traversed, modifying the parents takes place in a separate traversal. In a recursive
implementation of find-set, these modifications would take place on the way out
from the recursion. We use two while-loops for the same purpose. The first
loop is the find-set operation described in Sect. 6.2 to find the root y of the tree.
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As shown here, the second loop traverses the same sequence of nodes and adjusts
the parents on the way:

theorem path compression:1

“VARS p t w2

[ path compression precondition p x y ∧ p0 = p ]3

w := x;4

WHILE y �= p[[w]]5

INV { path compression invariant p x y p0 w }6

VAR { card {z . z � pT∗ · w} }7

DO8

t := w;9

w := p[[w]];10

p[t] := y11

OD12

[ path compression postcondition p x y p0 ]”13

apply vcg tc simp14

– proof of three verification conditions omitted15

This program is executed immediately after the while-loop of find-set, where p
is the parent array, x is the original node and y is its representative computed
by find-set, which is the root of the tree that contains x. The assignments in
lines 4 and 10 traverse the same sequence of nodes as find-set. According to line
5 this finishes when the root is reached. Lines 9 and 11 set the parent of the
current node to the root. Temporary variable t is used to save the current node
w, which is changed by line 10.

The variant in line 7 is the same as the one used for find-set, except the
current node is now stored in w. Also the generated verification conditions have
the same structure as in the proof for find-set. It remains to discuss the actual
precondition, invariant and postcondition. The precondition is:

path compression precondition p x y ⇔
forest p ∧ point x ∧ point y ∧ y = root p x

It extends the precondition of find-set by two conditions, which are just the post-
condition of find-set. This ensures the two loops can be composed sequentially.
The invariant significantly extends the precondition:

path compression invariant p x y p0 w ⇔
path compression precondition p x y ∧ fc(p) = fc(p0) ∧ p � 1 = p0 � 1
∧ point w ∧ y � pT∗ ·w ∧ (w �= x ⇒ (y �= x∧ p[[x]] = y ∧ pT+ ·w � x))

First, fc(p) = fc(p0) states that the components of p do not change, that is, p
represents the same disjoint sets. Second, p � 1 = p0 � 1 states that the roots of
the component trees of p do not change. Third, the invariant requires that w is a
point. Fourth, y � pT∗ ·w states that the root y is reachable from w by following
the chain of parents. The last part of the invariant only applies if w �= x, that is,
in the second or later iterations of the while-loop. In these iterations, the start
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node x and the root y are different, the parent of x is y, and any node reachable
from w by one or more steps along the chain of parents is different from x. The
postcondition is part of the invariant:

path compression postcondition p x y p0 ⇔
path compression precondition p x y ∧ fc(p) = fc(p0) ∧ p � 1 = p0 � 1

For correctness we only require that path compression does not change the dis-
joint sets represented by the forest. We also get that the roots do not change.

We discuss a selection of results used for maintaining the invariant. Part of
the maintenance is to show that the parent relation (without loops) remains
acyclic. Path compression updates the parent relation by letting the parents of
visited nodes point to the root of the tree. Part 1 of the following theorem shows
that updating the parent of a node w to any node y reachable from w along the
chain of parents does not introduce cycles (ignoring loops).

Theorem 4.

1. p[w �→ y] � 1 is acyclic if p� 1 is acyclic, w and y are points and y � pT∗ ·w.
2. x � p∗ = (x � 1) � ((x � p) · (x � p)∗) if x is a point.
3. x � y = ⊥ if x and y are points such that x �= y.

Part 2 optimises iterations similar to [25, Lemma 4]; for related techniques
see also [3]. The element x � p∗ on the left-hand side relates the node x to all
nodes reachable from it by zero or more steps in the graph p. The right-hand
side contains x � 1, which relates x to itself, and (x � p) · (x � p)∗, which relates
x to nodes reachable from it by one step in p followed by zero or more steps
in x � p. This means that edges starting in x have to be considered at most
in the first step and can be omitted in the remaining steps. In maintaining the
invariant, this is applied with x = w, so that the remaining steps only use edges
not starting in w, which is important since these edges are not affected by the
update to the forest.

Part 3 of the previous theorem ultimately derives from the Tarski rule and
states that different points are disjoint as relations. This is a general result used
in several arguments; we explain one of them. In maintaining the invariant, we
need to show that updating p does not change the set of its roots. The update
changes p at index w to the new value y, so this part of p changes from w � p
to w � yT. The roots in this part are w � p � 1 and w � yT � 1 and we show
that both expressions are ⊥. To this end, observe that y �= w since y is a root
according to the precondition, but the parent of w is different from y according
to the condition of the while-loop. First, w�p�1 � w�1 = ⊥ because the node
w does not have a loop; otherwise y = w would hold since y is reachable from w
according to the loop invariant. Second, w � yT � 1 = w � y � 1 � w � y = ⊥ by
a general property of relation algebras and part 3 of the previous theorem.

6.4 The Find-Set Operation with Path Compression

Using the technique of Sect. 6.1 we extract function definitions for the find-
set operation of Sect. 6.2 and the path-compression operation of Sect. 6.3. This
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allows us to combine the two programs into the following one with a simple
correctness proof:

theorem find set path compression:1

“VARS p y2

[ find set precondition p x ∧ p0 = p ]3

y := find set p x;4

p := path compression p x y5

[ path compression postcondition p x y p0 ]”6

apply vcg tc simp7

using find set function find set postcondition def8

find set precondition def path compression function9

path compression precondition def by fastforce10

We can also extract a function for this program, but this function returns a
pair of values as the find-set operation with path compression both modifies the
disjoint-set forest and returns the root of the tree containing node x:

definition “find set path compression p x =
(SOME (p′, y) . path compression postcondition p′ x y p)”

6.5 The Union-Sets Operation

We finally consider the union-sets operation, which takes two elements and joins
the corresponding disjoint sets into a single set. To this end it finds the repre-
sentatives of the equivalence classes of the elements and links one to the other:

theorem union sets:1

“VARS p r s t2

[ union sets precondition p x y ∧ p0 = p ]3

t := find set path compression p x;4

p := fst t;5

r := snd t;6

t := find set path compression p y;7

p := fst t;8

s := snd t;9

p[r] := s10

[ union sets postcondition p x y p0 ]”11

apply vcg tc simp12

– proof of one verification condition omitted13

Because the Hoare-logic library does not support parallel assignments, we assign
the resulting pair of find-set to a temporary variable in lines 4 and 7 and separate
the components in lines 5–6 and 8–9, respectively. Note how the forest p is
threaded through both occurrences of find-set, where it may be modified by path
compression, before line 10 adds the link from the root r of the tree containing
x to the root s of the tree containing y.

The precondition of union-sets requires that p is a forest and x and y are
single nodes:
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union sets precondition p x y ⇔ forest p ∧ point x ∧ point y

The postcondition also requires that the final value of p represents the equiva-
lence relation where the sets containing x and y have been merged into one:

union sets postcondition p x y p0 ⇔
union sets precondition p x y ∧ fc(p) = wcc(p0 � (x · yT))

To get the latter equivalence relation, we add the pair (x, y) to the initial equiva-
lence relation p0 and compute its equivalence closure, that is, the smallest equiv-
alence relation containing p0 and the pair (x, y). The pair (x, y) is described by
x · yT and according to [32] the equivalence closure is given by:

wcc(x) = (x � xT)∗

Interpreting the relation x as a directed graph, the equivalence closure represents
the weakly-connected components of x, which are obtained by reachability while
ignoring the direction of edges. Properties of wcc are given in the following result.

Theorem 5.

1. wcc(x) is an equivalence.
2. wcc is a closure operation, that is, idempotent, �-isotone and �-increasing.
3. wcc(x) � wcc(y) if x � wcc(y).
4. wcc(⊥) = wcc(1) = 1.
5. wcc(�) = �.
6. wcc(x � 1) = wcc(x � 1) = wcc(x).
7. wcc(x) = fc(x) if x is univalent.

We further discuss a selection of results used for proving the correctness
of union-sets. Part 1 of the following result is similar to [6, Proposition 3]. It
considers reachability under the union of two relations x and y, where x is an
arc containing just one edge. It then suffices to use the edge x at most once: y+

describes the case where x is not needed and y∗ · x · y∗ describes the case where
x is used once, preceded and followed by any number of edges in y.

Theorem 6.

1. (x � y)+ = y+ � (y∗ · x · y∗) if x is an arc.
2. p[w �→ y]�1 is acyclic if p � 1 is acyclic, w and y are points, and y � p∗ ·w = ⊥.
3. p[w �→ w] � 1 is acyclic if p � 1 is acyclic and w is a point.

Parts 2 and 3 are similar to Theorem 4.1. In part 2 the parent of w is updated
to a node y from which w is not reachable in p. This does not introduce a cycle
(ignoring loops). Part 3 shows that creating a loop on w does not introduce a
cycle (ignoring loops).

These results are used to show that the assignment in line 10 of union-sets
maintains the forest property. If the arguments x and y of union-sets are in the
same tree, the roots r and s will be equal, so line 10 creates a loop and the
correctness proof uses part 3 of the preceding result. Alternatively, it could be
proved that the assignment in line 10 does not change the forest in this case.
Part 2 of the preceding result is used if nodes x and y are in different trees.
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7 Conclusion

This paper has given a simple relation-algebraic semantics for read and write
operations on associative arrays. Based on this semantics, we added such oper-
ations to a sequential programming language used for specifying and verifying
programs in Isabelle/HOL. We implemented disjoint-set forests with path com-
pression this way and proved their correctness.

Correctness of the union-sets operation would not be affected if the assign-
ment in line 10 of the program in Sect. 6.5 was replaced with p[s] := r. More
efficient implementations of union-sets therefore decide which of these two assign-
ments to use based on heuristics such as union by rank. The rank of a node is a
natural number giving an upper bound on the depth of the subtree at the node.
It is more efficient to add a link from the root with smaller rank to the other.
Using ranks in a disjoint-set forest implementation requires comparisons and
simple arithmetic operations. In future work we will consider how to implement
this extension using relation-algebraic methods.

Another task is to integrate the implementation given in this paper with
relation-algebraic implementations of Kruskal’s minimum spanning tree algo-
rithm. For this reason our Isabelle/HOL theory uses Stone-Kleene relation alge-
bras, which are weaker than Kleene relation algebras and can represent weighted
graphs [15]. A further direction of research is to consider how relation-algebraic
methods can support complexity analysis of algorithms.
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Abstract. We present a collection of axiom systems for the construction
of Boolean subalgebras of larger overall algebras. The subalgebras are
defined as the range of a complement-like operation on a semilattice. This
technique has been used, for example, with the antidomain operation,
dynamic negation and Stone algebras. We present a common ground for
these constructions based on a new equational axiomatisation of Boolean
algebras. All results are formally proved in Isabelle/HOL.

1 Introduction

Boolean algebras abound in formal approaches to program semantics as well as
algorithm derivation and verification. Often such an algebra arises as a subalge-
bra of some overall algebra for the problem at hand. There are various methods
of defining a Boolean substructure, for example, introducing a special type or
sort for the subalgebra and then stipulating one of the standard Boolean algebra
axiom sets for it. However, the extra type may get into the way of automatic
verification with tools that only support a single sort. Then the Boolean sort
has to be simulated by a characterising predicate, and many otherwise equa-
tional formulas need to be enriched by a premise involving that predicate. This
complicates specifications and may hamper efficient automatic treatment.

Therefore a different approach has been studied: enrich the algebra with a
special operation leading into the intended subalgebra and add sufficiently many
axioms to guarantee that the range of that operation has a Boolean structure.
Examples for this are the antidomain operation in idempotent (left) semirings
[10–12], dynamic negation [21], the operation yielding tests in [17,19], and the
pseudocomplement operation in Stone algebras [13,16,18].

The axiomatisations in these examples are all similar since they follow the
same goal. The aim of the present paper is to exhibit a ground pattern for them
and so allow a more unified treatment. For instance, the common structure of the
seemingly disparate topics of Stone algebras and antidomain semirings is exhib-
ited. To this end we first propose a succinct yet understandable set of axioms for
Boolean algebras. Imposing these on the range of the complement operation, we
c© Springer Nature Switzerland AG 2020
U. Fahrenberg et al. (Eds.): RAMiCS 2020, LNCS 12062, pp. 152–168, 2020.
https://doi.org/10.1007/978-3-030-43520-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43520-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-43520-2_10


A Hierarchy of Algebras for Boolean Subsets 153

develop a hierarchy of algebras with a Boolean subalgebra and further structure
overall. The hierarchy ultimately specialises to antidomain semirings and Stone
algebras.

The contributions of this paper are as follows:

– Formally verified proofs of Byrne’s axiomatisations of Boolean algebras in
Sects. 4.1 and 4.2.

– A new and formally verified axiomatisation of Boolean algebras, which is
equational and based on join and complement, in Sect. 4.3.

– A hierarchy of algebras each with a subset that forms a Boolean algebra and
successively stronger assumptions for the overall set in Sect. 6. Stone alge-
bras arise as a specialisation of this hierarchy in Sect. 7. One of the algebras
corresponds to antidomain semirings as shown in Sect. 8.

All results have been formally verified in Isabelle/HOL [31]. Due to their extent
the proofs are omitted in this paper. They can be found in the Isabelle/HOL
theory file at http://www.csse.canterbury.ac.nz/walter.guttmann/algebra/.

In Sects. 3 and 4 we review various axiomatisations of Boolean algebras from
the literature and present a new equational one tailored to our needs. Section 5
adapts this for the above-mentioned construction of Boolean subalgebras of
larger overall algebras. In Sect. 6 we add successively stronger assumptions to
the overall algebra. Sections 7 and 8 show how Stone algebras and antidomain
semirings fit into this hierarchy.

2 Related Work

Boolean algebras have been extensively studied in the literature. In the following
we discuss a selection of related works.

Some approaches build Boolean algebras on a hierarchy of more basic alge-
braic structures, for example, as complemented distributive lattices [2]. Other
approaches are based on fewer operations and axioms, and introduce further
operations of Boolean algebras by definitions. For example, one of Huntington’s
axiomatisations uses just the operations of join and complement with three equa-
tional axioms [22].

Huntington postulates that join is associative and commutative, but the third
axiom is quite complex and not handy for manual proofs. There have been
attempts to replace this axiom. Byrne [5] substitutes an equivalence, as detailed
in Sect. 4, and also combines associativity and commutativity into one equational
axiom. A related axiomatisation was proposed by Frink [14]. A later axiomati-
sation based on join and complement [28] uses the following two equations:

(x � y) � x = x (x � y) � (z � y) = y � (z � x)

Here again the second axiom is not easy to explain. A single-equation axiomati-
sation in terms of the Sheffer stroke or NAND operation | was given in [27]:

(x|((y|x)|x))|(y|(z|x)) = y

http://www.csse.canterbury.ac.nz/walter.guttmann/algebra/


154 W. Guttmann and B. Möller

However, it seems too complex for practical purposes.
In Sect. 4.3 we present an axiomatisation in which we try to strike a balance

between simplicity/understandability and small number of axioms.
Axioms for domain and antidomain in idempotent semirings and weaker

semiring structures have been studied, for example, in [9–12]. Axioms for these
operations in semigroups and monoids have been studied, for example, in [7,23].

3 Boolean Algebras

In this section we present Huntington’s axioms for Boolean algebras and discuss
how Boolean algebras are implemented in Isabelle/HOL.

3.1 Huntington’s Axioms

Huntington gave the following axiomatisation of Boolean algebras [22]. It is based
only on join and complement.

Definition 1. A Boolean algebra is a set S �= ∅ with a binary operation � and
a unary operation such that, for all x, y, z ∈ S,

x � (y � z) = (x � y) � z

x � y = y � x

x = x � y � x � y

The operation � is called join and the operation is called complement. In
a Boolean algebra, x � x = y � y for all x, y ∈ S. Hence the order �, the strict
order �, the meet operation �, the difference −, the greatest element � and the
least element ⊥ can be defined as follows.

Definition 2. An extended Boolean algebra is a Boolean algebra S with rela-
tions � and �, binary operations � and −, and constants � and ⊥ such that,
for all x, y ∈ S,

x � y ⇔ x � y = y x � y = x � y � = x � x

x � y ⇔ x � y ∧ ¬(y � x) x − y = x � y ⊥ = �

3.2 Boolean Algebras in Isabelle/HOL

We explain the hierarchy of orders and lattices in Isabelle/HOL up to Boolean
algebras. These structures are implemented as type classes, which offer means to
group operations and axioms, arrange them in hierarchies, dynamically inherit
results, and exhibit multiple instances [20]. Every class has a single type param-
eter, which can be instantiated with a HOL type. Types in HOL must not be
empty.
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A partial order � on a set S �= ∅ is a reflexive, transitive and antisymmetric
relation on S with associated strict order �. This means, for all x, y, z ∈ S:

x � x

x � y ∧ y � z ⇒ x � z

x � y ∧ y � x ⇒ x = y

x � y ⇔ x � y ∧ ¬(y � x)

A lattice is a set S partially ordered by � where any two elements x, y ∈ S have
a least upper bound or join x� y and a greatest lower bound or meet x� y. This
means, for all x, y, z ∈ S:

x � x � y x � y � x
y � x � y x � y � y

x � z ∧ y � z ⇒ x � y � z z � x ∧ z � y ⇒ z � x � y

A bounded lattice is a lattice S with a least element ⊥ and a greatest element
�. This means, for all x ∈ S:

⊥ � x x � �
A lattice S is distributive if the following axiom holds for all x, y, z ∈ S:

x � (y � z) = (x � y) � (x � z)

A Boolean algebra is a bounded distributive lattice S with a complement and
a difference − satisfying, for all x, y ∈ S:

x � x = �
x � x = ⊥
x − y = x � y

The above axiomatisation is equivalent to the extended Boolean algebras
based on Huntington’s axioms. This has been proved in Isabelle/HOL in [33],
which also shows the equivalence to Robbins algebras and to an axiomatisation
basing the lattice structure on � and � rather than �.

Next we describe Stone algebras. Previous work extended the Isabelle/HOL
hierarchy by various pseudocomplemented algebras [18]. Their place is between
bounded (distributive) lattices and Boolean algebras.

A (distributive) p-algebra is a bounded (distributive) lattice S with a unary
pseudocomplement satisfying, for all x, y ∈ S:

x � y = ⊥ ⇔ x � y

A Stone algebra is a distributive p-algebra S satisfying the following equation
for all x ∈ S:

x � x = �



156 W. Guttmann and B. Möller

An extended Stone algebra adds to a Stone algebra S a difference – satisfying,
for all x, y ∈ S:

x − y = x � y

To simplify comparisons, we provide this and similar extensions of algebras to
obtain the signature (S,�,�,�,�,−, ,⊥,�) used by Isabelle/HOL. Adding the
axiom x = x to extended Stone algebras gives extended Boolean algebras.

4 Alternative Axiomatisations of Boolean Algebras

In this section we consider three axiomatisations of Boolean algebras, which are
based only on join and complement, as are Huntington’s axioms. The first two
are from the literature and the third is new. A motivation for these versions is
that the axioms are easier to understand than Huntington’s third axiom.

4.1 Lee Byrne’s Formulation A

The following axiomatisation is from [5, Formulation A]; see also [14]. It replaces
Huntington’s third axiom with an equivalence. The formulas in the equivalence
express y � x in two different ways, noting that z � z represents �.

Theorem 3. The structure (S,�, ) is a Boolean algebra if and only if, for all
x, y, z ∈ S,

x � (y � z) = (x � y) � z

x � y = y � x

x � y = z � z ⇔ x � y = x ��

4.2 Lee Byrne’s Formulation B

The following axiomatisation is from [5, Formulation B]. It combines associativ-
ity and commutativity into one axiom.

Theorem 4. The structure (S,�, ) is a Boolean algebra if and only if, for all
x, y, z ∈ S,

(x � y) � z = (y � z) � x

x � y = z � z ⇔ x � y = x ��

4.3 An Equational Axiomatisation Based on Semilattices

The following new axiomatisation is based on semilattices, that is, sets with
an associative, commutative and idempotent � operation. We add the double
complement rule and that � is unique. The final axiom is similar to the logical
statement P ∨ Q = P ∨ (¬P ∧ Q). The dual of the final axiom is used in [1] for
an axiomatisation of pseudocomplemented semilattices.
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Theorem 5. The structure (S,�, ) is a Boolean algebra if and only if, for all
x, y, z ∈ S,

x � (y � z) = (x � y) � z

x � y = y � x

x � x = x

x = x

x � x = y � y

x � x � y = x � y ��
This axiomatisation is equational with few and simple axioms, which is useful

for both manual and automated proofs. Counterexamples generated by Nitpick
[4] witness that the axioms are independent of each other. The smallest coun-
terexample for independence of associativity the tool found has 16 elements.

5 Subset Boolean Algebras

In a number of situations a subset of the elements under consideration forms a
Boolean algebra, whereas a more general structure is desired for the overall set.
An example is that of Kleene algebras with tests [24] where the overall struc-
ture forms a Kleene algebra (with operations for join, composition and iteration)
and a designated subset of tests forms a Boolean algebra (in which meet coin-
cides with composition). In computation models, elements of the Kleene algebra
model state changes while tests model conditions on states. Another example is
that of weighted graphs [18] where the overall structure forms a Stone relation
algebra and a subset forms a relation algebra. It uses the well-known fact that
the elements of a Stone algebra satisfying x = x form a Boolean subalgebra [16].
Elements of the Stone relation algebra model graphs with edge weights while
elements of the Boolean subset model unweighted graphs. In both examples it is
convenient to have a single-sorted structure, where the Boolean algebra axioms
hold only for a subset of elements of the overall algebra.

In the remainder of this paper we study axiomatisations describing the com-
mon structure underlying these situations. Our most general setting, taken from
[19], is a set S with a subset S′ ⊆ S of elements that forms a Boolean algebra.
We axiomatise that Boolean algebra structure using the � and operations. To
obtain a single-sorted structure in Isabelle/HOL these operations are introduced
on the overall set S, however their axioms are restricted to the subset S′.

This first building block B0 in our hierarchy of structures results by applying
Huntington’s axioms [22] to the range S′ of operation , which serves as com-
plement on the range. It provides a Boolean algebra structure on S′ without
imposing any further constraints on the overall set. Building block B0 is used as
a reference in the subsequent development and to prove results to be inherited
by further, more special structures. Results that hold in Boolean algebras can
be stated for the subset S′ by using elements from the range of instead of
arbitrary elements; they are derived in the order used by [25].
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Given a set S with a unary operation we write S′ = {x | x ∈ S} for
the range of . The first three equations are Huntington’s axioms for Boolean
algebras applied to the range of . The last equation states that S′ is closed
under �. Note that the behaviour of the operations on elements in S \ S′ is left
unspecified by the axioms.

Definition 6. A B0-algebra is a set S �= ∅ with a binary operation � and a
unary operation such that, for all x, y, z ∈ S,

x � (y � z) = (x � y) � z

x � y = y � x

x = x � y � x � y

x � y = x � y

The remaining operations of Boolean algebras can be defined in terms of �
and on S′.

Definition 7. An extended B0-algebra is a B0-algebra S with relations � and
�, binary operations � and −, and constants � and ⊥ such that, for all x, y ∈ S,

x � y ⇔ x � y = y x � y = x � y � = x � x

x � y ⇔ x � y ∧ ¬(y � x) x − y = x � y ⊥ = �

The following result confirms that we obtain the desired Boolean algebra
structure on S′.

Theorem 8.

1. Let (S,�, ) be a B0-algebra. Then (S′,�, ) is a Boolean algebra.
2. Let (S,�,�,�,�,−, ,⊥,�) be an extended B0-algebra.

Then (S′,�,�,�,�,−, ,⊥,�) is an extended Boolean algebra. ��
Structural results about extended algebras, such as part 2 of Theorem 8,

enable the use of existing Isabelle/HOL theories for Boolean algebras.

6 Subset Boolean Algebras with Additional Structure

We now discuss axioms that make the range of a Boolean algebra, but add
further properties that are common to the intended models. In these models, the
unary operation can be a complement, a pseudocomplement or the antidomain
operation. For simplicity, we mostly call the ‘complement’.

We first look at structures based only on join and complement, and then
add axioms for the remaining operations of Boolean algebras. In the intended
models, the operation �, which is the meet on the range of the operation ,
can be the meet in the overall algebra or the composition operation of a (left)
semiring. For simplicity, we mostly call � the ‘meet’.
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6.1 Assumptions Derived from the New Axiomatisation

The axioms of building block B1 are based on the ones in Sect. 4.3. We follow
the idea of applying the Boolean algebra axioms to the range of the operation ,
but we only do this where necessary for the intended models. For example, the
intended models have a semilattice structure on the overall algebra, not just on
the Boolean subset. In contrast, the double complement axiom only applies to
the subset, not to the overall algebra.

Definition 9. A B1-algebra is a set S �= ∅ with a binary operation � and a
unary operation such that, for all x, y, z ∈ S,

x � (y � z) = (x � y) � z

x � y = y � x

x � x = x

x = x

x � x = y � y

x � x � y = x � y

Using a similar approach, the remaining operations of Boolean algebras are
introduced as follows.

Definition 10. An extended B1-algebra is a B1-algebra S with relations � and
�, binary operations � and −, and constants � and ⊥ such that, for all x, y ∈ S,

x � y ⇔ x � y = y x � y = x � y ⊥ = x � x

x � y ⇔ x � y ∧ ¬(y � x) x − y = x � y � = ⊥

The following result shows that B1-algebras specialise B0-algebras. Hence we
again obtain the Boolean algebra structure on S′.

Theorem 11.

1. Every B1-algebra is a B0-algebra.
2. Every extended B1-algebra is an extended B0-algebra. ��

6.2 Stronger Assumptions Based on Join and Complement

In building block B2 we add axioms covering further properties common to
structures with antidomain or (pseudo)complement. In particular, they allow us
to derive that is antitone and satisfies one of De Morgan’s laws in the overall
algebra. Moreover, double complement distributes over � in the overall algebra.
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Definition 12. A B2-algebra is a set S �= ∅ with a binary operation � and a
unary operation such that, for all x, y, z ∈ S,

x � (y � z) = (x � y) � z

x � y = y � x

x � x = x

x � y � y = x

x � y = x � y

x � x � y = x � y

An extended B2-algebra is obtained from this by adding the operations and
axioms given in Definition 10. The following result shows consequences.

Theorem 13.

1. Every (extended) B2-algebra is an (extended) B1-algebra.
2. Let S be a B2-algebra. Then, for all x, y ∈ S,

x � y � x � y = x x � y = x � y

x � y � x � y = x

3. Let S be an extended B2-algebra. Then, for all x, y ∈ S,

x � y ⇒ y � x x � y = x � y

x � y ⇒ x � y ��

6.3 Axioms for Meet

In building block B3 we add axioms of � covering further properties common to
the antidomain and pseudocomplement instances. We omit the left distributivity
rule and the right zero rule as they do not hold in some models. For the same
reason, the operation � does not have to be commutative.

To simplify comparison with the antidomain model we supply a translation
table for the operations and relations, where +, ·, 0 and 1 are operations known
from semirings, a stands for antidomain and d for domain:
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extended B0-algebra antidomain model
� +
� ·

a

d
⊥ 0
� 1
� ≤
� <

We frequently write xy instead of x ·y. The additional equations in the following
definition are just translations of the formulas on the left and not part of the
axiomatisation. We translate results similarly in the remainder of this paper.

Definition 14. An extended B3-algebra is an extended B2-algebra S such that,
for all x, y, z ∈ S,

x � (y � z) = (x � y) � z x(yz) = (xy)z
(x � y) � z = (x � z) � (y � z) (x + y)z = (xz) + (yz)

x � x = ⊥ a(x)x = 0
� � x = x 1x = x

x � y = x � y a(x · d(y)) = a(xy)

The following result gives derived properties of �.

Theorem 15. Let S be an extended B3-algebra. Then, for all x, y, z ∈ S,

x � y ⇒ x � z � y � z x ≤ y ⇒ xz ≤ yz

⊥ � x = ⊥ 0x = 0
x � x = x d(x)x = x

x � y = x � y d(a(x)y) = a(x)d(y)

x � y = x � y d(d(x)y) = d(x)d(y) ��
Counterexamples generated by Nitpick witness that

x � � = x x1 = x

x � y = y � x xy = yx

x � y ⇒ z � x � z � y x ≤ y ⇒ zx ≤ zy

do not hold for some extended B3-algebra S and some x, y, z ∈ S. Hence our
axiomatisation also covers structures weaker than idempotent left semirings
(where the first and third of these properties are required).
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6.4 Stronger Assumptions for Meet

The following axioms of building block B4 also hold in the pseudocomplement
and antidomain models, but follow from the axioms of B5-algebras introduced
below.

Definition 16. An extended B4-algebra is an extended B3-algebra S such that,
for all x, y, z ∈ S,

x � � = x x1 = x

x � y ⇒ z � x � z � y x ≤ y ⇒ zx ≤ zy

Counterexamples generated by Nitpick witness that

x � � = � x + 1 = 1
x � ⊥ = ⊥ x0 = 0

x � (y � z) = (x � z) � (y � z) x(y + z) = (xz) + (yz)
x � y = ⊥ ⇔ x � y xy = 0 ⇔ x ≤ a(y)

do not hold for some extended B4-algebra S and some x, y, z ∈ S.
We will come back to B4-algebras when we study the antidomain model in

more detail in Sect. 8.

7 Subset Boolean Algebras in Stone Algebras

In building block B5 we specialise � to meet and to pseudocomplement.

Definition 17. An extended B5-algebra is an extended B3-algebra S such that,
for all x, y ∈ S,

x � y = y � x

x � (x � y) = x

The following result shows that B5-algebras correspond to Stone algebras.
Parts 2 and 3 do not combine to an equivalence because the difference operation
− is axiomatised only on S′ in B5-algebras but on S in Stone algebras.

Theorem 18.

1. Every extended B5-algebra is an extended B4-algebra.
2. Every extended B5-algebra is a Stone algebra.
3. Every extended Stone algebra is an extended B5-algebra. ��
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8 Antidomain Semirings

In this section we study the connection to antidomain semirings, which, in par-
ticular, are semilattices. We show that they correspond to extended B4-algebras.
We start by introducing idempotent left semirings (IL-semirings).

Definition 19. An IL-semiring is a set S �= ∅ with relations � and �, binary
operations � and �, and constants � and ⊥ such that, for all x, y, z ∈ S,

x � (y � z) = (x � y) � z x � y ⇔ x � y = y x � (y � z) = (x � y) � z

x � y = y � x x � y ⇔ x � y ∧ ¬(y � x) � � x = x

x � x = x x � y ⇒ z � x � z � y x � � = x

x � ⊥ = x (x � y) � z = (x � z) � (y � z) ⊥ � x = ⊥
x + (y + z) = (x + y) + z x ≤ y ⇔ x + y = y x(yz) = (xy)z

x + y = y + x x < y ⇔ x ≤ y ∧ ¬(y ≤ x) 1x = x

x + x = x x ≤ y ⇒ zx ≤ zy x1 = x

x + 0 = x (x + y)z = (xz) + (yz) 0x = 0

An IL-semiring S is partially ordered by �.
We now introduce the notion of tests, using semiring notation for ease of

reference. Our presentation follows [29]. Tests algebraically represent conditions
in programs and can be used to construct conditionals, while-loops, assertions
and related statements. All these statements have in common that they check if
a condition is satisfied in the current state, but this check does not modify the
state. A condition p acts as an identity on states that satisfy p, so it is reasonable
to model it algebraically by an element below 1 which represents ‘do nothing’.

In an IL-semiring a test is an element p that has a complement q relative to
1, that is, p + q = 1 and p · q = 0 = q · p. In particular, 0 and 1 are tests. By the
requirement p + q = 1 every test is a sub-identity, that is, satisfies p ≤ 1. The
set of all tests of an IL-semiring S is denoted by test(S). It is not hard to show
that a complement of p is unique if it exists; we will denote it by ¬p.

Next we introduce an abstract domain operation d that assigns to a semiring
element, which represents a set of transitions from states to states, the test that
describes precisely its possible starting states.

As a motivation, consider the IL-semiring of binary relations over a set M ,
with union as +, relational composition as ·, the identity relation as 1 and the
empty relation as 0. Then the domain d(R) of a binary relation R ⊆ M × M is
the set {u ∈ M | ∃v ∈ M : (u, v) ∈ R}. In the semiring setting, this set should
be represented as a test in the IL-semiring of binary relations, that is, as the
sub-identity d(R) = {(u, u) ∈ M × M | ∃v ∈ M : (u, v) ∈ R}.

Abstracting from the relational IL-semiring to a general one, we arrive at
the following definitions [8,29]. A left prepredomain semiring is an IL-semiring
S with an additional prepredomain operation d : S → test(S) satisfying

x ≤ d(x) · x (d1)
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for all x ∈ S. We call d a predomain operation if additionally

d(p · x) ≤ p (d2)

for all x ∈ S and p ∈ test(S). Finally, a predomain operation d is called a domain
operation if it satisfies the locality axiom

d(x · d(y)) ≤ d(x · y) (d3)

for all x, y ∈ S. See [9] for axioms (d1), (d2) and (d3) in idempotent semirings.
In IL-semirings, axioms (d1), (d2) and (d3) are independent of each other.

However, (d1) and (d3) together with the assumption d(0) = 0 imply (d2).
Moreover, having a predomain operation d implies that d is surjective and test(S)
forms a Boolean algebra [29, Theorem 2.4.6 items 1 and 8]. Predomain is studied
since in a number of cases it already suffices for the purpose at hand. For example,
the algebraic soundness proof of Hoare logic in [30] does not need (d3); that
axiom is only used in the proof of relative completeness of the logic. Therefore
we give an antidomain analogue of (d2) below.

Technically, by referring to test(S) the above axioms have a ‘two-sorted’
flavour. So there have been approaches [10–12] to give a different axiomatisa-
tion in terms of a combination of d and ¬, namely the antidomain operation
a(x) = ¬d(x), and to leave test(S) unmentioned in the axioms. Originally there
were three axioms for antidomain corresponding roughly to the test property,
(d1) and (d3). In the present paper we also discuss the role of a further axiom
corresponding to (d2); here we can show that the original antidomain axioms
imply that without an additional assumption corresponding to d(0) = 0.

To do this we first introduce prepreantidomain in PPA-semirings, preantido-
main in PA-semirings and antidomain in A-semirings, and afterwards relate
them to our general treatment of sets with a Boolean subset.

We start with prepreantidomain using axioms that correspond to (d1) and
the test property. These are axioms (BD1) and (BD3) of [11]. In the antidomain
model, d(x) = a(a(x)).

Definition 20. A PPA-semiring is an IL-semiring S with a unary operation
such that, for all x ∈ S,

x � x = ⊥ a(x)x = 0
x � x = � a(x) + d(x) = 1

It is somewhat unexpected that the simple PPA-semiring axioms already
imply a rich set of consequences shown in the following result. Many of them are
concerned with how tests interact with each other and general elements under
meet/composition.
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Theorem 21. Let S be a PPA-semiring. Then, for all x, y ∈ S,

⊥ = � x = x x � x � x x � y ⇒ y � x

� = ⊥ x � x = ⊥ x � y = y � x x � y ⇒ x � y = ⊥
a(0) = 1 a(d(x)) = a(x) x ≤ d(x)x d(x) ≤ d(y) ⇒ a(y) ≤ a(x)
a(1) = 0 a(x)d(x) = 0 a(x)a(y) = a(y)a(x) a(x) ≤ a(y) ⇒ a(x)y = 0 ��

To obtain preantidomain we add an axiom that corresponds to (d2). This
axiom facilitates the import/export of composition with a test under a domain.

Definition 22. A PA-semiring is a PPA-semiring S such that, for all x, y ∈ S,

x � x � y d(x) ≤ a(a(x)y)

Consequences of this additional axiom are given in the following result. They
are mostly concerned with the (anti)domain of joins and the (anti)domain of
meets/compositions where the first component is a test.

Theorem 23. Let S be a PA-semiring. Then, for all x, y ∈ S,

x � y = x � y x � y � x x � y ⇒ y � x

x � y = x � y x � y � x � y x � y ⇔ x � y = ⊥
x � y = x � y x � y = x � y

a(x)a(y) = a(x + y) d(d(x)y) ≤ d(x) x ≤ y ⇒ a(y) ≤ a(x)
d(x + y) = d(x) + d(y) a(x · d(y)) ≤ a(xy) a(x) ≤ a(y) ⇔ a(x)y = 0

a(x) + a(y) = a(d(x)d(y)) d(a(x)y) = a(x)d(y) ��

To obtain antidomain, we finally add a version of (d3), called (BD2) in [11].
This axiom is concerned with the (anti)domain of meets/compositions where
the second component is a test. In the terminology of [10], an A-semiring is an
idempotent pre-semiring with 1 and δ that satisfies the basic Boolean domain
axioms (BD1), (BD2) and (BD3).

Definition 24. An A-semiring is a PPA-semiring S such that, for all x, y ∈ S,

x � y � x � y a(xy) ≤ a(x · d(y))

An A-algebra is an A-semiring with a binary operation − defined, for all x, y ∈
S, by

x − y = x � y

Note that A-semirings are based on PPA-semirings. However, by the following
result they form PA-semirings. Previous work has shown that (d2) follows if S
is an A-semiring where � distributes over � and has ⊥ as a zero (that is, a
semiring not just an IL-semiring) [11]. Moreover, using results in [10] one can
show that (d2) and the PA-semiring axiom follow also when only an IL-semiring
is assumed. The result also locates A-algebras in our hierarchy of algebras.
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Theorem 25.

1. Every PA-semiring is a B2-algebra.
2. Every A-semiring is a PA-semiring.
3. Every Stone algebra is an A-semiring.
4. S is an A-algebra if and only if S is an extended B4-algebra. ��

Theorems 18 and 25 imply that every extended Stone algebra is an A-algebra.

9 Conclusion

We have presented a hierarchy of axiom systems as a common basis for
approaches to induce a Boolean subalgebra in a larger overall algebra as the
range of a complement-like operation. Except for the most basic axiomatisation,
which imposes no extra structure beyond the Boolean subalgebra, the axioms
assume that the overall algebra is a semilattice. The hierarchy has shed new
light on the interconnections between several such approaches. The axioms are
simple and perspicuous when translated into formulas of the respective theories.
All of our axioms are (or can be written as) equations and hence well suited to
mechanical support.

In situations which require a Boolean subalgebra our hierarchy offers a num-
ber of choices for axiom systems verified in Isabelle/HOL. Basing an axiomati-
sation on one of them eliminates the need to prove the intended Boolean laws
for the substructure.

Working with Boolean algebras involves a choice about which operations to
include in the signature and which to derive by definition. For example, [25]
includes join and complement in the signature and derives meet, ⊥ and �,
whereas [15] includes all of these in the signature. The standard type-class imple-
mentation of Boolean algebras in Isabelle/HOL has parameters for all of these
operations, a binary difference and the orders � and �. The separate treatment
of extended structures in this paper reflects this.

Proving results such as Theorem 23 is typically highly automated in
Isabelle/HOL using the built-in Sledgehammer tool [3,32]. It filters relevant
lemmas, calls fully automated external theorem provers (such as E, Spass, Vam-
pire) and SMT solvers (such as CVC4, Z3) and reconstructs proofs within
Isabelle/HOL to avoid trusting external software. In several cases, Prover9 [26]
was able to find a proof where the tools called by Sledgehammer failed. Since
Prover9 is not integrated with Sledgehammer, we wrote a program that trans-
forms the output generated by Prover9 to an Isabelle/HOL proof. The transla-
tion currently works for a limited range of proofs but could form the basis of an
integration into Sledgehammer. Such an extension would be beneficial because
Prover9 performs well for algebraic applications [6].

Acknowledgement. We thank Andreas Zelend and the anonymous referees for their
helpful comments.



A Hierarchy of Algebras for Boolean Subsets 167

References

1. Balbes, R., Horn, A.: Stone lattices. Duke Math. J. 37(3), 537–545 (1970)
2. Birkhoff, G.: Lattice Theory, Colloquium Publications, vol. XXV, 3rd edn. Amer-

ican Mathematical Society, Providence (1967)
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30. Möller, B., Struth, G.: Algebras of modal operators and partial correctness. Theor.
Comput. Sci. 351(2), 221–239 (2006)

31. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45949-9

32. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a
practical link between automatic and interactive theorem provers. In: Sutcliffe, G.,
Ternovska, E., Schulz, S. (eds.) Proceedings of the 8th International Workshop on
the Implementation of Logics, pp. 3–13 (2010)

33. Wampler-Doty, M.: A complete proof of the Robbins conjecture. Archive of Formal
Proofs (2016, first version 2010)

https://doi.org/10.1007/978-3-540-74464-1_11
https://www.cs.unm.edu/~mccune/prover9/
https://www.cs.unm.edu/~mccune/prover9/
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9


Differential Hoare Logics and Refinement
Calculi for Hybrid Systems

with Isabelle/HOL

Simon Foster1, Jonathan Julián Huerta y Munive2(B), and Georg Struth2

1 University of York, York, UK
2 University of Sheffield, Sheffield, UK
jjhuertaymunive1@sheffield.ac.uk

Abstract. We present simple new Hoare logics and refinement calculi
for hybrid systems in the style of differential dynamic logic. (Refine-
ment) Kleene algebra with tests is used for reasoning about the program
structure and generating verification conditions at this level. Lenses cap-
ture hybrid program stores in a generic algebraic way. The approach has
been formalised with the Isabelle/HOL proof assistant. Several examples
explain the workflow with the resulting verification components.

1 Introduction

Differential dynamic logic (dL) is a prominent deductive method for verifying
hybrid systems [26]. It extends dynamic logic with specific inference rules for
reasoning about the discrete control and continuous dynamics that characterise
such systems. Continuous evolutions are modelled by dL’s evolution commands
within a hybrid program syntax. These declare a vector field and a guard, which
is meant to hold along the evolution. Reasoning with evolution commands in
dL requires either explicit solutions to differential equations represented by the
vector field, or invariant sets [28] that describe these evolutions implicitly. Veri-
fication components inspired by dL have already been formalised in the Isabelle
proof assistant [16]. Yet the shallow embedding used in this work has shifted
the focus from the original proof-theoretic approach to a semantic one, and ulti-
mately to predicate transformer algebras supporting a different workflow.

Dynamic logics and predicate transformers are powerful tools. They sup-
port reasoning about program equivalences and transformations far beyond what
standard program verification requires [4]. For the latter, much simpler Hoare
logics generate precisely the verification conditions needed. Asking about the
feasibility of a differential Hoare logic (dH) is therefore natural. As Hoare logic
is strongly related to Morgan’s refinement calculus [25], it is equally reasonable
to ask whether and how a Morgan-style differential refinement calculus (dR)
might allow constructing hybrid programs from specifications.

A prima facie answer to these questions seems positive: after all, the laws of
Morgan’s refinement calculus can be proved using the rules of Hoare logic, which
c© Springer Nature Switzerland AG 2020
U. Fahrenberg et al. (Eds.): RAMiCS 2020, LNCS 12062, pp. 169–186, 2020.
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in turn are derivable within dynamic logic. But the formalisms envisaged might
not be expressive enough for hybrid program verification or less suitable than
dL in practice. Conceptually it is also not obvious what exactly it would take to
extend a standard Hoare logic or refinement calculus to hybrid programs.

Our main contribution consists in evidence that dH and dR are as applicable
for verifying simple hybrid programs as dL, and that developing these methods
requires simply adding a single Hoare-style axiom and a single refinement rule
for evolution commands to the standard formalisms.

This conceptual simplicity is reflected in the Isabelle verification components
for dH and dR. These reuse components for (refinement) Kleene algebra with
tests [3,13,19] ((r)KAT) for the propositional Hoare logic and refinement cal-
culi, ignoring assignment and evolution commands. The axioms and laws for
these basic commands are derived in a concrete state transformer semantics
for hybrid programs [15] over a generic hybrid store model based on lenses [10],
reusing other Isabelle components [8,9,15]. Data-level verification conditions are
discharged using Isabelle’s impressive components for ordinary differential equa-
tions [17].

This simple modular development evidences the benefits of algebraic reason-
ing and shallow embeddings with proof assistants. Our verification components
merely require formalising a state transformer semantics for KAT and rKAT along
the lines of [16] and concrete store semantics for hybrid programs. Lenses [10] give
us the flexibility to switch seamlessly between stores based on real vector spaces
or executable Euclidean spaces. Beyond that it suffices to derive a few algebraic
laws for invariants and the Hoare-axioms and refinement laws for evolution com-
mands in the concrete semantics. Program verification is then performed at the
concrete level, but this remains hidden, as tactics generate data-level verifica-
tion conditions automatically and we have programmed boiler-plate syntax for
programs and correctness specifications.

Our Isabelle components support the workflows of dL in dH and dR. We
may reason explicitly with solutions to differential equations and implicitly with
invariant sets. We have formalised a third method in which solutions, that is
flows, are declared ab initio in correctness specifications and need not be certified.

Our program construction and verification components have so far been eval-
uated on a small set of simple examples. Further work is needed to evidence
scalability or compare performance with the standard dL tool chain. We present
some examples to explain the work flows supported by dH and dR. With Isabelle
tactics for automated verification condition generation in place, we notice lit-
tle difference relative to our predicate transformer components [16]. The entire
Isabelle formalisation is available online1.

2 Kleene Algebra with Tests

A Kleene algebra with tests [19] (KAT) is a structure (K,B,+, ·, 0, 1,∗ ,¬) where
(B,+, ·, 0, 1,¬) is a boolean algebra with join +, meet ·, complementation ¬,
1 https://github.com/yonoteam/HybridKATpaper.

https://github.com/yonoteam/HybridKATpaper
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least element 0 and greatest element 1, B ⊆ K, and (K,+, ·, 0, 1,∗ ) is a Kleene
algebra—a semiring with idempotent addition equipped with a star operation
that satisfies the axioms 1 + α · α∗ ≤ α∗ and γ + α · β ≤ β → α∗ · γ ≤ β, as well
as their opposities, with multiplication swapped. The ordering on K is defined
by α ≤ β ↔ α + β = β, as idempotent semirings are semilattices.

Elements of K represent programs; those of B tests, assertions or proposi-
tions. The operation · models the sequential composition of programs2, + their
nondeterministic choice, (−)∗ their finite unbounded iteration. Program 0 aborts
and 1 skips. Tests are embedded implicitly into programs. They are meant to
hold in some states of a program and fail in others; pα (αp) restricts the execu-
tion of program α in its input (output) to those states where test p holds. The
ordering ≤ is the opposite of the refinement ordering on programs (see Sect. 7).

Binary relations of type P (S × S) form KATs [19] when · is interpreted as
relational composition, + as relational union, (−)∗ as reflexive-transitive closure
and the elements of B as subidentities—relations below the relational unit. This
grounds KAT within standard relational imperative program semantics. However,
we prefer the isomorphic representation known as state transformers of type
S → P S. Composition · is then interpreted as Kleisli composition

(f ◦K g)x =
⋃

{g y | y ∈ f x},

0 as λx. ∅ and 1 as ηS = {−}. Stars f∗ s =
⋃

i∈N
f i s are defined with respect to

Kleisli composition using f0 = ηS and fn+1 = f ◦K fn. The boolean algebra of
tests has carrier set BS = {f : S → P S | f ≤ ηS}, where the order on functions
has been extended pointwise, and complementation is given by

f x =

{
ηS x, if f x = ∅,

∅, otherwise.

We freely identify predicates, sets and state transformers below ηS , which are
isomorphic: P ∼= {s | P s} ∼= λs. {x | x = s ∧ P s}.

Proposition 2.1. StaS = ((P S)S , BS ,∪, ◦K , λx. ∅, ηS , (−)∗, (−)) forms a
KAT, the full state transformer KAT over the set S.

A state transformer KAT over S is any subalgebra of StaS.
KAT has been formalised via type classes in Isabelle [2]. As these allow only

one type parameter, we use an alternative to the standard two-sorted approach
that expands a Kleene algebra K by an antitest function n : K → K from which
a test function t : K → K is defined as t = n ◦ n. Then Kt = {α | t α = α}
forms a boolean algebra in which n yields test complementation. It can be used
in place of B. The state transformer KAT has been formalised for this article.

2 We therefore often write ; for this operation in later sections.



172 S. Foster et al.

3 Propositional Hoare Logic and Invariants

KAT provides a simple algebraic semantics for while programs with

if p then α else β = p · α + ¬p · β and while p do α = (p · α)∗ · ¬p.

It captures validity of Hoare triples in a partial correctness semantics as

{p}α {q} ↔ p · α · ¬q = 0,

or equivalently by p ·α ≤ α ·q or p ·α = p ·α ·q. It also allows deriving the rules of
propositional Hoare logic [20]—disregarding assignments—which are useful for
verification condition generation:

{p} skip {p}, (h-skip)
p ≤ p′ ∧ {p′}α {q′} ∧ q′ ≤ q → {p}α {q}, (h-cons)

{p}α {r} ∧ {r}β {q} → {p}α · β {q}, (h-seq)
{t · p}α {q} ∧ {¬t · p}β {q} → {p} if t then α else β {q}, (h-cond)

{t · p}α {p} → {p}while t do α {¬t · p}. (h-while)

Rules for commands with invariant assertions α inv i are derivable in KAT,
too (operationally, α inv i = α). An invariant for α ∈ K is a test i ∈ B satisfying
{i}α {i}. Then, with loopα as syntactic sugar for α∗, we obtain

p ≤ i ∧ {i}α {i} ∧ i ≤ q → {p}α {q}, (h-inv)
{i}α {i} ∧ {j}α {j} → {i · j}α {i · j}, (h-inv-mult)
{i}α {i} ∧ {j}α {j} → {i + j}α {i + j}, (h-inv-plus)

p ≤ i ∧ {i · t}α {i} ∧ ¬t · i ≤ q → {p}while t inv i do α {q}, (h-while-inv)
p ≤ i ∧ {i}α {i} ∧ i ≤ q → {p} loopα inv i {q}. (h-loop-inv)

We use (h-inv) for invariants for continuous evolutions of hybrid systems in
Sects. 6, 7 and 8. The rules (h-inv-mult) and (h-inv-plus) are part of a procedure,
described in Sect. 6. Rule (h-while-inv) is standard for invariants for while loops;
(h-loop-inv) is specific to loops of hybrid programs (see Sect. 4). The rules for
propositional Hoare logic in Isabelle have already been derived for KAT [2,13],
those for invariants have been formalised for this work. By Proposition 2.1, all of
them hold in particular in the state transformer semantics. We have formalised
this fact with Isabelle. At this stage, verification condition rules for the basic
commands for assignments and evolution commands are still missing. These are
formalised within the concrete state transformer semantics (see Sect. 5).
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4 State Transformer Semantics for Hybrid Programs

Hybrid programs of differential dynamic logic (dL) [26] are defined by the syntax

C ::= x := e | x′ = f &G |?P | C; C | C + C | C∗

that adds evolution commands x′ = f &G to the language of KAT—function
?(−) embeds tests explicitly into programs; in the tradition of KAT we leave this
embedding implicit. Evolution commands introduce a time independent vector
field f : S → S for an autonomous system of ordinary differential equations
(ODEs) [28] together with a guard G, a predicate modelling boundary condi-
tions or similar restrictions that hold along temporal evolutions. Guards are also
known as evolution domain restrictions [6].

Formally, we fix a state space S of the hybrid program such as S ⊆ R
n for

n ∈ N. We model continuous variables algebraically with lenses [10] to support
different state space models generically. A lens x : A =⇒ S is a tuple x =
(A,S, get, put), where A is a variable type. The functions getx : S → A and
putx : S → A → S query and update the value of x in a particular state. They
are linked by three intuitive algebraic laws [10]. For all s ∈ S and v, v′ ∈ A,

get (put s v) = v, put (put s v′) v = put s v, put s (get s) = s.

The predicate x �� y checks independence of lenses x and y, which holds
when x and y refer to two different regions of S. As each program variable is a
lens x : R =⇒ S, state spaces S ⊆ R

n require n independent lenses x1 · · · xn.
Yet more general state spaces such as vector spaces are supported as well.

Systems of ODEs are modelled using vector fields: functions of type S → S
on some open set S. Geometrically, vector field f assigns vectors to each point
of the state space S. A solution to the initial value problem (IVP) for the pair
(f, s) and initial value (0, s) ∈ T ×S, where T is an open interval in R containing
0, is then a function X : T → S that satisfies X ′ t = f (X t)—an autonomous
system of ODEs in vector form—and X 0 = s. Solution X is thus a curve in S
through s, parametrised by T and tangential to f at any point in S; it is called
the trajectory or integral curve of f at s whenever it is uniquely defined [28].
For IVP (f, s) with continuous vector field f : S → S and initial state s ∈ S we
define the set of solutions on T as

Sols f T s = {X | ∀t ∈ T. X ′ t = f (X t) ∧ X 0 = s} .

Each solution X is thus continuously differentiable and hence f ◦ X integrable
in T . For X ∈ Sols f T s and guard G : S → B, we then define the G-guarded
orbit of X along T in s [16] as a state transformer γX

G : S → P S by

γX
G s = {X t | t ∈ T ∧ ∀τ ∈ ↓t. G (X τ)} ,

where ↓t = {t′ ∈ T | t′ ≤ t}. Intuitively, γX
G s is the orbit at s defined along the

longest interval in T that satisfies guard G. We also define the G-guarded orbital
of f along T in s [16] via the state transformer γf

G : S → P S as
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γf
G s =

⋃{
γX

G s | X ∈ Sols f T s
}

.

In applications, ↓t is usually an interval [0, t] ⊆ T . Expanding definitions,

γf
G s = {X t | X ∈ Sols f T s ∧ t ∈ T ∧ ∀τ ∈ ↓t. G (X τ)} .

If � denotes the predicate that holds of all states in S (or the set S itself),
we write γf instead of γf

�. We define the semantics of the evolution command
x′ = f &G [16] for any continuous f : S → S and G : S → B as

(x′ = f &G) = γf
G. (st-evl)

In the evolution command x′ = f &G, x′ is part of the traditional syntax
used for specifying systems of ODEs, while de facto only a vector field f is
specified. This explains why x does not appear in the right-hand side of (st-evl).
Defining the state transformer semantics of assignments is standard [16], though
we generalise using lenses. First, we use lenses to define state updates:

σ(x �→ e) = λs. putx (σ s) (e s)

for x : A =⇒ S, e : S → A, and σ : S → S. Intuitively, this updates the
value of variable x in σ : S → S to the value given by “expression” e in state
s. For variables x and y, for example, the expression x/(2 + y) is modelled by
λs. getx s / (2 + gety s). We can also update n variables simultaneously:

[x1 �→ e1, x2 �→ e2, · · · , xn �→ en] = id (x1 �→ e1)(x2 �→ e2) · · · (xn �→ en),

where id is the identity function. State updates commute when assigning to
independent lenses; they cancel one another out, when made to the same lens.
We can then define a semantic analog of the substitution operator e[f/x] =
e◦ [x �→ f ] that satisfies the standard laws [10]. Finally, we define the generalised
simultaneous assignment operator

〈σ〉 = λs. {σ(s)}. (st-assgn)

that applies σ : S → S as an assignment. With our state update function,
singleton assignment is a special case: (x := e) = 〈x �→ e〉. These concepts allow
us to derive standard laws for assignments, as for instance in schematic KAT [1]:

x := x = skip,

x := e ; x := f = x := f [e/x],
x := e ; y := f = y := f ; x := e, if x �� y, x � f, y � e,

x := e ; if t then α else β = if t[e/x] then x := e ; α else x := e ; β.

Here, x � e means that the semantic expression e does not depend in its val-
uation on lens x [10]. An assignment of x to itself is simply skip. Two assign-
ments to x result in a single assignment, with a semantic substitution applied.
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Assignments to independent variables x and y commute provided that neither
assigned expression depends on the corresponding variable. Assignment can be
distributed through conditionals by a substitution to the condition. Such laws
can be applied recursively for symbolic evaluation of hybrid programs.

Lenses support various store models, including records and functions [10].
We provide models for vector spaces, executable and infinite Euclidean spaces:

vec-lensn
k = (R,Rn, λs. vec-nth s k, λs v. vec-upd k v s), if k < n,

eucl-lensn
k = (R, V, λs. eucl-nth s k, λs v. eucl-upd k v s), if k < n,

fun-lens(A,B)
i = (B,A → B, (λf.fi), (λf v. f(i := v))).

The vector lens selects the kth element of an n dimension vector using vec-nth
and vec-upd from the HOL Analysis library [14], which provides an indexed type
for the space R

n. The Euclidean lens uses executable Euclidean spaces [18] that
provide a list representation of the vectors in the n-dimensional V via an ordered
basis and an inner product. The function lens selects range elements of a function
associated with a domain element i ∈ A. It can be used in particular with infinite
Euclidean spaces, N → R. All three satisfy the lens axioms above.

The development in this section has been formalised with Isabelle [8,9,15],
both for a state transformer and a relational semantics. An instance of the latter
for particular vector fields with unique solutions forms the standard semantics of
dL. By the direct connection to orbits or orbitals, the state transformer semantics
is arguably conceptually simpler and more elegant.

5 Differential Hoare Logic for Flows

In the state transformer semantics of Hoare triples, the Kleisli composition in
the left-hand side of p · α ≤ α · q ensures that p holds before executing α.
The right-hand side guarantees that q holds after its execution. Specifically for
evolution commands, and consistently with dL, q holds along the entire orbit of a
solution for f . We now complete the derivation of inference rules of dH by adding
Hoare-style rules for assignments and evolution commands in the concrete state
transformer semantics.

The assignment axiom of Hoare logic needs no explanation. Our concrete
state transformer semantics allows us to derive it:

{P [e/x]} x := e {P}. (h-assgn)

Hence all we need to add to Hoare logic is a rule for evolution commands.
We restrict our attention to Lipschitz-continuous vector fields for which unique
solutions to IVPs are guaranteed by Picard-Lindelöf’s theorem [28]. These are
(local) flows ϕ : T → S → S and X = ϕs = λt. ϕ t s is the trajectory at s.
Guarded orbitals γf

G then specialise to guarded orbits

γf
G,U = {ϕs t | t ∈ U ∧ ∀τ ∈ ↓t. G (ϕs τ)} ,
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where T is fixed by the Picard-Lindelöf theorem and U ⊆ T is a time domain
of interest, typically an interval [0, t] for some t ∈ T [16] where, by contrast
to the previous section ↓t = {t′ ∈ U | t′ ≤ t} is relativised to U . This gives
us the flexibility to consider dynamics over closed time intervals and it allows
us to focus on time intervals and IVPs starting at t = 0. Accordingly, (st-evl)
specialises to the following state transformer semantics for evolution commands.

(x′ = f &G) = γf
G,U . (st-evl-flow)

The following Hoare-style rule for evolution commands is then derivable.

Lemma 5.1. Let f : S → S be a Lipschitz continuous vector field on S ⊆ R
n

and ϕ : T → S → S its local flow with 0 ∈ T ⊆ R. Then, for U ⊆ T with 0 ∈ U
and G,Q : S → B,

{λs ∈ S.∀t ∈ U. (∀τ ∈ ↓t. G (ϕs τ)) → Q (ϕs t)} x′ = f &G {Q}. (h-evl)

This finishes the derivation of rules for a Hoare logic dH for hybrid
programs—to our knowledge, the first Hoare logic of this kind. As usual, there
is one rule per programming construct, so that the recursive application of theh-
assgnHoare logic together with (h-assgn) and (h-evl) generates proof obligations
that are entirely about data-level relationships—the discrete and continuous evo-
lution of hybrid program stores.

The rule (h-evl) supports the following procedure for reasoning with an evo-
lution command x′ = f &G and set U in dH:

1. Check that f satisfies the conditions for Picard-Lindelöf’s theorem (f is Lip-
schitz continuous and S ⊆ R

n is open).
2. Supply a (local) flow ϕ for f with open interval of existence T around 0.
3. Check that ϕs solves the IVP (f, s) for each s ∈ S; (ϕ′

s t = f (ϕs t), ϕs 0 = s,
and U ⊆ T ).

4. If successful, apply rule (h-evl).

Example 5.2 (Thermostat verification via solutions). A thermostat regulates the
temperature T of a room between bounds Tl ≤ T ≤ Th. Variable T0 stores an
initial temperature; ϑ indicates whether the heater is switched on or off. Within
time intervals of at most τ minutes, the thermostat resets time to 0, measures
the temperature, and turns the heater on or off dependent on the value obtained.
With 0 < Tl, Th < Tu, 0 < a, U = {0..τ} = [0, τ ] we define f , for c ∈ {0, Tu}, as

abbreviation f a c ≡ [T �→s − (a ∗ (T − c)), T0 �→s 0 , ϑ �→s 0 , t �→s 1 ]

The notation x �→s f x indicates that vector field f a c maps variable x to f x
for x ∈ {T, T0, ϑ, t}. Working with vec-lensn

k or eucl-lensn
k , we write ; instead of

· and use guard G to restrict evolutions between Tl and Th by setting

GTl Th a c =
(

t ≤ −1
a

ln
(

c − Δc

c − T0

))
,
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where Δc = Tl if c = 0, and Δc = Th if c = Tu. The hybrid program therm below
models the behaviour of the thermostat. To simplify notation, we separate into
a loop invariant (I), discrete control (ctrl), and continuous dynamics (dyn).

abbreviation I Tl Th ≡ U(Tl ≤ T ∧ T ≤ Th ∧ (ϑ = 0 ∨ ϑ = 1 ))

abbreviation ctrl Tl Th ≡
(t ::= 0 ); (T0 ::= T );
(IF (ϑ = 0 ∧ T0 ≤ Tl + 1 ) THEN (ϑ ::= 1 ) ELSE
IF (ϑ = 1 ∧ T0 ≥ Th − 1 ) THEN (ϑ ::= 0 ) ELSE skip)

abbreviation dyn Tl Th a Tu τ ≡
IF (ϑ = 0 ) THEN x´= f a 0 & G Tl Th a 0 on {0 ..τ} UNIV @ 0
ELSE x´= f a Tu & G Tl Th a Tu on {0 ..τ} UNIV @ 0

abbreviation therm Tl Th a Tu τ ≡
LOOP (ctrl Tl Th; dyn Tl Th a Tu τ) INV (I Tl Th)

The correctness specification and verification of the thermostat with dH is then

lemma thermostat-flow :
assumes 0 < a and 0 ≤ τ and 0 < Tl and Th < Tu

shows {I Tl Th} therm Tl Th a Tu τ {I Tl Th}
apply(hyb-hoare U(I Tl Th ∧ t=0 ∧ T 0 = T ))
prefer 4 prefer 8 using local-flow-therm assms apply force+
using assms therm-dyn-up therm-dyn-down by rel-auto ′

The first line uses tactic hyb-hoare to blast away the structure of therm using dH.
To apply hyb-hoare, the program must be an iteration of the composition of two
programs—usually control and dynamics. The tactic requires lifting the store to
an Isabelle/UTP expression [10], which is denoted by the U operator. Lemma
local-flow-therm, whose proof captures the procedure described above, supplies
the flow for f a c: ϕ a c τ = (−e−a·τ (c − T ) + c, τ + t, T0, ϑ)�, for all τ ∈ R. The
remaining proof obligations are inequalities of transcendental functions. They
are discharged automatically using auxiliary lemmas. ��

6 Differential Hoare Logic for Invariants

Alternatively, dH supports reasoning with invariants for evolution commands
instead of supplying flows to (h-evl). The approach has been developed in [16].
Our invariants generalise the differential invariants of dL [26] and the invariant
sets of dynamical systems and (semi)group theory [28].

A predicate I : S → B is an invariant of the continuous vector field f : S → S
and guard G : S → B along T ⊆ R if

⋃
P γf

G I ⊆ I.
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The operation
⋃ ◦P is the Kleisli extension (−)† in the powerset monad. Hence

we could simply write (γf
G)† I ⊆ I. The definition of invariance unfolds to

∀s. I s → (∀X ∈ Sols f T s.∀t ∈ T. (∀τ ∈ ↓t. G (X τ)) → I (X t)).

For G = � we call I an invariant of f along T . Intuitively, invariants can be
seen as sets of orbits. They are compatible with the invariants from Sect. 3.

Proposition 6.1. Let f : S → S be continuous, G : S → B and T ⊆ R. Then I
is an invariant for f and G along T if and only if {I}x′ = f &G {I}.
Hence we can use a variant of (h-inv) for verification condition generation:

P ≤ I ∧ {I}x′ = f &G {I} ∧ (I · G) ≤ Q → {P}x′ = f &G {Q}. (h-invg)

The following lemma leads to a procedure.

Lemma 6.2 ([16]). Let f : S → S be a continuous vector field, μ, ν : S → R

differentiable and T ⊆ R an interval such that 0 ∈ T .

1. If (μ◦X)′ = (ν ◦X)′ for all X ∈ Sols f T s, then {μ = ν}x′ = f &G {μ = ν},
2. if (μ ◦ X)′ t ≤ (ν ◦ X)′ t when t > 0, and (μ ◦ X)′ t ≥ (ν ◦ X)′ t when t < 0,

for all X ∈ Sols f T s, then {μ < ν}x′ = f &G {μ < ν}
3. if {μ < ν}x′ = f &G {μ < ν} and {μ > ν}x′ = f &G {μ > ν}, then

{μ �= ν}x′ = f &G {μ �= ν} (and conversely if 0 is the least element in T ),
4. {μ �≤ ν}x′ = f &G {μ �≤ ν} if and only if {μ > ν}x′ = f &G {μ > ν}.

Condition (1) follows from the well known fact that two continuously dif-
ferentiable functions are equal if they intersect at some point and have the
same derivatives. Rules (h-invg), (h-inv-mult), (h-inv-plus), Proposition 6.1 and
Lemma 6.2 yield the following procedure for verifying {P}x′ = f &G {Q}:

1. Check whether candidate predicate I is an invariant for f along T :
(a) transform I into negation normal form;
(b) reduce complex I (with (h-inv-mult), (h-inv-plus) and Lemma 6.2 (3,4);
(c) if I is atomic, apply Lemma 6.2 (1) and (2);

(if successful, {I}x′ = f &G {I} holds by Proposition 6.1),
2. if successful, prove P ≤ I and (I · G) ≤ Q to apply rule (h-invg).

Example 6.3 (Water tank verification via invariants). A controller turns a water
pump on and off to keep the water level h in a tank within bounds hl ≤ h ≤ hh.
Variable h0 stores an initial water level; π indicates whether the pump is on or
off. The rate of change of the water-level is linear with slope k ∈ {−co, ci − co}
(assuming ci > co). The vector field f for this behaviour and its invariant dI are

abbreviation f k ≡ [π �→s 0 , h �→s k , h0 �→s 0 , t �→s 1 ]

abbreviation dI hl hh k ≡
U(h = k · t + h0 ∧ 0 ≤ t ∧ hl ≤ h0 ∧ h0 ≤ hh ∧ (π = 0 ∨ π = 1 ))
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Program tank-dinv for the controller is given by guard G hx k with hx ∈ {hl, hh}
that restricts evolutions beyond hx, loop invariant I, control and dynamics:

abbreviation G hx k ≡ U(t ≤ (hx − h0)/k)

abbreviation I hl hh ≡ U(hl ≤ h ∧ h ≤ hh ∧ (π = 0 ∨ π = 1 ))

abbreviation dyn ci co hl hh τ ≡ IF (π = 0 ) THEN
x´= f (ci−co) & G hh (ci−co) on {0 ..τ} UNIV @ 0 DINV (dI hl hh (ci−co))

ELSE x´= f (−co) & G hl (−co) on {0 ..τ} UNIV @ 0 DINV (dI hl hh (−co))

abbreviation ctrl hl hh ≡
(t ::=0 );(h0 ::= h);
(IF (π = 0 ∧ h0 ≤ hl + 1 ) THEN (π ::= 1 ) ELSE
(IF (π = 1 ∧ h0 ≥ hh − 1 ) THEN (π ::= 0 ) ELSE skip))

abbreviation tank-dinv ci co hl hh τ ≡
LOOP (ctrl hl hh; dyn ci co hl hh τ) INV (I hl hh)

We distinguish DINV and INV to structure specifications. The correctness spec-
ification and verification of the water tank with dH then proceeds as follows:

lemma tank-diff-inv : 0 ≤ τ =⇒ diff-invariant (dI hl hh k) (f k) {0 ..τ} UNIV 0 Guard
〈proof〉

lemma tank-inv :
assumes 0 ≤ τ and 0 < co and co < ci

shows {I hl hh} tank-dinv ci co hl hh τ {I hl hh}
apply(hyb-hoare U(I hl hh ∧ t = 0 ∧ h0 = h))
prefer 4 prefer 7 using tank-diff-inv assms apply force+
using assms tank-inv-arith1 tank-inv-arith2 by rel-auto ′

Tactic hyb-hoare blasts away the control structure. The second proof line uses
Lemma tank-diff-inv to check that dI is an invariant for any guard (Guard is
a universally quantified variable in Lemma tank-diff-inv), using the procedure
outlined. Auxiliary lemmas discharge the remaining proof obligations. ��

7 Differential Refinement Calculi

A refinement Kleene algebra with tests (rKAT) [3] is a KAT (K,B) expanded by
an operation [−,−] : B × B → K that satisfies, for all α ∈ K and p, q ∈ B,

{p}α {q} ↔ α ≤ [p, q].

The element [p, q] of K corresponds to Morgan’s specification statement [25]. It
satisfies {p} [p, q] {q} and {p}α {q} → α ≤ [p, q], which makes [p, q] the greatest
element of K that satisfies the Hoare triple with precondition p and postcondi-
tion q. Indeed, in StaS and for S ⊆ R

n, [P,Q] =
⋃ {f : S → P S | {P} f {Q}}.
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Variants of Morgan’s laws [25] of a propositional refinement calculus—once more
ignoring assignments—are then derivable in rKAT [3].

1 ≤ [p, p], (r-skip)
[p′, q′] ≤ [p, q], if p ≤ p′ and q′ ≤ q, (r-cons)

[p, r] · [r, q] ≤ [p, q], (r-seq)
if t then [t · p, q] else [¬t · p, q] ≤ [p, q], (r-cond)

while t do [t · p, p] ≤ [p,¬t · p]. (r-while)

We have also derived α ≤ [0, 1] and [1, 0] ≤ α, but do not use them in proofs.
For invariants and loops, we obtain the additional refinement laws

[i, i] ≤ [p, q], if p ≤ i ≤ q, (r-inv)
loop [i, i] ≤ [i, i]. (r-loop)

In StaS, moreover, the following assignments laws are derivable [3].

(x := e) ≤ [Q[e/x], Q] , (r-assgn)
(x := e) · [Q,Q] ≤ [Q[e/x], Q], (r-assgnl)

[Q,Q[e/x]] · (x := e) ≤ [Q,Q]. (r-assgnf)

The second and third law are known as leading and following law. They introduce
an assignment before and after a block of code.

Finally, we obtain the following refinement laws for evolution commands.

Lemma 7.1. Let f : S → S be a Lipschitz continuous vector field on S ⊆ R
n

and ϕ : T → S → S its local flow with 0 ∈ T ⊆ R. Then, for U ⊆ T with 0 ∈ U
and G,Q : S → B,

(x′ = f &G) ≤ [λs.∀t ∈ U. (∀τ ∈ ↓t. G (ϕs τ)) → Q (ϕs t), Q], (r-evl)
(x′ = f &G) · [Q,Q] ≤ [λs.∀t ∈ U. (∀τ ∈ ↓t. G (ϕs τ)) → Q (ϕs t), Q], (r-evll)
[Q,λs.∀t ∈ U. (∀τ ∈ ↓t. G (ϕs τ)) → Q (ϕs t)] · (x′ = f &G) ≤ [Q,Q]. (r-evlr)

The laws in this section form the differential refinement calculus dR. They
suffice for constructing hybrid programs from initial specification statements
by step-wise refinement incrementally and compositionally. A more powerful
variant based on predicate transformers à la Back and von Wright [4] has been
developed in [16]; yet applications remain to be explored. A previous approach
to refinement in dL [23] is quite different to the two standard calculi mentioned
(see Conclusion).
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Example 7.2 (Thermostat refinement via solutions). We now construct program
therm from Example 5.2 by step-wise refinement using the rules of dR.

lemma R-therm-down:
assumes a > 0 and 0 ≤ τ and 0 < T l and Th < Tu

shows [ϑ = 0 ∧ I T l Th ∧ t = 0 ∧ T 0 = T , I T l Th] ≥
(x´= f a 0 & G T l Th a 0 on {0 ..τ} UNIV @ 0 )
apply(rule local-flow .R-g-ode-ivl [OF local-flow-therm])
using therm-dyn-down[OF assms(1 ,3 ), of - Th] assms by rel-auto ′

lemma R-therm-up:
assumes a > 0 and 0 ≤ τ and 0 < T l and Th < Tu

shows [¬ ϑ = 0 ∧ I T l Th ∧ t = 0 ∧ T 0 = T , I T l Th] ≥
(x´= f a Tu & G T l Th a Tu on {0 ..τ} UNIV @ 0 )
apply(rule local-flow .R-g-ode-ivl [OF local-flow-therm])
using therm-dyn-up[OF assms(1 ) - - assms(4 ), of T l] assms by rel-auto ′

lemma R-therm-time: [I T l Th, I T l Th ∧ t = 0] ≥ (t ::= 0 )
by (rule R-assign-law , pred-simp)

lemma R-therm-temp: [I T l Th ∧ t = 0 , I T l Th ∧ t = 0 ∧ T 0 = T] ≥ (T 0 ::= T )
by (rule R-assign-law , pred-simp)

lemma R-thermostat-flow :
assumes a > 0 and 0 ≤ τ and 0 < T l and Th < Tu

shows [I T l Th, I T l Th] ≥ therm T l Th a Tu τ
by (refinement ;(rule R-therm-time)? ,(rule R-therm-temp)? ,(rule R-assign-law)? ,

(rule R-therm-up[OF assms])? , (rule R-therm-down[OF assms])? ) rel-auto ′

The refinement tactic pushes the refinement specification through the pro-
gram structure until the only remaining proof obligations are atomic refinements.
We only refine the atomic programs needed to complete proofs automatically;
those for the first two assignment and the evolution commands. ��
Example 7.3 (Water tank refinement via invariants). Alternatively we may use
differential invariants with dR to refine tank-dinv from Example 6.3. This time
we supply a single structured proof to show another style of refinement. We
abbreviate long expressions with schematic variables.

lemma R-tank-inv :
assumes 0 ≤ τ and 0 < co and co < ci

shows [I hl hh, I hl hh] ≥ tank-dinv ci co hl hh τ
proof−
have [I hl hh, I hl hh] ≥
LOOP ((t ::= 0 );[I hl hh ∧ t = 0 , I hl hh]) INV I hl hh (is - ≥ ?R1 )
by (refinement , rel-auto ′)

moreover have ?R1 ≥ LOOP
((t ::= 0 );(h0 ::= h);[I hl hh ∧ t = 0 ∧ h0 = h, I hl hh]) INV I hl hh (is - ≥ ?R2 )
by (refinement , rel-auto ′)
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moreover have ?R2 ≥
LOOP (ctrl hl hh;[I hl hh ∧ t = 0 ∧ h0 = h, I hl hh]) INV I hl hh (is - ≥ ?R3 )
by (simp only : mult .assoc, refinement ; (force)? , (rule R-assign-law)? ) rel-auto ′

moreover have ?R3 ≥ LOOP (ctrl hl hh; dyn ci co hl hh τ) INV I hl hh

apply(simp only : mult .assoc, refinement ; (simp)? )
prefer 4 using tank-diff-inv assms apply force+

using tank-inv-arith1 tank-inv-arith2 assms by rel-auto ′

ultimately show [I hl hh, I hl hh] ≥ tank-dinv ci co hl hh τ
by auto

qed

The proof incrementally refines the specification of tank-dinv using the laws of
dR. As in Example 7.2, after refining the first two assignments, tactic refinement
completes the construction of ctrl. After that, the invariant is supplied via lemma
tank-diff-inv from Example 6.3 to construct dyn. The final program is then
constructed by transitivity of ≤. A more detailed derivation is also possible. ��

8 Evolution Commands for Flows

Finally, we present variants of dH and dR that start directly from flows ϕ :
T → S → S instead of vector fields. This avoids checking the conditions of the
Picard-Lindelöf theorem and simplifies verification proofs considerably. Instead
of x′ = f &G, we now use the command evolϕ G in hybrid programs and define

(evolϕ G) = λs. γϕs

G s

with respect to the guarded orbit of ϕs along T in s. It then remains to derive
a Hoare-style axiom and a refinement law for such evolution commands.

Lemma 8.1. Let ϕ : T → S → S, where S is a set and T a preorder. Then, for
G,P,Q : S → B,

{λs ∈ S.∀t ∈ T. (∀τ ∈ ↓t. G (ϕs τ)) → P (ϕs t)} evolϕ G {P}, (h-evlfl)
evolϕ G ≤ [λs.∀t ∈ T. (∀τ ∈ ↓t. G (ϕs τ)) → Q (ϕs t), Q], (r-evlf)

(evolϕ G) · [Q,Q] ≤ [λs.∀t ∈ T. (∀τ ∈ ↓t. G (ϕs τ)) → Q (ϕs t), Q], (r-evlfl)
[Q,λs.∀t ∈ T. (∀τ ∈ ↓t. G (ϕs τ)) → Q (ϕs t)] · (evolϕ G) ≤ [Q,Q]. (r-evlfr)

Example 8.2 (Bouncing ball via Hoare logic and refinement). A ball falls down
from height h ≥ 0, with x denoting its position, v its velocity and g its acceler-
ation. Its kinematics is modelled by the flow

abbreviation ϕ g τ ≡ [x �→s g · τ ˆ 2/2 + v · τ + x , v �→s g · τ + v ]
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The ball bounces back elastically from the ground. This is modelled by a discrete
control that checks for x = 0 and then flips the velocity. Guard G = (x ≥ 0)
excludes any motion below the ground. This is modelled by the hybrid pro-
gram [26]

abbreviation bb-evol g h T ≡
LOOP (EVOL (ϕ g) (x ≥ 0 ) T ; (IF (x = 0 ) THEN (v ::= −v) ELSE skip))
INV (0 ≤ x ∧ 2 · g · x = 2 · g · h + v · v)

Its loop invariant conjoins the guard G with a variant of energy conservation. The
correctness specification and proof with dH and dR are then straightforward.

lemma bouncing-ball-dyn:
assumes g < 0 and h ≥ 0
shows {x = h ∧ v = 0} bb-evol g h T {0 ≤ x ∧ x ≤ h}
apply(hyb-hoare U(0 ≤ x ∧ 2 · g · x = 2 · g · h + v · v))
using assms by (rel-auto ′ simp: bb-real-arith)

lemma R-bouncing-ball-dyn:
assumes g < 0 and h ≥ 0
shows [x = h ∧ v = 0 , 0 ≤ x ∧ x ≤ h] ≥ bb-evol g h T
apply(refinement ; (rule R-bb-assign[OF assms])? )
using assms by (rel-auto ′ simp: bb-real-arith)

In the refinement proof, the tactic leaves only the refinement for the assignment
v ::= −v . This is supplied via lemma R-bb-assign and the remaining obligations
are discharged with the same arithmetical facts. ��

9 Conclusion

We have contributed new methods and Isabelle components to an open mod-
ular semantic framework for verifying hybrid systems that so far focussed on
predicate transformer semantics [16]; more specifically a Hoare logic dH and
a Morgan-style refinement calculus dR for hybrid programs, more generic state
spaces modelled by lenses, improved Isabelle syntax for correctness specifications
and hybrid programs, and increased proof automation via the tactics hyb-hoare
and refinement. These components support three workflows based on certifying
solutions to Lipschitz-continuous vector fields, reasoning with invariant sets for
continuous vector fields, and working directly with flows without certification.

Compared to the standard dL toolchain, dH and dR emphasise a natural
mathematical style of semantic reasoning about dynamical systems, with mini-
mal conceptual overhead relative to standard Hoare logics and refinement calculi.
dH, in particular, is only used for automated verification condition generation.
The modular approach with algebras and a shallow embedding has simplified the
construction of these verification components and made it incremental relative
to extant ones. Our framework is not only open to use any proof method and
mathematical approach supported by Isabelle, it should also allow adding new
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methods, for instance based on discrete dynamical systems, hybrid automata or
duration calculi [7,22], or integrate CAS’s for finding solutions.

The relevance of dH and dR to hybrid systems verification is further evi-
denced by the fact that such approaches are not new: A hybrid Hoare logic has
been proposed by Liu et al. [22] for a duration calculus based on hybrid CSP.
It is conceptually very different from dH and dL. A differential refinement logic
based on dL has been developed as part of Loos’ PhD work [23]. It uses a proof
system with inference rules for reasoning about inequalities between KAT expres-
sions, which are interpreted as refinements between hybrid programs. According
to the authors, it differs substantially from the standard approaches [4,25] in
that local instead of global refinement relations can be used. Nevertheless their
refinement logic has the same expressivity as dL [23], which is essentially a
predicate transformer calculus for hybrid programs [16] and thus a refinement
calculus à la Back and von Wright. Ultimately, this suggests that Loos’ logic is
more expressive than our Morgan-style calculus, but the relative merits of the
two approaches remain to be explored. The proof theory of dL has already been
deeply embedded in proof assistants [5], yet with a focus on soundness proofs for
its inference rules and a mechanisation of its idiosyncratic substitution calculus,
but not as prima facie verification components.

The expressivity and complexity gap between Hoare logic and predicate
transformer semantics is apparent within algebra. The weakest liberal precondi-
tion operator cannot be expressed in KAT [27]. The equational theory of KAT,
which captures propositional Hoare logic, is PSPACE complete [21], that of
modal Kleene algebra, which yields predicate transformers, in EXPTIME [24].

Finally, while KAT and rKAT are convenient starting points for building pro-
gram construction and verification components for hybrid programs, the sim-
ple and more general setting of Hoare semigroups [27] would support develop-
ing hybrid Hoare logics for total program correctness—where balls may bounce
forever—or even for multirelational semantics [11,12], which are relevant needed
for differential game logic [26]. This is left for future work.
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Abstract. Higher-order intuitionistic logic categorically corresponds to
toposes or triposes; here we address what are toposes or triposes for
higher-order substructural logics. Full Lambek calculus gives a frame-
work to uniformly represent different logical systems as extensions of it.
Here we define higher-order Full Lambek calculus, which boils down to
higher-order intuitionistic logic when equipped with all the structural
rules, and give categorical semantics for (any extension of) it in terms
of triposes or higher-order Lawvere hyperdoctrines, which were origi-
nally conceived for intuitionistic logic, and yet are flexible enough to
be adapted for substructural logics. Relativising the completeness result
thus obtained to different axioms, we can obtain tripos-theoretical com-
pleteness theorems for a broad variety of higher-order logics. The frame-
work thus developed, moreover, allows us to obtain tripos-theoretical
Girard and Kolmogorov translation theorems for higher-order logics.

1 Introduction

Propositional logic corresponds to a class of algebras; for example, the algebras
of classical intuitionistic logic are Heyting algebras. What are, then, the algebras
of predicate logic? There is seemingly no agreed concept of algebras of predicate
logic. Cylindric algebras [11] give a candidate for it. It is not very clear how far
and how uniformly cylindric algebraic semantics can be extended so as to treat
different sorts of logical systems, especially substructural logics (linear, relevant,
fuzzy, etc.). Lawvere’s hyperdoctrines [18] give another concept of algebras of
predicate logic, and may be seen as a categorical extension of cylindric alge-
bras (see, e.g., Jacobs [13], which gives a fibrational understanding of cylindric
algebras; fibrations and hyperdoctrines as indexed categories are connected with
each other via the Grothendieck construction). From an algebraic point of view,
a hyperdoctrine is a fibred algebra, i.e., an algebra indexed by a category:

P : Cop → Alg.

Alg is a category of algebras of propositional logic (e.g., Heyting algebras or BI-
algebras as in Biering et al. [2]). There are logical conditions to express quantifiers
c© Springer Nature Switzerland AG 2020
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and others as we shall detail below. The intuitive meaning of the base category C
is the category of types (aka. sorts) or domains of discourse, and then P (C) is the
algebra of predicates on a type C. And P is called a predicate functor. Roughly,
if a propositional logic L is complete with respect to a variety AlgL, then the
corresponding fibred algebras P : Cop → AlgL yield complete semantics for
the predicate logic that extends L. This may be called completeness lifting: the
completeness of propositional logic with respect to Alg lifts to the completeness
of predicate logic with respect to P : Cop → Alg. While this completeness lifting
is demonstrated for first-order logic in [21], in the present paper, we demonstrate
completeness lifting for higher-order logic of different sorts.

In order to represent different logical systems in a uniform setting, we rely
upon the framework of substructural logics over Full Lambek calculus FL and
their algebras (see, e.g., Galatos-Jipsen-Kowalski-Ono [8]); FL algebras (defined
below) play the rôle of Alg above. Diverse logical systems can be represented as
axiomatic extensions of FL, including classical, intuitionistic, fuzzy, relevant,
paraconsistent, and linear logics. In this field, there are vital developments
of the correspondence between cut elimination and algebraic completion (see
Ciabattoni-Galatos-Terui [3], which focus upon the propositional case, but might
possibly be extended to the first-order and higher-order cases via the framework
of substructural hyperdctrines). In this paper we think of higher-order Full Lam-
bek calculus, which boils down to higher-order intuitionistic logic (as in Lambek-
Scott [17]) when equipped with all the structural rules, and give hyperdoctrine
semantics for (any extension of) it. Lawvere’s hyperdoctrines were originally for
intuitionistic logic; yet they are flexible enough so as to be adapted for a variety of
substructural logics as we shall see below. Note that, whilst toposes are impred-
icative, triposes can have their type theories predicative (e.g., Martin-Löf); the
two-level structure of triposes allows more flexibility than toposes do.

There is a tight connection between toposes and higher-order hyperdoctrines,
which are also called triposes (for triposes, see, e.g., Hyland-Johnstone-Pitts [12]
and Pitts [26]; there are actually several non-equivalent definitions of triposes; we
simply call higher-order hyperdoctrines triposes). Indeed, toposes and triposes
correspond to each other via the two functors of taking subobject hyperdoctrines
and of the tripos-to-topos construction (see, e.g., Coumans [4] and Frey [10]);
note that the subobject functor Sub of a topos plays the rôle of a predicate
functor P above. Both toposes and (intuitionistic) higher-order hyperdoctrines
give complete semantics for higher-order intuitionistic logic; the completeness
result of this paper generalises this classic result quite vastly in terms of higher-
order substructural hyperdoctrines or triposes. The contributions of this paper
may be summarised succinctly as follows: (i) higher-order completeness via Full
Lambek triposes, which can be instantiated for a broad variety of logical systems;
(ii) tripos-theoretical Girard’s ! translation and Kolmogorov’s ¬¬ translation
theorems for higher-order logic, in which the internal language of triposes is at
work. As illustrated by the translation theorems, the general framework of the
present paper allows us to compare different categorical logics within the one
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setting (many categorical logics have only been developed locally so far; there
has been no global framework to compare them in the same setting).

The rest of the paper is organised as follows. We first present the syntax
of Higher-order Full Lambek calculus HoFL, which obtains by adapting higher-
order intuitionistic logic to Full Lambek calculus FL. And we introduce the
concept of Full Lambek tripos (FL tripos for short; aka. higher-order FL hyper-
doctrine; for brevity we use the former terminology), thereby obtaining the
higher-order completeness theorem for HoFL. Finally, our general framework
thus developed is applied, via the internal language of FL triposes, to the cate-
gorical analysis of Girard’s and Kolmogorov’s translation for higher-order logics.

2 Higher-Order Full Lambek Calculus

In this section we introduce Higher-order Full Lambek calculus HoFL, which
extends quantified FL as in Ono [23,24] so that HoFL equipped with all the
structural rules boils down to higher-order intuitionistic logic, the logic of toposes
(see Lambek-Scott [17], Jacobs [13], or Johnstone [15]). Our presentation of
HoFL, especially its type-theoretic part, follows the style of Pitts [25]; thus we
write, e.g., “t : σ [Γ ]” and “ϕ [Γ ]”, rather than “Γ � t : σ” and “Γ � ϕ”,
respectively, where t is a term of type σ in context Γ , and ϕ is a formula in
context Γ .

HoFL is a so-called “logic over type theory” or “logic-enriched type theory” in
Aczel’s terms; there is an underlying type theory, upon which logic is built (see,
e.g., Jacobs [13]). To begin with, let us give a bird’s-eye view of the structure of
HoFL. The type theory of HoFL is given by simply typed λ-calculus with finite
product types (i.e., 1 and ×; these amount to the structure of CCCs, cartesian
closed categories), and moreover, with the special, distinguished type

Prop

which is a “proposition” type, intended to represent a truth-value object Ω on
the categorical side. The logic of HoFL is given by Full Lambek calculus FL. The
Prop type plays the key rôle of reflecting the logical or propositional structure
into the type or term structure: every formula or proposition ϕ may be seen as a
term of type Prop. This is essentially what the subobject classifier Ω of a topos
E is required to satisfy, that is,

SubE(-) � HomE(-, Ω).

Spelling out the meaning of this axiom in logical terms, we have got

Pred(σ) � Term(σ,Prop)

which means the structure of predicates on each type σ (or context Γ in general)
is isomorphic to the structure of terms from σ to Prop. The logical meaning of Ω
may thus be summarised by a sort of reflection principle, namely the reflection of
the propositional structure into the type structure, which may also be called the
“propositions-as-terms” or “propositions-as-functions” correspondence, arguably
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lying at the heart of higher-order categorical logic, for Ω would presumably be
the raison d’être of higher-order categorical logic (toposes are CCCs with Ω).

The power type Pσ of a given type σ can be defined in the present framework
as σ → Prop; the comprehension term {x : σ | ϕ} : Pσ and the membership
predicate s ∈ t : Prop are definable via λ-abstraction or currying (categorically,
transposing) and λ-application (categorically, evaluation), respectively. That is,
{x : σ | ϕ} may be defined as λx : σ. ϕ where ϕ is seen as a term of type Prop, and
also s ∈ t may be defined as ts where t : σ → Prop and s : σ. These definable
operations allow us to express set-theoretical reasoning in higher-order logic.
There is, of course, some freedom on the choice of primitives, just as toposes can
be defined in terms of either subobject classifiers or power objects. All this is
to facilitate an intuitive understanding of the essential features of higher-order
logic; we give a formal account below.

The syntactic details of HoFL are as follows. HoFL is equipped with the
following logical connectives of Full Lambek calculus:

⊗,∧,∨, \, /, 1, 0,	,⊥,∀,∃.

The non-commutativity of HoFL gives rise to two kinds of implication (\ and
/). We have basic variables and types, denoted by letters like x and σ, respec-
tively. And as usual x : σ is a formal expression to say that a variable x is of
type σ. Note that every variable must be typed in HoFL, unlike untyped FL.
A context is a finite list of typings of variables: x1 : σ1, ..., xn : σn which is
often abbreviated as Γ . Formulae and terms are then defined within specific
contexts. There are relation symbols and function symbols, both in context:
R(x1, ..., xn) [x1 : σ1, ..., xn : σn] is a formal expression to say that R is a rela-
tion symbol with variables x1, ..., xn of types σ1, ..., σn respectively; and also
f : τ [x1 : σ1, ..., xn : σn] is a formal expression to say that f is a function
symbol with its domain (the product of) σ1, ..., σn and with its codomain τ .

The type constructors of HoFL are product ×, function space →, and the
proposition type Prop, which is a nullary type constructor. The term construc-
tors of × and → are as usual: pairing 〈-, -〉 and (first and second) projections
π1, π2 for product ×, and λ-abstraction and λ-application for function space →.
The term constructors of Prop are all the logical connectives of Full Lambek
calculus as listed above, the relation symbols taken to be of type Prop and thus
working as generators of the terms of type Prop. Formulae in context, ϕ [Γ ], and
terms in context, t : τ [Γ ], are then defined in the usual, inductive manner (our
terminology and notation mostly follow Pitts [25]; we are extending his frame-
work so as to encompass higher-order substructural logics). Finally, sequents in
contexts are defined as:

Φ � ϕ [Γ ]

where Γ is a context, Φ is a finite list of formulae ϕ1, ..., ϕn, and all the formulae
involved are in context Γ .

So far we have not touched upon any axiom (or inference rule) involved. In
the following, we first give axioms for terms, and then for sequents. The axioms
for × and → are as usual (see, e.g., Pitts [25]). The axiom for Prop is as follows:



Higher-Order Categorical Substructural Logic 191

ϕ � ψ [Γ ] ψ � ϕ [Γ ]

ϕ = ψ : Prop [Γ ]
(prop)

This axiom relates the structure of propositions to that of terms, thus guarantee-
ing the aforementioned “propositions-as-functions” correspondence for higher-
order categorical logic. There are several standard rules for contexts and substi-
tution, which are the same as those in Pitts [25] (we do not repeat them here,
referring to the Sect. 2 of Pitts [25] for the details). We now turn to inference
rules for sequents. We first have the identity and cut rules as follows:

ϕ � ϕ [Γ ]
(id)

Φ1 � ϕ [Γ ] Φ2, ϕ, Φ3 � ψ [Γ ]

Φ2, Φ1, Φ3 � ψ [Γ ]
(cut)

where ψ may be empty; this applies to the following L (Left) rules as well. Note
that HoFL has no structural rule other than the cut rule. The rules governing
the use of the logical connectives are as follows.

Φ, ϕ, ψ, Ψ � χ [Γ ]

Φ, ϕ ⊗ ψ, Ψ � χ [Γ ]
(⊗L)

Φ � ϕ [Γ ] Ψ � ψ [Γ ]

Φ, Ψ � ϕ ⊗ ψ [Γ ]
(⊗R)

Φ, ϕ, Ψ � χ [Γ ]

Φ, ϕ ∧ ψ, Ψ � χ [Γ ]
(∧L1)

Φ, ϕ, Ψ � χ [Γ ]

Φ, ψ ∧ ϕ, Ψ � χ [Γ ]
(∧L2)

Φ � ϕ [Γ ] Φ � ψ [Γ ]

Φ � ϕ ∧ ψ [Γ ]
(∧R)

Φ, ϕ, Ψ � χ [Γ ] Φ, ψ, Ψ � χ [Γ ]

Φ, ϕ ∨ ψ, Ψ � χ [Γ ]
(∨L)

Φ � ϕ [Γ ]

Φ � ϕ ∨ ψ [Γ ]
(∨R1)

Φ � ϕ [Γ ]

Φ � ψ ∨ ϕ [Γ ]
(∨R2)

Φ � ϕ [Γ ] Ψ1, ψ, Ψ2 � χ [Γ ]

Ψ1, Φ, ϕ\ψ, Ψ2 � χ [Γ ]
(\L)

ϕ, Φ � ψ [Γ ]

Φ � ϕ\ψ [Γ ]
(\R)

Φ � ϕ [Γ ] Ψ1, ψ, Ψ2 � χ [Γ ]

Ψ1, ψ/ϕ, Φ, Ψ2 � χ [Γ ]
(/L)

Φ, ϕ � ψ [Γ ]

Φ � ψ/ϕ [Γ ]
(/R)

Ψ1, Ψ2 � ϕ [Γ ]

Ψ1, 1, Ψ2 � ϕ [Γ ]
(1L) � 1 [Γ ]

(1R)

0 � [Γ ]
(0L)

Φ � [Γ ]

Φ � 0 [Γ ]
(0R)

Φ � � [Γ ]
(�R)

Φ1, ⊥, Φ2 � ϕ [Γ ]
(⊥L)

Φ1, ϕ, Φ2 � ψ [x : σ, Γ ]
Φ1,∀σxϕ,Φ2 � ψ [x : σ, Γ ]

(∀L)
Φ � ϕ [x : σ, Γ ]
Φ � ∀σxϕ [Γ ]

(∀R)
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Φ1, ϕ, Φ2 � ψ [x : σ, Γ ]
Φ1,∃σxϕ,Φ2 � ψ [Γ ]

(∃L)
Φ � ϕ [x : σ, Γ ]

Φ � ∃σxϕ [x : σ, Γ ]
(∃R)

There are eigenvariable conditions on the quantification rules: x must not appear
as a free variable in the bottom sequents of the ∀R and ∃L rules. We write ∀x
and ∃x when the type of x is obvious. These are all of the rules of HoFL; the
provability of sequents in context is defined in the usual way. The essential differ-
ence from the first-order case is the existence of function and truth value types;
they are what make the logic higher-order, enabling set-theoretical reasoning.

For a collection X of axiom schemata (which we often simply call axioms),
let us denote by HoFLX the axiomatic extension of HoFL via X. In particular,
we can recover higher-order intuitionistic logic as HoFLecw, i.e., by adding to
HoFL the exchange, weakening, and contraction rules (as axiom schemata).

Lemma 1. The following sequents-in-context are deducible in HoFL:

– (i) ϕ ⊗ (∃xψ) � ∃x(ϕ ⊗ ψ) [Γ ] and ∃x(ϕ ⊗ ψ) � ϕ ⊗ (∃xψ) [Γ ];
– (ii) (∃xψ) ⊗ ϕ � ∃x(ψ ⊗ ϕ) [Γ ] and ∃x(ψ ⊗ ϕ) � (∃xψ) ⊗ ϕ [Γ ]

where it is supposed that ϕ does not contain x as a free variable, and Γ contains
type declarations on those free variables that appear in ϕ and ∃xψ.

As explained in [21], typed logic allows domains of discourse to be empty; they
must be non-empty in the Tarski semantics. A type σ can be interpreted as an
initial object in a category. We need no ad hoc condition on domains of discourse
if we work with typed logic. This is due to Joyal as noted in Marquis and Reyes
[19]. Proof-theoretically, the following is not deducible in HoFL: ∀xϕ � ∃xϕ [ ].
Still the following is deducible: ∀xϕ � ∃xϕ [x : σ, Γ ]. That is, we can prove the
sequent above when a type σ is inhabited (see [21] for more details).

3 Full Lambek Tripos

The algebras of propositional FL are FL algebras, the definition of which is
reviewed below. The algebras of first-order FL are arguably FL hyperdoctrines;
note that complete FL algebras only give us completeness in the presence of
the ad hoc condition of so-called safe valuations (cf. [24]), and yet FL hyperdoc-
trines allow us to prove completeness without any such ad hoc condition, and
at the same time, to recover the complete FL algebra semantics as a special,
set-theoretical instance of the FL hyperdoctrine semantics (in a nutshell, the
condition of safe valuations is only necessary to show completeness with respect
to the restricted class of FL hyperdoctrines with the category of sets their base
categories). In this section we define FL triposes, which are arguably the (fibred)
algebras of higher-order FL, and prove higher-order completeness, again with-
out any ad hoc condition such as safe valuations or Henkin-style restrictions on
quantification (set-theoretical semantics is only complete under this condition).
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Definition 2. (A,⊗,∧,∨, \, /, 1, 0,	,⊥) is an FL algebra iff the following hold:

– (A,⊗, 1) is a monoid; 0 is a distinguished element of A;
– (A,∧,∨,	,⊥) is a bounded lattice;
– for any a ∈ A, a\(-) : A → A is a right adjoint of a ⊗ (-) : A → A:

a ⊗ b ≤ c iff b ≤ a\c for any a, b, c ∈ A;
– for any b ∈ A, (-)/b : A → A is a right adjoint of (-) ⊗ b : A → A: a ⊗ b ≤

c iff a ≤ c/b. for any a, b, c ∈ A.

A homomorphism of FL algebras is required to preserve all the operations of FL
algebras. Let FL denote the category of FL algebras and their homomorphisms.

FL is an algebraic category (namely, a category monadic over the category
of sets; see [1]), and then an axiomatic extension FLX of FL corresponds to an
algebraic subcategory of FL, which shall be denoted FLX . Note that algebraic
categories are called varieties or equational classes in universal algebra.

Definition 3. An FL (Full Lambek) hyperdoctrine is a contravariant functor

P : Cop → FL

such that the base category C of P is a category with finite products, and that
the following conditions (to express quantifiers) are satisfied:

– For any projection π : X × Y → Y in C, P (π) : P (Y ) → P (X × Y ) has a
right adjoint, denoted ∀π : P (X × Y ) → P (Y ). And the corresponding Beck-
Chevalley condition holds, i.e., the following diagram commutes for any arrow
f : Z → Y in C (π′ : X × Z → Z below denotes a projection):

P (X × Y ) P (Y )

P (X × Z) P (Z)
�

P (X×f)

�∀π

�
P (f)

�
∀π′

– For any projection π : X ×Y → Y in C, P (π) : P (Y ) → P (X ×Y ) has a left
adjoint, denoted ∃π : P (X × Y ) → P (Y ). The corresponding Beck-Chevalley
condition holds:

P (X × Y ) P (Y )

P (X × Z) P (Z)
�

P (X×f)

�∃π

�
P (f)

�
∃π′

Furthermore, the Frobenius Reciprocity conditions hold: for any projection
π : X × Y → Y in C, any a ∈ P (Y ), and any b ∈ P (X × Y ),

a ⊗ (∃πb) = ∃π(P (π)(a) ⊗ b)
(∃πb) ⊗ a = ∃π(b ⊗ P (π)(a)).
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The logical reading of the Beck-Chevalley conditions above is that substitu-
tion commutes with quantification.

Now, FL triposes are defined as FL hyperdoctrines with their base categories
CCCs, and with truth-value objects Ω (i.e., representability via Ω ∈ C):

Definition 4. An FL (Full Lambek) tripos, or higher-order FL hyperdoctrine,
is an FL hyperdoctrine P : Cop → FL such that:

– The base category C is a CCC (Cartesian Closed Category);
– There is an object Ω ∈ C such that

P � HomC(-, Ω).

We then call Ω the truth-value object of the FL tripos P . Given a set X of
axioms, an FLX tripos is defined by replacing FL above with FLX .

For an FL tripos P , each P (C) is called a fibre of the FL tripos P from
a fibrational point of view; intuitively, P (C) may be seen as the algebra of
propositions on a type or domain of discourse C. Note that it is also possible to
define FL triposes in terms of fibrations, even though the present formulation in
terms of indexed categories would be categorically less demanding.

FL tripos semantics for HoFL is defined as follows.

Definition 5. Let P : Cop → FL be an FL tripos. An interpretation [[-]] of
HoFL in the FL tripos P is defined as follows. Types and atomic symbols are
interpreted in the following way:

– each basic type σ is interpreted as an object [[σ]] in C;
– product and function types, σ × τ and σ → τ , are interpreted, as usual, by

categorical product and exponentiation;
– each function symbol f : τ [Γ ] is interpreted as an arrow

[[f : τ [Γ ]]] : [[Γ ]] → [[σ]]

in C; if the context Γ is x1 : σ1, ..., xn : σn, then [[Γ ]] denotes [[σ1]]× ...× [[σn]];
– each relation symbol R [Γ ] is interpreted as an element [[R [Γ ]]] in the corre-

sponding fibre P ([[Γ ]]) of the FL tripos P at [[Γ ]].

Terms and their equality are interpreted in the following, inductive manner:

– [[x : σ [Γ1, x : σ, Γ2]]] is defined as the following projection in C:

π : [[Γ1]] × [[σ]] × [[Γ2]] → [[σ]].

– [[f(t1, ..., tn) : τ [Γ ]]] is defined as the following arrow in C:
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[[f ]] ◦ 〈[[t1 : σ1 [Γ ]]], ..., [[tn : σn [Γ ]]]〉
where f : τ [x1 : σ1, ..., xn : σn], and t1 : σ1 [Γ ], ..., tn : σn [Γ ] (note also that
〈[[t1 : σ1 [Γ ]]], ..., [[tn : σn [Γ ]]]〉 denotes the product/pairing of arrows in C).

– λ-abstraction, λ-application, projections, and pairing are interpreted, as
usual, by categorical transpose, evaluation, projections, and pairing in the
base CCC C, respectively;

Formulae are interpreted in the following, inductive manner:

– [[R(t1, ..., tn) [Γ ]]] is defined as

P (〈[[t1 : σ1[Γ ]]], ..., [[tn : σn[Γ ]]]〉)([[R [x : σ1, ..., xn : σn]]])

where R is a relation symbol in context x1 : σ1, ..., xn : σn.
– [[ϕ ⊗ ψ [Γ ]]] is defined as [[ϕ [Γ ]]] ⊗ [[ψ [Γ ]]]. The other binary connectives

∧,∨, \, / are interpreted in a similar way. [[1 [Γ ]]] is defined as the monoidal
unit of P ([[Γ ]]). The other constants 0,	,⊥ are interpreted in a similar way.

– [[∀xϕ [Γ ]]] is defined as ∀π([[ϕ [x : σ, Γ ]]]) where π : [[σ]] × [[Γ ]] → [[Γ ]] is a
projection in C, and ϕ is a formula in context [x : σ, Γ ]. Similarly, [[∃xϕ [Γ ]]]
is defined as ∃π([[ϕ [x : σ, Γ ]]]).

Prop and its terms are then interpreted as follows:

– Prop is interpreted as the truth-value object Ω of the FL tripos P :

[[Prop]] = Ω;

– each formula ϕ : Prop [Γ ], regarded as a term of type Prop, is interpreted
as the element of HomC([[Γ ]], Ω) which corresponds to [[ϕ [Γ ]]] ∈ P ([[Γ ]]) in
the defining isomorphism P � HomC(-, Ω) of the FL tripos P ; in a nutshell,
[[ϕ : Prop [Γ ]]]’s and [[ϕ [Γ ]]]’s are linked via the isomorphism.

Finally, the validity of sequents in context is defined as follows:

– ϕ1, ..., ϕn � ψ [Γ ] is valid in an interpretation [[-]] in an FL tripos P iff the
following holds in P ([[Γ ]]):

[[ϕ1 [Γ ]]] ⊗ ... ⊗ [[ϕn [Γ ]]] ≤ [[ψ [Γ ]]].

In case the right-hand side of a sequent is empty, ϕ1, ..., ϕn � [Γ ] is valid in
[[-]] iff [[ϕ1 [Γ ]]] ⊗ ... ⊗ [[ϕn [Γ ]]] ≤ 0 in P ([[Γ ]]). In case the left-hand side of
a sequent is empty, � ϕ [Γ ] is valid in [[-]] iff 1 ≤ [[ϕ[Γ ]]] in P ([[Γ ]]). When Φ
consists of ϕ1, ..., ϕn, let [[Φ [Γ ]]] denote [[ϕ1 [Γ ]]] ⊗ ... ⊗ [[ϕn [Γ ]]].

An interpretation of HoFLX in an FLX tripos is defined by replacing FL and
HoFL above with FLX and HoFLX , respectively.

The categorical conception of interpretation encompasses set-theoretical
interpretations and forcing-style model constructions. First of all, interpreting
logic in the 2-valued tripos HomSet(-,2) (where 2 is the two-element Boolean
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algebra) is precisely equivalent to the standard Tarski semantics. Yet there is a
vast generalisation of this: given a quantale Ω, the representable functor

HomSet(-, Ω) : Setop → FL

forms an FL tripos, which gives rise to a universe of quantale-valued sets via the
generalised tripos-to-topos construction as in [21]; if Ω is a locale in particular
(i.e., complete Heyting algebra), it is known that HomSet(-, Ω) yields Sh(Ω)
(i.e., the sheaf topos on Ω). This sort of FL tripos models of set theory could
hopefully be applied to solve consistency problems for substructural set theories
(especially, Cantor-�Lukasiewicz set theory).

Note that the base category of an FL tripos is used to interpret the type
theory of HoFL, and the value category is used to interpret the logic part of
HoFL. In the following, we first prove soundness and then completeness.

Proposition 6. If Φ � ψ [Γ ] is provable in HoFL (resp. HoFLX), then it is
valid in any interpretation in any FL (resp. FLX) tripos.

Proof. Let P be an FL or FLX tripos, and [[-]] an interpretation in P . Soundness
for the first-order part can be proven in essentially the same way as in [21]; due
to space limitations, we do not repeat it, and focus upon Prop, which is the most
distinctive part of higher-order logic. So let us prove that the rule for the Prop
type preserves validity. Suppose that

[[ϕ [Γ ]]] ≤ [[ψ [Γ ]]]

and that
[[ψ [Γ ]]] ≤ [[ϕ [Γ ]]].

It then follows that
[[ϕ [Γ ]]] = [[ψ [Γ ]]].

Note that this is a “propositional” equality, i.e., an equality in the fibre P ([[Γ ]])
of propositions on [[Γ ]]. Since we have the following isomorphism

P ([[Γ ]]) � HomC([[Γ ]], [[Prop]])

the equality above, together with the definition of the interpretation of terms of
type Prop, tells us that

[[ϕ : Prop [Γ ]]] = [[ψ : Prop [Γ ]]].

Note that this is a “functional” equality, i.e., an equality in HomC([[Γ ]], [[Prop]]).
Thus, the propositional equality implies the functional equality (via the iso-
morphism above), and this is exactly what it is for the Prop rule to preserve
validity. ��

For the sake of a completeness proof, let us introduce the syntactic tripos
construction (for logic over type theory), which is the combination of the syntac-
tic category construction (for type theory) and the Lindenbaum-Tarski algebra
construction (for propositional logic):



Higher-Order Categorical Substructural Logic 197

Definition 7. The syntactic tripos of HoFL is defined as follows. Let us first
define the syntactic base category C: an object is a context Γ (up to α-
equivalence); an arrow from Γ to Γ ′ is a list of terms (up to equality on terms)

[t1, ..., tn]

where t1 : σ1 [Γ ], ..., tn : σn [Γ ] and Γ ′ is supposed to be x1 : σ1, ..., xn : σn.
Composition is defined via substitution. The syntactic tripos PHoFL : Cop → FL
is then defined as follows. Given an object Γ in C, let FormΓ denote the set of
formulas in context Γ , and then define

PHoFL(Γ ) = FormΓ / ∼
where ∼ is an equivalence relation on FormΓ defined as follows: for ϕ,ψ ∈
FormΓ , ϕ ∼ ψ iff ϕ � ψ [Γ ] and ψ � ϕ [Γ ] are provable in HoFL. The arrow part
of PHoFL is defined as follows. Let [t1, ..., tn] : Γ → Γ ′ be an arrow in C where Γ ′

is x1 : σ1, ..., xn : σn. Then we define PHoFL([t1, ..., tn]) : PHoFL(Γ ′) → PHoFL(Γ )
by

PHoFL([t1, ..., tn])(ϕ [Γ ′]) = ϕ[t1/x1, ..., tn/xn] [Γ ]

where it is supposed that t1 : σ1 [Γ ], ..., tn : σn [Γ ], and that ϕ is a formula in
context x1 : σ1, ..., xn : σn. The syntactic tripos PHoFLX

of HoFLX is defined
just by replacing FL and HoFL above with FLX and HoFLX , respectively.

The syntactic tripos of higher-order logic is the fibrational analogue of the
Lindenbaum-Tarski algebra of propositional logic; each fibre PHoFL(Γ ) of the
syntactic tripos PHoFL is the Lindenbaum-Tarski algebra of formulae in context
Γ . The syntactic tripos of HoFL has the universal mapping property that inherits
from the syntactic base category of the underlying type theory of HoFL, and also
from the fibre-wise Lindenbaum-Tarski algebras of the logic part of HoFL. We
of course have to verify that the syntactic tripos PHoFL indeed carries an FL
tripos structure; this is the crucial part of the completeness proof.

Lemma 8. The syntactic tripos PHoFL : Cop → FL (resp. FLX) defined above
is an FL (resp. FLX) tripos. In particular, the base category is a CCC, and there
is a truth-value object Ω ∈ C such that

PHoFL � HomC(-, Ω).

Proof. The existence of products and exponentials in C is guaranteed by the
existence of product types and function space types in the type theory of
HoFL. Substitution commutes with all the logical connectives. This means that
P ([t1, ..., tn]) defined above is a homomorphism; so P is a contravariant functor.

P has quantifier structures as follows. Let π : Γ ×Γ ′ → Γ ′ denote the projec-
tion in C defined above, and consider P (π), which has right and left adjoints in
the following way. Recall Γ is x : σ1, ..., xn : σn. Let ϕ ∈ P (Γ × Γ ′); we identify
ϕ with the equivalence class to which ϕ belongs. Define ∀π : P (Γ ×Γ ′) → P (Γ ′)
by

∀π(ϕ) = ∀x1...∀xnϕ.
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We also define ∃π : P (Γ × Γ ′) → P (Γ ′) by ∃π(ϕ) = ∃x1...∃xnϕ. Then, ∀π and
∃π give the right and left adjoints of P (π), respectively.

We can verify the Beck-Chevalley condition for ∀ as follows. Let ϕ ∈ P (Γ ×
Γ ′), π : Γ ×Γ ′ → Γ ′ a projection in C, and π′ : Γ ×Γ ′′ → Γ ′′ another projection
in C for objects Γ, Γ ′, Γ ′′ in C. Then,

P ([t1, ..., tn]) ◦ ∀π(ϕ) = (∀x1...∀xnϕ)[t1/y1, ..., tn/ym]

where Γ is supposed to be x1 : σ1, ..., xn : σn, Γ ′ is y1 : τ1, ..., ym : τm,
and t1 : τ1 [Γ ′′], ..., tm : τm [Γ ′′]. Likewise we have ∀π′ ◦ P ([t1, ..., tn])(ϕ) =
∀x1...∀xn(ϕ[t1/y1, ..., tn/ym]). The Beck-Chevalley condition for ∀ thus follows.
The Beck-Chevalley condition for ∃ can be verified in a similar way. The two
Frobenius Reciprocity conditions for ∃ follow immediately from Lemma 1.

In the following we prove the existence of a truth-value object Ω. Let

Ω = x : Prop.

Note that, since the objects of the base category are contexts rather than types,
we cannot take Ω to be Prop per se; yet x : Prop practically means the same
thing as Prop, thanks to α-equivalence required. We now have to show that for
each context Γ ,

P (Γ ) � HomC(Γ, x : Prop)

and this correspondence yields a natural transformation. The required isomor-
phism is given by mapping

ϕ [Γ ] ∈ P (Γ )

to
ϕ : Prop [Γ ] ∈ HomC(Γ, x : Prop).

Note that ϕ above is actually an equivalence class, and yet the above mapping
is well defined, and also that ϕ : Prop [Γ ] is actually a list consisting of a single
term ϕ : Prop [Γ ]. This mapping is an isomorphism by the definition of terms
of type Prop. Let us denote the above mapping by

PaFΓ : P (Γ ) → HomC(Γ, x : Prop)

with the idea of “Propositions-as-Functions” in mind. The naturality of this
correspondence then means that the following diagram commutes for any arrow
[t1, ..., tn] : Γ ′ → Γ in C:

P (Γ ) HomC(Γ, x : Prop)

P (Γ ′) HomC(Γ ′, x : Prop)
�

P ([t1,...,tn])

�PaFΓ

�
HomC([t1,...,tn],x:Prop)

�
PaFΓ ′
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By the following calculation:

HomC([t1, ..., tn],Prop) ◦ PaFΓ (ϕ [Γ ]) = HomC([t1, ..., tn],Prop)(ϕ : Prop [Γ ])
= ϕ[t1/x1, ..., tn/xn] : Prop [Γ ′]
= PaFΓ ′(ϕ[t1/x1, ..., tn/xn] [Γ ′])
= PaFΓ ′ ◦ P ([t1, ..., tn])(ϕ [Γ ])

we obtain the commutativity of the diagram and hence the naturality of the
“propositions-as-functions” correspondence. ��

It is straightforward to see that if Φ � ψ [Γ ] is valid in the canonical interpre-
tation in the syntactic tripos PHoFL (resp. PHoFLX

), then it is provable in HoFL
(resp. HoFLX). And this immediately gives us completeness via the standard
counter-model argument. Hence the higher-order completeness theorem:

Theorem 9. Φ � ψ [Γ ] is provable in HoFL (resp. HoFLX) iff it is valid in any
interpretation in any FL (resp. FLX) tripos.

This higher-order completeness theorem can be applied, with a suitable choice
of axioms X, for any of classical, intuitionistic, fuzzy, relevant, paraconsistent,
and (both commutative and non-commutative) linear logics; higher-order com-
pleteness has not been known for these logics except the first two. The concept
of (generalised) tripos, therefore, is so broadly applicable as to encompass most
logical systems. Modal logics also can readily be incorporated into this frame-
work by working with modal FL rather than plain FL. Coalgebraic dualities for
modal logics (see, e.g., [14,16,20,22]) then yield models of modal triposes for
them; these modal issues are to be addressed in subsequent papers.

4 Girard and Kolmogorov Translation for Triposes

We finally analyse Kolmogorov’s double negation ¬¬ translation (Kolmogorov
found it earlier than Gödel-Gentzen; see Ferreira and Oliva [7]) and Girard’s
exponential ! translation from a tripos-theoretical point of view.

Propositional Kolmogorov translation algebraically means that, for any Heyt-
ing algebra A, the doubly negated algebra ¬¬A, defined as {a ∈ A | ¬¬a = a},
always forms a Boolean algebra. This ¬¬ construction extends to a functor from
the category HA of Heyting algebras to the category BA of Boolean algebras.
And then the categorical meaning of first-order Kolmogorov translation is that,
for any first-order IL hyperdoctrine P : Cop → HA (where IL denotes intuition-
istic logic), the following composed functor

¬¬ ◦ P : Cop → BA

forms a first-order CL hyperdoctrine (where CL denotes classical logic) as in
[21]. Yet this strategy does not extend to the higher-order case: in particular,
although the base category does not change in the first-order case, in which types
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and propositions are separated, it must nevertheless be modified in the higher-
order case, in which types and propositions interact via Prop or Ω. Technicalities
involved get essentially more complicated in the higher-order case. Still, we can
construct from a given IL tripos P : Cop → HA a CL tripos

P¬¬ : Cop
¬¬ → BA.

For the sake of the description of C¬¬ (and P¬¬), however, we work within the
internal language HoFLP of the tripos P : Cop → FL: in HoFLP , we have types
C and terms f corresponding to objects C and arrows f in C, respectively, and
also formulae R on a type C ∈ C corresponding to elements R ∈ P (C).

Now we define the translation on the internal language HoFLP of the tripos
P which allows us to describe the double negation category C¬¬ mentioned
above. The basic strategy of translation is this: we leave everything in HoFLP

as it is, unless it involves the proposition type Ω of HoFLP ; and if something
involves Ω, we always put double negation on it. Formally it goes as follows:

Definition 10. We recursively define the translation on HoFLP as follows.

– If ϕ : Ω [Γ ] then we put ¬¬ on every sub-formula of ϕ (do the same for ϕ
seen as formulae).

– If t : σ [Γ, x : Ω,Γ ′] then we replace every occurrence of x in t by ¬¬x.
– If t : Ω × σ [Γ ] then t translates into 〈¬¬π1t, π2t〉; if t : σ × Ω [Γ ] then t

translates into 〈π1t,¬¬π2t〉.
– If t : σ [Γ, x : Ω × σ, Γ ′] then we replace every occurrence of x in t by

〈¬¬π1x, π2x〉; if t : σ [Γ, x : σ × Ω,Γ ′] then we replace every occurrence of x
in t by 〈π1x,¬¬π2x〉.

– If t : σ → Ω [Γ ] then t translates into λx : σ.¬¬tx; if t : Ω → σ [Γ ] then t
translates into λx : Ω.t¬¬x.

– If t : σ [Γ, x : σ → Ω,Γ ′] then we replace every occurrence of x in t by
λy : σ.(¬¬x)y; if t : σ [Γ, x : Ω → σ, Γ ′] then we replace every occurrence of
x in t by λy : Ω.x¬¬y.

– Finally, if t : σ [Γ ] and no Ω appears in it, then t translates into itself.

The double negation category C¬¬ is then defined as follows: the objects of
C¬¬ are contexts in HoFLP up to α-equivalence (which are essentially the same
as objects in C), and the arrows of C¬¬ are the translations of lists of terms in
HoFLP up to equality on terms, with their composition defined via substitution
as usual. This intuitively means that those arrows in C that involve Ω are double
negated in C¬¬ whilst the other part of C¬¬ remains the same as that of C (to
give the rigorous definition of this, we work within the internal language). Then
it is not obvious that C¬¬ forms a category again, let alone a CCC. Thus:

Lemma 11. C¬¬ defined above forms a category, in particular a CCC.

Proof. Since everything involving Ω is doubly negated, we have to verify that all
of the relevant categorical structures, that is, composition, identity, projection,
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paring, evaluation, and transpose, preserve or respect double negation. Here we
just give several sample proofs to show essential ideas.

Consider the case of composition. We think of single terms for simplicity. The
composition of arrows t : σ [x : Ω] and s : σ′ [y : σ] in C¬¬ (which may be seen
as t : Ω → σ and s : σ → σ′ in terms of the original category C) is defined as
s[t/y] : σ′ [x : Ω], where every occurrence of x in s[t/y] must have been replaced
by ¬¬x (for s[t/y] to be in C¬¬); this is true because every occurrence of x in t is
replaced by ¬¬x by the definition of arrows in C¬¬. Likewise, the composition of
arrows t : σ′ [x : σ] and s : Ω [y : σ′] in C¬¬ is defined as s[t/y] : Ω [x : σ], where
every sub-formula of s[t/y] is doubly negated by the assumption of s, t ∈ C; and
hence s[t/y] ∈ C. More complex cases can be proven in a similar way.

Consider the case of identity. Think of an identity on Ω, which is given
by ¬¬x : Ω [x : Ω]. Given t : Ω [y : σ′] in C¬¬, (¬¬x) ◦ t is defined as
(¬¬x)[t/x] : Ω [y : σ′], which equals ¬¬t : Ω [y : σ′]. By t ∈ C¬¬, t can
be written as ¬¬t′, and so ¬¬t = ¬¬¬¬t′ = ¬¬t′ = t. Hence (¬¬x) ◦ t = t.
Likewise, given t : σ′ [y : Ω] in C¬¬, t ◦ ¬¬x is defined as t[¬¬x/y] : σ′ [x : Ω];
since every occurrence of y in t is replaced by ¬¬y because t ∈ C¬¬ and since
¬¬¬¬ is equivalent to ¬¬, we have t[¬¬x/y] = t, whence t ◦ ¬¬x = t. More
complex cases can be shown in a similar manner.

To show the existence of finite products and exponentials involving Ω (oth-
erwise it is trivial), it is crucial to check that doubly negated projection, pairing,
evaluation, and transpose still play their own rôles, just as doubly negated iden-
tity still plays the rôle of identity as we have shown above. ��

Finally we obtain the following, tripos-theoretical Kolmogorov translation
theorem for higher-order logic, which may also be seen as a translation from
classical set theory to intuitionistic set theory (since higher-order logic is basi-
cally set theory in logical form).

Theorem 12. Let P : Cop → HA be an IL tripos, and C¬¬ the double negation
category as defined above. Then, P¬¬ defined as

HomC¬¬(-, Ω) : C¬¬ → BA

forms a CL tripos, called the double negation tripos of P .

Proof. C¬¬ is a CCC by the lemma, and P¬¬ is represented by Ω. This completes
the higher-order part of the proof. Concerning the first-order part, the existence
of quantifiers follows from this fact: if ϕ admits the double negation elimination,
then ¬¬∀xϕ and ¬¬∃xϕ are equivalent to ∀x¬¬ϕ and ∃x¬¬ϕ, respectively. ��

Note that the hyperdoctrinal Kolmogorov translation does not reduce to
the construction of toposes via double negation topology because there are
more triposes than toposes in the adjunction between them (all toposes come
from triposes, but not vice versa). Moreover, our hyperdoctrinal method is
designed modularly enough to be applicable to Girard’s translation as well as
Kolmogorov’s. Although Glivenko-type theorems have been shown for substruc-
tural propositional and first-order logics (see Ferreira-Ono [6] and Galatos-Ono
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[9]), no such result is known for higher-order logic (as to the first-order case, [21]
is typed and categorical while [6] is single-sorted and proof-theoretical).

An exponential ! on an FL algebra A is defined as a unary operation satis-
fying: (i) a ≤ b implies !a ≤!b; (ii) !!a =!a ≤ a; (iii) !	 = 1; (iv) !a⊗!b =!(a ∧ b)
(Coumans, Gehrke, and van Rooijen [5]). We denote by FL!

c the category of com-
mutative FL algebras with !, which are algebras for intuitionistic linear logic. FL!

c

triposes give sound and complete semantics for higher-order intuitionistic linear
logic. The Girard category C! of an FL!

c tripos P : Cop → FL!
c is defined by

replacing double negation in the above definition of C¬¬ with Girard’s expo-
nential !. The following is the hyperdoctrinal Girard translation theorem for
higher-order logic, which can be shown in basically the same way as above; no
such higher-order translation has been known so far.

Theorem 13. Let P : Cop → FL!
c be an FL!

c tripos (for intuitionistic linear
logic), and C! the Girard category of P . Define

P! = HomC!(-, Ω) : C! → HA.

Then, P! forms an IL tripos (i.e., FL!
ecw tripos), called the Girard tripos of P .
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Abstract. In this paper, we study the expressive power and succinct-
ness of the positive calculus of relations. We show that (1) the calculus
has the same expressive power as that of three-variable existential posi-
tive (first-order) logic in terms of binary relations, and (2) the calculus is
exponentially less succinct than three-variable existential positive logic,
namely, there is no polynomial-size translation from three-variable exis-
tential positive logic to the calculus, whereas there is a linear-size trans-
lation in the converse direction. Additionally, we give a more fine-grained
expressive power equivalence between the (full) calculus of relations and
three-variable first-order logic in terms of the quantifier alternation hier-
archy. It remains open whether the calculus of relations is also exponen-
tially less succinct than three-variable first-order logic.

Keywords: Expressive power · Succinctness · The positive calculus
of relations · Existential positive logic

1 Introduction

The calculus of (binary) relations (denoted by CoR, for short), which was revived
by Tarski [22], is an algebraic system on binary relations. The calculus of rela-
tions and relation algebras have many applications in various areas of com-
puter science, e.g., databases, program development and verification, and pro-
gram semantics (see [8] for more details and references). Certain properties of
binary relations can be simply expressed using (in)equational formulas of CoR;
for example, the formula a · a ≤ a indicates that the binary relation a is tran-
sitive, where the symbol · denotes the composition operator of binary relations
and the symbol ≤ denotes the inclusion relation on sets. In fact, CoR has a high
expressive power, namely, the expressive power of CoR is equivalent to three-
variable first-order logic (denoted by FO3) in terms of binary relations [9,15,23].
One of the downsides for this high expressive power is that the equational theory
of CoR is undecidable [23], even for terms built only from one variable, union,
complement, and composition [18].

In this paper, we focus on the positive calculus of relations (denoted by PCoR,
for short) [2,19], which is a complement-free fragment of CoR. Namely, PCoR
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terms are built from union, intersection, composition, converse, the identity rela-
tion, the empty relation, and the universal relation. PCoR is strictly less expres-
sive than CoR, but its equational theory is decidable [2]. This decidability result
also holds when adding a transitive closure operation, thus arriving at Kleene
allegory terms [17].

The first contribution of this paper is to show that PCoR has the same
expressive power as three-variable existential positive (first-order) logic (denoted
by EP3) in terms of binary relations. The standard and linear-size translation
from CoR to FO3 [22, pp. 75–76] naturally specializes into a translation from
PCoR to EP3. Conversely, translations from FO3 to CoR also exist [23, Sect. 3.9]
[9, Sect. 20] [15, Theorem 552], but they generate non-PCoR terms on the EP3

fragment. Hence, we have to refine them. The translation we propose uses dis-
junctive/conjunctive normal forms where literals have at most two free variables.
We define it from full FO3 into CoR by relying on a relational sum operation (†),
which is dual to composition (·). By specializing our translation to the various
considered fragments, we obtain (1) an exponential-size translation from EP3

to PCoR, and (2) a perfect match between the quantifier alternation hierarchy
in FO3 and dot-dagger (· - †) alternation hierarchy in CoR. Roughly speaking,
it shows that the two operators, · and †, from the calculus of relations exactly
correspond to the two quantifiers, ∃ and ∀, of first-order logic.

The second contribution of this paper is to show that PCoR is exponentially
less succinct than EP3, namely, the exponential blowup in translating from EP3

to PCoR is unavoidable. Hence, the exponential-size translation for EP3 given
in this paper is tight.

Furthermore, we extend the two above results for both transitive closure
extensions, namely, we show that PCoR with transitive closure [19] (denoted
by PCoR(TC)) has the same expressive power as EP3 with variable-confined
monadic transitive closure (denoted by EP3(v-MTC)) and that PCoR(TC) is
exponentially less succinct than EP3(v-MTC).

Remark 1 (On trade-off between succinctness and tractability). The combined
complexity of the (binary-relation) query evaluation problem [24] is the problem
to decide for a structure M , a term t, and a pair of nodes in M , whether the pair
is in the binary relation denoted by t on the structure M . While PCoR is strictly
less succinct than EP3, PCoR is more tractable than EP3 in the simple dynamic-
programming algorithm for this problem (see, e.g., [14, Proposition 6.6]). While
it does not imply a certain computational complexity gap between the two prob-
lems, it can be solved in O(‖t‖×‖M‖2)-time for PCoR, thanks to this algorithm,
if the number of occurrences of · is fixed, while it requires O(‖t‖ × ‖M‖3)-time
for EP3 even if the number of occurrences of ∃ is fixed, where ‖t‖ is the size of
t and ‖M‖ is the cardinality of the domain of M , respectively.

Related Work. Expressive power of formal systems is widely studied in math-
ematical logic and computer science.

An example is that the following systems have the same expressive power in
terms of recognizability over word structures: regular expressions, deterministic
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finite automata, non-deterministic finite automata, and monadic second-order
logic (MSO) (see, e.g., [6, Sec. 6]). However, these four systems are certainly
different in terms of succinctness. For example, while there is an (exponential-
size) translation from non-deterministic finite automata to deterministic finite
automata by the powerset construction, there is no polynomial-size translation
[16, Prop. 1]. This can yield significant complexity differences for various prob-
lems, e.g., membership, universality, and equivalence testing have different com-
plexity depending on whether we start from a term, an automaton, or a for-
mula. See [12, Thm. 16] and [7, Thm. 11] for the other succinctness gaps among
regular expressions, deterministic finite automata, and non-deterministic finite
automata. The succinctness gap between MSO and each of the other three sys-
tems can be shown by using the computational complexity gap that the equiva-
lence problem is non-elementary for MSO (and even for FO [21, Thm. 5.2]), but is
in PSPACE for regular expressions and non-deterministic automata, and almost
linear-time for deterministic automata. Additionally, the above like expressive
power equivalence is known for FO. The following have the same expressive
power: star-free regular expressions, FO3, and FO (see, e.g., [6, Sec. 6]). In [11],
it is shown that FO3 is exponentially less succinct than FO over unary alphabet
words. Another example is that the following classes of formulas have the same
expressive power with respect to boolean queries: propositional logic formulas,
negation normal form formulas, and disjunctive/conjunctive normal form formu-
las. In [5], the succinctness among a dozen formula classes (including the above
ones) is investigated.

In this paper, we compare the succinctness between PCoR and EP3. To the
best of our knowledge, it is the first comparison between the succinctness of
the (positive) calculus of relations and those of other systems. Our construction
in Sect. 4 is somewhat similar to the construction in [10, Sec. 4.5] in order to
show that there is no polynomial-size translation from conjunctive normal form
formulas to disjunctive normal form formulas, but is more complicated than the
construction. This is because we should consider structures with multiple nodes,
whereas it suffices to consider only singleton structures for propositional logic.

Organization. Section 2 provides the definitions of CoR and FO3 and fragments
of them (including PCoR and EP3), the notions of the expressive power and
succinctness, and the standard translation from CoR to FO3. Section 3 gives a
new translation from FO3 to CoR. Consequently, it is shown that PCoR has
the same expressive power as EP3. Section 4 shows that PCoR is exponentially
less succinct than EP3. Section 5 extends the results in Sects. 3–4 by adding a
transitive closure operator. Section 6 concludes this paper.

2 Preliminaries

N (resp. N+) denotes the set of all non-negative (resp. positive) integers. For
l, r ∈ N such that l ≤ r, [l, r] denotes the set {l, . . . , r} and [r] denotes the set
{1, . . . , r}. #(A) denotes the cardinality of a set A.
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Let A be a countably infinite set of binary relation symbols. A structure
M (of binary relations) is a tuple 〈|M |, {aM}a∈A 〉, where |M | is a non-empty
set, and for each a ∈ A , aM ⊆ |M |2 is a binary relation on |M |. For two
structures, M and M ′, we say that a function h : |M | → |M ′| is a homomorphism
from M to M ′ if for every a ∈ A and every v, w ∈ |M |, if 〈v, w〉 ∈ aM , then
〈h(v), h(w)〉 ∈ aM ′

.

The Calculus of Relations and Its Fragments. We introduce the calculus
of relations (CoR) [22] and its syntactic fragments: the positive calculus of rela-
tions (PCoR) [2,19] and the primitive positive calculus of relations (denoted by
PPCoR, a.k.a. allegory terms with top [20]). The terms of CoR consist of the
following basic operations on binary relations. Let X be a set. For two binary
relations R and S on the universe X, the union R ∪ S, intersection R ∩ S, and
complement R− are defined as the corresponding set-theoretic operators, respec-
tively. The symbols 0 and 
 are employed to denote the empty relation and the
universal relation, respectively. Relational composition (a.k.a. relational multi-
plication) R · S is defined as {〈v, v′〉 ∈ X2 | ∃w.〈v, w〉 ∈ R ∧ 〈w, v′〉 ∈ S}, and
relational sum R † S is defined as {〈v, v′〉 ∈ X2 | ∀w.〈v, w〉 ∈ R ∨ 〈w, v′〉 ∈ S}.
In this paper, the projection Rπ is defined as {〈v1, v2〉 ∈ X2 | 〈vπ(1), vπ(2)〉 ∈ R}
for each function π : [2] → [2]. The symbol 1 is employed to denote the identity
relation. We now define the syntax and semantics of CoR. The set of terms of
CoR/PCoR/PPCoR is given by the following grammar, where a ∈ A :

t, s ∈ TermCoR ::= tπ | a | 1 | 
 | t ∩ s | t · s | 0 | t ∪ s | t † s | t−

t, s ∈ TermPCoR ::= tπ | a | 1 | 
 | t ∩ s | t · s | 0 | t ∪ s

t, s ∈ TermPPCoR ::= tπ | a | 1 | 
 | t ∩ s | t · s

For k ∈ N, we use tk (the k-th iteration of t) to denote tk−1 · t if k ≥ 1; and
1 if k = 0, and use t� (the converse of t) to denote t{1 �→2,2 �→1}. The semantics
[[t]]M of a CoR term t on a structure M is a binary relation on |M |, which is
defined by: [[a]]M := aM ; [[1]]M := �(|M |); [[
]]M := |M |2; [[0]]M := ∅; [[t∪s]]M :=
[[t]]M ∪ [[s]]M ; [[t ∩ s]]M := [[t]]M ∩ [[s]]M ; [[t−]]M := |M |2 \ [[t]]M ; [[tπ]]M := [[t]]πM ;
[[t ·s]]M := [[t]]M · [[s]]M ; [[t†s]]M := [[t]]M † [[s]]M , where �(X) denotes the diagonal
relation (i.e., {〈v, w〉 ∈ X2 | v = w}). The size ‖t‖ of a CoR term t is defined
by: ‖a‖ := ‖1‖ := ‖
‖ := ‖0‖ := 1, ‖t ∪ s‖ := ‖t ∩ s‖ := ‖t · s‖ := ‖t † s‖ :=
1 + ‖t‖ + ‖s‖, and ‖t−‖ := ‖tπ‖ := 1 + ‖t‖.

Remark 2 (Projection and converse). As usual (e.g., [22]), tπ is defined only
when tπ denotes the converse of t. This is because in the other cases, tπ can be
expressed by not using the π as follows: t{1 �→1,2 �→2} = t, t{1 �→1,2 �→1} = (t∩1) ·
,
and t{1 �→2,2 �→2} = 
 · (t ∩ 1). Nevertheless, we introduce tπ for each function
π : [2] → [2] for clarifying the relationship between CoR and FO3 in Sect. 3.1.

Since PCoR has only positive connectives, its terms define monotone operations,
and we have:
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Proposition 3 (e.g., [2]). For every PCoR term t and every homomorphism
h (from M to M ′), if 〈v, w〉 ∈ [[t]]M , then 〈h(v), h(w)〉 ∈ [[t]]M ′ .

Proposition 3 also implies that PCoR is strictly less expressive than CoR, because
this proposition does not hold in general for CoR.

First-Order Logic and Its Fragments. Here, we introduce first-order logic
(FO) and its syntactic fragments (see, e.g., [4]): existential positive logic (EP)
and primitive positive logic (PP). Let V be a countably infinite set of (first-order)
variables. We use x, y, z, or u to denote these variables. The set of formulas of
FO/EP/PP is given by the following grammar, where a ∈ A and x, y ∈ V :

ϕ,ψ ∈ FmlFO ::= a(x, y) | x = y | tt | ϕ ∧ ψ | ∃x.ϕ | ff | ϕ ∨ ψ | ∀x.ϕ | ¬ϕ

ϕ,ψ ∈ FmlEP ::= a(x, y) | x = y | tt | ϕ ∧ ψ | ∃x.ϕ | ff | ϕ ∨ ψ

ϕ,ψ ∈ FmlPP ::= a(x, y) | x = y | tt | ϕ ∧ ψ | ∃x.ϕ

FV(ϕ) denotes the set of free variables occurring in ϕ. For an FO formula ϕ and
a structure M , we say that a partial function I : V �→ |M | is an interpretation
(of ϕ on M) if dom(I) ⊇ FV(ϕ). Then the semantics (I |=M ϕ) of ϕ on M
and an interpretation I is a truth value, which is defined in a standard way
as follows: I |=M a(x, y) :⇔ 〈I(x), I(y)〉 ∈ aM ; I |=M x = y :⇔ I(x) = I(y);
I |=M tt :⇔ true; I |=M ff :⇔ false; I |=M ϕ ∨ ψ :⇔ (I |=M ϕ) or (I |=M ψ);
I |=M ϕ ∧ ψ :⇔ (I |=M ϕ) and (I |=M ψ); I |=M ¬ϕ :⇔ (not I |=M ϕ);
I |=M ∃x.ϕ :⇔ for some v, I[v/x] |=M ϕ; and I |=M ∀x.ϕ :⇔ for every v,
I[v/x] |=M ϕ, where I[v/x] denotes the I in which the value I(x) has been
replaced by v. Here, an FO (binary-relation-)term is of the form [ϕ]x,y, where x
and y are distinct variables; and ϕ is an FO formula with FV(ϕ) ⊆ {x, y}. (In
the same manner, for a class C of formulas, we say that [ϕ]x,y is a C term if the
formula ϕ is in C.) The semantics [[[ϕ]x,y]]M of an FO term [ϕ]x,y is defined by
the binary relation [[[ϕ]x,y]]M := {〈v, w〉 ∈ |M |2 | {x �→ v, y �→ w} |= ϕ}. The size
‖ϕ‖ of an FO formula ϕ is defined by: ‖a(x, y)‖ := ‖x = y‖ := ‖tt‖ := ‖ff‖ := 1,
‖ϕ ∨ ψ‖ := ‖ϕ ∧ ψ‖ = 1 + ‖ϕ‖ + ‖ψ‖, and ‖¬ϕ‖ := ‖∃x.ϕ‖ := ‖∀x.ϕ‖ =
1 + ‖ϕ‖. Also, the size ‖[ϕ]x,y‖ of an FO term [ϕ]x,y is defined as ‖ϕ‖. For the
sake of brevity, we may identify formulas equivalent modulo the commutative
and associative laws of ∨ and ∧. Also, for a finite set Φ = {ϕi | i ∈ I} of
formulas, we write

∨
Φ (and similarly for

∧
Φ) for ϕi1 ∨ · · · ∨ ϕi#(I) if #(I) > 0,

and for ff otherwise, where I = {i1, . . . , i#(I)}. Also, let FO3 be the syntax
fragment consisting of FO formulas such that at most three variables appear in
the formula. EP3 and PP3 are similarly defined.

Remark 4 (Existential positive logics and conjunctive queries). The class of PP
(resp. EP) formulas in prenex normal form is also known as the class of con-
junctive queries (resp. conjunctive queries with union), which is a major class
in database theory (see e.g., [1, Sec. 4]). However, we do not use prenex normal
form because we are interested in the number of variables of formulas.
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Expressive Power and Succinctness. We say that two terms t and s are
equivalent, written |= t ≡ s, if for every structure M , [[t]]M = [[s]]M . We write
�|= t ≡ s if t and s are not equivalent, and write |= t ≤ s if for every structure
M , [[t]]M ⊆ [[s]]M . Also, we say that two formulas ϕ and ψ are equivalent if for
every 〈M, I〉 such that dom(I) ⊇ FV(ϕ) ∪ FV(ψ), (I |=M ϕ) iff (I |=M ψ).

We say that C′ is at least as expressive as C, if, for every term t in C, there is
a term t′ in C′, which is equivalent to t; C′ has the same expressive power as C,
if C′ is at least as expressive as C and C is at least as expressive as C′; and C′ is
strictly more expressive than C, if C ′ is at least as expressive as C and C is not
at least as expressive as C′.

Moreover, for a class F of functions from N to N, we say that there is an
F -size translation (preserving the semantics) from C to C′ (a.k.a. C′ is F -succinct
than C [11]) if there is a function f ∈ F such that for every term t in C, there
is a term t′ in C′ of size ‖t′‖ ≤ f(‖t‖) that is equivalent to t. In particular,
we say that there is a linear/polynomial/exponential-size translation from C to
C′ if F is the set of all linear/polynomial/exponential (i.e., O(n)/nO(1)/2O(n))
functions. We say that C′ is exponentially less succinct than C if there is no
2o(n)-size translation from C to C′.

The Standard Translation. We recall that from CoR to FO3, there is an
efficient translation [22]; see Fig. 1. It follows that [[[STx,y(t)]x,y]]M = [[t]]M by
simple induction on the structure of t, hence the following theorem.

Fig. 1. The standard translation, where x, y, and z are all distinct.

Theorem 5 ([22]). There is a linear-size translation from CoR to FO3.

The following is also immediate from the standard translation (notice that ¬
and ∀ do not occur in STx,y(t) if •− and † do not occur in t; furthermore, ¬, ∀,
∨, and ff do not occur in STx,y(t) if •−, †, ∪, and 0 do not occur in t).

Corollary 6.

– There is a linear-size translation from PCoR to EP3.
– There is a linear-size translation from PPCoR to PP3.

3 Expressive Power Equivalence of PCoR and EP3

In this section, we consider the converse direction of the standard translation, i.e.,
from FO3 terms to CoR terms. The aim of this section is to show the following.
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Theorem 7.

(1) There is an exponential-size translation from FO3 to CoR.
(2) There is an exponential-size translation from EP3 to PCoR.
(3) There is a linear-size translation from PP3 to PPCoR.

This theorem (combined with Theorem 5 and Corollary 6) implies the following
expressive power equivalences.

Corollary 8.

(1) CoR has the same expressive power as FO3 [23].
(2) PCoR has the same expressive power as EP3.
(3) PPCoR has the same expressive power as PP3; furthermore, these two have

the same succinctness up to linear factors.

From here, we prove Theorem 7 by giving a new translation from FO3 to CoR,
which is constructed in the following steps.

(‡1) Translate the given FO3 term into a term in negation normal form.
(‡2) For each sub-formula of the form ∃z.ψ (resp. ∀z.ψ), substitute ψ with an

equivalent formula, which is a conjunction (resp. disjunction) of formulas
having at most two free variables.

(‡3) Push the quantifiers deeper into the formula as much as possible. Then,
each sub-formula ∃z.ϕ (resp. ∀z.ϕ) is of the form ∃z.ψ ∧ ρ (resp. ∀z.ψ ∨ ρ)
such that FV(ψ) ⊆ {x, z} and FV(ρ) ⊆ {z, y}, where x, y, z are three
distinct variables.

(‡4) Translate the FO3 term preprocessed by the above translations to a CoR
term by simple structural induction.

In the following, we describe the details of each step. We say that a formula ϕ is
in FO3(2) if ϕ is in FO3 and #(FV(ϕ)) ≤ 2. Note that by the definition of FO3

term, for every FO3 term [ϕ]x,y, ϕ is in FO3(2).

(‡1): We say that an FO formula is in negation normal form if it is in the set
defined by the following grammar:

ϕ,ψ ::= a(x, y) | ¬a(x, y) | x = y | ¬x = y | tt | ff | ϕ ∨ ψ | ϕ ∧ ψ | ∃x.ϕ | ∀x.ϕ.

We say that an FO formula ϕ is an atomic formula if ϕ is of the form a(x, y),
x = y, or tt; and is a negated atomic formula if ϕ is of the form ¬a(x, y), ¬x = y,
or ff. Every FO3 term can be translated to an equivalent FO3 term in negation
normal form by repeatedly applying the De Morgan’s law and the double nega-
tion elimination law.

Lemma 9. There is a linear-size translation from FO3 terms to FO3 terms in
negation normal form.
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(‡2): We say that a formula is good if (a) it is in negation normal form, and
(b) for every sub-formula of the form ∃z.ψ (resp. ∀z.ψ), ψ is a conjunction
(resp. disjunction) of FO3(2) formulas. According to condition (b), each sub-
formula of the form ∃z.ψ (resp. ∀z.ψ) can be written as ∃z.ρ1 ∧ ρ2 ∧ ρ3 (resp.
∀z.ρ1 ∨ρ2 ∨ρ3) by the associativity and commutativity of ∧/∨, where FV(ρ1) ⊆
{x, y}, FV(ρ2) ⊆ {y, z}, and FV(ρ3) ⊆ {z, x}, and x, y, z are three distinct
variables. This property will be fully used in the translation (‡3). In this step,
we translate negation normal form FO3 terms into good FO3 terms. This is the
only step involving an exponential blow-up among (‡1)–(‡4).

Lemma 10. There is an exponential-size translation from FO3 terms in nega-
tion normal form to good FO3 terms.

Proof. We mutually define two functions, T∃ and T∀, from negation normal form
FO3 formulas to sets of sets of good FO3(2) formulas and define the function
T− from negation normal form FO3 formulas to good FO3 formulas; see Fig. 2.
Then the following are shown by simple induction on the structure of ϕ: ϕ is
equivalent to the formula

∨
i∈[n]

∧
j∈[mi]

ψi,j , where T∃(ϕ) = {{ψi,j | j ∈ [mi]} |
i ∈ [n]}; and ϕ is equivalent to the formula

∧
i∈[n]

∨
j∈[mi]

ψi,j , where T∀(ϕ) =
{{ψi,j | j ∈ [mi]} | i ∈ [n]}. Also the translation T− (Fig. 2) from negation
normal form FO3 formulas to good FO3 formulas satisfies that (1) T−(ϕ) is
equivalent to ϕ; (2) FV(T−(ϕ)) ⊆ FV(ϕ); and (3) ‖T−(ϕ)‖ ≤ 22×‖ϕ‖ (hence,
T− is an exponential-size translation). Hence, the desired translation is obtained
from T−. ��

Fig. 2. Translation to good FO3(2) formulas.
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Example 11. Let ϕ = (a(x, z) ∨ b(z, x)) ∧ c(x, y). Then, the formula ∃z.ϕ is not
a good FO3(2) formula, but the translated formula T−(∃z.ϕ) = (∃z.a(x, z) ∧
c(x, y)) ∨ (∃z.b(z, x) ∧ c(x, y)) is a good FO3(2) formula equivalent to ∃z.ϕ. Note
that T−(∃z.ϕ) is calculated from T∃(ϕ) = {{a(x, z), c(x, y)}, {b(z, x), c(x, y)}}.

(‡3): In this step, we translate good FO3 terms into FO3 terms in the following
normal form.

Definition 12. For two distinct variables x and y, we say that an FO3(2) for-
mula is ({x, y}-)nice if it is in the set defined by the following grammar, where
w,w′ ∈ {x, y} and z is the variable distinct from x and y:

ϕ{x,y}, ψ{x,y} ::= a(w, w′) | ¬a(w, w′) | w = w′ | ¬w = w′ | tt | ff | ϕ{x,y} ∨ ψ{x,y}

| ϕ{x,y} ∧ ψ{x,y} | ∃z.ϕ{x,z} ∧ ψ{z,y} | ∀z.ϕ{x,z} ∨ ψ{z,y}.

Intuitively, if an FO3 term is nice, then it is ‘almost’ a two-variable term (in
that, even if a subformula of the term has three free variables, the subformula
should be of the form ϕ{x,z} ∧ ψ{z,y} or ϕ{x,z} ∨ ψ{z,y}; hence its immediate
subformulas have at most two free variables).

Lemma 13. There is a linear-size translation from good FO3 terms to nice FO3

terms.

Proof. Let T be the translation defined as follows: T(ϕ) := ϕ if ϕ is an atomic
or negated atomic formula; T(ψ ∨ ρ) := T(ψ) ∨ T(ρ); T(ψ ∧ ρ) := T(ψ) ∧ T(ρ);
T(∃z.ψ1∧ψ2∧ψ3) := T(ψ1)∧∃z.T(ψ2)∧T(ψ3); and T(∀z.ψ1∨ψ2∨ψ3) := T(ψ1)∨
∀z.T(ψ2) ∨ T(ψ3), where FV(ψ1) ⊆ {x, y}, FV(ψ2) ⊆ {x, z} and FV(ψ3) ⊆
{y, z}. By trivial induction on the size of ϕ, (1) T(ϕ) is equivalent to ϕ; and (2)
‖T(ϕ)‖ ≤ ‖ϕ‖ (hence T is a linear-size translation). Also, for every good FO3(2)

formula ϕ, the formula T(ϕ) is exactly a nice FO3(2) formula. Thus the desired
translation is obtained from T. ��
(‡4): Finally, we give a linear-time translation from nice FO3 terms to CoR terms
by simple structural induction as follows (Fig. 3).

Fig. 3. Translation to CoR terms.
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Lemma 14. There is a linear-size translation from nice FO3 terms to CoR
terms.

Proof. By induction on the structure of ϕ, we can show that (1) for every {x, y}-
nice FO3 term [ϕ]x,y, T([ϕ]x,y) is equivalent to [ϕ]x,y; and (2) ‖T([ϕ]x,y)‖ ≤
2 × ‖[ϕ]x,y‖ (thus, T is a linear-size translation). Hence, the T is the desired
translation. ��
Proof (of Theorem 7). Theorem 7(1) has been proved by combining (‡1)–(‡4).
Theorem 7(2) holds because, if a term is in EP3 (i.e. it does not contain ¬
nor ∀), then the term translated by (‡1)–(‡3) (more precisely, (‡2)–(‡3) are
sufficient) is also in EP3, and thus the CoR term translated by (‡1)–(‡4) does not
contain •− nor †, hence the translated term is a PCoR term. Also Theorem 7(3)
holds because, if a term is in PP3, then the term translated by (‡1)–(‡3) (more
precisely, (‡3) is sufficient) is also in PP3, and thus the CoR term translated by
(‡1)–(‡4) is a PPCoR term.

3.1 Quantifier Alternation and Dot-Dagger Alternation Hierarchies

In this subsection, we give a more fine-grained expressive power equivalence
between CoR and FO3 in terms of the quantifier alternation hierarchy.

Definition 15 (quantifier alternation hierarchy, cf. [3, p. 105]). The sets
{Σn,Πn}n∈N are the minimal sets of FO formulas satisfying the following.

– If an FO formula ϕ contains neither ∃ nor ∀, then ϕ ∈ Σ0 and ϕ ∈ Π0.
– For n ≥ 0, Σn ⊆ Σn+1 and Πn ⊆ Πn+1.
– For n ≥ 1, if ϕ,ψ ∈ Σn, then ϕ ∨ ψ,ϕ ∧ ψ,∃x.ϕ ∈ Σn and ∀x.ϕ ∈ Πn+1.
– For n ≥ 1, if ϕ,ψ ∈ Πn, then ϕ ∨ ψ,ϕ ∧ ψ,∀x.ϕ ∈ Πn and ∃x.ϕ ∈ Σn+1.

We also define the sets {Σ3
n,Π3

n}n∈N as the subclasses of FO3 formulas defined
by the same rules.

We now define dot-dagger alternation hierarchy in CoR in the same manner as
the quantifier alternation hierarchy in FO, as follows.

Definition 16 (dot-dagger alternation hierarchy). The subclasses of CoR
terms, {ΣCoR

n ,ΠCoR
n }n∈N, are the minimal sets satisfying the following.

– If a CoR term t contains neither · nor †, then t ∈ ΣCoR
0 and t ∈ ΠCoR

0 .
– For n ≥ 0, ΣCoR

n ⊆ ΣCoR
n+1 and ΠCoR

n ⊆ ΠCoR
n+1 .

– For n ≥ 1, if t, u ∈ ΣCoR
n , then tπ, t∪u, t∩u, t ·u ∈ ΣCoR

n and t †u ∈ ΠCoR
n+1 .

– For n ≥ 1, if t, u ∈ ΠCoR
n , then tπ, t ∪ u, t ∩ u, t † u ∈ ΠCoR

n and t · u ∈ ΣCoR
n+1 .

The following shows that the dot-dagger alternation hierarchy in CoR is expres-
sive power equivalent to the quantifier alternation hierarchy in FO3, uniformly.

Corollary 17. For each n ≥ 0, the class of terms in ΣCoR
n (resp. ΠCoR

n ) and
the class of terms in Σ3

n (resp. Π3
n) have the same expressive power.
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Proof (Sketch). Let us recall the standard translation in Sect. 2 and the trans-
lations (‡1)–(‡4) in Sect. 3. In the standard translation, if a given CoR term is
in ΣCoR

n (resp. ΠCoR
n ), then the translated FO3 term is in Σ3

n (resp. Π3
n). Con-

versely, for each of (‡1)–(‡3), if a given FO3(2) formula is in Σ3
n (resp. Π3

n), then
the translated nice FO3(2) formula is also in Σ3

n (resp. Π3
n). Also for (‡4), if a

given nice FO3 term is in Σ3
n (resp. Π3

n), then the translated CoR term is in
ΣCoR

n (resp. ΠCoR
n ). All the above are shown by simple induction on the size of

given term/formula. ��
Thus, the dot-dagger alternation hierarchy in CoR is also strict as the quan-

tifier alternation hierarchy in FO3.

Corollary 18 ([3, Lem. 3.9]). ΣCoR
n+1 is strictly more expressive than ΣCoR

n .

Proof. By Corollary 17, it suffices to show that the class of Σ3
n+1 formulas is

strictly more expressive than the class of Σ3
n formulas. Let us recall the following

Σn+1 formula in [3, Lemma 3.9], which is not equivalent to any Σn formula:

∃x0.∃x1.∀x2.∃x3 · · · .Qxn+1.

(Start(x0, x0) ∧ Move(x0, x1) ∧ Move(x1, x2) ∧ · · · ∧ Move(xn, xn+1))
→ Win(xn+1, xn+1).

Where xi and xj are distinct if i �= j; Q = ∃ if n is odd and Q = ∀ otherwise;
the notation ϕ → ψ abbreviates ¬ϕ∨ψ; and the unary relation symbols “Start”
and “Win” in [3, Lemma 3.9] have been replaced with binary relation symbols,
respectively. This formula is equivalent to the following formula in Σ2

n+1:

∃x0.Start(x0, x0) → ∃x1.Move(x0, x1) → ∀x2.Move(x1, x2) → · · · → Qxn+1.

Move(xn, xn+1) → Win(xn+1, xn+1).

Where xi and xj denote the same variable if i ≡ j (mod 2). Therefore Σ3
n+1 is

strictly more expressive than Σ3
n, because there is no Σn formula (hence no Σ3

n

formula) equivalent to this Σ3
n+1 formula (by [3, Lem. 3.9]). ��

4 PCoR Is Exponentially Less Succinct Than EP3

In this section, we show that the exponential blow-up of the translation from
EP3 to PCoR given in Sect. 3 is unavoidable.

Theorem 19. There is no 2o(n)-size translation from EP3 terms to equivalent
PCoR terms. (Hence, PCoR is exponentially less succinct than EP3.)

For each n ∈ N+, let tn be the following EP3 term:
⎡

⎣(x = y) ∨
⎛

⎝
∨

i∈[n]

ai(x, y) ∨ bi(x, y)

⎞

⎠ ∨ ∃z.

⎛

⎝
∧

i∈[n]

ai(x, z) ∨ bi(z, y)

⎞

⎠

⎤

⎦

x,y

.
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Here, x, y, z are three distinct variables and a1, b1, a2, b2, . . . are pointwise dis-
tinct binary relation symbols in A . To prove Theorem 19, we will actually show
that there is no 2o(n)-size translation from the set {tn | n ∈ N+} to PCoR. Note
that each tn is equivalent to the following PCoR term:

1 ∪
⎛

⎝
⋃

i∈[n]

ai ∪ bi

⎞

⎠ ∪
⎛

⎝
⋃

〈I,J〉∈Part([n])

(
⋂

i∈I

ai) · (
⋂

j∈J

bj)

⎞

⎠ .

Here, Part(X) denotes the set of all ordered partitions of size 2 of X (i.e., the
set of all pairs 〈I, J〉 s.t. I ∪ J = X, I ∩ J = ∅, I �= ∅, and J �= ∅). However,
unfortunately, this is not a 2o(n)-size translation, because #(Part([n])) = 2n −2.

Let us consider the parameter wn(t):

wn(t) := #({〈I, J〉 ∈ Part([n]) | 〈1, 3〉 ∈ [[t]]M〈I,J〉}).

Here, M〈I,J〉 is the structure 〈[3], {aM〈I,J〉}a∈A 〉, where aM〈I,J〉 = {〈1, 2〉} if
a ∈ {ai | i ∈ I}, aM〈I,J〉 = {〈2, 3〉} if a ∈ {bj | j ∈ J}, and aM〈I,J〉 = ∅ otherwise.
Note that wn(tn) = #(Part([n])) = 2n − 2 by the construction of tn.

The following is the key lemma, which will be shown in the next subsection.

Lemma 20. For every PCoR term s, if |= s ≤ tn, then ‖s‖ ≥ wn(s)/8.

Theorem 19 can be proved by Lemma 20.

Proof (of Theorem 19 by using Lemma 20). As a consequence of Lemma 20, for
every PCoR term s equivalent to tn, ‖s‖ ≥ (2n−2)/8 ≥ 2n−4, where n ≥ 2. Note
that wn(s) = wn(tn) since |= s ≡ tn. We assume, towards contradiction, that
there exists a 2o(n)-size translation f from EP3 terms to PCoR terms. From this,
there exists a monotone function g : N → N in 2o(n) such that ‖f(tn)‖ ≤ g(‖tn‖).
Also by the construction of the EP3 term tn, ‖tn‖ ≤ l(n) holds for some linear
function l : N → N. Combining the above, 2n−4 ≤ ‖f(tn)‖ ≤ g(‖tn‖) ≤ g(l(n)) =
(g ◦ l)(n) and g ◦ l is a function in 2o(n), but thus reaching a contradiction. ��
We prove Lemma 20 in the rest of this section.

4.1 Proof of Lemma 20

We say that a PCoR term is in projection normal form if it is in the set defined
by the following grammar: t, s ::= a | a� | 1 | 
 | 0 | t ∪ s | t ∩ s | t · s.

Proposition 21. There is a linear-size translation l from PCoR terms to PCoR
terms in projection normal form such that ‖l(t)‖ ≤ 8 × ‖t‖.
Proof. First we replace each sub-term tπ with (t ∩ 1) · 
 if π = {1 �→ 1, 2 �→ 1};
t if π = {1 �→ 1, 2 �→ 2}; and 
 · (t ∩ 1) if π = {1 �→ 2, 2 �→ 2} (then the π of
each sub-term tπ is converse). Secondly, we push converse operators deeper into
the term by the following rewriting rules: 1� � 1; 
� � 
; 0� � 0; (t�)� � t;
(t∪ s)� � t� ∪ s�; (t∩ s)� � t� ∩ s�; and (t · s)� � s� · t�. Note that the first step
induces a factor of 4 and that the second step induces a factor of 2. ��
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From this, to prove Lemma20, it suffices to prove the following lemma.

Lemma 22. For every s in projection normal form, if |= s ≤ tn, ‖s‖ ≥ wn(s).

To prove Lemma 22, we introduce a few notions; and then give a few properties
(Lemmas 23 and 24) with respect to tn.

The disjoint union of structures M1 and M2, written M1 � M2, is the struc-
ture 〈|M1�M2|, {aM1�M2}a∈A 〉, where |M1�M2| := {〈1, v〉 | v ∈ |M1|}∪{〈2, v〉 |
v ∈ |M2|} and aM1�M2 := {〈〈l, v〉, 〈l, v′〉〉 | l ∈ [2], 〈v, v′〉 ∈ aMl}. The quotient
of a structure M w.r.t. an equivalence relation ∼, written M/∼, is the struc-
ture 〈|M/∼|, {aM/∼}a∈A 〉, where |M/∼| := {[v]∼ | v ∈ |M |} ([v]∼ denotes the
equivalence class of v w.r.t. ∼) and aM/∼ := {〈[v]∼, [v′]∼〉 | 〈v, v′〉 ∈ aM}.

Lemma 23. Let dM (v, v′) := min({k ∈ N | 〈v, v′〉 ∈ [[(
⋃

i∈[n] ai∪bi)k]]M}∪{ω}).

– If dM (v, v′) < 2, then 〈v, v′〉 ∈ [[tn]]M .
– If dM (v, v′) > 2, then 〈v, v′〉 �∈ [[tn]]M .

Proof. Immediate from the definition of tn. ��
Lemma 24. For every two PCoR terms s1 and s2, the following hold.

(1) If |= s1 ∪ s2 ≤ tn, then |= s1 ≤ tn and |= s2 ≤ tn.
(2) If |= s1 ∩ s2 ≤ tn, then |= s1 ≤ tn or |= s2 ≤ tn.
(3) If |= s1 · s2 ≤ tn and �|= s1 · s2 = 0, then |= s1 ≤ tn and |= s2 ≤ tn.

Proof.

(1) By |= sl ≤ s1 ∪ s2 for l ∈ [2].
(2) We show the contraposition. Let 〈Ml, vl, v

′
l〉 be such that 〈vl, v

′
l〉 ∈ [[sl]]Ml

\
[[tn]]Ml

for each l ∈ [2]. Let M be the structure (M1 �M2)/∼, where ∼ is the
minimal equivalence relation satisfying 〈1, v1〉 ∼ 〈2, v2〉 and 〈1, v′

1〉 ∼ 〈2, v′
2〉

(also we let v = [〈1, v1〉]∼ and v′ = [〈1, v′
1〉]∼). Then (2-1) 〈v, v′〉 ∈ [[s1∩s2]]M ;

(2-2) dM (v, v′) ≥ 2; and (2-3) 〈v, v′〉 �∈ [[tn]]M hold. For (2-1), it is because
〈v, v′〉 ∈ [[s1]]M and 〈v, v′〉 ∈ [[s2]]M by the construction of M and Propo-
sition 3. For (2-2), it is because dM (v, v′) = min(dM1(v1, v

′
1),dM2(v2, v

′
2))

by the construction of M ; and for l ∈ [2], dMl
(vl, v

′
l) ≥ 2 by 〈vl, v

′
l〉 �∈

[[tn]]Ml
(Lemma 23). For (2-3), by (2-2), it suffices to show that 〈v, v′〉 �∈

[[(∩i∈Iai) · (∩j∈Jbj)]]M for every 〈I, J〉 of a partition of [n]. We assume,
toward contradiction, that 〈v, v′〉 ∈ [[(∩i∈Iai) · (∩j∈Jbj)]]M . Let w be such
that 〈v, w〉 ∈ [[∩i∈Iai]]M and 〈w, v′〉 ∈ [[∩j∈Jbj ]]M . Then w is distinct
from v and v′ by dM (v, v′) ≥ 2, so w = {〈l, wl〉} for some l and some
wl. Then 〈vl, wl〉 ∈ [[∩i∈Iai]]Ml

and 〈wl, v
′
l〉 ∈ [[∩j∈Jbj ]]Ml

should hold, so
〈vl, v

′
l〉 ∈ [[(∩i∈Iai) · (∩j∈Jbj)]]Ml

. This contradicts to 〈vl, v
′
l〉 �∈ [[tn]]Ml

. Hence
〈v, v′〉 ∈ [[s1 ∩ s2]]M \ [[tn]]M .

(3) We show the contraposition. We only write the case of �|= s1 ≤ tn (the
case of �|= s2 ≤ tn is shown by same arguments). Let 〈M1, v1, v

′
1〉 be

such that 〈v1, v′
1〉 ∈ [[s1]]M1 \ [[tn]]M1 and let 〈M2, v2, v

′
2〉 be such that

〈v2, v′
2〉 ∈ [[s2]]M2 (note that �|= s2 = 0 since �|= s1 · s2 = 0). Let M be
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the structure (M1 � M2)/∼, where ∼ is the minimal equivalence relation
satisfying 〈1, v′

1〉 ∼ 〈2, v2〉 (also we let v = [〈1, v1〉]∼ and v′ = [〈2, v′
2〉]∼).

Then (3-1) 〈v, v′〉 ∈ [[s1 · s2]]M ; (3-2) dM (v, v′) ≥ 2; and (3-3) 〈v, v′〉 �∈ [[tn]]M
hold. (3-1) is shown by the construction of M and Proposition 3. (3-2) is
shown by dM (v, v′) = dM1(v1, v

′
1) + dM2(v2, v

′
2) (by the construction of

M) and dM1(v1, v
′
1) ≥ 2 (by 〈v1, v′

1〉 �∈ [[tn]]Ml
and Lemma 23). For (3-

3), by (3-2), it suffices to show that 〈v, v′〉 �∈ [[(∩i∈Iai) · (∩j∈Jbj)]]M for
every 〈I, J〉 of a partition of [n]. We assume, toward contradiction, that
〈v, v′〉 ∈ [[(∩i∈Iai) · (∩j∈Jbj)]]M . Let w be such that 〈v, w〉 ∈ [[∩i∈Iai]]M
and 〈w, v′〉 ∈ [[∩j∈Jbj ]]M . Then by w �= [〈1, v′

1〉]∼ (notice dM1(v1, v
′
1) ≥ 2),

w = {〈1, w1〉} for some w1 ∈ |M1|. From this, 〈v1, w1〉 ∈ [[∩i∈Iai]]M1 and
〈w1, v

′
1〉 ∈ [[∩j∈Jbj ]]M1 should hold, so 〈v1, v′

1〉 ∈ [[(∩i∈Iai) · (∩j∈Jbj)]]M1 .
This contradicts to 〈v1, v′

1〉 �∈ [[tn]]M1 . Hence 〈v, v′〉 ∈ [[s1 · s2]]M \ [[tn]]M .

��
We are now ready to prove Lemma 22.

Proof (of Lemma 22). By induction on the structure of s.
Case s = 1, s = 0, s = a, or s = a�: By wn(s) = 0.
Case s = 
: By �|= 
 ≤ tn.
Case s = s1 ∪ s2: wn(s) ≤ wn(s1) + wn(s2) holds by that, for every M ,

if 〈v, w〉 ∈ [[s1 ∪ s2]]M , then 〈v, w〉 ∈ [[s1]]M or 〈v, w〉 ∈ [[s2]]M . Therefore by
Lemma 24(1) and I.H., wn(s) ≤ wn(s1) + wn(s2) ≤ ‖s1‖ + ‖s2‖ ≤ ‖s‖.

Case s = s1∩s2: By Lemma 24(2), let l be such that |= sl ≤ tn. By |= s ≤ sl,
wn(s) ≤ wn(sl). Therefore by I.H., wn(s) ≤ wn(sl) ≤ ‖sl‖ ≤ ‖s‖.

Case s = s1 · s2: If wn(s) ≤ 1, then wn(s) ≤ ‖s‖ is trivial. Other-
wise (wn(s) ≥ 2), let Ξ(s1, s2) := {〈〈I, J〉, w〉 ∈ Part([n]) × [3] | 〈1, w〉 ∈
[[s1]]M〈I,J〉 ∧ 〈w, 3〉 ∈ [[s2]]M〈I,J〉}. Note that �|= s = 0 and #(Ξ(s1, s2)) ≥ 2.
Assume, toward contradiction, that, there are 〈〈I, J〉, v〉 and 〈〈I ′, J ′〉, v′〉 such
that v �= v′. Without loss of generality, we can assume that v > v′. Let M
be the structure (M〈I,J〉 � M〈I′,J ′〉)/∼, where ∼ is the minimal equivalence
relation satisfying 〈1, v〉 ∼ 〈2, v′〉. By the construction of M and Proposi-
tion 3, 〈[〈1, 1〉]∼, [〈1, v〉]∼〉 ∈ [[s1]]M and 〈[〈2, v′〉]∼, [〈2, 3〉]∼〉 ∈ [[s2]]M hold, hence
〈[〈1, 1〉]∼, [〈2, 3〉]∼〉 ∈ [[s]]M . On the other hand, by dM ([〈1, 1〉]∼, [〈2, 3〉]∼) =
dM1(1, v)+dM2(v

′, 3) > 2 and Lemma 23, 〈[〈1, 1〉]∼, [〈2, 3〉]∼〉 �∈ [[s]]M , thus reach-
ing a contradiction.

Let k ∈ [3] be the unique one such that, if 〈〈I, J〉, v〉 ∈ Ξ(s1, s2), then v = k.
We do case analysis on k.

Sub-Case k = 1: Then, for every 〈I, J〉, if 〈1, 3〉 ∈ [[s1 · s2]]M〈I,J〉 , then 〈1, 3〉 ∈
[[s2]]M〈I,J〉 . Thus wn(s) ≤ wn(s2). Therefore by I.H. (notice |= s2 ≤ tn by
Lemma 24(3)), wn(s) ≤ wn(s2) ≤ ‖s2‖ ≤ ‖s‖.

Sub-Case k = 2: Let 〈〈I, J〉, 2〉 and 〈〈I ′, J ′〉, 2〉 be distinct ones in Ξ(s1, s2).
Let M be the structure (M〈I,J〉�M〈I′,J ′〉)/∼, where ∼ is the minimal equivalence
relation satisfying 〈1, 2〉 ∼ 〈2, 2〉 (see Fig. 4). By the construction of M and
Proposition 3, both 〈[〈1, 1〉]∼, [〈2, 3〉]∼〉 ∈ [[s]]M and 〈[〈2, 1〉]∼, [〈1, 3〉]∼〉 ∈ [[s]]M
hold. On the other hand, I ∪ J ′ �⊆ [n] or I ′ ∪ J �⊆ [n] holds, because 〈I, J〉 and
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〈I ′, J ′〉 are distinct partitions of [n], and thus 〈[〈1, 1〉]∼, [〈2, 3〉]∼〉 �∈ [[tn]]M or
〈[〈2, 1〉]∼, [〈1, 3〉]∼〉 �∈ [[tn]]M should hold. This contradicts to |= s ≤ tn.

Fig. 4. Construction of (M〈I,J〉 � M〈I′,J′〉)/∼.

Sub-Case k = 3: In the same way as Sub-Case k = 1. ��
As a consequence of Lemma 22 (and Proposition 21), Lemma 20 has been proved.

5 On the Transitive Closure Extension

In this section, we remark that the results in Sects. 3 and 4 can be extended to the
positive calculus of relations with transitive closure [19] (denoted by PCoR(TC),
for short). We will show that the calculus has the same expressive power as three-
variable existential positive (first-order) logic with (variable-confined) monadic
transitive closure (denoted by EP3(v-MTC)) (see, e.g., [6, Sec. 9] for transitive
closure logic). The syntax of PCoR(TC) is given by: t, s ::= a | 1 | 
 | 0 | t∪s | t∩
s | tπ | t ·s | t+. The semantics [[t]]M and the size ‖t‖ are defined in the same way
as for CoR, respectively, where [[t+]]M :=

⋃
k∈N+

[[t]]kM and ‖t+‖ := 1 + ‖t‖. Also,
the syntax of EP(v-MTC) is given by the following grammar, where x, y, z, u ∈
V ; z and u are distinct; and each TCz,u(ϕ) is variable-confined (i.e., FV(ϕ) ⊆
{z, u}1): ϕ,ψ ::= a(x, y) | x = y | tt | ff | ϕ ∨ ψ | ϕ ∧ ψ | ∃x.ϕ | [TCz,u(ϕ)](x, y).
The semantics (I |=M ϕ) and the size ‖ϕ‖ are defined in the same way as
for EP, where I |=M [TCz,u(ϕ)](x, y) :⇔ 〈I(x), I(y)〉 ∈ ⋃

k∈N+
[[[ϕ]z,u]]kM and

‖[TCz,u(ϕ)](x, y)‖ := 1 + ‖ϕ‖. As in Sects. 3–4, the following are shown. The
proofs are proceeded using the same strategy as that in the previous sections,
extending the proofs in an appropriate way. In particular, Theorem26 is proved
by that we can extend Lemma 22 for PCoR(TC), because for every PCoR(TC)
term t, if |= t+ ≥ tn, then wn(t+) = 0.

1 Here, z and u in TCz,u(ψ) are viewed as bound variables (i.e., FV([TCz,u(ψ)](x, y))
is defined by FV([TCz,u(ψ)](x, y)) := (FV(ψ) \ {z, u})∪ {x, y}). See also [6, Sec. 9].
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Theorem 25.

(1) There is a linear-size translation from PCoR(TC) to EP3(v-MTC).
(2) There is an exponential-size translation from EP3(v-MTC) to PCoR(TC).
(3) Hence, PCoR(TC) has the same expressive power as EP3(v-MTC).

Theorem 26. There is no 2o(n)-size translation from EP3(v-MTC) terms to
equivalent PCoR(TC) terms.

6 Conclusion

We have shown that (1) the positive calculus of relations has the same expressive
power as three-variable existential positive logic, and (2) the positive calculus
of relations is exponentially less succinct than three-variable existential positive
logic. To the best of our knowledge, it is open whether the calculus of relations
is exponentially less succinct than three-variable first-order logic. It would also
be interesting to construct a calculus like the (positive) calculus of relations (or
cylindric algebra [13]) such that it has the same expressive power as k-variable
(existential positive) first-order logic and there is a succinctness-gap between
them.
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Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 39–50.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3 4

13. Henkin, L., Donald Monk, J., Tarski, A.: Cylindric Algebras. Part 2. North-
Holland, Amsterdam (1985)

14. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-662-07003-1

15. Maddux, R.D.: Calculus of relations, Chap. 1. In: Relation Algebras. Studies in
Logic and the Foundations of Mathematics, vol. 150, pp. 1–33. Elsevier (2006).
https://doi.org/10.1016/S0049-237X(06)80023-6

16. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: 12th Annual Symposium on Switching and Automata Theory
(SWAT 1971), pp. 188–191. IEEE (1971). https://doi.org/10.1109/SWAT.1971.11

17. Nakamura, Y.: Partial derivatives on graphs for Kleene allegories. In: 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS 2017), pp. 1–12.
IEEE (2017). https://doi.org/10.1109/LICS.2017.8005132

18. Nakamura, Y.: The undecidability of FO3 and the calculus of relations with just
one binary relation. In: Khan, M.A., Manuel, A. (eds.) ICLA 2019. LNCS, vol.
11600, pp. 108–120. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-
662-58771-3 11

19. Pous, D.: On the positive calculus of relations with transitive closure. In: 35th
Symposium on Theoretical Aspects of Computer Science (STACS 2018), vol. 96,
pp. 3:1–3:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018). https://
doi.org/10.4230/LIPICS.STACS.2018.3

20. Pous, D., Vignudelli, V.: Allegories: decidability and graph homomorphisms. In:
Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS 2018), pp. 829–838. ACM Press (2018). https://doi.org/10.1145/
3209108.3209172

21. Stockmeyer, L.J.: The complexity of decision problems in automata theory and
logic. Ph.D. thesis. Massachusetts Institute of Technology (1974)

22. Tarski, A.: On the calculus of relations. J. Symb. Logic 6(3), 73–89 (1941). https://
doi.org/10.2307/2268577

23. Tarski, A., Givant, S.: A Formalization of Set Theory Without Variables, vol. 41.
Colloquium Publications/American Mathematical Society (1987)

24. Vardi, M.Y.: The complexity of relational query languages (extended abstract). In:
Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing
(STOC 1982), pp. 137–146. ACM Press (1982). https://doi.org/10.1145/800070.
802186

https://doi.org/10.2168/LMCS-1(1:6)2005
https://doi.org/10.2168/LMCS-1(1:6)2005
https://doi.org/10.1007/978-3-540-70583-3_4
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1016/S0049-237X(06)80023-6
https://doi.org/10.1109/SWAT.1971.11
https://doi.org/10.1109/LICS.2017.8005132
https://doi.org/10.1007/978-3-662-58771-3_11
https://doi.org/10.1007/978-3-662-58771-3_11
https://doi.org/10.4230/LIPICS.STACS.2018.3
https://doi.org/10.4230/LIPICS.STACS.2018.3
https://doi.org/10.1145/3209108.3209172
https://doi.org/10.1145/3209108.3209172
https://doi.org/10.2307/2268577
https://doi.org/10.2307/2268577
https://doi.org/10.1145/800070.802186
https://doi.org/10.1145/800070.802186


Stone Dualities from Opfibrations

Koki Nishizawa1(B), Shin-ya Katsumata2 , and Yuichi Komorida3

1 Department of Information Systems Creation, Faculty of Engineering,
Kanagawa University, Yokohama, Japan

nishizawa@kanagawa-u.ac.jp
2 National Institute of Informatics, Tokyo, Japan

s-katsumata@nii.ac.jp
3 The Graduate University for Advanced Studies, SOKENDAI, Tokyo, Japan

komorin@nii.ac.jp

Abstract. Stone dualities are dual equivalences between certain cat-
egories of algebras and those of topological spaces. A Stone duality is
often derived from a dual adjunction between such categories by cut-
ting down unnecessary objects. This dual adjunction is called the funda-
mental adjunction of the duality, but building it often requires concrete
topological arguments. The aim of this paper is to construct fundamen-
tal adjunctions generically using (co)fibered category theory. This paper
defines an abstract notion of formal spaces (including ordinary topolog-
ical spaces as the leading example), and gives a construction of a funda-
mental adjunction between the category of algebras and the category of
corresponding formal spaces.

1 Introduction

Dual equivalences between categories of spaces and those of algebras are ubiq-
uitous in mathematics - following the famous book by Johnstone [1], they are
collectively called Stone dualities after the Stone Representation Theorem of
Boolean algebras. Technically, they often arise as the restriction of dual adjunc-
tions called fundamental adjunctions. For example, the Stone duality between
sober topological spaces and spatial frames is obtained by cutting down the
fundamental adjunction between the category of topological spaces and that
of frames, which is the heart of pointless topology [2]. Categorical settings to
capture various fundamental adjunctions of Stone dualities has been studied in
[3–8]. The basic idea of these settings is to formulate fundamental adjunctions
as dual adjunctions that are representable through functors to Set. The objects
representing adjoint functors are called dualizing object [6].

In this paper, we give a new construction of fundamental adjunctions by
(Grothendieck) opfibrations1. Roughly speaking, our construction takes a cate-
gory of algebras equipped with an abstract notion of subalgebra, then derives

1 Grothendieck originally called it cofibred categories, but here we use the word opfi-
bration to avoid confusion with cofibration in homotopy theory.
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both the category of spaces and a fundamental adjunction between them. Despite
its abstract nature, the constructed fundamental adjunctions reflect several prop-
erties seen in concrete ones. One such property is that, in a certain setting, our
construction yields fundamental adjunctions that enjoy representability. Another
is the full-faithfulness of the algebra-to-space construction. It is characterized in
terms of the mono-ness of the unit arrow X → ΩA(−,Ω), where A is a category
of algebras and Ω is the dualizing object. This generalizes the full-faithfulness
argument of the constructions of topological spaces from Boolean algebras [1].

Fig. 1. Sketch of the construction of fundamental adjunction; its input data are on the
left and the construction process is on the right

Above we sketch our construction of fundamental adjunctions. It takes two
inputs (c, i, d) and (L,R) depicted on the left of Fig. 1. The first is a tuple (c, i, d)
called opfibered comprehension (Definition 1). It is an opfibration c : M → A
with further adjunctions c � i � d satisfying certain properties. The category
A plays the role of an algebraic category, and is equipped with a notion of
subalgebra generalized by an opfibration c : M →A. A typical example of c is the
subobject opfibration cod : Sub(A) → A. The second input to our construction
is an adjunction L � R : B → A. This is often set to the hom-power adjunction
(A(−, Ω))op � Ω(−) : Setop → A.

Our construction proceeds by taking the pullback of c along R (right of
Fig. 1). We call (R∗M)op the category of formal spaces. The horizontal leg R̃
of the pullback has a left adjoint by Hermida’s adjoint lift theorem [9]. The
fundamental adjunction then appears as the composite adjunction between A
and R∗M .

We will illustrate several examples of fundamental adjunctions arising from
our construction. The one between the category Frm of frames and that of topo-
logical spaces, which is the standard example of Stone duality, is an immediate
instance: take c to be the subobject opfibration c : Sub(Frm) →Frm and R to
be the power functor 2(−) : Setop → Frm with the Sierpinski frame 2.

Related Work. Categorical formulations of fundamental adjunctions via dual-
izing objects were studied by many authors [3–8]. For the formulation of rep-
resentable dual adjunctions, see e.g. [5], where Dimov and Tholen also showed
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a general condition to obtain fundamental adjunctions using the lift conditions.
In [8], Maruyama improved the lift conditions by (1) breaking the symmetry of
Dimov and Tholen’s framework, and (2) imposing different conditions on the
algebraic and spatial categories.

Categories of Chu spaces [10] are self-dual, and can accommodate var-
ious dualities in them. Pratt [11] demonstrates that the self-dual category
Chu(Set, 2) can accommodate (1) sets and complete atomic Boolean algebras,
(2) Stone spaces and Boolean algebras, and (3) sober spaces and spatial frames.
We relate the category of Chu spaces and that of formal spaces in Sect. 4.1.
However, our construction does not explain the self-duality.

The theory of natural dualities [12] aims to go roughly the same way as us,
to make a “category of spaces” from a given category of algebras. The scope of
their theory is narrower than ours, while their theory brings finer results. It is
a future work to find connections between their framework and ours. It seems
that neither of them can derive the other.

Organization. This paper is organized as follows. In Sect. 2, we define opfibered
comprehensions, which is the input of our construction. In Sect. 3, we construct
the category of formal spaces from an opfibered comprehension and derive the
fundamental adjunction. In Sects. 4 and 5, we list various examples of our frame-
work. In Sect. 6, we show how to relate two fundamental adjunctions. Section 7
summarizes this work and future work.

Preliminaries. The identity functor on a category A is denoted by IdA, and
the identity natural transformation on a functor f is denoted by idf . We write
L � R : B → A (or simply L � R) to mean that the functor R : B → A has L as
a left adjoint. Its unit and counit are denoted by ηL�R, εL�R, respectively.

2 Opfibered Comprehension

One of inputs to our construction of fundamental adjunction (Fig. 1) is an
opfibered comprehension.

Definition 1 (opfibered comprehension). An opfibered comprehension is
defined to be a tuple (c : M → A, i, d) of functors such that

1. c : M → A is an opfibration,
2. i : A → M is the right adjoint to c whose counit is the identity, and
3. d : M → A is the right adjoint to i whose unit is the identity.

We here recall the definition of (Grothendieck) opfibration; a good reference is
[13]. A functor c : M → A is an opfibration if it satisfies the following cocartesian
lifting property: for any A-arrow f : a → a′ and m ∈ M such that cm = a, there
is a cocartesian lifting of f with m. A cocartesian lifting of f with m is the arrow
written as f(m) : m→f∗(m) satisfying c(f∗(m)) = a′ and the universal property:
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for any A-arrow g : a′ → a′′ and M -arrow h : m → m′′ satisfying cm′′ = a′′ and
ch = g ◦ f , there exists a unique arrow k : f∗(m) → m′′ satisfying ck = g and
k ◦ f(m) = h.

m′′

�������
h

�

M m
f(m)

� f∗(m)

k
�
.........

A

c
�

a′′

�������
g ◦ f

�

a
f

� a′

g
�

(1)

The conditions 2 and 3 imply several equalities between functors and natural
transformations. The last one is proved in [14].

c ◦ i = IdA = d ◦ i

cηc�i = idc, ηc�i
i = idi = εi�d

i dεi�d = idd dηc�i = cεi�d

Perhaps the simplest example is the following:

Example 1. We write A→ for the arrow category of A: objects are arrows in A,
and an arrow from f to g is a pair (p, q) of arrows such that p ◦ f = g ◦ q. The
functors cod,dom : A→ → A respectively map an object arrow f : a → a′ to a′

and a, and an arrow (p, q) to p and q. The functor � : A → A→ maps an object
a to the identity arrow ida on a and an arrow f : a → a′ to (f, f) : ida → ida′ . It
is easy to see that (cod : A→ → A,�,dom) is an opfibered comprehension; the
cocartesian lifting of an A-arrow g : a′→b′ with an A→-object f : a → a′ is given
by g(f) = (g, ida) : f → g ◦ f . We call it the arrow opfibered comprehension.

We can restrict the objects of A→ to monomorphisms if A has a (strong
epi, mono)-factorization system. This is our leading example of an opfibered
comprehension.

Example 2. We write Sub(A) for the full subcategory of A→ whose objects are
just monomorphisms in A, since an equivalence class of monomorphisms of A
is called a subobject. If any arrow f : a → a′ of A can be factorized to a strong
epimorphism e(f) : a → Im(f) and a monomorphism m(f) : Im(f) → a′, then
(cod : Sub(A) → A,�,dom) is an opfibered comprehension; the cocartesian
lifting of an A-arrow f : a → a′ with Sub(A)-object m : x → a is given by
f(m) = (f, e(f ◦ m)) : m → m(f ◦ m), since for any Sub(A)-object n : x′′ → a′′

and any arrow h : x → x′′, g : a′ → a′′ satisfying g ◦ f ◦ m = n ◦ h, the property
of the strong epimorphism e(f ◦ m) implies the existence of the unique arrow k
satisfying k ◦ e(f ◦ m) = h and n ◦ k = g ◦ m(f ◦ m).
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n

�������
(g ◦ f, h)

�

Sub(A) m
(f, e(f ◦ m))

� m(f ◦ m)

(g, k)
�
.........

A

cod
�

a′′

�������
g ◦ f

�

a
f

� a′

g
�

We call it the subobject opfibered comprehension.

These two examples above are generalized to the following:

Example 3. Let (E,M) be a factorization system on A in the sense of [15]. We
obtain an opfibered comprehension in the same way as Example 2: the triple
(cod : M → A,�,dom) is an opfibered comprehension, where we regard M
as the full subcategory of A→ whose objects are arrows in M . We note that
the unique diagonal fill-in property of the factorization system guarantees the
uniqueness of the mediating morphism k in (1). In general, c fails to be an
opfibration when (E,M) is merely a weak factorization system in the sense of
[16].

On the other hand, in any opfibered comprehension arrows are factored in
the following sense.

Lemma 1. Let (c : M → A, i, d) be an opfibered comprehension. Every arrow
f : a → a′ in A factors as f = d(ηc�i

f∗(ia)) ◦ d(f(ia)).

ia′

�������
if

�

M ia
f(ia)

� f∗(ia)

ηc�i
f∗(ia) = k

�
.........

A

c
�

a
f

� a′

Proof. Consider the cocartesian lifting f(ia) of f with ia as above. From the
universal property of the cocartesian arrow, we obtain a unique vertical arrow
k : f∗(ia) → ia′ such that k ◦ f(ia) = if . Now we have cηc�i

f∗(ia) = ida′ and
ηc�i

f∗(ia) ◦ f(ia) = icf(ia) ◦ ηc�i
ia = if . Therefore k = ηc�i

f∗(ia). This factorization of
if in M yields the desired factorization of dif = f in A.
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3 Formal Space and Fundamental Adjunction

Throughout this section, we fix an opfibered comprehension (c : M → A, i, d)
and an adjunction L � R : B → A. Our first step is to derive the category of
spaces from the opfibered comprehension. For this, we take the pullback of c
along R : B → A, as done in (2). We identify the opposite of the vertex of this
pullback as the category of formal spaces and formally continuous maps.

R∗M
˜R � M

B

π

� R �
��
L

A

c

�

(2)

Definition 2. We define the category FS(R, c) of formal spaces to be (R∗M)op,
the opposite of the vertex category of the above pullback in the category Cat of
locally small categories. We call objects and arrows in FS(R, c) formal spaces
and formally continuous maps, respectively.

We give the following concrete presentation of FS(R, c).

– A formal space is a tuple (b,m) of b ∈ B and m ∈ M satisfying Rb = cm.
– A formally continuous map from (b′,m′) to (b,m) is a tuple (f, g) of arrows

f : b → b′ in B and g : m → m′ in M satisfying Rf = cg.

Example 4. The leading example of formal spaces is topological spaces. Let
Frm be the category of frames and frame homomorphisms, and 2 be the two-
point frame {⊥ ≤ �}. By applying the above pullback construction to the
power functor 2(−) : Setop → Frm and the subobject opfibered comprehen-
sion cod : Sub(Frm) → Frm, we obtain the category FS(2(−), cod) of formal
spaces. This is isomorphic to the category Top of topological spaces and contin-
uous maps. See details in Sect. 5.

We next construct the fundamental adjunction between FS(R, c)op and A.
The pullback diagram induces two extra adjunctions.

The first is a right adjoint of π : R∗M → B. From R ◦ IdB = c ◦ i ◦ R, the
universal property of the pullback yields the mediating functor ρ : B → R∗M
such that π ◦ ρ = IdB and R̃ ◦ ρ = i ◦ R.

Proposition 1. We have an adjunction π � ρ whose counit is the identity.

Proof. We show that π � ρ is the adjunction whose counit is idb : b = π(b, iRb) =
πρb → b. For any b′ ∈ B, m ∈ M , f : b′ = π(b′,m) → b satisfying Rb′ = cm,
there exists the unique pair of h : b′ → b in B and g : m → iRb in M satisfying
Rh = cg : cm → Rb and idb ◦ π(h, g) = f , since c � i and εc�i = id. 
�
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The second is the left adjoint of R̃ : R∗M → M . This is the keystone of the
fundamental adjunction. The general result of Hermida shows that the horizontal
leg of the change-of-base of any opfibration along right adjoint has a left adjoint:

Theorem 1 (Corollary 3.2.5, [9]). In (2), R̃ : R∗M →M has a left adjoint L̃
satisfying π ◦ L̃ = L ◦ c.

For reference, we put his construction here. The candidate left adjoint L̃ maps
m ∈ M to the pair (Lcm, (ηcm)∗(m)), where ηL�R

cm (m) : m → (ηL�R
cm )∗(m) is

the cocartesian lifting of ηL�R
cm with m. Then, (Lcm, (ηcm)∗(m)) is an object

in FS(R, c) and ηL�R
cm (m) : m → (ηL�R

cm )∗(m) = R̃L̃m satisfies the universal
property: for any (b,m′) ∈ FS(R, c) and f : m → m′ = R̃(b,m′), there exists the
pair of g : Lcm → b in B and h : (ηcm)∗(m) → m′ in M satisfying Rg = ch and
h◦ηL�R

cm (m) = f . The existence and the uniqueness of g is proven by L � R. The
existence and the uniqueness of h is proven by the cocartesian lifting property
of ηL�R

cm (m).

m′

�������
f

�

M m
ηL�R

cm (m)
� (ηL�R

cm )∗(m)

h
�
........

A

c
�

Rb

�������
cf

�

cm
ηL�R

cm

� RLcm

Rg
�

To summarize, we obtain the following sequence of adjunctions, which factors
L � R:

B

ρ�
��

π

FS(R, c)op
˜R �
��
˜L

M

d �
��
i

A

Theorem 2 (formal space factorization). We have the factorization of L �
R as R = d ◦ R̃ ◦ ρ and L = π ◦ L̃ ◦ i.

Proof. By the definition of ρ, we have d ◦ R̃ ◦ρ = d ◦ i ◦R = R. By the definition
of L̃, we have π ◦ L̃ ◦ i = L ◦ c ◦ i = L.


�
Starting from an opfibered comprehension (c : M → A, i, d) and an adjunc-

tion L � R : B → A, this factorization theorem yields an adjunction between
FS(R, c)op and A. This is the main subject of this paper, the fundamental
adjunction.
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Definition 3 (fundamental adjunction). We call L̃ ◦ i � d ◦ R̃ the funda-
mental adjunction. The left and right fundamental adjoints are denoted by

SpR,c � L̃ ◦ i : A → FS(R, c)op, AlR,c � d ◦ R̃ : FS(R, c)op → A.

3.1 Coreflexiveness of Fundamental Adjunction

When the left fundamental adjoint SpR,c is full faithful, it yields an equivalence
between A and its full image. We here consider when SpR,c is full faithful.

As shown in Lemma 1, in any opfibered comprehension (c : M → A, i, d) an
arrow f : a → a′ in A factors as d(ηc�i

f∗(ia)) ◦ d(f(ia)).

Definition 4. Let (c : M → A, i, d) be an opfibered comprehension. We say that
an arrow f : a → a′ in A belongs to M if d(f(ia)) : a → d(f∗(ia)) is invertible.

Example 5. In the arrow opfibered comprehension cod : A→ → A, any A-arrow
belongs to A→, while for the subobject opfibered comprehension cod : Sub(A)→
A, an arrow belongs to Sub(A) if and only if it is mono.

Proposition 2. The left fundamental adjoint SpR,c is full faithful if and only
if ηL�R

a belongs to M for each a ∈ A.

Proof. The unit of the adjunction SpR,c � AlR,c is d(ηL̃�R̃
i ) ◦ ηi�d. Since ηi�d =

id, it suffices to show that d(ηL̃�R̃
i ) is invertible at each a ∈ A. Now recall that

the m-th component ηL̃�R̃
m of the unit of L̃ � R̃ is the cocartesian lifting ηL�R

cm (m)

of the unit of L � R with m. Therefore d(ηL̃�R̃
ia ) = d(ηL�R

cia (ia)) = d(ηL�R
a (ia)),

and, then the left hand side is invertible, if and only if ηL�R
a belongs to M .

Corollary 1. Let cod : A→ → A be the arrow opfibered comprehension and
L � R be an adjunction. The left fundamental adjoint SpR,c is full faithful.

Corollary 2. Let cod : Sub(A) → A be the subobject opfibered comprehension
and L � R be an adjunction. The left fundamental adjoint SpR,c is full faithful
if and only if each component of the unit of L � R is mono.

3.2 Representability of Fundamental Adjunction

Next, we study the representability of the fundamental adjunction. We say that
a dual adjunction L � R : Cop → D is representable through γ : C → Set and
δ : D → Set if there is a pair ΩC ∈ C,ΩD ∈ D of objects such that

γ ◦ Lop ∼= D(−, ΩD), δ ◦ R ∼= C(−, ΩC).

Note that it follows γΩC
∼= δΩD; see e.g. [5, Lemma 2.3].

The fundamental adjunction enjoys this representability when it arises from
the following situation. Let c : M → A be an opfibered comprehension and
Ω ∈ A. We assume that (1) A comes with an adjunction F � U : A → Set,
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and (2) the representable functor (A(−, Ω))op : A → Setop has a right adjoint
Ω(−) : Setop → A. We call this hom-power adjunction. The second assumption
means that A admits small powers of Ω; see [17, Section III.4] for detail. Under
these assumptions, the fundamental adjunction becomes representable through
π : FS(Ω(−), c) → Set and U : A → Set.

Theorem 3. We define the object ΩFS ∈ FS(Ω(−), c) to be SpΩ(−),c(F1), where
1 is the terminal object of Set. Then

π ◦ (SpΩ(−),c)op = A(−, Ω), U ◦ AlΩ
(−),c ∼= FS(Ω(−), c)(−, ΩFS).

Proof. The first is by the factorization of A(−, Ω) (Theorem 2). We show the
second.

U ◦ AlΩ
(−),c ∼= Set(1, U ◦ AlΩ

(−),c(−))

∼= FS(Ω(−), c)op(SpΩ(−),c(F1),−) = FS(Ω(−), c)(−, ΩFS).

4 Formal Spaces from Arrow Opfibered Comprehension

When the construction of the category of formal spaces is applied to some con-
crete arrow opfibered comprehension cod : A→ → A, derived concepts of formal
space coincide with existing structures. We illustrate two such examples: one is
Chu spaces [10] and the other is topological systems introduced by Vickers [18].
These suggests that, for the arrow opfibered comprehension, our construction
can be regarded as a “non-symmetric” generalization of Chu construction.

4.1 Chu Spaces

Let (A, I,⊗, [−,−]) be a symmetric monoidal closed category, and Σ ∈ A be an
object. It plays the role of a dualizing object. In [19], Pavlovic showed that a
category of Chu spaces can be obtained as the comma category of IdA : A → A
and the internal hom functor [−, Σ] : Aop → A. In general, the comma category
of the form IdA ↓ F is isomorphic to the vertex of the pullback of the codomain
functor cod : A→ →A along F . Therefore the category Chu(A,Σ) of Chu spaces
in [19] is isomorphic to the category FS([−, Σ], cod) of formal spaces.

4.2 Topological Systems

In [18], Vickers introduces the category of topological system to model state
spaces paired with notions of observations. This category is defined by the fol-
lowing data, and has a similar flavor to the category of Chu spaces.

– A topological system is a tuple (x, a, s : x × a → 2) of a set, a frame, and
a function such that, for each p ∈ x, the function s(p,−) : a → 2 preserves
finite meets and arbitrary unions.



230 K. Nishizawa et al.

– A map from a topological system (x′, a′, s′) to another one (x, a, s) is a tuple
(f, g) such that f : x′ → x is a function, g : a → a′ is a frame homomorphism
and they satisfy s ◦(f × a) = s′ ◦(x′ × g).

We can easily see that it is isomorphic to the category FS(2(−), cod) of formal
spaces, where cod : Frm→ → Frm is the arrow opfibered comprehension and
2(−) : Setop → Frm is the power functor to 2.

The left fundamental adjoint Sp2(−),cod : Frm → FS(2(−), cod)op sends
each frame to the corresponding locale as defined in [18]. By Proposition 2 we
can see that the functor is fully faithful, which implies that the definition of the
category of locales there is indeed equivalent to the more common definition:
Loc = Frmop.

5 Formal Spaces from Subobject Opfibered
Comprehension

Let U : A→Set be a monadic functor and Ω ∈ A. Then (1) U has a left adjoint,
(2) A admits powers of Ω since A has small limits, and (3) A admits a strong
epi-mono factorization. Therefore from such U and Ω, we obtain two ingredi-
ents needed for constructing the category of formal spaces and the fundamental
adjunction: (1) the subobject opfibered comprehension cod : Sub(A) → A, and
(2) the hom-power adjunction (A(−, Ω))op � Ω(−).

FS(Ω(−), cod)op
˜Ω(−)

�
��

˜(A(−, Ω))op

Sub(A)
dom�

��
�

A

The derived category FS(Ω(−), cod) of formal spaces and the fundamental
adjunction have the following concrete description.

– A formal space is a pair (I,X) of a set I and a subobject X of ΩI .
– A formally continuous map f : (I,X) → (J, Y ) is a function f : I → J such

that Ωf : ΩJ → ΩI restricts to an A-arrow of type Y → X.
– The right fundamental adjoint satisfies AlΩ

(−),cod(I,X) = X, simply extract-
ing the subobject part.

– The left fundamental adjoint takes X ∈ A and computes the following push-
forward in the opfibration c (recall the notation e(f),m(f), Im(f) about the
factorization of f in Example 2):

Sub(A) �X ...................................................................

(ηA(−,Ω)�Ω(−)

X , e(ηA(−,Ω)�Ω(−)

X ))

� m(ηA(−,Ω)�Ω(−)

X )

A

cod
�

X
η

A(−,Ω)�Ω(−)

X

� ΩA(X,Ω)

Then it returns the formal space (A(X,Ω), Im(ηA(−,Ω)�Ω(−)

X )).
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From Theorem 3, the fundamental adjunction is representable, and from Corol-
lary 2, the left fundamental adjoint SpΩ(−),cod is fully faithful if and only if the
unit η : X → ΩA(X,Ω) of the hom-power adjunction is mono.

Table 1. Various algebraic categories

Category Object Arrow

BA Boolean algebras Boolean homomorphisms

SLat Join semilattices Join-preserving functions

Lat Bounded lattices Bounded lattice homomorphisms

DLat Distributive bounded lattices Bounded lattice homomorphisms

CSLat Complete lattices Join-preserving functions

Frm Frames Frame homomorphisms

We demonstrate that some known fundamental adjunctions between cate-
gories of algebras and those of spaces are instances of the above fundamen-
tal adjunction. To save space, we write FS(Ω,A),SpΩ,A and AlΩ,A to mean
FS(Ω(−), cod),SpΩ(−),cod and AlΩ

(−),cod, respectively. Let us introduce various
categories by Table 1. These categories have the special object 2 = ({⊥,�},⊥ ≤
�). In particular, FS(2,BA) is isomorphic to the category Fld of fields of
sets and Boolean homomorphisms [20], and FS(2,Frm) ∼= Top as in Exam-
ple 4. Since the lattice 2X and its sublattices are always distributive, we have
FS(2,DLat) ∼= FS(2,Lat).

Example 6. When A = BA, SLat, DLat, or CSLat, L = A(−,2) is faithful and
the left fundamental adjoint Sp2,A is fully faithful by Proposition 2. On the other
hand, when A = Lat, L is not faithful, since components for non distributive
bounded lattices of the unit ηLat(−,2)�2(−)

are monomorphisms [21]. When A =
Frm, L is not faithful and Sp2,Frm is not fully faithful, since components for
non spatial frames of the unit ηSp2,Frm�Al2,Frm

are not isomorphisms [1].

Example 7. We write Poset for the category of partially ordered sets and mono-
tone maps. The representable functor L = Frm(−,2) : Frm → Posetop for
Poset-enriched Frm has the right adjoint R = Up, whose Up(X,≤) is the
frame of all up-closed subsets of (X,≤). Then, FS(Up, cod) is the following
category PoTop:

– its objects are (X,≤, α) such that (X,≤) ∈ Poset, (X,α) ∈ Top, and α ⊆
Up(X,≤).

– its arrows f : (X,≤, α) → (Y,≤, β) satisfy f : (X,≤) → (Y,≤) ∈ Poset
f : (X,α) → (Y, β) ∈ Top.

Example 8. A fundamental adjunction SpΩ,A � AlΩ,A : FS(Ω,A)op → A is
extendible by composing another adjunction F � U : A → A′, for example, ideal
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completion. A subset of a join semilattice X = (X,∨,⊥) is called an ideal [21]
in X, if it is down-closed and finite join closed. The set of all ideals in X forms a
complete join semilattice, where for a set α of ideals, its join

∨

α is given not by
its union

⋃

α, but by {x | ∃β ⊆ ⋃

α, β is finite, x ≤ ∨

β}. This construction gives
adjunctions ideals � forget : CSLat → SLat and ideals � forget : Frm →
DLat. Therefore, we have the following extended fundamental adjunctions.

Sp2,CSLat ◦ ideals � forget ◦ Al2,CSLat : FS(2,CSLat)op → SLat

Sp2,Frm ◦ ideals � forget ◦ Al2,Frm : Topop → DLat

SpUp,cod ◦ ideals � forget ◦ AlUp,cod : PoTopop → DLat

6 Change of Bases

In this section, we give some construction of adjunctions among categories of
different formal spaces. Below we show that an adjunction between opfibered
comprehensions induces an adjunction between categories of formal spaces.

Theorem 4 (base change theorem for opfibered comprehensions). Let

– (c : M → A, i, d) and (c′ : M ′ → A′, i′, d′) be opfibered comprehensions,
– FA � UA : A → A′ and FM � UM : M → M ′ be adjunctions and
– R : B → A be a functor

such that (c, c′) is a map of adjunction (see [17, Section IV.7]) from FM � UM

to FA � UA, that is, the following equalities hold:

c′ ◦ UM = UA ◦ c, c ◦ FM = FA ◦ c′, cεFM�UM = εFA�UA
c .

Then there is an adjunction F ∗ � U∗ : R∗M → R′∗M ′ satisfying π′ ◦ U∗ = π
and ˜R′ ◦ U∗ = UM ◦ ˜R, where R′ = UA ◦ R.

R∗M
˜R � M..............

U∗

��	..............F ∗








UM

��	




FM
R′∗M ′ ˜R′

� M ′

B

π

� R � A

c
�








id
�








UA

��	




FAB

π′

�

R′ = UA ◦ R
� A′

c′

�
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Proof. UM satisfies c′ ◦ UM ◦ ˜R = UA ◦ c ◦ ˜R = UA ◦ R ◦ π = R′ ◦ π. Since
(R′∗M ′, π′, ˜R′) is the pullback of R′ and c′ in Cat, there exists the unique U∗

satisfying π′ ◦ U∗ = π and ˜R′ ◦ U∗ = UM ◦ ˜R, where U∗ maps an object (b,m)
to (b, UMm) and maps arrows similarly.

To save notational burden, let ηA and εA be the unit and the counit of
FA � UA, and ηM and εM be the unit and the counit of FM � UM . That
(c, c′) is a map of adjunction implies that ηA

c′ : c′ ⇒ UAFAc′ is the same as
c′ηM : c′ ⇒ c′UMFM .

For (b,m′) ∈ R′∗M ′, (b, (εA
Rb)∗FMm′) is an object of R∗M . Note that m′

is above UARb, FMm′ is above FAUARb, and (εA
Rb)∗FMm′ is above Rb. Let

em′ : FMm′ → (εA
Rb)∗FMm′ be the cocartesian arrow above εA

Rb defined canoni-
cally. Here,

c′(UMem′ ◦ ηM
m′) = c′UMem′ ◦ c′ηM

m′

= UAcem′ ◦ ηA
c′m′

= UAεA
Rb ◦ ηA

UARb

= idUARb

holds. Thus, we have an arrow

(idb, UMem′ ◦ ηM
m′) : (b,m′) → (b, UM ((εA

Rb)∗FMm′)) = U∗(b, (εA
Rb)∗FMm′)

in the category R′∗M ′.
We will show that this is a universal arrow from (b,m′) to U∗. Assume that

we have an arrow (f, g) : (b,m′) → (b2, UMm) = U∗(b2,m). Using the adjunction
FM � UM , we can decompose g : m′ → UMm to

m′ ηM
m′−−→ UMFMm′ UMFMg−−−−−→ UMFMUMm

UM εMm−−−−→ UMm.

The composite

FMm′ FMg−−−→ FMUMm
εMm−−→ m

in M is sent by c to

FAUARb
FAUARf−−−−−−→ FAUARb2

εARb2−−−→ Rb2

in A. By naturality it is equal to

FAUARb
εARb−−→ Rb

Rf−−→ Rb2.

Thus, by the universality of cocartesian lifting, εM
m ◦ (FMg) decomposes through

em′ . Combining this with the first decomposition yields the decomposition we
want. Uniqueness can be shown by a similar means.

Therefore, U∗ has a left adjoint F ∗ satisfying F ∗(b,m′) = (b, (εA
Rb)∗FMm′).


�
By specializing Theorem 4, we have some more usable results.
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Corollary 3 (base change theorem for arrow opfibered comprehen-
sion). Let FA � UA : A → A′ be an adjunction and R : B → A be a functor.
There exist adjunctions FA→ � UA→ : A→ → (A′)→ and F ∗ � U∗ : R∗A→ →
R′∗(A′)→ satisfying the conditions in Theorem 4. Moreover, F ∗(b,m′) =
(b, εRb ◦ FAm′) for each (b,m′) ∈ R′∗(A′)→.

Proof. We can canonically obtain FA→ � UA→ : A→ → (A′)→ by defining their
object parts by the arrow parts of FA � UA : A → A′. These satisfy the condi-
tions in Theorem 4, so we can apply it to obtain F ∗ � U∗ : R∗A→ → R′∗(A′)→.

The pushout in the construction in Theorem 4 turns out to coincide with
postcomposition. This yields the equality for F ∗.


�
Corollary 4 (base change theorem for subobject opfibered compre-
hension). Let FA � UA : A → A′ be an adjunction and R : B → A be a
functor. Assume that

– A and A′ have (strong epi, mono)-factorization systems,
– FA preserves monomorphisms, and
– the counit of FA � UA is componentwise monic.

Then there exist adjunctions FSub(A) � USub(A) : Sub(A) → Sub(A′) and
F ∗ � U∗ : R∗Sub(A) → R′∗Sub(A′) satisfying the conditions in Theorem 4.
Moreover, F ∗(b,m′) = (b, εRb ◦ FAm′) for each (b,m′) ∈ R′∗Sub(A′).

Proof. Since both FA and UA preserve monomorphisms, we can let FSub(A)(m′)
= m′ and USub(A)(m) = m. These satisfy the conditions in Theorem 4, so we
can apply it to obtain F ∗ � U∗ : R∗Sub(A) → R′∗Sub(A′).

By the assumption on the counit, the pushout in the construction in The-
orem 4 turns out to coincide with postcomposition. This yields the equality
for F ∗. 
�
Example 9. The leading example of Corollary 4 is the adjunction between Fld ∼=
FS(2,BA) and FS(2,DLat).

The forgetful functor forget : BA → DLat has a right adjoint comp,
which maps a distributive lattice (X,∨,∧,⊥,�) to the Boolean algebra of its
complemented elements [20], that is to say, {x ∈ X | ∃x′ ∈ X,x ∨ x′ =
�, x ∧ x′ = ⊥}. Since this adjunction satisfies the condition of Corollary 4,
we have the adjunction forget∗ � comp∗ : FS(2,DLat)op → FS(2,BA)op sat-
isfying forget∗ ◦ Sp2,BA = Sp2,DLat ◦ forget.

FS(2,DLat)op
˜2(−)

�
��

˜DLat(−,2)

Sub(DLat)
dom �

��
�

DLat

FS(2,BA)op

forget∗
�
� comp∗

�
˜2(−)

�
��

˜BA(−,2)

Sub(BA)
dom′

�
��
�′

BA

forget

�

� comp
�
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By composing forget � comp with the adjunction Sp2,Frm ◦ ideals � forget ◦
Al2,Frm : Topop → DLat in Example 8, we also have the following adjunction.

Sp2,Frm ◦ ideals ◦ forget � comp ◦ forget ◦ Al2,Frm : Topop → BA

7 Conclusion and Future Work

This paper has defined the notion of opfibered comprehension (c : M → A, i, d)
including the example of arrows M = A→ or the example of subobjects M =
Sub(A). For any functor R : B → A, we have constructed its formal spaces
FS(R, c) and a fundamental adjunction SpR,c � AlR,c : FS(R, c)op → A. The
leading example is the adjunction between Topop and Frm.

We also have given the sufficient condition to construct different formal
spaces FS(R, c) and FS(R′, c′). Its leading example is the adjunction between
FS(2,DLat) and FS(2,BA).

It is future work to compare with other dualities, for example, Priestley
duality [21], algebra/coalgebra duality [22], natural dualities [12], and so on.
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Abstract. It is known that each powerset quantale is embeddable into
some relational unital quantale whose underlying set is the powerset
of some preorder. An aim of this paper is to understand the relational
embedding as a relationship between quantales and preorders. For that,
this paper introduces the notion of weak preorders, a functor from the
category of weak preorders to the category of partial semigroups, and a
functor from the category of partial semigroups to the category of quan-
tales and lax homomorphisms. By using these two functors, this paper
shows a correspondence among four classes of weak preorders (including
the class of ordinary preorders), four classes of partial semigroups, and
four classes of quantales. As a corollary of the correspondence, we can
understand the relational embedding map as a natural transformation
between functors onto certain category of quantales.

1 Introduction

A unital quantale is defined to be a complete join semilattice together with a
monoid structure satisfying the distributive laws. It was introduced by Conway
under the name S-algebras [1]. A relational example of unital quantale is a pow-
erset ℘(A × A), which is the set of all binary relations on a set A and whose
monoid structure is given by relational composition and the identity relation. We
call it a relational quantale. A relational quantales play an important role in com-
puter science, for example, it is a model for the semantics of non-deterministic
while-programs [2,3].

In the paper [4], the relational representation theorem for powerset quan-
tales is shown, where a powerset quantale is defined to be a unital quantale
whose complete join semilattice part is isomorphic to the powerset of some
set. The relational representation is given as an embedding (i.e., injective
unital homomorphism) η from a powerset quantale ℘(A) to some relational
c© Springer Nature Switzerland AG 2020
U. Fahrenberg et al. (Eds.): RAMiCS 2020, LNCS 12062, pp. 237–252, 2020.
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quantale ℘(A × A). The paper [5] includes this embedding η in the special case
where A is a free monoid.

(℘(N),⊆,
⋃

, [[+]], {0}) is the leading example of powerset quantale, where N

is the set of all natural numbers (including 0) and S [[+]] S′ def= {n + n′ | n ∈
S, n′ ∈ S′}. When the relational representation theorem [4] is applied to ℘(N),
the embedding η : ℘(N) → ℘(N × N) embeds a subset S into the left and right
reversed relation of {(m,n) | n−m ∈ S}. The subtraction − for natural numbers
plays an important role.

In general, the representation theorem helps to understand the algebra, not
only that, but it is meaningful in the field of computer science, because it suggests
the possibility of representing infinite entities with finite data. Embedding from
power set quantale into binary relations also shows the possibility that infinite
entities can be represented by finite data. For example, as an application example
of the above η : ℘(N) → ℘(N×N), the finite set {2} is representing η({2}), i.e.,
the infinite binary relation (or the infinite directed graph) {(m,m+2) | m ∈ N}.
In addition, the multiplication in the quantale can replace the relational com-
position operation. This shows the same effect as the correspondence between
linear mapping and its matrix representation. Analyzing quantales’ representa-
tion theorem is meaningful in the field of computer science.

The definition of relational quantale is extendable for the powerset ℘(≤) of
each preorder ≤, where a preorder is regarded as a subset of A × A satisfying
reflexivity and transitivity. An aim of this paper is to understand the relational
embedding η as a relationship between quantales and preorders.

Since direct construction of a relationship between quantales and preorders
is not very obvious, this paper introduces the notion of weak preorder and par-
tial semigroup as a relaxation of preorder and semigroup, respectively. We also
introduce the notion of lax homomorphism between (not unital) quantales as a
relaxation of ordinary homomorphism between quantales. And, we give a functor
comp from the category WPreOrd of weak preorders to the category PSG of
partial semigroups, and a contravariant functor ℘ from PSG to the category
Qtlax of quantales and lax homomorphisms. Moreover, we also define three
categories (including the category UQt of unital quantales and unital homo-
morphisms) as restrictions of Qtlax, in a step-by-step manner. By proving the
following six pullbacks in Cat, we show the relationship among orders, semi-
groups, and quantales.

Recall that a pullback of F : B → A and G : C → A in Cat is isomorphic
to the category B ×A C which consists of pairs of b ∈ B and c ∈ C satisfying
Fb = Gc with projections π : B ×A C → B and π′ : B ×A C → C, since for
functors H : D → B and K : D → C satisfying F ◦ H = G ◦ K, the functor
L(d) = (Hd,Kd) is the unique functor L : D → B ×A C satisfying π ◦ L = H
and π′ ◦ L = K.

By using these functors, we understand the relational embedding map η as
a natural transformation.

This paper is organized as follows. Section 2 defines the notions of weak pre-
order, partial semigroup, and lax homomorphism between quantales. In Sect. 3,
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Fig. 1. The six pullbacks in Cat shown in this paper

we restrict arrows between quantales to ordinary homomorphisms and give the
corresponding classes of arrows between weak preorders or partial semigroups.
Section 4 extends quantales to unital quantales and give the corresponding exten-
sion of weak preorders or partial semigroups. In Sect. 5, we introduce sufficient
classes to induce the relational embedding. Section 6 summarizes this work and
discusses about future work.

2 Weak Preorders and Partial Semigroups

In this section, we define the notions of weak preorder, partial semigroup, and
lax homomorphism between quantales. By using the three notions, we give three
categories and two functors among them.

First, we recall the definition of quantale [6–8] and define the notion of lax
homomorphism between quantales.

Definition 1 ((non unital) quantale and lax homomorphism). A quan-
tale is defined to be a tuple (Q,≤,

∨
,�) such that

1. (Q,�) is a semigroup (i.e., a binary function � on Q that is associative),
2. (Q,≤,

∨
) is a complete join semilattice (i.e., a partially ordered set (Q,≤)

has the least upper bound
∨

S for arbitrary subset S of Q),
3. (

∨
S) � q =

∨{s � q|s ∈ S} for each element q and each subset S of Q, and
4. q � (

∨
S) =

∨{q � s|s ∈ S} for each element q and each subset S of Q.

For two quantales (Q,≤,
∨

,�), (Q′,≤′,
∨′

,�′), a lax homomorphism from (Q,
≤,

∨
,�) to (Q′,≤′,

∨′
,�′) is defined to be a map f : Q → Q′ such that
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1. f(
∨

S) =
∨′{f(s)|s ∈ S} for each subset S of Q (join-preserving), and

2. f(q1) �′ f(q2) ≤′ f(q1 � q2) for each elements q1, q2 of Q (closed map).

Lax homomorphisms between quantales are closed under composition as
maps. The identity map is a lax homomorphism on a quantale. Therefore, we
can define the category whose objects are quantales and whose arrows are lax
homomorphisms between them and we write Qtlax for it.

As the sufficient structure to construct � in the powerset case Q = ℘(X),
we define the notion of partial semigroup.

Definition 2 (partial semigroup and homomorphism). A partial semi-
group is defined to be a tuple (X, ·) such that

1. X is a set,
2. · is a partial binary function on X (i.e., x · y may be undefined),
3. x · y and (x · y) · z are defined if and only if y · z and x · (y · z) are defined for

x, y, z ∈ X, and
4. (x · y) · z = x · (y · z) if they are defined.

For partial semigroups (X, ·), (X ′, ·′), a homomorphism from (X, ·) to (X ′, ·′) is
defined to be a map f : X → X ′ such that

1. f(x) ·′ f(y) is defined for x, y ∈ X such that x · y is defined, and
2. f(x) ·′ f(y) = f(x · y) if they are defined.

Homomorphisms between partial semigroups are closed under composition
as maps. The identity map is a homomorphism on a partial semigroup. We write
PSG for the category whose objects are partial semigroups and whose arrows
are homomorphisms between them.

Example 1. For each set X, (X, ·) is a partial semigroup, where x · y
def= x if

x = y and x · y is undefined otherwise.

Example 2. For a set A, (A × A, ; ) is a partial semigroup, where (a, b); (c, d) def=
(a, d) if b = c and (a, b); (c, d) is undefined otherwise.

Next, we present the construction of a powerset (not unital) quantale from
a partial semigroup. Here, we denote by the binary map [[·]] on ℘(X) so that
S1 [[·]] S2

def= {s1 · s2 | s1 ∈ S1, s2 ∈ S2, s1 · s2 is defined} for a partial semigroup
(X, ·).
Theorem 1. The following data form a functor ℘ : PSGop → Qtlax.

– For an object (X, ·), ℘(X, ·) def= (℘(X),⊆,
⋃

, [[·]])
– For an arrow f : (X, ·) → (X ′, ·′), ℘(f) : ℘(X ′, ·′) → ℘(X, ·) is a map

℘(f)(S′) = {x ∈ X | f(x) ∈ S′}.
Proof. Take an arrow f : (X, ·) → (X ′, ·′) in PSG. ℘(f) preserves

⋃
. Take

S′
1, S

′
2 ∈ ℘(X ′) and x ∈ ℘(f)(S′

1) [[·]] ℘(f)(S′
2). There are s1, s2 ∈ X satisfying

f(s1) ∈ S′
1, f(s2) ∈ S′

2, and x = s1 · s2. They satisfy f(x) = f(s1 · s2) =
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f(s1) ·′ f(s2) ∈ S′
1 [[·′]] S′

2 and then x ∈ ℘(f)(S′
1 [[·′]] S′

2). Therefore, we have
shown ℘(f)(S′

1) [[·]] ℘(f)(S′
2) ⊆ ℘(f)(S′

1 [[·′]] S′
2). ℘ preserves composition and

identities. �	
A transitive relation R on a set X forms a partial semigroup (R, ; ) with the

same ; as Example 2. However, we define weak preorders, as a stronger notion
than transitive relations and a weaker notion than preorders.

Definition 3 (weak preorder). A binary relation R ⊆ X×X on X is called a
weak preorder on X, if R is transitive and R satisfies ∀x ∈ X.∃y ∈ X.(x, y) ∈ R
or (y, x) ∈ R. A weak preordered set is defined to be a tuple (X,R) of a set X
and a weak preorder R on X.

Example 3. Let N be the set of all natural numbers (including 0). We write
m <N n when m is less than n as natural numbers and write m ≤N n when
m <N n or m = n. We also regard <N as the set of (m,n) satisfying m <N n
and regard ≤N as the set of (m,n) satisfying m ≤N n.

≤N is a preorder on N. On the other hand, <N is not a preorder, but a weak
preorder on N.

Definition 4. For weak preordered sets (X,R), (X ′, R′), a monotone map from
(X,R) to (X ′, R′) is defined to be a map f : X → X ′ such that (x, y) ∈ R implies
(f(x), f(y)) ∈ R′ for each x, y ∈ X.

Monotone maps between weak preordered sets are closed under composition
as maps. The identity map is a monotone map on a weak preordered set. There-
fore, weak preordered sets and monotone maps between them form a category.
We write WPreOrd for it.

Next, we present the construction of a partial semigroup from a weak pre-
ordered set.

Theorem 2. The following data form a functor comp : WPreOrd → PSG.

– For an object (X,R), comp(X,R) def= (R, ; ) where (w, x); (y, z) is defined and
equal to (w, z) if x = y.

– For an arrow f : (X,R) → (X ′, R′), comp(f) : (R, ; ) → (R′, ; ) sends (x, y)
to (f(x), f(y)).

Proof. Take an arrow f : (X,R) → (X ′, R′) in WPreOrd. Take (x, y) ∈ R.
By monotonicity of f , comp(f)(x, y) = (f(x), f(y)) ∈ R′. Take (w, x), (y, z) ∈
R such that (w, x); (y, z) is defined. Then, x = y and (w, x); (y, z) = (w, z).
comp(f)(w, x); comp(f)(y, z) = (f(w), f(x)); (f(x), f(z)) is defined and equal
to (f(w), f(z)) = comp(f)(w, z). comp preserves composition and identities. �	
Example 4. We define the arrow plus1 : (N, <N) → (N,≤N) in WPreOrd by
plus1(n) def= n + 1.

comp(plus1) is the arrow from comp(N, <N) = (<N, ; ) to comp(N,≤N)
= (≤N, ; ) in PSG such that comp(plus1)(m,n) = (m + 1, n + 1) for (m,n)
satisfying m <N n.
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℘(comp(plus1)) is the arrow from ℘(≤N, ; ) = (℘(≤N),⊆,
⋃

, [[; ]]) to ℘(<N

, ; ) = (℘(<N),⊆,
⋃

, [[; ]]) in Qtlax such that ℘(comp(plus1))(S) = {(m,n) |
m <N n, (m + 1, n + 1) ∈ S} for each subset S of ≤N. Since ℘(comp(plus1))
is a lax homomorphism, all subsets S1, S2 of ≤N satisfy {(l,m) | l <N m, (l +
1,m + 1) ∈ S1} [[; ]] {(m,n) | m <N n, (m + 1, n + 1) ∈ S2} ⊆ {(m,n) | m <N

n, (m + 1, n + 1) ∈ S1 [[; ]] S2}.

3 The Intermediate Value Property and Dividing Maps

In this section, we recall the category of quantales and ordinary homomorphisms
of quantales. It is a subcategory of Qtlax in Sect. 2. We study which maps
between partial semigroups correspond to homomorphisms between quantales,
and which maps between weak preorders correspond to those maps between
partial semigroups.

Definition 5 (homomorphism between quantales). For quantales (Q,≤
,
∨

,�), (Q′,≤′,
∨′

,�′), a homomorphism from (Q,≤,
∨

,�) to (Q′,≤′,
∨′

,�′)
is defined to be a map f : Q → Q′ satisfying

1. f(
∨

S) =
∨′{f(s)|s ∈ S} for each subset S of Q, and

2. f(q1 � q2) = f(q1) �′ f(q2) for each elements q1, q2 of Q.

We write Qt for the subcategory of Qtlax, whose arrows are homomorphisms.

Next, we introduce the additional condition for homomorphisms between
partial semigroups which corresponds to homomorphisms between quantales.
We call it the dividing condition.

Definition 6 (dividing map between partial semigroups). A partial semi-
group homomorphism f : (X, ·) → (X ′, ·′) is called dividing, if for each x′, y′ ∈
X ′ and z ∈ X satisfying x′ ·′ y′ = f(z), there exist x, y ∈ X such that f(x) = x′,
f(y) = y′, and x · y = z.

Dividing maps between partial semigroups are closed under composition as
maps. The identity map is dividing. We write PSGdiv for the subcategory of
PSG, whose arrows are only dividing maps.

Next, we show that dividing maps between partial semigroups correspond to
homomorphisms between quantales.

Theorem 3. For an arrow f : (X, ·) → (X ′, ·′) in PSG, the following state-
ments are equivalent.

1. f is an arrow f : (X, ·) → (X ′, ·′) in PSGdiv.
2. ℘(f) is an arrow ℘(f) : ℘(X ′, ·′) → ℘(X, ·) in Qt.

Proof. (1 ⇒ 2) Assume f : (X, ·) → (X ′, ·′) in PSGdiv. Take S′
1, S

′
2 ∈ ℘(X ′)

and x ∈ ℘(f)(S′
1 [[·′]] S′

2). There exist x′
1 ∈ S′

1, x′
2 ∈ S′

2 satisfying f(x) = x′
1 ·′ x′

2.
Since f ∈ PSGdiv, there exist x1, x2 ∈ X satisfying f(x1) = x′

1, f(x2) = x′
2,

and x = x1 · x2. Therefore, x = x1 · x2 ∈ {x1} [[·]] {x2} ⊆ ℘(f)(S′
1) [[·]] ℘(f)(S′

2).
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(2 ⇒ 1) Assume ℘(f) : ℘(X ′, ·′) → ℘(X, ·) in Qt. Take x′, y′ ∈ X ′ and
z ∈ X satisfying x′ ·′ y′ = f(z). Then, z ∈ ℘(f)({f(z)}) = ℘(f)({x′ ·′ y′}) =
℘(f)({x′}[[·′]]{y′}) = ℘(f)({x′})[[·]]℘(f)({y′}). By the definition of [[·]], there exist
x, y such that x ∈ ℘(f)({x′}), y ∈ ℘(f)({y′}), and x · y = z. Then, f(x) = x′

and f(y) = y′. �	
Corollary 1. Let ℘ : PSGdiv → Qtop be the restriction of ℘ : PSG → Qtoplax.
The forgetful functor forget : PSGdiv → PSG and ℘ : PSGdiv → Qtop is a
pullback of ℘ : PSG → Qtoplax and the forgetful functor forget : Qtop → Qtoplax
in Cat (Fig. 1).

Next, we introduce the additional condition for monotone maps between weak
preorders which corresponds to dividing maps between partial semigroups. The
condition is the intermediate value property.

Definition 7 (the intermediate value property). For weak preordered sets
(X,R), (X ′, R′), a monotone map f from (X,R) to (X ′, R′) is said to satisfy
the intermediate value property, if for x, y, z′ s.t. (x, y) ∈ R, (f(x), z′) ∈ R′ and
(z′, f(y)) ∈ R′, there exists z ∈ X s.t. f(z) = z′, (x, z) ∈ R, and (z, y) ∈ R.

Monotone maps satisfying the intermediate value property between weak pre-
ordered sets are closed under composition as maps. The identity map on a weak
preordered set satisfies the intermediate value property. We write WPreOrdint

for the subcategory of WPreOrd, whose arrows are only arrows satisfying the
intermediate value property.

Next, we show that monotone maps satisfying the intermediate value prop-
erty correspond to dividing maps between partial semigroups.

Theorem 4. For f : (X,R) → (X ′, R′) in WPreOrd, the following statements
are equivalent.

1. f is an arrow f : (X,R) → (X ′, R′) in WPreOrdint.
2. comp(f) is an arrow comp(f) : comp(X,R) → comp(X ′, R′) in PSGdiv.

Proof. (1 ⇒ 2) Assume f : (X,R) → (X ′, R′) in WPreOrdint. Take (w′, x′),
(y′, z′) ∈ R′ and (w, z) ∈ R satisfying (w′, x′); (y′, z′) = comp(f)(w, z). Then,
x′ = y′, f(w) = w′, and f(z) = z′. By the intermediate value property of f ,
there exists x ∈ X such that f(x) = x′, (w, x) ∈ R, and (x, z) ∈ R. They sat-
isfy comp(f)(w, x) = (f(w), f(x)) = (w′, x′), comp(f)(x, z) = (f(x), f(z)) =
(x′, z′) = (y′, z′), and (w, x); (x, z) = (w, z).

(2 ⇒ 1) Assume comp(f) : comp(X,R) → comp(X ′, R′) in PSGdiv. Take
(x, y) ∈ R and z′ ∈ X ′ satisfying (f(x), z′) ∈ R′ and (z′, f(y)) ∈ R′. They
satisfy comp(f)(x, y) = (f(x), f(y)) = (f(x), z′); (z′, f(y)). Since comp(f) is
dividing, there exist (x, z), (z, y) ∈ R such that comp(f)(x, z) = (f(x), z′),
comp(f)(z, y) = (z′, f(y)), and (x, z); (z, y) = (x, y). Therefore, f(z) = z′. �	
Corollary 2. Let comp : WPreOrdint → PSGdiv be the restriction of
comp : WPreOrd → PSG. The forgetful functor forget : WPreOrdint →
WPreOrd and comp : WPreOrdint → PSGdiv is a pullback of comp :
WPreOrd → PSG and the forgetful functor forget : PSGdiv → PSG in
Cat (Fig. 1).
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Example 5. In WPreOrdint, the map plus1(n) def= n + 1 is an arrow from
(N, <N) to (N, <N), but not to (N,≤N), since 1 ≤N 1 ≤N 2 but not 0 <N 0.

For the same reason, the map comp(plus1)(m,n) = (m + 1, n + 1) is a
dividing map from (<N, ; ) to (<N, ; ), but not to (≤N, ; ).

Similarly, the map ℘(comp(plus1))(S) = {(m,n) | m <N n, (m+1, n+1) ∈
S} is a quantale homomorphism from (℘(<N),⊆,

⋃
, [[; ]]) to (℘(<N),⊆,

⋃
, [[; ]]),

but not to (℘(≤N),⊆,
⋃

, [[; ]]).

4 Preorders and Unital Partial Semigroups

In this section, we recall the definition of unital quantale. We show which weak
preorders and which partial semigroups correspond to unital quantales. We also
study the correspondence among their maps.

Definition 8 (unital quantale). A unital quantale is defined to be a tuple
(Q,≤,

∨
,�, 1) such that

1. (Q,≤,
∨

,�) is a quantale, and
2. 1 ∈ Q satisfies for each q ∈ Q, 1 � q = q = q � 1 (1 is called the unit of �).

For unital quantales (Q,≤,
∨

,�, 1), (Q′,≤′,
∨′

,�′, 1′), a unital homomorphism
from (Q,≤,

∨
,�, 1) to (Q′,≤′,

∨′
,�′, 1′) is defined to be a homomorphism from

(Q,≤,
∨

,�) to (Q′,≤′,
∨′

,�′) satisfying f(1) = 1′.

Unital homomorphisms between unital quantales are closed under composi-
tion as maps. The identity map is a unital homomorphism on a unital quantale.
We write UQt for the category whose objects are unital quantales and whose
arrows are unital homomorphisms between them.

Next, we introduce the additional structure for a partial semigroup which
corresponds to the unit of the multiplication of a quantale. We call the structure
a unital subset.

Definition 9 (unital subset). A unital subset of a partial semigroup (X, ·)
is defined to be a subset U ⊆ X such that

1. if u ∈ U and u · x is defined, then u · x = x,
2. if u ∈ U and x · u is defined, then x · u = x,
3. for any x ∈ X, there exists u ∈ U such that u · x is defined, and
4. for any x ∈ X, there exists u ∈ U such that x · u is defined.

Lemma 1 (uniqueness of unital subset). For each partial semigroup (X, ·),
if U and U ′ are unital subsets of (X, ·), then U = U ′.

Proof. Assume that (X, ·) is a partial semigroup and that U and U ′ are unital
subsets of (X, ·). Take an element u of U . Since U ′ is a unital subset of (X, ·),
there exists u′ ∈ U ′ such that u′ · u is defined and u′ · u = u. Since U is also a
unital subset of (X, ·) and u ∈ U , u′ · u is equal to u′ ∈ U ′. Therefore, U ⊆ U ′.
The converse is proven, similarly. �	
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Definition 10 (unital partial semigroup and dividing map). A unital
partial semigroup is defined to be a tuple (X, ·, U) such that

1. (X, ·) is a partial semigroup, and
2. U is the unital subset of (X, ·).
For unital partial semigroups (X, ·, U), (X ′, ·′, U ′), a dividing map from (X, ·, U)
to (X ′, ·′, U ′) is defined to be an arrow f : (X, ·) → (X ′, ·′) ∈ PSGdiv such that
for any x ∈ X, it satisfies x ∈ U if and only if f(x) ∈ U ′.

Note that a unital partial semigroup is not equal to a partial monoid, which
is a base structure of an effect algebra [9], since the unital subset of a unital
partial semigroup is not always singleton.

Dividing maps between unital partial semigroups are closed under composi-
tion as maps. The identity map is dividing on a unital partial semigroup. We
write UPSGdiv whose objects are unital partial semigroups and whose arrows
are dividing maps between them.

Example 6. The set of all arrows of a small category forms the unital partial
semigroup whose partial binary operator is the composition of arrows and whose
unital subset is the set of identities. On the other hand, a unital partial semigroup
is not always regarded as the set of arrows. For example, ({0, 1}, ·, {1}) is a unital
partial semigroup, when 0 · 1 = 1 · 0 = 0, 1 · 1 = 1 and 0 · 0 is undefined. To
regard {1} as the set of all identities, however, the category can have only one
object, and then 0 · 0 must be defined. Therefore, a unital partial semigroup is
not equal to a poloid [10]. If x · y and y · z are defined in a poloid, then (x · y) · z
must be defined. In this unital partial semigroup ({0, 1}, ·, {1}), however, 0 · 1
and 1 · 0 are defined, but (0 · 1) · 0 is undefined.

Next, we show that a unital partial semigroup corresponds to a unital quan-
tale.

Theorem 5. For a partial semigroup (X, ·) and U ⊆ X, the following state-
ments are equivalent.

1. (X, ·, U) is a unital partial semigroup.
2. (℘(X),⊆,

⋃
, [[·]], U) is a unital quantale.

Proof. (1 ⇒ 2) Assume that (X, ·, U) is a unital partial semigroup. Take S ⊆ X.
The condition 1 of Definition 9 implies U [[·]] S ⊆ S, the condition 2 implies
S [[·]] U ⊆ S, the conditions 1,3 imply S ⊆ U [[·]] S, and the conditions 2,4 imply
S ⊆ S [[·]] U . Therefore, U is the unit of [[·]].

(2 ⇒ 1) Assume that (℘(X),⊆,
⋃

, [[·]], U) is a unital quantale. If u ∈ U and
u ·x is defined, then u ·x = x, since U [[·]]{x} ⊆ {x}. If u ∈ U and x ·u is defined,
then x · u = x, since {x} [[·]] U ⊆ {x}. For any x ∈ X, there exists u ∈ U such
that u · x is defined, since {x} ⊆ U [[·]] {x}. For any x ∈ X, there exists u ∈ U
such that x ·u is defined, since {x} ⊆ {x} [[·]]U . Therefore, U is the unital subset
of (X, ·). �	
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Next, we show that a dividing map between unital partial semigroups corre-
sponds to a unital homomorphism between unital quantales.

Theorem 6. For unital partial semigroups (X, ·, U), (X ′, ·′, U ′) and f : (X, ·) →
(X ′, ·′) in PSGdiv, the following statements are equivalent.

1. f is an arrow f : (X, ·, U) → (X ′, ·′, U ′) in UPSGdiv.
2. ℘(f) is an arrow ℘(f) : (℘(X ′),⊆,

⋃
, [[·′]], U ′) → (℘(X),⊆,

⋃
, [[·]], U) in UQt.

Proof. The condition x ∈ U ⇔ f(x) ∈ U ′ is equivalent to ℘(f)(U ′) = U . �	
Corollary 3. Let ℘ : UPSGdiv → UQtop be the extension of ℘ : PSGdiv →
Qtop by ℘(X, ·, U) = (℘(X),⊆,

⋃
, [[·]], U). ℘ : UPSGdiv → UQtop and the for-

getful functor forget : UPSGdiv → PSGdiv is a pullback of ℘ : PSGdiv →
Qtop and the forgetful functor forget : UQtop → Qtop in Cat (Fig. 1).

Next, we show that a preordered set which corresponds to a unital partial
semigroup. A preordered set is defined to be a tuple (X,≤) of a set X and a
preorder ≤ on X, that is to say, ≤ is reflexive and transitive. We write x ≤ y for
(x, y) ∈≤.

Theorem 7. A weak preordered set (X,R) is a preordered set, if and only if
�X

def= {(x, x) | x ∈ X} is the unital subset of comp(X,R) def= (R, ; ).

Proof. (=⇒) Assume that (X,≤) is a preordered set. Since ≤ is reflexive, the
set �X = {(x, x) | x ∈ X} is a subset of ≤. If (x, x) ∈ �X and (x, x); (y, z)
is defined, then x = y and (x, x); (y, z) = (y, z). For any x ≤ y, (x, x); (x, y) is
defined and (x, x) ∈ �X . The remaining condition is proven similarly.

(⇐=) Take x ∈ X. There is y ∈ X such that (x, y) ∈ R or (y, x) ∈ R. When
(x, y) ∈ R, there is (u, u′) ∈ �X such that (u, u′); (x, y) is defined and equal
to (x, y). Then, u = x = u′. When (y, x) ∈ R, there is (u, u′) ∈ �X such that
(y, x); (u, u′) is defined and equal to (y, x). Then, u = x = u′. In both cases,
(x, x) is equal to (u, u′) ∈ �X ⊆ R. Therefore, R is reflexive. �	

Next, we introduce the condition for maps between preordered sets corre-
sponds to dividing maps between unital partial semigroups. The condition is
monotone, satisfying the intermediate value property, and Id-reflecting.

Definition 11 (Id-reflecting map between preordered sets). For pre-
ordered sets (X,≤), (X ′,≤′), an Id-reflecting map from (X,≤) to (X ′,≤′) is
defined to be a monotone map f : X → X ′ such that if x ≤ y and f(x) = f(y),
then x = y.

Id-reflecting maps satisfying the intermediate value property between pre-
ordered sets are closed under composition as maps. The identity map on a pre-
ordered set is an Id-reflecting map satisfying the intermediate value property.
Therefore, we write PreOrdint,idref for the category whose objects are pre-
ordered sets and whose arrows are Id-reflecting maps satisfying the intermediate
value property between them.

Next, we show that Id-reflecting maps satisfying the intermediate value prop-
erty correspond to dividing maps between unital partial semigroups.
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Theorem 8. For (X,≤), (X ′,≤′) in PreOrdint,idref , f : (X,≤) → (X ′,≤′) in
WPreOrdint, the following statements are equivalent.

1. f is an arrow f : (X,≤) → (X ′,≤′) in PreOrdint,idref .
2. comp(f) is an arrow comp(f) : (≤, ; ,�X) → (≤′, ; ,�X′) in UPSGdiv.

Proof. (1 ⇒ 2) Assume that f is Id-reflecting and x ≤ y. If (x, y) ∈ �X , then
x = y and comp(f)(x, y) = (f(x), f(y)) = (f(x), f(x)) ∈ �X′ . Conversely,
if comp(f)(x, y) = (f(x), f(y)) ∈ �X′ , then x = y and (x, y) ∈ �X , since
f(x) = f(y) and f is Id-reflecting. Therefore, we have (x, y) ∈ �X if and only if
comp(f)(x, y) ∈ �X′ .

(2 ⇒ 1) Assume that f satisfies (x, y) ∈ �X ⇔ comp(f)(x, y) ∈ �X′ for
any x ≤ y. Take x ≤ y such that f(x) = f(y). They satisfy comp(f)(x, y) =
(f(x), f(y)) = (f(x), f(x)) ∈ �X′ . Since f is a dividing maps between unital
partial semigroups, x, y satisfy (x, y) ∈ �X and x = y. Therefore, f is Id-
reflecting. �	
Corollary 4. Let comp : PreOrdint,idref → UPSGdiv be the extension of
comp : WPreOrdint → PSGdiv by comp(X,≤) = (≤, ; ,�X). The forgetful
functor forget : PreOrdint,idref → WPreOrdint and comp : PreOrdint,idref

→ UPSGdiv is a pullback of comp : WPreOrdint → PSGdiv and the forgetful
functor forget : UPSGdiv → PSGdiv in Cat (Fig. 1).

Example 7. (N, <N) is an object of WPreOrdint, but not of PreOrdint,idref ,
since <N is not reflexive. For the same reason, comp(N, <N) = (<N, ; ) has no
unital subset.

The map plus1(n) def= n + 1 is Id-reflecting on (N,≤N) in PreOrdint,idref ,
since m ≤ n and m + 1 = n + 1 imply m = n. For the same reason, the
map comp(plus1)(m,n) = (m + 1, n + 1) is a dividing map on (≤N, ; ,�N) in
UPSGdiv.

On the other hand, the map zero(n) def= 0 is not Id-reflecting on (N,≤N)
in PreOrdint,idref , since 0 ≤ 1 and zero(0) = zero(1) but not 0 = 1. For
the same reason, the map comp(zero)(m,n) = (0, 0) is not a dividing map on
(≤N, ; ,�N) in UPSGdiv.

5 Partial Semigroups with Partial Subtraction and
Relational Embedding of Quantales

In this section, we define a subcategory of UPSGdiv and the corresponding sub-
category of PreOrdint,idref . Between them, we give a functor suff in the con-
verse direction of comp. Moreover, we give the natural transformation −̇ : comp
◦suff → Id which induces the relational embedding maps mentioned in Sect. 1.

Definition 12 (diagonal unital partial semigroup). A partial semigroup
(X, ·) is called diagonal, if
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1. if w · x = y · z, then there exists v such that w = y · v or y = w · v, and
2. if w · x = w · y, then x = y.

A unital partial semigroup (X, ·, U) is called diagonal, if (X, ·) is diagonal. We
write DUPSGdiv for the subcategory of UPSGdiv whose objects are only diag-
onal unital partial semigroups.

Definition 13 (interval-total preorder). A preorder ≤ on X is called
interval-total, if x ≤ y ≤ z and x ≤ y′ ≤ z imply y ≤ y′ or y′ ≤ y for each
x, y, y′, z ∈ X. A preordered set (X,≤) is called an interval-totally preordered
set, if ≤ is interval-total. We write ITPreOrdint,idref for the subcategory of
PreOrdint,idref whose objects are only interval-totally preordered sets.

Theorem 9. A preordered set (X,≤) is an interval-totally preordered set, if and
only if the unital partial semigroup comp(X,≤) = (≤, ; ,�X) is diagonal.

Proof. (=⇒)
(1) Assume that w, x, y, z ∈≤ satisfy w;x = y; z. There exists a, b, b′, c ∈ X

such that w = (a, b), x = (b, c), y = (a, b′), and z = (b′, c), that is to say,
a ≤ b ≤ c and a ≤ b′ ≤ c. Since ≤ is interval-total, b ≤ b′ or b′ ≤ b. When
b ≤ b′, v = (b, b′) ∈≤ satisfies y = (a, b′) = (a, b); (b, b′) = w; v. When b′ ≤ b,
v = (b′, b) ∈≤ satisfies w = (a, b) = (a, b′); (b′, b) = y; v.

(2) Assume that w, x, y ∈≤ satisfy w;x = w; y. There exists a, b, c ∈ X such
that w = (a, b), x = (b, c), and y = (b, c). Therefore, x = y.

(⇐=) Assume that (≤, ; ,�X) is diagonal. Assume that x, y, y′, z ∈ X sat-
isfy x ≤ y ≤ z and x ≤ y′ ≤ z. Then, we have that (x, y); (y, z) = (x, z) =
(x, y′); (y′, z). Since (≤, ; ,�X) is diagonal, there exists v ≤ w such that (x, y′)
; (v, w) = (x, y) or (x, y); (v, w) = (x, y′). If (x, y′); (v, w) = (x, y), then y′ =
v ≤ w = y. On the other hand, if (x, y); (v, w) = (x, y′), then y = v ≤ w = y′.
Therefore, ≤ is interval-total. �	
Corollary 5. Let comp : ITPreOrdint,idref → DUPSGdiv be the restriction
of comp : PreOrdint,idref → UPSGdiv.
The forgetful functor forget : ITPreOrdint,idref → PreOrdint,idref and
comp : ITPreOrdint,idref → DUPSGdiv is a pullback of comp :
PreOrdint,idref → UPSGdiv and the forgetful functor forget : DUPSGdiv →
UPSGdiv in Cat (Fig. 1).

Next, we give a functor suff in the converse direction of comp.

Theorem 10. The following data form a functor suff from DUPSGdiv to
ITPreOrdint,idref .

– For an object (X, ·, U), suff(X, ·, U) def= (X,≤·)
where x ≤· y

def⇐⇒ ∃z ∈ X.x · z = y.
– For an arrow f : (X, ·, U) → (X ′, ·′, U ′), suff(f) : (X,≤·) → (X ′,≤·′) is f .
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Proof. (object part) Assume that (X, ·, U) is a diagonal unital partial semigroup.
Since (X, ·, U) is a unital partial semigroup, ≤· is transitive and reflexive. If
x ≤· y ≤· z and x ≤· y′ ≤· z, then there exist v, w such that y · v = z = y′ · w.
Since (X, ·, U) is diagonal, there exists u such that y = y′ · u or y′ = y · u, that
is to say, y′ ≤· y or y ≤· y′. Therefore, ≤· is interval-total.

(arrow part) Take f : (X, ·, U) → (X ′, ·′, U ′) in DUPSGdiv. f is monotone
as f : (X,≤·) → (X ′,≤·′), since x · z = y implies f(y) = f(x · z) = f(x) ·′ f(z).

We show that suff(f) = f is Id-reflecting. Assume that x ≤· y and f(x) =
f(y). There exist z ∈ X such that x · z = y. Therefore, f(x) = f(y) = f(x · z) =
f(x) ·′ f(z). Since (X ′, ·′, U ′) is a unital partial semigroup, there exists u′ ∈ U ′

such that f(x) ·′ u′ = f(x) = f(x) ·′ f(z). Since (X ′, ·′, U ′) is diagonal, u′, f(z)
satisfy u′ = f(z). Since f is a dividing map between unital partial semigroups,
f(z) = u′ ∈ U ′ implies z ∈ U and x = x · z = y. Therefore, f is Id-reflecting.

We show that f satisfies the intermediate value property. Assume that x ≤· y,
f(x) ≤·′ z′, and z′ ≤·′ f(y). There exist u ∈ X, v′, w′ ∈ X ′ such that x · u = y,
f(x) ·′ v′ = z′, and z′ ·′ w′ = f(y). Since f is dividing, there exist w, z ∈ X such
that f(w) = w′, f(z) = z′, and z · w = y. Therefore, z ≤· y. Since f is dividing
and f(z) = z′ = f(x) ·′ v′, there exist v, t ∈ X such that f(t) = f(x), f(v) = v′,
and z = t·v. Since (X, ·, U) is diagonal and x·u = y = z ·w = (t·v)·w = t·(v ·w),
x, t satisfy x ≤· t or t ≤· x. Since f is Id-reflecting and f(t) = f(x), x satisfies
t = x and z = t · v = x · v, that is to say, x ≤· z. Therefore, f satisfies the
intermediate value property.

suff(f) preserves composition and identities. �	
We call the following operation −̇ the partial subtraction on a diagonal unital

partial semigroup.

Theorem 11. The following data form a natural transformation −̇ : comp ◦
suff → Id : DUPSGdiv → DUPSGdiv.

– For an object (X, ·, U), its component −̇ : (≤·, ; ,�X) → (X, ·, U) sends y ≤· x

to x−̇y
def= z such that y · z = x.

Proof. (well-definedness) For y ≤· x, there exists z ∈ X such that y · z = x.
Since (X, ·, U) is diagonal, if y · z = y · z′ then z = z′.

(homomorphism of PSG) Assume that (z, y); (x,w) is defined, z ≤· y, and
x ≤· w. Then, z ≤· y = x and w is representable as w = x · (w−̇x) = (z · (x−̇z)) ·
(w−̇x). Therefore, (x−̇z) · (w−̇x) and z · ((x−̇z) · (w−̇x)) are also defined and
z · ((x−̇z) · (w−̇x)) = (z · (x−̇z)) · (w−̇x) = w. Therefore, (x−̇z) · (w−̇x) = w−̇z.

(dividing) Assume that x ≤· w and w−̇x = z · y. Then, x · (w−̇x) is defined
and equal to w. Therefore, x · (z · y), x · z, and (x · z) · y are also defined. Since
(x · z) · y = x · (z · y) = x · (w−̇x) = w, they satisfy x · z ≤· w and w−̇(x · z) = y.
Since x · z is defined, obviously x ≤· x · z and (x · z)−̇x = z. (x, x · z); (x · z, w)
is defined and equal to (x,w).

(unital) For y ≤· x, we show (y, x) ∈ �X ⇐⇒ x−̇y ∈ U . Assume (y, x) ∈
�X . Then, x = y. There exists u ∈ U satisfying x · u = x. Since (X, ·, U) is
diagonal and x ·(x−̇x) = x = x ·u, they satisfy x−̇y = x−̇x = u ∈ U . Conversely,
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assume x−̇y ∈ U . y · (x−̇y) is defined and equal to x. By the definition of unital
subset, y · (x−̇y) = y. Therefore, x = y · (x−̇y) = y and (x, y) ∈ �X .

(naturality) Assume f is an arrow f : (X, ·, U) → (X ′, ·′, U ′) in DUPSGdiv.
For y ≤· x, f(y) · (f(x)−̇f(y)) = f(x) = f(y · (x−̇y)) = f(y) · f(x−̇y). Since
(X, ·, U) is diagonal, we have f(x−̇y) = f(x)−̇f(y). �	
Example 8. (N,+, 0) is a diagonal unital partial semigroup. Then, the interval-
totally preordered set suff(N,+, 0) is equal to (N,≤N), since x ≤N y ⇔ ∃z ∈
N.x+z = y. Therefore, comp(suff(N,+, 0)) = (≤N, ; ) is also a diagonal unital
partial semigroup. The partial subtraction −̇ : (≤N, ; ) → (N,+, 0) sends x ≤N y
to y − x.

Definition 14 (diagonal powerset quantale). A diagonal powerset quantale
is a unital quantale (Q,≤,

∨
,�, 1) such that

1. (Q,≤,
∨

) = (℘(X),⊆,
⋃

) for some set X,
2. for any x, y ∈ X, {x} � {y} is singleton or empty,
3. if {w} � {x} = {y} � {z} �= ∅, then there exists v such that {w} = {y} � {v}

or {y} = {w} � {v}, and
4. if {w} � {x} = {w} � {y} �= ∅, then x = y.

We define the subcategory DPQt of UQt, whose object is a diagonal powerset
quantale.

Theorem 12. For a unital partial semigroup (X, ·, U), the following statements
are equivalent.

1. (X, ·, U) is diagonal.
2. ℘(X, ·, U) = (℘(X),⊆,

⋃
, [[·]], U) is a diagonal powerset quantale.

Proof. Let (X, ·, U) be a diagonal unital partial semigroup. For any x, y ∈ X,
{x} [[·]] {y} is {x · y} if x · y is defined and the emptyset otherwise.

For any w, x, y, z ∈ X satisfying {w} [[·]] {x} = {y} [[·]] {z} �= ∅, w · x and y · z
are defined and equivalent. Since (X, ·, U) is a diagonal unital partial semigroup,
there exists v such that w = y · v or y = w · v. Therefore, v satisfies {w} =
{y} [[·]] {v} or {y} = {w} [[·]] {v}.

For any w, x, y ∈ X satisfying {w} [[·]] {x} = {w} [[·]] {y} �= ∅, w · x and w · y
are defined and equivalent. Since (X, ·, U) is a diagonal unital partial semigroup,
x = y. �	
Corollary 6. Let ℘ : DUPSGdiv → DPQtop be the restriction of
℘ : UPSGdiv → UQtop.

The forgetful functor forget : DUPSGdiv → UPSGdiv and ℘ :
DUPSGdiv → DPQtop is a pullback of ℘ : UPSGdiv → UQtop and the for-
getful functor forget : DPQtop → UQtop in Cat (Fig. 1).

Theorem 13. For any diagonal powerset quantale (Q,≤,
∨

,�, 1), there exists a
diagonal unital partial semigroup (X, ·, U) satisfying ℘(X, ·, U) = (Q,≤,

∨
,�, 1).
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Proof. Let (Q,≤,
∨

,�, 1) be a diagonal powerset quantale. There exists a set
X satisfying (Q,≤,

∨
) = (℘(X),⊆,

⋃
). Let x · y be the element of {x} � {y} if

{x}�{y} is singleton and undefined otherwise. Assume that x·y and (x·y)·z are
defined. There exist u, v ∈ X satisfying {x} � {y} = {u} and {u} � {z} = {v}.
Since {x} � ({y} � {z}) = ({x} � {y}) � {z} = {u} � {z} = {v} �= ∅, the
distributivity of � implies {y}�{z} �= ∅. Therefore, y ·z and x ·(y ·z) are defined.
For any S1, S2 ⊆ X, the distributivity of � also implies S1 �S2 =

⋃{{x}�{y} |
x ∈ S1, y ∈ S2} = {x · y | x ∈ S1, y ∈ S2 is defined} = S1 [[·]] S2. Therefore, (X, ·)
is the partial semigroup satisfying ℘(X, ·) = (℘(X),⊆,

⋃
,�). By Theorem 5,

(X, ·, 1) is the unital partial semigroup satisfying ℘(X, ·, 1) = (Q,≤,
∨

,�, 1). By
Theorem 12, (X, ·, 1) is diagonal, since (℘(X),⊆,

⋃
, [[·]], 1) is a diagonal powerset

quantale. �	
Theorem 14. For any diagonal powerset quantale (Q,≤,

∨
,�, 1), there exist a

diagonal unital partial semigroup (X, ·, U) and an injective arrow from (Q,≤,∨
,�, 1) to the relational quantale (℘(≤·),⊆,

⋃
, [[; ]],�X) in DPQt.

Proof. By Theorem 11 and Corollary 6, there is a natural transformation ℘(−̇) :
℘ ◦ comp ◦ suff → ℘ : DUPSGop

div → DPQt. By Theorem 13, for any object
(Q,≤,

∨
,�, 1) ∈ DPQt, there exists an object (X, ·, U) ∈ DUPSGdiv satis-

fying ℘(X, ·, U) = (Q,≤,
∨

,�, 1). Therefore, the component ℘(−̇)(X,·,U) is an
arrow from (Q,≤,

∨
,�, 1) to ℘(comp(suff(X, ·, U))) in DPQt. By the defi-

nitions of ℘, comp, and suff , the powerset quantale (Q,≤,
∨

,�, 1) is equal
to (℘(X),⊆,

⋃
, [[·]], U) and ℘(comp(suff(X, ·, U))) is the relational quantale

(℘(≤·),⊆,
⋃

, [[; ]],�X). The component ℘(−̇)(X,·,U) is the map from ℘(X) to
℘(≤·) such that ℘(−̇)(X,·,U)(S) = {(x, y) | y ∈ {x} � S}. Each subset S ⊆ X is
represented as follows.

S = 1 � S = (
⋃{{x} | x ∈ 1}) � S =

⋃{{x} � S | x ∈ 1}
= {y | ∃x ∈ 1, y ∈ {x} � S}} = {y | ∃x ∈ 1, (x, y) ∈ ℘(−̇)(X,·,U)(S)}}

℘(−̇)(X,·,U) is injective, since ℘(−̇)(X,·,U)(S) ⊆ ℘(−̇)(X,·,U)(S′) implies
S ⊆ S′. �	
Example 9. For a set X, (℘(X),⊆,

⋃
,∩,X) is a diagonal powerset quantale.

Example 10. For a group (G, ·, 1, −1), (℘(G),⊆,
⋃

, [[·]], {1}) is a diagonal power-
set quantale.

Example 11. For a set A, we write A∗ for the set of all finite sequences on
A. (℘(A∗),⊆,

⋃
, [[·]], {ε}) is a diagonal powerset quantale, where ε is the empty

sequence. (℘(N),⊆,
⋃

, [[+]], {0}) is a special case.

Example 12. For a set A, (℘(A×A),⊆,
⋃

, ; ,�A) is a diagonal powerset quantale,
where R;Q def= {(a, b) | ∃c ∈ A, (a, c) ∈ R, (c, b) ∈ Q} and �A

def= {(a, a) | a ∈
A}.
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6 Conclusion

This paper has introduced the notions of weak preorder, partial semigroup, lax
homomorphism between quantales. And, we have shown three correspondences
by proving the six pullbacks in Fig. 1.

1. The correspondence among a monotone map satisfying the intermediate value
property between weak preordered sets, a dividing map between partial semi-
groups, and a homomorphism between quantales

2. The correspondence among a preordered set, a unital partial semigroup, and
a unital quantales (including the correspondence among maps for them)

3. The correspondence among an interval-totally preordered set, a diagonal uni-
tal partial semigroup, and a diagonal powerset quantale (including the corre-
spondence among maps for them)

We also have shown that each diagonal powerset quantale has the relational
embedding which is the image of partial subtraction −̇ by the functor ℘. It is
a future work to generalize our result for any (possibly not diagonal) powerset
quantale and to extend it to a Stone duality [11].

Acknowledgements. The authors thank Izumi Takeuti, Takeshi Tsukada, Soichiro
Fujii, Mitsuhiko Fujio, and Hiroyuki Miyoshi for valuable discussion about partial semi-
groups.
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Abstract. Structures involving a lattice and join-endomorphisms on it are ubiq-
uitous in computer science. We study the cardinality of the set E(L) of all join-
endomorphisms of a given finite lattice L. In particular, we show that when
L is Mn, the discrete order of n elements extended with top and bottom,
|E(L)| = n!Ln(−1) + (n + 1)2 where Ln(x) is the Laguerre polynomial of
degree n. We also study the following problem: Given a lattice L of size n
and a set S ⊆ E(L) of size m, find the greatest lower bound

�
E(L)S. The

join-endomorphism
�

E(L)S has meaningful interpretations in epistemic logic,
distributed systems, and Aumann structures. We show that this problem can be
solved with worst-case time complexity in O(n+m log n) for powerset lattices,
O(mn2) for lattices of sets, and O(mn+n3) for arbitrary lattices. The complex-
ity is expressed in terms of the basic binary lattice operations performed by the
algorithm.

Keywords: Join-endomorphisms · Lattice cardinality · Lattice algorithms

1 Introduction

There is a long established tradition of using lattices to model structural entities in
many fields of mathematics and computer science. For example, lattices are used in
concurrency theory to represent the hierarchical organization of the information result-
ing from agent’s interactions [12].Mathematical morphology (MM), a well-established
theory for the analysis and processing of geometrical structures, is founded upon lattice
theory [2,14]. Lattices are also used as algebraic structures for modal and epistemic
logics as well as Aumann structures (e.g., modal algebras and constraint systems [7]).

In all these and many other applications, lattice join-endomorphisms appear as fun-
damental. A join-endomorphism is a function from a lattice to itself that preserves finite
joins. In MM, join-endomorphisms correspond to one of its fundamental operations;
dilations. In modal algebra, they correspond via duality to the box modal operator. In
epistemic settings, they represent belief or knowledge of agents. In fact, our own inter-
est in lattice theory derives from using join-endomorphisms to model the perception
that agents may have of a statement in a lattice of partial information [7].
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For finite lattices, devising suitable algorithms to compute lattice maps with some
given properties would thus be of great utility. We are interested in constructing algo-
rithms for computing lattice morphisms. This requires, first, a careful study of the space
of such maps to have a clear idea of how particular lattice structures impact on the
size of the space. We are, moreover, particularly interested in computing the maximum
join-endomorphism below a given collection of join-morphisms. This turns out to be
important, among others, in spatial computation (and in epistemic logic) to model the
distributed information (resp. distributed knowledge) available to a set of agents as con-
forming a group [8]. It could also be regarded as the maximum perception consistent
with (or derivable from) a collection of perceptions of a group of agents.

Problem. Consider the set E(L) of all join-endomorphisms of a finite lattice L. The
set E(L) can be made into a lattice by ordering join-endomorphisms point-wise wrt the
order of L. We investigate the following maximization problem: Given a lattice L of
size n and a set S ⊆ E(L) of size m, find in E(L) the greatest lower bound of S, i.e.,
�

E(L)S. Simply taking σ : L → L with σ(e) def=
�

L
{f(e) | f ∈ S} does not solve the

problem as σ may not be a join-endomorphism. Furthermore, since E(L) can be seen as
the search space, we also consider the problem of determining its cardinality. Our main
results are the following.

This Paper. We present characterizations of the exact cardinality of E(L) for some
fundamental lattices. Our contribution is to establish the cardinality of E(L) for the
stereotypical non-distributive lattice L = Mn. We show that |E(Mn)| equals rn0 +
. . . + rnn + rn+1

1 = n!Ln(−1) + (n + 1)2 where rmk is the number of ways to place
k non-attacking rooks on an m × m board and Ln(x) is the Laguerre polynomial of
degree n. We also present cardinality results for powerset and linear lattices that are
part of the lattice theory folklore: The number of join-endomorphisms is nlog2 n for
powerset lattices of size n and

(
2n
n

)
for linear lattices of size n + 1. Furthermore, we

provide algorithms that, given a lattice L of size n and a set S ⊆ E(L) of size m,
compute

�
E(L)S. Our contribution is to show that

�
E(L)S can be computed with worst-

case time complexity in O(n + mlog n) for powerset lattices, O(mn2) for lattices of
sets, and O(nm + n3) for arbitrary lattices.

Due to space restrictions we only include the main proofs. The missing proofs can
be found in the technical report of this paper [13].

2 Background: Join-Endomorphisms and Their Space

We presuppose basic knowledge of order theory [3] and use the following notions. Let
(L,�) be a partially ordered set (poset), and let S ⊆ L. We use

⊔
L

S to denote the least
upper bound (or supremum or join) of S in L, if it exists. Dually,

�
L

S is the greatest
lower bound (glb) (infimum or meet) of S in L, if it exists. We shall often omit the index
L from

⊔
L
and

�
L
when no confusion arises. As usual, if S = {c, d}, c � d and c � d

represent
⊔

S and
�

S, respectively. If L has a greatest element (top) �, and a least
element (bottom) ⊥, we have

⊔ ∅ = ⊥ and
� ∅ = �. The poset L is distributive iff for

every a, b, c ∈ L, a � (b � c) = (a � b) � (a � c).
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The poset L is a lattice iff each finite nonempty subset of L has a supremum and
infimum in L, and it is a complete lattice iff each subset of L has a supremum and
infimum in L. A self-map on L is a function f : L → L. A self-map f is monotonic if
a � b implies f(a) � f(b). We say that f preserves the join of S ⊆ L iff f(

⊔
S) =⊔{f(c) | c ∈ S}. We shall use the following posets and notation. Given n, we use n

to denote the poset {1, . . . , n} with the linear order x � y iff x ≤ y. The poset n̄ is
the set {1, . . . , n} with the discrete order x � y iff x = y. Given a poset L, we use L⊥
for the poset that results from adding a bottom element to L. The poset L� is similarly
defined. The lattice 2n is the n-fold Cartesian product of 2 ordered coordinate-wise.
We defineMn as the lattice (n̄⊥)�. A lattice of sets is a set of sets ordered by inclusion
and closed under finite unions and intersections. A powerset lattice is a lattice of sets
that includes all the subsets of its top element.

We shall investigate the set of all join-endomorphisms of a given lattice ordered
point-wise. Notice that every finite lattice is a complete lattice.

Definition 1 (Join-endomorphisms and their space). Let L be a complete lattice. We
say that a self-map is a (lattice) join-endomorphism iff it preserves the join of every
finite subset of L. Define E(L) as the set of all join-endomorphisms of L. Furthermore,
given f, g ∈ E(L), define f �E g iff f(a) � g(a) for every a ∈ L.

The following are immediate consequences of the above definition.

Proposition 1. Let L be a complete lattice. f ∈ E(L) iff f(⊥) = ⊥ and f(a � b) =
f(a) � f(b) for all a, b ∈ L. If f is a join-endomorphism of L then f is monotonic.

Given a set S ⊆ E(L), where L is a finite lattice, we are interested in finding the
greatest join-endomorphism in E(L) below the elements of S, i.e.,

�
E(L)S. Since every

finite lattice is also a complete lattice, the existence of
�

E(L)S is guaranteed by the
following proposition.

Proposition 2 ([6]). If (L,�) is a complete lattice, (E(L),�E) is a complete lattice.

In the following sections we study the cardinality of E(L) for some fundamental
lattices and provide efficient algorithms to compute

�
E(L)S.

3 The Size of the Function Space

The main result of this section is Theorem 1. It states the size of E(Mn). Propositions 3
and 4 state, respectively, the size of E(L) for the cases when L is a powerset lattice and
when L is a total order. These propositions follow from simple observations and they
are part of the lattice theory folklore [1,10,16]. We include our original proofs of these
propositions in the technical report of this paper [13].
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3.1 Distributive Lattices

We begin with lattices isomorphic to 2n. They include finite boolean algebras and pow-
erset lattices [3]. The size of these lattices are easy to infer from the observation that the
join-preserving functions on them are determined by their action on the lattices’ atoms.

Proposition 3. Suppose that m ≥ 0. Let L be any lattice isomorphic to the product
lattice 2m. Then |E(L)| = nlog2 n where n = 2m is the size of L.

Thus powerset lattices and boolean algebras have a super-polynomial, sub-exponen-
tial number of join-endomorphisms. Nevertheless, linear order lattices allow for an
exponential number of join-endomorphisms given by the central binomial coefficient.
The following proposition is also easy to prove from the observation that the join-
endomorphisms over a linear order are also monotonic functions. In fact, this result
appears in [1] and it is well-known among the RAMICS community [10,16].

Proposition 4. Suppose that n ≥ 0. Let L be any lattice isomorphic to the linear order
lattice n⊥. Then |E(L)| = (

2n
n

)
.

It is easy to prove that 4n

2
√
n

≤ (
2n
n

) ≤ 4n for n ≥ 1. Together with Proposition 4,
this gives us explicit exponential lower and upper bounds for |E(L)| when L is a linear
lattice.

3.2 Non-distributive Case

The number of join-endomorphisms for some non-distributive lattices of a given size
can be much bigger than that for those distributive lattices of the same size in the previ-
ous section. We will characterize this number for an archetypal non-distributive lattice
in terms of Laguerre (and rook) polynomials.

Laguerre polynomials are solutions to Laguerre’s second-order linear differential
equation xy′′+(1−x)y′+ny = 0where y′ and y′′ are the first and second derivatives of
an unknown function y of the variable x, and n is a non-negative integer. The Laguerre

polynomial of degree n in x, Ln(x) is given by the summation
∑n

k=0

(
n
k

) (−1)k

k! xk.
The lattice Mn is non-distributive for any n ≥ 3. The size of E(Mn) can be suc-

cinctly expressed as follows.

Theorem 1. |E(Mn)| = (n + 1)2 + n!Ln(−1).

In combinatorics rook polynomials are generating functions of the number of ways
to place non-attacking rooks on a board. A rook polynomial (for square boards) Rn(x)
has the form

∑n
k=0 xkr(k, n) where the (rook) coefficient r(k, n) represents the num-

ber of ways to place k non-attacking rooks on an n × n chessboard. For instance,
r(0, n) = 1, r(1, n) = n2 and r(n, n) = n!. In general r(k, n) =

(
n
k

)2
k!.

Rook polynomials are related to Laguerre polynomials by the equation Rn(x) =
n!xnLn(−x−1). Therefore, as a direct consequence of the above theorem, we can also
characterize |E(Mn)| in combinatorial terms as the following sum of rook coefficients.
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Corollary 1. Let r′(n + 1, n) = r(1, n + 1) and r′(k, n) = r(k, n) if k ≤ n. Then
|E(Mn)| =

∑n+1
k=0 r′(k, n).

We conclude this section with another pleasant correspondence between the endo-
morphisms in E(Mn) and Rn(x). Let f : L → L be a function over a lattice (L,�).
We say that f is non-reducing in L iff it does not map any value to a smaller one; i.e.,
there is no e ∈ L such that f(e) � e. The number of join-endomorphisms that are
non-reducing inMn is exactly the value of the rook polynomial Rn(x) for x = 1.

Corollary 2. Rn(1) = |{ f ∈ E(Mn) | f is non-reducing inMn }|.

Table 1 illustrates the join-endomorphisms over the latticeMn as a union
⋃4

i=1 Fi.
Corollary 2 follows from the observation that the set of non-reducing functions in Mn

is equal to F4 whose size is Rn(1) as shown in the following proof of Theorem 1.

Proof of Theorem 1. We show that |E(Mn)| can be expressed in terms of Laguerre
polynomials: |E(Mn)| = (n + 1)2 + n!Ln(−1).

Let F =
⋃4

i=1 Fi where the mutually exclusive Fi’s are defined in Table 1, and
I = {1, . . . , n}. The proof is divided in two parts: (I) F = E(Mn) and (II) |F| =
(n + 1)2 + n!Ln(−1).

Part (I). For F ⊆ E(Mn), it is easy to verify that each f ∈ F is a join-endomorphism.
For E(Mn) ⊆ F we show that for any function f from Mn to Mn if f 
∈ F , then

f 
∈ E(Mn). Immediately, if f(⊥) 
= ⊥ then f 
∈ E(Mn).
Suppose f(⊥) = ⊥. Let J,K,H be disjoint possibly empty sets such that I =

J ∪ K ∪ H and let j = |J |, k = |K| and h = |H|. The sets J,K,H represent
the elements of I mapped by f to �, to elements of I , and to ⊥, respectively. More
precisely, Img(f�J) = {�}, Img(f�K) ⊆ I and Img(f�H) = {⊥}. Furthermore, for
every f either (1) f(�) = ⊥, (2) f(�) ∈ I or (3) f(�) = �. We show that f 
∈ E(Mn)
for case (3), proofs of cases (1) and (2) are included in [13].

Suppose k = 0. Notice that f 
∈ F3 and f 
∈ F4 hence h 
= 1 and h 
= 0. Thus
h > 1 implies that there are at least two e1, e2 ∈ H such that f(e1) = f(e2) = ⊥. But
then f(e1 � e2) = f(�) = � 
= ⊥ = f(e1) � f(e2), hence f 
∈ E(Mn).

Suppose k > 0. Assume h = 0. Notice that K = I \J and Img(f�K) ⊆ I . Since f
is a ⊥ and � preserving function and it satisfies conditions (a) and (c) ofF4 but f 
∈ F4,
then f must violate condition (b). Thus f�K is not injective. Then there are a, b ∈ K
such that a 
= b but f(a) = f(b). Then f(a) � f(b) 
= � = f(a � b). Consequently,
f 
∈ E(Mn).

Assume h > 0. There must be e1, e2, e3 ∈ I such that f(e1) = ⊥ and f(e2) = e3.
Notice that f(e1) � f(e2) = e3 
= � = f(�) = f(e1 � e2). Therefore, f 
∈ E(Mn).

Part (II). We prove that |F| = ∑4
i=1 |Fi| = (n+1)2+n!Ln(−1). Recall that n = |I|.

It is easy to prove that |F1| = 1, |F2| = n2 + n and |F3| = n. The reader is referred to
[13] for details. Here we prove that |F4| = n!Ln(−1).

Let f ∈ F4 and let J ⊆ I be a possibly empty set such that Img(f�J) = {�} and
Img(f�I\J) ⊆ I , where f�I\J is an injective function. We shall call j = |J |.
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Table 1. FamiliesF1, . . . , F4 of join-endomorphisms ofMn. I = {1, . . . , n}. f�A is the restric-
tion of f to a subset A of its domain. Img(f) is the image of f . A function from each Fi forM5

is depicted with blue arrows.

For each of the
(
n
j

)
possibilities for J , the elements of I \ J are to be mapped

to I by the injective function f�I\J . The number of functions f�I\J is n!
j! . Therefore,

|F4| =
∑n

j=0

(
n
j

)
n!
j! . This sum equals n!Ln(−1) which in turn is equal to Rn(1). It

follows that |F| = ∑4
i=1 |Fi| = (n + 1)2 + n!Ln(−1) as wanted. ��

4 Algorithms

We shall provide efficient algorithms for the maximization problem mentioned in the
introduction: Given a finite lattice L and S ⊆ E(L) find �

E(L)S, i.e., the greatest join-
endomorphism in the lattice E(L) below all the elements of S.

Finding
�

E(L)S may not be immediate. E.g., see
�

E(L)S in Fig. 1a for a small lattice
of four elements and two join-endomorphisms. As already mentioned, a naive approach
is to compute

�
E(L)S by taking σS(c)

def=
�

L
{f(c) | f ∈ S} for each c ∈ L. This does

not work since σS is not necessarily a join-endomorphism as shown in Fig. 1b.
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A brute force solution to compute
�

E(L)S can be obtained by generating the set
S′ = {g | g ∈ E(L) and g � f for all f ∈ S} and taking its join. This approach works
since

⊔
S′ =

�
E(L)S but as shown in Sect. 3, the size of E(L) can be super-polynomial

for distributive lattices and exponential in general.

Fig. 1. S = {f1, f2} ⊆ E(L). (a) f =
�

E(L)S. (b) σS(c)
def
= f1(c) � f2(c) is not a

join-endomorphism of M2: σS(1 � 2) �= σS(1) � σS(2). (c) δS in Lemma 1 is not a join-
endomorphism of the non-distributive latticeM3: δS(1) � δS(2) = 1 �= ⊥ = δS(1 � 2).

Nevertheless, one can use lattice properties to compute
�

E(L)S efficiently. For dis-
tributive lattices, we use the inherent compositional nature of

�
E(L)S. For arbitrary

lattices, we present an algorithm that uses the function σS in the naive approach to
compute

�
E(L)S by approximating it from above.

We will give the time complexities in terms of the number of basic binary lattice
operations (i.e., meets, joins and subtractions) performed during execution.

4.1 Meet of Join-Endomorphisms in Distributive Lattices

Here we shall illustrate some pleasant compositionality properties of the infima of join-
endomorphisms that can be used for computing the join-endomorphism

�
E(L)S in a

finite distributive lattice L. In what follows we assume n = |L| and m = |S|.
We use XJ to denote the set of tuples (xj)j∈J of elements xj ∈ X for each j ∈ J .

Lemma 1. Let L be a finite distributive lattice and S = {fi}i∈I ⊆ E(L). Then
�

E(L)S = δS where δS(c)
def=

�
L
{⊔

i∈I fi(ai) | (ai)i∈I ∈ LI and
⊔

i∈I ai � c}.

The above lemma basically says that
(�

E(L)S
)
(c) is the greatest element inL below

all possible applications of the functions in S to elements whose join is greater or equal
to c. The proof that δS �E

�
E(L)S uses the fact that join-endomorphisms preserve
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joins. The proof that δS �E
�

E(L)S proceeds by showing that δS is a lower bound in
E(L) of S. Distributivity of the lattice L is crucial for this direction. In fact without it�

E(L)S = δS does not necessarily hold as shown by the following counter-example.

Example 1. Consider the non-distributive lattice M3 and S = {f1, f2} defined as in
Fig. 1c. We obtain δS(1 � 2) = δS(�) = ⊥ and δS(1) � δS(2) = 1 � ⊥ = 1. Then,
δS(1 � 2) 
= δS(1) � δS(2), i.e., δS is not a join-endomorphism.

Naive Algorithm A1. One could use Lemma 1 directly in the obvious way to provide
an algorithm for

�
E(L)S by computing δS : i.e., computing the meet of elements of the

form
⊔

i∈I fi(ai) for every tuple (ai)i∈I such that
⊔

i∈I ai � c. For each c ∈ L, δS(c)
checks nm tuples (ai)i∈I , each one with a cost in O(m). Thus A1 can compute

�
E(L)S

by performing O(n × nm × m) = O(mnm+1) binary lattice operations.
Nevertheless, we can use Lemma 1 to provide a recursive characterization of

�
E(L)S

that can be used in a divide-and-conquer algorithm with lower time complexity.

Proposition 5. Let L be a finite distributive lattice and S = S1 ∪ S2 ⊆ E(L). Then(�
E(L)S

)
(c) =

�
L
{(�

E(L)S1

)
(a) � (�

E(L)S2

)
(b) | a, b ∈ L and a � b � c}.

The above proposition bears witness to the compositional nature of
�

E(L)S. It can
be proven by replacing

(�
E(L)S1

)
(a) and

(�
E(L)S2

)
(b) by δS1(a) and δS2(b) using

Lemma 1 (see [13]).

Naive Algorithm A2. We can use Proposition 5 to compute
�

E(L)S with the following
recursive procedure: Take any partition {S1, S2} of S such that the absolute value of
|S1| − |S2| is at most 1. Then compute the meet of all

(�
E(L)S1

)
(a) � (�

E(L)S2

)
(b)

for every a, b such that a � b � c. Then given c ∈ L, the time complexity of a naive
implementation of the above procedure can be obtained as the solution of the equation
T (m) = n2(1 + 2T (m/2)) and T (1) = 1 which is in O(mn2 log2 m). Therefore,�

E(L)S can be computed in O(mn1+2 log2 m).
The time complexity of the naive algorithm A2 is better than that of A1. However,

by using a simple memoization technique to avoid repeating recursive calls and the
following observations one can compute

�
E(L)S in a much lower time complexity order.

4.2 Using Subtraction and Downsets to Characterize
�

E(L )
S

In what follows we show that
�

E(L)S can be computed in O(mn2) for distributive
lattices and, in particular, in O(n + mlog n) for powerset lattices. To achieve this we
use the subtraction operator from co-Heyting algebras and the notion of down set1.

1 Recall that we give time complexities in terms of the number of basic binary lattice operations
(i.e., meets, joins and subtractions) performed during execution.
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Subtraction Operator. Notice that in Proposition 5 we are considering all pairs a, b ∈ L
such that a � b � c. However, because of the monotonicity of join-endomorphisms, it
suffices to take, for each a ∈ L, just the least b such that a � b � c. In finite distributive
lattices, and more generally in co-Heyting algebras [5], the subtraction operator c\a
gives us exactly such a least element. The subtraction operator is uniquely determined
by the property (Galois connection) b � c\a iff a � b � c for all a, b, c ∈ L.

Down-Sets. Besides using just c\a instead of all b’s such that a � b � c, we can use
a further simplification: Rather than including every a ∈ L, we only need to consider
every a in the down-set of c. Recall that the down-set of c is defined as ↓ c = {e ∈
L |e � c}. This additional simplification is justified using properties of distributive
lattices to show that for any a′ ∈ L, such that a′ 
� c, there exists a � c such that(�

E(L)S1

)
(a) � (�

E(L)S2

)
(c\a) � (�

E(L)S1

)
(a′) � (�

E(L)S2

)
(c\a′).

The above observations lead us to the following theorem.

Theorem 2. Let L be a finite distributive lattice and S = S1 ∪ S2 ⊆ E(L). Then(�
E(L)S

)
(c) =

�
L
{(�

E(L)S1

)
(a) � (�

E(L)S2

)
(c\a) | a ∈↓ c}.

The above result can be used to derive a simple recursive algorithm that, given a
finite distributive lattice L and S ⊆ E(L), computes

�
E(L)S in worst-case time com-

plexity O(mn2) where m = |S| and n = |L|. We show this algorithm next.

4.3 Algorithms for Distributive Lattices

We first describe the algorithm DMEETAPP that computes the value
(�

E(L)S
)
(c). We

then describe the algorithm DMEET that computes the function
�

E(L)S by calling
DMEETAPP in a particular order to avoid repeating computations. We use the following
definition to specify the calling order.

Definition 2. A binary partition tree (bpt) of a finite set S 
= ∅ is a binary tree such that
(a) its root is S, (b) if |S| = 1 then its root is a leaf, and (c) if |S| > 1 it has a left and
a right subtree, themselves bpts of S1 and S2 resp., for a partition {S1, S2} of S.

Let Δ be a bpt of S. We use Δ(S′) for the subtree of Δ rooted at S′ ⊆ S, if it exists.
We use 〈S,Δ1,Δ2〉 for the bpt of S with Δ1 and Δ2 as its left and right subtrees.

The following proposition is an immediate consequence of the previous definition.

Proposition 6. The size (number of nodes) of any bpt of S is 2m − 1 where m = |S|.

DMEETAPP(Δ, c). Let Δ = 〈S,Δ1,Δ2〉 be a bpt of S ⊆ E(L) where L is a distribu-
tive lattice. The recursive program DMEETAPP(Δ, c) defined in Algorithm 1 computes(�

E(L)S
)
(c). It uses a global lookup table T for storing the results of calls to DMEE-

TAPP. Initially each entry of T stores a null value not included in L. Since S is the
union of the roots of Δ1 and Δ2, the correctness of DMEETAPP(Δ, c) follows from
Theorem 2. Termination follows from the fact that L is finite and the bpts Δ1 and Δ2

in the recursive calls are strictly smaller than Δ.
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Algorithm 1. DMEETAPP(Δ, c) returns
(�

E(L)S
)
(c) where Δ is a bpt of S ⊆ E(L)

and L is a finite distributive lattice. The global variable T is used as a lookup table.
1: procedure DMEETAPP(Δ, c) � Δ = 〈S, Δ1, Δ2〉
2: if IsNull(T [S, c]) then
3: if S = {f} then
4: T [S, c] ← f(c)
5: else
6: T [S, c] ← �

L
{DMEETAPP(Δ1, a) � DMEETAPP(Δ2, c\a) | a ∈↓ c}.

Computing
�

E(L)S for Distributive Lattices. Let us consider an execution of DMEE-
TAPP(Δ, c). From the definition of subtraction it follows that c\a ∈↓ c. Then for each
recursive call DMEETAPP(Δ′, a′) performed by an execution of DMEETAPP(Δ, c) we
have a′ ∈↓ c. This and the fact that T is initialized with a null value not in L lead us
the following simple observation.

Observation 3. Let Δ = 〈S,Δ1,Δ2〉 with Δ1 and Δ2 rooted at S1 and S2. Assume
that T [S1, a

′], T [S2, a
′] ∈ L for every a′ ∈↓ c. Then the number of binary lattice oper-

ations (meets, joins, substractions) performed by DMEETAPP(Δ, c) is in O(| ↓ c|).

Algorithm 2. DMEET(L, S, P ). Given a finite distributive lattice L, P ⊆ L and S ⊆
E(L), the algorithm computes T [S, c] =

�
E(L)S(c) for each c ∈ P . Δ is a bpt of S and

T is a global lookup table.
1: T [S′, a] ← null � for each a ∈ P and each node S′ of Δ
2: for each S′ in a post-order traversal sequence of Δ do � visit each S′ of Δ in post-order
3: for each c ∈ P in increasing order do � visit each c ∈ P in increasing order w.r.t L
4: DMEETAPP(Δ(S′), c)

DMEET(L, S, P ). The values of
(�

E(L)S
)
(c) for each c ∈ P ⊆ L are computed

by the program in Algorithm 2 as follows. To satisfy the assumption in Observation 3,
it visits each node S′ of Δ in post-order (i.e., before visiting a node it first visits
its children). For each subtree Δ(S′) of Δ, it calls DMEETAPP(Δ(S′), c) for every
c ∈ P in increasing order with respect to the order of L: I.e., before calling DMEE-
TAPP(Δ(S′), c) it calls first DMEETAPP(Δ(S′), c′) for each c′ ∈ (P∩ ↓ c) \ {c}. The
correctness of the call DMEET(L, S, P ) follows from that of DMEETAPP(Δ, c).

Complexity for Distributive Lattices. Assume that L is a distributive lattice of size n
and that S is a subset of E(L) of size m. The above-mentioned traversals of Δ and P
ensure that the assumption in Observation 3 is satisfied by each call of the form DMEE-
TAPP(Δ(S′), c) performed during the execution of DMEET(L, S, L). From Proposi-
tion 6 we know that the number of iterations of the outer for is 2m − 1. Clearly | ↓ c|
and |P | are both in O(n). Thus, given S′ we conclude from Observation 3 that the total
number of operations from all calls of the form DMEETAPP(Δ(S′), c), executed in the
inner for, is in O(n2). The worst-case time complexity of DMEET(L, S, L) is then in
O(mn2).
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Complexity for Powerset Lattices. Assume that L is a powerset lattice. We can compute�
E(L)S in O(n + mlog n) as follows. First call DMEET(L, S, P ) where P = J(L) ∪

{⊥} and J(L) is the set of join-irreducible elements (i.e., the singleton sets in this case)
of L. Since |J(L)| = log2 n and | ↓ c| = 2 for every c ∈ J(L), DMEET(L, S, P ) can
be performed in O(m log n). This produces T [S, c] =

(�
E(L)S

)
(c) for each c ∈ P . To

compute T [S, e] =
(�

E(L)S
)
(e) for each e ∈ L \ P in a total time of O(n), visit each

such an e in increasing order and set T [S, e] = T [S, a]�T [S, b] for some a, b ∈↓ e\{e}
such that e = a � b. Since e 
∈ P there must be a, b satisfying the above condition.

4.4 Algorithms for Arbitrary Lattices

The previous algorithm may fail to produce the
�

E(L)S for non-distributive finite lat-
tices. Nonetheless, for any arbitrary finite lattice L,

�
E(L)S can be computed by suc-

cessive approximations, starting with some self-map known to be smaller than each
f ∈ S and greater than

�
E(L)S. Assume a self-map σ : L → L such that σ �E

�
E(L)S

and, for all f ∈ S, σ �E f. A good starting point is σ(u) =
�{f(u) | f ∈ S}, for

all u ∈ L. By definition of �, σ is the biggest function under all functions in S, hence
σ �E

�
E(L)S. The program GMEET in Algorithm 3 computes decreasing upper bounds

of
�

E(L)S by correcting σ values not conforming to the following join-endomorphism
property: σ(u)�σ(v) = σ(u�v). The correction decreases σ and maintains the invari-
ant σ �E

�
E(L)S, as stated in Theorem 4.

Theorem 4. Let L be a finite lattice, u, v ∈ L, σ : L → L and S ⊆ E(L). Assume
σ �E

�
E(L)S holds, and consider the following updates:

1. when σ(u) � σ(v) � σ(u � v), assign σ(u � v) ← σ(u) � σ(v)
2. when σ(u) � σ(v) 
� σ(u � v), assign σ(u) ← σ(u) � σ(u � v) and also σ(v) ←

σ(v) � σ(u � v)

Let σ′ be the function resulting after the update. Then, (1) σ′ � σ and (2) σ′ �E�
E(L)S.

Algorithm 3. GMEET finds σ =
�

E(L)S

1: σ(u) ← �{f(u) | f ∈ S} � for all u ∈ L
2: while u, v ∈ L ∧ σ(u) � σ(v) �= σ(u � v) do
3: if σ(u) � σ(v) � σ(u � v) then � case (1)
4: σ(u � v) ← σ(u) � σ(v)
5: else � case (2)
6: σ(u) ← σ(u) � σ(u � v)
7: σ(v) ← σ(v) � σ(u � v)

The procedure (see Algorithm 3) loops through pairs u, v ∈ L while there is some
pair satisfying cases (1) or (2) above for the current σ. When there is, it updates σ as
mentioned in Theorem 4. At the end of the loop all pairs u, v ∈ L satisfy the join preser-
vation property. By the invariant mentioned in the theorem, this means σ =

�
E(L)S.
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Algorithm 4. GMEET+ finds σ =
�

E(L)S

1: σ(u) ← �{f(u) | f ∈ S} � for all u ∈ L
2: Initialize Supw, Conw, Failw, for all w
3: while w ∈ L such that (u, v) ∈ Conw do � some conflict set not empty
4: Conw ← Conw\{(u, v)}
5: σ(w) ← σ(u) � σ(v)
6: Failw ← Failw ∪ Supw � all pairs previously in Supw are now failures
7: Supw ← {(u, v)}
8: CHECKSUPPORTS(w) � for u ∈ L, verify property Supw�u

9: while z ∈ L such that (x, y) ∈ Failz do � some failures set not empty
10: Failz ← Failz\{(x, y)}
11: if σ(x) �= σ(x) � σ(z) then
12: σ(x) ← σ(x) � σ(z) � σ(x) decreases
13: Failx ← Failx ∪ Supx � all pairs in Supx are now failures
14: Supx ← ∅
15: CHECKSUPPORTS(x) � for u ∈ L, verify property Supx�u

16: if σ(y) �= σ(y) � σ(z) then
17: σ(y) ← σ(y) � σ(z) � σ(y) decreases
18: Faily ← Faily ∪ Supy � all pairs in Supy are now failures
19: Supy ← ∅
20: CHECKSUPPORTS(y) � for u ∈ L, verify property Supy�u

21: if σ(x) � σ(y) = σ(z) then
22: Supz ← Supz ∪ {(x, y)} � (x, y) is now correct
23: else
24: Conz ← Conz ∪ {(x, y)} � (x, y) is now a conflict

As for the previous algorithms in this paper the worst-time time complexity will be
expressed in terms of the binary lattice operations performed during execution. Assume
a fixed set S of size m. The complexity of the initialization (Line 1) of GMEET is
O(nm) with n = |L |. The value of σ for a given w ∈ L can be updated (decreased)
at most n times. Thus, there are at most n2 updates of σ for all values of L. Finding a
w = u � v where σ(w) needs an update because σ(u) � σ(v) 
= σ(u � v) (test of the
loop, Line 2) takes O(n2). Hence, the worst time complexity of the loop is in O(n4).

The program GMEET+ in Algorithm 4 uses appropriate data structures to reduce
significantly the time complexity of the algorithm. Essentially, different sets are used to
keep track of properties of (u, v) lattice pairs with respect to the current σ. We have a
support (correct) pairs set Supw = {(u, v) | w = u � v ∧ σ(u) � σ(v) = σ(w)}. We
also have a conflicts set Conw = {(u, v) | w = u � v ∧ σ(u) � σ(v) � σ(w)} and
failures set Failw = {(u, v) | w = u� v ∧σ(u)�σ(v) 
� σ(w)}. Algorithm 4 updates
σ as mentioned in Theorem 4 and so maintains the invariant σ � �

E(L)S. An additional
invariant is that, for all w, sets Supw, Conw, Failw are pairwise disjoint. When the
outer loop finishes sets Conw and Failw are empty (for all w) and thus every (u, v)
belongs to Supu�v , i.e. the resulting σ =

�
E(L)S.

Auxiliary procedure CHECKSUPPORTS(u) identifies all pairs of the form (u, x) ∈
Supu�x that may no longer satisfy the join-endomorphism property σ(u) � σ(x) =
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Fig. 2. Average performance time of GMEET+, DMEET and BRUTE-FORCE. Plots A and D use
2n lattices, B and E distributive lattices, and C and F arbitrary (possibly non-distributive) lattices.
Plots A-C have a fixed number of join-endomorphisms and plots D-F have a fixed lattice size.

σ(u � x) because of an update to σ(u). When this happens, it adds (u, x) to the appro-
priate Con, or Fail set. The time complexity of the algorithm depends on the set opera-
tions computed for each w ∈ L chosen, either in the conflicts Conw set or in the failures
Failw set. When a w is selected (for some (u, v) such that u � v = w) the following
holds: (1) at least one of σ(w), σ(u), σ(v) is decreased, (2) some fix k number of ele-
ments are removed from or added to a set, (3) a union of two disjoint sets is computed,
and (4) new support sets of w, u or v are calculated.

With an appropriate implementation, operations (1)–(2) take O(1), and also oper-
ation (3), since sets are disjoint. Operation (4) clearly takes O(n). In each loop of the
(outer or inner) cycles of the algorithm, at least one σ reduction is computed. Further-
more, for each reduction of σ, O(n) operations are performed. The maximum possible
number of σ(w) reductions, for a given w, is equal to the length d of the longest strictly
decreasing chain in the lattice. The total number of possible σ reductions is thus equal
to nd. The total number of operations of the algorithm is then O(n2d). In general, d
could be (at most) equal to n, therefore, after initialization, worst case complexity is
O(n3). The initialization (Lines 1–2) takes O(nm) + O(n2), where m = |S|. Worst
time complexity is thus O(mn+n3). For powerset lattices, d = log2 n, thus worst time
complexity in this case is O(mn + n2 log2 n).

4.5 Experimental Results and Small Example

Here we present some experimental results showing the execution time of the proposed
algorithms. We also discuss a small example with join-endomorphisms representing
dilation operators fromMathematical Morphology [2]. We use the algorithms presented
above to compute the greatest dilation below a given set of dilations and illustrate its
result for a simple image.

Consider Fig. 2. In plots Fig. 2A–C, the horizontal axis is the size of the lattice.
In plots Fig. 2D–F, the horizontal axis is the size of S. Curves in images Fig. 2A–C
plot, for each algorithm, the average execution time of 100 runs (10 for Fig. 2A) with
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Table 2. Average time in seconds over powerset lattices with |S| = 4

Size A1 A2 GMEET GMEET+ DMEET

16 2.01 0.958 0.00360 0.000603 0.000632

32 64.6 25.3 0.0633 0.00343 0.00181

64 1901 600 0.948 0.0154 0.00542

128 >600 >600 15.4 0.0860 0.0160

256 >600 >600 252 0.361 0.0483

512 >600 >600 >600 2.01 0.166

1024 >600 >600 >600 10.7 0.547

random sets S ⊆ E(L) of size 4. Images Fig. 2D–F, show the mean execution time of
each algorithm for 100 runs (10 for Fig. 2D) varying the number of join-endomorphisms
(|S| = 4i, 1 ≤ i ≤ 8). The lattice size is fixed: |L| = 10 for Fig. 2E and F, and
|L| = 25 for Fig. 2D. In all cases the lattices were randomly generated, and the parame-
ters selected to showcase the difference between each algorithm with a sensible overall
execution time. For a given lattice L and S ⊆ E(L), the brute-force algorithm explores
the whole space E(L) to find all the join-endomorphism below each element of S and
then computes the greatest of them. In particular, the measured spike in plot Fig. 2C
corresponds to the random lattice of seven elements with the size of E(L) being bigger
than in the other experiments in the same figure. In our experiments we observed that
for a fixed S, as the size of the lattice increases, DMEET outperforms GMEET+. This
is noticeable in lattices 2n (see Fig. 2A). Similarly, for a fixed lattice, as the size of S
increases GMEET+ outperforms DMEET. GMEET+ performance can actually improve
with a higher number of join-endomorphisms (see Fig. 2D) since the initial σ is usually
smaller in this case.

To illustrate some performance gains, Table 2 shows the mean execution time of the
algorithms discussed in this paper. We include A1 and A2, the algorithms outlined just
after Lemma 1 and Proposition 5.

An MM Example. Mathematical morphology (MM) is a theory, based on topologi-
cal, lattice-theoretical and geometric concepts, for the analysis of geometric structures.
Its algebraic framework comprises [2,14,17], among others, complete lattices together
with certain kinds of morphisms, such as dilations, defined as join-endomorphisms [14].
Our results give bounds about the number of all dilations over certain specific finite lat-
tices and also efficient algorithms to compute their infima.

A typical application of MM is image processing. Consider the space G = Z
2. A

dilation [2] by si ⊆ P(G) is a function δsi : P(G) → P(G) such that δsi(X) =
{x + e | x ∈ X and e ∈ si}. The dilation δsi(X) describes the interaction of an image
X with the structuring element si. Intuitively, the dilation of X by si is the result of
superimpose si on every activated pixel of X , with the center of si aligned with the
corresponding pixel of X . Then, each pixel of every superimposed si is included in
δsi(X).
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Let L be the powerset lattice for some finite set D ⊆ G. It turns out that the dilation�
E(L)S corresponds to the intersection of the structuring elements of the corresponding

dilations in S. Figure 3 illustrates
�

E(L)S for the two given dilations δs1(I) and δs2(I)
with structuring elements s1 and s2 over the given image I .

Fig. 3. Binary image I (on the left). Dilations δs1 , δs2 for structuring elements s1, s2. On the
right

(�
E(L){δs1 , δs2})

(I). New elements of the image after each operation in grey and black.

5 Conclusions and Related Work

We have shown that given a lattice L of size n and a set S ⊆ E(L) of size m,
�

E(L)S
can be computed in the worst-case in O(n+mlog n) binary lattice operations for pow-
erset lattices, O(mn2) for lattices of sets, and O(nm + n3) for arbitrary lattices. We
illustrated the experimental performance of our algorithms and a small example from
mathematical morphology.

In [9] a bit-vector representation of a lattice is discussed. This work gives algorithms
of logarithmic (in the size of the lattice) complexity for join and meet operations. These
results count bit-vector operations. From [1] we know that E(L) is isomorphic to the
downset of (P × P op), where P is the set of join-prime elements of L, and that this,
in turn, is isomorphic to the set of order-preserving functions from (P × P op) to 2.
Therefore, for the problem of computing

�
E(L)S, we get bounds O(m log2(2(n

2)) =
O(mn2) for set lattices and O(m(log2 n)2) for powerset lattices where n = |L| and
m = |S|. This, however, assumes a bit-vector representation of a lattice isomorphic to
E(L). Computing this representation takes time and space proportional to the size of
E(L) [9] which could be exponential as stated in the present paper. Notice that in our
algorithms the input lattice is L instead of E(L).

We have stated the cardinality of the set of join-endomorphisms E(L) for significant
families of lattices. To the best of our knowledge we are the first to establish the cardi-
nality (n+1)2 + n!Ln(−1) for the latticeMn. The cardinalities nlog2 n for power sets
(boolean algebras) and

(
2n
n

)
for linear orders can also be found in the lattice literature

[1,10,16]. Our original proofs for these statements can be found in the technical report
of this paper [13].

The lattice E(L) have been studied in [6]. The authors showed that a finite lat-
tice L is distributive iff E(L) is distributive. A lower bound of 22n/3 for the number
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of monotonic self-maps of any finite poset L is given in [4]. Nevertheless to the best
of our knowledge, no other authors have studied the problem of determining the size
E(L) nor algorithms for computing

�
E(L)S. We believe that these problems are impor-

tant, as argued in the Introduction; algebraic structures consisting of a lattice and join-
endomorphisms are very common in mathematics and computer science. In fact, our
interest in this subject arose in the algebraic setting of spatial and epistemic constraint
systems [8] where continuous join-endomorphisms, called space functions, represent
knowledge and the infima of endomorphisms correspond to distributed knowledge. We
showed in [8] that distributed knowledge can be computed in O(mn1+log2(m)) for dis-
tributive lattices and O(n4) in general. In this paper we have provided much lower
complexity orders for computing infima of join-endomorphisms. Furthermore [8] does
not provide the exact cardinality of the set of space functions of a given lattice.

As future work we plan to explore in detail the applications of our work in
mathematical morphology and computer music [15]. Furthermore, in the same spirit
of [11] we have developed algorithms to generate distributive and arbitrary lattices.
In our experiments, we observed that for every lattice L of size n we generated,
nlog2 n ≤ |E(L)| ≤ (n + 1)2 + n!Ln(−1) and if the generated lattice was distribu-
tive, nlog2 n ≤ |E(L)| ≤ (

2n
n

)
. We plan to establish if these inequalities hold for every

finite lattice.

Acknowledgments. We are indebted to the anonymous referees and editors of RAMICS 2020
for helping us to improve one of the complexity bounds, some proofs, and the overall quality of
the paper.
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Abstract. The Unifying Theories of Programming (UTP) of Hoare and
He promote the unification of semantics catering for different concerns,
such as, termination, data modelling, concurrency and time. Process cal-
culi like Circus and CSP can be given semantics in the UTP using reactive
designs whose traces can be abstractly specified using a monoid trace
algebra. The prefix order over traces is defined in terms of the monoid
operator. This order, however, is inadequate to characterise a broader
family of timed process algebras whose traces are preordered instead. To
accommodate these, we propose a unary semigroup trace algebra that
is weaker than the monoid algebra. This structure satisfies some of the
axioms of restriction semigroups and is a right P-Ehresmann semigroup.
Reactive designs specified using it satisfy core laws that have been mech-
anised so far in Isabelle/UTP. More importantly, our results improve the
support for unifying trace models in the UTP.

Keywords: Semantics · Process algebra · Semigroups · UTP

1 Introduction

The Unifying Theories of Programming (UTP) [1] is a relational framework for
characterising different programming paradigms. It promotes the unification of
semantics, while allowing different aspects, such as data, concurrency, termina-
tion, time, and so on, to be considered individually. Programs are specified via
alphabetised relations in the style of Hehner’s Predicative Programming [2].

Behaviour, and concurrency, in the style of CCS, ACP and CSP [3], can be
defined in the UTP via the theory of reactive processes. At its core is the notion
of traces, that is, sequences of events that record the history of interactions.

The time dimension has been considered in different ways [4–7]. In [4], for
example, traces are sequences of pairs that encode discrete time units. The first
component of a pair records the sequence of events performed during that time,
and the second component the set of events refused at that point. In [7], which
presents a theory that can be used to give semantics in the UTP to the hardware
programming language Handel-C [8] and other synchronous languages, a more
abstract view is provided by a parametric model. It requires that the operators
for addition and subtraction of pairs, and traces, satisfy a set of axioms.

Semantic models employing traces typically define a prefix relation ≤ that
specifies how a trace can be augmented, encoding some notion of causality. The
c© Springer Nature Switzerland AG 2020
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semantics for CSP, for example, is defined using sequences whose prefix relation
is a partial order. In that setting, a trace s is a prefix of t , written s ≤ t , exactly
when s ≤ t ⇔ ∃ u • s � u = t , that is, there exists a trace u, such that (•)
the concatenation (�) of s with u is t . This led Foster et al. [9] to observe that
the prefix order for several trace models can be abstractly defined in terms of a
left-cancellative monoid, henceforth referred to as the “monoid trace algebra”.

In [7], however, a pair (s, r0) is a prefix of (t , r1) exactly when s ≤ t , but the
refusal sets r0 and r1 are not constrained. Anti-symmetry is thus not satisfied
and so the prefix relation on traces is merely a pre-order. The monoid trace
algebra is unsatisfactory for such a theory of synchronous languages. Solving
this problem is not only of theoretical interest to establish the commonality
between different trace structures, but more importantly enables key results to
be reusable in synchronous process algebra, thus promoting unification of models
and results, a key goal of the UTP.

Unification in the UTP can be exploited in various ways, namely via subset
embeddings, weakest completion semantics [10], Galois connections and para-
metric theories. The approach pursued in this paper is a contribution to the
latter by generalising the theory of reactive processes even further. The main
contribution is the definition of a unary left-cancellative semigroup, obtained by
introducing a unary function and weakening of the monoid trace algebra axioms.
The pairs from [7] are shown to satisfy this structure, as are finite sequences
(traces) of such pairs. There is surprisingly little impact on the proofs already
established for reactive processes as demonstrated by the mechanisation of our
results in Isabelle/UTP [11].

The paper is structured as follows. In Sect. 2 the theory of reactive processes
is introduced, as well as the monoid trace algebra. Our unary semigroup trace
algebra is defined in Sect. 3. Our theory of synchronous algebra is characterised
in Sect. 4. In Sect. 5 we discuss related work. In Sect. 6 we summarize the main
results and provide pointers for future work.

2 Preliminaries

In the UTP programs are specified by alphabetised relations. Variables are used
to define computations, with undashed variables (x ) capturing the initial value,
and dashed variables (x ′) capturing the later, or final, value. These can be pro-
gram variables, or auxiliar variables that capture information such as termina-
tion or execution time. A UTP theory is characterised by three components: an
alphabet, a set of healthiness conditions, and a set of operators.

For example, in a theory of discrete time we may have variables t and t ′ of
type N to record time. The relation t ′ = t + 1 describes a computation whereby
time is incremented by one time unit. To define the set of valid time-monotonic
computations, a function HC(P) =̂ P ∧ t ≤ t ′ on predicates can be defined
(=̂), so that the set of healthy predicates are the fixed points of HC. When
the healthiness conditions are idempotent and monotonic, with respect to the
refinement order �, their image forms a complete lattice, which allows reasoning
about recursion.
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The theory of reactive processes uses the auxiliary variables ok and ok ′ to
capture stability, wait and wait ′ to record information about termination, tr and
tr ′ to record the history of interactions with the environment, and ref and ref ′ to
record the possibility of refusing interaction. The variable ok indicates whether
the previous process is in a stable state, while ok ′ records this information for the
current process. Similarly, wait records termination for the previous process and
wait ′ for the current process. A process only starts executing in a state where
ok and ¬ wait are true. Termination occurs when ok ′ and ¬ wait ′ are true.

The interactions with the environment are captured by sequences of events,
recorded by tr and tr ′. The variable tr records the sequence of events that took
place before the current process started, while tr ′ records all the events that
have been observed so far. Finally, ref and ref ′ record the set of events that may
be refused by the process at the start, and currently.

In the theory of synchronous algebra, as already said, tr and tr ′ are sequences
of pairs, where the first component is a sequence of events, and the second is a
set of events that may be refused. The variables ref and ref ′ are not used.

2.1 Monoid Trace Algebra

To conciliate different trace structures for reactive processes, Foster et al. [9]
propose a trace algebra, where tr and tr ′ are of an abstract type T . Below we
reproduce its axioms, where ̂ is concatenation, and ε is the empty trace.

Definition 1 (TA). A trace algebra (T , ̂ , ε) is a monoid satisfying the axioms:

x ̂ (y ̂ z ) = (x ̂ y) ̂ z (TA1)
ε ̂ x = x ̂ ε = x (TA2)

x ̂ y = x ̂ z ⇒ y = z (TA3)
x ̂ y = ε ⇒ x = ε (TA4)

Concatenation is associative (TA1), has the empty trace ε as both a left and
right unit (TA2), and is left-cancellative (TA3). Axiom TA4 eliminates “negative
traces” by requiring that whenever the concatenation of x and y is the empty
trace then x must also be the empty trace. The dual law x ̂ y = ε ⇒ y = ε
can be deduced from axioms TA2 and TA4. We observe that while in [9] right-
cancellation is also proposed as an axiom, the laws of the algebra, as well as
the results established for the theory of reactive processes, as proved so far in
Isabelle/UTP1, do not depend on this axiom, and so we can safely omit it.

Standard finite sequences, for example, (seqA,�, 〈〉) form a trace algebra,
where � is sequence concatenation and 〈〉 is the empty sequence. Using the two
trace algebra operators it is possible to define a trace prefix relation (x ≤ y) and
a trace subtraction operator (x − y) as reproduced below.

Definition 2 (Trace prefix). x ≤ y =̂ (∃ z • x ̂ z = y)

Definition 3 (Subtraction). y − x =
ιz • y = x z if x y
ε otherwise

1 https://github.com/isabelle-utp (definitions and lemmas hyper-linked using ).

https://github.com/isabelle-utp
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A trace x is a prefix of y (x ≤ y) whenever y can be obtained by concatenating
x with some trace z . When x ≤ y the subtraction y−x is z whose concatenation
with x is y , specified using the definite description operator (ι), as z is unique
by TA3, and otherwise y − x is ε so that subtraction is total. In [9] it is shown
that (T ,≤) is a partial order, and that ε is the least element. As mentioned, this
is unsuitable for the synchronous algebra, so in Sect. 3 we pursue a preorder.

2.2 Generalised Reactive Processes

Using the trace algebra, it is possible to define the healthiness conditions that
underpin several theories based on reactive processes, reproduced below.

Definition 4 (Generalised Reactive Processes).

R1(P) =̂ tr ≤ tr ′ R2(P) =̂ P [ε, tr ′ − tr/tr , tr ′]

R2c(P) =̂ R2(P) � tr ≤ tr ′ � P R2a(P) =̂
�

z • P [z , z ̂ (tr ′ − tr)/tr , tr ′]

R3(P) =̂ II � wait � P R(P) =̂ R1 ◦ R2 ◦ R3(P)

R1 requires that a trace can only be extended. R2 requires processes to be
insensitive to the initial trace and is specified by substituting tr in P with the
empty trace ε and tr ′ with the difference tr ′ − tr . Because this difference is only
well-defined when tr ≤ tr ′, the version R2c proposed by Foster et al. [9] applies
R2 conditionally: P � c � Q is P if c is true, and otherwise is Q . R2a, defined
using the greatest lower bound

�
, is an alternative for R2 having the same

fixed points. R3 ensures that P may only start if the previous process has ter-
minated (¬ wait), and otherwise behaves as the identity II , which keeps variables
unchanged. This ensures that relational composition is sequential composition.
Finally, the theory is characterised by R, the composition of all conditions.

While these definitions are applicable to several reactive theories, R2 and
R2a, for example, cannot be instantiated for synchronous algebra [7], whose
counterparts to R2 and R2a are reproduced below with subscript S . Concate-
nation (̂S ) and subtraction (−S ) of their traces are also annotated with S .

Definition 5.

R2S (P) = P [〈(〈〉, snd(last(tr)))〉, tr ′ −S tr/tr , tr ′]

R2aS (P) =
�

z • P [z , z ̂S (tr ′ −S tr)/tr , tr ′] ∧ snd(last(tr)) = snd(last(z ))

R2S considers the substitution of tr with a sequence whose only element is a
pair: the first component is the empty sequence, and the second component is
the set of events resulting from taking the second component (snd) of the pair
extracted from the last element of tr , well-defined when R1 is applied first.

Clearly the empty trace (ε) of the monoid trace algebra cannot abstractly
encode an element that can take several values, such as snd(last(tr)). On the
other hand, an examination of the algebraic laws satisfied by R2S , and counter-
parts to R1 and R3 in [5,7], reveals a striking similarity with the laws established
for generalised reactive designs, which indicates a similar unification is feasible
as we demonstrate in Sect. 4 using the algebra we define next.
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3 Unary Semigroup Trace Algebra

Instead of a fixed empty trace ε, we introduce a total function Φ : T → T to
obtain a unary semigroup (T ,̂, Φ). The axioms are defined next in Sect. 3.1. In
Sect. 3.2 we classify it according to the literature on semigroups. In Sect. 3.3 we
show that the prefix relation is a preorder, and redefine subtraction.

3.1 Axioms

The following axioms can be seen as counterparts to that of the monoid trace
algebra, adapted to consider Φ and the fact that the structure is not a monoid.

Definition 6 (USTA). A unary semigroup trace algebra (T , ̂ , Φ) is a left-
cancellative unary semigroup satisfying the following axioms:

x ̂ (y ̂ z ) = (x ̂ y) ̂ z (USTA1)
x ̂ Φ(x ) = x (USTA2)

x ̂ y = x ̂ z ⇒ y = z (USTA3)
x ̂ y = Φ(y) ⇒ y = Φ(y) (USTA4)

Concatenation is associative (USTA1) so that we have a semigroup. Similarly to
axiom TA2, we require that Φ(x ) is a right identity with respect to concatenation
with x (USTA2). Concatenation is also left-cancellative (USTA3). From these
three axioms we can establish that Φ(x ) is a left-unit for concatenation.
Lemma 1. Φ(x ) ̂ y = y

Proof.

x ̂ y = x ̂ y [Axiom USTA2]
≡ (x ̂ Φ(x )) ̂ y = x ̂ y [Axioms USTA1 and USTA3]
⇒ Φ(x ) ̂ y = y 
�

Similarly to axiom TA4 of the monoid trace algebra, axiom USTA4 also elimi-
nates “negative traces”, but when we draw a parallel between ε and Φ, the shape
of USTA4 is different. The requirement on the second operand y of the concate-
nation x ̂ y (rather than the first operand x as in axiom TA4) is sufficiently weak
to ensure the prefix relation ≤, defined in terms of ̂, is not anti-symmetric.

To illustrate that axiom TA4 admits structures whose prefix relation ≤ is
not anti-symmetric, we consider the following example.

Example 1. Consider (S, �, id), where S contains at least two distinct elements,
x � y =̂ y and id is the identity function. Such structure is a unary semigroup
trace algebra. We show that ∃ a, b : S • a ≤ b ∧ b ≤ a ∧ a �= b.

Proof.

∃ a, b : S • a ≤ b ∧ b ≤ a ∧ a �= b [Definition of ≤]
= ∃ a, b : S • (∃ z • a � z = b) ∧ (∃ z • b � z = a) ∧ a �= b [Definition of �]
= ∃ a, b : S • (∃ z • z = b) ∧ (∃ z • z = a) ∧ a �= b [One point rule]
= ∃ a, b : S • a �= b [Assumption]
= true 
�

https://github.com/isabelle-utp/utp-main/blob/ramics2020s/utils/Library_extra/Monoid_extra.thy#L283
https://github.com/isabelle-utp/utp-main/blob/ramics2020s/utils/Library_extra/Monoid_extra.thy#L356
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An interesting generalisation of (S, �, id) is that (T , ̂ , id) satisfies the axioms
of a U -semigroup [12, p. 102]. In general, Φ is idempotent as we establish next.

Lemma 2. Φ(Φ(x )) = Φ(x )

Proof. Using Axiom USTA2.

Φ(x ) ̂ Φ(Φ(x )) = Φ(x ) [Lemma 1]
≡ Φ(x ) ̂ Φ(Φ(x )) = Φ(x ) ̂ Φ(x ) [Axiom USTA3]
⇒ Φ(Φ(x )) = Φ(x ) 
�

Moreover, if Φ is constant we can obtain the original monoid trace algebra by
having ∀ x • Φ(x ) = ε.

Theorem 1. Provided ∀ x • Φ(x ) = ε, and (T , ̂ , Φ) is a unary semigroup trace
algebra, then (T , ̂ , ε) is a monoid trace algebra.

Proof. Axioms TA1, TA2 and TA3 are trivially satisfied. Axiom TA4 can be
satisfied by deduction using USTA2 and USTA4. 
�

Thus, the monoid trace algebra can be seen as a specialisation of the algebraic
structure we propose. This and other results to follow have been mechanised in
Isabelle2. Moreover, we have used Isabelle’s counter-example generator nitpick
to ascertain that axioms USTA1-USTA4 are independent. Next we discuss how
the new structure can be classified according to the literature on semigroups.

3.2 Semigroup Properties

To establish key properties of the algebra, we first propose a lemma that is used
in proofs to follow. The application of Φ to a trace obtained by concatenating x
and y is equal to Φ(y) as stated in the lemma below.

Lemma 3. Φ(x ̂ y) = Φ(y)

Proof. Using Axiom USTA2.

(x ̂ y) ̂ Φ(x ̂ y) = x ̂ y [Axioms USTA1 and USTA2]
≡ (x ̂ y) ̂ Φ(x ̂ y) = (x ̂ y) ̂ Φ(y) [Axiom USTA3]
⇒ Φ(x ̂ y) = Φ(y) 
�

From Lemmas 1 and 3 we can deduce that Φ distributes over ̂, a property
implicitly satisfied by left-cancellative restriction semigroups [13].

The structure is neither a left nor a right-restriction semigroup, as it satisfies
only two (LR1 and LR2) out of four axioms [13] of left restriction semigroups,
and three (RR1 to RR3) out of four axioms of right-restriction semigroups.

2 https://github.com/isabelle-utp/utp-main/tree/ramics2020s.

https://github.com/isabelle-utp/utp-main/blob/ramics2020s/utils/Library_extra/Monoid_extra.thy#L361
https://github.com/isabelle-utp/utp-main/blob/ramics2020s/utils/Library_extra/Monoid_extra.thy#L749
https://github.com/isabelle-utp/utp-main/blob/ramics2020s/utils/Library_extra/Monoid_extra.thy#L375
https://github.com/isabelle-utp/utp-main/tree/ramics2020s
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Theorem 2 (Laws of restriction semigroups).

Φ(x ) ̂ x = x (LR1)
Φ(Φ(x ) ̂ y) = Φ(x ) ̂ Φ(y) (LR2)

x ̂ Φ(x ) = x (RR1)
Φ(x ̂ Φ(y)) = Φ(x ) ̂ Φ(y) (RR2)

Φ(x ) ̂ y = y ̂ Φ(x ̂ y) (RR3)

Proof. (LR1) Using Lemma 1; (RR1) using Axiom USTA2.
(LR2) Using Lemmas 1 and 3; (RR2) using, in addition, Lemma 2.
(RR3)

y ̂ Φ(x ̂ y) [Lemma 3]
= y ̂ Φ(y) [Axiom USTA2 and Lemma 1]
= Φ(x ) ̂ y 
�

A fourth axiom of restriction semigroups requires commutativity on the appli-
cation of Φ with respect to ̂ as Φ(x ) ̂ Φ(y) = Φ(y) ̂ Φ(x ). It is clear from
Lemma 1 that this equality cannot hold. We have, however, that the structure
satisfies the axioms of right P-Ehresmann semigroups [14], as established next.

Theorem 3. (T , ̂ , Φ) is a right P-Ehresmann semigroup.

x ̂ Φ(x ) = x (PE1)
Φ(x ̂ y) = Φ(Φ(x ) ̂ y) (PE2)

Φ(Φ(x ) ̂ Φ(y)) = Φ(y) ̂ Φ(x ) ̂ Φ(y) (PE3)
Φ(x ) ̂ Φ(x ) = Φ(x ) (PE4)

Proof. (PE1) Using Axiom USTA2; (PE2) using Lemmas 1 and 3.
(PE3)

Φ(y) ̂ Φ(x ) ̂ Φ(y) [Lemma 1]
= Φ(x ) ̂ Φ(y) [Lemma 2]
= Φ(Φ(x )) ̂ Φ(Φ(y)) [Lemmas 1 and 3]
= Φ(Φ(x ) ̂ Φ(y))

(PE4) Follows from Lemma 1. 
�

Despite proposing axioms based on a generalisation of those of the monoid trace
algebra, it is pleasing to find that such a construction satisfies the axioms of a
known class of semigroups. Next we study the induced prefix relation ≤ of the
algebra, defined in terms of ̂, and its subtraction operator −.

3.3 Prefix and Subtraction

The prefix relation can be characterised exactly as in Definition 2. In what follows
we study its key algebraic properties, starting by showing that it is a preorder.

Theorem 4. Provided (T , ̂ , Φ) is a USTA then (T ,≤) is a preorder. (TP1)

https://github.com/isabelle-utp/utp-main/blob/ramics2020s/utils/Library_extra/Monoid_extra.thy#L675
https://github.com/isabelle-utp/utp-main/blob/ramics2020s/utils/Library_extra/Monoid_extra.thy#L700
https://github.com/isabelle-utp/utp-main/blob/ramics2020s/utils/Library_extra/Monoid_extra.thy#L585
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Proof. (Reflexivity) Using Definition 2 and Axiom USTA2; (Transitivity) Using
Definition 2, Axiom USTA1 and predicate calculus.

Moreover, we have that ≤ satisfies the following laws, numbered to mirror the
laws TP1-TP4 of the monoid trace algebra [9].

Theorem 5 (Trace Prefix Laws).

Φ(x ) ≤ y (TP2) x ≤ x ̂ y (TP3) x ̂ y ≤ x ̂ z ⇔ y ≤ z (TP4)

Trace Φ(x ) is smaller than any other trace (TP2). Law TP3 states that con-
catenation constructs larger traces, and Law TP4 states that concatenation is
monotonic in its right argument. Next, we introduce the subtraction operator.

Definition 7 (Subtraction). y − x =
ιz • y = x z if x y
Φ(x ) otherwise

Subtraction is defined like in Definition 3 when x ≤ y , and otherwise is defined
as Φ(x ). This deliberate choice of Φ(x ) is essential to ensure that the following
laws TS1-TS10 (numbered after the laws TS1-TS8 in [9] as counterparts) hold.
Notably absent from the following list is the counterpart to TS2 of the monoid
trace algebra, which we discuss in the sequel. It does not hold in this setting,
but this bears no impact on the results established for the reactive theory.
Theorem 6 (Trace Subtraction Laws).

x − Φ(y) = x (TS1)
x − x = Φ(x ) (TS3)

(x ̂ y) − x = y (TS4)
(x − y) − z = x − (y ̂ z ) (TS5)

(x ̂ y) − (x ̂ z ) = y − z (TS6)
y ≤ x ∧ x − y = Φ(y) ⇔ x = y (TS7)

x ≤ y ⇒ x ̂ (y − x ) = y (TS8)
x ≤ y ∧ x ≤ z ⇒ (y − x = z − x ⇔ y = z ) (TS9)

x ≤ y ∧ x ≤ z ∧ z ≤ y ⇒ (y − x ) − (z − x ) = y − z (TS10)
Law TS1 states that the subtraction of a trace Φ(y) from another trace is ineffec-
tive. Law TS3 states that subtracting a trace from itself is equal to applying Φ.
Laws TS4-TS6 and TS8 capture expected properties of concatenation and sub-
traction, also satisfied by the monoid trace algebra. The implication in Law TS7
states that if the subtraction x−y is Φ(y), and y is a prefix of x , then x and y are
the same. The reverse implication follows from Law TS3. The novel laws TS9-
TS10 correspond to axioms SSub:same and SSub:subsub in [7, pp. 95–96].

The counterpart to Law TS2 (ε−x = ε) of the monoid trace algebra [9] could
be stated in this setting as Φ(y) − x = Φ(y). However, this equality does not
hold in general. In particular, for example, if x ≤ Φ(y) holds it is not necessarily
the case that (ιz • Φ(y) = x ̂ z ) = Φ(y). Existing proofs for reactive processes
do not depend on Law TS2, so the fact that it does not hold in our trace algebra
has no practical impact. Next, we focus on instances of the algebra.

https://github.com/isabelle-utp/utp-main/blob/ramics2020s/utils/Library_extra/Monoid_extra.thy#L493
https://github.com/isabelle-utp/utp-main/blob/ramics2020s/utils/Library_extra/Monoid_extra.thy#L310
https://github.com/isabelle-utp/utp-main/blob/ramics2020s/utils/Library_extra/Monoid_extra.thy#L493
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4 Trace Models

In this section we focus on instances of our trace algebra, and show that it can be
instantiated to yield the traces of [7]. To that end, we consider pairs in Sect. 4.1
whose first component is a USTA. Then in Sect. 4.2 we consider these pairs as
elements of finite non-empty sequences and show the lifted structure is a USTA.

4.1 Parametric Pairs

We introduce pairs P : H×R parametrised by types H and R, whose H must be
a USTA (H,+H, ΦH) where +H : H×H → H is concatenation, and ΦH : H → H
is the unary function of the USTA. To construct a USTA for parametric pairs
(P,+P , ΦP), we define concatenation of pairs (+P) and ΦP as follows.

Definition 8. (h1, r1) +P (h2, r2) = (h1 +H h2, r2)

ΦP(h1, r1) = (ΦH(h1), r1)

Concatenation of (h1, r1) and (h2, r2) is a pair where: the first component is
the result of applying +H to h1 and h2, and the second component is r2. ΦP is
defined as the application of ΦH to the first component. The definition of +P
closely follows the concatenation specified in [7]. However, unlike [7] we do not
need to specify subtraction, as instead it can be derived as a lemma below.

Lemma 4. Provided h2 ≤ h1, (h1, r1) − (h2, r2) = (h1 − h2, r1).

With the above construction we can establish that (P,+P , ΦP) is a USTA.

Theorem 7. Provided (H,+H, ΦH) is a USTA then (P,+P , ΦP) is a USTA.

Thus, the pairs of [7] form a USTA. Next, we consider a model for traces con-
structed from finite non-empty sequences whose elements are pairs of type P.

4.2 Synchronous Traces

As already mentioned, the traces of synchronous process algebra consist of non-
empty sequences of pairs [7]. In this section we construct this abstract trace
structure stepwise, starting by defining a specialised model of finite non-empty
sequences that is a USTA. This is then used to lift pairs of type P to traces.

Traces. A trace in this setting is a finite non-empty sequence defined via a recur-
sive data type fs below, specified using the Z [15] notation for type constructors.

Definition 9. fs ::= One 〈〈σ〉〉 | Cons 〈〈σ × fs〉〉
One constructs a sequence with a single element of type σ, and Cons constructs
a sequence where an element is followed by a sequence of type fs. We use angled
brackets 〈a0, ..., an〉fs to represent consecutive applications of Cons, ending in
One an , and 〈a0〉fs for a single construction One a0. The subscript fs distinguishes
finite non-empty sequences from standard finite sequences (that may be empty).

https://github.com/isabelle-utp/utp-main/blob/ramics2020s/utils/Library_extra/Monoid_extra.thy#L17
https://github.com/isabelle-utp/utp-main/blob/ramics2020s/theories/utp_slotted_circus.thy#L33
https://github.com/isabelle-utp/utp-main/blob/ramics2020s/theories/utp_slotted_circus.thy#L46
https://github.com/isabelle-utp/utp-main/blob/ramics2020s/theories/utp_slotted_circus.thy#L247
https://github.com/isabelle-utp/utp-main/blob/ramics2020s/theories/utp_slotted_circus.thy#L144
https://github.com/isabelle-utp/utp-main/blob/ramics2020s/utils/Library_extra/Terminated_lists.thy#L52
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To construct a USTA for an fs parametrised by a given type σ that is a
USTA (σ,̂σ, Φσ), we need to instantiate the respective structure (fs,̂fs , Φfs) in
terms of ̂σ and Φσ. We define concatenation (̂fs) next, and Φfs in the sequel.

Definition 10 (Concatenation of non-empty sequences).

̂fs : fs × fs → fs

∀ x , y : σ; f , g : fs •
One x ̂fs One y = One (x +σ y)

One x ̂fs Cons (y , f ) = Cons (x +σ y , f )
Cons (x , f ) ̂fs g = Cons (x , f ̂fs g)

The concatenation of two sequences 〈x 〉fs and 〈y〉fs , with one element each, is
a sequence whose only element is the result of the sum (+σ) of x and y . A
sequence 〈x 〉fs concatenated with 〈a0, ..., an〉fs is defined as 〈x +σ a0, ..., an〉fs ,
that is, the first element is the sum (+σ) of x and the first element a0 of the
second sequence. Finally, a sequence 〈a0, ..., an〉fs concatenated with g has a0 as
first element followed by the concatenation of the tail of that sequence with g .

We observe that ̂fs is distinctive from standard sequence concatenation, so
as to induce an appropriate definition for prefixing and subtraction (Definitions 2
and 7). For example, the subtraction of 〈a〉fs from itself is the sequence z whose
concatenation with 〈a〉fs yields 〈a〉fs (ιz • 〈a〉fs = 〈a〉fs ̂fs z ). Because fs
sequences are non-empty, z is the sequence 〈Φσ(a)〉fs so that 〈a +σ Φσ(a)〉fs =
〈a〉fs , as required. This in contrast to subtraction of standard sequences, where
〈a〉 − 〈a〉 = 〈〉. Similar reasoning applies to ensure ≤ is reflexive.

Indeed to show that (fs,̂fs , Φfs) is a USTA given a type σ that is a USTA
(σ,+σ, Φσ), we define Φfs in terms of Φσ as follows.

Definition 11. Φfs(x ) = 〈Φσ(last(x ))〉fs

It is defined as the sequence whose only element is obtained by applying Φσ to
its last element. By construction x is non-empty, so last and head are always
well-defined. Thus, provided σ is a USTA, a sequence s of type fs can be split
into concatenations involving its front and last element, and its head and tail .

Lemma 5. front(s) ̂fs 〈last(s)〉fs = s, and 〈head(s)〉fs ̂fs tail(s) = s.

The functions front and tail are tailored to non-empty sequences. For example,
front(〈a〉fs) is 〈Φσ(a)〉fs , while front(〈a, b〉fs) is 〈a, Φσ(b)〉fs , and tail(〈a〉fs) is
〈Φσ(a)〉fs , while tail(〈a, b〉fs) is 〈Φσ(a), b〉fs , so that the decomposition holds.

Next we use this structure to instantiate the USTA for fs sequences, which
corresponds to the trace structure underlying synchronous process algebra.

Theorem 8. Provided (σ,+σ, Φσ) is a USTA, then (fs,̂fs , Φfs) is a USTA.

As a corollary to this theorem we have that a parametric pair P whose type
parameter H is a USTA (H,+H, ΦH) induces a (fs,̂fs , Φfs) USTA.

https://github.com/isabelle-utp/utp-main/blob/ramics2020s/utils/Library_extra/Terminated_lists.thy#L124
https://github.com/isabelle-utp/utp-main/blob/ramics2020s/utils/Library_extra/Terminated_lists.thy#L341
https://github.com/isabelle-utp/utp-main/blob/ramics2020s/utils/Library_extra/Terminated_lists.thy#L303
https://github.com/isabelle-utp/utp-main/blob/ramics2020s/utils/Library_extra/Terminated_lists.thy#L712
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Corollary 1. If (H,+H, ΦH) is a USTA, then (fs,̂fs , Φfs) is a USTA.

This demonstrates that to construct such a USTA it is sufficient to show that
H is a USTA. This is a much more general, and concise, construction, than that
proposed in [7], which instead requires satisfying nearly 26 axioms. Moreover,
our results do not rely on any assumptions about the type R, thus allowing the
second component of such pairs in a trace to record arbitrary information, not
only refusal sets as proposed in [7]. Next we focus on key properties of traces
leading to a demonstration that we can derive core laws of [7], and the healthiness
conditions of the corresponding UTP theory.

Properties. Below we establish key results on the difference of fs sequences.

Theorem 9. Provided (σ,+σ, Φσ) is a USTA and s ≤ t, where s, t : fs,

tail(t − s) = tail(t − front(s)) (S1)
head(t − s) = head(t − front(s)) − last(s) (S2)

last(s) ≤ head(t − front(s)) (S3)

The tail of the difference t−s is the tail of the difference between t and the front
of s (S1). Likewise, the head of the difference t − s is equal to the last element
of s subtracted from the head of the difference t − front(s) (S2). Related, (S3)
establishes that last(s) is a prefix of head(t − front(s)).

To illustrate the role of S1, we consider, as an example the subtraction of a fs
sequence whose elements are standard sequences. The subtraction of 〈〈a〉, 〈b〉〉fs
from 〈〈a〉, 〈b, c〉, 〈d〉〉fs is 〈〈c〉, 〈d〉〉fs , indicating that the first element where the
sequences differ is the inner sequence 〈b, c〉. The front of 〈〈a〉, 〈b〉〉fs is 〈〈a〉, 〈〉〉fs ,
and so the difference 〈〈a〉, 〈b, c〉, 〈d〉〉fs − 〈〈a〉, 〈〉〉fs is 〈〈b, c〉, 〈d〉〉fs . Finally, the
tail(〈〈b, c〉, 〈d〉〉fs) = 〈〈〉, 〈d〉〉fs coincides with that of 〈〈c〉, 〈d〉〉fs .

Moreover, we show below that Eq. 3 in [7] also holds in our setting of fs
sequences of parametric pairs P, provided (H,+H, ΦH) is a USTA.

Lemma 6. s ̂fs t = front(s) ̂fs 〈last(s) +P head(t)〉fs ̂fs tail(t).

The concatenation of traces s and t can be decomposed into the concatenation
of the front of s with a singleton sequence, whose only element is the result of
concatenating (+P) the last pair of s and the head pair of t , and the tail of t .

Reactive Processes. Besides the definition of an abstract trace structure that
can be instantiated to yield the trace structure in [7], we discuss next how it can
be used to define a generalised theory of reactive processes. Here we focus on
the instantiation of the healthiness conditions.

Healthiness Conditions. The functions R1 and R3 are stated like in Sect. 2, but
in the context of a USTA (T ,̂, Φ), with tr and tr ′ of type T . R2, on the other
hand, must be adapted to accommodate the function Φ.

https://github.com/isabelle-utp/utp-main/blob/ramics2020s/utils/Library_extra/Terminated_lists.thy#L742
https://github.com/isabelle-utp/utp-main/blob/ramics2020s/utils/Library_extra/Monoid_extra.thy#L485
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Definition 12. R2(P) = P [Φ(tr), tr ′ − tr/tr , tr ′]

R2a(P) =
�

z • P [z , z ̂ (tr ′ − tr)/tr , tr ′] ∧ Φ(tr) = Φ(z )

Our definition for R2 is stated by replacing ε with Φ(tr). Moreover, the definition
for R2a, when compared to Definition 4, requires that, in addition z and tr agree
on the application of Φ. This closely follows a solution proposed in [7, p. 83].

Despite employing a weaker trace algebra, the core properties of R1, R2 and
R3, namely idempotency and monotonicity with respect to refinement, continue
to hold. Similarly, all laws of reactive processes, and those for other theories built
upon reactive processes, namely CSP, continue to hold as demonstrated by the
mechanisation in Isabelle/UTP, which features several hundreds of theorems.

Because the existing theories are mechanised we have been able to quickly
establish that all relevant properties hold when using our algebra. Proofs of clo-
sure for sequential and parallel composition under R2 required small adjustments
to take into account Φ, but were structurally kept unchanged. Next, we illustrate
a concrete instantiation of the algebra to accommodate the trace model of [4].

Concrete instantiation for Circus Time. In what follows we show how our algebra
can be instantiated to yield the theory of Circus Time, that encompasses behaviour
and data modelling in a discrete-time setting.

The parametric pair type P is instantiated with H as seq Σ, where Σ is
a given type of events, which is a USTA (seqΣ,�, 〈〉). Concatenation (�) is
associative (USTA1), left-cancellative (USTA3) and satisfies USTA4. The empty
sequence 〈〉 is a right-unit (USTA2). The parameter R is instantiated as PΣ,
a set of events. Thus, the first component of such a pair is a sequence and the
second a set of events. For example, the pair (〈a, b〉, {a}) records that having
performed events a, and then b, the system can refuse to engage in event a.

Therefore, the lifted structure of finite non-empty sequences fs parametrised
by the concrete pair structure above, gives rise to a USTA (Corollary 1). For
example, in Circus Time the sequence 〈(〈a, b〉, {a}), (〈〉, Σ)〉fs encodes a situation
where: during the first time unit a and b are performed, with a then being
refused, and during the following time unit no events are performed (〈〉) with
the system refusing to engage in any event (Σ).

Compared with the approach in [4], we have that both concatenation and sub-
traction of fs sequences (using the lifted structure) is total and closed under the
correct type. This provides for a precise encoding of the healthiness conditions
proposed in [4] using our abstract algebra. Furthermore, this makes mechanisa-
tion of the model in Isabelle/UTP an easier endeavour by eliminating the need
to reprove a substantial base of existing theorems of reactive processes.

In the remainder of this section we show two key results that demonstrate R1
and R2 can be instantiated to yield the counterpart definitions for Circus Time.

Lemma 7. s ≤ t ⇒ front(s) ≤ t ∧ fst(last(s)) ≤ fst(head(t − front(s))).

This corresponds to the conjunct in the definition of R1 for Circus Time as
defined in [16], for example, with the understanding that here front is total,
whereas in [7,16] it is a partial function over standard sequences.

https://github.com/isabelle-utp/utp-main/blob/ramics2020s/utils/Library_extra/Monoid_extra.thy#L479
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The definition of R2S for Circus Time is derived next. First we establish a
result for the subtraction of fs traces that depends on the following lemma.

Lemma 8. s ≤ t ⇒ snd(head(t−front(s))− last(s)) = snd(head(t−front(s))).

This lemma states that the second component of the difference, between the
head of the difference t and the front of s, and last(s), does not depend on
last(s), a result that follows from Lemma 4. For example, the subtraction of
〈(〈a〉, r2)〉fs from 〈(〈a, b〉, r1)〉fs yields the sequence 〈(〈b〉, r1)〉fs as the second
component only depends on r1, but not r2. Next, we establish a general result
for subtraction of fs traces.

Theorem 10. Provided s ≤ t, where s, t : fs,

t − s = 〈
(

fst(head(t − front(s))) − fst(last(s)),
snd(head(t − front(s)))

)

〉fs ̂fs tail(t − front(s))

Proof.

t − s [Lemma 5]
= 〈head(t − s)〉fs ̂fs tail(t − s) [S2 in Theorem 9]
= 〈head(t − front(s)) − last(s)〉fs ̂fs tail(t − s) [S1 in Theorem 9]
= 〈head(t − front(s)) − last(s)〉fs ̂fs tail(t − front(s)) [Pair structure]

=

⎛

⎝

〈
(

fst(head(t − front(s)) − last(s)),
snd(head(t − front(s)) − last(s))

)

〉fs
̂fs tail(t − front(s))

⎞

⎠ [Lemma 4]

=

⎛

⎝

〈
(

fst(head(t − front(s))) − fst(last(s)),
snd(head(t − front(s)) − last(s))

)

〉fs
̂fs tail(t − front(s))

⎞

⎠ [Lemma 8]

=

⎛

⎝

〈
(

fst(head(t − front(s))) − fst(last(s)),
snd(head(t − front(s)))

)

〉fs
̂fs tail(t − front(s))

⎞

⎠ 
�

The subtraction t −s can be expressed in terms of the difference t − front(s),
and last(s). The head of t − front(s) contains the observations up until the
end of the current time unit [16, p. 13]. Together with the pair instantiation as
before we can derive the concrete definition of R2 for Circus Time, similarly to
Definition 5 where Φ(tr) becomes 〈(〈〉, snd(last(tr)))〉fs following Definitions 8
and 11, and tr ′ −S tr is as given by Theorem 10.

5 Related Work

Traces are at the core of semantic models for reasoning about causality. Already
in Hoare’s CSP book [17] we can find a rich collection of operators and laws for
manipulating traces. In the standard semantics [3] of CSP traces are sequences

https://github.com/isabelle-utp/utp-main/blob/ramics2020s/utils/Library_extra/Monoid_extra.thy#L447
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of events ordered by sequence prefixing. Richer semantic models for CSP, such
as refusal testing [18,19] and the finite-linear models [3, p. 256], also record in
traces the set of events refused, or accepted, in the latter, before each event.

The modelling of time in semantics for process algebra is often achieved
by associating events or state observations with time. Hayes’ reactive timed
designs [20], comparable to action systems and TLA, define traces as mappings
from time (discrete or continuous) to the values of program variables.

Sherif et al. [4] defined a semantics for Circus Time where traces are sequences
whose elements are pairs, recording the events performed, and subsequently
refused, during a time unit. Wei et al. [5] considered an equivalent model, where
events and refusals are recorded separately in two distinct traces of equal length.
Woodcock et al. [6] in their semantics for CML define sequences whose elements
are events or refusal sets, that implicitly mark the passage of time, a structure
pioneered by Lowe and Ouaknine [21] in their timed traces.

Butterfield et al. [7] proposed a parametric theory, which is the inspiration
for the work presented in this paper. It generalises the model of Circus Time [4] to
account for different observation models within a time unit. A similar approach
is pursued by Zhu et al. [22], in their semantics for SystemC, who define a trace
as a three dimensional sequence structure to account for macro and micro time.

Trace models for true concurrency in process algebra include the works of
Barnes [23] and Smith [24]. The latter [24] defines traces whose elements are
sequences, with the prefix relation allowing permutations of the inner sequences.
This model can likely be instantiated as a trace algebra with elements as sets.
Barnes’ SCSP, on the other hand, cannot be instantiated within the setting of [7].

More recently, Foster et al. [9] proposed a left-cancellative monoid trace alge-
bra which is at the core of the mechanisation of several reactive theories in
Isabelle/UTP [11]. This enabled Foster et al. [25] to define reactive contracts, as
well as a theory for hybrid relations [26]. Their prefix relation over traces, how-
ever, is an order, which is inadequate to characterise traces where the relation is
not anti-symmetric. Our results are complementary and support the unification
of further trace models under the Isabelle/UTP framework.

6 Conclusions

Originally motivated by the goal of mechanising Circus Time [4] in the theo-
rem prover Isabelle/UTP [11], we have pursued an ambitious generalisation of
the monoid trace algebra [9] to account for a broader family of timed process
algebras. We have weakened the monoid axioms, inspired by the observations
in [7], to construct a novel unary semigroup trace algebra that is also a right
P-Ehresmann semigroup. Compared to the large set of axioms in [7], we have a
much smaller set that closely mirrors the axioms of the monoid trace algebra.

Our results support the definition of a parametric UTP theory of reactive
processes that abstractly characterises several trace-based semantics. Besides the
trace models discussed in [9] our algebra can be instantiated to account for the
models discussed in [7,8], including Circus Time [4]. In the future, we hope to
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accommodate the semantics for the system-level language SystemC [22], and
perhaps even other synchronous languages such as Esterel [27].

Besides providing a foundation for the unification of further trace models
in the UTP, we have also shown that our work has practical impact via its
mechanisation in Isabelle/UTP [11]. It promotes the reuse of a large collection
of theorems already established for the theories of reactive processes and reactive
designs. It would be interesting, for example, to revisit our mechanisation of a
stepwise construction for Circus Time [16] in this setting. Another avenue for
future work is the mechanisation of the Galois connection in [4] that enables
timed models to be verified using untimed tools.

The mechanisation of the timed operators of timed process calculi is likely
to benefit from the definition of a timed trace algebra, consisting of an addi-
tional function from traces to time, with continuous and discrete versions. Basic
processes, such as event prefixing and delay, may also be defined parametrically.

We envision it may be feasible to weaken the unary semigroup trace algebra
even further to characterise additional trace structures, such as those of refusal-
testing, the finite-linear model, and those of SCSP. However, it is likely that such
weakenings may reveal certain laws of reactive processes no longer hold. An open
question is the treatment of infinite traces, for example, which seem necessary to
give a full account of the hiding operator of CSP. The Isabelle/UTP [11] mech-
anisation will facilitate the design space exploration of such weakenings, with
immediate feedback provided to the proof engineer, a facility we used exten-
sively during the course of developing the algebra presented in this paper.
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Abstract. Let L be a complete lattice and let Q(L) be the unital quan-
tale of join-continuous endo-functions of L. We prove that Q(L) has
at most two cyclic elements, and that if it has a non-trivial cyclic ele-
ment, then L is completely distributive and Q(L) is involutive (that is,
non-commutative cyclic �-autonomous). If this is the case, then the dual
tensor operation corresponds, via Raney’s transforms, to composition in
the (dual) quantale of meet-continuous endo-functions of L.

Let Latt∨ be the category of sup-lattices and join-continuous func-
tions and let Lattcd∨ be the full subcategory of Latt∨ whose objects are

the completely distributive lattices. We argue that Lattcd∨ is itself an invo-
lutive quantaloid, thus it is the largest full-subcategory of Latt∨ with this
property. Since Lattcd∨ is closed under the monoidal operations of Latt∨,
we also argue that if Q(L) is involutive, then Q(L) is completely dis-
tributive as well; consequently, any lattice embedding into an involutive
quantale of the form Q(L) has, as its domain, a distributive lattice.

1 Introduction

Let C be a finite chain or the unit interval of the reals. In a series of recent
works [6,21,22] we argued that the unital quantale structure of Q(C), the set of
join-continuous functions from C to itself, plays a fundamental role to solve more
complex combinatorial and geometrical problems arising in Computer Science. In
[6,22] we formulated an order theoretic approach to the problem of constructing
discrete approximations of curves in higher dimensional unit cubes. On the side
of combinatorics, the results in [21] yield bijective proofs of counting results
(that is, bijections, through which these results can easily be established) for
idempotent monotone endo-functions of a finite chain [9,12] and a new algebraic
interpretation of well-known combinatorial identities [3].

The quantales Q(C), C a finite chain or [0, 1] ⊆ R, are involutive—or, using
another possible naming, non-commutative cyclic �-autonomous. The involution
is used in the mentioned works, even if is not clear to what extent it is necessary.
It was left open in these works whether there are other complete chains C such
that Q(C) is involutive and, at its inception, the aim of this research was to
answer this question. Let us use Q(L) for the unital quantale of join-continuous

c© Springer Nature Switzerland AG 2020
U. Fahrenberg et al. (Eds.): RAMiCS 2020, LNCS 12062, pp. 286–301, 2020.
https://doi.org/10.1007/978-3-030-43520-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43520-2_18&domain=pdf
https://doi.org/10.1007/978-3-030-43520-2_18


The Involutive Quantaloid of Completely Distributive Lattices 287

endo-functions of a complete lattice L. Recalling that involutive quantale struc-
tures on a given quantale are determined by the cyclic dualizing elements and
that complete chains are completely distributive, the following statement from
the monograph [4] shows that Q(C) is involutive for each complete chain C.

Proposition 2.6.18 in [4]. Let L be a complete lattice and let oL be the join-
continuous self-mapping on L defined by oL(x) :=

∨
x�≤z z, for x ∈ L. Then the

following assertions are equivalent: (i) oL is a dualizing element of the quantale
Q(L), (ii) L is completely distributive.

This proposition also covers another important example studied in the liter-
ature. Let D(P ) be the perfect completely distributive lattice of downsets of a
poset P . According to the proposition, Q(D(P )) is involutive, a fact that can
also be inferred via the isomorphism with the residuated lattice of weakening
relations on P , known to be involutive, see [10,13,19].

We strengthen here the above statement in many ways. Firstly, we observe
that the quantale Q(L) has at most two cyclic elements and that cyclicity of oL

is almost sufficient for Q(L) to be involutive:

Theorem. If c ∈ Q(L) is cyclic, then either c is the top element of Q(L) or
c = oL. Moreover, if oL is cyclic and not equal to the top element of Q(L), then
L is completely distributive (and therefore Q(L) is involutive, as from Proposi-
tion 2.6.18 of [4]).

An important consequence of the previous statement is that the quantale
Q(L) can be made into an involutive quantale in a unique way:

Theorem. If the quantale Q(L) is involutive, then its dualizing cyclic element
is the join-continuous function oL.

In the direction from L to Q(L), we observe that the local involutive quan-
tale structures on each completely distributive lattice fit together in a uniform
way. A quantaloid is a category whose homsets are complete lattices and for
which composition distributes on both sides with suprema. As a quantale can
be considered as a one-object quantaloid, the notion of involutive quantale nat-
urally lifts to the multi-object context—so an involutive quantale is a one-object
involutive quantaloid. Involutive quantaloids are indeed the Girard quantaloids
introduced in [19]. The following statement, proved in this paper, makes precise
the intuition that the local involutive quantale structures are uniform:

Theorem. The full subcategory of the category of complete lattices and join-
continuous functions whose objects are the completely distributive lattices is an
involutive quantaloid.

The tools used in this paper rely on and emphasize Raney’s characterization
of completely distributive lattices [15,16]. A main remark that we develop is that
if Q(L) is involutive, then the dual quantale structure of Q(L) arises from Q(L∂),
the quantale of meet-continuous endo-functions of L, via Raney’s transforms (to
be studied in Sect. 5).
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Overall, this set of results yields an important clarification of the algebra used
in our previous works [6,21,22] and, more importantly, new characterizations of
completely distributive lattices adding up to the existing ones, see e.g. [7,11,
15,16,23]. These characterizations strongly rely on the algebra of quantales and
residuated lattices thus on relation algebra, in a wider sense.

An ideal goal of future research is to characterize the equational theory of the
involutive residuated lattices of the form Q(L). For the moment being, we observe
that the units of the involutive quantale Q(L), L a completely distributive lattice,
may be used to characterize properties of L:

Theorem. A complete lattice is a chain if and only if the inclusion 0 ≤ 1 (in
the language of involutive residuated lattices) holds in Q(L), i.e. if and only if
Q(L) satisfies the mix law. A completely distributive lattice has no completely
join-prime elements if and only if the inclusion 1 ≤ 0 holds in Q(L).

It is known that the full subcategory of the category of complete lattices and
join-continuous functions whose objects are the completely distributive lattices,
the involutive quantaloid of completely distributive lattice, is closed under the
monoidal operations inherited from the super category, see e.g. [4,7,20]. In par-
ticular, this quantaloid is itself a �-autonomous category. For the sake of studying
the equational theory of the Q(L), this fact and the previous results jointly yield
the following remarkable consequence:

Corollary. If Q(L) is an involutive quantale, then it is completely distributive.

On the side of logic, it is worth observing that enforcing a linear nega-
tion (the involution, the star) on the most typical models of intuitionistic non-
commutative linear logic also enforces a classical behaviour, distributivity, of
the additive logical connectors. Apart from the philosophical questions about
logic, the above corollary pinpoints an important obstacle in finding Cayley
style representation theorems for involutive residuated lattices or a generaliza-
tion of Holland’s theorem [8] from lattice-ordered groups to involutive residuated
lattices:

Corollary. If a residuated lattice embedding of Q into some involutive residu-
ated lattice of the form Q(L) exists, then Q is distributive.

Finally, we observe that these mathematical results pinpoint the importance
and the naturalness of considering a linear logic based on a distributive set-
ting. This algebraic setting has already many established facets and applica-
tions. Among them, let us mention bunched implication logic, for which our last
theorem provides non-standard pointless models. Let us also mention the usage
of this algebra in pointfree topology: here embeddability problems for quantales
dual to topological groupoids, problems analogous to the ones we are raising,
have already been investigated in depth, see e.g. [14].

The paper is organised as follows. In Sect. 2 we provide definitions and ele-
mentary results. In Sect. 3 we introduce the notion of an involutive quantaloid
(we shall identify an involutive quantale with a one-object involutive quantaloid).
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We prove in Sect. 4 that if a quantale of the form Q(L) is involutive, then it has
just one cyclic dualizing element. That is, there can be at most one involutive
quantale structure extending the structure of Q(L). Moreover, we prove in this
section that if Q(L) has a non-trivial cyclic element, then L is a completely dis-
tributive lattice. The uniqueness of the involutive structure is intimately related
to the fact—analyzed at the end of Sect. 4—that the only central elements of
Q(L) are the identity and the constant function mapping to the bottom of L. In
Sect. 5 we introduce Raney’s transforms and their elementary properties. Raney’s
transforms are the main tool used to prove, in Sect. 6, that completely distribu-
tive lattices form an involutive quantaloid. In Sect. 7 we develop some consider-
ations on the equational theories of the lattices Q(L) among which, the use of
the multiplicative units of Q(L) to characterize properties of L and the fact that
Q(L) is completely distributive whenever it is Q(L) involutive.

2 Definitions and Elementary Results

Complete Lattices and the Category Latt∨. A complete lattice is a poset L such
that each X ⊆ L has a supremum

∨
X. A map f : L −−→ M is join-continuous

if f(
∨

X) =
∨

f(X), for each subset X ⊆ L. We shall denote by Latt∨ the
category whose objects are the complete lattices and whose morphisms are the
join-continuous maps.

For a poset P, P ∂ denotes the poset with the same elements of P but
with the reverse ordering: x ≤P ∂ y iff y ≤P x. In a complete lattice, the set∨{ y | y ≤ x, for each x ∈ X } is the infimum of X. Therefore, if L is complete,
then L∂ is also a complete lattice. Moreover, if L,M are complete lattices and
f : L −−→ M is join-continuous, then the map ρ(f) : M −−→ L, defined by
ρ(f)(y) :=

∨{x ∈ L | f(x) ≤ y }, preserves infima and therefore it belongs to
the homset Latt∨(M∂ , L∂). The map ρ(f) is the right adjoint of f , meaning
that, for each x ∈ L and y ∈ M , f(x) ≤ y if and only if x ≤ ρ(f)(y). For
g : M −−→ L meet-continuous, its left adjoint �(g) : L −−→ M is defined simi-
larly, and satisfies �(g)(x) ≤ y if and only if x ≤ g(y), for each x ∈ L and y ∈ M .
Consequently, �(ρ(f)) = f and ρ(�(g)) = g. Indeed, by defining with f∂ := ρ(f),
( · )∂ : Latt∨ −−→ Lattop∨ is a (contravariant) functor and a category isomorphism.

Let { fi | i ∈ I } be a family of join-continuous functions from L to M . The
function

∨
i∈I fi, defined by (

∨
i∈I fi)(x) :=

∨
i∈I fi(x), is a join-continuous map

from L to M . Therefore the homset Latt∨(L,M), with the pointwise ordering, is
a complete lattice, where suprema are computed by the above formula. The same
formula shows that the inclusion of Latt∨(L,M) into ML, the set of all functions
form L to M , is join-continuous. It follows that, for every f : L −−→ M , there
is a (uniquely determined) greatest join-continuous function h ∈ Latt∨(L,M)
such that h ≤ f ; in the following we shall use int(f) to denote such h. Observe
also that, by monotonicity of composition, int(g) ◦ int(f) ≤ g ◦ f and therefore
int(g) ◦ int(f) ≤ int(g ◦ f).

Quantales and Involutive Quantales. A quantale is a complete lattice Q coming
with a semigroup operation ◦ that distributes with arbitrary sups. That is, we
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have (
∨

X) ◦ (
∨

Y ) =
∨

x∈X,y∈Y x ◦ y, for each X,Y ⊆ Q. A quantale is unital if
the semigroup operation has a unit. As we shall always consider unital quantales,
we shall use the wording quantale as a synonym of unital quantale. In a quantale
Q, left and right residuals are defined as follows: x\y :=

∨{ z ∈ Q | x ◦ z ≤ y }
and y/x :=

∨{ z ∈ Q | z ◦ x ≤ y }. Clearly, we have the following adjointness
relations: x ◦ y ≤ z iff y ≤ x\z iff x ≤ z/y. Let us recall that a quantale Q is a
residuated lattice, that is an algebra on the signature ∧,∨, 1, ◦, \, /, satisfying a
finite identities, see e.g. [5, §2.2].

A standard example of quantale is Q(L), the set of join-continuous endo-
functions of a complete lattice L. In this case, the semigroup operation is function
composition; otherwise said, Q(L) is the homset Latt∨(L,L). We shall consider
special elements of Q(L) and of Q(L∂). For x ∈ L, let cx, ax, αx : L −−→ L be
defined as follows:

cx(t) :=

{
x , t 	= ⊥ ,

⊥ , t = ⊥ ,
ax(t) :=

{
� , t 	≤ x ,

⊥ , t ≤ x ,
αx(t) :=

{
� , x ≤ t ,

⊥ , x 	≤ t .
(1)

Clearly, cx, ax ∈ Q(L) while αx ∈ Q(L∂). Moreover, we have ρ(cx) = αx.

Completely Distributive Lattices. A complete lattice L is said to be completely
distributive if, for each pair of families π : J −−→ I and x : J −−→ L, the following
equality holds

∧

i∈I

∨

j∈Ji

xj =
∨

ψ

∧

i∈I

xψ(i),

where Ji = π−1(i), for each i ∈ I, and the meet on the right is over all sections ψ
of π, that is, those functions such that π ◦ ψ = idI . Let us recall that the notion
of a completely distributive lattice is auto-dual, meaning that a complete lattice
L is completely distributive iff L∂ is such. For each complete lattice L, define

oL(x) :=
∨

{ t | x 	≤ t }, ωL(y) :=
∧

{ t | t 	≤ y }. (2)

It is easy to see that oL ∈ Q(L) and that ρ(oL) = ωL. The following statement
appears in [16, Theorem 4]:

Theorem 1 (Raney). A lattice is completely distributive if and only if any of
the following equivalent conditions hold:

∨

x�≤t

ωL(t) = x,
∧

t�≤y

oL(t) = y. (3)

3 Involutive Quantaloids

The purpose of this section is to define involutive quantaloids which, not sur-
prisingly, turn out to be the Girard quantaloids of [19]. Let us mention that,
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following [1,2] and [6,22], another possible naming for the same concept is non-
commutative, cyclic, star-autonomous quantaloid. For the sake of conciseness,
we prefer the wording involutive quantaloid.

We recall that a quantaloid, see e.g. [23], is a category Q enriched over the
category of sup-lattices. This means that, for each pair of objects L,M of Q,
the homset Q(L,M) is a complete lattice and that composition distributes over
suprema in both variables, (

∨
i∈I gi) ◦ (

∨
j∈J fj) =

∨
i∈I,j∈J fi ◦ gj . A quantale,

see e.g. [18], might be seen as a one-object quantaloid. The category Latt∨ is
itself a quantaloid. The definition below mimics, in a multisorted setting, a pos-
sible definition of involutive quantale or of involutive residuated lattice. For the
possible equivalent definitions of these notions, see e.g. [2] or [5, §3.3].

Definition 2. An involutive quantaloid is a quantaloid Q coming with opera-
tions

( · )�L,M : Q(L,M) −−→ Q(M,L) , L,M objects of Q,

satisfying the following conditions:

1. (f�L,M )�M,L = f , for each f ∈ Q(L,M),
2. for each f, g ∈ Q(L,M),

f ≤ g iff f ◦ g�L,M ≤ 0M iff g�L,M ◦ f ≤ 0L ,

where 0M := (idM )�M,M and 0L := (idL)�L,L .

An involutive quantale is a one-object involutive quantaloid.

The superscripts L and M in ( · )�L,M shall be omitted if they are clear from the
context. We state next elementary facts without proofs, the reader shall have no
difficulty providing them. For a category C enriched over posets, we use Cco for
the category with same objects and homsets, but for which the order is reversed.

Lemma 3. In an involutive quantaloid Q, if any of the inequalities below holds,
then so do the other two:

L N

M

f

h

g≤

N M

L

h�

g�

f≤

M L

N

g

f�

h�

≤

In particular, the operations � are order reversing, so � is the arrow part of a
functor Q −−→ (Qop)co which is the identity on objects.

Let us recall that in any quantaloid residuals exist being defined as follows:
for f : L −−→ M , g : M −−→ N , and h : L −−→ N ,

g\h : L −→ M :=
∨

{ k | g ◦ k ≤ h } , h/f : M −→ N :=
∨

{ k | k ◦ f ≤ h } ,

so, the usual adjointness relations hold: g ◦ f ≤ h iff f ≤ g\h iff g ≤ h/f .
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Lemma 4. In an involutive quantaloid, for f : L −−→ M , g : M −−→ N , and
h : L −−→ N , we have the following equalities:

g\h = (h�L,N ◦ g)�M,L , h/f = (f ◦ h�L,N )�N,M .

In particular (for L = N and h = 0L) we have g\0L = g�M,L and 0L/f = f�L,M .

Let us argue that our definition coincides with the definition of a Girard
quantaloid given in [19]. It is readily seen that, given an involutive quantaloid
Q, the collection { 0L = id�

L | L an object of Q } is a cyclic dualizing family
in the sense of [19]. Conversely, given such a family and f : L−−→M , we can
define f� := f\0M and this definition yields an involutive quantaloid structure
as defined here. This definition also sets a bijective correspondence between the
two kind of structures.

4 Cyclic Elements of Q(L)

We prove in this section that if a quantale of the form Q(L) is involutive, then
id�

L equals oL defined in Eq. (2). From this it follows that there is at most one
involutive quantale structure on Q(L) extending the quantale structure. More-
over, we also prove that if oL is cyclic and distinct from c�, then L is completely
distributive. To this end, let us firstly recall the following standard definitions:

Definition 5. Let Q be a quantale. An element α ∈ Q is said to be

– cyclic if f\α = α/f , for each f ∈ Q,
– dualizing if (α/f)\α = α/(f\α) = f , for each f ∈ Q.

We already mentioned that involutive quantale structures on a quantale Q are
in bijection with cyclic dualizing elements of Q. Let us also recall that, for an
involutive quantaloid Q and an object L of Q, 0L := (idL)�L,L is both a cyclic
and a dualizing element of the quantale Q(L,L).

An important first observation, stated in the next lemma, is that residuals
of the form g\h in Latt∨ can be constructed by means of the operations int( · )
(greatest join-continuous map below a given one) and ρ( · ) (taking the right
adjointof a join-continuous map).

Lemma 6. For each g ∈ Latt∨(M,N), h ∈ Latt∨(L,N), we have

g\h = int(ρ(g) ◦ h).

Proof. Indeed, for each f ∈ Latt∨(L,M), we have f ≤ g\h iff g ◦ f ≤ h, iff
g(f(x)) ≤ h(x), for each x ∈ L, iff f(x) ≤ ρ(g)(h(x)), for each x ∈ L, iff f ≤
ρ(g) ◦ h, iff f ≤ int(ρ(g) ◦ h). �


For the next lemma, recall that the join-continuous map oL has been defined
in (2) and that the maps ct and at have been defined in (1).

Lemma 7. We have oL =
∨

t∈L ct ◦ at.
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Proof. Observe that ct(at(x)) = ⊥, if x ≤ t, and ct(at(x)) = t, if x 	≤ t. Therefore

(
∨

t∈L

ct ◦ at)(x) =
∨

t∈L

(ct(at)(x)) =
∨

t∈L,

ct(at(x)) �=⊥

ct(at(x)) =
∨

t∈L,

x�≤t

t = oL(x) . �


Lemma 8. For each x ∈ L, int(αx) = aoL(x).

Proof. Let us observe that ao(x) ≤ αx. This amounts to verifing that if αx(t) = ⊥,
then ao(x)(t) = ⊥. Now, αx(t) = ⊥ iff x 	≤ t, and so t ≤ o(x), thus ao(x)(t) = ⊥.
Next, let us suppose that f : L −−→ L is join-continuous and below αx. Thus,
if αx(t) = ⊥, that is, if x 	≤ t, then f(t) = ⊥. Then f(o(x)) = f(

∨
x�≤t t) =∨

x�≤t f(t) = ⊥. By monotonicity of f , if t ≤ o(x), then f(t) = ⊥, showing that
f ≤ ao(x). �

Theorem 9. For each complete lattice L, the quantale Q(L) has at most two
cyclic elements, among c� and oL.

Proof. Now, let h ∈ Q(L) be cyclic. First we prove that oL ≤ h. Consider that,
for each x ∈ L, ax ◦ cx = c⊥ ≤ h. Thus, since g ◦ f ≤ h if and only if f ◦ g ≤ h,
we also have cx ◦ ax ≤ h. Since this relation holds for each x ∈ L, then, using
Lemma 7, the relation oL =

∨
x∈L cx ◦ ax ≤ h holds.

We argue now that if h 	= c�, then h ≤ oL and therefore h = oL. Let x ∈ L
and consider that cx ◦ cx\h ≤ h. By cyclicity, we also have cx\h ◦ cx ≤ h.

Now, cx\h = int(ρ(cx) ◦ h) = int(αx ◦ h) and therefore, using Lemma 8,

aoL(x) ◦ h ◦ cx = int(αx) ◦ int(h) ◦ cx ≤ int(αx ◦ h) ◦ cx = cx\h ◦ cx ≤ h .

If t 	= ⊥, then, by evaluating the above inequality at t, we get aoL(x)(h(x)) ≤ h(t).
Since aoL(x)(h(x)) takes values ⊥ and �, this means that aoL(x)(h(x)) = �
implies � ≤ h(t), for all t 	= ⊥. That is, if h(x) 	≤ oL(x), then h(t) = �, for all
t 	= ⊥ and x ∈ L. Otherwise stated, if h 	≤ oL, then h = c�. �


Let us recall that a nucleus on a quantale Q is a closure operator j such that
j(g)◦ j(f) ≤ f(g ◦f). Nuclei are sort of congruences in the category of quantales
while quotients into some involutive quantale bijectively correspond to nuclei j
of the form j(f) = (f\0)\0 where 0 is cyclic [17, Theorem 1]. Thus, the above
theorem exhibits the quantales Q(L) as sort of simple w.r.t. involutive quantales.

Lemma 10. If L is not trivial, then c� is not a dualizing element of Q(L).

Proof. Observe that c� is the greatest element of Q(L) and, for this rea-
son, f\c� = c�/f = c�, for each f ∈ Q(L). If c� is dualizing, then
c⊥ = (c�/c⊥)\c� = c�. Considering that the mapping from sending x ∈ L
to cx ∈ Q(L) is an embedding, this shows that ⊥ = � in L. �

Corollary 11. If h ∈ Q(L) is a cyclic and dualizing element, then h = oL. That
is, if Q(L) is an involutive quantale, then id�

L = oL.
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Proof. If L is trivial, then so is Q(L), and h = c⊥ = oL. If L is not trivial, then,
by Theorem 9, h ∈ { oL, c� } and, by Lemma 10, h 	= c�. �


With respect to Theorem 9, we notice that c�, being the top element of Q(L),
is always cyclic. It is therefore pertinent to ask when oL is cyclic. Of course, this
is the case if oL = c�.

Theorem 12. If oL is a cyclic element of Q(L) and oL 	= c�, then x =∧
t�≤x oL(t), for each x ∈ L. Consequently, L is a completely distributive lattice.

Proof. Since oL is cyclic, then, for each x, y ∈ L, the two conditions (a) cy ◦ax ≤
oL and (b) ax ◦ cy ≤ oL are equivalent.

Condition (a) states that, for each t ∈ L, t 	≤ x implies y ≤ oL(t); that
is y ≤ ∧

t�≤x oL(t). Condition (b) states that, for each t 	= ⊥, if y 	≤ x then
oL(t) = �. This condition is equivalent to y 	≤ x implies oL = c� or, equivalently,
to oL 	= c� implies y ≤ x. Thus we have that, if oL is cyclic and oL 	= c�,
then (c) for each x, y ∈ L, y ≤ x iff y ≤ ∧

t�≤x oL(t). Now, condition (c) is
easily recognized to be equivalent to the equality x =

∧
t�≤x oL(t), holding for

each x ∈ L. From the latter identity, complete distributivity of L follows using
Raney’s characterization of complete distributivity, Theorem1. �


In this way we also obtain a refinement of one side of the equivalence stated
in Proposition 2.6.18 of [4], where we do not need to refer to the cyclic dualizing
element.

Corollary 13. If Q(L) is an involutive quantale, then L is a completely dis-
tributive lattice.

Proof. If Q(L) is an involutive quantale, then its dualizing cyclic element is,
necessarily, oL. In particular, oL is cyclic and distinct from c�. By Theorem 12,
L is completely distributive. �

We shall see that oL is also dualizing if L is completely distributive. A remarkable
fact arising from these considerations is that, on the class of pointed residuated
lattices 〈Q(L), p〉 (where p ∈ Q(L) is the point), the universal sentence p 	=
� & ∀x.x\p = p/x implies distributivity as well as the linear double negation
principle, x = (x\p)\p.

The Center of Q(L). Uniqueness of an involutive quantale structure extending
the quantale structure of Q(L) can also be achieved through the observation that
the unique central elements of Q(L) are idL and c⊥. We are thankful to Claudia
Muresan for her help with investigating the center of Q(L).

Definition 14. We say that an element β of a quantale Q is

– central if β ◦ x = x ◦ β, for each x ∈ Q,
– codualizing if x = β\(β ◦ x), for each x ∈ Q.

Lemma 15. If Q is an involutive quantale, then α ∈ Q is cyclic if and only if
α� is central and it is dualizing if and only if α� is codualizing.
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Proof. Since x\α = (α�◦x)�, α/x = (x◦α�)�, and ( · )� is invertible, the equality
x\α = α/x holds if and only if the equality α� ◦ x = x ◦ α� holds.

Now α is dualizing if and only if, for each x ∈ Q, x = α/(x\α) = α�\(x\α)� =
α�\(α� ◦ x). �

Proposition 16. The only central elements of Q(L) are idL and c⊥.

Proof. Clearly, idL and c⊥ are central, so we shall be concerned to prove that
they are the only ones with this property. To this end, for x0 ∈ L, define

νx0(t) :=

{
⊥ , t ≤ x0

t , otherwise.

Notice that if x0 = ⊥, then νx0 = idL, while if x0 = �, then νx0 = c⊥. We firstly
claim that if β is central in Q(L), then β = νx0 , for some x0 ∈ L. Suppose β is
central. For each x ∈ L, we have cx(x) = x and therefore

β(x) = (β ◦ cx)(x) = cx(β(x)) .

If β(x) 	= ⊥, then, evaluating the rightmost expression, we obtain β(x) = x. Let
x0 :=

∨{ y | β(y) = ⊥ }, so β(x0) = ⊥. If t ≤ x0, then β(t) ≤ β(x0) = ⊥ and,
otherwise, β(t) 	= ⊥ and so β(t) = ct(β(t)) = t. Therefore, β = νx0 .

Next, we claim that if x0 	∈ {⊥,� }, then νx0 is not central. Observe that

νx0(f(x)) =

{
⊥ , f(x) ≤ x0 ,

f(x) , otherwise ,
f(νx0(x)) =

{
⊥ , x ≤ x0 ,

f(x) , otherwise .

It follows that if νx0 ◦ f = f ◦ νx0 , then f(x0) ≤ x0. Indeed, if f(x0) 	≤ x0, then
f(x0) 	= ⊥, νx0(f(x0)) = f(x0) 	= ⊥, and f(νx0(x0)) = ⊥. Now, if x0 	∈ {⊥,� },
then c� is such that x0 < � = c�(x0), and therefore νx0 ◦ c� 	= c� ◦ νx0 . �


It is now possible to argue that, for a complete lattice L, there exists at most
one extension of Q(L) to an involutive quantale as follows. Suppose that Q(L)
is involutive, so let ( · )� be a fixed involutive quantale structure. We shall argue
that id�

L is the unique cyclic and dualizing element of Q(L). If α is an arbitrary
cyclic and dualizing element of Q(L), then β := α� is central and codualizing and
β ∈ { c⊥, idL } using Proposition 16. Since β is codualizing, then it is an injective
function: if β(x) = β(y), then β◦cx = β◦cy and cx = β\(β◦cx) = β\(β◦cy) = cy;
since the mapping sending t to ct is an embedding, we obtain x = y. Thus, if
L is not trivial, β 	= c⊥ (since c⊥ is constant). Whether or not L is trivial, we
derive β = idL. It follows that α = α�� = β� = id�

L.

5 Raney’s Transforms

Let L,M be two complete lattices. For f : L −−→ M , define

f∨(x) :=
∨

x�≤t

f(t) , f∧(x) :=
∧

t�≤x

f(t) , for each x ∈ L.
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We call f∨ and f∧ the Raney’s transforms of f . Notice that f is not required to
be monotone in order to define f∨ or f∧ which, on the other hand, are easily seen
to be monotone; these functions are even join and meet-continuous, respectively,
as argued in the next lemma.

Lemma 17. For any f : L −−→ M , define

gf (y) :=
∧

{ z | f(z) 	≤ y } . (4)

Then gf is right adjointto f∨ and therefore f∨ is join-continuous. Dually, f∧ is
meet-continuous.

We call the operation ( · )∨ Raney’s transform for the following reason. For
θ ⊆ L × M an arbitrary relation, Raney [16] defined (up to some dualities)

rθ(x) :=
∧

{ y ∈ M | ∀(t, v). (t, v) ∈ θ implies x ≤ t or v ≤ y } . (5)

Recall that a left adjoint � : L −−→ M can be expressed from its right
adjoint ρ : M −−→ L by the formula �(x) =

∧{ y | x ≤ ρ(y) }. Using this expres-
sion with � = f∨ and ρ = gf defined in (4), we obtain

f∨(x) =
∧

{ y ∈ M | ∀t. f(t) 	≤ y implies x ≤ t } . (6)

Clearly, if in (5) we let θ be the graph of f , defined by (t, v) ∈ θ if and only if
f(t) = v, then we obtain equality between the right-hand sides of (5) and (6),
and so f∨ = rθ.

We list next the few properties we need to know about these transforms.

Lemma 18. The transform ( · )∨ has the following properties:

1. if f ≤ g : L −−→ M , then f∨ ≤ g∨,
2. if g : L −−→ M and f : M −−→ N is monotone, then (f ◦ g)∨ ≤ f ◦ (g∨),
3. if g : L −−→ M and f : M −−→ N is join-continuous, then (f ◦ g)∨ = f ◦(g∨),
4. if f : L −−→ M is join-continuous (with L and M complete), then

�(f∧) = ρ(f)∨ : M −−→ L . (7)

The proof of these properties does not present difficulties, possibly apart for the
last item, for which we refer the reader to [7, Proposition 4.6 (b.iii)].

6 Lattcd∨ Is an Involutive Quantaloid

We prove now that Lattcd∨ , the full subcategory of Latt∨ whose objects are the
completely distributive lattices, is an involutive quantaloid. By the results of
Sect. 4, this is also the largest full subcategory of Latt∨ with this property.

Recall from Theorem 1 that a complete lattice is completely distributive if
and only if ωL

∨ = idL (or, equivalently, oL
∧ = idL).
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Lemma 19. If L is a completely distributive lattice and f : L −−→ M is mono-
tone, then int(f) = (f ◦ ωL)∨ and f∨ = int(f ◦ oL).

Proof. By monotonicity of f , we have (f ◦ ωL)∨ ≤ f ◦ (ωL
∨) = f . Suppose that

g is join-continuous and g ≤ f . Then g = g ◦ (ωL
∨) = (g ◦ ωL)∨ ≤ (f ◦ ωL)∨. To

see that f∨ = int(f ◦oL), observe that f∨ = (f ◦ id)∨ ≤ f ◦(idL
∨) = f ◦oL, and

therefore f∨ ≤ int(f ◦ oL). On the other hand, int(f ◦ oL) = (f ◦ oL ◦ ωL)∨ ≤
f∨, using the conunit of the adjunction, oL ◦ ωL ≤ idL. �


The interior operator so defined is quite peculiar, since for g : L −−→ M mono-
tone and f : M −−→ N join-continuous, we have

int(f ◦ g) = (f ◦ g ◦ ωL)∨ = f ◦ (g ◦ ωL)∨ = f ◦ int(g) .

In general, if L is not a completely distributive lattice, then we would have,
above, only an inequality, since int(f ◦ g) ≥ int(f) ◦ int(g) = f ◦ int(g).

Lemma 20. If L is a completely distributive lattice and f : L −−→ M is join-
continuous, then f = f∧∨.

Proof. We firstly show that f∧∨ ≤ f . If x 	≤ t, then f∧(t) =
∧

u�≤t f(u) ≤ f(x)
and therefore f∧∨(x) =

∨
x�≤t f∧(t) ≤ f(x), for all x ∈ L. Let us argue that

f ≤ f∧∨:

f = f ◦ idL = f ◦ (ωL
∨) = (f ◦ ωL)∨ ≤ f∧∨ ,

where we have used the fact, dual to the relation f∨ = int(f ◦ oL) established
in Lemma 19, that f∧ is the least meet-continuous function above f ◦ ωL, so in
particular f ◦ ωL ≤ f∧. �


For f : L −−→ M join-continuous, define f�L,M : M −−→ L as follows:

f�L,M := ρ(f)∨ = �(f∧) .

Let us remark that the mappings ( · )� so defined are the maps witnessing that
completely distributive lattices are nuclear, see [7, Theorem 4.7]. We leave for
future research to establish an exact connection between the notions of involutive
quantaloid and of nuclear object in an autonomous category.

Theorem 21. The operations ( · )�L,M so defined yield an involutive quantaloid
structure on Lattcd∨ .

Proof. Firstly, we verify that f�� = f using Lemmas 18 and 20, and the fact that
the join-continuous functions are in bijection with meet-continuous functions via
taking adjoints: f�� = ρ(ρ(f)∨)∨ = ρ(�(f∧))∨ = f∧∨ = f .

We now verify that ( · )� satisfies the constraints needed to have an involutive
quantaloid. Let us remark that id�

L = ρ(idL)∨ = idL
∨ = oL.

Observe that since ( · )� is defined by composing an order reversing and an
order preserving function, it is order reversing. Since it is an involution, then
f ≤ g if and only if g� ≤ f�.
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Now we assume that f : L −−→ M and h : M −−→ L and recall (see
Lemma 19) that h�M,L = ρ(h)∨ = int(ρ(h) ◦ oL) : L −−→ M . Therefore, h ◦ f ≤
oL if and only if f ≤ ρ(h)◦oL, if and only if f ≤ int(ρ(h)◦oL) = h�. Therefore,
if g : L −−→ M , then (letting h = g�) f ≤ g if and only if g� ◦ f ≤ oL. Then,
also, f ≤ g if and only if g� ≤ f� if and only if f ◦ g� ≤ oM . �


Putting together Theorems 12 and 21, we obtain the following generalization
of Proposition 2.6.18 in [4], where no mention of the choice of the cyclic dualizing
element is required.

Corollary 22. The quantale Q(L) is involutive if and only if L is a completely
distributive lattice.

For f : L −−→ M and g : M −−→ N (with L,M,N completely distributive lat-
tices), let us define

g ⊕ f := (f� ◦ g�)� : L −−→ M ,

and observe that

(g ⊕ f) = (f� ◦ g�)� = ρ((�(f∧) ◦ �(g∧)))∨ = (g∧ ◦ f∧)∨ .

That is:

Proposition 23. The dual quantaloid structure arises via Raney’s transforms
from the composition Latt∨(L∂ ,M∂) × Latt∨(M∂ , N∂) −−→ Latt∨(L∂ , N∂).

7 Remarks on the Equational Theory of the Q(L)

We develop in this section few considerations concerning the equational theory
of the involutive residuated lattices Q(L).

Theorem 24. A complete lattice L is a chain if and only if Q(L) is an involutive
quantale satisfying the mix rule, i.e. the inclusion x ◦ y ≤ x ⊕ y.

Proof. It is well known that the mix rule is equivalent to the inclusion 0 ≤ 1—
where 1 is the unit for ◦ and 0 is the unit for ⊕. Therefore, an involutive quantale
of the form Q(L) satisfies the mix rule if and only if oL ≤ idL. This relation is
easily seen to be equivalent to the statement that if x 	≤ t, then t ≤ x, so L is a
chain. For the converse, we just need to recall that every chain is a completely
distributive lattice. �


Let us recall that an element x of a complete lattice L is completely join-
prime if, for every Y ⊆ L, the relation x ≤ ∨

Y implies x ≤ y for some y ∈ Y .
It is not difficult to see that x is completely join-prime if and only if x 	≤ oL(x).
Thus we say that a complete lattice is smooth if it has no completely join-prime
element. For example, the interval [0, 1] of the reals is a smooth completely
distributive lattice. The following statement is an immediate consequence of
these considerations.



The Involutive Quantaloid of Completely Distributive Lattices 299

Theorem 25. A complete lattice L is smooth if and only if idL ≤ oL. Thus,
a completely distributive lattice L is smooth if and only if Q(L) satisfies the
inclusion 1 ≤ 0 in the language of involutive residuated lattices.

These statements generalize the remarks by Galatos and Jipsen, this collection,
on the involutive residuated lattice of weakening relations on P . Let us recall
that this involutive residuated lattice is isomorphic to Q(D(P )) where D(P ) is
the collection of downsets of P . Thus, they observe that Q(D(P )) satisfies the
mix rule if and only if P is a chain, and that there are no non-trivial posets P
such that Q(D(P )) satisfies the inclusion 1 ≤ 0. These facts might be seen as
consequences Theorems 24 and 25, considering that D(P ) is a chain if and only
if P is a chain, and that D(P ) is spatial, meaning that every element of D(P ) is
the join of the completely join-prime elements below it (so, D(P ) has plenty of
completely join-prime elements).

For a family { fi ∈ Latt∨(L,M) | i ∈ I }, let us define
∧

i∈I fi and
∧∧

i∈I fi by

(
∧

i∈I

fi)(x) :=
∧

i∈I

(fi(x)) , (
∧∧

i∈I

fi)(x) :=
∨

x�≤t

∧

i∈I

fi(ωL(t)) . (8)

Notice that
∧

i∈i fi need not be join-continuous while
∧∧

i∈I fi is join-continuous
and

∧∧
i∈I fi = int(

∧
i∈i fi) if L is completely distributive, see Lemma 19. Under

the latter condition,
∧∧

i∈I fi is the infimum of { fi | i ∈ I } within the complete
lattice Latt∨(L,M). The explicit description of the infimum given in (8) can be
exploited to prove that Lattcd∨ is closed under the monoidal operations inherited
from Latt∨, see e.g. [4,7,20], thus it is �-autonomous [1]. We expect the formula
in (8) also to be useful for computational issues, see Ramirez et al., this collection.

Coming back to the equational theory of the Q(L), an important consequence
of Lattcd∨ being �-autonomous is that Q(L) is completely distributive if L is
completely distributive (the converse holds as well). Then, the following obstacle
arises towards finding representation theorems for involutive residuated lattices
via the Q(L):

Corollary 26. If an involutive residuated lattice Q has an embedding into an
involutive quantale of the form Q(L), then Q is distributive.

Indeed, if Q(L) is an involutive quantale, then L is a completely distributive
lattice and Q(L) as well. Thus, if Q has a lattice embedding into Q(L), then L
is distributive.

8 Conclusions and Future Steps

The research exposed in this paper tackles and solves a natural problem encoun-
tered during our investigations of certain quantales built from complete chains
[6,21,22]. The problem asks to characterize the complete chains whose quantale
of join-continuous endomaps is involutive. Every complete chain is a completely
distributive lattice and by now we know that every complete chain has this prop-
erty; in particular, other properties of chains and posets, such as self-duality, are
not relevant.
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The solution provided, building on [4, Proposition 2.6.18], is as general as
possible, in two respects. On the one hand, an exact characterization of all the
complete lattices—not just the chains—L for which Q(L) is involutive becomes
available: these are the completely distributive lattices; improving on [4, Propo-
sition 2.6.18 ], we argue that the choice of a cyclic dualizing element does not
matter. In particular, the characterization covers different kind of involutive
quantales known in the literature, those discovered in our investigation of com-
plete chains and those known as the residuated lattices of weakening relations—
arising from the relational semantics of distributive linear logic. On the other
hand, we show that the involutive quantale structures on completely distributive
lattices are uniform, yielding and involutive quantaloid structure on the category
of completely distributive lattices and join-continuous functions.

We have drawn several consequences from the observations developed, among
them, the fact that if an involutive quantale Q can be embedded into an quantale
of the form Q(L), then it is distributive. This fact calls for a characterization of
the involutive residuated lattices embeddable into some Q(L), a research track
that might require to or end up with determining the variety of involutive resid-
uated lattices generated by the Q(L). A second research goal, that we might
tackle in a close future, demands to investigate the algebra developed in con-
nection with the continuous weak order [22] in the wider and abstract setting of
completely distributive lattices. Let us recall that in [22] a surprising bijection
was established between two kind of objects, the maximal chains in the cube
lattice [0, 1]d and the families { fi,j ∈ Q([0, 1]) | 1 ≤ i < j ≤ d } such that, for
i < j < k, fj,k ◦ fi,j ≤ fi,k ≤ fj,k ⊕ fi,j . So, are there other surprising bijections
if the interval [0, 1] is replaced by an arbitrary completely distributive lattice,
and if we move from the involutive quantale setting to the multisorted setting
of involutive quantaloids?

Acknowledgment. The author is thankful to Srecko Brlek, Claudia Muresan, and
André Joyal for the fruitful discussions these scientists shared with him on this topic
during winter 2018.
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Abstract. A modeloid, a certain set of partial bijections, emerges from
the idea to abstract from a structure to the set of its partial auto-
morphisms. It comes with an operation, called the derivative, which
is inspired by Ehrenfeucht-Fräıssé games. In this paper we develop a
generalization of a modeloid first to an inverse semigroup and then to
an inverse category using an axiomatic approach to category theory.
We then show that this formulation enables a purely algebraic view on
Ehrenfeucht-Fräıssé games.

1 Introduction

Modeloids have been introduced by Benda [1]. They can be seen as an abstraction
from a structure to a partial automorphism semigroup created in the attempt
to study properties of structures from a different, more general angle which is
independent of the language that is defining the structure. We do not follow
Benda’s original formulation in terms of an equivalence relation but treat mod-
eloids as a certain set of partial bijections. Our recent interest in them was
triggered by Scott’s suggestion to look at the modeloidal concept from a cat-
egorical perspective. The new approach aims at establishing a framework in
which the relationship between different structures of the same vocabulary can
be studied by means of their partial isomorphisms. The overall project is work
in progress, but as a first result we obtained a purely algebraic formulation of
Ehrenfeucht-Fräıssé games.

Throughout the project, computer-based theorem proving is employed in
order to demonstrate and explore the virtues of automated and interactive the-
orem proving in context. The software used is Isabelle/HOL [13] in the 2019
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Edition. We are generally interested in conducting as many proofs of lemmas
and theorems as possible by using only the sledgehammer1 command, and to
study how far full proof automation scales in this area. Reporting on these prac-
tically motivated studies, however, will not be the focus of this paper. We only
briefly mention here how we encoded, in Isabelle/HOL, an inverse semigroup
and an inverse category, and we present a summary of our practical experience.

Inverse semigroups (see e.g. [10] for more information) play a major role
in this paper. They serve as a bridge between modeloids and category theory.
The justification for this is given by the fact that an inverse semigroup can
be faithfully embedded into a set of partial bijections by the Wagner-Preston
representation theorem. This opens up the possibility of generalizing modeloids,
which are sets of partial bijections, to the language of inverse semigroup theory.

Once there, we have a natural transition from an inverse semigroup to an
inverse category (for further reference see [12]). We introduce the theory of inverse
categories by an equational axiomatization that enables computer-supported rea-
soning. This serves as the basis for our formulation of a categorical modeloid.

In each stage of generalization the derivative, a central operation in the theory
of modeloids, can be adapted and reformulated. This operation is about extend-
ing the elements of a modeloid. Suppose that τ is a finite relational vocabulary
meaning that τ consists only of finitely many relation and/or constant symbols.
As it turns out, the derivative on a categorical modeloid on the category of finite
τ -structures is equivalent to playing an Ehrenfeucht-Fräıssé game.

This paper is organized in the following way. In Sect. 2 we define both mode-
loids and the derivative operation. We then turn to inverse semigroups in Sect. 3
and develop the axiomatization of a modeloid in inverse semigroup language.
Section 4 shows how to represent a category in Isabelle/HOL and defines the
categorical modeloid. After the derivative operation is established in this con-
text, we give an introduction to Ehrenfeucht-Fräıssé games in Sect. 5 and present
the close connection between the categorical derivative and Ehrenfeucht-Fräıssé
games. Proofs for the stated theorems, propositions and lemmas are presented in
the extended preprint [16] of this paper (cf. also [15]); the Isabelle/HOL source
files are available online.2

2 Modeloids

Let us first recall the definitions of a partial bijection and of partial composition.

Definition 1 (Partial bijection and partial composition). A partial bijec-
tion f : X → Y is a partial injective function. The inverse of f , also a partial
bijection and denoted by f−1, is given by the preimage of the elements in the
codomain of f : f−1(y) = f−1({y}), ∀y ∈ cod(f).
1 Sledgehammer [3] is linking interactive proof development in Isabelle/HOL with
anonymous calls to various integrated automated theorem proving systems. Among
others, the tool converts the higher-order problems given to it into first-order repre-
sentations for the integrated provers, it calls them and analyses their responses, and
it tries to identify minimal sets of dependencies for the theorems it proves this way.

2 See http://christoph-benzmueller.de/papers/RAMICSadditionalMaterial.zip.

http://christoph-benzmueller.de/papers/RAMICSadditionalMaterial.zip
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The composition between two partial functions f : X → Y and g : Y → Z is
defined only on f−1(dom(g) ∩ cod(f)). Then the partial composition

(g ◦ f)(x) = g(f(x)), ∀x ∈ f−1(dom(g) ∩ cod(f))

is well-defined.

Furthermore, let Σ be a finite non-empty set. We then define

F (Σ) := {f : Σ → Σ | f is a partial bijection} (1)

as the set of all partial bijections on Σ.

Definition 2 (Modeloid[1]). Let M ⊆ F (Σ). M is called a modeloid on Σ
if, and only if, it satisfies the following axioms:

1. Closure of composition: f, g ∈ M ⇒ f ◦ g ∈ M
2. Closure of taking inverses: f ∈ M ⇒ f−1 ∈ M
3. Inclusion property: f ∈ M and A ⊂ dom(f) implies f |A ∈ M
4. Identity: idΣ ∈ M

As such, a modeloid is a set of partial bijections which is closed under com-
position and taking inverses, which has the identity on Σ as a member, and
which satisfies the inclusion property. The inclusion property can be seen as a
downward closure in regards of function restriction.

In order to further illustrate the definition, we present a motivating example
from model theory.

Example 1. Let S = (A,R1, ...) be a finite relational structure. The set M of all
partial isomorphisms on S forms a modeloid.

The name modeloid originates from the above example since S is also called a
model. For further motivation, background information and details on modeloids,
we refer to Benda’s paper [1]; a nice example in there is the construction of a
Scott Sentence presented through modeloidal glasses [1, p. 82]. We, on the other
hand, turn to the core concept of the derivative which is defined in the following
way. For convenience we represent a partial bijection as a set of tuples.

Definition 3 (Derivative). Let M be a modeloid on Σ. Then the derivative
D(M) ⊆ F (Σ) is defined by

{(x1, y1), ..,(xn, yn)} ∈ D(M) :⇔
∀a ∈ Σ ∃b ∈ Σ : {(x1, y1), .., (xn, yn), (a, b)} ∈ M ∧

∀a ∈ Σ ∃b ∈ Σ : {(x1, y1), .., (xn, yn), (b, a)} ∈ M

A derivative D(M) is thus a set which only contains partial bijections that
can be extended by an arbitrary element from Σ and which then still belong
to M . This extension can take place either in the domain or in the range of
the function. The next two results [1, Prop 2.3] provide some insight into why
modeloids and the derivative operation are in harmony.
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Lemma 1. Let M be a modeloid on Σ and D(M) the derivative. Then we have
that D(M) ⊆ M .

Proposition 1. If M is a modeloid then so is D(M).

The importance of these results is essentially due to the fact that they enable
us to apply the derivative repeatedly.

3 Inverse Semigroups and Modeloids

In this section we show how the Wagner-Preston representation theorem justifies
our generalization of a modeloid to inverse semigroup language. We also discuss
how well proof automation performs in the context of inverse semigroups. Some
familiarity with the Isabelle/HOL proof assistant [3,13] is assumed.

3.1 Inverse Semigroups in Isabelle/HOL

We start with the equational definition of an inverse semigroup.

Definition 4 (Inverse semigroup [6]). Let S be a set equipped with the binary
operation ∗ : S × S → S and the unary operation a �→ a−1. (S,−1 , ∗) is called
an inverse semigroup if, and only if, it satisfies the axioms

1. (x ∗ y) ∗ z = x ∗ (y ∗ z) for all x, y, z ∈ S,
2. x ∗ x−1 ∗ x = x for all x ∈ S,
3. (x−1)−1 = x for all x ∈ S and
4. x ∗ x−1 ∗ y ∗ y−1 = y ∗ y−1 ∗ x ∗ x−1 for all x, y ∈ S

An inverse in semigroup theory is a generalization of the known group the-
oretical definition. This generalized definition does not depend on a specified
unique neutral element. Intuitively, it can be thought of as the inverse map of a
partial bijection.

Definition 5 (Inverse). Let (S, ∗) be a semigroup and x ∈ S. Then y ∈ S is
called an inverse of x if, and only if, x ∗ y ∗ x = x and y ∗ x ∗ y = y.

We encode an inverse semigroup as follows in Isabelle/HOL.

The domain for individuals is chosen to be ′a, which is a type variable. This
means we have encoded a polymorphic version of inverse semigroups.
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Using this implementation almost all results needed for proving the Wagner-
Preston representation theorem, which we will discuss shortly, can be found by
automated theorem proving. Occasionally, however, some additional lemmas to
the ones usually presented in a textbook (e.g. [10]) are needed. By automated
theorem proving we here mean the use of sledgehammer [3] for finding the proofs
of the given statements without any further interaction. Regarding equivalent
definitions of an inverse semigroup, we were able to automate the proofs of the
following theorem (except for 2. ⇒ 1., which is due to a Skolemization issue).

Theorem 1 ([10]). Let (S, ∗) be a semigroup. Then the following are
equivalent:

1. There is −1 : S → S such that (S,−1 , ∗) is an inverse semigroup.
2. Every element of S has a unique inverse.
3. Every element of S is regular, meaning ∀x ∈ S ∃y ∈ S : x ∗ y ∗ x = x, and

idempotents in S commute.

Our experiments confirm that automated theorem proving (and also model
finding) can well support the exploration of an axiomatic theory as presented.
However, the intellectual effort needed to model and formulate the presented
mathematics in the first place is of course still crucial, and a great deal of work
has gone into this intuitive aspect of the development process. A more tech-
nical challenge also is to find suitable intermediate steps that can be proven
automatically by sledgehammer.

3.2 Modeloid as Inverse Semigroup

We now show that every modeloid M ⊆ F (Σ) under partial composition is an
inverse semigroup. We make use of Theorem 1 by using the third characteriza-
tion. For this task regard (M, ◦) as a semigroup. This is clear since composition
of partial functions is associative. Since the partial identities of M are exactly
the idempotent elements in (M, ◦), commutativity is ensured by referring to the
next proposition. Furthermore, also by using the next proposition, the closure
of taking inverses required by a modeloid implies regularity for all elements in
M . Hence, (M,−1 , ◦) is an inverse semigroup.

Proposition 2 ([10]). Let f : X → Y be a partial bijection.

1. For a partial bijection g : Y → X, the equations f = fgf and g = gfg hold
if, and only if, g = f−1

2. 1A1B = 1A∩B = 1B1A for all partial identities 1A and 1B where A,B ⊆ X

Not only is every modeloid an inverse semigroup, but by the Wagner-Preston
representation theorem also every inverse semigroup can be faithfully embedded
into F (Σ), which is itself a modeloid. This motivates the idea of formulating the
axioms for a modeloid in inverse semigroup language. Our aim is to restate the
derivative operation in this context. In order to achieve this, we shall translate
the axioms from Definition 2, examining them one by one.
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1. Closure of Composition: Because of the embedding, the composition of partial
functions will simply be the ∗-operation in an inverse semigroup.

2. Closure of taking inverses: By Theorem 1 an inverse semigroup is such that the
inverse exists for every element and is unique, hence resembling the inverses
of partial functions and in particular the closure property.

3. The inclusion property: Here it is not immediately apparent how this can be
expressed within an inverse semigroup. We shall see that the natural partial
order is capable of doing that.

4. The identity on Σ: The identity is a certain idempotent element in an inverse
semigroup. It will lead us to the notion of an inverse monoid.

It is Axiom 3 that we focus our attention on next. We define the natural
partial order and present the Wagner-Preston representation theorem, which
establishes a connection to function restriction in F (Σ). We introduce notation
for such a restriction. For two partial functions f, g we write g ⊆ f to say that
dom(g) ⊆ dom(f) and ∀x ∈ dom(g) : g(x) = f(x).

Definition 6 (Natural partial order). Let Σ = (Σ,−1 , ∗) be an inverse semi-
group and s, t ∈ Σ. Then we define for some idempotent e ∈ Σ

s≤ t :⇔ s = t ∗ e.

Theorem 2 (Wagner-Preston representation theorem[10]). Let Σ =
(Σ,−1 , ∗) be an inverse semigroup. Then there is an injective homomorphism
Ω : Σ → F (Σ), such that for a, b ∈ Σ we have a≤ b ⇐⇒ Ω(a) ⊆ Ω(b).

From this theorem it is clear what we mean by a faithful embedding of an
inverse semigroup into the set of partial bijections F (Σ). Faithfulness corre-
sponds to the fact that the natural partial order in light of the representation
theorem is equivalent to the partial order which function restriction defines. This
nicely opens up the possibility to capture the essence of the inclusion property
from Definition 2 by the natural partial order. Let M ⊂ S, where S is an inverse
semigroup. Then the inclusion property can be stated as

∀f ∈ M ∀g ∈ S : g ≤ f =⇒ g ∈ M. (2)

By setting S = F (Σ), the dependency of M on F (Σ) can be seen explicitly.
In the abstract formulation of a modeloid we will keep this subset property. It
is immediate that a modeloid, seen as an inverse semigroup, fulfills (2) by the
following proposition.

Proposition 3. Let M be a modeloid on Σ. Then, for f, g ∈ M , we have

g ≤ f ⇐⇒ g ⊆ f

In a modeloid M the inclusion property implies that the empty partial bijec-
tion, which we denote by 0, is also included in M . As a result we want to
establish a similar behavior in the generalized modeloid. The deeper reason for
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this is found in the definition of the derivative operation, because it requires the
notion of an atom, which can only be defined if a zero element is present. Seeing
M as an inverse semigroup, 0 is an idempotent element for which the following
property holds: ∀x ∈ M : 0 ∗ x = 0. Hence, we will call the idempotent with this
property the zero element. When defining a modeloid in semigroup language we
require the zero element to be part of it.

Turning to Axiom 4, which is idΣ ∈ M , we examine which element of an
inverse semigroup S is most suitable for this task. To evaluate, we again look
at the modeloid M as an inverse semigroup. In this semigroup, idΣ will be an
idempotent e satisfying ∀x ∈ M : e∗x = x. Such an element is known as a neutral
element in the context of group theory. We require for the inverse semigroup,
which we eventually call a modeloid, that e is part of it. What we get is known
as an inverse monoid in the literature.

Remark 1. Given an inverse monoid, denoted by S1, and the element e with
e∗x = x, ∀x ∈ S1. Consider the representation theorem again: this theorem is not
guaranteeing uniqueness of the embedding, and in fact there can be several ones.
Hence, we cannot assume that e will be mapped to the identity idΣ . However, for
all idempotent f ∈ S1 we have that f ≤ e because f = e ∗ f by the assumption
about e. Hence, e is always the upper bound of all idempotents in S1.

We have prepared everything needed for defining a modeloid again. We shall
call it a semimodeloid. Note, as mentioned before, that a modeloid is a subset of
F (Σ) for some non-empty set Σ and, as discussed, we keep this subset property
to state the inclusion axiom.

Definition 7 (Semimodeloid). Let S1 = (Σ, −1, ∗, e, 0) be an inverse monoid.
Then M ⊆ Σ is called a semimodeloid if, and only if,

1. ∀x, y ∈ M : (x ∗ y) ∈ M
2. ∀x ∈ M : x−1 ∈ M
3. ∀x ∈ M ∀y ∈ S1 : y ≤ x ⇒ y ∈ M
4. e ∈ M

Remark 2. A semimodeloid is again an inverse monoid with the zero element.

Proposition 4. Every semimodeloid can be faithfully embedded into a modeloid.
Furthermore, by the considerations above, every modeloid is a semimodeloid.

Now we develop the derivative operation in the setting of a semimodeloid.
Consider again Definition 3 in which we have introduced the derivative operation.
It is evident that the elements of Σ are of crucial importance. Furthermore, we
are required to be able to extend the domain of a function by one element at
a time. This poses a challenge because in an inverse monoid this information is
not directly accessible. But as we shall see, it is possible to obtain.

First we characterize the elements of Σ. Therefore, consider F (Σ) and realize
that all the singleton-identities id{a}, for a ∈ Σ, are in natural bijection to the
elements of Σ. The special property of such a singleton-identity is

∀f ∈ F (Σ) : f ⊆ id{a} ⇒ (f = id{a} ∨ f = 0) (3)
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since dom(id{a}) = {a}. Seeing F (Σ) as an inverse monoid with zero element
leads to the following definition.

Definition 8 (Atom). Let S1 be an inverse monoid with zero element 0. Then
a non-zero element x ∈ S1 is an atom if, and only if,

∀f ∈ S1 : f ≤ x ⇒ (f = x ∨ f = 0)

Our plan is to use the notion of an atom to define the derivative. The next lemma
justifies this usage.

Lemma 2. The idempotent atoms in F (Σ) are exactly the singleton-identities.

This suffices to define the derivative for semimodeloids. We then ensure that
the definition matches Definition 3 if the semimodeloid is on F (Σ).

Definition 9 (Derivative—semimodeloid). Let M be a semimodeloid on
the inverse monoid S1 with zero element 0. We define the derivative D(M) of
M as

D(M) := {f ∈ M | ∀ idempotent atoms a ∈ S1 ∃x ∈ M : (f ≤ x ∧ a ≤ x−1x)∧
∀ idempotent atoms b ∈ S1 ∃y ∈ M : (f ≤ y ∧ b ≤ yy−1)}

If we think about x in the above definition as a partial bijection, then x−1x is
the identity on the domain of x and, hence, the condition a ≤ x−1x expresses
that a is in the domain of x. Similarly b ≤ yy−1 states that b is in the range of y.

Proposition 5. The derivative on a modeloid M produces the same result as
the semimodeloidal derivative on M .

4 Categorical Axiomatization of a Modeloid

We use an axiomatic approach to category theory based on free logic [8,9,14]. As
demonstrated by Benzmüller and Scott [2], this approach enables the encoding of
category theory in Isabelle/HOL. Their encoding work is extended below to cover
also inverse categories. Subsequently we formalize modeloids and derivatives in
this setting.

4.1 Category Theory in Isabelle/HOL

When looking at the definition of a category C, one can realize that the objects
A,B,C, .. are in natural bijection with the identity morphisms 1A,1B ,1C , ...
because those are unique. This enables a characterization of a category just by
its morphisms and their compositions, which is used to establish a formal axiom-
atization. However, in this axiomatic approach we are faced with the challenge of
partiality, because the composition between two morphisms f, g ∈ C is defined
if, and only if,

dom(g) = cod(f). (4)
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As a result composition is a partial operation.
An elegant way to deal with this issue is by changing the underlying logic to

free logic. In free logic an explicit notion of existence is introduced for the objects
in the domain that we quantify over. In our case the domain consists of the mor-
phisms of a category. The idea now is to define the composition total, that is, any
two morphisms can always be composed, but only those compositions “exist”
that satisfy (4). Because we can distinguish between existing and non-existing
morphisms, we are able to formulate statements that take only existing mor-
phisms into account. In this paper we want to work with a unique non-existing
morphism which will be denoted by �. Hence a composition of morphisms, that
does not satisfy (4), will result in �. We refer to Benzmüller and Scott [2] for
more information on the encoding of free logic in Isabelle/HOL.

Based upon this groundwork, a category in Isabelle/HOL is defined as follows.

For convenience, we will assume a category to be small for the rest of this
paper. As a result, a category for us has only a set of morphisms which satisfies
the above axiom schema. This allows us to use notation from set theory. We
write (m : X → Y ) ∈ C to mean that m is a morphism from the category C. In
addition, it says that dom(m) ∼= X and cod(m) ∼= Y , so X is the domain of m
and Y the codomain. The identity morphisms X and Y , which are representing
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objects in the usual sense, are characterized by the property that X ∼= dom(X) ∼=
cod(X), respectively for Y . Hence every c ∈ C satisfying c ∼= dom(c) or c ∼=
cod(c) is representing an object, and we refer to such a morphism as an object.

We want a categorical generalization of an inverse semigroup, so let’s turn to
the question of how to introduce generalized inverses to a category. In the above
setting we found that by adding the axioms of an inverse semigroup, which are
responsible for shaping these inverses (Definition 4, Axioms 2–4), we arrive at a
notion that is equivalent to the usual definition of an inverse category. Note that
this definition is adopted to our free logic foundation by using Kleene equality,
which is denoted by ∼=. We emphasize again that this equality between terms
states that, if either term exists, so does the other one and they are equal.

Definition 10 (Inverse category [7]). A small category C is called an inverse
category if for any morphism s : X → Y ∈ C there exists a unique morphisms
ŝ : Y → X such that s ∼= s · ŝ · s and ŝ ∼= ŝ · s · ŝ.

For the representation in Isabelle/HOL we skolemized the definition.

Next, we see the quantifier free definition.

The equivalence between the two formulations has been shown by interactive
theorem proving. Again, a significant number of the required subproofs could
be automated by sledgehammer. In addition, the minimality of the axioms for
the quantifier free version above was checked effectively using sledgehammer
and nitpick3. Inverse categories are interesting to us because of the following
proposition.

Proposition 6. Let C be an inverse category with exactly one object. Then C
is an inverse semigroup.

This allows us to generalize a semimodeloid to an inverse category by for-
mulating the new axioms in such a way that this categorical construction will
collapse to a semimodeloid under the condition of having just one object.
3 nitpick [4] is a counterexample generator for higher-order logic integrated with
Isabelle/HOL.
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4.2 Categorical Axiomatization of a Modeloid

The notion of the natural partial order is also definable in an inverse category.
To state it, we first introduce a definition for idempotence.

Definition 11 (Idempotence). Let C be a small category. Then a morphism
e ∈ C is called idempotent if, and only if,

e · e ∼= e.

Whenever we do not assume that both sides of the equation exist, we use
Kleene equality.

Definition 12 (Natural partial order [12]). Let C be an inverse category
and let s, t : X → Y be morphisms in C. We define

s ≤ t :⇔ ∃ idempotent e ∈ EndC(X) : s ∼= t · e

where EndC(X) := {m ∈ C |m : X → X} is called an endoset.
When defining a categorical modeloid M on an inverse category C, we will

see that for each object X in C, EndC(X) is a semimodeloid. We require the
category to have a zero element in each of its endosets in order to define an
atom. For this we simply write that C has all zero elements.

Definition 13 (Categorical modeloid). Let C be an inverse category with
all zero elements. Then a categorical modeloid M on C is such that M ⊆ C
satisfies the following axioms:

1. a, b ∈ M ⇒ a · b ∈ M
2. a ∈ M ⇒ a−1 ∈ M
3. ∀ a ∈ C∀b ∈ M : a ≤ b ⇒ a ∈ M
4. ∀ objects X ∈ C : X ∈ M

It is evident that this definition is close by its appearance to a semimodeloid.
However, we are now dealing with a network of semimodeloids and have thus
reached a much more expressive definition.

Proposition 7. Let C be an inverse category with all zero elements and let
M be a categorical modeloid on C. Then for each object X in M we get that
EndM (X) is a semimodeloid (on itself).

Remark 3. Every semimodeloid can easily be seen as a categorical modeloid
by the fact that an inverse monoid with zero element is an one-object inverse
category.

We have formulated a generalization of a modeloid in category theory. What
is left now is to define the derivative in this context. We will need the notion of
a homset and of an atom, which we already introduced for semigroups.
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Definition 14 (Homset). Let C be a small category. Then the homset between
two elements X,Y ∈ C, satisfying X ∼= dom(X) and Y ∼= dom(Y ), is defined as

HomC(X,Y ) := {m ∈ C |m : X → Y }
Hence an endoset is a special case of a homset. We only assume zero elements to
be present in endosets and as a result an atom needs to be part of an endoset.

Definition 15 (Atom). Let C be an inverse category with all zero elements.
Then an element a ∈ EndC(X), for some object X ∈ C, is an atom if, and only
if, the existence of a implies that a is not the zero element and

∀e ∈ EndC(X) : e ≤ a implies that e ∼= a ∨ e ∼= 0EndC(X).

This concludes the preliminaries for defining the derivative on a homset.

Definition 16 (Derivative—homset). Let C be an inverse category with all
zero elements and let M be a categorical modeloid on C. We define the derivative
on HomM (X,Y ) for X,Y ∈ M as D(HomM (X,Y )) := {f ∈ HomM (X,Y ) |
∀ idempotent atoms a ∈ EndM (X)∃h ∈ HomM (X,Y ) : (f ≤ h ∧ a ≤ h−1h)∧
∀ idempotent atoms b ∈ EndM (Y )∃g ∈ HomM (X,Y ) : (f ≤ g ∧ b ≤ gg−1)}
Remark 4. Let C be an inverse category with just one object X and a zero
element. Then C is an inverse semigroup by Proposition 6 and the derivative on
the homset D(HomC(X,X)) is equal to the semimodeloidal derivative D(C).

Now the key property of this operation is that it produces a categorical
modeloid again if we apply it to all homsets simultaneously.

Theorem 3. Let C be an inverse category with all zero elements and let M be
a categorical modeloid on C. Then

⋃

X,Y ∈M

D(HomM (X,Y ))

is a categorical modeloid on C.

As a result we define this to be the derivative operation on categorical mod-
eloids.

Definition 17 (Derivative—categorical modeloid). Let C be an inverse
category with all zero elements and let M be a categorical modeloid on C. Then
we set the derivative as

D(M) :=
⋃

X,Y ∈M

D(HomM (X,Y )).

Let M be a categorical modeloid. We define

D0(M) := M and Dn+1(M) := D(Dn(M)) (5)

for n ∈ N. Dm(M) thus takes the derivative m-times. This notion is used in the
next section.
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5 Algebraic Ehrenfeucht-Fräıssé Games

When moving from classical model theory to the finite case, some machinery
for proving inexpressibility results in first-order logic, such as the compactness
theorem, fails. However, Ehrenfeucht-Fräıssé (EF) games are still applicable and,
therefore, play a central notion in finite model theory due to the possibility to
show that a property is first-order axiomatizable. For more information see [11].

In this section we explicitly show that derivatives on categorical modeloids
generalize EF games.

5.1 Rules of EF Game

To play an EF game, two finite τ -structures A and B, where τ is a finite rela-
tional vocabulary, are needed. In general EF games are not restricted to finite
structures, but for our purpose we shall only deal with this case. In order to give
an intuitive understanding we imagine two players, which we call the spoiler
and the duplicator, playing the game. The rules are quite simple. In n ∈ N

rounds the spoiler tries to show that the two given structures are not equal,
while the duplicator tries to disprove the spoiler every time. A round consists of
the following:

– The spoiler picks either A or B and then makes a move by choosing an element
from that structure, so a ∈ A or b ∈ B.

– After the spoiler is done, the duplicator picks an element of the other structure
and the round ends.

Next we define what the winning condition for each round will be. For con-
venience let Part(A,B) be the set of all partial isomorphisms from A to B.
Furthermore, given a constant symbole c from τ , we denote by cA the interpre-
tation of c in the structure A.

Definition 18 (Winning position [11]). Suppose the EF game was played for
n rounds. Then there are moves (a1, .., an) picked from A and moves (b1, .., bn)
picked from B. For this to be a winning position we require that for some r ∈ N

the map
{(a1, b1), .., (an, bn), (cA

1 , cB
1 ), .., (cA

r , cB
r )} ∈ Part(A,B)

where the ci are all constant symbols of τ .

In order to win, the duplicator needs to defeat the spoiler in every possible
course of the game. We say the duplicator has an n-round winning strategy in
the Ehrenfeucht-Fräıssé game on A and B [11], if the duplicator is in a winning
position after n moves regardless of what the spoiler does. This is made precise
by the back-and-forth method due to Fräıssé.

Definition 19 (Back-and-forth relation [5]). We define a binary relation
≡m, m ∈ N, on all τ -structures by A ≡m B iff there is a sequence (Ij) for
0 ≤ j ≤ m such that
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– Every Ij is a non-empty set of partial isomorphisms from A to B
– (Forth property) ∀j < m we have ∀a ∈ A∀f ∈ Ij+1 ∃g ∈ Ij : f ⊆ g ∧ a ∈

dom(g)
– (Back property) ∀j < m we have ∀b ∈ B ∀f ∈ Ij+1 ∃g ∈ Ij : f ⊆ g ∧ b ∈ cod(g)

Hence A ≡n B means that the duplicator has a n-round winning strategy.

5.2 The Derivative and Fräıssé’s Method

We relate the categorical derivative to Fräıssé’s method which we have just seen.
In order to do this, we define a categorical modeloid on the category of finite
τ -structures, where τ is a finite relational vocabulary. For that let A and B be
two finite τ -structures. Denote by F (A,B) the set

⋃

(X,Y )∈{A,B}2

Part(X,Y )

and let � �∈ F (A,B) be an arbitrary element. Then define C := F (A,B) ∪ {�}.
We construct two functions dom : C → C and cod : C → C such that

for a partial isomorphism f : X → Y ∈ F (A,B) we set dom(f) = idX and
cod(f) = idY , and for the element � we define dom(�) = � and cod(�) = �.

Next we define a binary operation · : C → C by

f · g =
{

f ◦ g, if dom(f) = cod(g) and f, g �= �
�, else

where ◦ denotes the composition of partial functions.

Proposition 8. D := (C, dom, cod, ·, �,−1 ) is an inverse category where f−1

denotes the inverse of each partial isomorphism f and �−1 = �. The existing
elements are exactly all elements in F (A,B) and the compositions f ◦ g in case
dom(f) = cod(g), for f, g ∈ F (A,B).

What we have just seen provides a general procedure for creating cate-
gories in our setting, which is founded on a free logic that is itself encoded
in Isabelle/HOL.

Corollary 1. D := (C, dom, cod, ·, �,−1 ) is also a categorical modeloid on itself.

Remark 5. Hence we have that every inverse category having a zero element for
each of its endosets is also a categorical modeloid and thus admits a derivative.

At this point we are able to use the derivative on D. The final theorem draws
the concluding connection between modeloids and Fräıssé’s method. We show
that in the established setting, an m-round winning strategy between A and B
is given by the sets which the derivative produces if applied m times. Note the
abuse of notation in the way we are using ≡m here.
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Theorem 4. Let M be the categorical modeloid D. Then

∃h : X → Y ∈ Dm(M) with h �= � ⇐⇒ X ≡m Y, m ∈ N

As a result the derivative on this modeloid is equivalent to playing an EF
game between the two structures. Hence on an arbitrary categorical modeloid
the derivative can be seen as a generalization of EF games.

6 Conclusion

In this paper we have shown how to arrive at the notion of a categorical modeloid
using axiomatic category theory. We started out with a set of partial bijections
abstracting from a structure, then we interpreted this set as an inverse semi-
group by the embedding due to the Wagner-Preston representation theorem,
and, finally, we were able to axiomatize a modeloid in an inverse category. The
key feature we employed is the natural partial order which also enabled us to
present the derivative operation in each step of abstraction. The categorical
derivative on the category of finite structures of a finite vocabulary can then be
used to play Ehrenfeucht-Fräıssé games between two structures. As a result a
more abstract representation of these games is possible.

Using our encoding of inverse categories in Isabelle/HOL, we are currently
extending this encoding work to cover also categorical modeloids and their
derivatives. This naturally extends the framework established by Benzmüller and
Scott so far [2]. Furthermore, an investigation of the generalized Ehrenfeucht-
Fräıssé games in terms of applicability has to be conducted. We believe that the
notion of a categorical modeloid will continue to play a role when connecting
model theoretical and categorical concepts.
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Abstract. In this paper we focus on a fuzzy version of the so-called
(un)sharpness property of relational products in arrow/fuzzy categories. It is
shown that the fuzzy version can be reduced to a regular (un)sharpness prob-
lem. As a consequence we obtain that relational products are also sharp in the
fuzzy sense if all relational products and powers exist. This result is important
in applications of arrow/fuzzy categories since relational products, and, hence,
the fuzzy version of the (un)sharpness problem, are integral components of these
applications.

1 Introduction

In this paper we are interested in working with multi-valued relations in an abstract
setting. In particular, we are interested in a framework for working with so-called L-
relations algebraically. Given a complete Heyting algebra L, an L-relation Q between
two sets A and B is just a function Q : A × B→ L, i.e., the relation provides a member-
ship value Q(a, b) from the Heyting algebra L indicating to what degree the pair (a, b) is
in relation Q. L-relations generalize (regular) relations in the following sense. As usual
a relation R between two sets A and B is simply a set of pairs, i.e., R ⊆ A × B. Alter-
natively, R can be represented by its characteristic function R : A × B → B where B is
the set of (Boolean) truth values. If we identify true with the greatest element and false
with the smallest element of the Heyting algebra L we immediately obtain L-relations
as a generalization of regular relations. In particular, we call an L-relation returning 0 or
1 for every pair a crisp relation. Obviously, a crisp L-relation corresponds to a regular
relation.

Allegories [3] establish a suitable framework for working with any kind of relations.
In particular, they provide an axiomatic system that characterizes the usual operations
on relations such as the set-theoretic operation � (meet) and � (join) as well as the
additional operations ; (composition) and .� (converse) of relations. Arrow categories
[12–14] add two operations .↑ (support) and .↓ (kernel) that allow to define crispness,
and, hence, to formulate properties of L-relations. In particular, R↑ represents the small-
est crisp relation containing R, and R↓ represents the greatest crisp relation contained
in R. In the work mentioned above it has been shown that arrow categories provide a
suitable framework for working with L-relations for a fixed Heyting algebra L.
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In the theory of fuzzy (or L-fuzzy relations) one often uses additional operations.
The standard operation � computes the degree of membership of a pair (a, b) in the
intersection of two L-relations Q and R as the meet of the two corresponding member-
ship degrees, i.e., we have

(Q � R)(a, b) = Q(a, b) ∧ R(a, b),

where ∧ on the right-hand side denotes the meet in the Heyting algebra L. Often we
are interested in an operation where the degree is computed by applying a commuta-
tive and integral quantale (or t-norm like for short) operation ∗ to the two membership
degrees instead of the meet operation of the lattice. Hence, we define a new operation
on relations

(Q ∗ R)(a, b) = Q(a, b) ∗ R(a, b),
where (L, ∗) is a complete Heyting algebra with a t-norm like operation. Similarly, we
can also define a composition operation based on ∗ by

(Q ∗, S )(a, c) =
∨

b

Q(a, b) ∗ S (b, c).

In [17] a set of axioms for these operations was introduced, and we will call an arrow
category together with these new operations and a suitable set of axioms a fuzzy
category (cf. Definition 11). Hence, fuzzy categories are very suitable as an alge-
braic/categorical framework for L-fuzzy relations.

In the following we will use the notation Q : C → A to denote the fact that Q is a
L-relation (or regular relation) between the setsC and A. If A×B is the cartesian product
of the sets A and B, then we can define the so-called fork (or right tupling) operation
Q � R : C → A × B of two relations Q : C → A and R : C → B by

(Q � R)(c, (a, b)) = Q(c, a) ∧ R(c, b).

In other words, Q � R relates c with the pair (a, b) if c is related to a in Q and c is
related to b in R. The join (or left tupling) operation S � T : A × B → D for two
relations S : A → D and T : B → D is defined similarly. In the abstract theory of alle-
gories the cartesian product can be defined abstractly by so-called relational products.
This definition is based on the projection functions as relations. Using the projections
it is easily possible to derive the fork and join operation algebraically. The so-called
sharpness problem focuses on the following simple equation

(Q � R); (S � T ) = Q; S � R;T.

It is easy to verify this equation for concrete relations. In the abstract setting, however,
this equation needs not to be valid. A counter example was provided in [5]. There-
fore, we call a product sharp (resp. unsharp) if the previous equation is valid (resp.
not valid) in the abstract setting. It is worth mentioning that the sharpness property is
closely related to the representation problem of allegories. The existence of all prod-
ucts implies representability as well as sharpness. Conversely, a representable allegory
is obviously embedded in a category satisfying sharpness, i.e., satisfies sharpness itself
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since products are unique up to isomorphism. Anyhow, sharpness is often necessary to
prove properties about certain constructions algebraically. For example, if P(A) denotes
the relational power of A, an abstract version of the power set, then one can easily define
a relationM : P(A) × P(A) → P(A) (in fact a map) that maps a pair of subsets of A
to their intersection. In order to verify typical properties of this relation algebraically
sharpness of the products involved is usually needed. To our knowledge there are three
different theorems showing sharpness under certain specific conditions. The first theo-
rem is due to Zierer [18]. It requires two suitable additional products to exist in order
to prove the desired property. In particular, this theorem shows that sharpness holds if
the underlying allegory has all relational products. This result was later improved by
Desharnais [1]. A consequence of the latter theorem is that sharpness is already valid
if only one additional relational product exists. Last but not least, in [11] it was shown
that sharpness always holds if one of the relations involved is between an object B and
its relational power P(B). More precisely, if, for example, R of the sharpness equation
has type B → P(B), then the singleton relation syQ(IB, ε) : B → P(B) mapping an
element of b of B to the singleton set {b} is a map parallel to R which can be used to
show sharpness (cf. Theorem 16 in the fuzzy case).

In an L-fuzzy setting we are often interested in a modified version of the relation
M introduced above. As already mentioned above we are often interested in computing
the intersection of two L-fuzzy sets by using a t-norm like operation ∗, i.e., the degree
of membership of an element in the intersection of two sets A and B is computed by ∗
instead of the lattice meet. This leads to a relationM∗ obtained fromM by replacing
the regular fork operation in the algebraic definition ofM by a fork based on ∗, i.e., by
the operation

(Q �∗ R)(c, (a, b)) = Q(c, a) ∗ R(c, b).
At this point we want to mention at least one important application of M∗. A rela-
tion algebraic approach to L-fuzzy topological spaces [6], similar to the approach taken
in [11], requires the usage of M∗ already in the definition of those spaces. One of
the axioms requires that the set of open sets is closed under this modified intersection.
Consequently, we are interested in showing basic properties of this (∗-based) meet oper-
ation. Several of these properties require a fuzzy version of the sharpness problem, i.e.,
the equation

(Q �∗ R) ∗, (S �∗ T ) = Q ∗, S ∗ R ∗, T.
We will sketch one of these properties and its proof briefly in the conclusion.

As in the regular case it is easy to verify sharpness for concrete L-relations (The-
orem 14) but an algebraic proof is not possible without further assumptions. In fact,
since it is possible to choose the lattice meet as the t-norm like operation ∗, the regular
sharpness condition is a special case of the fuzzy version above. Unfortunately, none
of the three theorems mentioned above can be applied immediately since the t-norm
based operations ∗ and ∗, do not satisfy all properties of their counterparts � and ;. In
fact, the first theorem mentioned above [18] is based on the fact that composition with
a map from the left distributes over meet. The additional two products are used to mod-
ify the fork on the left of the composition into a suitable map. In the fuzzy setting ∗,
composition with a map from the left only distributes over ∗ if the map is, in addition,
crisp. Consequently, a straightforward generalization to the fuzzy case does not seem
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possible. The second theorem relies heavily on the modular inclusion and the fact that
� is idempotent. Only weaker versions of the modular inclusion are valid for ∗, and ∗.
Furthermore, ∗ is not necessarily idempotent so that this theorem cannot be generalized
to the fuzzy case either. In this paper we will show that the last of the three theorems
can be generalized to the fuzzy case (Theorem 16), which then will be used to reduce
the fuzzy sharpness problem to a regular one (Theorem 18).

2 Mathematical Preliminaries

Suppose L is a complete Heyting algebra which smallest element 0, greatest element
1, meet ∧ and join ∨. Then an L-relation R between two sets A and B is a function
R : A × B → L. The relational operations on L-relations are based on the operations of
L in the usual way, e.g., meet � and composition ; are defined as

(Q � R)(x, y) = Q(x, y) ∧ R(x, y), and (Q; S )(x, z) =
∨

y

Q(x, y) ∧ S (y, z).

Please note that we use the convention that composition is from left to right, i.e., Q; S
means Q first, and then S . As already mentioned in the introduction the special case of
B-relations corresponds to regular (set-theoretic) relations represented by their charac-
teristic function.

In this section we want to introduce several categories as an abstract framework to
work with L-relations.

2.1 Dedekind, Arrow and Fuzzy Categories

In this section we want to recall some basic notions from categories, allegories and
arrow categories [3,13,14]. Furthermore, we will introduce fuzzy categories as an
extension of arrow categories adding t-norm like operations on relations.

We will write R : A → B to indicate that a morphism R of a category C has source
A and target B. Composition and the identity morphism are denoted by ; and IA, respec-
tively.

First, we are going to introduce Dedekind categories [7,8]. These categories are
called locally complete division allegories in [3].

Definition 1. A Dedekind category R is a category satisfying the following:

1. For all objects A and B the collection R[A, B] is a complete Heyting algebra.
Meet, join, the induced ordering, the least and the greatest element are denoted
by �,�,�,�AB,�AB, respectively.

2. There is a monotone operation � (called converse) mapping a relation Q : A → B
to Q� : B → A such that for all relations Q : A → B and R : B → C the following
holds: (Q;R)� = R�;Q� and (Q�)� = Q.

3. For all relations Q : A → B,R : B → C and S : A → C the modular law
(Q;R) � S � Q; (R � (Q�; S )) holds.
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4. For all relations R : B → C and S : A → C there is a relation S/R : A → B
(called the left residual of S and R) such that for all X : A→ B the following holds:
X;R � S ⇔ X � S/R.

It is easy to verify that the collection of all L-relations between sets for a given
complete Heyting algebra L forms a Dedekind category.

Throughout this paper we will use some basic properties of relations in Dedekind
categories such as ��AB = �BA,��AB = �BA, I

�
A = IA, the monotonicity resp. antitonicity

of the operations, and the fact that composition distributes over join from both sides
without mentioning.

An important class of relations is given by maps.

Definition 2. Let R be a Dedekind category. Then a relation Q : A→ B is called

1. univalent (or partial function) iff Q�;Q � IB,
2. total iff IA � Q;Q�,
3. injective iff Q� is univalent,
4. surjective iff Q� is total,
5. a map iff Q is total and univalent.

It is well known that Q is total iff Q;�BC = �AC . We will use this equivalence in
the remainder of the paper without mentioning.

The following property about maps is used later. A proof can be found in [13].

Lemma 3. Let Q : A→ B, R : A→ C be relations, and f : B→ C be a map. Then we
have

Q; f � R i ff Q � R; f �.

Using converse a second residual can be defined by Q\R := (R�/Q�)�. This oper-
ation is characterized by the equivalence Q; X � R iff X � Q\R. Together the two
residuals allow the definition of the so-called symmetric quotient. This construction is
defined by syQ(Q,R) := Q\R � Q�/R�. Consequently the symmetric quotient is char-
acterized by Q; X � R and R; X� � Q iff X � syQ(Q,R).

In the following lemma we have collected some basic properties of the symmetric
quotient that are needed in the remainder of the paper. A proof can be found in [2,13].

Lemma 4. Let D be a Dedekind category, Q : A → B,R : A → C, and S : A → D.
Then we have:

1. syQ(Q,R)� = syQ(R,Q).
2. syQ(Q,R); syQ(R, S ) � syQ(Q, S ).
3. if Q is univalent and surjective, then syQ(Q,Q) = IB.

The equation �AB;�BC = �AC for all objects A, B and C can easily be shown for
L-relations but does not follow from the axioms of a Dedekind category. However, two
special cases of this equation where one of the two universal relations on the left-hand
side is homogeneous can be verified in any Dedekind category, i.e., we have�AA;�AB =

�AB;�BB = �AB for all objects A and B. If the general equation holds, then we call the
Dedekind category uniform.

Any Dedekind category allows to identify the membership values used in an abstract
manner by using so-called scalar relations.
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Definition 5. A relation α : A → A is called a scalar on A iff α � IA and �AA;α =
α;�AA.

The notion of scalars was introduced by Furusawa and Kawahara [4]. An L-relation
is a scalar iff every element of A is related to itself with a fixed degree a from L. There-
fore, there is a one-one correspondence, i.e., a isomorphism of complete Heyting alge-
bras, between the scalar relations on A and the lattice L. Because of this isomorphism
we will occasionally identify scalars and the elements from L by using α for the scalar
as well as the corresponding element (via the isomorphism) from L.

A crisp L-relation R satisfies R(x, y) = 0 or R(x, y) = 1 for all pairs (x, y). These
relations can be identified with Boolean valued relations, i.e., regular set-theoretic rela-
tions. The notion of crispness cannot be defined abstractly in the theory of Dedekind
categories [12,13]. Because of this arrow categories were introduced [13,14]. These
categories add two operations (.)↓ and (.)↑ to Dedekind categories. Intuitively, the down-
arrow (or kernel) operation maps an L-relation R to the greatest crisp relation included
in R and the up-arrow (or support) operation maps R to the least crisp relation that
includes R.

Definition 6. An arrow category A is a Dedekind category with �AB � �AB for all
objects A and B together with two operations ↑ and ↓ satisfying the following:
1. R↑,R↓ : A→ B for all R : A→ B.
2. (↑, ↓) is a Galois correspondence, i.e., Q↑ � R iff Q � R↓ for all Q,R : A→ B.
3. (R�; S ↓)↑ = R↑�; S ↓ for all R : B→ A and S : B→ C.
4. If α � �AA is a non-zero scalar then α↑ = IA.
5. (Q � R↓)↑ = Q↑ � R↓ for all Q,R : A→ B.

A relation R : A → B of an arrow category A is called crisp iff R↑ = R (or equiv-
alently R↓ = R). The collection of crisp relations is closed under all operations of a
Dedekind category, and, hence, forms a sub-Dedekind category ofA [13,14]. In partic-
ular, we will need the following lemma. A proof can be found in [13,15].

Lemma 7. LetA be an arrow category, Q : A→ B, and R : B→ C. Then we have:

1. Q↓ � Q � Q↑.
2. �AB,�AB, IA,Q↓ and Q↑ are crisp.
3. Q�↓ = Q↓� and Q�↑ = Q↑�.
4. Q↓;R↓ � (Q;R)↓.

It was mentioned above that the collection of all L-relations forms a uniform De-
dekind category. Unlike Dedekind categories in general, arrow categories are always
uniform [13]. It is worth mentioning that the proof of this fact requires scalars and
Axiom 4 of arrow categories, i.e., two concepts that are otherwise not used in this paper.

The abstract version of a cartesian product is given by a relational (or direct) product
[9,10]. In the context of arrow categories we are usually interested in relational products
for which the projections are crisp.
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Definition 8. The relational product of two objects A and B is an object A× B together
with two relations π : A × B → A and ρ : A × B → B so that the following equations
hold

π↓ = π, ρ↓ = ρ, π�; π � IA, ρ
�; ρ � IB, π

�; ρ = �AB, π; π
� � ρ; ρ� = IA×B.

An arrow category has products if the relational product for each pair of objects exists.

It follows immediately from the definition above that the two projections are crisp
maps.

Using the projections of a relational product we now introduce the fork (or right
tupling) operation Q � R : C → A × B of two relations Q : C → A and R : C → B by
Q� R := Q; π� � R; ρ�. Analogously, the left tupling operation S � T : A× B→ D for
two relations S : A → D and T : B → B is defined as S � T := π; S � ρ;T . We will
adopt the convention that composition binds tighter than the operations defined above.
The (un)sharpness problem of relational products is the validity of the equation

(Q � R); (S � T ) = Q; S � R;T.

The equation above is easy to verify for concrete relation but does not follow from
the axioms of a relational product. As mentioned in the introduction sharpness can
be shown by requiring additional structure (cf. [1,11,18]). In particular, the relational
product is sharp iff all relational products exists.

An abstract version of power sets is given by the notion of a relational (or direct)
power [10]. Please note that in the context of arrow categories we are interested in the
set of all L-fuzzy subsets of A, i.e., in the set of all functions f : A → L. This leads
to the following definition of a relational power in arrow categories that differs from
previous definitions [16].

Definition 9. An object P(A) together with a relation ε : A → P(A) is called a rela-
tional power iff

syQ(ε, ε)↓ = IP(A) and syQ(R, ε)↓ is total f or every R : A→ B.

Compared to the previous definitions of the relational power the definition above
adds the kernel operation to the symmetric quotient in both axioms. Without this mod-
ification the relational power in the case of L-relations would not contain all fuzzy
subsets of A. On the other hand, the is element relation ε is no longer extensional, and,
hence, the inclusion (or subset) relation ε\ε is just a pre-order, i.e., not necessarily anti-
symmetric. For a concrete example explaining this situation in detail we refer to [16].

Lemma 10. LetA be an arrow category, P(A) the relational power of A, and Q : A→
B. Then we have:

1. syQ(Q, ε)↓ is a crisp map.
2. syQ(IA, ε)↓ is a crisp and injective map.
3. ε; syQ(ε,Q)↓ = Q and syQ(Q, ε)↓; ε� = Q�.
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Proof. 1. By Lemma 7(2) the relation syQ(Q, ε)↓ is crisp, and, by the second axiom of
a relational power, total. The remaining property follows from

syQ(Q, ε)↓�; syQ(Q, ε)↓ = syQ(ε,Q)↓; syQ(Q, ε)↓ Lemma 7(3) and 4(1)

� (syQ(ε,Q); syQ(Q, ε))↓ Lemma 7(4)

� syQ(ε, ε)↓ Lemma 4(2)

= IP(A).

2. Due to (1) it remains to show that syQ(IA, ε)↓ is injective.

syQ(IA, ε)
↓; syQ(IA, ε)↓

�
= syQ(IA, ε)

↓; syQ(ε, IA)↓ Lemma 7(3) and 4(1)

� (syQ(IA, ε); syQ(ε, IA))
↓ Lemma 7(4)

� syQ(IA, IA)
↓ Lemma 4(2)

= I
↓
A Lemma 4(3)

= IA. Lemma 7(2)

3. We only show the first equation since the second follows from the first by using
converse. First, we have

ε; syQ(ε,Q)↓ � ε; syQ(ε,Q) Lemma 7(1)

� Q.

The inclusion Q; syQ(Q, ε)↓ � ε follows analogously. This immediately implies
Q � ε; syQ(Q, ε)↓� = ε; syQ(ε,Q)↓ using (1) and Lemma 3. ��
As already mentioned in the introduction in applications of L-fuzzy theory so-called

t-norm like operations are important. If L is a complete lattice, then 〈L, ∗〉 with a binary
operation ∗ on L is called a partially ordered (Abelian) monoid iff

1. 〈L, ∗, 1〉 is a bounded Abelian monoid, i.e., ∗ is associative and commutative with
the greatest element 1 of L as neutral element,

2. ∗ is monotonic in both parameters.

If ∗ distributes over arbitrary unions in both parameters, then we call ∗ continuous. A
continuous partially ordered Abelian monoid is also known as commutative integral
quantale. For simplicity and its analogy to t-norm operations in fuzzy sets we call the
operation ∗ of a continuous partially ordered Abelian monoid a t-norm like operation.

Given a complete Heyting algebra L with a t-norm like operation ∗ we can define
two new operations on L-relations based on ∗ by

(Q ∗ R)(a, b) = Q(a, b) ∗ R(a, b), and (Q ∗, S )(a, c) =
∨

b

Q(a, b) ∗ S (b, c).

In [17] the basic properties of these operations, in particular, the validity of versions of
the modular inclusion for ∗ and ∗, instead of � and ; was investigated. This study lead
to the following abstract definition of a fuzzy category.
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Definition 11. A fuzzy category F is an arrow category together with two operations ∗
and ∗, so that the following holds:

1. ∗ maps two relations Q : A→ B and R : A→ B to a relation Q ∗ R : A→ B.
2. ∗ is associative, commutative and continuous.
3. Q ∗ R↓ = Q � R↓ for all Q,R : A→ B.
4. (Q ∗ R)� = Q� ∗ R� for all Q,R : A→ B.
5. ∗, maps two relations Q : A→ B and R : B→ C to a relation Q ∗,R : A→ C.

6. ∗, is associative and continuous.

7. Q ∗,R↓ = Q;R↓ for all Q : A→ B and R : B→ C.

8. (Q ∗,R)
�
= R� ∗,Q� for all Q : A→ B and R : B→ C.

9. The exchange inclusion (Q∗R) ∗, (S ∗T ) � Q ∗, S ∗R ∗, T is valid for all Q,R : A→ B
and S ,T : B→ C.

10. The following versions of the modular inclusion are valid:
(a) Q;R ∗ S � Q; (R � Q� ∗, S ),
(b) Q ∗,R ∗ S � Q; (R ∗ Q� ∗, S ),
(c) (P ∗ Q) ∗,R ∗ S � P ∗, (R ∗ Q� ∗, S ),
for all P,Q : A→ B, R : B→ C, and S : A→ C.

The following lemma collects some immediate consequences of the definition
above.

Lemma 12. Let F be a fuzzy category, and Q,R : A→ B and S : B→ C be relations.
Then we have:

1. Q ∗ R � Q and Q ∗ R � R.
2. Q ∗ �AB = Q.
3. Q ∗, S � Q; S .

4. Q↓ ∗, S = Q↓; S .
5. Q ∗, IB = IA ∗,Q = Q.

Proof. 1. We have Q ∗ R � Q ∗ R↑ = Q � R↑ � Q by the monotonicity of ∗ and Axiom
3. The second property follows analogously.

2. This is an immediate consequence of Axiom 3 since �AB is crisp.
3. We compute

Q ∗, S = Q ∗, S ∗ �AC by (2)

� Q; (S ∗ Q� ∗,�AC) modular inclusion (b)

� Q; S . by (1)

4. This is just the dual (via .�) of Axiom 7.
5. This is an immediate consequence of Axiom 7 and (4) since IA and IB are crisp. ��

In the remainder of the paper we will use the Axioms (1)–(8) and the lemma above
without mentioning. In the following lemma we show some basic properties of relations
in fuzzy categories that are needed in the remainder of the paper.
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Lemma 13. Let F be a fuzzy category, Q : A → B be crisp, f : B → C crisp and
univalent, P : A→ B, R, S : B→ D, T : A→ C, and U : A→ D. Then we have:

1. Q; (R ∗ S ) � Q;R ∗ Q; S .
2. (P ∗ T ; f �); f = P; f ∗ T.
3. (P ∗ Q) ∗,R ∗ U � (P ∗ Q) ∗, (R ∗ Q� ∗,U).

Proof. 1. This follows immediately from

Q; (R ∗ S ) = Q ∗, (R ∗ S ) Q crisp

= (Q ∗ Q) ∗, (R ∗ S ) Q crisp

� Q ∗,R ∗ Q ∗, S exchange inclusion

= Q;R ∗ Q; S . Q crisp

2. Using (1) we get the inclusion � from

(P ∗ T ; f �); f � P; f ∗ T ; f �; f dual of (1) and f crisp

� P; f ∗ T, f univalent

and the converse inclusion is shown by

P; f ∗ T = P ∗, f ∗ T f crisp

� (P ∗ T ∗, f �); f dual of modular inclusion (b)

= (P ∗ T ; f �); f . f crisp

3. This follows immediately from

(P ∗ Q) ∗,R ∗ U = (P ∗ (Q � Q)) ∗,R ∗ U
= (P ∗ Q ∗ Q) ∗,R ∗ U Q crisp

� (P ∗ Q) ∗, (R ∗ Q� ∗,U). modular inclusion (c)

This completes the proof. ��

3 L-Fuzzy Sharpness Problem

In a fuzzy category we can define a fuzzy right tupling Q �∗ R : C → A × B of two
relations Q : C → A and R : C → B by Q �∗ R := Q; π� ∗ R; ρ�. Analogously, the
fuzzy left tupling operation S �∗ T : A × B → D for two relations S : A → D and
T : B → D is defined as S �∗ T := π; S ∗ ρ;T . Please note that replacing the regular
composition ; in both definitions by the t-norm based composition ∗, does not lead to
a different construction due to Axiom 7 (Definition 11) of fuzzy categories and the fact
that the projections are crisp.

These new definitions allow us to state a fuzzy version of the (un)sharpness problem,
i.e., whether the following equation is valid

(FS) (Q �∗ R) ∗, (S �∗ T ) = Q ∗, S ∗ R ∗, T.
First, we want to verify that the equation is indeed valid for concrete L-relations.
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Theorem 14. If Q : C → A, R : C → B, S : A → D and T : B → D are L-relations
and π : A × B → A, ρ : A × B → B the standard (concrete) projection relations, then
we have

(Q �∗ R) ∗, (S �∗ T ) = Q ∗, S ∗ R ∗, T.

Proof. Suppose c ∈ C, d ∈ D and compute

((Q �∗ R) ∗, (S �∗ T ))(c, d)

=
∨

(a,b)∈A×B
(Q �∗ R)(c, (a, b)) ∗ (S �∗ T )((a, b), d)

=
∨

(a,b)∈A×B
Q(c, a) ∗ R(c, b) ∗ S (a, d) ∗ T (b, d) π, ρ crisp maps

=
∨

a∈A,b∈B
Q(c, a) ∗ S (a, d) ∗ R(c, b) ∗ T (b, d)

=

⎛⎜⎜⎜⎜⎜⎝
∨

a∈A
Q(c, a) ∗ S (a, d)

⎞⎟⎟⎟⎟⎟⎠ ∗
⎛⎜⎜⎜⎜⎜⎝
∨

b∈B
R(c, b) ∗ T (b, d)

⎞⎟⎟⎟⎟⎟⎠ ∗ continuous

= (Q ∗, S )(c, d) ∗ (R ∗, T )(c, d)
= (Q ∗, S ∗ R ∗, T )(c, d),

i.e., we have (Q �∗ R) ∗, (S �∗ T ) = Q ∗, S ∗ R ∗, T . ��
Similar to the regular sharpness problem, the inclusion � of (FS) follows without

any further assumptions.

Lemma 15. Let F be a fuzzy category, A × B the relational product of A and B, and
Q : C → A, R : C → B, S : A→ D, and T : B→ D be relations. Then we have

(Q �∗ R) ∗, (S �∗ T ) � Q ∗, S ∗ R ∗, T.
Proof. The following computation

(Q �∗ R) ∗, (S �∗ T ) = (Q; π� ∗ R; ρ�) ∗, (π; S ∗ ρ;T )
� (Q; π�) ∗, (π; S ) ∗ (R; ρ�) ∗, (ρ;T ) exchange inclusion

= Q ∗, π� ∗, π ∗, S ∗ R ∗, ρ� ∗, ρ ∗, T π, ρ crisp

= Q ∗, (π�; π) ∗, S ∗ R ∗, (ρ�; ρ) ∗, T π, ρ crisp

� Q ∗, S ∗ R ∗, T π, ρ univalent

shows the assertion. ��
As mentioned in the introduction there are several theorems showing regular sharp-

ness under certain additional assumptions. Only one of these results can be generalized
to the fuzzy version of the unsharpness problem. Proposition 3.2.1 of [11] basically
requires that an injective map exists in parallel to the relation R of the right-tupling in
the sharpness equation. The precise situation in the fuzzy case is visualized in Fig. 1. In
order to prove the fuzzy version (Theorem 16) of Proposition 3.2.1 we need to require
that f is, in addition, crisp.
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Fig. 1. Situation of Theorem 16

Theorem 16. Let F be a fuzzy category, A × B the relational product of A and B,
Q : C → A, R : D → B, S : A → E, T : B → E be relations, and f : C → D be crisp
and univalent. If there is an injective relation U : D → B such that f ;U is total, then
we have

(Q �∗ f ;R) ∗, (S �∗ T ) = Q ∗, S ∗ f ; (R ∗, T ).
Proof. In order to show the inclusion �, consider the following computation

Q ∗, S ∗ f ; (R ∗, T )
= (Q � �CA) ∗, S ∗ f ; (R ∗, T )
= (Q ∗ �CA) ∗, S ∗ f ; (R ∗, T ) �CA crisp

= (Q ∗ f ;U;�BA) ∗, S ∗ f ; (R ∗, T ) f ;U total

= (Q ∗ f ;U; ρ�; π) ∗, S ∗ f ; (R ∗, T )
= ((Q; π� ∗ f ;U; ρ�); π) ∗, S ∗ f ; (R ∗, T ) Lemma 13(2)

= (Q; π� ∗ f ;U; ρ�) ∗, π ∗, S ∗ f ; (R ∗, T ) π crisp

� (Q; π� ∗ f ;U; ρ�) ∗, (π ∗, S ∗ ( f ;U; ρ�)� ∗, ( f ; (R ∗, T ))) Lemma 13(3)

= (Q �∗ f ;U) ∗, (π ∗, S ∗ ( f ;U; ρ�)� ∗, ( f ; (R ∗, T )))
= (Q �∗ f ;U) ∗, (π ∗, S ∗ ( f ;U; ρ�)� ∗, f ∗,R ∗, T ) f crisp

= (Q �∗ f ;U) ∗, (π ∗, S ∗ (ρ;U�; f �) ∗, f ∗,R ∗, T )
= (Q �∗ f ;U) ∗, (π ∗, S ∗ ρ ∗,U� ∗, f � ∗, f ∗,R ∗, T ) f , ρ crisp

= (Q �∗ f ;U) ∗, (π ∗, S ∗ ρ ∗,U� ∗, ( f �; f ) ∗,R ∗, T ) f crisp

� (Q �∗ f ;U) ∗, (π ∗, S ∗ ρ ∗,U� ∗,R ∗, T ) f univalent

= (Q �∗ f ;U) ∗, (π; S ∗ (ρ; (U� ∗,R)) ∗, T ) π, ρ crisp

= (Q �∗ f ;U) ∗, (π; S ∗ (�A×B,B � ρ; (U� ∗,R)) ∗, T )
= (Q �∗ f ;U) ∗, (π; S ∗ (�A×B,B ∗ ρ; (U� ∗,R)) ∗, T ) �A×B,B crisp

= (Q �∗ f ;U) ∗, (π; S ∗ (π; π�; ρ ∗ ρ; (U� ∗,R)) ∗, T ) π; π�; ρ = �A×B,B
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= (Q �∗ f ;U) ∗, (π; S ∗ ((π; π� ∗ ρ; (U� ∗,R); ρ�); ρ) ∗, T ) Lemma 13(2)

= (Q �∗ f ;U) ∗, (π; S ∗ (π; π� ∗ ρ; (U� ∗,R); ρ�) ∗, ρ ∗, T ) ρ crisp

= (Q �∗ f ;U) ∗, (π; S ∗ (π; π� ∗ ρ; (U� ∗,R); ρ�) ∗, (ρ;T )) ρ crisp

� (Q �∗ f ;U) ∗, (π; π� ∗ ρ; (U� ∗,R); ρ�) ∗, ((π; π�) ∗, (π; S ) ∗ ρ;T ) Lemma 13(3)

= (Q �∗ f ;U) ∗, (π� �∗ (U� ∗,R); ρ�) ∗, ((π; π�) ∗, (π; S ) ∗ ρ;T )
= (Q �∗ f ;U) ∗, (π� �∗ (U� ∗,R); ρ�) ∗, (π; π�; π; S ∗ ρ;T ) π crisp

= (Q �∗ f ;U) ∗, (π� �∗ (U� ∗,R); ρ�) ∗, (π; S ∗ ρ;T )
= (Q �∗ f ;U) ∗, (π� �∗ (U� ∗,R); ρ�) ∗, (S �∗ T )

� (Q ∗, π� ∗ ( f ;U) ∗, ((U� ∗,R); ρ�)) ∗, (S �∗ T ) Lemma 15

= (Q ∗, π� ∗ f ∗,U ∗,U� ∗,R ∗, ρ�) ∗, (S �∗ T ) f , ρ crisp

� (Q ∗, π� ∗ f ∗, (U;U�) ∗,R ∗, ρ�) ∗, (S �∗ T ) Lemma 12(3)

� (Q ∗, π� ∗ f ∗,R ∗, ρ�) ∗, (S �∗ T ) U injective

= (Q; π� ∗ f ;R; ρ�) ∗, (S �∗ T ) f , π, ρ crisp

= (Q �∗ f ;R) ∗, (S �∗ T ).

The converse inclusion � was already shown in Lemma 15. ��
As an immediate consequence of the previous theorem we obtain sharpness if one

of the relations is between an object B and its relational power P(B). The situation of
the following corollary is visualized in Fig. 2.

Fig. 2. Situation of Corollary 17

Corollary 17. Let F be a fuzzy category, P(B) the relational power of B, A × P(B)
the relational product of A and P(B), Q : B → A, R : B → P(B), S : A → D, and
T : P(B)→ D be relations. Then we have

(Q �∗ R) ∗, (S �∗ T ) = Q ∗, S ∗ R ∗, T.
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Proof. This follows immediately from Theorem 16 with f = IB and U = syQ(IB, ε)↓

where the relation U is a crisp and injective map by Lemma 10(2). ��
Please note that the previous corollary immediately implies

(ε�∗ ε) ∗, (S �∗ T ) = ε ∗, S ∗ ε ∗, T
for appropriate relations S and T .

We are now able to prove the main theorem of this paper. It shows the fuzzy version
of sharpness if a suitable crisp version of sharpness holds. As above the situation of the
theorem and its proof is visualized in Fig. 3.

Fig. 3. Situation of Theorem 18 and its proof where X = π; syQ(ε,Q)↓ � ρ; syQ(ε,R)↓ and Y =
syQ(S �, ε)↓; π� � syQ(T�, ε)↓; ρ�.

Theorem 18. Let F be a fuzzy category and A × B the relational product of A and B.
If the objects P(C),P(D),P(C) × P(C), P(D) × P(D) exist, and if the product A × B
is sharp for all crisp relations Q′ : P(C) × P(C) → A, R′ : P(C) × P(C) → B,
S ′ : A→ P(D) × P(D), and T ′ : B→ P(D) × P(D), i.e., we have

(Q′ � R′); (S ′ � T ′) = Q′; S ′ � R′;T ′,

then also the fuzzy version of sharpness holds, i.e., we have

(Q �∗ R) ∗, (S �∗ T ) = Q ∗, S ∗ R ∗, T
for all Q : C → A, R : C → B, S : A→ D, and T : B→ D.
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Proof. First, consider the following computation

Q �∗ R = ε; syQ(ε,Q)↓ �∗ ε; syQ(ε,R)↓ Lemma 10(3)

= ε; syQ(ε,Q)↓; π� ∗ ε; syQ(ε,R)↓; ρ�
= ε ∗, (syQ(ε,Q)↓; π�) ∗ ε ∗, (syQ(ε,R)↓; ρ�) right relation crisp

= (ε�∗ ε) ∗, (syQ(ε,Q)↓; π� �∗ syQ(ε,R)↓; ρ�) Corollary 17

= (ε�∗ ε) ∗, (π; syQ(ε,Q)↓; π� ∗ ρ; syQ(ε,R)↓; ρ�)
= (ε�∗ ε) ∗, (π; syQ(ε,Q)↓; π� � ρ; syQ(ε,R)↓; ρ�) both relations crisp

= (ε�∗ ε) ∗, (π; syQ(ε,Q)↓ � ρ; syQ(ε,R)↓).

The equation S �∗ T = (syQ(S �, ε)↓; π� � syQ(T�, ε)↓; ρ�) ∗, (ε� �∗ ε�) is shown
analogously. Furthermore, we have

(π; syQ(ε,Q)↓ � ρ; syQ(ε,R)↓) ∗, (syQ(S �, ε)↓; π� � syQ(T�, ε)↓; ρ�)

= (π; syQ(ε,Q)↓ � ρ; syQ(ε,R)↓); (syQ(S �, ε)↓; π� � syQ(T�, ε)↓; ρ�) crisp rel.

= π; syQ(ε,Q)↓; syQ(S �, ε)↓; π� � ρ; syQ(ε,R)↓; syQ(T�, ε)↓; ρ� assump.

= π; syQ(ε,Q)↓; syQ(S �, ε)↓; π� ∗ ρ; syQ(ε,R)↓; syQ(T�, ε)↓; ρ� crisp rel.

= syQ(ε,Q)↓; syQ(S �, ε)↓; π� �∗ syQ(ε,R)↓; syQ(T�, ε)↓; ρ�

as well as

(ε�∗ ε) ∗, (syQ(ε,Q)↓; syQ(S �, ε)↓; π� �∗ syQ(ε,R)↓; syQ(T�, ε)↓; ρ�)

= ε ∗, (syQ(ε,Q)↓; syQ(S �, ε)↓; π�) ∗ ε ∗, (syQ(ε,R)↓; syQ(T�, ε)↓; ρ�) Corollary 17

= ε; syQ(ε,Q)↓; syQ(S �, ε)↓; π� ∗ ε; syQ(ε,R)↓; syQ(T�, ε)↓; ρ� right crisp

= Q; syQ(S �, ε)↓; π� ∗ R; syQ(T�, ε)↓; ρ� Lemma 10(3)

= Q; syQ(S �, ε)↓ �∗ R; syQ(T�, ε)↓

and finally

(Q; syQ(S �, ε)↓ �∗ R; syQ(T�, ε)↓) ∗, (ε� �∗ ε�)

= (Q; syQ(S �, ε)↓) ∗, ε� ∗ (R; syQ(T�, ε)↓) ∗, ε� Corollary 17

= Q ∗, syQ(S �, ε)↓ ∗, ε� ∗ R ∗, syQ(T�, ε)↓ ∗, ε� right relation crisp

= Q ∗, (syQ(S �, ε)↓; ε�) ∗ R ∗, (syQ(T�, ε)↓; ε�) left relation crisp

= Q ∗, S ∗ R ∗, T Lemma 10(3).

Combining the computation above immediately leads to the fuzzy version of sharpness
of the product A × B. ��

In [1] it was shown that the regular sharpness property from C via A× B to D holds,
i.e., for all relations Q : C → A, R : C → B, S : A → D, and T : B → D, if one of
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the additional products A × C, B × C, A × D or B × D exists. Combining this with the
result of the main theorem we obtain that fuzzy sharpness from C via A × B to D holds
if the objects P(C),P(D),P(C) × P(C), P(D) × P(D) and either one of the products
A × P(C) × P(C), B × P(C) × P(C), A × P(D) × P(D) or B × P(D) × P(D) exists.

From this discussion we immediately obtain the following corollary.

Corollary 19. Let F be a fuzzy category with relational products and powers. Then
fuzzy sharpness holds.

4 Conclusion

In this paper we have introduced the fuzzy unsharpness problem. This problem is
obtained by replacing � and ; in the regular unsharpness problem by the t-norm based
operations ∗ and ∗, . We have shown that the fuzzy unsharpness problem can be reduced
to the regular unsharpness problem if some additional relational products and powers
exist. As a consequence we obtained Corollary 19 stating fuzzy sharpness if the fuzzy
category has all relational products and powers.

In the opinion of the author the results of this paper show once again that
(un)sharpness is more a structural problem related to relational products and repre-
sentability than a problem related to the specific operations used in the equation.

Last but not least, we want to state a property that requires fuzzy sharpness in its
proof. The actual proof is omitted due to lack of space. Suppose ε1 : A → P(A),
ε2 : P(A)→ P(P(A)), π1, ρ1 : P(A)×P(A)→ P(A), and π2, ρ2 : P(P(A))×P(P(A))→
P(P(A)) are given. Then the binary (∗-based) meet relationM∗ : P(A) × P(A)→ P(A)
defined byM∗ = syQ(ε1 �∗ ε1, ε1)↓ maps two fuzzy subsets of A to their t-norm based
intersection, i.e., M∗((B,C),D) iff D(a) = B(a) ∗ C(a) for all a ∈ A. Similarly, the
join relation J : P(P(A))→ P(A) defined by J = syQ(ε1; ε2, ε1)↓ maps a set of fuzzy
subsets of A to their union. The property below now states that the (∗-based) meet of the
two unions of two sets of fuzzy sets M and N is equal to the union of the set obtained
by taking the (∗-based) meet of all pairs of sets from M and N:

(π2;J � ρ2;J);M∗ = syQ(ε1;M�∗ ; (π1; ε2 �∗ ρ1; ε2), ε1)↓

In the proof of this property fuzzy sharpness is needed several times. The most general
case takes the form:

(ε1 �∗ ε1); (ε2; π�2 �∗ ε2; ρ�2 ) = ε1; ε2; π
�
2 ∗ ε1; ε2; ρ�2 .
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