
Chapter 8
Smart Building Sensor Drift Calibration

Tinghuan Chen, Bingqing Lin, Hao Geng, and Bei Yu

8.1 Introduction

In modern smart building, the temperature measurement is a key step for smart
temperature management implemented by a cyber-physical system (CPS) [1, 2].
CPS is a complex, heterogeneous distributed system with seamlessly integrated and
closely interacted cyber components (e.g., sensors, sink nodes, control centers, and
actuators) and physical processes (e.g., temperature) [3]. As shown in Fig. 8.1, the
physical world is sensed by corresponding sensors and the acquired data is sent
to a sink node or control center. Then the sink node or control center will send
an instruction to actuators to control the physical world after the data is analyzed.
In smart building, the in-building temperatures are monitored by several spatially
distributed and immovable temperature sensors.
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Sensor

Sink Node

Fig. 8.1 CPS in modern smart building

Although advanced technologies in the semiconductor industry and micro-
electromechanical systems are developed in recent years, in practice, sensors
outputs exist errors, which are one of the major barriers to the use of sensor
networks. There are three main types of errors: gain, drift, and noise [4]. Compared
with gain and noise, the sensor drift is considered with vital importance since it
has significantly negative effect on measurement accuracy [5]. Although sensors
with high accuracy can be deployed, these sensors always have expensive price. As
shown in Fig. 8.2a, the temperature sensor AD590JH with ±0.5 °C accuracy is sold
at more than tenfold price of TMP100 with ±2 °C accuracy.

Sensor drift calibration has been studied in many literatures. Without further
assumption, calibration cannot be performed. In [7–9], at most one sensor is
assumed to have an unknown drift, which is estimated by Kalman filter. In practice,
this assumption is hard to satisfy. Therefore, the calibration problem is naturally
studied extensively to be a sparse reconstruction problem, where a sparse set of
sensors are assumed to have significant drifts. These drift calibration works mainly
depend on subspace prior, which is first proposed by Balzano and Nowak to
perform calibration when variational sources are over-sampled by sensors [10]. The
projection matrix is obtained by singular value decomposition (SVD) [10, 11]. In
[11], Wang et.al. adopt temporal sparse Bayesian learning (TSBL) [12] to calibrate
time-variant and incremental drifts for the sparse set of sensors. However, due to the
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Part Number Temp. Range Accuracy Price [12]

SMT172 −45 ∼ 130 °C ±0.25 °C $ 35.13
AD590JH −50 ∼ 150 °C ±0.5 °C $ 17.91
TMP100 −55 ∼ 125 °C ±2.0 °C $ 1.79
MCP9509 −40 ∼ 125 °C ±4.5 °C $ 0.88
LM335A −40 ∼ 100 °C ±5.0 °C $ 0.75

(a)

(b)

(c)

Fig. 8.2 (a) Comparison of different temperature sensors; (b) Sensor MCP9509; (c) Sensor
LM335A

sparsity assumption, not all sensors can be calibrated. In addition, since observation
matrix is directly determined by drift-free measurement, the method cannot calibrate
drifts if signals lie in time-variant subspace.

Very recently, in order to calibrate all sensors, Ling and Strohmer presented
three models, which are formulated as bilinear inverse problems [13]. However,
these models heavily rely on the partial information about the sensing matrix. For
the temperature sensor calibration in a smart building, the sensing matrix depends
on weather, the position of sensors, and parameters of the building, e.g., material
characteristics, geometry, and equipment power per area [1, 2, 14]. In practice, it
is hard to obtain these complex and tedious information. As a result, these models
cannot be directly used to calibrate temperature sensors in a smart building.

In this paper, we focus on the temperature sensor drift calibration. Several low-
cost sensors with low accuracy are deployed to sense in-building temperatures
(see Fig. 8.2b,c). Unlike traditional arts, we build a sensor spatial correlation
model whose coefficients only depend on measurements, and we assume that all
sensors have drifts. Our model coefficients are optimally determined by statistically
extracting prior information from drift-free measurement model coefficients and
maximum-a-posteriori (MAP) estimation. As a result, our proposed sensor drift
calibration framework allows that the signals lie in time-variant subspace. MAP
estimation is formulated as a non-convex problem with three hyper-parameters.
We propose an alternating-based optimization algorithm to handle the non-convex
formulation. Cross-validation and expectation-maximization (EM) with Gibbs sam-
pling are adopted to determine hyper-parameters, respectively.

Experimental results show that on benchmarks simulated from EnergyPlus,
compared with state-of-the-art method, the proposed framework with EM can
achieve a better trade-off between accuracy and runtime.

The rest of this paper is organized as follows. In Sect. 8.2, we provide a problem
formulation about sensor drift calibration and broadly introduce our proposed
whole flow. In Sect. 8.3, we build a drift calibration model based on sensor spatial
correlation and deliver mathematical formulation with three hyper-parameters.
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In Sect. 8.4, we propose a more efficient method to handle the mathematical
formulation. In Sect. 8.5, three hyper-parameters are determined by cross-validation
and EM with Gibbs sampling, respectively. Section 8.6 presents experimental results
with comparison and discussion, followed by conclusion in Sect. 8.7.

8.2 Preliminary

8.2.1 Problem Formulation

Several low-cost sensors are deployed to sense in-building temperatures. Due to
a slow-aging effect, all sensors have unknown time-invariant drifts. As shown in
Fig. 8.3, unlike communication channels [12], for a sensor signal to be output, e.g.,
current, it is contaminated by a time-invariant drift. In order to achieve high-accurate
measurements, drifts need to be estimated and calibrated. Specifically, the mean
absolute percent error (MAPE) is used to evaluate drift calibration accuracy.

Based on the above description, we define the sensor drift calibration problem as
follows.

Problem 1 (Sensor Drift Calibration) Given the measurement values sensed by
all sensors during several time-instants, drifts will be accurately estimated and
calibrated.

8.2.2 Overall Flow

The overall flow of our proposed sensor drift calibration is shown in Fig. 8.4, which
consists of three parts: model optimization, cross-validation, and EM with Gibbs
sampling.

After drift-free measurements model coefficients and several temperature mea-
surements with drifts are input, an alternating-based optimization algorithm is
proposed to handle sensor drift calibration formulation in model optimization.
In addition, cross-validation and EM with Gibbs sampling are adopted to induce

Fig. 8.3 Drift
vs. temperature [15]

temperature
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Drift Calibration

Fig. 8.4 The proposed sensor drift calibration flow

hyper-parameters, respectively. By using the proposed sensor drift calibration, it is
expected to accurately calibrate sensor drifts.

8.3 Mathematical Formulation

We assume that n sensors are deployed to sense in-building temperatures. During a
short time after new sensors are deployed, the drift is assumed to be insignificant.
Furthermore, like [11], we assume all sensors are drift-free during m0 initial time-
instants. Due to over-sampling, as illustrated in [10, 11], signals measured by
sensors lie in a low dimensional subspace. Furthermore, in a smart building, all
actual temperatures measured by sensors have a high correlation, for example, the
dense deployment of sensors. Therefore, we build a linear model among all actual
temperatures as follows:

x
(k)
i ≈

n∑

j=1,j �=i

ai,j x
(k)
j + ai,0, k = 1, 2, . . . , m0, (8.1)

where x
(k)
i is the ground-truth temperature sensed by ith sensor at kth time-

instant. ai,j is the drift-free model coefficient. We define x = [x(1)
1 , x

(1)
2 , . . . , x

(1)
n ,

. . . , x
(m0)
n ]�, ai = [ai,0, . . . , ai,i−1, ai,i+1, . . . , ai,n]� ∈ R

n, a = [a�
1 , a�

2 , . . . ,

a�
n ]� ∈ R

n2
.

Due to a slow-aging effect, all sensors have unknown time-invariant drifts.
During m time-instants, Eq. (8.1) is naturally extended as
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x̂
(k)
i + εi ≈

n∑

j=1,j �=i

âi,j

(
x̂

(k)
j + εj

)
+ âi,0, k = 1, 2, . . . , m, (8.2)

where x̂
(k)
i is the measurement value sensed by ith sensor at kth time-instant.

In particular, in order to obtain enough information, we assume m0,m > n.
For ith sensor, εi is a time-invariant drift calibration, which is independent of
time-instant k. âi,j is the model coefficient when all sensors have unknown time-

invariant drifts. We vectorize these variables as x̂ = [x̂(1)
1 , x̂

(1)
2 , . . . , . . . , x̂

(m)
n ]�,

âi = [âi,0, . . . , âi,i−1, âi,i+1, . . . , âi,n]� ∈ R
n, â = [â�

1 , â�
2 , . . . , â�

n ]� ∈ R
n2

, and
ε = [ε1, ε2, . . . , εn]� ∈ R

n.
Note that Eq. (8.2) is essential in our proposed sensor spatial correlation model.

Furthermore, the model error in Eq. (8.2) is assumed to follow identical independent
Gaussian distribution with zero-mean and unknown precision (inverse variance) δ0.
Therefore, the likelihood function P(x̂|â, ε) is defined as follows:

P (
x̂|â, ε

) ∝ exp

⎛

⎜⎝−δ0

2

n∑

i=1

m∑

k=1

⎡

⎣x̂
(k)
i + εi −

n∑

j=1,j �=i

âi,j

(
x̂

(k)
j + εj

)
− âi,0

⎤

⎦
2
⎞

⎟⎠ .

(8.3)

However, the likelihood function P(x̂|â, ε) cannot be directly used to calibrate
drifts using maximum-likelihood-estimation (MLE) since it has not enough infor-
mation. Therefore, we need to give two priors in development.

For all sensors, drifts are assumed to follow identical independent Gaussian
distribution with zero-mean and unknown precision δε as follows:

P(ε) ∝ exp

(
−δε

2

n∑

i=1

ε2
i

)
. (8.4)

In addition, we assume that the model coefficient âi,j follows identical indepen-
dent Gaussian distribution. Intuitively, âi,j has high dependency on ai,j in statistics.
Furthermore, the probability density function of âi,j is assumed to take a maximum
value at ai,j . Therefore, the prior mean of âi,j is ai,j . In addition, in order that
each model coefficient âi,j is provided with a relatively equal probability to deviate
from the corresponding drift-free model coefficient ai,j , the precision of model
coefficient âi,j is defined to be λa−2

i,j , where λ is a nonnegative hyper-parameter to
control the precision of âi,j . Therefore, each model coefficient âi,j follows identical
independent Gaussian distribution with ai,j mean and λa−2

i,j precision [16–18]. For
all model coefficients, we have
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P(â) ∝ exp

⎛

⎝−
n∑

i=1

n∑

j=0,j �=i

λ

2a2
i,j

(
âi,j − ai,j

)2

⎞

⎠ . (8.5)

In order to calibrate drifts for all sensors, the posterior P(â, ε|x̂) needs to be
maximized in MAP estimation manner. According to Bayes’ rule, the posterior
P(â, ε|x̂) can be expressed by two priors and the likelihood function as follows:

P(â, ε|x̂) ∝ P(x̂|â, ε) · P(â) · P(ε). (8.6)

Taking the logarithm, MAP can be transferred to the equivalent formulation as
follows:

min
â,ε

δ0

n∑

i=1

m∑

k=1

⎡

⎣x̂
(k)
i + εi −

n∑

j=1,j �=i

âi,j

(
x̂

(k)
j + εj

)
− âi,0

⎤

⎦
2

+ λ

n∑

i=1

n∑

j=0,j �=i

1

a2
i,j

(
âi,j − ai,j

)2 + δε

n∑

i=1

ε2
i . (8.7)

There are two challenges for Formulation (8.7): how to handle Formulation (8.7)
and how to induce hyper-parameters λ, δ0, and δε .

8.4 Alternating-Based Optimization

Formulation (8.7) is a non-convex problem; thus, it is difficult to obtain an
optimal solution. In this section, we propose a fast and efficient alternating-based
optimization methodology to handle Formulation (8.7) by alternatively updating in
each iteration.

According to the alternating-based methodology, at each iteration, the values of â
and ε are updated by optimizing Formulation (8.7) w.r.t. â and ε. Furthermore, note
that with fixed drift calibration variable ε, Formulation (8.7) w.r.t. â is regarded
as a convex unconstrained quadratic programming (QP) problem. In addition,
Formulation (8.7) w.r.t. â can be decomposed into n independent sub-formulations
w.r.t. âi as follows:

min
âi

δ0

m∑

k=1

⎡

⎣x̂
(k)
i + εi −

n∑

j=1,j �=i

âi,j

(
x̂

(k)
j + εj

)
− âi,0

⎤

⎦
2

+ λ

n∑

j=0,j �=i

1

a2
i,j

(
âi,j − ai,j

)2
, (8.8)
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with the first-order optimality condition:

δ0

m∑

k=1

(
x̂

(k)
t + εt

)
⎡

⎣
n∑

j=1

âi,j

(
x̂

(k)
j + εj

)
+ âi,0

⎤

⎦ + λ

(
âi,t − ai,t

)

a2
i,t

= 0, (8.9)

where t = 0, 1, . . . , i − 1, i + 1, . . . , n. In particular, we define âi,i � −1 and
x̂

(k)
0 + ε0 � 1. The system of linear equations (8.9) can be handled by Gaussian

elimination [19].
In the same manner, with fixed model coefficients â, Formulation (8.7) w.r.t. the

drift calibration ε can also be regarded to be a convex unconstrained QP problem as
follows:

min
ε

δ0

n∑

i=1

m∑

k=1

⎡

⎣x̂
(k)
i + εi −

n∑

j=1,j �=i

âi,j

(
x̂

(k)
j + εj

)
− âi,0

⎤

⎦
2

+ δε

n∑

i=1

ε2
i ,

(8.10)

with the corresponding first-order optimality condition:

δ0

n∑

i=1

m∑

k=1

⎡

⎣âi,t

⎛

⎝
n∑

j=1

âi,j

(
x̂

(k)
j + εj

)
+ âi,0

⎞

⎠

⎤

⎦ + δεεt = 0, (8.11)

where t = 1, 2, . . . , n.

Algorithm 1 Alternating-based method
Input: Sensor measurements x̂, prior a and hyper-parameters λ, δ0, δε .
1: Initialize â ← a and ε ← 0;
2: repeat
3: for i ← 1 to n do
4: Fix ε, solve the system of linear equations (8.9) using Gaussian elimination to update âi ;
5: end for
6: Fix â, solve the system of linear equations (8.11) using Gaussian elimination to update ε;
7: until Convergence
8:
9: return â and ε.

A local optimum can be obtained by the proposed alternating-based method
while the convergence speed and solution quality depend on the initialization of
variables. In our proposed framework, two priors are given for model coefficients â
and drift calibration ε. Therefore, in order to achieve a better convergence speed and
solution quality, the prior means a and 0 are used to initialize variables â and ε. We
continue to update â and ε until convergence. The convergence condition is that the
relative difference of drift calibration ε between current and previous iterations is
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less than a threshold. In summary, our proposed alternating-based method is shown
in Algorithm 1.

8.5 Estimation of Hyper-Parameters

It is important to induce the aforementioned three hyper-parameters so that drifts
can be accurately calibrated and meanwhile the over-fitting can be avoided. In this
section, cross-validation and EM with Gibbs sampling are used to induce hyper-
parameters, respectively.

8.5.1 Unsupervised Cross-Validation

Cross-validation is a simple method to select hyper-parameters. Although there
are three hyper-parameters λ, δ0, δε in Formulation (8.7), only two ratios λ/δ0
and δε/δ0 need to be determined instead of individual hyper-parameters by cross-
validation. We partition temperature measurements during m time-instants into s

non-overlapping parts. Given each combination of ratios candidates λ/δ0 and δε/δ0,
in each run, one of the s parts is used to estimate the model error and all other
s − 1 parts are used to calculate model coefficients and drift calibration. In the same
manner, each run gives a model error er (r = 1, 2, . . . , s) estimated from a part
of temperature measurements. The final model error is computed as the average
ē = (e1 + e2 + · · · + es)/s. Then two ratios λ/δ0 and δε/δ0 corresponding to the
minimum average model error are chosen.

Note that unlike conventional cross-validation [1, 2, 14, 16–18], not any golden
value of drift calibration is used in metrics to choose hyper-parameters in model
fitting stage. Therefore, in our proposed framework, cross-validation is adopted in
an unsupervised-learning-like fashion.

Cross-validation is time-consuming since Algorithm 1 has to be performed for
multiple times. Thus, we propose a fast and efficient EM algorithm to determine
hyper-parameters in statistical model.

8.5.2 Monte Carlo Expectation Maximization

In this section, MLE is used to determine individual hyper-parameters δ0, λ, and δε .
MLE of hyper-parameters is formulated as follows:

max
δε ,δ0,λ

P(x̂; δ0, λ, δε). (8.12)
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However, the likelihood function P(x̂; δ0, λ, δε) is intractable. EM algorithm
is leveraged to efficiently find a solution to Formulation (8.12). According to
EM algorithm, Formulation (8.12) can be taken the logarithm and transferred
to be its auxiliary lower bound function [20]. Then, the auxiliary lower bound
function is optimized by E-step and M-step iteratively after the term independent
of hyper-parameters is omitted. The detailed derivation can be found in [21]. For
convenience, all hyper-parameters are collected as a set Ω .

8.5.2.1 Expectation Step with Gibbs Sampling

In E-step, the auxiliary lower bound function can be simplified to be a quantity
defined as follows:

Q
(
Ω|Ωold

)
=

∫ ∫
P

(
â, ε|x̂;Ωold

)
lnP(x̂, â, ε;Ω)dâdε, (8.13)

where Ωold denotes estimated hyper-parameters in the previous iteration.
However, the posterior P(â, ε|x;Ωold) is intractable. There are two main meth-

ods to approximate the posterior P(â, ε|x;Ω): variational inference and Markov
chain Monte Carlo (MCMC). Compared with variational inference, MCMC has the
advantage of being non-parametric and asymptotically exact [22]. Therefore, Monte
Carlo method is utilized to approximate the quantity as follows:

Q
(
Ω|Ωold

)
≈ 1

L

L∑

l=1

lnP
(

x̂, â(l), ε(l);Ω
)

, (8.14)

where samples â(l) and ε(l) are obtained from the distribution P(â, ε|x̂;Ωold). L is
total amount of samples. In MCMC, there are two main algorithms to obtain samples
from the desired distribution P(â, ε|x̂;Ωold): Metropolis Hastings algorithm and
Gibbs sampling. Since the rejection rate will be high in complex problems,
Metropolis Hastings algorithm has very slow convergence [21]. Therefore, Gibbs
sampling is used to obtain samples â(l) and ε(l).

Gibbs sampling has the behavior that one or batch variables are cyclically and
repeatedly updated in some particular order at random from conditional distribution.
Sampling order is arranged to be â

(l)
1,0, . . . , â

(l)
1,n, â

(l)
2,0, . . . , â

(l)
n,n−1, ε

(l)
1 , . . . , ε

(l)
n . In

Gibbs sampling, one of key points is derivation of the conditional distribution for
each variable. Note that according to Formulation (8.7), the log conditional distri-
bution w.r.t. individual variable is quadratic. Therefore, the conditional distribution
of each variable is Gaussian distribution as follows:

âp,q ∼ P
(
âp,q |ε, â/âp,q

, x̂; δε, δ, λ
)

= N
(
μâp,q

, σ−1
âp,q

)
,

εt ∼ P (
εt |ε/εt , â, x̂; δε, δ, λ

) = N
(
μεt , σ

−1
εt

)
,

(8.15)
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in agreement with (8.4) and (8.5). μ is mean and σ is precision. â/âp,q
and ε/εt

denote â but with âp,q omitted and ε but with εt omitted.
Before Gibbs sampling, in order to converge to the desired posterior, the warm-

start has to be performed if there is no reasonable initialization for samples.
Furthermore, it is very hard to judge whether the warm-start is enough [21]. In
order to waive the warm-start, a reasonable initialization for samples is adopted
in Gibbs sampling. Note that Gibbs sampling is used to obtain samples from the
desired posterior P(â, ε|x̂;Ωold) (8.6). As we discussed in Sect. 8.2, Formula-
tion (8.7) is equivalent to MAP estimation of â and ε. Thus given hyper-parameters
Ωold and measurement values x̂, Gibbs sampling can be initialized by handling
Formulation (8.7) to obtain initial samples â(0) and ε(0) satisfying the distribution
P(â, ε|x̂;Ωold). As a result, the warm-start can be totally waived.

8.5.2.2 Maximization Step

After L samples are obtained by Gibbs sampling, in M-step, we will maximize the
approximated quantity as follows:

max
Ω

1

L

L∑

l=1

lnP
(

x̂, â(l), ε(l);Ω
)

. (8.16)

With the first-order optimality condition, that is dQ/dΩ = 0, hyper-parameters λ,
δ0, δε can be updated as follows:

λ = n2L

∑n
i=1

∑n
j=0,j �=i

∑L
l=1

(
â

(l)
i,j −ai,j

)2

a2
i,j

, (8.17)

δ0 = Lmn

∑L
l=1

∑n
i=1

∑m
k=1

[∑n
j=1 â

(l)
i,j

(
x̂

(k)
j + ε

(l)
j

)
+ â

(l)
i,0

]2 , (8.18)

δε = nL
∑L

l=1
∑n

i=1 ε
(l)2
i

. (8.19)

Here, â
(l)
i,i � −1 and x̂

(k)
0 + ε

(l)
0 � 1. We continue to alternate between E-step and

M-step until convergence. The convergence condition is that the relative difference
of three hyper-parameters between current and previous iterations is less than a
threshold. Then hyper-parameters λ, δ, δε can be determined.
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For convenience, all variables are collected as a set Ψ = {ψ1, ψ2, . . . , ψn2+n} =
{â1,0, . . . , â1,n, . . . , ân,n−1, ε1, . . . , εn}. In summary, our proposed EM with Gibbs
sampling is shown in Algorithm 2.

Algorithm 2 EM with Gibbs sampling
Input: Sensor measurements x̂, prior a;
1: Initialize hyper-parameters Ω;
2: repeat
3: Initialize samples Ψ (0) by Algorithm 1;
4: for l ← 1 to L do
5: for i ← 1 to n2 + n do
6: Sample ψ

(l)
i from the desired conditional distribution N (μψi

, σψi
) (8.15) with

ψ
(l)
1 , · · · , ψ

(l)
i−1, ψ

(l−1)
i+1 , · · · , ψ

(l−1)

n2+n
;

7: end for
8: end for
9: Update hyper-parameters Ω by Equations (8.17), (8.18) and (8.19);

10: until Convergence
11:
12: return hyper-parameters Ω .

8.6 Experimental Results

The in-building temperature data are used to test our proposed framework. We use
several sensors to calibrate drifts. All data is directly generated from EnergyPlus
as shown in Fig. 8.5. As shown in Fig. 8.6, two building benchmarks, Hall [23] with
Washington, D.C weather and Secondary School [24] with Chicago weather, are
simulated by EnergyPlus to generate the ground-truth in-building temperatures,
which are used to test our proposed framework. The temperature sampling period is
set to be 1 h.

choose building model 
and weather, set sensor 

parameters

random drift

obtain golden 
temperature

drift calibration
comparison

MAPE

noise

Fig. 8.5 The generated simulation data
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Fig. 8.6 Benchmark: (a) Hall; (b) Secondary School

In practice, both drift and measurement noise need to be carefully considered and
reasonably set to close to real temperature measurement. Because of a slow-aging
effect, time effects on sensor performance are not considered in our experiments.
Drift is set to be time-invariant while measurement noise is set to be time-variant.
According to the sensors’ performance shown in Fig. 8.2a, two low-cost temperature
sensors, MCP9509 with accuracy ±4.5 °C and LM335A with accuracy ±5 °C as
shown in Fig. 8.2b,c, are chosen to set drift variance, respectively. According to the
triple standard deviation, we set two drift variances to be σ 2 = (4.5/3)2 = 2.25 and
σ 2 = (5/3)2 = 2.78. In addition, according to our survey, the noise variance is set
to be 0.001. All temperature measurements are generated by adding noise.

The time-instant number needs to be reasonably set to meet practical application
and accurately calibrate sensor drifts. We assume the temperature measurements are
drift-free during first m0 = 240 time-instants (first 10 days). And during m = 60
time-instants (60 h), the temperature measurements with drifts are used to test our
proposed framework.

TSBL [11] and the proposed framework with cross-validation and EM are used to
calibrate sensor drifts, respectively. All methods are implemented by Python 2.7
on 12-core Linux machine with 256 G RAM and 2.80 GHz. 100 combinations of
hyper-parameters ratios and s = 5 folds are set in cross-validation. Since the warm-
start is waived in Gibbs sampling, in order to achieve a better trade-off between
accuracy and runtime, only L = 10 samples are generated to perform Monte Carlo
approximation (8.14), and three hyper-parameters λ, δ0, δε are initialized to be 103,
10−4, and 10−3 in EM. The convergence criterion thresholds are set to be 10−8 and
10−2 in Algorithms 1 and 2.

As mentioned in Sect. 8.2, the drift calibration accuracy is evaluated by using
MAPE defined as follows:

MAPE = 1

nm

m∑

k=1

n∑

i=1

∣∣∣∣∣
ε̂
(k)
i − εi

εi

∣∣∣∣∣ , (8.20)
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Fig. 8.7 Drift variance is set to (a,c) 2.25; (b,d) 2.78; Benchmark: (a,b) Hall; (c,d) Secondary
school
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Fig. 8.8 Runtime vs. # sensor on (a) Hall; (b) Secondary school

where ε̂
(k)
i is the estimated calibration. Specifically, in our proposed framework,

ε̂
(k)
i = ε̂i . The sensor drift calibration performances of accuracy and runtime are

shown in Figs 8.7 and 8.8.
As shown in Fig. 8.8, TSBL has acceptable computational overhead even if its

computational complexity is dominated by multiple matrix inversion operations.
However, as shown in Fig. 8.7, TSBL has the worst performance and robust for
drifts calibration. In fact, temperature signals lie in time-variant subspace since in-
building temperatures are influenced by multiple time-variant factors, e.g., weather.
As a result, TSBL cannot achieve an obvious drift calibration.

Unlike TSBL, the proposed spatial correlation model can calibrate drifts even
if temperature signals lie in time-variant subspace. Therefore, as shown in Fig. 8.7,
the proposed framework with either cross-validation or EM outperforms TSBL in
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accuracy. Besides, the proposed drift calibration framework with cross-validation
can achieve the best accuracy. However, as shown in Fig. 8.8, cross-validation has
heavy computational overhead since we need to run Algorithm 1 for multiple times.
Compared with cross-validation and TSBL, EM with Gibbs sampling has lower
computation complexity since less samples are generated to perform Monte Carlo
approximation and EM can achieve fast convergence. However, as shown in Fig. 8.7,
the proposed framework with EM cannot achieve the best accuracy since EM with
Gibbs sampling is an approximation method.

As shown in Fig. 8.7, because of incremental correlation, the more sensors can
achieve the more accuracy of drift calibration by using our proposed framework.
In practice, when less sensors need to be calibrated, in order to achieve a better
accuracy, cross-validation can be used to determine hyper-parameters within a
reasonable response time, e.g., 1 min. While more sensors need to be calibrated,
EM with Gibbs sampling can be used to determine hyper-parameters so that sensor
measurement accuracy can be improved to a tolerable level within acceptable
runtime. The proposed calibration framework with EM can achieve robust drift
calibration and a better trade-off between accuracy and runtime.

8.7 Conclusion

In this paper, a sensor spatial correlation model has been proposed to perform
drift calibration. Thanks to spatial correlation, the unknown actual temperature
measured by each sensor is linearly expressed by all other sensors. The priors
for model coefficients and drift calibration are applied to MAP estimation. MAP
estimation is then formulated as a non-convex problem with three hyper-parameters,
which is handled by the proposed alternating-based method. Cross-validation and
EM with Gibbs sampling are used to determine hyper-parameters, respectively.
Experimental results show that on benchmarks simulated from EnergyPlus, the
proposed framework with EM can achieve a robust drift calibration and better trade-
off between accuracy and runtime.
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