
Chapter 4
A Framework for Speculative Job
Scheduling on Mobile Cloud Resources

Ansuman Banerjee, Himadri Sekhar Paul, Arijit Mukherjee, Swarnava Dey,
and Pubali Datta

4.1 Introduction

Recent advances in mobile technology have enabled immense penetration of these
devices in the common market. At the same time, ancillary businesses revolving
around mobile devices have attained a boost of similar magnitude. With all these
developments both in the technical front and in business, mobile devices are poised
to revolutionize the personal computing landscape. The mobile application market
alone is estimated to reach US$77 billion by the end of 2017 [1]. Although
computing capacity of mobile devices has significantly increased over the past
decade [2], so did the computation demand from their users. The complexity and
therefore the computation requirement of the mobile applications have increased
in similar pace over time to keep up with user expectations. A typical smartphone
performs various tasks, including management and responses to user interactions.
Typically there are several computation hungry tasks which run in the background
to enhance user experience with its device. Since a mobile device is a very personal
device, user’s experience with its device is of prime importance.

This work was done during Pubali’s association with TRDDC, Pune, India

A. Banerjee
ACMU, Indian Statistical Institute, Kolkata, India
e-mail: ansuman@isical.ac.in

H. S. Paul (�) · A. Mukherjee · S. Dey
TCS Research and Innovation, Kolkata, India
e-mail: himadriSekhar.Paul@tcs.com; mukherjee.Arijit@tcs.com; swarnava.dey@tcs.com

P. Datta
Department of Computer Science, University of Illinois Urbana Champaign, Champaign, IL, USA
e-mail: pdatta2@illinois.edu

© Springer Nature Switzerland AG 2020
S. Hu, B. Yu (eds.), Big Data Analytics for Cyber-Physical Systems,
https://doi.org/10.1007/978-3-030-43494-6_4

103

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43494-6_4&domain=pdf
mailto:ansuman@isical.ac.in
mailto:himadriSekhar.Paul@tcs.com
mailto:mukherjee.Arijit@tcs.com
mailto:swarnava.dey@tcs.com
mailto:pdatta2@illinois.edu
https://doi.org/10.1007/978-3-030-43494-6_4

104 A. Banerjee et al.

Choice of applications running on mobile devices is based on user preferences.
The pattern of usage of a device is also specific to a user. Researchers have attempted
to discover user specific patterns in usage of a device. Study of such patterns is
important in various contexts, including network usage [3], battery charge decay
characterization [4], etc. Shye et al. introduced a Markov decision process-based
model to capture user activity [5]. In this paper, we model the usage pattern of
a device as a state transition system. Our model is simple, yet effective, in the
contexts for which it was used in our experiments. We used this model in scheduling
background tasks in a mobile device and also in the context of collaborative
computing in mobile cloud.

Similar to a regular desktop computing environment, a smartphone also performs
several routine jobs in the background to keep its computing environment up-
to-date and enhance user experience with its device. A smartphone performs
system updates in regular intervals, runs virus scans at regular intervals, builds file
indexes, mines logs (like call logs) to build knowledge bases, etc. There may be
several such background activities, which are important and yet low-priority jobs
for the scheduler, which help in creating a comfortable computing environment
for its user. Most of these background activities are resource hungry and can
consume considerable amount of CPU cycles while running. It is not an uncommon
experience that such jobs trigger off in uncanny hours when the user is very active
with its device, resulting in delayed response from the application the user is using.
There are usually trapdoors available for a user to specify a schedule for these
activities individually. Such schedules are static and do not cater to the dynamic
nature of usage of the device. In this paper, we propose to employ the usage model to
intelligently suggest when to run a background task, such that demand for resources
is evenly distributed temporally, resulting in better user experience with the device.

In this paper, a state transition model of user usage pattern is used as a guidance
for estimating execution time of a given task. The model is also used to determine
a schedule of the task in question, such that sufficient resource is available to the
background task without overloading the system and also to ensure that the user
experience with the device is not affected. This basic technique can be applied
in a different form, in the context of collaborative computing involving mobile
devices. With global penetration of mobile devices in the commercial market, the
count and capacity of the devices are in the rise. To harness the free computation
cycles of these devices, several collaborative computing frameworks have been
developed, namely Hyrax [6], Misco [7], Serendipity [8], etc. In this paper, we
adopt a localized mobile grid setting where the devices are accessible through a
WiFi connection. We examine the problem of computation scheduling and workload
management for improving timing/energy performance. We consider a private
company infrastructure with a gateway device and a mobile grid, where the gateway
device is expected to host and assimilate an information database on which some
computation need to be executed. The gateway device needs to decide on a schedule
of computation and a selection mechanism so as to engage the mobile devices

4 Scheduling in MCC 105

and utilize their donated computation cycles. The primary objective of driving this
selection is to be able to finish execution of the application at the earliest possible
time.

The paper is organized as follows. In Sect. 4.2, we present a model of pattern
of usage of a mobile device and also present a discussion on how to extract such
a model from real usage traces. Section 4.3 presents a scheduler, augmented by
the usage model, such that the usage experience with the device is not affected by
execution of background jobs and present some experiment results in Sect. 4.4. We
use the usage model in a mobile and cloud collaborative computing setting and
present motivation for the same in Sect. 4.5. We present such a collaborative model
based on bidding in Sect. 4.6 and our experiments in Sect. 4.7. Finally, Sect. 4.9
concludes this paper.

4.2 Modelling Usage Patterns

A mobile device is probably the most personal device that its owner carries and the
device is most personalized by its owner. The operation of such a device carries
its owner’s signature. It has been observed that there is a pattern of use for each
device owner and based on this assumption, researchers have tried to model the
usage pattern of a device on various aspects. One of the objectives of such a model
is to predict the temporal variation of certain aspects of the device. In this paper, our
objective is to estimate the execution time of a given task utilizing free computation
cycles of the device. We model the mobile device as a probabilistic finite state
machine with average permanence (PFSM-AP). The PFSM-AP model is defined
as a tuple U =< S,I , T, λ, H, C > where,

• S denotes the set of states.
• I is the set of external events.
• T denotes the transition function T ⊆ S × S × I .
• λ is the transition probability function, defined as

λ
(
si, sj

) = pij where, si, sj ∈ T

such that, for each si the sum of the transition probabilities on its outgoing edges
is 1.

• H : S → � is the average permanence function, defined as,

H (si) = ti where, si ∈ S, ti ∈ �

� is the set of reals.

106 A. Banerjee et al.

• C : S → [0, 1] is the CPU availability fraction or equivalently availability
percentage.

The objective of the model depicted as above is to characterize a device based on
its free CPU cycles. However, the model is not restricted to this feature only and can
easily be extended to include any other feature of interest. We restrict our model to
free CPU cycles since we use only this feature in our estimation of execution time,
as described below.

4.2.1 Battery Decay

The source of energy of a mobile device is of primary consideration and the
rate of decay of charge plays an important role in its schedule. For example, if
an application takes such a long time to execute in the mobile that it is likely
to exhaust all its energy, it is not advisable to schedule that task. The primary
source for battery power consumption in a mobile phone has been identified as its
screen and communication modules [9, 10]. There have been several interesting
proposals of optimizing power consumption in mobile devices based on energy
profiles of the communication devices and scheduling data volume transfers [11–
13]. Authors in [14] analyze and present power consumption results based on
usage pattern of mobile devices. The authors claim that primary sources of the
power decay in mobile devices are active screen and CPU. Their study reveals
that majority of the usage patterns have long intervals between two subsequent
active screens. Power modelling is an involved field of study involving several sub-
areas like architecture, operating system, software engineering, etc. Instruction level
power models have been proposed in literature to estimate the power consumption
by applications [15, 16]. The objective of these models is to accurately charac-
terize an application for their power consumption which can be used for power
optimization of the application. Authors in [4] propose a method for usage pattern-
based estimation of battery power. They use an auto-regression model on logged
usage patterns to predict device power usage. However, in our context, we only
require a coarse-level estimation of power consumption by an application, without
performing such expensive profiling techniques. In this work, our objective is to
utilize free computation cycles of a mobile device and we assume that computation
power of CPU does not change due to dynamic voltage and frequency scaling
(DVFS) level. In this work, we use a simple model to characterize decay of battery
charge in mobile devices. For the sake of simplicity of illustration, we assume here
that the expenditure in battery energy by an application is linear in the number of
CPU cycles it consumes.

B = β × n

where n is the number of CPU cycles required by an application, B is the energy
required for n cycles, and β is a known constant

4 Scheduling in MCC 107

4.2.2 Generation of PFSM-AP Model

Generation of the usage model was the first phase of our experiment. As part of
model generation, we chose a relatively small history of usage of a device to model
recent usage patterns of the person. Usage is known to vary widely over time, since
interests and need of the person change over time. During this phase, we captured
usage patterns of seven mobile devices owned by seven of our employees who
volunteered to donate their devices for our experiments. The description of the
devices is shown in Table 4.1. These devices include two Sony Xperia devices,
three Samsung Galaxy devices, and one each of Google Nexus and Micromax
Canvas devices. During this phase of the experiment, we worked towards building
the PFSM-AP models of the mobile devices participating in our experiments. We
developed and installed a small Android application which can collect device usage
trace data (like free memory and CPU usage) every 5 s and log into the devices. The
users carried this application, active in their devices, and the application gathered
data for approximately a month. We then collected this trace data and analyzed them
offline to build their corresponding PFSM-AP models. The trace data for the last
day, however, was not considered for building the model, but was replayed during
our experiments with this model. We extracted the percentage of free CPU cycles
only from the data and applied clustering to build the PFSM-AP. The percentage
of free CPU cycles of a state was calculated as the mean of the data points. Once
the state transition model was built, we also derived, from the log, the durations the
device remained in a certain state. The permanence value of the state was computed
as the average of these durations. The method is outlined as Algorithm 1.

The clustering heuristic is a form of density-based clustering and works itera-
tively to refine a set of initial clusters. The heuristic has two phases. The first phase
of the clustering heuristic creates an initial set of clusters based on the feature of
the CPU availability value (data gathered as the percentage of free CPU cycles). In
the initial clustering phase (line 1 of Algorithm 1), we create some initial clusters
based on the range of CPU availability value. In this phase, we create a set of set of
clusters, based on different bucket sizes. A bucket is defined on a range of values
for a feature, in this case, the CPU availability value. For example, consider buckets
of size 2. Data points with CPU availability value in the range of [0, 1] (i.e., the first
bucket) are put into one cluster, points in the range of [2, 3] (i.e., second bucket)
are put into a different cluster, and so on. Since the CPU availability values are in

Table 4.1 Configuration of mobile devices used in our experiment

OS CPU
Device name Model Android Ver Core @ clock speed Memory

Samsung Galaxy GT-S6802 2.3.6 Single Core @ 832 MHz 512 MB

Sony Xperia L C2104 4.1.2 Dual Core @ 1 GHz 1 GB

Micromax Canvas 2+ A110Q 4.2 (Jelly Bean) Quad Core @ 1.2 GHz 1 GB

Google Nexus Nexus-4 4.2 (Jelly Bean) Quad Core @ 1.5 GHz 2 GB

108 A. Banerjee et al.

Algorithm 1: PFSM-AP model determination
begin

// Phase 1: Initial Clustering - Empirical Analysis
1 for i ← a to b do

cluster data points in buckets of size i;
δi ← deviation of cluster size values;

2 Choose i∗ s.t. δi∗ is the highest in {δi : a ≤ i ≤ b};
3 C ← cluster data points in clusters of size i∗;
4 {CCk} ← Compute cluster centers of C ;
5

// Phase 2: Refinement and Reclustering
6 while No change in cluster composition do
7 Recluster data points around cluster centers {CCk} based on the distance of a point

from cluster centers;

8 Remove a cluster if the size of the cluster is less than No of data points
|C | × σ

100 ;

9 Reassign data points of removed clusters to existing clusters based on the distance
of a point from cluster centers;

10 {CCk} ← Compute cluster centers of C ;

11 Each cluster is a state and the mean value is the percentage of the free CPU cycles;
12

// Phase 3: Computation of Transitions and Transition
Probabilities and Creation of PFSM-AP Model

13 Traverse the data and compute average time in a state;
14 Traverse the data and compute number of transitions for all pairs of states;
15 Compute the transition probability of an edge s → d as the fraction of transitions from

state s to d against all transitions out of state s, i.e. No. of transitions from s to d∑
∀p No. of transitions from s to p

the range [0, 100], we can construct 50 buckets and therefore 50 initial clusters can
be constructed for a bucket size of 2. Then we compute the deviation of the CPU
availability value for each cluster. Such sets of cluster-sets are created for all bucket
sizes in the range of [a, b]. The exact values for a and b are chosen depending on
the number of observations. It is intuitively obvious that a very high bucket size will
create too few clusters. Out of these sets of cluster-sets, we choose the one where the
deviation is the highest (line 2 of Algorithm 1). Empirically the chosen cluster-set
captures densely packed points into a single clusters. Such a set serves as an initial
set of clusters to be refined in the subsequent phases of the heuristic.

In the next phase, we refine the clusters and their memberships. The refinement
is done by modification of clusters with low membership count. Any cluster having
number of data points less than a threshold is removed. The threshold is defined
as σ percent of average membership count of all the clusters. The value of σ was
taken as a parameter to the algorithm. Typically the value of σ is small and in our
experiment σ was chosen as 5 which indicates that clusters with less than 5% of
the average cluster size are modified. Then a cluster refinement is done as follows.
All the data points are reclustered based on their distances from the centers of the
surviving clusters. Once reclustering is complete, the cluster centers are recomputed.

4 Scheduling in MCC 109

The last phase of the algorithm is the construction of the PFSM-AP model. The
process is straightforward. Each of the clusters constructed in phase-2 represents
a state in the model. The clusters are enumerated and the enumeration values are
the cluster-ids or state numbers. Each of the entries of the mobile trace data now
can be annotated with a state number. Since the trace data entries also contain time-
stamps, it is easy to determine the duration the device stays in a certain state. For
this analysis, the computation of average permanence for each state is also simple.
Once the trace data is annotated with state numbers, it is also easy to define state
transitions and assign a transition probability, as shown in line 15. Figure 4.1 shows
a part of the CPU usage pattern of one of the users, and the PFSM-AP model
constructed thereafter is shown in Fig. 4.2.

Fig. 4.1 CPU usage pattern

 0

 20

 40

 60

 80

 100

 0 20000 40000 60000 80000 100000

F
re

e
C

P
U

(%
)

time

Free CPU Variance over time

CPU: 3
AP: 1.50

CPU: 13
AP: 1.13

0.299

CPU: 22
AP: 1.76

0.189

CPU: 31
AP: 1.13

0.152

CPU: 40
AP: 1.01

0.168

CPU: 49
AP: 2.01

0.124

CPU: 57
AP: 1.00

0.042

CPU: 64
AP: 1.00

0.017

CPU: 76
AP: 1.01

0.008

0.174

0.173

0.130

0.167

0.194

0.095

0.050

0.017

0.070

0.094

0.162

0.187

0.241

0.141

0.066

0.038

0.022

0.037

0.076

0.330

0.293

0.148

0.069

0.024

0.011

0.024

0.061

0.218

0.468

0.142

0.062

0.015

0.010

0.022

0.058

0.165

0.473

0.187

0.068

0.017

0.004

0.020

0.058

0.136

0.273

0.329

0.160

0.020

0.005

0.014

0.035

0.100

0.222

0.249

0.302

0.074

0.006

0.019

0.050

0.092

0.168

0.211

0.196

0.258

Fig. 4.2 PFSM-AP model

110 A. Banerjee et al.

4.2.2.1 Analysis of the Heuristic

The heuristic presented as Algorithm 1 has two loops. The for loop at line 1 indexed
by variable i is bounded by variables a and b. We now show that the while loop at
line 6 executes finitely many times. The while loop is executed until no data point is
reassigned to a different cluster (through cluster modification). Assignment of a data
point to a cluster changes due to two effects: (1) One or more clusters are modified
(line 8), and (2) the cluster center shifts, changing the membership of the data points
(line 9). Let us consider the first case. For any given i∗ : a ≤ i∗ ≤ b, the number
of initial clusters is bounded. Since the algorithm only allows small clusters to be
destroyed and no new cluster is created inside the while loop, the cluster removal
step (line 8) is bounded. Therefore, the number of cluster reassignments for a data
point due to cluster modification is also bounded. Now, let us consider the second
case. Cluster centers can shift when new data points join a cluster or data points
are removed from the cluster. Clustering of data points around cluster centers is
an optimization problem where minimization of distances of data points from their
corresponding cluster centers is the objective function. This also executes for finitely
many iterations.

4.2.3 Execution Estimation Model

We assume that the execution time of a given job on a given device architecture is
known a priori (i.e., can be computed by dynamic simulation against a given dataset
or by using established methods like worst case execution time estimation [17]).
Such an estimate typically assumes full (100%) utilization of the resources in the
device. In this work, we assume the execution time of the task is solely and linearly
dependent on available CPU cycles in the devices. This essentially implies that if
the execution time of a task is estimated as 10 time units, then the task is estimated
to be complete in 20 time units when there are competing processes such that the
job can avail only 50% of the CPU. In the following section, we apply this model to
augment the device scheduler to intelligently schedule background tasks to improve
user experience with the device.

4.3 Usage Model-Based Scheduler

Computation capacity of modern mobile devices is increasing and is poised to
replace desktop computing devices [2]. Mobile devices run broadly two types of
tasks, foreground jobs with which the user interacts and background jobs which
are essentially maintenance tasks. The schedulers of these OSes are responsible for
prioritizing foreground jobs so that users experience minimum delay. Maintenance
tasks, like virus scans, system updates, building file index, etc. which are not part of
typical usage of devices, run as low-priority jobs in the background, consume much

4 Scheduling in MCC 111

less system resources, yet are important for the operation of the device. The usage
model of a device, described in Sect. 4.2, captures its resource availability under
regular usage by its owner and its variation over time. Many of the background tasks
are periodic tasks and usually the OS provides means to the user to schedule them,
such that they are triggered when the device is relatively free. Yet it is a common
experience that such tasks are triggered at times when the user is in active use
with the device. This results in a race for resource acquisition and results in slower
response. To improve user experience in such cases, it is important to determine a
schedule of such tasks when the usage of resources is likely to be low. A scheduler
can leverage the usage model to intelligently schedule background tasks such that
the user can more comfortably use its device without being affected/annoyed. In this
section, we present a model of a scheduler which is aware of the usage pattern of
the device.

4.3.1 Model of Scheduler

We consider a mobile device with usage pattern U =< S,I , T, λ, H, C > as
presented in Sect. 4.2. There is a set of background jobs to be scheduled by the
scheduler, opportunistically. Each of these jobs have deadlines associated with them,
and we want to maximize the number of jobs which successfully complete within
their deadlines. Let J = {J1, J2, . . . Jn} denote a set of background jobs. The
deadline of each of the jobs is denoted as D(Ji). Also we denote by E (Ji) the
estimated execution time of the task on the device.

The selection process of a background job from the set J for execution is based
on the present computation state and battery state of the device. The objective of the
process is to identify a job which will fit the device’s energy budget and deadline of
the job, without hindering the operations done by the user on the device. We present
an outline of the steps for the selection process below.

1. Sort jobs in J in increasing order of their deadlines.
2. Choose a path, P =< s0, s1, s2, . . . sm > in PFSM-AP model, such that for

every edge (si−1, si) in P , λ(si−1, si) is highest among all the outgoing edges
from si−1.

3. Selection of job: for all jobs Pi , taken sequentially from the sorted job list, do the
following:

• Projection of execution: Calculate the time required to execute Ji on path P

such that,

(a) only α-fraction of free CPU of every state in P is used for execution of Ji

(b) execution of Ji on path P completes within D(Ji)

(c) decay of battery on this execution time does not result in complete
drainage of the battery.

Schedule Ji immediately if all the above conditions are met.

112 A. Banerjee et al.

We preserve α-fraction of the free resources as buffer in each state of the PFSM-
AP and this parameter can be used to control free resource usage by background
jobs. Therefore, a job can only utilize α-fraction of the free computation cycles
of the device so that the user’s experience with its device is not degraded. Since
a device cannot offer a steady computation power to a background job, since it
ensures that user’s jobs have higher access priority over CPU, the background job
executed in a device experiences variable computation power. The classical version
of this problem is equivalent to open shop scheduling with multiple jobs and single
machine, and it is known to be NP-hard [18]. In contrast to the classical open shop
scheduling problem, the computation power of the machine varies over time.

The PFSM-AP model presented here models the varying computation power
available for a background job. Each state of the PFSM-AP model represents
available resource in that state. Given an initial state in the PFSM-AP model which
represents the present computation state of the device, the selection process needs
to refine E (Ji), the estimated run-time of the job Ji on the device with no other
computation load. We present an on-line heuristic as Algorithm 2, which examines
the jobs, sorted in their ascending order of their deadlines (i.e., job with the nearest
deadline as higher priority for scheduling) and estimates whether the job can be
completed within its deadline before the battery is drained out. The estimation
process is based on the estimation of execution time of Ji , which shares CPU with
other jobs being initiated by the user all of which are treated as higher priority jobs
than Ji .

For the process of refinement of execution time of a given job, one has to
determine a path in the model, given an initial state. Refinement, in our case, is
essentially a projection of E (Ji) on the path, based on the available computation
cycles in the path and is computed in lines 4–6 of Algorithm 2. Therefore, the
choice of the path determines the accuracy of the refined estimation of the execution
time. The edges of the PFSM-AP model are annotated with probability of state
transition by the CPU. For each of these paths, we are interested in the shortest
path-prefix which can accommodate the computation requirement of the job. Since
we are only interested in a path-prefix which the device is most likely to follow,
we need to choose one which has the highest probability value, computed as the
product of the constituent edges. Evidently the problem is computationally hard but
we require to solve it efficiently to be able to quickly choose a job from the list. The
heuristic presented here is based on the assumption that user behavior on its device
is frequently repeated. So we always follow the outgoing edge having the highest
probability value (line 7).

4.3.1.1 Analysis of the Heuristic

The heuristic has two loops nested. The outer loop at line 1 takes one job from a
list and refines its execution time in the inner loop at line 3. The execution for the

4 Scheduling in MCC 113

Algorithm 2: αSched1 : Scheduling of a job with one deadline
input : J = {J1, J2, . . . Jn} : Set of jobs to be executed
input : U : PFSM-AP model of the device
input : s : Present state of the device
input : B : Estimated battery charge level
output: X : Job to be scheduled
begin

J′ ← Sort J in increasing order of their deadline i.e., D(Ji);
1 foreach Ji ∈ J′ do
2 T ← E (Ji): estimated computation time of Ji ;

tm ← 0 // Wall clock : Initialization
3 repeat
4 c ← (1 − α) × C(s) × H(s);
5 T ← T − c;
6 tm ← tm + H(s);
7 e ← (s, r) where λ(s, r) is maximum among all outgoing edges from s;

s ← r;
// Exceeds deadline - not feasible
if tm > D(Ji) then continue at 1
// Exhausts battery - not feasible
if B ≤ (β × tm) then continue at 1

until T ≤ 0;
8 Schedule Ji for execution and return;

outer loop is bounded by |J|. The inner loop essentially traverses the PFSM-AP
model from the initial node, given as input to the heuristic, following the edge with
the highest probability value. The loop is terminated when the remaining execution
time of the job, T , drops beyond 0. In each iteration, the value T monotonically
decreases. The PFSM-AP model can possibly include at-most one state with 0%
available computation capability, due to clustering process. Also by construction of
the PFSM-AP model, no state can have a self-loop. A self-loop indicates that the
device remains in the same state after a duration. However, the whole duration for
which the device remains in a state is computed as permanence for that duration. By
model construction, the average of all permanence values is computed and stored
as average permanence for the state. Given a self-loop free graph of the PFSM-AP
model, at-most one state (with 0% CPU availability) at which T value decreases is
chosen and the value of T monotonically decreases in each iteration of the inner
loop. Thus, the algorithm terminates in a finite number of steps. In the next section,
we present comparison of our schedule with shortest job first (SJF) schedule [19]
with priority in a simulated environment.

114 A. Banerjee et al.

Fig. 4.3 Comparison of
usage pattern augmented
scheduler

 80

 85

 90

 95

 100

 105

 110

 0 200 400 600 800 1000 1200 1400

C
P

U
 lo

ad
 (

%
)

Time

CPU load

Augmented Schedule
SJF Schedule

4.4 Result: Usage Model-Based Scheduling

We carried out simulation experiment to compare our heuristic with the SJF
schedule. Our technique utilizes the usage pattern captured during our first phase of
experimentation described in Sect. 4.2.2. We used the PFSM-AP model to augment
our scheduler. We simulated the mobile devices and implemented our heuristic
as an augmentation of the shortest job first scheduler. The background jobs were
simulated to be of varying duration from the range [10, 50] s with their deadlines to
be twice as their execution time, and we simulated 100 such jobs of low-priority.
We used α = 0.2 as specified in Algorithm 2.

Figure 4.3 shows a comparison of our heuristic with the SJF scheduler. It is
evident that a scheduler, which statically schedules all background jobs, always
keeps the device busy. As a result, the user may experience delayed responses
from the device. Our augmented scheduler conservatively uses the free computation
cycles of the device such that foreground jobs have some buffer cycles left and
therefore the user can use the device more comfortably. We can see from the figure
that CPU utilization is not always 100% and has some room to cater to additional
resources demanded by the foreground jobs and as a result the user is expected to
experience a better response from the device. As expected, in the case when our
scheduler is used, the background job takes longer time to complete.

4.5 Usage Pattern for Mobile Grid

Cloud computing involving mobile devices is an active area of research which deals
with utilization of mobile devices in collaborative computing with cloud’s back-
end computing infrastructure. This paradigm of computing has two facets: in one,
mobile devices are used as computing resources by the back-end infrastructure

4 Scheduling in MCC 115

and, in the other, mobile devices use the back-end infrastructure to augment their
computing capacity. Motivation for the first approach is the growing capacity and
market for smart devices, which is stimulating the prospect of utilizing them as
computing resources [20, 21]. Recent studies on the computing capacity of mobile
devices claim that their computing power is comparable to that of desktops [2].
Frameworks like Hyrax [6], Serendipity [8] attempt to exploit the free computing
capacity of mobile devices. The later one is a more traditional approach to mobile
cloud computing (MCC) where devices utilize the computing power of back-end
infrastructures by offloading some of its tasks to the back-end. This has led to several
proposals of MCC for collaborative execution for executing compute-intensive
work-flows [22–25]. The MCC paradigm has attracted considerable attention in both
academia and the industry community in recent times. In this paper, we present a
model and system for utilization of free computation cycles of mobile devices in
MCC.

Several challenges remain to engage a mobile device as part of a computing
infrastructure [26]. Some of these challenges are limited communication bandwidth,
energy constraints, memory capacity, intermittent availability of resources like
network or CPU, proper incentive schemes against utilization, security, privacy, etc.
In a controlled environment, some of these constraints can be addressed adequately
in order to utilize the computation capacity of the mobile devices. For example,
many of the reputed commercial organizations distribute smartphones among their
senior employees [27]. In such a corporate environment, it is possible to make it a
policy that such phones be used for computation for the benefit of the company’s
infrastructure. Such a device can be used by the infrastructure whenever the device
is present in the premises of the organization and is connected to the internal
communication network. In such a scenario, the issues of communication reliability
and cost, security, and privacy are mitigated. To encourage such an environment,
the organization may as well provide incentives in suitable forms. In the company
of the authors, reward points are awarded for additional participation in company
tasks (apart from regular assigned duties) and these points can be redeemed against
purchases promoted by the organization.

In this part of the paper, we adopt a simple localized mobile grid setting where
the devices are accessible through a WiFi connection, and examine the problem
of computation scheduling and workload management for improved timing/energy
performance. We consider a private company infrastructure with a gateway device
and a mobile grid, with the gateway device hosting and assimilating an information
database on which some computation need to be executed. The gateway device
needs to decide on a schedule of computation and a selection mechanism so as to
engage the mobile devices and utilize their donated computation cycles. The primary
objective of driving this selection is to be able to finish execution of the application
at the earliest possible time.

The gateway device is enabled with a task off-loader which is the controller of
the task selection framework. When the off-loader wants to execute a task (in the
form of a downloadable application), it invites bids from the owners of all devices
connected to the off-loader. Additionally, the off-loader announces a deadline by

116 A. Banerjee et al.

which the computation has to finish. Associated with the task is a suitable reward
to be earned by the winning bidder and also a penalty if the winner fails to deliver
the task in time. Each owner, intending to participate in the bid, executes a pre-
installed analysis agent on his device. The agent takes as input the advertised task
and the deadline associated with the task, and comes back to the owner with an
advice whether to bid or not, on the basis of its estimation of the execution time.
In this paper, we consider the estimation of execution time of a task with various
levels of information available about the device usage pattern. In our architecture,
the mobile devices are active agents, who learn and build models of their owner
usage patterns. The owner places a bid only if the estimated execution time is less
than the advertised deadline of the job. The bid is the promised completion time
within which the corresponding device can complete the advertised task. The off-
loader can possibly select one of the bidding agents for offloading the task based on
some criterion. In the simplest case, it may choose the one with earliest promised
completion time and offload the task to the selected device. We assume that the
owners are rational (aware of penalty) and honest (no false bids). The interesting
activity from the device’s perspective is to analyze how/when/what to bid for, while
designing the selection and scheduling mechanism is the off-loader’s challenge.

4.5.1 Motivation for This Work

In this section, we present an example to illustrate the need for modelling a mobile
device for its usage. A mobile device has various operational modes in its usage
cycle. For example, when a user attends to a call, its communication modules
are busy, when he listens to music or radio, its audio system is busy, and when
he watches a movie, its GPU remains busy. Manufacturers of mobile devices
usually specify an operating model of their devices. An operating model is a state
transition system where the states represent some high level operation modes (e.g.,
charging, audio on, network on, etc.) with average/maximum/minimum resource
usage estimates when the device operates in that particular state, and possible
interstate transitions. The operating condition of the device in these states can be
attributed to its usage of processor, memory, cache, priority of the running jobs,
battery power state, etc. The transitions in such a system are triggered by user
interaction of the device and usage of device resources by various applications
running in the system. In this paper, we extend this model to a usage-induced
operating state model, a transition system based on the operating model and,
additionally, specialized by the usage pattern of the device owner. In the context
of exploiting a mobile device in our setting, we are interested in the availability of
different resources in the device to utilize it for running an external computation.
For simplicity, we assume here the states in the usage model of a device are
characterized only by the percentage of CPU available.

4 Scheduling in MCC 117

Device−1

Device−2

2

1

CPU: 100%
CPU: 90%

CPU: 90% CPU: 60%

CPU: 75%

CPU: 100%

CPU: 5%

CPU: 90% CPU: 60%

CPU: 90%

CPU: 75%

CPU: 0%

CPU: 40%

Idle

Audio On

Charging

Radio On

Calling

Gaming

Gaming

Video On

Idle

Audio On

Charging

Radio On

Calling

Fig. 4.4 Usage model with CPU availability

As an example, we consider here a simple case of two mobile devices and one
task to be offloaded to one of the devices. The task has a deadline of 60 time units.
Each mobile device needs to estimate its bid based on its operational state model, as
depicted in Fig. 4.4. The events triggering the transitions are not shown in the figure,
since they are not required for presentation of these examples. Each state in the
state model is annotated with the fraction of CPU available for external computation
at that state, which can be used for executing the external task. For the sake of
simplicity, we assume here that the device takes one of the out-bound transitions
from its current state, including the self-loop, after every unit time. In other words,
the device stays at each state for one unit of time, executes one of the outgoing
transitions from the present state, and moves to the next state (may be same as the
current one) where it stays for one more unit, and this continues. We assume such
transitions are instantaneous (Table 4.2).

118 A. Banerjee et al.

Table 4.2 Execution on Device-1

State CPU availability Time in the state Effective execution

charging 100% 1 sec 1 sec

idle 90% 10 sec 9 sec

calling 60% 50 sec 30 sec

Completion time: 61 sec

Table 4.3 Estimated completion time with best transition

Device-1 Device-2

CPU Time in Effective CPU Time in Effective
State availability the state execution State availability the state execution

charging 100% 40 sec 40 sec idle 90% 10 sec 9 sec

charging 100% 31 sec 31 sec

Completion time: 40 sec Completion time: 41 sec

4.5.1.1 The Simplest Case

Both the devices have an estimate of the execution time of the advertised application
on their architecture. Let us assume both of them come up with a value of 40 time
units. When bids are invited, Device-1 is in the charging state and Device-2 is idle.
If the devices always remain in the same state, the completion time of the task on
Device-1 is 40 time units (100% CPU availability in charging state), while that for
Device-2 is 40 × 100

90 = 44.44 time unit. Thus, Device-1 bids with a value of 40 and
Device-2 bids with 44.44. Assuming the off-loader awards the job to the one with
earlier completion time, Device-1 is selected.

4.5.1.2 A More Realistic Scenario

In a more realistic setting, each device is expected to transition away from its
current state during the job execution and therefore cannot guarantee constant
CPU availability. In such a setting, the device can explore all possible paths in
its state graph and optimistically choose a path which provides the best estimated
completion time. Such a path obviously would go through states with high CPU
availabilities. For example, Device-1 would consider the path involving only the
charging state, which always guarantees it 100% CPU availability for the external
job and can bid with value 40. On the other hand, Device-2 would consider the
path from idle to the highest CPU available state, i.e., charging. Table 4.3 shows the
estimated completion times in this case and the off-loader may again select Device-1
for offloading.

Typically a state transition is triggered by external events, for example, incoming
call, user’s operation, etc. The execution paths chosen for bid as depicted above are
therefore too optimistic. Consider the following scenario. At the time of execution of
the external task, Device-1 remains in charging state for 1 time unit, in idle state for

4 Scheduling in MCC 119

10 time units, and then moves to the calling state and remains there. The execution
completion time is shown in Table 4.2. The device thus completes 40 time units of
computation in an effective duration of 61 time units and exceeds the deadline. This
shows that only the best timing is not always a good candidate to decide on the bid,
since a penalty is involved. A rational owner should ideally take this into account.
On the other hand, a pessimistic strategy considering a maximal timing path may
yield a completion time beyond the deadline. In either of the strategies, the path
chosen for computation of a bid may not be the actual path taken during execution
of the external task.

A more realistic estimate can be obtained by considering paths induced by the
average usage by the user. To incorporate this, we further associate with each
state an average permanence (AP) value [28] and a transition probability on each
outgoing edge. AP implies the average time the device stays in the associated state.
The revised model of the devices is depicted in Fig. 4.5. Now we apply the same

Device−1

Device−2

CPU: 100%
AP: 30

CPU: 90%
AP: 30

CPU: 90%
AP: 20

CPU: 75%
AP: 30

CPU: 60%
AP: 2

CPU: 100%
AP: 40

AP: 20

CPU: 0%
AP: 20

CPU: 5%
AP: 10

CPU: 75%
AP: 30

CPU: 90%
AP: 10

CPU: 60%
AP: 5

CPU: 90%
CPU: 40%

AP: 15

Idle

Audio On

Charging

Radio On

Calling

Game Mode 1

Game Mode 2

Video On

Idle

Audio On

Charging

Radio On

Calling

Fig. 4.5 Usage model with average permanence

120 A. Banerjee et al.

Table 4.4 Estimated completion time with AP

Device-1 Device-2

CPU Time in Effective CPU Time in Effective
State availability the state execution State availability the state execution

charging 100% 30 s 30 s idle 90% 10 s 9 s

idle 90% 10.1 s 10 s charging 100% 31 s 31 s

Completion time: 41.1 s Completion time: 41 s

optimistic bid selection method based on the AP on states, assuming all transitions
are equally likely. Also for each path we compute the probability of taking the path.
This probability is a measure of confidence of the device taking that path. Device-
1 chooses the path charging → idle which is associated with confidence value
of 1 (since there is a single transition from charging state). The best confidence
value (1/8 = 0.125 considering each of the 8 outgoing transitions are equally
likely) for Device-2 occurs for the path idle → charging. The completion time
is computed in Table 4.4. The off-loader may choose Device-2 based on the better
bid proposed by it. The example above assumes the transitions are equally likely.
However in reality, they may not be so, as we show in our experiments. We can
learn the transition likelihood probabilities from user usage data and utilize them to
enrich the bid above with these values.

4.6 Bidding Methodology

The objective of the PFSM-AP described above is to characterize a device based
on its free CPU cycles and the duration the device is likely to remain in a state, as
depicted in the motivating examples in Sect. 4.5.1.

Given a mobile device Di with a PFSM-AP model Ui =< Si ,Ii , Ti , λi, Hi ,

Ci >, a task J with its dataset and deadline Δ, the device needs to calculate its bid
which can be presented to the off-loader by the owner. Let us assume the task needs
an estimated execution time of wi on this device. As discussed earlier, this estimate
is agnostic to the state model and assumes 100% CPU utilization. This is where
PFSM-AP provides a better estimate. If wi > Δ, there is no point for the device to
participate in the bid (intuitively there is no path in which the task can be completed
within deadline even with 100% utilization all-through). The case is interesting only
when wi ≤ Δ. The principle behind our bid computation algorithm is as follows:

• Examine all possible paths in the PFSM-AP graph from the state the device is in,
at the time when bids are invited.

• Compute expected completion times on each of these paths considering that
states in the path have different CPU availability.

• Exclude paths where the expected completion time is greater than the deadline.

4 Scheduling in MCC 121

• Exclude paths where the corresponding confidence value is less than some pre-
determined threshold.

• Determine a path which meets the deadline best and present the expected
completion time on that path as the bid.

4.6.1 Execution Path Enumeration

Given the state machine of a device and the current state, there are potentially infinite
number of paths from the start state. However, we are interested only in those paths
where computation of the task can be completed within the advertised deadline.
Since deadline is finite, such paths (excluding cycles involving states which offer 0%
computing capacity) are also finite in number. Let us denote this set of paths as Πi =
{πi

1, π
i
2, . . . π

i
k} for the device Di , where k denotes the number of such deadline-

constrained paths. A path πi
j is a state transition sequence, < si

1, s
i
2, . . . s

i
m >, in the

underlying PFSM-AP of Di . We assume transitions to be 0-delay.
For each path πi

j =< si
1, s

i
2, . . . s

i
m >, we compute the following attributes which

are useful for our algorithm.

• Path execution time (δi(πi
j)): The execution time of the application on the path

πi
j

δi(πi
j) = Z + wi − Z

C(si
m)

where, Z =
m−1∑

l=1

(
H(si

l) × C(si
l)

)

The value of Z denotes the execution time on the first m − 1 states on the path.
The other term in δi(πi

j) is the time required to finish the remaining fraction of

work in the last state (si
m).

• Confidence Value (ρi(πi
j)): The confidence value on the path πi

j is computed
as a product of the likelihood values on the transitions (assuming transition
probabilities to be independent for simplicity) as below:

ρi(πi
j) =

m∏

l=2

λi(sl−1, sl)

The following constraints are to be applied on valid paths to bound the search.

• Task completion constraint:

C1:
m∑

l=1

C(si
l) × H(sl) ≥ wi

122 A. Banerjee et al.

Algorithm 3: Bid computation on a mobile device
input : J : The task to be executed along with dataset
input : Δ : Deadline for the tasks
input : s : Present state of the device Di

begin
1 Compute wi of J ;
2 if wi > Δ then No bid and return
3 bt ← ∅ // best time

4 Πi ← paths (πi
j) on Ui satisfying C1 and C2;

5 for each path pi
j ∈ Πi do

if ρi(pi
j) < Υ then continue t ← δi(pi

j);
if (bt > t) then bt ← t

6 Bid with bt ;

where the term C(si
l) × H(sl) denotes the quantum of computation done at

the state si
l considering the average permanence and the CPU availability. The

summation on the left-hand side yields the total computation time on a given
path. So the above constraint essentially limits our computation to paths whose
time is more than wi .

• Deadline constraints: Paths where the completion time of the task is more than
Δ are not useful for bidding. Therefore,

C2: δi(πi
j) < Δ

We modify the standard depth-first traversal [29] algorithm with constraints C1
and C2, and also ignore self-loops involving a state with 0% CPU availability. These
conditions bound the length of the paths (step 4 of Algorithm 3) to finite values since
wi is finite. Therefore, the algorithm terminates in finite time. The paths enumerated
in the state graph are associated with different confidence values. A path with low
confidence of traversing should be excluded to avoid penalties. An example of such
a computation was presented in Sect. 4.5.1. Algorithm 3 uses a threshold Υ to filter
out such paths.

4.7 Experiments with the Offloading System

To evaluate the proposed bidding-based offloading scheme, we built a small-scale
cloud computing framework with an off-loader residing on a server and distributing
jobs to a pool of mobile devices. We present some related results from the system.
But, first we present our experiments with a simulation system.

We developed a simulation system to observe the behavior of our task offloading
infrastructure. Experiments with our proposed job-offloading technique were car-

4 Scheduling in MCC 123

ried out with the set of seven mobile devices described in Table 4.1. We simulated
the off-loader system and also the task execution on the device VMs. Each VM
simulates usage of the corresponding device by simulating the logged CPU loads
for the last day in the trace file as discussed in Sect. 4.2.2. The simulated off-loader
generated tasks of various kinds to be offloaded to these devices. When a task is
awarded to a device, the winner device simulates the execution of the task while
simulating the CPU load replayed from the trace file. For each task type, 100 similar
tasks were generated and offloaded to devices based on bids. The number of tasks
successfully completed on the devices (i.e., completed within the given deadline)
is recorded and used for computing performance of the offloading method. The
performance of the system is simply the fraction of the offloaded jobs successfully
completed by the bidding device.

In our simulation system, the off-loader generates jobs of various durations,
assigns various deadlines to these jobs, invites bid, and submits the job to the
winning device. Our job-offloading experiment was conducted for jobs whose
execution time ranges from 4 to 29, and deadlines varying from 2× to 10× of the job
execution time. The offloading performance, as discussed earlier, is the fraction of
the number of jobs the infrastructure could complete by offloading them to winning
devices and the devices subsequently could complete execution within the given
deadline. The result of the simulation experiment is shown in Fig. 4.6, where the
horizontal axis represents variation in job execution duration and the vertical axis
represents the offloading performance. A value of 0 as performance indicates that
the infrastructure was unable to effectively utilize any device for computation. On
the other hand, a value of 1 indicates the infrastructure could execute all jobs using
the devices. Please note that, in our experiment, the infrastructure offloaded one job
at a time and concurrent offloading was not considered.

It is evident from the experiments that deadline is the most important factor for
offloading tasks. When the deadline is very tight in comparison to the execution time
of the task, task offloading is not beneficial. When the deadline is tight, if the device
cannot operate with near 100% CPU availability all the time, the execution time is

Fig. 4.6 Simulated system
performance

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 5 10 15 20 25

O
ffl

oa
di

ng
 S

uc
ce

ss
 fr

ac
tio

n

Job Length

Simulated Job Offloading

Deadline=4x
Deadline=5x
Deadline=6x
Deadline=7x
Deadline=8x

124 A. Banerjee et al.

more likely to overshoot the task deadline. When the deadline is very relaxed (e.g.,
approximately 6× that of job execution length) offloading technique works well
and is beneficial. It is also evident from the result that very short tasks with very
tight deadlines are not suitable to exploit this mobile computing system, rather a
moderately high computation job with a relaxed deadline is more suitable from this
framework. Another interesting observation is that for higher deadlines, offloading
success does not improve at the same scale.

4.7.1 Working with Real Devices

In this phase, we evaluated the performance of our offloading system with an off-
loader which has the seven devices, described earlier, for it to exploit. The details
of the system are described below.

4.7.2 Architecture of Offloading System

The architecture of the system is presented in Fig. 4.7. The off-loader is composed
of two principle components—(1) Job Manager which is responsible for managing
incoming tasks. In our system setup, this module generates tasks to be scheduled
in mobile devices. (2) Bid Manager is responsible to query available devices and
then initiate bidding for each task, obtained from the job manager. The bid manager

PFSM−AP

Job Manager

Network Interface

Offloader

Network Interface

Bid Manager

Bidder

Remote Launcher

Fig. 4.7 Architecture of offloading system

4 Scheduling in MCC 125

Fig. 4.8 Experimental
system performance

 0

 0.2

 0.4

 0.6

 0.8

 1

 14 15 16 17 18 19 20

O
ffl

oa
di

ng
 P

er
fo

rm
an

ce

Job Length

Job Offloading to Mobile Devices

Deadline=5x
Deadline=6x
Deadline=7x
Deadline=8x
Deadline=9x

Deadline=10x

creates a socket connected to a pre-defined IP of the server machine. Each of
the mobile devices which volunteer to donate their CPU cycles need to install a
lightweight android application, called Remote Launcher. The application connects
and communicates with the bid manager of the off-loader through the pre-defined
socket. The bid manager advertises a task on all the connections. The remote
launcher computes its bid and sends back as a response to the bid manager. On
award of a job, the remote launcher forks the job in local mobile devices, collects
the result, and sends the data back to the bid manager. All the devices communicate
using the WiFi network provided in our lab and the devices always remain within
the communication range during the experiment.

For this experiment, we used an application which estimates the value of π ,
which is written as a native android application. The application is a compute-
intensive one. Longer the application runs, the estimation is better. We conducted the
experiment for various job durations and the job duration was varied by changing
the desired accuracy of π -value calculation. Figure 4.8 shows the job-offloading
performance of the system. The result of this experiment shows that jobs with
relaxed deadlines are good candidates for offloading.

4.8 Related Work

In recent times, there has been a significant volume of research on the theme
of mobile cloud computing (MCC), which proposes the use of a collaborative
computing infrastructure consisting of mobile devices and a back-end cloud com-
puting system. MAUI [22] and CloneCloud [23] are the two notable systems which
use a back-end computing infrastructure for collaborative job execution in mobile
devices. Several other articles as well address the problem of work-flow partitioning
in an MCC setting [30]. The basic intuition behind these partitioning strategies is to
decide on the best platform (mobile device or cloud) to execute each sub-task of a

126 A. Banerjee et al.

given work-flow with an objective of optimizing the cost (in terms of energy, time,
and communication).

Authors in [31] address the problem of intermittent disconnection and analyze
the same using a Markov-chain model. Markov decision process (MDP) has been
used to model the behavior of mobile devices to achieve objectives like optimization
of power usage [32]. However in our case, we resort to a simpler model since we do
not need the full capabilities of an MDP for this problem. A comprehensive survey
of mobile cloud computing (MCC) can be found in [33]. Systems like Misco [7]
and Hyrax [6] extend Map-Reduce so that computation capabilities of mobile
devices can be utilized. Serendipity is a task dissemination system over a mobile
grid [8]. The system relies on collaboration among mobile devices using WiFi
connection to share collective computation power. The design of the system accepts
that disconnection of devices is a norm and its underlying architecture incorporates
the assumption. We consider a more generic usage model driven scenario in this
work. Usage model-based task scheduling on mobile devices is attracting more
attention in recent years. Authors in [3] present an analysis of the usage patterns
of the communication module of a device. They define a state space composed of
five states in which a device operates and present their analysis based on transitions
among these states. Authors in [34] present a framework which analyzes pattern of
usage of an application by its user and suggest a mechanism for optimizing launch
time of the application. They claim that application launch latency is improved by
this method which is reflected in improvement in user experience with the device.

4.9 Conclusion and Future Work

In this paper, we present a state transition-based system to model the usage pattern
of a mobile device. The model captures the variation of free resources in the device
based on its owner’s usage pattern. We used this model to schedule background
tasks in the device such that usage experience of the device does not degrade
due to consumption of resources by the background tasks. We also used the same
model in a different scenario of mobile cloud collaborative computing. We present a
system, based on bidding, where mobile devices perform some tasks which a cloud
computing infrastructure tends to offload to a set of participating mobile devices.
Our usage pattern model, although being simple, can be effectively used in such
diverse scenarios. Mechanisms for automatic learning of likelihood probabilities,
using more advanced models for analysis, execution time estimation, designing
more effective bidding, and reward-penalty schemes may be looked into for future
explorations. In this paper, we also assume the network and the devices are reliable.
Issues of fault tolerance in this context are our future research agenda.

4 Scheduling in MCC 127

References

1. T. Danova, Gartner: mobile apps will have generated $77 billion in revenue by 2017 (2014),
http://e.businessinsider.com/public/2373445

2. S. Sakr, Nvidia says Tegra-3 is a “PC-class CPU” (2011), http://engt.co/srvibU
3. J.-M. Kang, S.-s. Seo, J.-K. Hong, Usage pattern analysis of smartphones, in 2011 13th

Asia-Pacific Network Operations and Management Symposium (APNOMS) (IEEE, Piscataway,
2011), pp. 1–8

4. J.-M. Kang, S.-s. Seo, J.W.-K. Hong, Personalized battery lifetime prediction for mobile
devices based on usage patterns. J. Comput. Sci. Eng. (4), 338–345 (2011)

5. A. Shye, B. Scholbrock, G. Memik, P.A. Dinda, Characterizing and modeling user activity on
smartphones: summary, in ACM SIGMETRICS Performance Evaluation Review, vol. 38, no. 1
(ACM, New York, 2010), pp. 375–376

6. E.E. Marinelli, Hyrax: cloud computing on mobile devices using MapReduce. Carnegie-
Mellon Univ, School of Computer Science, Pittsburgh, PA, Tech. Rep. CMU-CS-09-164, Sept
2009

7. A. Dou, V. Kalogeraki, D. Gunopulos, T. Mielikainen, V.H. Tuulos, Misco: a MapReduce
framework for mobile systems, in Proceedings of the 3rd International Conference on
Pervasive Technologies Related to Assistive Environments (ACM, New York, 2010), p. 32

8. C. Shi, V. Lakafosis, M.H. Ammar, E.W. Zegura, Serendipity: enabling remote computing
among intermittently connected mobile devices, in Proceedings of the Thirteenth ACM
International Symposium on Mobile Ad Hoc Networking and Computing (ACM, New York,
2012), pp. 145–154

9. A. Carroll, G. Heiser, An analysis of power consumption in a smartphone, in USENIX Annual
Technical Conference, pp. 1–14 (2010)

10. L. Ardito, G. Procaccianti, M. Torchiano, G. Migliore, Profiling power consumption on
mobile devices, in ENERGY 2013, The 3rd International Conference on Smart Grids, Green
Communications and IT Energy-Aware Technologies, pp. 101–106 (2013)

11. A. Schulman, V. Navda, R. Ramjee, N. Spring, P. Deshpande, C. Grunewald, K. Jain, V.N.
Padmanabhan, Bartendr: a practical approach to energy-aware cellular data scheduling, in
Proceedings of the 16th Annual International Conference on Mobile Computing & Networking
(ACM, New York, 2010), pp. 85–96

12. A. Chakraborty, V. Navda, V.N. Padmanabhan, R. Ramjee, Coordinating cellular background
transfers using loadsense, in Proceedings of the 19th Annual International Conference on
Mobile Computing & Networking (ACM, New York, 2013), pp. 63–74

13. P.K. Athivarapu, R. Bhagwan, S. Guha, V. Navda, R. Ramjee, D. Arora, V.N. Padmanabhan,
G. Varghese, Radiojockey: mining program execution to optimize cellular radio usage, in
Proceedings of the 18th Annual International Conference on Mobile Computing & Networking
(ACM, New York, 2012), pp. 101–112

14. A. Shye, B. Scholbrock, G. Memik, Into the wild: studying real user activity patterns to guide
power optimizations for mobile architectures, in Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture (ACM, New York, 2009), pp. 168–178

15. V. Tiwari, S. Malik, A. Wolfe, M.T.-C. Lee, Instruction level power analysis and optimization
of software, in Technologies for Wireless Computing (Springer, New York, 1996), pp. 139–154

16. S. Hao, D. Li, W.G. Halfond, R. Govindan, Estimating mobile application energy consumption
using program analysis, in 2013 35th International Conference Software Engineering (ICSE)
(IEEE, Piscataway, 2013), pp. 92–101

17. R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat,
C. Ferdinand, R. Heckmann, T. Mitra et al., The worst-case execution-time problem - overview
of methods and survey of tools. ACM Trans. Embed. Comput. Syst. (TECS) 7(3), 36 (2008)

18. M.R. Garey, D.S. Johnson, R. Sethi, The complexity of flowshop and jobshop scheduling.
Math. Oper. Res. 1(2), 117–129 (1976)

http://e.businessinsider.com/public/2373445
http://engt.co/srvibU

128 A. Banerjee et al.

19. D.G. Feitelson, Job scheduling in multiprogrammed parallel systems: extended version, IBM
research RPT. RC 19790, 87657 (1979)

20. F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog computing and its role in the internet of things,
in Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing (ACM,
New York, 2012), pp. 13–16

21. A. Mukherjee, H.S. Paul, S. Dey, A. Banerjee, Angels for distributed analytics in IOT, in 2014
IEEE World Forum on Internet of Things (WF-IoT) (IEEE, Piscataway, 2014), pp. 565–570

22. E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra, P. Bahl, MAUI:
making smartphones last longer with code offload, in Proceedings of the 8th International
Conference on Mobile Systems, Applications, and Services (ACM, New York, 2010), pp. 49–
62

23. B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, A. Patti, CloneCloud: elastic execution between
mobile device and cloud, in Proceedings of the Sixth Conference on Computer Systems (ACM,
New York, 2011), pp. 301–314

24. S. Kosta, A. Aucinas, P. Hui, R. Mortier, X. Zhang, ThinkAir: dynamic resource allocation and
parallel execution in the cloud for mobile code offloading, in INFOCOM, 2012 Proceedings
IEEE (IEEE, Piscataway, 2012), pp. 945–953

25. M.S. Gordon, D.A. Jamshidi, S. Mahlke, Z.M. Mao, X. Chen, Comet: code offload by migrat-
ing execution transparently, in Proceedings of the 10th USENIX conference on Operating
Systems Design and Implementation, OSDI, vol. 12, pp. 93–106 (2012)

26. T. Phan, L. Huang, C. Dulan, Challenge: integrating mobile wireless devices into the
computational grid, in MobiCom ’02: Proceedings of the 8th Annual International Conference
on Mobile Computing and Networking, MOBICOM-2002, pp. 271–278 (2002)

27. A. Agarwal, Enterprise smartphone usage trends (2011), http://bit.ly/loIqE1
28. X. Li, A. Gray, D. Jiang, X. Mao, Sufficient and necessary conditions of stochastic permanence

and extinction for stochastic logistic populations under regime switching. J. Math. Anal. Appl.
376(1), 11–28 (2011)

29. R. Tarjan, Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160
(1972)

30. M.R. Rahimi, N. Venkatasubramanian, A.V. Vasilakos, MuSIC: mobility-aware optimal service
allocation in mobile cloud computing, in Proceedings of the 2013 IEEE Sixth International
Conference on Cloud Computing, CLOUD ’13 (IEEE Computer Society, Washington, DC,
2013), pp. 75–82

31. S.-M. Park, Y.-B. Ko, J.-H. Kim, Disconnected operation service in mobile grid computing, in
Service-Oriented Computing-ICSOC 2003 (Springer, New York, 2003), pp. 499–513

32. E. Jung, F. Maker, T.L. Cheung, X. Liu, V. Akella, Markov decision process (MDP) framework
for software power optimization using call profiles on mobile phones. Design Autom. Embed.
Syst. 14(2), 131–159 (2010)

33. H.T. Dinh, C. Lee, D. Niyato, P. Wang, A survey of mobile cloud computing: architecture,
applications, and approaches. Wirel. Commun. Mob. Comput. (2011)

34. W. Song, Y. Kim, H. Kim, J. Lim, J. Kim, Personalized optimization for android smartphones.
ACM Trans. Embed. Comput. Syst. (TECS) 13(2s), 60 (2014)

http://bit.ly/loIqE1

	4 A Framework for Speculative Job Scheduling on Mobile Cloud Resources
	4.1 Introduction
	4.2 Modelling Usage Patterns
	4.2.1 Battery Decay
	4.2.2 Generation of PFSM-AP Model
	4.2.2.1 Analysis of the Heuristic

	4.2.3 Execution Estimation Model

	4.3 Usage Model-Based Scheduler
	4.3.1 Model of Scheduler
	4.3.1.1 Analysis of the Heuristic

	4.4 Result: Usage Model-Based Scheduling
	4.5 Usage Pattern for Mobile Grid
	4.5.1 Motivation for This Work
	4.5.1.1 The Simplest Case
	4.5.1.2 A More Realistic Scenario

	4.6 Bidding Methodology
	4.6.1 Execution Path Enumeration

	4.7 Experiments with the Offloading System
	4.7.1 Working with Real Devices
	4.7.2 Architecture of Offloading System

	4.8 Related Work
	4.9 Conclusion and Future Work
	References

