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Abstract Detecting changes in network structure is important for research into
systems as diverse as financial trading networks, social networks and brain con-
nectivity. Here we present novel Bayesian methods for detecting network structure
change points. We use the stochastic block model to quantify the likelihood of a net-
work structure and develop a score we call posterior predictive discrepancy based
on sliding windows to evaluate the model fitness to the data. The parameter space
for this model includes unknown latent label vectors assigning network nodes to
interacting communities. Monte Carlo techniques based on Gibbs sampling are used
to efficiently sample the posterior distributions over this parameter space.

Keywords Bayesian inference · Networks · Sliding window · Stochastic block
model · Gibbs sampling

1 Introduction

Time varying network models are used in a wide range of applications, including in
neuroscience where they have been used to model functional connectivity of brains
such as the modularity models in [1, 2], and to model interactions in social network
communities such as Facebook or emails [3]. The detection of changes in commu-
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nities, or more specifically changes in how nodes are allocated to communities, is
important to understand functional variation in networks.

There is a wide range of literature exploring network change point analysis in
time series. A recent method of network change point detection [4] used spectral
clustering to partition a network into several connected components. The network
structure deviance before and after the candidate change point was evaluated by
computing the principal angles between two eigenspaces. The location of the change
point was determined in such a way as to minimise a sum of singular values. Another
method of network change point analysis named dynamic connectivity regression
(DCR) [5, 6] used graphical LASSO (GLASSO) [7] to estimate a sparse precision
matrix using an L1-constraint, which forces a large number of edge weights to zero to
represent missing edges. Both spectral clustering and DCR were integrated into the
random permutation procedure [8] and stationary bootstrap procedure [9] to check
whether detected change points were significant. Various criteria have been proposed
as test scores to identify candidate change points in network connectivity, including
summation of singular values of the network eigenspace (using spectral clustering
as mentioned above) and the Bayesian information criterion (BIC) [6] in the context
of dynamic connectivity regression. The BIC is a criterion for model selection that
includes apenalty term for thenumber of parameters in themodel, the implementation
of which is illustrated in [10]. Apart from the greedy algorithm scheme in [5], a
frequency-specific method described in [11] applied a multivariate cumulative sum
procedure to detect change points. Some methods such as [12–14] mainly focused
on large scale network estimation in time series. There are many papers using sliding
window methods for observing the time varying network connectivity in time series
analysis. For example, [15] tested the equality of the two covariance matrices in a
high-dimensional setup within a sliding window to evaluate changes of connectivity
in networks. Some other sliding window methods for network connectivity analysis
can be found in [16–19]. Detection of communities in networks is also a relevant and
topical area of statistics. How communities change or how the nodes in a network
are assigned to specific communities is an important problem in characterization of
networks. Theory and methods for community detection in networks are described
in the works [20–22].

In this paper, we propose a new method to detect network structure change points
using Bayesian model fitness assessment. There is a substantial literature on model
fitness [23]. For example, West [24] used the cumulative Bayes factor to check for
model failure, and Gelman [25] used posterior predictive assessment with a param-
eter dependent statistic to evaluate model fitness. In this work, we identify change
points via checking model fitness to observations within a sliding time window using
parameter dependent posterior predictive assessment. Specifically, we propose to use
the stochastic block model [21, 26, 27] to quantify the likelihood of a network and
Gibbs sampling to sample a posterior distribution derived from thismodel. TheGibbs
sampling approach we adopt is based on the work of Nobile [28] for finite mixture
models.We propose a posterior predictive discrepancymethod to checkmodel fitness
using an adjacency matrix to represent a network. The proposed procedure involves
drawing parameters from the posterior distribution and using them to generate a
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replicated adjacency matrix, then calculating a disagreement matrix to quantify the
difference between the replicated adjacency matrix and realised adjacency matrix.
The score posterior predictive discrepancy (PPD) or we call the posterior predictive
discrepancy index (PPDI) is then evaluated by averaging the fraction of elements in
the disagreement matrix that indicate disagreement. We apply another new sliding
window to construct a new time series we call the cumulative discrepancy energy
(CDE). We compute the CDE and use it to define the criterion for change point
detection. The CDE increases when change points are contained within the window,
and can thus be used to assess whether a statistically significant change point exists
within a period of time.

This paper is organized as the follows. Section2 describes the details of the data
time series, and illustrates the models and methodologies we propose for network
change point detection. Section3 contains results of numerical experiments and sim-
ulations. Section4 assesses the advantages and disadvantages of our methods and
potential future extensions and improvements.

2 Methods

2.1 The Data Set and Sliding Window Processing

Graphical models is a pictorial representation of pair-wise statistical relations
between random variables. Graphical models may involve directed or undirected
graphs. Directed graphs are appropriate when the nature of the relationships between
variables has a directional aspect, whereas undirected graphs are appropriate for rep-
resenting bi-directional or non-directional relationships. The methods we developed
in this paper apply to both directed and undirected networks.

Consider a collection of N nodes V = {v1, . . . , vN }. Suppose we observe a col-
lection of N time seriesY ∈ �N×T whereY = (y1, y2, . . . , yT ), with one time series
corresponding to each node, and observationsmade at times {1, . . . , T }. Correlations
between time series indicate direct or indirect interactions between the correspond-
ing nodes; we therefore first process the time series to construct a sequence of graphs
in which edges represent temporary correlations.

We apply a sliding window technique with window lengthW which is considered
to be an even number. The window size should be as small as possible. Large window
size will limit the detection performance for those change points located closely with
each other, while small window size may create statistical complication in the model
assessment due to the lack of data sample. Change points may occur only at times
t ∈ {M + 1, . . . , T − M}where M is a margin size used to avoid computational and
statistical complications. We set the margin size M = W/2. For each time point t ∈
{M + 1, . . . , T − M}, we define Yt = {yt− W

2
, . . . , yt , , . . . , yt+ W

2 −1} and calculate
a sample correlation matrix Rt within the window Yt . We set a threshold ε such
that only those node pairs (i, j) for which the correlation coefficient r (t)

i j > ε are
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Fig. 1 Parallel time series corresponding to nodes of the network, and a sliding window of width
W centred at t . The different coloured time series correspond to signal data for each node

connected by an edge in the edge set Et representing interacting nodes at time t . It is
also convenient to define an adjacency matrix xt = (x (t)

i j )i, j=1,...,N , where x
(t)
i j = 1 if

there is an edge connecting nodes i and j in Et , and x (t)
i j = 0 otherwise. For each t ,

we then have the corresponding sample adjacency matrix xt representing interacting
nodes during the timewindow centred at time t . Inwhat follows,we discard the signal
data consisting of N time series, and instead consider the sample adjacency matrix
xt as the realised observation at time t . This sliding window approach is illustrated
in Fig. 1.

2.2 The Stochastic Block Model

The stochastic block model is a random process generating networks on a fixed num-
ber N of nodes. A defining feature of the model is that nodes are partitioned into
K communities, with interactions between nodes in the same community having a
different (usually higher) probability than interactions between nodes in different
communities. Taking a Bayesian perspective, we suppose that the number of com-
munities K is a random variable drawn from a given prior distribution (for example
a Poisson distribution). Determining the value of K appropriate to a given data set
is a model selection problem. The stochastic block model first assigns the N nodes
into the K communities, then generates edges with a probability determined by the
community structure. Mathematically, we denote the community memberships (also
called the latent labels) of the nodes as a random vector z = (z1, . . . , zN ) such that
zi ∈ {1, . . . , K } denotes the community containing node i . Each zi independently
follows categorical (one trial multinomial) distribution:

zi ∼ Categorical(1; r1, . . . , rK ),

where rk is the probability of a node being assigned to community k and
∑K

k=1 rk = 1.
The multinomial probability can be expressed as
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p(zi |r, K ) =
K∏

k=1

r Ik (zi )k ,

with the indicator function

Ik(zi ) =
{
1, if zi = k

0, if zi �= k.

This implies that the N dimensional vector z is generated with probability

p(z|r, K ) =
K∏

k=1

rmk (z)
k ,

where mk(z) = ∑N
i=1 Ik(zi ). The vector r = (r1, . . . , rK ) is assumed to have a K -

dimensional Dirichlet prior with density

p(r|K ) = N (α)

K∏

k=1

rαk−1
k ,

where the normalization factor with gamma function Γ is

N (α) = Γ (
∑K

k=1 αk)
∏K

k=1 Γ (αk)
.

In this work we suppose αi = 1 for i = 1, . . . , K , so that the prior for r is uniform
on the K -simplex.

Edges between nodes are represented using an adjacencymatrix x ∈ �N×N . Edges
can be weighted or unweighted, and xi j can be continuous or discrete. Here we use
the binary edge model, in which xi j = 1 for edges deemed present and xi j = 0 for
edges deemed absent.We define a block xkl as the sub-matrix of the adjacency matrix
comprised of edges connecting the nodes in community k to the nodes in community
l. If the graph is undirected, there are 1

2K (K + 1) blocks. If the graph is directed,
there are K 2 blocks.

In the Bayesian presentation of the stochastic block model byMacDaid et al. [26],
the likelihood model for edges is given by:

p(x|π , z, K ) =
∏

k.l

p(xkl |πkl, z, K )

and
p(xkl |πkl, z, K ) =

∏

{i |zi=k}

∏

{ j |z j=l}
p(xi j |πkl, z, K )
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whereπ = {πkl} is a K × K matrix. In the binary edgemodel, each xi j has aBernoulli
distribution, that is

xi j |πkl, z, K ∼ Bernoulli(πkl).

Theπkl independently follow the conjugateBeta priorπkl ∼ Beta(a, b). Letnkl(z, x)
be the number of edges in block kl (for the weighted edge model, nkl becomes the
sum of the edge weights). For an undirected graph, the number of edges connect-
ing community k and community l is nkl(z, x) = ∑

i, j |i≤ j,zi=k,z j=l xi j . For a directed
graph, nkl(z, x) = ∑

i, j |zi=k,z j=l xi j . We also define wkl(z) to be the maximum possi-
ble number of edges in block kl. For the off-diagonal blocks, wkl(z) = mk(z)ml(z).
For the diagonal blocks, if the graph is undirected, wkk = 1

2mk(z)(mk(z) + 1) (we
consider the self-loop here), whereas if the graph is directed, wkk = mk(z)2. With
this notation, the probability associated with the edges of the block xkl under the
binary edge model is

p(xkl |πkl, z, K ) = π
nkl (z,x)
kl (1 − πkl)

wkl (z)−nkl (z,x), where 0 < πkl < 1.

The corresponding conjugate prior is the Beta distribution,

Beta(a, b) = πa−1
kl (1 − πkl)

b−1

B(a, b)
,

where B(a, b) = Γ (a)Γ (b)
Γ (a+b) is the Beta function.

2.3 The Collapsed Posterior

In the change point detection applications that we consider here, a change point
corresponds to a restructuring of the network, that is, a change in the clustering
vector z.We are therefore interested in the so called “collapsed” posterior distribution
p(z|x, K ), the form of which we discuss in this section.

We consider K unknown and assign a Poisson random prior with the condition
K > 0.

P(K ) = λK

K ! e
−λ.

(In practice we use λ = 1.) We then have the joint density

p(x,π , z, r, K ) = P(K )p(z, r|K )p(x,π |z).

The parameters r and π can be integrated out or “collapsed” to obtain the marginal
density p(x, z, K ).
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p(z, K , x) = P(K )

∫

p(z, r|K )dr
∫

p(x,π |z)dπ ,

then the posterior for the block-wise model can be expressed as

p(z, K |x) ∝ p(z, K , x) = P(K )

∫

p(z, r|K )dr
∏

k,l

∫

p(xkl, πkl |z)dπkl .

The first integral

p(z|K ) =
∫

p(z, r|K )dr,

where the integral is over the K -simplex, can be calculated via the following proce-
dure:

p(z|K ) =
∫

p(z, r|K )dr

=
∫

p(r|K )p(z|r, K )dr

= Γ (
∑K

k=1 αk)

Γ (
∑K

k=1(αk + mk(z))

K∏

k=1

Γ (αk + mk(z))
Γ (αk)

.

Integrals of the form
∫
p(xkl, πkl |z)dπkl can be calculated as

p(xkl |z) =
∫ 1

0
p(xkl, πkl |z)dπkl

=
∫ 1

0
p(πkl)p(xkl |πkl, z)dπkl

= B(nkl(z, x) + a,wkl(z) − nkl(z, x) + b)

B(a, b)
.

The derivation of the collapsing procedure is given in Appendix “Derivation of the
Collapsing Procedure”. Then the collapsed posterior can be expressed as

p(z|x, K ) ∝ 1

K !
Γ (

∑K
k=1 αk)

Γ (
∑K

k=1(αk + mk))

K∏

k=1

Γ (αk + mk)

Γ (αk)

∏

k,l

B(nkl + a,wkl − nkl + b)

B(a, b)
.

2.4 Sampling the Parameters from the Posterior

The posterior predictive method we outline below involves sampling parameters
from the posterior distribution. The sampled parameters are the latent labels z and
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model parameters π . There are several methods for estimating the latent labels and
model parameters of a stochastic blockmodel described in the literature: for example
Daudin et al. [29] evaluate the model parameters by point estimation but consider
the latent labels in z as having a distribution, making their approach similar to an EM
algorithm. The method of Zhangi et al. [30] uses point estimation for both the model
parameters and latent labels. Here we sample the latent labels z from the collapsed
posterior p(z|x, K ) and then separately sample π from the density p(π |x, z).

The estimation of K is a model selection problem [26], which we will not discuss
about in this paper. It is convenient to consider the number of communities K to be
fixed in the model fitness assessment in this paper (The K is supposed to be given in
the numerical experiment in the later section). We use the Gibbs sampler to sample
the latent labels z from the collapsed posterior p(z|x, K ). For each element zi and
k ∈ {1, . . . , K }, we have

p(zi |z−i , x, K ) = 1

C
p(z1, . . . , zi−1, zi = k, zi+1, . . . , zn|x),

where z−i represents the elements in z apart from zi and the normalization term

C = p(z−i |x, K ) =
K∑

k=1

p(z1, . . . , zi−1, zi = k, zi+1, . . . , zn|x).

We use the standard Gibbs sampling strategy of cycling through z1, . . . , zn , updating
each latent variable by drawing from p(zi |z−i , x, K ).

An alternative to Gibbs sampling is to use Metropolis-Hastings moves based on
the allocation sampler [31] to draw parameters z and K from the posterior. In this
approach, a candidate vector of latent labels z∗ is acceptedwith probabilitymin{1, r},
where

r = p(K , z∗, x)p(z∗ → z)
p(K , z, x)p(z → z∗)

.

If the number of communities K is fixed, the proposal p(z → z∗) can be based
on three kinds of moves (M1, M2, M3). If K is allowed to vary, one can use a
reversible jump strategy or absorption/ejectionmove. The details of these approaches
are illustrated in [31, 33].

To sample the model parameters π , we first derive the posterior of the model
block parameters as the following expression

p(πkl |xkl, z) ∝ p(πkl)p(xkl |πkl, z)

∝ πa−1
kl (1 − πkl)

b−1π
nkl (z,x)
kl (1 − πkl)

wkl (z)−nkl (z,x)

∝ π
nkl (z,x)+a−1
kl (1 − πkl)

wkl (z)−nkl (z,x)+b−1
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and
p(π |x, z) =

∏

k,l

p(πkl |xkl, z).

The prior and the likelihood in the above expression is the Beta-Bernoulli conjugate
pair. Given the sampled zwe can draw the sampleπ from the above posterior directly.

2.5 Posterior Predictive Discrepancy

Given inferred values of z and π under the assumptive model K , one can draw
replicated data xrep from the posterior predictive distribution P(xrep|z,π , K ). Note
that the realised adjacency and replicated adjacency are conditionally independent,

P(x, xrep|z,π , K ) = P(xrep|z,π , K )P(x|z,π , K ).

Multiplying both sides of this equality by P(z,π |x, K )/P(x|z,π , K ) gives

P(xrep, z,π |x, K ) = P(xrep|z,π , K )P(z,π |x, K ).

Here we use replicated data in the context of posterior predictive assessment [25]
to evaluate the fitness of a posited stochastic block model to a realised adjacency
matrix. We generate a replicated adjacency matrix by first drawing samples (z, π )
from the joint posterior P(z,π |x, K ). Specifically, we sample the latent label vector
z from p(z|x, K ) and model parameter π from p(π |x, z) and then draw a replicated
adjacencymatrix from P(xrep|z,π , K ).We compute a discrepancy function to assess
the difference between the replicated data xrep and the realised observation x, as a
measure of model fitness.

In [25], the χ2 function was used as the discrepancy measure, where the observa-
tion was considered as a vector. However, in the stochastic block model, the observa-
tion is an adjacency matrix and the sizes of the sub-matrices can vary. In this paper,
we propose a disagreement index to compare binary adjacency matrices xrep and x.
We use the exclusive OR operator to compute the disagreement matrix between the
realised adjacency and replicated adjacency and calculate the fraction of non-zero
elements in the disagreement matrix. This disagreement index is denoted γ (xrep; x)
and can be considered a parameter-dependent statistic. In mathematical notation, the
disagreement index γ is defined as

γ (xrep; x) =
∑N

i=1, j=1(x
⊕

xrep)i j
N 2

,

where
⊕

is the exclusiveORoperator. In practicewe generate S replicated adjacency
matrices and compute the average disagreement index, we call posterior predictive
discrepancy index (PPDI)
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γ =
∑S

i=1 γ (xrep
i ; x)

S
.

2.6 Cumulative Discrepancy Energy via Sliding Window

Our proposed strategy to detect network change points is to assess the fitness of a
stochastic block model by computing the discrepancy index γ t for each t ∈ {W2 +
1, . . . , T − W

2 }. The key insight here is that the fitness of the model is relatively
worse when there is a change point within the window used to compute xt . If there
is a change point within the window, the data observed in the left segment and right
segment are generated by different network architectures, resulting in poor model fit
and a correspondingly high posterior predictive discrepancy index.

We find that the PPDI is greatest when the change point is located in the middle of
the window. To identify the most plausible position of a change point, we use another
window with window size Ws to smooth the results. We compute the cumulative
discrepancy energy Et , given by

Et =
t+ Ws

2 −1∑

i=t− Ws
2

γ i .

We infer the location of change points to be local maxima of the cumulative dis-
crepancy energy, where those maxima rise sufficiently high above the surrounding
sequence. The change point detection algorithm can be summarized as the follows.

Algorithm 1 Change point detection by posterior predictive discrepancy
Input: Length of time course T , window size W , number of communities K , observations Y.
for t = W/2 + 1, . . . , T − W/2 do

Calculate Yt → Rt → xt .
Draw the samples {zi ,π i } (i = 1, . . . , S) from the posterior P(z,π |x, K ).
Simulate the replicated set xrep

i
from the predictive distribution P(xrep|z,π , K ).

Calculate the disagreement index γ (xrep
i ; x).

Calculate the posterior predictive discrepancy index γ t = 1
S

∑S
i=1 γ (xrep

i ; x).
end for
for t = W

2 + Ws
2 + 1, . . . , T − W

2 − Ws
2 do

Calculate cumulative discrepancy energy Et = ∑t+ Ws
2 −1

I=t− Ws
2

γ I .

end for
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3 Simulation

3.1 Generative Model

To validate our approach, we simulate the time series consisting of three data seg-
ments from the Gaussian generative model. Within each of the resulting segment,
N = 16 nodes are assigned to K = 3 communities, resulting in membership vectors
z1, z2 and z3. Recall these are generated using the Dirichlet-Categorical conjugate
pair, that is, component weights r1, r2 and r3 are first drawn from a uniform distribu-
tion on the K -simplex and then nodes are assigned to the communities by drawing
from the corresponding categorical distributions. Time series data in �N are then
simulated for t = 1, . . . , T by drawing from a multivariate Gaussian distribution
N (0,Σ), with

Σi j =
⎧
⎨

⎩

a, if i �= j and i and j are in the same communities
1, if i = j
b, if i and j are in different communities.

In the covariance matrix, a and b follow the uniform distribution, where a ∼
U (0.8, 1) and b ∼ U (0, 0.2). The resulting covariance matrices for the three seg-
ments we denote byΣ1,Σ2 andΣ3. The simulated dataY ∈ �N×T can be separated
into three segments (Y1,Y2,Y3).

3.2 Effect of Changing the Distance Between Change Points

We simulate the time series for a network with N = 16 nodes and T = 450 time
points with different locations of true change points in four experimental settings.
The sliding window size is fixed to be W = 64 so that the margin size is M = 32.

For the inference, we set the prior ofπkl to be Beta(2, 2). During the posterior pre-
dictive procedure, according to the convergence performance of the Gibbs sampler,
the Gibbs chain of the latent label vectors converges to the stationary distribution
within 10 iterations. Then we draw each latent label vector every three complete
Gibbs iterations. The posterior prediction replication number S determines the rate
of fluctuation of the posterior predictive discrepancy index (PPDI) curve, the smaller
the replication number is, the more severely the curve will vibrate. In this demon-
stration, we set the replication number as S = 50. Increasing S would lead to more
accurate results, but incur additional computational cost.

The PPDI increases dramatically when the true change point begins to appear at
the right of the sliding window and decreases rapidly when the true change point
tend to move out the left end of the window. For the cumulative discrepancy energy
(CDE), the change point is considered to be at the place where the CDE is a local
maximum.
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Fig. 2 The vertical lines in the figure represent the various locations of the true change points, the
blue curve represents the posterior predictive discrepancy index (PPDI) and the red curve represents
the cumulative discrepancy energy (CDE) with window sizeW = 64. a PPDI with change points at
t1 = 150 and t2 = 300, b CDE with change points at t1 = 150 and t2 = 300; c PPDI with change
points at t1 = 150 and t2 = 250, d CDE with change points at t1 = 150 and t2 = 250; e PPDI with
change points at t1 = 150 and t2 = 200, f CDEwith change points at t1 = 150 and t2 = 200; g PPDI
with change points at t1 = 150 and t2 = 170, h CDE with change points at t1 = 150 and t2 = 170

In our first setting, true change points are placed at times t1 = 150 and t2 = 300
(see Fig. 2a, b). Note the minimum distance between change points is 150, which is
larger than the window size. Consequently, no window can contain more than one
change point. We can see from the figure that the two peaks are located around the
true change points t1 = 150 and t2 = 300 respectively.

We repeat this experiment with the true change points at t1 = 150 and t2 = 250
in Fig. 2c, d so that the minimum distance between the change points is 100, which
is still larger than the window size. We can see that there are two prominent peaks
located around the true change points. Next, we set the true change points at t1 = 150
and t2 = 200 Fig. 2e, f, where the minimum distance between the change points is 50
which is slightly smaller than the window size 64. In this situation, the window may
contain two change points, so that these windows cross three segments generated by
different network architectures. We can still distinguish the two peaks in Fig. 2e, f
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because the distance of the change points is still large enough. However, in Fig. 2g, h
where the change points are t1 = 150 and t2 = 170, we can see that there are only one
peak around t = 150. In this case, we cannot distinguish two change points because
they are closely located with each other.

3.3 Effect of Changing the Window Size

To investigate the effect of changing the window size, we set the true change points at
t1 = 150 and t2 = 300 for all of the experimental settings.We apply our method with
four different window sizes: W = 24 in Fig. 3a, b; W = 32 in Fig. 3c, d; W = 48 in
Fig. 3e, f; W = 64 in Fig. 3g, h. Reducing the window size will increase the fluctua-
tion of thePPDI andCDE, and renders the change point locations less distinguishable.
ForW = 24, we can see that there are multiple large peaks over the CDE time series.
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Fig. 3 The vertical lines in the figure represent the locations of the true change points, the blue
curve represents the posterior predictive discrepancy index (PPDI) and the red curve represents the
cumulative discrepancy energy (CDE) with window sizes 24, 32, 48 and 64



120 L. Bian et al.

4 Discussion

The method for network structure change point detection described in this paper pro-
vides a flexible approach to modelling and estimating community structures among
interacting nodes. We consider both the community latent label vector and block
model parameters (block edge probabilities) as random variables to be estimated.
Structural changes to the networks are reflected by changes in the latent labels and
model parameters. By applying a sliding window method, we avoid partitioning
the data into sub-segments recursively as in the algorithm of [4]. Compared to the
method of evaluating eigen-structure of the network in [4], our approach has several
advantages. Our approach is able to be used for both undirected and directed graphs.
The method using stochastic block model is more flexible, because different choices
of π can generate different connection patterns in the adjacency matrix. However,
both of the methods have difficulty in detecting change points with close distances.

Ideally, the window size should be as small as possible, which can enhance the
ability of detecting those change points located closely. When the window size is
small, for examplewhenW = 24, theremay be false detections, because there are not
enough samples of data in the sliding windows. In our current method, the window
size cannot be made too small, which may be because we use a threshold to convert
the sample correlation matrix into an adjacency matrix. This practice results in the
loss of some information regarding the network architecture. If we extend the model
to a weighted stochastic block model to fit the data in the future, so that the sample
correlation matrix is directly considered as a weighted adjacency matrix, it may be
feasible to detect change points at smaller separations andmake the higher resolution
of detecting the change points. For themajority of the applications in fMRI time series
analysis, the time course should be around hundreds of time steps, which is because
of the limitation of the sample time interval of the fMRI in the short time experiment.
Therefore, the algorithm to analyse the short term network time series is important.

The computational cost of the posterior predictive discrepancy procedure in our
method depends mainly on two aspects. The first includes the iterated Gibbs steps
used to update the latent variables and the sampling of the model parameter. In
our code, calculating m(z) takes O(N ) time, calculating the probability of each
element zi to be reassigned into one of K clusters takes O(K 2 + N 2 + K N ) time.
Therefore, iterating each latent vector z requires the computational cost of O((K 2 +
N 2 + K N )K N ), sampling π requires O(K 2 + N 2) time. The second is the number
of replications needed for the predictive process. Calculating each PPDI requires
O(S) time. There is a natural trade off between increasing the replication number
and reducing the computational cost.

In this paper, we have not considered the problem of inferring the number of
communities K . In realworld applications, K is unknown.Determination of K can be
considered as amodel selection problem, a class of problem for whichmanymethods
exist, including [34] in Bayesian statistics. For example, the allocation sampler [31]
is an efficient tool for inference of K , and could potentially be integrated into our
algorithm. In real word applications, some change points may not occur abruptly, but
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rather change gradually over time. For solving the gradual changing problem,wemay
potentially apply a transitionmatrix to the latent label vectors in the generativemodel
between difference segments to simulate the time series with ground truth of gradual
change points. We do not claim that our Gibbs sampling approach is optimal, finding
alternative sampling methods is thus another possibility for improving the algorithm.
One idea that is worth exploring in the future is to develop efficient samplingmethods
for inferring high-dimensional latent vectors in larger scale networks.

5 Conclusion

The main contribution of this paper is to demonstrate that posterior predictive dis-
crepancy criterion can be used to detect network structure change point based on
time series data. This insight is potentially applicable to a wide range of applications
including analysis of fMRI data and large scale social networks.
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Appendix: Derivation of the Collapsing Procedure

We now create a new parameter vector η = {α1 + m1, . . . , αK + mK }. We can col-
lapse the integral

∫
p(z, r|K )dr as the following procedure.

∫

p(z, r|K )dr =
∫

p(r|K )p(z|r, K )dr

=
∫

N (α)

K∏

k=1

rαk−1
k

K∏

k=1

rmk
k dr

=
∫

N (α)

K∏

k=1

rαk+mk−1
k dr

= N (α)

N (η)

∫

N (η)

K∏

k=1

rαk+mk−1
k dr

= Γ (
∑K

k=1 αk)

Γ (
∑K

k=1(αk + mk)

K∏

k=1

Γ (αk + mk)

Γ (αk)
.
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Integral of the form
∫
p(xkl, πkl |z)dπkl can be calculated as

∫ 1

0
p(xkl, πkl |z)dπkl =

∫ 1

0
p(πkl)p(xkl |πkl, z)dπkl

=
∫ 1

0

πa−1
kl (1 − πkl)

b−1

B(a, b)
π

nkl
kl (1 − πkl)

wkl−nkl dπkl

=
∫ 1

0

π
nkl+a−1
kl (1 − πkl)

wkl−nkl+b−1

B(a, b)
dπkl

= B(nkl + a,wkl − nkl + b)

B(a, b)

×
∫ 1

0

π
nkl+a−1
kl (1 − πkl)

wkl−nkl+b−1

B(nkl + a,wkl − nkl + b)
dπkl

= B(nkl + a,wkl − nkl + b)

B(a, b)
.
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