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Preface

This volume represents the refereed proceedings of the Thirteenth International
Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific
Computing, which was held at the University of Rennes, France, and organized by
Inria, from 1–6 July, 2018. It contains a limited selection of articles based on
presentations made at the conference. The program was arranged with the help of an
international committee consisting of the following members:

Zdravko I. Botev (Australia, University of New South Wales)
Hector Cancela (Uruguay, Universidad de la Republica)
Frédéric Cérou (France, Inria)
Nicolas Chopin (France, ENSAE)
Ronald Cools (Belgium, KU Leuven)
Josef Dick (Australia, University of New South Wales)
Arnaud Doucet (UK, Oxford University)
Paul Dupuis (USA, Brown University)
Michael B. Giles (UK, Oxford University)
Mark Girolami (UK, Uinversity of Warwick)
Paul Glasserman (USA, Columbia University)
Peter W. Glynn (USA, Stanford University)
Michael Gnewuch (Germany, Universität Kiel)
Emmanuel Gobet (France, Ecole Polytechnique)
Takashi Goda (Japan, The University of Tokyo)
Arnaud Guyader (France, Université Pierre et Marie Curie)
Stefan Heinrich (Germany, Universität Kaiserslautern)
Fred J. Hickernell (USA, Illinois Institute of Technology)
Aicke Hinrichs (Austria, JKU Linz)
Wenzel Jakob (Switzerland, ETH and Disney)
Alexander Keller (Germany, NVIDIA)
Dirk P. Kroese (Australia, University of Queensland)
Frances Y. Kuo (Australia, University of New South Wales)
Gerhard Larcher (Austria, JKU Linz)

v



Christian Lécot (France, Université de Savoie)
Pierre L’Ecuyer (Canada, Université de Montréal)
Christiane Lemieux (Canada, University of Waterloo)
Faming Liang (USA, University of Florida, Gainesville)
Makoto Matsumoto (Japan, Hiroshima University)
Eric Moulines (France, Ecole Polytechnique)
Thomas Mueller-Gronbach (Germany, Universität Passau)
Harald Niederreiter (Austria, Academy of Sciences)
Erich Novak (Germany, Universität Jena)
Dirk Nuyens (Belgium, KU Leuven)
Art B. Owen (USA, Stanford University)
Gareth Peters (UK, University College London)
Friedrich Pillichshammer (Austria, JKU Linz)
Klaus Ritter (Germany, Universität Kaiserslauten)
Gerardo Rubino (France, Inria)
Wolfgang Ch. Schmid (Austria, Universität Salzburg)
Ian H. Sloan (Australia, University of New South Wales)
Raul Tempone (Saudi Arabia, KAUST)
Xiaoqun Wang (China, Tsinghua University)
Grzegorz W. Wasilkowski (USA, University of Kentucky)
Henryk Wozniakowski (USA, Columbia University).

This conference continued the tradition of biennial MCQMC conferences initi-
ated by Harald Niederreiter. They were begun at the University of Nevada in Las
Vegas, Nevada, USA, in June 1994 and followed by conferences at the University
of Salzburg, Austria, in July 1996; the Claremont Colleges in Claremont,
California, USA, in June 1998; Hong Kong Baptist University in Hong Kong,
China, in November 2000; the National University of Singapore, Republic of
Singapore, in November 2002; the Palais des Congrès in Juan-les-Pins, France, in
June 2004; Ulm University, Germany, in July 2006; Université de Montréal,
Canada, in July 2008; University of Warsaw, Poland, in August 2010; the
University of New South Wales, Sydney, Australia, in February 2012; KU Leuven,
Belgium, in April 2014; and Stanford University, USA, in August 2016. The next
MCQMC conference will be held in Oxford, UK, on August 9–14, 2020.

The proceedings of these previous conferences were all published by
Springer-Verlag, under the following titles:

• Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing
(H. Niederreiter and P. J.-S. Shiue, eds.)

• Monte Carlo and Quasi-Monte Carlo Methods 1996 (H. Niederreiter,
P. Hellekalek, G. Larcher and P. Zinterhof, eds.)

• Monte Carlo and Quasi-Monte Carlo Methods 1998 (H. Niederreiter and
J. Spanier, eds.)

• Monte Carlo and Quasi-Monte Carlo Methods 2000 (K.-T. Fang,
F. J. Hickernell and H. Niederreiter, eds.)
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• Monte Carlo and Quasi-Monte Carlo Methods 2002 (H. Niederreiter, ed.)
• Monte Carlo and Quasi-Monte Carlo Methods 2004 (H. Niederreiter and

D. Talay, eds.)
• Monte Carlo and Quasi-Monte Carlo Methods 2006 (A. Keller and S. Heinrich

and H. Niederreiter, eds.)
• Monte Carlo and Quasi-Monte Carlo Methods 2008 (P. L’Ecuyer and A. Owen,

eds.)
• Monte Carlo and Quasi-Monte Carlo Methods 2010 (L. Plaskota and

H. Woźniakowski, eds.)
• Monte Carlo and Quasi-Monte Carlo Methods 2012 (J. Dick, F. Y. Kuo,

G. W. Peters and I. Sloan, eds.)
• Monte Carlo and Quasi-Monte Carlo Methods 2014 (R. Cools and D. Nuyens,

eds.)
• Monte Carlo and Quasi-Monte Carlo Methods 2016 (A. Owen and

P. W. Glynn, eds.).

The program of the conference was rich and varied with over regular 190 talks
being presented and more than 230 registered participants. Highlights were the
invited plenary talks given by Christophe Andrieu (Bristol, UK), Pierre
Henry-Labordère (Société Générale, Paris, France), Éric Moulines (Ecole
Polytechnique, France), Marvin Nakayama (NJIT, USA), Barry L. Nelson
(Northwestern University, USA), Friedrich Pillichshammer (JKU Linz, Austria),
Clémentine Prieur (Université Grenoble Alpes & Inria, France), and Christoph
Schwab (ETH Zurich, Swizerland).

The papers in this volume were carefully screened and cover both the theory and
the applications of Monte Carlo and quasi-Monte Carlo methods. We thank the
anonymous reviewers for their reports and many others who contributed enor-
mously to the excellent quality of the conference presentations and to the high
standards for publication in these proceedings by careful review of the abstracts and
manuscripts that were submitted.

We gratefully acknowledge generous financial support of the conference by
Inria, the University of Rennes 1, Région Bretagne, and Rennes Métropole.

Finally, we want to express our gratitude to Springer-Verlag for publishing this
volume.

Rennes, France Pierre L’Ecuyer
Montreal, Canada
September 2019

Bruno Tuffin
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A Tutorial on Quantile Estimation
via Monte Carlo

Hui Dong and Marvin K. Nakayama

Abstract Quantiles are frequently used to assess risk in a wide spectrum of applica-
tion areas, such as finance, nuclear engineering, and service industries. This tutorial
discussesMonte Carlo simulation methods for estimating a quantile, also known as a
percentile or value-at-risk, where p of a distribution’s mass lies below its p-quantile.
Wedescribe a general approach that is often followed to construct quantile estimators,
and show how it applies when employing naive Monte Carlo or variance-reduction
techniques. We review some large-sample properties of quantile estimators. We also
describe procedures for building a confidence interval for a quantile, which provides
a measure of the sampling error.

Keywords Percentile · Value-at-risk · Variance-reduction techniques ·
Confidence intervals

1 Introduction

Numerous application settings have adopted quantiles as a way of measuring risk.
For a fixed constant 0 < p < 1, the p-quantile of a continuous random variable is
a constant ξ such that p of the distribution’s mass lies below ξ . For example, the
median is the 0.5-quantile. In finance, a quantile is called a value-at-risk, and risk
managers commonly employ p-quantiles for p ≈ 1 (e.g., p = 0.99 or p = 0.999)
to help determine capital levels needed to be able to cover future large losses with
high probability; e.g., see [33].

Hui Dong—This work is not related to Amazon, regardless of the affiliation.
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M. K. Nakayama (B)
Computer Science Department, New Jersey Institute of Technology,
Newark, NJ 07102, USA
e-mail: marvin@njit.edu

© Springer Nature Switzerland AG 2020
B. Tuffin and P. L’Ecuyer (eds.), Monte Carlo and Quasi-Monte Carlo Methods,
Springer Proceedings in Mathematics & Statistics 324,
https://doi.org/10.1007/978-3-030-43465-6_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43465-6_1&domain=pdf
mailto:huidong@amazon.com
mailto:marvin@njit.edu
https://doi.org/10.1007/978-3-030-43465-6_1


4 H. Dong and M. K. Nakayama

Nuclear engineers use 0.95-quantiles in probabilistic safety assessments (PSAs)
of nuclear power plants. PSAs are often performed with Monte Carlo, and the U.S.
Nuclear Regulatory Commission (NRC) further requires that a PSA accounts for the
Monte Carlo sampling error; e.g., see [50], Sect. 3.2 of [49], and Sect. 24.9 of [51].
This can be accomplished by providing a confidence interval for ξ .

Quantiles also arise as risk measures in service industries. For out-of-hospital
patient care, a 0.9-quantile is commonly employed to assess response times of emer-
gency vehicles and times to transport patients to hospitals [5]. In addition, [20]
examines the 0.9-quantile of customer waiting times at a call center.

This tutorial discusses various Monte Carlo methods for estimating a quantile.
Section2 lays out the mathematical setting. In Sect. 3 we outline a general approach
for quantile estimation via Monte Carlo, and illustrate it for the special case of naive
Monte Carlo (NMC). We examine large-sample properties of quantile estimators in
Sect. 4. Section5 shows how the basic procedure in Sect. 3 can also be used when
employing variance-reduction techniques (VRTs), which can produce quantile esti-
mators with smaller sampling error than whenNMC is applied.We describe different
methods for constructing confidence intervals for ξ in Sect. 6.

2 Mathematical Framework

Consider the following example, which we will revisit throughout the paper to help
illustrate ideas and notation. The particular stochastic model in the example turns
out to be simple enough that it can actually be solved through a combination of
analytical and numerical methods, making Monte Carlo simulation unnecessary.
But the tractability allows us to compute exact quantiles, which are useful for our
numerical studies in Sects. 5.7 and 6.4 comparing different Monte Carlo methods.
Larger, more complicated versions of the model are usually analytically intractable.

Example 1 (Stochastic activity network (SAN)) A contractor is preparing a bid to
work on a project, such as developing a software product, or constructing a building.
She wants to determine a time ξ to use as the bid’s promised completion date so that
there is a high probability of finishing the project by ξ to avoid incurring a penalty.
To try to figure out such a ξ , she builds a stochastic model of the project’s duration.

The project consists of d activities, numbered 1, 2, . . . , d. Certain activities must
be completed before others can start, e.g., building permits must be secured prior to
laying the foundation. Figure1, which has been previously studied in [13, 15, 29,
47], presents a directed graph that specifies the precedence constraints of a project
with d = 5 activities. The nodes in the graph represent particular epochs in time,
and edges denote activities. For a given node v, all activities corresponding to edges
into v must be completed before starting any of the activities for edges out of v.
Hence, activity 1 must finish before beginning activities 2 and 3. Also, activity 5 can
commence only after activities 3 and 4 are done.
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Fig. 1 A stochastic activity
network with d = 5 activities 1

4

3

2

5

For each j = 1, 2, . . . , d, activity j has a random duration X j , which is the length
of edge j and has marginal cumulative distribution function (CDF) G j , where each
G j is an exponential distribution with mean 1; i.e., G j (x) = P(X j ≤ x) = 1 − e−x

for x ≥ 0, and G j (x) = 0 for x < 0. We further assume that X1, X2, . . . , Xd are
mutually independent. The (random) time Y to complete the project is then the
length of the longest path from the source, which is the leftmost node in Fig. 1, to
the sink, the rightmost node. The graph has r = 3 paths from source to sink,

P1 = {1, 2}, P2 = {4, 5}, P3 = {1, 3, 5}; (1)

e.g., path P3 consists of activities 1, 3, and 5. For each k = 1, 2, . . . , r , let Tk =∑
j∈P k

X j be the (random) length of pathPk . Thus,

Y = max
k=1,2,...,r

Tk = max(X1 + X2, X4 + X5, X1 + X3 + X5) (2)

represents the project’s completion time, and we denote its CDF by F . �

More generally, consider a (complicated) stochastic model, and define P and E as
the probabilitymeasure and expectation operator, respectively, induced by themodel.
Let Y be an �-valued output of the model representing its random performance or
behavior, and define F as the CDF of Y , i.e.,

F(y) = P(Y ≤ y) = E[I (Y ≤ y)] for each y ∈ �, (3)

where I (·) denotes the indicator function, which takes value 1 (resp., 0) when its
argument is true (resp., false). For a fixed constant 0 < p < 1, define the p-quantile
ξ of F as the generalized inverse of F ; i.e.,

ξ = F−1(p) ≡ inf{y : F(y) ≥ p}. (4)

If F is continuous at ξ , then F(ξ) = p, but F(ξ) ≥ p in general.

Example 1 (continued) In her bid for the project, the contractor may specify the
0.95-quantile ξ as the promised completion date. Hence, according to the model, the
project will complete by time ξ with probability p = 0.95. �

We assume that the complexity of the stochastic model prevents F from being
computed, but we can simulate the model using Monte Carlo to produce an output
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Y ∼ F , where the notation∼means “is distributed as.” Thus, our goal is to useMonte
Carlo simulation to develop an estimator of ξ and also to provide a confidence interval
for ξ as a measure of the estimator’s statistical error.

A special case of our framework arises when the random variable Y has the form

Y = cY (U1,U2, . . . ,Ud) ∼ F (5)

for a given function cY : [0, 1)d → �, andU1,U2, . . . ,Ud are independent and iden-
tically distributed (i.i.d.) unif[0, 1), where unif[0, 1) denotes a (continuous) uniform
distribution on the interval [0, 1). We can think of cY as a computer code that takes
U ≡ (U1,U2, . . . ,Ud) as input, transforms it into a random vector having a specified
joint CDF with some (stochastic) dependence structure (independence being a spe-
cial case), performs computations using the random vector, and then finally outputs
Y . When Y satisfies (5), we can express its CDF F in (3) as

F(y) = P(cY (U) ≤ y) = E[I (cY (U) ≤ y)] =
∫

u∈[0,1)d
I (cY (u) ≤ y) du

for any constant y ∈ �, which we will later exploit in Sect. 5.3 when considering
a VRT known as Latin hypercube sampling. For smooth integrands, computing a
d-dimensional integral when d is small (say no more than 4 or 5) can be more
efficiently handled through numerical quadrature techniques [14] rather than Monte
Carlo simulation. But when d is large or the integrand is not smooth, Monte Carlo
may be more attractive.

As we will later see in Sect. 5.4 when considering a VRT known as importance
sampling, it is sometimes more convenient to instead consider Y having the form

Y = c′
Y (X1, X2, . . . , Xd ′) ∼ F (6)

for a given function c′
Y : �d ′ → �, and X = (X1, X2, . . . , Xd ′) is a random vector

with known joint CDF G from which we can generate observations. The joint CDF
G specifies a dependence structure (independence being a special case) for X, and
the marginal distributions of the components of X may differ. We can see that (5) is
a special case of (6) by taking d ′ = d, and assuming that X1, X2, . . . , Xd ′ are i.i.d.
unif[0, 1). When Y has the form in (6), the CDF F in (3) satisfies

F(y) = P(c′
Y (X) ≤ y) = E[I (c′

Y (x) ≤ y)] =
∫

x∈�d′
I (c′

Y (x) ≤ y) dG(x). (7)

Let G j be the marginal CDF of X j . In the special case when X1, X2, . . . , Xd ′ are
mutually independent under G and each G j has a density g j , we have that dG(x) =
∏d ′

j=1 g j (x j ) dx j for x = (x1, x2, . . . , xd ′).
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Example 1 (continued) For our SAN model in Fig. 1 with Y in (2),

c′
Y (X1, X2, . . . , Xd ′) = max(X1 + X2, X4 + X5, X1 + X3 + X5)

is the function c′
Y in (6), where d ′ = d = 5. To define the function cY in (5) for

this model, let U1,U2, . . . ,Ud be d = 5 i.i.d. unif[0, 1) random variables. For each
activity j = 1, 2, . . . , d, we can use the inverse transform method (e.g., Sect. II.2a
of [4] or Sect. 2.2.1 of [22]) to convert Uj ∼ unif[0, 1) into X j ∼ G j by letting
X j = G−1

j (Uj ) = − ln(1 −Uj ). Hence, for (u1, u2, . . . , ud) ∈ [0, 1)d ,

cY (u1, u2, . . . , ud) = max(G−1
1 (u1) + G−1

2 (u2), G−1
4 (u4) + G−1

5 (u5),

G−1
1 (u1) + G−1

3 (u3) + G−1
5 (u5)) (8)

specifies the function cY in (5) to generate Y ∼ F . �

3 Quantile Point Estimation via Monte Carlo

As seen in (4), the p-quantile ξ is the (generalized) inverse of the true CDF F
evaluated at p. Thus, a common (but not the only) approach for devising a point
estimator for ξ follows a generic recipe.

Step 1. Use a Monte Carlo method to construct F̂n as an estimator of F , where n
denotes the computational budget, typically the number of times the simu-
lation model (e.g., a computer code as in (5)) is run.

Step 2. Compute ξ̂n = F̂−1
n (p) as an estimator of ξ .

How we accomplish Step 1 depends on the particular Monte Carlo method being
applied. Different methods will yield different CDF estimators, which in turn will
produce different quantile estimators in Step 2.

3.1 Naive Monte Carlo

We next illustrate how to accomplish the two steps when applying naive Monte
Carlo (NMC). Alternatively called crude Monte Carlo, standard simulation, and
simple random sampling, NMC simply employs Monte Carlo without applying any
variance-reduction technique. Note that (3) suggests estimating F(y) by averaging
i.i.d. copies of I (Y ≤ y). To do this, generate Y1,Y2, . . . , Yn as n i.i.d. copies of
Y ∼ F . We then compute the NMC estimator F̂NMC,n of the CDF F as

F̂NMC,n(y) = 1

n

n∑

i=1

I (Yi ≤ y), (9)
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completing Step 1. For each y, F̂NMC,n(y) is an unbiased estimator of F(y) because

E[F̂NMC,n(y)] = 1

n

n∑

i=1

E[I (Yi ≤ y)] = 1

n

n∑

i=1

P(Yi ≤ y) = F(y) (10)

as each Yi ∼ F . Then applying Step 2 yields the NMC quantile estimator

ξ̂NMC,n = F̂−1
NMC,n(p). (11)

We can compute ξ̂NMC,n in (11) via order statistics. Let Y1:n ≤ Y2:n ≤ · · · ≤ Yn:n
be the sorted values of the sample Y1,Y2, . . . ,Yn , so Yi :n is the i th smallest value.
Then we have that ξ̂NMC,n = Y�np�:n , where �·� is the ceiling (or round-up) function.
Although (10) shows that the CDF estimator is unbiased, the p-quantile estimator
typically has bias; e.g., see Proposition 2 of [6].

In the special case of (5), we can obtain n i.i.d. copies of Y ∼ F by generating
n × d i.i.d. unif[0, 1) random numbersUi, j , i = 1, 2, . . . , n, j = 1, 2, . . . , d, which
we arrange in an n × d grid:

U1,1 U1,2 . . . U1,d

U2,1 U2,2 . . . U2,d
...

...
. . .

...

Un,1 Un,2 . . . Un,d

. (12)

Now apply the function cY in (5) to each row to get

Y1 = cY (U1,1, U1,2, . . . , U1,d),

Y2 = cY (U2,1, U2,2, . . . , U2,d),
...

...
...

...
. . .

...

Yn = cY (Un,1, Un,2, . . . , Un,d).

(13)

Because each row i of (12) has d independent unif[0, 1) random numbers, we see
that Yi ∼ F by (5). Moreover, the independence of the rows of (12) ensures that
Y1,Y2, . . . ,Yn are also independent.

Example 1 (continued) To apply NMC to our SAN model, we employ cY from (8)
with d = 5 in (13) to obtain Y1,Y2, . . . ,Yn , which are used to compute the NMC
CDF estimator F̂NMC,n in (9) and the NMC p-quantile estimator ξ̂NMC,n in (11). �

We have considered the NMC p-quantile estimator ξ̂NMC,n in (11) obtained by
inverting the CDF estimator F̂NMC,n in (9), but other NMC quantile estimators have
also been developed. For example, we may replace the step function F̂NMC,n with
a linearly interpolated version, and [30] examines several such variants. Although
these alternative quantile estimators may behave differently when the sample size n
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is small, they typically share the same large-sample properties (to be discussed in
Sect. 4) as (11).

3.2 A General Approach to Construct a CDF Estimator

In addition to NMC, there are other ways of accomplishing Steps 1 and 2 of Sect. 3
to obtain CDF and quantile estimators. Constructing another CDF estimator often
entails deriving and exploiting an alternative representation for F . To do this, we
may perform Step 1 through the following:

Step 1a. Identify a random variable J (y), whose value depends on y, such that

E[J (y)] = F(y) for each y ∈ �. (14)

Step 1b. Construct the estimator F̂n(y) of F(y) as the sample average of n identically
distributed copies of J (y), possibly with some adjustments.

Note that we built the NMC CDF estimator F̂NMC,n in (9) by following Steps 1a and
1b, with J (y) = I (Y ≤ y), which satisfies (14) by (3).

Section5 will review other Monte Carlo methods for performing Steps 1 and 2 of
Sect. 3. Many (but not all) of the approaches handle Step 1 via Steps 1a and 1b. The
n copies of J (y) in Step 1b are often generated independently, but certain Monte
Carlo methods sample them in a dependent manner; e.g., see Sect. 5.3.

4 Large-Sample Properties of Quantile Estimators

Although ξ̂n is often not a sample average, it still typically obeys a central limit
theorem (CLT) as the sample size n grows large. To establish this, let f be the
derivative (when it exists) of F . Throughout the rest of the paper,whenever examining
large-sample properties, we assume that f (ξ) > 0, which ensures that F(ξ) = p and
that y = ξ is the unique root of the equation F(y) = p. Under various conditions
that depend on the Monte Carlo method used to construct the CDF estimator F̂n

in Step 1 of Sect. 3, the corresponding p-quantile estimator ξ̂n = F̂−1
n (p) satisfies a

CLT √
n[ξ̂n − ξ ] ⇒ N (0, τ 2), as n → ∞, (15)

where ⇒ denotes convergence in distribution (e.g., see Sect. 25 of [9]), N (a, b2)
represents a normal random variable withmean a and variance b2, and the asymptotic
variance τ 2 has the form

τ 2 = ψ2

f 2(ξ)
. (16)
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The numerator ψ2 on the right side of (16) is the asymptotic variance in the CLT for
the CDF estimator at ξ :

√
n[F̂n(ξ) − p] ⇒ N (0, ψ2), as n → ∞, (17)

where p = F(ξ) because f (ξ) > 0. The CLT (17) typically holds (under appropriate
conditions) because F̂n(ξ) is often a sample average, e.g., as in (9) for NMC.

There are various ways to prove the CLT (15); e.g., see Sects. 2.3.3 and 2.5 of [46]
for NMC. A particularly insightful approach exploits a Bahadur representation [8],
which shows for large n, a quantile estimator ξ̂n = F̂−1

n (p) is well approximated by
a linear transformation of its corresponding CDF estimator F̂n at ξ :

ξ̂n ≈ ξ + p − F̂n(ξ)

f (ξ)
. (18)

To heuristically justify this, note that F̂n(y) ≈ F(y) for each y when n is large, so

F̂n(ξ̂n) − F̂n(ξ) ≈ F(ξ̂n) − F(ξ) ≈ f (ξ)[ξ̂n − ξ ] (19)

by a first-order Taylor approximation.Also, ξ̂n = F̂−1
n (p) implies F̂n(ξ̂n) ≈ p, which

we put into (19) and rearrange to finally get (18).
Bahadur [8] makes rigorous the heuristic argument for the NMC setting of

Sect. 3.1. Specifically, if F is twice differentiable at ξ (with f (ξ) > 0), then

ξ̂n = ξ + p − F̂n(ξ)

f (ξ)
+ Rn (20)

for ξ̂n = ξ̂NMC,n from (11), such that with probability 1,

Rn = O(n−3/4(log log n)3/4), as n → ∞. (21)

(The statement that “with probability 1, An = O(h(n)) as n → ∞” for some func-
tion h(n) means that there exists an event Ω0 such that P(Ω0) = 1 and for each
outcome ω ∈ Ω0, there exists a constant K (ω) such that |An(ω)| ≤ K (ω)h(n) for
all n sufficiently large.) (The almost-sure rate at which Rn vanishes in (21) is sharper
than what [8] originally proved; see Sect. 2.5 of [46] for details.) Assuming only
f (ξ) > 0, [21] proves a weaker result,

√
nRn ⇒ 0 as n → ∞, (22)

which is sufficient for most applications. Note that (21) implies (22), and we call
(20) combined with (21) (resp., (22)) a strong (resp., weak) Bahadur representa-
tion. The paper [13] provides a general framework for establishing a weak Bahadur
representation, which may be verified for different variance-reduction techniques.
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A (strong or weak) Bahadur representation ensures that ξ̂n obeys a CLT. To see
why, rearrange (20) and scale by

√
n to get

√
n

[
ξ̂n − ξ

]
=

√
n

f (ξ)

[
p − F̂n(ξ)

]
+ √

nRn. (23)

As F̂n(ξ) is typically a sample average (e.g., (9)), it satisfies the CLT in (17). The
second term on the right side of (23) vanishes weakly (resp., strongly) by (22) (resp.,
(21)), so Slutsky’s theorem (e.g., Theorem 1.5.4 of [46]) verifies the CLT in (15).

When we apply Steps 1 and 2 in Sect. 3 to obtain ξ̂n = F̂−1
n (p), (23) clarifies the

reason the asymptotic variance τ 2 in the CLT (15) for ξ̂n has the ratio formψ2/ f 2(ξ)

in (16). The numerator ψ2 arises from the CLT in (17) for the CDF estimator F̂n at
ξ , so ψ2 is determined by the particular Monte Carlo method used to construct F̂n .
For NMC, the CLT (17) uses F̂NMC,n(ξ) from (9), which averages i.i.d. copies of
I (Y ≤ ξ), and the numerator in (16) is then

ψ2
NMC = Var[I (Y ≤ ξ)] = p(1 − p), (24)

with Var the variance operator. But the denominator f 2(ξ) in (16) is the same for
each method.

5 Variance-Reduction Techniques for Quantile Estimation

Section3.1 showed how to construct a quantile estimator when employing NMC.We
next illustrate how the general approach of quantile estimation described in Sects. 3
and 3.2 can be applied for other Monte Carlo methods using VRTs.

5.1 Control Variates

Suppose that along with the response Y , the simulation model also outputs another
randomvariableV whosemeanμV = E[V ] is known. Themethod of control variates
(CV) exploits this additional information to produce an estimator with typically
reduced variance compared to its NMC counterpart. Section V.2 of [4] and Sect. 4.1
of [22] review CV for estimating a mean, and [13, 27, 29] apply this approach to
estimate the CDF F , which is inverted to obtain an estimator of the p-quantile ξ .

When Y has the form in (5), we assume that the control variate V is generated by

V = cV (U1,U2, . . . ,Ud) (25)
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for some function cV : [0, 1)d → �, where again we require that μV = E[V ] is
known. Because the inputsU1,U2, . . . ,Ud are the same in (25) and (5), V and Y are
typically dependent. As will be later seen in (35), the CV method works best when
V is strongly (positively or negatively) correlated with I (Y ≤ ξ).

Example 1 (continued) Figure1 has r = 3 paths from source to sink in (1). Of those,
the length T3 = X1 + X3 + X5 of pathP3 has the largest mean. We then choose the
CV as V = I (T3 ≤ ζ ), where ζ is the p-quantile of the CDF G̃3 of T3. As X1, X3, X5

are i.i.d. exponential with mean 1, the CDF G̃3 is an Erlang with shape parameter
3 and scale parameter 1; i.e., G̃3(x) = 1 − (1 + x + x2)e−x for x ≥ 0. We can then
compute ζ = G̃−1

3 (p), and μV = p. Hence,

cV (U1,U2, . . . ,Ud) = I (G−1
1 (U1) + G−1

3 (U3) + G−1
5 (U5) ≤ ζ )

is the function cV in (25). �
To design a CDF estimator when applying CV, we can follow the approach

described in Sect. 3. For any constant β ∈ �, note that

F(y) = E[I (Y ≤ y) + β(V − μV )] (26)

as E[V ] = μV . Thus, take J (y) = I (Y ≤ y) + β(V − μV ) in Step 1a of Sect. 3.2,
and Step 1b suggests estimating F(y) by averaging copies of I (Y ≤ y) + β(V −
μV ). Specifically, let (Yi , Vi ), i = 1, 2, . . . , n, be i.i.d. copies of (Y, V ), and define

F̂ ′
CV,β,n(y) = 1

n

n∑

i=1

[I (Yi ≤ y) − β(Vi − μV )] (27)

= F̂NMC,n(y) − β(μ̂V,n − μV ), (28)

where F̂NMC,n(y) is the NMC CDF estimator in (9), and μ̂V,n = (1/n)
∑n

i=1 Vi . For
each y and β, F̂ ′

CV,β,n(y) is an unbiased estimator of F(y) by (26) and (27).

Although the choice of β does not affect the mean of F̂ ′
CV,β,n(y) by (26), it does

have an impact on its variance, which by (27) equals

Var[F̂ ′
CV,β,n(y)] = 1

n
Var

[
I (Y ≤ y) − β(V − μV )

]

= 1

n

(
F(y)[1 − F(y)] + β2Var[V ] − 2βCov[I (Y ≤ y), V ]

)
,

(29)

where Cov denotes the covariance operator. As (29) is a quadratic function in β, we
can easily find the value β = β∗

y minimizing (29) as
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β∗
y = Cov[I (Y ≤ y), V ]

Var[V ] = E[I (Y ≤ y)V ] − E[I (Y ≤ y)]E[V ]
E[(V − μV )2] . (30)

The values ofVar[V ] andCov[I (Y ≤ y), V ]may be unknown, so we estimate them
from our data (Yi , Vi ), i = 1, 2, . . . , n. We then arrive at an estimator for β∗

y in (30)
as

β̂∗
y,n = [(1/n)

∑n
i=1 I (Yi ≤ y)Vi ] − F̂NMC,n(y)μ̂V,n

(1/n)
∑n

i=1(Vi − μ̂V,n)2
, (31)

which uses F̂NMC,n(y) to estimate E[I (Y ≤ y)] = F(y). Replacing β in (28) with
the estimator β̂∗

y,n of its optimal value leads to the CV estimator of F(y) as

F̂CV,n(y) = F̂NMC,n(y) − β̂∗
y,n(μ̂V,n − μV ). (32)

For any constant β, (26) ensures that F̂ ′
CV,β,n(y) in (27) is an unbiased estimator of

F(y) for each y ∈ �, but the estimator F̂CV,n(y) typically no longer enjoys this prop-
erty as β̂∗

y,n and μ̂V,n are dependent. We finally obtain the CV p-quantile estimator

ξ̂CV,n = F̂−1
CV,n(p). (33)

Computing the inverse in (33) appears to be complicated by the fact that the
estimator β̂∗

y,n in (31) of the optimal β∗
y depends on y. However, [27] derives an

algebraically equivalent representation for F̂CV,n(y) that avoids this complication. It
turns out that we can rewrite the CV CDF estimator in (32) as

F̂CV,n(y) =
n∑

i=1

Wi I (Yi ≤ y) with Wi = 1

n
+ (μ̂V,n − Vi )(μ̂V,n − μV )

∑n
	=1(V	 − μ̂V,n)2

, (34)

which satisfies
∑n

i=1 Wi = 1.While it is possible forWi < 0, [27] notes it is unlikely.
Because of (34), we can view F̂CV,n(y) as a weighted average of the I (Yi ≤ y).

The weights Wi reduce to a simple form when the control V = I (Ṽ ≤ ζ ), where
Ṽ is an auxiliary random variable, and ζ is the (known) p-quantile of the CDF of Ṽ .
(This is the setting of Example 1, in which Ṽ = T3.) Let (Yi , Ṽi ), i = 1, 2, . . . , n,
be i.i.d. copies of (Y, Ṽ ), and define Vi = I (Ṽi ≤ ζ ). Also, let M = ∑n

i=1 Vi . Then
each weight becomes Wi = p/M if Vi = 1, and Wi = (1 − p)/(n − M) if Vi = 0.

The key point of the representation in (34) is that each Wi does not depend on
the argument y at which the CDF estimator F̂CV,n is evaluated, simplifying the
computation of its inverse. Specifically, let Yi :n be the i th smallest value among
Y1,Y2, . . . ,Yn , and letWi ::n correspond to Yi :n . Then the CV p-quantile estimator in
(33) satisfies ξ̂CV,n = Yip :n , where i p = min{k : ∑k

i=1 Wi ::n ≥ p}.
When 0 < Var[V ] < ∞, the CV p-quantile estimator ξ̂CV,n in (33) satisfies the

CLT in (15), where ψ2 in (16) is given by
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ψ2
CV = p(1 − p) − (Cov[I (Y ≤ ξ), V ])2

Var[V ] = (1 − ρ2)p(1 − p), (35)

and ρ = Cov[I (Y ≤ ξ), V ]/√Var[I (Y ≤ ξ)]Var[V ] is the (Pearson) correlation
coefficient of I (Y ≤ ξ) and V ; see [13, 27]. Thus, (35) shows that the more strongly
(negatively or positively) correlated the CV V and I (Y ≤ ξ) are, the smaller the
asymptotic variance of the CV p-quantile estimator is, by (16). Also, [13] establishes
that ξ̂CV,n satisfies a weak Bahadur representation, as in (20) and (22).

We have developed the CV method when there is a single control V . But the idea
extends to multiple controls V (1), V (2), . . . , V (m), in which case the CDF estimator
corresponds to a linear-regression estimator on the multiple CVs; see [27] for details.
Also, rather than following the framework in Sect. 3 of constructing a p-quantile
estimator as ξ̂n = F̂−1

n (p), [27, 29, 44] consider an alternative CV estimator ξ̂ ′
CV,n ≡

ξ̂NMC,n − β(ζ̂NMC,n − ζ ), where ζ̂NMC,n is the NMC estimator of the p-quantile ζ

(assumed known) of the CDF of a random variable Ṽ (e.g., Ṽ = T3 in Example 1).

5.2 Stratified Sampling

Stratified sampling (SS) partitions the sample space into a finite number of subsets,
known as strata, and allocates a fixed fraction of the overall sample size to sample
from each stratum. Sect. 4.3 of [22] provides an overview of SS to estimate a mean,
and [12, 13, 23] apply SS to estimate a quantile.

One way to partition the sample space for SS, as developed in [23], is as follows.
Let S be an auxiliary random variable that is generated at the same time as the output
Y . When Y has the form in (5), we assume that S is computed as

S = cS(U1,U2, . . . ,Ud) (36)

for some function cS : [0, 1)d → �, where U1,U2, . . . ,Ud are the same uniforms
used to generate Y in (5).

We next use S as a stratification variable to partition the sample space of (Y, S)

by splitting the support of S into t ≥ 1 disjoint subsets. Let A be the support of S,
so P(S ∈ A ) = 1. We then partitionA = ∪t

s=1A〈s〉 for some user-specified integer
t ≥ 1, where A〈s〉 ∩ A〈s ′〉 = ∅ for s �= s ′. For each s = 1, 2, . . . , t , let λ〈s〉 = P(S ∈
A〈s〉). The law of total probability implies

F(y) = P(Y ≤ y) =
t∑

s=1

P(Y ≤ y, S ∈ A〈s〉)

=
t∑

s=1

P(S ∈ A〈s〉)P(Y ≤ y | S ∈ A〈s〉) =
t∑

s=1

λ〈s〉F〈s〉(y), (37)
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where F〈s〉(y) ≡ P(Y ≤ y | S ∈ A〈s〉). In (37), λ=(λ〈s〉 : s = 1, 2, . . . , t) is assumed
known, butwe need to estimate each F〈s〉(y).We further assume that we have away of
sampling Y〈s〉 ∼ F〈s〉. A simple (but not necessarily the most efficient) way is through
rejection sampling: generate (Y, S), and accept (resp., reject) Y as an observation
from F〈s〉 if S ∈ A〈s〉 (resp., if S /∈ A〈s〉).

To construct our SS estimator of F , we define γ = (γ〈s〉 : s = 1, 2, . . . , t) as
a vector of positive constants satisfying

∑t
s=1 γ〈s〉 = 1. Then for our overall sam-

ple size n, we allocate a portion n〈s〉 ≡ γ〈s〉n to estimate F〈s〉 for stratum index s,
where we assume that each n〈s〉 is integer-valued, so that

∑t
s=1 n〈s〉 = n. For each

s = 1, 2, . . . , t , let Y〈s〉,i , i = 1, 2, . . . , n〈s〉, be i.i.d. observations from F〈s〉, so our
estimator of F〈s〉 is given by

F̂〈s〉,γ,n(y) = 1

n〈s〉

n〈s〉∑

i=1

I (Y〈s〉,i ≤ y). (38)

Replacing each F〈s〉(y) in (37) by its estimator F̂〈s〉,γ,n(y) gives

F̂SS,γ,n(y) =
t∑

s=1

λ〈s〉 F̂〈s〉,γ,n(y) (39)

as the SS estimator of F . Inverting F̂SS,γ,n leads to the SS p-quantile estimator

ξ̂SS,γ,n = F̂−1
SS,γ,n(p). (40)

While (39) and (40) follow the general approach of Steps 1 and 2 of Sect. 3, the
way we constructed (39) does not exactly fit into the scheme of Steps 1a and 1b of
Sect. 3.2, although the estimator F̂〈s〉,γ,n(y) in (38) applies the same idea.

We can compute ξ̂SS,γ,n in (40) as follows. Let Dk = Y〈s〉,i for k = ∑s−1
	=1 n〈	〉 + i ,

and let W ′
k = λ〈s〉/n〈s〉, which satisfies

∑n
k=1 W

′
k = 1. Next define D1:n ≤ D2:n ≤

· · · ≤ Dn:n as the order statistics of D1, D2, . . . , Dn , and letW ′
i ::n be theW

′
k associated

with Di :n . Then we have that ξ̂SS,γ,n = Di ′p :n for i
′
p = min{	 : ∑	

i=1 W
′
i ::n ≥ p}.

Example 1 (continued) Let the stratification variable in (36) be

S = X1 + X3 + X5 = G−1
1 (U1) + G−1

3 (U3) + G−1
5 (U5) ≡ cS(U1,U2, . . . ,U5),

(41)

the (random) length of the path P3 in (1), which has largest expectation among all
paths in (1). As in Sect. 5.1, the CDF G̃S of S is then an Erlang with shape parameter
3 and scale parameter 1. One way of partitioning the support A of S into t ≥ 1
intervals takes A〈s〉 = [G̃−1

S ((s − 1)/t), G̃−1
S (s/t)) for each s = 1, 2, . . . , t .

As in [23] we can use a “bin tossing” approach to sample the Y〈s〉,i , s =
1, 2, . . . , t , i = 1, 2, . . . , n〈s〉. In one run, generateU1,U2, . . . ,U5 as i.i.d. unif[0, 1)
random numbers, and compute Y = cY (U1,U2, . . . ,U5) for cY in (8) and S =
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cS(U1,U2, . . . ,U5) for cS in (41). If S ∈ A〈s〉, then use Y as an observation from the
stratum with index s. Keep independently sampling (U1,U2, . . . ,U5) and comput-
ing (Y, S) until each stratum index s has n〈s〉 observations, discarding any extras in
a stratum. �

The SS p-quantile estimator ξ̂SS,γ,n in (40) satisfies the CLT in (15) with

ψ2
SS,γ =

t∑

s=1

λ2
〈s〉

γ〈s〉
F〈s〉(ξ)[1 − F〈s〉(ξ)] (42)

in (16); see [12, 13, 23]. Also, [13] shows that ξ̂CV,n satisfies a weak Bahadur
representation, as in (20) and (22). The value of ψ2

SS,γ depends on how the user
specifies the sampling-allocation parameter γ . Setting γ = λ, known as the pro-
portional allocation, ensures that ψ2

SS,λ ≤ ψ2
NMC, so the proportional allocation

guarantees no greater asymptotic variance than NMC. The optimal value of γ to
minimize ψ2

SS,γ is γ ∗ = (γ ∗
〈s〉 : s = 1, 2, . . . , t) with γ ∗

〈s〉 = κ〈s〉/(
∑t

s ′=1 κ〈s ′〉), where
κ〈s〉 = λ〈s〉(F〈s〉(ξ)[1 − F〈s〉(ξ)])1/2; e.g., see p. 217 of [12, 23]. Although the κ〈s〉 are
unknown, [12] employs pilot runs to estimate them, which are then used to estimate
γ ∗, and then performs additional runs with the estimated γ ∗.

5.3 Latin Hypercube Sampling

Latin hypercube sampling (LHS) can be thought of as an efficient way of imple-
menting SS in high dimensions. Section5.4 of [22] provides an overview of LHS to
estimate a mean, and [6, 15, 17, 25, 31, 38] develop LHS for quantile estimation.

To motivate how we apply LHS to estimate ξ , recall that for NMC, (10) shows
that F̂NMC,n(y) in (9) is an unbiased estimator of F(y) for each y. While NMC uses
a sample Y1,Y2, . . . ,Yn that are i.i.d. with CDF F , (10) still holds if we replace the
sample with Y ∗

1 ,Y ∗
2 , . . . ,Y ∗

n that are dependent, with each Y ∗
i ∼ F . Moreover, as

Var
[ n∑

i=1

I (Y ∗
i ≤ y)

]
=

n∑

i=1

Var[I (Y ∗
i ≤ y)] + 2

∑

1≤i< j≤n

Cov[I (Y ∗
i ≤ y), I (Y ∗

j ≤ y)],

if I (Y ∗
i ≤ y) and I (Y ∗

j ≤ y) are negatively correlated for each i �= j , then the average
of the I (Y ∗

i ≤ y)will have lower variance than the average of the I (Yi ≤ y). We next
show for the setting of (5) how LHS samples the Y ∗

i ∼ F in a dependent manner.
Recall that d is the number of uniform inputs to cY in (5). For each j =

1, 2, . . . , d, let π j = (π j (1), π j (2), . . . , π j (n)) be a uniform random permutation
of (1, 2, . . . , n), where π j (i) denotes the number in {1, 2, . . . , n} to which i maps.
Thus, π j equals one of the particular n! permutations with probability 1/n!. Let
π1, π2, . . . , πd , be d mutually independent permutations, and also independent of
the n × d grid of i.i.d. unif[0, 1) random numbers Ui, j in (12). Then define
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U ∗
i, j = Ui, j + π j (i) − 1

n
, for i = 1, 2, . . . , n, j = 1, 2, . . . , d. (43)

It is easy to show that eachU ∗
i, j ∼ unif[0, 1). Next arrange theU ∗

i, j in an n × d grid:

U ∗
1,1 U ∗

1,2 . . . U ∗
1,d

U ∗
2,1 U ∗

2,2 . . . U ∗
2,d

...
...

. . .
...

U ∗
n,1 U ∗

n,2 . . . U ∗
n,d

. (44)

Each column j in (44) depends on π j but not on any other permutation, making
the d columns independent because π1, π2, . . . , πd are. But the rows in (44) are
dependent because for each column j , its entries U ∗

i, j , i = 1, 2, . . . , n, share the
same permutation π j . Now apply the function cY in (5) to each row of (44) to get

Y ∗
1 = cY (U ∗

1,1, U
∗
1,2, . . . , U ∗

1,d),

Y ∗
2 = cY (U ∗

2,1, U
∗
2,2, . . . , U ∗

2,d),
...

...
...

. . .
...

Y ∗
n = cY (U ∗

n,1, U
∗
n,2, . . . , U ∗

n,d).

(45)

Because each row i of (44) has d i.i.d. unif[0, 1) randomnumbers,we see thatY ∗
i ∼ F

by (5). But Y ∗
1 ,Y ∗

2 , . . . ,Y ∗
n are dependent because (44) has dependent rows.

Consider any column j = 1, 2, . . . , d, in (44), and an interval Ik,n = [(k −
1)/n, k/n) for any k = 1, 2, . . . , n. By (43), exactly one U ∗

i, j from column j lies
in Ik,n . Thus, each column j forms a stratified sample of size n of unif[0, 1) random
numbers, so LHS simultaneously stratifies each input coordinate j = 1, 2, . . . , d.

We form the LHS estimator of the CDF F as

F̂LHS,n(y) = 1

n

n∑

i=1

I (Y ∗
i ≤ y) (46)

and the LHS p-quantile estimator as

ξ̂LHS,n = F̂−1
LHS,n(p). (47)

We can compute (47) by ξ̂LHS,n = Y ∗
�np�:n , where Y

∗
i :n is the i th smallest value among

Y ∗
1 ,Y ∗

2 , . . . ,Y ∗
n in (45).Note that (46) and (47) fit into the framework of Sect. 3,where

Step 1 is implemented through Steps 1a and 1b of Sect. 3.2, with J (y) = I (Y ≤ y).
But in contrast to the othermethods considered, Step 1b generates n dependent copies
of I (Y ≤ y) as I (Y ∗

i ≤ y), i = 1, 2, . . . , n, where each Y ∗
i ∼ F .

Example 1 (continued) To apply LHS to our SAN model, we employ cY from (8)
in (45) to obtain Y ∗

1 ,Y ∗
2 , . . . ,Y ∗

n , which are then used in (46) and (47) to compute
the LHS CDF estimator F̂LHS,n and the LHS p-quantile estimator ξ̂LHS,n . �
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Under regularity conditions, [6] proves that the LHS p-quantile estimator ξ̂LHS,n

in (47) obeys the CLT (15), and gives the specific form of ψ2 = ψ2
LHS in (16). Also,

[16] shows that ξ̂LHS,n satisfies a weak Bahadur representation, as in (20) and (22).

5.4 Importance Sampling

Importance sampling (IS) is a variance-reduction technique that can be particularly
effective when studying rare events. The basic idea is to change the distributions driv-
ing the stochastic model to cause the rare event of interest to occur more frequently,
and then unbias the outputs by multiplying by a correction factor. Section V.1 and
Chap. VI of [4] and Sect. 4.6 of [22] provide overviews of IS to estimate a mean or
tail probability.

For IS quantile estimation [13, 23, 24, 48], it is more natural to consider Y having
the form in (6) rather than (5), i.e., Y = c′

Y (X) for random vector X ∈ �d ′
with joint

CDFG. Let H be another joint CDF on�d ′
such thatG is absolutely continuouswith

respect to H . For example, if G (resp., H ) has a joint density function g (resp., h),
then G is absolutely continuous with respect to H if g(x) > 0 implies h(x) > 0. In
general, letPG andEG (resp.,PH andEH ) be the probabilitymeasure and expectation
operator when X ∼ G (resp., X ∼ H ). The absolute continuity permits us to apply
a change of measure to express the tail distribution corresponding to (7) as

1 − F(y) = PG(Y > y) = EG[I (c′
Y (X) > y)] =

∫

x∈�d′
I (c′

Y (x) > y) dG(x)

=
∫

x∈�d′
I (c′

Y (x) > y)
dG(x)
dH(x)

dH(x) =
∫

x∈�d′
I (c′

Y (x) > y)L(x) dH(x)

= EH [I (c′
Y (X) > y)L(X)], (48)

where L(x) = dG(x)/ dH(x) is the likelihood ratio or Radon–Nikodym deriva-
tive of G with respect to H ; see Sect. 32 of [9]. In the special case when X =
(X1, X2, . . . , Xd ′) has mutually independent components under G (resp., H ) with
each marginal CDF G j (resp., Hj ) of X j having a density function g j (resp., h j ),
the likelihood ratio becomes L(x) = ∏d ′

j=1 g j (x j )/h j (x j ). By (48), we can obtain
an unbiased estimator of 1 − F(y) by averaging i.i.d. copies of I (c′

Y (X) > y)L(X),
with X ∼ H . Specifically, let X1,X2, . . . ,Xn be i.i.d., with each Xi ∼ H . Then we
get an IS estimator of F as

F̂IS,n(y) = 1 − 1

n

n∑

i=1

I (c′
Y (Xi ) > y)L(Xi ). (49)

An IS p-quantile estimator is then
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ξ̂IS,n = F̂−1
IS,n(p). (50)

Note that (49) and (50) follow the general approach of Steps 1 and 2 of Sect. 3, where
(49) is obtained through Steps 1a and 1b of Sect. 3.2, with J (y) = 1 − I (c′

Y (X) >

y)L(X), which satisfies (14) by (48).
As shown in [24], we can compute ξ̂IS,n in (50) as follows. Let Yi = c′

Y (Xi ), and
define Yi :n as the i th smallest value among Y1,Y2, . . . ,Yn . Also, let Li ::n = L(X j )

for X j corresponding to Yi :n . Then ξ̂IS,n = Yi ′p :n for i
′
p = max{k : ∑n

i=k Li ::n ≤ (1 −
p)n}.

The key to effective application of IS is choosing an appropriate IS distribution
H for X so that the quantile estimator ξ̂IS,n has small variance. As seen in Sect. 4,
the asymptotic variance τ 2 of the IS p-quantile estimator ξ̂IS,n is closely related to
the asymptotic variance ψ2 = ψ2

IS in the CLT (17) for F̂IS,n(ξ). Let VarH denote the
variance operator when X ∼ H , and as Xi , i = 1, 2, . . . , n, are i.i.d., we have that

VarH [F̂IS,n(ξ)] = 1

n
VarH [I (c′

Y (X) > ξ)L(X)] ≡ 1

n
ψ2

IS. (51)

A “good” choice for H is problem specific, and a poorly designed H can actually
increase the variance (or even produce infinite variance). The papers [13, 23, 24]
discuss particular ways of selecting H in various problem settings.

Example 1 (continued) For a SAN as in Fig. 1, [13] estimates the p-quantile when
p ≈ 1 via an IS scheme that combines ideas from [24, 34]. Recall that Fig. 1 has
r = 3 paths from source to sink, which are given in (1). When estimating the SAN
tail probability PG(Y > y) for large y, we want to choose H so that the event
{Y > y} occurs more frequently. To do this, [34] specifies H as a mixture of r CDFs
H (1), H (2), . . . , H (r); i.e., H(x) = ∑r

k=1 α(k)H (k)(x), where each α(k) is a nonneg-
ative constant such that

∑r
k=1 α(k) = 1. Each H (k) keeps all activity durations as

independent exponentials but increases the mean of X j for edges j ∈ Pk , making
{Y > y}more likely. (More generally, one could choose H (k) to not only have differ-
ent means for activities j ∈ Pk but further to have entirely different distributions.)
Also, H (k) leaves unaltered the CDF of X j ′ for each j ′ /∈ Pk . Changing the mean of
X j corresponds to exponentially twisting its original CDF G j ; see Example 4.6.2 of
[22] and Sect. V.1b of [4] for details on exponential twisting. The exponential twist
requires specifying a twisting parameter θ ∈ �, and [13] employs an approach in
[24] to choose a value for θ = θ(k) for each H (k) in the mixture. Also, by adapting a
heuristic from [34] for estimating a tail probability to instead handle a quantile, [13]
determines the mixing weights α(k), k = 1, 2, . . . , r , by first obtaining an approxi-
mate upper bound for the second moment EH [(I (c′

Y (X) > ξ)L(X))2] in terms of
the α(k), and then choosing the α(k) to minimize the approximate upper bound.
Note that the mixture H used for IS does not satisfy the special case mentioned
after (48), so the likelihood ratio L(X) = dG(X)/ dH(X) is not simply the product
∏d ′

j=1 g j (X j )/h j (X j ); see Eq. (33) of [13] for details. �
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Glynn [24] develops other estimators of the CDF F using IS, leading to different
IS quantile estimators. Through a simple example, he shows that of the IS p-quantile
estimators he considers, ξ̂IS,n in (50) can be the most effective in reducing variance
when p ≈ 1, but another of his IS p-quantile estimators can be better when p ≈ 0.

Under a variety of different sets of assumptions (see [1, 13, 24]), the IS p-quantile
estimator ξ̂IS,n in (50) satisfies the CLT in (15), where ψ2 in (16) equals ψ2

IS in (51).
Also, [13] shows that ξ̂CV,n satisfies a weak Bahadur representation, as in (20) and
(22). Moreover, [48] shows another IS p-quantile estimator from [24] obeys a strong
Bahadur representation.

5.5 Conditional Monte Carlo

Conditional Monte Carlo (CMC) reduces variance by analytically integrating out
some of the variability; see Sect. V.4 of [4] for an overview of CMC to estimate a
mean. We next explain how to employ CMC for estimating a quantile, as developed
in [3, 17, 18, 40], which fits into the general framework given in Sect. 3.

Let Z be an �d̄ -valued random vector that is generated along with the output Y .
In the special case when Y has the form in (5), we assume that

Z = cZ(U1,U2, . . . ,Ud) (52)

for a given function cZ : [0, 1)d → �d̄ . Because (52) and (5) utilize the same
unif[0, 1) inputs U1,U2, . . . ,Ud , we see that Z and Y are dependent. In general,
by using iterated expectations (e.g., p. 448 of [9]), we express the CDF F of Y as

F(y) = P(Y ≤ y) = E[P(Y ≤ y | Z)] = E[q(Z, y)], (53)

where the function q : �d̄+1 → � is defined for each z ∈ �d̄ as

q(z, y) = P(Y ≤ y | Z = z) = E[I (Y ≤ y) | Z = z]. (54)

We assume that q(z, y) can be computed, analytically or numerically, for each possi-
ble z and y ∈ �. By (53), we can obtain an unbiased estimator of F(y) by averaging
i.i.d. copies of q(Z, y). Specifically, let Z1,Z2, . . . ,Zn be i.i.d. replicates of the
conditioning vector Z. We then define the CMC estimator of the CDF F by

F̂CMC,n(y) = 1

n

n∑

i=1

q(Zi , y), (55)

which uses copies of Z but not of Y . We finally get the CMC p-quantile estimator

ξ̂CMC,n = F̂−1
CMC,n(p). (56)
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Thus, we obtained (55) and (56) by following Steps 1a, 1b, and 2 of Sects. 3 and 3.2,
where in Step 1a, we take J (y) = q(Z, y), which satisfies (14) by (53). Computing
the inverse in (56) typically requires employing an iterative root-finding method,
such as the bisection method or Newton’s method (e.g., Chap. 7 of [41]), incurring
some computation cost.

Example 1 (continued) For a SAN, [47] develops aCMCapproach for estimating the
CDF F ofY ,whichweapply as follows.Let the conditioningvectorZbe the (random)
durations of the activities on the pathP3 = {1, 3, 5}, soZ = (X1, X3, X5) ∈ �d̄ with
d̄ = 3. Thus, the function cZ in (52) is given by

cZ(U1,U2, . . . ,U5) = (G−1
1 (U1),G

−1
3 (U3),G

−1
5 (U5)).

Recall that for each k = 1, 2, 3, we defined Tk = ∑
j∈P k

Xk , the (random) length of
path Pk in (1). Since {Y ≤ y} = {T1 ≤ y, T2 ≤ y, T3 ≤ y} by (2), we can compute
the function q(z, y) in (54) for any constant z = (x1, x3, x5) ∈ �d̄ as

q((x1, x3, x5), y) = P(Y ≤ y | X1 = x1, X3 = x3, X5 = x5)

= P(X1 + X2 ≤ y, X4 + X5 ≤ y, X1 + X3 + X5 ≤ y | X1 = x1, X3 = x3, X5 = x5)

= P(X2 ≤ y − x1, X4 ≤ y − x5, x1 + x3 + x5 ≤ y | X1 = x1, X3 = x3, X5 = x5)

= P(X2 ≤ y − x1)P(X4 ≤ y − x5)P(x1 + x3 + x5 ≤ y)

= (1 − e−(y−x1)) (1 − e−(y−x5)) I (x1 + x3 + x5 ≤ y)

because X1, X2, . . . , X5 are i.i.d. exponential with mean 1. �
Applying a variance decomposition (e.g., Problem 34.10 of [9]) yields

Var[I (Y ≤ y)] = Var[E[I (Y ≤ y) | Z]] + E[Var[I (Y ≤ y) | Z]]
≥ Var[E[I (Y ≤ y) | Z]] = Var[q(Z, y)]

for each y, where the inequality uses the nonnegativity of conditional variance, and
the last step holds by (54). Hence, for each y, averaging i.i.d. copies of q(Z, y), as
is done in constructing F̂CMC,n(y) in (55), leads to smaller variance than averaging
i.i.d. copies of I (Y ≤ y), as in the estimator F̂NMC,n(y) in (9). We thus conclude that
CMC provides a CDF estimator with lower variance at each point than NMC.

The CMC p-quantile estimator ξ̂CMC,n in (56) obeys the CLT (15) withψ2 in (16)
as

ψ2
CMC = Var[q(Z, ξ)] ≤ Var[I (Y ≤ ξ)] = p(1 − p) = ψ2

NMC (57)

By (57), so the CMC p-quantile estimator has no greater asymptotic variance than
that of NMC; See [3, 17, 18, 40]. Also, ξ̂CMC,n has a weak Bahadur representation,
as in (20), (22).

While we have applied CMC by conditioning on a random vector Z, the method
can be more generally applied by instead conditioning on a sigma-field; see [3].
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5.6 Other Approaches

LHS in Sect. 5.3 reduces variance by inducing negative correlation among the out-
puts, and [6] examines quantile estimation via other correlation-induction schemes,
including antithetic variates (AV); see also [13]. (Randomized) quasi–Monte Carlo
has been applied for quantile estimation [26, 32, 42]. Other simulation-based meth-
ods for estimating ξ do not follow the approach in Steps 1 and 2 of Sect. 3. For
example, [45] considers quantile estimation as a root-finding problem, and applies
stochastic approximation to solve it.

We can also combine different variance-reduction techniques to estimate a quan-
tile. The integrated methods can sometimes (but not always) behave synergistically,
outperforming each approach by itself. Some particularly effective mergers include
combined IS+SS [13, 23], CMC+LHS [17], and SS+CMC+LHS [18].

5.7 Numerical Results of Point Estimators for Quantiles

We now provide numerical results comparing some of the methods discussed in
Sects. 3.1 and5.1–5.6 applied to theSANmodel inExample 1.Using103 independent
replications, we estimated the bias, variance, and mean-square error (MSE) of quan-
tile estimators with sample size n = 640, where we numerically computed (without
simulation) the true values of the p-quantile ξ as approximately ξ = 3.58049 for
p = 0.6 and ξ = 6.66446 for p = 0.95. For each method x, we computed the MSE
improvement factor (IF) of x as the ratio of the MSEs for NMC and x.

Table1 shows that each VRT reduces the variance and MSE compared to NMC.
EachVRTalso produces less bias for p = 0.95, but not always for p = 0.6, especially
for IS. The IS approach (Sect. 5.4) for the SAN is designed to estimate the p-quantile
when p ≈ 1, and it leads to substantial MSE improvement for p = 0.95. But for
p = 0.6, IS only slightly outperforms NMC. Also, observe that the IF of the combi-

Table 1 Bias, variance, and mean-square error of p-quantile estimators for p = 0.6 and 0.95,
where a method’s MSE improvement factor (IF) is the ratio of the MSEs of NMC and the method

Method p = 0.6 p = 0.95

Bias
(×10−3)

Variance
(×10−3)

MSE
(×10−3)

MSE IF Bias
(×10−2)

Variance
(×10−2)

MSE
(×10−2)

MSE IF

NMC 1.32 7.18 7.18 1.00 −3.00 5.15 5.24 1.00

CV 1.45 3.88 3.89 1.85 0.69 2.15 2.15 2.44

LHS −0.87 2.78 2.78 2.58 −1.74 2.36 2.39 2.19

IS 12.39 6.43 6.58 1.09 1.46 1.01 1.03 5.09

CMC 3.39 5.26 5.27 1.36 0.03 4.01 4.01 1.31

CMC+LHS 0.84 1.32 1.32 5.42 −0.36 1.67 1.67 3.14
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nation CMC+LHS is larger than the product of the IFs of CMC and LHS, illustrating
that their combination can work synergistically together.

6 Confidence Intervals for a Quantile

Example 1 (continued) The contractor understands that her p-quantile estimator ξ̂n
does not exactly equal the true p-quantile ξ due to Monte Carlo’s sampling noise.
To account for the statistical error, she also desires a 90% confidence interval Cn for
ξ , so she can be highly confident that the true value of ξ lies in Cn . �

We want a confidence interval (CI) Cn for ξ based on a sample size n satisfying

P(ξ ∈ Cn) = 1 − α (58)

for a user-specified constant 0 < α < 1, where 1 − α is the desired confidence level,
e.g., 1 − α = 0.9 for a 90% CI. In a few limited cases, we can design a CI for which
(58) or P(ξ ∈ Cn) ≥ 1 − α holds for a fixed n. But for most Monte Carlo methods,
we instead have to be satisfied with a large-sample CI Cn for which

P(ξ ∈ Cn) → 1 − α, as n → ∞. (59)

6.1 Small-Sample CIs

Consider applying NMC as in Sect. 3.1 with a fixed sample size n. Let Y1,Y2, . . . ,Yn
be an i.i.d. sample from F , which we assume is continuous at ξ , ensuring that
P(Yi ≤ ξ) = p. Then Bn,p ≡ nF̂NMC,n(ξ) = ∑n

i=1 I (Yi ≤ ξ) has a binomial(n, p)
distribution by (9). Recall that Yi :n is the i th smallest value in the sample, so
{Yi :n ≤ ξ} = {Bn,p ≥ i}, which is equivalent to {Yi :n > ξ} = {Bn,p < i}, Thus, for
any integers 1 ≤ i1 < i2 ≤ n, we see that

P(Yi1:n ≤ ξ < Yi2:n) = P(i1 ≤ Bn,p < i2) = 1 − P(Bn,p < i1) − P(Bn,p ≥ i2).

If we select i1 and i2 such that P(Bn,p < i1) + P(Bn,p ≥ i2) ≤ α, then

Cbin,n ≡ [Yi1:n,Yi2:n) (60)

is a CI for ξ with confidence level at least 1 − α. For example, we may pick i1 and
i2 so that P(Bn,p < i1) ≤ α/2 and P(Bn,p ≥ i2) ≤ α/2. We call (60) the binomial
CI, also known as a distribution-free CI; Sect. 2.6.1 of [46] provides more details.

This idea unfortunately breaks down when applying a Monte Carlo method other
than NMC because nF̂n(ξ) no longer has a binomial distribution in general. But [29]
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extends the binomial approach to a multinomial for the alternative CV p-quantile
estimator ξ̂ ′

CV,n described in the last paragraph of Sect. 5.1.

6.2 Consistent Estimation of Asymptotic Variance

We can also build a large-sample CI Cn for ξ satisfying (59) by exploiting the CLT
in (15) or the (weak) Bahadur representation in (20) and (22), which both hold for
the Monte Carlo methods we considered in Sects. 3 and 5. One approach based on
the CLT (15) requires a consistent estimator τ̂ 2

n of τ 2 from (16); i.e., τ̂ 2
n ⇒ τ 2 as

n → ∞. Then we can obtain a CI Cn for which (59) holds as

Ccon,n,b = [ξ̂n ± zατ̂n/
√
n], (61)

where zα = Φ−1(1 − α/2) and Φ is the N (0, 1) CDF; e.g., zα = 1.645 for 1 −
α = 0.9. A way to construct a consistent estimator τ̂ 2

n of τ 2 = ψ2/ f 2(ξ) devises a
consistent estimator ψ̂2

n of the numeratorψ2 and also one for the denominator f 2(ξ).
To handle ψ2, [13] develops consistent estimators ψ̂2

n when ψ2 equals ψ2
CV in

(35) for CV, ψ2
SS,γ in (42) for SS, and ψ2

IS in (51) for IS, as well as for IS+SS. Also,
[40] provides an estimator for ψ2

CMC in (57), and [16] handles LHS. For NMC, (24)
shows that ψ2

NMC = p(1 − p), which does not require estimation.
Several techniques have been devised to consistently estimate f (ξ) appearing in

the denominator of (16). One approach exploits the fact that

η ≡ 1

f (ξ)
= d

dp
F−1(p) = lim

δ→0

F−1(p + δ) − F−1(p − δ)

2δ
(62)

by the chain rule of differentiation, which suggests estimating η by a finite difference

η̂n = F̂−1
n (p + δn) − F̂−1

n (p − δn)

2δn
, (63)

for some user-specified bandwidth δn > 0. For the case of NMC, [10, 11] establish
the consistency of η̂n when δn → 0 and nδn → ∞ as n → ∞, and [13, 16] develop
similar results when applying various variance-reduction techniques. Then in (61),
we can use τ̂ 2

n = ψ̂2
n η̂

2
n to consistently estimate τ 2. Kernel methods [19, 37, 43] have

also been employed to estimate f (ξ).
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6.3 Batching, Sectioning, and Other Methods

An issue with the finite-difference estimator in (63) and with kernel methods is that
for a given sample size n, the user must specify an appropriate bandwidth δn , which
can be difficult to do in practice. To avoid this complication, we can instead build
a CI for ξ via a method that does not try to consistently estimate the asymptotic
variance τ 2 in (16).

Batching is such an approach; e.g., see p. 491 of [22]. Rather than computing
one p-quantile estimator from a single sample, batching instead generates b ≥ 2
independent samples, each called a batch (or subsample), and builds a p-quantile
estimator from each batch. We then construct a CI from the sample average and
sample variance of the b i.i.d. p-quantile estimators. Specifically, to keep the overall
sample size as n, we generate the b independent batches to each have size m = n/b.
In practice, setting b = 10 is often a reasonable choice. For example, for NMC with
an overall sample Y1,Y2, . . . ,Yn of size n, batch 	 = 1, 2, . . . , b, comprises obser-
vations Y(	−1)m+i , i = 1, 2, . . . ,m. From each batch 	 = 1, 2, . . . , b, we compute a
p-quantile estimator ξ̂m,	, which is roughly normally distributed when the batch size
m = n/b is large, by the CLT in (15). As the batches are independent, we have that
ξ̂m,	, 	 = 1, 2, . . . , b, are i.i.d. From their sample average ξ̄n,b = (1/b)

∑b
	=1 ξ̂m,	

and sample variance S2n,b = (1/(b − 1))
∑b

	=1[ξ̂m,	 − ξ̄n,b]2, we obtain the batching
CI as

Cbat,n,b = [ξ̄n,b ± tb−1,αSn,b/
√
b], (64)

where tb−1,α = �−1
b−1(1 − α/2)with �b−1 as the CDF of a Student-t random variable

with b − 1 degrees of freedom; e.g., tb−1,α = 1.83 when b = 10 and 1 − α = 0.9.
The batching CI Cbat,n,b uses a Student t critical point tb−1,α rather than zα from
a normal, as in (61), because Cbat,n,b has a fixed (small) number b of batches, and
the quantile estimator ξ̂m,	 from each batch 	 is approximately normally distributed.
(When applying LHS as in Sect. 5.3, each batch is an LHS sample, as in (45), but of
size m. We then sample the b batches independently; see [16] for details.)

While the batching CI Cbat,n,b in (64) is asymptotically valid in the sense that (59)
holds for any fixed b ≥ 2, it can have poor performance when the overall sample
size n is not large. Specifically, for a generic CI Cn for ξ , define the CI’s coverage
as P(ξ ∈ Cn), which may differ from the nominal confidence level 1 − α for any
fixed n even though (59) holds. The issue with the batching CI stems from quantile
estimators being biased in general; e.g., see Proposition 2 of [6] for the case of
NMC. While the bias typically vanishes as the sample size n → ∞, the bias can
be significant when n is not large. The bias of the batching point estimator ξ̄n,b is
determined by the batch size m = n/b < n, so ξ̄n,b may be severely contaminated
by bias. Hence, the batching CI Cbat,n,b is centered at the wrong point on average,
which can lead to poor coverage when n is small.

Sectioning can produce a CI with better coverage than batching. Introduced in
Sect. III.5a of [4] for NMC and extended by [16, 39] to apply when employing dif-
ferent VRTs, sectioning modifies batching to center its CI at the p-quantile estimator
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ξ̂n based on the entire sample size n rather than at the batching point estimator ξ̄n,b.
For example, for NMC, we use ξ̂n = ξ̂NMC,n from (11). We also replace Sn,b in (64)
with S′

n,b, where S
′2
n,b = (1/(b − 1))

∑b
	=1[ξ̂m,	 − ξ̂n]2. The sectioning CI is then

Csec,n,b = [ξ̂n ± tb−1,αS
′
n,b/

√
b]. (65)

Because we center Csec,n,b at ξ̂n instead of the typically more-biased ξ̄n,b, the sec-
tioning CI Csec,n,b can have better coverage than the batching CI Cbat,n,b when n is
small. By exploiting a weak Bahadur representation, as in (20) and (22), we can
rigorously justify replacing the batching point estimator ξ̄n,b in (64) with the overall
point estimator ξ̂n and still maintain the asymptotic validity in (59).

For NMC, bootstrap CIs for ξ have been developed in in [7, 36]. Also, [35]
develops bootstrap CI for ξ when applying IS.

6.4 Numerical Results of CIs for Quantiles

Table2 provides numerical results comparing the methods discussed in Sects. 6.1–
6.3 to construct nominal 90% CIs for a p-quantile ξ of the longest path Y in the
SAN model in Example 1 for different values of p. We built the CIs using NMC
with different overall sample sizes n. For the consistent CI in (61), we estimated
η = 1/ f (ξ) in (62) via the finite difference in (63) with bandwidth δn = 1/

√
n. For

a given CICn based on an overall sample size n, we estimated its coverageP(ξ ∈ Cn)

Table 2 Average relative half width (ARHW) and coverage of nominal 90% CIs for the p-quantile
for p = 0.6 and 0.95 with different sample sizes n when applying NMC. Batching and sectioning
use b = n/10 batches

n Method p = 0.6 p = 0.95

ARHW Coverage ARHW Coverage

400 Binomial 0.053 0.921 0.082 0.932

400 Consistent 0.051 0.893 0.094 0.952

400 Batching 0.054 0.869 0.069 0.666

400 Sectioning 0.055 0.907 0.075 0.888

1600 Binomial 0.026 0.910 0.038 0.914

1600 Consistent 0.025 0.896 0.039 0.916

1600 Batching 0.027 0.893 0.037 0.838

1600 Sectioning 0.028 0.904 0.038 0.904

6400 Binomial 0.013 0.904 0.018 0.905

6400 Consistent 0.013 0.897 0.018 0.899

6400 Batching 0.014 0.898 0.019 0.885

6400 Sectioning 0.014 0.900 0.019 0.903
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from 104 independent replications. Also, we computed for each method the average
relative half width (ARHW), defined as the average half-width of the CI divided by
the true p-quantile ξ , computed numerically; Sect. 5.7 gives the values.

Comparing the results for p = 0.6 and p = 0.95, we see that the more extreme
quantile is harder to estimate, which is typically the case. For example, for the same
n, the ARHW for p = 0.95 is larger than for p = 0.6. To see why, recall that the
NMC p-quantile estimator’s asymptotic variance is p(1 − p)/ f 2(ξ) by (16) and
(24). Although the numerator shrinks as p approaches 1, the denominator f 2(ξ)

decreases much faster. Moreover, while each method’s coverage for p = 0.6 is close
to the nominal 0.9 for each n, the consistent CI and the batching CI from (64) for
p = 0.95 exhibit coverages that substantially depart from 0.9 when n is small, with
overcoverage (resp., undercoverage) for the consistent (resp., batching) CI. When n
is large, both methods produce CIs with close to nominal coverage, illustrating their
asymptotic validity. As explained in Sect. 6.3, the batching CI can suffer from poor
coverage for small n because the batching point estimator can be significantly biased.
In contrast, the binomial CI in (60) and sectioning CI from (65) have coverage close
to 0.9 for all n. It is important to remember that the binomial CI does not apply in
general when applying VRTs, but sectioning does.

7 Summary and Concluding Remarks

This tutorial reviewed various Monte Carlo methods for estimating a p-quantile ξ

of the CDF F of a random variable Y . Because ξ = F−1(p), a common approach
for estimating ξ first obtains an estimator F̂n of F , and then inverts F̂n to obtain a p-
quantile estimator ξ̂n = F̂−1

n (p). Sections3 and 5 applied this approach to construct
quantile estimators based on differentMonte Carlo methods.We also discussed tech-
niques for constructing confidence intervals for ξ . In addition to our paper, [28] fur-
ther surveys simulation procedures for estimating ξ , along with another risk measure
E[Y | Y > ξ ], which is known as the conditional value-at-risk, expected shortfall,
or conditional tail expectation, and often used in finance.

We focused on quantile estimation for the setting in which the outputs are i.i.d.,
but there has also been work covering the situation when outputs form a dependent
sequence, as in a time series or stochastic process. For example, see [2, 52] and
references therein.
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Multilevel Quasi-Monte Carlo
Uncertainty Quantification for
Advection-Diffusion-Reaction

Lukas Herrmann and Christoph Schwab

Abstract We survey the numerical analysis of a class of deterministic, higher-
order QMC integration methods in forward and inverse uncertainty quantification
algorithms for advection-diffusion-reaction (ADR) equations in polygonal domains
D ⊂ R

2 with distributed uncertain inputs.We admit spatially heterogeneousmaterial
properties. For the parametrization of the uncertainty, we assume at hand systems of
functions which are locally supported in D. Distributed uncertain inputs are written
in countably parametric, deterministic form with locally supported representation
systems. Parametric regularity and sparsity of solution families and of response
functions in scales of weighted Kontrat’ev spaces in D are quantified using analytic
continuation.

Keywords Higher order quasi-Monte Carlo · Parametric operator equations ·
Bayesian inverse problems · Uncertainty quantification

1 Introduction

Computational uncertainty quantification (UQ) addresses the efficient, quantitative
numerical treatment of differential–and integral equation models in engineering and
in the sciences. In the simplest setting, such models need to be analyzed for para-
metric input data with sequences y = (y j ) j≥1 of parameters y j which range in a
compact, metric spaceU . In [15] the authors proposed and analyzed the convergence
rates of higher-order Quasi-Monte Carlo (HoQMC) approximations of conditional
expectations which arise in Bayesian inverse problems for partial differential equa-
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tions (PDEs). The authors studied broad classes of parametric operator equations
with distributed uncertain parametric input data. Typical examples are elliptic or
parabolic partial differential equations with uncertain, spatially heterogeneous coef-
ficients, but also differential- and integral equations in uncertain physical domains of
definition are admissible. Upon suitable uncertainty parametrization and, in inverse
uncertainty quantification, with a suitable Bayesian prior measure placed on the, in
general, infinite-dimensional parameter space, the task of numerical evaluation of
statistical estimates for quantities of interest (QoI’s) becomes numerical computation
of parametric, deterministic integrals over a high-dimensional parameter space.

The method of choice in many current inverse computational UQ is the Markov
chain Monte Carlo (MCMC) method and its variants [6, 30]. Due to its Monte Carlo
character, it affords a generally low convergence rate and, due to the intrinsically
sequential nature of, e.g., the independence sampler,MCMCmeetwith difficulties for
parallelization. As an alternative to theMCMCmethod, in [8, 43, 44] recently devel-
oped, dimension-adaptive Smolyak quadrature techniques were applied to the eval-
uation of the corresponding integrals. In [15, 16] a convergence theory for HoQMC
integration for the numerical evaluation of the corresponding integrals was devel-
oped, based on earlier work [17] on these methods in forward UQ. In particular,
it was shown in [16] that convergence rates of order > 1/2 in terms of the num-
ber N of approximate solves of the forward problem that are independent of the
dimension can be achieved with judiciously chosen, deterministic HoQMC quadra-
tures instead of Monte Carlo or MCMC sampling of the Bayesian posterior. The
achievable, dimension-independent rate of HoQMC is, in principle, only limited by
the sparsity of the forward problem. Moreover, the execution of the algorithm is
“embarrassingly parallel”, since for QMC algorithms, unlike MCMC and sequential
Monte Carlo (SMC) methods, the forward problem may be solved simultaneously
and in parallel. The error analysis in [16] was extended in [15] to the multilevel
setting. As is well known in the context of Monte Carlo methods, multilevel strate-
gies can lead to substantial gains in accuracy versus computational cost, see also the
survey [26] on multilevel Monte Carlo (MLMC) methods. Multilevel discretizations
for QMC integration were explored first for parametric, linear forward problems in
[32, 34] and in the context of HoQMC for parametric operator equations in [15].
For the use of multilevel strategies in the context of MCMC methods for Bayesian
inverse problems we refer to [21, 30] and the references there. The purpose of the
present paper is to extend the convergence analysis of deterministic Bayesian inver-
sion algorithms for forward problems given by PDEs with distributed random input
data, which are based on Quasi-Monte Carlo integration from [15] and the references
there, to uncertainty parametrizationwith basis functionswhich are locally supported
in the physical domain D. Let us mention in passing that while we consider here con-
forming Finite Element (FE) discretization, other discretizations in D could equally
be considered. We mention only discontinuous Galerkin Finite Element methods
(FEM) which have been introduced for advection-diffusion-reaction (ADR) equa-
tions as considered here in [31]. The duality argument in weighted function spaces
for these methods has been developed in [35].
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The principal contributions of the present work are as follows: We prove, for
a class of linear ADR problems in a polygon D with uncertain diffusion coeffi-
cients, drift coefficients and reaction coefficient, the well-posedness of the corre-
sponding Bayesian inverse problem. We establish optimal convergence rate bounds
of FE discretizations of the parametric forward problem, with judicious mesh refine-
ment towards the corners C of D, allowing in particular also corner singularities in
the uncertain input data; these appear typically in Karhunen-Loève eigenfunctions
corresponding to principal components of covariance operators which are negative
fractional powers of elliptic precision operators in D with boundary conditions on
∂ D. We show that a singularity-adapted uncertainty parametrization with locally
supported in D spline-wavelet functions allows for optimal (in the sense of con-
vergence rate) parametrization of the uncertain input data. We establish that higher
order Quasi-Monte Carlo rules of IPL (“interlaced, polynomial lattice rules”) type
from [17] admit, for the considered boundary value problemswith high-dimensional,
parametric inputs a dimension-independent convergence rate which is limited only
by the sparsity of the parametric input data.

The structure of this paper is as follows. In Sect. 2, we present a class of linear,
second order ADR problems in bounded, polygonal domains. Particular attention is
paid to regularity inweighted function spaceswhich account for possible singularities
at the corners of the physical domain;we base our presentation on the recent reference
[5] where the corresponding regularity theory has been developed. In Sect. 3, an
analysis of the consistency error of FEdiscretizations of the parametricADRmodel in
polygons is presented. The analysis is uniformw.r. to the uncertain input and accounts
for the impact of numerical integration in the presence of local mesh refinement to
obtain a fully discrete FE approximation. Parts of the somewhat technical proofs
are postponed to Sect. 7. So-called forward UQ is studied in some detail in Sect. 4
including estimates of the ε-complexity of the proposed QMC-FE algorithm, which
are free of the curse of dimensionality. In Sect. 5, we review elements of the general
theory of well-posed Bayesian inverse problems in function spaces, as presented e.g.
in [13]. The presentation and the setup is analogous to what was used in [15], but
in technical details, there are important differences: unlike the development in [15],
the uncertainty parametrization employed in the present paper will be achieved by
locally supported functions ψ j in the physical domain D. In particular, we shall admit
biorthogonal, piecewise polynomial multiresolution analyses in D. These allow us,
as we show, to resolve uncertain inputs with corner and interface singularities at
optimal rates, and their local supports enable the use of HoQMC integration with
so-called SPROD (“Smoothness driven PRODuct”) weights. To this end, and as
in [15], we require a novel, combined regularity theory of the parametric forward
maps in weighted Kondrat’ev–Sobolev spaces in D. In particular, we present an
error versus work analysis of the combined multilevel HoQMC Petrov–Galerkin
algorithms.
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2 UQ for Advection-Diffusion-Reaction Equations
in Polygons

We review the notation and mathematical setting of forward and inverse UQ for a
class of smooth, parametric operator equations. We develop here the error analy-
sis for the multilevel extension of the algorithms in [23] for general linear, second
order advection-diffusion-reaction problems in an open, polygonal domain D ⊂ R

2,
see also [22]. We assume the uncertain inputs comprising the operators’ coeffi-
cients u = ((ai j (x), bi (x), c(x)) to belong to a Banach space X being a weighted
Hölder space in the physical domain D. As in [15], uncertainty parametrization
with an unconditional basis of X will result in a countably-parametric, deterministic
boundary value problem. Unlike the Karhunen-Loève basis which is often used for
uncertainty parametrization in UQ, we consider here the use of representation sys-
tems whose elements have well-localized supports contained in D; one example are
spline wavelets.

Upon adopting such representations, both forward and (Bayesian) inverse prob-
lems become countably parametric, deterministic operator equations. In [43],
Bayesian inverse UQ was expressed as countably-parametric, deterministic quadra-
ture problem, with the integrand functions appearing in the Bayesian estimation
problems stemming from a (Petrov–)Galerkin discretization of the parametric for-
ward problem in the physical domain. Contrary to widely used MCMC algorithms
(e.g. [21] and the references there), high-dimensional quadratures of Smolyak type
are deterministic and were proposed for numerical integration against a (Bayesian)
posterior in [43, 44]. In the present paper, we review this approach for forward
and (Bayesian) inverse UQ for ADR in planar, polygonal domains D. We consider
in detail high order FE discretizations of the ADR problem on meshes with local
corner-refinement in D. We review the use of deterministic HoQMC integration
methods from [17, 18, 20] and the references there in multilevel algorithms for
Bayesian estimation in ADR models with uncertain input.

2.1 Model Advection-Diffusion-Reaction Problem in D

We present the parametric ADRmodel problem in a plane, polygonal domain D and
recapitulate its well-posedness and regularity, following [5]. There, in particular, reg-
ularity in weighted function spaces in D and holomorphy of the data-to-solution map
for this problem in these weighted spaces was established. Optimal FE convergence
rates result for Lagrangean FEM in D with locally refined meshes near the singular
points of the solution (being either corners of D or boundary points where the nature
of the boundary condition changes) by invoking suitable approximation results from
[1] and references there.

In the bounded, polygonal domain D with J corners C = {c1, . . . , cJ }, for some
J ∈ N, we consider the forward problem being the mixed boundary value problem
for the linear, second order divergence form differential operator
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L (u)q := −
2∑

i, j=1
∂i (ai j∂ j q)+

2∑

i=1
bi∂i q −

2∑

i=1
∂i (b2+i q)+ cq = f in D,

q
∣∣∣
Γ1

= 0,
2∑

i=1

⎛

⎝
2∑

j=1
ai j∂ j q + b2+i q

⎞

⎠ ni

∣∣∣
Γ2

= 0,

(1)

where n denotes the unit normal vector of the domain D and ∅ �= Γ1 ⊂ ∂ D denotes
the Dirichlet boundary and Γ2 = ∂ D\Γ1 denotes the Neumann boundary. We shall
assume that C ⊂ Γ1.

Define further
V := {v ∈ H 1(D) : v|Γ1 = 0},

where v|Γ1 ∈ H 1/2(Γ1) has to be understood in the sense of the trace of v ∈ H 1(D).
Here, for a subset Γ1 ⊂ Γ of positive arclength, H 1/2(Γ1) denotes the Sobolev-
Slobodeckij space of order 1/2 on Γ1, being the space of all restrictions of functions
from H 1/2(Γ ) to Γ1.

In (1), the differential operator L depends on the uncertain, parametric coeffi-
cients

u( y) := ((ai j ( y0)1≤i, j≤2, (bi ( y1))1≤i≤4, c( y2)), yi ∈
[
−1

2
,
1

2

]N
, i = 0, 1, 2,

where ai j = a ji and where we have used the notation y := ( y0, y1, y2) and further
introduce the parameter set

U :=
∏

i=0,1,2

[
−1

2
,
1

2

]N
.

The uncertain coefficient functions u( y) may also depend on the spatial coordi-
nate x ∈ D, and for each y ∈ U are assumed to belong to weighted Sobolev spaces
W m,∞(D) of integer order m ≥ 0 being given by

W m,∞(D) := {v : D → C : r |α|D ∂αv ∈ L∞(D), |α| ≤ m} . (2)

Specifically, for m ∈ N0, we assume that
u ∈ Xm :={u : ai j ∈ W m,∞(D), i, j = 1, 2, rDbi ∈ W m,∞(D),

i = 1, . . . , 4, r2Dc ∈ W m,∞(D)}. (3)

Here, D 
 x �→ rD(x) denotes a “regularized” distance to the corners C of D, i.e.,
rD(x) � dist(x,C ) for x ∈ D. We equip Xm , m ∈ N0, with the norm

‖u‖Xm :=max{‖ai j‖W m,∞(D), i, j = 1, 2, ‖rDbi‖W m,∞(D),

i = 1, . . . , 4, ‖r2Dc‖W m,∞(D)}.
(4)
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We introduce the parametric bilinear form

A(u( y))(w, v) := 〈L (u( y))w, v〉V ∗,V , ∀w, v ∈ V .

The variational formulation of the parametric, deterministic problem reads: given
y ∈ U , find q( y) ∈ V such that

A(u( y))(q( y), v) = 〈 f, v〉V ∗,V , ∀v ∈ V .

Here, f ∈ V ∗ and 〈·, ·〉V ∗,V denotes the V ∗ × V duality pairing, with V ∗ denoting the
Hilbertian (anti-) dual of V .1 This parametric problem is well-posed if u( y) ∈ X0,
y ∈ U , is such that there exists a positive constant c > 0

inf
y∈U

R(A(u( y))(v, v)) ≥ c‖v‖2V , ∀v ∈ V, (5)

whereR(z) denotes the real part of z ∈ C. We observe that (5) precludes implicitly
that the ADR operator in (1) is singularly perturbed. This, in turn, obviates in the
ensuing FE approximation theory in Sect. 3 the need for boundary layer resolution
or anisotropic mesh refinements. As a consequence of (5) and of the Lax–Milgram
lemma, for every y ∈ U the parametric solution q( y) ∈ V exists and satisfies the
uniform a-priori estimate

sup
y∈U
‖q( y)‖V ≤ c−1‖ f ‖V ∗ . (6)

We introduce weighted Sobolev spaces of Kondrat’ev type K m
a (D), m ∈ N0 ∪ {−1},

a ∈ R, as closures of C∞(D;C) with respect to the homogeneous weighted norm
given by

‖v‖2K m
a (D) :=

∑

|α|≤m

‖r |α|−a
D ∂αv‖2L2(D). (7)

We observe that (up to equivalence of norms) V = {v ∈ K 1
1 (D) : v|Γ1 = 0}, which

is a consequence of the Hardy inequality (see e.g. [40, Theorem 21.3]). In [5], the
authors proved regularity shifts of L (u). Specifically, if A(u) satisfies (5) and if
u ∈ Xm , then by [5, Corollary 4.5 and Theorem 4.4] there exist constants C > 0,
a0 > 0 such that for every a ∈ (−a0, a0), for every f ∈ K m−1

a−1 (D), and for every

yi ∈ [− 1
2 ,

1
2

]N
, i = 0, 1, 2, there holds q( y) ∈ K m+1

a+1 (D) and

sup
yi∈[− 1

2 , 12 ]
N
,i=0,1,2

‖q( y)‖K m+1
a+1 (D) ≤ C‖ f ‖K m−1

a−1 (D). (8)

1For spaces V of real-valued functions, V ∗ denotes the Hilbertian dual; in the case that solutions
q( y) are complex-valued, e.g. for Helmholtz problems, V ∗ denotes the antidual of V . Even for
parametric models with real valued solutions, complexification is required for analytic continuation
to complex parameters [5].
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Note that the dependence of the constant C on the coefficients u can also be made
explicit, cp. [5].

2.2 Uncertainty Parametrization

For uncertainty parametrization, the data space X is assumed to be a separable,
infinite-dimensional Banach space with norm ‖ · ‖X (separably valued data u in
an otherwise non-separable space are equally admissible). We suppose that we
have at hand representation systems (ψ i

j ) j≥1 ⊂ L∞(D;Rki ), i ∈ {0, 1, 2} of locally
supported functions in D which parametrize the uncertain coefficient functions
u = (a, b, c) for integers k0, k1, k2 ∈ N.

The smoothness scale {Xm}m≥0 defined in (3) for m ≥ 1 with X = L∞(D)8 =
X0 ⊃ X1 ⊃ X2 ⊃ ... (we recall ai j = a ji ) and a smoothness order t ≥ 1 is being
given as part of the problem specification. We restrict the uncertain inputs u to
sets Xt with “higher regularity” in order to obtain convergence rate estimates for
the discretization of the forward problem. Note that for u ∈ Xt and with ψ j being
Fourier or multiresolution analyses, higher values of t correspond to stronger decay
of the ψ i

j , i ∈ {0, 1, 2}.
For the numerical analysis of a FE discretization in D, we have to slightly

strengthen the norm of Xm . To this end, we define the weighted spaces W m,∞
δ (D)

for δ ∈ [0, 1], m ∈ N, as subspaces of W m,∞(D) equipped with the norm

‖v‖W m,∞
δ (D) := max|α|≤m

{‖rmax{0,δ+|α|−1}
D ∂αv‖L∞(D)}.

Note that W m,∞
1 (D) = W m,∞(D). For δ ∈ [0, 1), we define Xm,δ by the norm

‖u‖Xm,δ
:=max{‖ai j‖W m,∞

δ (D), i, j = 1, 2, ‖rDbi‖W m,∞
δ (D),

i = 1, . . . , 4, ‖r2D‖W m,∞
δ (D)}.

(9)

It is easy to see that the embedding Xm,δ ⊂ Xm is continuous, m ≥ 1, δ ∈ [0, 1).
We assume that the {ψ i

j } j≥1, i ∈ {0, 1, 2}, are scaled such that for some δ ∈ [0, 1),
τ ∈ N, and positive sequences (ρi

r, j ) j≥1,

max|α|≤r

∥∥∥∥∥∥

∑

j≥1
ρi

r, j r
max{0,δ+|α|−1}
D |∂α

x ((rD)iψ i
j )|
∥∥∥∥∥∥

L∞(D)

<∞, r = 0, . . . , τ. (10)

Lemma 1 Let w ∈ W m,∞(D;Ck) for some m, k ∈ N and let v : D × C
k ⊃ D ×

w(D)→ C be a function that is W m,∞-regular in the first argument and analytic in
the second. Then, [x �→ v(x, w(x))] ∈ W m,∞(D).
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Proof Let ṽ := [w(D) 
 z �→ v(x, z)] for arbitrary x ∈ D be such that ṽ is well-
defined. By an application of the Faà di Bruno formula [12, Theorem 2.1],

r |α|D ∂α
x (̃v ◦ w)

=
∑

1≤|λ|≤n

∂λ
y ṽ

n∑

ι=1

∑

pι(α,λ)

α!
ι∏

j=1

1

ν( j)!(ν( j)!)|ν( j)|

k∏

i=1
(r |ν( j)|

D ∂ν( j)wi )
ν( j)i ,

where n = |α|, w = (w1, . . . , wk), and

pι(α,λ) =
{
(ν(1), . . . , ν(ι); η(1), . . . , η(ι)) : |ν(i)| > 0,

0 ≺ η(1) ≺ . . . ≺ η(ι),

ι∑

i=1
ν(i) = λ, and

ι∑

i=1
|ν(i)|η(i) = α

}
,

where themulti-indices ν are k-dimensional and themulti-indicesη ared-dimensional
(hered = 2, since the domain D is a polygon).The symbol≺ formulti-indicesη and η̃

is defined by η ≺ η̃ (here for d = 2) if either (i) |η| < |̃η| or (ii) |η| = |̃η| and η1 < η̃1,
where |η| =∑ j≥1 η j . Since L∞(D) is an algebra and |α| =∑ι

i=1 |ν(i)||ν(i)|,
(̃v ◦ w) ∈ W m,∞(D). The claim of the lemma now follows by another application of
the Faà di Bruno formula. �

Remark 1 The statement of Lemma 1 also holds if we replace W m,∞(D) with
W m,∞

δ (D), δ ∈ [0, 1), at all places.
Define the complex-parametric sets U i for i ∈ {0, 1, 2} of admissible data

U i :=
⎧
⎨

⎩
∑

j≥1
z j |ψ i

j (x)| : z ∈ C
N, |z j | ≤ ρi

0, j , j ≥ 1, x ∈ D

⎫
⎬

⎭ ⊂ C
ki ,

where | · | denotes component-wise absolute value. Let g : D ×U 0 ×U 1 ×U 2 →
C

8 be a function such that (z0, z1, z2) �→ g(x, z0, z1, z2) is holomorphic for almost
every x ∈ D and such that [x �→ g(x, z0, z1, z2)] ∈ Xm for some m ≥ 1 and every
(z0, z1, z2) ∈ U 0 ×U 1 ×U 2. The uncertain coefficient u = (a, b, c) is then
parametrized by

u(x, y) =
(

a(x, y0), b(x, y1), c(x, y2)
)

= g

⎛

⎝x,
∑

j≥1
y0j ψ

0
j ,
∑

j≥1
y1j ψ

1
j ,
∑

j≥1
y2j ψ

2
j

⎞

⎠ , a.e. x ∈ D, yi ∈ U, i = 0, 1, 2.

(11)
Hence, u = (a, b, c) is given through the coordinates of the function g via a11 = g1,
a22 = g2, a21 = a12 = g3, bi = gi+3, i = 1, . . . , 4, c = g8.
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Elements in the space Xm,δ may have singularities in the corners, but can be
approximated in the X0-norm at optimal rates for example by biorthogonal wavelets
with suitable refinements near vertices of D.

Proposition 1 Let δ ∈ [0, 1) and m ∈ N be given. Assume further at hand a
biorthogonal, compactly supported spline wavelet basis with sufficiently large num-
ber (depending on m) of vanishing moments and compactly supported dual basis.
Then, there exists a constant C > 0 and, for every L ∈ N, projection operators PL

into a biorthogonal wavelet basis such that

‖w − PLw‖X0 ≤ C N−m/2
L ‖w‖Xm,δ

, ∀w ∈ Xm,δ,

where NL denotes the number of terms in the expansion PLw.

The proof of this (in principle, well-known) proposition is given in Sect. 7.2, where
also further details on biorthogonal wavelets are presented.

3 Finite Element Discretization

We introduce conforming Finite Element discretizations in the physical domain D
and review an approximation property as a preparation for the analysis of the impact
of numerical integration on locally refined meshes in D. Let T denote a family of
regular, simplicial triangulations of the polygon D. We assume that T is obtained
from a coarse, initial triangulation by newest vertex bisection, cp. [25]. In this section
we will omit the parameter vector y in our notation with the understanding that all
estimates depend on the parameter vector y only via dependencies on the coefficients
u = (a, b, c). We assume that there exists a constant C > 0 independent of h and
β ∈ (0, 1) such that for every T ∈ T and for every K ∈ T :

(i) If K ∩ C = ∅, then C−1hrβ

D(x) ≤ hK ≤ Chrβ

D(x) for every x ∈ K .

(ii) If K ∩ C �= ∅, then C−1h sup
x∈K
{rβ

D(x)} ≤ hK ≤ Ch sup
x∈K
{rβ

D(x)}, (12)

where
hK := diam(K ), K ∈ T , and h := max

K∈T
{hK }.

Such amesh can be achievedwith the algorithm proposed in [25, Sect. 4.1] with input
values the global meshwidth h, the polynomial degree k, and the weight exponent
γ = (1+ k)(1− β), assuming (1+ k)(1− β) < 1. There are also graded meshes
that satisfy (12), which were introduced in [3]. We define the spaces of Lagrangean
Finite Elements of order k ∈ N by

V k
T := {v ∈ V : v|K ∈ Pk(K ), K ∈ T }, T ∈ T ,
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where Pk(K ) denotes the polynomials of total degree smaller than or equal to k ≥ 1
on element K ∈ T .

Proposition 2 Let k ∈ N and let 0 < δ < β < 1 be such that (1− δ)/(1− β) > k
and set a = 1− δ. There exists a constant C > 0 independent of the global mesh
width h such that for every w ∈ K k+1

a+1 (D) there exist wT ∈ V k
T such that

‖w − wT ‖H 1(D) ≤ Chk‖w‖K k+1
a+1 (D).

This result is, in principle, known; e.g. [1, 37] and references there.

3.1 Numerical Integration

An essential component in the numerical analysis of the considered class of problems
is the efficient numerical evaluation of the mass and stiffness matrices which contain
the inhomogeneous, parametric coefficients. Owing to their origin as sample-wise
realizations of random fields, these coefficients have, in general, only finite Sobolev
regularity. Furthermore, for covariances in bounded domains which result from pre-
cision operators which include boundary conditions such as the Dirichlet Laplacean,
these realizations can exhibit singular behaviour near corners of D. This is accom-
modated by the weighted Sobolev spacesW m,∞(D) comprising the data spaces Xm

as defined above in (3). Efficient numerical quadrature for the evaluation of the stiff-
ness and mass matrices which preserves the FE approximation properties on locally
refined meshes is therefore needed. The numerical analysis of the impact of quadra-
ture on FEM on locally refined meshes for uncertain coefficients in Xm is therefore
required.

The impact of numerical integration in approximate computation of the stiff-
ness matrix and load vector on the convergence rates of the FE solution is well
understood for uniform mesh refinement, cp. for example [10, Sect. 4.1]. We extend
this theory to regular, simplicial meshes with local refinement towards the singu-
lar points, and to possibly singular coefficients which belong to weighted spaces,
i.e., u = (a, b, c) ∈ Xm,δ , m ∈ N, δ ∈ [0, 1), as defined in (9), (10). We provide
a strategy to numerically approximate the stiffness matrix by quadrature so that
the resulting additional consistency error is consistent with the FE approxima-
tion error, uniformly with respect to the parameter sequences which characterize
the uncertain inputs. We denote by Ã on V k

T × V k
T the bilinear form, which has

been obtained with numerical integration, i.e., for quadrature weights and nodes
(ωK ,k̄, xK ,k̄)K∈T ,k̄∈I ⊂ (0,∞)× D

Ã(w, v)

:=
∑

K∈T�

∑

k̄∈I
ωK ,k̄

⎛

⎝
2∑

i, j=1
ai j ∂ j w∂i v +

2∑

i=1
bi ∂i wv +

2∑

i=1
b2+i w∂i v + cwv

⎞

⎠ (xK ,k̄),
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for every w, v ∈ V k
T . Let us denote by FK : K̂ → K the affine element mappings

that are given by ξ �→ FK (ξ) = BK ξ + bK , K ∈ T . Let (ω̂k̄, x̂k̄)k̄∈I be a set of
positive weights and nodes (indexed elements of the finite set I ) for quadrature
on the reference element K̂ . Then, ωK ,k̄ := det(BK )ω̂k̄ > 0 and xK ,k̄ := FK (̂xk̄) ∈
K , K ∈ T , k̄ ∈ I . We define the element quadrature error for every K ∈ T and
integrable φ such that point evaluation is well-defined by

EK (φ) =
∫

K
φ dx −

∑

k̄∈I
ωK ,k̄φ(xK ,k̄).

The quadrature error EK̂ on the reference element K̂ is defined analogously.
Under these assumptions, it can be shown as in the proof of [10, Theorem 4.1.2]

(which covers the case that bi ≡ 0 and c ≡ 0 in u in (1)) that the corresponding
approximate sesquilinear form Ã(u)(·, ·) : V k

T × V k
T → C satisfies coercivity (5)

with a positive coercivity constant c̃, possibly smaller than c > 0 in (5) but still
independent of yi ∈ [−1/2, 1/2]N, i = 0, 1, 2.

Let us denote the FE solution with respect to the bilinear form Ã(u) : V k
T ×

V k
T → C by q̃T ∈ V k

T , i.e., the solution of the Galerkin-projected, parametric
variational formulation

Ã(u)(q̃T , v) = 〈 f, v〉V ∗,V , ∀v ∈ V k
T .

The error incurred by employing numerical quadrature is consistent with the FE
approximation rate, as demonstrated in the following theorem.

Theorem 1 For k ≥ 1, suppose that EK̂ (φ̂) = 0 for every φ̂ ∈ P2k−1. Let 0 < δ <

β < 1 satisfy (1− δ)/(1− β) > k. There exists a constant C > 0 independent of h
and of u = (a, b, c) ∈ Xk,δ such that

‖q − q̃T ‖V ≤ Chk
(
1+ ‖u‖Xk,δ

) ‖q‖K k+1
a+1 (D).

The impact of numerical integration on linear functionals of the solution has been
studied in the case of FEM with uniform mesh refinement for solutions belonging to
a higher-order, unweighted Sobolev spaces for example in [4]. We extend the result
in [4] to solutions to the parametric ADR problems in polygons in the following
corollary.

Corollary 1 Let 0 ≤ k ′ ≤ k be integers. Suppose that EK̂ (φ̂) = 0 for every φ̂ ∈ P2k .
Let 0 < δ < β < 1 satisfy (1− δ)/(1− β) > k + k ′. Then, there exists a constant
C > 0 that does not depend on h such that for every G ∈ K k ′−1

a−1 (D),

|G(q)− G(q̃T )| ≤ Chk+k ′ (1+ ‖u‖Xk,δ

) (
1+ ‖u‖Xk+k′ ,δ

) ‖q‖K k+1
a+1 (D)‖G‖K k′−1

a−1 (D)
.

The proofs of Theorem 1 and Corollary 1 are given in Sect. 7.1.
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3.2 Finite Element Approximation of the Parametric Solution

To this end we suppose that we have a sequence of FE triangulations {T�}�≥0 such
thatT� satisfies the assumption in (12) with constants that are uniform in � ≥ 0. The
global mesh widths are denoted by (h�)�≥0. We denote by V k

� , � ≥ 0, the respective
FE spaces of polynomial order k ≥ 1 and define

M� := dim(V k
� ), � ≥ 0.

Recall the bilinear form Ã(u( y)) on V k
� × V k

� that results from the application of
numerical integration in the previous section. The Galerkin approximation q̃T � ( y) ∈
V k

� is the unique solution to

Ã(u( y))(q̃T � ( y), v) = 〈 f, v〉V ∗,V , ∀v ∈ V k
� . (13)

We recall the sparsity assumption in (10) for positive sequences (ρi
r, j ) j≥1, r =

0, . . . , τ . This assumption and Lemma 1 imply that ai j ( y0), rDb j ( y1), r2Dc( y2) ∈
W τ,∞

δ (D) for every y0, y1, y2 ∈ [−1/2, 1/2]N and admissible i, j . Specifically,
Lemma 1 is applied coordinatewise to [(x, z0, z1, z2) �→ g(x, z0, z1, z2)] composed
with

∑
j≥1 zi

jψ
i
j , zi ∈ U i , i = 0, 1, 2, see also (11). Note that r i

D

∑
j≥1 zi

jψ
i
j ∈

W τ,∞
δ (D), zi ∈ U i , i = 0, 1, 2 by (10). Here, and throughout, we understand func-

tion spaces to be defined over the complex scalars. We assume that f ∈ K t−1
a−1 (D),

G ∈ K t ′−1
a−1 (D) for integers t, t ′ ≥ 0 satisfying t + t ′ ≤ τ . Then, by Corollary 1

and (8),

sup
y∈U
|G(q( y))− G(q̃T � ( y))| ≤ C M−(min{t,k}+min{t ′,k})/2

� ‖ f ‖K t−1
a−1 (D)‖G‖K t ′−1

a−1 (D)
,

(14)
where we applied that M� = O(h−d

� ), � ≥ 0.
The parametric solution may be approximated consistently up to any order of h�

by preconditioned, relaxed Richardson iteration in work O(M� log(M�)). Admissi-
ble preconditioners in the symmetric case, i.e., bi ( y1) ≡ 0, for i = 1, . . . , 4 and for
Γ2 = ∅ are the so-called BPX preconditioner and the symmetric V-cycle, respec-
tively. Respective condition numbers for local mesh refinement by newest ver-
tex bisection for BPX and symmetric V-cycle have been studied for the Dirichlet
Laplacean in [7]. These results are applicable, since the Dirichlet Laplacean is spec-
trally equivalent to L (u). For notational convenience, approximation of q̃T � ( y)
by preconditioned, relaxed Richardson iteration, cp. [49, Proposition 2.3] will be
denoted by the same symbol. Since the result after a finite number of steps of a
Richardson iteration depends polynomially on the system matrix and since the pre-
conditioner is independent of the parameter, holomorphic dependence on the param-
eters y is preserved.

We also consider parameter dimension truncation to obtain a finite-dimensional
parameter set and denote by s0, s1, s2 ∈ N the corresponding parameter dimensions.
We denote the triple of those parameter dimensions by s := (s0, s1, s2). Let us intro-
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duce further

q̃ s,T � ( y) := q̃T � ( y0{1:s0}, y
1
{1:s1}, y

2
{1:s2}), yi ∈

[
−1

2
,
1

2

]N
, i = 0, 1, 2,

where we have used the notation ( yi
{1:si }) j = yi

j for j ∈ {1 : si } := {1, . . . , si } and
zero otherwise, i = 0, 1, 2. We define us and q s analogously.

Lemma 2 Let u1 = (a1, b1, c1), u2 = (a2, b2, c2) ∈ X0 and q1, q2 ∈ V satisfy
L (ui )qi = f , i = 1, 2. Assume that the bilinear forms A(u1)(·, ·), A(u2)(·, ·) are
coercive with coercivity constants c1, c2 > 0 in the sense of (5). Then, there exists a
constant C > 0 independent of q1, q2, u1, u2 such that

‖q1 − q2‖V ≤ C

c1c2
‖u1 − u2‖X0‖ f ‖V ∗ .

Proof We observe ‖q1−q2‖2V c1 ≤ A(u1)(q1−q2, q1−q2)=A(u2−u1)(q2, q1 − q2).
By the Hardy inequality (see e.g. [40, Theorem 21.3]) there exists a constant C > 0
such that for every v ∈ V

‖r−1D v‖L2(D) ≤ C‖|∇v|‖L2(D). (15)

As a consequence,

|A(u2 − u1)(q2, q1 − q2)|

≤ C

⎛

⎝
2∑

i, j=1
‖a1

i j − a2
i j‖L∞(D) +

4∑

j=1
‖rD(b1

j − b2
j )‖L∞(D) + ‖r2D(c1 − c2)‖L∞(D)

⎞

⎠

× ‖q2‖V ‖q1 − q2‖V ,

where C > 0 is the constant from the Hardy inequality. In the previous step, we used
multiplication by one, i.e., by rDr−1D for the advection terms and by r2Dr−2D for the
reaction term. The claim now follows with (6). �

It is easy to see that since g as introduced in (11) is in particular locally Lipschitz
continuous. By Lemma 2, there exists a constant C > 0 such that

sup
y∈U
‖q( y)− q s( y)‖V ≤ C

(
sup
j>s0
{(ρ0

0, j )
−1} + sup

j>s1
{(ρ1

0, j )
−1} + sup

j>s2
{(ρ2

0, j )
−1}
)

.

Thus, by (14),
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sup
y∈U

|G(q( y))− G(q̃ s,T� ( y))| ≤ C

(
M−(min{t,k}+min{t ′,k})/2

�
+ max

i=0,1,2 sup
j>si

{(ρi
0, j )

−1}
)

.

(16)

4 Forward UQ

In this section we discuss the consistent approximation of the expectation of G(q),
where G ∈ V ∗ is a linear functional. The expectation is taken with respect to the
uniform product measure on U , which is denoted by d y :=⊗i=0,1,2

⊗
j≥1 dyi

j . The
expectation of G(q) will be denoted by

E(G(q)) :=
∫

U
G(q( y))d y.

4.1 Higher Order QMC Integration

For a finite integration dimension s ∈ N, QMC quadrature approximates integrals
over the s-dimensional unit cube with equal quadrature weights, i.e., for a suitable
integrand function F (possibly Banach space valued) and judiciously chosen, deter-
ministic QMC points { y(0), . . . , y(N−1)} ⊂ [0, 1]s

Is(F) :=
∫

[− 1
2 , 12 ]s

F( y)d y ≈ 1

N

N−1∑

i=0
F

(
y(i) − 1

2

)
=: Qs,N (F),

where ( 12 ) j = 1/2, j = 1, . . . , s.
Integration byQMCmethods is able to achieve convergence rates that are indepen-

dent of the dimension of integration and are higher than forMonteCarlo sampling;we
refer to the surveys [19, 33]. In particular, interlaced polynomial lattice rules are able
to achieve convergence rates which can even be of arbitrary, finite order, independent
of the integration dimension s, provided the integrand satisfies certain conditions,
cp. [17]. The analysis in this work will be for QMC by interlaced polynomial lattice
rules. As in our previous works [22, 23], we will justify the application of interlaced
polynomial lattice rules with product weights, which implies that the construction
cost of the respective QMC points by the fast CBC construction is O(s N log(N )),
where s is the dimension of integration and N the number of QMC points, cp. [17,
38, 39]. We state the main approximation result for interlaced polynomial lattice
rules from [17] for product weights given in [17, Eq. (3.18)].

Theorem 2 ([17, Theorem 3.2]) Let s ∈ N and N = bm for m ∈ N and b a prime
number. Let β = (β j ) j≥1 be a sequence of positive numbers and assume that
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β ∈ �p(N) for some p ∈ (0, 1]. Define the integer α = �1/p� + 1 ≥ 2. Suppose the
partial derivatives of the integrand F : [−1/2, 1/2]s → R satisfy the product bound

∀ y ∈ [−1/2, 1/2]s, ∀ν ∈ {0, . . . , α}s : |∂ν
y F( y)| ≤ cν!

s∏

j=1
β

ν j

j ,

for some constant c > 0 which is independent of s and of ν.
Then, there exists an interlaced polynomial lattice rule which can be constructed

with the CBC algorithm for product weights (γu)u⊂N that are given by γ∅ = 1 and

γu =
∏

j∈u

(
Cα,bbα(α−1)/2

α∑

ν=1
2δ(ν,α)βν

j

)
, u ⊂ N, |u| <∞, (17)

(δ(ν, α) = 1 if ν = α and zero otherwise) in O(αs N log(N )) operations such that

∀N ∈ N : |Is(F)− Qs,N (F)| ≤ Cα,β,b,p N−1/p,

where Cα,β,b,p <∞ is independent of s and N.

A numerical value for the Walsh constant Cα,b is as given in [17, Eq. (3.11)]. An
improved bound for Cα,b is derived in [50].

4.2 Parametric Regularity

For the applicability of higher order integration methods such as QMC for UQ, the
assumption on the partial derivatives with respect to the parameter y in Theorem 2
of the solution q( y) or of functionals composed with q( y) has to be verified. In [5]
the authors proved analytic dependence of the solution on the coefficient in the
complex valued setting. Hence, holomorphy is a direct consequence. By (5), (10),
and Lemma 1, for every truncation dimension s = (s0, s1, s2), the coefficients

u : D s
ρr
→ Xr

are holomorphic for r = 0, . . . , t , where

D s
ρr
:= {z = (z0, z1, z2) : zi ∈ C

si
, |zi

j | ≤ ρi
r, j/2, i = 0, 1, 2}.

As a composition of holomorphic mappings by [5, Corollary 5.1], the map

q : D s
ρr
→ K r+1

a+1 (D), r = 0, . . . , t,

is holomorphic and
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sup
s∈N3

sup
z∈D s

ρr

‖q(z)‖K r+1
a+1 (D) <∞, r = 0, . . . , t.

The following lemma is a version of [20, Lemma 3.1].

Lemma 3 ([20, Lemma 3.1]) For a Banach space B and ρ = (ρ j ) j≥1 ∈ (1,∞)N,
s ∈ N, let F : D s

ρ → B be holomorphic, where D s
ρ := {z ∈ C

s : |z j | ≤ ρ j , j =
1, . . . , s}. Then, for every y ∈ [−1, 1]N,

∀ν ∈ N
N

0 , |ν| <∞ : ‖∂ν
y F( y)‖B ≤ sup

z∈D s
ρ

{‖F(z)‖B}
∏

j≥1

ρ j

(ρ j − 1)ν j+1 .

The argument used in the proof of this lemma is based on the Cauchy integral formula
for holomorphic functions (see also [9, 11]).

Theorem 3 Let the uncertain coefficient u be parametrized according to (11) and
suppose that the assumption in (10) is satisfied for some τ ≥ 1. Let the assumptions
of Corollary 1 be satisfied. There exists a constant C > 0 such that for every ν =
(ν0, ν1, ν2), νi ∈ N

N

0 , |νi | <∞, and for every s = (s0, s1, s2), si ∈ N, i = 0, 1, 2,
� ≥ 0, 0 ≤ t ′ ≤ t ≤ k such that t + t ′ ≤ τ , θ ∈ [0, 1], and every y ∈ U,

|∂ν
y(G(q( y))− G(q̃ s,T � ( y)))|
≤ C‖G‖V ∗‖ f ‖V ∗ max

i=0,1,2 supj>si

{(ρi
0, j )

−θ }
∏

i=0,1,2

∏

j≥1
(ρi

0, j/2)
−νi

j (1−θ)

+ C‖G‖K t ′−1
a−1
‖ f ‖K t−1

a−1
M−(t+t ′)/d

�

∏

i=0,1,2

∏

j≥1
(ρi

t+t ′, j/2)
−νi

j .

Proof The estimate will follow by a twofold application of Lemma 3 and the holo-
morphic dependence of the solution on the parametric input. By the triangle inequal-
ity,

|G(q( y))− G(q̃ s,T � ( y))| ≤ |G(q( y))− G(q s( y))| + |G(q s( y))− G(q̃ s,T � ( y))|.

By the assumption in (10) and [5, Corollary 5.1], the mapping z �→ G(q(z))−
G(q s(z)) is holomorphic on D s

(ρ0)
1−θ and by Lemma 2 it holds that

sup
z∈D s

(ρ0)1−θ

|G(q(z))− G(q s(z))| ≤ C‖G‖V ∗‖ f ‖V ∗ max
i=0,1,2 supj>si

{(ρi
0, j )

−θ }.

Hence, by Lemma 3, where we scale the parameter vectors by a factor of 1/2

|∂ν
y(G(q( y))− G(q s( y)))|
≤ C‖G‖V ∗‖ f ‖V ∗ max

i=0,1,2 supj>si

{(ρi
0, j )

−θ }
∏

i=0,1,2

∏

j≥1
(ρi

0, j/2)
−νi

j (1−θ).
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Furthermore by the assumption in (10) and [5, Corollary 5.1], the mapping z �→
q s(z) is holomorphic from D s

ρ t
toK t+1

a+1 (D) and

sup
z∈D s

ρt

‖q(z)‖K t+1
a+1 (D) <∞.

Thus, by (14), there exists C > 0 such that for all s and all � holds

sup
z∈D s

ρt

|G(q s(z))− G(q̃ s,T � (z))| ≤ C‖G‖K t ′−1
a−1
‖ f ‖K t−1

a−1
M−(t+t ′)/d

� .

The second part of the estimate now also follows by Lemma 3. �

4.3 Multilevel QMC Error Estimates

Multilevel integration schemes offer a reduction in the overall computational cost,
subject to suitable regularity (see, e.g., [18, 28, 32]). For s�=0,...,L , N�=0,...,L , L ∈ N0,
define the multilevel QMC quadrature

QL(G(q̃ L)) :=
L∑

�=0
Q|s|�,N�

(G(q̃�)− G(q̃�−1)),

where we used the notation q̃� := q̃ s�,T � , � = 0, . . . , L , and q̃−1 := 0. The QMC
weights in (17) are obtained from (17) with input

β j ( j ′,i) := 2max{(ρi
0, j ′)

−(1−θ), (ρi
τ, j ′)

−1}, (18)

where τ = t + t ′ and j ( j ′, i) := 3 j ′ − i , j ′ ∈ N, i = 0, 1, 2, is an enumeration of
N with elements in N× {0, 1, 2}.
Theorem 4 Suppose that the weight sequence in (18) satisfies β = (β j ) j≥1 ∈ �p(N)

for some p ∈ (0, 1]. Then, with an interlaced polynomial lattice rule of order α =
�1/p� + 1 and product weights (17)with weight sequence (18) there exists a constant
C > 0 such that for s�=0,...,L , N�=0,...,L , L ∈ N0,

|E(G(q))− QL(G(q̃ L))| ≤ C

(
M−(t ′+t)/d

L + max
i=0,1,2 supj>si

{(ρi
0, j )

−1}

+
L∑

�=0
N−1/p

�

(
M−(t ′+t)/d

�−1 + max
i=0,1,2 sup

j>si
�−1

{(ρi
0, j )

−θ }
))

.

Proof By the triangle inequality, we obtain the deterministic error estimate
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|E(G(q))− QL(G(q̃ L))|

≤ |E(G(q))− I|sL |(G(q̃ L))| +
L∑

�=0
|(I|s�| − Q|s�|,N�

)(G(q̃�)− G(q̃�−1))|,

where |s�| = s0� + s1� + s2� . Then, Theorems 2 and 3 and (16) imply the claim. �

4.4 Error Versus Work Analysis

In this section we analyze the overall computational complexity of the multilevel
QMC algorithm with product weights for function systems (ψ i

j ) j≥1, i = 0, 1, 2.
For the analysis, we assume that the function systems (ψ i

j ) j≥1, i = 0, 1, 2, which
appear in the uncertainty parametrization have a multilevel structure with control
of the overlaps of the supports. Suppose for i = 0, 1, 2, there exist enumerations
ji : �i → N, where elements of λ ∈ �i are tuples of the form λ = (�, k), where
k ∈ �i

�. The index sets are related by�i =⋃�≥0({�} ∪ �i
�), i = 0, 1, 2. Also define

|λ| = |(�, k)| = � for every λ ∈ �i . We assume that | �i
� | = O(2d�), |supp(ψλ)| =

O(2−d�), λ = (�, k) ∈ �i , and there exists K > 0 such that for every x ∈ D and
every � ∈ N0, ∣∣{λ ∈ �i : |λ| = �, ψ i

λ(x) �= 0
}∣∣ ≤ K . (19)

Moreover, we assume that

ρi
r,λ � 2−|λ|(̂α−r), λ ∈ �i , r = 0, . . . , t, i = 0, 1, 2,

for α̂ > t + t ′. Note that ρi
r, j (λ) � j−(̂α−r)/d , j ≥ 1. We equilibrate the sparsity

contribution of the sequences (ρi
0,λ)λ∈�i and (ρi

t,λ)λ∈�i in the weight sequence in
(18). Hence, we choose θ = (t + t ′)/α̂. Recall that we assume f ∈ K t−1

a−1 (D) and
G ∈ K t ′−1

a−1 (D). Furthermore, with this choice of θ we also equilibrate the errors in
the multilevel QMC estimate from Theorem 4, where the truncation dimension s� is
still a free parameter. The error contributions in Theorem 4 are equilibrated for the
choice

si
� ∼ M�, i = 0, 1, 2. (20)

In conclusion, the overall error of multilevel QMC with L ∈ N0 levels satisfies for
every p > d/(̂α − (t + t ′)),

errorL = O

(
M−(t ′+t)/d

L +
L∑

�=0
N−1/p

� M−(t ′+t)d
�−1

)
. (21)
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We assume that we have a procedure at hand that approximates the solution of
a parameter instance up to an accuracy, which is consistent with the discretization
error, in computational cost

workPDE solver,� = O(M� log(M�)), � ≥ 0.

Recall from Sect. 3.2 that in the self-adjoint case with homogeneous Dirichlet bound-
ary conditions, i.e., bi ( y1) = 0 andΓ2 = ∅, this can be achieved by a relaxedRichard-
son iteration preconditioned by BPX or symmetric V-cycle as preconditioners. The
stiffness matrix has O(M�) non-zero entries by using a nodal FE basis. The finite
overlap property (19), the choice in (20), and the fact that the number of quadra-
ture nodes does not depend on the dimension of the FE space (see assumption of
Theorem 1 and Corollary 1) imply that the computation of every matrix entry has
computational costO(log(M�)). The total computational cost of the multilevel QMC
algorithm is the sum of the cost of the CBC construction, the cost of assembling the
stiffness matrix and the cost of approximating the solution of the linear systems
multiplied by the number of QMC points. Specifically,

workL = O

(
L∑

�=0
M�N� log(N�)+ N�M� log(M�)

)
,

where we remind the reader that by (20) the dimension of integration on each dis-
cretization level � in D is O(M�). Since the QMC convergence rate 1/p satisfies the
strict inequality χ := 1/p < (̂α − t + t ′)/d, also the rate χ(1+ ε) is admissible for
sufficiently small ε > 0. This way the sample numbers can be reduced to N 1/(1+ε)

� ,
which allows us to estimate N 1/(1+ε)

� log(N�) ≤ N 1/(1+ε)

� N ε/(1+ε)

� (1+ ε)/(eε) ≤
N�(1+ ε)/(eε), where we used the elementary estimate log(N ) ≤ N ε′/(eε′) for
every N ≥ 1, ε′ > 0. Thus, we obtain the estimate of the work

workL = O

(
L∑

�=0
M� log(M�)N�

)
. (22)

By [25, Lemma 4.9], it holds that M� = O(2d�). The sample numbers are now
obtained by optimizing the error versus the computational work, cp. [34, Sect. 3.7].
For the error and work estimates in (21) and in (22), sample numbers are derived in
[22, Sect. 6]. Specifically, by [22, Eqs. (26) and (27)],

N� :=
⌈

N0(M−1−(t+t ′)/d
� log(M�)

−1)p/(1+p)
⌉

, � = 1, . . . , L , (23)

where
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N0 :=

⎧
⎪⎨

⎪⎩

M (t+t ′)p/d
L if d < p(t + t ′),

M (t+t ′)p/d
L log(ML)p(p+2)/(p+1) if d = p(t + t ′),

M (1+(t+t ′)/d)p/(p+1)
L log(ML)p/(p+1) if d > p(t + t ′).

(24)

The corresponding work satisfies (see for example [22, p. 396])

workL =

⎧
⎪⎨

⎪⎩

O(M (t+t ′)p/d
L ) if d < p(t + t ′),

O(M (t+t ′)p/d
L log(ML)p+2) if d = p(t + t ′),

O(ML log(ML)) if d > p(t + t ′).

We summarize the preceding discussion in the following theorem stating the ε-
complexity of the multilevel QMC algorithm.

Theorem 5 For p ∈ (d/(̂α − (t + t ′)), 1], assuming d < α̂ − (t + t ′), an error
threshold ε > 0, i.e.,

|E(G(q))− QL(G(q̃ L))| = O(ε)

can be achieved with

workL =

⎧
⎪⎨

⎪⎩

O(ε−p) if d < p(t + t ′),
O(ε−p log(ε−1)p+2) if d = p(t + t ′),
O(ε−d/(t+t ′) log(ε−1)) if d > p(t + t ′).

5 Bayesian Inverse UQ

The preceding considerations pertained to so-called forward UQ for the ADR
problem (1) with uncertain input data u = ((ai j ), (b j ), c) taking values in certain
subsets of the function spaces Xm in (3). The goal of computation is the efficient
evaluation of ensemble averages, i.e. the expected response over all parametric inputs
u as in (11) with respect to a probability measure on the parameter domains U i .

In Bayesian inverse UQ, we are interested in similar expectations of a QoI of the
forward response of the ADR PDE, conditional to noisy observations of functionals
of the responses. Again, a (prior) probability measure on the uncertain (and assumed
non-observable) parametric ADR PDE inputs u in (11) is prescribed. As explained in
[13, 43], in this setting Bayes’ theorem provides a formula for the conditional expec-
tation as a high-dimensional, parametric deterministic integral which, as shown in
[15, 18, 42], is amenable to deterministic HoQMC integration affording convergence
rates which are superior to those of, e.g., MCMC methods [21, 30].
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5.1 Formulation of the Bayesian Inverse Problem

Specifically, assume at hand noisy observations of the ADR PDE response q =
(L (u))−1 f subject to additive Gaussian observation noise η, i.e.

δ = G(q)+ η. (25)

In (25),q denotes the response of the uncertain inputu,G = (G1, . . . , G K ) is a vector
of K (linear) observation functionals, i.e., Gi ∈ V ∗, the additive noise η is assumed
centered and normally distributed with positive covariance Γ , i.e.,η ∼ N (0, Γ ),
and the data δ ∈ R

K is supposed to be available. We introduce the so-called prior
measure π on X0 as the law of U 
 y �→ u( y) ∈ X0 with respect to the uniform
product measure d y on U . The density of the posterior distribution with respect to
the prior is given by [13, Theorem 14]

U 
 y �→ 1

Z
exp (−ΦΓ (q( y); δ)) , (26)

where the negative log-likelihood ΦΓ is given by

ΦΓ (q( y); δ) := 1

2
(δ − G(q( y))) Γ −1(δ − G(q( y))) ∀ y ∈ U.

Since (6) implies sup y∈U ‖q( y)‖V <∞, the normalization constant in (26) satisfies

Z :=
∫

X0

exp (−ΦΓ (q; δ)) π(du) =
∫

U
exp (−ΦΓ (q( y); δ)) d y > 0,

wherewe recall that q = L (u)−1 f . The posteriormeasurewill be denoted byπδ and
the posterior with respect to q̃ s,T � will be denoted by π̃ δ

s,T �
. The QoIs, being assumed

bounded linear functionals applied to q ∈ V (which could beweakened [21]), admit a
unique representer φ ∈ V ∗. For any QoI φ ∈ V ∗, denote the expectation with respect
to the posterior of φ by

E
πδ

(φ) :=
∫

X0

φ(q)πδ(du) = 1

Z

∫

U
φ(q( y)) exp (−ΦΓ (q( y); δ)) d y.

Here,ΦΓ (q( y); δ) is Lipschitz continuous with respect to δ and with respect to q( y),
y ∈ U . As a consequence of (16), for every s ∈ N

3 and � ≥ 0,

|Eπδ

(φ)− E
π̃ δ

s,T � (φ)| ≤ C

(
M−(min{t,k}+min{t ′,k})/2

� + max
i=0,1,2 supj>si

{(ρi
0, j )

−1}
)

, (27)
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where we also used that ΦΓ (q( y); δ) and ΦΓ (q̃ s,T � ( y); δ) are uniformly upper
bounded with respect to y ∈ U . See also the discussion in [16, Sect. 3.3]. Here,
the abstract assumptions made in [16, Sect. 3.3], stemming from [13], may be veri-
fied concretely. The estimate in (27) is not just a restatement of the results of [15, 16].
Here, a general parametric ADR forward problem on polygonal domains is consid-
ered and higher order FE convergence on locally refined triangulationsT� is achieved
based on regularity in weighted spaces of Kondrat’ev type. The corresponding FE
approximation results are proved in Sect. 7.

5.2 Multilevel HoQMC-FE Discretization

The expectation with respect to the posterior measure π̃ δ
s,T �

is an integral over a
|s|-dimensional parameter space and may therefore be approximated by multilevel
QMC. We recall the FE spaces V k

� based on the regular, simplicial triangulations
T� and suppose given a sequence of s� of dimension truncations, � = 0, . . . , L ,
where L ∈ N is the maximal discretization level. The error analysis will be along the
lines of [15, Sect. 4], see also [43, 44]. Following the notation in [15], we define for
� = 0, . . . , L ,

E
π̃ δ

s�,T � (φ) =
∫
[−1/2,1/2]|s| φ(q̃ s�,T � ( y))Θ�( y)d y∫

[−1/2,1/2]|s| Θ�( y)d y
=: Z ′�

Z�

,

where Θ�( y) := exp(−ΦΓ (q̃ s�,T � ( y); δ)). In [15, Sect. 4.2], multilevel QMC ratio
and splitting estimators were proposed for the deterministic approximation of
Z ′L/ZL . They are, for sequences of numbers of QMC points (N�)�=0,...,L and of
dimension truncations (s�)�=0,...,L , defined by

QL ,ratio := QL(φ(q̃ L)ΘL)

QL(ΘL)
(28)

and, with the notation |s�| = s0� + s1� + s2� ,

QL ,split := Q|s0|,N0(φ(q̃0)Θ0)

Q|s0|,N0(Θ0)
+

L∑

�=1

Q|s�|,N�
(φ(q̃�)Θ�)

Q|s�|,N�
(Θ�)

− Q|s�|,N�
(φ(q̃�−1)Θ�−1)

Q|s�|,N�
(Θ�−1)

.

(29)
The error analysis of these estimators requires that the integrands satisfy cer-

tain parametric regularity estimates. In Sect. 4.2, parametric regularity estimates of
q( y)− q̃ s,T � ( y) were shown using analytic continuation. The integrands φ(q̃�)Θ�

andΘ� depend analytically on q̃� and are, as compositions and products of holomor-
phic mappings with compatible domains and ranges, again holomorphic.
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The consistency errors of the ratio and splitting estimators are analyzed in [15,
Sects. 4.3.2 and 4.3.3] in the setting of globally supported function systems.However,
the proofs of [15, Theorem 4.1 and Theorem 4.2] are applicable.

Proposition 3 Let the assumptions and the setting of steering parameters θ , p, t ′,
t , s�, N�, M�, � = 0, . . . , L of QL in Theorem 4 be satisfied. Then,

|Eπδ

(φ)− QL ,ratio| ≤ C

(
M−(t ′+t)/d

L + max
i=0,1,2 supj>si

{(ρi
0, j )

−1}

+
L∑

�=0
N−1/p

�

(
M−(t ′+t)/d

�−1 + max
i=0,1,2 sup

j>si
�−1

{(ρi
0, j )

−θ }
))

.

Proof The estimate (6) and Theorem 1 imply that ΦΓ (q̃ s�,T � ( y); δ) can be upper
bounded uniformly with respect to y as follows. There exists a constant C0 > 0,
which does not depend on L , such that QL(ΘL) ≥ C0. Now, the assertion follows
as [15, Theorem 4.1]. As mentioned above, φ(q̃�)Θ� may be analytically extended
to a suitable polydisc as in the proof of Theorem 3. The same line of argument used
in the proof of [15, Theorem 4.1] may be applied here. Further details are left to the
reader. �

The error estimate from Proposition 3 for Bayesian estimation can also be shown
for the splitting estimator QL ,split along the lines of the proof of [15, Theorem 4.2].

Since the posterior density depends analytically on the response q, the QMC sam-
ple numbers for ratio and splitting estimators QL ,ratio and QL ,split are the same as those
for forward UQ in (23) and (24). In particular, also the same ε-complexity estimates
from Theorem 5 hold under the same assumptions on the steering parameters.

Remark 2 Forward and Bayesian inverse UQ for uncertain domains by pullbacks
to a polygonal nominal or reference domain is a straightforward extension of the
presented theory. It requires the extension of the PDE regularity theory to parametric
right hand sides f ( y). Since this dependence is inherited by the parametric solution
due to linearity, we did not explicitly consider it for the sake of a concise presentation,
but refer to [2, 24, 29] for the numerical analysis of domain uncertainty quantification
analysis with QMC.

6 Conclusions

We discussed forward and Bayesian inverse UQ by multilevel QMC for general
ADR problems in polygons allowing the input coefficients and the response, i.e.,
the solution to the ADR problem, to be singular near corners of the domain. A wide
class of uncertain input coefficients is admissible to our theory. The coefficients are
assumed to depend holomorphically on a series expansion with uncertain, uniformly
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distributed parameters and a function system with local support. Locally supported
representation systems are well-known to allow product weights in higher-order
QMC integration [22, 23]. Here, we generalized this principle from isotropic dif-
fusion problems to general ADR problems with not necessarily affine-parametric
uncertainty in all coefficients of the ADR forward model. The presently developed
setting also allows extension to UQ for random domains. Regularity of the uncertain
input coefficients and of the response in scales of Kondrat’ev spaces and sparsity
are utilized in the presented multilevel QMC algorithm by combining higher order
QMC in the parametric domain and higher order FEM with mesh refinement in the
physical domain. The overall approximation scheme is fully discrete, since also the
impact of numerical integration in the FEM is analyzed here (to our knowledge for
the first time). In the present setting, general ADR problems with possibly singu-
lar coefficients at the corners (as arise, e.g., from non-stationary covariance models
with elliptic precision operators in the physical domain) are admissible. The analy-
sis is shown to extend to the corresponding Bayesian inverse problems, where the
higher order QMC-FE convergence rates from the forward UQ analysis are proved
to be preserved, and to scale linearly with the number of parameters under a-priori,
data-independent truncation of the prior.

7 Proofs

We provide proofs of several results in the main text. They were postponed to this
section to increase readability of the main text.

7.1 Numerical Integration

In the following proofs, we require a nodal interpolant. As preparation, for k ≥ 3,
we introduce certain subsets of T

T k ′ :=
⎧
⎨

⎩K ∈ T \T k ′−1 : K ∩
⋃

K ′∈T k′−1
K ′ �= ∅

⎫
⎬

⎭ , k ′ = 2, . . . , k − 1,

where T 1 := {K ∈ T : K ∩ C �= ∅} and T k := T \T k−1. For k = 2, T 2 :=
T \T 1 and T 1 is defined as above. For k = 1, T 1 := T . We define a FE space
such that in the elements abutting at a vertex, P1 FE are used and for the remaining,
“interior” elements, Pk FE are used such that the polynomial degree of neighboring
elements only differs by one, i.e.,

Ṽ k
T := {v ∈ V : v|K ∈ Pk ′(K ), K ∈ T k ′ , k ′ = 1, . . . , k}.
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The potential change of the polynomial degree in neighboring elements near the
singular points constitutes a difficulty in defining a nodal interpolant for k ≥
2. Let K1 ∈ T k ′−1, K2 ∈ T k ′ be neighboring triangles such that K1 ∩ K2 =: e
denotes the common edge. To avoid a discontinuity across the edge e, the usual
nodal interpolant I k ′

K2
may need to be corrected. For v ∈ C0(K 2), the discontinuity

(I k ′
K2

v|e − I k ′−1
e v) is equal to zero at the endpoints of the edge e. By [46, Lemma4.55],

there exists (I k ′
K2

v|e − I k ′−1
e v)lift,k ′,e ∈ P

k ′(K2) such that (I k ′
K2

v|e − I k ′−1
e v)lift,k ′,e =

(I k ′
K2

v|e − I k ′−1
e v) on the edge e, (I k ′

K2
v|e − I k ′−1

e v)lift,k ′,e = 0 on the remaining edges
of K2, and it holds

‖(I k ′
K2

v|e − I k ′−1
e v)lift,k ′,e‖2H 1(K2)

≤ ChK2‖(I k ′
K2

v)|e − I k ′
e v|e‖2H 1(e)

≤ C ′h2k ′−1
K2

|I k ′
e v|2H k′ (e) ≤ C ′h2k ′−2

K2
|I k ′

K2
v|2H k′ (K2)

,

(30)
where we applied the approximation property in dimension d − 1 = 1, cp. [10, The-
orem 3.1.6], the shape regularity ofT , and the fact that k ′-th order partial derivatives
of I k ′

K2
v are constant on K2.

We will define an interpolant IT : K k+1
a+1 → Ṽ k

T ⊂ V k
T by

IT v =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

I 1K v if K ∈ T 1,

I k ′
K v − (I k ′

K v|e − I k ′−1
e v)lift,k ′,e if K ∈ T k ′ , e := K ∩T k ′−1 �= ∅,

k ′ = 2, . . . , k,

I k
K v if K ∈ T k, K ∩T k−1 = ∅,

where I k ′
K is the usual nodal interpolant of order k ′ ∈ N on the element K and we

introduced the notation T k ′ :=⋃K ′∈T k′ K ′, k ′ = 1, . . . , k. This first paragraph of
Sect. 7.1 originates from [27, Sect. 3.2], where also a proof of Proposition 2 is given.

Proposition 4 Suppose that for some integer k ∈ N, k ′ ∈ N0,

Ek
K̂
(φ̂) = 0, ∀φ̂ ∈ Pk ′+k−1(K̂ ).

Then, there exists a constant C > 0 such that for every K ∈ T , a ∈ W k,∞(K ),
v ∈ Pk(K ), w ∈ Pk ′(K ),

|Ek
K (avw)| ≤ Chk

K

⎛

⎝
k∑

j=0
|a|W k− j,∞(K )|v|H j (K )

⎞

⎠ ‖w‖L2(K ).

Proof This is a version of [10, Theorem 4.1.4]. The claimed estimate follows by
[10, Eqs. (4.1.47) and (4.1.46), Theorems 3.1.2 and 3.1.3]. We note that we did not
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assume here v ∈ Pk−1(K ), which results in the sum over j = 0, . . . , k. However, if
v ∈ Pk−1(K ) for some k ≥ 1, then |v|H k (K ) = 0. �

Lemma 4 Let K ∈ T be such that ci ∈ K , i ∈ {1, . . . , J }. There exists a constant
C > 0 independent of K such that for every v ∈ P1(K ) satisfying v(ci ) = 0

‖r−1D v‖L∞(K ) ≤ C‖r−1D v‖L2(K ) det(BK )−1/2.

Proof We will prove the main step on the reference element K̂ . It is easy to see that
‖r−1D v‖L∞(K ) = ‖̂r−1D v̂‖L∞(K̂ ) and ‖̂r−1D v̂‖L2(K̂ ) = ‖r−1D v‖L2(K ) det(BK )−1/2.

Suppose that K̂ := {̂x ∈ (0, 1)2 : 0 < x̂1 + x̂2 < 1} and wlog. that F−1K (ci ) = 0.
The space {̂v ∈ P1(K̂ ) : v(0) = 0} is spanned by the monomials {̂x1, x̂2}. By [10,
Theorem 3.1.3] and the shape regularity of T , there exist constants C, C ′ >
0 independent of K such that ‖BK‖ ≤ ChK and ‖B−1K ‖ ≤ C ′h−1K , where ‖ · ‖
denotes the operator matrix norm induced by the Euclidean norm ‖ · ‖2. Note that
mini=1,2{

∫
K̂

|̂xi |
‖x̂‖2 dx̂} =: C ′′ > 0. This implies by elementary manipulations and the

Cauchy–Schwarz inequality

sup
x̂∈K̂

‖x̂‖2
‖BK x̂‖2 = ‖B−1K ‖ ≤ 2

C ′

C ′′hK

∫

K̂

|̂xi |
‖x̂‖2 dx̂ ≤ 2

CC ′

C ′′

∫

K̂

|̂xi |
‖BK‖‖x̂‖2 dx̂

≤ 21/2
CC ′

C ′′

(∫

K̂

|̂xi |2
‖BK x̂‖22

dx̂

)1/2
.

(31)
On K̂ , r̂D (̂x) = rD(FK (̂x)) ∼ ‖BK x̂‖2. Let v̂ = v̂1 x̂1 + v̂2 x̂2. Thus, by (31) there
exist constants C, C ′ > 0 independent of K such that

‖̂r−1D v̂‖L∞(K ) ≤ C

(
|̂v1| sup

x̂∈K̂

|̂x1|
‖BK x̂‖2 + |̂v2| supx̂∈K̂

|̂x2|
‖BK x̂‖2

)
≤ C ′
(∫

K̂

|̂v(̂x)|2
‖BK x̂‖22

dx̂

)1/2
.

The proof of the lemma is complete, since r̂D (̂x) ∼ ‖BK x̂‖2 on K̂ . �

Proposition 5 Let K ∈ T be such that ci ∈ K , for some i ∈ {1, . . . , J }. Let E1
K (·)

denote the error from a one point quadrature in the barycenter x̄ of K .
Let δ1, δ2, δ3, δ4 ∈ [0, 1). Then there exists a constant C > 0 such that for every
(r δ3+δ4

D a) ∈ L∞(K ) satisfying r δ1+δ2
D ‖∇a‖2 ∈ L∞(K ) such that point evaluation at

x̄ is well defined and for every v, w ∈ Pk(K ) for some k ≥ 0

|E1
K (avw)|
≤ Ch1−δ1

K ‖r δ1+δ2
D ‖∇a‖2‖L∞(K )‖v‖L2(K )‖r−δ2

D w‖L2(K )

+ Ch1−δ3
K ‖r δ3+δ4

D a‖L∞(K )

(
|v|H 1(K )‖r−δ4

D w‖L2(K ) + ‖r−δ4
D v‖L2(K )|w|H 1(K )

)
.
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If additionally v, w ∈ P1(K ) satisfy that v(ci ) = 0 = w(ci ), the above assumption
can be relaxed to r δ3+i

D a ∈ L∞(K ) and r δ1+1+i
D ‖∇a‖2 ∈ L∞(K ), i = 0, 1, and it

holds that

|E1
K (avw)| ≤ Ch1−δ1

K ‖r δ1+1+i
D ‖∇a‖2‖L∞(K )‖r−i

D v‖L2(K )‖r−1D w‖L2(K )

+ Ch1−δ3
K ‖r δ3+i

D a‖L∞(K )

(
|v|H1(K )‖r−i

D w‖L2(K ) + ‖r−i
D v‖L2(K )|w|H1(K )

)
.

Proof We observe that

|E1
K (avw)| ≤

∫

K
|a(x)− a(x̄)||v(x)w(x)|dx

+
∫

K
|a(x̄)| (|v(x)− v(x̄)||w(x)| + |v(x̄)||w(x)− w(x̄)|) dx .

(32)

For any f ∈ W 1,∞(K̃ ) and any x ∈ K̃ (K̃ a compact subset of K ),

| f (x)− f (x̄)| ≤ sup
x̃∈γx,x̄ ([0,1])

{‖∇ f (̃x)‖2}‖x − x̄‖2,

where γx,x̄ is a suitable smooth path such that γx,x̄ (1) = x and γx,x̄ (0) = x̄ . We will
estimate the two integrals in (32) separately. Since ci ∈ K , the weight function is
locally rD(x) � ‖x − ci‖2. Due to the radial monotonicity of x �→ ‖x − ci‖2, γx,x̄

can be chosen such that

inf
x̃∈γx,x̄ ([0,1])

{‖x̃ − ci‖2} ∈ {‖x − ci‖2, ‖x̄ − ci‖2}.

Hence, there exists a constant C > 0 independent of K such that for every x ∈ K

|a(x)− a(x̄)|
‖x − x̄‖2 min{r δ1+δ2

D (x), r δ1+δ2
D (x̄)} ≤ C‖r δ1+δ2

D ‖∇a‖2‖L∞(K ). (33)

Since all norms on Pk(K̂ ) are equivalent, there exists a constant C > 0 indepen-
dent of K such that ‖v‖L∞(K ) = ‖̂v‖L∞(K̂ ) ≤ C ‖̂v‖L2(K̂ ) = C‖v‖L2(K ) det(BK )−1/2.
Moreover, since there exists a constant C > 0 independent of K such that for every
x ∈ K , rD(x) ≤ CrD(x̄), there exists a constant C > 0 independent of K such that

‖1/min{r δ1
D , r δ1

D (x̄)}‖L2(K ) ≤ Ch1−δ1
K .

Similarly,‖w/min{r δ2
D , r δ2

D (x̄)}‖L2(K ) ≤ C‖r−δ2
D w‖L2(K ). It also holds that‖x − x̄‖2 ≤

ChK and det(BK ) ∼ h2
K . Hence, for constants C, C ′, C ′′ > 0 independent of K ,
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∫

K
|a(x)− a(x̄)||v(x)w(x)|dx

≤ C‖r δ1+δ2
D ‖∇a‖2‖L∞(K )

∫

K
|v(x)| |w(x)|

r δ2
D

‖x − x̄‖2
r δ1

D

dx

≤ C ′hK‖r δ1+δ2
D ‖∇a‖2‖L∞(K )‖v‖L∞(K )‖r−δ2

D w‖L2(K )‖r−δ1
D ‖L2(K )

≤ C ′′h1−δ1
K ‖r δ1+δ2

D ‖∇a‖2‖L∞(K )‖v‖L2(K )‖r−δ2
D w‖L2(K ).

(34)

On K such that K contains a corner, there exists a constant Ĉ > 0 that does not
depend on K such that ĈrD(x) ≤ rD(x̄) for every x ∈ K . For the first summand in
the second integral in (32), we obtain similarly for constants C, C ′ > 0 independent
of K ,

∫

K
|a(x̄)||v(x)− v(x̄)||w(x)|dx ≤ Ĉ

∫

K

r δ3+δ4
D (x̄)

r δ3+δ4
D (x)

|a(x̄)||v(x)− v(x̄)||w(x)|dx

≤ ‖r δ3+δ4
D a‖L∞(K )

∫

K

|v(x)− v(x̄)|
‖x − x̄‖2

|w(x)|
r δ4

D (x)

‖x − x̄‖2
r δ3

D (x)
dx

≤ C‖r δ3+δ4
D a‖L∞(K )‖∇v‖L∞(K )

∫

K

|w(x)|
r δ4

D (x)

‖x − x̄‖2
r δ3

D (x)
dx

≤ C ′h1−δ3
K ‖r δ3+δ4

D a‖L∞(K )|v|H1(K )‖r−δ4
D w‖L2(K )

using that there are constants C̃, C̃ ′, C̃ ′′>0 independent of K such that ‖∂xi v‖L∞(K ) ≤
C̃h−1K ‖∂x̂i v̂‖L∞(K̂ ) ≤ C̃ ′h−1K ‖∂x̂i v̂‖L2(K̂ ) ≤ C̃ ′′‖∂xi v‖L2(K ) det(BK )−1/2.Alsonote that
by shape regularity of the triangulations, det(BK ) ∼ h2

K and by using polar coordi-
nates

∫
K ‖x − x̄‖2r−δ3

D (x)dx ∼ h2−δ3 , where we used that K contains a corner of
the domain D. The second summand in the second integral in (32) is estimated
analogously.

The second estimate follows since ‖r−1D v‖L∞(K ) <∞ and ‖r−1D w‖L2(K ) <∞,
which allows us to conclude similarly as in (34)

∫

K
|a(x)− a(x̄)||v(x)w(x)|dx ≤ C‖r δ1+1+i

D ‖∇a‖2‖L∞(K )

∫

K

|v(x)|
r i

D(x)

|w(x)|
rD(x)

‖x − x̄‖2
r δ1

D (x)
dx

≤ C ′h2−δ1
K ‖r δ1+2

D ‖∇a‖2‖L∞(K )‖r−i
D v‖L∞(K )‖r−1D w‖L2(K )

≤ C ′′h1−δ1
K ‖r δ1+2

D ‖∇a‖2‖L∞(K )‖r−i
D v‖L2(K )‖r−1D w‖L2(K ),

where we used that ‖r−1D v‖L∞(K ) ≤ C̃h−1K ‖r−1D v‖L2(K ) for a constant C̃ > 0 that
neither depends on K nor on v, which follows by Lemma 4. Also the constants
C, C ′, C ′′ > 0 neither depend on K nor on v. �

Proof of Theorem 1. The proof generalizes [10, Theorem 4.1.6] to the case of local
mesh refinement and singularities of the solution and the coefficients. Throughout
this proof C, C ′ > 0 denote generic constants that neither depend on elements of the
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triangulation T nor on functions on D. We recall the first Strang lemma, see for
example [10, Theorem 4.1.1]

‖q − q̃T ‖V

≤ umax

umin
inf

vT ∈V k
T

⎧
⎨

⎩‖q − vT ‖V + sup
0 �=wT ∈V k

T

|A(u)(vT , wT )− Ã(u)(vT , wT )|
‖wT ‖V

⎫
⎬

⎭ ,

where umax and umin are continuity and coercivity constants of A(u), Ã(u). The right
hand side of the first Strang lemmawill be upper bounded by choosing vT := IT q ∈
Ṽ k
T .
We will treat the second, first, and zero order terms separately and start with

the second order term.We decompose A(u) =∑2
i, j=1 A(ai j )+∑4

j=1 A(b j )+ A(c)

and Ã(u) =∑2
i, j=1 Ã(ai j )+∑4

j=1 Ã(b j )+ Ã(c). As in the proof of [27, Proposi-
tion 3.2.1], we discuss the error contributions elementwise. There, we distinguish
several cases, K ∈ T 1, K ∈ T k ′ and K ∩T k ′−1 �= ∅, k ′ = 2, . . . , k, and K ∈ T k

and K ∩T k−1 = ∅. We observe

|
2∑

i, j=1
A(ai j )(IT q, wT )−

2∑

i, j=1
Ã(ai j )(IT q, wT )|

≤
∑

K∈T 1

2∑

i, j=1
|E1

K (ai j∂ j I 1K q∂i w
T )| +

∑

K∈T k ,K∩T k−1=∅

2∑

i, j=1
|Ek

K (ai j∂ j I k
K q∂i w

T )|

+
k∑

k ′=2

∑

K∈T k′ ,e:=K∩T k′−1 �=∅

2∑

i, j=1
|Ek ′

K (ai j∂ j (I k ′
K q − (I k ′

K q|e − I k ′−1
e q)lift,k ′,e)∂i w

T )|.

By (12), for K ∈ T 1,
h1−δ

K ≤ Ch(1−δ)/(1−β) ≤ Chk . (35)

For K ∈ T 1, by Proposition 5 (with δ1 = δ3 = δ, δ2 = δ4 = 0) and (35)

|E1
K (ai j∂ j I 1K q∂i w

T )| ≤ Chk‖ai j‖W 1,∞
δ (K )‖I 1K q‖H 1(K )‖wT ‖H 1(K )

and [46, Lemma 4.16] implies with the triangle inequality the existence of a constant
C > 0 (depending only on the shape regularity of the triangulations {T k}k≥0) such
that for every q ∈ H 2

δ (K ) holds ‖I 1K q‖H 1(K ) ≤ C(‖q‖H 1(K ) + h1−δ
K |q|H 2

δ (K )). For

K ∈ T k such that K ∩T k−1 = ∅, by Proposition 4
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|Ek
K (ai j∂ j I k

K q∂i w
T )|

≤ Chk
k−1∑

�=0
inf
x∈K

rβ(k−�)

D (x)|ai j |W k−�,∞(K ) inf
x∈K

rβ�

D (x)|I k
K q|H �+1(K )|wT |H 1(K ).

(36)
It follows directly from (12),

hK ≤ Ch1/(1−(β−α))rα/(1−(β−α))

D (x) ∀x ∈ K ,∀α ∈ (0, β).

We choose α := (1− β)(k ′ − 2+ δ)/(1− δ) and apply (1− δ)/(1− β) > k,

hK ≤ Chk/(k ′−1)r (δ+k ′−2)/(k ′−1)
D (x) ∀x ∈ K , k ′ = 2, . . . , k. (37)

For K ∈ T k ′ such that e := K ∩T k ′−1 �= ∅, k ′ = 2, . . . , k, byProposition4 and (37)

|Ek ′
K (ai j∂ j (I k ′

K q − (I k ′
K q|e − I k ′−1

e q)lift,k ′,e)∂i w
T )|

≤ Chk ′
K

k ′−1∑

�=0
|ai j |W k′−�,∞(K )|I k ′

K q − (I k ′
K q|e − I k ′−1

e q)lift,k ′,e|H �+1(K )|wT |H 1(K )

≤ C ′hk
k ′−1∑

�=0
inf
x∈K

r δ+k ′−1
D (x)|ai j |W k′−�,∞(K )

× |I k ′
K q − (I k ′

K q|e − I k ′−1
e q)lift,k ′,e|H �+1(K )|wT |H 1(K ).

Note that (1− δ)/(1− β) > k implies that βk ′ > δ + k ′ − 1, k ′ = 1, . . . , k. We
observe with [10, Theorem 3.1.6]

|I k
K q|H �+1(K ) ≤ C(|q|H �+1(K ) + hk ′−1

K |q|H k′+1(K )), � = 0, . . . , k ′ − 1,

and by a similar argument as in the proof of [27, Proposition 3.2.1] for � =
0, . . . , k ′ − 1,

|I k ′
K q − (I k ′

K q|e − I k ′−1
e q)lift,k ′,e|H �+1(K ) ≤ C(|q|H �+1(K ) + hk ′−1

K |q|H k′+1(K )).

By the Cauchy–Schwarz inequality we conclude with the previous inequalities

|
2∑

i, j=1
A(ai j )(IT q, wT )−

2∑

i, j=1
Ã(ai j )(IT q, wT )|

≤ Chk
2∑

i, j=1
‖ai j‖W k,∞

δ (K )‖q‖K k+1
a+1 (D)‖wT ‖H 1(D).
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The argument for the advection and reaction terms
∑4

j=1 A(b j ), A(c) is simi-
lar. Here, the additional weight rD for the advection terms and r2D for the reaction
term needs to be accommodated. For the advection term, by the second part of
Proposition 5 (with δ1 = δ3 = δ, i = 0) and K ∈ T1 for j = 1, 2

|E1
K (b j (∂ j I 1K q)wT )| ≤ Chk‖r δ

Db j‖W 1,∞
δ (K )

‖I 1K q‖H1(K )

(
‖r−1D wT ‖L2(K ) + |wT |H1(K )

)

(38)
and for j = 3, 4

|E1
K (b j I 1K q∂ j w

T )| ≤ Chk‖r δ
Db j‖W 1,∞

δ (K )

(
‖r−1D I 1K q‖L2(K ) + |I 1K q|H1(K )

)
‖wT ‖H1(K ).

For the interior elements K ∈ T \T 1, the additionalweight rD canbe accommodated
by compensating it with ‖r−1D wT ‖L2(K ) as in (38) for j = 1, 2. If the partial derivative
is on the trial function, i.e., j = 3, 4, the order of the Sobolev semi-norm as for
example in (36) is reducedbyone to |I k

K q|H �(K ).Here, theweight r
β(k−�+1)
D is assigned

to |b j |W k−�,∞(K ), if � ≥ 1. For � = 0, the additional weight rD can be compensated by
‖r−1D I k

K q‖L2(K ). We recall the Hardy inequality from (15), i.e., there exists a constant
C > 0 such that for every v ∈ V

‖r−1D v‖L2(D) ≤ C‖‖∇v‖2‖L2(D).

Thus, ‖r−1D wT ‖L2(D) ≤ C‖wT ‖V and ‖r−1D I k
K q‖L2(D) ≤ C‖I k

K q‖V . The rest of the
proof for the advection terms is analogous to the diffusion terms, which were proved
in detail. The argument for the reaction term uses the second part of Proposition 5
with i = 1. We omit the details. �

Proof of Corollary 1 Throughout this proofC, C ′ > 0 denote generic constants that
depend on the shape regularity of the triangulationT , but are independent of element
sizes or of functions on D. For given uncertain input u, the solution g ∈ V to the
adjoint problem is characterized by

A(u)(w, g) = 〈G, w〉V ∗,V ∀w ∈ V .

The respective FE approximation gT is characterized by A(u)(wT , g − gT ) = 0
for every wT ∈ V k

T . In the superconvergence analysis, we employ the usual duality
argument as outlined in the proof of [4, Theorem 3.6]. By a version of [4, Lemma 3.1]
for non-symmetric bilinear forms A(u)(·, ·),

G(q)− G(qT ) = A(u)(q − qT , g − gT )+ Ã(u)(q̃T , gT )− A(u)(q̃T , gT ).

As in the previous proof, we begin by estimating the diffusion terms related to ai j .
By a similar argument that we used to show (36) also using Proposition 5, we obtain
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| Ã(ai j )(q̃
T , gT )− A(ai j )(q̃

T , gT )|

≤ Chk+k ′
(
∑

K∈T 1

‖ai j‖W 1,∞
δ (D)‖q̃T ‖H 1(K )‖gT ‖H 1(K )

+
∑

K∈T \T 1

2∑

i, j=1

k+k ′−1∑

�=0
inf
x∈K

rβ(k+k ′−�)

D (x)|ai j |W k+k′−�,∞(K ) inf
x∈K

rβ�

D |∂ j q̃
T ∂i g

T |H �(K )

⎞

⎠ .

Note that (∂ j q̃T )|K , (∂i gT )|K ∈ Pk−1(K ), which implies that

∂α(∂ j q̃
T )|K = 0 = ∂α(∂i g

T )|K ∀α ∈ N
2
0, |α| > k − 1.

By the product rule and by the Cauchy–Schwarz inequality

|∂ j q̃
T ∂i g

T |H �(K ) ≤ C
�∑

�′=0
|∂ j q̃

T |H �′ (K )|∂i g
T |H �−�′ (K ).

By the inverse inequality and the element-wise approximation property of the
nodal interpolant, e.g. [10, Theorem 3.1.6] we observe that there exist constants
C, C ′ > 0 such that for every K ∈ T \T 1,

|∂ j q̃
T |H �′ (K ) ≤ |q|H �′+1(K ) + |∂ j q − I k

K ∂ j q|H �′ (K ) + |I k
K ∂ j q − ∂ j q̃

T |H �′ (K )

≤ C |q|H �′+1(K ) + Ch−�′
K ‖I k

K ∂ j q − ∂ j q̃
T ‖L2(K )

≤ C |q|H �′+1(K ) + Ch−�′
K (‖I k

K ∂ j q − ∂ j q‖L2(K ) + ‖∂ j q − ∂ j q̃
T ‖L2(K ))

≤ C ′(|q|H �′+1(K ) + h−�′
K |q − q̃T |H 1(K )).

Similarly, it holds that |∂i gT |H �−�′ (K ) ≤ C |gT |H �−�′+1(K ). The previous elementwise
estimates allow us to conclude with the Cauchy–Schwarz inequality

| Ã(ai j )(q̃
T , gT )− A(ai j )(q̃

T , gT )|
≤ Chk+k ′ ‖ai j‖W k+k′ ,∞

δ (D)
(‖q‖K k+1

a+1 (D) + h−k‖q − q̃T ‖V )‖g‖K k′+1
a+1 (D)

≤ C ′hk+k ′ ‖ai j‖W k+k′,∞
δ (D)

(1+ ‖u‖Xk,δ
)‖q‖K k+1

a+1 (D)‖g‖K k′+1
a+1 (D)

,

where we used Theorem 1 in the second step. The argument for the advection
and reaction terms A(b j ), j = 1, . . . , 4, and A(c) is similar. See also the proof of
Theorem 1. Since Proposition 2 and (8) imply with Céa’s lemma

|A(u)(q − qT , g − gT )| ≤ Chk+k ′ ‖ f ‖K k−1
a−1 (D)‖G‖K k′−1

a−1 (D)
,

the assertion follows. �
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7.2 Approximation of Functions with Point Singularities

In this section we analyze approximation rates by biorthogonal spline wavelet expan-
sions with compact supports for functions in the polygon D with point singularities.
We consider regularity in weighted Hölder spaces W m,∞

δ (D) and more generally in
Xm,δ for δ ∈ [0, 1). We explicitly define a-priori truncation of infinite biorthogonal
wavelet expansions of these functions, mimicking in this way FE mesh refinement
in D as in [36] (see also [45]).

Let (ψλ)λ∈� be a biorthogonal spline wavelet basis of L2(D) with dual wavelet
system (ψ̃λ)λ∈�, we refer to [14, 41, 47, 48] for concrete constructions. We suppose
that (ψλ)λ∈� and (ψ̃λ)λ∈� have the following properties.

1. (biorthogonality)
∫

D ψλψ̃λ′dx = δλλ′ , λ, λ′ ∈ �,
2. (normalization) ‖ψλ‖L∞(D) � 2d|λ|/2 and ‖ψ̃λ‖L∞(D) � 2d|λ|/2 for every λ ∈ �,
3. (compact support) |supp(ψλ)| = O(2−|λ|d) and |supp(ψ̃λ)| = O(2−|λ|d) for every

λ ∈ �,
4. (vanishingmoments of order k)

∫
D xαψλdx = 0 and

∫
D xαψ̃λdx = 0 for allmulti-

indices α ∈ N
2
0 such that |α| ≤ k and for every λ ∈ �.

We also suppose that (ψλ)λ∈� satisfies the finite overlap property in (19). Denoting
the L2(D) inner product by (·, ·)L2(D), for L ∈ N0 andβ ∈ [0, 1), define the index sets

ΛL ,β :=
{
λ ∈ � : rβ

D(xλ) ≤ 2L−|λ|
}

,

where xλ is the barycenter of supp(ψλ), λ ∈ �. Every function w ∈ L2(D) can be
represented as u =∑λ∈�(w, ψ̃λ)L2(D)ψλ with equality in L2(D). With the finite
index set ΛL ,β , we define the quasi-interpolant PL ,β by

PL ,βw :=
∑

λ∈ΛL ,β

(w, ψ̃λ)L2(D)ψλ. (39)

Proposition 6 For m ∈ N, suppose m > k and 0 < δ < β < 1 satisfy (1− δ)/(1−
β) > m. Then, there exists a constant C > 0 such that for every w ∈ W m,∞

δ (D)

‖w − PL ,βw‖L∞(D) ≤ C2−min{k+1,m}L‖w‖W m,∞
δ (D).

Proof Without loss of generality we assume that k + 1 = m. We distinguish the
cases inf x∈supp(ψ̃λ)

rD(x) = 0 and inf x∈supp(ψ̃λ)
rD(x) > 0.

In the latter case w ∈ W m,∞(supp(ψ̃λ)). The Taylor sum
∑
|α|≤k wαxα of w in

supp(ψ̃λ) satisfies that there exists a constant C > 0 independent of w such that for
every λ ∈ �,
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ess supx∈supp(ψλ)

∣∣∣∣∣∣
w(x)−

∑

|α|≤k

wαxα

∣∣∣∣∣∣
≤ C[diam(supp(ψλ))]k+1‖w‖W k+1,∞(supp(ψλ)).

(40)
By the vanishing moments property, the L∞(D) bounds and the support property of
ψ̃λ, the Cauchy–Schwarz inequality, and (40),

|(w, ψ̃λ)L2(D)| ≤ C2−(k+1)|λ|2−d|λ|/2‖w‖W k+1,∞(supp(ψ̃λ))
. (41)

This estimate is suitable if inf x∈supp(ψλ) rD(x) > 0. If λ is such that inf x∈supp(ψλ)

rD(x) = 0, which essentially implies that supp(ψλ) abuts at a corner of D, by the
estimate in (33), there exists a constant C > 0 (independent of w and λ) such that

ess supx∈supp(ψ̃λ)
{r δ

D(x)|w(x)− w(xλ)|} ≤ C2−|λ|‖r δ
D‖∇w‖2‖L∞(supp(ψ̃λ))

.

Thus,

|(w, ψ̃λ)L2(D)| = |(w − w(xλ), ψ̃λ)L2(D)|
≤ C2−|λ|‖r−δ

D ‖L2(supp(ψ̃λ))
‖r δ

D‖∇w‖2‖L∞(supp(ψ̃λ))
‖ψ̃λ‖L2(D).

(42)

We note that ‖r−δ
D ‖L2(supp(ψ̃λ))

≤ C2−|λ|(d/2−δ) for a constantC > 0 independent of λ.
For λ ∈ �\ΛL ,β and supp(ψ̃λ) ∩ C �= ∅, rD(xλ)

β > 2L−|λ| and rD(xλ)
β ≤ C2−|λ|β

for a constant independent of λ. Since (1− δ)/(1− β) > k + 1,

2−|λ|‖r−δ
D ‖L2(supp(ψ̃λ))

≤ C2−d|λ|/22−L(k+1). (43)

For λ ∈ �\ΛL ,β and supp(ψ̃λ) ∩ C = ∅, (1− δ)/(1− β) > k + 1 implies that

2−|λ|(k+1) ≤ C2−L(k+1)r δ+k
D (xλ). (44)

Let Λ̃ ⊂ �\ΛL ,β be an index set such that D ⊂⋃λ∈Λ̃ supp(ψλ) and for every
λ, λ′ ∈ Λ̃, supp(ψλ) �⊂ supp(ψ ′

λ). For λ′ ∈ Λ̃ such that supp(ψλ) ∩ C = ∅, by (41),
the bounded support overlap property (19) of (ψλ)λ∈�, and by (44), there exist con-
stants C, C ′ > 0 such that

‖w − PL ,βw‖L∞(supp(ψλ′ )) ≤ C
∑

�≥|λ′|
2−(k+1)�‖w‖W k+1,∞(supp(ψ̃λ′ ))

≤ C2−(k+1)|λ′|∑

�≥0
2−�‖w‖W k+1,∞(supp(ψ̃λ′ ))

≤ C ′2−(k+1)L‖w‖W k+1,∞
δ (supp(ψ̃λ′ )).

Similarly, for λ′ ∈ Λ̃ such that supp(ψλ) ∩ C �= ∅, by (42), the bounded support
overlap property of (ψλ)λ∈�, and (43) there exists constants C, C ′ > 0 such that



Multilevel Quasi-Monte Carlo Uncertainty Quantification … 65

‖w − PL ,βw‖L∞(supp(ψλ′ ))

≤ C
∑

�≥|λ′|
2−�

∑

λ∈�\ΛL ,β :|λ|=�

‖r−δ
D ‖L2(supp(ψ̃λ))

2d�/2‖w‖W 1,∞
δ (supp(ψ̃λ′ ))

≤ C2−(k+1)L
∑

�≥0
2−�‖w‖W 1,∞(suppδ(ψ̃λ′ )).

Since D ⊂⋃λ∈Λ̃ supp(ψλ), the proof of the proposition is complete. �

The following lemma may be shown as [36, Eqs. (5) and (13)].

Lemma 5 For every L ∈ N and β ∈ [0, 1), |ΛL ,β | = O(2d L).

Proof of Proposition 1. We write w = (ai j , b j , c) ∈ Xm,δ for some m ≥ 1. We
suppose that the biorthogonal wavelets (ψλ)� have vanishing moments of order
m − 1 = k ≥ 0. The statement of the theorem follows applying Proposition 6 to ai j ,
rDb j , and to r2Dc together with Lemma 5. �
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Selecting the Best Simulated System:
Thinking Differently About an Old
Problem

Barry L. Nelson

Abstract The methods known collectively as “ranking & selection” have been a
theoretical and practical success story for the optimization of simulated stochastic
systems: they arewidely used in practice, have been implemented in commercial sim-
ulation software, and research has made them more and more statistically efficient.
However, “statistically efficient” has meant minimizing the number of simulation-
generated observations required to make a selection, or maximizing the strength of
the inference given a budget of observations. Exploiting high-performance comput-
ing, and specifically the capability to simulate many feasible solutions in parallel, has
challenged the ranking & selection paradigm. In this paper we review the challenge
and suggest an entirely different approach.

Keywords Stochastic simulation · Simulation optimization · Ranking &
selection · Parallel simulation

1 Introduction

A generic stochastic simulation optimization (SO) problem has the form

Maximize E[Simulated Performance]
Subject to: Resource constraints

The types of simulations that are the focus of this paper are dynamic, often nonsta-
tionary, and may be computationally expensive to execute. SO is difficult because
the lack of a mathematical expression for, or even a deterministic numerical method
to evaluate, E[Simulated Performance], implies that algorithms must make progress
by estimating the performance of specific feasible solutions. This leads to the three
sources of error in SO:
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1. The SO algorithm never simulates the optimal solution.
2. The SO algorithm does not recognize the best feasible solution it simulated.
3. The estimated performance of the sample-best solution returned by the SO algo-

rithm is biased.

This paper addresses methods collectively known as Ranking & Selection (R&S).
R&S originated with Bechhofer [2] and Gupta [7] in the 1950s for biostatistics and
industrial applications, such as evaluating the efficacy of three drug treatments and
a placebo. Typical problem characteristics included a small number of treatments k;
normally distributed responses; relatively equal (maybe even known) variances; and
a requirement to be easy to implement (e.g., since human subjects were involved).
At the 1983 Winter Simulation Conference Goldsman [6] presented a tutorial on
R&S and organized a session with both Bechhofer and Gupta, arguing that R&S was
useful for optimizing simulated systems as well.

Since 1983 R&S has been an area of intense theoretical and practical interest in
stochastic simulation.However, simulatorswere interested in problemswith different
characteristics:

• Much larger numbers of “treatments” (system designs) k.
• Possibly non-normal (nominal) simulation output data.
• Significantly unequal variances across system designs.
• Intentionally induced dependence across the outputs of simulated system designs
due to Common Random Numbers (CRN).

• Highly sequential procedures to reduce the number of expensive simulation runs
required to select the best system.

R&S has been a theoretical and practical success for simulation, including inno-
vative theory; asymptotic regimes for non-normal data; and effective use of concepts
from “statistical learning.” Further, R&S is routinely applied in real problems and is
included in many commercial software packages. The appeal of R&S is that it can
control all three SO errors:

1. R&S is exhaustive, simulating all feasible solutions, so the optimal solution is
always simulated.

2. R&S is explicitly concerned with recognizing the best solution with statistical
confidence.

3. R&S may provide confidence intervals on the true performance of the selected
solution.

Thus, it is desirable to turn a SO problem into a R&S problem if at all possible,
and high-performance computing, and in particular parallel computing, would seem
to facilitate treating problems with larger and larger numbers of feasible solutions
as R&S problems. Unfortunately, nearly all the methodological developments in
R&S assume single-processor computing, and define “cost” as synonymous with the
number of simulated observations. The topic of this paper is how parallel computing
changes (nearly) everything, and a suggestion for how to think differently.
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Fig. 1 Master-Worker environment

Remark 1 There is a connection between R&S and multi-arm bandit (MAB) prob-
lems that will not be explored here, other than to say that the objectives of MAB
and R&S are often different (e.g., MAB minimizes regret); the MAB focus is online
decision making, while R&S is always offline; and the two literatures have different
standards for what constitutes a “good procedure.” See for instance [10].

Remark 2 The particular parallel computing architecture within which we imple-
ment R&S matters, but we will not address those details other than to assume that
there are p + 1 processors in a “Master-Worker” environment in which the Mas-
ter processor performs calculations and decides what jobs to send to the Worker
processors; see Fig. 1. We define a “job” more precisely later.

Remark 3 While it is possible to treat many SO problems as R&S problems, clearly
not all of them can be attacked in this way. We now consider k = 10,000 systems to
be routine, but there are practical problems for which k is several orders of magnitude
larger, and can even be uncountably infinite if systems are defined by continuous-
valued decision variables. Further, the resource constraints may also be stochastic,
requiring simulation to assess feasibility.

2 R&S Basics

For notation, let the true, but unknown, expected values (means) of the k feasible
solutions (systems) be denoted by

μ1 ≤ μ2 ≤ · · · ≤ μk−1 ≤ μk .

We refer to system k, or any system tied with system k, as the best, and of course
we do not actually know which system is system k. Let Yi j be the j th output from
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system i , which has mean μi and variance σ 2
i . For system i we can estimate μi with

a consistent estimator, which for the purpose of this paper is the sample mean of ni
independent and identically distributed (i.i.d.) replications:

Ȳi (ni ) = 1

ni

ni∑

j=1

Yi j .

The R&S procedure returns something like

K̂ = argmaxi∈{1,2,...,k}Ȳi (ni )

as the selected solution, where what the procedure specifies is the values of ni .
One categorization of R&S procedures is fixed-precision versus fixed-budget. For

the former, we simulate until a prespecified confidence level is achieved, ideally
probability of correct selection (PCS): Pr{μK̂ = μk} ≥ 1 − α. Since attaining this
goal can be computationally infeasible if, say, the best and second-best systems’
means are very close, a compromise is made such as the following:

• Indifference zone: Pr
{
K̂ = k | μk − μk−1 ≥ δ

}
≥ 1 − α

• Good selection: Pr
{
μk − μK̂ ≤ δ

} ≥ 1 − α

• Top m: Pr
{
K̂ ∈ [k, k − 1, . . . , k − m + 1]

}
≥ 1 − α

• Subset: Find Ŝ ⊆ {1, 2, . . . , k} such that Pr{k ∈ Ŝ} ≥ 1 − α.

These are typically frequentist guarantees to be achieved as efficiently as possible.
Here δ is taken as the smallest difference that is practically relevant.

A fundamental building block for many fixed-precision procedures is the stan-
dardized sums of differences:

[
σ 2
k

nk
+ σ 2

i

ni

]−1 [
Ȳk(nk) − Ȳi (ni )

] D≈ Bμk−μi

([
σ 2
k

nk
+ σ 2

i

ni

]−1
)

whereBμk−μi (t) is Brownian motion (BM) with drift μk − μi and the sample sizes
nk and ni are independent of the sample means. This relationship is true in finite
samples if the Yi j are normally distributed (see [8]), and may be true asymptotically
for appropriately standardized statistics.Much is knownaboutBMprocesses crossing
various boundaries (see, for instance, [12]), but for the purpose of this paper notice
that employing this building block involves k(k − 1)/2 pairwise comparisons, a
number that can become a computational bottleneck when k is large.

For fixed-budget procedures, the goal is to obtain as strong an inference as pos-
sible within a fixed computation budget. This is typically formulated as minimizing
some expected loss for the chosen solution, E[L (K̂ )], and the inference is typically
Bayesian:
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0-1 Loss: Maximize posterior PCS
Opportunity cost: Minimize posterior expected optimality gap.

The fixed-budget paradigm is to attain information in an optimal, sequential fash-
ion; see Frazier [5]. Tools for doing so include “Expected Improvement” and the
“Knowledge Gradient (KG).” For instance if our prior is

(μ1, μ2, . . . , μk)
� ∼ N(μ0,Σ0)

and the simulation output are normal, then we can compute the Complete Expected
Improvement of solution i over the current sample best K̂ ,

CEI(i, K̂ ) = E
[
max{0, μi − μK̂ } | Y ′

i j s collected through stage t
]

from N(μt , Σ t | Y ′
i j scollected through stage t), the posterior (normal) distribution.

Notice that, implemented naively, this statistical learning approach takes only one
simulated observation “optimally” at a time, and therefore does not exploit paral-
lelization. In addition, calculation of the posterior distribution and searching for the
maximum CEI or KG solution can be numerically challenging for large k.

Remark 4 R&S addresses a more diverse set of problems than selecting the system
with the best mean; see [1] for a comprehensive reference.

3 R&S Computation

This section is based on [9].
Instead of thinking in terms of the statistical efficiency of a R&S procedure,

here we consider the overall computation involved. All R&S procedures perform
simulation replications and numerical calculations. Therefore, we define a R&S
“job” j as the ordered list

Jj ≡ {(Q j ,Δ j ,U j )︸ ︷︷ ︸
simulate

, (P j ,C j )︸ ︷︷ ︸
calculate

}

where

• Q j ⊆ {1, 2, . . . , k} indices of systems to be simulated;
• Δ j = {Δi j } how many replications to take from each system i ∈ Q j ;
• U j (optional) the assigned block of random numbers;
• C j is a list of non-simulation calculations or operations to perform; and
• P j is a list of jobs that must complete before the calculation C j .

We allow (Q j ,Δ j ,U j ) or (P j ,C j ) to be null, or for a job to contain multiple
simulate and calculate sub-jobs. The random numbers U j are important to insure
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independence or dependence (CRN), if desired. Since we do not discuss CRN here,
we suppress the specification of random numbers U j from here on.

From the perspective of the jobs required, a generic R&S procedure looks some-
thing like this:

Generic R&S Procedure

1. For job � = 1, 2, . . . until termination, do

a. Simulation jobs

J� = [{(system 1, 1rep), (∅)}, . . . , {(system i, 1 rep), (∅)}, . . .]

b. Comparison jobs
J ′
� = {(∅), (all jobs inJ�,C�)}

where C� performs calculations on all (non-eliminated) systems.

2. Report K̂ .

This generic model enforces many of the assumptions necessary for both small-
sample and asymptotic analysis by “synchronized coupling:” simulate all required
replications, perform calculations on the collected output to decide what to simulate
next, simulate all required replications, and so on.

Now suppose that we want to parallelize this. Recall that we initially have k
systems and p + 1 processors, 1Master and pWorkers. Perhaps themost natural way
to think about adapting the Generic R&S Procedure to this setting is for the Master
to maintain a round robin queue of systems from which a replication is needed, and
whenever a replication result is returned from some processor the Master assigns
another system to it from its queue. Based on the returned replications the Master
then makes comparisons, eliminates systems, updates posterior distributions, etc.

The obvious problem with this approach is that when k is very large, the compu-
tations required of the Master may be so significant that the p Workers are starved
for additional simulation assignments. But there is also a more subtle issue. Define
the input sequence and output sequence as follows:

Input sequence: Xi j is the j th requested observation from system i by theMaster,
with execution time Ti j .

Output sequence: Yi j is the j th returned observation to the Master from system i .

The validity of a R&S procedure is established based on properties of the returned
sequence, whichwill not be the same as the requested sequencewhen there are p > 1
Workers and the execution times are randomvariables. As shown in [13], this can lead
to statistical problems, including random sample sizes, non-i.i.d. outputs from any
specific system, and a dependence induced across systems outputs by eliminations, all
of which invalidate the statistical guarantees of R&S procedures. Of course Xi j = Yi j
can be assured by having the Master wait for and reorder the output, insuring the
statistical validity but significantly diminishing the computational efficiency.
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This suggests that when we have the capability to simulate in parallel we need to
refine our goals for R&S.We now formally define a R&S Procedure as the collection
of jobs generated by the Master: J = {Jj : 1 ≤ j ≤ M}, where M is determined
by the procedure and may be either random or fixed. Both wall-clock ending time of
the procedure and the cost of purchasing time on p + 1 processors matter:

• Let 0 < Tj < ∞ be the wall-clock time job Jj finishes, so

Te(J ) = max
j=1,2,...,M

Tj

is the ending time of the procedure.
• c(p, s) = cost to purchase p processors for s time units.
• t (p, b) = maximum time we can purchase on p processors for budget $b

t (p, b) = max{s : c(p, s) ≤ b}.

We can now define revised objectives:

Fixed precision: Requires statistical guarantees while being efficient.

minimizep,J E[βt Te(J )︸ ︷︷ ︸
time

+βc c(p, Te(J ))︸ ︷︷ ︸
cost

]

s.t. Pr{G(K̂ , k)︸ ︷︷ ︸
good event

} ≥ 1 − α

where βt and βc are weights or relative costs; typically one of βt or βc is zero and
the other is one.

Fixed budget: Provides an efficiency guarantee within a budget.

minimizep,J E[L (Gc(K̂ , k),J )︸ ︷︷ ︸
loss of bad event

]

s.t. t (p, b)︸ ︷︷ ︸
processor time

≤ t�

where t� is the wall-clock-time budget.

To the best of our knowledge, no one has yet formulated a parallel R&S procedure
specifically to solve one of these optimization problems. Instead, the procedures
shown in Table1 either try to balance the Master-Worker load in a way that keeps the
Workers busy, or they weaken the assumptions behind the Generic R&S Procedure
so that it is still (at least asymptotically) valid when Xi j = Yi j .

Remark 5 The clever approaches cited in Table1 all try to adapt the existing R&S
paradigms to the parallel environment. However, if we have, say, k > 1,000,000
systems, then is it sensible to insist on locating the single best/near-best with high
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Table 1 Existing parallel R&S procedures

R&S procedure Load balancing (standard
assumptions)

Comparison timing (relaxed
assumptions)

Fixed-precision Simple divide and conquer [3] Asymptotic parallel selection [13]

Vector-filling procedure [13]

Good selection procedure [16]

Fixed-budget Parallel OCBA [14]

Asynchronous OCBA/KG [11]

probability? We should expect many bad systems, but also a lot of good ones. Guar-
antees like PCS also run counter to approaches in large-scale statistical inference
of controlling “error rates.” In fact, to control PCS requires more effort/system as k
increases, while error rates such as “false discovery” can be attained with little or no
“k effect.”

4 Thinking Differently

The section is based on [17].
We want to disassemble the R&S paradigm and start over with the expectation of

a very large number of systems k and number of parallel processors p + 1. Our goals
are (a) to provide amore scalable—but still useful and understandable—error control
than PCS; and (b) avoid coupled operations and synchronization by exploiting the
idea of comparisons with a standard [15]. The result is our Parallel Adaptive Survivor
Selection (PASS) framework.

Again, let Yi1,Yi2, . . . be i.i.d. with mean μi and from here on we assume μk >

μk−1 > · · · > μ1. For some known constant μ� that we refer to as the standard, let

Si (n) =
n∑

j=1

(Yi j − μ�) =
n∑

j=1

Yi j − nμ�.

We will employ a non-decreasing function ci (·) with the property that

Pr{Si (n) ≤ −ci (n), some n < ∞}
{≤ α μi ≥ μ�

= 1 μi < μ�.

For normally distributed output such functions can be derived from the results in [4].
Finally, let G = {i : μi ≥ μ�}, the set of systems as good or better than the standard
μ�, which we assume is not empty; if it is empty then there is no false elimination.
For any algorithm, let E be the set of systems that the algorithm decides are are not
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in G when they actually are. Then we define the expected false elimination rate for
the algorithm as EFER = E[|E |]/|G |.

Before tackling the case of unknown μ�, consider the following algorithm:

Parallel Survivor Selection (PSS)

1. given a standard μ�, an increment Δn ≥ 1 and a budget
2. letW = {1, 2, . . . , p} be the set of available Workers; I = {1, 2, . . . , k} the set of

surviving systems; and ni = 0 for all i ∈ I.
3. until the budget is consumed

a. while an available Worker inW, do in parallel:
i. remove next system i ∈ I and assign to available Worker w ∈ W
ii. j = 1
iii. while j ≤ Δn

simulate Yi,ni+ j

if Si (ni + j) ≤ −ci (ni + j) then eliminate system i and break loop
else j = j + 1

iv. if i not eliminated then return to I = I ∪ {i}, ni = ni + Δn
v. release Worker w to available WorkersW

4. return I

Notice that PSS requires no coupling and keeps the Workers constantly busy.
And from the properties of c(·), PSS maintains EFER ≤ α and, if run forever, will
eliminate all systems with means <μ�. Further, the EFER is still controlled at ≤α

and elimination of systems not in G still occurs with probability 1, if we let Δni
depend on the system i , and we replace μ� by μ(n) ≤ μ� where μ(n) → μ�. This
is the case because a system eliminated by a smaller standard would also have been
eliminated by a larger standard, and a system protected from a larger standard would
also be protected from a smaller one. This suggests that in the practical case in which
μ� is unknown we may be able to learn the standard in a way that still that achieves
our objectives; we call this Parallel Adaptive Survivor Selection.

Generically, we define the standard to be μ� = g(μ1, μ2, . . . , μk). Some exam-
ples of possibly interesting standards include

• Protect the best: μ� = μk , which we focus on here.
• Protect the top b: μ� = μk−b+1.
• Protect best and everything as good as some known valueμ+:μ� = min{μ+, μk}.
Wewant to learn the standard’s value in a way that still avoids synchronized coupling
but does not compromise the EFER.

Consider PSS but with the adaptive standard

μ̄ = 1

|I|
∑

i∈I
Ȳi (ni )
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which is the average of the sample means of the current survivors. Thus, the adaptive
standard acts like a bisection search. We call algorithm PSS with this standard bi-
PASS. Under some conditions, including normally distributed output, we can show
that the EFER for system k is still ≤α [17]. Thus, we can achieve nearly uncoupled
parallelization and controlled EFER with an unknown standard. When μ� = μk

this means the chance that we eliminate the best system is ≤α. However, since
EFER is controlled marginally, α can be set even smaller than the traditional α =
0.1, 0.05, 0.01 values with little penalty on efficiency and greater protection for
system k.

5 Conclusions

When a simulation optimization problem can be treated as a R&S problem then it can
be “solved” with statistical guarantees: that is, all three SO errors can be controlled.
High-performance, parallel computing extends the “R&S limit” to larger problems,
but introduces new statistical and computational challenges, including violation of
standard assumptions and “cost” not being captured by the number of observations.
The PASS framework introduced here replaces guarantees like PCS that do not scale
well with k, with EFER which does, while at the same time making it easier to
achieve “embarrassingly parallel” speed up by comparing each system only to an
adaptive standard, rather than to each other.
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Discrepancy of Digital Sequences: New
Results on a Classical QMC Topic

Friedrich Pillichshammer

Abstract The theory of digital sequences is a fundamental topic in QMC theory.
Digital sequences are prototypes of sequences with low discrepancy. First examples
were given by Il’yaMeerovich Sobol’ and byHenri Faurewith their famous construc-
tions. The unifying theory was developed later by Harald Niederreiter. Nowadays
there is a magnitude of examples of digital sequences and it is classical knowledge
that the star discrepancy of the initialN elements of such sequences can achieve a rate
of order (logN )s/N , where s denotes the dimension. On the other hand, very little
has been known about the Lp norm of the discrepancy function of digital sequences
for finite p, apart from evident estimates in terms of star discrepancy. In this arti-
cle we give a review of some recent results on various types of discrepancy of
digital sequences. This comprises: star discrepancy and weighted star discrepancy,
Lp-discrepancy, discrepancy with respect to bounded mean oscillation and expo-
nential Orlicz norms, as well as Sobolev, Besov and Triebel–Lizorkin norms with
dominating mixed smoothness.

Keywords Discrepancy · Digital sequences · Digital Kronecker sequence ·
Tractability · Quasi-Monte Carlo integration

Preamble
This paper is devoted to Henri Faure who celebrated his 80th birthday on July 12,
2018. Henri is well known for his pioneeringwork on low-discrepancy sequences. As
an example we would like to mention his famous paper [31] from 1982 in which he
gave one of the first explicit constructions of digital sequences in arbitrary dimension
with low star discrepancy. These sequences are nowadays known asFaure sequences.

I met Henri for the first time at the MCQMC conference 2002 in Singapore.
Later, during several visits of Henri in Linz, we started a fruitful cooperation which
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continues to this day. I would like to thank Henri for this close cooperation and for
his great friendship and wish him and his family all the best for the future.

1 Introduction

We consider infinite sequences S = (xn)n≥0 of points xn in the s-dimensional unit
cube [0, 1)s. For N ∈ N letSN = (xn)

N−1
n=0 be the initial segment ofS consisting of

the first N elements.
According to Weyl [94] a sequence S = (xn)n≥0 is uniformly distributed (u.d.)

if for every axes-parallel box J ⊆ [0, 1)s it is true that

lim
N→∞

#{n ∈ {0, . . . , N − 1} : xn ∈ J }
N

= Volume(J ).

An extensive introduction to the theory of uniform distribution of sequences can be
found in the book of Kuipers and Niederreiter [53].

There are several equivalent definitions of uniform distribution of a sequence and
one of them is of particular importance for quasi-Monte Carlo (QMC) integration.
Weyl proved that a sequence S is u.d. if and only if for every Riemann-integrable
function f : [0, 1]s → R we have

lim
N→∞

1

N

N−1∑

n=0

f (xn) =
∫

[0,1]s

f (x) dx. (1)

The average of function evaluations on the left-hand side is nowadays called a QMC
rule,

QN (f ) = 1

N

N−1∑

n=0

f (xn).

Hence, in order to have a QMC rule converging to the true value of the integral of a
function it has to be based on a u.d. sequence. A quantitative version of (1) can be
stated in terms of discrepancy.

Definition 1 For a finite initial segment SN of a sequence (or a finite point set) in
[0, 1)s the local discrepancy function ΔSN : [0, 1]s → R is defined as

ΔSN (t) = #{n ∈ {0, 1, . . . , N − 1} : xn ∈ [0, t)}
N

− t1t2 · · · ts,

where t = (t1, t2, . . . , ts), [0, t) = [0, t1) × [0, t2) × · · · × [0, ts), and hence t1t2 · · ·
ts = Volume([0, t)).

For p ≥ 1 the Lp discrepancy of SN is defined as the Lp norm of the local dis-
crepancy function
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Lp,N (SN ) = ‖ΔSN ‖Lp([0,1]s) =
(∫

[0,1]s

|ΔSN (t)|pdt
)1/p

with the usual adaptions if p = ∞. In this latter case one often talks about star
discrepancy which is denoted by D∗

N (SN ) := L∞,N (SN ).
For an infinite sequence S in [0, 1)s we denote the Lp discrepancy of the first N

points by Lp,N (S ) = Lp,N (SN ) for N ≥ 1.

It is well-known that a sequenceS is u.d. if and only if limN→∞ Lp,N (S ) = 0 for
some p ≥ 1. A quantitative version of (1) is the famous Koksma–Hlawka inequality
which states that for every function f : [0, 1]s → R with bounded variation V (f ) in
the sense of Hardy and Krause and for every finite sequence SN of points in [0, 1)s

we have ∣∣∣∣∣

∫

[0,1]s

f (x) dx − 1

N

N−1∑

n=0

f (xn)

∣∣∣∣∣ ≤ V (f )D∗
N (SN ).

TheKoksma–Hlawka inequality is the fundamental error estimate for QMC rules and
the basis for QMC theory. Nowadays there exist several versions of this inequality
whichmay also be based on theLp discrepancyor other normsof the local discrepancy
function. One often speaks about “Koksma–Hlawka type inequalities”. For more
information and for introductions to QMC theory we refer to [22, 24, 61, 72].

It is clear that QMC requires sequences with low discrepancy in some sense
and this motivates the study of “low discrepancy sequences”. On the other hand
discrepancy is also an interesting topic by itself that is intensively studied (see, e.g.,
the books [4, 14, 24, 29, 53, 69, 72]).

In the following we collect some well-known facts about Lp discrepancy of finite
and infinite sequences.

2 Known Facts About the Lp Discrepancy

Webeginwith results on finite sequences: for every p ∈ (1,∞] and s ∈ N there exists
a cp,s > 0 such that for every finite N -element sequence SN in [0, 1)s with N ≥ 2
we have

Lp,N (SN ) ≥ cp,s
(logN )

s−1
2

N
and D∗

N (SN ) ≥ c∞,s
(logN )

s−1
2 +ηs

N

for some ηs ∈ (0, 1
2 ). The result on the left hand side for p ≥ 2 is a celebrated result by

Roth [81] from 1954 that was extended later by Schmidt [84] to the case p ∈ (1, 2).
The general lower bound for the star discrepancy is an important result of Bilyk,
Lacey and Vagharshakyan [8] from 2008. As shown by Halász [42], the Lp estimate
is also true for p = 1 and s = 2, i.e., there exists a positive constant c1,2 with the
following property: for every finite sequence SN in [0, 1)2 with N ≥ 2 we have
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L1,N (SN ) ≥ c1,2

√
logN

N
. (2)

Schmidt showed for s = 2 the improved lower bound on star discrepancy

D∗
N (SN ) ≥ c∞,2

logN

N

for some c∞,2 > 0. On the other hand, it is known that for every s, N ∈ N there exist
finite sequences SN in [0, 1)s such that

D∗
N (SN ) �s

(logN )s−1

N
.

First examples for such sequences are the Hammersley point sets, see, e.g., [24,
Sect. 3.4.2] or [72, Sect. 3.2].

Similarly, for every s, N ∈ N and every p ∈ [1,∞) there exist finite sequences
SN in [0, 1)s such that

Lp,N (SN ) �s,p
(logN )

s−1
2

N
. (3)

Hence, for p ∈ (1,∞) and arbitrary s ∈ Nwehavematching lower and upper bounds.
For both p = 1 and p = ∞we havematching lower and upper bounds only for s = 2.
The result in (3) was proved by Davenport [15] for p = 2, s = 2, by Roth [82] for
p = 2 and arbitrary s and finally by Chen [11] in the general case. Other proofs were
found by Frolov [40], Chen [12], Dobrovol’skiı̆ [27], Skriganov [85, 86], Hickernell
andYue [45], andDick and Pillichshammer [23]. Formore details on the early history
of the subject see the monograph [4]. Apart from Davenport, who gave an explicit
construction in dimension s = 2, these results are pure existence results and explicit
constructions of point sets were not known until the beginning of this millennium.
First explicit constructions of point sets with optimal order of L2 discrepancy in
arbitrary dimensions have been provided in 2002 by Chen and Skriganov [13] for
p = 2 and in 2006 by Skriganov [87] for general p. Other explicit constructions are
due to Dick and Pillichshammer [25] for p = 2, and Dick [19] and Markhasin [68]
for general p.

Before we summarize results about infinite sequences some words about the con-
ceptual difference between the discrepancy of finite and infinite sequences are appro-
priate. Matoušek [69] explained this in the following way: while for finite sequences
one is interested in the distribution behavior of thewhole sequence (x0, x1, . . . , xN−1)

with a fixed number of elements N , for infinite sequences one is interested in the dis-
crepancy of all initial segments (x0), (x0, x1), (x0, x1, x2),…, (x0, x1, x2, . . . , xN−1),
simultaneously for N ∈ N. In this sense the discrepancy of finite sequences can be
viewed as a static setting and the discrepancy of infinite sequences as a dynamic
setting.

Using a method from Proı̆nov [80] (see also [25]) the results about lower bounds
on Lp discrepancy for finite sequences can be transferred to the following lower



Discrepancy of Digital Sequences: New Results on a Classical QMC Topic 85

bounds for infinite sequences: for every p ∈ (1,∞] and every s ∈ N there exists a
Cp,s > 0 such that for every infinite sequence S in [0, 1)s

Lp,N (S ) ≥ Cp,s
(logN )

s
2

N
infinitely often (4)

and

D∗
N (S ) ≥ C∞,s

(logN )
s
2 +ηs

N
infinitely often, (5)

where ηs ∈ (0, 1
2 ) is independent of the concrete sequence. For s = 1 the result holds

also for the case p = 1, i.e., for every S in [0, 1) we have

L1,N (S ) ≥ c1,1

√
logN

N
infinitely often,

and the result on the star discrepancy can be improved to (see Schmidt [83]; see also
[5, 56, 60])

D∗
N (S ) ≥ c∞,1

logN

N
infinitely often. (6)

On the other hand, for every dimension s there exist infinite sequencesS in [0, 1)s

such that

D∗
N (S ) �s

(logN )s

N
for all N ≥ 2. (7)

Informally one calls a sequence a low-discrepancy sequence if its star discrepancy
satisfies the bound (7). Examples of low-discrepancy sequences are:

• Kronecker sequences ({nα})n≥0, where α ∈ R
s and where the fractional part func-

tion {·} is applied component-wise. In dimension s = 1 and if α ∈ R has bounded
continued fraction coefficients, then the Kronecker sequence ({nα})n≥0 has star
discrepancy of exact order of magnitude logN/N ; see [72, Chap.3] for more
information.

• Digital sequences: the prototype of a digital sequence is the van der Corput
sequence in base b which was introduced by van der Corput [93] in 1935.
For an integer b ≥ 2 (the “basis”) the nth element of this sequence is given
by xn = n0b−1 + n1b−2 + n2b−3 + · · · whenever n has b-adic expansion n =
n0 + n1b + n2b2 + · · · . The van der Corput sequence has star discrepancy of exact
order of magnitude logN/N ; see the recent survey article [36] and the references
therein.
Multi-dimensional extensions of the van der Corput sequence are the Halton
sequence [43], which is the component-wise concatenation of van der Corput
sequences in pairwise co-prime bases, or digital (t, s)-sequences, where the basis
b is the same for all coordinate directions. First examples of such sequences have
been given by Sobol’ [90] and by Faure [31]. Later the general unifying concept
has been introduced by Niederreiter [71] in 1987. Halton sequences in pairwise
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co-prime bases as well as digital (t, s)-sequences have star discrepancy of order
of magnitude of at most (logN )s/N ; see Sect. 3.2.

Except for the one-dimensional case, there is a gap for the logN exponent in the
lower and upper bound on the star discrepancy of infinite sequences (cf. Eqs. (5)
and (7)) which seems to be very difficult to close. There is a grand conjecture in
discrepancy theory which share many colleagues (but it must be mentioned that
there are also other opinions; see, e.g., [7]):

Conjecture 1 For every s ∈ N there exists a cs > 0 with the following property: for
every S in [0, 1)s it holds true that

D∗
N (S ) ≥ cs

(logN )s

N
infinitely often.

For the Lp discrepancy of infinite sequences with finite p the situation is different.
It was widely assumed that the general lower bound of Roth–Schmidt–Proı̆nov in
Eq. (4) is optimal in the order of magnitude in N but until recently there was no
proof of this conjecture (although it was some times quoted as a proven fact). In the
meantime there exist explicit constructions of infinite sequences with optimal order
of Lp discrepancy in the sense of the general lower bound (4). These constructions
will be presented in Sect. 3.4.

3 Discrepancy of Digital Sequences

In the following we give the definition of digital sequences in prime bases b. For the
general definition we refer to [72, Sect. 4.3]. From now on let b be a prime number
and let Fb be the finite field of order b. We identify Fb with the set of integers
{0, 1, . . . , b − 1} equipped with the usual arithmetic operations modulo b.

Definition 2 (Niederreiter [71]) A digital sequence is constructed in the following
way:

• choose s infinite matrices C1, . . . , Cs ∈ F
N×N

b ;
• for n ∈ N0 of the form n = n0 + n1b + n2b2 + · · · and j = 1, 2, . . . , s compute
(over Fb) the matrix-vector products

Cj

⎛

⎜⎜⎜⎝

n0
n1
n2
...

⎞

⎟⎟⎟⎠ =:

⎛

⎜⎜⎜⎝

xn,j,1

xn,j,2

xn,j,3
...

⎞

⎟⎟⎟⎠ ;

• put

xn,j = xn,j,1

b
+ xn,j,2

b2
+ xn,j,3

b3
+ · · · and xn = (xn,1, . . . , xn,s).
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The resulting sequence S (C1, . . . , Cs) = (xn)n≥0 is called a digital sequence over
Fb and C1, . . . , Cs are called the generating matrices of the digital sequence.

3.1 A Metrical Result

It is known that almost all digital sequences in afixeddimension s are low-discrepancy
sequences, up to some log logN -term. The “almost all” statement is with respect to a
natural probability measure on the set of all s-tuples (C1, . . . , Cs) ofN × Nmatrices
over Fb. For the definition of this probability measure we refer to [58, p. 107].

Theorem 1 (Larcher [54], Larcher & Pillichshammer [58, 59]) Let ε > 0. For
almost all s-tuples (C1, . . . , Cs) with Cj ∈ F

N×N

b the corresponding digital sequences
S = S (C1, . . . , Cs) satisfy

D∗
N (S ) �b,s,ε

(logN )s(log logN )2+ε

N
∀N ≥ 2

and

D∗
N (S ) ≥ cb,s

(logN )s log logN

N
infinitely often.

The upper estimate has been shown by Larcher in [54] and a proof for the lower
bound can be found in [58] (see Sect. 4 for a definition).

A corresponding result for the sub-class of so-called digital Kronecker sequences
can be found in [55] (upper bound) and [59] (lower bound). These results correspond
to metrical discrepancy bounds for classical Kronecker sequences by Beck [3].

The question now arises whether there are s-tuples (C1, . . . , Cs) of generating
matrices such that the resulting digital sequences are low-discrepancy sequences
and, if the answer is yes, which properties of the matrices guarantee low discrepancy.
Niederreiter found out that this depends on a certain linear independence structure
of the rows of the matrices C1, . . . , Cs. This leads to the concept of digital (t, s)-
sequences.

3.2 Digital (t, s)-Sequences

For C ∈ F
N×N

b and m ∈ N denote by C(m) the left upper m × m submatrix of C.
For technical reasons one often assumes that the generating matrices C1, . . . , Cs

satisfy the following condition: letCj = (c(j)
k,�)k,�∈N, then for each � ∈ N there exists a

K(�) ∈ N such that c(j)
k,� = 0 for all k > K(�). This condition, which is condition (S6)

in [72, p.72], guarantees that the components of the elements of a digital sequence
have a finite digit expansion in base b. For the rest of the paper we tacitly assume
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that this condition is satisfied. (We remark that in order to include new important
constructions to the concept of digital (t, s)-sequences, Niederreiter and Xing [73,
74] use a truncation operator to overcome the above-mentioned technicalities. Such
sequences are sometimes called (t, s)-sequences in the broad sense.)

Definition 3 (Niederreiter) Given C1, . . . , Cs ∈ F
N×N

b . If there exists a number t ∈
N0 such that for every m ≥ t and for all d1, . . . , ds ≥ 0 with d1 + · · · + ds = m − t
the

first d1 rows of C1(m),

first d2 rows of C2(m),
. . .

first ds rows of Cs(m),

⎫
⎪⎪⎬

⎪⎪⎭
are linearly independent over Fb,

then the corresponding digital sequence S (C1, . . . , Cs) is called a digital (t, s)-
sequence over Fb.

The technical condition from the above definition guarantees that every bm-
element sub-block (xkbm , xkbm+1, . . . , x(k+1)bm−1) =: Sm,k of the digital sequence,
where m ≥ t and k ∈ N0, is a (t, m, s)-net in base b, i.e., every so-called elementary
b-adic interval of the form

J =
s∏

j=1

[
aj

bdj
,

aj + 1

bdj

)
with Volume(J ) = bt−m

contains the right share of elements fromSm,k , which is exactly bt . Formore informa-
tion we refer to [24, Chap.4] and [72, Chap.4]. Examples for digital (t, s)-sequences
are generalized Niederreiter sequences which comprise the concepts of Sobol’-,
Faure- and original Niederreiter-sequences, Niederreiter-Xing sequences, …. We
refer to [24, Chap.8] for a collection of constructions and for further references. An
overview of the constructions of Niederreiter and Xing can also be found in [74,
Chap.8].

It has been shown by Niederreiter [71] that every digital (t, s)-sequence is a low-
discrepancy sequence. The following result holds true:

Theorem 2 (Niederreiter [71]) For every digital (t, s)-sequence S over Fb we have

D∗
N (S ) ≤ cs,b bt (logN )s

N
+ O

(
(logN )s−1

N

)
.

Later several authors worked on improvements of the implied quantity cs,b, e.g.
[34, 51]. The currently smallest values for cs,b were provided by Faure and Kritzer
[34]. More explicit versions of the estimate in Theorem2 can be found in [37–39].
For a summary of these results one can also consult [36, Sect. 4.3].

Remark 1 Theorem2 in combinationwith the lower bound in Theorem1 shows that
the set of s-tuples (C1, . . . , Cs) of matrices that generate a digital (t, s)-sequence is
a set of measure zero.
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Remember that the exact order of optimal star discrepancy of infinite sequences
is still unknown (except for the one-dimensional case). From this point of view it
might be still possible that Niederreiter’s star discrepancy bound in Theorem2 could
be improved in the order of magnitude in N . However, it has been shown recently
by Levin [63] that this is not possible in general. In his proofs Levin requires the
concept of d -admissibility. He calls a sequence (xn)n≥0 in [0, 1)s d-admissible if

inf
n>k≥0

‖n � k‖b‖xn � xk‖b ≥ b−d ,

where logb ‖x‖b = logb x� and � is the b-adic difference. Roughly speaking, this
means that the b-adic distance between elements from the sequence whose indices
are close is not too small.

Theorem 3 (Levin [63]) Let S be a d-admissible (t, s)-sequence. Then

D∗
N (S ) ≥ cs,t,d

(logN )s

N
infinitely often.

In his paper, Levin gave a whole list of digital (t, s)-sequences that have the
property of being d -admissible for certain d . This list comprises the concepts of
generalized Niederreiter sequences (which includes Sobol’-, Faure- and original
Niederreiter-sequences), Niederreiter-Xing sequences, …. For a survey of Levin’s
result we also refer to [49]. It should also be mentioned that there is one single result
by Faure [32] from the year 1995 who already gave a lower bound for a particular
digital (0, 2)-sequence (in dimension 2) which is also of order (logN )2/N .

Levin’s results [62, 63] are important contributions to the grand problem in dis-
crepancy theory (cf. Conjecture1). But they only cover the important sub-class of
admissible (t, s)-sequences and allow no conclusion for arbitrary (including non-
digital) sequences.

3.3 Digital (0, 1)-Sequences over F2

In this sub-section we say a few words about the discrepancy of digital (0, 1)-
sequence over F2, because in this case exact results are known. Let b = 2 and let
I be the N × N identity matrix, that is, the matrix whose entries are 0 except for
the entries on the main-diagonal which are 1. The corresponding one-dimensional
digital sequence S (I) is the van der Corput sequence in base 2 and in fact, it is
also a digital (0, 1)-sequence over F2. The following is known: among all digital
(0, 1)-sequences over F2 the van der Corput sequence, which is the prototype of all
digital constructions and whose star discrepancy is very well studied, has the worst
star discrepancy; see [79, Theorem2]. More concretely, for every N × N matrix C
which generates a digital (0, 1)-sequence S (C) over F2 we have
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D∗
N (S (C)) ≤ D∗

N (S (I)) ≤
⎧
⎨

⎩

(
logN
3 log 2 + 1

)
1
N ,

S2(N )

N ,

(8)

where S2(N ) denotes the dyadic sum-of-digits function of the integer N . The first
bound on D∗

N (S (I)) is a result of Béjian and Faure [6]. The factor 1/(3 log 2) con-
joined with the logN -term is known to be best possible, in fact,

lim sup
N→∞

ND∗
N (S (I))

logN
= 1

3 log 2
.

(The corresponding result for van der Corput sequences in arbitrary base can be
found in [30, 33, 50].) However, also the second estimate in terms of the dyadic
sum-of-digits function, which follows easily from the proof of [53, Theorem3.5 on
p. 127], is very interesting. It shows that the star discrepancy of the van der Corput
sequence (and of any digital (0, 1)-sequence) is not always close to the high level
of order logN/N . If N has only very few dyadic digits different from zero, then the
star discrepancy is very small. For example, if N is a power of two, then S2(N ) = 1
and therefore D∗

N (S (I)) ≤ 1/N . The bound in (8) is demonstrated in Fig. 1.
While the star discrepancy of any digital (0, 1)-sequence over F2 is of optimal

order with respect to (6) this fact is not true in general for the Lp discrepancies with
finite parameter p. For example, for the van der Corput sequence we have for all
p ∈ [1,∞)

lim sup
N→∞

NLp,N (S (I))

logN
= 1

6 log 2
,

Fig. 1 ND∗
N (S (I)) compared with logN

3 log 2 + 1 (red line) for N = 2, 3, . . . , 32; if N is a power of
two, then ND∗

N (S (I)) = 1
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see [79]. Hence the Lp discrepancy of the van der Corput sequence is at least of order
of magnitude logN/N for infinitely many N . Another example, to be found in [28],
is the digital (0, 1)-sequence generated by the matrix

U =

⎛

⎜⎜⎝

1 1 1 . . .

0 1 1 . . .

0 0 1 . . .

. . .

⎞

⎟⎟⎠

for which we have, with some positive real c > 0,

lim sup
N→∞

NL2,N (S (U ))

logN
≥ c > 0.

More information on the discrepancy of digital (0, 1)-sequences can be found in
the survey articles [35, 36] and the references therein.

The results in dimension one show that, in general, the Lp discrepancy of digital
sequences does not match the general lower bound (4) from Roth–Schmidt–Proı̆nov.
Hence, in order to achieve the assumed optimal order of magnitude (logN )s/2/N
for the Lp discrepancy with digital sequences, if at all possible, one needs more
demanding properties on the generating matrices. This leads to the concept of higher
order digital sequences.

3.4 Digital Sequences with Optimal Order of Lp Discrepancy

So-called higher order digital sequences have been introduced by Dick [17, 18] in
2007 with the aim to achieve optimal convergence rates for QMC rules applied to
sufficiently smooth functions. For the definition of higher order digital sequences
and for further information and references we refer to [24, Chap.15] or to [22].

For our purposes it suffices to consider higher order digital sequences of order
two. We just show how such sequences can be constructed: to this end let d := 2s
and let C1, . . . , Cd ∈ F

N×N

2 be generating matrices of a digital (t, d)-sequence in
dimension d , for example a generalized Niederreiter sequence. Let cj,k denote the
kth row-vector of the matrix Cj. Now define s matrices E1, . . . , Es in the following
way: the row-vectors of Ej are given by

ej,2u+v = c2(j−1)+v,u+1 for j ∈ {1, 2, . . . , s}, u ∈ N0 and v ∈ {1, 2}.

We illustrate the construction for s = 1. Then d = 2 and
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C1 =
⎛

⎜⎝
c1,1
c1,2
...

⎞

⎟⎠ , C2 =
⎛

⎜⎝
c2,1
c2,2
...

⎞

⎟⎠ ⇒ E1 =

⎛

⎜⎜⎜⎜⎜⎝

c1,1
c2,1
c1,2
c2,2
...

⎞

⎟⎟⎟⎟⎟⎠
.

This procedure is called interlacing (here the so-called “interlacing factor” is 2).
The following theorem has been shown in [20].

Theorem 4 (Dick, Hinrichs, Markhasin & Pillichshammer [20, 21]) Assume that
E1, . . . , Es ∈ F

N×N

2 are constructed with the interlacing principle as given above.
Then for the corresponding digital sequence S = S (E1, . . . , Es) we have

Lp,N (S ) �p,s 2
2t (logN )s/2

N
for all N ≥ 2 and all 1 ≤ p < ∞.

This theorem shows, in a constructive way, that the lower bound (4) from Roth–
Schmidt–Proı̆nov is best possible in the order of magnitude in N for all parameters
p ∈ (1,∞). Furthermore, the constructed digital sequences have optimal order of Lp

discrepancy simultaneously for all p ∈ (1,∞).
For p = 2 there is an interesting improvement, although this improvement requires

higher order digital sequences of order 5 (instead of order 2). For such sequencesS
it has been shown in [26] that

L2,N (S ) �s
(logN )(s−1)/2

N

√
S2(N ) for all N ≥ 2.

The dyadic sum-of-digit function of N is in the worst-case of order logN and then
the above L2 discrepancy bound is of order of magnitude (logN )s/2/N . But if N has
very few non-zero dyadic digits, for example if it is a power of 2, then the bound on
the L2 discrepancy becomes (logN )(s−1)/2/N only.

The proof of Theorem4 uses methods from harmonic analysis, in particular the
estimate of the Lp norm of the discrepancy function is based on the following
Littlewood–Paley type inequality: for p ∈ (1,∞) and f ∈ Lp([0, 1]s) we have

‖f ‖Lp([0,1]s) �p,s

∑

j∈Ns−1

22|j|(1−1/p̄)

⎛

⎝
∑

m∈Dj

|〈f , hj,m〉|p̄
⎞

⎠
2/p̄

, (9)

where p̄ = max(p, 2), N−1 = N ∪ {−1, 0}, for j = (j1, . . . , js), Dj = Dj1 × · · · ×
Djs , where Dj = {0, 1, . . . , 2j − 1}, |j| = max(j1, 0) + · · · + max(js, 0), and, for
m ∈ Dj, hj,m(x) = hj1,m1(x1) · · · hjs,ms(xs), where hj,m is the mth dyadic Haar func-
tion on level j; see [20, 66]. The L2 inner products 〈f , hj,m〉 are the so-called Haar
coefficients of f . Inequality (9) is used for the local discrepancy function of digital
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sequences which then requires tight estimates of the Haar coefficients of the local
discrepancy function. For details we refer to [20].

With the same method one can also handle the quasi-norm of the local discrep-
ancy function in Besov spaces and Triebel–Lizorkin spaces with dominating mixed
smoothness. One reason why Besov spaces and Triebel–Lizorkin spaces are inter-
esting in this context is that they form natural scales of function spaces including the
Lp-spaces and Sobolev spaces of dominating mixed smoothness (see, e.g., [91]). The
study of discrepancy in these function spaces has been initiated by Triebel [91, 92]
in 2010. Further results (for finite sequences) can be found in [47, 65–68] and (for
infinite sequences in dimension one) in [52]. In [21, Theorems3.1 and 3.2] general
lower bounds on the quasi-norm of the local discrepancy function in Besov spaces
and Triebel–Lizorkin spaces with dominating mixed smoothness in the sense of
the result of Roth–Schmidt–Proı̆nov in Eq. (4) are shown. Furthermore, these lower
bounds are optimal in the order of magnitude in N , since matching upper bounds are
obtained for infinite order two digital sequences as constructed above. For details we
refer to [21].

3.5 Intermediate Norms of the Local Discrepancy Function

While the quest for the exact order of the optimal Lp discrepancy of infinite sequences
in arbitrary dimension is now solved for finite parameters p ∈ (1,∞) the situation
for the cases p ∈ {1,∞} remains open. In this situation, Bilyk, Lacey, Parissis and
Vagharshakyan [9] studied the question of what happens in intermediate spaces
“close” to L∞. Two standard examples of such spaces are:

• Exponential Orlicz space: for the exact definition of the corresponding norm
‖ · ‖exp(Lβ ), β > 0, we refer to [9, 10, 21]. There is an equivalence which shows
the relation to the Lp norm, which is stated for any β > 0,

‖f ‖exp(Lβ ) � sup
p>1

p− 1
β ‖f ‖Lp([0,1]s).

This equivalence suggests that the study of discrepancy with respect to the expo-
nential Orlicz norm is related to the study of the dependence of the constant
appearing in the Lp discrepancy bounds on the parameter p. The latter problem is
also studied in [88].

• BMO space (where BMO stands for “bounded mean oscillation”): the definition
of the corresponding semi-norm uses Haar functions and is given as

‖f ‖2BMOs = sup
U⊆[0,1)s

1

λs(U )

∑

j∈Ns
0

2|j| ∑

m∈Dj
supp(hj,m)⊆U

|〈f , hj,m〉|2,
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where the supremum is extended over all measurable subsets U from [0, 1)s. See
again [9, 10, 21] and the references therein for more information.

Exponential Orlicz norm and BMO semi-norm of the local discrepancy function
for finite point sets have been studied in [9] (in dimension s = 2) and in [10] (in
the general multi-variate case). For infinite sequences we have the following results
which have been shown in [21]:

Theorem 5 (Dick, Hinrichs, Markhasin & Pillichshammer [20, 21]) Assume that
E1, . . . , Es ∈ F

N×N

2 are constructed with the interlacing principle as given in Sect.3.4.
Then for the corresponding digital sequence S = S (E1, . . . , Es) we have

‖ΔSN ‖exp(Lβ ) �s
(logN )

s− 1
β

N
for all N ≥ 2 and for all

2

s − 1
≤ β < ∞

and

‖ΔSN ‖BMOs �s
(logN )

s
2

N
for all N ≥ 2. (10)

Amatching lower bound in the case of exponentialOrlicz normon ‖ΔSN ‖exp(Lβ ) in
arbitrary dimension is currently not available and seems to be a very difficult problem,
even for finite sequences (see [10, Remark after Theorem1.3]; for matching lower
and upper bounds for finite sequences in dimension s = 2 we refer to [9]). On the
other hand, the result (10) for the BMO semi-norm is best possible in the order of
magnitude in N . A general lower bound in the sense of Roth–Schmidt–Proı̆nov’s
result (4) for the Lp discrepancy has been shown in [21, Theorem2.1] and states that
for every s ∈ N there exists a cs > 0 such that for every infinite sequenceS in [0, 1)s

we have

‖ΔSN ‖BMOs ≥ cs
(logN )

s
2

N
infinitely often. (11)

4 Discussion of the Asymptotic Discrepancy Estimates

We restrict the following discussion to the case of star discrepancy.We have seen that
the star discrepancy of digital sequences, and therefore QMC rules which are based
on digital sequences, can achieve error bounds of order of magnitude (logN )s/N .
At first sight this seems to be an excellent result. However, the crux of these, in
an asymptotic sense, optimal results, lies in the dependence on the dimension s. If
we consider the function x �→ (log x)s/x, then one can observe, that this function is
increasing up to x = es and only then it starts to decrease to 0 with the asymptotic
order of almost 1/x. This means, in order to have meaningful error bounds for QMC
rules one requires finite sequences with at least es many elements or even larger.
But es is already huge, even for moderate dimensions s. For example, if s = 200,
then es ≈ 7.2 × 1086 which exceeds the estimated number of atoms in our universe
(which is ≈1078).
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As it appears, according to the classical theory with its excellent asymptotic
results, QMC rules cannot be expected to work for high-dimensional functions.
However, there is numerical evidence, that QMC rules can also be used in these
cases. The work of Paskov and Traub [78] from 1995 attracted much attention in this
context. They considered a real world problem from mathematical finance which
resulted in the evaluation of several 360 dimensional integrals and reported on their
successful use of Sobol’ and Halton-sequences in order to evaluate these integrals.

Of course, it is now the aim of theory to the explain, why QMC rules also work
for high-dimensional problems. One stream of research is to take the viewpoint
of Information Based Complexity (IBC) in which also the dependence of the error
bounds (discrepancy in our case) on the dimension s is studied. A first remarkable,
and at that time very surprising result, has been established by Heinrich, Novak,
Wasilkowski and Woźniakowski [44] in 2001.

Theorem 6 (Heinrich, Novak,Wasilkowski&Woźniakowski [44])For all N , s ∈ N

there exist finite sequences SN of N elements in [0, 1)s such that

D∗
N (SN ) �

√
s

N
,

where the implied constant is absolute, i.e., does neither depend on s, nor on N.

In 2007Dick [16] extended this result to infinite sequences (in infinite dimension).
In IBC the information complexity is studied rather then direct error bounds. In

the case of star discrepancy the information complexity, which is then also called the
inverse of star discrepancy, is, for some error demand ε ∈ (0, 1] and dimension s,
given as

N ∗(ε, s) = min{N ∈ N : ∃ SN ⊆ [0, 1)s with |SN | = N and D∗
N (SN ) ≤ ε}.

From Theorem6 one can deduce that

N ∗(ε, s) � sε−2

and this property is calledpolynomial tractabilitywith ε-exponent 2 and s-exponent 1.
In 2004 Hinrichs [46] proved that there exists a positive c such that N ∗(ε, s) ≥ csε−1

for all s and all small enough ε > 0. Combining these results we see, that the inverse
of the star discrepancy depends (exactly) linearly on the dimension s (which is the
programmatic title of the paper [44]). The exact dependence of the inverse of the
star discrepancy on ε−1 is still unknown and seems to be a very difficult problem.
In 2011 Aistleitner [1] gave a new proof of the result in Theorem6 from which one
can obtain an explicit constant in the star discrepancy estimate. He proved that there
exist finite sequences SN of N elements in [0, 1)s such that D∗

N (SN ) ≤ 10
√

s/N
and hence N ∗(ε, s) ≤ 100sε−2. Recently Gnewuch and Hebbinghaus [41] improved
these implied constants to D∗

N (SN ) ≤ (2.5287 . . .) × √
s/N and hence N ∗(ε, s) ≤

(6.3943 . . .) × sε−2.
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For a comprehensive introduction to IBC and tractability theory we refer to the
three volumes [75–77] by Novak and Woźniakowski.

Unfortunately, the result in Theorem6 is a pure existence result and until now no
concrete point set is known whose star discrepancy satisfies the given upper bound.
Motivated by the excellent asymptotic behavior it may be obvious to consider digital
sequences also in the context of tractability. This assumption is supported by a recent
metrical result for a certain subsequence of a digital Kronecker sequence. In order
to explain this result we need some notation:

• Let Fb((t−1)) be the field of formal Laurent series over Fb in the variable t:

Fb((t
−1)) =

{ ∞∑

i=w

gi t−i : w ∈ Z,∀i : gi ∈ Fb

}
.

• For g ∈ Fb((t−1)) of the form g = ∑∞
i=w gi t−i define the “fractional part”

{g} :=
∞∑

i=max{w,1}
gi t−i.

• Every n ∈ N0 with b-adic expansion n = n0 + n1b + · · · + nrbr , where
ni ∈ {0, . . . , b − 1}, is associated in the natural way with the polynomial

n ∼= n0 + n1t + · · · + nrt
r ∈ Fb[t].

Now a digital Kronecker sequence is defined as follows:

Definition 4 Let f = (f1, . . . , fs) ∈ Fb((t−1))s. Then the sequence S (f ) =
(yn)n≥0 given by

yn := {nf }|t=b = ({nf1}|t=b, . . . , {nfs}|t=b)

is called a digital Kronecker sequence over Fb.

It can be shown that digitalKronecker sequences are examples of digital sequences
where the generating matrices are Hankel matrices (i.e., constant ascending skew-
diagonals) whose entries are the coefficients of the Laurent series expansions of
f1, . . . , fs; see, e.g., [57, 72]. Neumüller and Pillichshammer [70] studied a subse-
quence of digital Kronecker sequences. For f ∈ Fb((t−1))s consider S̃ (f ) = (yn)n≥0

where
yn = {tnf }|t=b = ({tnf1}|t=b, . . . , {tnfs}|t=b).

With a certain natural probability measure onFb((t−1))s the followingmetrical result
can be shown:
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Theorem 7 (Neumüller & Pillichshammer [70]) Let s ≥ 2. For every δ ∈ (0, 1) we
have

D∗
N (S̃ (f )) �b,δ

√
s log s

N
logN for all N ≥ 2 (12)

with probability at least 1 − δ, where the implied constant Cb,δ �b log δ−1.

The estimate (12) is only slightly weaker than the bound in Theorem6. The addi-
tional logN -term comes from the consideration of infinite sequences. Note that the
result holds for all N ≥ 2 simultaneously. One gets rid of this logN -term when one
considers only finite sequences as in Theorem6; see [70, Theorem3]. Furthermore,
we remark that Theorem7 corresponds to a result for classical Kronecker sequences
which has been proved by Löbbe [64].

5 Weighted Discrepancy of Digital Sequences

Another way to explain the success of QMC rules for high-dimensional problems
is the study of so-called weighted function classes. This study, initiated by Sloan
and Woźniakowski [89] in 1998, is based on the assumption that functions depend
differently on different variables and groups of variables when the dimension s is
large. This different dependence should be reflected in the error analysis. For this
purpose Sloan and Woźniakowski proposed the introduction of weights that model
the dependence of the functions on different coordinate directions. In the context of
discrepancy theory this led to the introduction of weighted Lp discrepancy. Here we
restrict ourselves to the case of weighted star discrepancy:

In the following let γ = (γ1, γ2, γ3, . . .) be a sequence of positive reals, the so-
called weights. Let [s] := {1, 2, . . . , s} and for u ⊆ [s] put

γu :=
∏

j∈u
γj.

Definition 5 (Sloan & Woźniakowski [89]) For a sequence S in [0, 1)s the γ -
weighted star discrepancy is defined as

D∗
N ,γ (S ) := sup

α∈[0,1]s
max

∅�=u⊆[s]
γu|ΔSN (αu, 1)|,

where for α = (α1, . . . , αs) ∈ [0, 1]s and for u ⊆ [s] we put (αu, 1) = (y1, . . . , ys)

with yj = αj if j ∈ u and yj = 1 if j /∈ u.

Remark 2 If γj = 1 for all j ≥ 1, then D∗
N ,γ (S ) = D∗

N (S ).

The relation between weighted discrepancy and error bounds for QMC rules
is expressed by means of a weighted Koksma–Hlawka inequality as follows: Let



98 F. Pillichshammer

W (1,1,...,1)
1 ([0, 1]s) be the Sobolev space of functions defined on [0, 1]s that are once

differentiable in each variable, and whose derivatives have finite L1 norm. Consider

Fs,1,γ = {f ∈ W (1,1,...,1)
1 ([0, 1]s) : ‖f ‖s,1,γ < ∞},

where

‖f ‖s,1,γ = |f (1)| +
∑

∅�=u⊆[s]

1

γu

∥∥∥∥
∂ |u|

∂xu
f (xu, 1)

∥∥∥∥
L1

.

The γ -weighted star discrepancy of a finite sequence is then exactly the worst-case
error of a QMC rule in Fs,1,γ that is based on this sequence, see [89] or [76, p. 65].
More precisely, we have

sup
‖f ‖s,1,γ ≤1

∣∣∣∣∣∣

∫

[0,1]s

f (x)dx − 1

N

∑

x∈SN

f (x)

∣∣∣∣∣∣
= D∗

N ,γ (S ).

In IBC again the inverse of weighted star discrepancy

N ∗
γ (ε, s) := min{N : ∃SN ⊆ [0, 1)s with |SN | = N and D∗

N ,γ (SN ) ≤ ε}

is studied. Theweighted star discrepancy is said to be strongly polynomially tractable
(SPT), if there exist non-negative real numbers C and β such that

N ∗
γ (ε, s) ≤ Cε−β for all s ∈ N and for all ε ∈ (0, 1). (13)

The infimum β∗ over all β > 0 such that (13) holds is called the ε-exponent of strong
polynomial tractability. It should bementioned, that there are several other notions of
tractability which are considered in literature. Examples are polynomial tractability,
weak tractability, etc. For an overview we refer to [75–77].

In [48] Hinrichs, Tezuka and the author studied tractability properties of the
weighted star discrepancy of several digital sequences.

Theorem 8 (Hinrichs, Pillichshammer & Tezuka [48]) The weighted star discrep-
ancy of the Halton sequence (where the bases b1, . . . , bs are the first s prime numbers
in increasing order) and of Niederreiter sequences achieve SPT with ε-exponent

• β∗ = 1, which is optimal, if

∑

j≥1

jγj < ∞, e.g., if γj = 1

j2+δ
with some δ > 0;

• β∗ ≤ 2, if

sup
s≥1

max
∅�=u⊆[s]

∏

j∈u
(jγj) < ∞ e.g., if γj = 1

j
.
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This result is the currently mildest weight condition for a “constructive” proof
of SPT of the weighted star discrepancy. Furthermore, it is the first “constructive”
result which does not require that the weights are summable in order to achieve SPT.
By a “constructive” result we mean in this context that the corresponding point set
can be found or constructed by a polynomial-time algorithm in s and in ε−1.

To put the result in Theorem8 into context we recall the currently best “existence
result” which has been shown by Aistleitner [2]:

Theorem 9 (Aistleitner) If there exists a c > 0 such that

∞∑

j=1

exp(−cγ −2
j ) < ∞ e.g., if γj = 1√

log j
,

then the weighted star discrepancy is SPT with ε-exponent β∗ ≤ 2.

Obviously the condition on the weights in Aistleitner’s “existence” result is much
weaker then for the “constructive” result in Theorem8. It is now the task to find
sequences whose weighted star discrepancy achieves SPT under the milder weight
condition.

6 Summary

Digital (t, s)-sequences are without doubt the most powerful concept for the con-
struction of low-discrepancy sequences in many settings. Such sequences are very
much-needed as sample points for QMC integration rules. They have excellent dis-
crepancy properties in an asymptotic sense when the dimension s is fixed and when
N → ∞:

• For p ∈ [1,∞) there are constructions of digital sequences with Lp discrepancy

Lp(S ) �s,p
(logN )s/2

N
for all N ≥ 2 and p ∈ [1,∞)

and this estimate is best possible in the order of magnitude in N for p ∈ (1,∞)

according to the general lower bound (4).
• The star discrepancy of digital (t, s)-sequences satisfies a bound of the form

D∗
N (S ) �s

(logN )s

N
for all N ≥ 2

and this bound is often assumed to be best possible at all.
• For discrepancywith respect to various other norms digital sequences achieve very
good and even optimal results.
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On the other hand, nowadays one is also very much interested in the dependence
of discrepancy on the dimension s. This is a very important topic, in particular in
order to justify the use of QMC in high dimensions. First results suggest that also in
this IBC context digital sequences may perform very well. But here many questions
are still open and require further studies. One particularly important question is how
sequences can be constructedwhose discrepancy achieves some notion of tractability.
Maybe digital sequences are good candidates also for this purpose.

Acknowledgements F. Pillichshammer is supported by the Austrian Science Fund (FWF) Project
F5509-N26.
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76. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems, Volume II: Standard
Information for Functionals. European Mathematical Society, Zürich (2010)
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Network Structure Change Point
Detection by Posterior Predictive
Discrepancy

Lingbin Bian, Tiangang Cui, Georgy Sofronov and Jonathan Keith

Abstract Detecting changes in network structure is important for research into
systems as diverse as financial trading networks, social networks and brain con-
nectivity. Here we present novel Bayesian methods for detecting network structure
change points. We use the stochastic block model to quantify the likelihood of a net-
work structure and develop a score we call posterior predictive discrepancy based
on sliding windows to evaluate the model fitness to the data. The parameter space
for this model includes unknown latent label vectors assigning network nodes to
interacting communities. Monte Carlo techniques based on Gibbs sampling are used
to efficiently sample the posterior distributions over this parameter space.

Keywords Bayesian inference · Networks · Sliding window · Stochastic block
model · Gibbs sampling

1 Introduction

Time varying network models are used in a wide range of applications, including in
neuroscience where they have been used to model functional connectivity of brains
such as the modularity models in [1, 2], and to model interactions in social network
communities such as Facebook or emails [3]. The detection of changes in commu-
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nities, or more specifically changes in how nodes are allocated to communities, is
important to understand functional variation in networks.

There is a wide range of literature exploring network change point analysis in
time series. A recent method of network change point detection [4] used spectral
clustering to partition a network into several connected components. The network
structure deviance before and after the candidate change point was evaluated by
computing the principal angles between two eigenspaces. The location of the change
point was determined in such a way as to minimise a sum of singular values. Another
method of network change point analysis named dynamic connectivity regression
(DCR) [5, 6] used graphical LASSO (GLASSO) [7] to estimate a sparse precision
matrix using an L1-constraint, which forces a large number of edge weights to zero to
represent missing edges. Both spectral clustering and DCR were integrated into the
random permutation procedure [8] and stationary bootstrap procedure [9] to check
whether detected change points were significant. Various criteria have been proposed
as test scores to identify candidate change points in network connectivity, including
summation of singular values of the network eigenspace (using spectral clustering
as mentioned above) and the Bayesian information criterion (BIC) [6] in the context
of dynamic connectivity regression. The BIC is a criterion for model selection that
includes apenalty term for thenumber of parameters in themodel, the implementation
of which is illustrated in [10]. Apart from the greedy algorithm scheme in [5], a
frequency-specific method described in [11] applied a multivariate cumulative sum
procedure to detect change points. Some methods such as [12–14] mainly focused
on large scale network estimation in time series. There are many papers using sliding
window methods for observing the time varying network connectivity in time series
analysis. For example, [15] tested the equality of the two covariance matrices in a
high-dimensional setup within a sliding window to evaluate changes of connectivity
in networks. Some other sliding window methods for network connectivity analysis
can be found in [16–19]. Detection of communities in networks is also a relevant and
topical area of statistics. How communities change or how the nodes in a network
are assigned to specific communities is an important problem in characterization of
networks. Theory and methods for community detection in networks are described
in the works [20–22].

In this paper, we propose a new method to detect network structure change points
using Bayesian model fitness assessment. There is a substantial literature on model
fitness [23]. For example, West [24] used the cumulative Bayes factor to check for
model failure, and Gelman [25] used posterior predictive assessment with a param-
eter dependent statistic to evaluate model fitness. In this work, we identify change
points via checking model fitness to observations within a sliding time window using
parameter dependent posterior predictive assessment. Specifically, we propose to use
the stochastic block model [21, 26, 27] to quantify the likelihood of a network and
Gibbs sampling to sample a posterior distribution derived from thismodel. TheGibbs
sampling approach we adopt is based on the work of Nobile [28] for finite mixture
models.We propose a posterior predictive discrepancymethod to checkmodel fitness
using an adjacency matrix to represent a network. The proposed procedure involves
drawing parameters from the posterior distribution and using them to generate a
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replicated adjacency matrix, then calculating a disagreement matrix to quantify the
difference between the replicated adjacency matrix and realised adjacency matrix.
The score posterior predictive discrepancy (PPD) or we call the posterior predictive
discrepancy index (PPDI) is then evaluated by averaging the fraction of elements in
the disagreement matrix that indicate disagreement. We apply another new sliding
window to construct a new time series we call the cumulative discrepancy energy
(CDE). We compute the CDE and use it to define the criterion for change point
detection. The CDE increases when change points are contained within the window,
and can thus be used to assess whether a statistically significant change point exists
within a period of time.

This paper is organized as the follows. Section2 describes the details of the data
time series, and illustrates the models and methodologies we propose for network
change point detection. Section3 contains results of numerical experiments and sim-
ulations. Section4 assesses the advantages and disadvantages of our methods and
potential future extensions and improvements.

2 Methods

2.1 The Data Set and Sliding Window Processing

Graphical models is a pictorial representation of pair-wise statistical relations
between random variables. Graphical models may involve directed or undirected
graphs. Directed graphs are appropriate when the nature of the relationships between
variables has a directional aspect, whereas undirected graphs are appropriate for rep-
resenting bi-directional or non-directional relationships. The methods we developed
in this paper apply to both directed and undirected networks.

Consider a collection of N nodes V = {v1, . . . , vN }. Suppose we observe a col-
lection of N time seriesY ∈ �N×T whereY = (y1, y2, . . . , yT ), with one time series
corresponding to each node, and observationsmade at times {1, . . . , T }. Correlations
between time series indicate direct or indirect interactions between the correspond-
ing nodes; we therefore first process the time series to construct a sequence of graphs
in which edges represent temporary correlations.

We apply a sliding window technique with window lengthW which is considered
to be an even number. The window size should be as small as possible. Large window
size will limit the detection performance for those change points located closely with
each other, while small window size may create statistical complication in the model
assessment due to the lack of data sample. Change points may occur only at times
t ∈ {M + 1, . . . , T − M}where M is a margin size used to avoid computational and
statistical complications. We set the margin size M = W/2. For each time point t ∈
{M + 1, . . . , T − M}, we define Yt = {yt− W

2
, . . . , yt , , . . . , yt+ W

2 −1} and calculate
a sample correlation matrix Rt within the window Yt . We set a threshold ε such
that only those node pairs (i, j) for which the correlation coefficient r (t)

i j > ε are
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Fig. 1 Parallel time series corresponding to nodes of the network, and a sliding window of width
W centred at t . The different coloured time series correspond to signal data for each node

connected by an edge in the edge set Et representing interacting nodes at time t . It is
also convenient to define an adjacency matrix xt = (x (t)

i j )i, j=1,...,N , where x
(t)
i j = 1 if

there is an edge connecting nodes i and j in Et , and x (t)
i j = 0 otherwise. For each t ,

we then have the corresponding sample adjacency matrix xt representing interacting
nodes during the timewindow centred at time t . Inwhat follows,we discard the signal
data consisting of N time series, and instead consider the sample adjacency matrix
xt as the realised observation at time t . This sliding window approach is illustrated
in Fig. 1.

2.2 The Stochastic Block Model

The stochastic block model is a random process generating networks on a fixed num-
ber N of nodes. A defining feature of the model is that nodes are partitioned into
K communities, with interactions between nodes in the same community having a
different (usually higher) probability than interactions between nodes in different
communities. Taking a Bayesian perspective, we suppose that the number of com-
munities K is a random variable drawn from a given prior distribution (for example
a Poisson distribution). Determining the value of K appropriate to a given data set
is a model selection problem. The stochastic block model first assigns the N nodes
into the K communities, then generates edges with a probability determined by the
community structure. Mathematically, we denote the community memberships (also
called the latent labels) of the nodes as a random vector z = (z1, . . . , zN ) such that
zi ∈ {1, . . . , K } denotes the community containing node i . Each zi independently
follows categorical (one trial multinomial) distribution:

zi ∼ Categorical(1; r1, . . . , rK ),

where rk is the probability of a node being assigned to community k and
∑K

k=1 rk = 1.
The multinomial probability can be expressed as



Network Structure Change Point Detection by Posterior Predictive Discrepancy 111

p(zi |r, K ) =
K∏

k=1

r Ik (zi )k ,

with the indicator function

Ik(zi ) =
{
1, if zi = k

0, if zi �= k.

This implies that the N dimensional vector z is generated with probability

p(z|r, K ) =
K∏

k=1

rmk (z)
k ,

where mk(z) = ∑N
i=1 Ik(zi ). The vector r = (r1, . . . , rK ) is assumed to have a K -

dimensional Dirichlet prior with density

p(r|K ) = N (α)

K∏

k=1

rαk−1
k ,

where the normalization factor with gamma function Γ is

N (α) = Γ (
∑K

k=1 αk)
∏K

k=1 Γ (αk)
.

In this work we suppose αi = 1 for i = 1, . . . , K , so that the prior for r is uniform
on the K -simplex.

Edges between nodes are represented using an adjacencymatrix x ∈ �N×N . Edges
can be weighted or unweighted, and xi j can be continuous or discrete. Here we use
the binary edge model, in which xi j = 1 for edges deemed present and xi j = 0 for
edges deemed absent.We define a block xkl as the sub-matrix of the adjacency matrix
comprised of edges connecting the nodes in community k to the nodes in community
l. If the graph is undirected, there are 1

2K (K + 1) blocks. If the graph is directed,
there are K 2 blocks.

In the Bayesian presentation of the stochastic block model byMacDaid et al. [26],
the likelihood model for edges is given by:

p(x|π , z, K ) =
∏

k.l

p(xkl |πkl, z, K )

and
p(xkl |πkl, z, K ) =

∏

{i |zi=k}

∏

{ j |z j=l}
p(xi j |πkl, z, K )
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whereπ = {πkl} is a K × K matrix. In the binary edgemodel, each xi j has aBernoulli
distribution, that is

xi j |πkl, z, K ∼ Bernoulli(πkl).

Theπkl independently follow the conjugateBeta priorπkl ∼ Beta(a, b). Letnkl(z, x)
be the number of edges in block kl (for the weighted edge model, nkl becomes the
sum of the edge weights). For an undirected graph, the number of edges connect-
ing community k and community l is nkl(z, x) = ∑

i, j |i≤ j,zi=k,z j=l xi j . For a directed
graph, nkl(z, x) = ∑

i, j |zi=k,z j=l xi j . We also define wkl(z) to be the maximum possi-
ble number of edges in block kl. For the off-diagonal blocks, wkl(z) = mk(z)ml(z).
For the diagonal blocks, if the graph is undirected, wkk = 1

2mk(z)(mk(z) + 1) (we
consider the self-loop here), whereas if the graph is directed, wkk = mk(z)2. With
this notation, the probability associated with the edges of the block xkl under the
binary edge model is

p(xkl |πkl, z, K ) = π
nkl (z,x)
kl (1 − πkl)

wkl (z)−nkl (z,x), where 0 < πkl < 1.

The corresponding conjugate prior is the Beta distribution,

Beta(a, b) = πa−1
kl (1 − πkl)

b−1

B(a, b)
,

where B(a, b) = Γ (a)Γ (b)
Γ (a+b) is the Beta function.

2.3 The Collapsed Posterior

In the change point detection applications that we consider here, a change point
corresponds to a restructuring of the network, that is, a change in the clustering
vector z.We are therefore interested in the so called “collapsed” posterior distribution
p(z|x, K ), the form of which we discuss in this section.

We consider K unknown and assign a Poisson random prior with the condition
K > 0.

P(K ) = λK

K ! e
−λ.

(In practice we use λ = 1.) We then have the joint density

p(x,π , z, r, K ) = P(K )p(z, r|K )p(x,π |z).

The parameters r and π can be integrated out or “collapsed” to obtain the marginal
density p(x, z, K ).
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p(z, K , x) = P(K )

∫

p(z, r|K )dr
∫

p(x,π |z)dπ ,

then the posterior for the block-wise model can be expressed as

p(z, K |x) ∝ p(z, K , x) = P(K )

∫

p(z, r|K )dr
∏

k,l

∫

p(xkl, πkl |z)dπkl .

The first integral

p(z|K ) =
∫

p(z, r|K )dr,

where the integral is over the K -simplex, can be calculated via the following proce-
dure:

p(z|K ) =
∫

p(z, r|K )dr

=
∫

p(r|K )p(z|r, K )dr

= Γ (
∑K

k=1 αk)

Γ (
∑K

k=1(αk + mk(z))

K∏

k=1

Γ (αk + mk(z))
Γ (αk)

.

Integrals of the form
∫
p(xkl, πkl |z)dπkl can be calculated as

p(xkl |z) =
∫ 1

0
p(xkl, πkl |z)dπkl

=
∫ 1

0
p(πkl)p(xkl |πkl, z)dπkl

= B(nkl(z, x) + a,wkl(z) − nkl(z, x) + b)

B(a, b)
.

The derivation of the collapsing procedure is given in Appendix “Derivation of the
Collapsing Procedure”. Then the collapsed posterior can be expressed as

p(z|x, K ) ∝ 1

K !
Γ (

∑K
k=1 αk)

Γ (
∑K

k=1(αk + mk))

K∏

k=1

Γ (αk + mk)

Γ (αk)

∏

k,l

B(nkl + a,wkl − nkl + b)

B(a, b)
.

2.4 Sampling the Parameters from the Posterior

The posterior predictive method we outline below involves sampling parameters
from the posterior distribution. The sampled parameters are the latent labels z and
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model parameters π . There are several methods for estimating the latent labels and
model parameters of a stochastic blockmodel described in the literature: for example
Daudin et al. [29] evaluate the model parameters by point estimation but consider
the latent labels in z as having a distribution, making their approach similar to an EM
algorithm. The method of Zhangi et al. [30] uses point estimation for both the model
parameters and latent labels. Here we sample the latent labels z from the collapsed
posterior p(z|x, K ) and then separately sample π from the density p(π |x, z).

The estimation of K is a model selection problem [26], which we will not discuss
about in this paper. It is convenient to consider the number of communities K to be
fixed in the model fitness assessment in this paper (The K is supposed to be given in
the numerical experiment in the later section). We use the Gibbs sampler to sample
the latent labels z from the collapsed posterior p(z|x, K ). For each element zi and
k ∈ {1, . . . , K }, we have

p(zi |z−i , x, K ) = 1

C
p(z1, . . . , zi−1, zi = k, zi+1, . . . , zn|x),

where z−i represents the elements in z apart from zi and the normalization term

C = p(z−i |x, K ) =
K∑

k=1

p(z1, . . . , zi−1, zi = k, zi+1, . . . , zn|x).

We use the standard Gibbs sampling strategy of cycling through z1, . . . , zn , updating
each latent variable by drawing from p(zi |z−i , x, K ).

An alternative to Gibbs sampling is to use Metropolis-Hastings moves based on
the allocation sampler [31] to draw parameters z and K from the posterior. In this
approach, a candidate vector of latent labels z∗ is acceptedwith probabilitymin{1, r},
where

r = p(K , z∗, x)p(z∗ → z)
p(K , z, x)p(z → z∗)

.

If the number of communities K is fixed, the proposal p(z → z∗) can be based
on three kinds of moves (M1, M2, M3). If K is allowed to vary, one can use a
reversible jump strategy or absorption/ejectionmove. The details of these approaches
are illustrated in [31, 33].

To sample the model parameters π , we first derive the posterior of the model
block parameters as the following expression

p(πkl |xkl, z) ∝ p(πkl)p(xkl |πkl, z)

∝ πa−1
kl (1 − πkl)

b−1π
nkl (z,x)
kl (1 − πkl)

wkl (z)−nkl (z,x)

∝ π
nkl (z,x)+a−1
kl (1 − πkl)

wkl (z)−nkl (z,x)+b−1
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and
p(π |x, z) =

∏

k,l

p(πkl |xkl, z).

The prior and the likelihood in the above expression is the Beta-Bernoulli conjugate
pair. Given the sampled zwe can draw the sampleπ from the above posterior directly.

2.5 Posterior Predictive Discrepancy

Given inferred values of z and π under the assumptive model K , one can draw
replicated data xrep from the posterior predictive distribution P(xrep|z,π , K ). Note
that the realised adjacency and replicated adjacency are conditionally independent,

P(x, xrep|z,π , K ) = P(xrep|z,π , K )P(x|z,π , K ).

Multiplying both sides of this equality by P(z,π |x, K )/P(x|z,π , K ) gives

P(xrep, z,π |x, K ) = P(xrep|z,π , K )P(z,π |x, K ).

Here we use replicated data in the context of posterior predictive assessment [25]
to evaluate the fitness of a posited stochastic block model to a realised adjacency
matrix. We generate a replicated adjacency matrix by first drawing samples (z, π )
from the joint posterior P(z,π |x, K ). Specifically, we sample the latent label vector
z from p(z|x, K ) and model parameter π from p(π |x, z) and then draw a replicated
adjacencymatrix from P(xrep|z,π , K ).We compute a discrepancy function to assess
the difference between the replicated data xrep and the realised observation x, as a
measure of model fitness.

In [25], the χ2 function was used as the discrepancy measure, where the observa-
tion was considered as a vector. However, in the stochastic block model, the observa-
tion is an adjacency matrix and the sizes of the sub-matrices can vary. In this paper,
we propose a disagreement index to compare binary adjacency matrices xrep and x.
We use the exclusive OR operator to compute the disagreement matrix between the
realised adjacency and replicated adjacency and calculate the fraction of non-zero
elements in the disagreement matrix. This disagreement index is denoted γ (xrep; x)
and can be considered a parameter-dependent statistic. In mathematical notation, the
disagreement index γ is defined as

γ (xrep; x) =
∑N

i=1, j=1(x
⊕

xrep)i j
N 2

,

where
⊕

is the exclusiveORoperator. In practicewe generate S replicated adjacency
matrices and compute the average disagreement index, we call posterior predictive
discrepancy index (PPDI)
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γ =
∑S

i=1 γ (xrep
i ; x)

S
.

2.6 Cumulative Discrepancy Energy via Sliding Window

Our proposed strategy to detect network change points is to assess the fitness of a
stochastic block model by computing the discrepancy index γ t for each t ∈ {W2 +
1, . . . , T − W

2 }. The key insight here is that the fitness of the model is relatively
worse when there is a change point within the window used to compute xt . If there
is a change point within the window, the data observed in the left segment and right
segment are generated by different network architectures, resulting in poor model fit
and a correspondingly high posterior predictive discrepancy index.

We find that the PPDI is greatest when the change point is located in the middle of
the window. To identify the most plausible position of a change point, we use another
window with window size Ws to smooth the results. We compute the cumulative
discrepancy energy Et , given by

Et =
t+ Ws

2 −1∑

i=t− Ws
2

γ i .

We infer the location of change points to be local maxima of the cumulative dis-
crepancy energy, where those maxima rise sufficiently high above the surrounding
sequence. The change point detection algorithm can be summarized as the follows.

Algorithm 1 Change point detection by posterior predictive discrepancy
Input: Length of time course T , window size W , number of communities K , observations Y.
for t = W/2 + 1, . . . , T − W/2 do

Calculate Yt → Rt → xt .
Draw the samples {zi ,π i } (i = 1, . . . , S) from the posterior P(z,π |x, K ).
Simulate the replicated set xrep

i
from the predictive distribution P(xrep|z,π , K ).

Calculate the disagreement index γ (xrep
i ; x).

Calculate the posterior predictive discrepancy index γ t = 1
S

∑S
i=1 γ (xrep

i ; x).
end for
for t = W

2 + Ws
2 + 1, . . . , T − W

2 − Ws
2 do

Calculate cumulative discrepancy energy Et = ∑t+ Ws
2 −1

I=t− Ws
2

γ I .

end for
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3 Simulation

3.1 Generative Model

To validate our approach, we simulate the time series consisting of three data seg-
ments from the Gaussian generative model. Within each of the resulting segment,
N = 16 nodes are assigned to K = 3 communities, resulting in membership vectors
z1, z2 and z3. Recall these are generated using the Dirichlet-Categorical conjugate
pair, that is, component weights r1, r2 and r3 are first drawn from a uniform distribu-
tion on the K -simplex and then nodes are assigned to the communities by drawing
from the corresponding categorical distributions. Time series data in �N are then
simulated for t = 1, . . . , T by drawing from a multivariate Gaussian distribution
N (0,Σ), with

Σi j =
⎧
⎨

⎩

a, if i �= j and i and j are in the same communities
1, if i = j
b, if i and j are in different communities.

In the covariance matrix, a and b follow the uniform distribution, where a ∼
U (0.8, 1) and b ∼ U (0, 0.2). The resulting covariance matrices for the three seg-
ments we denote byΣ1,Σ2 andΣ3. The simulated dataY ∈ �N×T can be separated
into three segments (Y1,Y2,Y3).

3.2 Effect of Changing the Distance Between Change Points

We simulate the time series for a network with N = 16 nodes and T = 450 time
points with different locations of true change points in four experimental settings.
The sliding window size is fixed to be W = 64 so that the margin size is M = 32.

For the inference, we set the prior ofπkl to be Beta(2, 2). During the posterior pre-
dictive procedure, according to the convergence performance of the Gibbs sampler,
the Gibbs chain of the latent label vectors converges to the stationary distribution
within 10 iterations. Then we draw each latent label vector every three complete
Gibbs iterations. The posterior prediction replication number S determines the rate
of fluctuation of the posterior predictive discrepancy index (PPDI) curve, the smaller
the replication number is, the more severely the curve will vibrate. In this demon-
stration, we set the replication number as S = 50. Increasing S would lead to more
accurate results, but incur additional computational cost.

The PPDI increases dramatically when the true change point begins to appear at
the right of the sliding window and decreases rapidly when the true change point
tend to move out the left end of the window. For the cumulative discrepancy energy
(CDE), the change point is considered to be at the place where the CDE is a local
maximum.



118 L. Bian et al.

0 150 300 450
The time step

0

0.1

0.2

0.3

0.4
P

P
D

I
a: Window size = 64

0 150 300 450
The time step

1

2

3

4

5

6

7

C
D

E

b: Window size = 64

0 150 300 450
The time step

0

0.1

0.2

0.3

P
P

D
I

c: Window size = 64

0 150 300 450
The time step

1

2

3

4

5

C
D

E

d: Window size = 64

0 150 300 450
The time step

0

0.1

0.2

0.3

0.4

P
P

D
I

e: Window size = 64

0 150 300 450
The time step

0

1

2

3

4

5

6

C
D

E

f: Window size = 64

0 150 300 450
The time step

0

0.1

0.2

0.3

0.4

P
P

D
I

g: Window size = 64

0 150 300 450
The time step

1

2

3

4

5

6

C
D

E

h: Window size = 64

Fig. 2 The vertical lines in the figure represent the various locations of the true change points, the
blue curve represents the posterior predictive discrepancy index (PPDI) and the red curve represents
the cumulative discrepancy energy (CDE) with window sizeW = 64. a PPDI with change points at
t1 = 150 and t2 = 300, b CDE with change points at t1 = 150 and t2 = 300; c PPDI with change
points at t1 = 150 and t2 = 250, d CDE with change points at t1 = 150 and t2 = 250; e PPDI with
change points at t1 = 150 and t2 = 200, f CDEwith change points at t1 = 150 and t2 = 200; g PPDI
with change points at t1 = 150 and t2 = 170, h CDE with change points at t1 = 150 and t2 = 170

In our first setting, true change points are placed at times t1 = 150 and t2 = 300
(see Fig. 2a, b). Note the minimum distance between change points is 150, which is
larger than the window size. Consequently, no window can contain more than one
change point. We can see from the figure that the two peaks are located around the
true change points t1 = 150 and t2 = 300 respectively.

We repeat this experiment with the true change points at t1 = 150 and t2 = 250
in Fig. 2c, d so that the minimum distance between the change points is 100, which
is still larger than the window size. We can see that there are two prominent peaks
located around the true change points. Next, we set the true change points at t1 = 150
and t2 = 200 Fig. 2e, f, where the minimum distance between the change points is 50
which is slightly smaller than the window size 64. In this situation, the window may
contain two change points, so that these windows cross three segments generated by
different network architectures. We can still distinguish the two peaks in Fig. 2e, f
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because the distance of the change points is still large enough. However, in Fig. 2g, h
where the change points are t1 = 150 and t2 = 170, we can see that there are only one
peak around t = 150. In this case, we cannot distinguish two change points because
they are closely located with each other.

3.3 Effect of Changing the Window Size

To investigate the effect of changing the window size, we set the true change points at
t1 = 150 and t2 = 300 for all of the experimental settings.We apply our method with
four different window sizes: W = 24 in Fig. 3a, b; W = 32 in Fig. 3c, d; W = 48 in
Fig. 3e, f; W = 64 in Fig. 3g, h. Reducing the window size will increase the fluctua-
tion of thePPDI andCDE, and renders the change point locations less distinguishable.
ForW = 24, we can see that there are multiple large peaks over the CDE time series.
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Fig. 3 The vertical lines in the figure represent the locations of the true change points, the blue
curve represents the posterior predictive discrepancy index (PPDI) and the red curve represents the
cumulative discrepancy energy (CDE) with window sizes 24, 32, 48 and 64
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4 Discussion

The method for network structure change point detection described in this paper pro-
vides a flexible approach to modelling and estimating community structures among
interacting nodes. We consider both the community latent label vector and block
model parameters (block edge probabilities) as random variables to be estimated.
Structural changes to the networks are reflected by changes in the latent labels and
model parameters. By applying a sliding window method, we avoid partitioning
the data into sub-segments recursively as in the algorithm of [4]. Compared to the
method of evaluating eigen-structure of the network in [4], our approach has several
advantages. Our approach is able to be used for both undirected and directed graphs.
The method using stochastic block model is more flexible, because different choices
of π can generate different connection patterns in the adjacency matrix. However,
both of the methods have difficulty in detecting change points with close distances.

Ideally, the window size should be as small as possible, which can enhance the
ability of detecting those change points located closely. When the window size is
small, for examplewhenW = 24, theremay be false detections, because there are not
enough samples of data in the sliding windows. In our current method, the window
size cannot be made too small, which may be because we use a threshold to convert
the sample correlation matrix into an adjacency matrix. This practice results in the
loss of some information regarding the network architecture. If we extend the model
to a weighted stochastic block model to fit the data in the future, so that the sample
correlation matrix is directly considered as a weighted adjacency matrix, it may be
feasible to detect change points at smaller separations andmake the higher resolution
of detecting the change points. For themajority of the applications in fMRI time series
analysis, the time course should be around hundreds of time steps, which is because
of the limitation of the sample time interval of the fMRI in the short time experiment.
Therefore, the algorithm to analyse the short term network time series is important.

The computational cost of the posterior predictive discrepancy procedure in our
method depends mainly on two aspects. The first includes the iterated Gibbs steps
used to update the latent variables and the sampling of the model parameter. In
our code, calculating m(z) takes O(N ) time, calculating the probability of each
element zi to be reassigned into one of K clusters takes O(K 2 + N 2 + K N ) time.
Therefore, iterating each latent vector z requires the computational cost of O((K 2 +
N 2 + K N )K N ), sampling π requires O(K 2 + N 2) time. The second is the number
of replications needed for the predictive process. Calculating each PPDI requires
O(S) time. There is a natural trade off between increasing the replication number
and reducing the computational cost.

In this paper, we have not considered the problem of inferring the number of
communities K . In realworld applications, K is unknown.Determination of K can be
considered as amodel selection problem, a class of problem for whichmanymethods
exist, including [34] in Bayesian statistics. For example, the allocation sampler [31]
is an efficient tool for inference of K , and could potentially be integrated into our
algorithm. In real word applications, some change points may not occur abruptly, but
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rather change gradually over time. For solving the gradual changing problem,wemay
potentially apply a transitionmatrix to the latent label vectors in the generativemodel
between difference segments to simulate the time series with ground truth of gradual
change points. We do not claim that our Gibbs sampling approach is optimal, finding
alternative sampling methods is thus another possibility for improving the algorithm.
One idea that is worth exploring in the future is to develop efficient samplingmethods
for inferring high-dimensional latent vectors in larger scale networks.

5 Conclusion

The main contribution of this paper is to demonstrate that posterior predictive dis-
crepancy criterion can be used to detect network structure change point based on
time series data. This insight is potentially applicable to a wide range of applications
including analysis of fMRI data and large scale social networks.

Acknowledgements The authors are grateful to the Australian Research Council Centre of Excel-
lence for Mathematical and Statistical Frontiers for their support of this project (CE140100049).

Appendix: Derivation of the Collapsing Procedure

We now create a new parameter vector η = {α1 + m1, . . . , αK + mK }. We can col-
lapse the integral

∫
p(z, r|K )dr as the following procedure.

∫

p(z, r|K )dr =
∫

p(r|K )p(z|r, K )dr

=
∫

N (α)

K∏

k=1

rαk−1
k

K∏

k=1

rmk
k dr

=
∫

N (α)

K∏

k=1

rαk+mk−1
k dr

= N (α)

N (η)

∫

N (η)

K∏

k=1

rαk+mk−1
k dr

= Γ (
∑K

k=1 αk)

Γ (
∑K

k=1(αk + mk)

K∏

k=1

Γ (αk + mk)

Γ (αk)
.
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Integral of the form
∫
p(xkl, πkl |z)dπkl can be calculated as

∫ 1

0
p(xkl, πkl |z)dπkl =

∫ 1

0
p(πkl)p(xkl |πkl, z)dπkl

=
∫ 1

0

πa−1
kl (1 − πkl)

b−1

B(a, b)
π

nkl
kl (1 − πkl)

wkl−nkl dπkl

=
∫ 1

0

π
nkl+a−1
kl (1 − πkl)

wkl−nkl+b−1

B(a, b)
dπkl

= B(nkl + a,wkl − nkl + b)

B(a, b)

×
∫ 1

0

π
nkl+a−1
kl (1 − πkl)

wkl−nkl+b−1

B(nkl + a,wkl − nkl + b)
dπkl

= B(nkl + a,wkl − nkl + b)

B(a, b)
.
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Stochastic Methods for Solving
High-Dimensional Partial Differential
Equations

Marie Billaud-Friess, Arthur Macherey, Anthony Nouy
and Clémentine Prieur

Abstract We propose algorithms for solving high-dimensional Partial Differen-
tial Equations (PDEs) that combine a probabilistic interpretation of PDEs, through
Feynman–Kac representation, with sparse interpolation. Monte-Carlo methods and
time-integration schemes are used to estimate pointwise evaluations of the solution
of a PDE. We use a sequential control variates algorithm, where control variates are
constructed based on successive approximations of the solution of the PDE. Two
different algorithms are proposed, combining in different ways the sequential con-
trol variates algorithm and adaptive sparse interpolation. Numerical examples will
illustrate the behavior of these algorithms.

Keywords Stochastic algorithms · High dimensional PDEs · Adaptive sparse
interpolation

1 Introduction

We consider the solution of an elliptic partial differential equation

A (u) = g in D,

u = f on ∂D,
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where u : D → R is a real-valued function, and D is an open bounded domain in
R

d . A is an elliptic linear differential operator and f : ∂D → R, g : D → R are
respectively the boundary condition and the source term of the PDE.

We are interested in approximating the solution of (1) up to a given precision.
For high dimensional PDEs (d � 1), this requires suitable approximation formats
such as sparse tensors [4, 21] or low-rank tensors [1, 15, 16, 19, 20]. Also, this
requires algorithms that provide approximations in a given approximation format.
Approximations are typically provided by Galerkin projections using variational for-
mulations of PDEs. Another path consists in using a probabilistic representation of
the solution u through Feynman–Kac formula, and Monte-Carlo methods to provide
estimations of pointwise evaluations of u (see e.g., [14]). This allows to compute
approximations in a given approximation format through classical interpolation or
regression [2, 3, 22]. In [11, 12], the authors consider interpolations on fixed poly-
nomial spaces and propose a sequential control variates method for improving the
performance of Monte-Carlo estimation. In this paper, we propose algorithms that
combine this variance reduction method with adaptive sparse interpolation [5, 6].

The outline is as follows. In Sect. 2, we recall the theoretical and numerical aspects
associated to probabilistic tools for estimating the solution of (1).We also present the
sequential control variates algorithm introduced in [11, 12]. In Sect. 3 we introduce
sparse polynomial interpolation methods and present a classical adaptive algorithm.
In Sect. 4, we present two algorithms combining the sequential control variates algo-
rithm from Sect. 2 and adaptive sparse polynomial interpolation. Finally, numerical
results are presented in Sect. 4.

2 Probabilistic Tools for Solving PDEs

We consider the problem (1) with a linear partial differential operator defined by
A (u) = −L (u) + ku, where k is a real valued function defined on D , and where

L (u)(x) = 1

2

d∑

i, j=1

(σ (x)σ (x)T )i j∂
2
xi x j

u(x) +
d∑

i=1

bi (x)∂xi u(x) (2)

is the infinitesimal generator associated to the d-dimensional diffusion process Xx

solution of the stochastic differential equation

dXx
t = b(Xx

t )dt + σ(Xx
t )dWt , Xx

0 = x ∈ D, (3)

where W is a d-dimensional Brownian motion and b := (b1, . . . , bd)T : Rd → R
d

and σ : Rd → R
d×d stand for the drift and the diffusion respectively.
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2.1 Pointwise Evaluations of the Solution

The following theorem recalls the Feynman–Kac formula (see [8, Theorem2.4] or [9,
Theorem 2.4] and the references therein) that provides a probabilistic representation
of u(x), the solution of (1) evaluated at x ∈ D .

Theorem 1 (Feynman–Kac formula) Assume that

(H1) D is an open connected bounded domain of Rd , regular in the sense that, if
τ x = inf

{
s > 0 : Xx

s /∈ D
}
is the first exit time of D for the process Xx ,

we have
P(τ x = 0) = 1, x ∈ ∂D,

(H2) b, σ are Lipschitz functions,
(H3) f is continuous on ∂D , g and k ≥ 0 are Hölder-continuous functions onD ,
(H4) (uniform ellipticity assumption) there exists c > 0 such that

d∑

i, j=1

(
σ(x)σ (x)T

)
i j ξiξ j ≥ c

d∑

i=1

ξ 2
i , ξ ∈ R

d , x ∈ D .

Then, there exists a unique solution of (1) in C (D) ∩ C 2 (D), which satisfies for all
x ∈ D

u(x) = E
[
F(u, Xx )

]
(4)

where

F(u, Xx ) = u(Xx
τ x ) exp

(
−

∫ τ x

0
k(Xx

t )dt

)
+

∫ τ x

0
A (u)(Xx

t ) exp

(
−

∫ t

0
k(Xx

s )ds

)
dt,

with u(Xx
τ x ) = f (Xx

τ x ) and A (u)(Xx
t ) = g(Xx

t ).

Note that F(u, Xx ) in (4) only depends on the values of u on ∂D and A (u) on
D, which are the given data f and g respectively. A Monte-Carlo method can then
be used to estimate u(x) using (4), which relies on the simulation of independent
samples of an approximation of the stochastic process Xx . This process is here
approximated by an Euler–Maruyama scheme. More precisely, letting tn = nΔt ,
n ∈ N, Xx is approximated by a piecewise constant process Xx,Δt , where Xx,Δt

t =
Xx,Δt
n for t ∈ [tn, tn+1[ and

Xx,Δt
n+1 = Xx,Δt

n + Δt b(Xx,Δt
n ) + σ(Xx,Δt

n ) ΔWn,

Xx,Δt
0 = x .

(5)

Here ΔWn = Wn+1 − Wn is an increment of the standard Brownian motion. For
details on time-integration schemes, the reader can refer to [17]. Letting
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{Xx,Δt (ωm)}Mm=1 be independent samples of Xx,Δt , we obtain an estimation uΔt,M(x)
of u(x) defined as

uΔt,M(x) := 1

M

M∑

m=1

F
(
u, Xx,Δt (ωm)

)

= 1

M

M∑

m=1

[
f (Xx,Δt

τ x,Δt (ωm)) exp

(
−

∫ τ x,Δt

0
k(Xx,Δt

t (ωm))dt

)

+
∫ τ x,Δt

0
g(Xx,Δt

t (ωm)) exp

(
−

∫ t

0
k(Xx,Δt

s (ωm))ds

)
dt

]

(6)

where τ x,Δt is the first exit time of D for the process Xx,Δt (ωm), given by

τ x,Δt = inf
{
t > 0 : Xx,Δt

t /∈ D
} = min

{
tn > 0 : Xx,Δt

tn /∈ D
}
.

Remark 1 In practice, f has to be defined overRd and not only on the boundary ∂D .
Indeed, although Xx

τ x ∈ ∂D with probability one, Xx,Δt
τ x,Δt ∈ R

d \ D with probability
one.

The error can be decomposed in two terms

u(x) − uΔt,M(x) =
εΔt︷ ︸︸ ︷

u(x) − E
[
F

(
u, Xx,Δt

)]

+ E
[
F

(
u, Xx,Δt

)] − 1

M

M∑

m=1

F
(
u, Xx,Δt (ωm)

)

︸ ︷︷ ︸
εMC

,
(7)

where εΔt is the time integration error and εMC is the Monte-Carlo estimation error.
Before discussing the contribution of each of both terms to the error, let us introduce
the following additional assumption, which ensures that D does not have singular
points.1

(H5) Each point of ∂D satisfies the exterior cone condition which means that,
for all x ∈ ∂D , there exists a finite right circular cone K , with vertex x , such that
K ∩ D = {x}.

Under assumptions (H1)–(H5), it can be proven [12, Sect. 4.1] that the time
integration error εΔt converges to zero. It can be improved to O(Δt1/2) by adding
differentiability assumptions on the boundary [13]. The estimation error εMC is a
random variable with zero mean and standard deviation converging as O(M−1/2).
The computational complexity for computing a pointwise evaluation of uΔt,M(x) is

1Note that together with (H4), assumption (H5) implies (H1) (see [12, Sect. 4.1] for details), so
that the set of hypotheses (H1)–(H5) could be reduced to (H2)–(H5).



Stochastic Methods for Solving High-Dimensional Partial Differential Equations 129

in O
(
MΔt−1

)
in expectation for Δt sufficiently small,2 so that the computational

complexity for achieving a precision ε (root mean squared error) behaves as O(ε−4).
This does not allow to obtain a very high accuracy in a reasonable computational
time. The convergence with Δt can be improved to O(Δt) by suitable boundary
corrections [13], therefore yielding a convergence in O(ε−3). To further improve
the convergence, high-order integration schemes could be considered (see [17] for
a survey). Also, variance reduction methods can be used to further improve the
convergence, such as antithetic variables, importance sampling, control variates (see
[14]). MultilevelMonte-Carlo [10] can be considered as a variance reductionmethod
using several control variates (associated with processes Xx,Δtk using different time
discretizations). Here, we rely on the sequential control variates algorithm proposed
in [11] and analyzed in [12]. This algorithm constructs a sequence of approximations
of u. At each iteration of the algorithm, the current approximation is used as a control
variate for the estimation of u through Feynman–Kac formula.

2.2 A Sequential Control Variates Algorithm

Herewe recall the sequential control variates algorithm introduced in [11] in a general
interpolation framework. We let VΛ ⊂ C 2(D) be an approximation space of finite
dimension #Λ and letIΛ : RD → VΛ be the interpolation operator associatedwith a
unisolvent gridΓΛ = {xν : ν ∈ Λ}.We let (lν)ν∈Λ denote the (unique) basis ofVΛ that
satisfies the interpolation property lν(xμ) = δνμ for all ν,μ ∈ Λ. The interpolation
IΛ(w) = ∑

ν∈Λ w(xν)lν(x) of functionw is then the unique function in VΛ such that

IΛ(w)(xν) = w(xν), ν ∈ Λ.

The following algorithm provides a sequence of approximations (ũk)k≥1 of u in VΛ,
which are defined by ũk = ũk−1 + ẽk , where ẽk is an approximation of ek , solution
of

A (ek)(x) = g(x) − A (ũk−1)(x), x ∈ D,

ek(x) = f (x) − ũk−1(x), x ∈ ∂D .

Note that ek admits a Feyman–Kac representation ek(x) = E(F(ek, Xx )), where
F(ek, Xx ) depends on the residuals g − A (ũk−1) on D and f − ũk−1 on ∂D . The
approximation ẽk is then defined as the interpolationIΛ(ekΔt,M) of the Monte-Carlo
estimate ekΔt,M(x) of ekΔt (x) = E(F(ek, Xx,Δt )) (using M samples of Xx,Δt ).

2A realization of Xx,Δt over the time interval [0, τ x,Δt ] can be computed in O
(
τ x,ΔtΔt−1

)
. Then,

the complexity to evaluate uΔt,M (x) is in O(E(τ x,Δt )MΔt−1) in expectation. Under (H1)–(H5),
it is stated in the proof of [12, Theorem 4.2] that supx E[τ x,Δt ] ≤ C with C independent of Δt for
Δt sufficiently small.
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Algorithm 1 (Sequential control variates algorithm)
1: Set ũ0 = 0, k = 1 and S = 0.
2: while k ≤ K and S < ns do
3: Compute ekΔt,M(xν) for xν ∈ ΓΛ.
4: Compute ẽk = IΛ(ekΔt,M) = ∑

ν∈Λ ekΔt,M(xν)lν(x).
5: Update ũk = ũk−1 + ẽk .
6: If ‖ũk − ũk−1‖2 ≤ εtol‖ũk−1‖2 then S = S + 1 else S = 0.
7: Set k = k + 1.
8: end while

For practical reasons, Algorithm1 is stopped using an heuristic error criterion
based on stagnation. This criterion is satisfied when the desired tolerance εtol is
reached for ns successive iterations (in practice we chose ns = 5).

Now let us provide some convergence results for Algorithm1. To that goal, we
introduce the time integration error at point x for a function h

eΔt (h, x) = E[F(h, XΔt,x )] − E[F (
h, Xx

)]. (8)

Then the following theorem [12, Theorem 3.1] gives a control of the error in expec-
tation.

Theorem 2 Assuming (H2)–(H5), it holds

sup
ν∈Λ

∣∣E
[
ũn+1(xν) − u(xν)

]∣∣ � C(Δt,Λ) sup
ν∈Λ

∣∣E
[
ũn(xν) − u(xν)

]∣∣ + C1(Δt,Λ)

with C(Δt,Λ) = sup
ν∈Λ

∑

μ∈Λ

|eΔt (lμ, xν)| and C1(Δt,Λ) = supν∈Λ

∣∣eΔt (u − IΛ(u), xν)
∣∣.

Moreover if C(Δt,Λ) < 1, it holds

lim sup
n→∞

sup
ν∈Λ

∣∣E
[
ũn(xν) − u(xν)

]∣∣ � C1(Δt,Λ)

1 − C(Δt,Λ)
. (9)

The condition C(Δt,Λ) < 1 implies that in practice Δt should be chosen suf-
ficiently small [12, Theorem 4.2]. Under this condition, the error at interpolation
points uniformly converges geometrically up to a threshold term depending on time
integration errors for interpolation functions lν and the interpolation erroru − IΛ(u).

Theorem2 provides a convergence result at interpolation points. Below, we pro-
vide a corollary to this theorem that provides a convergence result in L∞(D). This
result involves the Lebesgue constants in L∞-norm associated to IΛ, defined by

LΛ = sup
v∈C 0(D )

‖IΛ(v)‖∞
‖v‖∞

,
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and such that for any v ∈ C 0(D),

‖v − IΛ(v)‖∞ ≤ (1 + LΛ) inf
w∈VΛ

‖v − w‖∞. (10)

Throughout this article, we adopt the convention that supremum exclude elements
with norm 0. We recall also that the L∞ Lebesgue constant can be expressed as
LΛ = supx∈D

∑
ν∈Λ |lν(x)|.

Corollary 1 (Convergence in L∞) Assuming (H2)–(H5), one has

lim sup
n→∞

‖E [
ũn − u

] ‖∞ � C1(Δt,Λ)

1 − C(Δt,Λ)
LΛ + ‖u − IΛ(u)‖∞. (11)

Proof By triangular inequality, we have

‖E [
ũn − u

] ‖∞ � ‖E [
ũn − IΛ(u)

] ‖∞ + ‖IΛ(u) − u‖∞.

We can build a continuous function w such that w(xν) = E
[
ũn(xν) − u(xν)

]
for all

ν ∈ Λ, and such that

‖w‖∞ = sup
ν∈Λ

|w(xν)| = sup
ν∈Λ

∣∣E
[
ũn(xν) − u(xν)

]∣∣ .

We have then

‖E [
ũn − IΛ(u)

] ‖∞ = ‖IΛ(w)‖∞ ≤ LΛ‖w‖∞.

The result follows from the definition of the function w and Theorem2. �

Remark 2 Since for bounded domains D , we have

‖v‖2 ≤ |D |1/2‖v‖∞,

for all v in C 0(D), where |D | denotes the Lebesgue measure of D , we can deduce
the convergence results in L2 norm from those in L∞ norm.
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3 Adaptive Sparse Interpolation

We here present sparse interpolation methods following [5, 6].

3.1 Sparse Interpolation

For 1 ≤ i ≤ d, we let {ϕ(i)
k }k∈N0 be a univariate polynomial basis, where ϕ

(i)
k (xi ) is a

polynomial of degree k. For a multi-index ν = (ν1, . . . , νd) ∈ N
d
0 , we introduce the

multivariate polynomial

ϕν(x) =
d∏

i=1

ϕ(i)
νi

(xi ).

For a subset Λ ⊂ N
d , we let PΛ = span{ϕν : ν ∈ Λ}. A subset Λ is said to be

downward closed if
∀ν ∈ Λ, μ ≤ ν ⇒ μ ∈ Λ.

If Λ is downward closed, then the polynomial space PΛ does not depend on the
choice of univariate polynomial bases and is such thatPΛ = span{xν : ν ∈ Λ}, with
xν = xν1

1 . . . xνd
d .

In the case whereD = D1 × · · · × Dd , we can choose for {ϕ(i)
k }k∈N0 an orthonor-

mal basis in L2(Di ) (i.e. a rescaled and shifted Legendre basis). Then {ϕν}ν∈Nd
0
is

an orthonormal basis of L2(D). To define a set of points ΓΛ unisolvent for PΛ,
we can proceed as follows. For each dimension 1 ≤ i ≤ d, we introduce a sequence
of points {z(i)

k }k∈N0 in D i such that for any p ≥ 0, Γ (i)
p = {z(i)

k }pk=0 is unisolvent

forPp = span{ϕ(i)
k : 0 ≤ k ≤ p}, therefore defining an interpolation operatorI (i)

p .
Then we let

ΓΛ = {zν = (z(1)
ν1

, . . . , z(d)
νd

) : ν ∈ Λ} ⊂ D .

This construction is interesting for adaptive sparse algorithms since for an increasing
sequence of subsets Λn , we obtain an increasing sequence of sets ΓΛn , and the
computation of the interpolation onPΛn only requires the evaluation of the function
on the new set of points ΓΛn \ ΓΛn−1 . Also, with such a construction, we have the
followingproperty of theLebesgue constant ofIΛ in L∞-norm.This result is directly
taken from [6, Sect. 3].

Proposition 1 If for each dimension 1 ≤ i ≤ d, the sequence of points {z(i)
k }k∈N0 is

such that the interpolation operator I (i)
p has a Lebesgue constant Lp ≤ (p + 1)s

for some s > 0, then for any downward closed set Λ, the Lebesgue constant LΛ

satisfies
LΛ ≤ (#Λ)s+1 . (12)



Stochastic Methods for Solving High-Dimensional Partial Differential Equations 133

Leja points or magic points [18] are examples of sequences of points such that the
interpolation operators I (i)

p have Lebesgue constants not growing too fast with p.
For a givenΛwithρi := maxν∈Λ νi , it is possible to construct univariate interpolation
gridsΓ (i)

ρi
with better properties (e.g., Chebychev points), therefore resulting in better

properties for the associated interpolation operator IΛ. However for Chebychev
points, e.g., ρi ≤ ρ ′

i does not ensure Γ (i)
ρi

⊂ Γ
(i)
ρ ′
i
. Thus with such univariate grids, an

increasing sequence of sets Λn will not be associated with an increasing sequence
of sets ΓΛn , and the evaluations of the function will not be completely recycled in
adaptive algorithms. However, for some of the algorithms described in Sect. 4, this
is not an issue as evaluations can not be recycled anyway.

Note that for general domainsD which are not the product of intervals, the above
constructions of grids ΓΛ are not viable since it may yield to grids not contained
in the domain D . For such general domains, magic points obtained through greedy
algorithms could be considered.

3.2 Adaptive Algorithm for Sparse Interpolation

An adaptive sparse interpolation algorithm consists in constructing a sequence of
approximations (un)n≥1 associated with an increasing sequence of downward closed
subsets (Λn)n≥1. According to (10), we have to construct a sequence such that the
best approximation error and the Lebesgue constant are such that

LΛn inf
w∈PΛn

‖u − w‖∞ −→ 0 as n → ∞

for obtaining a convergent algorithm. For example, if

inf
w∈PΛn

‖u − w‖∞ = O((#Λn)
−r ) (13)

holds3 for some r > 1 and if LΛn = O((#Λn)
k) for k < r , then the error ‖u −

un‖∞ = O(n−r ′
) tends to zero with an algebraic rate of convergence r ′ = r − k > 0.

Of course, the challenge is to propose a practical algorithm that constructs a good
sequence of sets Λm .

We now present the adaptive sparse interpolation algorithm with bulk chasing
procedure introduced in [5]. Let θ be a fixed bulk chasing parameter in (0, 1) and let
EΛ(v) = ‖PΛ(v)‖22, where PΛ is the orthogonal projector over PΛ for any subset
Λ ⊂ N

d
0 .

Algorithm 2 (Adaptive interpolation algorithm)
1: Set Λ1 = {0d} and n = 1.
2: while n ≤ N and εn−1 > ε do

3See e.g. [7] for conditions on u ensuring such a behavior of the approximation error.



134 M. Billaud-Friess et al.

3: Compute MΛn .
4: Set Λ�

n = Λn ∪ MΛn and compute IΛ�
n
(u).

5: Select Nn ⊂ MΛn the smallest such that ENn (IΛ�
n
(u)) ≥ θEMΛn

(IΛ�
n
(u))

6: Update Λn+1 = Λn ∪ Nn .
7: Compute un+1 = IΛn+1(u) (this step is not necessary in practice).
8: Compute εn .
9: Update n = n + 1.
10: end while

At iteration n, Algorithm2 selects a subset of multi-indices Nn in the reduced margin
of Λn defined by

MΛn = {ν ∈ N
d \ Λn : ∀ j s.t. ν j > 0, ν − e j ∈ Λn},

where (e j )k = δk j . The reduced margin is such that for any subset S ⊂ MΛn , Λn ∪
S is downward closed. This ensures that the sequence (Λn)n≥1 generated by the
algorithm is an increasing sequence of downward closed sets. Finally, Algorithm2
is stopped using a criterion based on

εn = EM n (IΛ�
n
(u))

EΛ�
n
(IΛ�

n
(u))

.

4 Combining Sparse Adaptive Interpolation with
Sequential Control Variates Algorithm

We present in this section two ways of combining Algorithms1 and 2. First we intro-
duce a perturbed version of Algorithm2 and then an adaptive version of Algorithm1.
At the end of the section, numerical results will illustrate the behavior of the proposed
algorithms.

4.1 Perturbed Version of Algorithm2

As we do not have access to exact evaluations of the solution u of (1), Algorithm2
can not be used for interpolating u. So we introduce a perturbed version of this
algorithm, where the computation of the exact interpolant IΛ(u) is replaced by an
approximation denoted ũΛ, which can be computed for example with Algorithm1
stopped for a given tolerance εtol or at step k. This brings the following algorithm.

Algorithm 3 (Perturbed adaptive sparse interpolation algorithm)
1: Set Λ1 = {0d} and n = 1.
2: while n ≤ N and ε̃n−1 > ε do
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3: Compute MΛn .
4: Set Λ�

n = Λn ∪ MΛn and compute ũΛ�
n
.

5: Select Nn as the smallest subset of MΛn such that ENn (ũΛ�
n
) ≥ θEMΛn

(ũΛ�
n
)

6: Update Λn+1 = Λn ∪ Nn .
7: Compute ũΛn+1 .
8: Compute ε̃n .
9: Update n = n + 1.
10: end while

4.2 Adaptive Version of Algorithm1

As a second algorithm, we consider the sequential control variates algorithm
(Algorithm1) where at step 4, an approximation ẽk of ek is obtained by applying
the adaptive interpolation algorithm (Algorithm3) to the function ekΔt,M , which uses
Monte-Carlo estimations ekΔt,M(xν) of ek(xν) at interpolation points. At each itera-
tion, ẽk therefore belongs to a different approximation spacePΛk . In the numerical
section, we will call this algorithm adaptive Algorithm 1.

4.3 Numerical Results

In this section, we illustrate the behavior of algorithms previously introduced on
different test cases. We consider the simple diffusion equation

−�u(x) = g(x), x ∈ D,

u(x) = f (x), x ∈ ∂D,
(14)

were D =] − 1, 1[d . The source terms and boundary conditions will be specified
later for each test case.

The stochastic differential equation associated to (14) is the following

dXx
t = √

2dWt , Xx
0 = x, (15)

where (Wt )t≥0 is a d-dimensional Brownian motion.
We use tensorized grids of magic points for the selection of interpolation points

evolved in adaptive algorithms.

Small dimensional test case. We consider a first test case (TC1) in dimension
d = 5. Here the source term and the boundary conditions in problem (14) are chosen
such that the solution is given by

u(x) = x21 + sin(x2) + exp(x3) + sin(x4)(x5 + 1), x ∈ D . (TC1)
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ũ
k Λ

8
‖ 2

Δt = 2.5 · 10−3

Δt = 6.25 · 10−4

5 10 15 20 25 30

10−10

10−8

10−6

10−4

10−2

100

k

‖ u
−

ũ
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We first test the influence of Δt and M on the convergence of Algorithm1 when
Λ is fixed. In that case, Λ is selected a priori with Algorithm2 using samples of the
exact solution u for (TC1), stopped for ε ∈ {10−6, 10−8, 10−10}. In what follows,
the notation Λi stands for the set obtained for ε = 10−i , i ∈ {6, 8, 10}. We represent
on Fig. 1 the evolution of the absolute error in L2-norm (similar results hold for the
L∞-norm) between the approximation and the true solution with respect to step k for
Λ = Λ6. As claimed in Corollary 1, we recover the geometric convergence up to a
threshold value that depends onΔt .We also notice faster convergence asM increases
and when Δt decreases. We fix M = 1000 in the next simulations.

We study the impact of the choice of Λi on the convergence of Algorithm1.
Again we observe on Fig. 2 that the convergence rate gets better as Δt decreases.
Moreover as #Λ increases the threshold value decreases. This is justified by the fact
that interpolation error decreases as #Λi increases (see Table1). Nevertheless, we
observe that it may also deteriorate the convergence rate if it is chosen too large
together with Δt not sufficiently small. Indeed for the same number of iterations
k = 10 and the same time-step Δt = 2.5 · 10−3, we have an approximate absolute
error equal to 10−7 for Λ8 against 10−4 for Λ10.
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Table 1 Algorithm2 computed on the exact solution of (TC1): evolution of #Λn , error criterion
εn and interpolation errors in norms L2 and L∞ at each step n

Λn #Λn εn ||u − un ||2 ||u − un ||∞
Λ6 1 6.183372e-01 1.261601e+00 4.213566e+00

10 2.792486e-02 1.204421e-01 3.602629e-01

20 2.178450e-05 9.394419e-04 3.393999e-03

26 9.632815e-07 4.270457e-06 1.585129e-05

30 9.699704e-08 2.447475e-06 8.316435e-06

Λ8 33 4.114730e-09 2.189518e-08 9.880306e-08

40 1.936050e-10 6.135776e-10 1.739848e-09

Λ10 41 1.008412e-11 9.535433e-11 4.781375e-10

50 1.900248e-14 1.004230e-13 4.223288e-13

55 7.453467e-15 2.905404e-14 1.254552e-13
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Fig. 3 (TC1) Comparison of Algorithm2 applied to exact solution and Algorithm3: (left) absolute
error in L2-norm (right) evolution of εn and ε̃n with respect to #Λn

We present now the behavior of Algorithm3. Simulations are performed with a
bulk-chasing parameter θ = 0.5. At each step n of Algorithm3, we use Algorithm1
with (Δt, M) = (10−4, 1000), stopped when a stagnation is detected. As shown on
the left plot of Fig. 3, for #Λn = 55 we reach approximately a precision of 10−14

as for Algorithm2 performed on the exact solution (see Table1). According to the
right plot of Fig. 3, we also observe that the enrichment procedure behaves similarly
for both algorithms (ε̃n and εn are almost the same). Here using the approximation
provided by Algorithm1 has a low impact on the behavior of Algorithm2.

We present then results provided with the adaptive Algorithm1. The parameters
chosen for the adaptive interpolation are ε = 5 · 10−2, θ = 0.5. K = 30 ensures
the stopping of Algorithm1. As illustrated by Fig. 4, we recover globally the same
behavior as for Algorithm1 without adaptive interpolation. Indeed as k increases,
both absolute errors in L2-norm and L∞-norm decrease and then stagnate. Again,
we notice the influence of Δt on the stagnation level. Nevertheless, the convergence
rates are deteriorated and the algorithm provides less accurate approximations than
Algorithm3. This might be due to the sparse adaptive interpolation procedure, which
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Table 2 (TC1) Comparison of the algorithmic complexity to reach the precision 3 · 10−5, with
(Δt, M) = (10−4, 1000)

Adaptive Algorithm1 Algorithm3 Full-grid Algorithm1

Th. complexity M(Δt)−1(
∑

k #Λk) M(Δt)−1(
∑

n #Λn Nn) M(Δt)−1#Λmax N

Est. complexity 4 · 109 operations 16 · 109 operations 1012N operations

uses here pointwise evaluations based onMonte-Carlo estimates, unlike Algorithm3
which relies on pointwise evaluations resulting fromAlgorithm1 stopping for a given
tolerance.

Finally in Table2, we compare the algorithmic complexity of these algorithms to
reach a precision of 3 · 10−5 for (Δt, M) = (10−4, 1000). For adaptive
Algorithm1,Λk refers to the set of multi-indices considered at step k of Algorithm1.
For Algorithm3, Nn stands for the number of iteration required by Algorithm1 to
reach tolerance εtol at step n. Finally, Algorithm1 is run with full-grid Λ = Λmax

where Λmax = {ν ∈ N
d : νi ≤ 10} is the set of multi-indices allowing to reach the

machine precision. In this case, N stands for the number of steps for this algorithm
to converge.

We observe that both the adaptive version of Algorithms1 and 3 have a similar
complexity, which is better than for the full-grid version of Algorithm1. Moreover,
we observed that while adaptive version of Algorithm1 stagnates at a precision of
3 · 10−5, Algorithm3, with the same parameters Δt and M , converges almost up to
the machine precision. This is why the high-dimensional test cases will be run only
with Algorithm3.

Higher-dimensional test cases. Now, we consider two other test cases noted
respectively (TC2) and (TC3) in higher dimension.

(TC2) As second test case in dimension d = 10, we define (14) such that its solu-
tion is the Henon–Heiles potential
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Table 3 (TC2) Comparison of Algorithm2 (first four columns) andAlgorithm3 (last four columns)

#Λn εn ‖u − un‖∞ ‖u − un‖2 #Λn ε̃n ‖u − ũΛn ‖∞ ‖u − ũΛn ‖2
1 4.0523e-01 3.0151e+00 1.2094e+00 1 3.9118e-01 8.3958e-01 6.9168e-01

17 1.6243e-01 1.8876e+00 5.9579e-01 17 1.6259e-01 5.2498e-01 3.4420e-01

36 5.4494e-02 7.0219e-01 2.0016e-01 36 5.4699e-02 1.9209e-01 1.2594e-01

46 1.2767e-02 1.6715e-01 4.9736e-02 46 1.2806e-02 4.6904e-02 2.8524e-02

53 9.6987e-04 2.9343e-02 4.8820e-03 53 1.0350e-03 7.8754e-03 2.8960e-03

60 7.6753e-04 1.5475e-02 4.1979e-03 61 7.0354e-04 3.0365e-03 1.7610e-03

71 3.2532e-04 8.4575e-03 2.1450e-03 71 3.1998e-04 2.3486e-03 1.2395e-03

77 1.7434e-16 3.9968e-15 1.5784e-15 77 7.3621e-16 6.2172e-15 1.2874e-15

u(x) = 1

2

d∑

i=1

x2i + 0.2
d−1∑

i=1

(
xi x

2
i+1 − x3i

)
+ 2.5 10−3

d−1∑

i=1

(
x2i + x2i+1

)2
, x ∈ D .

We set (Δt, M) = (10−4, 1000) and K = 30 for Algorithm1.
(TC3) We also consider the problem (14) whose exact solution is a sum of non-

polynomial functions, like (TC1) but now in dimension d = 20, given by

u(x) = x21 + sin(x12) + exp(x5) + sin(x15)(x8 + 1).

Here, the Monte-Carlo simulations are performed for (Δt, M) = (10−4, 1000)
and K = 30.

Since for both test cases the exact solution is known, we propose to compare the
behavior of Algorithms3 and 2. Again, the approximations ũn , at each step n of
Algorithm3, are provided by Algorithm1 stopped when a stagnation is detected. In
both cases, the parameters for Algorithm3 are set to θ = 0.5 and ε = 10−15.

In Tables3 and 4, we summarize the results associated to the exact and perturbed
sparse adaptive algorithms for (TC2) and (TC3) respectively. We observe that Algo-
rithm3 performs well in comparison to Algorithm2, for (TC2). Indeed, we get an
approximation with a precision below the prescribed value ε for both algorithms.

Similar observation holds for (TC3) in Table4 and this despite the fact that the
test case involves higher dimensional problem.

5 Conclusion

In this paper we have introduced a probabilistic approach to approximate the solution
of high-dimensional elliptic PDEs. This approach relies on adaptive sparse poly-
nomial interpolation using pointwise evaluations of the solution estimated using a
Monte-Carlo method with control variates.
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Table 4 (TC3) Comparison of Algorithm2 (first four columns) andAlgorithm3 (last four columns)

#Λn εn ‖u − un‖∞ ‖u − un‖2 #Λn ε̃n ‖u − ũΛn ‖∞ ‖u − ũΛn ‖2
1 7.0155e-01 3.9361e+00 1.2194e+00 1 5.5582e-01 7.2832e-01 7.0771e-01

6 1.4749e-01 2.2705e+00 5.4886e-01 6 7.4253e-02 2.7579e-01 5.1539e-01

11 2.1902e-02 2.8669e-01 1.0829e-01 11 1.4929e-02 4.4614e-02 4.1973e-02

15 7.6086e-03 1.6425e-01 4.7394e-02 15 1.2916e-02 1.5567e-02 2.5650e-02

20 2.2275e-04 2.7715e-03 7.2230e-04 20 3.4446e-04 5.6927e-04 5.3597e-04

24 1.4581e-05 1.5564e-04 7.5314e-05 24 1.6036e-05 2.5952e-05 3.0835e-05

30 1.8263e-06 8.0838e-06 2.1924e-06 30 9.0141e-07 2.8808e-06 1.9451e-06

35 3.9219e-09 8.9815e-08 2.4651e-08 35 8.1962e-09 2.1927e-08 1.5127e-08

40 1.7933e-10 2.0152e-09 6.9097e-10 40 1.6755e-10 2.8455e-10 2.6952e-10

45 5.0775e-12 2.4783e-10 4.1600e-11 45 1.4627e-11 3.3188e-11 1.7911e-11

49 1.7722e-14 4.6274e-13 8.5980e-14 49 1.7938e-14 8.6362e-14 5.0992e-14

54 3.9609e-15 2.2681e-13 3.1952e-14 54 3.2195e-15 4.8142e-14 2.6617e-14

56 4.5746e-16 8.4376e-15 3.0438e-15 56 8.2539e-16 8.4376e-15 6.3039e-15

Especially, we have proposed and compared different algorithms. First we pro-
posed Algorithm1 which combines the sequential algorithm proposed in [11] and
sparse interpolation. For the non-adaptive version of this algorithm we recover the
convergence up to a threshold as the original sequential algorithm [12]. Nevertheless
it remains limited to small-dimensional test cases, since its algorithmic complexity
remains high. Hence, for practical use, the adaptive Algorithm1 should be preferred.
Adaptive Algorithm1 converges but it does not allow to reach low precision with
reasonable number of Monte-Carlo samples or time-step in the Euler–Maruyama
scheme. Secondly, we proposed Algorithm3. It is a perturbed sparse adaptive inter-
polation algorithm relying on inexact pointwise evaluations of the function to approx-
imate.Numerical experiments have shown that the perturbed algorithm (Algorithm3)
performswell in comparison to the ideal one (Algorithm2) andbetter than the adapted
Algorithm1 with a similar algorithmic complexity. Here, since only heuristic tools
have been provided to justify the convergence of this algorithm, the proof of its con-
vergence, under assumptions on the class of functions to be approximated, should
be addressed in a future work.
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Massively Parallel Construction of Radix
Tree Forests for the Efficient Sampling of
Discrete or Piecewise Constant
Probability Distributions

Nikolaus Binder and Alexander Keller

Abstract We compare different methods for sampling from discrete or piecewise
constant probability distributions and introduce a new algorithm which is especially
efficient on massively parallel processors, such as GPUs. The scheme preserves the
distribution properties of the input sequence, exposes constant time complexity on
the average, and significantly lowers the average number of operations for certain
distributions when sampling is performed in a parallel algorithm that requires syn-
chronization. Avoiding load balancing issues of naïve approaches, a very efficient
massively parallel construction algorithm for the required auxiliary data structure is
proposed.

Keywords Sampling · Low discrepancy sequences · Massively parallel
algorithms · GPU

1 Introduction

In many applications, samples need to be drawn according to a given discrete prob-
ability density

p := (p1, p2, . . . , pn),

where the pi are positive and
∑n

i=1 pi = 1. Defining P0 := 0 and the partial sums
Pk := ∑k

i=1 pi results in 0 = P0 < P1 < · · · < Pn = 1, which forms a partition of
the unit interval [0, 1). Then, the inverse cumulative distribution function (CDF)

P−1(x) = i ⇔ Pi−1 ≤ x < Pi
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target distribution p monotonic mapping alias map

Fig. 1 Drawing samples according to a given piecewise constant probability distribution (left) using
a monotonic mapping can preserve uniformity properties (middle), for example a discrepancy, of
an input sample sequence, while using a non-monotonic mapping such as the Alias Method [8, 9]
negatively affects uniformity (right). For illustrative purposes we distribute the samples in columns
with heights proportional to the probabilities. Then, the point set is just partitioned into the columns
and scaling the columns to equal heights would yield the desired density distribution. The input
for both mappings is the two-dimensional Hammersley set with 1024 points. The first component
is mapped to the index of the column, using the fractional part for the y position. For illustrative
purposes, we use the second component to distribute the points also along the x axis inside each
column. It is important to note that samples in higher columns are more often mapped to an alias
and therefore become less uniform

can be used to map realizations of a uniform random variable ξ on [0, 1) to
{1, 2, . . . , n} such that

Prob ({Pi−1 ≤ ξ < Pi }) = pi .

Besides identifying the most efficient method to perform such a mapping, we
are interested in transforming low discrepancy sequences [7] and how such map-
pings affect the uniformity of the resulting warped sequence. An example for such a
sampling process is shown in Fig. 1.

The remainder of the article is organized as follows: After reviewing several algo-
rithms to sample according to a given discrete probability density by transforming
uniformly distributed samples in Sect. 2, massively parallel algorithms to construct
auxiliary data structures for the accelerated computation of P−1 are introduced in
Sect. 3. The results of the scheme that preserves distribution properties, especially
when transforming low discrepancy sequences, are presented in Sect. 4 and discussed
in Sect. 5 before drawing the conclusions.
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2 Sampling from Discrete Probability Densities

In the following we will survey existing methods to evaluate the inverse mapping
P−1 and compare their properties with respect to computational complexity, memory
requirements, memory access patterns, and sampling efficiency.

2.1 Linear Search

As illustrated by the example in Fig. 2, a linear search computes the inverse mapping
P−1 by subsequently checking all intervals for inclusion of the value of the uniformly
distributed variable ξ . This is simple, does not require additional memory, achieves
very good performance for a small number n of values, and scans thememory in linear
order. However, its average and worst case complexity of O(n) makes it unsuitable
for large n.

2.2 Binary Search

Binary search lowers the average and worst case complexity of the inverse mapping
P−1 toO(log2 n) by performing bisection. Again, no additional memory is required,
but memory no longer is accessed in linear order. Figure3 shows an example of
binary search.

2.3 Binary Trees

The implicit decision tree traversed by binary search can be stored as an explicit
binary tree structure. The leaves of the tree reference intervals, and each node stores
the value qi as well as references to the two children. The tree is then traversed by
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i = 3

0.35

4

0.75

5

0.95 1.0

ξ = 0.5

Fig. 2 Linearly searching through all intervals until the interval containing the variable ξ is found
requires O(n) steps on the average. In this example four comparison operations are required to
identify the interval i = 3 that includes ξ
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Fig. 3 Binary search bisects the list of potential intervals in each step and hence has an average
case and worst case complexity of O(log2 n). In the example two comparisons are required to find
that ξ = 0.5 is included in the interval i = 3

comparing ξ to qi in each node, advancing to the left child if ξ < qi , and otherwise
to the right child. A common enumeration scheme uses the index i for the node that
splits the unit interval in qi , and hence can avoid explicitly storing qi in the node data
structure.

While the average case and worst case complexity of performing the inverse
mapping P−1 with such an explicitly stored tree does not get below O(log2 n),
allowing for arbitrary tree structures enables further optimization. Again, memory
access is not in linear order, but due to the information required to identify the two
children of each node in the tree, O(n) additional memory must be allocated and
transferred. It is important to note that the worst case complexity may be as high as
O(n) for degenerate trees. Such cases can be identified and avoided by an adapted
re-generation of the tree.

2.4 k-ary Trees

Onmost hardware architectures, the smallest granularity ofmemory transfer is almost
always larger than what would be needed to perform a single comparison and to load
the index of one or the other child in a binary tree. The average case complexity for
a branching factor k is O(logk n), but the number of comparisons is either increased
to log2 k (binary search in children) or even k − 1 (linear scan over the children) in
each step, and therefore either equal or greater than for binary trees on the average.
Even though more comparisons are performed on the average, it may be beneficial
to use trees with a branching factor higher than two, because the additional effort
in computation may be negligible as compared to the memory transfer that happens
anyhow.
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2.5 The Cutpoint Method

By employing additional memory, the indexed search [2], also known as the Cutpoint
Method [5], can perform the inversemapping P−1 inO(1) on the average. Therefore,
the unit interval is partitioned into m cells of equal size and a guide table stores each
first interval that overlaps a cell as illustrated in Fig. 4. Starting with this interval,
linear search is employed to find the one that includes the realization of ξ . As shown
in [3, Chap. 2.4], the expected number of comparisons is 1 + n

m . In the worst case all
but one interval are located in a single cell and since linear search has a complexity
ofO(n), the worst case complexity of the Cutpoint Method is alsoO(n). Sometimes,
these worst cases can be avoided by recursively nesting another guide table in cells
with many entries. In general, however, the problem persists. If nesting is performed
multiple times, the structure of the nested guide tables is similar to a k-ary tree (see
Sect. 2.4) with implicit split values defined by the equidistant partitioning.

Another way of improving the worst case performance is using binary search
instead of linear search in each cell of the guide table. No additional data needs to be
stored since the index of the first interval of the next cell can be conservatively used
as the last interval of the current cell. The resulting complexity remains O(1) on the
average, but improves to O(log2 n) in the worst case.

2.6 The Alias Method

Using the Alias Method [8, 9], the inverse P−1 can be sampled in O(1) both on the
average as well as in the worst case. It avoids the worst case by cutting and reordering
the intervals such that each cell contains at most two intervals, and thus neither linear
search nor binary search is required. For the example used in this article, a resulting
table is shown in Fig. 5. In terms of run time aswell as efficiency ofmemory access the
method is very compelling since the mapping can be performed using a single read

0 1 2 i = 3 4 5
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ξ = 0.5

Fig. 4 The Cutpoint Method uses a guide table that uniformly partitions the unit interval and stores
the first interval that overlaps each cell (shown below each cell). These indices are then used as
starting points for linear search. In this example only a single lookup is required; in general the
average case complexity is O(1)
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Fig. 5 Similar to the Cutpoint Method, the Alias Method uses an additional table that uniformly
partitions the unit interval. However, the Alias Method cuts and redistributes the intervals so that
each cell contains at most two intervals, the first one being the interval with the same index as the
cell and a second one that covers the rest of the range of the cell. Then, by storing the index of
the second interval in each cell and the split points q j of each cell with index j , the mapping can
always be evaluated with one comparison, and in our example, as before, only a single lookup is
required to find the interval i = 3 including ξ = 0.5
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Fig. 6 Themapping of theAliasMethod is not the inverse of P .While it still maps a uniform variate
to one with the desired density distribution, it is not monotonic. This instance is a possible mapping
ξ �→ i for the Alias Method and the distribution shown in Fig. 1, where i = m for ξ ∈ [ m

M , m+1
M

)

for ξ < qm , and i = alias(m) for ξ ≥ qm . Since alias(m) �= m + 1 in general, the mapping cannot
be monotonic

operation of exactly two values and one comparison, whereas hierarchical structures
generally suffer from issues caused by multiple scattered read operations.

Reordering the intervals creates a different, non-monotonic mapping (see Fig. 6),
which comes with unpleasant side effects for quasi-Monte Carlo methods [7]. As
intervals are reordered, the low discrepancy of a sequence may be destroyed (see
Fig. 1). This especially affects regions with high probabilities, which is apparent in
the one dimensional example in Fig. 7.

In such regions, many samples are aliases of samples in low-density regions,
which is intrinsic to the construction of the Alias Method. Hence the resulting set of
samples cannot be guaranteed to be of lowdiscrepancy,whichmay harm convergence
speed.
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target density

sample density

(a) Alias Method, 29 samples

target density

sample density

(b) monotonic mapping, 29 samples

target density

sample density

(c) Alias Method, 211 samples

target density

sample density

(d) monotonic mapping, 211 samples

Fig. 7 Sampling proportional to a one-dimensional density with the Alias Method often con-
verges significantly slower than sampling the inverse cumulative distribution function, especially
in regions with high densities. In this example the discrete target probability distribution function
is the continuous black curve sampled at 64 equidistant steps

A typical application in graphics is sampling according to a two-dimensional
density map (“target density”). Figure8 shows two regions of such a map with points
sampled using the Alias Method and the inverse mapping. Points are generated by
first selecting a rowaccording to the density distribution of the rows and then selecting
the column according to the distribution in this row. Already a visual comparison
identifies the shortcomings of theAliasMethod,which the evaluation of the quadratic
deviation of the sampled density to the target density in Fig. 9 confirms.

Known algorithms for setting up the necessary data structures of the AliasMethod
are serial with a run time considerably higher than the prefix sum required for inver-
sion methods, which can be efficiently calculated in parallel.
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(a) target density

dohteMsailA)c(gnippamcinotonom)b(

Fig. 8 Sampling the two-dimensional target density in (a) using the two-dimensional low discrep-
ancy Hammersley point set as a sequence of uniformly distributed points by (see the insets) (b)
transforming them with a monotonic mapping preserves the distribution properties in a warped
space, whereas (c) transforming with the Alias Method degrades the uniformity of the distribution.
This is especially bad in regions with a high density. Image source https://www.openfootage.net/
hdri-360-parking-lower-austria/, license Creative Commons Attribution 4.0 International License
(https://creativecommons.org/licenses/by/4.0/)

3 An Efficient Inverse Mapping

In the following, a method is introduced that accelerates finding the inverse P−1 of
the cumulative distribution function and preserves distribution properties, such as
the star-discrepancy. Note that we aim to preserve these properties in the warped
space in which regions with a high density are stretched, and regions with a low
density are squashed. Unwarping the space like in Fig. 1 reveals that the sequence in
warped space is just partitioned into these regions. Similar to the Cutpoint Method
with binary search, the mapping can be performed in O(1) on the average and in
O(log2 n) in the worst case. However, we improve the average case performance
by explicitly storing a more optimal hierarchical structure that improves the average
case of finding values that cannot be immediately identified using the guide table.
While for degenerate hierarchical structures the worst case may increase to O(n), a
fallback method constructs such a structure upon detection to guarantee logarithmic
complexity.

https://www.openfootage.net/hdri-360-parking-lower-austria/
https://www.openfootage.net/hdri-360-parking-lower-austria/
https://creativecommons.org/licenses/by/4.0/
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Fig. 9 As the Alias Method does not preserve the low discrepancy of the sequence, convergence
speed suffers. Sampling the two-dimensional density detailed in Fig. 8 with the Alias Method, the
quadratic error for 226 samples is 8× as high, and 3x as many samples are required to get the same
error as sampling with the inverse mapping. n is the total number of samples, while ci is the number
of samples that realized the value i

Instead of optimizing for the minimal required memory footprint to guarantee
access in constant time, we dedicateO(n) additional space for the hierarchical struc-
ture and propose to either assign as much memory as affordable for the guide table
or to select its size proportional to the size of the discrete probability distribution p.

As explained in the previous section, using the monotonic mapping P−1, and thus
avoiding the Alias Method, is crucial for efficient quasi-Monte Carlo integration.
At the same time, the massively parallel execution on Graphics Processing Units
(GPUs) suffersmore fromoutliers in the execution time than serial computation since
computation is performed by a number of threads organized in groups (“warps”),
which need to synchronize and hence only finish after the last thread in this group
has terminated. Therefore, lengthy computations that would otherwise be averaged
out need to be avoided.

Note that the Cutpoint Method uses the monotonic mapping P−1 and with binary
search avoids the worst case. However, it does not yield good performance for the
majority of cases in which an additional search in each cell needs to be performed.
In what follows, we therefore combine the Cutpoint Method with a binary tree to
especially optimize these cases.

In that context, radix trees are of special interest since they can be very efficiently
built in parallel [1, 6]. Section3.1 introduces their properties and their efficient par-
allel construction. Furthermore, their underlying structure that splits intervals in the
middle is nearly optimal for this application.
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However, as many trees of completely different sizes are required, a naïve imple-
mentation that builds these trees in parallel results in severe load balancing issues.
In Sect. 3.2 we therefore introduce a method that builds the entire radix tree forest
simultaneously in parallel, but instead of parallelizing over trees, parallelization is
uniformly distributed over the data.

3.1 Massively Parallel Construction of Radix Trees

In a radix tree, also often called compact prefix tree, the value of each leaf node is
the concatenation of the values on the path to it from the root of the tree. The number
of children of each internal node is always greater than one; otherwise the values of
the node and its child can be concatenated already in the node itself.

The input values referenced in the leaves of such a tree must be strictly ordered,
which for arbitrary data requires an additional sorting step and an indirection from
the index i ′ of the value in the sorted input data to the original index i . For the
application of such a tree to perform the inverse mapping, i.e. to identify the interval
m that includes ξ , the input values are the lower bounds of the intervals, which by
construction are already sorted.

Radix trees over integers with a radix of two are of particular interest for hardware
and software operating on binary numbers. Since by definition each internal node
has exactly two children, there exists an enumeration scheme for these trees that
determines the index of each node only given the range of input values below its
children [1]: The index of each node is the lowest data index below its right, or,
equivalently, the highest data index below its left child plus one. This information
is not only available if the tree is built top-down by recursive bisection, but can also
easily be propagated up when building the tree bottom-up. The index of the parent
node, implied by this enumeration rule, is then the index of the leftmost node in the
range of leaf nodes below the current root node if the node is a right child, and equals
the index of the rightmost node in the range plus one if it is a left child.

Determining whether a node is a left or a right child can be done by comparing
the values in the leaves at the boundaries of the range of nodes below the current
root node to their neighbors outside the range. If the binary distance, determined by
taking the bit-wise exclusive or, of the value of the leftmost leaf in the range to those
of its left neighbor is smaller than the distance of the value of the rightmost leaf node
in the range to those of its right neighbor, it must be a right child. Otherwise it is a
left child. In case the leftmost leaf in the range is the first one, or the rightmost leaf
in the range is the last one, a comparison to the neighbor is not possible, and these
nodes must be a left and a right child, respectively. An example of such a decision is
shown in Fig. 10.

Given this scheme, these trees can be built from bottom up completely in parallel
since all information required to perform one merging step can be retrieved without
synchronization. Like in the parallel construction of Radix Trees by Apetrei [1], the
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Fig. 10 In each merging step of the bottom-up construction method for the radix tree, the value
of the leftmost leaf in the range of leaf nodes below the current root is compared to the value of
its left neighbor, and the value of the rightmost leaf in the range is compared to the value of its
right neighbor. In both comparisons, the most significant differing bit of the value in base two is
determined. Since the most significant differing bit of the comparison on the left side of the current
range is less significant than the most significant differing bit on the right side, the root node of the
current subtree (here 3) is a right child, and the index of its parent node equals to the lowest index
of the leaves in the range (here 1)

one required synchronization ensures that only one of the children merges further
up, and does that after its sibling has already reported the range of nodes below it.

The implementation of the method presented in Algorithm 1 uses an atomic
exchange operation (atomicExch) and an array initialized to −1 for synchroniza-
tion. The ⊕ operator performs a bitwise exclusive or operation on the floating point
representation of the input value. As the ordering of IEEE 754 floating point num-
bers is equal to the binary ordering, taking the exclusive or of two floating point
numbers calculates a value in which the position of the most significant bit set to one
indicates the highest level in the implicit tree induced by recursive bisection of the
interval [0, 1) on which the two values are not referenced by the same child. Hence,
the bitwise exclusive or operation determines the distance of two values in such a
tree.

3.2 Massively Parallel Construction of Radix Tree Forests

A forest of radix trees (see Fig. 11) can be built in a similar way. Again, parallelization
runs over the whole data range, not over the individual trees in the forest. Therefore,
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perfect load balancing can be achieved. As highlighted in Algorithm 1, the key
difference between building a single tree and a forest is that in each merging step it
must be checked whether merging would go over partition boundaries of the forest.
Avoiding such a merge operation over a boundary is as simple as setting the value of
the neighbor to one, because then the distance (again computed using⊕) is maximal.

Note that node indices for small (sub-) trees are always consecutive by design,
which improves cache hit rates, which furthermore can be improved by interleaving
the values of the cumulative distribution function and the indices of the children.

Algorithm 1 Parallel constructing a radix tree forest. Omitting the colored parts
results in the construction of a radix tree, only (see [1]).
Input: data ∈ [0, 1)n in increasing order, number of partitions m
Output: n nodes, each with indices of the left and right child
other Bounds ← (−1, ...,−1) ∈ Z

n

data[−1] ← data[n] = 1
for i ∈ [0, n) in parallel do
nodeId ← lea fi
curCell ← �data[i] · m
range ← (i, i)
repeat

valueLow ← data[range[0]]
valueHigh ← data[range[1]]
valueNeighbor Low ← data[range[0] − 1]
valueNeighbor High ← data[range[1] + 1]
if �valueNeighbor Low · m < curCell then

valueNeighbor Low ← 1
end if
if �valueNeighbor High · m > curCell then

valueNeighbor High ← 1
end if

child ←
{
0 valueLow ⊕ valueNeighbor Low > valueHigh ⊕ valueNeighbor High

1 otherwise

parent ←
{
range[1] + 1 child = 0

range[0] child = 1
nodes[parent].child[child] ← nodeId
other Bound ← atomicExch (other Bounds[parent], range[child])
if other Bound �= −1 then
range[1 − child] ← other Bound
nodeId ← parent

end if
until otherBound = -1

end for

We indicate that a cell in the guide table is only overlapped by a single interval
by setting the reference stored in the cell to the two’s complement of the index of
the interval. Then, a most significant bit set to one identifies such an interval, and
one unnecessary indirection is avoided. If the size of the distribution is sufficiently
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Fig. 11 A radix tree forest built with Algorithm 1. Note that all root nodes only have a right child.
We manually set the reference for the left child to its left neighbor since it in practice almost always
overlaps the left boundary (dashed lines). During sampling, the decision whether the left or right
child must be used is purely based on the cumulative distribution function used as an input for the
construction: Each node checks whether ξ is smaller than the cumulative value with the same index

small, further information could also be stored in the reference, such as a flag that
there are exactly two intervals that overlap the cell. Then, only one comparison must
be performed and there is no need to explicitly store a node.

Building the radix forest is slightly faster than building a radix tree over the entire
distribution since merging stops earlier. However, we found the savings to be almost
negligible, similarly to the effort required to set the references in the guide table.

Algorithm 2 shows the resulting combined method that maps ξ to i . First, it looks
up a reference in the guide table at the index g = �M · ξ. If the most significant bit
of the reference is one, i is the two’s complement of this reference. Otherwise the
reference is the root node of the tree which is traversed by iteratively comparing ξ to
the value of the cumulative distribution function with the same index as the current
node, advancing to its left child if ξ is smaller, and to its right child if ξ is larger
or equal. Tree traversal again terminates if the most significant bit of the next node
index is one. As before, i is determined by taking the two’s complement (denoted by
∼) of the index.

4 Results

We evaluate our samplingmethod in two steps: First, we compare to an AliasMethod
in order to quantify the impact on convergence speed. Second,we compare to theCut-
pointMethodwith binary search which performs the identical mapping and therefore
allows one to quantify execution speed.
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Algorithm 2 Mapping ξ to i with the presented method combining a guide table
with a radix forest.
Input: ξ ∈ [0, 1), data ∈ [0, 1)n in increasing order, number of partitionsm, nodes created with
Algorithm 1, guide table table.
Output: i ∈ {0, 1, ..., N − 1}.
g ← �ξ · m
j ← table[g]
while msb( j) �= 1 do
if ξ < data[ j] then

j ← nodes[ j].child[0]
else

j ← nodes[ j].child[1]
end if

end while
return ∼ j

Table 1 Measuring the maximum and average number of memory load operations required for
searching as well as the average number of load operations or idle operations of 32 simulations that
need to be synchronized (Average32) shows that while the maximum number of load operations
is increased, for distributions with a high range the average number of load operations is typically
reduced

pi ∼ i20 Maximum Average Average32

Cutpoint Method + binary search 8 1.25 3.66

Cutpoint Method + radix forest 16 1.23 3.46

pi ∼ (i mod 32 + 1)25 Maximum Average Average32

Cutpoint Method + binary search 6 1.30 4.62

Cutpoint Method + radix forest 13 1.22 3.72

pi ∼ (i mod 64 + 1)35 Maximum Average Average32

Cutpoint Method + binary search 7 1.19 4.33

Cutpoint Method + radix forest 13 1.11 2.46

“4 spikes” Maximum Average Average32

Cutpoint Method + binary search 4 1.60 3.98

Cutpoint Method + radix forest 5 1.67 4.93

Figure8 illustrates how sampling is affected by the discontinuities of the Alias
Method. The results indicate that sampling with the Alias Method may indeed be
less efficient.

Table1 details the performance improvement of our method as compared to
the Cutpoint Method with binary search for the distributions shown in Fig. 12. As
expected, the sampling performance of the new method is similar to the Cutpoint
Method with binary search, which shares the same primary acceleration data struc-
ture, the guide table. For reasonable table sizes both perform almost as good as
sampling with an Alias Method, however, do so without affecting the distribution
quality.
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Fig. 12 Example distributions for the numerical results in Table1

Sampling densities with a high dynamic range can be efficiently accelerated using
the Cutpoint Method and its guide table. However, since then some of its cells con-
tain many small values with largely different magnitudes, performance suffers from
efficiency issues of index bisection. Radix tree forests improve on this aspect by
storing an explicit tree (see the parallel Algorithm 1).

On a single processor with strictly serial execution, our method marginally
improves the average search time as compared to the Cutpoint Method with binary
search since the overall time is largely dominated by the time required to find large
values. For every value that can be directly determined from the guide table—since
it is the only one in a cell—this process is already optimal. In some cases the average
search time of our new method can be slightly slower since manually assigning the
index of interval overlapping from the left as the left child of the root node the tree
deteriorates overall tree quality (see Table1, example “4 spikes”). On the other hand,
performing bisection to find a value inside a cell that includes many other values
does not take the underlying distribution into account and is therefore suboptimal.
Still, since these values are sampled with a low probability, the impact on the average
sampling time is low.

The optimizations for values with a lower probability become more important in
parallel simulations where the slowest simulation determines the run time for every
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group. The “4 spikes” example is a synthetic bad case for our method: Spikes are
efficiently sampled only using the guide table, whereas all other values have uniform
probabilities. Therefore binary search is optimal. The explicit tree, on the other hand,
always has one sub-optimal first split to account for intervals overlapping from the
left, and therefore requires one additional operation.

In practice, parallel execution of the sampling process often requires synchroniza-
tion, and therefore suffersmore from the outliers: Then, the slowest sampling process
determines the speed of the entire group that is synchronized. On Graphics Process-
ing Units (GPUs), such groups are typically of size 32. Under these circumstances
our method performs significantly better for distributions with a high dynamic range
(see Table1, third column).

It is important to note that if the maximum execution time is of concern, binary
search almost always achieves the best worst case performance. Then explicit tree
structures can only improve the average time if the maximum depth does not exceed
the number of comparisons required for binary search, which is the binary logarithm
of the number of elements.

5 Discussion

Amulti-dimensional inversion method proceeds component by component; the two-
dimensional distributions in Fig. 8 have been sampled by first calculating the cumula-
tive distribution function of the image rows and one cumulative distribution function
for each row. After selecting a row its cumulative distribution function is sampled to
select the column. Finally, as distributions are considered piecewise constant, a sub-
pixel position, i.e. a position in the constant piece, is required. Therefore, the relative
position in the pixel is calculated by rescaling the relative position in the row/column
to the unit interval. Other approximations, such as piecewise linear or piecewise
quadratic require an additional, simple transformation of the relative position [4].

Building multiple tables and trees simultaneously, e.g. for two-dimensional dis-
tributions, is as simple as adding yet another criterion to the extended check in Algo-
rithm 1: If the index of the left or right neighbor goes beyond the index boundary of
a row, it is a leftmost or a rightmost node, respectively.

Algorithm 1 constructs binary trees. Due to memory access granularity, it may be
beneficial to construct 4-ary or even wider trees. A higher branching factor simply
results by just collapsing two (or more) levels of the binary trees.

For reasonable table sizes, the Cutpoint Method with binary search preserves the
properties of the input samples at a memory footprint comparable to the one required
for the Alias Method. Radix forest trees require additional memory to reference two
children for each value pi of the distribution.

Depending on the application and space constraints, it may be beneficial to use
balanced trees instead of radix trees. Balanced trees do not need to be built; their
structure is implicitly defined, and for each cell we only need to determine the first
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and last interval that overlap it. Then, the implicit balanced tree is traversed by
consecutive bisection of the index interval.

6 Conclusion

Radix tree forests trade additional memory for a faster average case search and
come with a massively parallel construction algorithm with optimal load balancing
independent of the probability density function p.

While the performance of evaluating the inverse cumulative distribution function
P−1 is improved for highly nonuniform distributions p with a high dynamic range,
performance is slightly worse on distributions which can already be efficiently sam-
pled using the Cutpoint Method with binary search.

Acknowledgements The authors would like to thank Carsten Wächter and Matthias Raab for the
discussion of the issues of the Alias Method when used with low discrepancy sequences that lead
to the development of radix tree forests.
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An Adaptive Algorithm Employing
Continuous Linear Functionals

Yuhan Ding, Fred J. Hickernell and Lluís Antoni Jiménez Rugama

Abstract Automatic algorithms attempt to provide approximate solutions that differ
from exact solutions by no more than a user-specified error tolerance. This paper
describes an automatic, adaptive algorithm for approximating the solution to a general
linear problem defined on Hilbert spaces. The algorithm employs continuous linear
functionals of the input function, specifically Fourier coefficients. We assume that
the Fourier coefficients of the solution decay sufficiently fast, but we do not require
the decay rate to be known a priori. We also assume that the Fourier coefficients
decay steadily, although not necessarily monotonically. Under these assumptions,
our adaptive algorithm is shown to produce an approximate solution satisfying the
desired error tolerance, without prior knowledge of the norm of the input function.
Moreover, the computational cost of our algorithm is shown to be essentially no
worse than that of the optimal algorithm. We provide a numerical experiment to
illustrate our algorithm.
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1 Introduction

Adaptive algorithms determine the design and sample size needed to solve problems
to the desired accuracy based on the input function data sampled. A priori upper
bounds on some norm of the input function are not needed, but some underlying
assumptions about the input function are required for the adaptive algorithm to suc-
ceed. Here we consider general linear problems where a finite number of series
coefficients of the input function are used to obtain an approximate solution. The
proposed algorithm produces an approximationwith guaranteed accuracy.Moreover,
we demonstrate that the computational cost of our algorithm is essentially no worse
than that of the best possible algorithm. Our adaptive algorithm is defined on a cone
of input functions.

1.1 Input and Output Spaces

LetF be a separable Hilbert space of inputs with orthonormal basis (ui )i∈N, and let
G be a separable Hilbert space of outputs with orthonormal basis (vi )i∈N. Based on
Parseval’s identity the norms for these two spaces may be expressed as the �2-norms
of their series coefficients:

f =
∑

i∈N
f̂i ui ∈ F , ‖ f ‖F = ∥∥( f̂i

)
i∈N
∥∥
2, (1a)

g =
∑

i∈N
ĝi vi ∈ G , ‖g‖G = ∥∥(ĝi

)
i∈N
∥∥
2. (1b)

Let these two bases be chosen so that the linear solution operator, S : F → G ,
satisfies

S(ui ) = λi vi , i ∈ N, S( f ) =
∑

i∈N
λi f̂i vi , (1c)

λ1 ≥ λ2 ≥ · · · > 0, lim
i→∞ λi = 0, ‖S‖F →G := sup

f �=0

‖S( f )‖G
‖ f ‖F

= λ1. (1d)

This setting includes, for example, the recovery of functions, derivatives, indefinite
integrals, and solutions of linear (partial) differential equations. We focus on cases
where the exact solution requires an infinite number of series coefficients, f̂i , in
general, i.e., all λi are positive.

The existence of the (ui )i∈N, (vi )i∈N, and (λi )i∈N for a givenF , G , and S follows
from the singular value decomposition. The singular value decomposition with sin-
gular values tending to zero (but never equal to zero) exists if (and only if) the solution
operator is compact and not finite rank. The ease of identifying explicit expressions
for these quantities depends on the particular problem of interest. Alternatively, one
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may start with a choice of (ui )i∈N, (vi )i∈N, and (λi )i∈N, which then determine the
solution operator, S, and the spaces F and G .

Example 1 in Sect. 1.3 illustrates this general setting. Section5 provides a numer-
ical example based on this example.

1.2 Solvability

LetH be any subset ofF , and letA (H ) denote the set of deterministic algorithms
that successfully approximate the solution operator S : H → G within the specified
error tolerance for all inputs inH :

A (H ) := {algorithms A : H × (0,∞) → G :∥∥S( f ) − A( f, ε)
∥∥
G

≤ ε ∀ f ∈ H , ε > 0
}
. (2)

Algorithms inA (H ) are allowed to sample adaptively any bounded, linear function-
als of the input function. They must sample only a finite number of linear functionals
for each input function and positive error tolerance. The definition of H can be
used to construct algorithms in A (H ), but no other a priori knowledge about the
input functions is available. Following [1] we call a problem solvable for inputsH
if A (H ) is non-empty.

Our problem is not solvable for thewholeHilbert space,F , as canbedemonstrated
by contradiction. For any potential algorithm,we show that there exists some f ∈ F ,
that looks like 0 to the algorithm, but for which S( f ) is far from S(0) = 0. Choose
any A ∈ A (F ) and ε > 0, and let L1, . . . , Ln be the linear functionals that are used
to compute A(0, ε). Since the output space, G , is infinite dimensional and n is finite,
there exists some nonzero f ∈ F satisfying that L1( f ) = · · · = Ln( f ) = 0 with
non-zero S( f ). This means that A(±c f, ε) = A(0, ε) for any real c, and A(±c f, ε)
both have approximation error no greater than ε, i.e.,

ε ≥ 1

2

[‖S(c f ) − A(c f, ε)‖G + ‖S(−c f ) − A(−c f, ε)‖G
]

= 1

2

[‖cS( f ) − A(0, ε)‖G + ‖−cS( f ) − A(0, ε)‖G
]

≥ ‖cS( f )‖G = |c| ‖S( f )‖G by the triangle inequality.

Since S( f ) �= 0, it is impossible for this inequality to hold for all real c. The presumed
A does not exist,A (F ) is empty, and our problem is not solvable forF . However,
our problem is solvable for well-chosen subsets of F , as is shown in the sections
below.
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1.3 Computational Cost of the Algorithm and Complexity
of the Problem

The computational cost of an algorithm A ∈ A (H ) for f ∈ H and error tolerance
ε is denoted cost(A, f, ε), and is defined as the number of linear functional values
required to produce A( f, ε). By overloading the notation, we define the cost of
algorithms for sets of inputs, H , as

cost(A,H , ε) := sup{cost(A, f, ε) : f ∈ H } ∀ε > 0.

For unbounded sets, H , this cost may be infinite. Therefore, it is meaningful to
define the cost of algorithms for input functions in H ∩ Bρ , where Bρ := { f ∈
F : ‖ f ‖F ≤ ρ} is the ball of radius ρ:

cost(A,H , ε, ρ) := sup{cost(A, f, ε) : f ∈ H ∩ Bρ} ∀ρ > 0, ε > 0.

Finally, we define the complexity of the problem as the computational cost of the
best algorithm:

comp(A (H ), ε) := min
A∈A (H )

cost(A,H , ε),

comp(A (H ), ε, ρ) := min
A∈A (H )

cost(A,H , ε, ρ).

Note that comp(A (H ), ε, ρ) ≥ comp(A (H ∩ Bρ), ε). In the former case, the
algorithm is unaware that the input function has norm no greater than ρ.

An optimal algorithm for Bρ can be constructed in terms of interpolation with
respect to the first n series coefficients of the input, namely,

An( f ) :=
n∑

i=1

λi f̂i vi , (3)

‖S( f ) − An( f )‖G =
∥∥∥
(
λi f̂i

)∞
i=n+1

∥∥∥
2

≤ λn+1 ‖ f ‖F . (4)

Define the non-adaptive algorithm as

Â( f, ε) = An̂( f ), where n̂ = min{n : λn+1 ≤ ε/ρ}, Â ∈ A (Bρ). (5)

This algorithm is optimal among algorithms in A (Bρ), i.e.,

comp(A (Bρ), ε) = cost( Â,Bρ, ε) = min{n : λn+1 ≤ ε/ρ}.

To prove this, let A∗ be an arbitrary algorithm inA (Bρ), and let L1, . . . , Ln∗ be
the linear functionals chosenwhen evaluating this algorithm for the zero functionwith
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tolerance ε. Thus, A∗(0, ε) is some function of (L1(0), . . . , Ln∗(0)) = (0, . . . , 0).
Let f be a linear combination of u1, . . . , un∗+1 with norm ρ satisfying L1( f ) =
· · · = Ln∗( f ) = 0, then A∗(± f, ε) = A∗(0, ε), and

ε ≥ max±
∥∥S(± f ) − A∗(± f, ε)

∥∥
G

= max±
∥∥±S( f ) − A∗(0, ε)

∥∥
G

≥ 1

2

[∥∥S( f ) − A∗(0, ε)
∥∥
G

+ ∥∥−S( f ) − A∗(0, ε)
∥∥
G

]

≥ ‖S( f )‖G =
∥∥∥
(
λi f̂i

)n∗+1
i=1

∥∥∥
2

≥ λn∗+1

∥∥∥
(
f̂i
)n∗+1
i=1

∥∥∥
2

= λn∗+1 ‖ f ‖F = λn∗+1ρ.

Thus, λn∗+1 ≤ ε/ρ, and

cost(A∗,Bρ, ε) ≥ cost(A∗, 0, ε) = n∗ ≥ min{n : λn+1 ≤ ε/ρ} = cost( Â,Bρ, ε).

Hence, the algorithm Â defined in (5) is optimal for A (Bρ).

Example 1 Consider the case of function approximation for periodic functions
defined over [0,1], and the algorithm Â defined in (5):

f =
∑

k∈Z
f̂ (k )̂uk =

∑

i∈N
f̂i ui , S( f ) =

∑

k∈Z
f̂ (k )̂λk v̂k =

∑

i∈N
f̂iλi vi ,

v̂k(x) :=

⎧
⎪⎨

⎪⎩

1, k = 0,√
2 sin(2πkx), k > 0,√
2 cos(2πkx), k < 0,

vi =
{
v̂−i/2, i even,

v̂(i−1)/2, i odd,

λ̂k :=
⎧
⎨

⎩
1, k = 0,
1

|k|r , k �= 0,
λi = λ̂i/2� = 1

max(1, i/2�)r ,

ûk := λ̂k v̂k , ui = λi vi =
{
û−i/2, i even,

û(i−1)/2, i odd,

‖ f ‖2F =
(∫ 1

0
f (x) dx

)2
+ ‖ f (r)‖22

(2π)2r
, r ∈ N, f̂i =

{
f̂ (−i/2), i even,

f̂ ((i − 1)/2), i odd,

‖g‖G = ‖g‖2 ,

comp(A (Bρ), ε) = cost( Â,Bρ, ε) = min{n : λn+1 ≤ ε/ρ}
= min

{
n : 1

(n + 1)/2�r ≤ ε

ρ

}
= 2

⌈(ρ

ε

)1/r⌉− 1.

Here, r is positive. If r is an integer, thenF consists of functions that have absolutely
continuous, periodic derivatives of up to order r − 1. A larger r implies a stronger
F -norm, a more exclusive Bρ , and a smaller cost( Â,Bρ, ε).
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Our goal is to construct algorithms in A (H ) for some H and also to deter-
mine whether the computational cost of these algorithms is reasonable. We define
cost(A,H , ε, ρ) to be essentially no worse than cost(A∗,H ∗, ε, ρ) if there exists
ω > 0 such that

cost(A,H , ε, ρ) ≤ cost(A∗,H ∗, ωε, ρ) ∀ε, ρ > 0. (6)

We extend this definition analogously if cost(A,H , ε, ρ) is replaced by cost
(A,H , ε) and/or cost(A∗,H ∗, ωε, ρ) is replaced by cost(A∗,H ∗, ωε). If these
inequalities are not satisfied, we say that the cost of A is essentially worse than the
cost of A∗. If the costs of two algorithms are essentially no worse than each other,
then we call their costs essentially the same. An algorithm whose cost is essentially
no worse than the best possible algorithm, is called essentially optimal.

Our condition for essentially no worse cost in (6) is not the same as

cost(A,H , ε, ρ) ≤ ω cost(A∗,H ∗, ε, ρ) ∀ε, ρ > 0. (7)

If the cost grows polynomially in ε−1, then conditions (6) and (7) are basically the
same. If for some positive p and p∗,

cost(A,H , ε, ρ) ≤ C(1 + ε−pρ p) and C∗(1 + ε−p∗
ρ p∗

) ≤ cost(A∗,H ∗, ε, ρ),

then cost(A,H , ε, ρ) is essentially no worse than cost(A∗,H ∗, ε, ρ) iff p ≤ p∗
under either condition (6) or (7). However, if the cost grows only logarithmically in
ε−p, then condition (6) makes more sense than (7). Specifically, if

cost(A,H , ε, ρ) ≤ C + log
(
1 + ε−pρ p

)
and

C∗ + log
(
1 + ε−p∗

ρ p∗) ≤ cost(A∗,H ∗, ε, ρ),

then condition (6) requires p ≤ p∗ for cost(A,H , ε, ρ) to be essentially no worse
than cost(A∗,H ∗, ε, ρ), whereas (7) allows this to be true even for p > p∗. We
grant that if the cost grows faster than polynomially in ε−1, then (7) may be the
preferred condition.

To illustrate the comparison of costs, consider a non-increasing sequence of posi-
tive numbers, λ∗ = (λ∗

1, λ
∗
2, . . .), which converges to 0, where λ∗

i ≥ λi for all i ∈ N.
Also consider an unbounded, strictly increasing sequence of non-negative integers
n = (n0, n1, . . .). Define an algorithm A∗ analogously to Â defined in (5):

A∗( f, ε) = An∗( f ), where n∗ = n j∗ , j∗ = min{ j : λ∗
n j+1 ≤ ε/ρ}, A∗ ∈ A (Bρ).

By definition, the cost of algorithm A∗ is no smaller than that of Â. Algorithm A∗
may or may not have essentially worse cost than Â depending on the choice of λ∗
and n. The table below shows some examples. Each different case of A∗ is labeled
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as having a cost that is either essentially no worse or essentially worse than that of
Â.

λi = C
i p cost( Â,Bρ, ε) ≥

(
Cρ
ε

)1/p − 1

cost( Â,Bρ, ε) <
(
Cρ
ε

)1/p

no worse λ∗
i = C∗

i p , n j = 2 j cost(A∗,Bρ, ε) ≤ 2
(
C∗ρ

ε

)1/p

worse λ∗
i = C∗

iq , q < p, n j = j cost(A∗,Bρ, ε) ≥
(
C∗ρ

ε

)1/q − 1

λi = C
pi

, p > 1 cost( Â,Bρ, ε) ≥ log(Cρ/ε)

log(p) − 1

cost( Â,Bρ, ε) <
log(Cρ/ε)
log(p)

no worse λ∗
i = C∗

pi
, n j = 2 j cost(A∗,Bρ, ε) <

log(C∗ρ/ε)
log(p) + 1

worse λ∗
i = C∗

pi
, n j = 2 j cost(A∗,Bρ, ε) > 1.999 log(C∗ρ/ε)

log(p) for some ε

worse λ∗
i = C∗

iq , q < p, n j = j cost(A∗,Bρ, ε) ≥ log(C∗ρ/ε)
log(q)

− 1

1.4 The Case for Adaptive Algorithms

For bounded sets of input functions, such as balls, non-adaptive algorithms like Â
make sense. However, an a priori upper bound on ‖ f ‖F is typically unavailable
in practice, so it is unknown which Bρ contain the input function f . Our aim is
to consider unbounded sets of f for which the error of the interpolatory algorithm
An( f ), defined in (3), can be bounded without an a priori upper bound on ‖ f ‖F .

Popular adaptive algorithms encountered typically employ heuristic error bounds.
While any algorithm can be fooled, we would like to have precise necessary con-
ditions for being fooled, or equivalently, sufficient conditions for the algorithm to
succeed. Our adaptive algorithm has such conditions and follows in the vein of adap-
tive algorithms developed in [2–6].

Our rigorous, data-driven error bound assumes that the series coefficients of the
input function, f , decay steadily—but not necessarily monotonically. The cone of
nice input functions,C , is defined in Sect. 2. For such inputs, we construct an adaptive
algorithm, Ã ∈ A (C ), in Sect. 3, where Ã( f, ε) = Añ( f ) for some ñ depending on
the input data and the definition of C . The number of series coefficients sampled, ñ,
is adaptively determined so that Ã( f, ε) satisfies the error condition in (2). The com-
putational cost of Ã is given in Theorem 1. Section4 shows that our new algorithm
is essentially optimal (see Theorem 3). Section5 provides a numerical example. We
end with concluding remarks.
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2 Assuming a Steady Decay of the Series Coefficients of the
Solution

Recall from (4) that the error of the fixed sample size interpolatory algorithm An is
‖S( f ) − An( f )‖G = ∥∥(λi f̂i

)∞
i=n+1

∥∥
2. The error depends on the series coefficients

not yet observed, so at first it seems impossible to bound the error in terms of observed
series coefficients.

However, we can observe a finite number of partial sums,

σ j ( f ) :=
∥∥∥
(
λi f̂i

)n j

i=n j−1+1

∥∥∥
2
, j ∈ N, (8)

wheren = (n0, n1, . . .) is an unbounded, strictly increasing sequenceof non-negative
integers. We define the cone of nice input functions to consist of those functions for
which the σ j ( f ) decay at a given rate with respect to one another:

C = Cn,a,b = {
f ∈ F : σ j+r ( f ) ≤ abrσ j ( f ) ∀ j, r ∈ N

}
(9)

=
{
f ∈ F : σ j ( f ) ≤ min

1≤r< j
abrσ j−r ( f ) ∀ j ∈ N

}
.

Here, a and b are positive numbers that define the inclusivity of the cone C and
satisfy

b < 1 < a.

The constant a is an inflation factor, and the constant b defines the general rate of
decay of theσ j ( f ) for f ∈ C . Becauseabr maybe greater than one,we do not require
the series coefficients of the solution, S( f ), to decay monotonically. However, we
expect their partial sums to decay steadily.

From the expression for the error in (4) and the definition of the cone in (9), one
can now derive a data-driven error bound for j ∈ N:

∥∥S( f ) − An j ( f )
∥∥
G

=
∥∥∥
(
λi f̂i

)∞
i=n j+1

∥∥∥
2

=
⎧
⎨

⎩

∞∑

r=1

n j+r∑

i=n j+r−1+1

∣∣λi f̂i
∣∣2
⎫
⎬

⎭

1/2

= ∥∥(σ j+r ( f )
)∞
r=1

∥∥
2

≤ ∥∥(abrσ j ( f )
)∞
r=1

∥∥
2

= ab√
1 − b2

σ j ( f ). (10)

This upper bound depends only on the function data and the parameters defining
C . The error vanishes as j → ∞ because σ j ( f ) ≤ ab j−1σ1( f ) → 0 as j → ∞.
Moreover, the error of An j ( f ) is asymptotically no worse than σ j ( f ). Our adaptive
algorithm in Sect. 3 increases j until the right hand side is smaller than the error
tolerance.
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Consider the choice n j = 2 j n0, where the number of terms in the sums, σ j ( f ),
are doubled at each step. If the series coefficients of the solution decay like λi

∣∣ f̂i
∣∣ =

	(i−p) for some p > 1/2, then it is reasonable to expect that the σ j ( f ) are bounded
above and below as

Clo(n02
j )1/2−p ≤ σ j ( f ) ≤ Cup(n02

j )1/2−p, j ∈ N, (11)

for some constants Clo and Cup, unless the series coefficients drop precipitously in
magnitude for some n j−1 < i ≤ n j , and then jump back up for larger i . When (11)
holds, it follows that

σ j+r ( f )

σ j ( f )
≤ Cup(n02 j+r )1/2−p

Clo(n02 j )1/2−p
= Cup2r(1/2−p)

Clo
j ∈ N.

Thus, choosing a ≥ Cup/Clo and b ≥ 21/2−p ensures that reasonable inputs f lie
inside the cone C .

Although the definition of the cone in (9) constrains the decay rate of λi

∣∣ f̂i
∣∣ it is

a rather weak constraint. Specifying a and b only implies a lower bound—but not
an upper bound—on the p for which λi

∣∣ f̂i
∣∣ can be 	(i−p).

Figure1 shows three functions and their coefficients for the case of Example 1
when r = 1 and n j = 2 j . These functions are f (x) = e−3x sin(3πx2), fbig = 100 f
and ffuzzy. The function ffuzzy is obtained by taking σ8( ffuzzy) = 250σ8( f ) and
σ j ( ffuzzy) = σ j ( f ) for j �= 8. Both f and fbig lie in the same cones, Cn,a,b, for
all n, a, and b, and both appear similarly nice to the eye. Therefore, we expect adap-
tive algorithms that are successful for f to also be successful for fbig. However, fbig
does not lie in some of the balls,Bρ , that f lies in. On the other hand, the high fre-
quency noise in ffuzzy suggests that only more robust and costly adaptive algorithms
would succeed for such an input. This corresponds to the fact that ffuzzy does not lie
in all cones, Cn,a,b, that f lies in.

3 Adaptive Algorithm

Nowwe introduce our adaptive algorithm, Ã ∈ A (C ), which yields an approximate
solution to the problem S : C → G that meets the absolute error tolerance ε.

Algorithm 1 Given a, b, the sequence n, the cone C , the input function f ∈ C , and
the absolute error tolerance ε, set j = 1.

Step 1. Compute σ j ( f ) as defined in (8).
Step 2. Check whether j is large enough to satisfy the error tolerance, i.e.,

σ j ( f ) ≤ ε
√
1 − b2

ab
.
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Fig. 1 a The function f (x) = e−3x sin(3πx2); b The function fbig = 100 f ; c The function ffuzzy
which results from modifying some of f coefficients, in dark green; d The first Fourier coefficients
of f ; e The first Fourier coefficients of fbig; f The first Fourier coefficients of ffuzzy

If this is true, then return Ã( f, ε) = An j ( f ), where An is defined in (3), and
terminate the algorithm.

Step 3. Otherwise, increase j by 1 and return to Step 1.

Theorem 1 The algorithm, Ã, defined in Algorithm 1 lies inA (C ) and has compu-
tational cost cost( Ã, f, ε) = n j∗ , where j∗ is defined implicitly by the inequalities

j∗ = min

{
j ∈ N : σ j ( f ) ≤ ε

√
1 − b2

ab

}
. (12)

Moreover, cost( Ã,C , ε, ρ) = n j† , where j† satisfies the following upper bound:

j† ≤ min

{
j ∈ N : F( j) ≥ ρ2a4

ε2(1 − b2)

}
, (13)

and F is the strictly increasing function defined as

F( j) :=
j−1∑

k=0

b2(k− j)

λ2
nk

, j ∈ N. (14)
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Proof This algorithm terminates for some j = j∗ because σ j ( f ) ≤ ab j−1σ1( f ) →
0 as j → ∞. The value of j∗ follows directly from this termination criterion in Step
2. It then follows that the error bound on An j∗ ( f ) in (10) is no greater than the error
tolerance ε. So, Ã ∈ A (C ).

For the remainder of the proof consider ρ and ε to be fixed. To derive an upper
boundonn j† = cost( Ã,C , ε, ρ)wefirst note someproperties ofσ j ( f ) for all f ∈ C :

λn j

∥∥( f̂i
)n j
i=n j−1+1

∥∥
2 ≤ ∥∥(λi f̂i

)n j
i=n j−1+1

∥∥
2 = σ j ( f )

≤ λn j−1+1
∥∥( f̂i

)n j
i=n j−1+1

∥∥
2. (15)

A rough upper bound on j† may be obtained by noting that for any f ∈ C ∩ Bρ

and for any j < j∗ ≤ j†, it follows from (12) and (15) that

ρ ≥ ‖ f ‖F ≥ ∥∥( f̂i
)n j

i=n j−1+1

∥∥
2 ≥ σ j ( f )

λn j−1+1
>

ε
√
1 − b2

abλn j−1+1
≥ ε

√
1 − b2

abλn j−1

Thus, one upper bound on j† is the smallest j violating the above inequality:

j† ≤ min

{
j ∈ N : λ−1

n j−1
≥ ρab

ε
√
1 − b2

}
. (16)

The tighter upper bound in Theorem 1 may be obtained by a more careful
argument in a similar vein. For any f ∈ C ∩ Bρ satisfying n j∗ = cost( Ã, f, ε) =
cost( Ã,C , ε, ρ) = n j† and for any j < j∗ = j†,

ρ2 ≥ ‖ f ‖2F = ∥∥( f̂i
)∞
i=1

∥∥2
2 ≥

j∑

k=1

∥∥( f̂i
)nk
i=nk−1+1

∥∥2
2

≥
j∑

k=1

σ 2
k ( f )

λ2
nk−1+1

by (15)

≥
j−1∑

k=1

b2(k− j)σ 2
j ( f )

a2λ2
nk−1+1

+ σ 2
j ( f )

λ2
n j−1+1

by (9)

= σ 2
j ( f )

[
j−1∑

k=1

b2(k− j)

a2λ2
nk−1+1

+ 1

λ2
n j−1+1

]

>
σ 2
j ( f )

a2

j∑

k=1

b2(k− j)

λ2
nk−1+1

since a > 1

= σ 2
j ( f )

a2

j−1∑

k=0

b2(k+1− j)

λ2
nk+1
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≥ b2σ 2
j ( f )

a2

j−1∑

k=0

b2(k− j)

λ2
nk

since λnk ≥ λnk+1

= b2σ 2
j ( f )

a2
F( j) by (14).

So, for any j < j∗ = j† it follows from the termination criterion in (12) that

F( j) <
ρ2a4

ε2(1 − b2)
.

Note from (14) that F is an increasing function because as j increases, the sum
defining F includes more positive terms and b2(k− j) also increases. Thus, any j that
violates the above inequality, must satisfy j ≥ j†. This establishes (13). �

We note in passing that for our adaptive algorithm,

min{cost( Ã, f, ε) : f ∈ C \ Bρ}
{

= n1, n0 > 0,

≤ n2, n0 = 0,
∀ρ > 0, ε > 0.

This result may be obtained by considering functions where only f̂1 is nonzero. For
n0 > 0, σ1( f ) = 0, and for n0 = 0, σ2( f ) = 0.

The upper bound on cost( Ã,C , ρ, ε) in Theorem 1 is a non-decreasing function
of ρ/ε, which depends on the behavior of the sequence (λn j )

∞
j=0. This in turn depends

both on the increasing sequence n and on the non-increasing sequence (λi )
∞
i=1. Con-

sidering the definition of F , one can imagine that in some cases the first term in the
sum dominates, while in other cases the last term in the sum dominates, all depending
on how bk− j/λnk behaves with k and j . These simplifications lead to two simpler,
but coarser upper bounds on the cost of Ã.

Corollary 1 For the algorithm, Ã, defined in Algorithm 1, we have cost
( Ã,C , ε, ρ) ≤ n j† , where j† satisfies the following upper bound:

j† ≤
⌈
log

(
ρa2λn0

ε
√
1 − b2

)/
log

(
1

b

)⌉
. (17)

Moreover, if the λn j−1 decay as quickly as

λn j−1 ≤ αβ j , j ∈ N, for some α > 0, 0 < β < 1. (18)

then j† also satisfies the following upper bound:

j† ≤
⌈
log

(
ρa2αb

ε
√
1 − b2

)/
log

(
1

β

)⌉
. (19)
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Proof Ignoring all but the first term in the definition of F in (14) implies that

j† ≤ min

{
j ∈ N : b−2 j ≥ ρ2a4λ2

n0

ε2(1 − b2)

}

= min

{
j ∈ N : j ≥ log

(
ρa2λn0

ε(
√
1 − b2

)/
log

(
1

b

)}
.

This implies (17).
Ignoring all but the last term of the sum leads to the simpler upper bound similar

to (16):

j† ≤ min

{
j ∈ N : λ−1

n j−1
≥ ρa2b

ε
√
1 − b2

}
.

If the λn j−1 decay as assumed in (18) then

j† ≤ min

{
j ∈ N : αβ− j ≤ ρa2b

ε
√
1 − b2

}
,

which implies (19). �

This corollary highlights two limiting factors on the computational cost of our
adaptive algorithm, Ã. When j is large enough to make λn j−1 ‖ f ‖F /ε small enough,
Ã( f, ε) stops. This is statement (19) and its precursor, (16).Alternatively, the assump-
tion that the σ j ( f ) are steadily decreasing, as specified in the definition of C in (9),
means that Ã( f, ε) also must stop by the time j becomes large enough with respect
to λn0 ‖ f ‖F /ε.

Assumption (18) is not very restrictive. It holds if the λi decay algebraically and
the n j increase geometrically. It also holds if the λi decay geometrically and the n j

increase arithmetically.
The adaptive algorithm Ã, which does not know an upper bound on ‖ f ‖F a priori,

may cost more than the non-adaptive algorithm Â, which assumes an upper bound
on ‖ f ‖F , but under reasonable assumptions, the extra cost is small.

Corollary 2 Suppose that the sequence n is chosen to satisfy

λn j+1 ≥ cλλn j , j ∈ N, (20)

for somepositive cλ. Then cost( Ã,C , ε, ρ) is essentially noworse than cost( Â,Bρ, ε)

in the sense of (6).

Proof Combining the upper boundonn j† = cost( Ã,C , ε, ρ) in (16) plus (20) above,
it follows that

λn j†
≥ c2λλn j†−2

>
εc2λ

√
1 − b2

ρab
= ωε

ρ
≥ λn̂+1, ω := c2λ

√
1 − b2

ab
,
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where n̂ = cost( Â,Bρ, ωε). Since the λi are non-increasing and λn j†
> λn̂+1, it

follows that n j† < n̂ + 1, and so n j† ≤ n̂. Thus,

cost( Ã,C , ε, ρ) = n j† ≤ n̂ = cost( Â,Bρ, ωε).

�

4 Essential Optimality of the Adaptive Algorithm

From Corollary 2 it is known that cost( Ã,C , ε, ρ) is essentially no worse than
cost( Â,Bρ, ε) = comp(A (Bρ), ε).Wewould like to show that Ã ∈ A (C ) is essen-
tially optimal, i.e., cost( Ã,C , ε, ρ) is essentially no worse than comp(A (C ), ε, ρ).
However, comp(A (C ), ε, ρ) may be smaller than comp(A (Bρ), ε) because C ∩
Bρ is a strict subset of Bρ . This presents a challenge.

A lower bound on comp(A (C ), ε, ρ) is established by constructing fooling func-
tions in C with norms no greater than ρ. To obtain a result that can be compared
with the cost of our algorithm, we assume that

R = sup
j∈N

λn j−1

λn j

< ∞. (21)

That is, the subsequence λn1 , λn2 , . . . cannot decay too quickly.
The following theorem establishes a lower bound on the complexity of our prob-

lem for input functions in C . The theorem after that shows that the cost of our
algorithm as given in Theorem 1 is essentially no worse than this lower bound.

Theorem 2 Under assumption (21), a lower bound on the complexity of the linear
problem defined in (1) is

comp(A (C ), ε, ρ) ≥ n j‡ − 1,

where

j‡ = min

{
j ∈ N : F( j + 2) ≥ ρ2

ε2b2

[
(a + 1)2R2

(a − 1)2
+ 1

]−1
}

,

and F is the function defined in (14).

Proof Consider a fixed ρ and ε. Choose any positive integer j such that n j ≥
comp(A (C ), ε, ρ) + 2. The proof proceeds by carefully constructing three test input
functions, f and f±, lying inC ∩ Bρ , which yield the same approximate solution but
different true solutions. This leads to a lower bound on n j , which can be translated
into a lower bound on comp(A (C ), ε, ρ).



An Adaptive Algorithm Employing Continuous Linear Functionals 175

The first test function f ∈ C is defined in terms of its series coefficients as follows:

f̂i :=
⎧
⎨

⎩

cbk− j

λnk

, i = nk, k = 1, . . . , j,

0, otherwise,

c2 := ρ2

[(
1 + (a − 1)2

(a + 1)2R2

) j∑

k=0

b2(k− j)

λ2
nk

]−1

.

It can be verified that the test function lies both in Bρ and in C :

‖ f ‖2F = c2
j∑

k=1

b2(k− j)

λ2
nk

≤ ρ2,

σk( f ) =
{
cbk− j , k = 1, . . . , j,

0, otherwise,

σk+r ( f ) =
{
brσk( f ) ≤ abrσk( f ), k + r ≤ j, r ≥ 1,

0 ≤ abrσk( f ), k + r > j, r ≥ 1.

Now suppose that A∗ ∈ A (C ) is an optimal algorithm, i.e., cost(A∗,C , ε, ρ) =
comp(A (C ), ε, ρ) for all ε, ρ > 0. For our particular input f defined above, suppose
that A∗( f, ε) samples L1( f ), . . . , Ln( f ) where

n + 2 ≤ comp(A (C ), ε, ρ) + 2 ≤ n j .

Let u be a linear combination of u1, · · · , un j , expressed as

u =
j∑

k=0

bk− j u(k)

λnk

,

where u(0) is a linear combination of u1, . . . , un0 , and each u
(k) is a linear combination

of unk−1+1, . . . , unk , for k = 1, . . . , j . We constrain u to satisfy:

L1(u) = · · · = Ln(u) = 0, 〈u, f 〉F = 0, max
0≤k≤ j

∥∥u(k)
∥∥
F

= 1.

Since u is a linear combination of n j ≥ n + 2 basis functions, these n + 2 constraints
can be satisfied.

Let the other two test functions be constructed in terms of u as
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f± := f ± ηu, η := (a − 1)c

(a + 1)R
, (22)

‖ f±‖2F ≤ ‖ f ‖2F + ‖ηu‖2F

≤
j∑

k=1

b2(k− j)

λ2nk

(
c2 + η2

∥∥u(k)
∥∥2
F

)
+ η2

∥∥u(0)
∥∥2
F

b−2 j

λ2n0

≤
(
c2 + η2

) j∑

k=0

b2(k− j)

λ2nk

=
(
1 + (a − 1)2

(a + 1)2R2

)
c2

j∑

k=0

b2(k− j)

λ2nk

≤ ρ2 by the definition of c above.

So, f± ∈ Bρ . By design, A∗( f±, ε) = A∗( f, ε), which will be used below.
Now, we must check that f± ∈ C . From the definition in (8) it follows that for

k = 1, . . . , j and r ≥ 1,

σk( f±)

⎧
⎪⎪⎨

⎪⎪⎩

≤ σk( f ) + σk(ηu) ≤ cbk− j + ηλnk−1+1
bk− j

∥∥u(k)
∥∥
F

λnk

≤ bk− j (c + ηR)

≥ σk( f ) − σk(ηu) ≥ cbk− j − ηλnk−1+1
bk− j

∥∥u(k)
∥∥
F

λnk

≥ bk− j (c − ηR) ,

Therefore,

σk+r ( f±) ≤ bk+r− j (c + ηR) = abrbk− j 2c

a + 1
= abrbk− j (c − ηR) ≤ abrσk( f±),

which establishes that f± ∈ C .
Although two test functions f± yield the same approximate solution, they have

different true solutions. In particular,

ε ≥ max
{∥∥S( f+) − A∗( f+, ε)

∥∥
G

,
∥∥S( f−) − A∗( f−, ε)

∥∥
G

}

≥ 1

2

[∥∥S( f+) − A∗( f, ε)
∥∥
G

+ ∥∥S( f−) − A∗( f, ε)
∥∥
G

]

since A∗( f±, ε) = A∗( f, ε)

≥ 1

2
‖S( f+) − S( f−)‖G by the triangle inequality

≥ 1

2
‖S( f+ − f−)‖G since S is linear

= η ‖S(u)‖G .

Thus, we have
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ε2 ≥ η2 ‖S(u)‖2G = η2
j∑

k=0

∥∥S(u(k))
∥∥2
G

b2(k− j)

λ2
nk

≥ η2
j∑

k=0

∥∥u(k)
∥∥2
F
b2(k− j) since

∥∥S(u(k))
∥∥
G

≥ λnk

∥∥u(k)
∥∥
F

≥ η2b2(k
∗− j) where k∗ = argmax

0≤k≤ j

∥∥u(k)
∥∥
F

≥ η2 = (a − 1)2c2

(a + 1)2R2
since b < 1

= (a − 1)2ρ2

(a + 1)2R2

[(
1 + (a − 1)2

(a + 1)2R2

) j∑

k=0

b2(k− j)

λ2
nk

]−1

by (22)

= ρ2

[(
(a + 1)2R2

(a − 1)2
+ 1

) j∑

k=0

b2(k− j)

λ2
nk

]−1

= ρ2

[(
(a + 1)2R2

(a − 1)2
+ 1

)
b2F( j + 1)

]−1

by (14).

This inequality is equivalent to

F( j + 1) ≥ ρ2

ε2b2

[
(a + 1)2R2

(a − 1)2
+ 1

]−1

.

This lower bound must be satisfied by j to be consistent with the assump-
tion comp(A (C ), ε, ρ) ≤ n j − 2. Thus, any j violating this inequality satisfies
comp(A (C ), ε, ρ) ≥ n j − 1. Since F is strictly increasing, the largest j violating
this inequality must satisfy

F( j + 1) <
ρ2

ε2b2

[
(a + 1)2R2

(a − 1)2
+ 1

]−1

≤ F( j + 2),

which is the definition of j‡ above in the statement of this theorem. This proves the
lower bound on comp(A (C ), ε, ρ). �

The next step is to show that the cost of our algorithm is essentially no worse than
that of the optimal algorithm.

Theorem 3 Under assumption (21) cost( Ã,C , ε, ρ) is essentially no worse than
comp(A (C ), ε, ρ).

Proof We need an inequality relating F( j), which appears in the definition of j†

in Theorem 1 and F( j + 3), which is related to the definition of j‡ in Theorem 2.
According to (21) and the definition of F in (14), for any � ∈ N,
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R2�F( j) ≥ R2� b−2

λ2
n j−1

≥ b−2

λ2
n j+�−1

,

and so

b−2�[1 + b2R2 · · · + (b2R2)�]F( j) ≥ F( j)b−2� + b−2�

λ2
n j

+ · · · + b−2

λ2
n j+�−1

=
j−1∑

j=0

b2(k− j−�)

λ2
nk

+ b−2�

λ2
n j

+ · · · + b−2

λ2
n j+�−1

= F( j + �).

The � = 3 case of this inequality implies the following lower bound on F( j) in terms
of F( j + 3):

F( j) ≥ b6F( j + 3)

1 + b2R2 + b4R4 + b6R6
= ω2a4b2

1 − b2

[
(a + 1)2R2

(a − 1)2
+ 1

]
F( j + 3),

where

ω =
√

(1 − b2)b4

a4(1 + b2R2 + b4R4 + b6R6)

[
(a + 1)2R2

(a − 1)2
+ 1

]−1

, (23)

Note that ω does not depend on ρ or ε but only on the definition of C .
For any positive ρ and ε, let j† = j†(ε, ρ) be defined as in Theorem 1 and let

j‡ = j‡(ε, ρ) be defined as in Theorem 2. Then by those Theorems, j†(ε, ρ) can be
bounded above in terms of j‡(ωε, ρ) for ω defined in (23):

j†(ε, ρ) ≤ min

{
j ∈ N : F( j) ≥ ρ2a4

ε2(1 − b2)

}

≤ min

{
j ∈ N : ω2a4b2

1 − b2

[
(a + 1)2R2

(a − 1)2
+ 1

]
F( j + 3) ≥ ρ2a4

ε2(1 − b2)

}

= min

{
j ∈ N : F( j + 3) ≥ ρ2

ω2ε2b2

[
(a + 1)2R2

(a − 1)2
+ 1

]−1
}

= j‡(ωε, ρ) − 1.

By the argument above, it follows that j†(ε, ρ) ≤ j‡(ωε, ρ) − 1, and again by The-
orems 1 and 2 it follows that

cost( Ã,C , ε, ρ) = n j†(ε, ρ) ≤ n j‡(ωε,ρ)−1 ≤ n j‡(ωε,ρ) − 1 ≤ comp(A (C ), ωε, ρ).

Therefore, our algorithm is essentially no more costly than the optimal algorithm.

�



An Adaptive Algorithm Employing Continuous Linear Functionals 179

5 Numerical Example

Consider the case of approximating the partial derivativewith respect to x1 of periodic
functions defined on the d-dimensional unit cube:

f =
∑

k∈Zd

f̂ (k)̂uk =
∑

i∈N
f̂i ui ,

ûk(x) :=
d∏

j=1

2(1−δk j ,0)/2 cos(2πk j x j + 1(−∞,0)(k j )π/2)

[max(1, γ j k j )]4 ,

S( f ) := ∂ f

∂x1
=
∑

k∈Zd

f̂ (k)λ(k)̂vk(x) =
∑

i∈N
f̂iλi vi ,

v̂k(x) := −sign(k1) sin(2πk1x1 + 1(−∞,0)(k1)π/2)

×
d∏

j=2

cos(2πk j x j + 1(−∞,0)(k j )π/2),

λ(k) := 2π |k1|
∏d

j=1 2
(1−δk j ,0)/2

∏d
j=1[max(1, γ j k j )]4

,

γ := (1, 1/2, 1/4, . . . , 2−d+1).

Note that λ1 ≥ λ2 ≥ · · · is an ordering of the λ(k). That ordering then determines
the f̂i , ui , and vi in terms of the f̂ (k), û(k), and v̂(k), respectively.

We construct a function by choosing its Fourier coefficients f̂ (k)
IID∼ N (0, 1)

for d = 3, k ∈ {−30,−29, . . . , 30}3, and f̂ (k) = 0 otherwise. This corresponds to
613 ≈ 2 × 105 nonzero Fourier coefficients. Let a = 2 and b = 1/2 and choose n =
(0, 16, 32, 64, . . .). To compute σ j ( f ), j ∈ N by (8), we need to sort

(
λ(k)

)
k∈Zd

in descending order, λ1, λ2, . . .. Given ε, we can then find the number of series
coefficients needed to satisfy the the error criterion, i.e., n j† where

j† = min

{
j ∈ N : abσ j ( f )√

1 − b2
≤ ε.

}

Figure 2 shows the input function, the solution, the approximate solution, and
the error of the approximate solution for ε = 0.1. For this example, n j† = 8192 is
sufficient to satisfy the error tolerance, as is clear from Fig. 2d. Figure3 shows the
sample size, n j† needed for ten different error tolerances from 0.1 to 10. Because the
possible sample sizes are powers of 2, some tolerances require the same sample size.
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Fig. 2 For ε = 0.1: a The input function, f ; b The true first partial derivative of f ; c The approx-
imate first partial derivative of f ; d The approximation error

Fig. 3 Sample size n j† , error tolerance ε, and ratio of true error to error tolerance
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6 Discussion and Conclusion

Many practical adaptive algorithms lack theory, and many theoretically justified
algorithms are non-adaptive. We have demonstrated for a general setting how to
construct a theoretically justified, essentially optimal algorithm. The decay of the
singular values determines the computational complexity of the problem and the
computational cost of our algorithm.

The key idea of our algorithm is to derive an adaptive error bound by assuming the
steadydecayof theFourier series coefficients of the solution.The set of such functions
constitutes a cone.We do not need to know the decay rate of these coefficients a priori.
The cost of our algorithm also serves as a goal for an algorithm that uses function
values, which are more commonly available than Fourier series coefficients. An
important next step is to identify an essentially optimal algorithm based on function
values. Another research direction is to extend this setting to Banach spaces of inputs
and/or outputs.
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Constructing QMC Finite Element
Methods for Elliptic PDEs with Random
Coefficients by a Reduced CBC
Construction

Adrian Ebert, Peter Kritzer and Dirk Nuyens

Abstract In the analysis of using quasi-Monte Carlo (QMC) methods to approxi-
mate expectations of a linear functional of the solution of an elliptic PDE with ran-
dom diffusion coefficient the sensitivity w.r.t. the parameters is often stated in terms
of product-and-order-dependent (POD) weights. The (offline) fast component-by-
component (CBC) construction of an N -point QMC method making use of these
POD weights leads to a cost of O(sN log(N ) + s2N ) with s the parameter trunca-
tion dimension. When s is large this cost is prohibitive. As an alternative Herrmann
and Schwab [9] introduced an analysis resulting in product weights to reduce the
construction cost toO(sN log(N )). We here show how the reduced CBCmethod [5]
can be used for PODweights to reduce the cost toO(

∑min{s,s∗}
j=1 (m − wj + j) bm−wj ),

where N = bm with prime b, w1 ≤ · · · ≤ ws are nonnegative integers and s∗ can be
chosen much smaller than s depending on the regularity of the random field expan-
sion as such making it possible to use the POD weights directly. We show a total
error estimate for using randomly shifted lattice rules constructed by the reduced
CBC method.
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Keywords Quasi-Monte Carlo methods · Infinite-dimensional integration ·
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1 Introduction and Problem Setting

We consider the parametric elliptic Dirichlet problem given by

−∇ · (a(x, y)∇u(x, y)) = f (x) for x ∈ D ⊂ R
d , u(x, y) = 0 for x on ∂D, (1)

for D ⊂ R
d a bounded, convex Lipschitz polyhedron domain with boundary ∂D and

fixed spatial dimension d ∈ {1, 2, 3}. The function f lies in L2(D), the parametric
variable y = (y j ) j≥1 belongs to a domainU , and the differential operators are under-
stood to be with respect to the physical variable x ∈ D. Here we study the “uniform

case”, i.e., we assume that y is uniformly distributed onU := [− 1
2 ,

1
2

]N
with uniform

probability measure μ(d y) = ⊗
j≥1 dy j = d y. The parametric diffusion coefficient

a(x, y) is assumed to depend linearly on the parameters y j in the following way,

a(x, y) = a0(x) +
∑

j≥1

y j ψ j (x) , x ∈ D, y ∈ U (2)

for a given system {ψ j } j≥1 of functions in L2(D). For the variational formulation of
(1), we consider the Sobolev space V = H 1

0 (D) of functions v which vanish on the
boundary ∂D with norm

‖v‖V :=
⎛

⎝
∫

D

d∑

j=1

|∂x j v(x)|2dx
⎞

⎠

1
2

= ‖∇v‖L2(D).

The corresponding dual space of bounded linear functionals on V with respect to the
pivot space L2(D) is further denoted by V ∗ = H−1(D). Then, for given f ∈ V ∗ and
y ∈ U , the weak (or variational) formulation of (1) is to find u(·, y) ∈ V such that

A( y; u(·, y), v) = 〈 f, v〉V ∗×V =
∫

D
f (x)v(x) dx for all v ∈ V, (3)

with parametric bilinear form A : U × V × V → R given by

A( y;w, v) :=
∫

D
a(x, y)∇w(x) · ∇v(x) dx for all w, v ∈ V, (4)

and duality pairing 〈·, ·〉V ∗×V between V ∗ and V . We will often identify elements
ϕ ∈ V with dual elements Lϕ ∈ V ∗. Indeed, for ϕ ∈ V and v ∈ V , a bounded
linear functional is given via Lϕ(v) := ∫

D ϕ(x)v(x)dx = 〈ϕ, v〉L2(D) and by the
Riesz representation theorem there exists a unique representer ϕ̃ ∈ V such that
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Lϕ(v) = 〈ϕ̃, v〉L2(D) for all v ∈ V . Hence, the definition of the canonical duality
pairing yields that 〈Lϕ, v〉V ∗×V = Lϕ(v) = 〈ϕ, v〉L2(D).

Our quantity of interest is the expected value, with respect to the probability
measure μ(d y), of a given bounded linear functional G ∈ V ∗ applied to the solu-
tion u(·, y) of the PDE. We stress that the considered functionals G do not depend
on the parametric variable y. Therefore we seek to approximate this expectation
by numerically integrating G applied to a finite element approximation ush(·, y)
of the solution us(·, y) ∈ H 1

0 (D) = V of (3) with truncated diffusion coefficient
a(x, ( y{1:s}; 0)) where {1 : s} := {1, . . . , s} and we write ( y{1:s}; 0) = (ỹ j ) j≥1 with
ỹ j = y j for j ∈ {1 : s} and ỹ j = 0 otherwise; that is,

E[G(u)] :=
∫

U
G(u(·, y)) μ(d y) =

∫

U
G(u(·, y)) d y ≈ QN (G(ush)), (5)

with QN (·) a linear quadrature rule using N function evaluations. The infinite-
dimensional integral E[G(u)] in (5) is defined as

E[G(u)] =
∫

U
G(u(·, y)) d y := lim

s→∞

∫

[
− 1

2 , 12

]s G(u(·, (y1, . . . , ys , 0, 0, . . .))) dy1 · · · dys

such that our integrands of interest are of the form F( y) = G(u(·, y)) with y ∈ U .
The QMC finite element method will sample the random coefficients y = ( y{1:s}; 0)
by a QMC point set, solve the deterministic problem via an FEM approximation for
each of the parameter samples and calculate the quantity of interest for each of these
solutions, and finally take the average to approximate the expectation, see, e.g., [11].
In this article, we will employ (randomized) QMC methods of the form

QN (F) = 1

N

N∑

k=1

F(tk),

i.e., equal-weight quadrature rules with (randomly shifted) deterministic points
t1, . . . , tN ∈ [− 1

2 ,
1
2

]s
. The elliptic PDE studied is a standard problem considered in

the numerical analysis of computational methods in uncertainty quantification, see,
e.g., [1, 2, 6, 8–12].

1.1 Existence of Solutions of the Variational Problem

To assure that a unique solution to theweak problem (3) exists, we need certain condi-
tions on the diffusion coefficient a. We assume a0 ∈ L∞(D) and ess inf x∈D a0(x) >

0, which is equivalent to the existence of two constants 0 < a0,min ≤ a0,max < ∞
such that a.e. on D we have

a0,min ≤ a0(x) ≤ a0,max, (6)
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and that there exists a κ ∈ (0, 1) such that

∥
∥
∥
∥
∥
∥

∑

j≥1

|ψ j |
2a0

∥
∥
∥
∥
∥
∥
L∞(D)

≤ κ < 1. (7)

Via (7), we obtain that |∑ j≥1 y jψ j (x)| ≤ κ a0(x) and hence, using (6), almost
everywhere on D and for any y ∈ U

0 < (1 − κ) a0,min ≤ a0(x) +
∑

j≥1

y jψ j (x) = a(x, y) ≤ (1 + κ) a0,max. (8)

These estimates yield the continuity and coercivity of A( y, ·, ·) defined in (4) on V ×
V , uniformly for all y ∈ U . The Lax–Milgram theorem then ensures the existence
of a unique solution u(·, y) of the weak problem in (3).

1.2 Parametric Regularity

Having established the existence of unique weak parametric solutions u(·, y), we
investigate their regularity in terms of the behavior of their mixed first-order deriva-
tives. Our analysis combinesmultiple techniqueswhich can be found in the literature,
see, e.g., [1, 2, 8–10]. In particular we want to point out that our POD form bounds
can take advantage of wavelet like expansions of the random field, a technique intro-
duced in [1] and used to the advantage ofQMCconstructions by [9] to deliver product
weights to save on the construction compared to POD weights. Although we end up
again with POD weights, we will save on the construction cost by making use of a
special construction method, called the reduced CBC construction, which we will
introduce in Sect. 2.4. Let ν = (ν j ) j≥1 with ν j ∈ N0 := {0, 1, 2, . . .} be a sequence
of positive integers which we will refer to as a multi-index. We define the order |ν|
and the support supp(ν) as

|ν| :=
∑

j≥1

ν j and supp(ν) := { j ≥ 1 : ν j > 0}

and introduce the setsF and F1 of finitely supported multi-indices as

F := {ν ∈ N
N

0 : |supp(ν)| < ∞} and F1 := {ν ∈ {0, 1}N : |supp(ν)| < ∞},

whereF1 ⊆ F is the restriction containing only ν with ν j ∈ {0, 1}. Then, for ν ∈ F
denote the ν-th partial derivative with respect to the parametric variables y ∈ U by
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∂ν = ∂ |ν|

∂yν1
1 ∂yν2

2 · · · ,

and for a sequence b = (b j ) j≥1 ⊂ R
N+, set b

ν := ∏
j≥1 b

ν j

j . We further write ω ≤ ν

if ω j ≤ ν j for all j ≥ 1 and denote by ei ∈ F1 the multi-index with components
e j = δi, j . For a fixed y ∈ U , we introduce the energy norm ‖ · ‖2a y

in the space V via

‖v‖2a y
:=

∫

D
a(x, y) |∇v(x)|2 dx

for which it holds true by (8) that

(1 − κ) a0,min‖v‖2V ≤ ‖v‖2a y
for all v ∈ V . (9)

Consequently, we have that (1 − κ) a0,min‖u(·, y)‖2V ≤ ‖u(·, y)‖2a y
and hence the

definition of the dual norm ‖ · ‖V ∗ yields the following initial estimate from (3)
and (4),

‖u(·, y)‖2a y
=
∫

D
a(x, y) |∇u(x, y)|2 dx =

∫

D
f (x)u(x, y) dx

= 〈 f, u(·, y)〉V ∗×V ≤ ‖ f ‖V ∗‖u(·, y)‖V ≤ ‖ f ‖V ∗‖u(·, y)‖a y
√

(1 − κ)a0,min

which gives in turn

‖u(·, y)‖2a y
≤ ‖ f ‖2V ∗

(1 − κ) a0,min
. (10)

In order to exploit the decay of the norm sequence (‖ψ j‖L∞(D)) j≥1 of the basis
functions, we extend condition (7) as follows. To characterize the smoothness of
the random field, we assume that there exist a sequence of reals b = (b j ) j≥1 with
0 < b j ≤ 1 for all j , such that, for positive constants κ and κ̃(ν), with κ̃(ν) ≤ κ for
all ν ∈ F1, given as below, we have

κ :=
∥
∥
∥
∥
∥
∥

∑

j≥1

|ψ j |/b j

2a0

∥
∥
∥
∥
∥
∥
L∞(D)

< 1, κ̃(ν) :=
∥
∥
∥
∥
∥
∥

∑

j∈supp(ν)

|ψ j |/b j

2a0

∥
∥
∥
∥
∥
∥
L∞(D)

< 1. (11)

We remark that condition (7) is included in this assumption by letting b j = 1 for
all j ≥ 1 and that 0 < κ ≤ κ < 1. Using the above estimations we can derive the
following theorem for the mixed first-order partial derivatives.

Theorem 1 Let b = (b j ) j≥1 ⊂ (0, 1] be a sequence of reals satisfying (11). Let
ν ∈ F1 be a multi-index of finite support and let k ∈ {0, 1, . . . , |ν|}. Then, for every
f ∈ V ∗ and every y ∈ U,
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∑

ω≤ν
|ω|=k

b−2ω‖∂ωu(·, y)‖2V ≤
((

2̃κ(ν)

1 − κ

)k ‖ f ‖V ∗

(1 − κ) a0,min

)2

,

with κ̃(ν) as in (11). Moreover, for k = |ν| we obtain

‖∂νu(·, y)‖V ≤ bν

(
2̃κ(ν)

1 − κ

)|ν| ‖ f ‖V ∗

(1 − κ) a0,min
.

Proof For the special case ν = 0, the claim follows by combining (9) and (10). For
ν ∈ F1 with |ν| > 0, as is known from, e.g., [2] and [11, Appendix], the linearity of
a(x, y) gives rise to the following identity for any y ∈ U :

‖∂νu(·, y)‖2a y
= −

∑

j∈supp(ν)

∫

D
ψ j (x)∇∂ν−e j u(x, y) · ∇∂νu(x, y) dx. (12)

For sequences of L2(D)-integrable functions f = ( fω, j )ω∈F , j≥1 with fω, j : D →
R, we define the inner product 〈 f , g〉ν,k as follows,

〈 f , g〉ν,k :=
∑

ω≤ν
|ω|=k

∫

D

∑

j∈supp(ω)

fω, j (x) gω, j (x) dx.

Wecan then apply theCauchy–Schwarz inequality to f = ( fω, j ) and g = (gω, j )with
fω, j = b−e j /2|ψ j | 1

2 b−(ω−e j )∇∂ω−e j u(·, y) and gω, j = b−e j/2|ψ j | 1
2 b−ω∇∂ωu(·, y)

to obtain, with the help of (12),

∑

ω≤ν
|ω|=k

b−2ω‖∂ωu(·, y)‖2a y

= −
∑

ω≤ν
|ω|=k

∫

D

∑

j∈supp(ω)

b−e j b−(ω−e j )b−ωψ j (x)∇∂ω−e j u(x, y) · ∇∂ωu(x, y) dx

≤
⎛

⎜
⎝

∫

D

∑

ω≤ν
|ω|=k

∑

j∈supp(ω)

b−e j |ψ j (x)| ∣∣b−(ω−e j )∇∂ω−e j u(x, y)
∣
∣2 dx

⎞

⎟
⎠

1
2

×
⎛

⎜
⎝

∫

D

∑

ω≤ν
|ω|=k

∑

j∈supp(ω)

b−e j |ψ j (x)| ∣∣b−ω∇∂ωu(x, y)
∣
∣2 dx

⎞

⎟
⎠

1
2

.

The first of the two factors above is then bounded as follows,
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∫

D

∑

ω≤ν
|ω|=k

∑

j∈supp(ω)

b−e j |ψ j (x)| ∣∣b−(ω−e j )∇∂ω−e j u(x, y)
∣
∣2 dx

=
∫

D

∑

ω≤ν
|ω|=k−1

⎛

⎜
⎜
⎝

∑

j∈supp(ν)
ω+e j≤ν

b−e j |ψ j (x)|

⎞

⎟
⎟
⎠
∣
∣b−ω∇∂ωu(x, y)

∣
∣2 dx

≤
∥
∥
∥
∥
∥
∥

∑

j∈supp(ν)

|ψ j |/b j

a(·, y)

∥
∥
∥
∥
∥
∥
L∞(D)

∑

ω≤ν
|ω|=k−1

b−2ω
∫

D
a(x, y)

∣
∣∇∂ωu(x, y)

∣
∣2 dx

=
∥
∥
∥
∥
∥
∥

∑

j∈supp(ν)

|ψ j |/b j

a(·, y)

∥
∥
∥
∥
∥
∥
L∞(D)

∑

ω≤ν
|ω|=k−1

b−2ω‖∂ωu(·, y)‖2a y
,

while the other factor can be bounded trivially. Furthermore, using (8), we have for
any y ∈ U

∥
∥
∥
∥
∥
∥

∑

j∈supp(ν)

|ψ j |/b j

a(·, y)

∥
∥
∥
∥
∥
∥
L∞(D)

≤ 1

1 − κ

∥
∥
∥
∥
∥
∥

∑

j∈supp(ν)

|ψ j |/b j

a0

∥
∥
∥
∥
∥
∥
L∞(D)

:= 2̃κ(ν)

1 − κ
,

so that, combining these three estimates, we obtain

∑

ω≤ν
|ω|=k

b−2ω‖∂ωu(·, y)‖2a y

≤ 2̃κ(ν)

1 − κ

⎛

⎜
⎝

∑

ω≤ν
|ω|=k−1

b−2ω‖∂ωu(·, y)‖2a y

⎞

⎟
⎠

1
2
⎛

⎜
⎝
∑

ω≤ν
|ω|=k

b−2ω‖∂ωu(·, y)‖2a y

⎞

⎟
⎠

1
2

.

Therefore, we finally obtain that

∑

ω≤ν
|ω|=k

b−2ω‖∂ωu(·, y)‖2a y
≤
(
2̃κ(ν)

1 − κ

)2 ∑

ω≤ν
|ω|=k−1

b−2ω‖∂ωu(·, y)‖2a y

which inductively gives

∑

ω≤ν
|ω|=k

b−2ω‖∂ωu(·, y)‖2a y
≤
(
2̃κ(ν)

1 − κ

)2k

‖u(·, y)‖2a y
≤
(
2̃κ(ν)

1 − κ

)2k ‖ f ‖2V ∗

(1 − κ) a0,min
,
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where the last inequality follows from the initial estimate (10). The estimate (9) then
gives

∑

ω≤ν
|ω|=k

b−2ω‖∂ωu(·, y)‖2V ≤ 1

(1 − κ) a0,min

∑

ω≤ν
|ω|=k

b−2ω‖∂ωu(·, y)‖2a y

≤
(
2̃κ(ν)

1 − κ

)2k ‖ f ‖2V ∗

(1 − κ)2 a20,min

,

which yields the first claim. The second claim follows since the sum over the ω ≤ ν

with |ω| = |ν| and ν ∈ F1 consists only of the term corresponding to ω = ν. �

Corollary 1 Under the assumptions of Theorem 1, there exists a number κ(k) for
each k ∈ N, given by

κ(k) := sup
ν∈F 1|ν|=k

κ̃(ν),

such that κ̃(ν) ≤ κ(k) ≤ κ < 1 for all ν ∈ F1 with |ν| = k. Then for ν ∈ F1, every
f ∈ V ∗, and every y ∈ U, the solution u(·, y) satisfies

‖∂νu(·, y)‖V ≤ bν

(
2κ(|ν|)
1 − κ

)|ν| ‖ f ‖V ∗

(1 − κ) a0,min
. (13)

Note that since 0 < κ ≤ κ < 1, the results of Theorem 1 and Corollary 1 remain also
valid for κ replaced by κ .

The obtained bounds on themixed first-order derivatives turn out to be of product-
and-order-dependent (so-called POD) form; that is, they are of the general form

‖∂νu(·, y)‖V ≤ C bν Γ (|ν|) ‖ f ‖V ∗ (14)

with a map Γ : N0 → R, a sequence of reals b = (b j ) j≥1 ∈ R
N and some constant

C ∈ R+. This finding motivates us to consider this special type of bounds in the
following error analysis.

2 Quasi-Monte Carlo Finite Element Error

We analyze the errorE[G(u)] − QN (G(ush)) obtained by applying QMC rules to the
finite element approximation ush to approximate the expected value

E[G(u)] =
∫

U
G(u(·, y)) d y.
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To this end, we introduce the finite element approximation ush(x, y) := uh(x,

( y{1:s}; 0)) of a solution of (3) with truncated diffusion coefficient a(x, ( y{1:s}; 0)),
where uh is a finite element approximation as defined in (16) and ( y{1:s}; 0) =
(y1, . . . , ys, 0, 0, . . .). The overall absoluteQMCfinite element error is then bounded
as follows

|E[G(u)] − QN (G(ush))|
= |E[G(u)] − E[G(us)] + E[G(us)] − E[G(ush)] + E[G(ush)] − QN (G(ush))|
≤ |E[G(u − us)]| + |E[G(us − ush)]| + |E[G(ush)] − QN (G(ush))|. (15)

The first term on the right hand side of (15) will be referred to as (dimension)
truncation error, the second term is the finite element discretization error and the last
term is the QMC quadrature error for the integrand ush . In the following sections we
will analyze these different error terms separately.

2.1 Finite Element Approximation

Here, we consider the approximation of the solution u(·, y) of (3) by a finite element
approximation uh(·, y) and assess the finite element discretization error. To this end,
denote by {Vh}h>0 a family of subspaces Vh ⊂ V with finite dimensions Mh of order
h−d . The spaces Vh contain continuous, piecewise linear finite elements defined on
a sequence {Th}h>0 of shape regular triangulations of D. We define the parametric
finite element (FE) approximation as follows: for f ∈ V ∗ and given y ∈ U , find
uh(·, y) ∈ Vh such that

A( y; uh(·, y), vh) = 〈 f, vh〉V ∗×V =
∫

D
f (x)vh(x) dx for all vh ∈ Vh . (16)

To establish convergence of the finite element approximations, we need some further
conditions on a(x, y). To this end,we define the spaceW 1,∞(D) ⊆ L∞(D) endowed
with the norm ‖v‖W 1,∞(D) = max{‖v‖L∞(D), ‖∇v‖L∞(D)} and require that

a0 ∈ W 1,∞(D) and
∑

j≥1

‖ψ j‖W 1,∞(D) < ∞. (17)

Under these conditions and using that f ∈ L2(D), it was proven in [12, Theorem
7.1] that for any y ∈ U the approximations uh(·, y) satisfy, as h → 0,

‖u(·, y) − uh(·, y)‖V ≤ C1 h ‖ f ‖L2 .

In addition, if (the representer of) the bounded linear functionalG ∈ V ∗ lies in L2(D)

we have by [12, Theorem 7.2] and [11, Eq. (3.11)] that for any y ∈ U , as h → 0,
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|G(u(·, y)) − G(uh(·, y))| ≤ C2 h
2 ‖ f ‖L2 ‖G‖L2 ,

|E[G(u(·, y) − uh(·, y))]| ≤ C3 h
2 ‖ f ‖L2 ‖G‖L2 , (18)

where the constantsC1,C2,C3 > 0 are independent of h and y. Since the above state-
ments hold true for any y ∈ U , they remain also valid for us(x, y) := u(x, ( y{1:s}; 0))
and ush(x, y) := uh(x, ( y{1:s}; 0)) with associated constants C1,C2,C3 independent
of the value of s.

2.2 Dimension Truncation

For every s ∈ N and y ∈ U , we formally define the solution of the parametric weak
problem (3) corresponding to the diffusion coefficient a(x, ( y{1:s}; 0)) with sum
truncated to s terms as

us(·, y) := u(·, ( y{1:s}; 0)). (19)

In [8, Proposition 5.1] it was shown that for the solution us the following error
estimates are satisfied.

Theorem 2 Let κ ∈ (0, 1) be such that (7) is satisfied and assume furthermore that
there exists a sequence of reals b = (b j ) j≥1 with 0 < b j ≤ 1 for all j and a constant
κ ∈ [κ, 1) as defined in (11). Then, for every y ∈ U and each s ∈ N

‖u(·, y) − us(·, y)‖V ≤ a0,max ‖ f ‖V ∗

(a0,min(1 − κ))2
sup
j≥s+1

b j .

Moreover, if it holds for κ that κ a0,max

(1−κ) a0,min
sup j≥s+1 b j < 1, then for every G ∈ V ∗ we

have
∣
∣
∣
∣
∣
E[G(u)] −

∫

[− 1
2 , 12 ]

s
G(us(·, ( y{1:s}; 0))) d y{1:s}

∣
∣
∣
∣
∣

≤ ‖G‖V ∗ ‖ f ‖V ∗

(1 − κ) a0,min − a0,max κ sup j≥s+1 b j

(
a0,max

(1 − κ) a0,min
κ sup

j≥s+1
b j

)2

. (20)

In the following subsection,wewill discuss how to approximate thefinite-dimensional
integral of solutions of the form (19) by means of QMC methods.
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2.3 Quasi-Monte Carlo Integration

For a real-valued function F : [− 1
2 ,

1
2

]s → R defined over the s-dimensional unit
cube centered at the origin, we consider the approximation of the integral Is(F) by
N -point QMC rules QN (F), i.e.,

Is(F) :=
∫

[− 1
2 , 12 ]

s
F( y) d y ≈ 1

N

N∑

k=1

F(tk) =: QN (F),

with quadrature points t1, . . . , tN ∈ [− 1
2 ,

1
2

]s
. As a quality criterion of such a rule,

we define the worst-case error for QMC integration in some Banach spaceH as

ewor(t1, . . . , tN ) := sup
F∈H‖F‖H ≤1

|Is(F) − QN (F)|.

In this article, we consider randomly shifted rank-1 lattice rules as randomized QMC
rules, with underlying points of the form

t̃k(Δ) = {(k z)/N + Δ} − (1/2, . . . , 1/2) , k = 1, . . . , N ,

with generating vector z ∈ Z
s , uniform random shift Δ ∈ [0, 1]s and component-

wise applied fractional part, denoted by {x}. For simplicity, we denote the worst-case
error using a shifted lattice rule with generating vector z and shift Δ by eN ,s(z,Δ).

For randomly shifted QMC rules, the probabilistic error bound

√
EΔ

[|Is(F) − QN (F)|2] ≤ êN ,s(z) ‖F‖H ,

holds for all F ∈ H , with shift-averaged worst-case error

êN ,s(z) :=
(∫

[0,1]s
e2N ,s(z,Δ) dΔ

)1/2

.

As function space H for our integrands F , we consider the weighted, unanchored
Sobolev space Ws,γ , which is a Hilbert space of functions defined over

[− 1
2 ,

1
2

]s

with square integrable mixed first derivatives and general non-negative weights γ =
(γu)u⊆{1:s}. More precisely, the norm for F ∈ Ws,γ is given by

‖F‖W s,γ :=
⎛

⎝
∑

u⊆{1:s}
γ −1
u

∫

[− 1
2 , 12 ]

|u|

(∫

[− 1
2 , 12 ]

s−|u|

∂ |u|F
∂ yu

( yu; y−u) d y−u

)2

d yu

⎞

⎠

1/2

,

(21)
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where {1 : s} := {1, . . . , s}, ∂ |u|F
∂ yu

denotes the mixed first derivative with respect to
the variables yu = (y j ) j∈u and we set y−u = (y j ) j∈{1:s}\u.

For the efficient construction of good lattice rule generating vectors, we consider
the so-called reduced component-by-component (CBC) construction introduced in
[5]. For b ∈ N and m ∈ N0, we define the group of units of integers modulo bm via

Z
×
bm := {

z ∈ Zbm : gcd(z, bm) = 1
}
,

and note that Z×
b0 = Z

×
1 = {0} since gcd(0, 1) = 1. Henceforth, let b be prime and

recall that then, form ≥ 1, |Z×
bm | = ϕ(bm) = bm−1ϕ(b) and |Z×

b | = ϕ(b) = (b − 1),
where ϕ is Euler’s totient function. Let w := (wj ) j≥1 be a non-decreasing sequence
of integers in N0, the elements of which we will refer to as reduction indices. In the
reduced CBC algorithm the components z̃ j of the generating vector z̃ of the lattice
rule will be taken as multiples of bwj .

In [5], the reduced CBC construction was introduced to construct rank-1 lattice
rules for 1-periodic functions in aweightedKorobov spaceH (Ks,α,γ ) of smoothness
α (see, e.g., [14]).We denote the worst-case error inH (Ks,α,γ ) using a rank-1 lattice
rulewith generating vector z by eN ,s(z). Following [5], the reducedCBCconstruction
is then given in Algorithm 1.

Algorithm 1 Reduced component-by-component construction

Input: Prime power N = bm with m ∈ N0 and integer reduction indices 0 ≤ w1 ≤ · · · ≤ ws .

For j from 1 to s and as long as wj < m do:

• Select z j ∈ Z
×
bm−w j

such that

z j := argmin
z∈Z×

b
m−w j

e2N , j (b
w1 z1, . . . , b

wj−1 z j−1, b
wj z).

Set all remaining z j := 0 (for j with wj ≥ m).

Return: Generating vector z̃ := (bw1 z1, . . . , bws zs) for N = bm .

The following theorem, proven in [5], states that the algorithm yields generating
vectors with a small integration error for general weights γu in the Korobov space.

Theorem 3 For a prime power N = bm let z̃ = (bw1 z1, . . . , bws zs) be constructed
according to Algorithm 1 with integer reduction indices 0 ≤ w1 ≤ · · · ≤ ws. Then
for every d ∈ {1 : s} and every λ ∈ (1/α, 1] it holds for the worst-case error in the
Korobov space H (Ks,α,γ ) with α > 1 that

e2N ,d(b
w1 z1, . . . , b

wd zd) ≤
⎛

⎝
∑

∅�=u⊆{1:d}
γ λ
u (2ζ(αλ))|u| bmin{m,max j∈u wj }

⎞

⎠

1
λ (

2

N

) 1
λ

,

where ζ(x) := ∑∞
h=1

1
hx , x > 1, denotes the Riemann zeta function.
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This theorem can be extended to the weighted unanchored Sobolev space Ws,γ

using randomly shifted lattice rules as follows.

Theorem 4 For a prime power N = bm, m ∈ N0, and for F ∈ Ws,γ belonging to
the weighted unanchored Sobolev space defined over

[− 1
2 ,

1
2

]s
with weights γ =

(γu)u⊆{1:s}, a randomly shifted lattice rule can be constructed by the reduced CBC
algorithm, see Algorithm 1, such that for all λ ∈ (1/2, 1],

√
EΔ

[|Is(F) − QN (F)|2]

≤
⎛

⎝
∑

∅�=u⊆{1:s}
γ λ
u �|u|(λ) bmin{m,max j∈u wj }

⎞

⎠

1/(2λ) (
2

N

)1/(2λ)

‖F‖W s,γ ,

with integer reduction indices 0 ≤ w1 ≤ · · · ≤ ws and �(λ) = 2ζ(2λ)(2π2)−λ.

Proof Using Theorem 3 and the connection that the shift-averaged kernel of the
Sobolev space equals the kernel of the Korobov space H (Ks,α,γ̃ ) with α = 2 and
weights γ̃u = γu/(2π2)|u|, see, e.g., [7, 13], the result follows directly from

√
EΔ

[|I (F) − QN (F)|2] ≤
√

EΔ

[
e2N ,s(z,Δ) ‖F‖2W s,γ

]
= êN ,s(z) ‖F‖W s,γ .

�

Theorem 4 implies that, under appropriate conditions on the weights γu and the
wj ’s, see [5], the constructed randomly shifted lattice rules achieve an error con-
vergence rate close to the optimal rate O(N−1) in the weighted Sobolev space. It
follows that we can construct the lattice rule in the weighted Korobov space using
the connection mentioned in the proof of the previous theorem.

2.4 Implementation of the Reduced CBC Algorithm

Similar to other variants of the CBC construction, we present a fast version of
the reduced CBC method for POD weights in Algorithm 2 for which Theorems 3
and 4 still hold. The full derivation of Algorithm 2 is given in Sect. 5, here we only
introduce the necessary notation. The squared worst-case error for POD weights
γ = (γu)u⊆{1:s} withγu = Γ (|u|)∏ j∈u γ j andγ∅ = 1 in theweightedKorobov space
H (Ks,α,γ ) with α > 1 can be written as

e2N ,s(z) = 1

N

N−1∑

k=0

s∑

�=1

∑

u⊆{1:s}
|u|=�

Γ (�)
∏

j∈u
γ j ω

({
kz j
N

})

,
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where ω(x) = ∑
0 �=h∈Z e2π i hx/|h|α , see, e.g., [7, 13], and for n ∈ N we define Ωn

as

Ωn :=
[

ω

(
kz mod n

n

)]

z∈Z×
n

k∈Zn

∈ R
ϕ(n)×n .

We assume that the values of the functionω can be computed at unit cost. For integers
0 ≤ w′ ≤ w′′ ≤ m and given base b we define the “fold and sum” operator, which
divides a length bm−w′

vector into blocks of equal length bm−w′′
and sums them up,

i.e.,
Pm
w′′,w′ : Rbm−w′ → R

bm−w′′ : Pm
w′′,w′ v = [

Ibm−w′′ | · · · |Ibm−w′′
︸ ︷︷ ︸

bw′′−w′ times

]
v, (22)

where Ibm−w′′ is the identity matrix of size bm−w′′ × bm−w′′ . The computational cost
of applying Pm

w′′,w′ is the length of the input vector O(bm−w′
). It should be clear that

Pm
w′′′,w′′ Pm

w′′,w′ v = Pm
w′′′,w′ v for 0 ≤ w′ ≤ w′′ ≤ w′′′ ≤ m. In step 4 of Algorithm 2 the

notation .∗ denotes the element-wise product of two vectors andΩbm−w j (z j , :)means
to take the row corresponding to z = z j from the matrix. Furthermore, Algorithm 2
includes an optional step in which the reduction indices are adjusted in case w1 > 0,
the auxiliary variable w0 = 0 is introduced to satisfy the recurrence relation.

Algorithm 2 Fast reduced CBC construction for POD weights

Input: Prime power N = bm with m ∈ N0, integer reduction indices 0 ≤ w1 ≤ · · · ≤ ws ,
and weights Γ (�), � ∈ N0 with Γ (0) = 1, and γ j , j ∈ N such that γu = Γ (|u|)∏ j∈u γ j .

Optional: Adjust m := max{0,m − w1} and for j from s down to 1 adjust wj := wj − w1.

Set q0,0 := 1bm and q0,1 := 0bm , set w0 := 0.

For j from 1 to s and as long as wj < m do:

1. Set q j := ∑ j
�=1

Γ (�)
Γ (�−1)

[
Pm
wj ,wj−1

q j−1,�−1

]
∈ R

bm−w j
(with q j−1,�−1 ∈ R

bm−w j−1
).

2. Calculate T j := Ωbm−w j q j ∈ R
ϕ(bm−w j ) by exploiting the block-circulant structure of the

matrix Ωbm−w j using FFTs.
3. Set z j := argminz∈Z×

b
m−w j

T j (z), with T j (z) the component corresponding to z.

4. Set q j,0 := 1bm−w j and q j, j+1 := 0bm−w j and for � from j down to 1 set

q j,� :=
[
Pm
wj ,wj−1

q j−1,�

]
+ Γ (�)

Γ (� − 1)
γ j Ωbm−w j (z j , :) .∗

[
Pm
wj ,wj−1

q j−1,�−1

]
∈ R

bm−w j
.

5. Optional: Calculate squared worst-case error by e2j := 1
bm
∑

k∈Z
b
m−w j

∑ j
�=1 q j,�(k).

Set all remaining z j := 0 (for j with wj ≥ m).

Return: Generating vector z̃ := (bw1 z1, . . . , bws zs) for N = bm .
(Note: the wj ’s and m might have been adjusted to make w1 = 0.)

The standard fastCBCalgorithm forPODweights has a computational complexity
of O(s N log(N ) + s2N ), see, e.g., [7, 13]. The cost of our new algorithm can be
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substantially lower as is stated in the following theorem. We stress that the presented
algorithm is the first realization of the reduced CBC construction for POD weights.
Due to its lower computational cost, our new algorithm improves upon the one stated
in [5] which only considers product weights, but the same technique can be used there
since POD weights are more general and include product weights.

Theorem 5 Given a sequence of integer reduction indices 0 ≤ w1 ≤ w2 ≤ · · · , the
reducedCBCalgorithm for aprimepower N = bm points in s dimensions as specified
in Algorithm 2 can construct a lattice rule whose worst-case error satisfies the error
bound in Theorem 4 with an arithmetic cost of

O

⎛

⎝
min{s,s∗}∑

j=1

(m − wj + j) bm−wj

⎞

⎠ ,

where s∗ is defined to be the largest integer such that ws∗ < m. The memory cost is
O(
∑min{s,s∗}

j=1 bm−wj ). In case of product weightsO(
∑min{s,s∗}

j=1 (m − wj ) bm−wj ) oper-
ations are required for the construction with memory O(bm−w1).

Proof We refer to Algorithm 2. Step 1 can be calculated inO( j bm−wj−1) operations
(and we may assumew0 = w1 since the casew1 > 0 can be reduced to the casew1 =
0). The matrix-vector multiplication in step 2 can be done by exploiting the block-
circulant structure to obtain a fast matrix-vector product by FFTs at a cost ofO((m −
wj ) bm−wj ), see, e.g., [3, 4]. We ignore the possible saving by pre-computation of
FFTs on the first columns of the blocks in the matrices Ωbm−w j as this has cost
O((m − w1) bm−w1) and therefore is already included in the cost of step 2. Finally,
the vectors q j,� for � = 1, . . . , j in step 4 can be calculated inO( j bm−wj−1). To obtain
the total complexity we remark that the applications of the “fold and sum” operator,
marked by the square brackets could be performed in iteration j − 1 such that the
cost of steps 1 and 4 in iteration j are onlyO( j bm−wj ) instead ofO( j bm−wj−1). The
cost of the additional fold and sum to prepare for iteration j in iteration j − 1, which
can be performed after step 4, is then equal to the cost of step 4 in that iteration.
Since we can assumew0 = w1 we obtain the claimed construction cost. Note that the
algorithm is written in such a way that the vectors q j,�−1 can be reused for storing
the vectors q j,� (which might be smaller). Similarly for the vectors q j . Therefore the

memory cost is O(
∑min{s,s∗}

j=1 bm−wj ). The result for product weights can be obtained
similarly, see, e.g., [13]. �

3 QMC Finite Element Error Analysis

We now combine the results of the previous subsections to analyze the overall QMC
finite element error. We consider the root mean square error (RMSE) given by
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eRMSE
N ,s,h (G(u)) :=

√
EΔ

[|E[G(u)] − QN (G(ush))|2
]
.

The error E[G(u)] − QN (G(ush)) can be written as

E[G(u)] − QN (G(ush)) = E[G(u)] − Is(G(ush)) + Is(G(ush)) − QN (G(ush))

such that due to the fact that EΔ(QN ( f )) = Is( f ) for any integrand f we obtain

EΔ

[
(E[G(u)] − QN (G(ush)))

2] = (E[G(u)] − Is(G(ush)))
2 + EΔ

[
(Is − QN )2(G(ush))

]

+ 2(E[G(u)] − Is(G(ush)))EΔ

[
(Is − QN )(G(ush))

]

= (E[G(u)] − Is(G(ush)))
2 + EΔ

[
(Is − QN )2(G(ush))

]
.

Then, noting thatE[G(u)] − Is(G(ush)) = E[G(u)] − Is(G(us)) + Is(G(us)) − Is(G(ush)),

(E[G(u)] − Is(G(ush)))
2 = (E[G(u)] − Is(G(us)))2 + (Is(G(us)) − Is(G(ush)))

2

+ 2(E[G(u)] − Is(G(us)))(Is(G(us)) − Is(G(ush)))

and since for general x, y ∈ R it holds that 2xy ≤ x2 + y2, we obtain furthermore

(E[G(u)] − Is(G(ush)))
2 ≤ 2(E[G(u)] − Is(G(us)))2 + 2(Is(G(us)) − Is(G(ush)))

2.

From the previous subsections we can then use (20) for the truncation part, (18),
which holds for general y ∈ U and thus also for y{1:s}, for the finite element error,
and Theorem 4 for the QMC integration error to obtain the following error bound
for the mean square error EΔ[|E[G(u)] − QN (G(ush))|2] =: eMSE

N ,s,h(G(u)),

eMSE
N ,s,h(G(u)) ≤ K1‖ f ‖2V ∗‖G‖2V ∗

(
1

(1 − κ) a0,min − a0,max κ sup j≥s+1 b j

)2

×
(

a0,max

(1 − κ) a0,min
κ sup

j≥s+1
b j

)4

+ K2‖ f ‖2L2‖G‖2L2 h4 (23)

+
⎛

⎝
∑

∅�=u⊆{1:s}
γ λ
u �|u|(λ) bmin{m,max j∈u wj }

⎞

⎠

1/λ (
2

N

)1/λ

‖G(ush)‖2W s,γ

for some constants K1, K2 ∈ R+ and provided that a0,max

(1−κ) a0,min
κ sup j≥s+1 b j < 1.
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3.1 Derivative Bounds of POD Form

In the following we assume that we have general bounds on the mixed partial deriva-
tives ∂νu(·, y) which are of POD form; that is,

‖∂νu(·, y)‖V ≤ C b̃
ν
Γ (|ν|) ‖ f ‖V ∗ (24)

with a map Γ : N0 → R, a sequence of reals b̃ = (̃b j ) j≥1 ∈ R
N and some constant

C ∈ R+. Such bounds can be found in the literature andwe provided a new derivation
in Theorem 1 also leading to POD weights.

For bounding the norm ‖G(ush)‖W s,γ , we can then use (24) and the definition in
(21) to proceed as outlined in [11], to obtain the estimate

‖G(ush)‖W s,γ ≤ C ‖ f ‖V ∗‖G‖V ∗

( ∑

u⊆{1:s}

Γ (|u|)2∏ j∈u b̃
2
j

γu

)1/2

. (25)

Denoting w := (wj ) j≥1 and using (25), the contribution of the quadrature error to
the mean square error eMSE

N ,h,s(G(u)) can be upper bounded by

⎛

⎝
∑

∅�=u⊆{1:s}
γ λ
u �|u|(λ) bmin{m,max j∈u wj }

⎞

⎠

1/λ (
2

N

)1/λ

‖G(ush)‖2W s,γ

≤ C ‖ f ‖V ∗‖G‖V ∗ Cγ ,w,λ

(
2

N

)1/λ

,

(26)

where we define

Cγ ,w,λ :=
⎛

⎝
∑

∅�=u⊆{1:s}
γ λ
u �|u|(λ) bmin{m,max j∈u wj }

⎞

⎠

1/λ ⎛

⎝
∑

u⊆{1:s}

Γ (|u|)2∏ j∈u b̃
2
j

γu

⎞

⎠ .

The term Cγ ,w,λ can be bounded as

Cγ ,w,λ ≤
⎛

⎝
∑

u⊆{1:s}
γ λ
u �|u|(λ) b

∑
j∈u wj−∑|u|−1

�=1 w�

⎞

⎠

1/λ ⎛

⎝
∑

u⊆{1:s}

Γ (|u|)2∏ j∈u b̃
2
j

γu

⎞

⎠ .

Due to [12, Lemma 6.2] the latter term is minimized by choosing the weights γu as

γu :=
(

Γ (|u|)2 ∏ j∈u b̃
2
j

∏|u|−1
�=1 bw�

∏
j∈u ρ(λ) bwj

)1/(1+λ)

. (27)
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In an effort to further estimate Cγ ,w,λ, we introduce the auxiliary quantity Aλ as

Aλ :=
∑

u⊆{1:s}
γ λ
u �|u|(λ) b

∑
j∈u wj−∑|u|−1

�=1 w�

=
∑

u⊆{1:s}

⎡

⎣

(
Γ (|u|)2λ
∏|u|−1

�=1 bw�

)⎛

⎝
∏

j∈u
ρ(λ) b̃2λj bw j

⎞

⎠

⎤

⎦

1
1+λ

and easily see that also

∑

u⊆{1:s}
γ −1
u

⎛

⎝Γ (|u|)2
∏

j∈u
b̃2j

⎞

⎠ = Aλ,

which implies that Cγ ,w,λ ≤ A1+1/λ
λ . We demonstrate how the term Aλ can be esti-

mated for the derivative bounds obtained in Sect. 1.2.
In view of Theorem 1, assume in the following that

Γ (|u|) = κ |u|, b̃ j = 2 b j

1 − κ
,

∞∑

j=1

(
b jb

wj
)p

< ∞ for p ∈ (0, 1). (28)

Note that we could also choose Γ (|u|) = κ(|u|)|u| above, in which case the sub-
sequent estimate of Aλ can be done analogously, but to make the argument less
technical, we consider the slightly coarser variant Γ (|u|) = κ |u| here. In this case,

Aλ =
∑

u⊆{1:s}

[
κ |u|] 2λ

1+λ

(|u|−1∏

�=1

b
−w�
2λ

) 2λ
1+λ ∏

j∈u

((
2 b j

1 − κ

)2λ

bwj ρ(λ)

) 1
1+λ

.

Note that, as λ ≤ 1, it holds that b
−w�
2λ ≤ b

−w�
2 and hence

Aλ ≤
∑

u⊆{1:s}

(

κ |u|
|u|−1∏

�=1

b
−w�
2

) 2λ
1+λ ∏

j∈u

((
2 b j

1 − κ

)2λ

bwj ρ(λ)

) 1
1+λ

.

We now proceed similarly to the proof of Theorem 6.4 in [12]. Let (α j ) j≥1 be a
sequence of positive reals, to be specified below, which satisfies Σ := ∑∞

j=1 α j <

∞. Dividing and multiplying by
∏

j∈u α
(2λ)/(1+λ)

j , and applying Hölder’s inequality
with conjugate components p = (1 + λ)/(2λ) and p∗ = (1 + λ)/(1 − λ), gives
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Aλ ≤
∑

u⊆{1:s}

(

κ |u|
|u|−1∏

�=1

b
−w�
2

) 2λ
1+λ

⎛

⎝
∏

j∈u
α

2λ
1+λ

j

⎞

⎠
∏

j∈u

((
2 b j

1 − κ

)2λ bwj ρ(λ)

α2λ
j

) 1
1+λ

≤
⎛

⎝
∑

u⊆{1:s}
κ |u|

(|u|−1∏

�=1

b
−w�
2

)
∏

j∈u
α j

⎞

⎠

2λ
1+λ

×
⎛

⎝
∑

u⊆{1:s}

∏

j∈u

((
2 b j

1 − κ

)2λ bwj ρ(λ)

α2λ
j

) 1
1−λ

⎞

⎠

1−λ
1+λ

= B
2λ
1+λ · B̃ 1−λ

1+λ ,

where we define

B :=
∑

u⊆{1:s}
κ |u|

(|u|−1∏

�=1

b
−w�
2

)
∏

j∈u
α j , B̃ :=

∑

u⊆{1:s}

∏

j∈u

((
2 b j

1 − κ

)2λbwj ρ(λ)

α2λ
j

) 1
1−λ

.

For the first factor we estimate

B ≤
∑

u: |u|<∞
κ |u|

|u|−1∏

�=1

b
−w�
2

∏

j∈u
α j =

∞∑

k=1

(

κk
k−1∏

�=1

b
−w�
2

)
∑

u: |u|<∞
|u|=k

∏

j∈u
α j

≤
∞∑

k=1

(

κk
k−1∏

�=1

b
−w�
2

)
1

k!
∑

u∈Nk

k∏

i=1

αui =
∞∑

k=1

(

κk
k−1∏

�=1

b
−w�
2

)
1

k!Σ
k .

By the ratio test, the latter expression is finite if we choose (α j ) j≥1 such that L :=
supk∈N κ b

−wk
2 (k + 1)−1 = κb

−w1
2 /2 < 1/Σ . Hencewe assume that (α j ) j≥1 is chosen

such that indeed L < 1/Σ . Note that L is small if κ is small, which means that Σ

can be allowed to be large in this case. Consider now the term B̃ for which

B̃ ≤
∑

u: |u|<∞

∏

j∈u

((
2 b j

1 − κ

)2λ

bwj ρ(λ)/α2λ
j

) 1
1−λ

≤ exp

⎛

⎝
∞∑

j=1

((
2 b j

1 − κ

)2λ

bwj ρ(λ)/α2λ
j

) 1
1−λ

⎞

⎠

≤ exp

⎛

⎝
∞∑

j=1

(
1

1 − κ

) 2λ
1−λ

(ρ(λ))
1

1−λ 4λ

(

b jb
wj

1

α j

) 2λ
1−λ

⎞

⎠

= exp

⎛

⎝(1 − κ)
−2λ
1−λ (ρ(λ))

1
1−λ 4λ

∞∑

j=1

(
b jb

wj α−1
j

) 2λ
1−λ

⎞

⎠ .
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Based on the previous two estimates, in order to assure that B, B̃ and thus Aλ are
finite, we require that

L < 1/Σ = 1/
∞∑

j=1

α j and
∞∑

j=1

(
b jb

wj α−1
j

) 2λ
1−λ

< ∞. (29)

To this end, we choose α j := (b j b
w j )

p

θ
, where θ

L >
∑∞

j=1

(
b jbwj

)p
. Then,

Aλ ≤
( ∞∑

k=1

(

κk
k−1∏

�=1

b
−w�
2

)
1

k!Σ
k

) 2λ
1+λ

× exp

⎛

⎝1 − λ

1 + λ

(
1

1 − κ

) 2λ
1−λ

(ρ(λ))
1

1−λ 4λ

∞∑

j=1

(

b jb
wj

1

α j

) 2λ
1−λ

⎞

⎠ (30)

as long as we choose λ such that

∞∑

j=1

(
b jb

wj α−1
j

)2λ/(1−λ)

< ∞. (31)

We denote the upper bound in (30) by A(λ). Similarly to what is done in [12, Proof
of Theorem 6.4], we see that Condition (31) is satisfied if λ ≥ p

2−p . Again, similarly
to [12, Proof of Theorem 6.4] we see that the latter can be achieved by choosing

λp =
{
1/(2 − 2δ) for some δ ∈ (0, 1/2) if p ∈ (0, 2/3],
p/(2 − p) if p ∈ (2/3, 1).

(32)

Hence by choosing λ equal to λp, we get an efficient bound on Cγ ,w,λp = A
1+1/λp

λp
,

as long as the wj are chosen to guarantee convergence of
∑∞

j=1

(
b jbwj

)p
.

4 Combined Error Bound

The derivation in the previous section leads to the following result, where the notation
a � b indicates that a ≤ Cb for some independent positive constant C .

Theorem 6 Given the PDE in (1) for which we characterized the regularity of the
random field by a sequence of b j with sparsity p ∈ (0, 1) and determined a sequence
of w j such that

∑∞
j=1(b j bwj )p < ∞, we can construct the generating vector for an

N-point randomized lattice rule using the reduced CBC algorithm (Algorithm 2), at
the cost of O(

∑min{s,s∗}
j=1 (m − wj + j) bm−wj ) operations, such that, assuming that
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(11), (17) and κ a0,max

(1−κ) a0,min
sup j≥s+1 b j < 1 hold, we obtain an upper bound

eMSE
N ,s,h(G(u)) �

(

sup
j≥s+1

b j

)2

+ h4 +
(
2

N

)1/λp

, (33)

where the implied constant is independent of s, h and N.

Observe that if the wj increase sufficiently fast, the construction cost of Algorithm
2 does not depend anymore on the increasing dimensionality. Further note that the
first term on the right-hand side of (33) is small if sup j≥s+1 b j is small, and, since
we assumed that b j must tend to zero by assumption (28), we can shrink the first
summand by choosing s sufficiently large. By choosing h sufficiently small, and N
sufficiently large, we can also make the other two summands in the overall error
bound small.

Note that sup j≥s+1 b j ≤ ∑
j≥s+1 b j , and that (28) yields

∑∞
j=1 b

p
j < ∞, which

implies that one can use the machinery developed in [12] to obtain a cost analysis
similar to [12, Theorem 8.1]. Note, in particular, that it is sufficient to choose N of
order O(ε−λp/2), independently of s, to meet an error threshold of ε.

5 Derivation of the Fast Reduced CBC Algorithm

Finally in this last section the derivation of the fast reduced CBC algorithm for POD
weights in Algorithm 2 is given. For prime b and m ∈ N let N = bm . Consider a
generating vector z̃ = (bw1 z1, . . . , bwd zd) with z j ∈ Z

×
bm−w j and integer 0 ≤ wj ≤ m

for each j = 1, . . . , d. Furthermore, for an integer 0 ≤ w′ ≤ m, the squared worst-
case error can be written as

e2bm ,d (̃z) = 1

bm
∑

k∈Zbm

d∑

�=1

∑

u⊆{1:d}
|u|=�

Γ (�)
∏

j∈u
γ j ω

(
k bwj z j mod bm

bm

)

= 1

bm
∑

k∈Zbm

d∑

�=1

∑

u⊆{1:d}
|u|=�

Γ (�)
∏

j∈u
γ j ω

(
k z j mod bm−wj

bm−wj

)

= 1

bm
∑

k ′∈Z
bm−w′

d∑

�=1

∑

t∈Z
bw

′

∑

u⊆{1:d}
|u|=�

Γ (�)
∏

j∈u
γ j ω

(
(k ′ + t bm−w′

) z j mod bm−wj

bm−wj

)

︸ ︷︷ ︸
=:qd,�,w′ (k ′) for k ′∈Z

bm−w′

= 1

bm
∑

k ′∈Z
bm−w′

d∑

�=1

qd,�,w′(k ′).
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We note that this holds for any integer 0 ≤ w′ ≤ m and, in particular, for w = 0 this
is the vector being used in the normal fast CBC algorithm. We now write the error
in terms of the previous error, as is standard for CBC algorithms, by splitting the
expression into subsets u ⊆ {1 : d} for which d /∈ u and d ∈ u, to obtain

e2bm ,d (̃z) = e2bm ,d−1(̃z1, . . . ,̃zd−1) + 1

bm
∑

k∈Zbm

d−1∑

�=0

Γ (� + 1)

Γ (�)

∑

u⊆{1:d−1}
|u|=�

Γ (�)×

×
∏

j∈u
γ j ω

(
k z j mod bm−wj

bm−wj

)

γd ω

(
k zd mod bm−wd

bm−wd

)

.

Since the choice of zd ∈ Z
×
bm−wd is modulo bm−wd , we can make a judicious choice

for splitting up k = k ′ + t bm−wd for which the effect of dimension d (for a choice
of zd ) is then constant for all t ∈ Zbwd . We obtain

e2bm ,d (̃z) = e2bm ,d−1 + 1

bm
∑

k′∈Z
bm−wd

d−1∑

�=0

Γ (� + 1)

Γ (�)
qd−1,�,wd (k′) γd ω

(
k′ zd mod bm−wd

bm−wd

)

. (34)

Then we observe that for all 0 ≤ wd−1 ≤ wd ≤ m, with k ′ ∈ Zbm−wd , writing t =
t ′ + t ′′ bwd−wd−1 ∈ Zbwd with t ′ ∈ Zbwd−wd−1 and t ′′ ∈ Zbwd−1 , leads to

qd−1,�,wd (k
′) =

∑

t ′∈Z
bwd−wd−1

∑

t ′′∈Zbwd−1

∑

u⊆{1:d−1}
|u|=�

Γ (�)×

×
∏

j∈u
γ j ω

(
(k ′ + (t ′ + t ′′ bwd−wd−1) bm−wd ) z j mod bm−wj

bm−wj

)

=
∑

t ′∈Z
bwd−wd−1

qd−1,�,wd−1(k
′ + t ′ bm−wd ),

where k ′′ = k ′ + t ′ bm−wd ∈ Zbm−wd−1 as required for qd−1,�,wd−1(k
′′). Note that this is

the property of the “fold and sum” operator as introduced in (22) andmentioned there.
Using matrix-vector notation, we rewrite the expression in (34) for all zd ∈ Z

×
bm−wd

as

e2bm ,d = e2bm ,d−1 + γd

bm
Ωbm−wd

(
d−1∑

�=0

Γ (� + 1)

Γ (�)

[
Pm
wd ,wd−1

qd−1,�,wd−1

]
)

,

where e2bm ,d ∈ R
ϕ(bm−wd ) is the vector with components e2bm ,d(b

w1 z1, . . . , bwd zd) for
all zd ∈ Z

×
bm−wd . After zd has been selected we can calculate (for � = 1, . . . , d)
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qd,�,wd =
[
Pm
wd ,wd−1

qd−1,�,wd−1

]
+ Γ (�)

Γ (� − 1)
γd Ωbm−wd (zd , :) .∗

[
Pm
wd ,wd−1

qd−1,�−1,wd−1

]
.

In Algorithm 2 the vectors q j,�,wj
are denoted by just q j,�.
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Sudoku Latin Square Sampling for
Markov Chain Simulation

Rami El Haddad, Joseph El Maalouf, Christian Lécot and Pierre L’Ecuyer

Abstract We are interested in Monte Carlo simulations of discrete-time Markov
chains on discrete and totally ordered state spaces. To improve simulation efficiency,
we use a technique previously introduced in the context of quasi-MonteCarlo simula-
tion of an array of N Markov chains. This method simulates the N copies of the chain
simultaneously, reorders the chains at each step by increasing order of their states,
and samples the next state by using N two-dimensional points in the unit square. The
first coordinate of each point is used to match a chain, and the second coordinate is
used to sample the next state by inversion from its cumulative distribution function
conditional on the current state. We study the case where the N points are obtained
at each step from Sudoku Latin square sampling, which means that (1) if the unit
square is uniformly divided into N identical subsquares, exactly one point lies in
each subsquare, (2) for each axis, the N projections of the points are distributed with
exactly one projection in each of the N subintervals of length 1/N that partition the
unit interval, and (3) in both cases, each individual point has the uniform distribution
in the subsquare and interval to which it belongs. We prove that the variance of the
Sudoku Latin square sampling estimator is of order O(N−3/2). The same conver-
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gence rate is obtained when property (2) is removed, which gives simple stratified
sampling. However, in our numerical experiments, we observe empirically a much
smaller variance and better efficiency with the Sudoku Latin square sampling than
with simple stratified sampling alone.

Keywords Monte Carlo simulation · Markov chains · Stratifed sampling ·
Sudoku Latin square sampling

1 Introduction

We consider a discrete-time Markov chain {Xn, n ≥ 0} over a countable state space
X , where Xn ∈ X is the state at step n, and we are interested in estimating by
simulation the expected cost at step n, E[c(Xn)], for one or several cost functions
c : X → [0,∞) (we assume non-negative cost functions for simplicity). If the state
space is finite with small cardinality and sometimes when the chain has a very special
structure, it is possible to compute the exact distribution of Xn and the exact expected
cost at step n, for any n. Otherwise, one can use standardMonte Carlo (MC): simulate
the chain until step n, repeat N times independently, and average the N realizations
of c(Xn). The main drawback of this general approach is its slow convergence: The
variance of the Monte Carlo estimator of E[c(Xn)] typically converges as O(N−1)

for any n.
A (deterministic) quasi-Monte Carlo (QMC) method for Markov chains has been

proposed in [9] for the case where the chain has a totally ordered state space. The
method simulates an array of N copies of the chain in parallel. At each step n, it
reorders the chains by increasing order of their states, and it uses two-dimensional
quasi-random points to move them ahead by one step. Convergence (in the determin-
istic sense) of the average cost to the expectation when N → ∞ was established,
and the QMC approach outperformed plain MC in numerical experiments. However,
QMC error bounds are typically too loose and inconvenient for practical error assess-
ment. A randomized quasi-Monte Carlo (RQMC) approach named Array-RQMC,
which resembles the previous QMC scheme, was proposed and analyzed in [11, 12],
in the setting of a Markov chain model with general state space. The method was
shown to provide an unbiased estimator of E[c(Xn)] for any n, and variance bounds
for this estimator were proved under certain conditions. In particular, it was proved
that for a Markov chain with a one-dimensional state space, if stratified sampling as
in [2, 8] is used at each step to advance the array of chains by one step, and under
some technical conditions, the variance converges as O(N−3/2), which beats Monte
Carlo. In numerical experiments with Markov chains having one-dimensional and
higher-dimensional states, the empirical variance was typically much smaller than
the Monte Carlo variance, and was observed to decrease often at better rates than
O(N−3/2), sometimes even faster thanO(N−2): see [12–14], for example. However,
no proof of these faster rates is available so far, and the O(N−3/2) rate has been
proved only for ordinary stratification of the unit square in identical subsquares,
for a one-dimensional state. A related convergence-rate result worth mentioning was
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Fig. 1 Example of a Sudoku Latin square with 16 points

obtained in [7], in the context of particle filters. The authors proved that if the RQMC
point set used at each step is a (t,m, s)-net with a nested uniform scramble [18] and
if the states are sorted using a Hilbert-curve when their dimension is larger than 1,
then the variance of the Array-RQMC estimator converges as o(N−1), which is faster
than Monte Carlo.

The aim of this paper is to increase our theoretical understanding of themethod by
expanding the class of sampling methods for which an O(N−3/2) convergence rate
is proved. We revisit the simple stratified sampling (SSS) setting and we consider
a Sudoku Latin square sampling (SLSS) setting, which combines two-dimensional
stratified sampling with Latin hypercube sampling [15, 20]. Our theoretical results
are consolidated by three numerical experiments in which we observe a significantly
lower variance with SLSS than with simple stratification.

SLSS turns out to be a special case of theU-samplingmethod of [21] for sampling
N points in the unit hypercube. The U-sampling first generates a random orthogonal
array-based Latin hypercube design, which is a selection of N small cubic boxes
of side size 1/N that form an orthogonal array of strength t [16, 17] and a Latin
hypercube at the same time. Then it samples one point uniformly inside each selected
small box, independently across the boxes. For the special case where t = 2, this
type of design (the selection of the boxes) gives a Sudoku Latin square [19] for each
two-dimensional projection of the points. Thus, each two-dimensional projection
satisfies the properties (1)–(3) mentioned in the abstract. An example of a Sudoku
Latin square is given in Fig. 1. Since our SLSS is in two dimensions, there is a single
two-dimensional projection and it must form a Sudoku Latin square. Sudoku Latin
squares are also studied in [22], although these authors are only considering discrete
designs and space filling constructions, and not in sampling random points uniformly
in the unit hypercube.

A different sampling method that generalizes the SLSS to more than two dimen-
sions was studied in [5]. In d dimensions, that method generates N = pd points
in a way that (1) there is always one point per subcube when we partition the d-
dimensional unit cube into N identical subcubes, (2) there is one value in each
subinterval when we project all the points over a single coordinate to obtain N val-
ues in the unit interval, and we partition the unit interval into N subintervals of
length 1/N , and (3) each point taken individually has the uniform distribution in the
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subcube to which it belongs. Variance bounds have been obtained when the inte-
gral of a function over the unit cube is estimated by the average of the function
values at the N points, under certain assumptions on the integrand. Different types
of variance results, in terms of the ANOVA decomposition of the integrand, were
proved in [21] for the same type of integration problem with U-sampling. SLSS is
the two-dimensional special case of each of these two methods.

Our paper is the first to study the use of SLSS in the context of simulating an array
of Markov chains. SLSS gives stronger constructions than simple stratified points
over the unit square. Our aim is to investigate if, and how much, this strengthening
has an impact on the variance of expected cost estimators.

The remainder is organized as follows. In Sect. 2, we define our setting for Monte
Carlo simulation of discrete-state Markov chains and explain how we proceed with
plain (standard) Monte Carlo, with SSS, and with SLSS. With SSS, the way we
map the points to chain states at each step follows [6, 9] and differs from what was
done in [12]. In Sect. 3, we analyze the variance of these schemes. We prove that the
variance of the simulation estimator of an expected state-dependent cost at any given
step n is O(N−3/2) for both SSS and SLSS. This beats the known rate of O(N−1)

for standard Monte Carlo. Results of computational experiments and comparison
between standard Monte Carlo, SSS, and SLSS are given in Sect. 4. The empirical
convergence rates of the variance for SSS and SLSS are close to those established in
Sect. 3, but the variance with SLSS is significantly smaller than with SSS. In Sect. 5,
we give the technical proofs of some results and we conclude in Sect. 6.

2 Monte Carlo Simulations of Markov Chains

Let {Xn, n ≥ 0} be a stationary discrete-time Markov chain over a countable and
ordered state space X . Without loss of generality one can assume that X = N

or Z. Let P(i, j) = P(Xn+1 = j |Xn = i) denote the transition probabilities and
P = (P(i, j) : (i, j) ∈ X 2) the transition probabilitymatrix.We denote byμn(i) =
P(Xn = i) the state probabilities at step n andμn = (μn(i) : i ∈ X ) the probability
vector for step n. We assume that the initial probability vector μ0 is given (often, it
is degenerate over a single state).

For i, j ∈ X we set
q j (i) :=

∑

h≤ j

P(i, h). (1)

We define the conditional cumulative distribution function Fi ( j) := P(Xn+1 ≤
j |Xn = i) = q j (i). If I denotes the unit interval (0, 1] we have a disjoint union
I = ⋃

j∈X Ii, j , where Ii, j := (q j−1(i), q j (i)]. So that for any i ∈ X and u ∈ I ,

there exists a unique j ∈ X such that u ∈ Ii, j : we denote it by F−1
i (u). If Xn = i ,

then F−1
i (u) is the next state.
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Let δi be the Dirac measure at i , defined by

δi ( j) =
{
1 if j = i,

0 otherwise.

For any integer n, the distribution μn is approximated by

μ̂n := 1

N

N∑

k=1

δi nk ,

where N is a fixed integer and i n1 , . . . , i
n
N are calculated iteratively.

First, a set (i0k : 1 ≤ k ≤ N ) of N states is sampled from μ0: several techniques
are proposed in [4]. In many applications, the initial state of the chain is fixed, and
then μ̂0 = μ0.

We describe the transition from step n to n + 1 for three Monte Carlo methods.
We introduce μ̃n+1 := μ̂n P as an intermediate distribution (which is not used in
effective calculations). This μ̃n+1 is an approximation of μn+1, but it is generally
not an equally-weighted sum of Dirac measures, like μ̂n , so that an additional step
is needed. We formulate this step as a quadrature: the MC methods correspond to
quadrature algorithms, possibly combined with variance reduction techniques. To
that end, let us consider an arbitrary sequence s = (s(i) : i ∈ X ) (a column vector);
we assume that s is non-negative, just to avoid worrying about convergence of series.
Then

μ̃n+1s = μ̂n Ps = 1

N

N∑

k=1

∑

j∈X
P(i nk , j)s( j).

Let 1k be the indicator function of the interval Ik := ((k − 1)/N , k/N ] and 1i, j
denote the indicator function of the interval Ii, j . If we associate to s the function Cn

s
defined by

Cn
s (u) :=

N∑

k=1

∑

j∈X
1k(u1)1i nk , j (u2)s( j), u = (u1, u2) ∈ I 2, (2)

then we have

μ̃n+1s =
∫

I 2
Cn
s (u)du.

We obtain μ̂n+1 by approximating the integral with Monte Carlo estimation. In
the following, if m is an integer, we denote [1,m] := {1, 2, . . . ,m}. The notation
U ∼ U (E ) means thatU is a random variable uniformly distributed over the set E .
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2.1 Standard Monte Carlo

The transition from step n to step n + 1 acts as follows: if the state of the chain is
i , i.e. Xn = i , then a random number U with U ∼ U (I ) is generated and the new
state of the chain is F−1

i (U ), i.e. Xn+1 = F−1
Xn

(U ). The operation is repeated N times
independently, in order to advance N copies of the chain. With our notations, this
may be written as follows. Let {Uk : 1 ≤ k ≤ N } be independent random variables
with Uk ∼ U (I ), then

i n+1
k = F−1

i nk
(Uk), 1 ≤ k ≤ N .

That is, if, for any non-negative sequence s,

X̂ n+1
s := 1

N

N∑

k=1

Cn
s

(
k − 1

N
,Uk

)
, (3)

then
μ̂n+1s = X̂ n+1

s . (4)

2.2 Simple Stratified Sampling

We suppose that N = p2, for some integer p > 0. The transition from n to n + 1
has two steps: renumbering of the states and numerical integration.

(S1) The states are relabeled so that i n1 ≤ · · · ≤ i nN . The technique was used in
the QMC context and ensures theoretical and numerical convergence of the
scheme (see [9]) .

(S2) Consider a partition of I 2 into N squares: I� = H�1 × H ′
�2
, where, for � ∈

[1, p]2: H�1 := ((�1 − 1)/p, �1/p] and H�2 := ((�2 − 1)/p, �2/p]. Let {V� :
� ∈ [1, p]2} be independent random variables, where V� = (V�,1, V�,2) ∼
U (I�).
For an arbitrary non-negative sequence s, let

Ŷ n+1
s := 1

N

∑

�∈[1,p]2
Cn
s (V�), (5)

then
μ̂n+1s = Ŷ n+1

s . (6)

If u ∈ I , let
κ(u) := 	Nu
, (7)
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where 	x
 is the least integer greater than or equal to x . Hence Eq. (6) means
that the next states are calculated as follows:

i n+1
(�1−1)p+�2

= F−1
i nκ(V�,1)

(V�,2), � ∈ [1, p]2

(the numbering of the states i n+1
k is arbitrary). The first projection V�,1 of V�

is used for selecting the state at step n and the second projection V�,2 is used
for performing the transition to step n + 1. Note that with this scheme, the
mapping between the N points and the N states is not necessarily one-to-one:
it is possible to pick the same state more than once and leave out some of the
states. This differs from the SSS scheme used in [12, 14].

2.3 Sudoku Latin Square Sampling

As before, we assume N = p2, and the transition from n to n + 1 has two steps:
renumbering of the states and numerical integration.

(S1) The states are relabeled so that i n1 ≤ · · · ≤ i nN .
(S2) We consider the same partition of I 2 as before: I� for � ∈ [1, p]2. Let {W� :

� ∈ [1, p]2} be random variables, where W� = (W�,1,W�,2), with

W�,1 = �1 − 1

p
+ σ1(�2) − 1 + ξ 1

�

p2
W�,2 = �2 − 1

p
+ σ2(�1) − 1 + ξ 2

�

p2
.

Here σ1 and σ2 are random permutations of [1, p] and ξ 1
� ∼ U (I ) and ξ 2

� ∼
U (I ). All these random variables being independent. The set of values of
the random variable W� is included in I� and has the properties:

(P1) for any � ∈ [1, p]2, there is a unique point of this set in each square
I�,

(P2) for any k ∈ [1, N ], there is a unique point of this set in each rectangle
I × Ik or Ik × I .

In addition W� ∼ U (I�). For an arbitrary non-negative sequence s, let

Ẑ n+1
s := 1

N

∑

�∈[1,p]2
Cn
s (W�). (8)

Then
μ̂n+1s = Ẑ n+1

s . (9)
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Due to property (P2), the mapping (see (7))

� := (�1, �2) ∈ [1, p]2 → κ(W�,1) ∈ [1, N ]

is one-to-one: each state of step n is considered exactly once for a transition
(this is not the case with SSS). Equation (9) means that the next states are
calculated as follows:

i n+1
(�1−1)p+�2

= F−1
i nκ(W�,1)

(W�,2), � ∈ [1, p]2

(as before, the numbering of the states i n+1
k is arbitrary). The first projection

W�,1 of W� is used for selecting the state at step n and the second projection
W�,2 is used for performing the transition to step n + 1.

3 Convergence Analysis

In this section we prove, for each method, that the estimator of the expected cost
at each step is unbiased and we establish that the variance of the estimator used is
O(N−1) for standard MC and O(N−3/2) for SSS and SLSS, where N is the number
of simulation paths. In the following, λ is the Lebesgue measure and λ2 the two-
dimensional Lebesgue measure; we put |E | for the number of elements of a set E .
We use the sequence sh , for h ∈ X :

sh(i) :=
{
1 if i ≤ h,

0 otherwise.

The total variation of a sequence s = (s(i) : i ∈ X ) is defined by

T V (s) :=
∑

i∈X
|s(i + 1) − s(i)|. (10)

We use below the total variation of qh , for h ∈ X . We recall that we have from (1):

qh(i) = P(Xn+1 ≤ h|Xn = i),

and from (10):

T V (qh) =
∑

i∈X
|P(Xn+1 ≤ h|Xn = i + 1) − P(Xn+1 ≤ h|Xn = i)|.
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In the following, we assume that

M := sup
h∈X

T V (qh) < +∞.

There are situations for which qh is monotone and situations for which M < 1 (or
both), but this is not always true. See [13, 14] for examples and further discussion.
Our M corresponds to � j in [12].

3.1 Standard Monte Carlo

Lemma 1 Let s be a non-negative sequence. The standard Monte Carlo estimator
of μ̃n+1s:

X̂n+1
s := 1

N

N∑

k=1

Cn
s

(
k − 1

N
,Uk

)

has the following properties.

1. X̂ n+1
s is unbiased.

2. If s = sh, for h ∈ X , then

Var(X̂ n+1
sh ) ≤ 1

4N
.

Proof 1. We have

E

[
Cn
s

(
k − 1

N
,Uk

)]
=

∑

j∈X
P(i nk , j)s( j),

so that E[X̂ n+1
s ] = μ̃n+1s.

2. The variable

Cn
sh

(
k − 1

N
,Uk

)
=

∑

j∈X , j≤h

1i nk , j (Uk)

is a Bernoulli random variable, with variance ≤ 1/4. Hence the result.
�

We then obtain an error bound by using the same techniques as in [12].We assume
that, for any non-negative sequence s, the standard Monte Carlo estimator μ̂0s of
μ0s is unbiased and that, for any h ∈ X ,

Var(μ̂0sh) ≤ x0
N

,

for some x0 ≥ 0 (as noticed before, in many applications, μ̂0 = μ0).
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Proposition 1 For the standard Monte Carlo method, it holds:

1. for any non-negative sequence s

E [μ̂ns] = μns,

2. for any h ∈ X ,

Var(μ̂nsh) ≤ xn
N

,

where xn+1 = M2xn + 1/4 (n ≥ 0).

Proof 1. We have

μn+1s − μ̂n+1s = μn+1s − μ̃n+1s + μ̃n+1s − μ̂n+1s = μn Ps − μ̂n Ps + μ̃n+1s − X̂n+1
s ,

so, by using Lemma 1, the result follows by induction.
2. The variables μn+1sh − μ̃n+1sh and μ̃n+1sh − μ̂n+1sh are uncorrelated and

μ̃n+1sh − μ̂n+1sh = μ̃n+1sh − X̂ n+1
sh is a centered variable, consequently

Var(μ̂n+1sh) = E
[
(μn+1sh − μ̃n+1sh)

2
] + E

[
(μ̃n+1sh − μ̂n+1sh)

2
]
. (11)

For any i ∈ X , we have Psh(i) = Fi (h), hence

μn+1sh − μ̃n+1sh = μn Psh − μ̂n Psh =
∑

i∈X
μn(i)Fi (h) −

∑

i∈X
μ̂n(i)Fi (h)

= −
∑

i∈X
μnsi (Fi+1(h) − Fi (h)) +

∑

i∈X
μ̂nsi (Fi+1(h) − Fi (h))

=
∑

i∈X
(μ̂nsi − μnsi )(Fi+1(h) − Fi (h)).

On the one hand, we write

E

[
(μn+1sh − μ̃n+1sh)

2
]

= E

⎡

⎣
(
∑

i∈X
(μ̂nsi − μnsi )(qh(i + 1) − qh(i))

)2
⎤

⎦

=
∑

(i, j)∈X 2

E
[
(μ̂nsi − μnsi )(qh(i + 1) − qh(i))(μ̂ns j − μns j )(qh( j + 1) − qh( j))

]

≤
∑

(i, j)∈X 2

√
Var(μ̂nsi )Var(μ̂ns j )|qh(i + 1) − qh(i)| × |qh( j + 1) − qh( j)|.
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On the other hand, Lemma 1 gives

E
[
(μ̃n+1sh − μ̂n+1sh)

2
] = E

[
(μ̃n+1sh − X̂ n+1

sh )2
] ≤ 1

4N
.

So, by using (11), the result follows by induction.
�

The bounds forVar(Ŷ n+1
sh ) (SSS) andVar(Ẑ n+1

sh ) (SLSS) are not so easily obtained,
and the proofs of Lemmas 2 and 3 are given in Sect. 5.

3.2 Simple Stratified Sampling

Lemma 2 Let s be a non-negative sequence. The SSS estimator of μ̃n+1s:

Ŷ n+1
s := 1

N

∑

�∈[1,p]2
Cn
s (V�)

has the following properties.

1. Ŷ n+1
s is unbiased.

2. If s = sh, for h ∈ X , then

Var(Ŷ n+1
sh ) ≤ 1

4N 3/2
(T V (qh) + 2).

A similar result (with the same N−3/2 order) was established in [12], but the SSS
method studied there differs from the one used here, so we provide a different proof
(see Sect. 5). Intermediate results from this proof (Eqs. (12) and (13)) will be re-used
afterwards for the analysis of SLSS.

The proof of the next result is similar to the proof of Proposition 1. We assume
that, for any non-negative sequence s, the SSS estimator μ̂0s of μ0s is unbiased and
that, for any h ∈ X ,

Var(μ̂0sh) ≤ y0
N 3/2

for some y0 ≥ 0.

Proposition 2 For the SSS method, it holds:

1. for any non-negative sequence s

E [μ̂ns] = μns,
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2. for any h ∈ X ,

Var(μ̂nsh) ≤ yn
N 3/2

,

where yn+1 = M2yn + (M + 2)/4 (n ≥ 0).

3.3 Sudoku Latin Square Sampling

Lemma 3 Let s be a non-negative sequence. The SLSS estimator of μ̃n+1s:

Ẑ n+1
s := 1

N

∑

�∈[1,p]2
Cn
s (W�)

has the following properties.

1. Ẑ n+1
s is unbiased.

2. If s = sh, for h ∈ X , and if qh is a piecewise monotonic sequence, with r pieces,
then

Var(Ẑ n+1
sh ) ≤ 1

N 3/2

((
13

4
+ r

)
(T V (qh) + 2) + 2(T V (qh) + 2)2

)
.

The constant involved in theO(N−3/2) bound of Var(Ẑ n+1
sh ) (SLSS) is larger than

the corresponding constant for Var(Ŷ n+1
sh ) (SSS), since r ≥ 1 in Lemma 3; this would

suggest degraded performance. But in the examples of Sect. 4 we see that it is not
necessarily the case.

The proof of the next result is similar to the proof of Proposition 1. We assume
that, for any non-negative sequence s, the SLSS estimator μ̂0s of μ0s is unbiased
and that, for any h ∈ X ,

Var(μ̂0sh) ≤ z0
N 3/2

,

for some z0 ≥ 0.

Proposition 3 For the SLSS method, it holds:

1. for any non-negative sequence s

E [μ̂ns] = μns,

2. for any h ∈ X ,

Var(μ̂nsh) ≤ zn
N 3/2

,

where zn+1 = M2zn + (13/4 + r)(M + 2) + 2(M + 2)2 n ≥ 0.
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Remark 1 The bounds in Propositions 1, 2, and 3 increase exponentially with n
when M > 1, and remains bounded if M < 1, which is not uncommon; see [14].

Remark 2 The variance of each estimator is bounded for a test sequence of the
form sh , for h ∈ X . We obtain a bound for a nonnegative cost function c by the
same reasoning as in Proposition 1 (see [12]):

μnc − μ̂nc =
∑

i∈X
(μ̂nsi − μnsi )(c(i + 1) − c(i)),

hence

E

[
(μnc − μ̂nc)

2
]

≤
∑

(i, j)∈X 2

√
Var(μ̂nsi )Var(μ̂ns j )|c(i + 1) − c(i)| × |c( j + 1) − c( j)|,

and then
Var(μ̂nc) ≤ T V (c)2 × sup

h∈X
Var(μ̂nsh).

4 Numerical Examples

In this section, we compare standardMonte Carlo to the variance reduction strategies
analyzed previously: SSS and SLSS, for three examples. For each example, each
strategy, and each N considered, we compute the unbiased estimator μ̂ns of μns for
the selected n, replicate this 100 times, and compute the empirical variance Var of the
100 realizations of μ̂ns. We then plot log10 Var as a function of log10 N . Assuming
that Var ≈ K N−α for some positive constants K and α, we estimate the variance rate
α by linear regression. We also compute the (empirical) efficiency of each simulation
estimator, defined as the inverse of the product of Var by the CPU time [10], and we
plot log10 efficiency as a function of log10 N . Note that for standard Monte Carlo,
the efficiency does not depend on N . For SSS and SLSS, it takes into account the
additional work to compute the estimators.

4.1 A Geo/Geo/1 Queue

We consider a discrete-time Geo/Geo/1 queue (see [1]): the queue is empty at the
initial time. During each unit of time, the customer in service (if there is one) com-
pletes it with probability 0.5, and one new customer arrives with probability 0.6. We
estimate the mean number of customers in the queue at time n = 12. Figure2 (top)
shows log10 Var as a function of log10 N on the left and log10 efficiency as a function
of log10 N on the right, for N = 102, 502, 1002, . . . , 1 0002. We find from the plots
that SSS and SLSS give not only smaller variances than standard MC (for the same
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1. Geo/Geo/1 queue: sample variance (left) and efficiency (right) of 100 copies of the calculation
of E[X12] as a function of N (N = 102,502,1002, . . . ,10002) (log-log scale)

2. Gambler in a casino: sample variance (left) and efficiency (right) of 100 copies of the calculation
of P(X1440 > 1500) as a function of N (N = 102,202,302, . . . ,2002) (log-log scale)

3. Diffusion: sample variance (left) and efficiency (right) of 100 copies of the calculation of
∫ 1/2
−1/2 c(x,T )dx as a function of N (N = 112,192,312, . . . ,1992) (log-log scale)

Fig. 2 Comparison of standard Monte Carlo (MC) to SSS and SLSS (Sudoku) for three examples
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Table 1 Calculation of order α of the sample variance: comparison of standardMonte Carlo (MC),
SSS, and SLSS for three examples and estimators

Calculation MC SSS SLSS

Geo/Geo/1 queue E[X12] 0.99 1.50 1.51

Gambler in a casino P(X1 440 > 1 500) 1.02 1.76 1.53

Diffusion
∫ 1/2
−1/2c(x, T )dx 0.98 1.61 1.49

N ), but also better efficiencies, and that SLSS outperforms SSS. The regression esti-
mates of α are given in the first row of Table1. They match the upper bounds of
O(N−3/2) established in Sect. 3.

4.2 A Gambler in a Casino

A gambler is going to a casino for four hours. He plans to play the same game every
ten seconds (so he will play 1 440 times). At this game, for each Euro that he bids,
he gets 0 with probability 0.9 and m ∈ {1, 2, . . . , 10} with probability 0.01 each.
His policy is the following: if he has more than 100 Euros, he plays 2 Euros, but if
he has 100 Euros or less, he plays only 1. To make sure that he can play during the
four hours, he brings 2 780 Euros with him. The model is a Markov chain on state
space E = [0, 28 700]. We estimate the probability that the gambler has more than
1 500 Euros at the end of the game. Here we use N = 102, 202, 302, . . . , 2002. The
results are reported in the middle rows of Fig. 2 and Table1. We find that SSS and
SLSS produce both smaller variances and better efficiencies than standard MC for
large enough N , and that SLSS outperforms SSS. The regression estimate of α

for SLSS corresponds to the bound established in Sect. 3, but for SSS it is better.
However, the variance itself is smaller for SLSS than for SSS, and the better rate
of SSS might not hold beyond the observed range (it is likely caused by a few poor
values of Var for the smallest values of N ).

4.3 Diffusion

The 1-D diffusion equation

∂c

∂t
(x, t) = D

∂2c

∂t2
(x, t), x ∈ R, t > 0 and c(x, 0) = c0(x), x ∈ R

(where c0 ≥ 0 and
∫
R
c0(x)dx = 1) may be discretized with a time step Δt and

a spatial step Δx and the solution is approximated using a random walk: P(i, i −
1) = P(i, i + 1) = DΔt/Δx2, P(i, i) = 1 − 2DΔt/Δx2 (we refer to [3] in aQMC
context). Here we specify D = 1 and c0 is the indicator function of the interval
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[−1/2, 1/2]; wewant to approximate
∫ 1/2
−1/2 c(x, T )dx .We choose T = 1, withΔt =

6.25 10−4 and Δx = 5.0 10−2. Here we take N = 112, 192, 312, . . . , 1992. In a
previous version of the paper, we had N = 102, 202, 302, . . . , 2002, but this gave
oscillations in SLSS outcomes, with better results when p = √

N was a multiple
of 20, because of interactions with other discretization parameters. To avoid this,
we changed our choices of p. So we use prime numbers near the previous ones for
p. The bottom part of Fig. 2 and the last row of Table1 give the results, which are
very similar to those of the previous example. Again, SLSS outperforms the other
methods.

5 The Proofs

5.1 Proof of Lemma 2

Proof 1. We have

E
[
Cn
s (V�)

] = N
N∑

k=1

∑

j∈X

(∫

I�

1k(u1)1i nk , j (u2)du

)
s( j).

Hence

E[Ŷ n+1
s ] = 1

N

N∑

k=1

∑

j∈X
P(i nk , j)s( j) = μ̃n+1s.

2. The function Cn
sh is the indicator function of the set

J n
h :=

N⋃

k=1

⎛

⎝Ik ×
⋃

j∈X , j≤h

Iink , j

⎞

⎠ =
N⋃

k=1

Ik × (0, qh(i
n
k )]. (12)

The variable Cn
sh (V�) is a Bernoulli random variable, with expectation f nh,� =

Nλ2(J n
h ∩ I�). Here f nh,� = 1 if I� ⊂ J n

h and f nh,� = 0 if I� ∩ J n
h = ∅. Conse-

quently, Var(Cn
sh (V�)) = f nh,�(1 − f nh,�) ≤ 1/4 and Var(Cn

sh (V�)) = 0 if I� ⊂ J n
h

or if I� ∩ J n
h = ∅, so that

Var(Ŷ n+1
sh ) ≤ 1

4N 2

∣∣{� ∈ [1, p]2 : I� �⊂ J n
h and I� ∩ J n

h �= ∅}∣∣.

a. If I� �⊂ J n
h , then there exists (u1, u2)which belongs to I� and not to J n

h ; since
this u1 is in some Ik , we have:
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∃k ∈ [1, N ], ∃(u1, u2) ∈ I� : u1 ∈ Ik ⊂
(

�1 − 1

p
,
�1

p

]
and u2 /∈ (0, qh(ink )],

so that

∃k ∈ {p(�1 − 1) + 1, p(�1 − 1) + 2, . . . , p�1}, ∃u2 ∈
(

�2 − 1

p
,
�2

p

]
: u2 > qh(i

n
k ),

consequently
�2 > p min

p(�1−1)<k≤p�1
qh(i

n
k ).

b. Analogously, if I� ∩ J n
h �= ∅, then there exists (u1, u2) which belongs to I�

and also to J n
h ; and we eventually obtain:

�2 < p max
p(�1−1)<k≤p�1

qh(i
n
k ) + 1.

We then have the following bounds

∣∣{� ∈ [1, p]2 : I� �⊂ J n
h and I� ∩ J n

h �= ∅}∣∣

≤ p

(
p∑

�1=1

(
max

p(�1−1)<k≤p�1
qh(i

n
k ) − min

p(�1−1)<k≤p�1
qh(i

n
k )

)
+ 2

)

≤ N 1/2

(
∑

i∈X
|qh(i + 1) − qh(i)| + 2

)
,

because the states are relabeled so that i n1 ≤ · · · ≤ i nN . Consequently,

∣∣{� ∈ [1, p]2 : I� �⊂ J n
h and I� ∩ J n

h �= ∅}∣∣ ≤ N 1/2(T V (qh) + 2), (13)

and the result follows.
�

5.2 Proof of Lemma 3

Proof 1. Since W� ∼ U (I�), the demonstration is the same as in Lemma 2.
2. In the following, we have many summations with �, �′,m,m ′ ∈ [1, p]2. In order

to lighten the notations, we omit this set. We have

Var(Ẑ n+1
sh ) = V0(Ẑ

n+1
sh ) + 1

N 2

∑

(�,�′):� �=�′
Cov

(
Cn
sh (W�),C

n
sh (W�′)

)
,



224 R. El Haddad et al.

where

V0(Ẑ
n+1
sh ) := 1

N 2

∑

�

Var
(
Cn
sh (W�)

)
.

a. The functionCn
sh is the indicator function of the set J

n
h defined by (12). Since

W� ∼ U (I�), we have, as in Lemma 2:

V0(Ẑ
n+1
sh ) ≤ 1

4N 2

∣∣{� ∈ [1, p]2; I� �⊂ J n
h and I� ∩ J n

h �= ∅}∣∣.

From the bound (13), we deduce

V0(Ẑ
n+1
sh ) ≤ 1

4N 3/2
(T V (qh) + 2).

b. WesplitVar(Ẑ n+1
sh ) = V0(Ẑ n+1

sh ) + V1(Ẑ n+1
sh ) + V2(Ẑ n+1

sh ) + V3(Ẑ n+1
sh ),with

V1(Ẑ
n+1
sh ) := 1

N 2

∑

(�,�′):�1 �=�′
1,�2=�′

2

Cov
(
Cn
sh (W�),C

n
sh (W�′)

)
,

V2(Ẑ
n+1
sh ) := 1

N 2

∑

(�,�′):�1=�′
1,�2 �=�′

2

Cov
(
Cn
sh (W�),C

n
sh (W�′)

)
,

V3(Ẑ
n+1
sh ) := 1

N 2

∑

(�,�′):�1 �=�′
1,�2 �=�′

2

Cov
(
Cn
sh (W�),C

n
sh (W�′)

)
.

We introduce the N 2 squares I�,m = H�1,m1 × H�2,m2 , where, for (�,m) ∈
[1, p]4:

H�1,m1 := ((�1 − 1)/p + (m1 − 1)/N , (�1 − 1)/p + m1/N ],
H�2,m2 := ((�2 − 1)/p + (m2 − 1)/N , (�2 − 1)/p + m2/N ].

We have

V1(Ẑ
n+1
sh ) =

∑

(�,�′):�1 �=�′
1,�2=�′

2

(
N

p − 1

∑

(m,m′):m1=m′
1,m2 �=m′

2

λ2(I�,m ∩ Jnh )λ2(I�′,m′ ∩ Jnh )

− λ2(I� ∩ Jnh )λ2(I�′ ∩ Jnh )

)
,

V2(Ẑ
n+1
sh ) =

∑

(�,�′):�1=�′
1,�2 �=�′

2

(
N

p − 1

∑

(m,m′):m1 �=m′
1,m2=m′

2

λ2(I�,m ∩ Jnh )λ2(I�′,m′ ∩ Jnh )

− λ2(I� ∩ Jnh )λ2(I�′ ∩ Jnh )

)
,

V3(Ẑ
n+1
sh ) =

∑

(�,�′):�1 �=�′
1,�2 �=�′

2

(
N

(p − 1)2
∑

(m,m′):m1 �=m′
1,m2 �=m′

2

λ2(I�,m ∩ Jnh )λ2(I�′,m′ ∩ Jnh )
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− λ2(I� ∩ Jnh )λ2(I�′ ∩ Jnh )

)
.

i. We have

V1(Ẑ
n+1
sh ) =

∑

�:I� �⊂Jnh ,I�∩Jnh �=∅

∑

�′ :�′
1 �=�1,�

′
2=�2

V1(�, �
′),

where

V1(�, �
′) := N

p − 1

∑

(m,m ′):m1=m ′
1,m2 �=m ′

2

λ2(I�,m ∩ J n
h )λ2(I�′,m ′ ∩ J n

h )

− λ2(I� ∩ J n
h )λ2(I�′ ∩ J n

h ).

We split V1(�, �
′) = V̂1(�, �

′) + V̌1(�, �
′), with

V̂1(�, �
′) := N

p − 1

∑

(m,m′):m1=m′
1,m2 �=m′

2

λ2(I�,m ∩ Jnh )λ2(I�′,m′ ∩ Jnh )

− N

p

∑

(m,m′):m1=m′
1

λ2(I�,m ∩ Jnh )λ2(I�′,m′ ∩ Jnh ),

V̌1(�, �
′) :=p

×
∑

(m,m′):m1=m′
1

λ2(I�,m ∩ Jnh )λ2(I�′,m′ ∩ Jnh ) − λ2(I� ∩ Jnh )λ2(I�′ ∩ Jnh ).

On one side

V̂1(�, �
′) = N

∑

m

λ2(I�,m ∩ Jnh )

×
⎛

⎝ 1

p(p − 1)

∑

m′ :m′
1=m1,m′

2 �=m2

λ2(I�′,m′ ∩ Jnh ) − 1

p
λ2(I�′,m ∩ Jnh )

⎞

⎠ .

Since both terms inside the parentheses are bounded by 1/(pN 2), we
have |V̂1(�, �

′)| ≤ 1/(pN 2) and so

∣∣∣∣∣∣

∑

�′ :�′
1 �=�1,�

′
2=�2

V̂1(�, �
′)

∣∣∣∣∣∣
≤ p − 1

pN 2
.

On the other side

V̌1(�, �
′) =

∑

m1∈[1,p]
λ2((H�1,m1 × H�2) ∩ J n

h )
∑

m ′
1∈[1,p]

V̌1(�, �
′,m1,m

′
1),
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where V̌1(�, �
′,m1,m ′

1) := λ2((H�′
1,m1 × H�2) ∩ J n

h ) − λ2((H�′
1,m

′
1× H�2) ∩ J n

h ). We have

V̌1(�, �
′,m1,m

′
1) = 1

N

(
λ
(
H�2 ∩ (0, qh(i

n
p(�′

1−1)+m1
)]
)

−λ
(
H�2 ∩ (0, qh(i

n
p(�′

1−1)+m ′
1
)]
))

.

As we have

|V̌1(�, �′,m1,m
′
1)| ≤ 1

N

×λ

(
H�2 ∩

[
min

p(�′
1−1)<k≤p�′

1

qh(i
n
k ), max

p(�′
1−1)<k≤p�′

1

qh(i
n
k )

])
,

we deduce

|V̌1(�, �′)| ≤ 1

Np
λ

(
H�2 ∩

[
min

p(�′
1−1)<k≤p�′

1

qh(i
n
k ), max

p(�′
1−1)<k≤p�′

1

qh(i
n
k )

])
.

Consequently

∣∣∣∣∣∣

∑

�′ :�′
1 �=�1,�

′
2=�2

V̌1(�, �
′)

∣∣∣∣∣∣
≤ 1

Np

×
∑

�′
1∈[1,p]:�′

1 �=�1

λ

(
H�2 ∩

[
min

p(�′
1−1)<k≤p�′

1

qh(i
n
k ), max

p(�′
1−1)<k≤p�′

1

qh(i
n
k )

])
.

Since qh is a piecewise monotonic sequence, and because the states are
relabeled so that i n1 ≤ · · · ≤ i nN , the intervals

(
min

p(�′
1−1)<k≤p�′

1

qh(i
n
k ), max

p(�′
1−1)<k≤p�′

1

qh(i
n
k )

)
, �′

1 ∈ [1, p]

are pairwise disjoint on each of the r pieces where qh is monotonic, and
we obtain

∣∣∣∣∣∣

∑

�′ :�′
1 �=�1,�

′
2=�2

V̌1(�, �
′)

∣∣∣∣∣∣
≤ r

Np
λ(H�2) ≤ r

N 2
.

And so, using the bound (13):

|V1(Ẑ
n+1
sh )| ≤ (r + 1)p − 1

pN 3/2
(T V (qh) + 2).
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ii. We have

V2(Ẑ
n+1
sh ) =

∑

�:I� �⊂Jnh ,I�∩Jnh �=∅

∑

�′ :�′
1=�1,�

′
2 �=�2

V2(�, �
′),

where

V2(�, �
′) := N

p − 1

×
∑

(m,m′):m1 �=m′
1,m2=m′

2

λ2(I�,m ∩ Jnh )λ2(I�′,m′ ∩ Jnh ) − λ2(I� ∩ Jnh )λ2(I�′ ∩ Jnh ).

We split V2(�, �
′) = V̂2(�, �

′) + V̌2(�, �
′), with

V̂2(�, �
′) := N

p − 1

∑

(m,m′):m1 �=m′
1,m2=m′

2

λ2(I�,m ∩ Jnh )λ2(I�′,m′ ∩ Jnh )

− N

p

∑

(m,m′):m2=m′
2

λ2(I�,m ∩ Jnh )λ2(I�′,m′ ∩ Jnh ),

V̌2(�, �
′) :=p

∑

(m,m′):m2=m′
2

λ2(I�,m ∩ Jnh )λ2(I�′,m′ ∩ Jnh ) − λ2(I� ∩ Jnh )λ2(I�′ ∩ Jnh ).

On one side

V̂2(�, �
′) =N

∑

m

λ2(I�,m ∩ Jnh )

×
⎛

⎝ 1

p(p − 1)

∑

m′ :m′
1 �=m1,m′

2=m2

λ2(I�′,m′ ∩ Jnh ) − 1

p
λ2(I�′,m ∩ Jnh )

⎞

⎠ .

Since both terms inside the parentheses are bounded by 1/(pN 2), we
have |V̂2(�, �

′)| ≤ 1/(pN 2) and so

∣∣∣∣∣∣

∑

�′ :�′
1=�1,�

′
2 �=�2

V̂2(�, �
′)

∣∣∣∣∣∣
≤ p − 1

pN 2
.

On the other side

V̌2(�, �
′) =

∑

m2∈[1,p]
λ2((H�1 × H�2,m2) ∩ J n

h )
∑

m ′
2∈[1,p]

V̌2(�, �
′,m2,m

′
2),

where V̌2(�, �
′,m2,m ′

2) := λ2((H�1 × H�′
2,m2) ∩ J n

h ) − λ2((H�1 ×
H�′

2,m
′
2
) ∩ J n

h ); we have
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V̌2(�, �
′,m2,m

′
2) = 1

N

∑

m ′
1∈[1,p]

(
λ
(
H�′

2,m2 ∩ (0, qh(i
n
p(�1−1)+m ′

1
)]
)

−λ
(
H�′

2,m
′
2
∩ (0, qh(i

n
p(�1−1)+m ′

1
)]
))

.

Note that the difference in the parentheses is equal to 0 if �′
2 �=

�′
2(�1,m

′
1) := 	nqh(i np(�1−1)+m ′

1
)
 + 1. Consequently

∣∣∣∣∣∣∣

∑

�′:�′
1=�1,�

′
2 �=�2

V̌2(�, �
′)

∣∣∣∣∣∣∣
≤ 1

N

∑

m2∈[1,p]
λ2((H�1 × H�2,m2 ) ∩ Jnh )

×
∑

m′

∣∣∣∣λ
(
H�′

2(�1,m
′
1),m2

∩ (0, qh(in
p(�1−1)+m′

1
)]
)

−λ

(
H�′

2(�1,m
′
1),m

′
2

∩ (0, qh(in
p(�1−1)+m′

1
)]
)∣∣∣∣

≤ 1

N

∑

m2∈[1,p]
λ2((H�1 × H�2,m2 ) ∩ Jnh ) ≤ 1

N
λ2(I�) = 1

N2 .

And so, using the bound (13):

|V2(Ẑ
n+1
sh )| ≤ 2p − 1

pN 3/2
(T V (qh) + 2).

iii. We have

V3(Ẑ
n+1
sh ) =

∑

�:I� �⊂Jnh ,I�∩Jnh �=∅

∑

�′ :�′
1 �=�1,�

′
2 �=�2

I
�′ �⊂Jnh ,I

�′ ∩Jnh �=∅

V3(�, �
′),

where

V3(�, �
′) := N

(p − 1)2

×
∑

(m,m′):m1 �=m′
1,m2 �=m′

2

λ2(I�,m ∩ Jnh )λ2(I�′,m′ ∩ Jnh ) − λ2(I� ∩ Jnh )λ2(I�′ ∩ Jnh ).

We split V3(�, �
′) = V a

3 (�, �′) − V b
3 (�, �′) − V c

3 (�, �′) − V d
3 (�, �′),

with

V a
3 (�, �′) :=

(
N

(p − 1)2
− 1

) ∑

(m,m′):m1 �=m′
1,m2 �=m′

2

λ2(I�,m ∩ Jnh )λ2(I�′,m′ ∩ Jnh ),

V b
3 (�, �′) :=

∑

(m,m′):m1 �=m′
1,m2=m′

2

λ2(I�,m ∩ Jnh )λ2(I�′,m′ ∩ Jnh ),

V c
3 (�, �′) :=

∑

(m,m′):m1=m′
1,m2 �=m′

2

λ2(I�,m ∩ Jnh )λ2(I�′,m′ ∩ Jnh ),
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V d
3 (�, �′) :=

∑

m

λ2(I�,m ∩ Jnh )λ2(I�′,m ∩ Jnh ).

Since

V a
3 (�, �′) ≤ 2p − 1

N 3 , V b
3 (�, �′) ≤ p − 1

N 3 , V c
3 (�, �′) ≤ p − 1

N 3 , V d
3 (�, �′) ≤ 1

N 3 ,

using the bound (13), we obtain:

|V3(Ẑ n+1
sh )| ≤ 2p − 1

N 2 (T V (qh) + 2)2.

Hence the final result.
�

6 Conclusion

In this article, we analyze the convergence of Monte Carlo methods, possibly com-
bined with variance reduction techniques, for the simulation of Markov chains on
one-dimensional discrete state spaces.We prove a bound of the variance of estimators
used in one step of the simulation. We show that the convergence order (relative to
the number of simulation paths) corresponds to the experimental order as calculated
in various numerical experiments.

Albeit the theoretical convergence rates of SSS and Sudoku Latin square sampling
are the same, for the numerical examples we see that the variance reduction of the
Sudoku Latin square sampling approach is superior to that of the SSS. The difference
is smaller for pure integration problems (see [5]). A drawback of the SSS approach
for simulation is that it is not guaranteed that each state is considered exactly once
for a transition.

The study aims to fill a gap between the theoretical results on variance reduction
techniques used in Monte Carlo simulations and the actual improvements observed
in computations. The Sudoku Latin square sampling is suited to situations where the
state space is one-dimensional, with a natural order. Our interest has been in physical
problems, where the states are related to particles. A numerical constraint is that N
must be a square number. The method should be extended in many directions, such
as continuous state spaces and multi-dimensional problems. This will be the subject
of forthcoming research.
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Abstract In lattice field theory, the interactions of elementary particles can be com-
puted via high-dimensional integrals. Markov-chainMonte Carlo (MCMC)methods
based on importance sampling are normally efficient to solve most of these inte-
grals. But these methods give large errors for oscillatory integrands, exhibiting the
so-called sign problem. We developed new quadrature rules using the symmetry of
the considered systems to avoid the sign problem in physical one-dimensionalmodels
for the resulting high-dimensional integrals. This article gives a short introduction to
integrals used in lattice QCD where the interactions of gluon and quark elementary
particles are investigated, explains the alternative integration methods we developed
and shows results of applying them to models with one physical dimension. The new
quadrature rules avoid the sign problem and can therefore be used to perform simula-
tions at until now not reachable regions in parameter space, where the MCMC errors
are too big for affordable sample sizes. However, it is still a challenge to develop
these techniques further for applications with physical higher-dimensional systems.
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1 Introduction

Monte Carlo (MC) methods are in general very efficient to solve high-dimensional
integrals. They use the law of large numbers to approximate an integral with quadra-
ture rules that use random sampling points. But MC methods are highly inefficient
for oscillatory integrand functions, e.g. the function shown in Fig. 1a. An exact inte-
gration of oscillatory functions would, of course, result in the cancellation of large
negative and positive contributions to the integral—in the example in Fig. 1a this
would give an integral of zero. However, the random choice of sampling points in
MC methods, shown as black points in Fig. 1a, does lead only to approximate can-
cellation when the number of points is relatively big and hence, it is very difficult to
obtain accurate results with affordable sample sizes. This non-perfect cancellation
of negative and positive parts in the integration method, usually resulting in large
quadrature rule errors, is called the sign problem. The sign problem is for example
the reason why important physical interactions in the early universe cannot be simu-
lated which could explain why there is more matter than anti-matter in our universe
today. To acquaint better knowledge of these fundamental phenomena, it is essential
to develop alternative quadrature rules to MC that avoid the sign problem.

In physical applications, the function to-be-integrated describes some character-
istic in a given physical model. We investigated methods that use some symmetry of
the physical model to result in the exact cancellation of positive and negative parts
in the quadrature rule. If the model behind the function in Fig. 1b has a reflection
symmetry, few MC sampling points—in black—can be chosen and together with
their reflected—white—points they form a set of sampling points that results in an
exact quadrature rule. In this specific example even one MC point with its reflection
point would give an exact result, for more complicated functions more sampling
points are needed.

This article first gives a short introduction to the high-dimensional integrals that
have to be solved in particle physics, more precisely in lattice QCD. Readers that
are mostly interested in the integration methods can easily skip this part. The main
part of this article presents the methods we developed and tested to avoid the sign
problem for high-dimensional integration in physical one-dimensional systems.

We found that symmetrically chosen quadrature rules can avoid the sign problem
and can efficiently be applied also to high-dimensional integrals. These rules can help
to perform simulations in important, not-yet reachable regions in parameter space,
at least in physical one-dimensional systems so far. To apply them to higher physical
dimensions, in particular to physical four-dimensional systems in high energy physics
as lattice QCD, they clearly need to be developed further.
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(a) MC sampling points
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(b) Symmetric sampling points

x

Fig. 1 MC integration of an oscillatory function results in large errors, known as the sign problem.
This problem is due to the non-cancellation of positive and negative contributions to the quadrature
rule (a). Choosing sampling points by using the symmetry of the underlying model results in an
exact quadrature rule (b)

2 Integration in Lattice QCD

In theoretical physics the interaction between elementary particles such as the elec-
tron, is described by quantum field theories (QFT), see e.g. [21]. The mathematical
formalism in QFT defines particles as classical fields that are functions in three space
dimensions and one time dimension, P(x, y, z, t). Operators, O[P], are functionals
of these fields and describe the interactions between them. An expectation value A
of this interaction or operator O[P], also called amplitude, is computed via the path
integral,

A =
∫
O[P]B[P] dP
∫
B[P] dP . (1)

∫
dP is the infinite-dimensional integration over all possible states of the field P in

time and space. The path integral becomes a well defined expression, if a Euclidean
metric is used and thefields are definedon afinite dimensional, discrete lattice.1 In (1),
B[P] is called the Boltzmann-weight and provides a probability which weights the
particle (field) interactions. The denominator in (1) insures the proper normalization
of A. The expectation value A is interesting because physical observables can be
derived from it and their numerical values can be compared with experimental results
or can give new results that are not yet possible to reach with experiments.

1For an alternative definition using the ζ -regularization see [16, 17].
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In lattice field theory, space-time and the involved functionals O[P] and B[P]
are discretized in Euclidean space, such that (1) can be computed numerically.
Often, the Boltzmann-weight is a highly peaked function suggesting that this
computation can be done using importance sampling techniques. In most com-
putations, this importance sampling is done by a Markov chain MC (MCMC)
algorithm using a Markov chain that leaves the distribution density B[P]∫

B[P]dP invari-
ant. To compute A numerically, four-dimensional space-time is discretized on a
four-dimensional lattice with four directions μ ∈ {1, 2, 3, 4} , lattice sites n ∈ Λ =
{(n1, n2, n3, n4)|n1, n2, n3, n4 ∈ {1, . . . , d}} and discretized fields P . This results in
an 4d-dimensional integration over the Haar measure of the compact groupSU (3).
For real applications, d can be very large, reaching orders of magnitude of several
thousands nowadays. Thus, we are left with an extremely high dimensional inte-
gration problem. Moreover, for some physically very important questions MCMC
methods cannot be applied successfully. This concerns, for example, the very early
universe or the matter anti-matter asymmetry which leads to our sheer existence.
Thus, a number of interesting questions remain completely unanswered and it is
exactly here where new high dimensional integration methods could be extremely
helpful.

Still, the MCM methods have led to very successful computations already. By
performing numerical computations on massively parallel super computers a very
impressive result of such a lattice MCMC can be obtained: namely, the mass spec-
trum of the lightest composite particles made out of quarks and gluons that agrees
completely with the experimental values, see Fig. 2. To get similar precise results for

Fig. 2 The via lattice QCD computed masses of different composite particles (dots with vertical
error bars) agree with the experimentally measured values (horizontal lines with error boxes) [11].
The masses of π , K and

∑
(dots without error bars) were input values to the computation
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other, more error-prone observables, research is going on to develop new methods
to make this high-dimensional integration faster and the results more precise.

A more detailed introduction to lattice QCD is for example given in the text-
books [10, 13, 22].

3 Quadrature Rules for One-Dimensional Lattices

In lattice QCD, the amplitude of interactions between quarks and gluons in phys-
ical four-dimensional space-time can be computed via a high-dimensional integral
using the Haar-measure over the compact group SU (3), see Sect. 2. This integral
is typically solved numerically using MCMC methods. If the integrand is an oscil-
latory function, this method results in the sign problem that gives large errors and
avoids physical insights in important processes. We developed alternative methods
that avoid the sign problem and at the same time are efficient for high-dimensional
integration over compact groups. Due to various complications with physical four-
dimensional lattice QCD, we developed and tested the methods for physical one-
dimensional models that involve low-dimensional and high-dimensional integration
over compact groups. As suggested in Sect. 1, we developed quadrature rules using
the symmetry of the models.

This section is structured from low-dimensional to high-dimensional integration:
First, it introduces symmetric quadrature rules for one-dimensional integration over
compact groups to avoid the sign problem here. Then, it presents the recursive numer-
ical integration (RNI), a method to reduce high-dimensional integrals to nested one-
dimensional integrals. Finally, it shows how to combine both methods to avoid the
sign problem for high-dimensional integration over compact groups. For all three
presented methods, the section shows results of applying them to simple physical,
one-dimensionalmodels.More detailed explanations of themethods and applications
can be found in [24].

3.1 Avoiding the Sign Problem in Physical One-Dimensional
Systems

The sign problem can already arise in a one-dimensional integration, solving

I ( f ) =
∫

G
f (U ) dU (2)

with MC methods over the Haar-measure of G ∈ {U (N ),SU (N )}. Finding an
alternative suitable quadrature rule Q( f ) ad-hoc to approximate this integral is not
straightforward. The articles [8, 9] suggest that using symmetrically distributed sam-
pling points can be beneficial for avoiding the sign problem, possibly resulting in an
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exact cancellation of positive and negative contributions to the integral, as stated in
Sect. 1. The article of Genz [15] gives efficient quadrature rules for integrations over
spheres, choosing the sampling points symmetrically on the spheres. We searched
for measure preserving homeomorphisms to apply the symmetric quadrature rules
on spheres to the integration over compact groups. This section describes the two
steps to create the symmetric quadrature rules Q( f ) for (2):

Sym 1. Rewrite the integral I ( f ) over the compact group G into an integral over
spheres. We restricted ourselves to G ∈ {U (1),U (2),U (3),SU (2),
SU (3)}.

Sym 2. Approximate each integral over one spheres by a symmetric quadrature rule
as proposed in Genz [15], and combine them to a product rule Q( f ).

Finally, this section shows results of applying Q( f ) to the one-dimensional QCD
model with a sign problem. A more detailed explanation of the method can be found
in [2, 5].

By finding measure preserving homeomorphisms between the compact groups
and products of spheres we created polynomially exact quadrature rules for compact
groups. The application of these rules to the one-dimensional QCD model gave
results on machine precision where the standard MC method shows a sign problem.
Therefore the symmetric quadrature rules avoid the sign problem and give rise to
solve integrals in beforehand non-reachable parameter regions.

3.1.1 Sym 1. Rewriting the Integral

The symmetric quadrature rules of Genz [15] are designed for the integration over
k-dimensional spheres Sk . To use them for the integration over the compact groups
U (N ) and SU (N ) with N ∈ {2, 3} in (2), the compact groups have to be associ-
ated with spheres. The facts that U (N ) is isomorphic to the semidirect product of
SU (N ) acting on U (1)

(
U (N ) ∼= SU (N ) � U (1)

)
, that U (1) is isomorphic to

S1
(
U (1) ∼= S1

)
and that SU (N ) is a principal SU (N − 1) bundle over S2N−1

result in

SU (N ) � S3 × S5 × · · · × S2N−1, (3)

U (N ) � S1 × S3 × · · · × S2N−1. (4)

Then, the integral over the Haar-measure of G in (2) can be rewritten as the integral
over products of spheres,

∫

G
dU f (U ) =

∫

S2N−1

(∫

S2N−3

(

· · ·
∫

Sn+2

( ∫

Sn

f
(
Φ(xS2N−1 , xS2N−3 , . . . , xSn+2 , xSn )

)
(5)

dxSn

)
dxSn+2 · · ·

)
dxS2N−3

)
dxS2N−1 ,
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with n = 1 for U (N ) and n = 3 for SU (N ) [1]. Here, xSk is an element on the
k-sphere and Φ : ×j S

2 j−1 → G with G ∈ {U (N ),SU (N )} is a measure pre-
serving homeomorphism. We found the homeomorphisms ΦG ≡ Φ for the compact
groups G ∈ {U (1),U (2),U (3),SU (2),SU (3)}:
• For SU (2), Φ is an isomorphism, given by

ΦS U (2) : S3 → SU (2),

x �→
(
x1 + i x2 −(x3 + i x4)∗
x3 + i x4 (x1 + i x2)∗

)

. (6)

• For SU (3), spherical coordinates of S5 are needed,

Ψ : [0, 2π)3 × [0, π

2
) → S5,

(α1, α2, α3, φ1, φ2) �→

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

cosα1 sin φ1

sin α1 sin φ1

sin α2 cosφ2 sin φ2

cosα2 cosφ2 sin φ2

sin α3 cosφ1 cosφ2

cosα3 cosφ1 cosφ2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (7)

Then, Φ is given by

ΦS U (3) : S51 × S3 → SU (3),

(x, y) �→ A(Ψ −1(x)) · B( y), (8)

with the matrices

A(Ψ −1(x)) =
⎛

⎝
eiα1 cosφ1 0 eiα1 sin φ1

− eiα2 sin φ1 sin φ2 e−i(α1+α3) cosφ2 eiα2 cosφ1 sin φ2

− eiα3 sin φ1 cosφ2 − e−i(α1+α2) sin φ2 eiα3 cosφ1 cosφ2

⎞

⎠, (9)

B( y) =
⎛

⎝
x1 + i x2 −(x3 + i x4)∗ 0
x3 + i x4 (x1 + i x2)∗ 0

0 0 1

⎞

⎠ . (10)

Ψ −1(x) is the inverse transformation of (7) from Euclidean to spherical coordi-
nates. S51 denotes S5 without its poles, φ1 = 0 or φ2 = 0, because at these points
the inverse transformation is not unique. The therefore excluded set is a null set,
thus ΦS U (3) can still be used in (6).

• For U (1), Φ is an isomorphism,

ΦU (1) : S1 → U (1),

α �→ eiα, (11)
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with α ∈ [0, 2π).
• For U (2), Φ is an isomorphism,

ΦU (2) : S3 × S1 → U (2),

(x, α) �→ ΦS U (2)(x) · diag( eiα, 1). (12)

• For U (3), Φ is given by

ΦS U (3) : S51 × S3 × S1 → U (3),

(x, y, α) �→ ΦS U (3)(x, y) · diag( eiα, 1, 1). (13)

3.1.2 Sym 2. Quadrature Rule for Spheres

With the measure preserving homeomorphism Φ in Sect. 3.1.1, the integral (2) can
be written as an integral over a product of spheres as in (6). To approximate the full
integral numerically, one can use a product quadrature rule with quadratures QSk (g)
that are specifically designed for integrations over spheres. The full integral can be
computed efficiently if the number of involved spheres is small. As pointed out in
the last subsection, in practice we are interested to build product rules for at most
S51 × S3 × S1. The quadratures over each sphere can be built in many ways. Since
we are aiming for resulting quadratures that exhibit some symmetry characteristics
to hopefully overcome the sign problem, it seems that quadrature rules given in [15]
exhibit all required properties, i.e. high accuracy due to polynomial exactness over
spheres, numerical stability of the resulting weights, and being fully symmetric. The
quadratures over each sphere take the form

QSk (g) =
Nsym∑

γ=1

wγ g(tγ ). (14)

The sampling points t ∈ Sk are chosen symmetrically on the k-sphere and are
weighted via w ∈ R. The specific definitions of t , w and Nsym for different k are
given in [15]. (Note that in this reference, the notation Uk is equivalent to the here
used Sk−1.) It is possible to randomize these quadrature rules, such that an error
estimate for each quadrature rule can be computed via independent replication [15].

The final quadrature rule Q( f ) of the full integral in (6) is a combination of
different single-sphere quadrature rules given in (14). Due to the symmetric choice of
the sampling points on spheres, the rule Q( f ) is in the following called symmetrized
quadrature rule. A more detailed description of QSk (g) and Q( f ) is given in [24],
Sect. 6.1.
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3.1.3 Application to One-Dimensional QCD

We applied these constructed quadrature rules to physical one-dimensional QCD
problems [7],which is a simplifiedmodel of strong interactions in elementary particle
physics. This model is a good test model because it can be solved analytically,
giving a well defined measure for the uncertainties computed by different numerical
integration methods. This model has one integration variable U ∈ G and three real
input parameters: a mass m, a chemical potential μ and a length scale d. A small
mass (m 	 dμ) introduces a sign problem which makes it very hard for standard
methods as MC to compute amplitudes as in (1) numerically.

We computed the chiral condensate in this model, given by

χ =
∫
G ∂m B[U ] dU
∫
G B[U ] dU , (15)

with the Boltzmann-weight

B[U ] = det
(
c1(m) + c2(d, μ)U † + c3(d, μ)U

)
, (16)

expressed via the parameters

c1(m) =
L∏

j=1

m̃ j , m̃1 = m,

m̃ j = m + 1

4m̃ j−1
∀ j ∈ {2, 3, . . . , d − 1},

m̃d = m + 1

4m̃d−1
+

d−1∑

j=1

(−1) j+12−2 j

m̃ j
∏ j−1

k=1 m̃
2
k

, (17)

c2(d, μ) = 2−d e−dμ, (18)

c3(d, μ) = (−1)d2−d edμ . (19)

For brevity, the dependencies of these parameters are in the following only written
when needed.

In all numerical calculations, we first computed both numerator and denominator
of (15) separately and then divided them. We computed the numerator by symboli-
cally differentiating B[U ] and computing the integral over the result numerically.

We compared the results for χ using the symmetrized quadrature rules that are
described in Sect. 3.1.2, with a standard integration method, ordinary MC sampling.
The latter quadrature rule is given by

Q( f ) = 1

NMC

NMC∑

γ=1

f (Vγ ), (20)
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where the V are matrices that are chosen randomly from a uniform distribution. We
chose NMC to be as large as the number of used symmetric sampling points.

Because the analytic results ofχ can be calculated straightforwardly,we computed
the error estimates of the numerical solutions—MC and symmetrized quadrature
rules—directly via the relative deviation from the analytic value,

Δχ = |χnumerical − χanalytic|
|χanalytic| (21)

and derived the standard deviation of this error by repeatedly using on the one hand
the MC quadrature rules with different random matrices V ’s and on the other hand
the randomized symmetrized quadrature rules as indicated in Sect. 3.1.2.

The results for Δχ of both MC and symmetrized quadrature rule can be roughly
split into a small m (m < 10−1), a large m (m > 100.5) and a transition region,
shown in Fig. 3 for constant μ = 1 and d = 8, extended 1024-bit machine precision
and different compact groups. For both quadrature rules we used the sampling sizes
N ≡ Nsym = NMC = 8 forSU (2), N = 96 forSU (3), N = 4 forU (1), N = 32
for U (2) and N = 384 for U (3).

First, we describe the MC results: In the small m region, Δχ for all groups are
large—equal or larger than one. It can be shown that in this region the numerator of
χ is such small that the MC evaluation cannot resolve these values for affordable
sample sizes, resulting in large errors [24]. This is the manifestation of the sign

10-4

100

104 SU(2)

10-310 precision numbers

Δχ

10-310

10-300

MC
symmetrized rule

SU(3)

10-4

100

104 U(1)Δχ

10-310

10-300

10-10 10-5 100

m

U(2)

10-10 10-5 100

m

U(3)

10-10 10-5 100

m

Fig. 3 The sign problem arises for MC results with small m constants, giving errors of the order
of one. On the contrast, the symmetrized quadrature rules avoid the sign problem in this region
completely, giving errors approximately at machine precision for all shown groups



Avoiding the Sign Problem in Lattice Field Theory 241

problem, making it almost impossible to compute reasonable values of χ with MC
in the small m region. On the other side, for large m all groups have a smaller MC
error estimate than in the small m region. Here the numerator of χ tends to be larger
and especially the denominator becomes very large, both resulting in a slightly better
error estimate for the MC results.

Opposed to MC results, the symmetrized quadrature rules give error estimates
approximately at machine precision up to very small m values, see Fig. 3. These
numerical results show that the symmetrized quadrature rules give significant results
in the sign problem region in practice, where MC simulations have error estimates
of order one.

3.2 Reducing High-Dimensional Integrals to Nested
One-dimensional Integrals

The previous section shows efficient quadrature rules for physical one-dimensional
integration to avoid the sign problem.Most physical models havemore than one inte-
gration variable. In general, it is not straightforward to find an efficient quadrature
rule, and usually restricted Monte Carlo methods are applied to high-dimensional
integrals. As a first alternative, we investigated the recursive numerical integra-
tion(RNI) method. This method reduces the d-dimensional integral

I ( f ) =
∫

Dd

f [ϕ] dϕ (22)

with dϕ = ∏d
i=1 dϕi and D = [0, 2π) into many recursive one-dimensional inte-

grals, and can be applied for several physical models of interest.
This is done by utilizing the typical structure of the integrand f [ϕ]. This section

focuses on the RNI method and how to find an efficient quadrature rule for a high-
dimensional integral. It does not discuss the sign problem which is investigated
further in Sect. 3.3. More specifically, this section describes the two steps to create
an efficient quadrature rules Q( f ) for the integral I ( f ) in (22):

RNI 1. Use the structure of the integrand of the high-dimensional integral to rewrite
it into recursive one-dimensional integrals.

RNI 2. Choose an efficient quadrature rule to compute each one-dimensional inte-
gral numerically. Recursively doing this results in the full quadrature rule
Q( f ).

Finally, this section shows results of applying the method to a physical model called
the topological oscillator. A more detailed explanation of the method and the results
can be found in [3, 4].
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3.2.1 RNI 1. Using the Structure of the Integrand

Many models in one physical dimensional have integrands with the structure

f [ϕ] =
d∏

i=1

fi (ϕi+1, ϕi ), (23)

with periodic boundary conditionsϕd+1 = ϕ1. Thesemodels have only next-neighbor
couplings.

The integral of (23) can be rewritten using recursive integration as described in
[14, 19]: Because of next-neighbor couplings, each variable ϕi appears only twice in
f [ϕ], in fi and fi−1, and therefore the integral can bewritten as d nested one-variable
integrals Ii ,

I ( f ) =
∫

D
...

∫

D

d∏

i=1

fi (ϕi , ϕi+1) dϕd · · · dϕ1 (24)

=
∫

D

(

...

( ∫

D
fd−2(ϕd−2, ϕd−1) ·

( ∫

D
fd−1(ϕd−1, ϕd) · fd(ϕd , ϕd+1) dϕd

)

︸ ︷︷ ︸
Id

dϕd−1

)

︸ ︷︷ ︸
Id−1

· · ·
)

dϕ1

︸ ︷︷ ︸
I1

.

This full integral can be computed recursively: Id integrates out ϕd first, then Id−1

integrates out ϕd−1 and so on until finally I1 = I ( f ) integrates out ϕ1.
To avoid under- and overflowof the single quadrature rule results, we actually used

quadrature rules to approximate I ∗
i = 1

ci
Ii with ci > 0 chosen adaptively. Then, the

final integral is computed via I =
(∏d

i=1 ci
)
I ∗. For brevity, the method is described

in the following without this trick.
Each integral is approximated by using an Nquad-point quadrature rule. The first

integrand in (24) (last from the right) depends on three variables ϕd−1, ϕd and ϕd+1.
The variable ϕd is integrated out, therefore the quadrature rule Qd( fd−1 · fd) ≡ Qd

of Id depends on two variables,

Qd(ϕd−1, ϕd+1) =
Nquad∑

γ=1

wγ fd−1(ϕd−1, tγ ) fd(tγ , ϕd+1), (25)

with sampling points t and weights w. The next integral Id−1 is approximated by the
quadrature rule

Qd−1(ϕd−2, ϕd+1) =
Nquad∑

γ=1

wγ fd−2(ϕd−2, tγ ) Qd(tγ , ϕd+1), (26)
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and includes the quadrature rule Qd given in (25). The quadrature rules Qd−2, …,
Q1 are created analogically to (26). Using the same sampling points wγ and weights
tγ , γ ∈ {1, . . . , Nquad} in all quadrature rules Qi results in the full quadrature rule
for (24),

Q = Q1 =
Nquad∑

γ=1

wγ Q2(tγ , tγ ) = tr

[
d∏

i=1

(
Mi · diag(w1, . . . ,wNquad)

)
]

, (27)

with Mi beeing an Nquad × Nquad matrix with entries (Mi )αβ = fi (tα, tβ).

3.2.2 RNI 2. Choosing an Efficient Quadrature Rule

We used the Gaussian-Legendre Nquad-point quadrature rule, see [23] to define the
sampling points t and weights w. For this rule, the error scales asymptotically (for

large Nquad) as σ ∼ O
(

1
(2Nquad)!

)
. (For Legendre polynomials the correct asymptotic

error scaling is (Nquad!)4
((2Nquad)!)3 [20] which is slightly improved over 1

(2Nquad)! .) The Stirling

formula (Nquad! ≈ √
2πNquad

(
Nquad

e

)Nquad

asymptotically) approximates the factorial

to give

σ ∼ O

(

exp(−2Nquad ln Nquad)
1

√
Nquad

)

(28)

asymptotically. This is a huge improvement over the MC error scaling 1/
√
NMC.

3.2.3 Application to the Topological Oscillator

We applied the RNI method to the topological oscillator [6], also called quan-
tum rotor, which is a simple, physically one-dimensional model that has non-trivial
characteristics which are also present in more complex models. It has d variables
ϕi ∈ [0, 2π), a length scale T and a coupling constant c. We investigated the topo-
logical charge susceptibility of this model,

χtop =
∫
O[ϕ]B[ϕ] dϕ
∫
B[ϕ] dϕ , (29)

with Boltzmann-weight

B[ϕ] = exp

(

−c
d∑

i=1

(1 − cos(ϕi+1 − ϕi ))

)

, (30)
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and a squared topological charge

O[ϕ] = 1

T

(
1

2π

d∑

i=1

(ϕi+1 − ϕi ) mod 2π

)2

. (31)

With RNI, we computed both numerator and denominator of χtop separately, both
differing in the factorization (23) of their integrands. Straightforwardly, the denomi-
nator integrand consists out of local exponential factors. The numerator consists out
of summands with varying factorization schemes, each of these summands is com-
puted separately with RNI and they are presented in more detail in [24], Sect. 5.2.We
estimated the error of χtop by choosing a large number of samples Ng

quad in (25), (26)
and similar ones for which we assumed that χtop(N

g
quad) has converged to the actual

value and computed the difference of χtop(Nquad) for Nquad < Ng
quad to this value,

Δχtop(Nquad) = |χtop(Nquad) − χtop(N
g
quad)|. (32)

We tested beforehand that this truncation error behaves exponentially for large Nquad

in practice, as expected from (28), [4].
We compared the results of the RNI method with results using the Cluster algo-

rithm [25], which we found is an optimal MCMC method for the application to the
topological oscillator [4]. Due to the exponential error scaling of the Gauss-Legendre
rule, the new method advances MCMC for large enough Nquad. We found that the
RNI method is also advantageous for lower Nquad-values: our simulations showed
that the RNI method needs orders of magnitude less runtime than the Cluster algo-
rithm to result in a specified error estimate on an observable, compare Fig. 4 for
c = 2.5, T = 20, d = 200. The Cluster algorithm measurements resulted in an error
estimate that decreases proportional to t−1/2 for runtime t , consistent with the typi-
cal MC error scaling [12]. We used between 102 and 106 sampling points here. The
RNI method, using between 10 and 300 sampling points with Ng

quad = 400, resulted
in orders of magnitude smaller errors. The exponential error scaling in (28) is not
visible here, the asymptotic regime of the method is not yet reached with the used
numbers of sampling points.

All in all, the RNI method results in orders of magnitude smaller errors than
the Cluster algorithm for a fixed runtime or equivalently, the RNI method needs
orders of magnitude less runtime than the Cluster algorithm to arrive at a fixed error
estimate, even for a number of sampling points where the RNI error does not yet
scale exponentially.
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Fig. 4 The runtime to arrive at a given error estimate is orders of magnitudes smaller when using
the RNI method with Gauss-Legendre points than using the Cluster MCMC algorithm

3.3 Avoiding the Sign Problem in High-Dimensional
Integrals

Section3.1 shows that the sign problem can be avoided for one-dimensional
integrals using symmetric quadrature rules. But what about the sign problem for
high-dimensional integrals? A quadrature rule for high-dimensional integrals over
compact groups,

I ( f ) =
∫

Gd

f [U ] dU, (33)

with dU = ∏d
i=1 dUi is needed that also avoids the sign problem.We combined both

already presented methods, the symmetric quadrature rules in Sect. 3.1 and the RNI
in Sect. 3.2 to find an efficient quadrature rule Q( f ) for I ( f ) in (33). An alternative
attempt to generalize the symmetrized quadrature rules to high-dimensional integrals
is discussed in [18].

3.3.1 Combining Recursive Numerical Integration and Symmetric
Quadrature Rules

RNI can be used to transform the high-dimensional integral I ( f ) in (33) into
one-dimensional integrals. These one-dimensional integrals can be approximated
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recursively, using the symmetric quadrature rules. In the following, these steps are
described in more detail:

RNI 1. Find the structure, i.e. all fi , of the integrand

f [U ] =
d∏

i=1

fi (Ui+1,Ui ), (34)

to be able towrite the full integral as nested one-dimensional integrals, similar
to (24).

RNI 2. Apply symmetric quadrature rules to each one-dimensional integration over
Ui . Here is an example how to do this for the innermost integral Id , integrating
over Ud :

Sym 1. Rewrite the integral overUd into an integral over the products of spheres as
done in (6).

Sym 2. Approximate each iterated integral Id(g) by a product rule of quadratures
over spheres parametrising the groupUd to be integrated. Note that the group
Ud is parametrised at most as the product of S1, S3 and S5.

3.3.2 Application to Topological Oscillator with Sign Problem

We applied this combined method again to the topological oscillator discussed in
Sect. 3.2.3. This time we transformed the variables ϕi to new variables Uj = eiϕ j ∈
U (1). Additionally, we added a sign problem to the model by using an additional
factor

∏d
j=1U

−θ
j in the Boltzmann-weight,

B[U ] = exp

(

−c
d∑

i=1

(1 −Ui+1U
∗
i )

)

·
d∏

j=1

U−θ
j , (35)

with a new parameter θ ∈ R. If this parameter is larger than zero, the sign problem
arises and is most severe for θ = π .

In this model we computed the plaquette,

plaquette =
∫
O[U ]B[U ] dU
∫
B[U ] dU , (36)

with

O[U ] = 1

d


(
d∑

i=1

Ui+1U
∗
i

)

. (37)
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Fig. 5 The combined method avoids the sign problem that exists when using the MC method

For the combined method, we computed both numerator and denominator of (36)
separately and divided the values.We used a truncation error, similar to the one given
in (32). We compared the method with a standard MC method as used in Sect. 3.1.3.
The MC error is computed via the standard deviation.

For θ = π we found that the combined method avoids the sign problem that
is visible with the MC computation, compare Fig. 5. It gives orders of magnitude
smaller errors that shrink the more symmetrization points are used. Therefore the
combination of RNI and symmetric quadrature rules is suitable to avoid the sign
problem for high-dimensional integration.

4 Conclusion

In this contribution we have demonstrated that through symmetric quadrature rules
exact symmetrization and recursive numerical integration techniques problems in
high energy physics can be solved which constitute a major, if not unsurmount-
able obstacle for standard Markov chain Monte Carlo methods. The examples we
have considered here involve only a time lattice and are hence 0+1-dimensional in
space-time, where as real physical problem include spatials dimensions of up to 3.
We are presently investigating whether the methods we have presented here can be
extended to higher, i.e. including also spacial, dimensions. While for the recursive
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numerical integration technique we have first results which are promising, for the
full symmetrization method we were so far not successful.

Also combining the symmetrized quadrature rules with MCmethods did not lead
to a practically feasible method in higher dimensions. However, we are following
a path to combine Quasi Monte Carlo, recursive numerical integration and a full
symmetrization to overcome this problem and hope to report about these attempts in
the future.
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On Hybrid Point Sets Stemming
from Halton-Type Hammersley Point
Sets and Polynomial Lattice Point Sets

Roswitha Hofer

Abstract In this paperwe consider finite hybrid point sets that are the digital analogs
to finite hybrid point sets introduced by Kritzer. Kritzer considered hybrid point sets
that are a combination of lattice point sets and Hammersley point sets constructed
using the ring of integers and the field of rational numbers. In this paper we consider
finite hybrid point sets whose components stem fromHalton-type Hammersley point
sets and lattice point sets which are constructed using the arithmetic of the ring of
polynomials and the field of rational functions over a finite field.We present existence
results for such finite hybrid point sets with low discrepancy.

Keywords Hybrid point sets · Polynomial lattice point sets · Halton-type
sequences · Discrepancy

1 Introduction and Preliminaries

This work is motivated by applications of the theory of uniform distribution mod-
ulo one to numerical integration that is based on the Koksma–Hlawka inequality.
This inequality states an upper bound for the integration error for a probably very
high dimensional function f : [0, 1]s → R when using a simple, equally weighted
quadrature rule with N nodes z0, z1, . . . , zN−1. More exactly,

∣
∣
∣
∣
∣

∫

[0,1]s
f (z)d z − 1

N

N−1
∑

n=0

f (zn)

∣
∣
∣
∣
∣
≤ V ( f )D∗

N (zn).

Here V ( f ) denotes the variation of f in the sense of Hardy and Krause and D∗
N (zn)

denotes the star discrepancy of the node set z0, z1, . . . , zN−1 which is defined next.
The star discrepancy D∗

N of a point setP = (zn)n=0,1,...,N−1 in [0, 1)s is given by
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D∗
N (P) = D∗

N (zn) = sup
J

∣
∣
∣
∣

A(J, N )

N
− λs(J )

∣
∣
∣
∣

where the supremum is extended over all half-open subintervals J of [0, 1)s with the
left corner in the origin, λs denotes the s-dimensional Lebesgue measure, and the
counting function A(J, N ) stands for

#{0 ≤ n < N : zn ∈ J }.

Wedefine Log(x) := max(1, log(x)) for real numbers x > 0. Furthermorewe use
the Landau symbol h(N ) = O(H(N )) to express |h(N )| ≤ CH(N ) for all N ∈ N

with some positive constant C independent of N and a function H : N → R
+. If the

implied constant C depends on some parameters, then these parameters will appear
as a subscript in the Landau symbol. A symbol O without a subscript indicates, if
nothing else is written, an absolute implied constant.

So far the best known upper bounds for the star discrepancy of concrete examples
of point sets (zn)0≤n<N are of the form

ND∗
N (zn) = O(Logs−1N )

where the implied constant might depend on some parameters but is indepen-
dent of N . Examples of such low-discrepancy point sets are Hammersley point
sets and (t,m, s)-nets. A slightly weaker discrepancy bound, i.e. ND∗

N (zn) =
O((Logs−1N )LogLog N ), holds for good lattice point sets and good polynomial
lattice point sets [1, 22].

Numerical integration based on low-discrepancy point sets, is well established
as quasi-Monte Carlo (qMC) method. The stochastic counterparts of quasi-Monte
Carlomethods, namelyMonte Carlo (MC)methods, workwith sequences of pseudo-
random numbers. For more details on qMC andMC integration and low-discrepancy
point sets we refer to [2, 30].

The potency of qMC methods and MC methods for multidimensional numerical
integration depends on the nature and the dimensionality of the integrand. As a
general rule of thumb, qMCmethods aremore effective in low dimensions andMonte
Carlo methods work reasonably well in arbitrarily high dimensions. This has led to
the idea, first suggested and applied by Spanier [36], of melding the advantages of
qMC methods and MC methods by using so-called hybrid sequences. The principle
here is to sample a relatively small number of dominating variables of the integrand by
low-discrepancy sequences and the remaining variables bypseudorandomsequences.
Application of hybrid sequences to challenging computational problems can be found
in the literature (see e.g. [3, 33, 35, 36]).

In view of the Koksma–Hlawka inequality the analysis of numerical integration
methods based on hybrid sequences requires the study of their discrepancy. There
are probabilistic results on the discrepancy of hybrid sequences, e.g., in [5, 32, 34].
Niederreiter [25] was the first one who established nontrivial deterministic discrep-
ancy bounds for hybrid sequences, where the qMC components are Halton sequences
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or Kronecker sequences. Those results where improved, extended, and unified in a
series of papers [6, 26–29, 31]. In these and in several other papers, see e.g. [4,
9, 11, 14–18, 20, 23], also hybrid sequences and hybrid point sets made by com-
bining different qMC sequences were treated. The motivation is here to combine
the advantages of different qMC point sets and sequences. The challenge is to han-
dle the different structures of the qMC point sets and sequences when studying the
discrepancy of such hybrid point sets and hybrid sequences.

In this paper we mention results of Kritzer [20] on hybrid point sets where the
components stem from Hammersley point sets on the one hand, and lattice point sets
in the sense of Hlawka [10] and Korobov [19] on the other hand.

For the definition of Hammersley point sets we need the radical inverse function
ϕb : N0 → [0, 1)where b is a natural number greater or equal to 2. To compute ϕb(n)

represent n in base b, that is n = n0 + n1b + n2b2 + · · · with ni ∈ {0, 1, . . . , b − 1},
and set

ϕb(n) =
∞
∑

i=0

ni
bi+1

.

For an s-dimensional Halton sequence (xn)n≥0 [7] we choose s pairwise coprime
bases b1, . . . , bs ≥ 2 and set

xn := (ϕb1(n), . . . , ϕbs (n)).

Now for an (s + 1)-dimensional Hammersley point set we choose in addition a
natural number N and define the point set ( yn)0≤n<N by

yn := (n/N , ϕb1(n), . . . , ϕbs (n)).

For a t-dimensional lattice point set ( yn)0≤n<N choose first a positive integer N
and t integers g1, . . . , gt . Then set

yn := ({ng1/N } , . . . , {ngt/N }) , 0 ≤ n < N .

If (g1, . . . , gt ) are of the specific form (1, g, . . . , gt−1) then we speak of a lattice
point set of Korobov type.

Kritzer ensured existence of lattice point sets and lattice point sets of Korobov
type as well, such that they can be combined with Hammersley point sets, and the
obtained hybrid point sets satisfy low-discrepancy bounds.

[20, Theorem 1] Let s, t ∈ N. Let p1, . . . , ps be distinct prime numbers and let
N be a prime number that is different from p1, . . . , ps . Let (xn)n≥0 be the Halton
sequence in bases p1, . . . , ps . Then there exist generating g1, . . . , gt ∈ {1, . . . , N −
1} such that the point set

SN := (n/N , xn, yn)0≤n<N
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in [0, 1]1+s+t with yn := ({ng1/N }, . . . , {ngt/N }), satisfies

N D∗
N (SN ) = O(Logs+t+1N )

with an implied constant independent of N .

[20, Theorem 3] Let s, t ∈ N. Let p1, . . . , ps be distinct prime numbers and let
N be a prime number that is different from p1, . . . , ps . Let (xn)n≥0 be the Halton
sequence in bases p1, . . . , ps . Then there exists a generating g ∈ {1, . . . , N − 1}
such that the point set

SN := (n/N , xn, yn)0≤n<N

in [0, 1]1+s+t with yn := ({ng/N }, . . . , {ngt/N }), satisfies

N D∗
N (SN ) = O(Logs+t+1N )

with an implied constant independent of N .

Kritzer used a slightly different lattice point set of Korobov type by setting
(g1, . . . , gt ) = (g, . . . , gt ) instead of (1, g, . . . , gt−1). Note that g1 = 1 won’t mix
well with the first component, that is n/N .

In the next section we will define the analogs to Hammersley point sets and lattice
point sets that are using the arithmetics in the ring of polynomials and the field of
rational functions over a finite field instead of the arithmetic in the ring of integers
and the field of rational numbers, before we state two theorems that represent analogs
to the two theorems of Kritzer.

2 Halton-Type Hammersley Point Sets, Polynomial Lattice
Point Sets, and Results on the Star Discrepancy of Their
Hybrid Point Sets

Let p be a prime number. Let Fp be the finite field with p elements. Let Fp[X ] be
the ring of polynomials over Fp, Fp(X) the field of rational functions over Fp, and
Fp((X−1)) the field of formal Laurent series over Fp.

Let s ∈ N, and let b1(X), . . . , bs(X) be distinct monic pairwise coprime non-
constant polynomials over Fp with degrees e1, . . . , es . We define the Halton type
sequence (xn)n≥0 in bases (b1(X), . . . , bs(X)) by

xn := (ϕb1(X)(n(X)), . . . , ϕbs (X)(n(X))),

that is based on a construction principle of sequences which are introduced in [12].
Here ϕb(X)(n(X)) is the radical inverse function in the ring Fp[X ] defined as follows.
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Expand n in base p of the form n = n0 + n1 p + n2 p2 + · · · with ni ∈ {0, 1, . . . ,
p − 1} and associate the polynomial n(X) = n0X0 + n1X + n2X2 + · · · where we
do not distinguish between the set Fp and the set {0, 1, . . . , p − 1}. Now expand
n(X) in base b(X) with deg(b(X)) = e ≥ 1 as

n(X) = ρ0(X)b0(X) + ρ1(X)b1(X) + ρ2(X)b2(X) + · · ·

with deg(ρ j (X)) < e for j ∈ N0. Finally, define a bijection

σ : {ρ(X) ∈ Fp[X ] : deg(ρ(X)) < e} → {0, 1, . . . , pe − 1}

and set

ϕb(X)(n(X)) :=
∞
∑

j=0

σ(ρ j (X))

pe( j+1)
.

To avoid technical difficulties we restrict to bijections σ that are mapping 0 to 0.
Let m ∈ N. Using the Halton type sequence in bases b1(X), . . . , bs(X) we can

define an (s + 1)-dimensional Halton-type Hammersley point set of N = pm points
by using the nth point of the form

( n

N
, xn

)

where n = 0, 1, . . . , N − 1.
For the definition of polynomial lattice point sets we identify Fp again with the

set {0, 1, . . . , p − 1}.
Let t, m ∈ N. Let p(X) ∈ Fp[X ] be irreducible, monic, and with degree m.

Furthermore, let q(X) = (q1(X), . . . , qt (X)) ∈ F
t
p[X ]. The i th component y(i)

n of
the nth point yn is computed as follows. Expand {n(X)qi (X)/p(X)} in its formal
Laurent series

{
n(X)qi (X)

p(X)

}

=
∞
∑

j=1

u j X
− j

and evaluate it by exchanging X with p and summing up to the index m. Hence

y(i)
n =

m
∑

j=1

u j p
− j .

We can also compute the i th component y(i)
n of the nth point yn by using

the base p representation of n = ∑∞
j=0 n j p j and a generating matrix Ci ∈ F

m×m
p .

Let
∑∞

j=1 a j X− j be the formal Laurent series of
{
qi (X)

p(X)

}

. Define
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Ci :=

⎛

⎜
⎜
⎜
⎝

a1 a2 · · · am
a2 a3 · · · am+1
...

... · · · ...

am am+1 · · · a2m−1

⎞

⎟
⎟
⎟
⎠

.

Compute Ci · (n0, n1, . . . , nm−1)
T = (u1, u2, . . . , um)T ∈ F

m
p and set

y(i)
n =

m
∑

j=1

u j p
− j .

Finally letting n take values in the set {0, 1, . . . , pm − 1}weobtain the polynomial
lattice point setP(q(X), p(X)) = { y0, y1, . . . , ypm−1} ⊂ [0, 1]t .

If we choose q(X) of the specific form (g(X), g2(X), . . . , gt (X)) with g(X) ∈
Fp[X ], we will speak of a polynomial lattice point set of Korobov type abbreviated
byK (t, g(X), p(X)).

In the following two theorems we ensure existence of polynomial lattice point
sets as well as polynomial lattice point sets of Korobov type, such that they can
be combined with a Halton-type Hammersley point set and result in hybrid point
sets satisfying low-discrepancy bounds. Theorem 1 represents an analog to [20,
Theorem 1] and Theorem 2 is the pendant to [20, Theorem 3].

Theorem 1 Let s, t ∈ N and p be a prime number, let b1(X), . . . , bs(X) be monic
pairwise coprime nonconstant polynomials in Fp[X ] and (xn)n≥0 be a Halton
type sequence in bases (b1(X), . . . , bs(X)). Furthermore, let p(X) be a monic,
irreducible polynomial in Fp[X ] of degree m coprime with all base polynomials
of the Halton-type sequence, and set N = pm. Then there exists a t-tuple of polyno-
mials q(X) ∈ F

t
p[X ] with degrees less than m such that the star discrepancy D∗

N of
the point set (n/pm, xn, yn)0≤n<pm ∈ [0, 1]s+t+1 satisfies

N D∗
N (n/pm, xn, yn) = Ob1(X),...,bs (X),p,t (Log

s+t+1N ).

Here yn is the nth point of the polynomial lattice point set P(q(X), p(X)).

Theorem 2 Let s, t ∈ N and p be a prime number, let b1(X), . . . , bs(X) be monic
pairwise coprime nonconstant polynomials in Fp[X ] and (xn)n≥0 be a Halton
type sequence in bases (b1(X), . . . , bs(X)). Furthermore, let p(X) be a monic,
irreducible polynomial in Fp[X ] of degree m, coprime with all base polynomials
of the Halton-type sequence, and set N = pm. Then there exists a polynomial g(X)

over Fp with degree less than m such that the star discrepancy D∗
N of the point set

(n/pm, xn, yn)0≤n<pm ∈ [0, 1]s+t+1 satisfies

N D∗
N (n/pm, xn, yn) = Ob1(X),...,bs (X),p,t (Log

s+t+1N ).
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Here yn is the nth point of the polynomial lattice point set of Korobov type
K (t, g(X), p(X)).

The rest of the paper is organized as follows. Section3 collects auxiliary results
needed for the proofs of Theorems 1 and 2, which are formulated in Sects. 4 and 5.
Finally Sect. 6 suggests two problems for future research.

3 Auxiliary Results

From the construction of the Halton-type sequence we immediately obtain the
following lemma.

Lemma 1 Let (xn)n≥0 be a Halton-type sequence in pairwise coprime bases
b1(X), . . . , bs(X) with degrees e1, . . . , es , and let

I :=
s

∏

i=1

[
ai
pei li

,
ai + 1

pei li

)

with li ≥ 0, 0 ≤ ai < pei li for i = 1, . . . , s. Then xn ∈ I if and only if

n(X) ≡ R(X)

(

mod
s

∏

i=1

blii (X)

)

where R(X) depends on the ai and deg(R(X)) <
∑s

i=1 ei li . Furthermore there is a
one-to-one correspondence between all possible choices for a1, . . . , as and R(X).

Let e(x) := exp(2π
√−1x) for x ∈ R. We define the kth Walsh function walk

in base p on [0, 1)t as follows. Let Φ0 : {0, 1, . . . , p − 1} → {z ∈ C : |z| = 1},
a �→ e(a/p). Note that for a givenb ∈ {0, 1, . . . , p − 1}wehave that∑p−1

a=0 (Φ0(a))b

equals p if b = 0 and 0 else.
The kth Walsh function walk, for k ≥ 0, to the base p is defined by

walk(x) :=
∞
∏

j=0

(Φ0(x j ))
k j

where x = ∑∞
j=0 x j p− j−1 is the unique base p expansion of x ∈ [0, 1)with infinitely

many x j �= p − 1 and k = ∑∞
j=0 k j p j is the base p expansion of k ∈ N0. For vectors

k = (k1, . . . , kt ) ∈ N
t
0 and x = (x1, . . . , xt ) ∈ [0, 1)t the Walsh function walk on

[0, 1)t denotes
walk(x) :=

t
∏

i=1

walki (xi ).
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Lemma 2 ([8, Theorem 1]) Let P = { y0, y1, . . . , yN−1} be a finite point set in
[0, 1)t with yn of the form yn = {wn/M}, wn ∈ Z

t . Suppose that M = pm, where m
is a positive integer. Then the following estimate holds:

D∗
N ( yn) ≤ 1 − (1 − 1/M)t

︸ ︷︷ ︸

≤t/M

+
∑

k∈Δ∗
m

ρwal(k)|SN (walk)|,

where

SN (walk) := 1

N

N−1
∑

n=0

walk( yn),

Δm := {k ∈ Z
t : 0 ≤ ki < pm, for i = 1, . . . , t},

Δ∗
m = Δm \ {0}, and

ρwal(k) :=
t

∏

i=1

ρwal(ki )

with

ρwal(k) =
{
1 if k = 0,

1
pg+1 sin πkg/p

if pg ≤ k < pg+1, g ≥ 0 ,

where kg is the gth digit of k in the base p expansion of k.

Lemma 3 ([2, Lemma 10.22]) Let t, m ∈ N. For any prime number p, we have

∑

k∈Δm

ρwal(k) =
(

1 + m
p2 − 1

3p

)t

.

For the statement of the next auxiliary result we define the following magnitudes:

Gp,m = { f (X) ∈ Fp[X ] : deg( f (X)) < m} and G∗
p,m = Gp,m \ {0}.

Furthermore for the rational function p(X)/q(X)with p(X) and q(X) inFp[X ] \ {0}
we define the degree evaluation ν by

ν(p(X)/q(X)) := deg(p(X)) − deg(q(X))

and we set ν(0) = −∞.

Lemma 4 Let p(X) be a monic irreducible polynomial in Fp[X ]with degree m. Let
u ∈ N0 such that u ≤ m. Then

#{a(X) ∈ G∗
p,m : ν(a(X)/p(X)) < −u} ≤ pm−u − 1.
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Proof The restriction ν(a(X)/p(X)) < −u means deg(a(X)) < deg(p(X)) − u =
m − u and the result follows. �

With a number k ∈ {0, 1, . . . , pm − 1} we associate the polynomial k(X) =
∑m−1

i=0 ki Xi where the coefficients are determined by the base p representation of
k = ∑m−1

i=0 ki pi . For a tuple k ∈ Δm we associate a polynomial with each component
and write k(X) for the t-tuple of polynomials.

Lemma 5 ([13, Lemma 1]) Let e ∈ N0, B(X), R(X) ∈ Fp[X ] with deg(R(X)) <

deg(B(X)) = e, and let B(X) be monic. Furthermore, let u ∈ N and K ∈ N0. Let
n = Kpu+e, Kpu+e + 1, . . . , (K + 1)pu+e − 1. We regard all associated polynomi-
als n(X) that satisfy n(X) ≡ R(X) (mod B(X)). Then they are of the form

n(X) = k(X)B(X) + R(X)

with k(X) out of the set
k(X) = r(X) + XuC(X)

with a fixed C(X) ∈ Fp[X ] and r(X) ranges over all polynomials of degree less than
u.

Lemma 6 ([24, Theorem 2.6]) For 1 ≤ i ≤ k let wi be a point set of Ni elements
in [0, 1]s . Let w be the superposition of w1, . . . ,wk, that is a point set of N =
N1 + · · · + Nk points. Then

ND∗
N (w) ≤

k
∑

i=1

Ni D
∗
Ni

(wi ).

4 Proof of Theorem 1

In this sectionwe investigate the distribution of the point set (zn)0≤n<pm ∈ [0, 1)1+s+t

with m, s, t ∈ N and
zn := (n/pm, xn, yn)

where ( yn)0≤n<pm is a polynomial lattice point set P(q(X), p(X)) in [0, 1)t with
p(X) monic, irreducible, and with degree m, and where (xn)n≥0 is a Halton-type
sequence in bases (b1(X), . . . , bs(X)), all monic, pairwise coprime, coprime with
p(X), and with positive degrees e1, . . . , es .

We set N = pm . Using a well-known result in discrepancy theory (see, e.g., [30,
Lemma 3.7]), we have

ND∗
N (zn) ≤ max

1≤Ñ≤N
Ñ D∗

Ñ
((xn, yn)) + 1.
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Let Ñ ∈ {1, . . . , N } be fixed.We expand Ñ in base p, Ñ = N0 + N1 p + · · · + Nr pr

with Ni ∈ {0, 1, . . . , p − 1} and r ≤ m. For u = 0, . . . , r and v = 1, . . . , Nu we
define the point set

wu,v := {(xn, yn) : n ∈ N0, (v − 1)pu + · · · + Nr p
r ≤ n < v pu + · · · + Nr p

r }.

Then |wu,v| = pu and
{0, 1, . . . , Ñ − 1}

is obtained by the disjoint union

r
⋃

u=0

Nu⋃

v=1

{n ∈ N0 : (v − 1)pu + · · · + Nr p
r ≤ n < v pu + · · · + Nr p

r }

of at most pm = p logp N sets.
We apply Lemma 6, which results in one Log N factor in Theorem 1 with a

constant depending on p. Next we concentrate on

puD∗
pu (wu,v).

We define

fi :=
⌈
u

ei

⌉

for 1 ≤ i ≤ s.
The first aim in the proof is to compute or estimate the counting function A(J, pu)

relative to the pointset wu,v, where J ⊆ [0, 1)s+t is an interval of the form

J =
s

∏

i=1

[0, vi p−ei fi ) ×
t

∏

j=1

[0, β j ) (1)

with v1, . . . , vs ∈ Z, 1 ≤ vi ≤ pei fi for 1 ≤ i ≤ s, and 0 < β j ≤ 1 for 1 ≤ j ≤ t .
The crucial step is to exploit special properties of the Halton type sequence. By

Lemma 1, for any integer n ≥ 0 we have

(ϕb1(X)(n(X)), . . . , ϕbs (X)(n(X))) ∈
s

∏

i=1

[0, vi p−ei fi ) if and only if n(X) ∈
M
⋃

k=1

Rk,

where
1 ≤ M ≤ pe1 · · · pes f1 · · · fs = Op,b1(X),...,bs (X)(Log

s N ).

Each Rk is a residue class in Fp[X ], and R1, . . . ,RM are (pairwise) disjoint. The
moduli Bk(X) of the residue classes Rk are of the form b1(X) j1 · · · bs(X) js with
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integers 1 ≤ ji ≤ fi for 1 ≤ i ≤ s and the residues Rk(X) satisfy deg(Rk(X)) <

deg(Bk(X)) for 1 ≤ k ≤ M . The sets R1, . . . ,RM depend only on b1(X), . . . , bs
(X), v1, . . . , vs, f1, . . . , fs and are thus independent of n. Furthermore, one can eas-
ily prove for the Lebesgue measure of

∏s
i=1[0, vi p−ei fi ) that

λs

(
s

∏

i=1

[0, vi p−ei fi )

)

=
s

∏

i=1

vi p
−ei fi

= lim
N→∞ #{0 ≤ n < N : (ϕb1(X)(n(X)), . . . , ϕbs (X)(n(X))) ∈

s
∏

i=1

[0, vi p−ei fi )}

= lim
N→∞ #{0 ≤ n < N : n(X) ∈

M
⋃

k=1

Rk}

=
M
∑

k=1

lim
N→∞ #{0 ≤ n < N : n(X) ≡ Rk(X) (mod Bk(X))}

=
M
∑

k=1

1

pdeg(Bk (X))
,

by applying the uniform distribution of theHalton-type sequence and the disjointness
of R1, . . . ,RM .

Now we split up the counting function A(J, pu) into M parts as follows:
A(J, pu) = ∑M

k=1 Sk , where

Sk = #

{

(v − 1)pu + · · · + Nr p
r ≤ n < v pu + · · · + Nr p

r : n(X) ≡ Rk(X) (mod Bk(X))

and yn ∈
t

∏

j=1

[0, β j )

}

for 1 ≤ k ≤ M . Then

|A(J, pu) − puλs+t (J )| ≤
M
∑

k=1

∣
∣
∣
∣
∣
∣

Sk − pu
1

pdeg(Bk (X))

t
∏

j=1

β j

∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

=:δk

.

This summation over k then results in s Log N factors in Theorem 1 with a constant
depending on p, b1(X), . . . , bs(X).

We fix k with 1 ≤ k ≤ M for the moment. Note that if pu < pdeg(Bk (X)), then
Sk = 0 or 1, and so in this case δk ≤ 1. Assume now that pu ≥ pdeg(Bk (X)). We define
the set Lk as

{

(v − 1)pu + · · · + Nr p
r ≤ n < v pu + · · · + Nr p

r : n(X) ≡ Rk(X) (mod Bk(X))
}

.
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Then by Lemma 5, we know |Lk | = pu−deg(Bk (X)) =: Lk . We define the point set

Pk = { yn : n ∈ Lk}.

Then

δk ≤ LkD
∗
Lk

(Pk).

We summarize

|A(J, pu) − puλs+t (J )| ≤ O(M) +
M
∑

k=1
deg(Bk (X))≤u

Lk D
∗
Lk

(Pk).

An arbitrary interval I ⊆ [0, 1)s+t of the form

I =
s

∏

i=1

[0, αi ) ×
t

∏

j=1

[0, β j ) (2)

with 0 < αi ≤ 1 for 1 ≤ i ≤ s and 0 < β j ≤ 1 for 1 ≤ j ≤ t can be approximated
from below and above by an interval J of the form (1), by taking the nearest fraction
to the left and to the right, respectively, of αi of the form vi p−ei fi with vi ∈ Z. We
easily get

∣
∣A(I, pu) − puλs+t (I )

∣
∣ ≤ pu

s
∑

i=1

p−ei fi

︸ ︷︷ ︸

≤s

+ |A(J, N ) − Nλs+t (J )| .

We ensure the existence of a “good” generating vector q(X) of polynomials by
an averaging argument. So the core of the proof is the study of the average

1

|(G∗
p,m)|t

∑

q(X)∈(G∗
p,m )t

Lk D
∗
Lk

(Pk), (3)

after exchanging the order of summation.
Note that Bk(X) is monic and coprime with p(X), and deg(Bk(X)) ≤ u. In the

following we set d := u − deg(Bk(X)) and we will omit the index k.
First we compute the subsetP of the polynomial lattice point setP(q(X), p(X))

using the congruence n(X) ≡ R(X) (mod B(X)) and bearing in mind Lemma 5.
Let l ∈ {0, 1, . . . , pd − 1}. Note that
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⎧

⎨

⎩

((

l(X) + XdC(X)
)

B(X) + R(X)
)

qi (X)

p(X)

⎫

⎬

⎭

=
{
l(X)B(X)qi (X)

p(X)

}

+
{

(XdC(X)B(X) + R(X))qi (X)

p(X)

}

.

Let
∑∞

j=1 r
(i)
j X− j be the formal Laurent series of

{
(XdC(X)B(X)+R(X))qi (X)

p(X)

}

and
∑∞

j=1 a
(i)
j X− j be the Laurent series of

{
B(X)qi (X)

p(X)

}

. We define

Ci,d =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a(i)
1 · · · a(i)

d
...

. . .
...

a(i)
d · · · a(i)

2d−1
...

. . .
...

a(i)
m · · · a(i)

m+d−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

then compute

Ci,d ·

⎛

⎜
⎜
⎜
⎝

l0
l1
...

ld−1

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸

=:l

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

r (i)
1
...

r (i)
d
...

r (i)
m

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

y(i)
l,1
...

y(i)
l,d
...

y(i)
l,m

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ F
m
p ,

and set

y(i)
nl =

m
∑

j=1

y(i)
l, j p

− j .

Finally, letting l take the values between 0 and pd − 1 we obtain the subset P .
We apply Lemma 2 to LD∗

L(P) and obtain

1

|(G∗
p,m)|t

∑

q(X)∈(G∗
p,m )t

LD∗
L(P) ≤

tpd

pm
+ 1

|(G∗
p,m)|t

∑

q(X)∈(G∗
p,m )t

∑

k∈Δ∗
m

ρwal(k)

∣
∣
∣
∣
∣
∣

pd−1
∑

l=0

walk( ynl )

∣
∣
∣
∣
∣
∣

.

We concentrate on
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∣
∣
∣
∣
∣
∣

pd−1
∑

l=0

walk( ynl )

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

pd−1
∑

l=0

e

⎛

⎝

t
∑

i=1

m
∑

j=1

y(i)
l, j k

(i)
j−1

⎞

⎠

∣
∣
∣
∣
∣
∣

,

where we expanded ki = ∑m−1
j=0 k(i)

j p j in base p. We abbreviate the j th row of Ci,d

to the row vector c(i)
j and remember that

y(i)
l, j = r (i)

j + c(i)
j · l (mod p).

Hence
∣
∣
∣
∣
∣
∣

pd−1
∑

l=0

walk( ynl )

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

pd−1
∑

l=0

e

⎛

⎝

⎛

⎝

t
∑

i=1

m
∑

j=1

k(i)
j−1c

(i)
j

⎞

⎠ · l
⎞

⎠

∣
∣
∣
∣
∣
∣

=
{

pd if CT
1,dk1 + · · · + CT

t,dkt = 0 ∈ F
d
p

0 else.

Here ki denotes the m-dimensional column vector (k(i)
0 , . . . , k(i)

m−1)
T built up by the

base p digits of the i th component of k.
Note that

CT
1,dk1 + · · · + CT

t,dkt = 0 ∈ F
d
p,

can be reformulated as

t
∑

i=1

⎛

⎜
⎝

a(i)
1 · · · a(i)

m
...

. . .
...

a(i)
d · · · a(i)

m+d−1

⎞

⎟
⎠ ·

⎛

⎜
⎝

k(i)
0
...

k(i)
m−1

⎞

⎟
⎠ = 0 ∈ F

d
p.

Following the argumentation of [2, Proof of Lemma 10.6] we end up with

k(X)B(X)q(X)

p(X)
= g + H

with g ∈ Fp[X ] and H ∈ Fp((X−1)) of the form
∑∞

j=d+1 h j X− j which is equivalent
to

ν

({
k(X)B(X)q(X)

p(X)

})

< −d.

We define

D ′
q,p,B = {k ∈ {0, 1, . . . , pm − 1}t : ν

({
k(X) · B(X) · q(X)

p(X)

})

< −d} \ {0}.

and its subset
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D ′
q,p = {k ∈ {0, 1, . . . , pm − 1}t : k(X) · q(X) ≡ 0 (mod p(X))} \ {0}.

Using the above considerations we obtain

1

|(G∗
p,m)|t

∑

q(X)∈(G∗
p,m )t

∑

k∈Δ∗
m

ρwal(k)

∣
∣
∣
∣
∣
∣

pd−1
∑

l=0

walk( ynl )

∣
∣
∣
∣
∣
∣

=
∑

k∈Δ∗
m

ρwal(k)
1

|(G∗
p,m)|t

∑

q(X)∈(G∗
p,m )t

k∈D ′
q,p,B

pd .

Altogether we have to compute for k ∈ Δ∗
m the number

#{q(X) ∈ (G∗
p,m)t : k ∈ D ′

q,p,B} = #{q(X) ∈ (G∗
p,m)t : k ∈ D ′

q,p}
︸ ︷︷ ︸

=:K1

+ #{q(X) ∈ (G∗
p,m)t : k ∈ D ′

q,p,B \ D ′
q,p}

︸ ︷︷ ︸

=:K2

.

The easy part is to compute K1 which equals (pm − 1)t−1 (confer, e.g., [2, Proof
of Theorem 10.21]).

We now concentrate on K2. Let τ be maximal such that kτ �= 0. We denote by
b(i) the projection of b onto the first i components of b. We define the following two
conditions on q depending on τ ,

ν({(k(τ−1)(X)B(X)q(τ−1)(X) + kτ (X)B(X)qτ (X)
)

/p(X)}) < −d (4)

and
k(τ−1)(X) · q(τ−1)(X) �≡ −kτ (X)qτ (X) (mod p(X)) (5)

Then

K2

(pm − 1)t−τ
= #

{

q(τ )(X) ∈ (G∗
p,m)τ : (4) and (5)}

≤
∑

q(τ−1)(X)∈(G∗
p,m )τ−1

#{qτ (X) ∈ Gp,m : (4) and (5)}.

Since p(X) is irreducible there is exactly one a(X) ∈ Gp,m such that

k(τ−1)(X) · q(τ−1)(X) ≡ −kτ (X)a(X) (mod p(X)).

Thus
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K2

(pm − 1)t−τ
≤

∑

q(τ−1)(X)∈(G∗
p,m )τ−1

#{qτ (X) ∈ Gp,m \ {a(X)} : (4)}.

Now as qτ (X) runs through Gp,m \ {a(X)},

k(τ−1)(X) · q(τ−1)(X) + kτ (X)qτ (X) (mod p(X))

runs through all polynomials in G∗
p,m . As B(X) and p(X) were assumed coprime

we have that

B(X)k(τ−1)(X) · q(τ−1)(X) + B(X)kτ (X)qτ (X) (mod p(X))

runs through all polynomials in G∗
p,m .

Hence

K2

(pm − 1)t−τ
≤

∑

q(τ−1)∈(G∗
p,m )τ−1

#{b(X) ∈ G∗
p,m : ν(b(X)/p(X)) < −d}.

Altogether the core estimate provides Lemma 4 which states

#{b(X) ∈ G∗
p,m : ν(b(X)/p(X)) < −d} ≤ pm−d − 1.

Thus
K2 ≤ (pm − 1)t−1(pm−d − 1).

So we can summarize
K1 + K2 ≤ (pm − 1)t−1 pm−d .

Finally, application of Lemma 3 yields

1

|G∗
p,m |t

∑

q∈(G∗
p,m )t

LD∗
L(P) ≤ t + pm

pm − 1

(

1 + m
p2 − 1

3p

)t

= Op,t (Log
t N ).

5 Proof of Theorem 2

The proof follows the same steps as the proof of Theorem 1, until we have to compute
the average

1

|(G∗
p,m)|

∑

g(X)∈(G∗
p,m)

LkD
∗
Lk

(Pk).

We show again that it is of the form Op,t (Logt N ).
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Using the same argumentation as in the proof of Theorem 1 we obtain

#{g(X) ∈ G∗
p,m : k ∈ D ′

q,p,B} = #{g(X) ∈ G∗
p,m : k ∈ D ′

q,p}
︸ ︷︷ ︸

=:K1

+ #{g(X) ∈ G∗
p,m : k ∈ D ′

q,p,B \ D ′
q,p}

︸ ︷︷ ︸

=:K2

where q(X) = (g(X), g2(X), . . . , gt (X)).
The easy part is again to estimate K1, which satisfies K1 ≤ t , since

k1(X)Y + k2(X)Y 2 + · · · + kt (X)Y t ≡ 0 (mod p(X))

has at most t solutions for Y modulo p(X).
In the following we show that K2 ≤ t (pm−d − 1). We know that for each a(X) ∈

G∗
p,m the congruence

k1(X)Y + k2(X)Y 2 + · · · + kt (X)Y t ≡ a(X) (mod p(X))

has at most t solutions for Y modulo p(X). As B(X) and p(X) are coprime

B(X)k1(X)Y + B(X)k2(X)Y 2 + · · · + B(X)kt (X)Y t ≡ b(X) (mod p(X))

has at most t solutions for each b(X) ∈ G∗
p,m . By Lemma 4 only pm−d − 1 values

of b(X) have to be considered. Hence we have K2 ≤ t (pm−d − 1).
Then the result follows exactly by the samearguments as in the proof ofTheorem1.

Remark 1 Note that, mixing a polynomial point setP(1, p(X))with the first com-
ponent (n/pm)n=0,1,...,pm−1 won’t result in good discrepancy bounds. Also bound-
ing K2 in the proof of Theorem 2 won’t work if we take generating vectors of
the form (1, g(X), . . . , gt−1(X)) instead of (g(X), g2(X), . . . , gt (X)). This is the
reason why we defined Korobov polynomial lattice point sets based on generating
vectors (g(X), g2(X), . . . , gt (X)).

6 Open Problems

As already noted in the introductory Sect. 1 the best known discrepancy bound
for lattice point sets and polynomial lattice point sets are of the form ND∗

N =
O((Logs−1N )LogLog N ). An interesting problem is to improve one LogN term
in the discrepancy bounds for the hybrid sequences proved in this paper as well
as in [20] to LogLogN . Kritzer, Leobacher, and Pillichshammer [21] introduced a
component-by-component algorithm for the construction of hybrid point sets based
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on Hammersley and lattice point sets. It is an open problem to do the same for hybrid
point sets based on Halton-type Hammersley points sets and polynomial lattice point
sets.
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Robust Estimation of the Mean with
Bounded Relative Standard Deviation

Mark Huber

Abstract Many randomized approximation algorithms operate by giving a proce-
dure for simulating a random variable X which has mean μ equal to the target
answer, and a relative standard deviation bounded above by a known constant c.
Examples of this type of algorithm includes methods for approximating the number
of satisfying assignments to 2-SAT or DNF, the volume of a convex body, and the
partition function of a Gibbs distribution. Because the answer is usually exponen-
tially large in the problem input size, it is typical to require an estimate μ̂ satisfy
P(|μ̂/μ − 1| > ε) ≤ δ, where ε and δ are user specified nonnegative parameters.
The current best algorithm uses

⌈
2c2ε−2(1 + ε)2 ln(2/δ)

⌉
samples to achieve such

an estimate. By modifying the algorithm in order to balance the tails, it is possible
to improve this result to

⌈
2(c2ε−2 + 1)/(1 − ε2) ln(2/δ)

⌉
samples. Aside from the

theoretical improvement, we also consider how to best implement this algorithm in
practice. Numerical experiments show the behavior of the estimator on distributions
where the relative standard deviation is unknown or infinite.

Keywords Monte Carlo · Robust estimation · M-estimator

1 Introduction

Suppose we are interested in approximating a target value μ. Then many random-
ized approximation algorithms work by constructing a random variable X such that
E[X ] = μ and Var(X)/μ2 ≤ c2 for a known constant c. The randomized algorithm
then simulates X1, X2, . . . , Xn as independent identically distributed (iid) draws
from X . Finally, the values are input into a function to give an estimate μ̂ for μ.

Examples of this type of algorithm include when μ is the number of solutions
to a logic formula in Disjunctive Normal Form (DNF) [9], the volume of a convex
body [4], and the partition function of a Gibbs distribution [6]. For all of these
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problems, the random variable X used is nonnegative with probability 1, and so we
shall only consider this case for the rest of the paper.

For these types of problems, generating the samples from a high dimensional
distribution is the most computationally intensive part of the algorithm. Hence we
will measure the running time of the algorithm by the number of samples from X
that must be generated.

The answerμ for these problems typically grows exponentially quickly in the size
of the problem input size. Therefore, it is usual to desire an approximation μ̂ that is
accurate when measured by relative error. We use ε > 0 as our bound on the relative
error, and δ > 0 as the bound on the probability that the relative error restriction is
violated.

Definition 1 Say μ̂ is an (ε, δ)-randomized approximation scheme ((ε, δ)-ras) if

P

(∣∣∣∣
μ̂

μ
− 1

∣∣∣∣ > ε

)
≤ δ.

This is equivalent to considering a loss function L that is L(μ̂, μ) = 1(|(μ̂/μ) −
1| > ε), and requiring that the expected loss be no more than δ.

Note that this question is slightly different than the problem most statistical esti-
mates are designed to handle. For instance, the classic work of [8] is trying to mini-
mize the asymptotic variance of the estimator, not determine how often the relative
error is at most ε.

The first approach to this problem is often the standard sample average

Sn = X1 + · · · + Xn

n
.

For this estimator, only knowing that Var(X) ≤ c2μ2, the best we can say about the
probability that the relative error is large comes from Chebyshev’s inequality [10].

P(|Sn − μ| > εμ) ≤ Var(X)

nε2μ2
≤ c2ε−2n−1.

In particular, setting n = c2ε−2δ−1 gives an (ε, δ)-ras. There are simple examples
where Chebyshev’s inequality is tight.

While this bound works for all distributions, for most distributions in practice the
probability of error will go down exponentially (and not just polynomially) in n. We
desire an estimate that matches this speed of convergence.

For example, suppose that X is a normal random variable with mean μ and vari-
ance c2μ2 (write X ∼ N(μ, c2μ2). Then the sample average is normally distributed
as well. To be precise, Sn ∼ N(μ, c2μ2/n), and it is straightforward to show that

P(|Sn − μ| > εμ) = P(|Z | ≥ ε
√
n/c),
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where Z is a standard normal random variable. This gives

n = 2c2ε−2[ln(2/δ) − o(δ)]. (1)

samples being necessary and sufficient to achieve an (ε, δ)-ras.
We did this calculation for normally distributed samples, but in fact this gives

a lower bound on the number of samples needed. For any X1, . . . , Xn with mean
μ > 0 and variance c2 > 0, and an estimate θ̂ = θ̂ (X1, . . . , Xn),

P(|θ̂ − μ| > εμ) ≥ (1/2)P(|Z | ≥ ε
√
n/c).

See, for instance, Proposition 6.1 of [1]. Hence the minimum number of samples
required for all instances is

n ≥ 2c2ε−2[ln(1/δ) − o(δ)].

The method presented in [5] comes close to this lower bound, requiring

n = �2c2ε−2(1 + ε)2 ln(2/δ)�

samples. So it is larger than optimal by a factor of (1 + ε)2.
Our main result is to modify the estimator slightly. This has two beneficial effects.

1. The nuisance factor is reduced from first order in ε to second order. To be precise,
the new nuisance factor is (1 + ε2/c2)/(1 − ε2).

2. It is possible to solve exactly for the value of the M-estimator (using square and
cube roots) rather than through numerical approximation if so desired.

Theorem 1 Suppose that P(X ≥ 0) = 1, E[X ] = μ, and the standard deviation of
X is at most cμ, where c > 0. Then there exists an (ε, δ)-ras μ̂1 where at most

⌈
2(c2ε−2 + 1)(1 − ε2)−1 ln(2/δ)

⌉

draws from X are used.

Ignoring the ceiling function, the new method uses a number of samples bounded
by the old method times a factor of

1 + ε2/c2

(1 + ε)2(1 − ε2)
.

For instance, when ε = 0.1 and c = 2, this factor is 0.8556 . . ., and so we obtain an
improvement of over 14% in the running time. At first, this might seem slight, but
remember that the best improvement we can hope to make based on normal random
variables is 1/(1 + ε)2 = 0.8264, or a bit less than 18%. Therefore, this does not
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quite obtain the maximum improvement of 1/(1 + 2ε + ε2), but does obtain a factor
of (1 + O(ε2))/(1 + 2ε + ε2).

The remainder of this paper is organized as follows. In Sect. 2, we describe what
M-estimators are, and show how to down weight samples that are far away from the
mean. Section3 shows how to find the estimator both approximately and exactly. In
Sect. 4 we consider using these estimators on some small examples and see how they
behave numerically.

2 Ψ -Estimators

The median is a robust centrality estimate, but it is easier to build a random variable
whose mean is the target value. Huber first showed in [8] how to build an estimate
that has the robust nature of the median estimate while still converging to the mean.

Consider a set of real numbers x1, . . . , xn . The sample average of the {xi } is the
point m where the sum of the distances to points to the right of m equals the sum of
the distances to points to the left of m.

This idea canbegeneralized as follows. First, beginwith a functionψ : R × R
n →

R. Second, using ψ , form the function

Ψ (m) =
n∑

i=1

ψ(xi ,m).

For convenience, we suppress the dependence of Ψ on (x1, . . . , xn) in the notation.
Consider the set of zeros of Ψ . These zeros form the set of Ψ -type M-estimators

for the center of the points (x1, . . . , xn).
For example, suppose our ψ is f : R2 → R defined as

f (x,m) =
{

(x/m) − 1 m 	= 0
0 x = m = 0.

Then consider
m∑

i=1

f (xi ,m) = 0.

For x and m with the same units, the right hand side is unitless. If the xi are
nonnegative {xi } and at least one xi is positive,

n∑

i=1

f (xi ,m) = 0 ⇔ m =
∑n

i=1 xi
n

.

That is, the unique M-estimator using f as our ψ function is the sample average.
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Now consider

g(x,m) = 1 ( f (x,m) > 0) − 1 ( f (x,m) < 0) .

Then we wish to find m such that

n∑

i=1

g(xi ,m) = 0.

Summing g(xi ,m) adds 1 when xi greater than m, and subtracts 1 when xi is m.
Then the sum of the g(xi ,m) is zero exactly when there are an equal number of xi
that are above and below m. When the number of distinct xi values is odd, then m
has a unique solution equal to the sample median.

The sample median has the advantage of being robust to large changes in the xi
values, but this will converge to themedian of the distribution (undermild conditions)
rather than the mean. The sample average actually converges to the mean when
applied to iid draws from X , and this is the value we care about finding. However,
the sample average can be badly thrown off by a single large outlier. Our goal is to
create a Ψ function that combines the good qualities of each while avoiding the bad
qualities.

Both f and g can be expressed using weighted differences. Let d f : R → R and
dg : R → R be defined as

d f (u) = u

dg(u) = 1(u > 0) − 1(u < 0).

Let u(xi ,m) = xi/m − 1 form 	= 0, and 0 for xi = m = 0. Then f (xi ,m) = d f (u)

and g(xi ,m) = dg(u).
Catoni [1] improved upon thisΨ -estimator by using a function that approximated

d f for |u| ≤ 1, and approximated du for |u| > 1, and could be analyzed using the
Chernoff bound approach [3]. Catoni andGuillini then created an easier to use version
of the Ψ -estimator in [2].

The following is amodification of the Catoni andGuilliniΨ -estimator. Unlike [2],
theweighted difference here does not have square roots in the constants, whichmakes
them slightly easier to work with from a computational standpoint.

dh(u) =
(
5

6

)
1(u > 1) +

(
u − u3

6

)
1(u ∈ [−1, 1]) −

(
5

6

)
1(u < −1).

Then define
h(xi ,m) = dh(u(xi ,m)).

The function dh behaves like themeanweight for values near 0, but like themedian
weights for values far away from 0. See Fig. 1. In order to link this function to the
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1

0 5−5

dg(u)

1

−1

0 5−5

df (u)

1

−1

0 5−5

dh(u)

Fig. 1 The functions d f , dg , and dh

0 5−5

ln(1 + u + u2/2)

− ln(1− u + u2/2)

dh(u)

Fig. 2 Lower and upper bounds for dh

first and second moments of the random variable, the following links dh to weighted
differences introduced in [1]. See Fig. 2.

Lemma 1 Let

dL(u) = − ln(1 − u + u2/2)

dU (u) = ln(1 + u + u2/2).

Then for all u ∈ R,
dL(u) ≤ dh(u) ≤ dU (u)
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Proof Noted ′
U (u) = (1 + u)/(1 + u + u2/2). This derivative is positive over [1,∞)

so dU is increasing in this region. Since dU (1) = ln(2.5) > 5/6 = dh(1), dU (u) ≥
dh(u) over [1,∞).

Similarly, d ′
U (u) < 0 for u ∈ (−∞,−1], and so it is decreasing in this region, and

dU (−1) = ln(1/2) ≥ −5/6 = dh(u) so dU (u) ≥ dh(u) in (−∞, 1]. Finally, inside
[−1, 1], dh(u) = u − u3/6. So a minimum of dU (u) − dh(u) occurs either at −1, 1,
or a critical pointwhere d ′

U (u) − (1 − u2/2) = 0. The unique critical point in [−1, 1]
is at u = 0, and dU (0) = dh(0). This means dU (u) − dh(u) ≥ 0 for all u ∈ [−1, 1].

The lower bound follows from dL(u) = −dU (−u) ≤ −dh(−u) = dh(u). �

It helps to introduce a scale factor λ that allows us to extend the effective range
where d(u) ≈ u. Let

hλ(xi ,m) = λ−1dh(λ(xi/m − 1)).

Then λ > 0 is a parameter that can be chosen by the user ahead of running the
algorithm based upon ε and c.

The following was shown as Lemma 13 of [5].

Lemma 2 For given ε, δ > 0, let ε′ = ε/(1 + ε) and λ = ε′/c2. Set

n = ⌈
2c2ε−2 ln(2/δ)(1 + ε)2

⌉
.

For X1, . . . , Xn iid X, form the function

Ψλ(m) = 1

n

n∑

i=1

λ−1dh(λu(Xi ,m)).

Let μ̂ be any value of m such that |Ψλ(m)| ≤ (ε′)2/2. Then μ̂ is an (ε, δ)-ras for μ.

To improve upon this result and obtain Theorem 1, we must be more careful about
our choice of λ.

To meet the requirement of an (ε, δ)-ras, we must show that Ψλ(m) has all its
zeros in the interval ((1 − ε)μ, (1 + ε)μ) with probability at least 1 − δ. Given that
Ψλ is continuous and decreasing, it suffices to show that Ψλ((1 − ε)μ) > 0 and
Ψλ((1 + ε)μ) < 0.

Lemma 3 Let X1, . . . , Xn be iid X. Then for λ > 0,

P(Ψλ((1 + ε)μ) ≥ 0) ≤
[
1 + E[uε] + 1

2
E[u2ε]

]n

,

P(Ψλ((1 − ε)μ) ≤ 0) ≤
[
1 − E[u−ε] + 1

2
E[u2−ε]

]n

.
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where

uε = X

(1 + ε)μ
− 1.

Proof Note that

P(Ψλ((1 + ε)μ) ≥ 0) = P(exp(λΨλ((1 + ε)μ) ≥ 1)

≤ E[exp(λΨλ((1 + ε)μ))]

by Markov’s inequality. Note

exp(λΨλ(m)) =
n∏

i=1

exp(λdh(Xi/m − 1)).

Each term in the product is independent, therefore the mean of the product is the
product of the means (which are identical.)

Let u = λ(X/m − 1). Then

P(Ψλ((1 + ε)μ) ≥ 0) ≤ [E(exp(λdh(u)))]n

From the previous lemma,

exp(dh(u)) ≤ exp(ln(1 + u + u2/2))

= 1 + u + u2/2,

Hence
E(exp(dh(u))) = 1 + E(u) + E(u2/2).

Putting m = (1 + ε)μ into this expression then gives the first inequality.
For the second inequality, the steps are nearly identical, but we begin by multi-

plying by −λ. This completes the proof. �
In particular, if we choose n so that P(Ψλ((1 + ε)μ) > 0) ≤ δ/2, and P(Ψλ((1 −

ε)μ) < 0) ≤ δ/2, then by the union bound the probability that Ψ has a root in
[(1 − ε)μ, (1 + ε)μ] is at least δ/2 + δ/2 = δ.

As is well known, for g > 0,

(1 − g)n ≤ exp(−gn),

and so if n ≥ (1/g) ln(2/δ),
(1 − g)n ≤ δ/2.

We refer to g as the gap. Since the number of samples needed is inversely proportional
to the gap, we wish the gap to be as large as possible. We can lower bound the gap
given by the previous lemma in terms of λ and m.
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Lemma 4 For u = λ(X/m − 1), and a(m) = 1 − (m/μ),

1 + E[u] + E[u2/2] ≤ 1 + λμ

m
a(m) + 1

2

(
λμ

m

)2 [
c2 + a(m)2

]
. (2)

Similarly,

1 + E[u] + E[u2/2] ≤ 1 − λμ

m
a(m) + 1

2

(
λμ

m

)2 [
c2 + a(m)2

]
. (3)

Proof From linearity of expectations,

E[u] = λ
( μ

m
− 1

)
= λμ

m
a(m).

The second moment is the sum of the variance plus the square of the first moment.
Using Var(c1X + c2) = c21Var(X), we get

E[u2] = Var(u) + E[u]2

=
(

λ

m

)2

Var(X) +
[
λμ

m
a(m)

]2

.

Since Var(X) ≤ c2μ2,

E[u2] ≤
(

λμ

m

)2

[c2 + a(m)2],

giving the first result. The proof of the second statement is similar. �

Lemma 5 Let p� = P(Ψλ((1 − ε)μ) ≤ 0) and pr = P(Ψλ((1 + ε)μ) ≥ 0). Then

p� ≤
[

1 − λε

1 − ε
+ 1

2

(
λ

1 − ε

)2

(c2 + ε2)

]n

,

pr ≤
[

1 − λε

1 + ε
+ 1

2

(
λ

1 + ε

)2

(c2 + ε2)

]n

.

Proof Note
a((1 − ε)μ) = 1 − (1 − ε)μ/μ = ε.

Combine Lemmas 3, 4, and 6 with m equal to (1 − ε)μ to get the first inequality.
Then set m = (1 + ε)μ and use a((1 + ε)μ) = −ε to get the second. �
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Our goal is to use as few samples as possible, which means simultaneously mini-
mizing the quantities inside the brackets in Lemma 5. Both of the upper bounds are
upward facing parabolas, and they have a unique minimum value.

Lemma 6 The minimum value of f (λ) = 1 + a1λ + (1/2)a2λ2 is

1 − a21
2a2

,

at λ∗ = −a1/a2.

Proof Complete the square. �

However, because the coefficients in the quadratic upper bounds are different, it
is not possible to simultaneously minimize these bounds with the same choice of λ.

What can be said is that these bounds are quadratic with positive coefficient on
λ2, and so the best we can do is to choose a λ such that the upper bounds are equal
to one another. This gives us our choice of λ.

Lemma 7 Let
λ = ε

c2 + ε2
(1 − ε2).

Then

max{p�, pr } ≤
[
1 − 1

2
· ε2

c2 + ε2
(1 − ε2)

]n

.

Proof Follows directly from Lemma 5. �

This makes the inverse gap

ε−2(c2 + ε2)(1 − ε2)−1 = (c2ε−2 + 1)(1 − ε−2)−1

and immediately gives Theorem 1.

3 Computation

Set λ = ε(1 − ε2)(c2 + ε2)−1. Consider how to locate any root of Ψλ for a given
set of X1, . . . , Xn . As before, we assume that the Xi are nonnegative and not all
identically zero. The function Ψλ(m) is continuous and decreasing, although not
necessarily strictly decreasing. Therefore, it might have a set of zeros that form a
closed interval.
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3.1 An Approximate Method

Suppose that the points Xi are sorted into their order statistics,

X(1) ≤ X(2) ≤ · · · X(n).

Then Ψλ(X(1)) > 0 and Ψλ(X(n)) < 0, so there exists some i such that Ψλ(X(i)) ≥ 0
and Ψλ(Xi+1) ≤ 0. Since any particular value of Ψλ requires O(n) time to compute,
this index i can be found using binary search in O(n ln(n)) time.

At this point we can switch from a discrete binary search over {1, . . . , n} to a
continuous binary search over the interval [Xi , Xi+1]. This allows us to quickly find
a root to any desired degree of accuracy.

This is the method that would most likely be used in practice.

3.2 An Exact Method

Although the approximation procedure is what would be used in practice because
of its speed, there does exist a polynomial time exact method for this problem.
For i < j , and a value m, suppose that the points of {Xi } that fall into the interval
[m − λ,m + λ] are exactly {X(i), X(i+1), . . . , X( j)}. Then say that m ∈ m(i, j).

That is, define the set m(i, j) for i < j as follows.

m(i, j) = {m : X(k) ∈ [m − λ,m + λ] ⇔ k ∈ {i, i + 1, . . . , j}}.

See Fig. 3.
Note that

(∀m ∈ [X(1), X(n)])(∃i < j)(m ∈ m(i, j)).

There are at most n choose 2 such i < j where m(i, j) is nonempty. In fact, since as
we slidem from X(1) to X(n), each point can enter or leave the interval [m − λ,m + λ]
exactly once. Therefore there are at most 2n pairs (i, j) where m(i, j) is nonempty.

That means that to find a root of Ψλ we need merely check if there is a root
m ∈ m(i, j) for all i < j such that m(i, j) 	= ∅.

For each m ∈ m(i, j), the contribution of X(1), . . . , X(i−1) to Ψλ(m) is −(i − 1),
and the contribution of X( j+1), . . . , X(n) is n − j . Hence m ∈ m(i, j) is a zero of Ψλ

if an only if m = 1/r and

0 m
[

m λ
]

m + λ

Fig. 3 Since the interval [m − λ,m + λ] includes X(2), X(3), and X(4), m ∈ m(2, 4)
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n − j − (i − 1) +
j∑

k=i

(r X(k) − 1) − (r X(k) − 1)3/6 = 0.

This last equation is a cubic equation in r , and so the value of r that satisfies it
(assuming such exists) can be determined exactly using the cubic formula.

4 Numerical Experiments

The M-estimator presented here can be thought of as a principled interpolation
between the sample mean and the sample median. Because for u small d(u) ≈ u, as
λ → 0, the estimator converges to the sample mean.

At the other extreme, as λ → ∞, all of the d(λ(Xi/m − 1) will evaluate to either
0, 1, or −1. Hence the estimator converges to the sample median.

When λ = ε(1 − ε2)/(c2 + ε2), we can precisely bound the chance of the relative
error being greater than ε. However, the estimator can be used for any value of λ.

For instance, Table 1 records the result of using the estimator for 100 exponential
random variables with mean 2 and median 2 ln(2) = 1.386 . . ..

When λ is small, the result is nearly identical to the sample mean. As λ increases,
the result moves towards the median value.

Unlike the sample average, however, this M-estimator will always converge to
a value, even when the mean does not exist. Consider the following draws from
the absolute value of a Cauchy distribution. The mean of these random variables is
infinite so the sample average will not converge. The median of this distribution is 1
(Table 2).

Even for values such as λ = 1, the result is fairly close to the median. For any
λ > 0, the M-estimator will not go to infinity as the sample average does, but instead
to converge to a fixed value as the number of samples goes to infinity.

4.1 Timings

To test the time required to create the new estimates, the algorithm presented here
together with the algorithm from [5] were implemented in R. Table 3 shows the

Table 1 Behavior of the sample average, sample mean, and M-estimator for 100 exponential
random variables with mean 2 here. Repeated five times to show variation

Mean Median λ = 0.1 λ = 1 λ = 5

2.34 1.86 2.33 1.93 1.87

1.89 1.35 1.88 1.53 1.40

2.29 1.78 2.28 1.83 1.77

2.02 1.37 2.01 1.48 1.35

2.17 1.37 2.16 1.70 1.39
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Table 2 Behavior of the sample mean, sample median, and M-estimator for 100 draws from the
absolute value of a Cauchy distribution. Repeated five times to show variation

Mean Median λ = 0.1 λ = 1 λ = 5

2.30 0.70 1.95 0.88 0.69

2.70 1.10 2.56 1.27 1.11

10.29 1.01 2.96 1.24 1.02

3.59 1.09 2.58 1.32 1.13

8.07 1.25 4.83 1.68 1.34

Table 3 Behavior of the sample mean, sample median, and M-estimator for 100 draws from the
absolute value of a Cauchy distribution. Repeated five times to show variation

Epsilon Delta CG New Relative change

0.10 1e-06 551.94 461.48 −0.1638946

0.05 1e-06 2013.24 1822.40 −0.0947925

results of running both algorithms using an Euler-Maruyama simulation of a simple
SDE as a test case.

As can be seen from the data, the relative change is near −2ε, and the relative
change gets closer to −2ε the smaller ε becomes.

The complete code used to generate the data in these tables can be found in Sect.
6 of [7] at https://arxiv.org/pdf/1908.05386.pdf.

5 Conclusion

The modified Catoni M-estimator presented here gives a means of interpolating
between the sample mean and the sample average. The estimator is designed for the
output of Monte Carlo simulations where the distribution is usually unknown, but
often it is possible to compute a bound on the relative standard deviation. It is fast to
calculate in practice and can be computed exactly in terms of square and cube roots
in polynomial time. The estimator has a parameter λ which controls how close the
estimate is to the sample mean or sample median.

Given a known upper bound c on the relative standard deviation of the output, λ
can be chosen as ε(1 − ε2)/(c2 + ε2) to yield an (ε, δ)-randomized approximation
scheme that uses a number of samples (to first order) equal to that if the data was nor-
mally distributed. Even if c is unknown (or infinite), the estimator will still converge
to a fixed measure of centrality for any choice of λ.

Acknowledgements This work supported by National Science Foundation grant DMS-1418495.
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Infinite Swapping Algorithm for Training
Restricted Boltzmann Machines

Henrik Hult, Pierre Nyquist and Carl Ringqvist

Abstract Given the important role latent variable models play, for example in sta-
tistical learning, there is currently a growing need for efficient Monte Carlo methods
for conducting inference on the latent variables given data. Recently, Desjardins et al.
(JMLRWorkshop and Conference Proceedings: AISTATS 2010, pp. 145–152, 2010
[3]) explored the use of the parallel tempering algorithm for training restricted Boltz-
mann machines, showing considerable improvement over the previous state-of-the-
art. In this paper we continue their efforts by comparing previous methods, including
parallel tempering, with the infinite swapping algorithm, an MCMC method first
conceived when attempting to optimise performance of parallel tempering (Dupuis
et al. in J. Chem. Phys. 137, 2012 [7]), for the training task. We implement a Gibbs-
sampling version of infinite swapping and evaluate its performance on a number
of test cases, concluding that the algorithm enjoys better mixing properties than
both persistent contrastive divergence and parallel tempering for complex energy
landscapes associated with restricted Boltzmann machines.
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1 Introduction

Consider a latent variable model with probability density of the form

p(v) = 1

Z(θ)

∑

h

exp{−Eθ (v,h)}, (1)

where v represent visible units and h hidden units, Z(θ) is an unknown normalising
constant, and θ an unknown parameter. The function Eθ is referred to as the energy
function. Training suchmodels bymaximum likelihood through, e.g., StochasticGra-
dient Descent (SGD) using a training set of independent samples of visible units often
requires Markov chain Monte Carlo (MCMC) methods. When the energy landscape
is complex, convergence to the desired stationary distribution may be slow because
the Markov chain tends to get stuck near local minima. In the context of training in
machine learning, this phenomenon might result in significant gradient estimation
error.

A simple, yet interesting model of the form (1) is the Restricted Boltzmann
Machine (see Sect. 2), which is prominent in statistical learning and used in various
deep architectures. It is particularly successful in collaborative filtering, for instance
in assigning ratings of movies to users, see [27]. Training of restricted Boltzmann
machines have been gradually improved from contrastive divergence [15, 16], to
persistent contrastive divergence [31] and most recently parallel tempering [3]. In a
sense this paper continues the effort initiated in [3] by proposing the infinite swap-
ping (INS) algorithm, designed to overcome rare-event sampling issues, for training
restricted Boltzmann machines. Moreover, we investigate via an empirical study the
impact the choice of training algorithm has on classification. This partially answers
a question posed in [3], namely what impact the use of parallel tempering, and more
generally extended ensembleMonte Carlomethods, may have on classification tasks.

Parallel tempering (PT) [9, 12, 30] has become a standard tool for molecu-
lar dynamics simulations, see for example [9, 13, 18, 21, 25, 29] and the refer-
ences therein. The idea is that for models where there is a parameter acting like a
temperature—the canonical case is a Gibbs measure and the associated (inverse)
temperature, similar to (1)—one runs multiple Markov chains, each with a different
“temperature”, and couple them via swaps of the particle locations at random times
according to a given intensity, see Sect. 3 for further details.

The infinite swapping algorithm was introduced in [8] as an improvement of
parallel tempering, with documented success in a variety of chemical and biolog-
ical physics settings. Consequently, it serves as a natural candidate for potentially
improving training of machine learning models. It can be viewed as the limit of PT
when the swap rate is sent to infinity; in [8] the corresponding sampling scheme is
shown to be optimal from a large deviations perspective and in [5] a more in-depth
analysis of PT and INS is carried out in the setting of continuous-time jump Markov
processes. Recently [22] studied the ergodicity properties of INS at low temperature,
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deriving Eyring-Kramers formulae for the spectral gap and the log-Sobolev constant,
showing superiority of infinite swapping over overdamped Langevin dynamics.

In addition to the theoretical results of [5, 8, 22] on the properties of PT and INS,
recent empirical studies show superior performance of INS compared to PT and other
Monte Carlo methods for a range of common performance measures [4, 7, 23]. So
far the main application area for INS has been chemical and biological physics and
adjacent areas, see for example [6, 20, 24, 33]. However, as extended ensemble
methods, such as PT, are becoming increasingly popular for MCMC simulations in
a wide range of areas, it is natural to consider INS in the same settings. Statistical
learning and latent variable models is one such example where metastability is often
a hindrance in the training phase.

In this paper we propose to use the INS algorithm in the training phase of a
restricted Boltzmann machine to improve mixing of the underlying Markov chain
and to facilitate accurate estimation of gradients. The contributions of this paper
include

• an implementation of a Gibbs sampling version of the infinite swapping algorithm
for latent variable models,

• details on the infinite swapping algorithm for training restricted Boltzmann
machines,

• empirical comparison of the performance of training restricted Boltzmann
machines using infinite swapping, parallel tempering, and persistent contrastive
divergence.

So far infinite swapping has mainly been considered for Langevin and Glauber
dynamics [5, 8, 20] in continuous time. The paper [8] also contains discrete-time
large deviations results and discusses the corresponding sampling schemes. For the
application to restricted Boltzmann machines, the large size of the state space under
consideration, although discrete, renders Glauber dynamics unsuitable because of
the need to compute the full transition matrix. To the best of our knowledge this
paper is the first to implement a Gibbs sampling version of INS that circumvents this
computational issue. Although the present study is limited to restricted Boltzmann
machines, it is plausible that this Gibbs sampling version of the infinite swapping
algorithm can be further generalised to more complex latent variable models. In [2]
the authors introduce Hamiltonian Monte Carlo in the setting of variational auto-
encoders, another prominent latent variable model, to obtain unbiased estimators of
gradients with low variance.

The remainder of the paper is organised as follows: In Sect. 2 the restricted Boltz-
mannmachine is introduced. The parallel tempering and infinite swapping algorithms
are presented in Sect. 3. An empirical study of INS performance is provided in Sect. 4
and the conclusions are summarised in Sect. 5.
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2 Restricted Boltzmann Machines

The Restricted Boltzmann Machine (RBM) [11, 16, 28, 32] is a probability distri-
bution over an N -dimensional boolean space {0, 1}N . Let v ∈ {0, 1}N , h ∈ {0, 1}M
be row vectors and set x = (v,h) ∈ {0, 1}N+M . Let W be a real-valued parameter
matrix of dimension N × M , and let b ∈ R

N , c ∈ R
M be real-valued bias parameter

row vectors. The RBM probability function is defined as

p(v) = Z−1
∑

h

e−E(v,h), (2)

E(v,h) = −vWhT − vbT − hcT , (3)

An observed data point enters the RBMmodel as a vector of visible units v ∈ {0, 1}N ,
while h ∈ {0, 1}M denotes accompanying hidden units, i.e., the latent variables. The
combined vector x = (v,h) ∈ {0, 1}N+M is referred to as a particle.

The latent structure facilitates simulation from the joint distribution through block
Gibbs sampling, as block conditional probabilities p(v|h) and p(h|v) are available
in explicit form and are easy to sample from. Indeed, letting e(n) denote the nth
coordinate of any vector e, it holds that

p(v|h) ∝
N∏

n=1

exp{v(n)(WhT + bT )(n)}.

Let sigm be the sigmoid function sigm(x) = (1 + e−x )−1. The probability function
factorises and straightforward algebra gives

p(v(n) = 1|h) = sigm[(WhT + bT )(n)], (4)

p(h(m) = 1|v) = sigm[(vW + c)(m)]. (5)

Hence, sampling from the conditional distributions p(v|h), p(h|v) amounts to sam-
pling independent Bernoulli variables, with probabilities extracted from the sigmoid
forms (4) and (5). Samples from the joint distribution p(v,h) ∝ exp{−E(v,h)} can
thus be obtained by running a block Gibbs Markov chain [17].

Inference for the parameters in a RBM, for a particular data point v, is often
conducted via maximum likelihood, by minimising the negative log-likelihood,
− log p(v), with respect to the parameters W,b, c. This is usually achieved with
gradient descent methods, for which an estimate of the gradient ∇ p(v) is needed.

A calculation of the gradient coordinate corresponding to the partial derivative
w.r.t the parameter wn,m at row n and column m in the matrixW yields (see [10] for
details)

∇wn,m (− log p(v)) = · · · = −v(n) p(h(m) = 1|v) + E[v(n) p(h(m) = 1|v)]. (6)
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The first and second term on the right-hand side of (6) are often referred to as
the positive phase and the negative phase, respectively. The negative phase is the
problematic term as it amounts to taking expectation under the joint distribution of
(v,h). However estimates of this part of the gradient can be obtained via the Gibbs
sampling procedure.

When the number of data points |D| = d is large, the standard technique for
minimising the average negative log-likelihood is (mini-batch) stochastic gradient
descent (SGD). In theSGDmethod, a subsetD′ ⊂ Dof size |D′| = d ′ < d is chosen at
random and the gradient coordinate w.r.t.wn,m at current parameter state is estimated
by

1

d ′
∑

v∈D′
−v(n) p(h(m) = 1|v)+E[v(n) p(h(m) = 1|v)]. (7)

Here the expectation is taken w.r.t to p(v). Similar to standard gradient descent, the
estimate of the gradient is used to update the parameter vector in step n + 1 through

(W,b, c)n+1 = (W,b, c)n − η(∇̃W, ∇̃b, ∇̃c)

where η is a scalar learning rate, and where ∇̃x denotes the estimated gradient
coordinates for the matrix/vector x.

For RBMs, where the negative phase is estimated using Gibbs sampling, SGD
requires simulations to be run for each training step. Usually, a Gibbs chain of size d ′
is run for a fixed number of κ steps before an average is formed with the end samples.
Starting the Gibbs chain anew at sampled data points in each gradient step is referred
to as the contrastive divergence (CD-κ) training method. Since long burn-in periods
might be expected with this approach, the Gibbs chain for a certain training step
is typically started at the last samples of the previous training step. This method
is referred to as persistent contrastive divergence (PCD-κ). Current state-of-the-art
method for training RBMs is arguably a combination of PCD-1 and PT.

3 Parallel Tempering and Infinite Swapping for Gibbs
Samplers

Consider the setting of Sect. 2, that is a RBM trained with SGD with batch size d ′.
Parallel tempering amounts to multiple Gibbs chains of size d ′ being run at different
temperatures and particles being exchanged according to aMetropolis–Hastings rule.
In the case of two temperatures, in addition to the original model (2) with temperature
τ1 = 1, an additional RBM with a higher temperature τ2 > 1 is introduced:

pτ2(v) = Z−1
τ2

∑

h

e− 1
τ2
E(v,h)

.



290 H. Hult et al.

It is easy to check that all calculations above for τ1 = 1 carry over in a straightforward
manner to a RBMwith τ2 > 1. The PTmethod proceeds by running twoGibbs chains
C1,C2, at respective temperature, each of size d ′. Let x1,1, . . . , x1,d ′ , x2,1, . . . , x2,d ′

denote the particles in C1,C2 respectively. After κ Gibbs steps, particles x1,i , x2,i
i = 1, . . . , d ′ are swapped with probability

1 ∧ exp{− 1
τ1
E(x2,i ) − 1

τ2
E(x1,i }

exp{− 1
τ1
E(x1,i ) − 1

τ2
E(x2,i )}

.

Swaps of this kind are attempted according to the so-called swap rate (the jump
intensity) of the algorithm. The process then starts anewwith runningC1,C2, at their
respective temperatures for another κ Gibbs steps. The resulting process is ergodic
with the product measure pτ1 ⊗ pτ2 as stationary distribution. Thus, the chain C1

converges in distribution to pτ1 , the distribution of interest.
There are several ways of extending PT to additional temperatures. Here, we fol-

low the common approach of only attempting swaps between neighbouring particles,
see [19]. For K chains with respective temperatures τ1 < · · · < τK , all swaps of the
form [xk,i , xk+1,i ] → [xk+1,i , xk,i ] are attempted after every κ Gibbs step, starting at
k = 1 and working upward to k = K − 1. The swapping probabilities used are thus

1 ∧ exp{− 1
τk
E(xk+1,i ) − 1

τk+1
E(xk,i )}

exp{− 1
τk
E(xk,i ) − 1

τk+1
E(xk+1,i )}

.

The swapping mechanism limits the degree of dependency between samples and
forces quicker mixing of samples, thus speeding up the convergence of C1.

Compared to parallel tempering, the infinite swapping algorithm proposes a dif-
ferent mechanism for exchanging information between the tempered Gibbs chains.
In PT, the particle exchange probabilities are given but the proposed changes (only
neighbouring particles, etc.) can be chosen. In INS the full mechanism for exchange
is used; in a sense, all possible swaps are attempted.

Consider K chainsC1, . . . ,CK with temperatures τ1 < τ2 < · · · < τK and assume
each chain contains only one particle (extending to the case of d ′ particles is straight-
forward). Denote by xk = (vk,hk) the particle in chain k and let X = (x1, . . . , xK )

denote the vector of particles. Let σ j , j = 1, . . . , K ! denote a permutation of the
temperature indices [1, . . . , K ], for some ordering of the K ! permutations. Write the
RBMprobability function of temperature τk as pk(x) = Z−1

k exp{−E(x)/τk}. Define
the symmetrised distribution p̄ and the joint probability distribution pσ j across the
chains for permutation σ j as

p̄(X) = 1

K !
K !∑

j=1

pσ j (X), pσ j (X) =
K∏

k=1

pσ k
j
(xk),



Infinite Swapping Algorithm for Training Restricted Boltzmann Machines 291

where σ k
j denotes the kth component of the permutation σ j . The INS algorithm

consists of first running the Gibbs chains independently for κ Gibbs steps; each
Gibbs-step amounts to first sampling a point h from p(h|v) and then a point v from
p(v|h). In the next step temperatures are swapped between the chains according to
permutation σ j with probability

ρσ j (X) = pσ j (X)
∑K !

j=1 pσ j (X)
= pσ j (X)

K ! p̄(X)
.

The procedure is then repeated, resulting in a Markov chain sample generation
scheme. The collective Markov chain (C1, . . . ,CK )with the INS temperature swap-
ping mechanism is referred to as the INS-Gibbs Markov chain. The isolated κ Gibbs
steps together with one swapping operation will be referred to as an INS-Gibbs
step of the INS-Gibbs Markov chain. Note that for large K , since the number of
permutations is K !, the computational cost of INS can be too high for practical pur-
poses. One can then use so-called partial INS (PINS) [8], in which temperatures are
arranged into subgroups, swaps are attempted within one such subgroup at a time
and with a handoff-rule for changing between subgroups. This reduces the com-
putational cost of INS significantly. For example, in [4] K = 30 temperatures are
used for a Lennard-Jones model of 55-atoms argon cluster. Similarly, in [8] a col-
lection of K = 45 temperatures are used for a Lennard-Jones cluster of 38 atoms. In
these complex potential energy landscape the partial infinite swapping approach is
appreciably more effective than conventional tempering approaches; see [7] for an
extensive numerical study.

To obtain an estimate of Ep1 [ f (x)] for any real-valued function f , a weighted
average of the particles of each chain is formed:

∑K

k=1
f (xk)

⎛

⎝
∑

σ ;σ k=1

ρσ (X)

⎞

⎠ , (8)

where {σ : σ k = 1} is the subset of permutations that have 1 as their kth component
(that is, that assign the kth chain temperature τ1). Proofs that the INS-Gibbs Markov
kernel has the symmetrised distribution p̄ as invariant distribution, and that the esti-
mate (8) has the desired expected value Ep1 [ f (x)] if samples are generated from p̄,
are included in the Appendix as Propositions 1 and 2, respectively. The proofs are
similar to existing results and are included for completeness.

Because the sample space is finite and the Markov chains are irreducible,
Proposition 1 ensures that the empirical measures of the full chain converges to
the symmetrised distribution. Consequently, if the INS-Gibbs Markov chain is run
long enough, its empirical measure will approximate the symmetrised distribution.

Algorithm 1 is an outline of the INS algorithm for obtaining an estimate of
Ep1 [ f (x)] in the setting of Gibbs-sampling. For training a RBM, the last step of
the algorithm corresponds to using the gradient negative phase estimate as f and
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Algorithm 1 INS-Gibbs Algorithm
1. Set number of chains K , temperature values [τ1, . . . , τK ], number of Gibbs steps κ between

swap attempts, number of swap attempts q and initial data points.
2. Start chains with initial data points.
3. for i in 1 : q

a. Run each chain for κ Gibbs steps.
b. Draw permutation σ with probability ρσ

c. Permute the temperatures of the chains according to permutation σ

4. Form an estimate as

y =
∑K

k=1
f (xk)

⎛

⎝
∑

σ ;σ k=1

ρσ (X)

⎞

⎠

the tempered RBM joint distributions for forming the weights. While obtaining an
estimate as described in the algorithm, one can use the so-called particle/temperature-
associations as a diagnostic of non-convergence. These are quantities than can be
computed while running the algorithm and used to indicate whether it is possible for
the empirical measure to have converged; see [4, 5] for details and an analysis of
this diagnostic.

4 Numerical Experiments

In order to evaluate the performance of INS for training RBMs a series of numerical
experiments are conducted. Two types of data sets, described in Sect. 4.3, are con-
sidered. For the smaller data sets the exact likelihood and exact gradient can both
be computed, which enables comparison of the training algorithms. For larger data
sets neither the exact likelihood nor the exact gradient is tractable. Instead a clas-
sification Boltzmann machine will be used to evaluate the training algorithms; the
quantity used for comparison is referred to as prediction accuracy.

4.1 Prediction Accuracy

To compare training algorithms using a classification Boltzmann machine, each data
point in the data set is concatenated with a vector c ∈ C representing its class, where
C denotes the subspace of {0, 1}dim(c) such that exactly one coordinate is nonzero,
and dim(c) is the number of classes. Such a vector is called a one-hot vector in the
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machine learning literature. For a RBM defined on an extended visible state space
ṽ = (v, c), the conditional probability for class type c given v can be computed
explicitly: it holds that

p(c|v) = p̂(c, v)/Z
p̂(v)/Z

= p̂(c, v)
p̂(v)

= p̂(c, v)∑
c∈C

p̂(c, v)
,

and the terms on the right-hand side can be computed with the marginalisation
trick (see the Appendix for a description). The above expression can be used for
classification, and for calculating classification error through comparing with the
actual class type for data points. The efficiency of the algorithms can be evaluated
by measuring the classification capabilities of each parameter state during training
on the extended data sets. More specifically, for each parameter state the prediction
accuracy,

A =
∑

(vi ,ci )∈D′
log

⎛

⎝ p̂(ci , vi )∑
c∈C

p̂(c, vi )

⎞

⎠ ,

is calculated, where D′ is a randomised subset of data, for each state during training.

4.2 Parameters and Settings

This section describes the parameters involved in the training of RBMs and the
choices made for this work. The main objective of the numerical experiments is
a comparison with [3], where performance results for PT in the RBM setting are
presented. Parameters have therefore been selected accordingly, and no attempts
have been made to find optimal parameter settings for the sampling and training
tasks under consideration. Where possible, external recommendations have been
taken into account, as have empirical observations from experiments on the impact
of parameter changes.

4.2.1 Learning Rate

The learning rate η can be chosen as a fixed constant or as a function of, e.g., the
number of updates in SGD. A large learning rate increases the speed of training
but may result in inaccurate optima or degenerate behaviour, while a small learning
rate allows for greater accuracy at the cost of training speed. Numerical experiments
indicate that a learning rate of 0.1 yields satisfactory performance, and this value is
chosen throughout. This is also consistent with experiments in [3].
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4.2.2 Initialization

Throughout the experiments, the initial weights and biases are drawn randomly from
normal distributions of small variance (order of magnitude 0.01) and zero expected
value, in line with the recommendations in [14]. Empirically, different draws do not
yield different results, nor smaller changes in the variance parameter.

4.2.3 Training Steps

The number of training steps are set to 10000 in all the numerical experiments, as all
the relevant effects seems to appear within this range. Furthermore, in the examples
of lower dimension, empirical observations suggest the likelihood is maximal after
this number of steps. If the training rate is decreased or if the data dimension is
significantly increased, more training steps would likely be needed.

4.2.4 Batch Size

We set the batch size to be 10 throughout. Empirical studies show that this batch size
is sufficient for non-degenerate behaviour of the likelihood. A larger batch size yields
a more precise gradient estimate, but causes longer computational time. Therefore,
for computational efficiency, a small batch size is preferred.

4.2.5 Temperatures

Both PT and INS run on temperatures {1, 2, 3, 4, 5}. Empirical studies show no
significant difference when adding more temperatures for the examples under con-
sideration. However, for certain parameter setups, fewer temperatures can result in
degenerate behaviour similar to what is observed for a single chain, see Sect. 4.4.
At five temperatures, no notable difference in running time between INS and PT
is present, allowing for a fair comparison of the algorithms. For a large number of
temperatures, the PT algorithm is considerably faster and a fair comparison would
then be with PINS rather than INS. Moreover, mixing properties are satisfactory for
the temperatures selection. This is also in line with demonstrations in [3], where
5 temperatures are considered (of roughly the same magnitude, however the exact
temperature values are not disclosed).

4.2.6 Number of Swaps

For PT, one swap is attempted for every step in the Markov chain. This choice makes
the experiments consistent with [3]. Moreover, it is experimentally observed that an
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increase in the number of swap attempts per training step does not seem to have any
significant effect on the results.

4.3 Data Sets

We use two types of data sets for empirical evaluation of the INS algorithm for
training a RBM. The first is a collection of toy data sets similar to that used in [3];
by changing the size of the toy data sets we can move from cases where the gradient
can be computed exactly to those where this is not possible for either gradients or
likelihoods. The second type of data set we consider is the well-known MNIST data
(described in detail in a following subsection).

4.3.1 Toy Data

The toy data sets are generated according to a generalisation of the “Toy Data” gen-
erating mechanism in [3]. The procedure involves choosing the number of modes μ,
the distance between modes δ, the number of samples per modes ν and a permuta-
tion probability π ; we require the number of modes to be a power of 2. The data is
generated as follows:

1. Compute i = log2(μ), the number of binaries needed to encode the modes.
2. Create a list of the binary encoding of each mode.
3. Create a list of expanded mode encodings by expanding each encoding in 2. with

δ copies.
4. Generate ν copies of each expanded mode encoding from 3.
5. Flip every binary variable in 4. independently with probability π , to obtain the

explanatory data.
6. Add a one-hot vector representing mode type to get the joint explanatory and

response data.

The following example is for (μ, δ, ν, π ) = (4, 2, 2, 0.2):

1. Let i = log2(4) = 2
2. (1, 1), (1, 0), (0, 1), (0, 0)
3. (1, 1, 1, 1), (1, 1, 0, 0), (0, 0, 1, 1), (0, 0, 0, 0)
4. (1, 1, 1, 1), (1, 1, 1, 1), (1, 1, 0, 0), (1, 1, 0, 0),

(0, 0, 1, 1), (0, 0, 1, 1), (0, 0, 0, 0), (0, 0, 0, 0)
5. (1, 1, 1, 0), (1, 1, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0),

(0, 0, 1, 0), (0, 0, 1, 1), (0, 0, 0, 0), (1, 0, 0, 0)
6. (1, 1, 1, 0, 1, 0, 0, 0), (1, 1, 1, 1, 1, 0, 0, 0),

(1, 1, 0, 1, 0, 1, 0, 0), (1, 1, 1, 0, 0, 1, 0, 0),
(0, 0, 1, 0, 0, 0, 1, 0), (0, 0, 1, 1, 0, 0, 1, 0),
(0, 0, 0, 0, 0, 0, 0, 1), (1, 0, 0, 0, 0, 0, 0, 1)
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Fig. 1 Two examples from
the MNIST data set

In [3], π is varied over a toy data set without class type attached, with μ = 4, δ = 8,
and ν = 2500. This example is treated in Sect. 4.4.

4.3.2 MNIST

The MNIST data set is used as a benchmark for training and evaluating machine
learning algorithms.1 It consists of 55000 pictures of handwritten images of numbers
0, . . . , 9. One data point is a 28× 28 matrix populated with grayscale pixel numbers
between 0 and 1; Fig. 1 shows two examples from the data set. In this work we round
each pixel to 0 or 1 in order for the data to fit the binary RBM as described. Attached
to each image is also a one-hot vector of dimension 10 representing number type.

4.4 Evaluating the INS Algorithm for Small Toy Data Sets

Consider a small toy data set for which the likelihood can be computed exactly and
can be trained with exact SGD (exact gradient computed for a data subsample in
each step). We compare four algorithms:

• exact SGD
• SGD PCD-1
• SGD PCD-1 with Parallel Tempering
• SGD PCD-1 with INS-Gibbs

The exact likelihood and the prediction accuracy is computed for each parameter
state during each training algorithm. In addition, for every step in the respective
Markov chain for PT and INS, the Euclidean distance between the true gradient and
the gradient estimate is computed at two different fixed parameter states (early and
late in the training). This empirical evaluation provides insight into the effectiveness
of the INS-Gibbs algorithm. Moreover, it allows us to compare the non-standard
performance measure prediction accuracy with the likelihood.

The first toy data set was generated using the following parameters: (μ, δ, ν, π) =
(4, 4, 2500, 0.2). That is, the number of visible units is 12 (including 4 dimensions for
class type one-hot vectors), and the number of data points is 10000 (see Sect. 4.3). For

1The data set, and more information about it, is available on Yann LeCun’s webpage: http://yann.
lecun.com/exdb/mnist/.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
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Fig. 2 Evaluation of different training algorithms on a small toy dataset.Upper: Euclidean distance
from the gradient estimate to the true gradient, for the initial parameter state, as function overMarkov
chain steps. Lower: Euclidean distance from the gradient estimate to the true gradient, for the final
parameter state, as function over Markov chain steps

the RBMmodel, the number of hidden units was set to M = 4, the starting points of
the Markov chains were drawn uniformly and the training procedures were repeated
20 times for each of the algorithms.2 The result of the experiment is illustrated in
Figs. 2 and 3.

2All stochastic behaviour (except the data generation) were run on updated seeds in every iteration.
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Fig. 3 Evaluation of different training algorithms on a small toy dataset.Upper: Average likelihood
trajectory and variation (parameter state likelihood variance estimate). Lower: Average prediction
accuracy trajectory and variation (parameter state prediction accuracy variance estimate)

Next, the experiments of [3] were recreated by using (μ, δ, ν, π) = (4, 8, 2500,
0.2). The number of hidden units was set to M = 6, all other parameters as in the
previous experiment. The results are illustrated in Figs. 4 and 5.

Figures1, 2, 3 and 4 show the INS algorithm generally outperforming PCD-1 and
being slightly superior to PT, consistent with previous studies in different contexts.
Early in the training phase gradient estimation is relatively easy and deviations from
the true gradient (as a function over Markov steps) is small. However, INS seems to
produce smaller estimation error and variance, resulting in a more stable behaviour
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Fig. 4 Evaluation of different training algorithms on a data set generated according to [3]. See
Figs. 1 and 2 for subgraph description

closer to the true gradient. Estimating the gradient becomes harder later in the training
phase and both algorithms needs to be run for a considerable number of steps in order
to converge. Again, we note that INS outperforms the other algorithms, converging
slightly faster towards 0 distance to the true gradient than PT. The likelihood and
prediction accuracy graphs paint a similar picture: both show INS performing better,
in terms of average behaviour as well as estimated variance.
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Fig. 5 Evaluation of different training algorithms on a data set generated according to [3]. See
Figs. 1 and 2 for subgraph description

Remark 1 The distinction between algorithms regarding the gradient estimate qual-
ity can be expected to increase with decreasing π , as the modes in the data become
more separated; this should increase the importance of goodmixing. However, for the
prediction accuracy to be able to distinguish between algorithms, the classification
problem must be sufficiently difficult, motivating the choice of π = 0.2. Indeed, if
π is too small, mixing becomes harder but classification simpler and the algorithms
will all exhibit similar prediction accuracy.
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4.5 Evaluating the INS Algorithm for a Larger Toy Data Set
and MNIST

The performance of the training algorithm will now be evaluated on the MNIST data
and a larger toy data set. Neither the exact training gradients nor the exact likelihood
computations are now available. However, we can still use the prediction accuracy
to evaluate the training algorithms. For the toy data generation the parameters were
set to (μ, δ, ν, π) = (128, 150, 1000, 0.2), i.e the number of visible units is 1050,
and the number of data points is 128000. Moreover, the number of hidden units were
set to M = 600 for the toy data set and M = 500 for MNIST, remaining parameters
were set as in the previous experiments. The outcome is illustrated in Fig. 6.

From Fig. 6, for the MNIST data INS enjoys the smallest variance initially but
as the number of steps increase the differences between the algorithms have all but
disappeared. Similarly for the toy data set; interesting to note for the toy data set is
that PCD-1 does not display degenerate behaviour as in [3].

Remark 2 The results for MNIST, in particular when compared to those for likeli-
hood estimation in [3], may be explained by the classification task being too simple,
the modes being too few and too distinguished. In the large toy data set however,
modes are greater in number and more similar. Here, we again observe a small dif-
ference in performance, both in terms of average behavior and variance. A reason
might be that energy landscapes in higher dimensions tend to be less equipped with
poor (in terms of training) local minima, putting less demand on gradient estimate
quality [26].

5 Conclusions

We have presented the INS algorithm in a Gibbs-sampling setting for training RBMs,
and conducted an empirical study of the performance of INS compared to persistent
contrastive divergence and parallel tempering. The INS algorithm performs at least
as well as all other training algorithms, for the cases investigated; the difference
is most notable for smaller data sets. One possible explanation is that the gradient
becomes hard to estimate late in training as the energy landscape becomes increas-
ingly complex. A complex energy landscape prevents mixing, resulting different
performances between the algorithms, due to their different mixing capabilities. As
PT was developed to improve mixing over the PCD-1 method, and INS has been
shown to be superior to PT in several models, the results of the empirical study are
in line with expectations. The PCD-1 method even exhibits a degenerate behavior
due to its poor mixing, as was also previously observed in [3].

For MNIST and the larger toy data set the modes of the distribution are further
apart, which should prevent mixing to a stronger degree than for the other data
sets. Therefore, it is at first surprising that the different algorithms perform more
similarly here than for the toy data sets in Sect. 4.4. One possible explanation is
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Fig. 6 Average prediction accuracy trajectory and variation for each training algorithm on the
MNIST data set (upper) and the large toy dataset (lower)

provided by [26]: even though the energy landscape is complex, the collection of
local minima that one is likely to end up in tends to promote good performance.
However this line of reasoning does not take into account how SGD moves around
in the energy landscape but instead looks at a static picture and “counts” the number
of critical points of different indices. Recent works suggest that this view is too
simplistic and that dynamics should be considered as well, see for example [1].

Another potential explanation for the observations for MNIST and the larger toy
data set is that the performance measure, the prediction accuracy defined in Sect. 4.1,
does not reflect the algorithms ability to mix at a fine enough level. This is combined
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with the fact that the classification task might be too simple, rendering the prediction
accuracy incapable to distinguish between the different algorithms for training; see
the remarks in Sects. 4.4 and 4.5. Indeed, the empirical study in [3] suggest significant
improvements of PT over PCD-1 also forMNISTwhen likelihood is used to measure
performance, whereas this is not observed when considering the prediction accuracy
for the Boltzmann classifiers. Still, also for the toy data set in Sect. 4.5 and using
the prediction accuracy, although the PCD-1 method seems of best quality early
in training, INS again has slightly better classification capability later in training
compared to the other methods.

Future work includes extending INS to variational auto-encoders, with an aim
similar to [2], together with more extensive empirical studies, including both other
data sets and comparing different performance measures (prediction accuracy, likeli-
hood). These studies will also consider the impact of different hyperparameters in PT
and INS (number of temperatures, choice of temperatures, swap rate for PT etc.), and
performance when equal computational time is allotted to the different algorithms.

Appendix

The Marginalisation Trick

Let p̂(v,h) denote the unnormalised joint probability function for (v,h) and p̂(v)
denote the unnormalised probability function for v (suppressing parameter depen-
dence):

p̂(v,h) = exp{−E(v,h)}, p̂(v) =
∑

h

p̂(v,h).

For the unnormalised joint distribution, by Baye’s rule it holds that, for any h,

p̂(v) = p̂(v,h)

p̂(v,h)/ p̂(v)
= p̂(v,h)

p(h|v) .

The left-hand side is independent of h and can thus be computed by choosing h
arbitrarily, and inserting it in the computable operation on the right hand side. Taking
h ≡ 1 yields

∑

h

e−E(v,h) = e−E(v,1)

p(1|v) = e−E(v,1)

∏M
m=1 sigm[(vW + c)(m)] .
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In practice, hmust be chosen with care in order to avoid numerical division by zero.
For the numerical experiments in this paper

h = max
h

p(h|v) = (round(p(h(1) = 1|v)), . . . , round(p(h(M) = 1|v))),

is used where round denotes the rounding operator.

Propositions

Proposition 1 The INS-Gibbs Markov kernel has the symmetrised distribution p̄ as
invariant distribution.

Proof LetGκ,σ j (X|X′) be the probability distribution forX after κ Gibbs steps when
starting in X′ and temperatures are assigned according to σ j . Given values X′, the
following probability distribution holds for sample values X obtained after one full
INS-Gibbs step:

K !∑

j=1

ρσ j (X
′)Gκ,σ j (X|X′).

Integration w.r.t the symmetrised distribution yields

∑

X′

K !∑

j=1

ρσ j (X
′)Gκ,σ j (X|X′) p̄(X′)

= 1

K !
K !∑

j=1

∑

X′
pσ j (X

′)Gκ,σ j (X|X′)

= 1

K !
K !∑

j=1

pσ j (X) = p̄(X).

In the first step the definition of ρσ j is used and in the second last step the fact that
the Gibbs kernel Gκ,σ j has the joint distribution pσ j as its invariant distribution. �

Proposition 2 Let E p̄ and Ep1 denote expectation with respect to p̄ and p1, respec-
tively. Then,

E p̄

⎡

⎣
K∑

k=1

f (xk)

⎛

⎝
∑

σ ;σ k=1

ρσ (X)

⎞

⎠

⎤

⎦ = Ep1 [ f (x1)].
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Proof For any k = 1, . . . , K , it holds that

E p̄

⎡

⎣ f (xk)

⎛

⎝
∑

σ ;σ k=1

ρσ (X)

⎞

⎠

⎤

⎦ = E p̄

⎡

⎣ f (xk)

⎛

⎝
∑

σ ;σ k=1

ρσ (X)

⎞

⎠

⎤

⎦

=
∑

X

f (xk)

⎛

⎝
∑

σ ;σ k=1

ρσ (X)

⎞

⎠ p̄(X)

=
∑

X

f (xk)

⎛

⎝
∑

σ ;σ k=1

pσ (X)

K !

⎞

⎠

= 1

K !
∑

X

f (xk)

⎛

⎝
∑

σ ;σ k=1

K∏

i=1

pσ i (xi )

⎞

⎠

= 1

K !
∑

X

f (xk)

⎛

⎝
∑

σ ;σ k=1

pσ k (xk)
K∏

i �=k

pσ i (xi )

⎞

⎠

= 1

K !
∑

xk

f (xk)p1(xk)
∑

xi ,i �=k

⎛

⎝
∑

σ ;σ k=1

K∏

i �=k

pσ i (xi )

⎞

⎠

= 1

K !
∑

xk

f (xk)p1(xk)(K − 1)!

= 1

K
Ep1 [ f (x1)].

Summing over k = 1, . . . , K proves the claim. �
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Sensitivity Ranks by Monte Carlo

Ian Iscoe and Alexander Kreinin

Abstract Application of the Monte Carlo method to the estimation of sensitivity
ranks is considered. We demonstrate that the convergence rate in this problem is
exponential, exp(−αN ), where N is the number of scenarios and α > 0 is a constant.
This result stands in contrast to the usual rate of convergence, N−1/2, of the Monte
Carlo method for estimating the mean of a random variable. This result justifies a
numerical strategy of sensitivity estimation of portfolios depending on a large number
of risk factors.

Keywords Sensitivity ranks · Exponential rate of convergence · Large deviations

1 Introduction

Sensitivity estimation is an important problem in the risk management of financial
portfolios. This problem almost always leads to time-consuming Monte Carlo sim-
ulation (MC) which is impractical without the aid of variance reduction techniques.
In particular, the calculation of sensitivities of CVA (Credit Value Adjustment) for a
portfolio, is a particularly onerous task.

Estimation of the ranks of sensitivities has been found empirically to require a
relatively small number of scenarios. (Some examples will be given in the last section
of this paper.) In the present paperwe consider a simple probabilisticmodel that helps
to understand this phenomenon. The approach is relevant to CVA sensitivities.

The sensitivity problem can be described as follows. Suppose the value of a
portfolio depends on some stochastic, risk factor, X , which is generally a discrete-
time path and is vector-valued at each time point along the path. Suppose also, that
the chosen model for X contains some parameters, collected into a vector π ∈ R
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The parameters may represent volatilities, mean reversion rates or, especially, initial
values of the individual, scalar risk factors. The value of a portfolio can be expressed
as a risk-neutral expectation, E[ f (X;π)], of an appropriate pricing function which
makes the presence of the parameters explicit. (It is not just for convenience to have
the parameters be absorbed into f rather than the risk-neutral probability measure;
it is crucial for our approach.) If one considers a set of K vectors of parameters,
{π1, ..., πK } perturbing the base value of π , then we obtain the K sensitivities,

E[ f (X;πk)] − E[ f (X;π)], k = 1, ..., K .

The ranks of these sensitivities, say largest to smallest, then coincide with the ranks
of the values, E[ f (X;πk)], k = 1, ..., K , (K ≤ M).

In the present paper, we use this definition in a more traditional partial case:
the vector of parameters πk differs from π by the kth component only and the
increment of this component is small. If one estimates the values E[ f (X;πk)], by a
MC simulation, it is then of interest to know the likelihood that the estimated ranks
coincide with the theoretical ranks. This is the problem that we address; namely,
estimating the rate of convergence of the simulated ranks to the theoretical ranks, as
the sample-size tends to infinity.

This problemhad been studied in the literature on ranking and selection algorithms
[2, 3, 8]. In [2], it is shown that using ordinal optimization the probability of correct
selection converges at an exponential rate for a large class of systems. This result was
obtained under the independence assumption of the noise of the measurements. In
[3] the problem of allocating total sampling budget amongst several populations in
an asymptotically optimal manner is studied. It is demonstrated that the probability
of false selection is minimized.

Similar results were obtained in [5, 6] on parallel simulation of Markov processes
resulting, in an associated coupled process. Suppose, from the processes we simulate
in parallel, one wishes to choose the process with best performance, maximizing
some expectation of an objective function. With finite simulation runs, there is a
probability that the process with the best sample performance is not the one with the
best expected performance. It is shown in [5, 6] that the probability of missing the
processes with the best expected performance tends to 0 at an exponential rate under
the assumption that the processes we wish to compare are associated.1

In the present paper, we extend the result on exponential convergence to the
case when the observations are not necessarily independent and no additional con-
straints are imposed on the dependence structure. This more general assumption bet-
ter describes the sensitivity estimation schema. In the next section, we will abstract
the problem slightly and then present a sequence of results, in increasing generality.
The most general result,2 Theorem 2, for an arbitrary dimension K is obtained using
the large-deviation techniques [4]. These techniques are less restrictive and allow

1Two processes are called associated if their distributions are associated. The latter means that all
increasing functions of these variables are positively correlated.
2This result is new, to the best of our knowledge.
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us to obtain the exponential rate of convergence of the probability of the correct
rank estimation without additional assumptions on the dependence structure and the
structure of the support of the distributions.

Numerical illustrations will be given in the final section. In closing the present
section, we recall that in MC simulation, the use of quasi-random scenarios often
achieves a significantly faster rate of convergence ofmathematical expectations, com-
pared with the use of pseudo-random scenarios. Although we only establish rigorous
theoretical results for the latter, it will be observed in the numerical illustrations, that
quasi-random scenarios have the same advantage over pseudo-random scenarios for
ranking, although the advantage is not as dramatic.

2 Theoretical Results

We begin with a description of the general setting in which we will work. Let Z =
(Z1, Z2, . . . , ZK ) be a random vector such that the mean values of the coordinates
are finite and distinct, and ordered3:

E[Z1] < E[Z2] < · · · < E[ZK ].

In this case we shall write that rank (E[Zk]) = k.
Suppose one has decided to estimate the order of the mean values, μk = E[Zk],

(k = 1, 2, . . . , K ), using Monte Carlo simulation.
Denote by (ζ1,n, ζ2,n, . . . , ζK ,n) the nth random sample of the vector Z, n =

1, 2, . . . , N . Assume that estimation of μk is based on the statistics

μ̂k(N ) = 1

N

N∑

n=1

ζk,n, k = 1, 2, . . . , K .

Our objective is to estimate the probability

pK (N ) = P

(
K⋂

k=1

(
rank

(
μ̂k(N )

) = k
)
)

(1)

as a function of K and N . We represent

Zk = μk + εk, k = 1, . . . , K

and ζk,n as
ζk,n = μk + εk,n,

3The connection to the financial setting in the Introduction, is thatZ is a re-ordering of the { f (X; πk):
1 ≤ k ≤ K }, according to the re-ordering of their expectations, in increasing order.
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where (εk : 1 ≤ k ≤ K ), (εk,n : 1 ≤ k ≤ K , 1 ≤ n ≤ N ) are centred random vari-
ables.

We shall start with the Gaussian case for which very explicit results can be
obtained, and then move to the general (non-Gaussian) case. For the Gaussian case,
we will even start with the very simple subcase, K = 2, and assume that the uncor-
related random variables εk have the common normal distributionN (0, σ 2

0 ).

2.1 Gaussian Case: K = 2, Uncorrelated ε1 and ε2

Here we assume in addition that the εk,n are mutually independent. Then we have

p2(N ) = P
(
μ̂1(N ) < μ̂2(N )

) = P

(
1

N

N∑

n=1

ε1,n + μ1 <
1

N

N∑

n=1

ε2,n + μ2

)

= P

(
1

N

N∑

n=1

(ε1,n − ε2,n) < μ2 − μ1

)
. (2)

The random variable

1

N

N∑

n=1

(ε1,n − ε2,n) ∼ N

(
0,

2

N
σ 2
0

)
,

has a centred normal distribution, with variance, 2
N σ 2

0 . Therefore, from (2) we derive

p2(N ) = Φ

(
μ2 − μ1

σ0

√
N

2

)
∼ 1 − e−α2N/2

√
2πNα

, (3)

where
α = μ2 − μ1

σ0

√
2

,

and as usual, the cumulative distribution function of a standard normal random vari-
able is denoted by Φ(·).

The asymptotic relation (3) shows that the rate of convergence p2(N ) → 1 is
exponential under the assumptions of normality and independence of εk . However,
the rate is slowed for moderate N if μ2 is very close to μ1. This is intuitively
(qualitatively) clear and is made quantitative by the result (3). (The critical value, for
fixed N , is at μ2 − μ1 ∝ 1/

√
N .) This property persists in all of the cases which we

consider.
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2.2 General Gaussian Case

Denote by Φ̄2(x, y; ρ), the tail of the standard bivariate normal distribution,

Φ̄2(x, y; ρ) = P (ξ1 > x, ξ2 > y) , ξ1 ∼ N (0, 1), ξ2 ∼ N (0, 1)

where ρ is the correlation coefficient of the standard normal random variables ξ1 and
ξ2. Define the constants

αk := μk+1 − μk

σ0
√
2(1 − ρk,k+1)

, k = 1, 2, . . . , K − 1

where ρk,k+1 denotes the correlation between εk and εk+1, which is assumed not to
equal 1. Let α∗ = min

1≤k<K
αk and denote the multiplicity of α∗, by m∗ = #{k : αk =

α∗}.
Theorem 1 Suppose that the K -dimensional vector ε has a normal distribution
ε ∼ N

(
0, σ 2

0C
)
, where C = ‖ρi j‖, (1 ≤ i, j ≤ K ) is a nonsingular correlation

matrix, K > 2 and σ0 > 0. Then,

1 −
K−1∑

k=1

Φ̄
(
αk

√
N

)
≤ pK (N ) ≤ 1 −

K−1∑

k=1

Φ̄
(
αk

√
N

)

+
∑

1≤i< j<K

Φ̄2

(
αi

√
N , α j

√
N ; ρ̃i, j

)

where

ρ̃i, j := ρi, j − ρi+1, j − ρi, j+1 + ρi+1, j+1

2
√

(1 − ρi,i+1)(1 − ρ j, j+1)
, 1 ≤ i, j ≤ K − 1.

Also,

pK (N ) ∼ 1 − m∗√
2πNα∗

exp

(
−1

2
α2

∗N
)

, as N → ∞. (4)

Proof Denote

Sk ≡ Sk,N :=
N∑

n=1

(
εk,n − εk+1,n

)
, k = 1, 2, . . . , K − 1.

Let us express the probability, pK (N ), in terms of the random variables, Sk :

pK (N ) = P

(
K−1⋂

k=1

{
Sk−1

N
< μk+1 − μk

})
.
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The covariance matrix of the random vector S = (S1, S2, . . . , SK−1) is given by

Var(Sk) = 2Nσ 2
0 · (1 − ρk,k+1), (5)

cov(Si , Sj ) = Nσ 2
0 · (

ρi, j − ρi+1, j − ρi, j+1 + ρi+1, j+1
)
. (6)

From (5) and (6) it follows that for 1 ≤ i, j ≤ K − 1

ρ̃i, j := Corr(Si , Sj ) = ρi, j − ρi+1, j − ρi, j+1 + ρi+1, j+1

2
√

(1 − ρi,i+1)(1 − ρ j, j+1)
. (7)

Let us now define the standard normal random variables

ηk ≡ ηk,N := Sk,N√
Var(Sk,N )

= Sk,N

σ0

√
2(1 − ρk,k+1)

√
N

.

We have Corr(ηi , η j ) = ρ̃i, j , 1 ≤ i, j ≤ K − 1.
The probability pK (N ) can be written as

pK (N ) = P

(
η1 < α1

√
N , . . . , ηK−1 < αK−1

√
N

)
.

Then we have

1 − pK (N ) = P

(
K−1⋃

k=1

{ηk ≥ αk

√
N }

)

≤
K−1∑

k=1

P

(
ηk ≥ αk

√
N

)
(8)

=
K−1∑

k=1

Φ̄
(
αk

√
N

)
. (9)

Denote

p̄k(N ) = P

(
ηk ≥ αk

√
N

)
and p̄i, j (N ) = P

(
ηi ≥ αi

√
N , η j ≥ α j

√
N

)
.

Using the well known Bonferroni inequality, we derive

1 − pK (N ) ≥
K−1∑

k=1

p̄k(N ) −
∑

1≤i< j<K

p̄i, j (N ) (10)

=
K−1∑

k=1

Φ̄
(
αk

√
N

)
−

∑

1≤i< j<K

Φ̄2

(
αi

√
N , α j

√
N ; ρ̃i, j

)
. (11)
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Now, we have

K−1∑

k=1

Φ̄
(
αk

√
N

)
∼ m∗Φ̄

(
α∗

√
N

)

∼ m∗√
2πα∗

√
N

exp

(
−1

2
α2

∗N
)

, as N → ∞. (12)

The inequalities (9) and (11) are equivalent to those in the first part of this theorem.
We will show that the right-hand side of (9) is the dominant term on the right-hand
side of (11), asymptotically as N → ∞. The asymptotic result (4), in this theorem,
follows immediately from the asymptotic result (12).

If either αi > α∗ or α j > α∗ then

Φ̄2(αi

√
N , α j

√
N ; ρ̃i, j ) = P

(
ηi ≥ αi

√
N , η j ≥ α j

√
N

)
≤ P

(
η ≥ α

√
N

)
,

where η ∼ N (0, 1) and α := max(αi , α j ) > α∗. For such i and j , we then have

Φ̄2(αi

√
N , α j

√
N ; ρ̃i, j ) ≤ Φ̄(α

√
N ) = o

(
Φ̄(α∗

√
N )

)
, as N → ∞. (13)

There are (m∗ − 1)m∗/2 terms of the form Φ̄2(α∗
√
N , α∗

√
N ; ρ̃i, j ) in (11), each

of which can be estimated using the following general asymptotic result (see Lemma
1 in Sect. 4)

Φ̄2(a, a; ρ) ∼ (1 + ρ)2

2π
√
1 − ρ2

· e
−a2/(1+ρ)

a2
, as a → ∞, (14)

which yields

Φ̄2(α∗
√
N , α∗

√
N ; ρ̃i, j ) ∼ (1 + ρ̃i, j )

2

2π
√
1 − ρ̃2

i, j

· e
−α2∗N/(1+ρ̃i, j )

α2∗N

= o
(
Φ̄(α∗

√
N )

)
, as N → ∞. (15)

Summing over the pairs of indices (i, j), 1 ≤ i < j ≤ K − 1, for each of which
either the estimate (13) or the estimate (15) holds, then yields that the second sum
in (11) is dominated by the first sum, asymptotically as N → ∞. �
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2.3 General Case

For the general case, we apply large-deviation techniques. (The reference [4] can be
consulted for cited results.) Set

βk := μk+1 − μk, k = 1, 2, ..., K − 1. (16)

With Sk,N as in the proof of Theorem 1, we obtain, similarly to (8) and (10):

1 − pK (N ) ≤
K−1∑

k=1

P
(
Sk,N ≥ βk N

)
(17)

1 − pK (N ) ≥
K−1∑

k=1

P
(
Sk,N ≥ βk N

)

−
∑

1≤i< j<K

P
(
Si,N ≥ βi N , Sj,N ≥ β j N

)
. (18)

For θ ∈ R, set

Mk(θ) := E
[
eθ(εk−εk+1)

]
, k = 1, 2, ..., K − 1. (19)

We assume that each Mk is finite for sufficiently small |θ |. Then, the inequality (17)
already provides us with the exponential rate of convergence by a simple application
of Chebyshev’s inequality (the same argument used to obtain the upper bound in the
classical, large-deviation result of H. Cramér—see the proof of Theorem 2.2.3 in
[4]):

P(Sk,N ≥ βk N ) ≤ E[eθ Sk,N ]e−βkθN = exp(−[βkθ − logMk(θ)]) ∀θ ≥ 0;

therefore

P(Sk,N ≥ βk N ) ≤ inf
θ≥0

exp(−[βkθ − logMk(θ)]) ≡ exp(−Ik(βk)N ) (20)

where
Ik(β) := sup

θ

[βθ − logMk(θ)] = sup
θ≥0

[βθ − logMk(θ)], (21)

the latter equality being Lemma 2.2.5(b) in [4]. Combining (17) and (20), yields

1 − pK (N ) ≤
K−1∑

k=1

exp(−Ik(βk)N ). (22)
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Let γ∗ = min
1≤k<K

Ik(βk) and denote m∗ = #{k : Ik(βk) = γ∗}, the multiplicity of γ∗.

Then the right-hand side of (22) is asymptotically equivalent to m∗ exp(−γ∗N ). It
only remains to show that γ∗ > 0; then (22) provides the convergence in probability
of ranks, at a rate that is at least exponentially fast. We defer the proof that γ∗ > 0
to Sect. 4

Theorem 2 Let ε be such that the moment generating functions, in (19), are finite in
a neighbourhood of θ = 0. Define the functions Ik , 1 ≤ k ≤ K − 1 as in (21). With
βk as in (16), set γ∗ := min(I (βk) : 1 ≤ k ≤ K − 1). Then γ∗ > 0 and

1 − pK (N ) ≤
K−1∑

k=1

exp(−Ik(βk)N ) ∼ m∗ exp(−γ∗N ), as N → ∞, (23)

where m∗ := #{k : Ik(βk) = γ∗}.

3 Numerical Examples

The fast convergence of sensitivity ranks is illustrated in this section by two examples.
In the first example, we consider CVA sensitivity ranks of a medium size financial
portfolio. In the second example, we consider a simple equity derivative and estimate
its value sensitivities.

Let R = (R1, . . . , Rm), R ∈ R
m , be a vector of parameters. Suppose that the

value function of interest, f (R), is a smooth real function of the parameters R. The
sensitivity of the function f (R) to the increment of the kth component is

�k f = f (R1, . . . , Rk−1, Rk + ε∗, Rk+1, . . . RM ) − f (R1, . . . , Rk−1, Rk , Rk+1, . . . RM ),

where ε∗ = 10−4 (i.e.1 basis point).
In the first example, we illustrate the exponentially fast rate of convergence of

the ranks of means, with some calculations of CVA under various increments of
the initial interest rate term structure. (CVA is an expectation of a weighted sum of
discounted exposures to a counterparty, at some fixed, future times; the weights are
the probabilities of the counterparty defaulting in the interval just prior to the times
of exposure calculations. See Sect. 21.6 in [1] for details.) The Hull-White 1-factor
(extended Vasicek) model was used as a short-rate model of the term structure. For
the HWmodel, the mean reversion rate is 0.1 and the instantaneous volatility is 0.05.

The timeline is 8years long with all cashflow dates and exposures at yearly time
intervals. The interest rate curve (IR) and discount factors are given in Table1. A
collection of interest rate increments was considered for the CVA sensitivities: 7
single-node ε∗-increments; the affected nodes on the term structure were the ones
from years 1 to 7.

Quasi Monte Carlo (QMC) scenarios were used to calculate the Expected Dis-
counted Exposures (EDE) which make up the CVA. The choice of 2047 sce-
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Table 1 IR term structure: T is time, r is the continuously compounded rate, d is the discount
factor, d = exp(−rT )

T 1 2 3 4 5 6 7 8

r 0.0284 0.0301 0.0317 0.0333 0.0351 0.0369 0.0386 0.0400

d 0.9719 0.9415 0.9092 0.8750 0.8387 0.8010 0.7631 0.7259

narios was selected as a practical benchmark. The numbers of scenarios, n =
31, 63, 127, 2047, 4095 (all of the form 2m − 1 for m = 5, 6, 7, 11, 12; the reason
for subtracting 1 is to preserve the low discrepancy of each scenario set). Some
comparisons with pseudo-random scenarios are also included.

3.1 Example 1

The first example is of a portfolio of 40 instruments: 20 Swaps and 20 Caps/Flrs with
some instruments at themoney and others out of themoney.All instruments’ effective
date is current time, 0, with maturities of 7 or 8years. More details concerning
Notionals, Swap fixed rates or Cap/Flr strike rates, and instrument type, including
payer/receiver type, is given in Table2.

The results of the CVA rankings, after the tweaks, are given in Table3. Evidently,
convergence has already occurred with only 31 scenarios. However, the CVA values
themselves and the CVA sensitivities take longer to stabilize, as is shown in the
accompanying Tables4 and 5. We omit the calculation of percentage errors for the
sensitivities because, for the very small (insignificant) ones, the large ‘percentage
error’ is a misleading metric for quality of approximation. What is important, is that
insignificance is seen to persist throughout the small sample sizes. Rather, we report
the ranking of the absolute values of the sensitivities, in Table6.

Notice that there are a couple of inversions of the rankings for small sample
sizes. However, the inversions are of consecutive or closely neighbouring ranks.
Therefore, when considering the largest absolute sensitivities—say the top third or
even half—that group remains invariant across different sizes. This observation leads
to an efficient viewpoint for sensitivity calculations familiar to the specialists in the
area of statistical selection [8]:

One can identify the most significant sensitivities as a group, in a stable manner, using only
a very small number of scenarios; then re-estimate that smaller group of sensitivities more
accurately, using a larger number of scenarios.

For sake of comparison, we include the analogous final results for the sensitivities,
based on pseudo randomsamples, inTable7.Although there is still rapid convergence
of the ranks—but not the values themselves—the rate is somewhat slower than with
quasi random samples, as can be expected. In Tables3, 4, 5 and 6, n denotes the
number of QMC scenarios.
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Table 2 Instrument details for Example 1: ‘Type’ is the instrument type: ‘P’ for Payer Swap, ‘R’
for Receiver Swap, ‘C’ for Cap, ‘F’ for Flr; N is the Notional (a negative value indicates a short
position); T is the maturity date; K is the fixed rate for a Swap or the strike rate for a Cap/Flr

Swaps

Type N T K Type N T K

P 12 8 0.05 P 18 8 0.04

R 18 7 0.05 R 16 7 0.04

R 20 8 0.05 R 19 8 0.04

P 25 7 0.05 P 24 7 0.04

P 22 7 0.06 P 22 7 0.04

P 17 8 0.06 P 18 8 0.04

R 15 7 0.06 R 17 7 0.04

R 20 8 0.07 R 21 8 0.04

P 25 7 0.06 P 25 7 0.04

P 22 7 0.07 P 23 7 0.05

Caps/Flrs

Type N T K Type N T K

C 12 8 0.05 C 18 8 0.04

F −18 7 0.05 F −16 7 0.04

F 20 8 0.05 F 19 8 0.04

C 25 7 0.05 C 24 7 0.04

C −22 7 0.06 C 22 7 0.04

C 17 8 0.06 C 18 8 0.04

F 15 7 0.06 F 17 7 0.04

F 20 8 0.07 F 21 8 0.04

C 25 7 0.06 C −25 7 0.04

C 22 7 0.07 C 23 7 0.05

Table 3 CVA ranking results for Example 1: In the first column we have the IR node index whose
rate was increased by 1bp

Node n

4095 2047 127 63 31

1 7 7 7 7 7

2 2 2 2 2 2

3 4 4 4 4 4

4 3 3 3 3 3

5 5 5 5 5 5

6 1 1 1 1 1

7 6 6 6 6 6
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Table 4 CVA results for Example 1: Under ‘Node’, π indicates the base vector of parameters, the
other cells describe the index of the IR node incremented by 1bp

Node n

4095 2047 127 63 31

π 1.7576067511080 1.755083637 1.708833929 1.695534710 1.651886330

1 1.7576004087327 1.755077294 1.708827608 1.695528422 1.651879872

2 1.7576108100729 1.755087694 1.708837973 1.695538649 1.651890515

3 1.7576073730937 1.755084261 1.708834534 1.695535437 1.651887079

4 1.7576074233940 1.755084300 1.708834580 1.695535437 1.651887262

5 1.7576057280000 1.755083011 1.708832874 1.695533750 1.651885753

6 1.7576219982234 1.755098088 1.708849191 1.695550016 1.651901875

7 1.7576051209165 1.755082006 1.708832356 1.695532835 1.651883435

Table 5 CVA sensitivity results for Example 1: The first column describes index the node that was
incremented by 1bp

Node n

4095 2047 127 63 31

1 −0.0000063421 −0.0000063424 −0.0000063217 −0.0000062877 −0.0000064579

2 0.0000040573 0.0000040590 0.0000040438 0.0000039396 0.0000041854

3 0.0000006248 0.0000006220 0.0000006050 0.0000007272 0.0000007495

4 0.0000006633 0.0000006723 0.0000006507 0.0000007274 0.0000009321

5 −0.0000006250 −0.0000010231 −0.0000010554 −0.0000009601 −0.0000005761

6 0.0000144513 0.0000152471 0.0000152619 0.0000153062 0.0000155454

7 −0.0000016307 −0.0000016302 −0.0000015738 −0.0000018748 −0.0000028945

Table 6 Absolute CVA sensitivity ranking results for Example 1: The first column describes the
IR node index that was increased by 1bp

Node n

4095 2047 127 63 31

1 2 2 2 2 2

2 3 3 3 3 3

3 7 7 7 7 6

4 5 6 6 6 5

5 6 5 5 5 7

6 1 1 1 1 1

7 4 4 4 4 4
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Table 7 AbsoluteCVAsensitivities and their ranks usingpseudoMC, forExample 1:Under ‘Node’,
we have index of the IR node incremented by 1bp; the second and the third columns describe their
ranks for n = 127 and n = 63, where n denotes the number of scenarios

Node n

Rank Absolute sensitivity

127 63 127 63

1 2 2 0.0000078252 0.0000059181

2 3 3 0.0000054325 0.0000035142

3 7 7 0.0000006848 0.0000004295

4 6 5 0.0000007657 0.0000008795

5 5 6 0.0000012004 0.0000007131

6 1 1 0.0000158122 0.0000159841

7 4 4 0.0000019491 0.0000026241

3.2 Example 2

In the second example we consider computation of the sensitivities of a European
basket equity derivative illustrating applicability of the methodology to sensitivity
computation of the relatively simple instruments. The basket consists of four equities,
each of which follows a GBM process

S(i)
t = S(i)

0 · e(r− 1
2 σ 2

i )t+σi W
(i)
t , (i = 1, 2, 3, 4), t ≥ 0,

with the initial values S0 =
(
S(1)
0 , S(2)

0 , S(3)
0 , S(4)

0

)
, where S(1)

0 = 10, S(2)
0 = 11,

S(3)
0 = 15, and S(4)

0 = 14.5 and the volatilities σi are σ1 = 0.4, σ2 = 0.2,
σ3 = 0.26, σ4 = 0.18.

The payoff of the option is PT=max
(
max1≤i≤4 S

(i)
T − K , 0

)
. The maturity of the

option, T = 2.5 years. The strike, K = 13.2729. The interest rate is constant in this

model, r = 0.024. The option value is V = E

[
e−rT PT

]
.

The computation of the expectation in the pricing formula above is based on the
QMC scenario generation. More precisely, we use the Sobol’ points generator for
production of the normally distributed random processes. As in Example 1, the rate
of convergence of the QMC estimator is much higher then that of the MC estimators
using a pseudo-random scenario generation. The surpassing efficiency of the QMC
strategy, in general, is known [7]. In our particular case, it is illustrated in Fig. 1,where
the option value is shown as a function of the logarithm of the number of scenarios,
N . The number of scenarios N ∈ {2k − 1, k = 5, 6, . . . , 19.}. The benchmark value
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V
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Fig. 1 Comparison of the QMC and MC estimators: option value as a function of log2 N , where
N is the number of scenarios

of the option is obtained by MC with NB = 200 · 219 scenarios4: VB = 6.62. The
standard deviation of the MC results in this computation is σB = 0.008.

Thevector of parameters includes 4 initial values S(i)
0 , (i = 1, 2, 3, 4) and4volatil-

ities σ j , having indices i = j + 4. Thus the vector of sensitivities of the basket value
has 8 components. Their ranks are shown in Table8. The highest rank is rank1, the
lowest is rank8. In particular, the value rank1 = 4 in the second raw, corresponding
to k = 6, means that the highest rank has sensitivity to the parameter 4. The stabiliza-
tion of the ranks of the sensitivities is again obtained with relatively small number
of scenarios.

4 Proof of the Result (14)

In this section, we provide the proof of the result (14), used in Theorem 1.

Lemma 1 Let |ρ| < 1 and b > 0. The following asymptotics is valid as b → ∞.

Φ(2)
ρ (−b,−b) = (1 + ρ)2

2π
√
1 − ρ2

e−b2/(1+ρ)

b2
(1 + o(1))

4We ran MC simulation 200 times with 219 scenarios.
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Table 8 Estimation of sensitivity ranking by QMC

k Rank1 Rank2 Rank3 Rank4 Rank5 Rank6 Rank7 Rank8

5 1 5 4 2 3 6 8 7

6 4 1 3 2 6 5 8 7

7 2 1 5 3 6 4 8 7

8 3 1 4 2 6 5 8 7

9 5 1 4 2 6 3 8 7

10 5 1 4 2 6 3 8 7

11 5 1 4 2 6 3 8 7

12 4 1 5 2 6 3 8 7

13 4 1 5 2 6 3 8 7

14 4 1 5 2 6 3 8 7

15 4 1 5 2 6 3 8 7

16 4 1 5 2 6 3 8 7

17 4 1 5 2 6 3 8 7

18 4 1 5 2 6 3 8 7

19 4 1 5 2 6 3 8 7

Proof By symmetry, the asymptotics will be obtained for the equivalent probability,

∫ ∞

b

∫ ∞

b
φ(2)

ρ (x, y) dx dy, φ(2)
ρ (x, y) := e

− 1
2(1−ρ2)

(x2−2ρxy+y2)

2π
√
1 − ρ2

.

Making the change of variables, x �→ bx , y �→ by, and setting θ = b2, transforms
the integral to

θ

∫ ∞

1

∫ ∞

1

e
− θ

2(1−ρ2)
(x2−2ρxy+y2)

2π
√
1 − ρ2

dx dy.

Thedominant contribution to the integral comes fromanyneighbourhoodof the point,
in the region of integration, which minimizes the quadratic form in the exponent of
the integrand. It is straightforward to check that the quadratic form has no critical
points in the region and, along each of the two boundary lines, it is an increasing
function. Therefore the minimum is attained at the corner point, (1, 1), and for the
purposes of asymptotics, we change coordinates to make (1, 1) our new origin.

Express the quadratic form in terms of x − 1 and y − 1 (an exact Taylor expan-
sion):

x2 − 2ρxy + y2 = 2(1 − ρ) + 2(1 − ρ)(x − 1) + 2(1 − ρ)(y − 1)

+ (x − 1)2 − 2ρ(x − 1)(y − 1) + (y − 1)2.
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Making the change of variables, x �→ (x + 1)/θ , y �→ (y + 1)/θ , and using the
latter expansion, transforms the integral (and its preceding factor, θ ) to

e−θ/(1+ρ)θ−1
∫ ∞

0

∫ ∞

0

e
− 1

1+ρ
(x+y)− 1

2θ(1−ρ2)
(x2−2ρxy+y2)

2π
√
1 − ρ2

dx dy.

As θ → ∞, the integral converges to the constant

∫ ∞

0

∫ ∞

0

e− 1
1+ρ

(x+y)

2π
√
1 − ρ2

dx dy = 1

2π
√
1 − ρ2

(∫ ∞

0
e−x/(1+ρ) dx

)2

= (1 + ρ)2

2π
√
1 − ρ2

.

The lemma is now immediate, as θ = b2. �

Let us now provide the proof of the result γ∗ > 0, in Theorem 2, and also present
some provisional material concerning a lower bound, to compliment the upper bound
given in that theorem.

Lemma 2 Let X be a real-valued r.v. such that M(θ) := E[exp(θX)] is finite for
|θ | < θo, for some θo > 0. Denote m := E[X ]. Let I be the Legendre transform of
logM; so that I (m) = 0. Then I (β) > 0 for all β > m.

Proof Without loss of generality, wemay and do assume thatm = 0. Now, I (0) = 0.
Assume, for the sake of a contradiction, that I is identically 0 on some [0, β∗], with
β∗ > 0. (I is nondecreasing on (m,∞), so the previous statement is the negation of
the conclusion in the theorem.)

Set L(t) := logM(θ); then L(0) = 0 = L ′(0). Now, L is convex, so its derivative,
L ′, is nondecreasing, hence nonnegative for θ > 0. L ′ cannot be 0 along any sequence
tending to 0 because L ′ = M ′/M being analytic near θ = 0, would force L ′ to be
identically 0 near θ = 0; then L , and henceM , would then be constant there.M would
have to be identically 1, forcing X to be identically 0. This is of course impossible
because the rate function, I , would then be identically infinite above the mean, 0,
and so never 0 anywhere above the mean. Thus L ′(θ) > 0 for 0 < θ < θ∗, for some
θ∗ > 0.

By continuity, we can assume θ∗ is sufficiently small, that 0 < L ′(θ) < β∗, for
0 < θ < θ∗. By the fundamental connection between L and I :

“L(θ) < ∞ and L ′(θ) = β” =⇒ I (β) = θβ − L(θ),

we conclude from I (L ′(θ)) = 0, 0 ≤ θ < θ∗, that

0 = θL ′(θ) − L(θ), for all 0 ≤ θ < θ∗.

Solving this ODE, yields L(t) = ct , for some constant, c. Since L(0) = 0, cmust be
0 and L is identically 0; i.e., M is identically 1, implying that X is identically 0—a
contradiction, as in a previous argument in the proof. �
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For a lower bound corresponding to the upper bound given in Theorem 2, we see
from (18), that we require a lower bound for the innermost sum and an upper bound
for the outermost sum. By a general result in Large Deviation theory (see e.g., [4]),
for each k, we have

P(Sk,N ≥ βk N ) ≥ exp(−Ik(βk)N + o(N )).

Therefore, by retaining only the slowest, decaying terms, we obtain

K−1∑

k=1

P(Sk,N ≥ βk N ) ≥ m∗ exp(−γ∗N + o(N )). (24)

Next, we come to the bivariate probabilities in (18), P
(
Si,N ≥ βi N , Sj,N ≥ β j N

)
,

which we can rewrite in vectorial form, P
(
Si j,N ∈ N Ri j

)
, 1 ≤ i < j < K , where

Si j,N := (Si,N , Sj,N ) and Ri j is the closed rectangle,

Ri j := {(s1, s2) ∈ R
2 : s1 ≥ βi , s1 ≥ β j }.

Denote the moment generating function of the pair, εi j := (εi − εi+1, ε j − ε j+1),

by5

Mi j (θ) := E[e〈θ,εi j 〉], θ = (θ1, θ2), 1 ≤ i < j < K ,

whichwe assume is finite for all θ in a neighbourhood of the origin, 0 := (0, 0) ∈ R
2,

and set

Ii j (β) := sup
θ

[〈θ, β〉 − logMi j (θ)], 1 ≤ i < j < K ,

J (Ri j ) := inf
β∈R i j

Ii j (β), 1 ≤ i < j < K .

A general result from the theory of Large Deviations (Corollary 6.1.6 in [4]), states
that, for all δ > 0 there exists an N0 such that for all N ≥ N0,

P
(
Si j,N ∈ N Ri j

) ≤ exp(−N (J (Ri j ) − δ)).

However, this is too weak for our purpose, so we return to the simple argument using
Chebyshev’s inequality, to derive a better bound. Set βi j := (βi , β j ). Then, for any
θ = (θ1, θ2) ≥ 0 (componentwise):

P
(
Si,N ≥ βi N , Sj,N ≥ β j N

) ≤ E[eθ1Si,N−θ1βi N eθ2Sj,N−θ2β j N ]
= exp(−[〈θ, βi j 〉 − logMi j (θ)]N )

≤ exp(−Ii j (βi j )N ). (25)

5The angled brackets 〈·, ·〉 denote the Euclidean inner product on R
2.
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Remark 1 In the definition of Ii j , we only need to consider θ ≥ 0 (componentwise)
for this derivation, when taking the supremum over θ , because βi j > 0—the proof
is identical to that in the one-dimensional case (see the proof of (2.2.6) in Lemma
2.2.5(b) of [4]).

The problem is now reduced to comparing the large-deviation rate function (Ii j )
for a bivariate random vector with the rate functions (Ii and I j ) of the vector’s
components. There is a simple relation in the theory of Large Deviations, known as
the Contraction Principle (Theorem 4.2.1 in [4]), which states:

Theorem 3 (Contraction Principle) Let f : X → Y be a continuous mapping
between two Hausdorff topological spaces, and let I be a good rate function6 on
X. Define

I f (y) := inf{I (x) : f (x) = y}

with the convention that the infimum over the empty set is ∞. Then I f is a good
rate function on Y and if X1, X2, ... satisfies a large deviation principle with rate
function I , then Y1,Y2, ... satisfies a large deviation principle with rate function I f ,
where Yr = f (Xr ), r = 1, 2, ... .

Each sequence, (Si j,N : N ≥ 1), satisfies a Large Deviation principle with good
rate function, Ii j (for the goodness, see Corollary 6.1.6 in [4]). Therefore, we can
apply the Contraction Principle to each of the projections, f1 and f2, of R2 onto the
first and second coordinate axes, respectively.We already know that Si,N ≡ f1(Si j,N )

and Sj,N ≡ f2(Si j,N ) satisfy Large Deviation principles with rate functions Ii and I j ,
respectively. This allows us to identify the latter with the rate functions, I f1

i j and I f2
i j ,

respectively, coming from the Contraction Principle. Then we obtain the inequality

Ii j (βi j ) ≥ max(Ii (βi ), I j (β j )),

where Ii (βi ) = infβ∈R Ii j ((βi , β)) and I j (β j ) = infβ∈R Ii j ((β, β j )). Substituting
this lower bound into (25) and summing over index pairs i < j , yields the upper
bound

∑

1≤i< j<K

P
(
Si,N ≥ βi N , Sj,N ≥ β j N

) ≤
∑

1≤i< j<K

e−max(Ii (βi ),I j (β j ))·N . (26)

Unfortunately, the right-hand side of this inequality might not be of smaller order
than the right-hand side of the inequality, (24). Indeed, if m∗ > 1, then

∑

1≤i< j<K

exp
(−max(Ii (βi ), I j (β j ))N

) ∼ m∗(m∗ − 1)

2
e−γ∗N , as N → ∞.

6I.e., I is a non-negative, lower semicontinuous function such that its levels sets, {x ∈ X : I (x) ≤ a},
are compact for every real a.
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The only case in which this approach will yield a lower bound which is asymp-
totically equivalent to the upper bound in Theorem 2, is when m∗ = 1.

Proposition 1 Under the hypotheses of Theorem 2,

1 − pK (N ) ≥ m∗ exp(−γ∗N ) −
∑

1≤i< j<K

P
(
Si,N ≥ βi N , Sj,N ≥ β j N

)

with

∑

1≤i< j<K

P
(
Si,N ≥ βi N , Sj,N ≥ β j N

) ≤
∑

1≤i< j<K

exp
(−max(Ii (βi ), I j (β j ))N

) ;

so that if in addition, m∗ = 1, then 1 − pK (N ) ∼ exp(−γ∗N ), as N → ∞.

Proof To see that the lower bound in the present proposition (cf. (18) and (26)), is
asymptotically dominated by the first summation, it only remains to observe that,
with γ ∗ := min(Ik(βk) : Ik(βk) �= γ∗),

∑

1≤i< j<K

exp
(−max(Ii (βi ), I j (β j ))N

) = O(e−γ ∗N ) = o(e−γ∗N ), as N → ∞.

Then the asymptotics for pK (N ), as N → ∞, follows from the asymptotics for the
lower bound, combined with that of the upper bound obtained in Theorem 2. �

5 Conclusion

Estimation of the ranks of sensitivities has been found empirically to require a rela-
tively small number of scenarios. In this paper,wedeveloped a theoretical justification
under a simple probabilistic model that helps to understand this phenomenon. Our
numerical experiments demonstrate that fast convergence is observed both for suffi-
ciently large portfolios as well as for relatively simple financial derivatives evaluated
by QMCmethods. Similar results can be obtained for the derivatives priced withMC
scenarios but the rate of convergence, usually, is not that high.

The inversions of the rankings for small sample sizes correspond to the case
of close sensitivity ranks. In this case the group of sensitivities remains invariant
across different sizes. This observation leads us to an efficient numerical strategy for
sensitivity calculations based on the idea of grouping the most significant sensitiv-
ities, instead of estimating them individually, in a stable manner, using only a very
small number of scenarios; then re-estimate that smaller group of sensitivities more
accurately.
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Lower Bounds on the L p Discrepancy
of Digital NUT Sequences

Ralph Kritzinger and Friedrich Pillichshammer

Abstract We study the L p discrepancy of digital sequences generated by non-
singular upper triangular (NUT) matrices which are an important sub-class of digital
(0, 1)-sequences in the sense of Niederreiter. The main result is a lower bound for
certain sub-classes of digital NUT sequences.

Keywords L p discrepancy · van der Corput sequence · Digital (0, 1) sequence

1 Introduction

For a set P = {x0, . . . , xN−1} of N points in [0, 1) the (non-normalized) L p dis-
crepancy for p ∈ [1,∞] is defined as

L p(P) = ‖�P ‖L p([0,1]) =
(∫ 1

0
|�P (t)|pdt

) 1
p

(with the usual modification if p = ∞), where

�P (t) =
N−1∑
n=0

1[0,t)(xn) − Nt for t ∈ [0, 1]

is the (non-normalized) discrepancy function of P .
We denote by N the set of positive integers and define N0 = N ∪ {0}. Let X =

(xn)n≥0 be an infinite sequence in [0, 1) and, for N ∈ N, let XN = {x0, x1, . . . , xN−1}
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denote the set consisting of the first N elements of X . It is well known that for all
p ∈ [1,∞) we have

L p(XN ) �
√
log N for infinitelymany N ∈ N

and
L∞(XN ) � log N for infinitelymany N ∈ N. (1)

(For functions f, g : N → R
+, we write g(N ) � f (N ) or g(N ) � f (N ), if there

exists a positive constant C that is independent of N such that g(N ) ≤ C f (N ) or
g(N ) ≥ C f (N ), respectively.) The lower estimate for finite p was first shown by
Proı̆nov [14] (see also [3]) based on famous results of Roth [15] and Schmidt [17]
for finite point sets in dimension two. Using the method of Proı̆nov in conjunction
with a result of Halász [7] for finite point sets in dimension two the lower bound
follows also for the L1-discrepancy. The estimate for p = ∞ was first shown by
Schmidt [16] in 1972 (see also [1, 10, 18]).

In this paper we investigate the L p discrepancy of digital (0, 1)-sequences. Since
we only deal with digital sequences over Z2 and in dimension 1 we restrict the
necessary definitions to this case. For the general setting we refer to [2, 11, 12].

Let Z2 be the finite field of order 2, which we identify with the set {0, 1}
equipped with arithmetic operations modulo 2. For the generation of a digital
(0, 1) sequence (xn)n≥0 over Z2 we require an infinite matrix C = (ci, j )i, j≥1 over
Z2 with the following property1: for every n ∈ N the left upper n × n submatrix
(ci, j )ni, j=1 has full rank. In order to construct the nth element xn for n ∈ N0 com-
pute the base 2 expansion n = n0 + n12 + n222 + · · · (which is actually finite), set
n := (n0, n1, n2, . . .)	 ∈ Z

∞
2 and compute the matrix vector product

Cn =: (y(n)
1 , y(n)

2 , y(n)
3 , . . .)	 ∈ Z

∞
2

over Z2. Finally, set

xn := y(n)
1

2
+ y(n)

2

22
+ y(n)

3

23
+ · · · .

We denote the digital (0, 1)-sequence2 constructed in this way by XC .

An important sub-class of digital (0, 1)-sequenceswhich is studied inmany papers
(initiated by Faure [5]) are so-called digital NUT sequenceswhose generatormatrices
are of non-singular upper triangular (NUT) form

1A further technical condition which is sometimes required, see [12, p. 72, (S6)], is that for each
j ≥ 1 the sequence (ci, j )i≥1 becomes eventually zero. Otherwise it could happen that one or more
elements of the digital (0, 1)-sequence are 1 and therefore do not belong to [0, 1).
2In the general notation, the 1 refers to the dimension and the 0 refers to the full rank condition of
the generator matrix C .
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C =

⎛
⎜⎜⎜⎝
1 c1,2 c1,3 · · ·
0 1 c2,3 · · ·
0 0 1 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ . (2)

For example, if C = I is the identity matrix, then the corresponding digital NUT
sequence is the van der Corput sequence in base 2. For information about digital
NUT sequences and the van der Corput sequence see the survey [6] and the refer-
ences therein.

For digital NUT sequences XC it is known (see [4, Theorem 1]), that

L2(X
C
N ) ≤ L2(X

I
N ) ≤

((
log N

6 log 2

)2

+ O(log N )

)1/2

and for general p ≥ 1 it is known (see [13, Theorem 2]) that

L p(X
C
N ) ≤ L∞(XC

N ) ≤ L∞(X I
N ) ≤ log N

3 log 2
+ 1. (3)

Note that according to the lower bound (1) of Schmidt the upper bound for the L∞
discrepancy in (3) is optimal in the order of magnitude in N . This is not the case for
finite p, as for instance the symmetrized van der Corput sequence achieves an L p

discrepancy of order
√
log N for all N ≥ 2 and all p ∈ [1,∞), see [8].

Concerning lower bounds on the L p discrepancy of digital NUT sequences very
few is known and only for very special cases. For the van der Corput sequence we
have for all p ∈ [1,∞)

lim sup
N→∞

L p(X I
N )

log N
= 1

6 log 2
(4)

and hence L p(X I
N ) � log N for infinitely many N ∈ N; see [13, Corollary 1].

For the so-called upper-1-sequence XU , which is generated by the matrix

U =

⎛
⎜⎜⎜⎝
1 1 1 · · ·
0 1 1 · · ·
0 0 1 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ (5)

it is known that for every p ≥ 1 we have L p(XU
N ) ≥ log N

20 log 2 + O(1) for infinitely
many N ∈ N; see [4].

In [4] the authors study the L p discrepancy of XC for special types of NUT
matrices C of the form
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C =

⎛
⎜⎜⎝
a1
0 a2
0 0 a3

· · ·

⎞
⎟⎟⎠ (6)

with
ai = (1, 0, 0, . . .) or ai = (1, 1, 1, . . .) for i ∈ N.

Note that these NUT sequences comprise the van der Corput sequence and the
upper-1-sequence XU as special cases. For m ∈ N let h(m) denote the number of
(1, 0, 0, . . .) rows among the firstm rows ofC . For example, h(m) = m in case of the
van der Corput sequence and h(m) = 0 in case of the sequence XU . Then it follows
from [4, Lemma 4] that for everym ∈ N there exists an integer N ∈ [2m, 2m+1) such
that L1(XC

N ) � (m + h(m)2)1/2. This implies that if h(m) � m we have for every
p ≥ 1

L p(X
C
N ) � log N for infinitelymany N ∈ N

In general, however, it is a very difficult task to give precise lower bounds on the
L p discrepancy of digital NUT sequences. We strongly conjecture the following:

Conjecture 1 For every digital NUT sequence XC we have

L p(X
C
N ) � log N for infinitely many N ∈ N. (7)

Note that for every digital NUT sequence and for every p ≥ 1 we have

L p(X
C
N ) ≤ L∞(XC

N ) ≤ L∞(X I
N ) ≤ s2(N ), (8)

where s2 : N → N denotes the binary sum-of-digits function which is defined as
s2(N ) = N0 + N1 + · · · + Nm whenever N has binary expansion N = N0 + N12 +
· · · + Nm2m . The very last inequality in (8) follows from the proof of [9, Theorem 3.5
in Chap. 2].

Remark 1 The result in (8) can be generalized and improved in the following sense:
For every p ∈ [1,∞] and for every digital (0, 1)-sequence XC we have

L p(X
C
N ) ≤ cps2(N ) for all N ∈ N,

where

cp =
{
1/

√
3 = 0.5773 . . . if p ∈ [1, 2],

1 if p ∈ (2,∞].

We omit the proof.

The sum-of-digits function is very fluctuating. For example we have s2(2m) = 1,
but s2(2m − 1) = m. In any case we have s2(N ) ≤ log N

log 2 + 1.
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L (XN
I )

s2(N)

20 40 60 80 100 120

1

2

3

4

5

6

7

Fig. 1 The L∞ discrepancy of the van der Corput sequence L∞(X I
N ) and the binary sum-of-digits

function s2(N ) for N = 1, 2, . . . , 127

Remark 2 The inequalities in (8) show that having only very few non-zero binary
digits is a sufficient condition on N ∈ N which guarantees that XC

N has very low L p

discrepancy. For example we have

L p(X
C
N ) ≤ 1 for all N of the form N = 2m

or
L p(X

C
N ) �

√
log N for all N of the form N = 2m + 2�√m�−1 − 1

or
L p(X

C
N ) � log N for all N ≥ 2.

See Fig. 1 for a comparison for the van der Corput sequence.
However, the condition on N of having very few non-zero binary digits is not

a necessary one for low discrepancy. For example, consider N of the form N =
2m − 1. Then we have s2(N ) = m = � log N

log 2 + 1� but: since the discrepancy of XC
N

and of XC
N+1 differ at most by 1 and since L p(XC

N+1) = L p(XC
2m ) ≤ 1 we obtain

L p(XC
N ) � 1. Hence, while s2(N ) is very large, the discrepancy L p(XC

N ) is low.
But in any case: the only possible candidates of N that satisfy (7) are required to

have s2(N ) � log N .

In Sect. 2we provide a lower bound for L p(XC
N ) for special types ofNUTmatrices.
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2 Lower Bound on L p(XC
N)

Westudy two sub-classes ofNUTmatrices. Thefirst class has a certain band structure.
More detailed, the considered matrices are of the form C(α) = (ci, j )i, j≥1 where, for
fixed α ∈ N,

ci, j =
{
1 if i ≤ j < i + α,

0 in all other cases.

For example, if α = 1, we obtain the identity matrix, i.e., C(1) = I .

Theorem 1 For all α ∈ N and p ∈ [1,∞] we have

L p(X
C(α)
N ) ≥ 2α−1

22α − 1

log N

2α log 2
+ Oα(1) for infinitely many N ∈ N.

The bound above is satisfied for N of the form

N =
r∑

�=1

22α(r−�) = 22αr − 1

22α − 1
for arbitrary r ∈ N.

Remark 3 1. Following all the details in the proof the constant hidden in Oα(1)
can be computed exactly.

2. For α = 1 we have C(1) = I and hence the resulting NUT sequence is the van
der Corput sequence. Theorem1 gives

L p(X
I
N ) ≥ log N

6 log 2
+ O(1) for infinitelymany N ∈ N.

This matches the corresponding value in (4).

We also study NUT matrices which have the same entries in each column above
the diagonal; i.e. we deal with matrices of the form

C(a) =

⎛
⎜⎜⎜⎜⎜⎝

1 a1 a2 a3 · · ·
0 1 a2 a3 · · ·
0 0 1 a3 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

, (9)

where a = (a1, a2, . . .) ∈ Z
N

2 is chosen arbitrarily. We set l0(m) := #{i ∈
{1, . . . ,m} : ai = 0} and l1(m) := #{i ∈ {1, . . . ,m} : ai = 1}. Form ≥ 2 let further
d0(m) be the minimal distance of consecutive zeroes and d1(m) be the minimal
distance of consecutive ones in the string (a1, . . . , am), i.e. for � ∈ {0, 1} we define
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d�(m) := min
1≤n≤m−1

{∃i ∈ {1, . . . ,m − n} : ai = ai+n = �, ai+1 = · · · = ai+n−1 �= �
}
.

Theorem 2 For all m ≥ 2, p ∈ [1,∞], and Na = 1 + ∑m−1
i=1 2i (1 − ai ) + 2m, we

have

L p(X
C(a)
Na

) ≥ 1

3
l0(m) + O(1) (10)

if d0(m) ≥ 2, and

L p(X
C(a)
Na

) ≥ 1

3
l1(m) + O(1) (11)

if d1(m) ≥ 2.

Corollary 1 The first N elements of a NUT-sequence generated by a matrix of the
form C(a) satisfy

L p(X
C(a)
N ) ≥ c log N for infinitely many N (12)

for some constant c > 0 if l1(m) ≥ c1m for some c1 > 0 and d1(m) ≥ 2 for all m ≥ 2
or if l0(m) ≥ c2m for some c2 > 0 and d0(m) ≥ 2 for all m ≥ 2.

One example for a generator matrix satisfying the hypotheses of Corollary1 is

C(a) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 1 · · ·
0 1 1 0 1 · · ·
0 0 1 0 1 · · ·
0 0 0 1 1 · · ·
0 0 0 0 1 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

3 The Proofs

The following auxiliary result will be the main tool of our proofs.

Lemma 1 For every NUT digital sequence XC and every N ∈ N of the form N =
2n1 + 2n2 + · · · + 2nr with n1 > n2 > · · · > nr and r ∈ N we have

∫ 1

0
�XC

N
(t)dt =

r∑
i=2

σr,ni+1 −
r∑

k=2

nk−1∑
j=nk+1

σr, j

2 j

r∑
i=k

2ni + O(1),

where the σr, j are given by the following matrix-vector product over Z2:
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σr,nr+1
...
...
...
...

σr,n1+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

cnr+1,nr+1 . . . . . . cnr+1,n1+1

.................

.................

.................

.................
0 . . . . . . 0 cn1+1,n1+1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0
1
0
...

0
...

1
0
...

0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the digits 1 in the latter vector are placed at positions nl − nr + 1 for l ∈
{1, . . . , r − 1}.
Proof Let XC = (xn)n≥0 be the NUT digital sequence which is generated by the
N × N matrix C . Let N ∈ N be of the form

N = 2n1 + 2n2 + · · · + 2nr ,

where n1 > · · · > nr . For i = 1, . . . , r consider

Pi = {x2n1+···+2ni−1 , . . . , x2n1+···+2ni−1+2ni −1},

where for i = 1 we define 2n1 + · · · + 2ni−1 = 0. Every

n ∈ {2n1 + · · · + 2ni−1 , . . . , 2n1 + · · · + 2ni−1 + 2ni − 1} (13)

can be written as
n = 2n1 + · · · + 2ni−1 + a = 2ni−1li + a,

where a ∈ {0, 1, . . . , 2ni − 1} and

li =
⎧⎨
⎩
0 if i = 1,
1 if i = 2,
1 + 2ni−2−ni−1 + · · · + 2n1−ni−1 if i > 2.

For fixed i = 1, . . . , r we decompose the matrix C in the form
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⎛
⎜⎜⎜⎜⎜⎜⎝

C (ni×ni ) D(ni×N)

0(N×ni ) F (N×N)

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ Z
N×N

2 ,

where C (ni×ni ) is the left upper ni × ni sub-matrix of C . To n in (13) we associate

n = (a0, a1, . . . , ani−1, �0, �1, �2, . . .)
	 =:

(
a
li

)
,

where a0, . . . , ani−1 are the binary digits of a and �0, �1, �2, . . . are the binary digits
of li . With this notation for n in the range (13) we have

Cn =

⎛
⎜⎜⎜⎝
C (ni×ni )a

0
0
...

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝

D(ni×N)

F (N×N)

⎞
⎟⎟⎟⎟⎠ li .

This shows that the point set Pi is a digitally shifted digital net with generating
matrix C (ni×ni ) and with digital shift vector

σ i = (σi,1, σi,2, . . .)
	 :=

⎛
⎜⎜⎜⎜⎝

D(ni×N)

F (N×N)

⎞
⎟⎟⎟⎟⎠ li . (14)

Since F (N×N) is also a NUT matrix we find that the shift is of the form

σ i = (σi,1, σi,2, . . . , σi,n1+1, 0, 0, . . .)
	 ∈ Z

∞
2

Note that thematrixC (ni×ni ) has full rank, as XC is a NUT digital sequence. Hence
the shifted digital net Pi can be written as the set of points

Pi =
⎧⎨
⎩
b1
2

+ · · · + bni
2ni

+
∞∑
j=1

σi,ni+ j

2ni+ j
: a0, . . . , ani−1 ∈ {0, 1}

⎫⎬
⎭ ,

where bk = ck,1a0 ⊕ · · · ⊕ ck,ni ani−1 ⊕ σi,k for 1 ≤ k ≤ ni . Here and in the follow-
ing ⊕ denotes addition in Z2.

We emphasize that σi,1, . . . , σi,ni do not depend on the ai ’s, whereas the compo-
nents σi, j for j ≥ ni + 1 may do so. Therefore we can also write



338 R. Kritzinger and F. Pillichshammer

Pi =
{
ki
2ni

+ δi : ki ∈ {0, 1, . . . , 2ni − 1}
}

,

where δi = ∑n1−ni+1
j=1

σi,ni+ j

2ni+ j for i > 1 and δ1 = 0.
We have the following decomposition of XC

N :

XC
N =

r⋃
i=1

Pi .

Therefore and from the fact that

∫ 1

0
�P i (t) dt =

∑
z∈P i

(
1

2
− z

)

we obtain

∫ 1

0
�XC

N
(t) dt =

r∑
i=1

∫ 1

0
�P i (t) dt =

r∑
i=1

2ni −1∑
�=0

(
1

2
−

(
�

2ni
+ δi

))

=
r∑

i=1

(
1

2
− 2ni δi

)
= r

2
−

r∑
i=1

2ni δi ,

where

2ni δi =
{
0 if i = 1,
σi,ni+1

2 + σi,ni+2

22 + σi,ni+3

23 + · · · + σi,n1+1

2n1−ni+1 if i > 1

and, for k ≥ 1,

σi,ni+k =
n1−ni−k+1⊕

j=0

cni+k,ni+k+ j ani+k−1+ j

= cni+k,ni+kani+k−1 + cni+k,ni+k+1ani+k + · · · + cni+k,n1+1an1 (mod 2),

where an�
= 1 for � = 1, . . . , i − 1 and all other ar ’s are zero. Note that σi,ni+k ∈ Z2.

We have

r∑
i=1

2ni δi =
r∑

i=2

n1−ni+1∑
j=1

σi,ni+ j

2 j
.

Observe that
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σi,ni+1

. . .

σi,ni−1

σi,ni−1+1

. . .

. . .

. . .

. . .

σi,n1+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cni+1,ni+1 . . . cni+1,ni−1+1 . . . . . . cni+1,n1+1

. . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . cni−1+1,ni−1+1 . . . . . . cni−1+1,n1+1

. . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . . . . . . . . . cn1+1,n1+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0
1
0
...

0
...

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and ⎛
⎜⎜⎜⎜⎜⎜⎝

σi,ni−1+1

. . .

. . .

. . .

. . .

σi,n1+1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

cni−1+1,ni−1+1 . . . . . . cni−1+1,n1+1

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
0 . . . . . . 0 cn1+1,n1+1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
...

0
...

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Hence

⎛
⎜⎜⎜⎜⎜⎜⎝

σi−1,ni−1+1

σi−1,ni−1+2

. . .

. . .

. . .

σi−1,n1+1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

cni−1+1,ni−1+1 . . . . . . cni−1+1,n1+1

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
0 . . . . . . 0 cn1+1,n1+1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...

0
...

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

σi,ni−1+1 ⊕ 1
σi,ni−1+2

. . .

. . .

. . .

σi,n1+1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

This shows that we have

σi,k =
{

σi−1,k for k = ni−1 + 2, ni−1 + 3, . . . , n1 + 1,
σi−1,k ⊕ 1 for k = ni−1 + 1.

From this we obtain for all i ∈ {2, 3, . . . , r} that

σi,ni+ j =
{

σr,ni+ j for j = 2, 3, . . . , n1 − ni + 1,
σr,ni+ j ⊕ 1 = 1 − σr,ni+ j for j = 1.

Hence
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r∑
i=1

2ni δi =
r∑

i=2

1 − σr,ni+1

2
+

r∑
i=2

n1−ni+1∑
j=2

σr,ni+ j

2 j

= r − 1

2
−

r∑
i=2

σr,ni+1 +
r∑

i=2

n1−ni+1∑
j=1

σr,ni+ j

2 j
.

For the very last double sum we have

r∑
i=2

n1−ni+1∑
j=1

σr,ni+ j

2 j
=

r∑
i=2

n1+1∑
j=ni+1

σr, j

2 j−ni
=

n1+1∑
j=nr+1

σr, j

2 j

r∑
i=2

ni≤ j−1

2ni

=
r∑

k=2

nk−1∑
j=nk+1

σr, j

2 j

r∑
i=2

ni≤ j−1

2ni + σr,n1+1

2n1+1

r∑
i=2
ni≤n1

2ni

=
r∑

k=2

nk−1∑
j=nk+1

σr, j

2 j

r∑
i=k

2ni + σr,n1+1

2n1+1
(N − 2n1).

Hence

r∑
i=1

2ni δi = r − 1

2
−

r∑
i=2

σr,ni+1 +
r∑

k=2

nk−1∑
j=nk+1

σr, j

2 j

r∑
i=k

2ni + σr,n1+1

2n1+1
(N − 2n1).

This gives

∫ 1

0
�XC

N
(t)dt =

r∑
i=2

σr,ni+1 −
r∑

k=2

nk−1∑
j=nk+1

σr, j

2 j

r∑
i=k

2ni + O(1).

�

Now we give the proof of Theorem1.

Proof In order to simplify the notation we will write C instead of C(α) in the
following. For every N and p we have

L p(X
C
N ) ≥ L1(X

C
N ) = ‖�XC

N
‖L1([0,1)) ≥

∣∣∣∣
∫ 1

0
�XC

N
(t)dt

∣∣∣∣ . (15)

Now choose ni = 2α(r − i) for i ∈ {1, 2, . . . , r}, i.e.

N =
r∑

i=1

22α(r−i) = 22αr − 1

22α − 1
and hence r = log((22α − 1)N + 1)

2α log 2
.



Lower Bounds on the L p Discrepancy of Digital NUT Sequences 341

We have
r∑

i=k

2ni =
r∑

i=k

22α(r−i) = 22α(r−k+1) − 1

22α − 1
.

Therefore

r∑
k=2

nk−1∑
j=nk+1

σr, j

2 j

r∑
i=k

2ni =
r∑

k=2

2α(r−k)+2α∑
j=2α(r−k)+1

σr, j

2 j

22α(r−k+1) − 1

22α − 1

= 1

22α − 1

r∑
k=2

2α∑
j=1

σr,2α(r−k)+ j

22α(r−k)+ j
(22α(r−k+1) − 1)

= 22α

22α − 1

r∑
k=2

2α∑
j=1

σr,2α(r−k)+ j

2 j
+ O(1)

= 22α

22α − 1

r−2∑
�=0

2α∑
j=1

σr,2α�+ j

2 j
+ O(1).

Hence, using Lemma1, we get

∫ 1

0
�XC

N
(t)dt =

r−2∑
�=0

σr,2�α+1 − 22α

22α − 1

r−2∑
�=0

2α∑
j=1

σr,2α�+ j

2 j
+ O(1).

Now we have to determine the numbers σr, j . Observe that

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σr,1
...
...
...
...

σr,(2r−2)α+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

c1,1 . . . . . . c1,(2r−2)α+1

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
0 . . . . . . 0 c(2r−2)α+1,(2r−2)α+1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0
1
0
...

0
...

1
0
...

0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the 1’s in the latter vector are in positions lα + 1 for l ∈ {2, . . . , 2r − 2}. From
the structure of the matrix we find that
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σr,1 = · · · = σr,α+1 = 0

σr,α+2 = · · · = σr,2α+1 = 1

σr,2α+2 = · · · = σr,3α+1 = 0

σr,3α+2 = · · · = σr,4α+1 = 1

σr,4α+2 = · · · = σr,5α+1 = 0

. . .

σr,(2r−3)α+2 = · · · = σr,(2r−2)α+1 = 1

and therefore

r−2∑
�=0

2α∑
j=1

σr,2α�+ j

2 j
= 1

2α+2
+ · · · + 1

22α
+

r−2∑
�=1

(
1

2
+ 1

2α+2
+ · · · + 1

22α

)

= r − 2

2
+ (r − 1)

1

2α+2

1 − (1/2)α−1

1/2
.

Furthermore
r−2∑
�=0

σr,2α�+1 = 0 + 1 + 1 + · · · + 1 = r − 2.

Putting all together we obtain

∫ 1

0
�XC

N
(t)dt = r − 2 − 22α

22α − 1

(
r − 2

2
+ (r − 1)

1

2α+2

1 − (1/2)α−1

1/2

)
+ O(1)

= r
2α−1

22α − 1
+ O(1).

Hence, using (15), we get

L p(X
C
N ) ≥

∣∣∣∣
∫ 1

0
�XC

N
(t)dt

∣∣∣∣ = 2α−1

22α − 1

log((22α − 1)N + 1)

2α log 2
+ O(1).

�
In the following, we give the proof of Theorem2.

Proof Note that in the case nr = 0 the numbers σr, j appearing in Lemma1 can also
be understood in the following way: Let N = 2n1 + ∑n1−1

i=0 Ni2i = ∑r
i=1 2

ni with
n1 = m ∈ N, Ni ∈ Z2 for i ∈ {0, . . . , n1 − 1} and r = s2(N ). Let

η j := c j, j+1N j ⊕ · · · ⊕ c j,n1Nn1−1 ⊕ c j,n1+1.

Then we have for j ∈ {1, . . . , n1 + 1}
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σr, j =

⎧⎪⎨
⎪⎩
1 if j = n1 + 1,

η j ⊕ 1 if j = nk + 1 for some k ∈ {2, . . . , r},
η j otherwise.

Now consider amatrix of the formC(a) and set Na = 2n1 + ∑n1−1
i=1 (1 − ai )2i + 1 =∑r

i=1 2
ni , where r = l0(m) + 2. Then we have

η j = a j N j ⊕ · · · ⊕ an1−1Nn1−1 ⊕ an1 = an1 .

We observe that for Na and j ∈ {1, . . . , n1} we have σr, j = an1 ⊕ 1 if and only if
j = nk + 1 for some k ∈ {2, . . . , r}, and σr, j = an1 otherwise. Hence with Lemma
1 we find

∫ 1

0
�XC(a)

Na
(t)dt = (−1)an1

(
r

2
− 1

2

r∑
k=2

1

2nk

r∑
i=k+1

2ni

)
+ O(1).

The fact that d0(m) ≥ 2 implies ni − nk ≤ 2(k − i) and further

∣∣∣∣
∫ 1

0
�XC(a)

Na
(t)dt

∣∣∣∣ ≥ r

2
− 1

2

r∑
k=2

r∑
i=k+1

22(k−i) + O(1) = r

3
+ O(1).

This completes the proof of the first claim (10). To derive (11) from (10),we show that
changing the tuple awhich defines the matrix to ã = (1 − ai )i≥1 does not change the
integral of�XC(a)

Na
much.Weuse the following argument: Let for 2n1 ≤ N ≤ 2n1+1 − 1

with N = 2n1 + ∑n1−1
i=0 Ni2i = ∑r

i=1 2
ni

S(N ) := r

2
− 1

2

r∑
k=2

1

2nk

r∑
i=k+1

2ni .

It is not hard to show that S(N ) = 1
2

∑n1−1
�=0

∥∥ N
2�+1

∥∥ + O(1), where ‖x‖ denotes the
distance of a real number x to its nearest integer. For N as defined above we define
the integer N ′ := 2n1 + ∑n1−1

i=0 (1 − Ni )2i and prove S(N ′) = S(N ) + O(1). This is
the case, since

S(N ) − S(N ′) =
m−1∑
�=0

{∥∥∥∥ Nr

2
+ · · · + N0

2r+1

∥∥∥∥ −
∥∥∥∥1 − Nr

2
+ · · · + 1 − N0

2r+1

∥∥∥∥
}

+ O(1)

=
m−1∑
�=0
Nr=0

(−2−r−1) +
m−1∑
�=0
Nr=1

2−r−1 + O(1) =
m−1∑
�=0

(2Nr − 1)2−r−1 + O(1)

and therefore



344 R. Kritzinger and F. Pillichshammer

|S(N ) − S(N ′)| ≤
m−1∑
r=0

2−r−1 + O(1) = O(1).

This implies inequality (11). �
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Randomized QMC Methods for
Mixed-Integer Two-Stage Stochastic
Programs with Application to Electricity
Optimization

H. Leövey and W. Römisch

Abstract We consider randomized QMC methods for approximating the expected
recourse in two-stage stochastic optimization problems containing mixed-integer
decisions in the second stage. It is known that the second-stage optimal value function
is piecewise linear-quadraticwith possible kinks and discontinuities at the boundaries
of certain convex polyhedral sets. This structure is exploited to provide conditions
implying that first and second order ANOVA terms of the integrand have mixed
first order partial derivatives in the sense of Sobolev. This shows that the integrand
can be decomposed into a smooth part and a not well-behaved but small part if the
effective dimension is low. This leads to good convergence properties of randomized
QMC methods. In a case study we consider an optimization model for generating
and trading electricity under normal load and price stochasticity. Our numerical
experiments where we compare Monte Carlo and two randomized QMC methods
indicate that the latter can be superior which confirms our analysis.

Keywords Two-stage stochastic programming · Mixed-integer · Randomized
Quasi-Monte Carlo · Convergence rate · Electricity portfolio optimization

1 Introduction

Two-stage stochastic programmingmodels represent a classical approach to dealwith
optimization problems containing random parameters in the constraints. Its idea is
to introduce a two-stage decision process, where the first-stage decision x has to be
decided before the randomness occurs, and the second-stage decision y satisfies the
constraints that depend on x and the randomparameter. Then the sumof the first-stage
objective and the expected optimal value of the second-stage problem is optimized
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with respect to x . If the second-stage problem contains also integer decisions, we
arrive atmixed-integer two-stage stochastic programs.We refer to Sect. 2 for a formal
mathematical description and for recalling some structural properties. For further
information we refer to [22, 29] and to [30] for a recent monograph on stochastic
programming. We also refer to Sect. 6 for a practical application from electricity
management.

Mixed-integer two-stage stochastic programs belong to the most complicated
optimization problems. For a long time it was believed that the only way to tackle
the solution of such models is by Monte Carlo (MC) methods [13]. In this paper, we
study the possibility of applying randomized Quasi-Monte Carlo (QMC) methods
and thereby extending our earlier work [11, 20] on two-stage models without integer
decisions. In the present paper we review in Sects. 2–4 theoretical results from [21],
but discuss exclusively the error analysis in Sect. 5 and the numerical experiments
on solving a practical optimization problem from electric power industry by using
randomized QMC methods.

We consider two specific randomized QMC methods, namely, randomly scram-
bled Sobol’ point sets [5, 27] and randomly shifted lattice rules [15, 31]. For further
reading we refer to a survey of randomized QMCmethods [19] and to the recent sur-
vey [4]. It is well known that such methods display their power and fast convergence
in weighted tensor product Sobolev spaces of functions on [0, 1]d or Rd (see [4] and
Sect. 5). However, there exist several attempts to study the convergence behavior also
for functions with kinks [8] and discontinuities [9, 10]. The performance of random-
ized QMC methods may be significantly deteriorated for such functions. In [10] the
authors derive convergence rates for functions of the form g(x)1lB(x), x ∈ [0, 1]d ,
where the function g is smooth and B is a convex polyhedron. They show that the
convergence rate can be improved can be improved if some of the discontinuity faces
of B are parallel to some coordinate axes (best case being all faces parallel to some
coordinate axes since then the function exhibits bounded HK variation).

Integrands of mixed-integer two-stage models are piecewise linear-quadratic with
kinks and discontinuities at boundaries of convex polyhedral sets. However, the
structure of the convex polyhedra is not known, but hidden in the problem data.
Therefore, our approach is different and motivated by the work of [8]. We study the
smoothness of lower order ANOVA terms of the integrands and show that they are
indeed much smoother than the integrand itself under certain conditions (Sect. 4).
Hence, the integrandsmy be decomposed into a smooth part consisting of lower order
ANOVA terms and a nonsmooth part which is small if the effective dimension of
the integrand is low (see Sect. 3). This fact indicates that randomized QMCmethods
can be applied to mixed-integer two-stage models if the integrand has low effective
dimension relative to the underlying probability distribution. Details are discussed in
the error analysis for randomly shifted lattice rules (see Sect. 5) where we derive an
error estimate for the root mean square error of true and approximate optimal values.
In our numerical experiments we consider a practical electricity optimization model
under uncertainty with normal load and price processes (see Sect. 6). In that case the
effective dimension of the integrand can be reduced by factorizing the covariance
matrix using principal component analysis.
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2 Mixed-Integer Two-Stage Stochastic Programs

We consider the mixed-integer two-stage stochastic optimization problem

min
{
〈c, x〉 +

∫

Rd

Φ(q(ξ), h(ξ) − V x)P(dξ) : x ∈ X
}
, (1)

where Φ denotes the parametric infimal function of the second-stage program

Φ(u, t) := inf
{〈u1, y1〉 + 〈u2, y2〉 : W1y1 + W2y2 ≤ t, y1 ∈ R

m1 , y2 ∈ Z
m2

}
(2)

for all (u, t) ∈ R
m1+m2 × R

r , and c ∈ R
m , a closed subset X of Rm , (r, m1) and

(r, m2)-matrices W1 and W2, (r, m)-matrix V , affine functions q(ξ) ∈ R
m1+m2 ,

h(ξ) ∈ R
r , and a Borel probability measure P on Rd . To characterize the domain of

Φ we introduce

T = {
t ∈ R

r : ∃(y1, y2) ∈ R
m1 × Z

m2 such that W1y1 + W2y2 ≤ t
}

U = {
u = (u1, u2) ∈ R

m1+m2 : ∃v ∈ R
r
− such that W �

1 v = u1, W �
2 v = u2

}

the primal and dual feasible right-side sets of (2) and assume:
(A1) The matrices W1 and W2 have only rational elements.
(A2) The cardinality of the set

⋃
t∈T

{
y2 ∈ Z

m2 : ∃y1 ∈ R
m1 such that W1y1 + W2y2 ≤ t

}

is finite, i.e., the number of integer decisions appearing in (2) is finite.
It is well known that the presence of integer decisions in (2) leads to discontinuities

of Φ. By imposing conditions (A1) and (A2) the structure of the function Φ and of
its discontinuity and nondifferentiability regions can be further characterized by
utilizing results from parametric mixed-integer linear programming [1, Sect. 5.6].

Proposition 1 ([21]) Assume (A1) and (A2). The function Φ is finite and lower
semicontinuous onU × T and there exists a finite index setN and a decomposition
ofU × T consisting of Borel sets Uν × Bν , ν ∈ N , such that their closure is convex
polyhedral and Φ is bilinear in (u, t) on each Uν × Bν . Φ may have kinks and
discontinuities at the boundaries of Uν × Bν .

In order to have the integrand in (1) well defined we need the additional assumptions
known as relatively complete recourse and dual feasibility:

(A3) For each pair (x, ξ) ∈ X × R
d it holds that h(ξ) − V x ∈ T .

(A4) For each ξ ∈ R
d the recourse cost q(ξ) belongs to the dual feasible set U .
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Proposition 2 ([21]) Assume (A1)–(A4). Then the integrand

f (x, ξ) = 〈c, x〉 + Φ(q(ξ), h(ξ) − V x) (3)

in (1) is finite and lower semicontinuous on X × R
d .

For fixed x ∈ X the function f (x, ·) is linear-quadratic in ξ on the Borel sets

Ξν(x) = {ξ ∈ R
d : q(ξ) ∈ Uν, h(ξ) ∈ V x + Bν}, ν ∈ N , (4)

that decompose R
d and have convex polyhedral closures. Kinks and discontinuities

of f (x, ·) may appear at the boundaries of Ξν(x).

If the probability distribution P has at least finite second ordermoments, the objective
function of (1) is finite and lower semicontinuous due to Fatou’s lemma. Hence,
the minimization problem (1) is well defined and solvable if the objective is inf-
compact. Later we assume even a stronger moment condition in order to be able to
use properties of the ANOVA decomposition which we recall next.

3 ANOVA Decomposition and Effective Dimension

We consider a nonlinear function f : Rd → R and intend to compute the expectation
E[ f (ξ)] with respect to a probability distribution P having a density ρ given in
product form

ρ(ξ) =
d∏

k=1

ρk(ξk) (ξ ∈ R
d).

In this context, representations of f that are of interest are of the form

f (ξ) = f0 +
d∑

i=1

fi (ξi ) +
d∑

i, j=1
i< j

fi j (ξi , ξ j ) + · · · + f12···d(ξ1, . . . , ξd).

Such representations can be written more compactly in the form

f (ξ) =
∑
u⊆D

fu(ξ
u) , (5)

whereD = {1, . . . , d}, fu is defined onR|u| and ξ u belongs toR|u| and contains only
the components ξ j with j ∈ u. Here and in what follows, |u| denotes the cardinality
of u and −u the complement D \ u of u.

Next we make use of the space L2,ρ(R
d) of all real-valued square integrable

functions with inner product
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〈 f, f̃ 〉2,ρ =
∫

Rd

f (ξ) f̃ (ξ)ρ(ξ)dξ .

For each function f ∈ L2,ρ(R
d) a representation of the form (5) is called ANOVA

decomposition of f and the functions fu are called ANOVA terms if

∫

R

fu(ξ
u)ρk(ξk)dξk = 0 holds for all k ∈ u and u ⊆ D.

The ANOVA terms fu , ∅ �= u ⊆ D, are orthogonal in L2,ρ(R
d), i.e.

〈 fu, fv〉2,ρ =
∫

Rd

fu(ξ) fv(ξ)ρ(ξ)dξ = 0 if and only if u �= v,

and allow a representation by means of (so-called) ANOVA projections. The latter
are defined recursively as follows. The first and higher order projections Pk = P−{k},
k ∈ D, and Pu , u ⊆ D, are given by

(Pk f )(ξ k) =
∫ ∞

−∞
f (ξ1, . . . , ξk−1, s, ξk+1, . . . , ξd)ρk(s)ds

Pu f (ξ u) =
( ∏

k∈u

Pk f
)
(ξ u)

and it holds (see [17])

fu =
( ∏

j∈u

(I − Pj )
)

P−u( f ) = P−u( f ) +
∑
v�u

(−1)|u|−|v| P−v( f ). (6)

To define the effective dimension we consider the variances of f and fu

σ 2( f ) = ‖ f − Id,ρ( f )‖22,ρ and σ 2
u ( f ) = ‖ fu‖22,ρ . (7)

Due to the orthogonality of the ANOVA terms we obtain

σ 2( f ) = ‖ f ‖22,ρ − (Id,ρ( f ))2 =
∑

∅�=u⊆D

σ 2
u ( f ) .

Since the quotients σ 2
u ( f )/σ 2( f ) indicate for any u ⊆ D the importance of the group

ξ j , j ∈ u, of variables of f relative to the underlying distribution P , we define for
small ε ∈ (0, 1) (e.g. ε = 0.01) the effective (superposition) dimension dS(ε) of f
given P [26] as

dS(ε) = min

⎧
⎨
⎩s ∈ D :

∑
|u|≤s

σ 2
u ( f ) ≥ (1 − ε)σ 2( f )

⎫
⎬
⎭ . (8)
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An important property of the effective dimension consists in the estimate (see [32])

∥∥∥∥∥∥
f −

∑
|u|≤dS(ε)

fu

∥∥∥∥∥∥
2,ρ

≤ √
εσ ( f ) (9)

showing that the function f is approximated by a truncated ANOVA decomposition
which contains all ANOVA terms fu such that |u| ≤ dS(ε).

If the function f is nonsmooth, the ANOVA terms fu , |u| ≤ dS(ε), are often
smoother than f due to their relation to ANOVA projections and the smoothing
effect of integration (see [8, 9]). Hence, the estimate (9) indicates that the main
part of f can be smooth and the remaining nonsmooth part be small. Unfortunately,
the effective superposition dimension is hardly computable in general, but an upper
bound can be computed by finding the smallest s ∈ D such that

∑
v⊆{1,...,s}

σ 2
v ( f ) ≥ (1 − ε)σ 2( f ) . (10)

This relies on a particular integral representation of the left-hand side of (10), where
the occuring integrals can be computed approximately by means of Monte Carlo
or Quasi-Monte Carlo methods based on large samples. It should be mentioned,
however, that the upper bound can be (extremely) conservative.

4 ANOVA Terms of Mixed-Integer Two-Stage Integrands

According to Proposition 2mixed-integer two-stage integrands (3) are discontinuous
and piecewise linear-quadratic and may be written in the form

f (x, ξ) = 〈Aν(x)ξ, ξ 〉 + 〈bν(x), ξ 〉 + cν(x) (11)

for all ξ ∈ Ξν(x), ν ∈ N , x ∈ X if (A1)–(A4) are satisfied. Here, Aν(·) are (d, d)-
matrices, bν(·) ∈ R

d and cν(·) ∈ R, which are all affine functions of x . The sets
Ξν(x), νıN , x ∈ X , are defined in (4). They decompose Rd and their closures are
convex polyhedral.

In this section we need further assumptions to prove our main results:
(A5) The probability distribution P has finite fourth order absolute moments.
(A6) P has a density ρ with respect to the Lebesgue measure on Rd and ρ admits

product form

ρ(ξ) =
d∏

i=1

ρi (ξi ) (ξ = (ξ1, . . . , ξd) ∈ R
d ,
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where the densities ρi are positive and continuously differentiable, and ρi and its
derivative are bounded on R.

(A7) For each face F of dimension greater than zero of the convex polyhedral
sets clΞν(x), ν ∈ N , the affine hull aff(F) of F does not parallel any coordinate
axis in Rd for each x ∈ X (geometric condition).

Due to (A5) and (A6) we may use the concepts ANOVA decomposition and
effective dimension for studying mixed-integer two-stage integrands. Using the rep-
resentation (11) of f the structure of first and second order ANOVA projections can
be computed explicitly. This allows conclusions also on the smoothness of higher
order projections and, hence, of lower order ANOVA terms due to (6). Finally this
leads to the main result of this section. It is proved in [21] and states that at least
lower order ANOVA terms of f = f (x, ·) for fixed x ∈ X have all mixed first order
partial derivatives in the sense of Sobolev.

Theorem 1 Assume (A1)–(A7). For fixed x ∈ X we consider f = f (x, ·). Then the
ANOVA terms fu, |u| ≤ 2, u ⊂ D, of f are continuously differentiable and have
partial mixed first Sobolev derivatives which belong to L2,ρ(R

d).

We recall that a real-valued function g on R
d is the partial weak or Sobolev

derivative Dα f of a given function f if it is measurable on R
d and satisfies

∫

Rd

g(ξ)v(ξ)dξ = (−1)|α|
∫

Rd

f (ξ)(Dαv)(ξ)dξ for all v ∈ C∞
0 (Rd), (12)

where C∞
0 (Rd) denotes the space of infinitely differentiable functions with compact

support in R
d and

Dαv = ∂ |α|v
∂ξ

α1
1 · · · ∂ξ

αd
d

(13)

is the classical derivative of v of order |α| = ∑d
i=1 αi , where α = (α1, . . . , αd) is a

multi-index. The same symbol as in (13) is also used for partial Sobolev derivatives,
since classical are also Sobolev derivatives. In the classical case Eq. (12) is just the
classical multivariate integration by parts formula.

Remark 1 Theorem 1 shows that the second order ANOVA approximation

f (2) =
∑
|u|≤2
u∈D

fu (14)

of themixed-integer two-stage integrand f (see (3)) has allmixedfirst partial Sobolev
derivatives. If the effective dimension dS(ε) of f (see (8)) is at most 2, the mean
square distance between the integrand f and f (2) satisfies

‖ f − f (2)‖22,ρ ≤ εσ 2( f )



352 H. Leövey and W. Römisch

due to (9). For a discussion of techniques for reducing the effective dimension we
refer to [32, 33].

While the assumptions (A1)–(A6) are reasonable, assumption (A7) seems some-
what implicit and restrictive at first sight and needs further explanation. For a normal
probability distribution P with nonsingular covariance matrix Σ , the orthogonal
matrix Q of eigenvectors allows a transformation of Σ into a diagonal matrix D
containing the eigenvalues in its main diagonal. This observation enables the follow-
ing characterization of the geometric condition (A7) using the Haar measure over
the topological group of orthogonal matrices. For its proof we refer to [21] and for
further information on the Haar measure to [3, Chap. 9].

Theorem 2 We consider (1) and assume (A1)–(A4). If P is multivariate normal on
R

d with nonsingular covariance matrix Σ , the geometric condition (A7) is satisfied
almost everywhere with respect to the Haar measure over the topological group of
orthogonal (d, d) matrices needed to transform Σ into diagonal form.

5 Error Analysis of Randomly Shifted Lattice Rules

In this section we provide an error analysis for randomly shifted lattice rules applied
to solving mixed-integer two-stage stochastic programs (1). Since typical integrands
in stochastic programming are defined onRd , we introduce first appropriate Sobolev
spaces. Following [17, 25]we startwith theweightedSobolev spacesW 1

2,γi ,ρi ,ψi
(R)of

functions h ∈ L2,ρi (R) that are absolutely continuous with derivatives h′ ∈ L2,ψi (R)

with positive continuous weight functions ψi , i ∈ D. They are endowed with the
weighted inner product

〈h, h̃〉γi ,ψi =
( ∫

R

h(ξ)ρi (ξ)dξ
)( ∫

R

h̃(ξ)ρi (ξ)dξ
)

+ 1

γi

∫

R

h′(ξ)h̃′(ξ)ψ2
i (ξ)dξ ,

where for each i ∈ D the weight γi is positive and we assume that for any x, x̃ ∈ R

∫ x̃

x
ψ−2

i (t)dt < ∞ .

The latter condition implies that the weighted Sobolev space is complete [14] and,
thus, a Hilbert space. Then the weighted tensor product Sobolev space

Fd = W (1,...,1)
2,γ,ρ,ψ,mix(R

d) =
d⊗

i=1

W 1
2,γi ,ρi ,ψi

(R)

is equipped with the inner product



Randomized QMC Methods for Mixed-Integer Two-Stage Stochastic Programs … 353

〈 f, f̃ 〉γ,ψ =
∑
u⊆D

γ −1
u

∫

R|u|
Iu,ρ( f )(ξ u)Iu,ρ( f̃ )(ξ u)

∏
i∈u

ψ2
i (ξi )dξ u,

where the integrands Iu,ρ( f )(ξ u) and the weights γu are defined by

Iu,ρ( f )(ξ u) =
∫

R|−u|

∂ |u| f

∂ξ u
(ξ)

∏
i∈−u

ρi (ξi )dξ−u and γu =
∏
i∈u

γi , γ∅ = 1 .

In the QMC literature, this is called the unanchored setting with product weights.
In order to apply QMC methods to the computation of integrals

Iρ( f ) =
∫

Rd

f (ξ)ρ(ξ)dξ =
∫

Rd

f (ξ)

d∏
i=1

ρi (ξi )dξ

with f ∈ Fd , the Hilbert space Fd has to be transformed to a Hilbert space Gd of
functions g on [0, 1]d by the isometry

f ∈ Fd ⇐⇒ g(·) = f (Φ−1(·)) ∈ Gd ,

where Φ−1(t) = (φ−1
1 (t1), . . . , φ

−1
d (td)), t ∈ [0, 1]d , and φi denotes the one-

dimensional distribution function to the density ρi , i ∈ D. The inner product of
Gd is

〈g, g̃〉γ = 〈 f (Φ−1(·)), f̃ (Φ−1(·))〉γ = 〈 f, f̃ 〉γ,ψ .

The choice of the weight functions ψi depends on the marginal densities ρi , i ∈ D.
We refer to [16, 25] for a discussion of this aspect and for a list of marginal densities
and the corresponding weight functions.

Now we consider randomly shifted lattice rules for numerical integration in Gd

(see [15, 31]). Let Zn = {z ∈ N : 1 ≤ z ≤ n, gcd (z, n) = 1}denote the set of natural
numbers between 1 and n that are relatively prime to n. Given a generating vector g ∈
Zd

n and a random shift vector � which is uniformly distributed in [0, 1]d , the shifted
lattice rule points are t j = { jg

n + �}, j = 1, . . . , n, where the braces indicate taking
componentwise the fractional part. The corresponding randomized QMCmethod on
Gd is of the form

Qn,d(g) = 1

n

n∑
j=1

g(t j ) (g ∈ Gd , n ∈ N). (15)

Let ϕ(n) denote the cardinality of Zn , thus, ϕ(n) = n if n is prime, and let ξ j =
Φ−1(t j ) for j = 1, . . . , n. Then we obtain from [25, Theorem 8] that a generating
vector g ∈ Zd

n can be constructed by a component-by-component algorithm such that
for each δ ∈ (0, 1

2 ] there exists C(δ) > 0 with
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(
E

∣∣Id,ρ( f ) − Qn,d( f (Φ−1(·)))∣∣2) 1
2 ≤ C(δ)‖ f ‖γ,ψ ϕ(n)−1+δ (16)

if the following condition
∞∑

i=1

γ
1

2(1−δ)

i < ∞ (17)

on the weights is satisfied and f belongs to Fd . To state our next result we denote
by v(P) the infimal value of (1) and by v(Qn,d) the infimum if the integral in (1) is
replaced by the randomly shifted lattice rule (15).

Theorem 3 Let (A1)–(A7) be satisfied and X be compact. Assume that all inte-
grands f = fx , x ∈ X, of the form (3) have at most effective superposition dimension
dS(ε) = 2 for some ε > 0 and that the second order ANOVA approximation f (2) of
f belongs to Fd . Furthermore, we assume that Qn,d is a randomly shifted lattice rule
(15) satisfying (16). For each δ ∈ (0, 1

2 ] there exists Ĉ(δ) > 0 such that

(
E

∣∣v(P) − v(Qn,d)
∣∣2) 1

2 ≤ Ĉ(δ)ϕ(n)−1+δ + an , (18)

where the sequence (an) converges to zero and allows the estimate

an ≤ √
ε σ ( f ) (19)

with σ( f ) denoting the variance (7) of f .

Proof Let x ∈ X be fixed andwe consider f = fx . TheQMCerrormay be estimated
using the ANOVA approximation f (2) of f of order 2 as follows:

∣∣Id,ρ( f ) − Qn,d( f (Φ−1(·))))∣∣ ≤
∣∣∣
∫

Rd

f (2)(ξ)ρ(ξ)dξ − 1

n

n∑
j=1

f (2)(ξ j )

∣∣∣

+
∣∣∣
∫

Rd

f −(2)(ξ)ρ(ξ)dξ − 1

n

n∑
j=1

f −(2)(ξ j )

∣∣∣,

where f −(2) = f − f (2). For any δ ∈ (0, 1
2 ] we continue

(
E

∣∣Id,ρ( f ) − Qn,d ( f (Φ−1(·)))∣∣2) 1
2 ≤ (

E
∣∣Id,ρ( f (2)) − Qn,d ( f (2)(Φ−1(·)))∣∣2) 1

2 (20)

+(
E

∣∣Id,ρ( f −(2)) − Qn,d ( f −(2)(Φ−1(·)))∣∣2) 1
2

≤ C(δ)‖ f (2)‖γ,ψ ϕ(n)−1+δ + an , (21)

wherewe use (16) with f = f (2) to estimate the first term and denote the second term
by an . Since the integrand f −(2) is Riemann-integrable, the sequence (an) converges
to zero. Next we utilize [18, Proposition 4] on expressing the variance of randomly
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shifted lattice rules in terms of squared Fourier coefficients, Parseval’s identity for
‖ f − f (2)‖22,ρ and the estimate (9) to obtain

an ≤ ‖ f − f (2)‖2,ρ ≤ √
ε σ ( f ).

Our next step is to study how the right-hand side in the estimate (20), (21) depends
on x ∈ X . The only term depending on x is the Fd -norm of f (2) = f (2)

x . Since f (2)

contains only ANOVA terms of order 1 and 2, its norm is given by

‖ f (2)‖2γ,ψ =
∑
|u|≤2

γ −1
u

∫

R|u|

∣∣∣
∫

R|−u|

∂ |u| f (2)

∂ξ u
(ξ)

∏
i∈−u

ρi (ξi )dξ−u
∣∣∣
2 ∏

i∈u

ψ2
i (ξi )dξ u .

Due to (14) and (6) the second order ANOVA approximation allows a representation
in terms of ANOVA projections Pu f with d − 2 ≤ |u| ≤ d. The modulus of such
ANOVA projections and of their first and second order derivatives can be bounded
by some constant times max{1, ‖x‖}‖ξ−u‖2 (at least almost everywhere). Since X is
compact, those bounds being continuous functions with respect to x are uniformly
bounded on X . Using (A5) this implies that ‖ f (2)‖γ,ψ can be bounded by some
uniform constant C̄ . Now, it remains to appeal to a standard stability result for
stochastic programs (see [28, Theorem 5]) to obtain

(
E

∣∣v(P) − v(Qn,d)
∣∣2) 1

2 ≤ sup
x∈X

(
E

∣∣Id,ρ( fx ) − Qn,d( fx (Φ
−1(·)))∣∣2) 1

2

≤ C(δ)C̄ϕ(n)−1+δ + an ,

which completes the proof. �

We note that the differentiability properties of f (2) in Theorem 1 motivate the con-
dition for f (2) imposed in Theorem 3.

6 Application to Electricity Optimization Under
Uncertainty

We consider a model for the optimal operation of an electricity company in the
presence of stochasticity of the electrical load ξλ and market price ξπ . The company
owns a number of thermal units and bilateral contracts with other power producers.
In addition it trades at electricity markets. Load and price are components of the
random vector

ξ = (ξλ,1, . . . , ξλ,T , ξπ,1, . . . , ξπ,T )�.

The time horizon consists of T hourly intervals. At each time period t ∈ {1, . . . , T }
the load has to be covered. During peak load periods the production capacity based
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on their own m units does eventually not suffice to cover the load. Hence, it has to
buy the necessary extra amounts from other m1 markets and m2 producers at prices

p1, j1,t (ξ) = p̄1, j1,t + ξπ,t , p2, j2,t = p̄2, j2,t , t = 1, . . . , T, j1 = 1, . . . , m1, j2 = 1, . . . , m2,

where the vector ξπ,t represents the stochastic part of the prices p1, j1,t at the markets,
and p̄1, j1,t , p̄2, j2,t , t = 1, . . . , T , represent contractual fixed prices. The aim of the
company consists in minimizing its expected costs in the presence of uncertain load
and prices. The two-stage stochastic electricity optimization model is of the form

min
{ T∑

t=1

m∑
j=1

c j,t x j,t +
∫

R2T

inf {g(x, y, u, ξ) : (y, u) ∈ Y (x, ξ)} P(dξ) : x ∈ X
}

(22)
with the convex polyhedral feasible set

X :=
{

x ∈ R
mT

∣∣∣∣∣
ai,t ≤ xi,t ≤ bi,t , i = 1, . . . , m , t = 1, . . . , T

|xi,t − xi,t+1| ≤ δi,t , i = 1, . . . , m , t = 1, . . . , T − 1

}
,

where the linear constraints model capacity limits and ramping constraints. The
second-stage objective function g is given by

g(x, y, u, ξ) =
T∑

t=1

⎡
⎣

m1∑
j1=1

p1, j1,t (ξ)(y1, j1,t + η j1u j1,t ) +
m2∑

j2=1

p2, j2,t y2, j2,t

⎤
⎦

and the second-stage constraint set Y (x, ξ) as subset of points (y, u) ∈ R
(m1+m2)T ×

{0, 1}m1T such that

m∑
i=1

xi,t +
m1∑

j1=1

y1, j1,t +
m2∑

j2=1

y2, j2,t ≥ ξλ,t , t = 1, . . . , T,

w2, j2,t ≤ y2, j2,t , j2 = 1, . . . , m2 , t = 1, . . . , T,

|y2, j2,t − y2, j2,t+1| ≤ ρ j2,t , j2 = 1, . . . , m2 , t = 1, . . . , T − 1,

w1, j1,t u j1,t ≤ y j1,t ≤ z j1,t u j1,t , j1 = 1, . . . , m1 , t = 1, . . . , T,

u j1,τ − u j1,τ−1 ≤ u j1,t , τ = t − τ , . . . , t − 1 , j1 = 1, . . . , m1 , t = 1, . . . , T,

u j1,τ−1 − u j1,τ ≤ 1 − u j1,t , τ = t − τ , . . . , t − 1 , j1 = 1, . . . , m1 , t = 1, . . . , T,

with fixed positive costs ci,t , up/down price proportion η j1 , bounds ai,t , bi,t , δi,t ,
w1, j1,t ,w2, j2,t , z j1,t , ρ j2,t modeling capacity limits and ramp constraints. The vari-
ables u j1,t ∈ {0, 1}, j1 = 1, . . . , m1, t = 1, . . . , T , model on/off decisions for exter-
nal units and the bounds τ , τ are their minimum up/down times.
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We assume that the stochastic loads and prices ξλ,t , ξπ,t follow the condition

(
ξλ,t

ξπ,t

)
=

(
ξ̄λ,t

ξ̄π,t

)
+

(
E1,t

E2,t

)
, t = 1, . . . , T,

(
ξ̄λ,1

ξ̄π,1

)
= B1

(
γ1,1
γ2,1

)
,

(
ξ̄λ,t

ξ̄π,t

)
= A

(
ξ̄λ,t−1

ξ̄π,t−1

)
+ B1

(
γ1,t
γ2,t

)
+ B2

(
γ1,t−1

γ2,t−1

)
, t = 2, . . . , T,

where (E1,1, . . . , E1,T ) and (E2,1, . . . , E2,T ) are fixed mean vectors for loads and
prices simulating the trend or seasonality, A, B1, B2 ∈ R

2×2, and γ1,t , γ2,t ∼ N(0,1)
are independent standard normal random variables. The resulting stochastic pro-
cess ξ = {(ξλ,t , ξπ,t )}T

t=1 is thus a multivariate ARMA(1,1) process. Similar models
have been considered for simulating prices and demands in the energy industry in
the literature, see e.g. [6]. Note that since the model contains unbounded demands
ξλ,1, . . . , ξλ,T , no upper bounds on the variables y2, j2,t , j2 = 1, . . . , m2 , t =
1, . . . , T were imposed, allowing the latter to cover arbitrarily large demand val-
ues. We select in addition the prices π̄2, j2,t significantly higher than the prices π̄1, j1,t ,
such that the variables y2, j2,t , j2 = 1, . . . , m2 , t = 1, . . . , T do not always repre-
sent the trivial choice for costs minimization. For our tests, we chose the time horizon
T = 100, therefore the real dimension of the model is d = 2T = 200. Further model
constants were set to

A =
(
0.29 0.44
0.44 0.70

)
, B1 =

(
1 0
0 1

)
, B2 =

(
0.75 0.053
0.053 0.43

)
.

We refer to [2, Sect. 7] for detailed information about modeling with multivariate
ARMA processes. The resulting joint probability distribution P of the process is
normal with dimension d = 2T and covariance matrix Σ . The expectation integral
is transformed by factorizing the covariance matrix Σ = A A� as usually recom-
mended in normal high-dimensional integration (see [7, Sect. 2.3.3]). We carry out
our tests using the standard lower triangular Choleskymatrix for A (CH) and the prin-
cipal component analysis factorization, in which A = (

√
λ1u1, . . . ,

√
λdud)with the

eigenvalues λ1 ≥ λ2 ≥ · · · , λd > 0 of Σ in decreasing order and the corresponding
orthonormal eigenvectors ui , i = 1, . . . , d. Another description of PCA is

Σ = Q diag(λ1, . . . , λd) Q�,

where Q denotes the orthogonal matrix Q = (u1 · · · ud). While the Cholesky fac-
torization seems to assign the same importance to every variable and, hence, is not
suitable to reduce the effective dimension, several authors report an enormous reduc-
tion of the effective dimension in financial models if PCA is used (e.g., [32]).

A simulated demandsandprices-path ξ can then be obtained by

ξ = A (φ−1(z1), . . . , φ
−1(z2T ))� + (E1,1, . . . , E1,T , E2,1, . . . , E2,T ),
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where Z = (z1, . . . , z2T ) ∼ U ([0, 1]2T ) (i.e., the probability distribution of Z is
the uniform distribution on [0, 1]2T ), and φ−1(.) represents the inverse cumulative
normal distribution function, which can be efficiently and accurately calculated by
Moro’s algorithm (see [7, Sect. 2.3.2]). The evaluation begins then with MC or
randomized QMC points for the samples Z ∼ U ([0, 1]2T ). ForMC points in [0, 1]2T

we used the Mersenne Twister [24] as pseudo random number generator. For QMC,
we use randomly scrambled Sobol’ points with direction numbers given in [12] and
randomly shifted lattice rules [15, 31]. As scrambling technique we used random
linear scrambling described in [23]. For our tests, we considered cubic decaying
weights γ j = 1

j3 for constructing the lattice rules.
We chose the following parameters for the numerical experiments:

• m = 8, m1 = 3, m2 = 4.
• For all i, j1, j2, t, we select randomly ai,t ∈ [0.001, 0.003], bi,t ∈ [0.3, 0.6],

δi,t ∈ [0.3, 0.35],w1, j1,t , w2, j2,t ∈ [0.000001, 0.00002], z j1,t ∈ [5, 7], γ ∈ [0.1, 0.3],
ρ j2,t ∈ [1.0, 1.1], and τ = τ = 2.

• For all i, j1, j2, t, we select randomly ci,t ∈ [7, 9], c̄1, j1,t ∈ [8, 10], and
c̄2, j2,t ∈ [11, 13]. We fixed (E1,1, . . . , E1,d) = (6, 6, . . . , 6), and
(E2,1, . . . , E2,d) = (0, 0, . . . , 0).

We performed the following computational experiments.Wefixed N sampling points
ξ j and replaced the expected recourse costs by the corresponding equal-weight MC
or randomized QMC quadrature rule. Then the resulting approximate stochastic
program is of the form

min
x∈X

⎧
⎨
⎩

T∑
t=1

m∑
i=1

ci,t xi,t + 1

N

N∑
j=1

g(x, y j , u j , ξ j ) : (y j , u j ) ∈ Y (x, ξ j ), j = 1, . . . , N

⎫
⎬
⎭.

(23)
It represents a mixed-integer linear program comprising (m + (m1 + m2)N )T con-
tinuous and m1N T binary variables. Since N ranges between 27 and 29, the program
(23) contains more than 30.000–150.000 binary variables. These large scale mixed-
integer linear programs are solved by means of the standard solver ILOG CPLEX
(2014). The aim of the experiments is to examine the convergence rate with respect
to the sample size N of the estimated optimal value from (23) obtained by replacing
the expectation with MC or randomized QMC quadrature rules. We performed 5
runs for all experiments by changing the set of randomly selected parameters. But
the qualitative results remained very similar, therefore we only expose one of these
results in the figures. Figure1 summarizes the convergence behavior under PCA
factorizations and Table1 shows the mean and standard deviation of the estimated
optimal values under PCA for each sampling method and each sample size over the
300 replications. We chose N1 = 128, N2 = 256, N3 = 512 as sample sizes for the
Mersenne Twister and for the scrambled Sobol’ points. For randomly shifted lattices,
we chose N1 = 127, N2 = 257, N3 = 509. The random shifts were generated using
the Mersenne Twister. We estimate the relative root mean square errors (RMSE) of
the optimal values by taking 10 runs of every experiment, and repeat the process 30
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Fig. 1 Shown are the Log10 of the relative RMSE with PCA factorization of covariance matrix for
computing the optimal value of (23) for parameters as stated above. Results for Mersenne Twister
MC and randomly scrambled Sobol’ QMC with N1 = 128, N2 = 256 and N3 = 512 points (MC
128, . . . or SOB 128, . . .), and randomly shifted lattice rules QMC with N1 = 127, N2 = 257 and
N3 = 509 lattice points (LAT 127, . . .)

Table 1 Mean and standard deviation of the estimated optimal values under PCA for different
sampling methods and sample sizes

PCA Mean Standard deviation

N1 N2 N3 N1 N2 N3

MC 5022.61 5024.13 5026.24 121.86 77.53 62.28

LAT 5026.65 5026.79 5026.99 19.60 9.90 5.41

SOB 5027.14 5027.50 5027.53 4.34 2.16 0.96

times for the box plots in the figures. The box-plots show the median value (red line),
first quartile (lower bound of the box) and third quartile (upper bound of the box).
Outliers are marked in red and the rest of the results lie between the brackets.

The average of the estimated rates of convergence for the tests under PCA were
approximately −0.91 for randomly shifted lattice rules, and −1.05 for the randomly
scrambled Sobol’ points, for different price- and bound-parameters as listed above.
This is clearly superior to the MC convergence rate of −0.5. The upper bound for
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Fig. 2 Shown are the Log10 of relative RMSEwith Cholesky factorization of covariance matrix for
computing the optimal value of (23) for parameters as stated above. Results for Mersenne Twister
MC and randomly scrambled Sobol’ QMC with N1 = 128, N2 = 256 and N3 = 512 points (MC
128, . . . or SOB 128, . . .), and randomly shifted lattice rules QMC with N1 = 127, N2 = 257 and
N3 = 509 lattice points (LAT 127, . . .)

the effective dimension of the integrand f (x, ·) in (22) was computed by means of
(10) at 5 different feasible vertices x . We used the algorithm proposed in [32] with
216 randomly scrambled Sobol’ points ensuring that all results for the ANOVA total
and partial variances were obtained with at least 3 digits accuracy. The upper bound
of dS(ε) with ε = 0.01 is computed by using (10) and remained always equal to
2. We observed also that the first variable under PCA seems to accumulate always
more than 90% of the total variance σ 2( f (x, ·)). Hence, PCA serves as excellent
dimension reduction technique in this case. Additionally, we performed the same
test runs by using the Cholesky decomposition CH instead of PCA for factorizing
the covariance matrix. Using CH the observed results, see Fig. 2, were completely
different than those under PCA. The average of the estimated rates of convergence of
randomized QMC was approximately −0.5, which is the same as the expected MC
rate, although the implied error constants seem to be smaller for randomly shifted
lattice rules and randomly scrambled Sobol’ points than for MC. The upper bound
for the effective dimension of the integrand f (x, ·) in (22) was estimated by using
(10) to be 200 in all tests.
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7 Conclusions

The theoretical and numerical results indicate that randomized QMCmethods can be
superior toMC for solving two-stage stochastic programming problems at least if the
recourse cost function has low effective dimension and

√
εσ ( f ) is smaller than the

target accuracy for solving the optimization problem. Then using randomized QMC
methods instead of MC allows a reduction of sample sizes from N approximately to√

N . This fact becomes especially important when solving practical mixed-integer
stochastic programming models because it reduces the dimension of the large scale
mixed-integer linear programs of type (23) and, hence, leads to a considerable reduc-
tion of running time. But, Fig. 2 shows that the error constants for randomized QMC
methods tend to be smaller than for MC even if the effective dimension is not low.
Hence, the use of randomized QMCmethods for solving stochastic programs instead
of MC seems to pay in any case.
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Abstract Adding inequality constraints (e.g. positivity, monotonicity, convexity) in
Gaussian processes (GPs) leads to more realistic stochastic emulators. Due to the
truncated Gaussianity of the posterior, its distribution has to be approximated. In this
work, we consider Monte Carlo (MC) and Markov Chain MC (MCMC) methods.
However, strictly interpolating the observations may entail expensive computations
due to highly restrictive sample spaces. Furthermore, having emulators when data
are actually noisy is also of interest for real-world applications. Hence, we introduce
a noise term for the relaxation of the interpolation conditions, and we develop the
corresponding approximation of GP emulators under linear inequality constraints.
We demonstrate on various synthetic examples that the performance of MC and
MCMC samplers improves when considering noisy observations. Finally, on 2D and
5D coastal flooding applications, we show that more flexible and realistic emulators
are obtained by considering noise effects and by enforcing the inequality constraints.
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1 Introduction

Gaussian processes (GPs) have been applied in a great variety of real-world prob-
lems as stochastic emulators in fields such as physics, biology, finance and robotics
[18, 20]. In the latter, they can be used for emulating the dynamics of robots when
experiments become costly-to-evaluate (e.g. motion caption) [20].

Imposing inequality constraints (e.g. boundedness, monotonicity, convexity) into
GP emulators leads tomore realistic profiles guided by the physics of data [9, 15, 17].
Some applications where constrained GP emulators have been successfully used are
computer networking (monotonicity) [9], econometrics (positivity or monotonicity)
[5], and nuclear safety criticality assessment (positivity and monotonicity) [15].

In [15, 17], an approximation of GP emulators based on (first-order) regression
splines was introduced in order to satisfy general sets of linear inequality constraints.
Becauseof thepiecewise linearity of thefinite-dimensional approximationused there,
the inequalities are satisfied everywhere in the input space. Furthermore, authors in
[15, 17] showed that the resulting posterior distribution conditioned on both obser-
vations and inequality constraints is truncated Gaussian-distributed. Finally, it was
shown in [3] that the resulting posterior mode converges uniformly to the spline
interpolation when the number of knots of the spline goes to infinity.

Since the posterior of the model in [15, 17] is a truncated GP, its distribution
cannot be computed in closed-form but can be approximated via Monte Carlo (MC)
or Markov Chain MC (MCMC). Several MC/MCMC samplers have been tested in
[15], leading to emulators that perform well up to 2D. Starting from the claim that
allowing noisy observations could yield less constrained sample spaces for samplers,
here we develop the approximation of constrained GP emulators when adding noise.
Moreover, (constrained) GP emulators for observations that are truly noisy are also
of interest for practical implementations. We test the efficiency of various MC and
MCMC samplers under 1D synthetic examples where models without observation
noise yield impractical sampling routines.We also show that, inmonotonic examples,
our framework canbe applied up to 5Dand/or for thousands of observations providing
high-quality effective sample sizes within reasonable running times.

This paper is organised as follows. In Sect. 2, we introduce the finite-dimensional
approximation of GP emulators with linear inequality constraints and noisy observa-
tions. In Sect. 3, we apply our framework to synthetic examples where the consider-
ation of noise-free observations is unworkable. We also test it on 2D and 5D coastal
flooding applications. Finally, in Sect. 4, we highlight the conclusions, as well as
potential future works.
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2 Gaussian Process Emulators with Linear Inequality
Constraints and Noisy Observations

In this paper, we aim at imposing linear inequality constraints on GP emulators when
observations are considered noisy. As an example, Fig. 1 shows three GP emulators Y
satisfying different inequality conditions, with training points at x1 = 0.2, x2 = 0.5,
x3 = 0.8. We use a squared exponential (SE) covariance function,

kθ (x, x
′) = σ 2 exp

{
− (x − x ′)2

2�2

}
,

with covariance parameters θ = (σ 2 = 0.52, � = 0.2). We set a noise variance to
be equal to 0.5% of the variance parameter σ 2. One can note that different types
of (constrained) Gaussian priors (top) yield different GP emulators (bottom) for the
same training data. Observe also that the interpolation constraints are relaxed due to
the noise effect, and that the inequality constraints are still satisfied everywhere.

Next, we formally introduce the corresponding model to obtain constrained GP
emulators with linear inequality constraints and noisy observations as in Fig. 1.
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Fig. 1 GP emulators under no constraints (left), boundedness constraints Y ∈ [0, 1] (centre), and
Y ∈ [0, 1]with non-increasing trajectories (right). Samples from the different types of (constrained)
Gaussian priors and resulting GP emulators are shown in the first and second row, respectively. Each
panel shows: conditional emulations (dashed lines), and the 95% prediction interval (grey region).
For boundedness constraints, bounds at l = 0 and u = 1 correspond to horizontal dashed lines. For
GP emulators, the conditional mean (blue solid line) and observations (black dots) are shown
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2.1 Finite-Dimensional Approximation of Gaussian Process
Emulators with Noisy Observations

Let Y be a GP on R with mean zero and covariance function k. Consider x ∈ D ,
with compact input spaceD = [0, 1]. Consider a spline decomposition with an equi-
spaced set of knots t1, . . . , tm ∈ D such that t j = ( j − 1)Δm , for j = 1, . . . ,m, with
Δm = 1/(m − 1). This assumption can be relaxed for non-equispaced designs as in
[13], leading to similar developments as the ones in this paper but with slight differ-
ences when imposing some constraints (e.g. convexity condition). In contrast to [15],
we consider noisy observations yi ∈ R, for i = 1, . . . , n. Define Ym as a stochastic
emulator consisting of the piecewise-linear approximation of Y at knots (t1, . . . , tm):

Ym(x) =
m∑
j=1

φ j (x)Y (t j ), s.t. Ym(xi ) + εi = yi , (1)

where xi ∈ D , for i = 1, . . . , n, εi ∼ N
(
0, τ 2

)
with noise variance τ 2, and

φ1, . . . , φm are hat basis functions given by

φ j (x) :=
{
1 −

∣∣∣ x−t j
Δm

∣∣∣ if
∣∣∣ x−t j

Δm

∣∣∣ ≤ 1,

0 otherwise.
(2)

As in many GP implementations, we assume that ε1, . . . , εn are independent, and
independent of Y . However, since the proposed framework does not have any restric-
tion on the type of the covariance function, the extension to other noise distributions
and/or noise with autocorrelation is achieved as in [18, 20].

The benefit of considering noisy observations in (1) is that, due to the “relaxation”
of the interpolation conditions, the number of knotsm does not have to be larger than
the number of observations n (assumption required in [15, 17] for the interpolation
of noise-free observations). Then, for m � n, the approximation in (1) would lead
to less expensive procedures since the cost of the MC and MCMC samplers grow
with the value of m rather than n (see Sects. 2.2 and 2.3).

2.2 Imposing Linear Inequality Constraints

We now assume that Ym also satisfies inequality constraints everywhere in the input
space (e.g. boundedness, monotonicity, convexity), i.e.

Ym ∈ E , (3)

with E a convex set of functions defined by some constraints.
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The benefit of using (1) is that, for many constraint sets E , satisfying Ym ∈
E is equivalent to satisfying only a finite number of inequalities at the knots
Y (t1), . . . ,Y (tm) [17]:

Ym ∈ E ⇔ ξ ∈ C , (4)

where ξ = [ξ1, . . . , ξm]�,with ξ j := Y (t j ) for j = 1, . . . ,m, andC is a convex set on
R

m . As an example,whenwe evaluate aGPwith bounded trajectories l ≤ Ym(x) ≤ u,
C is defined by C[l,u] := {c ∈ R

m; ∀ j = 1, . . . ,m : l ≤ c j ≤ u}. In this paper, we
consider the case where C is composed by a set of q linear inequalities of the form:

C =
{
c ∈ R

m; ∀p = 1, . . . , q : l p ≤
m∑
j=1

λp, j c j ≤ u p

}
, (5)

where theλp, j ’s encode the linear operations, the l p’s and u p’s represent the lower and
upper bounds, respectively. Note that C[l,u] is a particular case of C where λp, j = 1
if p = j and zero otherwise, and with bounds l p = l, u p = u, for p = 1, . . . ,m.

We aim at computing the distribution of Ym conditionally on the constraints in (1)
and (3). Observe that the vector ξ is a Gaussian vector with mean zero and covariance
matrix Γ = (k(ti , t j ))1≤i, j≤m . Denote Λ = (λp, j )1≤p≤q,1≤ j≤m , l = (�p)1≤p≤q , u =
(u p)1≤p≤q , Φ the n × m matrix defined by Φ i, j = φ j (xi ), and y = [y1, . . . , yn]�
the vector of noisy observations at points x1, . . . , xn . Then, the distribution of ξ

conditioned on Φξ + ε = y, with ε ∼ N
(
0, τ 2 I

)
, is given by

ξ |{Φξ + ε = y} ∼ N (μ,Σ), (6)

with conditional parameters,

μ = Γ Φ�[ΦΓ Φ� + τ 2 I]−1 y, and Σ = Γ − Γ Φ�[ΦΓ Φ� + τ 2 I]−1ΦΓ .

(7)
Note that, in the limit as the noise variance τ 2 → ∞, then μ → 0 and Σ → Γ , and
therefore the distribution in (6) ignores the observations y. In that case, MC and
MCMC samplers are performed in the sample space of the prior of ξ , which is less
restrictive than the one of ξ |{Φξ + ε = y}.

Since the constraints are onΛξ , one can first show that the posterior distribution of
Λξ conditioned on Φξ + ε = y and l ≤ Λξ ≤ u is truncated Gaussian-distributed
(see, e.g., [15] for a further discussion when noise-free observations are considered):

Λξ |{Φξ + ε = y, l ≤ Λξ ≤ u} ∼ TN
(
Λμ, ΛΣΛ�, l, u

)
. (8)

Notice that the inequality constraints are encoded in the posterior mean Λμ, the
posterior covarianceΛΣΛ�, and bounds (l, u). Observe that, due to the “relaxation”
of the interpolation conditions, constraints can also be imposedwhen the observations
y1, . . . , yn do not fulfil the inequalities.
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Algorithm 1 GP emulator with linear inequality constraints.
Require: y ∈ R

n , Γ ∈ R
m×m , τ 2 ∈ R

+, Φ ∈ R
n×m , Λ ∈ R

q×m , l ∈ R
q , u ∈ R

q

Ensure: Emulated samples from ξ |{Φξ + ε = y, l ≤ Λξ ≤ u}
1: Compute the conditional mean and covariance of ξ |{Φξ + ε = y},
2: μ = Γ Φ�(ΦΓ Φ� + τ 2 I)−1 y,
3: Σ = Γ − Γ Φ�(ΦΓ Φ� + τ 2 I)−1ΦΓ .
4: Sample z from the truncated Gaussian distribution via MC/MCMC,
5: z = Λξ |{Φξ + ε = y, l ≤ Λξ ≤ u} ∼ TN

(
Λμ, ΛΣΛ�, l, u

)
.

6: Compute ξ by solving the linear system Λξ = z.

Finally, the truncated Gaussian distribution in (8) does not have a closed-form
expression but can be approximated via MC or MCMC. Hence, samples of ξ can be
recovered from samples of Λξ , by solving a linear system. As discussed in [15], the
number of inequalities q is usually larger than the number of knotsm formany convex
sets C . If we further assume that q ≥ m, and that rank(Λ) = m, then the solution
of the linear system Λξ exists and is unique (see [15] for a further discussion).
Therefore, samples of Ym are obtained from samples of ξ , with the formula Ym(x) =∑m

j=1 φ j (x)ξ j for x ∈ D . The implementation of the GP emulator Ym is summarised
in Algorithm1.

2.3 Maximum a Posteriori Estimate via Quadratic
Programming

In practice, the posterior mode (maximum a posteriori estimate, MAP) of (8) can
be used as a point estimate of unobserved quantities [20], and as a starting state of
MCMC samplers [18]. Let μ∗ be the posterior mode that maximises the probability
density function (pdf) of ξ conditioned on Φξ + ε = y and l ≤ Λξ ≤ u. Then,
maximising the pdf in (8) is equivalent to maximise the quadratic problem:

μ∗ = argmax
ξ s.t. l≤Λξ≤u

{−[ξ − μ]�Σ−1[ξ − μ]}, (9)

with conditional parameters μ,Σ as in (7). By maximising (9), we are looking for
the most likely vector ξ satisfying both the observation and inequality constraints.
The optimisation problem in (9) is equivalent to

μ∗ = argmin
ξ s.t. l≤Λξ≤u

{ξ�Σ−1ξ − 2μ�Σ−1ξ}, (10)

which is solved via quadratic programming [10]. One must note that the mode of (8)
converges uniformly to the spline solution when the number of knots m → ∞ [3,
17].
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2.4 Extension to Higher Dimensions

The GP emulator in Sect. 2.1 can be extended to d dimensions by tensorisation (see,
e.g., [15, 17] for a further discussion on imposing constraints for d ≥ 2). Consider
x = (x1, . . . , xd) ∈ D with compact spaceD = [0, 1]d , and a set of knots per dimen-
sion (t11 , . . . , t

1
m1

), . . . , (td1 , . . . , tdmd
). Then, the GP emulator Ym1,...,md is given by

Ym1,...,md (x) =
∑

j1=1,...,m1

· · ·
∑

jd=1,...,md

[φ1
j1(x1) × · · · × φd

jd (xd)]ξ j1,..., jd , (11)

where ξ j1,..., jd := Y (t j1 , . . . , t jd ), and φ1
j1
, . . . , φd

jd
are hat functions as in (2). We

aim at computing (11) subject to the observations Ym1,...,md (xi ) + εi = yi , with
yi ∈ R and εi ∼ N

(
0, τ 2

)
for i = 1, . . . , n; and inequality constraints ξ = [ξ1,...,1,

. . . , ξm1,...,md ]� ∈ C withC a convex set ofRm1×···×md .We assume that ε1, . . . , εn are
independent, independent of Y . Then, following a similar procedure as in Sect. 2.2,
Algorithm1 can be used with ξ a Gaussian vector with mean zero and covariance
matrix Γ .

Note that considering less knots than observations has a great impact since
MC/MCMC samplers will then be performed in low dimensional spaces when
m = m1 × · · · × md � n. In that case, the inversion of (ΦΓ Φ� + τ 2 I) is obtained
more efficiently through the matrix inversion lemma (see, e.g. [20], Appendix A.3),
reducing the computational complexity to the inversion of anm × m full-rankmatrix.
Thus, the computation of the conditional parameters in (7) and the estimation of the
covariance parameter are achieved faster.

3 Numerical Experiments

The codes are implemented in the R programming language, based on the open
source package lineqGPR [14]. This package is based on previous R developments
produced by theDice (Deep InsideComputer Experiments) andReDiceConsortiums
(e.g. DiceKriging [22], DiceDesign [7], kergp [6]), but incorporating some
structures of classic libraries for GP regression modelling from other platforms (e.g.
the GPmat toolbox from MATLAB, and the GPy library from Python).

lineqGPR also contains implementations of various samplers for the approx-
imation of truncated (multivariate) Gaussian distributions. Samplers are based on
recent contributions on efficient MC and MCMC inference methods. Table1 sum-
marises some properties of the samplers used in this paper (see, e.g., [4, 16, 19,
23]).

Experiments are executed on a single core of an Intel® CoreTM i7-6700HQ CPU.
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Table 1 Comparison between the MC and MCMC samplers provided in lineqGPR: rejection
sampling from the mode (RSM) [16], exponential tilting (ExpT) [4], Gibbs sampling [23], and
Hamiltonian MC (HMC) [19]

Item RSM ExpT Gibbs HMC

Exact method ✓ ✓ ✗ ✗

Non parametric ✓ ✓ ✓ ✓

Acceptance rate Low High 100% 100%

Speed Slow Fast Slow-fast Fast

Uncorrelated
samples

✓ ✓ ✗ ✗

Previous R
Implementa-
tions

constrKriging TruncatedNormal tmvtnorm tmg

3.1 1D Toy Example Under Boundedness Constraints

Here, we use the GP framework introduced in Sect. 2 for emulating bounded trajecto-
ries Ym ∈ [−α, α] with constant α ∈ R

+. We aim at testing the resulting constrained
GP emulator when noise-free or noisy observations are considered. The dataset is
(xi , yi )1≤i≤5: (0, 0), (0.2,−0.5), (0.5,−0.3), (0.75, 0.5), and (1, 0.4). We use a
Matérn 5/2 covariance function,

kθ (x, x
′) = σ 2

(
1 +

√
5|x − x ′|

�
+ 5

3

(x − x ′)2

�2

)
exp

{
−

√
5|x − x ′|

�

}
,

with θ = (σ 2, �). We fix σ 2 = 10, leading to highly variable trajectories. The length-
scale � and the noise variance τ 2 are estimated via maximum likelihood (ML).

The effect of different bounds [−α, α] on constrained GP emulators can be seen in
Fig. 2. There, we setm = 100 for having emulations with high-quality of resolution,
and we generated 104 constrained emulations via RSM [16]. One can observe that,
since interpolation conditions are relaxed due to the influence of the noise variance
τ 2, the prediction intervals are wider when bounds become closer to the observations.
For the case α = 0.5, the noise-free GP emulator yielded costly procedures due to
a small acceptance rate equal to 0.1%. In contrast, when noisy observations are
assumed, emulations are more likely to be accepted leading to an acceptance rate
equal to 16.92%.

We now test the samplers in Table1 for the approximation of (8). We consider the
examples in Fig. 2. For the MCMC samplers, we use the mode in (10) as the starting
state of the Markov chains. This initialises the chains in a high probability region.
Thus, only few emulations are “burned” in order to have samples that appeared to be
independent of the starting state. We burn the first 100 emulations. We evaluate the
performance of MC/MCMC samplers in terms of the effective sample size (ESS):
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Fig. 2 GP emulators under boundedness constraints Ym ∈ [−α, α]. Results are shown considering
noise-free (top) and noisy observations (bottom): α = 1 (left),α = 0.6 (centre), andα = 0.5 (right).
Each panel shows: the observations (dots), the conditional mean (blue solid line), the conditional
mode (green dot-dash line), the 95% prediction interval (grey region), and the bounds (dashed lines)

ESS = ns
1 + 2

∑ns
k=1 ρk

, (12)

with ns the size of the sample path, and ρk the sample autocorrelation with lag k.
The ESS indicator gives an intuition on how many emulations of the sample path
are considered independent [11]. To obtain non-negative values of ρk , we use the
estimator proposed in [8]. We compute the ESS of each coordinate of the vector
ξ , i.e. ESS j = ESS(ξ 1

j , . . . , ξ
ns
j ) for j = 1, . . . ,m, and we evaluate the quantiles

(q10%, q50%, q90%) over the m resulting ESS values. The value of ns = 104 is chosen
to be larger than the minimum ESS required to obtain a proper estimation of ξ [11].
Finally, we test the efficiency of each sampler by computing the time normalised
ESS (TN-ESS) [12] at q10% (worst case): TN-ESS = q10%(ESS)/ (CPU Time).

Table2 displays the performance indicators obtained for each samplers from
Table1. Firstly, one can observe that RSMyielded themost expensive procedures due
to its high rejection rate when sampling the constrained trajectories from the poste-
rior mode. In particular, for α = 0.5, and assuming noise-free observations, the pro-
hibitively small acceptance rate of RSM led to costly procedures (about 7h) making
it impractical. Secondly, although the Gibbs sampler needed to discard intermediate
samples (thinning effect), it provided accurate ESS values within a moderate running
time (with effective sampling rates of 400s−1). Thirdly, due to the high acceptance
rates obtained by ExpT, and good exploratory behaviour of the HMC, both samplers
provided much more efficient TN-ESS values compared to their competitors, gen-
erating thousands of effective emulations each second. Finally, as we expected, the
performance of some samplers were improved when adding a noise. For RSM, due
to the relaxation of the interpolation conditions, we noted that emulations were more
likely to be accepted leading quicker routines: more than 150 times faster with noise
(see Table2, α = 0.5).
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Fig. 3 Efficiency of the HMC sampler in terms of its mixing performance. Results are shown for
the trace (left) and autocorrelation (right) plots at Ym(0.01)

Finally, we assess the efficiency of the HMC sampler in terms of its mixing per-
formance (see Fig. 3). We analyse the example of Fig. 2 using the noisy GP emulator
with α = 0.5. From both the trace and autocorrelation plots at Ym(0.01), one can
conclude that the HMC sampler mixes well with small correlations.

3.2 1D Toy Example Under Multiple Constraints

In [15], numerical implementations were limited to noise-free observations that ful-
filled the inequality constraints. In this example, we test the case when noisy obser-
vations do not necessarily satisfy the inequalities.

Consider the sigmoid function given by

x �→ 1

1 + exp
{ − 10(x − 1

2 )
} , for x ∈ [0, 1]. (13)

We evaluate (13) at n = 300 random values of x , and we contaminate the function
evaluations with an additive Gaussian white noise with a standard deviation equal to
10% of the sigmoid range. Since (13) exhibits both boundedness and non-decreasing
conditions, we add those constraints in the GP emulator Ym using the convex set:

C ↑
[0,1] =

{
c ∈ R

m; ∀ j = 2, . . . ,m : c j ≥ c j−1, c1 ≥ 0, cm ≤ 1
}
.

Hence, MC/MCMC samplers will be performed on R
m+1 (number of inequalities).

As a covariance function, we use a SE kernel and estimate (σ 2, �, τ 2) via ML.
Unlike [15], there is no need here to satisfy the conditionm ≥ n, due to the noise.

Therefore, the finite approximation of Sect. 2 can be seen as a surrogate model of
standardGP emulators form � n. Figure4 shows the performance of the constrained
emulators via HMC for m = 5, 25, 100. Note that, for small values of m, the GP
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Fig. 4 GP emulators under boundedness and monotonicity constraints. Results are shown for
different number of knots m. Each panel shows: the target function (red dashed line), the noisy
training points (black dots), the conditional mean (blue solid line), the 95% prediction interval
(grey region), and the bounds (horizontal dashed lines)

emulator runs fast but with a low quality of resolution of the approximation. For
example, form = 5, because of the linearity assumption betweenknots, the predictive
mean presents breakpoints at the knots. On the other hand, the GP emulator yields
smoother (constrained) emulations as m increases (m ≥ 25). In particular, one can
observe that for m = 25, the emulator leads to a good trade-off between quality of
resolution and running time (13 times faster than for m = 100).

We now test the performance of the constrained framework under various reg-
ularity assumptions, noise levels and constraints. For the example in Fig.4, we fix
m = 200 and use different choices of covariance functions: either a Matérn 3/2, a
Matérn 5/2 or a SE kernel. Given a fixed noise level, we estimate θ = (σ 2, �) via
ML. The noise levels are chosen using different proportions of the sigmoid range.
We assessGP emulators accounting for either boundedness constraints,monotonicity
constraints or both.We compute the CPU time and the Q2 criterion. The Q2 criterion
is given by Q2 = 1 − SMSE, where SMSE is the standardised mean squared error
[20], and is equal to one if the predictive mean is equal to the test data and lower
than one otherwise. We use the 300 noise-free function evaluations from (13) as test
data.

Results are shown in Table3. Note that the introduction of noise let us also have
emulations in the cases where the regularity of the GP prior is not in agreement
with the regularity of data and constraints. In particular, expensive procedures were
obtained for theMatérn 3/2 kernelwhenmonotonicitywas considered. In those cases,
the high irregularity of the prior yielded more restrictive sample spaces ensuring
monotonicity. Observe also that the computational cost of GP emulators can be
attenuated by increasing the noise level but at the cost of the accuracy of predictions.

3.3 Coastal Flooding Applications

Coastal flooding models based on GPs have taken great attention regarding compu-
tational simplifications for estimating flooding indicators (like maximumwater level
at the coast, discharge, flood spatial extend, etc.) [2, 21]. However, since standard
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GP emulators do not take into account the nature of many coastal flooding events
satisfying positivity and/or monotonicity constraints, those approaches often require
a large number of observations (commonly costly to obtain) in order to have reliable
predictions. In those cases, GP emulators yield expensive procedures. Here we show
that, by enforcing GP emulators to those inequality constraints, our framework leads
to more reliable prediction also when a small amount of data is available.

We test the performance of the emulator in (11) on two coastal flooding datasets
provided by the BRGM (the French Geological Survey, “Bureau de Recherches
Géologiques et Minières” in French). The first dataset corresponds to a 2D coastal
flooding application located on the Mediterranean coast, focusing on the water level
at the coast [21]. The second one describes a 5D coastal flooding example induced by
overflow on the Atlantic coast, focusing on the inland flooded surface [2]. We train
GPs whether the constraints are considered or not. For the unconstrained emulators,
we use the GP-based scheme provided by the R package DiceKriging [22].

3.3.1 2D Coastal Flooding Application on the Mediterranean Coast

The coastal study site is located on a lido, which has faced two flood events in the
past [21]. The dataset used here contains 900 observations of the maximum water
level at the coast ξm depending on two input parameters: the offshore water level
(ξo) and the wave height (Hs), both in meters. The observations are taken within the
domains ξo ∈ [0.25, 1.50] and Hs ∈ [0.5, 7] (with each dimension being discretised
in 30 elements). Note that, on the domain considered for the input variables, ξm
increases as ξo and Hs increase (see Fig. 5).
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Fig. 5 2D coastal flooding application. (Left) 2D visualisation of the ξm values measured over a
regular grid. (Right) 3D visualisation of the ξm data
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Here, we normalise the input space to be in [0, 1]2. As covariance function, we
use the product of 1D SE kernels,

kθ (x, x′) = σ 2 exp

{
− (x1 − x ′

1)
2

2�21

}
exp

{
− (x2 − x ′

2)
2

2�22

}
,

with parameters θ = (σ 2, �1, �2). Both θ and the noise variance τ 2 are estimated via
ML. For the constrained model, we propose emulators accounting for both positivity
and monotonicity constraints, and we manually fix the number of knots m1 = m2 =
25 aiming a trade-off between high quality of resolution and computational cost.

For illustrative purposes, we first train both unconstrained and constrained GP
emulators using 5% of the data (equivalent to 45 training points chosen by amaximin
Latin hypercube DoE [7]), and we aim at predicting the remaining 95%. Results are
shown in Fig. 6a, b. In particular, one can observe that the constrained GP emulator
slightly outperforms the prediction around the extreme values of ξm , leading to an
absolute improvement of 4% of the Q2 indicator.

We then repeat the experiment using twenty different sets of training data and
different proportions of training points. According to Fig. 6c, one can observe that the
constrained emulator often outperforms the unconstrained one, with significant Q2

improvements for small training sets. As coastal flooding simulators are commonly
costly-to-evaluate, the benefit of having accurate prediction with fewer observations
becomes useful for practical implementations.

3.3.2 5D Coastal Flooding Application on the Atlantic Coast

As in [2], here we focus on the coastal flooding induced by overflow.We consider the
“Boucholeurs” area located close to “La Rochelle”, France. This area was flooded
during the 2010 Xynthia storm, an event characterised by a high storm surge in phase
with a high spring tide. We focus on those primary drivers, and on how they affect
the resulting flooded surface. We refer to [2] for further details.

The dataset contains 200 observations of the flooded area Y in m2 depending on
five input parameters x = (T, S, φ, t+, t−) detailing the offshore forcing conditions:

• The tide is simplified by a sinusoidal signal parametrised by its high tide level
T ∈ [0.95, 3.70] (m).

• The surge signal is described by a triangular model using four parameters: the
peak amplitude S ∈ [0.65, 2.50] (m), the phase difference φ ∈ [−6, 6] (hours),
between the surge peak and the high tide, the time duration of the raising part
t− ∈ [−12.0,−0.5] (hours), and the falling part t+ ∈ [0.5, 12.0] (hours).

One must note that the flooded area Y increases as T and S increase. The dataset is
freely available in the R package profExtrema [1].

Before implementing the corresponding GP emulators, we first analyse the struc-
ture of the dataset. We test various standard linear regression models in order to
understand the influence of each input variable x = (T, S, φ, t+, t−). We assess the
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Fig. 6 2D GP emulators for
modelling the coastal
flooding data in [21]. (Left)
Prediction results using 5%
of the dataset via maximin
Latin hypercube DoE. Each
panel shows: training and
test points (black dots and
red crosses), the conditional
mean function (solid
surface), and the Q2

criterion (subcaptions). c Q2

assessment using different
proportions of training points
(x-axis) and using twenty
different random training
sets. Results are shown for
the unconstrained (red) and
constrained (blue) GP
emulators
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quality of the linear models using the adjusted R2 criterion. Similarly to the Q2,
the R2 indicator evaluates the quality of predictions over all the observation points
rather than only over the training data. Therefore, for noise-free observations, the R2

indicator is equal to one if the predictors are exactly equal to the data. We also test
variousmodels considering different input variables (e.g. transformation of variables,
or inclusion of interaction terms).

After testing different linear models, we observed that they were more sensitive
to the inputs T and S rather than to other ones. We also noted that, by transforming
the phase coordinate φ �→ cos(2πφ), an absolute improvement about 26% of the R2

indicator was obtained, and the influence of both t− and t+ became more significant.
Thus, we used these settings for the GP implementations.

We normalised the input space to be in [0, 1]5, and we used a covariance function
given by the product of 1D Matérn 5/2 kernels. The covariance parameters θ =
(σ 2, �1, . . . , �5) and the noise variance τ 2 were estimated via ML. We also tested
other types of covariance structures, including SE and Matérn 3/2 kernels, but less
accurate predictions were obtained according to the Q2 criterion. For the constrained
model, we proposed GP emulators accounting for positivity constraints everywhere.
We also imposed monotonicity constraints along the T and S input dimensions.
Since the computational complexity of the constrained GP emulator increases with
the number of knots m used in the piecewise-linear representation, we strategically
fixed them in coordinates requiring high quality of resolution. Since we observed that
the contribution of the inputs T , S, t− and t+ was almost linear (result in agreement
with [2]), we placed fewer knots over those entries. In particular, we fixed as number
of knots per dimension: m1 = m2 = 4, m3 = 5 and m4 = m5 = 3.

As in Sect. 3.3.1, we trained GP emulators using twenty different sets of training
data and different proportions of training points. According to Fig. 7, one can observe
that the constrained GP emulator often outperforms the unconstrained one, with
significant Q2 improvements for small training sets. In particular, one can note that,
by enforcing the GP emulators with both positivity and monotonicity constraints,
accurate predictions were also provided by using only 10% of the observations as
training points (equivalent to 20 observations).

4 Conclusions

We have introduced a constrained GP emulator with linear inequality conditions and
noisy observations. By relaxing the interpolation of observations through a noise
effect, MC and MCMC samplers are performed in less restrictive sample spaces.
This leads to faster emulators while preserving high effective sampling rates. As
seen in simulations, the HMC sampler in [19] usually outperformed its competitors,
providing more efficient effective sample rates in high dimensional sample spaces.

Since there is no need of having more knots than observations (m ≥ n), the com-
putational complexity of MC and MCMC samplers is independent of n. Therefore,
since the samplers are performed on R

m , they can be used for large values of n by
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Fig. 7 5D GP emulators for
modelling the coastal
flooding data in [2]. The
boxplots show the Q2 results
using different proportions
of training points (x-axis)
and using twenty different
random training sets. Results
are shown for the
unconstrained (red) and
constrained (blue) GP
emulators
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letting m � n. On 2D and 5D coastal flooding applications, we also showed that
more flexible and realistic GP emulators were obtained by considering noise effects
and by enforcing the (linear) inequality constraints.

Despite the improvements obtained here for scaling constrained GP emulators
up to 5D, their tensor structure makes them impractical for tens of input variables.
We believe that this limitation can be mitigated by using other types of designs of
the knots (e.g. sparse designs). In addition, supplementary assumptions on the nature
of the target function can also be made to reduce the dimensionality of the sample
spaces where MC and MCMC samplers are performed (e.g. additivity).
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A Multilevel Monte Carlo
Asymptotic-Preserving Particle
Method for Kinetic Equations
in the Diffusion Limit

Emil Løvbak, Giovanni Samaey and Stefan Vandewalle

Abstract We propose a multilevel Monte Carlo method for a particle-based
asymptotic-preserving scheme for kinetic equations. Kinetic equations model trans-
port and collision of particles in a position-velocity phase-space. With a diffusive
scaling, the kinetic equation converges to an advection-diffusion equation in the limit
of zero mean free path. Classical particle-based techniques suffer from a strict time-
step restriction to maintain stability in this limit. Asymptotic-preserving schemes
provide a solution to this time step restriction, but introduce a first-order error in the
time step size.Wedemonstrate how themultilevelMonteCarlomethod can be used as
a bias reduction technique to perform accurate simulations in the diffusive regime,
while leveraging the reduced simulation cost given by the asymptotic-preserving
scheme. We describe how to achieve the necessary correlation between simulation
paths at different levels and demonstrate the potential of the approach via numerical
experiments.

Keywords Multilevel Monte Carlo · Kinetic equations · Particle methods ·
Asymptotic-preserving schemes

1 Introduction

Kinetic equations, modeling particle behavior in a position-velocity phase space,
occur in many domains. Examples are plasma physics [4], bacterial chemotaxis [33]
and computational fluid dynamics [32]. Many of these applications exhibit a strong
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time-scale separation, leading to an unacceptably high simulation cost [7]. However,
one typically is only interested in computing the evolution of some macroscopic
quantities of interest. These are usually some moments of the particle distribution,
which can be computed as averages over velocity space. The time-scale atwhich these
quantities of interest change is often much slower than the time-scale governing the
particle dynamics. The nature of the macroscopic dynamics depends on the scaling
of the problem, which can be either hyperbolic or diffusive [15].

The model problem in this work is a one-dimensional kinetic equation of the form

∂t f (x, v, t) + v∂x f (x, v, t) = Q ( f (x, v, t)) , (1)

where f (x, v, t) represents the distribution of particles as a function of position x ∈ R

and velocity v ∈ R as it evolves in time t ∈ R
+. The left-hand side of (1) represents

transport, while Q( f (x, v, t)) is a collision operator that results in discontinuous
velocity changes. As the collision operator, we take the BGK model [3], which
represents linear relaxation to an equilibrium distribution that only depends on the
particle density

ρ(x, t) =
∫

f (x, v, t)dv. (2)

We introduce a parameter ε that represents themean free path.When decreasing ε,
the average time between collisions decreases. In this paper, we consider the diffusive
scaling. In that case, we simultaneously increase the time scale at which we observe
the evolution of the particle distribution, arriving at

ε∂t f (x, v, t) + v∂x f (x, v, t) = 1

ε
(M (v)ρ(x, t) − f (x, v, t)) , (3)

with M (v) the particles’ steady state velocity distribution. It has been shown that
when taking the limit ε → 0, the behavior of equations of the form (3) is fully
described by the diffusion equation [25]

∂tρ(x, t) = ∂xxρ(x, t). (4)

Kinetic equations can be simulatedwith deterministic methods, solving the partial
differential equation (PDE) that describes the evolution of the particle distribution
in the position-velocity phase space. Alternatively, one can use stochastic methods
that simulate a large number of particle trajectories. Deterministic methods become
prohibitively expensive for higher dimensional applications. Particle-based methods
do not suffer from this curse of dimensionality, at the expense of introducing a
statistical error in the computed solution. The issue of time-scale separation is present
in both deterministic and stochastic methods.

One way to avoid the issue of time-scale separation is through the use of
asymptotic-preserving methods, which aim at reproducing a scheme for the limiting
macroscopic equation in the limit of infinite time-scale separation. For deterministic
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discretization methods, there is a long line of such methods. We refer to [2, 5, 6,
10, 14, 19–24, 26–28] as a representative sample of such methods in the diffusive
scaling. The recent review paper [15] contains an overview of the state of the art
on asymptotic-preserving methods for kinetic equations, and ample additional refer-
ences. In the particle-based setting, only a few asymptotic-preserving methods have
been developed, mostly in the hyperbolic scaling [11–13, 29–31]. In the diffusive
scaling, there are only two works [9, 16] so far, to the best of our knowledge. Both
methods avoid the time step restrictions caused by fast problem time-scales, at the
expense of introducing a bias, which is of order one in the time step size.

The goal of the present paper is to combine the asymptotic-preserving scheme
in [16] with the multilevel Monte Carlo method. Given a fixed computational budget,
a trade-off typically has to be made between a small bias and a low variance. The
former can be obtained by reducing the time step, the latter by simulating many
trajectories with large time steps. The core idea behind the multilevel Monte Carlo
method [17] is to reduce computational cost, by combining estimates computed with
different time step sizes. The multilevel Monte Carlo method, originally developed
in the context of stochastic processes, has been applied to problems across many
fields, for example, finance [17] and biochemistry [1]. The method has successfully
been applied to simulating large PDE’s with random coefficients [8]. Recent work
has also used multilevel Monte Carlo methods in an optimization context [34].

The remainder of this paper is organized as follows. In Sect. 2, we describe the
model kinetic equation on which we will demonstrate our approach, as well as the
asymptotic-preserving Monte Carlo scheme that was introduced in [16]. In Sect. 3,
we cover the multilevel Monte Carlo method that is the core contribution of this
paper. In Sect. 4, we present some preliminary experimental results, demonstrating
the properties of the new scheme as well as its computational gain. Finally, in Sect. 5
we will summarize our main results and mention some possible future extensions.

2 Model Problem and Asymptotic-Preserving Scheme

2.1 Model Equation in the Diffusive Limit

The model problem considered in this work is a one-dimensional kinetic equation in
the diffusive scaling of the form (3), which we rewrite as

∂t f (x, v, t) + v

ε
∂x f (x, v, t) = 1

ε2
(M (v)ρ(x, t) − f (x, v, t)) . (5)

For ease of exposition, we restrict ourselves to the case of two discrete veloci-
ties, v = ±1. Then, we can write f+(x, t) and f−(x, t) to represent the distribu-
tion of particles with, respectively, positive and negative velocities, and ρ(x, t) =
f+(x, t) + f−(x, t) represents the total density of particles. In this case, Eq. (5)
simplifies to
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⎧⎨
⎩

∂t f+(x, t) + 1
ε
∂x f+(x, t) = 1

ε2

(
ρ(x,t)

2 − f+(x, t)
)

∂t f−(x, t) − 1
ε
∂x f−(x, t) = 1

ε2

(
ρ(x,t)

2 − f−(x, t)
) . (6)

Equation (6) is also known as the Goldstein-Taylor model, and can be solved using a
particle scheme. For this, we introduce a time stepΔt and an ensemble of P particles

{(
Xn

p,Δt , V
n
p,Δt

)}P
p=1

. (7)

The particle state (position and velocity) is represented as (X, V ), p is the particle
index (1 ≤ p ≤ P), and n represents the time index, i.e., Xn

p,Δt ≈ X p(nΔt). Equa-
tion (6) is then solved via operator splitting as

1. Transport step. The position of each particle is updated based on its velocity

Xn+1
p,Δt = Xn

p,Δt + V n
p,ΔtΔt. (8)

2. Collision step. During collisions, each particle’s velocity is updated as:

Vn+1
p,Δt =

{
±1/ε, with probability pc,Δt = Δt/ε2 and equal probability in the sign,

Vn
p,Δt , otherwise.

(9)

This approximation requires a time step restriction Δt = O(ε2) as ε → 0, both to
ensure pc,Δt < 1 in the collision phase, and to keep the increments in the transport
phase finite. This leads to unacceptably high computational costs for small ε.

2.2 Asymptotic-Preserving Monte Carlo Scheme

Recently, an asymptotic-preserving Monte Carlo scheme was proposed [16], based
on the simulation of a modified equation

{
∂t f+ + ε

ε2 + Δt ∂x f+ = Δt
ε2+Δt ∂xx f+ + 1

ε2 +Δt

(
ρ

2 − f+
)

∂t f− − ε
ε2 + Δt ∂x f− = Δt

ε2 +Δt ∂xx f− + 1
ε2 +Δt

(
ρ

2 − f−
) . (10)

In (10) we have dropped the space and time dependency of f± and ρ, for conciseness.
The model given by (10) reduces to (6) in the limit when Δt tends to zero and has
an O(Δt) bias. In the limit when ε tends to zero, the equations reduce to (4).

Discretizing this equation, using operator splitting as above, again leads to a
Monte Carlo scheme. For each particle X p and for each time step n, one time step
now consists of a transport-diffusion and a collision step:

1. Transport-diffusion step. The position of the particle is updated based on its
velocity and a Brownian increment
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Xn+1
p,Δt = Xn

p,Δt ± ε

ε2 + Δt
Δt + √

2Δt

√
Δt

ε2 + Δt
ξ n
p

= Xn
p,Δt + V n

p,ΔtΔt + √
2Δt

√
DΔtξ

n
p ,

(11)

in which we have taken ξ n
p ∼ N (0, 1) and introduced a Δt-dependent velocity

V n
p,Δt and diffusion coefficient DΔt :

V n
p,Δt = ± ε

ε2 + Δt
, DΔt = Δt

ε2 + Δt
. (12)

2. Collision step. During collisions, each particle’s velocity is updated as:

V n+1
p,Δt =

⎧⎪⎪⎨
⎪⎪⎩

± ε

ε2 + Δt
, with probability pc,Δt = Δt

ε2 + Δt
and equal probability in the sign,

V n
p,Δt , otherwise.

(13)

For more details, we refer the reader to [16].

3 Multilevel Monte Carlo Method

3.1 Method and Notation

We want to estimate some quantity of interest Y that is a function of the particle
distribution f (x, v, t) at some specific moment t = t∗ in time, i.e., we are interested
in

Y (t∗) = E[F(X (t∗))] =
∫ ∫

F(x) f (x, v, t∗)dxdv. (14)

Note that, in Eq. (14), the function F only depends on the position x and not on
velocity. This is a choice we make for notational convenience and is not essential for
the method we present.

The classical Monte Carlo estimator Ŷ (t∗) for (14) is given by

Ŷ (t∗) = 1

P

P∑
p=1

F
(
XN

p,Δt

)
, t∗ = NΔt. (15)

Here, P denotes the number of simulated trajectories, N the number of simulated time
steps, Δt the time step size, and XN

p,Δt is generated by the time-discretised process
(11)–(13). Given a constrained computational budget, a trade-off has to be made
when selecting the time step size Δt . On the one hand, a small time step reduces the
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bias of the simulation of each sampled trajectory, and thus of the estimated quantity
of interest. On the other hand, a large time step reduces the cost per trajectory,
which increases the number of trajectories that can be simulated and thus reduces
the resulting variance on the estimate. The key idea behind the Multilevel Monte
Carlo method [17] is to generate a sequence of estimates with varying discretization
accuracy and a varying number of realizations. The method achieves the bias of the
finest discretization, with the variance of the coarsest discretization.

To apply the multilevel Monte Carlo method, we define a sequence of time step
sizes, denoted by Δt� with � = 0 . . . L , with � = L denoting the finest level of dis-
cretization (smallest time step), and � = 0 the coarsest level. We use a fixed ratio of
time steps between subsequent levels, i.e., we set Δt�−1 = MΔt� for some integer
M . At each level, we simulate a number P� of particle trajectories. An initial coarse
estimator with a large number P0 of sample trajectories is given by

Ŷ0(t
∗) = 1

P0

P0∑
p=1

F
(
XN0

p,Δt0

)
, t∗ = N0Δt0. (16)

This initial estimate can be improved upon by a series of difference estimators Ŷ�(t∗),
� = 1 . . . L , of the form

Ŷ�(t
∗) = 1

P�

P�∑
p=1

(
F
(
XN�

p,Δt�

)
− F

(
XN�−1

p,Δt�−1

))
, (17)

with N�Δt� = t∗, for each value of �, and P� the number of correlated sample tra-
jectories at each level. The estimators (17) estimate the bias induced by sampling
with a simulation time step size Δt�−1 by comparing the sample results with a sim-
ulation using a time step size Δt�. The estimators (16)–(17) are then combined into
a multilevel Monte Carlo estimator via a telescopic sum,

Ŷ (t∗) =
L∑

�=0

Ŷ�(t
∗). (18)

It can easily be seen that the expected value of estimator (18) is the same as that of
estimator (15) with the finest time step ΔtL . If the required number of particles P� at
each level decreases sufficiently fast with increasing level �, the multilevel estimator
will result in a reduced computational cost for a given accuracy. For more details on
the multilevel Monte Carlo method, we refer to [18].
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3.2 Correlating Asymptotic-Preserving Monte Carlo
Simulations

3.2.1 Coupled Trajectories and Notation

The differences in (17) will only have low variance if the simulated paths Xn,m
Δt�,p

and Xn
Δt�−1,p are correlated. To achieve this correlation, we will couple the different

sources of randomness in the simulation at consecutive levels. In each time step
using the asymptotic-preserving particle scheme (11)–(13), there are two sources of
stochastic behavior. On the one hand, a new Brownian increment ξ n

p is generated
for each particle in each transport-diffusion step (11). On the other hand, in each
collision step (13), a fraction of particles randomly get a new velocity V n

p .
Particle trajectories can be coupled by separately correlating the random numbers

used for the individual particles in the transport-diffusion and collision phase of each
time step. To show how this is done, we introduce a pair of simulations spanning a
time step with size Δt�−1: (i) a simulation at level � − 1, using a single time step of
size Δt�−1; and (ii) a simulation at level �, using M time steps of size Δt�:

⎧⎪⎨
⎪⎩
Xn+1

p,Δt�−1
= Xn

p,Δt�−1
+ Δt�−1V n

p,Δt�−1
+ √

2Δt�−1
√
DΔt�−1ξ

n
p,�−1, ξnp,�−1 ∼ N (0, 1),

Xn+1,0
p,Δt�

= Xn,0
p,Δt�

+
M∑

m=1

(
Δt�V

n,m
p,Δt�

+ √
2Δt�

√
DΔt� ξ

n,m
p,�

)
, ξ

n,m
p,� ∼ N (0, 1),

(19)

with m ∈ {1, . . . , M} and Xn,m
p,Δt� ≈ X p(nΔt�−1 + mΔt�) ≡ X p((nM + m)Δt�).

The key point of the algorithm is to compute the velocities V n
p,Δt�−1

and the Brow-
nian increments ξ n

p,�−1 at level � − 1, based on the randomly generated values ξ
n,m
p,�

and V n,m
p,Δt� at level �, instead of generating these independently. The main difficulty

lies in maximizing the correlation between the velocities and Brownian increments
at levels � and � − 1 while avoiding the introduction of an extra bias at level � − 1.
Once the coupled simulation (19) at level � − 1 is performed, we can insert the results
in (17) to obtain a low-variance difference estimator. In the next two subsections,
we explain how we correlate the Brownian increments during the transport phase
(Sect. 3.2.2) and the velocities during the collision phase (Sect. 3.2.3). We present
the complete algorithm in Sect. 3.2.4.

3.2.2 Coupling the Transport-Diffusion Phase

We first correlate the Brownian increments at levels � and � − 1. To this end, we first
simulate the stochastic process at level �, using i.d.d. increments ξ

n,m
p,� . Then, at level

� − 1, we compute the Brownian increments, ξ n
p,�−1, from those at level �,

{
ξ
n,m
p,�

}
,

ensuring that ξ n
p,�−1 ∼ N (0, 1). This condition is clearly satisfied if we define ξ n

p,�−1
as

ξ n
p,�−1 =

M∑
m=1

ξ
n,m
p,�√
M

. (20)
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Fig. 1 Correlated diffusion steps with ε = 0.5, Δt� = 0.2 and Δt�−1 = 1

Correlating the simulations in this waymeans that both levels use the same Brownian
path, and differences in the diffusion part of the motion only result from differences
in the diffusion coefficients D� and D�−1 at different levels.

In Fig. 1,we show twoparticle trajectories, containing only diffusion behavior, i.e.,
(19)withV n

p,Δt�−1
= V n

p,Δt� = 0, coupled as described in (20)with ε = 0.5,Δt� = 0.2
andM = 5.Weobserve that the paths have similar behavior, i.e., if the fine simulation
tends towards negative values, so does the coarse simulation and vice versa. Still,
there is an observable difference between them. This is due to the bias caused by the
paths having different diffusion coefficients.

3.2.3 Coupling the Collision Phase

While correlating the Brownian paths is relatively straightforward, the coupling of
the velocities in the collision phase is more involved. Since we simulate level �

first, we have at our disposal the velocities V n,m
p,Δt� at level �, which are again i.i.d.

Our goal is to compute the velocities V n
p,Δt�−1

at level � − 1 from those at level �, to
maximize correlation, while ensuring that the collision probability and post-collision
velocity distribution at level � − 1 are satisfied. Note that, in the collision phase of
the asymptotic-preserving particle scheme (13), both the value of the velocity and
the probability of collision depend on the value of the time step Δt , and therefore
depend on the level �.

The computation of V n
p,Δt�−1

is done in two steps. First, we will couple the occur-
rence of a collision at level � − 1 to the occurrence of a collision in one of the M
sub-steps of the correlated fine simulation. If we decide to perform a collision both at
level � and � − 1, we will correlate the new velocities generated in both simulations.

Let us first consider the simulation at level �. When simulating the collision step,
we decide whether a collision has occurred during a time step of length Δt� by
drawing a random number αn,m

p,� ∼ U ([0, 1]) and comparing it to the probability that
no collision has occurred in the simulation, pnc,Δt� = 1 − pc,Δt� , with pc,Δt� , defined
in Eq. (13). A collision takes place if and only if
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α
n,m
p,� ≥ pnc,Δt� = ε2

ε2 + Δt�
. (21)

Now consider M time steps of length Δt�. At least one collision has taken place if
at least one of the generated α

n,m
p,� , m ∈ {1, . . . , M}, satisfies (21).

Deciding upon collision in the coarse simulation. At level � − 1, we want to use
the values α

n,m
p,� , m ∈ {1, . . . , M} to compute a uniformly distributed number αn

p,�−1,
that is correlated with the largest of the generated α

n,m
p,�

α
n,max
p,� = max

m
α
n,m
p,� , (22)

to compare with the collision probability pnc,Δt�−1 . However, the maximum of a set of
uniformly distributed random numbers is not uniformly distributed. The cumulative
density function of α

n,max
p,� is given by

CDF
(
α
n,max
p,�

)
=
(
α
n,max
p,�

)M
. (23)

Hence, by the inverse transform method,
(
α
n,max
p,�

)M ∼ U ([0, 1]). Equation (23)

implies that we can define this random number as

αn
p,�−1 =

(
α
n,max
p,�

)M
, (24)

without affecting the simulation statistics at level � − 1.
It is possible to show that, given the relation in (24), a collision can occur in the

fine simulation without a collision occurring in the coarse simulation. The inverse,
i.e., a collision in the coarse simulation, without a fine simulation collision, is not
possible.

Choosing a new velocity. If a collision takes place in both simulations in a given
time step Δt�−1, then we set the sign of the velocity of the coarse simulation, at the
end of the time step to be equal in sign to the velocity of the last subdividing fine
time step for which (21) holds,

sign
(
V n+1
p,Δt�−1

)
= sign

(
V n,i
p,Δt�

)
, i = argmax

1≤m≤M

(
m
∣∣∣αn,m

p,� ≥ pnc,Δt�

)
. (25)

Because the new velocities generated in the fine simulation are i.i.d., we are free
to make this selection, without altering the statistics of the coarse simulation. This
approach to selecting the sign of V n+1

p,Δt�−1
means that the velocities going into the next

time step will have the same sign.
Two particle trajectories without diffusion behavior, i.e., (19) with DΔt�−1 =

DΔt� = 0 are shown in Fig. 2. In this figure, a number of interesting phenomena
can be observed. First of all, the fact that the particle’s characteristic velocity is
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Fig. 2 Correlated transport steps with ε = 0.5, Δt� = 0.2 and Δt�−1 = 1. Stars mark collisions

dependent on the time step sizes Δt�−1 and Δt� results in different slopes in the
curves. This is one source of the bias that we want to estimate using the multilevel
Monte Carlo method. Second of all, the collision probability between the coupled
trajectories does not match precisely, as this probability also depends on Δt�−1 and
Δt�. For instance, no collision occurs at t = 8 in the coarse simulation, while a colli-
sion takes place at time t = 7.4 and t = 8 in the fine simulation. By coincidence, the
new velocity generated at t = 8 in the fine simulation has the same sign as the coarse
simulation velocity. This mismatch is also part of the bias we wish to estimate.

3.2.4 The Complete Algorithm

Combining the correlation of the Brownian increments and velocities results in
Algorithm 1. The correlation of the trajectories can be seen in Fig. 3 which shows
the particle trajectory given by the sum of the behaviors in Figs. 1 and 2.

Algorithm 1 Performing correlated simulation steps.
1: for Each time step n do
2: for m = 1 . . . M do
3: Simulate (11)–(13) with Δt�, saving the ξ

n,m
p,� , α

n,m
p,� and V n,m

p,Δt�
.

4: end for
5: Generate ξnp,�−1 from the ξ

n,m
p,� according to (20).

6: Generate αn
p,�−1 from the α

n,m
p,� according to (22) and (24).

7: Set V n+1
p,Δt�−1

= V n
p,Δt�−1

8: if αn
p,�−1 ≥ pnc,Δt�−1 then

9: for m = 0 . . . M − 1 do
10: if α

n,m
p,� ≥ pnc,Δt� then

11: Change the sign of V n+1
p,Δt�−1

to be equal to that of V n,m
p,Δt�

.
12: end if
13: end for
14: end if
15: end for



MLMC AP Particle Method for Kinetic Equations 393

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

Time

Po
si
tio

n

Xn
p,Δt�

Xn
p,Δt�−1

Fig. 3 Correlated paths steps with ε = 0.5, Δt� = 0.2 and Δt�−1 = 1. Stars mark collisions

4 Experimental Results

We will now demonstrate the viability of the suggested approach through some
numerical experiments. We will simulate the model given by (10), using the mul-
tilevel Monte Carlo method to estimate a selected quantity of interest, which is the
expected value of the square of the particle position, at t∗. The ensemble of particles
is initialized at the origin with equal probability of having a left and right velocity.
When discussing results we will replace the full expression for a sample of the quan-

tity of interest, based on an arbitrary particle p, F
(
XN ,0

Δt�,p

)
, with the symbol F� to

simplify notation.

4.1 Model Correlation Behavior

In a first test, we set t∗ = 5 and investigate the variance of the difference estima-
tors (17) as a function of the time step Δt� (or, equivalently) the level number.
At level � = 0, we set Δt0 = 2.5. All finer levels (� ≥ 1) are defined by setting
Δt� = Δt�−1/M with M = 2. We fix the number of samples per difference estima-
tor at 100 000. For a selection of values of ε, we calculate the expected value and
variance as a function ofΔt�, for 1 ≤ �.We compute both the variance of the function
samples for a given Δt�, and the variance of the sampled differences (17), based on
the coupled trajectories computed using Δt�−1 and Δt�. We choose ε = 10 (Fig. 4),
ε = 1 (Fig. 5), ε = 0.1 (Fig. 6) and ε = 0.01 (Fig. 7).

The regime Δt � ε2. In Figs. 4, 5 and 6, we see that the slopes of both the mean and
variance curves for the differences approach an asymptotic limitO (Δt) forΔt � ε2.
This matches the weak convergence order of the Euler-Maruyama scheme, used to
simulate the model (11)–(13), as well as the expected behavior from the time step
dependent bias in the asymptotic-preservingmodel. Given this asymptotic geometric
convergence, it is possible to apply thecomplexity theorem in [17] to analyze the
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Fig. 4 Mean and variance of the squared particle position for ε = 10
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Fig. 5 Mean and variance of the squared particle position for ε = 1

method’s computational cost and error bounds . This means that existing theory for
multilevelMonteCarlomethods [18] concerning, e.g. samples per level, convergence
criteria and conditions for adding levels, can be applied in this regime.

The regime Δt � ε2. For time steps Δt � ε2, however, we see in Figs. 6 and 7 that
both the mean and the variance curves increase geometrically in terms of increasing
level. To explain this perhaps counterintuitive result, we will look at the limit of the
modified Goldstein-Taylor model when Δt tends to infinity. In this limit, the model
(10) converges to the heat equation:
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Fig. 6 Mean and variance of the squared particle position for ε = 0.1
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Fig. 7 Mean and variance of the squared particle position for ε = 0.01

{
∂t f+(x, t) = ∂xx f+(x, t)

∂t f−(x, t) = ∂xx f−(x, t)
⇒ ∂tρ(x, t) = ∂xxρ(x, t). (26)

This means that taking increasingly larger time steps in (10) is equivalent to taking
the limit ε → 0. This observation is precisely the asymptotic-preserving property of
the particle scheme of Sect. 2.2.

The fact that the two limits approach different models can be seen most clearly in
Figs. 4 and 6. In the right hand panel of Fig. 4we see that the variance of the individual
simulations at level � (blue line with squares) changes drastically as a function ofΔt�
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in the region where it is of the same order of magnitude as ε2. This is caused by the
approximated models for large and small Δt having differences in behavior, which
are significant enough to be observed when plotted. The scheme thus converges to
different equations for the two limits in Δt . For small Δt , there is convergence to
(6). For large Δt there is convergence to (4). In practice, the size of Δt is limited
by the simulation time horizon, so it is not possible to get arbitrarily close to (4) by
increasing the time step size, however. This phenomenon also has an effect on the
curves in Fig. 6. The curves for the mean and variance of the differences F� − F�−1

(orange lines with dots) decrease for both small and largeΔt , as the model converges
to the two limits.

Combining the observations from the two limits in the time step size gives an
intuitive interpretation to the multilevel Monte Carlo method in this setting: The
method can be interpreted as correcting the result of a pure diffusion simulation
by decreasing Δt to get a good approximation of the transport-diffusion equation
that describes the behavior for a given value of ε. The peak of the variance of the
differences lies nearΔt ≈ ε2. This makes sense, as this is the region where themodel
parameters DΔt and V n

p,Δt vary the most in function of Δt . We also see a dip in the
mean of the difference curves in the region ofΔt ≈ ε2. A full analysis of the behavior
that occurs in the transition between the asymptotic regimes is left for future work.

4.2 Comparison with Classical Monte Carlo

The analysis in Sect. 4.1 demonstrated a fast decay of the variance of the differences
for increasinglyfine levels in the regionwhereΔt � ε2.As such, one of the necessary
requirements for convergence of the multilevel Monte Carlo method is present in this
region. This is, however, not the case in the regimewhereΔt � ε2. Here, the variance
of the differences increases as the time step is refined. It is therefore highly non-trivial
to perform an adequate selection of coarse levels in the regimeΔt � ε2. For the fine
levels, a standard multilevel Monte Carlo approach can be applied. We therefore
propose two simulation strategies:

1. A geometric sequence of levels Δt� = ε2M−� for � > 0 starting with a coarse
simulation time step Δt0 = ε2;

2. The same geometric sequence, preceded by a coarse simulation time step t∗, i.e.,
Δt0 = t∗, Δt1 = ε2 and Δt� = ε2M1−� for � > 1.

We compare these approaches in the following two sub-sections.

4.2.1 Standard MLMC Refinement

We will now compute the quantity of interest described at the beginning of this
section to a range of prescribed error tolerances, to verify the reduced computational
cost of themultilevelMonte Carlomethod.We choose to setM = 2 and ε = 0.1, and
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Table 1 Results of the simulation in Sect. 4.2 with a geometric level sequence for E = 0.1

Level Δt� P� V [F�] E
[
F� − F�−1

]
V� V

[
Ŷ�

]
C� P�C�

0 1.00 × 10−2 1 393 1.32 8.18 × 10−1 1.32 × 100 9.45 × 10−4 1 1 393

1 5.00 × 10−3 395 1.52 7.91 × 10−3 3.58 × 10−1 9.07 × 10−4 3 1 185

2 2.50 × 10−3 296 1.59 2.18 × 10−2 4.82 × 10−1 1.59 × 10−3 6 1 776

3 1.25 × 10−3 229 2.22 −1.48 × 10−2 3.22 × 10−1 1.41 × 10−3 12 2 748

4 6.25 × 10−4 40 1.70 1.57 × 10−3 4.56 × 10−2 1.14 × 10−3 24 960∑
6.00 × 10−3 8 062

Table 2 Results of the simulation in Sect. 4.2 with a geometric level sequence for E = 0.01

Level Δt� P� V [F�] E
[
F� − F�−1

]
V� V[Ŷ�] C� P�C�

0 1.00 × 10−2 527920 1.47 8.65 × 10−1 1.47 × 100 2.79 × 10−6 1 527 920

1 5.00 × 10−3 165386 1.49 1.06 × 10−2 4.35 × 10−1 2.63 × 10−6 3 496158

2 2.50 × 10−3 112208 1.59 2.98 × 10−2 3.99 × 10−1 3.55 × 10−6 6 673248

3 1.25 × 10−3 69135 1.64 2.84 × 10−2 3.01 × 10−1 4.36 × 10−6 12 829620

4 6.25 × 10−4 39146 1.73 2.00 × 10−2 1.95 × 10−1 4.98 × 10−6 24 939504

5 3.13 × 10−4 20670 1.76 7.53 × 10−3 1.09 × 10−1 5.28 × 10−6 48 992160

6 1.56 × 10−4 10842 1.75 9.55 × 10−3 6.14 × 10−2 5.67 × 10−6 96 1040832

7 7.81 × 10−5 4894 1.91 6.77 × 10−3 2.42 × 10−2 4.94 × 10−6 192 939648

8 3.91 × 10−5 3937 1.77 2.88 × 10−3 1.21 × 10−2 3.08 × 10−6 384 1511808

9 1.95 × 10−5 2721 1.81 2.35 × 10−3 1.21 × 10−2 4.46 × 10−6 768 2089728

10 9.75 × 10−6 40 1.47 2.00 × 10−3 4.35 × 10−4 1.09 × 10−5 1536 61440∑
5.26 × 10−5 10 102 066

reduce the time horizon to t∗ = 0.5. This gives us an expensive, but computationally
feasible problem. The number of samples per level is derived using the formula [18]

⌈
2E−2

√
V�

C�

(
L∑

�=0

√
V�C�

)⌉
, (27)

where E is the desired root mean square error, C� is the computational cost of the
estimator at level �, and V� is the estimated variance of the estimator at level �,
i.e., V� = V

[
F� − F�−1

]
, where we set F−1 ≡ 0. The criterion for adding levels

and determining convergence are as described in [18]. The cost of a sample will be
determined relative to the cost of a simulated trajectory with Δt = ε2. The results of
the simulations for E values 0.1, 0.01 and 0.001 can be found in Tables1, 2 and 3.

In these tables, we list the time step size Δt�, number of samples P�, variance
of the fine simulations V [F�], expected value E

[
F� − F�−1

]
and variance V� of the

differences of simulations, estimated variance of the estimatorV[Ŷ�], cost per sample
C� and cost per level P�C�. The variance of the estimator at level � is estimated as
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Table 4 Cost comparison between classical and multilevel Monte Carlo

RMSE Classical cost Multilevel cost Speedup

0.1 4 544 8 062 0.56

0.01 28 627 968 10 102 066 2.83

0.001 25 167 200 256 1 742 633 519 14.4

V

[
Ŷ�

]
= V�

P�

. (28)

We see that the experimental results match the expected behavior of the multilevel

Monte Carlo method. The number of samples P� needed to keep
∑L

�=0 V

[
Ŷ�

]
< E2

decreases drastically in function of �. We also see that E
[
FL − FL−1

]
< E2. The

cost per level P�C� is also spread quite evenly over the levels, once the time step is a
couple orders of magnitude smaller than ε2. This is to be expected, as the geometric
factor with which the cost increases with � is asymptotically the same as that with
which V� decreases. In short, we thus achieve the bias of the finest level, while a
large amount of variance reduction is performed in the coarser levels.

The total cost of each multilevel simulation, relative to the cost of a single sample
at the coarsest level is computed as the sum of the cost of each level. We can estimate
the cost for an equivalent classical Monte Carlo simulation by considering that one
needs to perform

PC =
⎡
⎢⎢⎢

V [FL ]∑L
�=0 V

[
Ŷ�

]
⎤
⎥⎥⎥ (29)

samples with the fine time step at level L , to achieve the same bias and variance as the
multilevel estimator. The cost of each sample in the classic Monte Carlo estimator
is 2

3CL , as we do not need to perform a correlated coarse simulation. Note that, for
the numbers in Table 4, V [FL ] is estimated using very few samples, so these results
should not be taken to literally. They do give the correct order of magnitude of the
cost of the equivalent classical Monte Carlo method, however. We now compare the
cost of the classical and multilevel Monte Carlo simulations in Table4.

As can be concluded from Table 4 the multilevel Monte Carlo method gives a
significant computational advantage when we want to compute low bias results in
the setting of the modified Goldstein-Taylor model. This speedup increases as the
requested accuracy of the simulation is increased.

4.2.2 Adding a Coarse Level

It makes little sense to add a full sequence of levels in the regime where Δt � ε2. It
could however make sense to add a single very coarse level to the simulation as the
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Table 5 Results of the simulation in Sect. 4.2 with an extra coarse level for E = 0.01

Level Δt� P� V [F�] E
[
F� − F�−1

]
V� V[Ŷ�] C� P�C�

0 5.00 × 10−1 2978687 1.96 9.91 × 10−1 1.96 × 100 6.60 × 10−7 0.02 59574

1 1.00 × 10−2 354282 1.47 −1.26 × 10−1 1.42 × 100 4.01 × 10−6 1.02 361368

2 5.00 × 10−3 114863 1.47 1.06 × 10−2 4.36 × 10−1 3.79 × 10−6 3 344589

3 2.50 × 10−3 77905 1.57 3.14 × 10−2 4.01 × 10−1 5.15 × 10−6 6 467430

4 1.25 × 10−3 47439 1.68 2.92 × 10−2 3.00 × 10−1 6.32 × 10−6 12 569268

5 6.25 × 10−4 27466 1.78 2.57 × 10−2 2.01 × 10−1 7.32 × 10−6 24 659184

6 3.13 × 10−4 14599 1.75 9.28 × 10−3 1.10 × 10−1 7.56 × 10−6 48 700752

7 1.56 × 10−4 7666 1.71 3.99 × 10−3 6.74 × 10−2 8.79 × 10−6 96 735936

8 7.81 × 10−5 3195 2.04 4.04 × 10−3 2.49 × 10−2 7.80 × 10−6 192 613440

9 3.91 × 10−5 40 1.54 5.51 × 10−3 3.65 × 10−3 9.12 × 10−5 384 15360∑
1.42 × 10−4 4 526 900

variance of F� is consistently larger than that of F� − F�−1 in Figs. 4 through 7. To
test this idea we repeat the experiment as before, for E = 0.01, with a coarse level
at Δt0 = 0.5. The results of this experiment can be seen in Table5.

We see that the total cost of the simulation with the extra coarse level is lower than
that of the simulation starting with Δt = ε2 (4 526 900 as apposed to 10 102 066).
Based on this initial experiment, it makes sense to include a very coarse level when
using the multilevel Monte Carlo method in this context. For a detailed analysis and
more extensive numerical results, we refer to future work.

5 Conclusion

In this work, we have derived a new multilevel scheme for asymptotic-preserving
particle schemes of the form given in (10). We have demonstrated that this scheme
has interesting convergence behavior as the time step is refined, which is apparent
in the expected value and variance of sampled differences of the quantity of interest.
On the one hand, we get the expected linear convergence to the exact model in terms
of Δt for a fixed value of ε. On the other hand, we get convergence to pure diffusion
in the limit for large values of Δt . This means that we can interpret the multilevel
Monte Carlo method in this setting as refining upon an initial simulation of the heat
equation, gradually including transport effects until the correct regime set by ε has
been achieved. We have shown that a significant speedup over classical Monte Carlo
simulation is achieved when applying a geometric sequence of levels starting from
Δt = ε2. We have also shown that adding an extra coarse level to the simulation
further accelerates the computation in the considered test case.

The approach taken in developing the asymptotic-preserving scheme is general,
and it is straightforward to apply the coupling described in Sect. 3.2 to other, more
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general, models. As such, we are confident that the ideas expressed in this paper will
also be applicable tomore general equations than theGoldstein-Taylormodel studied
here. In futurework, this scheme can, for example, be extended to higher dimensional
models, both in terms of position and velocity. More complicated models including,
for example, absorption terms can also be studied. We intend to expand upon the
results in Sect. 4.2.2, as well as considering varying ε together with Δt .
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Randomized Global Sensitivity Analysis
and Model Robustness

David Mandel and Giray Ökten

Abstract Global sensitivity analysis allows the modeler to assess the importance
of a model parameter in terms of its impact on the variance of the model output.
Parameters that are not important can be frozen, and the important ones can be treated
with care. This information, however, could be sensitive to data used in estimation of
the parameters. To address this, we develop a notion of robustness of a model using
randomized Sobol’ sensitivity indices. We use the robustness definition to compare
some models from computational finance.

Keywords Global sensitivity analysis · Interest rate models · Model robustness ·
Sobol’ sensitivity indices · Temperature derivatives

1 Introduction

Virtually all practical applications of mathematical models involve uncertainty. This
uncertainty can arise from two sources: the values of the input parameters used in
the model, and the error between the model output and the true value of the quantity
of interest. It is the former source of uncertainty for which global sensitivity analysis
(GSA) provides insights. GSA consists of a suite of techniques that attribute the
uncertainty in the output of a model to each of its parameters; see Saltelli et al. [23]
for a thorough introduction. The result of such an analysis is called a sensitivity
pattern which makes it possible to rank model parameters in order of contribution to
model uncertainty. Since parameters which do not contribute to model uncertainty
can be regarded as variables to which the model is largely invariant, such parameters
may be frozen at some nominal value, reducing model and calibration complexity.
Moreover, additional resources may be allocated to obtain accurate estimates of the
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influential parameters, efficiently reducing the model uncertainty. Global sensitivity
methods have enjoyed success in engineering and applied sciences; see, for example,
[3, 6, 15–18, 24]. Using GSA to make inferences about the robustness of a model
was first done by Göncü et al. [9] where a qualitative approach was used. In this
paper, we suggest a different and a quantitative approach to measure robustness.

The first step in GSA is to assume distributions for the input parameters. The
modeler may know the distribution of an input parameter through empirical measure-
ments. If the input parameter is estimated fromdata using a statistical technique, there
might be an associated sampling distribution that can be used. And in the absence
of any prior information, it is not uncommon to see the assignment of an arbitrary
distribution, usually normal or uniform, to the input parameters. In this paper, we
are interested in problems where parameters are estimated from data, and there is
a sampling distribution suggested by the statistical method, such as asymptotically
normal sampling distributions for the maximum likelihood estimation technique.

Once distributions are specified for the input parameters, GSA can be used to
obtain the sensitivity pattern of the model, and decisions regarding freezing of unim-
portant parameters or spending extra resources on better estimation of important
parameters, can be made. We emphasize that these decisions are based on the sam-
pling distributions obtained from specific data, i.e., based on one application of the
model. Using examples from interest rate models, Mandel and Ökten [19] showed
that the sensitivity patterns of models can vary significantly depending on the data
set used in parameter estimation. Thus any decision to freeze parameters, or rank
models based on uncertainty, could be highly sensitive to data. To accommodate this
phenomenon of changing sensitivity patterns, a generalization of Sobol’ sensitivity
analysis, a variance-based GSA, was developed in [19]. In this paper, we present a
quantitative description of model robustness based on generalized Sobol’ sensitivity
analysis, where robustness of a model means the robustness of its sensitivity pattern.

The paper is organized as follows. In Sect. 2 we present the classical Sobol’
sensitivity analysis, along with a few new identities among sensitivity indices. In
Sect. 3, the generalized Sobol’ sensitivity indices developed in [19] are revisited
with results from interest rates and temperature derivative modeling. In Sect. 4 we
develop a quantitative measure of model robustness and apply it to interest rate and
temperature derivative models. We conclude in Sect. 5.

2 Classical Sobol’ Sensitivity Analysis

A global sensitivity analysis is accomplished in practice through a sensitivity index,
of which there are a number of candidates. One of the most popular sensitivity
indices was developed in the early 1990s by Sobol’ [25, 26]. Known as Sobol’
sensitivity indices, these are based on the functional ANOVA decomposition for a
square integrable function f : Rd → R, which is given by



Randomized Global Sensitivity Analysis and Model Robustness 405

f (x) =
∑

u⊆D

fu(xu) , (1)

where fu is a function of only xu = (xi )i∈u ∈ R
|u| and u ⊆ D = {1, . . . , d}. If we

think of f as a mathematical model, or a specific numerical implementation of
a model, then the variables {xi }d

i=1 are taken to be the parameters of the model.
The parameters would then be estimated from data, a process sometimes called
calibration, and the resulting estimators would be given as random variables X =
(X1, . . . , Xd) ∈ R

d with joint distribution Λ : B(Rd) → [0, 1], where B(Rd) is
the Borel sigma algebra on Rd . If we impose that the collection {Xi }d

i=1 is mutually
independent, then the component functions { fu}u⊆D may be uniquely constructed
using the recursive definitions

f∅ =
∫

Rd

f (x)Λ(dx) , (2)

fu(xu) =
∫

R|ū|
f (x)Λ(dxū) −

∑

v�u

fv(xv) , (3)

where xū = (xi )i /∈u ∈ R
d−|u| and Λ(dxu) = P(Xu ∈ dxu) for any ∅ �= u ⊆ D . Fur-

thermore, the component functions are orthogonal inL 2(Λ); that is,

∫

Rd

fu(xu) fv(xv)Λ(dx) = 0 (4)

for any u, v ⊆ D with u �= v.
For square integrable f andmutually independent parameters {Xi }d

i=1, the orthog-
onality result (4) permits the variance decomposition

σ 2 =
∑

u⊆D

σ 2
u , (5)

where σ 2 = Var( f (X)) and σ 2
u = Var( fu(Xu)) for u ⊆ D . It is assumed throughout

that σ 2 > 0. Equation5 reveals the namesake of the ANOVA decomposition—the
variance of f is decomposed into an additive combination of component variances,
each of which depends on a unique subset of parameters. If we regard variance as
uncertainty, then (5) provides a means to recover total model uncertainty from the
uncertainty in its parameters.

For any subset u of the index set D , Sobol’ sensitivity indices are defined as

Su = 1

σ 2

∑

v⊆u

σ 2
v , (6)

Su = 1

σ 2

∑

v∩u �=∅
σ 2

v . (7)
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The quantity Su in (6) is called the lower sensitivity index or closed Sobol’ index,
whereas Su in (7) is called the upper sensitivity index or total effect. It is clear that
0 ≤ Su ≤ Su ≤ 1. The indices also satisfy the identity Su + S(−u) = 1.

Let us consider the variance, σ 2, as a measure of model uncertainty. Intuitively,
Su measures the proportion of model uncertainty that is caused by the parameter
vector Xu . If Su ≈ 1 then the parameters comprising the vector Xu are considered
important, since they contribute significantly to the model uncertainty.When applied
to singleton sets i, j ∈ D for i �= j we have an intuitive interpretation: if S{i} < S{ j}
we consider X j to be more important than Xi , because X j contributes more to model
uncertainty than does Xi ; hence, X j should receive more attention when attempting
to reduce model uncertainty. The lower sensitivity index therefore provides a means
of parameter ranking. The upper sensitivity index, Su , on the other hand, provides a
criterion for neglecting unimportant parameters. Indeed, if Su ≈ 0 then there is no
component of the model that depends on the parameters in Xu that affects the model
uncertainty. Thus it is of little consequence to forgo estimation of the parameters Xu

and instead fix them at some nominal value in their domain; this process is known
as freezing parameters. Sobol’ et al. [27] provide an approximation to the model
error associated with such a freezing of parameters. Formulas for a Monte Carlo
approximation of Su and Su are given in Sobol’ [25].

A third sensitivity index, studied by Liu and Owen [17], is given by

Υ 2
u =

∑

w⊇u

σ 2
w . (8)

Υ 2
u measures the loss in model accuracy caused by ignoring the component func-

tions fw for u ⊆ w. The following inverse relationship was proved in [17]: σ 2
u =∑

w⊇u(−1)|w−u|Υ 2
w . Here w − u denotes the set difference. The notation −u denotes

the complementD − u, and |u| is the cardinality of the set u. For a givenu ⊆ D , some
additional relationships between Υ 2

u , Su and Su are provided below. The following
two standard results are needed in the proof.

Lemma 1 Let u ⊆ D = {1, . . . , d}. Then
∑

v⊆u(−1)|v| = 1 if u = ∅, and 0 other-
wise.

Proof If u = ∅ the result is immediate. Let u = {i1, . . . , is} for s ∈ {1, . . . , d}. Then
∑

v⊆u

(−1)|v| = (−1)|∅| +
s∑

k=1

(−1)|{ik }| +
s∑

k=1

s∑

l=k+1

(−1)|{ik ,il }| + · · · + (−1)|u|

=
(

s

0

)
(−1)0 +

(
s

1

)
(−1)1 +

(
s

2

)
(−1)2 − · · · +

(
s

s

)
(−1)s = (1 + (−1))s = 0.

�
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Lemma 2 Let D be a finite set, and f, g be functions on 2D such that f (u) =∑
v⊆u g(v) for all u ⊆ D . Then, for all u ⊆ D , g(u) = ∑

v⊆u(−1)|u−v| f (v).

Proof This is a consequence of the Möbius inversion theorem (see Hall [10]). �

Theorem 1 Let u ⊆ D = {1, . . . , d}. Then

1. Su = 1
σ 2

∑
v⊆−u(−1)|v|Υ 2

v ,
2. Υ 2

u = σ 2 ∑
v⊆u(−1)|v|S(−v),

3. Su = 1
σ 2

∑
∅�=v⊆u(−1)|v|+1Υ 2

v , if u �= ∅,

4. Υ 2
u = σ 2 ∑

v⊆u(−1)|v|+1Sv, if u �= ∅.

Proof 1. For u ⊆ D we have

1

σ 2

∑

v⊆−u

(−1)|v|Υ 2
v = 1

σ 2

∑

v⊆−u

(−1)|v|
∑

w⊇v

σ 2
w = 1

σ 2

∑

w⊆D

σ 2
w

∑

v⊆w∩(−u)

(−1)|v|

= 1

σ 2

∑

w∩(−u)=∅
σ 2

w = 1

σ 2

∑

w⊆u

σ 2
w = Su,

where the third equality is by Lemma1.
2. Let f (u) = S(−u) and g(u) = (−1)|u|Υ 2

u for all u ⊆ D . From part 1, f (−u) =
1
σ 2

∑
v⊆−u g(v). Then, by Lemma2,

1

σ 2
g(−u) =

∑

v⊆−u

(−1)|(−u)−v| f (v) =
∑

v⊆−u

(−1)|−u|−|v| f (v),

(since v ⊆ −u) or equivalently,

1

σ 2
(−1)|−u|Υ 2

−u =
∑

v⊆−u

(−1)|−u|−|v|S(−v) .

This gives Υ 2−u = σ 2 ∑
v⊆−u(−1)|v|S(−v), and setting −u = u concludes the

proof.
3. For u ⊆ D we have

1

σ 2

∑

∅�=v⊆u

(−1)|v|+1Υ 2
v = 1

σ 2

(
Υ 2

∅ +
∑

v⊆u

(−1)|v|+1Υ 2
v

)
= 1 − 1

σ 2

∑

v⊆u

(−1)|v|Υ 2
v .

By part 1, the expression on the right-hand side equals 1 − S(−u) = Su .

4. Follows from part 2, Lemma1, and the identity Su + S(−u) = 1. �
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3 Generalized Sobol’ Sensitivity Indices

Sobol’ sensitivity indices provide the modeler with practical information about the
influence of parameter uncertainty on a model. Additional resources, such as com-
puter time or experimental work, may be allocated to mitigating uncertainty in esti-
mation of important parameters. One must, however, be mindful of the fact that
these decisions are based on the sampling distribution, Λ, of parameter estimators
obtained from a specific data. The central question we investigate in this paper is the
following: how would the sensitivity pattern of the model parameters change as the
sampling distribution, Λ, changes when one considers different data sets (or, cali-
bration methods)? In other words, how robust is the quantitative information about
the sensitivity of parameters to changing data sets? In this section we provide two
examples—one from interest ratesmodeling and another from temperature derivative
modeling—where we observe changing sensitivity patterns with data. In both exam-
ples, the higher order ANOVA terms are negligible and S{i} ≈ S{i}. These examples
motivate the introduction of randomized Sobol’ sensitivity indices discussed in this
section, and a definition of model robustness that incorporates sensitivity indices in
Sect. 4.

3.1 Motivation: Short Rate Models

As a first example, consider pricing a one-year US Treasury bill (T-bill) assuming a
stochastic short rate. There are a number of models in the literature for the task, but
two of the most-studied and simplest are the Vasicek [29] and CIR [7] models (see
[4] for an excellent introduction to either model). Vasicek and CIR models describe
the evolution of the short rate by the following stochastic differential equations:

Vasicek: drt = a(b − rt )dt + σdWt , (9)

CIR: drt = a(b − rt )dt + σ
√

rtdWt . (10)

Each model has three parameters: a > 0, the mean reversion speed; b > 0, the
long-term mean; and σ > 0, the volatility. In practice, an optimization method is
performed using historical data that returns the parameter estimates for which the
models “best fit” the data; this process is called calibration. The closed-form bond
price for either model may then be computed using the parameter estimates.

For each of the years 1962–2015, such a calibration (using maximum likelihood
estimation) was applied to one year’s worth of daily observation of yields on one-
year US T-bills. Specifically, we use the method of Duan [8] by observing yields
and estimating the parameters for the short rate distribution, which we know to be
asymptotically normal from MLE theory. For each year, the output of both models
is the price of a one-year zero coupon bond maturing on December 31 of the year
following the year over which the data span. For example, in the year 2006 both
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(a) (b)

Fig. 1 Upper Sobol’ indices and ratio of variances in bond prices across model applications

models are calibrated to data spanning Jan 1, 2006–Dec 31, 2006, and the model
output is the price of a zero coupon bond maturing on Dec 31, 2007.

We assume that the model parameters are independent throughout the paper.
Although this assumption may be violated in practice, we concluded the assumption
is not unreasonable after inspecting the Fisher information matrix obtained from the
joint estimation of the parameters. In our numerical results the covariances of the
parameters were several orders of magnitude smaller than the variances.

The disparate sensitivity indices are illustrated in Fig. 1a, where the upper Sobol’
indices for bond prices under the Vasicekmodel are plotted as a function of data set to
which the model was calibrated. First, we observe that the sensitivity to the volatility
parameter, σ , is near zero for all calibrations (i.e., model applications). This suggests
that volatility is a negligible parameter (or rather, a well estimated parameter) and
is not causing noticeable uncertainty on the bond price. Perhaps a more important
observation is about the behavior of the sensitivity indices for the parameters a
and b in Fig. 1a. The upper Sobol’ index switches order across model applications,
sometimes in an extreme way, so that decisions based on a single year’s sensitivity
pattern may be wrong for other years. For example, if a modeler happens to consider
the sensitivity results only from 2006, he may conclude the mean reversion speed, a,
is negligible and may be frozen. However, from 2009 onward, the parameter a is the
most important one, and therefore freezing it would have been a substantial error. A
similar sensitivity pattern was observed for the CIR model; see Mandel and Ökten
[19].

The order of model variances for Vasicek and CIR also change from year to
year. Figure1b plots the ratio of the variance of bond prices under the CIR model
to the variance of bond prices under the Vasicek model, Var(CIR)/Var(Vasicek),
for different years. Bonds priced under the CIR model have a higher variance for
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instances above the horizontal line at y = 1, whereas bonds priced under the Vasicek
model have a higher variance in instances below the line.

Together, Fig. 1a, b underline a crucial limitation of classical sensitivity analysis:
conclusions regarding ranking or freezing parameters, or model selection based on
variance, can greatly vary depending on the particular application of themodel. Thus,
one cannot make sweeping assumptions about the sensitivity of a model in general;
rather, one is limited to a particular application for which the parameter distributions
have been fixed.

These observations lead us to a frameworkwhere Sobol’ indices are not thought of
as constant quantities, but as random variables that take on values for each particular
model application.The sensitivity pattern of amodelwill thenbe about the orderingof
random variables. This proposed framework is called randomized Sobol’ sensitivity
analysis, and will be used as the foundation of our notion of model robustness. The
consideration of Sobol’ indices as random variables has appeared in the literature
before, for example, in Hart et al. [12] and Marrel et al. [22].1 In these papers, the
model is replaced by a surrogate model, which is easier to analyze, and then the
statistical properties of the Sobol’ indices are computed by simulation. In this paper
and [19], we directly access the distribution of the Sobol’ indices and do not employ
surrogate models.

To randomize the Sobol’ sensitivity indices, we model the hyperparameters as
random variables; these are the variables that describe the sampling distribution
of the model parameter estimators. It is the hyperparameters that drive the disparate
sensitivity indices apparent in Fig. 1a, so they are a natural starting point to randomize
the sensitivity indices. Let m ∈ N denote the number of such hyperparameters for
a model. For example, in the short rate models (9), (10), there are d = 3 model
parameters, and if each parameter estimator is normally distributed, there are m = 6
hyperparameters—the mean and standard deviation of each estimator. Let Y : Ω →
R

m denote the random vector of hyperparameters. Instead of specifying the sampling
distributionof theparameter estimators,Λ, througha calibration techniqueona single
data set, we specify it only in termof each realization of the hyperparameters,Λ(· | y)

fory ∈ R
m . This provides a theoretical foundation inwhich the samplingdistributions

vary when parameters are estimated on different sets of data. The following result
from [19] shows that the ANOVA decomposition holds in this framework as well.

Theorem 2 Let Y : Ω → R
m be a random vector on a probability space (Ω,F , P).

For fixed y ∈ R
m, let f y : Rd → R be square-integrable. Finally, for fixed y ∈ R

m,
let X1, . . . , Xd be mutually independent, real-valued random variables with finite
variance, where independence is with respect to the joint distribution Λ(· | y). Then
for each y ∈ R

m, there exists a unique representation of f as

f y(X) =
∑

u⊆D

f y
u (Xu) (11)

1We thank the referee for bringing these papers to our attention.
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where each component function f y
u satisfies, provided j ∈ u,

∫

R

f y
u (x j , X−{ j})Λ(dx j | y) = 0. (12)

Proof Once Y = y, the construction of the components functions is identical to the
classical construction [25] if the uniform measure is replaced with the conditional
distributions Λ(· | y). �

It can be shown that (12) is sufficient for the analogue of the orthogonality result
(4) in which the measure is the conditional distribution Λ(dx | y). For each u ⊆ D ,
let (σ Y

u )2 = Var( f Y
u | Y); this is the analogue of the component variances (σu)

2 in
which the hyperparameters are random variables. In this setting, each σ Y

u is a random
variable, aswell. It is assumed throughout thatσ Y

u > 0 almost surely. The randomized
Sobol’ sensitivity indices are defined as follows.

Definition 1 (Randomized Sobol’ Sensitivity Indices) Let f : Rd → R be a square-
integrable function with the random vector of parameters X ∈ R

d . Assume {Xi }d
i=1

is mutually independent with respect to the conditional joint distributionΛ(· | y) for
each y ∈ R

m . Then for any u ⊆ D , the randomized lower and upper Sobol’ indices
are

SY
u = 1

(σ Y)2

∑

v⊆u

(σ Y
v )2 , (13)

S
Y
u = 1

(σ Y)2

∑

v∩u �=∅
(σ Y

v )2 . (14)

The randomization of Sobol’ sensitivity indices accommodates the empirical
behavior in Fig. 1a. In the new framework, the indices are permitted to vary depending
on the application of the model, allowing averages and other statistics to be analyzed
as aggregate sensitivity measures.

3.2 Temperature Derivatives

In this section, we apply randomized Sobol’ sensitivity analysis to temperature
derivative pricing. For a given day of the year, define a heating degree day as the
degrees Fahrenheit in which the average temperature for that day is below sixty-
five degrees Fahrenheit; if the average temperature is above sixty-five, the heating
degrees for that day is zero. The sixty-five degree reference temperature is chosen
as an international standard proxy to measure the extent with which consumers run
their heaters. For a given geographic location, a call option may be written on the
total number of heating degree days in a period of n ∈ N days,
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Hn =
n∑

i=1

(65 − Ti )
+ , (15)

where Ti is the average temperature for day i = 1, . . . , n. The time t0 price of such
a call option with strike K is given by

C = e−r tn E
(
(Hn − K )+

)
, (16)

where the expectation is with respect to the physical probability measure of the
temperature process (see Hull [14], Chap. 34). The call price (16) requires a model
for the daily average temperature, T . We will consider three prominent models in
the literature, each of which describes the evolution of T as a stochastic differential
equation (SDE). The first two models are given by Alaton et al. [1], and Benth and
Benth [2]. The models describe the daily average temperature by the SDE

dTt = ds(t) + a(s(t) − Tt )dt + σ(t)dWt , (17)

where

s(t) = A + Bt + C sin(ωt) + D cos(ωt) . (18)

In (17), a is the mean reversion parameter, σ(t) is the volatility, and Wt is a Brow-
nian motion. In (18), A, B, C , and D are constants to be estimated from data, and
ω = 2π/365. Here s(t) models the long-term dynamics of the daily average tem-
peratures deterministically, where the sin and cos functions capture the seasonality,
and the linear term captures the trend in temperatures. Referring to each model by
its first author, the model by Alaton assumes the volatility is given by a piecewise
function that is constant in each month:

σ(t) ∈ {σJan, σFeb, . . . , σDec} . (19)

The model by Benth assumes a truncated Fourier series for the variance:

σ 2(t) = c0 +
4∑

i=1

ci sin(ωi t) +
4∑

j=1

d j cos(ω j t) . (20)

The third model is given by Brody et al. [5], and assumes the daily average
temperature follows

dTt = ds(t) + a(s(t) − Tt )dt + σ(t)dW H
t , (21)
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Fig. 2 Upper Sobol’ indices
for the Benth temperature
model as a function of model
application

where H ∈ [0, 1] is theHurst parameter for a fractional Brownianmotion W H
t , s(t) is

the same as in (18), and σ(t) is the same piecewise constant function as in (19).2 The
benefits of assuming a fractional Brownian motion process are persuasively argued
in Mandelbrot [21].

There are a total of seventeen parameters in the Alaton model, fourteen in the
Benth model and eighteen parameters in the Brody model. For twenty-five locations
across the US, the parameters of each model were estimated using daily average
temperatures from 1985–2016. Call prices at each location were computed using
formula (16) and K = 300, tn = 31 days, and r = 0.05. The initial temperature was
taken as the average temperature on the day on which the call price was computed.
Specifically, we assumed it was currently Dec 31, 2016, and computed call prices
that expire on Jan 31, 2017.

The temperature derivative models have input parameters that differ, but they all
have the same output: the call price at each location. We want to investigate the
sensitivity of the model output to its input parameters. In Fig. 2, the upper Sobol’
sensitivity indices for four parameters in the Benth model are shown for a subset
of the locations. The remaining ten parameters’ sensitivity indices are not shown as
they were near zero across locations. The behavior is similar to the one observed
with the short rate models: sensitivities can vary, sometimes significantly, depending
on the particular data set used to estimate the model parameters. For example, the
mean reversion parameter a is the least important parameter at Detroit (DTW), but
the most important at Orlando (MCO). Similar behavior was observed in the Alaton
and Brody models.

Using the randomized Sobol’ sensitivity analysis framework discussed earlier, we
could, for example, compute the mean and variance of the randomized Sobol’ sensi-

2In Brody et al. [5], the volatility function is left unspecified; we choose the same function as in
Alaton [1] for convenience.
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tivity indices, andmake decisions regarding the sensitivity of the models accordingly
(such as ranking parameters in importance, freezing, etc.). We will, however, explore
another related question next. Imagine having two competing models—they have the
same output, and possibly different inputs—and assume that one model’s sensitivity
pattern (ranking of parameters in importance) is relatively more robust (i.e., stable
across applications) compared to the other model. So, important parameters tend to
stay important for one model, more so than the other. This type of robustness would
be a positive feature of a model. In the next section, we will introduce a definition
for the robustness of a model based on this thought experiment.

4 Model Robustness

There are numerous notions of robustness in statistics literature, each crafted to
address specific concerns of an application for which robustness is desired. In one
instance, Huber [13] states that “robustness signifies insensitivity to small deviations
from the assumptions.” Here, concern is with respect to distributional robustness in
the sense that the true underlying distribution of some random quantity deviates only
slightly from the assumed distribution. The interest was in designing statistics that
performed well (as measured by asymptotic efficiency) in such deviations from the
distributional assumptions. This work in robust statistics, together with Hampel [11],
resulted in estimator designs that were insensitive to outliers and that retained effi-
ciency even under departures from the underlying distributional assumption.A robust
design of experiment technique was developed by Taguchi [28] which challenged
the use of relying only on mean-unbiased estimators to measure the robustness of
manufactured products. Here, the context was manufacturing, where it was argued it
is more important to incorporate a manufacturing technique in which products con-
sistently hit a target, rather than one that is theoretically capable of yielding products
closer to a target but does so inconsistently. Thus the emphasis was on variance of a
product, which is a similar notion to model variance. More recently, Göncü et al. [9]
developed a qualitative description of model robustness through analyzing the rate
of increase in Sobol’ sensitivity indices as the parameter uncertainty increased.

A quantitative description of model robustness is developed in this section. We
have already discussed the importance of understanding the effects of parameter
uncertainty on model output for a given model application. What we want to dis-
tinguish here is how this sensitivity may change across different applications of the
model. That is, if one were to assume a different distribution for the parameters,
how does the sensitivity pattern of the model change? Do important parameters stay
important? Is the overall model uncertainty (variance) affected? If the answer to
any of these questions is “no”, how should we treat such a fickle model? Based on
the previous notions of robustness, it should be clear that such a model should not
be considered robust. In light of the results from Sect. 3, robustness will take into
account two general properties of a model. First, all else being equal, a model with
lower average variance across applications will be considered more robust than a
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model with higher variance. The second property is more nuanced and it penalizes
models with fickle sensitivity patterns.

We need some notation to introduce our robustness definition. Let f : Rd → R

be a mathematical model. The marginal distributions of its parameters X ∈ R
d are

themselves parametrized by the hyperparameters Y ∈ R
m , where m is the number of

hyperparameters. Let D ! denote the set of all permutations of the index set D . For

each I ∈ D !, let S
Y
I denote the event (S

Y
I1 < S

Y
I2 < . . . , S

Y
Id
), and P(S

Y
I ) denote its

probability. For example, ifD = {1, 2, 3} and I = {2, 1, 3}, then P(S
Y
I ) = P(S

Y
2 <

S
Y
1 < S

Y
3 ). Finally, let

CV =
√

E(Var( f (X) | Y))

|E( f (X))| (22)

denote the coefficient of variation, where the denominator is assumed nonzero. CV
describes the standard deviation of amodel relative to its average output acrossmodel
applications.3 The absolute value around the denominator is to ensure CV > 0.
Robustness is defined next.

Definition 2 The robustness, R, of the mathematical model f is

R =
max
I∈D !

P(S
Y
I )

CV
. (23)

For a fixed value of CV , the quantity R is largest when the randomized upper
Sobol’ sensitivity indices respect a fixed ordering across all model applications; this

is given bymaxI∈D ! P(S
Y
I ) in the numerator. This means a model is more robust if its

parameters have a specific orderingwhich tends to stay fixedwith a higher probability
across applications. R is inversely proportional to the coefficient of variation across
model applications, so that for a fixed maximal order probability, a model which
is less volatile in its output, measured across applications, is more robust than one
which is more volatile. Put together, R captures the two behaviors with which we
would like to compare competing models.

It is worth mentioning the functional form of the robustness definition we have
proposed—namely the ratio ofmaximal order probability to coefficient of variation—
is not unique in its ability to capture the desired behavior described above. Indeed,

an additive version, for example, R = α1 max
I∈D !

P(S
Y
I ) + α2

CV , would also provide the

desired behavior described above. Here the coefficients α1 and α2 provide freedom
in expressing the modeler’s view on the importance to robustness of either term.

There is still the issue of determining a joint probability distribution for the ran-
domized upper Sobol’ indices to use in the definition of robustness. Given that we
have a collection of joint realizations of the upper indices (see Figs. 1a and 2), we

3The coefficient of variation is typically used for data measured on ratio scale. Measurement data
in the physical sciences are often, but not always, on a ratio scale.
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used the kernel estimation method to approximate their joint distribution function.
We used the popular and well-studied Gaussian kernels in this estimation. For the
examples in the next section, it is from this fitted kernel density that we sample from
to estimate the probabilities in (23).

Let us summarize the computational framework used in computing robustness
in this paper. Let s be the total number of model applications in a problem. In the
interest rate models s is the number of years, and in the temperature models it is
the number of locations. Corresponding to each model application, there is a vector
of hyperparameters y estimated from data. Let H = {y1, . . . , ys} be the set of all
hyperparameters. Then one can proceed as follows:

1. Select k distinct hyperparameters y1, . . . , yk , where k < s, corresponding to k
model applications, uniformly at random from H .

2. Assume the model parameters are a1, . . . , ap. Compute Sobol’ sensitivity indices
(S̄a1 , . . . , S̄ap ), for each yi , i = 1, . . . , k, using N Monte Carlo samples. Estimate
the coefficient of variation CV.

3. Compute the Gaussian kernel density for the data (S̄a1 , . . . , S̄ap ) obtained in step
2.

4. Generate M samples from the kernel density to estimate maxI∈D ! P(S̄Y
I ). Com-

pute robustness R = maxI∈D ! P(S̄Y
I )/CV .

Remark 1 There are twomainMonteCarlo simulations in our proposed framework.
The first one is the computation of Sobol’ sensitivity indices, and uses pk N samples.
In our numerical results p = 3 for the interest rate problem, and p = 5 or 6, in the
temperature derivatives problem. The number of model applications k is 46 for the
Vasicek model, 16 for the CIR model, and 25 for the temperature models. Finally,
N = 20, 000 in all problems. The second Monte Carlo simulation samples from the
kernel density to estimate the probabilities of different orderings of Sobol’ indices,
and the maximum probability. Here we used M = 10, 000 Monte Carlo samples for
the interest rate problem, and M = 50, 000 for the temperature derivatives problem.

Remark 2 The accuracy of the robustness estimates can be assessed using boot-
strapping. One way to do this is as follows: repeat steps 1–4, each time sampling
distinct {y1, . . . , yk} from the set H , with replacement. In other words, we sample
with replacement from

(s
k

)
subsets of H of size k. If we sample j times, we obtain

bootstrap estimates R1, . . . , R j for the robustness measure. We can then compute
the standard deviation of these, or construct bootstrap confidence intervals. This will
give us the necessary assessment of the robustness measure. Step 1 is essential in
obtaining the randomization for bootstrapping. In our numerical results, we did not
carry out this bootstrapping approach, and thus in step 1, we did not randomly select
hyperparameters. Instead, we considered the entire population of hyperparameters
H = {y1, . . . , ys}, and carried out the analysis of steps 2–4 for each yi ∈ H .
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Table 1 Likelihood of orderings of randomized upper Sobol’ indices

Event Probability

Vasicek CIR

Sa < Sb < Sσ 0.0 0.0

Sa < Sσ < Sb 0.001 0.0

Sb < Sa < Sσ 0.0 0.0

Sb < Sσ < Sa 0.003 0.0

Sσ < Sa < Sb 0.53 0.69

Sσ < Sb < Sa 0.47 0.31

4.1 Robustness of Interest Rate and Temperature Models

There are three parameters for the interest rate models—a, b, and σ (see (9) and
(10))—whichwere calibrated to each year of data from1962–2015. Tomake notation

explicit we let S
Y
a denote the randomized upper sensitivity index for the parameter a,

for example, instead of specifying an index 1, 2, 3 for each parameter.4 The estimated

joint probability density function (pdf) of (S
Y
a , S

Y
b , S

Y
σ ) was used to approximate the

probability P(SI ) for all I ∈ D !. By generating 10, 000 samples, we estimate the
probability of the orderings in Table1 (notewe drop theY superscript for readability).

Themaximal probabilities for bothmodels occur for the event Sσ < Sa < Sb, and
the probabilities are 0.53 and 0.69, for the Vasicek and CIR models, respectively.
The average bond price under both models was $0.97. The average variance of the
Vasicek model was 0.00266, whereas the average variance of the CIR model was
0.00183. Putting this all together, we compute the robustness of each model as

RV asicek = 0.53√
0.00226/0.97

= 10.86 , (24)

RC I R = 0.69√
0.00183/0.97

= 15.7 . (25)

Thus, for one-year US T-bills, the CIR model is approximately 15.7/10.86 =
1.45 times more robust than the Vasicek model, and so the CIR model is preferred.
However, a more statistically sound conclusion on which model has lower or higher
robustness is possible when the accuracy of the robustness values is calculated (see
Remark2). In this paper we present a proof-of-concept for comparing models based
on their robustness, but not the final verdict.

4To avoid obtaining negative values, maximum likelihood estimation was used to estimate log a,
log b, and log σ from one year of data, for each interest rate model. Therefore a hyperparameter
y ∈ Y is the mean and the variance parameter of the corresponding normal distribution. For details
see Mandel [20].
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Table 2 Probability of each randomized upper Sobol’ index exceeding 0.1

Parameter P
(

S
Y
i > 0.1

)

Alaton Benth Brody

A 0.88 0.92 0.80

B 0.98 0.99 0.94

C <0.05 <0.05 <0.05

D 0.061 0.12 0.15

a 0.71 0.73 0.77

H – – 0.16

σ1 0.48 – 0.56

σ2, . . . , σ12 <0.05 – <0.05

c0, . . . , c4 – <0.05 –

d1 – 0.067 –

d2, d3, d4 – <0.05 –

We now turn our attention to the robustness of the temperature models introduced
in Sect. 35 Because of the multitude of parameters inherent in these models, we
consider only a subset of the parameters when computing order probabilities of the
randomized upper Sobol’ indices. Specifically, we include only those parameters
whose randomized upper Sobol’ index exceeds 0.1, with a probability of at least
0.05. This probability is estimated by generating 10,000 samples from the Gaussian
kernel density estimator of the joint pdf of the randomized Sobol’ indices.

The reason we ignore the other parameters is for computational efficiency. For
example, in the case of theBenthmodelwhich has 14 parameters, we have to compute
the probabilities of 14! orderings, which is not feasible. However, Table2 shows
that the randomized upper Sobol’ index of only 5 parameters for the Benth model
exceed 0.1, with a probability larger than 0.05. These parameters are A, B, D, a, d1,
and the corresponding probabilities are 0.92, 0.99, 0.12, 0.73, and 0.067. Note that
when deciding which parameters to ignore, we are using the Gaussian kernel density
obtained from the entire data set available to us. In other words, the parameters we
ignore have a small upper Sobol’ index not just in one application (calibration) but
across all applications.

The most likely orderings of upper Sobol’ indices are depicted graphically in
Fig. 3 for the Benth model. The x-axis labels denote the five most-likely orderings;
for example, the event (Sd1 < SD < Sa < S A < SB) occurred with probability 0.26.

The average call priceswere $64.57 underAlaton, $64.72 under Benth and $66.44
under Brody. The average variances were 73.67 under Alaton, 73.86 under Benth and

5See Mandel [20] for details on how the parameters are estimated from data obtained from each
weather station. The sampling distribution of each parameter is normal. A hyperparameter is the
vector whose components are the mean and variance of all the parameters, corresponding to one
location.
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Fig. 3 Order probabilities of
upper Sobol’ indices for the
Benth model. The parameters
are written from the smallest
to largest upper Sobol’ index

74.69underBrody. Putting these together gives the following robustness calculations.

RAlaton = 0.18√
73.67/64.57

= 1.32 , (26)

RBenth = 0.26√
73.86/64.72

= 1.92 , (27)

RBrody = 0.22√
74.69/66.44

= 1.67 . (28)

Thus the Benth model is 15% more robust than the Brody model, which in turn is
27% more robust than the Alaton model. The Benth model is 45% more robust than
the Alaton model. In this case the order probability of upper Sobol’ indices was the
major factor in robustness rankings. Indeed, theCV for eachmodel (the denominators
in (26), (27), and (28)) are nearly equal; it is the maximal order probability in the
numerator that differentiates the three models.

5 Conclusions

There are various notions for robustness proposed in the statistics literature. In this
paper, we suggested one notion for robustness based on the sensitivity pattern of
a model. We argued this notion becomes especially relevant if a modeler wants
to distinguish between important and unimportant parameters in order to freeze
parameters, and thus reduce the complexity of the model. Another scenario is where
a modeler invests more resources in estimating the more sensitive parameters—this
could be in the form of expensive experiments— and a model where important
parameters tend to stay important across different applications will be desirable.
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Wediscussed the robustness of somemodels for twoproblems fromcomputational
finance. In our numerical results we did not assess the accuracy of the robustness
estimates, however we outlined a bootstrapping based approach in Remark2. The
further investigation of other estimators for the robustness measure and methods to
estimate its accuracy is left for future research.
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Rapid Covariance-Based Sampling of
Linear SPDE Approximations in the
Multilevel Monte Carlo Method

Andreas Petersson

Abstract The efficient simulation of the mean value of a non-linear functional of
the solution to a linear stochastic partial differential equation (SPDE) with additive
Gaussian noise is considered. A Galerkin finite element method is employed along
with an implicit Euler scheme to arrive at a fully discrete approximation of the mild
solution to the equation. A scheme is presented to compute the covariance of this
approximation, which allows for rapid sampling in a Monte Carlo method. This is
then extended to a multilevel Monte Carlo method, for which a scheme to compute
the cross-covariance between the approximations at different levels is presented.
In contrast to traditional path-based methods it is not assumed that the Galerkin
subspaces at these levels are nested. The computational complexities of the presented
schemes are compared to traditional methods and simulations confirm that, under
suitable assumptions, the costs of the new schemes are significantly lower.

Keywords Stochastic partial differential equations · Finite element method ·
Monte Carlo · Multilevel Monte Carlo · Covariance operators

1 Introduction

Stochastic partial differential equations (SPDE) have many applications in engineer-
ing, finance, biology and meteorology. These include filtering problems, pricing of
energy derivative contracts andmodeling of sea surface temperature. For an overview
of applications, we refer to [10, 22]. A natural quantity of interest for an SPDE is
the expected value of a non-linear functional of the solution of the equation at a
fixed time. This includes moments of the solution but also more concrete quanti-
ties, such as, in the case that the SPDE models sea surface temperature, the average
amount of area in which the temperature exceeds a given temperature distribution.
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In order to determine such quantities, numerical approximations of the SPDE have
to be considered, since analytical solutions are in general unavailable.

The field of numerical analysis of SPDE is very active and a multitude of approx-
imations have been considered in the literature, see e.g., [15] and [21, Sect. 10.9] for
an overview. In this paper we take the approach of [17], where the author considers an
SPDE of evolutionary type and employs a Galerkin method for the spatial discretiza-
tion of the equation (which includes both spectral and finite element methods) along
with a drift-implicit Euler–Maruyama scheme for the temporal discretization. The
finite element method in particular is useful and flexible as no explicit knowledge of
eigenfunctions or eigenvalues is needed. The author of [17] does, however, omit the
problem of how to, given this approximation, efficiently estimate expected values. In
this paper we formulate methods for this problem that, under suitable assumptions,
outperform standard methods based on the discretization considered in [17].

Typically, the approximation of expected values is accomplished by aMonteCarlo
method (MC), i.e., by computing a large number of sample paths of the approximate
solution and taking the average of the functional of interest applied to each path. This
is however quite expensive. Startingwith the publication of [11], themultilevelMonte
Carlo method (MLMC) has become popular, since it can reduce computational cost
while retaining accuracy. The method was first considered in [14] for the evaluation
of functionals arising from the solution of integral equations. We refer to [12] for an
introduction to this active field and to [5, 6] for the first applications of MLMC to
finite element approximations of SPDE. MLMC was first considered for SPDE in
the thesis [13], where a spectral Galerkin discretization was used.

Even though the MLMCmethod decreases the computational cost of the approx-
imation of expected values, it is still fairly expensive. In this paper we formulate
covariance-based variants of the MC and MLMCmethods. The idea is to exploit the
fact that as long as the considered SPDE has additive noise and is linear, then the
approximation from [17] of the end-time solution is Gaussian. Since a Gaussian ran-
dom variable is completely determined by its mean and covariance, calculating these
parameters provides an efficient way of sampling the approximation (Algorithm 2
below). To incorporate this idea in an MLMC method (Algorithm 4) we calculate
the cross-covariance between two SPDE approximations in different Galerkin sub-
spaces. In contrast to [5, 6], the subspace sequence is not assumed to be nested. We
demonstrate, using theoretical computations andnumerical simulations, that the com-
putational costs of these new algorithms are, under mild assumptions, substantially
lower than their traditional path-based alternatives (Algorithms 1 and 3 respectively).

The paper is organized as follows: In Sect. 2 we recapitulate the theoretical setting
and approximation results of [17].We also introduce the assumptions wemake along
with a stochastic advection-diffusion equation as a concrete example that fulfills
these. In Sect. 3 we introduce a covariance-based method for computing samples
of SPDE approximations in an MC setting and compare the complexity of it to the
traditional path-based method. We extend this in Sect. 4 to the setting of the MLMC
method. Section5 contains a description of the numerical implementation of our
methods and a discussion of our assumptions. Finally in Sect. 6 we demonstrate the
efficiency of our approach by simulation of the stochastic heat equation.
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2 Stochastic Partial Differential Equations and Their
Approximations

Let (H, 〈·, ·〉 , ‖ · ‖) be a real separable Hilbert space and let −A : dom(−A) ⊂
H → H be a positive definite, self-adjoint operator with a compact inverse on H .
For a fixed time T < ∞, let (Ω,A , (Ft )t∈[0,T ], P) be a complete filtered probability
space satisfying the usual conditions. In this context we consider the linear SPDE

dX (t) = (
AX (t) + F(t, X (t))

)
dt + G(t) dW (t),

X (0) = x0,
(1)

for t ∈ [0, T ]. HereW is an H -valued cylindrical Q-Wiener process, x0 is a random
member of a subspace of H , while F and G are mappings that fulfill Assumption 1
below. The solution X = (X (t))t∈[0,T ] is then an H -valued stochastic process. Equa-
tion (1) is treated with the semigroup approach of [10, Chap.7], resulting in a so-
called mild solution of the equation. In order to introduce this notion, we start by
describing the spectral structure induced by A on H .

By the spectral theorem applied to (−A)−1, there is an orthonormal eigenbasis
(ei )i∈N of H and a positive sequence (λi )i∈N of eigenvalues of −A that is increasing
and for which limi→∞λi = ∞. For r ∈ R, fractional powers of −A are defined by

(−A)r/2 f =
∞∑

i=1

λ
r/2
i 〈 f, ei 〉 ei

for f ∈ Ḣr = dom((−A)r/2), which is characterized by

Ḣr =
{

f =
∞∑

i=1

fi ei : fi ∈ R for all i ∈ N and ‖ f ‖2r =
∞∑

i=1

λr
i f

2
i < ∞

}

.

This is a separable Hilbert space when equipped with the inner product

〈·, ·〉r = 〈
(−A)r/2 · , (−A)r/2 · 〉 .

For r > 0, we have the Gelfand triple Ḣr ⊆ H ⊆ Ḣ−r since Ḣ−r ∼= (Ḣr )∗, the dual
of Ḣr . The operator A is the generator of an analytic semigroup E = (E(t))t≥0 ⊂
L (H).

Next, we briefly recapitulate some notions from functional analysis and probabil-
ity theory. For two real separable Hilbert spaces H1 and H2, we denote by H1 ⊕ H2 =
{[ f, u]′ : f ∈ H1, u ∈ H2} the Hilbert (external) direct sum of H1 and H2, with
an inner product defined by

〈[ f1, u1]′, [ f2, u2]′
〉
H1⊕H2

= 〈 f1, f2〉H1
+ 〈u1, u2〉H2

,
f1, f2 ∈ H1, u1, u2 ∈ H2. Similarly, by H1 ⊗ H2 we denote the Hilbert tensor prod-
uct, i.e., the completion of the algebraic tensor product of H1 and H2 under the
norm induced by the inner product 〈 f1 ⊗ u1, f2 ⊗ u2〉H1⊗H2

= 〈 f1, f2〉H1
〈u1, u2〉H2

,
f1, f2 ∈ H1, u1, u2 ∈ H2. For H1 = H2 we write H⊗2

1 = H1 ⊗ H1 and f ⊗2 =
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f ⊗ f for f ∈ H1. We denote by L (H1, H2) and L2(H1, H2), or L (H) respec-
tivelyL2(H)when H1 = H2 = H , the spaces of linear respectivelyHilbert–Schmidt
operators from H1 to H2. Similarly, we denote by L s

1 (H) the family of operators
K ∈ L (H) that are positive semidefinite, self-adjoint, and of trace class, i.e., such
operators for which the trace Tr K = ∑∞

i=1 〈Kei , ei 〉 is finite.
For an H -valued randomvariable X ∈ L1(Ω; H), i.e.,E[‖X‖] < ∞, the expected

value, or mean, of X is defined by the Bochner integral E[X ] = ∫
Ω
X (ω) dP(ω). If

X ∈ L2(Ω; H), we define the covariance or covariance operator of X by

Cov(X) = E[(X − E[X ])⊗2] = E[X⊗2] − E[X ]⊗2 ∈ H⊗2.

More generally, for Hilbert spaces H1 and H2, we define the cross-covariance or
cross-covariance operator of Y ∈ L2(Ω; H2) and Z ∈ L2(Ω; H1) by

Cov(Y, Z) = E[(Y − E[Y ]) ⊗ (Z − E[Z ])] = E[Y ⊗ Z ] − E[Y ] ⊗ E[Z ] ∈ H2 ⊗ H1

so that Cov(X) = Cov(X, X). Calling these quantities operators is justified by the
fact that H2 ⊗ H1 � L2(H1, H2) ⊆ L (H1, H2). The action of the cross-covariance
is given by Cov(Y, Z) = E[〈Z − E[Z ], ·〉H1

(Y − E[Y ])] which means that
Cov(X) ∈ L1(H) and also that Cov(X) ∈ L s

1 (H), implying in particular that it
has a unique square root.

We next recall that an H -valued random variable X is said to be Gaussian
if X ∈ H P-a.s. and 〈X, f 〉 is a real-valued Gaussian random variable for all
f ∈ H . In this case X ∈ L p(Ω; H) for all p ≥ 1 so Cov(X) is well-defined. Now,
a stochastic process W : [0, T ] × Ω → H is said to be an H -valued Q-Wiener
process adapted to (Ft )t∈[0,T ] if W (0) = 0, W has P-a.s. continuous trajectories,
and if there exists a self-adjoint trace class operator Q ∈ L (H) such that for
each 0 ≤ s < t ≤ T , W (t) − W (s) is Gaussian with zero mean and covariance
(t − s)Q and W (t) − W (s) is independent of Fs . Below we consider cylindrical
Q-Wiener processes (see, e.g., [25, Sect. 2.5], [10, Chaps. 2–4]). These can be for-
mally defined as Q-Wiener processes in Ḣ−r for large enough r > 0, allowing for
Tr(Q) = ∞. In this case it is no longer true that W (t) − W (s) ∈ H P-a.s., but
〈W (t) − W (s), f 〉 is still a real-valued Gaussian random variable for all f ∈ H and
E[〈W (t) − W (s), f 〉 〈W (t) − W (s), g〉] = 〈(t − s)Q f, g〉 for all f, g ∈ H .

With this in mind, a predictable process X = (X (t))t∈[0,T ], with T < ∞ fixed, is
called a mild solution to (1) if supt∈[0,T ]‖X (t)‖L2(Ω;H) < ∞ and for all t ∈ [0, T ],

X (t) = E(t)x0 +
∫ t

0
E(t − s)F(s, X (s)) ds +

∫ t

0
E(t − s)G(s) dW (s), P-a.s.

The first integral is of Bochner type while the second is an H -valued Itô-integral.
For this to be well defined, we need G to map into L 0

2 = L2(Q1/2(H), H). Here
Q1/2(H) is a Hilbert space equipped with the inner product

〈
Q−1/2·, Q−1/2·〉, where

Q−1/2 denotes the pseudoinverse of Q1/2. We make this explicit in the assumption
below, which by [17, Theorem 2.25] guarantees the existence of a mild solution
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to (1). The assumption also implies that the approximation we consider below is
Gaussian.

Assumption 1 The parameters of (1) fulfill the following requirements.

(i) W = (W (t))t∈[0,T ] is an (Ft )t∈[0,T ]-adapted cylindrical Q-Wiener process,
where Q ∈ L (H) is self-adjoint and positive semidefinite, not necessarily of
trace class.

(ii) There is a constant C > 0 such that G : [0, T ] → L 0
2 satisfies

‖G(t1) − G(t2)‖L 0
2

≤ C |t1 − t2|1/2, for all t1, t2 ∈ [0, T ].

(iii) The function F : [0, T ] × H → Ḣ−1 is affine in H , i.e., for each t ∈ [0, T ]
there exists an operator F1

t ∈ L (H, Ḣ−1) and an element F2
t ∈ Ḣ−1 such that

F(t, f ) = F1
t f + F2

t for all f ∈ H . Furthermore, there exists a constantC > 0
such that F : [0, T ] × H → Ḣ−1 satisfies

‖F(t1, f ) − F(t2, f )‖−1 ≤ C(1 + ‖ f ‖)|t1 − t2|1/2

for all f ∈ H , t1, t2 ∈ [0, T ], and ‖F1
t ‖L (H,Ḣ−1) ≤ C for all t ∈ [0, T ].

(iv) The initial value x0 is a (possibly degenerate)F0-measurable Ḣ 1-valued Gaus-
sian random variable.

By degenerate, we mean that Cov(x0) may only be positive semidefinite, allow-
ing for a deterministic initial value. Since x0 ∈ L p(Ω; H) for all p ≥ 1 we have
supt∈[0,T ]‖X (t)‖L p(Ω;Ḣ s ) < ∞ for all p ≥ 1 and s ∈ [0, 1).

As a model problem in this context, we consider a stochastic advection-diffusion
equation.

Example 1 For a convex polygonal domain D ⊂ R
d , d = 1, 2, 3, let H = L2(D)

and for a function f on D, let the operator −A : dom(−A) → H be given by
A f = ∇ · (a∇ f ) with Dirichlet zero boundary conditions, where a : D → R is a
sufficiently smooth strictly positive function. In this setting it holds (cf. [26, Chap. 3])
that Ḣ 1 = H 1

0 (D) and Ḣ 2 = H 2(D) ∩ H 1
0 (D), where Hk(D) is the Sobolev space of

order k on D and H 1
0 (D) consists of all f ∈ H 1(D) such that f (x) = 0 for x ∈ ∂D,

the boundary of D. Let F be given by F(t, f ) = b(t, ·) · ∇ f (·) + c(t, ·) f (·) +
d(t, ·) for a function f onD.Whenb : D × [0, T ] → R

d and c, d : D × [0, T ] → R

are smooth, F(t, ·) is indeed a member of L (H, Ḣ−1) (cf. [17, Example 2.22]).
Choosing G = g(t)·, where g : [0, T ] → R is smooth, Q such that Tr(Q) < ∞
and x0 smooth, Equation (1) is interpreted as the problem to find a function-valued
stochastic process X such that

dX (t, x) = (∇ · (a(x)∇X (t, x)) + b(t, x) · ∇X (t, x) + c(t, x)X (t, x) + d(t, x)) dt

+ g(t) dW (t, x)

for all t ∈ (0, T ], x ∈ D, with X (t, x) = 0 for all t ∈ (0, T ], x ∈ ∂D and X (0, x) =
x0(x) for all x ∈ D. Moreover, the covariance of the noise has a more concrete
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meaning in this setting. A consequence of Tr(Q) < ∞ is, by [23, Proposition A.7],
the existence of a symmetric square integrable function q : D × D → R such that

Q f =
∫

D
q(·, y) f (y) dy (2)

for f ∈ H . Similarly, if q is a symmetric, positive semidefinite continuous function
on D × D, then (2) defines a covariance operator by [23, Theorem A.8]. If we take
W (t, ·), t ∈ [0, T ], to be a random field (which in this setting is to say that it is
defined in all of D and jointly B(D) ⊗ Ft -measurable, where B(D) denotes the
Borel σ -algebra on D), then tq is the covariance function of the field.

For the spatial discretization of (1), we assume the setting of [17, Chap.3.2].
Let (Vh)h∈(0,1] be a family of subspaces of Ḣ 1 equipped with 〈·, ·〉 such that
Nh = dim(Vh) < ∞. By Ph : H−1 → Vh we denote the generalized orthogonal pro-
jector onto Vh , defined by 〈Ph f, Φh〉 = Ḣ−1〈 f, Φh〉Ḣ 1 for all f ∈ Ḣ−1 and Φh ∈ Vh ,
where Ḣ−1〈·, ·〉Ḣ 1 denotes the dual pairing.By Rh wedenote theRitz projector, i.e., the
orthogonal projector Rh : Ḣ 1 → Vh with respect to 〈·, ·〉1. We assume that there is a
constantC > 0 such that ‖Ph f ‖1 ≤ C‖ f ‖1 and ‖Rh f − f ‖ ≤ C‖ f ‖shs for all h ∈
(0, 1] and all f in Ḣ 1 and Ḣ s , s ∈ {1, 2}, respectively. This setting includes both finite
element and spectral methods (see [17, Examples 3.6–3.7] for details on when these
relatively mild assumptions hold). The operator −Ah : Vh → Vh is now defined by
〈−Ah fh, gh〉 = 〈 fh, gh〉1 = 〈

(−A)1/2 fh, (−A)1/2gh
〉
, for all fh, gh ∈ Vh . For the

time discretization, we use the drift-implicit Euler method. Let a uniform time grid
be given by t j = jΔt for j = 0, 1, . . . , NΔt = T/Δt ∈ N. A fully discrete approx-
imation (X

t j
h,Δt )

NΔt
j=0 is then given by

X
t j+1

h,Δt − X
t j
h,Δt =

(
AhX

t j+1

h,Δt + PhF(t j , X
t j
h,Δt )

)
Δt + PhG(t j )ΔW j , (3)

where ΔW j = W (t j+1) − W (t j ) and j = 0, . . . , NΔt − 1. It converges strongly to
the solution of (1) in the sense of the following theorem.

Theorem 1 ([17, Theorem 3.14]) Let the terms of (1) satisfy Assumption 1 and let
(XT

h,Δt )h,Δt be a family of approximations of X (T ) given by (3). Then, for all p ≥ 1,
suph,Δt (‖XT

h,Δt‖L p(Ω;H)) < ∞ and there is a constant C > 0 such that

‖X (T ) − XT
h,Δt‖L p(Ω;H) ≤ C

(
h + Δt1/2

)
, for all h,Δt ∈ (0, 1].

Since the goal of this paper is the approximation of the quantity E[φ(X (T ))],
where φ is a smooth functional, the concept of weak convergence, i.e., convergence
with respect to the expectation of functionals of the solution, is vital as it allows for
the efficient tuning of the MC estimators in Sects. 3 and 4. In order to use a result
from [17], we need a stronger assumption. In particular, F is a function of time only
and φ is smooth. This is formalized below, see also Remark 4.
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Assumption 2 The parameters of (1) fulfill the following requirements.

(i) For some δ ∈ [1/2, 1], there is a constant C > 0 such that G : [0, T ] → L 0
2

and F : [0, T ] → H satisfy

‖G(t1) − G(t2)‖L 0
2

≤ C |t1 − t2|δ, for all t1, t2 ∈ [0, T ]

and
‖F(t1) − F(t2)‖ ≤ C |t1 − t2|δ, for all t1, t2 ∈ [0, T ].

(ii) The functionalφ is amember ofC2
p (H ;R), the space of all continuousmappings

from H to R which are twice continuously Fréchet-differentiable with at most
polynomially growing derivatives.

(iii) The initial value x0 ∈ Ḣ 1 is deterministic.

With this assumption in place, we cite the following weak convergence result.

Theorem 2 ([17, Theorem 5.12]) Under the assumptions of Theorem 1 and
Assumption 2, there is a constant C > 0 such that

∣∣E
[
φ(X (T )) − φ(XT

h,Δt)
]∣∣ ≤ C (1 + | log(h)|) (

h2 + Δtδ
)
, for all h,Δt ∈ (0, 1].

3 Covariance-Based Sampling in a Monte Carlo Setting

For Y ∈ L1(Ω;R), the MC approximation of E[Y ] is given by

EN [Y ] = 1

N

N∑

i=1

Y (i),

where N ∈ N is the number of independent realizations, Y (i), of Y . Any Y ∈
L2(Ω;R) satisfies for N ∈ N the inequality

‖E [Y ] − EN [Y ] ‖L2(Ω;R) = 1√
N

Var (Y )1/2 ≤ 1√
N

‖Y‖L2(Ω;R). (4)

In order to accurately approximate E[φ(X (T ))] by MC using our fully discrete
approximation XT

h,Δt of X (T ), we must therefore generate many samples of XT
h,Δt .

In practice one samples the vector x̄T
h = [x1, x2, . . . , xNh ]′ of coefficients of the

expansion XT
h,Δt = ∑Nh

k=1xkΦ
h
k , where Φh = (Φh

k )
Nh
k=1 is a basis of Vh .

The classical approach to this is that of path-based sampling, i.e., solving the
NΔt matrix equations corresponding to (3) once for each sample i = 1, 2, . . . , N
(Algorithm 1). These systems are obtained by expanding (3) on Φh and applying〈
Φh

i , ·〉 to each side of this equality for i = 1, 2, . . . , Nh .
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Algorithm 1 Path-based MC method of computing an estimate EN [φ(XT
h,Δt)] of

E[φ(X (T ))]
1: result = 0
2: for i = 1 to N do
3: Sample increments of a realization W (i) of the Q-Wiener process W
4: Compute x̄Th = [x1, x2, . . . , xNh ]′ directly by solving the matrix equations corresponding to

the drift-implicit Euler–Maruyama system (3) driven by W (i)

5: Compute φ(XT
h,Δt ) = φ

(∑Nh
k=1xkΦ

h
k

)

6: result = result + φ(XT
h,Δt )

(i)/N
7: end for
8: EN

[
φ(XT

h,Δt )
]

= result

Our alternative approach is that of covariance-based samplingwhere Cov(Xh,Δt )

is computed, yielding the covariance matrix of x̄T
h which is used to generate samples

of x̄T
h directly (Algorithm 2). This is possible since Assumption 1 ensures that x̄T

h
is Gaussian. To see this, we first introduce the abbreviations Rh,Δt = (IH − Δt Ah),

F1, j
h,Δt =

(
IH + Δt Ph F1

t j

)
, and F2, j

h,Δt = Δt Ph F2
t j , so that (3) can be written as

Rh,Δt X
t j+1

h,Δt = F1, j
h,Δt X

t j
h,Δt + F2, j

h,Δt + PhG(t j )ΔW j , (5)

for j = 0, 1, . . . , NΔt − 1. The Vh-valued random variable X
t j+1

h,Δt is Gaussian by
induction, due to the facts that affine transformations of Gaussian random variables
remain Gaussian, that X

t j
h,Δt and PhG(t j )ΔW j are independent, that the recursion is

started at a (possibly degenerate) Gaussian random variable, and that PhG(t j )ΔW j

itself is Gaussian, which can be seen by, for example, [10, Theorems 4.6, 4.27].
That x̄T

h is an R
Nh -valued Gaussian random variable is then a consequence of the

equality
〈
x̄T
h , a

〉
RNh

= 〈
XT
h,Δt , ah

〉
H
, where a = [a1, a2, . . . , aNh ]′ ∈ R

Nh is arbitrary

and ah = ∑Nh
i=1(M

−1
h a)iφi , where Mh is the symmetric positive definite matrix with

entries mi, j = 〈
φi , φ j

〉
.

In the next theorem we introduce a scheme for the calculation of Cov(Xh,Δt ),
inspired by the derivation of stability properties of SPDE approximation schemes in
[20], see also [9].

Theorem 3 Let the terms of (1) satisfy Assumption 1 and let (X
t j
h,Δt )

NΔt
j=0 be given

by (3). Then μT = E[XT
h,Δt ] ∈ Vh and ΣT = Cov(XT

h,Δt ) ∈ V⊗2
h are given by the

recursions
Rh,Δtμ

t j+1 = F1, j
h,Δtμ

t j + F2, j
h,Δt , (6)

(
Rh,Δt

)⊗2
Σ t j+1 =

(
F1, j
h,Δt

)⊗2
Σ t j + E

[(
PhG(t j )ΔW j

)⊗2
]

(7)

for j = 0, 1, . . . , NΔt − 1.



Rapid Covariance-Based Sampling of Linear SPDE … 431

Proof We first prove the result assuming F2
t = 0 for all t ∈ [0, T ]. The recursion

scheme (6) for the mean follows by applying E[·] to both sides of (5), noting that
E[·] commutes with linear operators and that ΔW j has zero mean.

For the covariance recursion scheme (7), we first tensorize (5) to get

(
Rh,Δt

)⊗2 (
X
t j+1
h,Δt

)⊗2 =
(
F1, j
h,Δt

)⊗2 (
X
t j
h,Δt

)⊗2 + F1, j
h,Δt X

t j
h,Δt ⊗ PhG(t j )ΔW j

+ PhG(t j )ΔW j ⊗ F1, j
h,Δt X

t j
h,Δt +

(
PhG(t j )ΔW j

)⊗2
.

(8)

Since ΔW j is independent of X
t j
h,Δt and has zero mean,

E

[
F1, j
h,Δt X

t j
h,Δt ⊗ PhG(t j )ΔW j

]
= E

[
F1, j
h,Δt X

t j
h,Δt

]
⊗ E

[
PhG(t j )ΔW j

] = 0

and similarly, the third term has zero mean. Thus, the mean of (8) is given by

(
Rh,Δt

)⊗2
E

[(
X

t j+1

h,Δt

)⊗2
]

=
(
F1, j
h,Δt

)⊗2
E

[(
X

t j
h,Δt

)⊗2
]

+ E

[(
PhG(t j )ΔW j

)⊗2
]
.

Tensorizing (6), the recursion scheme for the mean, we obtain

(
Rh,Δt

)⊗2 (
μt j+1

)⊗2 =
(
F1, j
h,Δt

)⊗2 (
μt j

)⊗2

and by subtracting this from the previous equation we end up with (7). The general
case of a non-zero F2, j

h,Δt term is proven in the sameway, noting that all terms involving
this disappears from (7) when subtracting the tensorized mean in the last step. �

Remark 1 Note that this computation can easily be extended to the case of lin-
ear multiplicative noise. However, XT

h,Δt is then non-Gaussian, so knowledge of its
covariance is not sufficient to compute samples of it.

Algorithm 2Covariance-basedMCmethod of computing an estimate EN [φ(XT
h,Δt )]

of E[φ(X (T ))]
1: Form the mean vector μ and covariance matrix Σ of x̄Th by solving the matrix equations corre-

sponding to (6) and (7)
2: result = 0
3: for i = 1 to N do
4: Sample x̄Th = [x1, x2, . . . , xNh ]′ ∼ N (μ,Σ)

5: Compute φ(XT
h,Δt ) = φ

(∑Nh
k=1xkΦ

h
k

)

6: result = result + φ(XT
h,Δt )

(i)/N
7: end for
8: EN

[
φ(XT

h,Δt )
]

= result
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Next, we compare the computational complexities of Algorithms 1 and 2. Com-
bining (4) with Theorem 2 yields, using the triangle inequality, for a constantC > 0,

‖E[φ(X (T ))] − EN [φ(XT
h,Δt )]‖L2(Ω;R)

≤ ‖E[φ(X (T ))] − E[φ(XT
h,Δt )]‖L2(Ω;R) + ‖E[φ(XT

h,Δt )] − EN [φ(XT
h,Δt )]‖L2(Ω;R)

≤ C
(
(1 + | log(h)|)

(
h2 + Δtδ

)
+ N−1/2

)
.

To balance this we couple Δt and N by Δtδ � N−1/2 � h2. We make the following
assumption for the computational complexities of the algorithms.

Assumption 3 There is a d ∈ N such that the cost of computing one step of (3) is
O(h−αd), where α ∈ [1, 2], while the cost of one step of the tensorized system (7)
is O(h−2d). Moreover, the cost of sampling a Gaussian Vh-valued random variable
with covariance given by (7) is O(h−2d). Finally, for Algorithm i, i = 1, 2, 3, 4, any
additional offline cost is O(h−ωi d) for some ωi ∈ N.

Remark 2 In our model problem Example 1, d is the dimension of the space Rd in
which the domain D is contained and dim(Vh) = O(h−d). See Sect. 5 for a discussion
of this assumption.

In order to compute an approximation of E[φ(X (T ))], if we use Algorithm 1,
we need to solve the drift-implicit Euler–Maruyama system (3) N · NΔt = T NΔt−1

times, making the total (online) cost O(NΔt−1h−αd) = O(h−4−αd−2/δ). If we use
Algorithm 2 instead, we need to solve (7) NΔt = TΔt−1 times and then sample from
the resulting covariance N times, making the total cost O(h−2d−2/δ) + O(h−2d−4) =
O(h−2d−4). We collect these observations in the following proposition, which ends
this section.

Proposition 1 Let φ and the terms of (1) satisfy Assumptions 1 and 2. Assume that
XT
h,Δt is given by (3) and that X (T ) is the solution to (1) at time T < ∞. If N � h−4

and Δt � h2/δ then there is a constant C > 0 such that

‖E[φ(X (T ))] − EN [φ(XT
h,Δt)]‖L2(Ω;R) ≤ C (1 + | log(h)|) h2, for all h > 0.

Under Assumption 3, the cost of computing EN [XT
h,Δt ] with Algorithm 1 is bounded

by O(max(h−4−αd−2/δ, h−ω1d)) and with Algorithm 2 by O(max(h−2d−4, h−ω2d)).

4 Covariance-Based Sampling in a Multilevel Monte Carlo
Setting

For our goal of estimatingE[φ(X (T ))], theMLMC algorithm can be amore efficient
alternative to the standardMCalgorithm. For a sequence (Y)∈N0 of randomvariables
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in L2(Ω;R) approximating Y ∈ L2(Ω;R), where the index  ∈ N0 is referred to as
a level, the MLMC estimator EL [YL ] of E[YL ] is, for L ∈ N, defined by

EL [YL ] = EN0 [Y0] +
L∑

=1

EN
[Y − Y−1],

where (N)
L
=0 are level specific numbers of samples in the respectiveMC estimators.

To apply this algorithm in our setting, we take a sequence (XT
 )∈N0 of approxi-

mations of X (T ), given by XT
 = XT

h,Δt
, where (h)∈N0 is a decreasing sequence of

mesh sizes and Δt δ � h2 , so that (φ(XT
 ))∈N0 becomes a sequence approximating

φ(X (T )). For notational convenience, we set φ(XT−1) = 0. Computing EL
[
φ

(
XT

L

)]

involves, for each  = 1, 2, . . . , L , sampling φ
(
XT



) − φ
(
XT

−1

)
N times (we spec-

ify how to choose the sample sizes below). For this it is key that XT
 on the fine level

 and XT
−1 on the coarse level  − 1 are positively correlated. In the classical path-

based method (Algorithm 3, see also [2, 5, 6, 19]), this is achieved by computing
them on the same discrete realization of W , assuming that the family (Vh)h∈(0,1] is
nested.

Algorithm 3 Path-based MLMC method of computing an estimate EL
[
φ

(
XT

L

)]
of

E[φ(X (T ))]
1: result = 0
2: for  = 0 to L do
3: for i = 1 to N do
4: Sample increments of a realization W (i) of the Q-Wiener process W
5: Compute x̄Th−1

= [x−1
1 , x−1

2 , . . . , x−1
Nh−1

]′ by solving thematrix equations corresponding

to (3) driven by W (i)

6: Compute x̄Th
= [x

1, x

2, . . . , x


Nh

]′ by solving the matrix equations corresponding to (3)

driven by W (i)

7: Compute φ(XT
 ) − φ(XT

−1) = φ
(∑Nh

k=1x

kΦ

h

k

)
− φ

(∑Nh−1
k=1 x−1

k Φ
h−1
k

)

8: result = result + (
φ(XT

 ) − φ(XT
−1)

)
/N

9: end for
10: end for
11: EL

[
φ(XT

L )
] = result

To introduce our alternative covariance-based method, the path-based sampling
is rewritten as a system on Vh′ ⊕ Vh . Consider to this end, for h, h′,Δt,Δt ′ ∈ (0, 1],
a pair

(
(X

t ′j
h′,Δt ′)

NΔt ′
j=0 , (X

t j
h,Δt )

NΔt
j=0

)
of approximations of X , given by the drift-implicit

Euler–Maruyama scheme (3). Assume further that they are nested in time, i.e., that
Δt ′ = KΔt for some K ∈ N with K > 1. We create an extension (X̂

t j
h′,Δt )

NΔt
j=0 of the

coarse approximation (X
t ′j
h′,Δt ′)

NΔt ′
j=0 to the finer time grid by X̂ t0

h′,Δt = X
t ′0
h′,Δt ′ and

R̂ j
h′,Δt X̂

t j+1

h′,Δt = F̂1, j
h′,Δt X̂

t j
h′,Δt + F̂2, j

h′,Δt + Ph′ Ĝ(t j )ΔW j ,
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for j = 0, 1, . . . , NΔt − 1, where ΔW j = W (t j+1) − W (t j ). The operators are
given by

R̂ j
h′,Δt =

{
Rh′,Δt ′ if j + 1 = 0 mod K ,

IH otherwise,
F̂1, j
h′,Δt =

{
F1, j/K
h′,Δt ′ if j + 1 = 1 mod K ,

IH otherwise,

F̂2, j
h′,Δt =

{
F2, j/K
h′,Δt ′ if j + 1 = 1 mod K ,

0 otherwise,
and Ĝ(t j ) = G(t j−( j mod K )).

Note that X̂
t j+1

h′,Δt = X
t ′( j+1)/K

h′,Δt ′ when j + 1 = 0 mod K since then

R̂ j
h′,Δt X̂

t j+1

h′,Δt = F̂1, j
h′,Δt X̂

t j
h′,Δt + F̂2, j

h′,Δt + Ph′ Ĝ(t j )ΔW j = X̂
t j
h′,Δt + Ph′G(t j−(K−1))ΔW j

= X̂
t j−1

h′,Δt + Ph′G(t j−1−(K−2))ΔW j−1 + Ph′G(t j−(K−1))ΔW j = · · ·

= F̂1, j+1−K
h′,Δt X̂

t j+1−K

h′,Δt + F̂2, j+1−K
h′,Δt + PhG(t j+1−K )

K∑

i=1

ΔW j−(i−1)

= F1,( j+1)/K−1
h′,Δt ′ X̂

t j+1−K

h′,Δt + F2,( j+1)/K−1
h′,Δt ′ + PhG(t ′( j+1)/K−1)ΔW

′( j+1)/K−1,

where ΔW
′( j+1)/K−1 = W (t ′( j+1)/K ) − W (t ′( j+1)/K−1). Hence, sampling the pair of

discretizations
(
(X

t j
h,Δt )

NΔt
j=0, (X

t ′j
h′,Δt ′)

NΔt ′
j=0

)
on the same realization of the driving Q-

Wiener process is equivalent to solving the system

[
R̂ j
h′,Δt 0

0 R j
h,Δt

][
X̂
t j+1
h′,Δt

X
t j+1
h,Δt

]

=
[
F̂1, j
h′,Δt 0

0 F1, j
h,Δt

][
X̂
t j
h′,Δt

X
t j
h,Δt

]

+
[
F̂2, j
h′,Δt

F2, j
h,Δt

]

+
[
Ph′ Ĝ(t j )
PhG(t j )

]
ΔW j

in Vh′ ⊕ Vh for j = 0, 1, . . . , NΔt − 1. We note that [X̂ t j
h′,Δt , X

t j
h,Δt ]′ is a Gaus-

sian Vh′ ⊕ Vh-valued random variable for all j = 0, 1, . . . , NΔt − 1. Therefore,
a covariance-based approach for sampling

(
XT
h,Δt , X

T
h′,Δt ′

)
could be obtained by

directly computing Cov
([XT

h,Δt , X
T
h′,Δt ′ ]′

) = Cov
([XT

h,Δt , X̂
T
h′,Δt ]′

)
. However, to

save computational work, we base Algorithm 4 on computing Cov
(
XT
h′,Δt ′ , X

T
h,Δt

)

instead. The following theorem gives the scheme for this, which is derived analo-
gously to Theorem 3.

Theorem 4 Let the terms of (1) satisfy Assumption 1 and let, for h, h′,Δt,Δt ′ > 0,

(X
t j
h,Δt )

NΔt
j=0 and (X

t ′j
h′,Δt ′)

NΔt ′
j=0 be given by the drift-implicit Euler–Maruyama scheme

(3). Assume further that Δt ′ = KΔt for some K ∈ N with K > 1. Then the cross-
covariance Cov

(
XT
h′,Δt ′ , X

T
h,Δt

)
is given by ΣT ∈ Vh′ ⊗ Vh, where the sequence

(Σt j )
NΔt
j=0 fulfills

(
R̂ j
h′,Δt ′ ⊗ Rh,Δt

)
Σt j+1 = (

F̂1, j
h,Δt ⊗ F1, j

h,Δt

)
Σt j + E

[
Ph′ Ĝ(t j )ΔW j ⊗ PhG(t j )ΔW j

]
. (9)
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The following proposition, which is an adaptation of [18, Theorem 1] to our
setting, shows how one should choose the sample sizes in an MLMC algorithm and
provides bounds on the overall computational work for Algorithms 3 and 4.

Proposition 2 Let φ and the terms of (1) satisfy Assumptions 1 and 2. Let (h)∈N0

be a sequence of maximal mesh sizes that satisfy h � a− for some a > 1 and all
 ∈ N0. Let (XT

 )∈N0 be a sequence of approximations of X (T ), where XT
 = XT

h,Δt
is given by the recursion (3) with Δt δ � h2 .

Algorithm 4 Covariance-based MLMC method of computing an estimate
EL

[
φ

(
XT

L

)]
of E[φ(X (T ))]

1: result = 0
2: for  = 0 to L do
3: Compute the covariance matrix Σ and mean vector μ of

x̄ =
[
[x̄Th−1

]′ , [x̄Th
]′
]′

=
[
x−1
1 , x−1

2 , . . . , x−1
Nh−1

, x
1, x


2, . . . , x


Nh

]′

by computing the means, covariances and cross-covariances of the pair (XT
−1, X

T
 ) via the

solution of the matrix equations corresponding to (6), (7) and (9)
4: for i = 1 to N do
5: Sample x̄ ∼ N (μ,Σ)

6: Compute φ(XT
 ) − φ(XT

−1) = φ
(∑Nh

k=1x

kΦ

h

k

)
− φ

(∑Nh−1
k=1 x−1

k Φ
h−1
k

)

7: result = result + (
φ(XT

 ) − φ(XT
−1)

)
/N

8: end for
9: end for
10: EL

[
φ(XT

L )
] = result

For L ∈ N,  = 1, . . . , L, ε > 0, set N = ⌈
h−4
L h2

1+ε
⌉
, where �·� is the ceiling

function, and N0 = ⌈
h−4
L

⌉
. Then there exists a constant C > 0 such that, for all

L ∈ N,

‖E [φ (X (T ))] − EL
[
φ

(
XT

L

)] ‖L2(Ω;R) ≤ C(1 + | log(hL)|)h2L .

Under Assumption 3, the cost of finding EL
[
φ

(
XT

L

)]
with Algorithm 3 is bounded

by O(max(h−2−αd−2/δ
L L2+ε, h−ω3d

L )). With Algorithm 4 the cost is bounded by
O(max(h−2d−2/δ

L L , h−2−2d
L L2+ε, h−ω4d

L )).

Proof By [18, Lemma 2],

‖E [φ (X (T ))] − EL
[
φ

(
XT
L

)]
‖L2(Ω;R)

≤
∣∣
∣E

[
φ (X (T )) − φ

(
XT
L

)]∣∣
∣

+
(

N−1
0 ‖φ

(
XT
0

)
‖2L2(Ω;R)

+
L∑

=1

N−1
 ‖φ

(
XT



)
− φ

(
XT

−1

)
‖2L2(Ω;R)

)1/2

.

(10)
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By the fact that the Fréchet derivative φ′ is at most polynomially growing and by
the uniform bound on XT

 from Theorem 1, there is a constant C > 0 such that
‖φ (

XT
0

) ‖2L2(Ω;R)
< C . Moreover, the mean-value theorem for Fréchet differentiable

mappings (cf. [24, Example 4.2]) shows that there exist p ≥ 2 and C > 0 such that

‖φ (
XT



) − φ (X (T )) ‖2L2(Ω;R) ≤ C‖XT
 − X (T )‖2L p(Ω;H) for all  ∈ N0,

so that, using Theorem 1, we get a constant C > 0 such that

‖φ
(
XT



)
− φ

(
XT

−1

)
‖2L2(Ω;R)

≤ C
(
‖XT

 − X (T )‖2L p(Ω;H) + ‖XT
−1 − X (T )‖2L p(Ω;H)

)

≤ C(h2 + h2−1) ≤ C(1 + a2)h2.

Hence, using Theorem 2 in (10) yields the existence of a constant C > 0 such that

‖E [φ (X (T ))] − EL
[
φ

(
XT

L

)] ‖L2(Ω;R)

≤ C

⎛

⎝(1 + | log(hL)|)h2L +
(

N−1
0 +

L∑

=1

N−1
 h2

)1/2
⎞

⎠

≤ Ch2L
(
1 + | log(hL)| + (1 + ζ(1 + ε))1/2

)
,

where ζ denotes the Riemann zeta function and the last inequality follows from the
choice of sample sizes. This shows the first part of the theorem.

If we use Algorithm 3 to compute EL [φ (
XT

L

)], the cost of sampling XT
0 N0 times

is by Proposition 1 O(N0h
−αd−2/δ
0 ) = O(h−4

L ). Similarly, since the computation of
φ

(
XT



) − φ
(
XT

−1

)
, 1 ≤  ≤ L , is dominated by the sampling of XT

 , the cost for
the rest of the terms is bounded by a constant times

L∑

=1

Nh
−αd−2/δ
 =

L∑

=1

h−4
L h2−αd−2/δ

 1+ε ≤ h−2−αd−2/δ
L L2+ε.

ForAlgorithm 4, the cost of sampling XT
0 N0 times is still O(h−4

L ). For 1 ≤  ≤ L , the
cost of computing the covariance of XT

 , X
T
−1 and their cross-covariance is dominated

by the cost of computing the covariance of XT
 , which is, by the same reasoning

as that preceding Proposition 1, O(h−2d−2/δ
 ). The cost of sampling a positively

correlated pair of XT
 and XT

−1, given that all covariances have been computed, is
O(h−2d

 ) + O(h−2d
−1 ) = O(h−2d

 ) so the total cost for sampling φ
(
XT



) − φ
(
XT

−1

)

for all  = 1, 2, . . . , L is bounded by a constant times

L∑

=1

(
h−2d−2/δ

 + Nh
−2d


)
=

L∑

=1

(
h−2d−2/δ

 + h−4
L h2−2d

 1+ε
)

≤ 2max(h−2d−2/δ
L L , h−2−2d

L L2+ε).

This finishes the proof. �
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Remark 3 We note that this is a suboptimal choice of sample sizes compared to the
standard N � √

V/C, see [12], where V and C are the variance and computa-
tional cost, respectively, of φ(XT

 ) − φ(XT
−1). The reason for our choice is to avoid

the estimation of the additional error resulting from the estimation of V, cf. [5, 6].

Remark 4 Note that Assumption 2 is only used to tune the MC andMLMC estima-
tors, using the weak convergence result Theorem 2. Assuming only Assumption 1,
Theorem 1 can be used for the tuning if φ is Lipschitz. However, the result can be
suboptimal, cf. [18].Moreover, there exist results onweak convergencewith different
assumptions on the parameters of (1) (including rougher noise), for example [3]. If
these are used for tuning, the conclusions regarding which methods are best may be
different. The same is true when the parameters of (1) are such that the drift-implicit
Euler scheme coincides with a Milstein scheme, see [4].

5 Implementation

In this section we describe the implementation of the algorithms of Sects. 3 and 4 in
the setting of Example1, and motivate Assumption 3 along the way. For simplicity,
we conform to Assumption 2 by setting b = c = 0. For the spatial discretization, let
Vh be the space of piecewise linear polynomials on a mesh of D ⊂ R

d , d = 1, 2, 3
with maximal mesh size h > 0, with a basis Φh = (Φh

i )
Nh
i=1.

Recall that the system of equations inRNh corresponding to (3) that wemust solve
in Algorithms 1 and 3 is given by

(Mh + Δt Ah) x̄
t j+1
h = Mh x̄

t j
h + f

t j
h + g(t j )ΔW j

h, (11)

for j = 0, 1, . . . , NΔt − 1. This gives the vector x̄T
h . Here Mh is the mass matrix,

Ah the stiffness matrix, f
t j
h a vector corresponding to the function d(t j , ·) and

(ΔW j
h)

NΔt−1
j=0 a family of iid Gaussian R

Nh -valued random vectors with covariance
matrix Σh,ΔW , having entries

si, j = Δt
∫

D2
q(x, y)Φh

i (x)Φh
j (y) dx dy, i, j ∈ {1, 2, . . . , Nh}.

Solving the discretized elliptic problem (11) can be accomplished by direct or itera-
tive solvers. Like the authors of [1, 5–7] we assume that we have access to a solver
such that the inversion of Mh + Δt Ah costs O(h−d) and any additional offline costs
are O(h−ω1d). Whether this is true will depend on the parameters, the mesh and the
dimension of the problem. For d = 1 it is immediately true, for d > 1 we mention
multigrid methods, see, e.g., [8]. Given this, the cost of solving (11) is dominated
by the generation of the stochastic term ΔW j

h . In special cases, for example, if q is
piecewise analytic (see [16]) or if Q is specified via a truncated Karhunen–Loève
expansion where the truncation does not depend on h (see also Sect. 6), the complex-
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ity is linear, i.e., α = 1 in Assumption 3. If no special assumptions are made on q, the
standard option is to use a Cholesky or eigenvalue decomposition of the covariance
matrix for PhΔW (cf. [21, Chap. 7]). Since the cost of the decomposition is cubic
and the matrix multiplication cost of generating PhΔW is quadratic, we then have
ω1, ω3 ≥ 3 and α = 2 in Assumption 3.

For Algorithms 2 and 4 we must solve tensorized systems. By expanding (7)

and applying
〈
Φ

2,h
i , ·

〉
to each side for i = 1, 2, . . . , N 2

h , where Φ2,h = (Φ
2,h
i )

N 2
h

i=1

is a basis of V⊗2
h , a system of equations in R

2Nh for the covariance recursion
scheme of Theorem 3 is obtained. Choosing Φ

2,h
i = Φh

�(i−1)/Nh�+1 ⊗ Φh
i−�(i−1)/Nh�Nh

for i = 1, 2, . . . , N 2
h , the matrices corresponding to (Rh,Δt )

⊗2 and (F1, j
h,Δt )

⊗2 will

be Kronecker products of the matrices corresponding to Rh,Δt and F1, j
h,Δt , j =

0, 1, . . . , NΔt − 1. In this setting, the resulting system at time t j+1 is

(Mh + Δt Ah)
⊗K 2 ȳ

t j+1
h = M⊗K 2

h ȳ
t j
h + g(t j )

2 Vec
(
Σh,ΔW

)
,

where ⊗K denotes the Kronecker product and Vec the vectorization operator. Here
ȳ
t j
h = Vec(Σ

x̄
t j
h
), the covariancematrix of x̄

t j
h . By the identityVec (ABC) = (C ′ ⊗K

A)Vec(B), where A, B and C are matrices such that ABC is well-defined, this is
equivalent to the matrix system

(Mh + Δt Ah)Σ
x̄
t j+1
h

(Mh + Δt Ah) = MhΣ x̄
t j
h
Mh + g(t j )

2Σh,ΔW , (12)

where we have used symmetry of the matrices involved. Assuming that the solver
of (11) is used, the cost of this system is O(h−2d). To see this, note that since Mh

has O(h−d) nonzero entries, the right hand side can be formed in O(h−2d). One then
solves for the symmetric matrix U = Σ

x̄
t j+1
h

(Mh + Δt Ah) by employing the solver

for eachof itsO(h−d) columns, and thenone similarly solves for the symmetricmatrix
Σ

x̄
t j+1
h

in the system (Mh + Δt Ah) Σ
x̄
t j+1
h

= U . Having computed Σ x̄T
h
, sampling

using this costs O(h−2d), corresponding to a matrix-vector multiplication, assuming
that a Cholesky or eigenvalue decomposition has been used, yielding ω2, ω4 ≥ 3.

In Algorithm 4, we also need to solve for the cross-covariance. Given the approx-

imations (X
t j
h,Δt )

NΔt
j=0 and (X

t ′j
h′,Δt ′)

NΔt ′
j=0 of Theorem 4, choosing a basis Φ2,h′,h =

(Φ
2,h′,h
i )

Nh′ Nh

i=1 of Vh′ ⊗ Vh by Φ
2,h′,h
i = Φh′

�(i−1)/Nh�+1 ⊗ Φh
i−�(i−1)/Nh�Nh

yields, in the
same way as above, a matrix system

(Mh + Δt Ah) Σ
x̄
t j+1
h ,x̄

t j+1
h′

(
Mh′ + Δt ′Ah′

)

= MhΣ x̄
t j
h ,x̄

t j
h′
Mh′ + g(t j )g(t j−( j mod K ))Σh,h′,ΔW ,

corresponding to (9) at time t j+1 with j + 1 = 0 mod K . HereΣ
x̄
t j
h ,x̄

t j
h′
is the cross-

covariance matrix of x̄
t j
h and x̄

t j
h′ and Σh,h′,ΔW a matrix with entries
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si, j = Δt
∫

D2
q(x, y)Φh

i (x)Φh′
j (y) dx dy, i ∈ {1, . . . , Nh}, j ∈ {1, . . . , Nh′ }.

By the same reasoning as above, the cost of solving this system is O(min(h′, h)−2d).

Having solved for the cross-covariance matrix, the vector x̄T
h,h′ =

[[
x̄T
h′
]′
,
[
x̄T
h

]′]′
is

sampled at a cost of O(min(h′, h)−2d) using the matrix

Σ x̄T
h,h′ =

[
Σ x̄T

h′ Σ x̄T
h′ ,x̄T

h

Σ ′
x̄T
h′ ,x̄T

h
Σ x̄T

h

]

,

where the diagonal entries are obtained via (12) as before.
HavingmotivatedAssumption 3, we compare the costs of the algorithms. Looking

at Propositions 1 and 2, we see that if α = 2, Algorithm 2 should be used for all
d ∈ {1, 2, 3} in the case that δ = 1/2, while if δ = 1, Algorithm 4 should be preferred
for all d ∈ {1, 2, 3}. If α = 1, for d = 1, 2 we are in the same case as before, that is
to say, Algorithm 2 is preferred for δ = 1/2 and Algorithm 4 for δ = 1. For d = 3,
however, Algorithm 3 outperforms both covariance-based algorithms. Note that we
only consider the work needed to solve the problem and not the memory. If the
stochastic terms can be generated in linear complexity (i.e. α = 1), we may not need
to store a covariance matrix of size O(h−2d), which implies that Algorithms 1 and 3
are preferred when lack of memory is a concern.

6 Simulation

In this section we illustrate our result numerically, employing the discretization of
the previous section to the stochastic heat equation driven by additive noise,

dX (t) = ΔX (t) dt + dW (t),

on H = L2(D) with D = (0, 1), for t ∈ (0, T ] = (0, 1] with initial value X (0) =
x0 = xχ(0,1/2)(x) + (1 − x)χ(1/2,1)(x), where χ denotes the indicator function, and
Dirichlet zero boundary conditions. We choose a simple Q-Wiener process

W (t, x) = 5β1(t)

x0.45
+ 5β2(t)

(1 − x)0.45
,

t ∈ [0, T ] and x ∈ D, where β1, β2 are two independent standard real-valuedWiener
processes on [0, T ]. This can be generated in linear complexity (i.e., α = 1 in
Assumption 3). This means that the covariance function corresponding to Q is,
for x, y ∈ D, given by
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Fig. 1 Convergence and computational costs of Algorithms 1 and 2

q(x, y) = 25

(xy)0.45
+ 25

((1 − x)(1 − y))0.45
.

A uniform spatial mesh is used in our finite element discretization.
Wenowcompute approximations ofE[φ(X (T ))],withφ(·) = ‖ · ‖2 ∈ C2

p (H ;R).
Figure1a shows estimates

(
5∑

i=1

(
E[φ(X (T ))] − EN [φ(XT

h,Δt )](i)
)2

)1/2

for 5 different realizations of EN [φ(XT
h,Δt )], of the mean squared errors

‖E[φ(X (T ))] − EN [φ(XT
h,Δt)]‖L2(Ω;R) for h = 2−1, 2−2, . . . , 2−5, computed with

Algorithms 1 and 2, choosing Δt and N according to Proposition 1. In the case of
the covariance-based method, we also include h = 2−6 and h = 2−7. The quantity
E[φ(X (T ))] is replaced by a reference solution E[φ(XT

h,Δt )], with h = 2−8, com-
puted with a deterministic method, cf. [24, Sect. 6]. An eigenvalue decomposition
was used for the covariance-based method. As expected, the order of convergence
is O(h2). In Fig. 1b we show the computational costs in seconds of the realizations
of EN [φ(XT

h,Δt )] along with the upper bounds on the costs from Proposition 1. The
costs appear to asymptotically follow these bounds.

For the MLMC estimator EL [φ(XT
L )] we set, for  = 0, . . . , L , h = 2−−1 and

choose the temporal step sizes and sample 5 sizes according to Proposition 2. In
Fig. 2a we show estimates
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Fig. 2 Convergence and computational costs of the MLMC estimator (Algorithms 3 and 4)
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Fig. 3 A Monte Carlo estimate of the strong error ‖X (T ) − XT
h,Δt‖L2(Ω;H)

(∑5

i=1

(
E[φ(X (T ))] − EL [φ(XT

L )](i))2
)1/2

for 5 different realizations of EL [φ(XT
L )], of themean squared errors‖E[φ(X (T ))] −

EL [φ(XT
L )]‖L2(Ω;R) for L = 0, 1, 2, . . . , 5 and for Algorithm 4 also for L = 6, using

the reference solution from before. The order of convergence is again as expected.
In Fig. 2b we show the computational costs with the upper bounds on the costs from
Proposition 2. Both methods appear to follow the derived complexity bounds.
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Finally, for completeness, we show in Fig. 3 a Monte Carlo approximation
EN [‖X (T ) − XT

h,Δt‖2]1/2 of the strong error ‖X (T ) − XT
h,Δt‖L2(Ω;H) for h = 2−1,

2−2, . . . , 2−6, Δt = h2, with a reference solution at h = 2−8 used in place of
X (T ). N = 100 samples were used. The order of convergence is as expected from
Theorem 1.

The computations in this section were performed in MATLAB® R2017b on a
laptop with a dual-core Intel® CoreTM i7-5600U 2.60GHz CPU.
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AMultilevel Monte Carlo Algorithm
for Parabolic Advection-Diffusion
Problems with Discontinuous Coefficients

Andreas Stein and Andrea Barth

Abstract The Richards’ equation is a model for flow of water in unsaturated soils.
The coefficients of this (nonlinear) partial differential equation describe the perme-
ability of the medium. Insufficient or uncertain measurements are commonly mod-
eled by randomcoefficients. For flows in heterogeneous\fractured\porousmedia, the
coefficients are modeled as discontinuous random fields, where the interfaces along
the stochastic discontinuities represent transitions in the media. More precisely, the
random coefficient is given by the sum of a (continuous) Gaussian random field and
a (discontinuous) jump part. In this work moments of the solution to the random par-
tial differential equation are calculated using a path-wise numerical approximation
combined with multilevel Monte Carlo sampling. The discontinuities dictate the spa-
tial discretization, which leads to a stochastic grid. Hence, the refinement parameter
and problem-dependent constants in the error analysis are random variables and we
derive (optimal) a-priori convergence rates in a mean-square sense.

Keywords Multilevel Monte Carlo method · Flow in heterogeneous media ·
Fractured media · Porous media · Jump-diffusion coefficient · Non-continuous
random fields · Parabolic equation · Advection-diffusion equation

1 Introduction

We consider a linear (diffusion-dominated) advection-diffusion equation with ran-
dom Lévy fields as coefficients. Adopting the term from stochastic analysis, by a
Lévy field we mean a random field which is built from a (continuous) Gaussian ran-
dom field and a (discontinuous) jump part (following a certain jump measure). In the
last decade various ways to approximate the distribution or moments of the solution
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to a random equation were introduced. Next to classical Monte Carlo methods, their
multilevel variants and further variance reduction techniques have been applied. Due
to their low regularity constraints, multilevel Monte Carlo techniques have been suc-
cessfully applied to various problems, for instance in the context of elliptic random
PDEs in [1, 3, 5, 8, 16, 22] to just name a few. These sampling approaches differ
fundamentally from Polynomial-Chaos-based methods. The latter suffer from high
regularity assumptions. While in the case of continuous fields these algorithms can
outperform sampling strategies, approaches—like stochastic Galerkinmethods—are
less promising in our discontinuous setting. In fact, it is even an open problem to
define them for Lévy fields. While Richards’ equation formulated as a deterministic
interface problem was considered in numerous publications (see [10, 13] and the
references therein), there is up-to-date no stochastic formulation.

After introducing the necessary basic notation, in this paper we show in Sect. 2
existence and uniqueness of a path-wise weak solution to the random advection-
diffusion equation and prove an energy estimate which allows for amoment estimate.
Next to space- and time-discretizations, the Lévy field has to be approximated, result-
ing in an approximated path-wise weak solution. In Sect. 3 we show convergence of
this approximated path-wise weak solution, before we introduce a sample-adapted
(path-wise) Galerkin approximation. Only if the discretization is adapted to the ran-
dom discontinuities can we expect full convergence rates. As the main result of this
article, we prove the error estimate of the spatial discretization in the L2-norm. To this
end, we utilize the corresponding results with respect to the H 1-norm from [6] and
consider the parabolic dual problem. Finally, we combine the sample-adapted spatial
discretization with a suitable time stepping method to obtain a fully discrete path-
wise scheme. The path-wise approximations are used in Sect. 4 to estimate quantities
of interest using a (coupled) multilevel Monte Carlo method. Naturally, the optimal
sample numbers on each level dependon the sample-dependent convergence rate. The
term coupled refers to a simplified version of Multifidelity Monte Carlo sampling
(see [20]) that reuses samples across levels and is preferred when sampling from
a certain distribution is computationally expensive. In Sect. 5, a numerical exam-
ple confirms our theoretical results from Sect. 3 and shows that the sample-adapted
strategy vastly outperforms amultilevelMonte Carlo estimator with a standard Finite
Element discretization in space.

2 Parabolic Problems with Random Discontinuous
Coefficients

Let (Ω,A ,P)be a complete probability space,T = [0, T ]be a time interval for some
T > 0 and D ⊂ R

d , d ∈ {1, 2}, be a polygonal and convex domain. We consider the
linear, random initial-boundary value problem



A Multilevel Monte Carlo Algorithm for Parabolic Advection-Diffusion … 447

∂t u(ω, x, t) + [Lu](ω, x, t) = f (ω, x, t) in Ω × D × (0, T ],
u(ω, x, 0) = u0(ω, x) in Ω × D × {0},
u(ω, x, t) = 0 on Ω × ∂D × T,

(1)

where f : Ω × D × T → R is a random source function and u0 : Ω × D denotes
the initial condition of the above PDE. Furthermore, L is the second order partial
differential operator given by

[Lu](ω, x, t) = −∇ · (a(ω, x)∇u(ω, x, t)) + b(ω, x)1T∇u(ω, x, t) (2)

for (ω, x, t) ∈ Ω × D × Twith∇ operating on the second argument of u. In Eq. (2),
we set 1 := (1, . . . , 1)T ∈ R

n , such that 1T∇u = ∑n
i=1 ∂xi u, and consider

• a stochastic jump-diffusion coefficient a : Ω × D → R and
• a random discontinuous convection term b : Ω × D → R coupled to a.

Throughout this article, we denote by C a generic positive constant which may
change from one line to the next. Whenever helpful, the dependence of C on certain
parameters ismade explicit. To obtain a path-wise variational formulation, we use the
standard Sobolev space Hs(D) with norm ‖ · ‖Hs (D) for any s > 0, see for instance
[2, 12]. Since D has a Lipschitz boundary, for s ∈ (1/2, 3/2), the existence of a
bounded, linear trace operator γ : Hs(D) → Hs−1/2(∂D) is ensured by the trace
theorem, see [11]. We only consider homogeneous Dirichlet boundary conditions on
∂D, hence we may treat γ independently of ω ∈ Ω and define the suitable solution
space V as

V := H 1
0 (D) = {v ∈ H 1(D)| γ v ≡ 0},

equipped with the H 1(D)-norm ‖v‖V := ‖v‖H 1(D). With H := L2(D), we work on
the Gelfand triplet V ⊂ H ⊂ V ′ = H−1(D), where V ′ denotes the topological dual
of V , i.e. the space of all bounded, linear functionals on V . In the variational version
of Problem (1), ∂t u denotes the weak time derivative of u. Throughout this article,
we may as well consider ∂t u as derivative in a strong sense (also with regard to its
approximation at the end of Sect. 3) as we will always assume sufficient temporal
regularity. As the coefficients a and b are random functions, any solution u to Prob-
lem (1) is a time-dependent V -valued random variable. To investigate the regularity
of the solution u with respect to T and the underlying probability measure P on
Ω , we need to introduce the corresponding Lebesgue–Bochner spaces. To this end,
let p ∈ [1,∞) and(X, ‖ · ‖X) be an arbitrary Banach space. For Y ∈ {T,Ω}, the
Lebesgue–Bochner space L p(Y ;X) is defined as

L p(Y ;X) := {ϕ : Y → X is strongly measurable and ‖ϕ‖L p(Y ;X) < +∞},
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with the norm

‖ϕ‖L p(Y ;X) :=
⎧
⎨

⎩

(∫
T

‖ϕ(t)‖p
X
dt

)1/p
for Y = T,

E(‖ϕ‖p)1/p =
( ∫

Ω
‖ϕ(ω)‖p

X
dP(dω)

)1/p
for Y = Ω.

.

The bilinear form associated to L is introduced to derive aweak formulation of the
initial-boundary value problem (1). For fixed ω ∈ Ω and t ∈ T, multiplying Eq. (1)
with a test function v ∈ V and integrating by parts yields

V ′ 〈∂t u(ω, ·, t), v〉V + Bω(u(ω, ·, t), v) = V ′ 〈 f (ω, ·, t), v〉V . (3)

The bilinear form Bω : V × V → R is given by

Bω(u, v) =
∫

D

a(ω, x)∇u(x) · ∇v(x) + b(ω, x)1T∇u(x)v(x)dx,

and V ′ 〈·, ·〉V denotes the (V ′, V )-duality pairing.

Definition 1 For fixed ω ∈ Ω , the path-wise weak solution to Problem (1) is a
function u(ω, ·, ·) ∈ L2(T; V ) with ∂t u(ω, ·, ·) ∈ L2(T; V ′) such that, for t ∈ T,

V ′ 〈∂t u(ω, ·, t), v〉V + Bω(u(ω, ·, t), v) = V ′ 〈 f (ω, ·, t), v〉V , for all v ∈ V

and u(ω, ·, 0) = u0(ω, ·). Furthermore, we define the path-wise parabolic norm by

‖u(ω, ·, ·)‖∗,t : =
(
‖u(ω, ·, t)‖2H +

∫ t

0

∫

D

∇u(ω, x, z) · ∇u(ω, x, z)dxdz
)1/2

=
(
‖u(ω, ·, t)‖2H + ‖‖∇u(ω, x, z)‖2‖2L2([0,t];H)

)1/2
,

(4)
where ‖ · ‖2 is the Euclidean norm on Rd .

To represent the (uncertain) permeability in a subsurface flow model, we use the
random jump coefficients a, b from the elliptic/parabolic problems in [5, 6]. The
diffusion coefficient is then given by a (spatial) Gaussian random field with additive
discontinuities on random areas of D. Its specific structure may be utilized to model
the hydraulic conductivity within heterogeneous and/or fractured media and thus a
is considered time-independent. The advection term in this model is driven by the
same random field and inherits the same discontinuous structure as the diffusion,
hence we consider the coefficient b as a linear mapping of a.

Definition 2 The jump-diffusion coefficient a is defined as

a : Ω × D → R>0, (ω, x) → a(x) + Φ(W (ω, x)) + P(ω, x),
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where

• a ∈ C1(D;R≥0) is non-negative, continuous, and bounded.
• Φ ∈ C1(R;R>0) is a continuously differentiable, positive mapping.
• W ∈ L2(Ω; H) is a (zero-mean) Gaussian random field associated to a non-
negative, symmetric trace class operator Q : H → H .

• T : Ω → B(D), ω → {T1, . . . ,Tτ } is a random partition of D, i.e. the Ti are
disjoint open subsets of D such that |Ti | > 0 with D = ⋃τ

i=1 T i , and B(D)

denotes the Borel-σ -algebra on D. The number of elements in T , τ , is a ran-
dom variable on (Ω,A ,P), i.e. τ : Ω → N.

• (Pi , i ∈ N) is a sequence of non-negative random variables on (Ω,A ,P) and

P : Ω × D → R≥0, (ω, x) →
τ(ω)∑

i=1

1{T i }(x)Pi (ω).

The sequence (Pi , i ∈ N) is independent of τ (but not necessarily i.i.d.).

Based on a, the jump-advection coefficient b is given for b1, b2 ∈ L∞(D) by

b : Ω × D → R, (ω, x) → min(b1(x)a(ω, x), b2(x)).

The definition of the random partition T above is rather general and does not
yet assume any structure on the discontinuities. A more specific class of random
partitions is considered in our numerical experiment in Sect. 5. We assumed in
Definition 2 that τ and Pi are independent due to technical reasons, i.e. to con-
trol for a possible sampling bias in Pi , see [5, Theorem 3.11]. On a further note, we
do not require stochastic independence ofW and P . In general, our aim is to estimate
moments of a quantity of interest (QoI) Ψ (ω) := ψ(u(ω, ·, ·)) of the weak solution,
where ψ : L2(T; V ) → R is a deterministic functional. To ensure existence and a
certain regularity of u, and therefore of Ψ , we fix the following set of assumptions.

Assumption 1 1. Let η1 ≥ η2 ≥ · · · ≥ 0 denote the eigenvalues of Q in descend-
ing order and (ei , i ∈ N) ⊂ H be the corresponding eigenfunctions. The ei are
continuously differentiable on D and there exist constants α, β,Ce,Cη > 0 such
that 2α ≤ β and for any i ∈ N

‖ei‖L∞(D) ≤ Ce, max
j=1,...,d

‖∂x j ei‖L∞(D) ≤ Cei
α and

∞∑

i=1

ηi i
β ≤ Cη < +∞.

2. Furthermore, the mapping Φ as in Definition 2 and its derivative are bounded by

φ1 exp(φ2|w|) ≥ Φ(w) ≥ φ1 exp(−φ2|w|), | d
dx

Φ(w)| ≤ φ3 exp(φ4|w|), w ∈ R,

where φ1, . . . , φ4 > 0 are arbitrary constants.
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3. For some p > 2, f, ∂t f ∈ L p(Ω; L2(T; H)), u0 ∈ L p(Ω; H 2(D) ∩ V ) and u0
and f are stochastically independent of T .

4. Thepartition elementsTi are almost surely polygonswith piecewise linear bound-
ary and “E(τ n) < +∞” for all n ∈ N.

5. The sequence (Pi , i ∈ N) consists of nonnegative and bounded random variables
Pi ∈ [0, P] for some P > 0.

6. The functional ψ is Lipschitz continuous on L2(T; H), i.e. there exists Cψ > 0
such that

|ψ(v) − ψ(w)| ≤ Cψ‖v − w‖L2(T;H) ∀v, u ∈ L2(T; H).

Remark 1 The above assumptions are natural and cannot be relaxed significantly
to derive the results in Sect. 3. The condition 2α ≤ β implies that W has almost
surely Lipschitz continuous paths on D, thus a is piecewise Lipschitz continuous.

This is in turn necessary to derive the error estimates of orders O(h
κ

� ) and O(h
2κ
� )

in Theorems 3 and 4, respectively, for some κ ∈ (1/2, 1] that is independent of W .
The parameter h� denotes the Finite Element (FE) refinement and κ should only be
influenced by the law of the random jump field P . If any of this assumptions were
violated, however, κ may depend on other parameters of the random PDE, e.g. W
or Ψ . For instance, if β/2α < κ ≤ 1, we would only obtain an error of approximate

orderO(h
β/2α
� ) in Theorem 3, see [6] for a detailed discussion. The remaining points

in Assumption 1 are necessary to ensure that all estimates hold in the mean-square
sense, i.e. the second moments of all estimates exist and can be bounded with respect
to h�.

We have the following estimate on a and its piecewise Lipschitz norm.

Lemma 1 ([6, Lemma 3.6 and 4.8]) Let Assumption 1 hold and define
a−(ω) := ess inf x∈D a(ω, x) and a+(ω) := ess supx∈D a(ω, x). Then, for any q ∈
[1,∞)

1/a−, a+, max
i=1,...,τ

d∑

j=1

‖∂x j a‖L∞(T i ) ∈ Lq(Ω;R).

Theorem 1 Under Assumption 1 there exists almost surely a unique path-wise weak
solution u(ω, ·, ·) ∈ L2(T; V ) to Problem (1) satisfying the estimate

sup
t∈T

‖u(ω, ·, ·)‖2∗,t ≤ C/a−(ω)
(
‖u0(ω, ·)‖2H + ‖ f (ω, ·, ·)‖2L2(T ;H)

)
< +∞. (5)

In addition, for any r ∈ [1, p) (with p as in Ass. 1), u is bounded in expectation by

E

(
sup
t∈T

‖u‖r∗,t

)1/r ≤ C‖1/a−‖Lq̃ (Ω;R)

(‖u0‖L p(Ω;H) + ‖ f ‖L p(Ω;L2(T;V ′))
)

< +∞. (6)

with C = C(r) and q̃ := (1/r − 1/p)−1. Furthermore, it holds Ψ ∈ Lr (Ω;R).
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Proof The estimates in Eqs. (5) and (6) follow from [6, Theorem 3.7]. To show that
Ψ ∈ Lr (Ω;R), we useAssumption 1 to see thatψ fulfills the linear growth condition
|ψ(v)| ≤ C(1 + ‖v‖L2(T;H)) for some deterministic constant C = C(ψ) > 0 and all
v ∈ L2(T; H). Hence, we have

E(Ψ r ) ≤ E

(
Cr (1 + ‖u‖L2(T;V ))

r
)

≤ Cr2r−1
(
1 + E

(
sup
t∈T

‖u‖r∗,t

))
< +∞.

�

3 Numerical Approximation of the Solution

In general, the (exact) weak solution u to Problem (1) is out of reach and we have to
find tractable approximations of u to applyMonte Carlo algorithms for the estimation
ofE(Ψ ). A common approach is to use a FE discretization of V combinedwith a time
marching scheme to sample path-wise approximations of u. For this, however, it is
necessary to evaluate a and b at certain points inD. This is in general infeasible, since
the Gaussian field W usually involves an infinite series and/or the jump heights Pi
might not be sampled without bias. The latter issue may arise if Pi has non-standard
law, e.g. the generalized inverse Gaussian distribution, for more details we refer to
[5, 6]. We may circumvent this issue by constructing suitable approximations of
a and b, for instance by truncated Karhunen–Loève expansions ([7, 9]), circulant
embedding methods ([18, 23]) or Fourier inversion techniques for the sampling of
Pi ([4, 5]). Hence, we obtain a modified problem with approximated coefficients
which may then be discretized in the spatial and temporal domain. To increase the
order of convergence in the spatial discretization, we introduce a FE scheme in the
second part of this section where we choose the FE grids adapted with respect to the
discontinuities in each sample of a and b. Under mild assumptions on the coefficients
we then derive errors on the semi- and fully discrete approximations of u.

3.1 Approximated Diffusion Coefficients

As discussed above, there are several methods available to obtain tractable approx-
imations of the diffusion coefficient a, thus we consider a rather general setting
here. For some ε > 0, let aε : Ω × D → R>0 be an arbitrary approximation of the
diffusion coefficient and let (according to Definition 2)

bε : Ω × D → R, (ω, x) → min(b1(x)aε(ω, x), b2(x)),

be the canonical approximation of b. Substituting aε and bε into Problem (1) yields
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∂t uε(ω, x, t) + [Lεuε](ω, x, t) = f (ω, x, t) in Ω × D × (0, T ],
uε(ω, x, 0) = u0(ω, x) in Ω × D × {0}
uε(ω, x, t) = 0 on Ω × ∂D × T,

(7)

where the approximated second order differential operator Lε is given by

[Lεu](ω, x, t) = −∇ · (aε(ω, x)∇u(ω, x, t)) + bε(ω, x)1T∇u(ω, x, t).

The path-wise variational formulation of Eq. (7) is then (analogous to Eq. (3)) given
by: For almost all ω ∈ Ω with given f (ω, ·, ·), find uε(ω, ·, ·) ∈ L2(T; V ) with
∂t u(ω, ·, ·) ∈ L2(T; V ′) such that, for t ∈ T,

V ′ 〈∂t uε(ω, ·, t), v〉V + Bε,ω(uε(ω, ·, t), v) = Fω,t (v), (8)

holds for all v ∈ V with respect to the approximated bilinear form

Bε,ω(v,w) :=
∫

D

aε(ω, x)∇v(x) · ∇w(x) + bε(ω, x)1T∇v(x)w(x)dx, v,w ∈ V .

The following assumption guarantees existence and uniqueness of uε and allows
us to bound u − uε in a mean-square sense.

Assumption 2 Let Assumption 1 hold and let aε : Ω × D → R>0 be an approx-
imation of a for some fixed ε > 0. Define aε,−(ω) := ess inf x∈D aε(ω, x) and
aε,+(ω) := ess supx∈D aε(ω, x). Assume that for some s > (1/2 − 1/p)−1 and any
q ∈ [1,∞), there are constants Ci > 0, for i = 1, . . . , 4, independent of ε, such that

• ‖a − aε‖Ls (Ω;L∞(D)) ≤ C1ε,
• ‖1/aε,−‖Lq (Ω;R) ≤ C2‖1/a−‖Lq (Ω;R) < +∞,
• ‖aε,+‖Lq (Ω;R) ≤ C3‖a+‖Lq (Ω;R) < +∞ and
• ‖ max

i=1,...,τ

∑d
j=1 ‖∂x j aε‖L∞(T i )‖Lq (Ω;R) ≤ C4‖ max

i=1,...,τ

∑d
j=1 ‖∂x j a‖L∞(T i )‖Lq (Ω;R)

< +∞.

At this point we remark that Assumption 2 is natural and essentially states that
aε has the same regularity as a. Furthermore, the moments of a − aε are controlled
by the parameter ε and we may achieve an arbitrary good approximation by choos-
ing ε sufficiently small. This holds for instance (with C2 = C3 = C4 = 1) if W is
approximated by a truncated Karhunen–Loève expansion (see [5, 6]) or if aε stems
from linear interpolation of discrete sample points of W as we explain in Sect. 5.

Theorem 2 Let Assumption 2 hold and let uε be the weak solution to Problem (7).
Then, the root-mean-squared approximation error is bounded by

E

(
sup
t∈T

‖u(·, ·, t) − uε(·, ·, t)‖2∗,t

)1/2 ≤ Cε.
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Proof By Theorem 1, we have existence of unique solutions u and uε to Eqs. (3)
resp. (8) almost surely. Thus, we obtain the variational problem: Find u − uε such
that

V ′ 〈∂t (u(ω, ·, t) − uε(ω, ·, t)), v〉V + Bω(u(ω, ·, t) − uε(ω, ·, t), v) = V ′ 〈 f̃ (ω, ·, t), v〉V

for all t ∈ T and v ∈ V with initial condition (u − uε)(·, ·, 0) ≡ 0 and right hand
side

f̃ (ω, ·, t) := ∇ · ((aε − a)(ω, ·)∇uε(ω, ·, t)) + (bε − b)(ω, ·)1T∇uε(ω, ·, t) ∈ V ′.

By Hölder’s inequality it holds

‖ f̃ (ω, ·, ·)‖L2(T;V ′) ≤ ‖(a − aε)(ω, ·)‖L∞(D)‖‖∇u(ω, ·, ·)‖2‖L2(T;H)

+ ‖(b − bε)(ω, ·)‖L∞(D)‖1T∇u(ω, ·, ·)‖L2(T;H)

≤ C(1 + |b1|)‖(a − aε)(ω, ·)‖L∞(D)‖‖∇u(ω, ·, ·)‖2‖L2(T;H),

which yields with Assumption 2 and Theorem 1

‖ f̃ (ω, ·, ·)‖L p1 (Ω;L2(T;V ′)) ≤ C(1 + |b1|)‖(a − aε)‖Ls (Ω;L∞(D))E

(
sup
t∈T

‖u‖r∗,t

)1/r

≤ Cε

for r ∈ ((1/2 − 1/s)−1, p) and p1 := (1/s + 1/r)−1 > 2. We may now use
Theorem 1 with q = (1/2 − 1/p1)−1 to estimate u − uε via

E

(
sup
t∈T

‖u − uε‖2∗,t

)1/2 ≤ C‖1/a−‖Lq (Ω;R)‖ f̃ ‖L p1 (Ω;L2(T;V ′)) ≤ Cε.

�

3.2 Semi-discretization by Adaptive Finite Elements

Given a suitable approximation aε of the diffusion coefficient, we discretize the
(approximate) solution uε in the spatial domain. As a first step, we replace the
(infinite-dimensional) solution space V by a sequence V = (V�, � ∈ N0) of finite
dimensional subspaces V� ⊂ V . In general, V� are standard FE spaces of piecewise
linear functions with respect to some given triangulation K� of D and h� represents
the maximum diameter of K�. As indicated in [5, 6] using standard FE spaces will
not yield the full order of convergence with respect to h� due to the discontinuities
in aε and bε. Thus, we follow the same approach as in [5] for Problem (8) and uti-
lize path-dependent meshes to match the interfaces generated by the jump-diffusion
and advection coefficients. As this entails changing varying approximation spaces
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V� with each sample of aε resp. bε, we have to formulate a semi-discrete version of
problem (8) with respect to ω ∈ Ω:

Given a fixed ω ∈ Ω and � ∈ N0, we consider a (stochastic) finite dimen-
sional subspace V�(ω) ⊂ V with sample-dependent basis {v1(ω), . . . , vd�

(ω)} ⊂ V
and stochastic dimension d� = d�(ω) ∈ N. For a given random partition T (ω) =
(Ti , i = 1 . . . , τ (ω)) of polygons onD, we choose a conforming triangulationK�(ω)

such that

T (ω) ⊂ K�(ω) and h�(ω) := max
K∈K�(ω)

diam(K ) ≤ h� for � ∈ N0,

holds almost surely. The inclusion T (ω) ⊂ K�(ω) states that the triangles in K�(ω)

are chosen to match and fully cover the polygonal partition elements in T (ω). Fur-
thermore, (h�, � ∈ N0) is a sequence of positive, deterministic refinement thresholds,
decreasingmonotonically to zero. This guarantees thath�(ω) → 0 for � → ∞ almost
surely, although the absolute speed of convergence varies for each ω. We assume
shape-regularity of the triangulation uniform in Ω , i.e. there exist a ϑ ∈ (0, 1) such
that

0 < ϑ ≤ sup
�∈N0

sup
K∈K�(ω)

diam(K )

ιK
≤ ϑ−1 < +∞ almost surely.

In Eq. (3.2), ιT denotes the diameter of the inscribed circle of the triangle K . For given
{v1(ω), . . . , vd�

(ω)}, the semi-discrete version of the variational formulation (8) is
then to find uε,�(ω, ·, t) ∈ V�(ω) such that for t ∈ T and v�(ω) ∈ V�(ω)

V ′ 〈∂t uε,�(ω, ·, t), v�(ω)〉V + Bε,ω(uε,�(ω, ·, t), v�(ω)) = V ′ 〈 f (ω, ·, t), v�(ω)〉V ,

uε,�(ω, ·, 0) = u0,�(ω, ·),
(9)

where u0,�(ω, ·) ∈ V�(ω) is a suitable approximation of u0(ω, ·), for instance the
nodal interpolation of u0 in V�(ω). The function uε,�(ω, ·, t) may be expanded as

uε,�(ω, ·, t) =
d�(ω)∑

j=1

c j (ω, t)v j (ω),

where the coefficients c1(ω, t), . . . , cd�
(ω, t) ∈ R depend on (ω, t) ∈ Ω × T and the

respective coefficient (column-)vector is c(ω, t) := (c1(ω, t), . . . , cd�
(ω, t))T . With

this, the semi-discrete variational problem in the (stochastic) finite dimensional space
V�(ω) is equivalent to solving the system of ordinary differential equations

d

dt
c(ω, t) + A(ω)c(ω, t) = F(ω, t), t ∈ T (10)

for c with stochastic stiffness matrix (A(ω)) jk = Bε,ω(v j (ω), vk(ω)) and time-
dependent load vector (F(ω, t)) j = V ′ 〈 f (ω, ·, t), v j (ω)〉V for j, k ∈ {1, . . . , d�(ω)}.
The following result gives an error estimate in the energy norm for uε − uε,�.
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Theorem 3 ([6, Theorem 4.7]) Let Assumption 2 hold such that for some κ ∈
(1/2, 1] it holds thatE(maxi=1,...,τ ‖u‖2H 1+κ (T i )

) < +∞. Let uε,� be the semi-discrete
sample-adapted approximation of uε as in Eq. (9) and let ‖(u0 − u�,0)(ω, ·)‖H ≤
C‖u0(ω, ·)‖V h� almost surely for all � ∈ N0. Then, there holds almost surely the
path-wise estimate

sup
t∈T

‖(uε − uε,�)(ω, ·, ·)‖∗,t ≤ C/(aε,−(ω))1/2
(
‖ f (ω, ·, ·)‖L2(T;H) + ‖u0(ω, ·)‖V

)
h
κ
�

and, for any r ∈ [1, p) (with p as in Assumption 1), the expected parabolic estimate

E(sup
t∈T

‖uε − uε,�‖r∗,t )
1/r ≤ C(‖ f ‖L p(Ω;L2(T;H)) + ‖u0‖L p(Ω;V ))h

κ

� .

The above statement gives a bound on the error in the L2(T; V )-norm. The functional
Ψ however is defined on L2(T; H), thus it is favorable to derive an error bound with
respect to the weaker L2(T; H)-norm.

Theorem 4 Let Assumption 2 hold such that for some κ ∈ (1/2, 1] there holds

E(maxi=1,...,τ ‖u‖2H 1+κ (T i )
) < +∞and let‖(u0 − u�,0)(ω, ·)‖H ≤ C‖u0(ω, ·)‖H 2(D)h

2
�

almost surely. Then,

E(‖uε − u�,ε‖2L2(T;H))
1/2 ≤ Ch

2κ
� .

Proof For fixed ω, we consider the path-wise parabolic dual problem to find
w(ω, ·, ·) ∈ L2(T; V ) with ∂tw(ω, ·, ·) ∈ L2(T; V ′) such that, for t ∈ T,

V ′ 〈∂tw(ω, ·, t), v〉V + Bε,ω(w(ω, ·, t), v) = V ′ 〈g(ω, ·, t), v〉V , for all v ∈ V,

(11)
where w(ω, ·, 0) = w0(ω, ·) := 0 and g(ω, ·, t) := (uε − uε,�)(ω, ·, T − t) ∈ V
almost surely for any t ∈ T by Theorem 1. Hence, we may test against v = g(ω, ·, t)
in Eq. (11) to obtain

‖g(ω, ·, t)‖2H = V ′ 〈∂tw(ω, ·, t), g(ω, ·, t)〉V + Bε,ω(w(ω, ·, t), g(ω, ·, t)). (12)

Furthermore, for any v�(ω) ∈ V�(ω) it holds by Eqs. (8), (9)

V ′ 〈∂t (uε − uε,�)(ω, ·, t), v�(ω)〉V = −Bε,ω((uε − uε,�)(ω, ·, t), v�(ω)) (13)

and thus
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Bε,ω(g(ω, ·, t),w(ω, ·, t)) = V ′ 〈∂t g(ω, ·, t), v�(ω) − w(ω, ·, t) + w(ω, ·, t)〉V
+ Bε,ω(g(ω, ·, t),w(ω, ·, t) − v�(ω)),

(14)
wherewe have used the that ∂t g(ω, ·, t) = −(∂t uε − ∂t uε,�)(ω, ·, T − t) by the chain
rule. Substituting Eq. (14) in Eq. (12) and integrating over T yields

‖g(ω, ·, ·)‖2L2(T;H)
=

∫ T

0
V ′ 〈∂tw(ω, ·, t), g(ω, ·, t)〉V + V ′ 〈∂t g(ω, ·, t),w(ω, ·, t)〉V dt

+
∫ T

0
V ′ 〈∂t g(ω, ·, t), v�(ω) − w(ω, ·, t)〉V dt

+
∫ T

0
Bε,ω(g(ω, ·, t),w(ω, ·, t) − v�(ω))dt

=: I + I I + I I I.

Integration by parts and the path-wise estimate in Theorem 1 yield for I

I = (w(ω, ·, T ), g(ω, ·, T ))H − (w0(ω, ·), g(ω, ·, 0))H
≤ ‖w(ω, ·, T )‖H‖u0(ω, ·) − u0,�(ω, ·)‖H

≤ C
1

aε,−(ω)
‖g(ω, ·, ·)‖L2(T;H)‖u0(ω, ·)‖H 2(D)h

2
�,

where we have used ‖(u0 − u�,0)(ω, ·)‖H ≤ C‖u0(ω, ·)‖H 2(D)h
2
� in the last step.

To bound the second term, we choose v� = v�(ω, ·, t) to be the semi-discrete FE
approximation of w(ω, ·, t) in V�(ω). Since w0 ≡ 0, there is no approximation error
in the initial condition and with the path-wise estimate from Theorem 3 it follows
that

I I ≤ ‖∂t g(ω, ·, ·)‖L2(T;V ′)‖v�(ω, ·, ·) − w(ω, ·, ·)‖L2(T;V )

≤ C
1

(aε,−(ω))1/2
‖∂t g(ω, ·, ·)‖L2(T;V ′)‖g(ω, ·, ·)‖L2(T;H)h

κ

� .

From Eq. (13) and Theorem 3 we also see that

‖∂t g(ω, ·, ·)‖L2(T;V ′) ≤ C
aε,+(ω)

(aε,−(ω))1/2

(
‖ f (ω, ·, ·)‖L2(T;H) + ‖u0(ω, ·)‖V

)
h

κ

�

and thus

I I ≤ C
aε,+(ω)

aε,−(ω)

(
‖ f (ω, ·, ·)‖L2(T;H) + ‖u0(ω, ·)‖V

)
‖g(ω, ·, ·)‖L2(T;H)h

2κ
� .
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Similarly, we bound the last term again with Theorem 3 via

I I I ≤ Caε,+(ω)‖g(ω, ·, ·)‖L2(T;V )‖v�(ω, ·, ·) − w(ω, ·, ·)‖L2(T;V )

≤ C
aε,+(ω)

aε,−(ω)

(
‖ f (ω, ·, ·)‖L2(T;H) + ‖(u0(ω, ·)‖V

)
‖g(ω, ·, ·)‖L2(T;H)h

2κ
� .

The estimates on I−I I I now show that

‖g(ω, ·, ·)‖L2(T;H) ≤ C
aε,+(ω)

aε,−(ω)

(
‖ f (ω, ·, ·)‖L2(T;H) + ‖(u0(ω, ·)‖H2(D)

)
h
2κ
� .

and the claim follows by Assumption 2 and Hölder’s inequality. �

Remark 2 We remark that the additional condition on the initial data approximation
in Theorem 4 is fulfilled if u0 has almost surely continuous paths and u�,0 is chosen
as the path-wise nodal interpolation with respect to the sample-adapted FE basis.

3.3 Fully Discrete Pathwise Approximation

For a fully discrete formulation of Problem (9), we consider a time grid 0 = t0 <

t1 < · · · < tn = T in T for some n ∈ N and assume the grid is equidistant with fixed
time step Δt := ti − ti−1 > 0. The temporal derivative at ti is approximated by the
backward difference

∂t uε,�(ω, ·, ti ) = (uε,�(ω, ·, ti ) − uε,�(ω, ·, ti−1))/Δt, i = 1, . . . , n.

We emphasize again that in our model problem the weak and strong temporal deriva-
tive of uε,� coincide due to the temporal regularity of the solution. Hence, the back-
ward difference as an approximation scheme in a strong sense is justified. This yields
the fully discrete problem to find (u(i)

ε,�(ω, ·), i = 0, . . . , n) ⊂ V�(ω) such that for all
v�(ω) ∈ V�(ω) and i = 1, . . . , n

((u(i)
ε,� − u(i−1)

ε,� )(ω, ·), v�(ω))H

Δt
+ Bε,ω(u(i)

ε,�(ω, ·), v�(ω)) = V ′ 〈 f (ω, ·, ti ), v�(ω)〉V ,

u(0)
ε,�(ω, ·) = u0,�(ω, ·).

The fully discrete solution is given by

u(i)
ε,�(ω, ·) =

d�(ω)∑

j=1

ci, j (ω)v j (ω), i = 1, . . . , n,
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where the coefficient vector ci(ω) = (ci,1(ω), . . . , ci,d�
(ω)) solves the linear system

of equations
(M + ΔtA(ω))ci(ω) = ΔtF(ω, ti ) + Mci−1(ω)

in every discrete point in time ti , and A and F are as in Eq. (10). The mass matrix
is given by (M) jk := (v j (ω), vk(ω))H and c0 consists of the basis coefficients of
u0,� ∈ V�(ω) with respect to {v1(ω), . . . , vd�

(ω)}. We extend the discrete solution to
the whole temporal domain by the linear interpolation

uε,�(·, ·, t) := (u(i)
ε,� − u(i−1)

ε,� )
(t − ti−1)

Δt
+ u(i−1)

ε,� , t ∈ [ti−1, ti ], i = 1, . . . , n.

Theorem 5 ([6, Theorem 4.12]) Let Assumption 2 hold, let (u(i)
ε,�, i = 0, . . . , n) be

the fully discrete sample-adapted approximation of uN ,ε, and let uε,� be the linear
interpolation of (u(i)

ε,�, i = 0, . . . , n) in T. Then, for C > 0 independent of ε, h� and
Δt , it holds

E(sup
t∈T

‖uε,� − uε,�‖2∗,t )
1/2 ≤ CΔt.

The final corollary on the overall approximation error is now an immediate conse-
quence of Theorems 2,4 and 5 and the Lipschitz condition on ψ .

Corollary 1 Let Assumption 2 hold such that for some κ ∈ (1/2, 1] there holds

E(maxi=1,...,τ ‖u‖2H 1+κ (T i )
) < ∞and let‖(u0 − u�,0)(ω, ·)‖H ≤ C‖u0(ω, ·)‖H 2(D)h

2
�

almost surely. The (fully) approximated QoI is defined by Ψε,�,Δt := ψ(uε,�). Then,
there holds the error bound

E(|Ψ − Ψε,�,Δt |2)1/2 ≤ C(ε + h
2κ
� + Δt).

Given a sequence of discretization thresholds h� > 0 for � ∈ N0, one should adjust

ε and Δt such that h
2κ
� � ε � Δt to achieve an error equilibrium. Hence, we denote

the adjusted parameters on level � by ε� and Δt� and assume that all errors are

equilibrated in the sense that ch
2κ
� ≤ ε�,Δt�≤Ch

2κ
� holds for constants c,C > 0

independent of �.We further defineΨ� := Ψε�,�,Δt� = ψ(uε�,�) and obtainwithCorol-
lary 1

E((Ψ − Ψ�)
2)1/2 ≤ Ch

2κ
� . (15)

4 Estimation of Moments by Multilevel Monte Carlo
Methods

Aswe are able to generate samples fromΨ� = ψ(uε�,�) and control for the discretiza-
tion error in each sample, we may estimate the expectation E(Ψ ) by Monte Carlo
methods. For convenience, we restrict ourselves to the estimation of E(Ψ ), but we
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note that all results from this section are valid when estimating higher moments ofΨ ,
given that u ∈ Lr (Ω; L2(T; V )) for sufficiently high r (cf. Theorem 1). Our focus is
on multilevel Monte Carlo (MLMC) estimators, since they are easily implemented,
do not require much regularity ofΨ and are significantly more efficient than standard
Monte Carlo estimators. The main idea of the MLMC estimation has been devel-
oped in [21] and later been rediscovered and popularized in [14]. In this section, we
briefly recall the MLMC method and then show how we achieve a desired error rate
by adjusting the number of samples on each level to the discretization bias. We also
suggest a modification of the MLMC algorithm to increase computational efficiency
before we verify our results in Sect. 5.

Let L ∈ N be a fixed (maximum) discretization level and assume that the approx-

imation parameters on each level � = 0, . . . , L satisfy h
2κ
� � ε� � Δt� (see Sect. 3).

This yields a sequence Ψ0, . . . , ΨL of approximated QoIs, hence theMLMC estima-
tor of E(ΨL) is given by

EL(ΨL) =
L∑

�=0

1

M�

M�∑

i=1

Ψ
(i,�)
� − Ψ

(i,�)
�−1 , (16)

where we have set Ψ−1 := 0. Above, (Ψ (i,�)
� − Ψ

(i,�)
�−1 , i ∈ N) is a sequence of inde-

pendent copies of Ψ� − Ψ�−1 and M� ∈ N denotes the number of samples on each
level. To achieve a desired target root mean-squared error (RMSE), this estimator
requires less computational effort than the standardMonte Carlo approach under cer-
tain assumptions. This, by now, classical result was proven in [14, Theorem 3.1] for
functionals of stochastic differential equations. The proof is rather general and may
readily be transferred to other applications, for instance the estimation of functionals
or moments of random PDEs, see [3, 15].

Theorem 6 Let Assumption 2 hold such that for some κ ∈ (1/2, 1] there holds
E(maxi=1,...,τ ‖u‖2H 1+κ (T i )

) < +∞ and let h�−1 ≤ C1h� for some C1 > 0 for all

� ∈ N0. For L ∈ N and given refinement parameters h0 > · · · > hL > 0 choose

Δt�, ε� > 0 such that ε�,Δt� ≤ C2h
2κ
� holds for fixed C2 > 0 and � = 0, . . . , L.

Furthermore, let (ρ�, � = 1, . . . , L) ∈ (0, 1)L be a set of positive weights such that∑L
�=1 ρ� = Cρ , with a constant Cρ > 0 independent of L, and set

M−1
0 :=

⌈
h
4κ
L

⌉
and M−1

� :=
⌈
h
4κ
L

h
4κ
�

ρ−2
�

⌉

for � = 1, . . . , L .

Then, there is a C > 0, independent of L and κ , such that

‖E(Ψ ) − EL(ΨL)‖L2(Ω;R) ≤ Ch
2κ
L .
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Proof As all error contributions ε�,Δt� are adjusted to h�, we obtain by the triangle
inequality and Eq. (15)

‖E(Ψ ) − EL (ΨL )‖L2(Ω;R) ≤ ‖E(Ψ ) − E(ΨL )‖L2(Ω;R) + ‖E(ΨL ) − EL (ΨL )‖L2(Ω;R)

≤ ‖Ψ − ΨL‖L2(Ω;R)

+ ‖
L∑

�=0

E(Ψ� − Ψ�−1) − 1

M�

M�∑

i=1

(Ψ
(i,�)
�

− Ψ
(i,�)
�−1 )‖L2(Ω;R)

≤ Ch
2κ
L +

L∑

�=0

1√
M�

‖Ψ� − Ψ�−1‖L2(Ω;R).

At this point we emphasize that we did not use the independence of Ψ
(i,�)
� − Ψ

(i,�)
�−1

across the levels � = 1, . . . , L in the last inequality. We note that

‖Ψ� − Ψ�−1‖L2(Ω;R) ≤ ‖Ψ − Ψ�‖L2(Ω;R) + ‖Ψ − Ψ�−1‖L2(Ω;R) ≤ C(1 + C1)h
2κ
�

for � ≥ 1 and hence

‖E(Ψ ) − EL (ΨL )‖L2(Ω;R) ≤ Ch
2κ
L + ‖Ψ0‖L2(Ω;R)h

2κ
L + C(1 + C1)h

2κ
L

L∑

�=1

ρ� ≤ Ch
2κ
L .

�

We remark that Cρ > 0 may act as a normalizing constant if MLMC estimators
based on different discretization techniques are compared, an example is provided
in Sect. 5. To conclude this section, we briefly present a modified MLMC method to
accelerate the estimation of E(ΨL). In the definition of the MLMC estimator from
Eq. (16), the terms in the second sum are independent copies of the corrections
Ψ� − Ψ�−1. Hence, one has to generate a total of M� + M�+1 samples of Ψ� for each
� = 0, . . . , L (where we have set ML+1 := 0). This effort may be reduced if we
“recycle” the already available samples and generate the differences Ψ

(i,�)
� − Ψ

(i,�)
�−1

and Ψ
(i,�)
�+1 − Ψ

(i,�)
� based on the same realization Ψ

(i,�)
� . That is, we drop the second

superscript � above and arrive at the coupled MLMC estimator

EL
C (ΨL) :=

L∑

�=0

1

M�

M�∑

i=1

Ψ
(i)
� − Ψ

(i)
�−1. (17)

Instead ofM� + M�+1 realizations ofΨ�, the coupledMLMC estimator requires only
M� samples of Ψ�. The copies Ψ

(i)
� are still independent in i , but not anymore across

all levels � for a fixed index i . Clearly, E(EL
C (ΨL)) = E(ΨL), and it holds

lim
L→+∞E(EL

C (ΨL)) = lim
L→+∞E(EL(ΨL)) = lim

L→+∞E(ΨL) = E(u).
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The introduced modification is a simplified version of theMultifidelity Monte Carlo
estimator (see [20]), where the weighting coefficients for all level corrections Ψ� −
Ψ�−1 are set equal to one. An estimator similar to (17) with coupled correction terms
has also been introduced in the context of SDEs in [24]. As we mentioned in the
proof of Theorem 6, independence of the sampled differences Ψ� − Ψ�−1 across �

is not required for the error estimate, thus, the asymptotic order of convergence also
holds for the coupled estimator. To compare RMSEs of the estimators from Eq. (16)
and (17), we calculate

Var(EL
C (ΨL)) = Var

⎛

⎝
L∑

�=0

M�∑

i=M�+1+1

�∑

k=0

Ψ
(i)
k − Ψ

(i)
k−1

Mk

⎞

⎠

=
L∑

�=0

(M� − M�+1)Var

(
�∑

k=0

Ψk − Ψk−1

Mk

)

=
L∑

�=0

(M� − M�+1)

⎛

⎝
�∑

k=0

Vk

M2
k

+ 2
�∑

k=0

k−1∑

j=0

C j,k

M j Mk

⎞

⎠

=
L∑

k=0

⎛

⎝ Vk

M2
k

+ 2
k−1∑

j=0

C j,k

M j Mk

⎞

⎠
L∑

�=k

(M� − M�+1)

= Var(EL(ΨL)) + 2
L∑

k=0

k−1∑

j=0

C j,k

M j
,

whereVk := Var(Ψk − Ψk−1) andC j,k := Cov(Ψ j − Ψ j−1, Ψk − Ψk−1). Hence, the
coupled estimator introduces a higher RMSE if the corrections Ψ� − Ψ�−1 are pos-
itively correlated across the levels. In this case, we trade in variance for simulation
time and the ratio of this trade-off is problem-dependent and hard to assess in advance.

5 Numerical Results

For our numerical experiment we consider D = (0, 1)2 with T = 1, initial data
u0(x1, x2) = 1

10 sin(πx1) sin(πx2), source term f ≡ 1 and set ā ≡ 0. The covari-
ance operator Q of W is given by theMatérn covariance function

[Qϕ](y) :=
∫

D

σ 2 2
1−ν

Γ (ν)

(√
2ν

‖x − y‖2
χ

)ν

Kν

(√
2ν

‖x − y‖2
χ

)
ϕ(x)dx, ϕ ∈ H,

with smoothness parameter ν > 0, variance σ 2 > 0 and correlation length χ > 0.
Above, Γ denotes the Gamma function, ‖ · ‖2 is the Euclidean norm inR2 and Kν is
the modified Bessel function of the second kind with ν degrees of freedom. We set
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the covariance parameters as ν = 1.5, σ = 0.5 and χ = 0.1, hence Assumption 1 is
fulfilled, see [17]. To approximate theGaussian field, we use the circulant embedding
method from [18] to draw samples of W at a grid of discrete points in D and then
use linear interpolation to obtain an extension to D. We choose a maximum distance
of ε > 0 for the grid points and denote the corresponding approximation by Wε.
Furthermore, we set Φ(·) = exp(·) and observe that for any s ∈ [1,∞)

‖Φ(W ) − Φ(Wε)‖Ls (Ω;L∞(D)) ≤ CE

⎛

⎝

⎛

⎝
d∑

j=1

‖∂x j Φ(W )‖L∞(D)ε

⎞

⎠

s⎞

⎠

1/s

≤ Cε

holds by the path-wise Lipschitz regularity of W and Lemma 1 (cf. Assumption 2).
For the discontinuous random field P , we denote by U ((c1, c2)) the uniform

distribution on the interval (c1, c2) ⊂ R, sample four i.i.d.U ((0.2, 0.8))-distributed
randomvariablesU1, . . . ,U4 and assign oneUi to each side of the square ∂D.We then
connect the points on two opposing edges by a straight line to obtain a random parti-
tionT consisting of τ = 4 convex quadrangles. Finally, we assign independent jump
heights P1, P2 ∼ U ((0, 1)), P3 ∼ U ((5, 6)) and P4 ∼ U ((10, 11)) to the partition
elements, such that two adjacent elements do not have the same jump distribution.
This guarantees rather steep discontinuities across the interfaces in T , see Fig. 1.
We do not need any approximation procedure for P and obtain aε := exp(Wε) + P .
Clearly, aε satisfies Assumption 2 and we define bε := max(−2aε,−5). The QoI is
given by

Ψ (u) :=
∫

D

u(x) exp(−0.25‖(0.25, 0.75) − x‖22)dx .

For the sample-adapted FE approach, we set the refinement parameters to h
(a)

� =
1
42

−�/2 for � ∈ N0 and choose ε
(a)
� = Δt (a)

� = (h
(a)

� )2.While this choice gives an error
equilibrium for κ = 1, it ensures that for any κ < 1 the RMSE is dominated solely
by the spatial discretization error. Thus, we may infer the true value of κ from the
numerical experiment. We also consider a non-adapted FE method with fixed and

deterministic triangulations on D. For given approximation parameters ε, h
(na)

� and
Δt in the non-adapted setting, we may not expect a better error bound than

E(|Ψ − Ψε,�,Δt |2)1/2 ≤ C(ε + h
(na)

� + Δt)

in Corollary 1. This is due to the fact that the standard FEmethod for elliptic problems

with discontinuous coefficients does not converge at a better rate than O((h
(na)

)1/2)

in the V -norm, see [5, Remark 4.2]. Thus, if we consider again the dual problem

as in Theorem 4, we may not expect a better rate than O(h
(na)

) with respect to the

H -norm. We choose the non-adapted FE grid with diameter h
(na)

� := 1
42

−� and set

accordingly ε
(na)
� = Δt (na)

� = h
(na)

� . In both FE methods, we use the midpoint rule
on each triangle to approximate the entries of the stiffness matrix. The resulting
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quadrature error is of orderO(h
2
�)with respect to the H -norm in the sample-adapted

case and hence does not dominate the overall approximation error, see [19, Sect. 2].
For non-adapted FE, no a-priori estimate on the quadrature error is possible due to
the discontinuities in a and b, but our results suggest that this bias also in line with
the overall approximation error. As ε�−1 = 2ε�, the circulant embedding grids (to
sample Wε) are nested and we may achieve the MLMC coupling by first generating
the discrete set of points on level � and then taking the appropriate subset of points
for level � − 1.

In the sample-adapted MLMC algorithm, we choose the number of samples via

(M (a)
0 )−1 =

⌈
(h

(a)

L )4
⌉

and (M (a)
� )−1 =

⎡

⎢
⎢
⎢

1

4

(h
(a)

L )4

(h
(a)

� )4

(
(� + 1)−1.001

∑L
k=1(k + 1)−1.001

)−2
⎤

⎥
⎥
⎥

for � = 1, . . . , L , whereas, we choose

(M (na)
0 )−1 =

⌈
(h

(na)

L )2
⌉

and (M (na)
� )−1 =

⎡

⎢
⎢
⎢

(h
(na)

L )2

(h
(na)

� )2

(
(� + 1)−1.001

∑L
k=1(k + 1)−1.001

)−2
⎤

⎥
⎥
⎥

in the non-adapted MLMC approach. Basically, we choose 1/M� proportional to
V� = Var(Ψ� − Ψ�−1) on each level and thus distribute the errors equally across all
levels. Another possibility would be to distribute the computational effort equally
(see [15]), which requires estimates on the cost of a single sample on each level.
The sequence (�−c, � ∈ N) decreases rapidly for c > 1 and sums up to ζ(c) < +∞,
where ζ(·) is the Riemann ζ -function. Hence, the above choice of ρi ensures that
only a few expensive samples on high levels are necessary and, due to the uniform
bound

∑L
�=1 ρ� < ζ(c), it is well suited to compare estimators for a varying choice

of L . In terms of Theorem 6, we have chosen Cρ = 2 for the number of samples in
the sample-adapted method, whereas Cρ = 1 for standard FE. Similar calculations
as in Theorem 6 show that this choice leads to ‖Ψ − EL(ΨL)‖L2(Ω,R) ≤ C(2−2−L)

in either case, where the constant C is the same for adapted and non-adapted FE.
Hence, Cρ is merely a normalizing constant and the above choice of M� ensures
that both approaches produce a comparable error for fixed L . Finally, we calculate
a reference QoI Ψre f := EL(ΨL) with L = 7 and the sample-adapted method and
estimate the relative RMSE ‖Ψre f − EL(ΨL)‖L2(Ω,R)/Ψre f for L = 0, . . . , 5 based
on 50 independent samples of EL(ΨL) for the sample-adapted and non-adapted
MLMC algorithm. For each approach, we use adapted/non-adapted FE combined
with a standard/coupledMLMCestimator, thuswe compare a total of four algorithms
regarding their error decay and efficiency.

Figure1 confirms our theoretical results from Sect. 3, i.e. the sample-adapted

spatial discretization yields rateO(h
2
�) compared toO(h�) in the non-adapted setting.

Hence, we are able to choose coarser spatial grids in the first approach which entails a
better time-to-error ratio for both sample-adapted methods. The results also indicate
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Fig. 1 Top: Sample of the diffusion coefficient with sample-adapted FE grid (left) and FE solution
at T = 1 (right). Bottom: RMSE versus refinement (left) and RMSE versus simulation time (right)

that κ ≈ 1 holds for this particular example, otherwise we would see a lower rate of

convergence thanO(h
2
�) for the sample-adapted methods. While the sample-adapted

FE grids have to be generated new for each sample, the L + 1 deterministic grids for
the non-adapted FE method are generated and stored before the Monte Carlo loop.
However, as we see from the time-to-error plot, the extra work of renewing the FE
meshes for each sample in the sample-adapted method is more than compensated by
the increased order of convergence. The computational cost of the sample-adapted
MLMC estimators are (roughly) inversely proportional to the squared errors, which
is the best possible results one may achieve with MLMC, see [15] and the references
therein. To conclude,we remark that the coupledMLMCestimator yields a slight gain
in efficiency if combined with non-adapted FE, whereas it produces similar results
when using the sample-adapted discretization.We emphasize that there are scenarios
where the coupled estimator outperforms standard MLMC and, on the other hand,
there are examples were coupling performs worse due to high correlation terms C j,k

(for both, we refer to numerical examples in [5]). Hence, even though performance
is similar to standard MLMC, it makes sense to consider the coupled estimator in
our scenario. As we have mentioned at the end of Sect. 4, this behavior may not be
expected a-priori.
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Estimates for Logarithmic and Riesz
Energies of Spherical t-Designs

Tetiana A. Stepanyuk

Abstract In this paper we find asymptotic equalities for the discrete logarith-
mic energy of sequences of well separated spherical t-designs on the unit sphere
S
d ⊂ R

d+1, d ≥ 2. Also we establish exact order estimates for discrete Riesz
s-energy, s ≥ d, of sequences of well separated spherical t-designs.

Keywords Sphere · Well separated spherical t-design · Logarithmic energy ·
Riesz energy

1 Introduction

Let Sd := {x ∈ R
d+1 : |x| = 1}, where d ≥ 2, be the unit sphere in the Euclidean

space Rd+1, equipped with the Lebesgue measure σd normalized by σd(S
d) = 1.

Definition 1 A spherical t-design is a finite subset XN ⊂ S
d with a characterising

property that an equalweight integration rulewith node set XN integrates all spherical
polynomials p of total degree at most t exactly; that is,

1

N

∑

x∈XN

p(x) =
∫

Sd

p(x)dσd(x), deg(p) ≤ t.

Here N is the cardinality of XN or the number of points of spherical design.

The concept of spherical t-designs was introduced by Delsarte, Goethals and
Seidel in the groundbreaking paper [10], since then they attracted a lot of interest
from scientific community (see, e.g., [7]).
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The logarithmic energy of a set of N distinct points (or an N -point set)
XN := {x1, . . . , xN } on S

d is defined as

E (d)
log (XN ) :=

N∑

i, j=1,
i �= j

log
1

|xi − x j | . (1)

This paper investigates the logarithmic energy of spherical t-designs. Spherical
t-designs can have points arbitrary close together (see, e.g. [13]), hence the logarith-
mic energy of N -point spherical t-designs can have no asymptotic bounds in terms
of t and N . Hence we shall impose additional conditions and consider sequences of
well-separated spherical t-designs.

Definition 2 A sequence of N -point sets (XN ), XN = {
x1, . . . , xN

}
, is called well-

separated if there exists a positive constant c1 such that

min
i �= j

|xi − x j | ≥ c1

N
1
d

for all N . (2)

The existence of N -point spherical t-designs with N = N (t) � td1 was proven
by Bondarenko, Radchenko and Viazovska [3]. They showed that for d ≥ 2 there
exists a constant cd , which depends only on d, such that for every N ≥ cd td there
exists a spherical t-design on Sd with N points. Later the existence of N -point well-
separated spherical t-designs with N (t) � td points was also proven by these authors
in [4]. Namely, they showed that for each d ≥ 2, t ∈ N there exist positive constants
cd and λd , depending only on d, such that for every N ≥ cd td there exists a spherical
t-design on S

d , consisting of N points {xi }Ni=1 with |xi − x j | ≥ λd N− 1
d for i �= j .

On the basis of these results we always assume that N = N (t) � td .
Denote by E (d)

log (N ) the minimal discrete logarithmic energy of N -points on the
sphere

E (d)
log (N ) := inf

XN

E (d)
log (XN ), (3)

where the infimum is taken over all N -points subsets of Sd .
From the papers of Wagner [18], Kuijlaars and Saff [14] and Brauchart [6] it

follows that for d ≥ 2 and as N → ∞ the following asymptotic equality holds

E (d)
log (N ) = N 2

∫

Sd

∫

Sd

log
1

|x − y|dσd(x)dσd(y) − 1

d
N log N + O(N ). (4)

1We write an � bn to mean that there exist positive constants C1 and C2 independent of n such that
C1an ≤ bn ≤ C2an for all n.
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Moreover, for the minimal logarithmic energy on the sphere S
2 it was known

(lower bound by Wagner [18], and upper bound by [14]) that

E (2)
log (N ) =

(
1

2
− log 2

)
N 2 − 1

2
N log N + CN + o(N ). (5)

Brauchart, Hardin and Saff [8] made a conjecture that the constant C in (5) is
equal to CBHS, where

CBHS := 2 log 2 + 1

2
log

2

3
+ 3 log

√
π

Γ (1/3)
.

Betermin and Sandier [2] proved that

lim
N→+∞

1

N

(
E (2)
log (N ) −

(
1

2
− log 2

)
N 2 + 1

2
N log N

)
≤ CBHS.

Also in [5] some general upper and lower bounds for the potential energy of
spherical designs were found.

We show that for every well-separated sequence of N -point spherical t-designs
on Sd , d ≥ 2, with N � td the following asymptotic equality holds

E (d)
log (XN ) = N 2

∫

Sd

∫

Sd

log
1

|x − y|dσd(x)dσd(y) − 1

d
N log N + O(N ).

Comparison with (4) gives that the leading and second terms in asymptotic expan-
sion of minimal discrete logarithmic energy are exactly the same, and third terms are
of the same order. So, we can summarize that for logarithmic energy well-separated
spherical t-designs are asymptotically as good as point sets, which minimize the
logarithmic energy.

For given s > 0 the discrete Riesz s-energy of a set of N distinct points (or an
N -point set) XN on S

d is defined as

E (d)
s (XN ) :=

N∑

i, j=1,
i �= j

|xi − x j |−s, (6)

where |x| denotes the Euclidean norm in Rd+1 of the vector x. In the case s = d − 1
the energy (6) is Coulomb energy.

Hesse [12] showed that if spherical t-designs with N = O(t2) exist, then for
s > 2 there exists a positive constant cs , such that for every well-separated sequence
N -point spherical t-designs the following estimate holds

E (2)
s (XN ) ≤ cs N

1+ s
2 , (7)
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and for s = 2, there exists a positive constant c2, such that

E (2)
s (XN ) ≤

t∑
k=0

1
k+1

2
N 2 + c2N

2, (8)

and

lim
N→∞

E (2)
s (XN )

N 2 log N
= 1

4
. (9)

Denote by E (d)
s (XN ) the minimal discrete s-energy for N -points on the sphere Sd

E (d)
s (N ) := inf

XN

E (d)
s (XN ), (10)

where the infimum is taken over all N -points subsets of Sd .
Kuijlaars and Saff [14] proved that for d ≥ 2 and s > d, there exist constants

C (1)
d,s,C

(2)
d,s > 0, such that

C (1)
d,s N

1+ s
d ≤ E (d)

s (N ) ≤ C (2)
d,s N

1+ s
d . (11)

Also in [14] it was shown that for s = d the following formula holds

lim
N→∞

E (d)
s (N )

N 2 log N
= 1

d

Γ
(
d+1
2

)

Γ
(
d
2

)
Γ

(
1
2

) . (12)

We show that for every well-separated sequence of N -point spherical t-designs
on Sd , d ≥ 2, with N � td the following relations are true:

E (d)
s (XN ) � N 1+ s

d , s > d

and

lim
N→∞

E (d)
s (XN )

N 2 log N
= 1

d

Γ
(
d+1
2

)

Γ
(
d
2

)
Γ

(
1
2

) , s = d.

Here and throughout the paper we use the Vinogradov notation an � bn to mean that
there exists a positive constant C independent of n such that an ≤ Cbn for all n.

First, we observe that since E (d)
s (N ) ≤ E (d)

s (XN ) for any N -point set, the lower
bound in (11) provides a lower bound for the s-energy of any N -point set. So, the
Riesz s-energy, s ≥ d of well-separated spherical t-designs has the same asymptotic
order as the minimal Riesz s-energy.

This paper is organised as follows: Sect. 2 provides basic notations and necessary
background for Jacobi polynomials, Sect. 3 collects our main results and their proofs.
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2 Preliminaries

We use the Pochhammer symbol (a)n , where n ∈ N0 and a ∈ R, a �= 0,−1,−2, . . .,
defined by

(a)0 := 1, (a)n := a(a + 1) · · · (a + n − 1), n ∈ N,

which can be written in the terms of the gamma function Γ (z) by means of

(a)� = Γ (� + a)

Γ (a)
, a �= 0,−1,−2, . . . . (13)

For fixed a, b the following asymptotic equality is true

Γ (n + a)

Γ (n + b)
= na−b

(
1 + O

(1
n

))
as n → ∞. (14)

For any integrable function f : [−1, 1] → R (see, e.g., [16]) we have

∫

Sd

f (〈x, y〉)dσd(x) = γd

1∫

−1

f (t)(1 − t2)
d
2 −1dt, y ∈ S

d , (15)

where γd := Γ ( d+1
2 )√

πΓ ( d
2 )
.

The Jacobi polynomials P (α,β)

� , α, β > −1, are orthogonal on the interval [−1, 1]
with respect to the weight function (1 − x)α(1 + x)β and normalised by (see, e.g.,
[15, (5.2.1)])

P (α,β)

� (1) =
(

� + α

�

)
= (1 + α)�

�! = 1

Γ (1 + α)
�α

(
1 + O

(1
�

))
. (16)

We will also use formula

P (α,β)

� (−x) = (−1)�P (α,β)

� (x) (17)

and the connection coefficient formula (see, e.g., [1, Theorem 7.1.4])

P(γ,γ )
m (x) = (γ + 1)m

(2γ + 1)m

[ m2 ]∑

k=0

(2α + 1)m−2k

(α + 1)m−2k

(
γ + 1

2

)
m−k

(
α + 3

2

)
m−2k (γ − α)k

(
α + 3

2

)
m−k

(
α + 1

2

)
m−2k k!

Pα,α
m−2k(x).

(18)

For fixed α, β > −1 and 0 < θ < π , the following relation gives an asymptotic
approximation for � → ∞ (see, e.g., [17, Theorem 8.21.13])
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P (α,β)

� (cos θ) = 1√
π

�−1/2
(
sin

θ

2

)−α−1/2(
cos

θ

2

)−β−1/2

×
{
cos

((
� + α + β + 1

2

)
θ − 2α + 1

4
π

)
+ O(� sin θ)−1

}
.

Thus, for cα,β�−1 ≤ θ ≤ π − cα,β�−1 the last asymptotic equality yields

|P (α,β)

� (cos θ)| ≤ c̃α,β�−1/2(sin θ)−α−1/2 + c̃α,β�−3/2(sin θ)−α−3/2, α ≥ β. (19)

The following differentiation formula holds

d

dx
P (α,β)
n (x) = n + α + β + 1

2
P (α+1,β+1)
n−1 (x). (20)

If λ > s − 1, s ≥ d, then taking into account formula [15, (5.3.4)] and the fact
that the Gegenbauer polynomials are a special case of the Jacobi polynomials P (α,β)

n

(see, e.g., [15, (5.3.1)]), we have that for −1 < x < 1 the following expansion holds

(1 − x)−
s
2 = 22λ− s

2 π− 1
2 Γ (λ)Γ

(
λ − s

2
+ 1

2

)

×
∞∑

n=0

(n + λ)
(
s
2

)
n

Γ
(
n + 2λ − s

2 + 1
) (2λ)n(

λ + 1
2

)
n

P(λ− 1
2 ,λ− 1

2 )
n (x).

(21)

3 Main Results

By a spherical cap S(x;ϕ) of centre x and angular radius ϕ we mean

S(x;ϕ) := {
y ∈ S

d : 〈x, y〉 ≥ cosϕ
}
.

The normalised surface area of a spherical cap is given by

|S(x;ϕ)| = γd

1∫

cosϕ

(1 − t2)
d
2 −1dt � (1 − cosϕ)

d
2 as ϕ → 0. (22)

If condition (2) holds for the sequence (XN ), then any spherical cap S(x;αN ),
x ∈ S

d , where

αN := arccos

(
1 − c21

8N
2
d

)
, (23)

contains at most one point of the set XN .
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From the elementary estimates

sin θ ≤ θ ≤ π

2
sin θ, 0 ≤ θ ≤ π

2
, (24)

we obtain (
1 − c21

16N
2
d

) 1
2 c1

2N
1
d

≤ αN ≤ π

4

(
1 − c21

16N
2
d

) 1
2 c1

N
1
d

. (25)

The following two theorems are the main result of this paper.

Theorem 1 Let d ≥ 2 be fixed, (XN (t))t be a sequence of well-separated spheri-
cal t-designs on S

d with N (t) � td . Then for the logarithmic energy E (d)
log (XN ) the

following estimate holds

E (d)
log (XN ) = N 2

∫

Sd

∫

Sd

log
1

|x − y|dσd(x)dσd(y) − 1

d
N log N + O(N ). (26)

Theorem 2 Let d ≥ 2 be fixed, and (XN (t))t be a sequence of well-separated spher-
ical t-designs on S

d with N (t) � td . Then for s > d for the s-energy E (d)
s (XN ) the

following estimate holds
E (d)
s (XN ) � N 1+ s

d , (27)

and for s = d, the s-energy E (d)
s (XN ) satisfies following estimates

E (d)
s (XN ) = γd

[ t
2 ]∑

n=1

1

n
N 2 + O(N 2) (28)

and

lim
N→∞

E (d)
s (XN )

N 2 log N
= γd

d
. (29)

3.1 Proof of Theorem 1

For each i ∈ {1, . . . , N } we divide the sphere Sd into an upper hemisphere H+
i with

‘North Pole’ xi and a lower hemisphere H−
i :

H+
i :=

{
x ∈ S

d
∣∣∣〈xi , x〉 ≥ 0

}
,

H−
i := S

d \ H+
i .
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Noting that

|xi − x j |−1 = 1√
2
(1 − 〈xi , x j 〉)− 1

2 , (30)

the logarithmic energy can be written in the form

E (d)
log (XN ) =

N∑

i, j=1,
i �= j

log
1

|xi − x j | = 1

2

N∑

i, j=1,
i �= j

(
log

1

1 − 〈xi , x j 〉 − log 2

)
. (31)

Let λ > d + 1. Then, putting s = 2 in (21) and using the relation
Γ (n + 1

2 ) = (2n)!
22nn!

√
π , we get

1

1 − x
= 22λ−1π− 1

2 Γ (λ)Γ

(
λ − 1

2

) ∞∑

n=0

(n + λ)Γ (n + 1)

Γ (n + 2λ)

(2λ)n(
λ + 1

2

)

n

P

(
λ− 1

2 ,λ− 1
2

)
n (x)

= Γ

(
λ − 1

2

) ∞∑

n=0

(n + λ)Γ (n + 1)

Γ

(
n + λ + 1

2

) P

(
λ− 1

2 ,λ− 1
2

)
n (x), −1 < x < 1. (32)

Formula (20) implies that

∫
P

(
λ− 1

2 ,λ− 1
2

)
n (x)dx = 2

n + 2λ − 1
P

(
λ− 3

2 ,λ− 3
2

)

n+1 (x). (33)

Integrating from 0 to x , we have

1

2
log

1

1 − x

= Γ
(
λ − 1

2

) ∞∑

n=1

(n + λ − 1)Γ (n)

(n + 2λ − 2)Γ
(
n + λ − 1

2

)
(
P

(
λ− 3

2 ,λ− 3
2

)
n (x) − P

(
λ− 3

2 ,λ− 3
2

)
n (0)

)
.

(34)

We split the log-energy into two parts

E (d)
log (XN ) =

N∑

j=1

N∑

i=1,
xi ∈H±

j \S(±x j ;αN )

log
1

|xi − x j | +
N∑

j=1

N∑

i=1,
xi ∈S(−x j ;αN )

log
1

|xi − x j | . (35)

From (2) and the fact the spherical cap S(−x j ;αN ) contains at most one point of
XN , the second term in (35), where the scalar product is close to−1, can be bounded
from above by
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N∑

j=1

N∑

i=1,
xi ∈S(−x j ;αN )

log
1

|xi − x j | = O(N ). (36)

Taking into account (31), (34)–(36), we deduce

E (d)
log (XN ) = 1

2
EHlog,t (XN ) + 1

2
ERlog,t (XN ) − 1

2
N 2 log 2 + O(N ), (37)

where

EU (XN ) :=
N∑

j=1

N∑

i=1,
xi ∈H±

j \S(±x j ;αN )

U (〈xi , x j 〉) (38)

and

Hlog,t (x) = Hlog,t (d, λ, x)

:= −2Γ

(
λ − 1

2

) ∞∑

n=1

(n + λ − 1)Γ (n)

(n + 2λ − 2)Γ
(
n + λ − 1

2

) P

(
λ− 3

2 ,λ− 3
2

)
n (0)

+ 2Γ

(
λ − 1

2

) t∑

n=1

(n + λ − 1)Γ (n)

(n + 2λ − 2)Γ
(
n + λ − 1

2

) P

(
λ− 3

2 ,λ− 3
2

)
n (x), (39)

Rlog,t (x) = Rlog,t (d, λ, x)

:= 2Γ

(
λ − 1

2

) ∞∑

n=t+1

(n + λ − 1)Γ (n)

(n + 2λ − 2)Γ
(
n + λ − 1

2

) P

(
λ− 3

2 ,λ− 3
2

)
n (x). (40)

Let us show that
ERlog,t (XN ) = O(N ). (41)

Applying (13), (14) and (19) to (40), we have

|Rlog,t (cos θ)| �
∞∑

n=t+1

n−λ+ 1
2 |P

(
λ− 3

2 ,λ− 3
2

)
n (cos θ)|

�
∞∑

n=t+1

n−λ+ 1
2

(
n− 1

2 (sin θ)−λ+1 + n− 3
2 (sin θ)−λ

)

�(sin θ)−λ+1t−λ+1 + (sin θ)−λt−λ. (42)
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We define θ±
i j ∈ [0, π ] by cos θ±

i j := 〈xi ,±x j 〉. Then sin θ+
i j = sin θ−

i j . From [9,
(3.30) and (3.33)], it follows that

N∑

j=1

N∑

i=1,
xi ∈H±

j \S(±x j ; cn )

(sin θ±
i j )

− d
2 + 1

2 −k−L

�N 2(1 + nL+k−(d+1)/2), k = 0, 1, . . . for L >
d + 1

2
. (43)

Estimates (25) and (43) imply

ERlog,t (XN ) � t−λ+1
N∑

j=1

N∑

i=1,
xi ∈H±

j \S(±x j ;αN )

(sin θ±)−λ+1 + t−λ

N∑

j=1

N∑

i=1,
xi ∈H±

j \S(±x j ;αN )

(sin θ±)−λ

� N 2t−d � N , λ > d + 1. (44)

This proves (41).
Now let us find the estimate for EHlog,t (XN ). The polynomial Hlog,t is a spheri-

cal polynomial of degree t and XN is a spherical t-design. Thus, an equal weight
integration rule with node set XN integrates Hlog,t exactly and

EHlog,t (XN ) =
N∑

j=1

N∑

i=1,
xi∈H±

j \S(±x j ;αN )

Hlog,t (〈xi , x j 〉)

= N2
∫

Sd

Hlog,t (〈x, y〉)dσd (x) − NHlog,t (1) −
N∑

j=1

N∑

i=1,
xi∈S(−x j ;αN )

Hlog,t (〈xi , x j 〉), y ∈ S
d .

(45)

Let b0 = b0(d, N ) ∈ R+ be such that b0 = O(1) as N → ∞ and for
βN := arccos(1 − b0N− 2

d ) the following relation holds

∫

S(y;βN )

dσd(x) = γd

1∫

1−b0N
− 2

d

(1 − x2)
d
2 −1dx = 1

N
, y ∈ S

d . (46)

It is clear that
βN � N− 1

d . (47)

Then

EHlog,t (XN ) = N 2
∫

Sd

log
1

1 − 〈x, y〉dσd(x) + Qt (XN ), (48)
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where

Qt (XN ) = Qt (d, XN ) := −N 2
∫

S(±y;βN )

log
1

1 − 〈x, y〉dσd(x)

− N 2
∫

Sd\S(±y;βN )

Rlog,t (〈x, y〉)dσd(x) + N 2
∫

S(±y;βN )

Hlog,t (〈x, y〉)dσd(x)

− NHlog,t (1) −
N∑

j=1

N∑

i=1,
xi ∈S(−x j ;αN )

Hlog,t (〈xi , x j 〉), y ∈ S
d . (49)

Now we shall prove that

Qt (XN ) = −N 2
∫

S(y;βN )

log
1

1 − 〈x, y〉dσd(x) + O(N ), y ∈ S
d . (50)

Using (15), (42) and (47), we get

N 2

∣∣∣∣∣∣∣

∫

Sd\S(±y;βN )

Rlog,t (〈x, y〉)dσd(x)

∣∣∣∣∣∣∣
� N 2

1−b0N
− 2

d∫

−1+b0N
− 2

d

|Rlog,t (x)|(1 − x2)
d
2 −1dx

� N 2

1−b0N
− 2

d∫

−1+b0N
− 2

d

(
t−λ+1(

√
1 − x2)−λ+1 + t−λ(

√
1 − x2)−λ

)
(1 − x2)

d
2 −1dx

= 2N 2

π
2∫

βN

(
t−λ+1(sin y)−λ+1 + t−λ(sin y)−λ

)
(sin y)d−1dy

� N 2

π
2∫

βN

(
t−λ+1y−λ+d + t−λy−λ+d−1) dy � N . (51)

From the definition of βn it is easy to see that

∣∣∣∣∣∣∣
N 2

∫

S(−y;βN )

log
1

1 − 〈x, y〉dσd(x)

∣∣∣∣∣∣∣
� N 2|S(−y;βN )| � N , y ∈ S

d . (52)
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According to the definition of βN (46) we deduce

∣∣∣∣∣∣∣
N 2

∫

S(y;βN )

Hlog,t (〈x, y〉)dσd(x) − NHlog,t (1)

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
N 2γd

1∫

1−b0N
− 2

d

(Hlog,t (x) − Hlog,t (1))(1 − x2)
d
2 −1dx

∣∣∣∣∣∣∣∣

� N max
x∈[1−b0N

− 2
d ,1]

(
Hlog,t (1) − Hlog,t (x)

) � N 1− 2
d |H ′

log,t (1)|. (53)

Formulas (16), (20) and (39) imply

H
′
log,t (1) = Γ

(
λ − 1

2

) t∑

n=1

(n + λ − 1)Γ (n)

Γ
(
n + λ − 1

2

) P

(
λ− 1

2 ,λ− 1
2

)

n−1 (1)

= Γ

(
λ − 1

2

) t∑

n=1

(n + λ − 1)Γ (n)

Γ
(
n + λ − 1

2

)

(
λ + 1

2

)

n−1

(n − 1)!

= 1

λ − 1
2

t∑

n=1

(n + λ − 1) = t + t2

2λ − 1
� t2 � N

2
d . (54)

From (17), (16), (19) and (39) it follows that

|Hlog,t (−1)| �
∞∑

n=1

(n + λ − 1)Γ (n)

(n + 2λ − 2)Γ
(
n + λ − 1

2

) 1√
n

+
∣∣∣∣∣∣

t∑

n=1

(−1)n
(n + λ − 1)Γ (n)

(n + 2λ − 2)Γ
(
n + λ − 1

2

) P

(
λ− 3

2 ,λ− 3
2

)
n (1)

∣∣∣∣∣∣

� 1 +
∣∣∣∣∣

t∑

n=1

(−1)n
n + λ − 1

n + 2λ − 2

1

n

∣∣∣∣∣ . (55)

Thus, (55) enables us to obtain

|Hlog,t (−1)| = O(1). (56)

Using (15), (54) and (56), we deduce
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∣∣∣∣∣∣∣
N 2

∫

S(−y;βN )

Hlog,t (〈x, y〉)dσd(x)

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
N 2γd

1∫

1−b0N
− 2

d

(Hlog,t (−x) − Hlog,t (−1))(1 − x2)
d
2 −1dx + NHlog,t (−1)

∣∣∣∣∣∣∣∣

� N 1− 2
d |H ′

log,t (1)| + N � N . (57)

Applying (56), we have

∣∣∣∣∣∣∣

N∑

j=1

N∑

i=1,
xi ∈S(−x j ;αN )

Hlog,t (〈xi , x j 〉)

∣∣∣∣∣∣∣
� N |Hlog,t (ξ)|

= N |Hlog,t (ξ) − Hlog,t (−1) + Hlog,t (−1)| = O(N ), (58)

where ξ ∈ [−1,−1 + b0N− 2
d ].

Relations (51)–(54), (57) and (58) prove (50).
Integrating by parts, we obtain

N 2
∫

S(y;βN )

log
1

1 − 〈x, y〉dσd(x) = γd N
2

1∫

1−b0N
− 2

d

log
1

1 − x
(1 − x2)

d
2 −1dx

= γd N
2

1∫

1−b0N
− 2

d

log
1

1 − x

d

dx

⎛

⎝−
1∫

x

(1 − t2)
d
2 −1dt

⎞

⎠ dx

= N log
(N

2
d

b0

)
+ N 2γd

1∫

1−b0N
− 2

d

1

1 − x

1∫

x

(1 − t2)
d
2 −1dtdx

= 2

d
N log N + O(N ). (59)

So, combining (37), (41), (48), (50) and (59), we get

E (d)
log (XN ) = 1

2
N 2

∫

Sd

∫

Sd

log
1

1 − 〈x, y〉dσd (x)dσd (y) − 1

d
N log N − 1

2
N 2 log 2 + O(N )

= N 2
∫

Sd

∫

Sd

log
1

|x − y|dσd (x)dσd (y) − 1

d
N log N + O(N ). (60)

This implies (26). Theorem 1 is proved. �



480 T. A. Stepanyuk

3.2 Proof of Theorem 2

In the same way as in the case for logarithmic energy, we split the s-energy into two
parts

E (d)
s (XN ) =

N∑

j=1

N∑

i=1,
xi ∈H±

j \S(±x j ;αN )

|xi − x j |−s +
N∑

j=1

N∑

i=1,
xi ∈S(−x j ;αN )

|xi − x j |−s

=
N∑

j=1

N∑

i=1,
xi ∈H±

j \S(±x j ;αN )

|xi − x j |−s + O(N ). (61)

Taking into account that the Jacobi series (21) converges uniformly in[
− 1 + c21

8N
2
d
, 1 − c21

8N
2
d

]
, for λ > s − 1 we get that

N∑

j=1

N∑

i=1,
xi ∈H±

j \S(±x j ;αN )

|xi − x j |−s = 1

2
s
2

N∑

j=1

N∑

i=1,
xi ∈H±

j \S(±x j ;αN )

(1 − 〈xi , x j 〉)− s
2

= 22λ−sπ− 1
2 Γ (λ)Γ

(
λ− s

2
+ 1

2

) ∞∑

n=0

(n + λ)( s2 )n

Γ
(
n + 2λ − s

2 + 1
) (2λ)n(

λ + 1
2

)
n

P

(
λ− 1

2 , λ− 1
2

)
n (x)

= 21−sΓ

(
λ− s

2
+ 1

2

) ∞∑

n=0

(n + λ)Γ
(
n + s

2

)
Γ (n + 2λ)

Γ (n + 2λ − s
2 + 1)Γ

(
s
2

)
Γ

(
n + λ + 1

2

) P
(
λ− 1

2 , λ− 1
2

)
n (x)

= EHs,t (XN ) + ERs,t (XN ), (62)

where

Hs,t (x) = Hs,t (d, λ, x)

:= 21−sΓ

(
λ− s

2
+ 1

2

) t−1∑

n=0

(n + λ)Γ
(
n + s

2

)
Γ (n + 2λ)

Γ
(
n + 2λ − s

2 + 1
)
Γ

( s
2

)
Γ

(
n + λ + 1

2

) P
(
λ− 1

2 , λ− 1
2

)
n (x),

(63)

Rs,t (x) = Rs,t (d, λ, x)

:= 21−sΓ

(
λ− s

2
+ 1

2

) ∞∑

n=t

(n + λ)Γ
(
n + s

2

)
Γ (n + 2λ)

Γ
(
n + 2λ − s

2 + 1
)
Γ

( s
2

)
Γ

(
n + λ + 1

2

) P
(
λ− 1

2 , λ− 1
2

)
n (x).

(64)

Formula (65) from [11] implies

ERs,t (XN ) = O
(
N 1+ s

d

)
. (65)



Estimates for Logarithmic and Riesz Energies of Spherical t-Designs 481

Hence,
E (d)
s (XN ) = EHs,t (XN ) + O

(
N 1+ s

d

)
, λ > s − 1, (66)

where we have used formulas (61), (62) and (65).
The polynomials Hs,t (〈x, x j 〉), x ∈ S

d , are spherical polynomials of degree t for
each j = 1, . . . , N with note set XN . So, an equal weight integration rule with node
set XN integrates Hs,t exactly, and

EHs,t (XN ) =
N∑

j=1

N∑

i=1

Hs,t (〈xi , x j 〉) −
N∑

j=1

N∑

i=1,
xi ∈S(±x j ;αN )

Hs,t (〈xi , x j 〉) + O
(
NHs,t (1)

)

=N 2
∫

Sd

Hs,t (〈x, y〉)dσd(x) + O
(
NHs,t (1)

)
, y ∈ S

d . (67)

From relations (13), (14), (16) and (63) we obtain

Hs,t (1)

= 21−sΓ

(
λ− s

2
+ 1

2

) t−1∑

n=0

(n + λ)Γ
(
n + s

2

)
Γ (n + 2λ)

Γ
(
n + 2λ − s

2 + 1
)
Γ

(
s
2

)
Γ

(
n + λ + 1

2

) P
(
λ− 1

2 , λ− 1
2

)
n (1)

= 21−s Γ
(
λ − s

2 + 1
2

)

Γ
(
s
2

)
Γ

(
λ + 1

2

)
t∑

n=0

(n + λ)Γ
(
n + s

2

)
Γ (n + 2λ)

Γ
(
n + 2λ − s

2 + 1
)
Γ (n + 1)

�
t∑

n=1

n(n + 2λ)
s
2 −1n

s
2 −1 � t s . (68)

Let now estimate the integral from (67). Substituting γ = λ − 1
2 , α = d

2 − 1 in
formula (18), we have

P
(λ− 1

2 ,λ− 1
2 )

n (x)

=

(
λ + 1

2

)

n

(2λ)n

[ n2 ]∑

k=0

(d − 1)n−2k(
d
2

)
n−2k

(λ)n−k
(
d
2 + 1

2

)
n−2k

(
λ − d

2 + 1
2

)
k(

d
2 + 1

2

)
n−k

(
d
2 − 1

2

)
n−2kk!

P

(
d
2 −1, d2 −1

)

n−2k (x).

(69)

Since

∫

Sd

P

(
d
2 −1, d2 −1

)
n (x)dσd(x) = γd

1∫

−1

P

(
d
2 −1, d2 −1

)
n (t)(1 − t2)

d
2 −1 = 0, n ≥ 1, (70)
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where we have used Func–Hecke formula and orthogonality relation for Jacobi poly-
nomials, then (69) yields

∫

Sd

P

(
λ− 1

2 ,λ− 1
2

)
n (x)dσd(x) =

⎧
⎪⎨

⎪⎩

0 if n = 2m + 1,
(
λ+ 1

2

)
n

(2λ)n

(λ) n
2

(
λ− d

2 + 1
2

)
n
2(

d
2 + 1

2

)
n
2

(
n
2

)
!

if n = 2m.
(71)

So,

∫

Sd

Hs,t (〈x, y〉)dσd (x)

= 21−s Γ
(
λ − s

2 + 1
2

)

Γ ( s2 )

[ t−1
2 ]∑

n=0

(2n + λ)Γ
(
2n + s

2

)
Γ (2n + 2λ)

Γ
(
2n + 2λ − s

2 + 1
)
Γ

(
2n + λ + 1

2

)
(
λ + 1

2

)
2n

(2λ)2n

(λ)n
(
λ − d

2 + 1
2

)
n( d

2 + 1
2

)
nn! ,

(72)

where we have used (39) and (71).
Thus, if s > d, then

∫

Sd

Hs,t (〈x, y〉)dσd(x) � t s−d � N−1+ s
d (73)

and the relations (67), (68) and (73) imply

E (d)
s (XN ) � N 1+s . (74)

This implies (27).
If s = d, then using (13) and (14) in (72) we have

∫

Sd

Hd,t (〈x, y〉)dσd(x)

= 22λ−dγd

[ t−1
2 ]∑

n=0

(2n + λ)Γ
(
2n + d

2

)

Γ
(
2n + 2λ − d

2 + 1
)
Γ (n + λ)Γ

(
n + λ − d

2 + 1
2

)

Γ
(
n + d

2 + 1
2

)
Γ (n + 1)

= 22λ−dγd

[ t−1
2 ]∑

n=1

(2n + λ)
(
n2λ−d−1 + Q2λ−d−1(n)

)

(2n)2λ−d+1 + Q2λ−d(n)

=
[ t−1

2 ]∑

n=1

n−1 + O(1) = γd log t + O(1), (75)

where Qm(n) denotes an algebraic polynomial of order m.
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Formulas (67), (68) and (73) imply (27).
As there exist C1,C2 > 0, such that

log t ≤ log(C1N
1
d ) = log N + O(1)

and
log t ≥ log(C2N

1
d ) = log N + O(1),

we have that (29) holds.
Theorem 2 is proved. �
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Rank-1 Lattices and Higher-Order
Exponential Splitting for the
Time-Dependent Schrödinger Equation

Yuya Suzuki and Dirk Nuyens

Abstract In this paper, we propose a numerical method to approximate the solution
of the time-dependent Schrödinger equation with periodic boundary condition in a
high-dimensional setting. We discretize space by using the Fourier pseudo-spectral
method on rank-1 lattice points, and then discretize time by using a higher-order
exponential operator splitting method. In this scheme the convergence rate of the
time discretization depends on properties of the spatial discretization. We prove that
the proposed method, using rank-1 lattice points in space, allows to obtain higher-
order time convergence, and, additionally, that the necessary condition on the space
discretization can be independent of the problem dimension d. We illustrate our
method by numerical results from 2 to 8 dimensions which show that such higher-
order convergence can really be obtained in practice.

Keywords Time-dependent schrödinger equation · Quasi-Monte Carlo ·
Pseudo-spectral method · Higher-order operator splitting

1 Introduction

Rank-1 lattice points have been widely used in the context of high-dimensional prob-
lems. Their traditional usage is in numerical integration, see, e.g., [5, 19] and refer-
ences therein. In thiswork, we use rank-1 lattice points for function approximation, to
approximate the solution of the time-dependent Schrödinger equation (TDSE). Func-
tion approximation using rank-1 lattice points has recently received more attention,
see, e.g., [3, 11–14, 21]. In [13], Li and Hickernell introduced the pseudo-spectral
Fourier collocation method using rank-1 lattice rules. Due to the rank-1 lattice struc-
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ture, Fourier pseudo-spectral methods can be efficiently implemented using one-
dimensional Fast Fourier transformations (FFTs). This is well known, and we state
the exact form in Theorem 1 together with other useful properties of approximations
on rank-1 lattice points.

To simulate many particles in the quantumworld is a computationally challenging
problem. For the TDSE, the dimensionality of the problem increases with the number
of particles of the system. In the present paper, the following form is considered:

i γ
∂u

∂t
(x, t) = −γ 2

2
Δu(x, t) + v(x) u(x, t), (1)

u(x, 0) = g(x),

where i represents the imaginary unit, x is the spatial position in the d-dimensional
torusT

d = T([0, 1]d) � [0, 1]d , the time t is positive valued, and γ is a small positive
parameter. The function u(x, t) is the sought solution, while v(x) and g(x) are the
potential and initial conditions respectively. The Laplacian can be interpreted as
Δ = ∑M

i=1

∑D
j=1 ∂2/∂x2i, j = ∑d

i=1 ∂2/∂x2i where M is the number of particles and
D is the physical dimensionality with MD = d. We note that the above form of the
TDSE becomes equivalent after substitution to the following form which is common
in the context of physics:

i �
∂ψ

∂t
(x, t) = − �

2

2m
Δψ(x, t) + v(x) ψ(x, t),

where � is the reduced Planck constant and m is the mass.
The form (1) of the TDSE has been studied from various perspectives of numer-

ical analysis [7, 9, 15, 22]. In the present paper, we focus on two perspectives;
high-dimensionality and higher-order convergence in time stepping. For the first
point, Gradinaru [7] proposed to use sparse grids for the physical space. In [21],
the current authors used rank-1 lattice points to prove second order convergence
for the time discretization using Strang splitting and numerically compared results
with the sparse grid approach from [7]. The numerical result using rank-1 lattices
showed the expected second order convergence even up to 12 dimensions. Hence
rank-1 lattice points perform thereby much better than the sparse grid approach. The
second point, higher-order convergence in time stepping, is successfully achieved
by Thalhammer [22] using higher-order exponential operator splitting. In that paper,
the spatial discretization was done by a full grid and therefore was limited to lower
dimensional cases (d ≤ 3).

The rest of this paper is organized as follows: Sect. 2 describes the proposed
method consisting of the higher-order exponential splitting method and Fourier
pseudo-spectral method using rank-1 lattices. Section3 shows numerical results with
various settings. The main aim here is to show higher-order time stepping conver-
gence in higher-dimensional cases. Finally, Sect. 4 concludes the present paper with
a short summary. Throughout the present paper, we denote the set of integer numbers
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by Z and the ring of integers modulo n by Zn := {0, 1, . . . , n − 1}. We distinguish
between the normal equivalence in congruence modulo n as a ≡ b (mod n) and the
binary operation modulo n denoted by modn which returns the corresponding value
in Zn for modn and in T for mod1.

2 The Numerical Method

In this section, we describe necessary ingredients of ourmethod. For the conciseness,
we restrict ourselves to the rank-1 lattice points instead of general rank-r lattice
points. However, our method is indeed possible to generalize to rank-r lattice points,
similar as in [21].

We use a rank-1 lattice point set and an associated anti-aliasing set for the Fourier
pseudo-spectral method. For using the Fourier pseudo-spectral method, one obvious
choice is regular grids [22], but the number of points increases too quickly in terms
of the number of dimensions. To mitigate this problem, Gradinaru [6, 7] proposed
to use sparse grids. For the same reason we introduced lattice points in [21] to get
first and second order time convergence, and obtained much better results compared
to [6, 7].

2.1 Rank-1 Lattice Point Sets and the Associated
Anti-aliasing Sets

A rank-1 lattice point set Λ(z, n) is fully determined by the modulus n and a gener-
ating vector z ∈ Z

d
n :

Λ(z, n) :=
{
zk
n

mod 1 : k ∈ Z

}

.

Usually, all components of the generating vector are chosen to be relatively prime to
n which means all points have different values in each coordinate and the number of
points is exactly n. The generating vector determines the quality of the rank-1 lattice
points. Of course, the quality criterion needs to take into account what the lattice
points will be used for. A well studied setting is numerical integration, e.g., [17, 19]
and [16, Chap. 5]. Function approximation using lattice points is relatively new. In
that context, we refer to [3, 11, 12]. We call A (z, n) ⊂ Z

d an anti-aliasing set for
the lattice point set Λ(z, n) if

z · h �≡ z · h′ (mod n) for all h, h′ ∈ A (z, n), h �= h′.
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We remark that the anti-aliasing set is not uniquely determined and the cardinality
|A (z, n)| ≤ n. By using the dual latticeΛ⊥(z, n) := {h ∈ Z

d : z · h ≡ 0 (mod n)},
we can rewrite the condition as h − h′ /∈ Λ⊥(z, n) for h �= h′. If we have the full
cardinality |A (z, n)| = n, we can divide Z

d into conjugacy classes:

Z
d =

⊎

h∈Λ⊥(z,n)

(h + A (z, n))

=
⊎

h∈A (z,n)

{h′ ∈ Z
d : z · h′ ≡ z · h (mod n)}

=
⊎

j∈Zn

{h ∈ Z
d : z · h ≡ j (mod n)},

(2)

where 
 is the union of conjugacy classes.

2.2 Korobov Spaces

Rank-1 lattices are closely related to Korobov spaces which are reproducing kernel
Hilbert spaces of Fourier series. The Korobov space Eα(Td) is given by

Eα(Td) :=
{

f ∈ L2(T
d) : ‖ f ‖2Eα(Td ) :=

∑

h∈Zd

| f̂ (h)|2 r2α(h) < ∞
}

,

where

r2α(h) :=
d∏

j=1

max(|h j |2α, 1). (3)

The parameter α ≥ 1/2 is called the smoothness parameter which determines the
rate of decay of the Fourier coefficients. To ensure regularity of the solution of
the TDSE (1) and to prove that our method gives higher-order convergence for
the temporal discretization, we will assume that the initial condition g(x) and the
potential function v(x) are in theKorobov spacewith given smoothness, seeLemma1
and Theorem 2.

2.3 Fourier Pseudo-Spectral Methods Using Rank-1 Lattices

We approximate the solution of the TDSE (1) by the truncated Fourier series. To
ensure the solution to be regular enough so that the Fourier expansion makes sense
(e.g., uniqueness, continuity, point-wise convergence), we require all functions to be
inWiener algebra A(Td):
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A(Td) := { f ∈ L2(T
d) : ‖ f ‖A(Td ) :=

∑

h∈Zd

| f̂ (h)| < ∞}.

For α > 1/2, we have Eα(Td) ⊂ A(Td). The following lemma shows the regularity
of the solution, and the TDSE (1) in terms of Fourier coefficients and was already
stated and proven in [21].

Lemma 1 (Regularity of solution and Fourier expansion) Given the TDSE (1) with
v, g ∈ Eα(Td) and α ≥ 2, then the solution u(x, t) ∈ Eα(Td) for all finite t ≥ 0 and
therefore

u(x, t) =
∑

h∈Zd

û(h, t) exp(2π i h · x), (4)

with
i γ û′(h, t) = 2π2γ 2 ‖h‖22 û(h, t) + f̂ (h, t), (5)

for all h ∈ Z
d , with û′(h, t) = (∂/∂t) û(h, t) and f̂ (h, t) the Fourier coefficients of

f (x, t) := u(x, t) v(x).

We then truncate the Fourier series (4) to a finite sum on an anti-aliasing set
A (z, n) associated to a rank-1 lattice Λ(z, n) to get the approximation

ua(x, t) :=
∑

h∈A (z,n)

ûa(h, t) exp(2π i h · x), (6)

with the approximated coefficients calculated by the rank-1 lattice rule

ûa(h, t) := 1

n

∑

p∈Λ(z,n)

u( p, t) exp(−2π i h · p). (7)

The subscript a of ua(x, t) and ûa(h, t) indicates that these are approximations
of u(x, t) and û(h, t) respectively. For simplicity of notation, we omit the time t
in the rest of this section. Due to the rank-1 lattice structure and by choosing the
anti-aliasing set to be of full size, we have the following properties:

Theorem 1 Given a rank-1 lattice point set Λ(z, n) and a corresponding anti-
aliasing set A (z, n) with |A (z, n)| = n, the following properties hold.

(i) (Character property and dual character property) For any two vectors h,

h′ ∈ A (z, n)

1

n

∑

p∈Λ(z,n)

exp(2π i (h − h′) · p) = δh,h′ , (8)
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where δ p, p′ is the Kronecker delta function that is 1 if p = p′ and 0 otherwise. Also,
for any two lattice points p, p′ ∈ Λ(z, n)

1

n

∑

h∈A (z,n)

exp(2π i h · ( p − p′)) = δ p, p′ . (9)

(ii) (Interpolation condition) If ua is the approximation of a function u ∈ A(Td)

by truncating its Fourier series expansion to the anti-aliasing set A (z, n) and by
calculating the coefficients by the rank-1 lattice rule, cfr. (6) and (7), then for any
p ∈ Λ(z, n)

ua( p) = u( p). (10)

(iii) (Mapping through FFT) Define the following vectors:

u := (
u( pk)

)
k=0,...,n−1,

ua := (
ua( pk)

)
k=0,...,n−1,

ûa := (
ûa(hξ )

)
ξ=0,...,n−1,

with pk = zk/n mod 1 ∈ Λ(z, n), and where hξ ∈ A (z, n) is chosen such that
h · zξ ≡ ξ (mod n). Then u = ua (by (ii)) is the collection of function values u( p)
on the lattice points p ∈ Λ(z, n) and ûa is the collection of Fourier coefficients ûa(h)

(by using the lattice rule, cfr. (6) and (7)) on the anti-aliasing indices h ∈ A (z, n).
The 1-dimensional discrete Fourier transform and its inverse now maps ua ∈ C

n to
ûa ∈ C

n and back.

(iv) (Aliasing) The approximated Fourier coefficients (7) through the lattice rule
Λ(z, n) alias the true Fourier coefficients in the following way

ûa(h) =
∑

h′∈Λ⊥(z,n)

û(h + h′) = û(h) +
∑

0 �=h′∈Λ⊥(z,n)

û(h + h′).

Proof We refer to [21, Theorem 2 and Lemma 3] where more general statement for
rank-r lattices can be found. �

We remark that the above theorem can also be understood in terms of Fourier analysis
on a finite Abelian group where the group, normally denoted as G, is the rank-1
lattice point set Λ(z, n) and the associated character group (Pontryagin dual) Ĝ :=
{exp(2π i h · ◦) : h ∈ A (z, n)} with |A (z, n)| = n. The (dual) character property is
then to be understood as orthonormality of Ĝ on L2(G). The interpolation condition
can be seen as the representability of functions by using Fourier series. Due to this
structure, the Plancherel theorem also holds:

∑

p∈Λ(z,n)

f ( p) g( p) =
∑

h∈A (z,n)

f̂a(h) ĝa(h)
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for f, g ∈ L2(G).
For readers who are not familiar with Fourier transforms on a rank-1 lattice, one

intuitive way of seeing why one-dimensional FFTs are available is the following.
The usual one-dimensional Fourier transform for equidistant points which is a scalar
multiple of a unitary Fourier transform, for a function f : T → C, can be written as

f̂ (h) = 1

n

n−1∑

k=0

f (k/n) exp(−2π i hk/n),

and the inverse

f (k/n) =
n−1∑

h=0

f̂ (h) exp(2π i hk/n).

Nowwe see that the Fourier transform on a rank-1 lattice has the exact same structure
for a function f : T

d → C,

f̂ (hξ ) = 1

n

n−1∑

k=0

f ( pk) exp(−2π i hξ · pk) = 1

n

n−1∑

k=0

f ( pk) exp(−2π i ξk/n),

and

f ( pk) =
n−1∑

ξ=0

f̂ (hξ ) exp(2π i hξ · pk) =
n−1∑

k=0

f̂ (hξ ) exp(2π i ξk/n),

where we note pk = zk/n mod 1 and hξ · z ≡ ξ (mod n). Hence we only need
one-dimensional FFTs to transform functions on T

d .

2.4 Higher-Order Exponential Splitting

For the temporal discretization, we employ a higher-order exponential splitting
scheme (also called an exponential propagator), see, e.g., [1, 20, 22]. To describe the
higher-order exponential splitting, let us consider the following ordinary differential
equation:

y′(t) = (A + B) y(t), y(0) = y0, (11)

where A and B are differential operators. The solution for the Eq. (11) is y(t) =
e(A+B)t y0. However, often it is not possible to compute this exactly, and one needs
to approximate the quantity with cheap computational cost. When both eAt and eBt

can be computed easily, the higher-order exponential splitting is a powerful tool to
approximate the solution e(A+B)t y0. The approximated solution for this case is given
by:
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y(t + Δt) ≈ eb1B Δt ea1AΔt · · · ebs B Δteas AΔt y(t), (12)

where ai and bi , i = 1, . . . , s, are coefficients determined by the desired order of
convergence p. In other words, if the splitting (12) satisfies

‖eb1B Δt ea1AΔt · · · ebs B Δteas AΔt y(t) − e(A+B)Δt y(t)‖X ≤ C(Δt)p+1, (13)

for some normed space X , where the constant C is independent of Δt , then the
splitting is said to have p-th order. The number of steps s and the coefficients ai , bi
can be determined according to the order p, see [8] for details. We evolve the time
using this discretization from time 0, i.e.,

yk+1 = eb1B Δt ea1AΔt · · · ebs B Δteas AΔt yk, y{k=0} = y0.

By summing up the local errors (13) of each step k = 1, . . . ,m, where t = mΔt ,
gives the total error:

‖ym − y(t)‖X ≤ C mΔt (Δt)p = Ct (Δt)p.

We call this quantity the total error in the L2 sense, and this is the reason why
the splitting is called to be of p-th order. The error coming from the exponential
splitting can be related to commutators of two operators A and B, namely [A, B] :=
AB − BA, [A, [A, B]] := A2B − 2ABA + BA2, etc.We introduce the notation for
the p-th commutator by following [22]:

adp
A(B) = [A, adp−1

A (B)], ad0A(B) = B,

where p ≥ 1. When the p-th commutator is bounded, it is known that the p-th order
exponential splitting gives the desired order, see [22, Lemma 1 and Theorem 1]. We
also refer to [9, Theorem 2.1] for the second-order splitting (namely, Strang splitting)
in a more abstract setting.

2.5 Higher-Order Exponential Splitting on Rank-1 Lattices

We apply the higher-order exponential splitting to the space discretized TDSE
in this section. For solving the TDSE (1) in the dual space with finite number
of Fourier basis functions, we will rewrite the problem in vector form. We let
ût := (

ûa(h0, t), . . . , ûa(hn−1, t)
)
the approximated solution at time t . Throughout

time evolution, we use a fixed anti-aliasing set A (z, n) = {hξ : ξ = 0, . . . , n − 1}
of full size |A (z, n)| = n, where we denote hξ ∈ A (z, n) as such a vector that
hξ · z ≡ ξ (mod n). We obtain the following relation by imposing that (5) holds for
all h ∈ A (z, n),
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i γ û′
t = 1

2
γ 2Dn ût + Wn ût , (14)

with the initial condition û0 = ĝa := (ĝa(h0), . . . , ĝa(hn−1)),

Dn := diag
(
(4π2‖hξ‖22)ξ=0,...,n−1

)
, (15)

and the potential multiplication operator Wn := FnVnF−1
n with

Vn := diag
((

v( pk)
)
k=0,...,n−1

)
, (16)

where Fn is the unitary Fourier matrix

Fn =
(

1√
n
exp(−2π i ξξ ′/n)

)

ξ,ξ ′=0,...,n−1

.

The approximation of the multiplication operator, Wn , is justified by the following
lemma which is taken from [21].

Lemma 2 (Multiplication operator on rank-1 lattices) Given a rank-1 lattice point
setΛ(z, n) and corresponding anti-aliasing setA (z, n) of full size, a potential func-
tion v ∈ Eα(Td) with α ≥ 2 and a function ua ∈ Eβ(Td) with β ≥ 2 with Fourier
coefficients only supported on A (z, n). Then the action in the Fourier domain
restricted toA (z, n) of multiplying with v, that is fa(x) = v(x) ua(x), on the nodes
of the rank-1 lattice, and with fa having Fourier coefficients restricted to the set
A (z, n), can be described by a circulant matrix Wn ∈ C

n×n with Wn = Fn Vn F−1
n ,

with Vn given by (16) and Fn the unitary Fouriermatrix, where the element at position
(ξ, ξ ′) of Wn is given by

wξ,ξ ′ = w(ξ−ξ ′) mod n =
∑

h∈Zd

h·z≡ξ−ξ ′ (mod n)

v̂(h). (17)

Proof We refer to [21, Lemma 5]. �

We approximate the solution of the ordinary differential equation (14)

ût = e− i
γ
Wn t− iγ

2 Dn t û0,

by applying the higher-order exponential splitting method (12):

ûk+1
a = e−b1

i
γ
Wn Δt e−a1

iγ
2 Dn Δt · · · e−bs

i
γ
Wn Δte−as

iγ
2 Dn Δt ûka for k = 0, 1, . . . ,m − 1, (18)

where again the coefficients ai , bi are determined according to the desired order of
convergence, and
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e− i
2WnΔt = Fn diag

(
(e− i

2 v( pk )Δt )k=0,...,n−1

)
F−1
n .

The approximated solution at the time t = kΔt is then obtained by stepping time
Δt iteratively by (18). In the following we show the commutator bounds which
correspond to [22, Hypothesis 3] and lead us to the total bound as in [22, Theorem 1].

Theorem 2 (p-th commutator bound and total error bound) Given a rank-1 lattice
with generating vector z ∈ Z

d and modulus n and a TDSE with a potential function
v ∈ Eα(Td)with α > 2p + 1/2 and an initial condition g ∈ Eβ(Td)with β ≥ 2. Let
D = γ

2 Dn and W = 1
γ
Wn with Dn and Wn = FnVnF−1

n as defined in (15) and (17),
and with Vn as defined in (16) using the potential function v.

If the anti-aliasing set A (z, n) = {hξ ∈ Z
d : hξ · z ≡ ξ (mod n) for ξ =

0, . . . , n − 1}, with full cardinality, is chosen such that its elements hξ have min-
imal �2 norm in the sense that,

‖hξ‖2 = min
h′∈A(z,n,ξ)

‖h′‖2, (19)

with

A(z, n, ξ) := {
h ∈ Z

d : h · z ≡ ξ (mod n)
}
,

then for all y ∈ R
n we have the following bound for the p-th commutator:

‖adp
D(W ) y‖2 ≤ c ‖(D + I )p y‖2,

where c is a constant independent of n and y.
This commutator condition and [22, Theorem 1] directly give us the total error bound
for (14):

‖ût − ûm
a ‖2 ≤ C‖û0 − û0

a‖2 + C ′(Δt)p‖(D + I )p û0‖2,

where mΔt = t and the constants depend on t but not on m or Δt .

Proof Let M := adp
D(W ) (D + I )−p. Since (D + I )p is is non-singular, the claim

of the theorem is equivalent to the assertion that the induced �2 norm of the matrix
‖M‖2 := sup0 �= y∈Rn ‖M y‖2/‖ y‖2 is bounded independent of n. Each element of the
matrix M is given by,

M =
(

(‖hξ‖22 − ‖hξ ′ ‖22)p
γ (‖hξ ′ ‖22 + c1)p

wξ,ξ ′

)

ξ,ξ ′=0,...,n−1

,

where the constant c1 = 1/(2πγ )p > 0. Now we bound ‖M‖2 by using ‖M‖2 ≤√‖M‖1‖M‖∞. First we bound ‖M‖1:
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‖M‖1 = 1

γ
max
ξ ′∈Zn

n−1∑

ξ=0
ξ �=ξ ′

∣
∣
∣
∣
(‖hξ‖22 − ‖hξ ′ ‖22)p

(‖hξ ′ ‖22 + c1)p
wξ,ξ ′

∣
∣
∣
∣

≤ 1

γ
max
ξ ′∈Zn

n−1∑

ξ=0
ξ �=ξ ′

∣
∣
∣
∣
∣

(max(‖hξ‖2p2 , ‖hξ ′ ‖2p2 )

(‖hξ ′ ‖22 + c1)p
wξ,ξ ′

∣
∣
∣
∣
∣
.

We notice that the diagonal components of M (ξ = ξ ′) is always 0, hence we exclude
such cases in the following argument. Because we collect the anti-aliasing set by
minimizing the �2 norm (19), we have ‖hξ‖2 ≤ ‖h′

ξ‖2 for any h′
ξ ∈ A(z, n, ξ). In

particular, this holds for h′
ξ = hξ−ξ ′ + hξ ′ since (hξ−ξ ′ + hξ ′) · z ≡ ξ (mod n) for

any choice of ξ ′ = 0, . . . , n − 1. This gives us the connection between ‖hξ‖2 and
‖hξ ′ ‖2 using ‖hξ−ξ ′ ‖2:

‖hξ‖22
‖hξ ′ ‖22 + c1

≤ ‖hξ ′ + hξ−ξ ′ ‖22
‖hξ ′ ‖22 + c1

≤ 4‖hξ−ξ ′ ‖22,

for ξ �= ξ ′. We continue from the above bound of ‖M‖1,

‖M‖1 ≤ 1

γ
max
ξ ′∈Zn

n−1∑

ξ=0
ξ �=ξ ′

∣
∣
∣
∣
∣

(max(‖hξ‖2p2 , ‖hξ ′ ‖2p2 )

(‖hξ ′ ‖22 + c1)p
wξ,ξ ′

∣
∣
∣
∣
∣

≤ 1

γ
max
ξ ′∈Zn

n−1∑

ξ=0
ξ �=ξ ′

∣
∣
∣
∣max

( ‖hξ‖22
‖hξ ′ ‖22 + c1

, 1

)p

wξ,ξ ′

∣
∣
∣
∣

≤ 1

γ
max
ξ ′∈Zn

n−1∑

ξ=0
ξ �=ξ ′

∣
∣
∣max

(
4p‖hξ−ξ ′ ‖2p2 , 1

)
wξ,ξ ′

∣
∣
∣

= 1

γ
max
ξ ′∈Zn

n−1∑

ξ=0
ξ �=ξ ′

∣
∣
∣
(
4p‖hξ−ξ ′ ‖2p2

)
wξ,ξ ′

∣
∣
∣

≤ 4p

γ
max
ξ ′∈Zn

n−1∑

ξ=0
ξ �=ξ ′

‖hξ−ξ ′ ‖2p2
∣
∣
∣
∣

∑

h∈A(z,n,ξ−ξ ′)

v̂(h)

∣
∣
∣
∣

≤ 4p

γ
max
ξ ′∈Zn

n−1∑

ξ=0
ξ �=ξ ′

∑

h∈A(z,n,ξ−ξ ′)

‖h‖2p2 |̂v(h)|

≤ 4p

γ

∑

h∈Zd

‖h‖2p2 |̂v(h)|.
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For the last inequality, we used the conjugacy decomposition (2). By using Cauchy–
Schwarz inequality and multiplying and dividing by rα , we have

∑

h∈Zd

‖h‖2p2 |̂v(h)| ≤
(

∑

h∈Zd

r2α(h) |̂v(h)|2
)1/2 (

∑

h∈Zd

‖h‖4p2
r2α(h)

)1/2

≤ ‖v‖Eα(Td )

(
∑

h∈Zd

(
√
d ‖h‖∞)4p

r2α(h)

)1/2

≤ ‖v‖Eα(Td )

(
∑

h∈Zd

d2p

r2α−2p(h)

)1/2

≤ ‖v‖Eα(Td )

(
d2p (1 + 2 ζ(2α − 4p))d

)1/2
< ∞.

This means we have bounded ‖M‖1 independent of n. For ‖M‖∞ we can proceed
in a similar way to obtain

‖M‖∞ = max
ξ∈Zn

n−1∑

ξ ′=0
ξ ′ �=ξ

∣
∣
∣
∣
∣

(‖hξ‖22 − ‖hξ ′ ‖22
)p

(‖hξ ′ ‖22 + c1
)p wξ,ξ ′

∣
∣
∣
∣
∣

≤ 4p

γ
‖v‖Eα(Td )

(
d2p (1 + 2 ζ(2α − 4p))d

)1/2
< ∞.

Therefore, we have ‖M‖2 < ∞ independent of n. The total error bound directly
follows from this commutator bound and [22, Theorem 1]. �

3 Numerical Results

We demonstrate our method by showing some numerical results in this section.
We construct rank-1 lattices by using the component-by-component (CBC) con-
struction [4, 17]. The code for producing the rank-1 lattice is available online [18],
fastrank1expt.m. With the script, we choose n being a power of 2 and generate
the vector z which is optimized for integration in (unweighted) Korobov space with
first order mixed derivatives, i.e., α = 1. In Table1 we display the generating vector
z and the number of points n for the following numerical results. Using given n and
z, we construct the anti-aliasing set in accordance with Theorem 2 in the following
manner: (i) first we generate all integer vector h ∈ Z

d in a bounded region ‖h‖ ≤ R
for a well chosen R; (ii) then we sort the obtained set according to the �2 distance in
ascending order; (iii) we calculate the value mh := h · z mod n in the sorted order
and store h in A (z, n) if the value mh has not appeared before. We repeat this step
(iii) until we have the full cardinality |A (z, n)| = n.
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Table 1 Parameters of the rank-1 lattice points for our numerical results

d n z�

2 216 (1, 100135)

4 220 (1, 443165, 95693, 34519)

6 224 (1, 6422017, 7370323, 2765761, 8055041, 2959639)

8 224 (1, 6422017, 7370323, 2765761, 8055041, 2959639, 7161203, 4074015)

3.1 Convergence with Respect to Time Step Size

We consider a common numerical setting as it is considered in [7, 9, 22] where
Fourier pseudo-spectral methods are used.We calculate the error with different value
of time steps against a reference solution. For the initial condition g(x), we choose
the Gaussian wave packet given by:

g(x) :=
(

2

πγ

)d/4

exp

(

−
∑d

j=1

(
2πx j − π

)2

γ

)
1

c
,

where the constant c is a normalizing constant to make ‖g‖L2 = 1. For the potential
function v, we consider a smooth potential function

v1(x) =
d∏

j=1

(1 − cos(2πx j )),

and a harmonic potential function

v2(x) = 1

2

d∑

j=1

(2πx j − π)2.

Our aim is to show the temporal discretization error ‖ua(x, t) − uma (x)‖L2 at fixed
time t = m Δt = 1, for that sake we calculate a reference solution uM

a (x) with the
finest time step size Δt = 1/M = 1/10000, as an approximation of ua(x, t). We
then vary the time step size Δt = 1/m = 1/5, . . . , 1/1000 and calculate uma (x) to
see the convergence plot of ‖uM

a (x) − uma (x)‖L2 .
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Table 2 Coefficients for the sixth-order method, calculated based on [10]

a j b j

j = 1, 9 0.392161444007314 j = 1, 10 0.196080722003657

j = 2, 8 0.332599136789359 j = 2, 9 0.362380290398337

j = 3, 7 −0.706246172557639 j = 3, 8 −0.186823517884140

j = 4, 6 0.0822135962935508 j = 4, 7 −0.312016288132044

j = 5 0.798543990934830 j = 5, 6 0.440378793614190

j = 10 0

3.2 Sixth-Order Splitting

We recall that the higher-order exponential splitting is written as

yk+1 = eb1B Δt ea1AΔt · · · ebs B Δteas AΔt yk .

For the sixth-order method, we employ the coefficients a j and b j from [10] denoted
as “s9odr6a” therein. We exhibit the coefficients in Table2. We plot the results for
dimension 2 to 8 in Fig. 1. The potential v1 is not smooth enough on the boundary
of [0, 1]d so it does not satisfy the required condition in the strict sense. The initial
condition g and the potential v2 meet all the required conditions. The expected sixth-
order convergence is consistent in every plot. When the error reaches to the machine
precision, the plot becomes flat. For the 2-dimensional case with the potential v2, we
see the convergence happening when the time step size is very small. This can be
explained by a phenomenon, called instability of exponential splitting; this is caused
by negative coefficients of the exponential splitting a j and b j , and is discussed in
e.g., [2]. Especially in [2], commutator-free quasi-Magnus exponential integrators
are proposed to avoid the issue, however, this is out of the scope of the present paper.
The instability issue does not happen in a higher-dimensional settings.

3.3 Eighth-Order Splitting

For the eighth-order method, we employ the coefficients again from [10] denoted as
“s17odr8a”. The coefficients are shown in Table3. The results are shown in Fig. 2
and we again see that the convergence rate is consistently eighth order in each plot.
Most of the plot seems to be similar to Fig. 1 but with faster convergence, therefore
they reach to the machine precision more quickly.
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Fig. 1 The time-discretization error with the sixth-order method

Table 3 Coefficients for the eighth-order method, calculated based on [10]

a j b j

j = 1, 17 0.130202483088890 j = 1, 18 0.0651012415444450

j = 2, 16 0.561162981775108 j = 2, 17 0.345682732431999

j = 3, 15 −0.389474962644847 j = 3, 16 0.0858440095651306

j = 4, 14 0.158841906555156 j = 4, 15 −0.115316528044846

j = 5, 13 −0.395903894133238 j = 5, 14 −0.118530993789041

j = 6, 12 0.184539640978316 j = 6, 13 −0.105682126577461

j = 7, 11 0.258374387686322 j = 7, 12 0.221457014332319

j = 8, 10 0.295011723609310 j = 8, 11 0.276693055647816

j = 9 −0.605508533830035 j = 9, 10 −0.155248405110362

j = 18 0
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Fig. 2 The time-discretization error with the eighth-order method

4 Conclusion

We proposed a numerical method to solve the TDSE. With our method using the
time step size Δt , the temporal discretization error converges like O((Δt)p) given
that the potential function is in Korobov space of smoothness greater than 2p + 1/2.
The numerical results (which are performed from 2 up to 8 dimensions) confirmed
the theory and the rate of error convergence is consistent. By using rank-1 lattices,
calculations of the time stepping operator and multiplications are efficiently done by
only using one-dimensional FFTs.

Pseudo-spectral methods are widely used technique for solving partial differential
equations. It is a common choice to use regular grids, but the number of nodes
increases exponential with d. We have shown an alternative, rank-1 lattice pseudo-
spectral methods where the number of points can be chosen freely by the user. In
combination with higher-order splitting methods, the proposed method solves the
TDSE with higher-order convergence in time.
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An Analysis of the Milstein Scheme for
SPDEs Without a Commutative Noise
Condition

Claudine von Hallern and Andreas Rößler

Abstract In order to approximate solutions of stochastic partial differential
equations (SPDEs) that do not possess commutative noise, one has to simulate the
involved iterated stochastic integrals. Recently, two approximation methods for iter-
ated stochastic integrals in infinite dimensions were introduced in [8]. As a result of
this, it is now possible to apply the Milstein scheme by Jentzen and Röckner [2] to
equations that need not fulfill the commutativity condition. We prove that the order
of convergence of the Milstein scheme can be maintained when combined with one
of the two approximation methods for iterated stochastic integrals. However, we also
have to consider the computational cost and the corresponding effective order of
convergence for a meaningful comparison with other schemes. An analysis of the
computational cost shows that, in dependence on the equation, a combination of the
Milstein scheme with any of the two methods may be the preferred choice. Further,
the Milstein scheme is compared to the exponential Euler scheme and we show for
different SPDEs depending on the parameters describing, e.g., the regularity of the
equation, which of the schemes achieves the highest effective order of convergence.
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1 Introduction

It is well known that for a commutative stochastic differential equation the Milstein
scheme can be easily implemented as no iterated stochastic integrals have to be
simulated.However, ifwe dealwith anSPDEwhich does not fulfill the commutativity
condition, it is, in general, not possible to rewrite the expression in such a way that
implementation becomes straightforward. In the following, we consider SPDEs of
type

dXt = (
AXt + F(Xt )

)
dt + B(Xt ) dWt , t ∈ (0, T ], X0 = ξ. (1)

In this work, we are concerned with the efficient approximation of the mild solution
of equation (1) which does not need to have commutative noise by a higher order
scheme, that is, we deal with equations where the commutativity condition

(
B ′(v)(B(v)u)

)
ũ = (

B ′(v)(B(v)ũ)
)
u (2)

for all v ∈ Hβ , u, ũ ∈ U0 does not have to be fulfilled. We consider the Milstein
scheme for SPDEs recently proposed in [2] which reads as Y N ,K ,M

0 = PN ξ and

Y N ,K ,M
m+1 = PN eAh

(
Y N ,K ,M

m + hF(Y N ,K ,M
m ) + B(Y N ,K ,M

m )ΔW K ,M
m

+
∫ tm+1

tm

B ′(Y N ,K ,M
m )

( ∫ s

tm

B(Y N ,K ,M
m ) dW K

r

)
dW K

s

) (3)

for some N , M, K ∈ N, h = T
M andm ∈ {0, . . . , M − 1}. For details on the notation,

we refer to Sects. 2.1 and 2.2. The main difficulty in the approximation of equations
with non-commutative noise is the simulation of the iterated stochastic integrals,
since it is not possible to rewrite integrals such as

∫ t+h

t
B ′(Xt )

( ∫ s

t
B(Xt ) dW K

r

)
dW K

s

for h > 0, t, t + h ∈ [0, T ] and K ∈ N in terms of increments of the approximation
(W K

t )t∈[0,T ] of the Q-Wiener process (Wt )t∈[0,T ] like in the commutative case, see [2].
Since the iterated stochastic integrals can, in general, not be computed explicitly, we
need to approximate these terms. In [8], the authors recently proposed two algorithms
to approximate integrals of type

∫ t+h

t
Ψ

(
Φ

∫ s

t
dWr

)
dWs (4)

with t ≥ 0, h > 0 for some operatorsΨ ∈ L(H, L(U, H)U0),Φ ∈ L(U, H)U0 and a
Q-Wiener process (Wt )t∈[0,T ]. Applying these algorithms, it is possible to implement
the Milstein scheme stated in (3) if we choose Ψ = B ′(Yt ) and Φ = B(Yt ) for some
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B : Hβ → L(U, H)U0 and an approximation Yt ∈ Hβ with t ≥ 0 and β ∈ [0, 1). For
more details on the operators, we refer to [8] and Sect. 2.1. In this work, we combine
the Milstein scheme with the approximation of the iterated stochastic integrals.

For finite dimensional stochastic differential equations, the issue of how to sim-
ulate iterated stochastic integrals was answered, e.g., by [3, 12]. In this setting, the
Milstein scheme combined with the approximation as specified by [12] outperforms
the method that was introduced in [3] in terms of the computational cost when the
temporal order of convergence of the Milstein scheme is to be preserved. The results
in [8] suggest that in the infinite dimensional setting of SPDEs, it is not obviouswhich
of the two methods requires less computational effort. Therefore, in this work, we
analyze the cost involved in the simulation for each of the two methods in detail and
also compare the Milstein scheme combined with each method to the exponential
Euler scheme.

2 Analysis of the Numerical Scheme

We present two versions of the Milstein scheme for non-commutative SPDEs in
this section. To be precise, we analyze two schemes which differ by the method
that is used to approximate the iterated stochastic integrals that are involved. We
prove in Sect. 2.2 that the order of convergence that the Milstein scheme obtains
for commutative equations, see [2], can be maintained if the iterated integrals are
approximated by the methods introduced in [8]. In Sect. 2.3, these two versions of
the Milstein scheme are compared to each other and to the exponential Euler scheme
when the computational cost is also taken into account.

2.1 Setting and Assumptions

The setting that we work in is similar to the one considered for the Milstein scheme
in [2] except that the commutativity condition (24) in their paper (see also Eq. (2))
does not have to be fulfilled, that we replace the space LHS(U0, H) by L(U, H)U0 ⊂
LHS(U0, H) in assumption (A3) and that we introduce a projection operator in (A3).

Let T ∈ (0,∞) be fixed, let (H, 〈·, ·〉H ) and (U, 〈·, ·〉U ) denote some separable
real-valued Hilbert spaces. We fix some probability space (Ω,F , P) and denote by
(Wt )t∈[0,T ] a U -valued Q-Wiener process with respect to the filtration (Ft )t∈[0,T ]
which fulfills the usual conditions. The operator Q ∈ L(U ) is assumed to be non-
negative, symmetric and to have finite trace. We denote its eigenvalues by η j with
corresponding eigenvectors ẽ j for j ∈ J with some countable index setJ forming
an orthonormal basis of U [10]. We employ the following series representation of
the Q-Wiener process, see [10],
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Wt =
∑

j∈J
η j 
=0

√
η j ẽ j β

j
t , t ∈ [0, T ].

Here, (β
j

t )t∈[0,T ] denote independent real-valued Brownian motions for all j ∈ J
with η j 
= 0. By means of the operator Q, we define the subspace U0 ⊂ U as
U0 = Q

1
2 U . The set of Hilbert–Schmidt operators mapping from U to H is denoted

by LHS(U, H) and the space of linear bounded operators on U restricted to
U0 by (L(U, H)U0 , ‖ · ‖L(U,H)) with L(U, H)U0 := {T : U0 → H | T ∈ L(U, H)}.
Moreover, we designate L(2)(U, H) = L(U, L(U, H)) and L (2)

HS(U, H) = LHS

(U, LHS(U, H)).
Our aim is to approximate themild solution of SPDE (1) and, therefore, we impose

the following assumptions.

(A1) The linear operator A : D(A) ⊂ H → H generates an analytic semigroup
S(t) = eAt for all t ≥ 0. Letλi ∈ (0,∞) denote the eigenvalues of−Awith eigen-
vectors ei for i ∈ I and some countable index set I , i.e., it holds −Aei = λi ei

for all i ∈ I . Moreover, assume that inf i∈I λi > 0 and that the eigenfunctions
{ei : i ∈ I } of −A form an orthonormal basis of H , see [11]. Furthermore,

Av =
∑

i∈I
−λi 〈v, ei 〉H ei

for all v ∈ D(A). By means of A, we define the real Hilbert spaces Hr :=
D((−A)r ) for r ∈ [0,∞) with norm ‖x‖Hr = ‖(−A)r x‖H for x ∈ Hr .

(A2) For some β ∈ [0, 1), assume that F : Hβ → H is twice continuously Fréchet
differentiable with supv∈Hβ

‖F ′(v)‖L(H) < ∞ and supv∈Hβ
‖F ′′(v)‖L2(Hβ ,H)<∞.

(A3) The operator B : Hβ → L(U, H)U0 is twice continuously Fréchet differen-
tiablewith supv∈Hβ

‖B ′(v)‖L(H,L(U,H))<∞, supv∈Hβ
‖B ′′(v)‖L(2)(Hβ ,LHS(U0,H))<∞.

Assume that B(Hδ) ⊂ LHS(U0, Hδ) for some δ ∈ (0, 1
2 ) and that

‖B(u)‖LHS(U0,Hδ) ≤ C(1 + ‖u‖Hδ
),

‖B ′(v)P B(v) − B ′(w)P B(w)‖L(2)
HS(U0,H)

≤ C‖v − w‖H ,

‖(−A)−ϑ B(v)Q−α‖LHS(U0,H) ≤ C(1 + ‖v‖Hγ
)

for some constant C > 0, all u ∈ Hδ , v, w ∈ Hγ , where γ ∈ [
max(β, δ), δ + 1

2

)
,

α ∈ (0,∞), ϑ ∈ (
0, 1

2

)
, any projection operator P : H → span{ei : i ∈ Ĩ } ⊂ H

with finite index set Ĩ ⊂ I and the case that P is the identity.
(A4) Assume that the initial value ξ : Ω → Hγ fulfills E

[‖ξ‖4Hγ

]
< ∞ and that it

isF0-B(Hγ )-measurable.

In the following, we do not distinguish between the operator B and its extension
B̃ : H → L(U, H)U0 which is globally Lipschitz continuous; this holds as Hβ ⊂ H
is dense.With F , we proceed analogously. Conditions (A1)–(A4) imply the existence
of a unique mild solution X : [0, T ] × Ω → Hγ for SPDE (1), see [1, 2].
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2.2 The Milstein Scheme for Non-commutative SPDEs

Wedefine the numerical schemeunder consideration and introduce the corresponding
discretizations of the infinite dimensional spaces. To be precise, we need to discretize
the time interval [0, T ], project the Hilbert space H to some finite dimensional
subspace andweneed an approximation of the infinite dimensional stochastic process
(Wt )t∈[0,T ]. For the discretization of the solution space H , we define a projection
operator PN : H → HN that maps H to the finite dimensional subspace HN :=
span{ei : i ∈ IN } ⊂ H for some fixed N ∈ N. This projection is expressed by the
index set IN ⊂ I with |IN | = N that picks N basis functions. We specify this
operator as

PN x =
∑

i∈I N

〈x, ei 〉H ei , x ∈ H.

Similarly,we approximate the Q-Wiener process. For K ∈ N, we define the projected
Q-Wiener process (W K

t )t∈[0,T ] taking values in UK := span{ẽ j : j ∈ JK } ⊂ U by

W K
t :=

∑

j∈J K

√
η j ẽ jβ

j
t , t ∈ [0, T ],

for some index set JK ⊂ J with |JK | = K and η j 
= 0 for j ∈ JK . For the
temporal discretization, we choose an equidistant time step for legibility of the rep-
resentation. Let h = T

M for some M ∈ N and denote tm = m · h for m ∈ {0, . . . , M}.
On this grid, we define the increments of the projected Q-Wiener process

ΔW K ,M
m := W K

tm+1
− W K

tm =
∑

j∈J K

√
η j Δβ j

m ẽ j

where the increments of the real-valued Brownian motions are given by Δβ
j

m =
β

j
tm+1

− β
j

tm for m ∈ {0, . . . , M − 1}, j ∈ JK . We apply these discretizations to the
setting described above. Then, the Milstein scheme yields a discrete-time stochastic
process which we denote by (Ȳ N ,K ,M

m )m∈{0,...,M} such that Ȳ N ,K ,M
m is Ftm -B(H)-

measurable for all m ∈ {0, . . . , M}, M ∈ N. We define the Milstein scheme (MIL)
for non-commutative SPDEs based on [2] as Ȳ N ,K ,M

0 = PN ξ and

Ȳ N ,K ,M
m+1 = PN eAh

(
Ȳ N ,K ,M

m + hF(Ȳ N ,K ,M
m ) + B(Ȳ N ,K ,M

m )ΔW K ,M
m

+
∑

i, j∈J K

B ′(Ȳ N ,K ,M
m )

(
PN B(Ȳ N ,K ,M

m )ẽi , ẽ j
)
Ī Q
(i, j),m

) (5)

for all m ∈ {0, . . . , M − 1}. Compared to the Milstein scheme (3) proposed in [2],
we added an additional projector and replaced the iterated stochastic integrals



508 C. von Hallern and A. Rößler

I Q
(i, j),m :=

∫ tm+1

tm

∫ s

tm

〈dWr , ẽi 〉U 〈dWs, ẽ j 〉U

by an approximation Ī Q
(i, j),m for all i, j ∈ JK and m ∈ {0, . . . , M − 1}. We can

show that the error estimate for the Milstein approximation that is obtained in the
commutative case remains valid for the scheme MIL in (5) if Ī Q

(i, j),m represents
an approximation obtained by one of the methods introduced in [8] provided the
accuracy for these approximations is chosen appropriately. If Algorithm 1 in [8] is
employed to approximate the iterated integrals, we denote the numerical scheme (5)
by MIL1 and the approximation Ī Q

(i, j),m of I Q
(i, j),m is denoted by Ī Q,(D),(1)

(i, j),m . This algo-
rithm is based on a series representation of the iterated stochastic integral which is
truncated after D summands for some D ∈ N, see [3, 8]. If we employ Algorithm 2
instead, the scheme (5) is called MIL2 and we denote the approximation Ī Q

(i, j),m of

I Q
(i, j),m by Ī Q,(D),(2)

(i, j),m . The main difference compared to Algorithm 1 is that the series
is not only truncated but the remainder is approximated by a multivariate normally
distributed random vector additionally, see [8, 12] for details. Let

E (M, K ) =
(
E

[∥∥∥
∫ tl+1

tl

B ′(Ȳl)
( ∫ s

tl

PN B(Ȳl) dW K
r

)
dW K

s

−
∑

i, j∈J K

Ī Q
(i, j),l B ′(Ȳl)(PN B(Ȳl)ẽi , ẽ j )

∥∥∥
2

H

]) 1
2

for all l ∈ {0, . . . , m − 1},m ∈ {1, . . . , M} and M, K ∈ N denote the approximation
error of the iterated integral term. Then, we obtain the following error estimate.

Theorem 1 (Convergence of Milstein scheme) Let assumptions (A1)–(A4) hold.
Then, there exists a constant CQ,T ∈ (0,∞), independent of N , K and M, such that
for (Ȳ N ,K ,M

m )0≤m≤M , defined by the Milstein scheme in (5), it holds

(
E
[∥∥Xtm − Ȳ N ,K ,M

m

∥∥2
H

]) 1
2

≤ CQ,T

((
inf

i∈I \I N

λi

)−γ +
(

sup
j∈J \J K

η j

)α + M−qMIL + E (M, K )M
1
2

)

with qMIL = min(2(γ − β), γ ) and for all m ∈ {0, . . . , M} and all N , K , M ∈ N.
The parameters are determined by assumptions (A1)–(A4).

The proof of this statement is given at the end of this section.
Depending on the choice of the algorithm, we get a different error bound for

E (M, K ). We set Ψ = B ′(Ȳl) and Φ = PN B(Ȳl) in (4). Then, we can transfer the
error estimates given in [8, Corollaries 1, 2, Theorem 4] to our setting. Thus, for
Algorithm 1 there exists some constant CQ,T > 0 such that
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E (M, K ) = E (D),(1)(M, K ) ≤ CQ,T
1

M
√

D
(6)

for all D, K , M ∈ N. In contrast, for Algorithm 2, we get an estimate that converges
in D with order 1. It is, however, also dependent on the number K which controls the
approximation of the Q-Wiener process as well as on the eigenvalues η j , j ∈ JK ,
of the operator Q. There exists some constant CQ,T > 0 such that

E (M, K ) = E (D),(2)(M, K ) ≤ CQ,T
min

(
K

√
K − 1, (min j∈J K η j )

−1
)

M D
(7)

for all D, K , M ∈ N. For example, if we assume η j � j−ρQ , ρQ > 1 and all j ∈
J = N, then in the case ρQ < 3

2 it holds E (D),(2)(M, K ) ≤ CQ,T (min j∈J K η j )
−1

M−1 D−1 andE (D),(2)(M, K ) ≤ CQ,T K (K − 1)
1
2 M−1 D−1 forρQ ≥ 3

2 . The proofs
of these error estimates can be found in [8]. It is not immediately obvious which of
the two algorithms is superior, see also [8] for a discussion of this issue. Here, we
repeat the considerations in short. For the two algorithms stated above, we want to
select the integer D such that the order of convergence stated in Theorem 1 is not
reduced. Therefore, we need to choose D ≥ M2min(2(γ−β),γ )−1 for Algorithm 1. In
contrast, for Algorithm 2, we require D ≥ Mmin(2(γ−β),γ )− 1

2 (min j∈J K η j )
−1 or D ≥

Mmin(2(γ−β),γ )− 1
2 K

√
K − 1. Alternatively, one can choose D ≥ M−1

(sup j∈J \J K
η j )

−2α for Algorithm 1 and D ≥ M− 1
2 (min j∈J K η j )

−1(sup j∈J \J K

η j )
−α or D ≥ M− 1

2 K
√

K − 1(sup j∈J \J K
η j )

−α for Algorithm 2. This shows that
the choice of D depends on γ , β, K , (η j ) j∈J K and on α additionally. Therefore, the
choice of D, and with this the computational effort for the simulation of the iterated
stochastic integrals is dependent on the equation to be solved. We cannot identify
one scheme to be superior in general and refer to Sect. 2.3 for details. Now, we prove
the statement on the convergence of the schemes MIL1 and MIL2.

Proof (Proof of Theorem 1) The proof of convergence of the Milstein scheme in [2]
does not use the commutativity assumption, therefore, it remains valid also in our set-
ting. To ease the notations, we denote by (Ym)m∈{0,...,M−1} theMilstein approximation
which does not involve an approximation of the iterated stochastic integrals

Ym+1 = PN eAh

(
Ym + hF(Ym) + B(Ym)ΔW K ,M

m

+
∫ tm+1

tm

B ′(Ym)
( ∫ s

tm

PN B(Ym) dW K
r

)
dW K

s

)
.

(8)

Analogously to the proof for Theorem 1 in [2], we get an estimate for (8) of the form
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(
E
[‖Xtm − Ym‖2H

]) 1
2

≤ CQ,T

((
inf

i∈I \I N

λi

)−γ +
(

sup
j∈J \J K

η j

)α + M−min(2(γ−β),γ )
)
.

The proof for the scheme given in (8) can be conducted in the same way as for
the scheme in (3) except that the projection operator PN in (8) has to be taken
into account, see also the comments in [7] and the detailed proof in [6]. It remains
to prove the expression for the error caused by the approximation of the iterated
stochastic integrals. We denote Ȳm := Ȳ N ,K ,M

m for all m ∈ {0, . . . , M} and compute
the following two terms

(
E
[‖Ym − Ȳm‖2H

]) 1
2 ≤

(
E
[‖Ym − Ym,Ȳ ‖2H

]) 1
2 +

(
E
[‖Ym,Ȳ − Ȳm‖2H

]) 1
2

(9)

where

Ym,Ȳ = PN

(
eAtm X0 +

m−1∑

l=0

∫ tl+1

tl

eA(tm−tl )F(Ȳl) ds +
m−1∑

l=0

∫ tl+1

tl

eA(tm−tl ) B(Ȳl) dW K
s

+
m−1∑

l=0

∫ tl+1

tl

eA(tm−tl ) B ′(Ȳl)
(

PN

∫ s

tl

B(Ȳl) dW K
r

)
dW K

s

)
.

We insert this expression and obtain

E
[‖Ym − Ym,Ȳ ‖2H

] = E

[∥∥∥PN

( m−1∑

l=0

∫ tl+1

tl

eA(tm−tl )
(
F(Yl) − F(Ȳl)

)
ds

+
m−1∑

l=0

∫ tl+1

tl

eA(tm−tl )
(
B(Yl) − B(Ȳl)

)
dW K

s

+
m−1∑

l=0

( ∫ tl+1

tl

eA(tm−tl ) B ′(Yl)
(

PN

∫ s

tl

B(Yl) dW K
r

)
dW K

s

−
∫ tl+1

tl

eA(tm−tl ) B ′(Ȳl)
(

PN

∫ s

tl

B(Ȳl) dW K
r

)
dW K

s

))∥
∥∥
2

H

]

≤ C Mh
m−1∑

l=0

∫ tl+1

tl

E

[∥
∥∥F(Yl) − F(Ȳl)

∥
∥∥
2

H

]
ds

+ C
m−1∑

l=0

∫ tl+1

tl

E

[∥∥∥B(Yl) − B(Ȳl)

∥∥∥
2

LHS(U0,H)

]
ds

+ C
m−1∑

l=0

∫ tl+1

tl

E

[∥∥∥B ′(Yl)
(

PN

∫ s

tl

B(Yl) dW K
r

)
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− B ′(Ȳl)
(

PN

∫ s

tl

B(Ȳl) dW K
r

)∥∥
∥
2

LHS(U0,H)

]
ds

≤ CT h
m−1∑

l=0

E
[∥
∥Yl − Ȳl

∥
∥2

H

]

where the computations are the sameas in [2, Sect. 6.3]. This estimatemainly employs
the Lipschitz continuity of the involved operators.

Next, we analyze the second term in (9). By the stochastic independence of I Q
(i, j),l

and Ī Q
(i, j),l from I Q

(i, j),k and Ī Q
(i, j),k for l 
= k, we obtain

E
[‖Ym,Ȳ − Ȳm‖2H

] = E

[∥
∥
∥PN

( m−1∑

l=0

∑

j∈JK

eA(tm−tl )
(

B′(Ȳl )
( ∑

i∈JK

PN B(Ȳl )ẽi I Q
(i, j),l , ẽ j

)

− B′(Ȳl )
( ∑

i∈JK

PN B(Ȳl )ẽi Ī Q
(i, j),l , ẽ j

)))∥
∥
∥
2

H

]

≤ C
m−1∑

l=0

E

[∥
∥∥

∫ tl+1

tl
B′(Ȳl )

( ∫ s

tl
PN B(Ȳl ) dW K

r

)
dW K

s

−
∑

i, j∈JK

Ī Q
(i, j),l B′(Ȳl )(PN B(Ȳl )ẽi , ẽ j )

∥
∥
∥
2

H

]

= C
m−1∑

l=0

E (M, K )2.

In total, we get with Gronwall’s lemma

E
[‖Ym − Ȳm‖2H

] ≤ CT h
m−1∑

l=0

E
[∥∥Yl − Ȳl

∥∥2
H

]
+ C

m−1∑

l=0

E (M, K )2

≤ C ME (M, K )2,

which completes the proof. �

2.3 Comparison of Computational Cost

In order to compare the numerical methods introduced in this work, we consider the
effective order of convergence based on a cost model introduced in [7]. This number
combines the theoretical order of convergence, as stated for example in Theorem 1,
with the computational cost involved in the calculation of an approximation by a
particular scheme. For the computational cost model, we assume that each evaluation
of a real valued functional and each generation of a standard normally distributed
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Table 1 Computational cost determined by the number of necessary evaluations of real-valued
functionals and independent N (0, 1)-distributed random variables for each time step. The choice
of D differs for MIL1 and MIL2

# of evaluations of functionals # of N (0, 1) r. v.

Scheme PN F(·)|HN PN B(·)|UK PN B ′(·)|HN ,UK

EES N K N − K

MIL1 N K N K N 2 K (1 + 2D)

MIL2 N K N K N 2 K (1 + 2D) + 1
2 K (K − 1)

random number is of some cost c ≥ 1 whereas each elementary arithmetic operation
is of unit cost 1, see [7] for details. Then, the computational cost for one time step
and each scheme under consideration can be determined by the corresponding values
listed in Table1. We compare the two Milstein schemes MIL1 and MIL2 to the
exponential Euler scheme (EES). For the EES, we employ the version introduced
in [9] combined with a Galerkin approximation. The convergence results for the
exponential Euler scheme in this setting can be obtained similarly as in the proof of
the Milstein scheme in [2], see also [5, Theorem 3.2]. We state the result without
giving a proof.

Proposition 1 (Convergence of EES) Assume that (A1)–(A4) hold. Then, there
exists a constant CT ∈ (0,∞), independent of N , K and M, such that for the approx-
imation process (Y EES

m )0≤m≤M , defined by the EES, it holds

(
E
[∥∥Xtm − Y EES

m

∥∥2
H

]) 1
2 ≤ CT

((
inf

i∈I \I N

λi

)−γ +
(

sup
j∈J \J K

η j

)α + M−qEES

)

with qEES = min( 12 , 2(γ − β), γ ) and for all m ∈ {0, . . . , M} and all N , K , M ∈ N.
The parameters are determined by assumptions (A1)–(A4).

Note that for the EES we can dispense with some of the conditions specified in
(A3), e.g., no assumptions are needed for the second derivative of B and the estimate
for B ′(v)P B(v) − B ′(w)P B(w) can be suspended. In the following, let q denote
the order of convergence w.r.t. the step size h = T

M . Obviously, it holds qMIL =
min(2(γ − β), γ ) ≥ min( 12 , 2(γ − β), γ ) = qEES. However, we need to take into
account the computational cost in order to determine the scheme that is superior
as we do not need to simulate the iterated integrals in the Euler scheme after all.
Therefore, we derive the effective order of convergence for each of the schemes
MIL1, MIL2 and EES, see [7] for details.

For each approximation (Ym)m∈{0,...,M} under consideration, weminimize the error
term

sup
m∈{0,...,M}

(
E
[‖Xtm − Ym‖2H

]) 1
2
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over all N , M, K ∈ N under the constraint that the computational cost does not
exceed some specified value c̄ > 0. If we assume that sup j∈J \J K

η j = O(K −ρQ )

and (inf i∈I \I N λi )
−1 = O(N−ρA) for some ρA > 0 and ρQ > 1, we obtain the fol-

lowing expression for all N , M, K ∈ N and some C > 0, see also [7],

err(SCHEME) = sup
m∈{0,...,M}

(
E
[∥∥Xtm − Ym

∥∥2
H

]) 1
2 ≤ C

(
N−γρA + K −αρQ + M−q

)
.

The parameter q > 0 is determined by the scheme that is considered. Then, optimiza-
tion yields the effective order of convergence, denoted by EOC(SCHEME), which
is given as

err(SCHEME) = O
(
c̄ −EOC(SCHEME)

)
.

First, we consider Algorithm 1. For the scheme MIL1, the computational cost
amounts to c̄ = O(M K N 2) + O(K M2qMIL), see Table1 and the discussion in the
previous section. We solve the optimization problem and obtain

M = O
(

c̄
γρAαρQ

(2αρQ +γρA )qMIL+αρQ γρA

)
, N = O

(
c̄

αρQ qMIL
(2αρQ +γρA )qMIL+αρQ γρA

)
,

K = O
(

c̄
γρAqMIL

(2αρQ +γρA )qMIL+αρQ γρA

) (10)

in the case of γρA(2qMIL − 1) ≤ 2qMIL, denoted as condition M1C2. This condition
makes sure that the computational cost is of order c̄ = O(M K N 2). Therefore, we
obtain the effective order of convergence from

err(MIL1) = O
(

c̄
− γρAαρQ qMIL

(2αρQ +γρA )qMIL+αρQ γρA

)
, (11)

which is the same result as for the Milstein scheme in the case of SPDEs with
commutative noise, see the computations in [7].

On the other hand, in the case of γρA(2qMIL − 1) ≥ 2qMIL, denoted as condition
M1C1, it holds c̄ = O(K M2qMIL) and optimization yields

M = O
(

c̄
αρQ

(2αρQ +1)qMIL

)
, N = O

(
c̄

αρQ
(2αρQ +1)γρA

)
, K = O

(
c̄

1
2αρQ +1

)
(12)

and the effective order of convergence equals

err(MIL1) = O
(

c̄
− αρQ

2αρQ +1

)
. (13)

In order to facilitate computation, we distinguish the case (min j∈J K η j )
−1 =

o(K
3
2 ) which results in ρQ < 3

2 and the case that min j∈J K η j = O(K − 3
2 ) where we

choose ρQ ≥ 3
2 maximal admissible. In the following, we always assume that ρQ
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is chosen maximal such that sup j∈J \J K
η j = O(K −ρQ ) is fulfilled and we refer to

these two cases by simply writing case ρQ < 3
2 and case ρQ ≥ 3

2 , respectively.
For Algorithm 2, we have to take c̄ = O(M K N 2)

+ O(K min(K
3
2 , K ρQ )MqMIL+ 1

2 ) + O(M K 2) into account. As above, we need to
treat several cases. We detail the case min(K

3
2 , K ρQ ) = K

3
2 , that is, ρQ ≥ 3

2 ; the
results for ρQ < 3

2 can be obtained analogously and are stated in Table2. The first
case corresponds to c̄ = O(M K N 2). For ρQ ≥ 3

2 , γρA ≤ 2αρQ and 3
2γρAqMIL +

(qMIL − 1
2 )γρAαρQ ≤ 2αρQqMIL, denoted as condition M2C1a, we get the same

choice for M , N , K and the same effective order as for the scheme for SPDEs
with commutative noise given in (10) and (11). In case of c̄ = O(M K 2), that is, if
γρA ≥ 2αρQ and qMIL ≤ αρQ

1+2αρQ
, denoted as condition M2C2a, we obtain

M = O
(

c̄
αρQ

αρQ +2qMIL

)
, N = O

(
c̄

αρQ qMIL
γρAαρQ +2γρAqMIL

)
, K = O

(
c̄

qMIL
αρQ +2qMIL

)
(14)

with effective order of convergence given by

err(MIL2) = O
(

c̄
− αρQ qMIL

αρQ +2qMIL

)
. (15)

Note that in this case, it follows qMIL < 1
2 . Next, we consider the case of 2αρQqMIL ≤

3
2γρAqMIL + (qMIL − 1

2 )γρAαρQ and qMIL ≥ αρQ

1+2αρQ
, denoted as condition M2C3a,

i.e., where c̄ = O(MqMIL+ 1
2 K

5
2 ). Then, we get

M = O
(

c̄
αρQ

αρQ (qMIL+ 1
2 )+ 5

2 qMIL

)
, N = O

(
c̄

αρQ qMIL

γρA (αρQ (qMIL+ 1
2 )+ 5

2 qMIL)

)
,

K = O
(

c̄
qMIL

αρQ (qMIL+ 1
2 )+ 5

2 qMIL

) (16)

with

err(MIL2) = O
(

c̄
− αρQ qMIL

αρQ (qMIL+ 1
2 )+ 5

2 qMIL

)
. (17)

Finally, we want to mention one case for ρQ < 3
2 explicitly where we assume

2αqMIL ≤ γρAqMIL + (qMIL − 1
2 )αγρA and qMIL + 1

2αρQ ≤ (1 + α)ρQqMIL, which

are the conditions denoted asM2C3b. In this case, it holds that c̄ = O(MqMIL+ 1
2 K ρQ+1)

which is the only case where the dominating term for c̄ depends on ρQ explicitly.
Here we get

M = O
(

c̄
αρQ

αρQ (qMIL+ 1
2 )+qMIL(ρQ +1)

)
, N = O

(
c̄

αρQ qMIL

γρA (αρQ (qMIL+ 1
2 )+qMIL(ρQ +1))

)
,

K = O
(

c̄
qMIL

αρQ (qMIL+ 1
2 )+qMIL(ρQ +1)

) (18)

with
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Table 2 ConditionsM1C1 andM1C2 are the ones that have to be considered forMIL1, whereas the
remaining conditions belong toMIL2. Under each given condition, the corresponding schemeMIL1
or MIL2 possesses computational cost c̄, respectively. Note that ρQ > 1 and we denote q = qMIL

Abbrev. Condition c̄ EOC

M1C1 γρA(2q − 1) ≥ 2q O(M2q K ) (13)

M1C2 γρA(2q − 1) ≤ 2q O(M K N 2) (11)

M2C1a ρQ ≥ 3
2 ∧ γρA ≤ 2αρQ ∧

3
2γρAq + (q − 1

2 )αρQγρA ≤ 2αρQq

O(M K N 2) (11)

M2C1b ρQ < 3
2 ∧ γρA ≤ 2αρQ ∧

γρAq + (q − 1
2 )αγρA ≤ 2αq

O(M K N 2) (11)

M2C2a ρQ ≥ 3
2 ∧ 2αρQ ≤ γρA ∧ q ≤ αρQ

2αρQ+1 O(M K 2) (15)

M2C2b ρQ < 3
2 ∧ 2αρQ ≤ γρA ∧ q <

αρQ
2αρQ+2(ρQ−1) O(M K 2) (15)

M2C3a ρQ ≥ 3
2 ∧ 2αρQq ≤ 3

2γρAq + (q − 1
2 )αρQγρA ∧

q ≥ αρQ
2αρQ+1

O(Mq+ 1
2 K

5
2 ) (17)

M2C3b ρQ < 3
2 ∧ 2αq ≤ γρAq + (q − 1

2 )αγρA ∧
q ≥ αρQ

2αρQ+2(ρQ−1)

O(Mq+ 1
2 K ρQ+1) (19)

err(MIL2) = O
(

c̄
− αρQ qMIL

αρQ (qMIL+ 1
2 )+qMIL(ρQ +1)

)
. (19)

All possible casesM1C1 andM1C2 forMIL1 aswell asM2C1a,M2C1b,M2C2a,
M2C2b, M2C3a andM2C3b for MIL2 together with their effective orders of conver-
gence are summarized in Table2. Further, the optimal choice for M , N and K for the
cases not detailed is given by the case with the same effective order of convergence
listed above.

In order to determine the scheme with the highest effective order of convergence,
we compare the schemes MIL1 and MIL2 to each other and to the exponential Euler
scheme. For the EES, the optimal choice for M , N and K is given by

M = O
(

c̄
γρAαρQ

(αρQ +γρA )qEES+αρQ γρA

)
, N = O

(
c̄

αρQ qEES
(αρQ +γρA )qEES+αρQ γρA

)
,

K = O
(

c̄
γρAqEES

(αρQ +γρA )qEES+αρQ γρA

) (20)

with the effective order of convergence

err(EES) = O
(

c̄
− qEESγρAαρQ

(αρQ +γρA )qEES+γρAαρQ

)
(21)

where qEES = min( 12 , 2(γ − β), γ ), see [7].
Obviously, our main interest is in parameter constellations such that qMIL > qEES

which implies that qEES = 1
2 . In case of qMIL = qEES ≤ 1

2 the EES is always the
optimal choice compared toMIL1 andMIL2. Therefore, we assume qMIL > qEES= 1

2
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in the following. Then, by comparing the different effective orders of convergence
across parameter sets, one can show that except for one case the Milstein scheme
always has a higher effective order of convergence than the exponential Euler scheme.
We refer to Table3 for an overview; this shows that for larger qMIL the Milstein
scheme is favoured over the exponential Euler scheme. Here, we only elaborate one
case. Assume that the parameters take values such that either the scheme MIL1 or
the scheme MIL2 obtains the same effective order of convergence as the scheme for
SPDEs with commutative noise (11). Note that (11) is the highest effective order that
can be attained by MIL1 and MIL2 for qMIL > 1

2 anyway. We compare the effective
order (11) with that of the exponential Euler scheme in (21)

qMILγρAαρQ

(2αρQ + γρA)qMIL + γρAαρQ

<
>

qEESγρAαρQ

(αρQ + γρA)qEES + γρAαρQ
.

This can be rewritten such that we obtain

qMIL(γρA − qEES)
<
>qEESγρA.

For qMIL > qEES = 1
2 , this results in

γρA
<
>

qMIL

2qMIL − 1
.

The condition γρA >
qMIL

2qMIL−1 is required for a higher effective order of the Milstein
scheme whereas γρA ≤ qMIL

2qMIL−1 results in a higher order for the exponential Euler
scheme. Clearly, either condition M1C1 or condition M1C2 has to be fulfilled and
in case of M1C1 the effective order of convergence for MIL1 in (13) is greater
than that in (21) for the EES scheme if qMIL > qEES. Thus, in the case that M1C1
is fulfilled it only remains to check whether MIL2 attains an even higher effective
order of convergence than (13). These calculations can be conducted in a similar way
as above.

Based on the effective order of convergence, it is not possible to identify one
scheme that dominates the others across all parameter constellations. The results
of a comparison are summarized in Table3; this overview clearly illustrates the
dependence on the parameters qMIL, α, γ , ρA and ρQ . For completeness, we want to
note that parts of (A3) do not have to be fulfilled for the exponential Euler scheme.
Therefore, there exist equations where this scheme might indeed be beneficial for
parameter sets other than the combinations stated in Table3. The effective order for
the Milstein scheme indicates that, compared to the Euler schemes, the increase in
the computational cost that results from the approximation of the iterated stochastic
integrals is, in most cases, significantly compensated by the higher theoretical order
of convergence qMIL w.r.t. the time steps that the Milstein scheme attains.
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Table 3 For a given parameter set, the conditions in this table have to be checked in order to
determine the optimal scheme among the schemes EES,MIL1 andMIL2 for the case of q = qMIL >

qEES = 1
2 . In case of qMIL = qEES ≤ 1

2 , the exponential Euler scheme is always the optimal choice

Conditions Optimal scheme Optimal M , N , K EOC

M1C1 ∧ M2C1a MIL2 (10) (11)

M1C1 ∧ M2C1b MIL2 (10) (11)

M1C1 ∧ M2C3a ∧ (2αρQ − 3)q < αρQ MIL1 (12) (13)

M1C1 ∧ M2C3a ∧ (2αρQ − 3)q ≥ αρQ MIL2 (16) (17)

M1C1 ∧ M2C3b ∧ α(2q − 1) < 2q MIL1 (12) (13)

M1C1 ∧ M2C3b ∧ α(2q − 1) ≥ 2q MIL2 (18) (19)

M1C2 ∧ γρA(2q − 1) ≤ q EES (20) (21)

M1C2 ∧ M2C1a ∧ γρA(2q − 1) > q MIL1=MIL2 (10) (11)

M1C2 ∧ M2C1b ∧ γρA(2q − 1) > q MIL1=MIL2 (10) (11)

M1C2 ∧ M2C3a ∧ γρA(2q − 1) > q MIL1 (10) (11)

M1C2 ∧ M2C3b ∧ γρA(2q − 1) > q MIL1 (10) (11)

2.4 Example

Finally, we illustrate the theoretical results on the effective order of convergence and
the consequences for the choice of a particular scheme, summarized in Table3, with
an example.

Throughout this section,wefix the following setting. Let H = U = L2((0, 1),R),
set T = 1, β = 0 andI = J = N. We choose A to be the Laplacian with Dirichlet
boundary conditions; to be precise, A = 1

100Δ. Thus, it holds for the eigenvalues

λi = π2i2

100 , for the eigenvectors ei = √
2 sin(iπx) for i ∈ N, x ∈ (0, 1) and on the

boundary, we have Xt (0) = Xt (1) = 0 for all t ∈ (0, T ]. The operator Q is defined
by η j = j−3 and ẽ j = √

2 sin( jπx) for j ∈ N, x ∈ (0, 1). As a result of this, it
holds ρA = 2 and ρQ = 3. Moreover, we choose F(y) = 1 − y, y ∈ H and ξ(x) =
X0(x) = 0 for all x ∈ (0, 1). The operator B is defined in the following. It fits into
the general setting introduced for the numerical analysis in [7, Sect. 5.3], which
we repeat here in short only. Let some functionals μi j : Hβ → R, φk

i j : Hβ → R be
given for i, k ∈ I , j ∈ J such that φk

i j is the Fréchet derivative of μi j in direction
ek . Then, we define

B(y)u =
∑

i∈I

∑

j∈J
μi j (y)〈u, ẽ j 〉U ei

and it holds that

(
B ′(y)(B(y)v)

)
u =

∑

i,k∈I

∑

j,r∈J
φk

i j (y)μkr (y)〈v, ẽr 〉U 〈u, ẽ j 〉U ei
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for y ∈ Hβ and u, v ∈ U0. For details, we refer to [7, Sect. 5.3].
Here, we choose μi j (y) = 〈y,e j 〉H

i4+ j4 for all i ∈ I , j ∈ J and y ∈ H . With this

choice, we get φk
i j (y) =

{
0, k 
= j

1
i4+ j4 , k = j for all i, k ∈ I , j ∈ J , y ∈ H . We show

that assumptions (A1)–(A4) are fulfilled in this setting. For conditions (A1), (A2)
and (A4) this is obvious. It remains to examine (A3). We use the expressions that
have been computed in [7, Sect. 5.3], that is,

‖B(y)‖L(U,Hδ) ≤
∑

i∈I

∑

j∈J
λδ

i |μi j (y)| ≤
∑

i∈I

∑

j∈J

1

j2−2δ

π2δ

100δ

1

i2−2δ
‖y‖Hδ

for all y ∈ Hδ . Thus, we get ‖B(y)‖L(U,Hδ) ≤ C(1 + ‖y‖Hδ
) for all y ∈ Hδ if δ < 1

2 ,
where we select the maximal value for δ. Moreover, we check

‖(−A)−ϑ B(z)Q−α‖LHS(U0,H) =
( ∑

j∈J
η1−2α

j

∑

i∈I
λ−2ϑ

i μ2
i j (z)

) 1
2

≤ C
( ∑

j∈J

1

j3(1−2α)+8+4γ

∑

i∈I

1

i4ϑ
‖z‖2Hγ

) 1
2

for all z ∈ Hγ . This shows that ‖(−A)−ϑ B(z)Q−α‖LHS(U0,H) ≤ C(1 + ‖z‖Hγ
) is ful-

filled for all z ∈ Hγ if α < 7
3 . The remaining conditions in (A3) hold as well. These

are not stated here as they do not restrict the parameters. Finally, we show that the
commutativity condition (2), expressed in the notation presented above, is actually
not fulfilled. On the one hand, we get

∑

k∈I
φk

im(y)μkn(y) = 1

i4 + m4

〈y, en〉H

m4 + n4

but

∑

k∈I
φk

in(y)μkm(y) = 1

i4 + n4

〈y, em〉H

n4 + m4

holds for y ∈ H and i ∈ I , n, m ∈ J . Obviously, these two terms are not equal
for all n, m ∈ J .

From the parameter values stated above, we compute γ ∈ [ 12 , 1). With this
information, we can identify the scheme that is superior according to Table3. Let
ε ∈ (0, 1

2 ) be arbitrarily small and choose qMIL = γ = 1 − ε > qEES and α = 7
3 − ε.

First, we check condition M1C2, see Table2, which holds as

γρA(2qMIL − 1) ≤ 2qMIL ⇔ 2(1 − ε)(1 − 2ε) ≤ 2(1 − ε).
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Table 4 Error and standard deviation obtained from 200 paths. The computational cost
c̄ is computed as c̄(MIL1) = M K N 2 + K M2qMIL + M(K + N + K N ), c̄(MIL2) = M K N 2 +
MqMIL+ 1

2 K
5
2 + M K 2 + M(K + N + K N ) and c̄(EES) = M K N + M N + M K

MIL1 MIL2
N M K c̄ Error Std c̄ Error Std

2 4 �2 2
7 � 64 2.9 · 10−2 7.2 · 10−3 71 2.9 · 10−2 7.2 · 10−3

4 24 �2 4
7 � 1024 2.5 · 10−2 5.4 · 10−4 758 2.5 · 10−2 5.4 · 10−4

8 26 �2 6
7 � 16384 1.7 · 10−2 1.1 · 10−4 9897 1.7 · 10−2 1.1 · 10−4

16 28 �2 8
7 � 393216 6.3 · 10−3 2.8 · 10−5 220196 6.3 · 10−3 2.8 · 10−5

32 210 �2 10
7 � 6291456 1.6 · 10−3 2.6 · 10−5 3325212 1.6 · 10−3 2.6 · 10−5

Exponential Euler

N M K c̄ Error Std

2 24 �2 2
7 � 64 2.1 · 10−2 6.0 · 10−3

4 28 �2 4
7 � 2048 2.7 · 10−2 7.2 · 10−4

8 212 �2 6
7 � 65536 1.7 · 10−2 2.1 · 10−4

16 216 �2 8
7 � 3145728 6.1 · 10−3 4.4 · 10−5

32 220 �2 10
7 � 100663296 1.5 · 10−3 6.6 · 10−6

Moreover, condition M2C1a in Table2 is fulfilled as well because it holds ρQ = 3,
γρA = 2(1 − ε) ≤ 6( 73 − ε) = 2αρQ and it is easy to check that

3

2
γρAqMIL +

(
qMIL − 1

2

)
γρAαρQ ≤ 2αρQqMIL

⇔ 3(1 − ε) + 6
(1
2

− ε
)(7

3
− ε

)
≤ 6

(7
3

− ε
)

is fulfilled due to γ = qMIL, which proves conditionM2C1a. FromTable3, we expect
that both schemes MIL1 and MIL2 obtain the same effective order of convergence
(11) which exceeds the order of the exponential Euler scheme in this case. For some
fixed N ∈ N, we compute the relation of N , M, K from (10). This yields M = N 2

and K = �N
2
7 � for the Milstein schemes. Moreover, we calculate the effective order

of convergence as error(MIL1) = error(MIL2) = O(c̄− 7
15+ε) for some arbitrarily

small ε > 0. For the EES, on the other hand, we obtain M = N 4, K = �N
2
7 � and

error(EES) = O(c̄− 14
37+ε).

In the numerical analysis, we simulate 200 paths with the schemes MIL1, MIL2
and EES. The results are compared to a substitute for the exact solution—an approx-
imation computed with the linear implicit Euler scheme [4] with N = 25, K = �2 10

7 �
and M = 216. Our findings are summarized in Table4 and Fig. 1. In Fig. 1, we plot
the errors versus the computational cost based on the cost model that is used for
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Fig. 1 Error against
computational cost
computed from 200 paths for
N ∈ {2, 4, 8, 16, 32} in
log-log scale

10 2 10 4 10 6 10 8

Computational cost

10 -3

10 -2

10 -1

E
rr

or

MIL1
MIL2
EES
7/15
14/37

the analysis. Here, one observes that the Milstein schemes obtain a higher effec-
tive order of convergence than the Euler scheme. Moreover, Table4 illustrates the
difference in the computational costs of these schemes. The Euler scheme involves
costs which are significantly higher. A comparison of MIL1 and MIL2 shows for
this example that the Milstein scheme in combination with Algorithm 2 involves a
lower computational cost than the Milstein scheme combined with Algorithm 1.
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QMC Sampling from Empirical Datasets

Fei Xie, Michael B. Giles and Zhijian He

Abstract This paper presents a simple idea for the use of quasi-Monte Carlo sam-
pling with empirical datasets, such as those generated by MCMC methods. It also
presents and analyses a related idea of taking advantage of the Hilbert space-filling
curve. Theoretical and numerical analyses are provided for both. We find that when
applying the proposed QMC sampling methods to datasets coming from a known
distribution, they give similar performance as the standard QMC method directly
sampling from this known distribution.

Keywords QMC · Empirical datasets · Recursive bisection · The Hilbert
space-filling curve

1 Introduction

IfU is a random variable uniformly distributed over the d-dimensional cube [0, 1]d ,
the standard MC (Monte Carlo) estimate for E[ f (U )] using n i.i.d. sample points is

f̄n = 1

n

n∑

j=1

f (Uj )
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If the variance V[ f ] is finite then the error is O(n−1/2). The QMC (Quasi-Monte
Carlo) estimate is similar, except that the n points are chosen carefully [3] so that
the error is O((log n)d/n) for integrands satisfying appropriate conditions [8]. This
extends naturally to more general distributions, with

E[ f (X)] ≈ f̄n = 1

n

n∑

j=1

f (X j )

where for the MC estimate the X j are i.i.d. samples from the distribution of the
random variable X . For the corresponding QMC estimate X j = ψ(Uj ) with the Uj

being the same set of QMC points in the unit cube as before, and ψ(U ) is a mapping
which gives the desired probability density function for X , i.e., if X has probability
density function ρ(x) then it is related to the determinant of the Jacobian of the
mapping through

ρ(ψ(u)) =
∣∣∣∣det

(
∂ψ

∂u

)∣∣∣∣
−1

.

The question we address in this paper is what should we do when we do not know
ρ(x), and instead all we have is a large set of samples X j , j = 1, . . . , N which
constitutes an empirical dataset?

The medical decision application [1] which motivated this research has inputs
which are multiple independent multi-dimensional random variables. Some of these
come from known distributions, but some correspond to Bayesian posterior distri-
butions defined solely by a set of values generated by an MCMC process. In order
to obtain a given number of samples from this posterior distribution, currently these
MCMC datasets are approximated by multi-variate Gaussian distributions, and then
QMC can be used very effectively. However, it might be better to work directly
with these empirical datasets without introducing any approximation error, and the
question is then how to use QMC. Although the overall application is fairly high-
dimensional (15–40), the individual MCMC datasets are low-dimensional (2 or 3).

For the purpose of sampling from an empirical dataset using QMC, we propose
a novel QMC sampling method based on recursive bisection. The proposed QMC
sampling method is described in Sect. 2, and an error analysis for the case d = 1
is given. Section3 presents an alternative method based on a Hilbert space-willing
curve, and a corresponding numerical analysis. Section4 presents numerical results
which compare the two QMC sampling methods with the standard QMC method.
Conclusions are given in Sect. 5.

2 QMC Sampling

Suppose we have an empirical dataset of N = 2M d-dimensional samples {X j , j =
1, . . . , N }, where M is a positive integer. With QMC sampling, the challenge is to
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Fig. 1 Steps 1, 2, and 4 in the recursive bisection of a 2-dimensional dataset with 16 points

construct a mapping from QMC points in the hypercube (0, 1)d to points Xi in the
dataset.

2.1 Recursive Bisection-Based Sorting

Borrowing ideas from recursive graphbisection for distributed-memory parallel com-
puting [2, 6] the central idea is to repeatedly bisect the dataset in alternating direc-
tions.

For example, for a 2-dimensional dataset {(x1, x2) j , j = 1, . . . , N }, firstly we
find the median value x (1)

mid of their x1 coordinates by sorting the points based on x1,
and then re-arrange the set into two halves, the first half with x1< x (1)

mid and the second
half with x1> x (1)

mid; if there are two or more points for which x1= x (1)
mid they can be

assigned to the two halves based on their indices to achieve a bisection. Each of the
two halves is then sorted within each half based on x2, and bisected and re-arranged
using the median value of their x2 coordinates (with the median being different for
each half). In the next step, the points in each quarter are sorted again based on x1,
and each quarter is further bisected. This is repeated, alternating between the x1 and
x2 coordinates, until each subset has just one point. The empirical dataset is thus
sorted by the recursive bisection procedure. The process is illustrated in Fig. 1 for a
small dataset with just 16 sample points.

2.2 Mapping of QMC Points

For application of QMC on selecting samples from a dataset of size N , firstly the
dataset is recursively bisected into N subsets. Then the location of the subsets to be
selected is characterized by the relative position of the QMC points in the hypercube
(0, 1)d . In this way, we pass the uniformity of QMC points into an integer index
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between 0 and N − 1 representing the particular position in a data sequence. In this
subsection, we construct a mapping from points in (0, 1)d to the dataset sorted by the
recursive bisection procedure. It is then straightforward to use QMC (or randomized
QMC) points to sample from the sorted dataset.

Let us start with the simple caseM = d × k, where k is a positive integer. Suppose
the low discrepancy sequence we use is the Sobol’ sequence [10], which is a (t, d)-
sequence in base 2 for all d. To map a point Q = (q1, . . . , qd) ∈ (0, 1)d from the
hypercube (0, 1)d to one of the indices {0, 1, . . . , 2dk−1}, there are two steps. In the
first step, the point Q is mapped to the d-dimensional integer space {0, . . . , 2k−1}d
by

(q1, . . . , qd) �→ (�2kq1�, . . . , �2kqd�),

where �x� denotes x rounded down to the nearest integer.
In the second step, the d-dimensional integer index (i1, . . . , id) ∈ {0, . . . , 2k−1}d

needs to be bijectively mapped onto an integer index i ∈ {0, . . . , N−1} as the
data points are stored in a sequence of length N . To this end, we write each inte-
ger coordinate of the index (i1, . . . , id) in its k-bit binary representation (i j )2 =
b j,k−1 . . . b j,0, j = 1, . . . , d, where

i j =
k−1∑

�=0

b j,�2
�.

Each bit of i j ’s binary representation can be viewed as the indication of which half
the desired point is located in each time the dataset is bisected according to the j-th
coordinate. i.e., b j,k−1 indicates whether the desired point is in the first half or the
second when the dataset is bisected according to the j-th coordinate for the first time,
b j,k−2 indicates when the dataset is bisected in this direction for the second time,
and so on. As we are doing the bisection in alternating directions, interleaving the
bits of each integer coordinate gives the complete information of selection in each
successive bisection step

(i)2 = b1,k−1 . . . bd,k−1b1,k−2 . . . bd,k−2 . . . b1,0 . . . bd,0,

which can then be easily transformed into the corresponding index

i =
k−1∑

�=0

2d�

⎛

⎝
d∑

j=1

b j,�2
d− j

⎞

⎠ ∈ {0, . . . , N−1}.

To better understand the above formula, let us consider the 2-dimensional index
(i1, i2) = (5, 2). Writing it in 3-bit binary representation and interleaving their bits
results in the 6-bit binary representation of the index i .
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i1 = 1 0 1
i2 = 0 1 0

⇒ i = 1 0 0 1 1 0

Thus, the index i corresponding to (i1, i2) = (5, 2) is 38 in a datasetwith N = 22×3 =
64 points.

For computational efficiency, a final step is to re-arrange the dataset once more
so that the (i1, . . . , id) point is stored at linear memory location

d∑

�=1

2(�−1)ki�.

This simplifies the subsequent implementation of the QMC algorithm.
Now we generalize to the case M = d × k − c where 0 < c < k. For this case,

the point Q is firstly mapped to the d-dimensional integer space Ω(d, k, c) =
{0, . . . , 2k−1}d−c × {0, . . . , 2k−1−1}c, where the last c coordinates are in
{0, . . . , 2k−1−1}, and the remaining coordinates are in {0, . . . , 2k−1}. This is
achieved by

(q1, . . . , qd) �→ (�2kq1�, . . . , �2kqd−c�, �2k−1qd−c+1�, . . . , �2k−1qd�).

Similar to the case where c = 0, each integer coordinate of the index (i1, . . . , id) ∈
Ω(d, k, c) is written in its binary representation, but with different bits:

(i j )2 =
{
b j,k−1 . . . b j,0, j = 1, . . . , d − c

b j,k−1 . . . b j,1, j = d − c + 1, . . . , d
.

Note that here b j,k−l still indicates whether the desired point is in the first half or the
second when the dataset is bisected according to the j-th coordinate for the lth time.
The difference is that the dataset is bisected for k times in total according to each of
the first d − c coordinates, while it is only bisected for k − 1 times according to each
of the last c coordinates. Again, by interleaving the bits of each integer coordinate
we get

(i)2 = b1,k−1 . . . bd,k−1b1,k−2 . . . bd,k−2 . . . b1,1 . . . bd,1b1,0 . . . bd−c,0.

The corresponding index can be expressed as

i =
k−1∑

�=1

2d�−c

⎛

⎝
d∑

j=1

b j,�2
d− j

⎞

⎠ +
⎛

⎝
d−c∑

j=1

b j,02
d−c− j

⎞

⎠ ∈ {0, . . . , N−1}.

Again consider the example of the 2-dimensional index (i1, i2) = (5, 2). We now
calculate its corresponding index i in a datasetwith N = 22×3−1 = 32 points.Writing
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i1 and i2 in 3-bit and 2-bit binary representation respectively, and interleaving their
bits results in the 5-bit binary representation of the index i .

i1 = 1 0 1
i2 = 1 0

⇒ i = 1 1 0 0 1

Thus, the index i corresponding to (i1, i2) = (5, 2) is 25 in a dataset with N = 32
points. We see that for different numbers of points N the same 2-dimensional index
(i1, i2) is mapped to different indices i .

2.3 Error Analysis

Let τ : [0, 1]d → X ={X1, . . . , XN } be themapping described above,where N=2M

for some integer M ≥ 1. Based on the empirical datasetX , one may use the follow-
ing sample average

μ̂N = 1

N

N∑

i=1

f (Xi ) (1)

as an estimate of μ = E[ f (X)]. The QMC sampling for the empirical dataset gives
an estimate

μ̂I
n = 1

n

n∑

i=1

f (τ (Ui )), (2)

whereUi ∈ (0, 1)d are RQMC (randomisedQMC) points with the sample size n≤N .
Wedefine the difference between these two estimates as the selection error fromQMC
sampling. We next study the selection error with QMC sampling when d = 1.

When d = 1, the mapping τ reduces to the inverse function of the empirical CDF
of the dataset. More specifically, let the empirical CDF of the dataset be

FN (x) = 1

N

N∑

i=1

1{Xi ≤ x}.

Then we have
τ(u) = F−1

N (u) := inf{x : FN (x) ≥ u}.

Now consider the case of using a scrambled (0,m, 1)-net in base b = 2 as inputs in
(2), where n = 2m and m ≤ M . Let U(i) be the order statistic of Ui , i = 1, . . . , n,
and similarly for X(i). By the property of a scrambled (0,m, 1)-net, we have U(i) ∼
U([(i − 1)/n, i/n)) independently with probability one. Note that one-dimensional
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stratified sampling has the same effect. Our results in this section also apply for
stratified sampling.

Let R = N/n = 2M−m , and Y j := τ(U(i)). The estimate becomes

μ̂I
n = 1

n

n∑

i=1

f (Yi ), (3)

where Y j is randomly and independently selected from the block {X(i R−R+1), . . . ,

X(i R)} for i = 1, . . . , n.

Tofixour idea, let’s consider the simple case Xi
iid∼ U((0, 1)) for i = 1, . . . , N . For

this case, the kth order statistic of the uniform distribution is a Beta random variable,
i.e., X(k) ∼ Beta(k, N + 1 − k). We next bound the selection error E[(μ̂I

n − μ̂N )2].
If f is Lipschitz continuous with constant C > 0, we find that

E[(μ̂I
n − μ̂N )2|X ] = 1

n2

n∑

i=1

E

⎡

⎣

⎛

⎝ f (Yi ) − 1

R

R∑

j=1

f (X(i R−R+ j))

⎞

⎠
2 ∣∣∣∣X

⎤

⎦ (4)

= 1

n2

n∑

i=1

E

⎡

⎣

⎛

⎝ 1

R

R∑

j=1

( f (Yi ) − f (X(i R−R+ j)))

⎞

⎠
2 ∣∣∣∣X

⎤

⎦ (5)

≤ C2

n2

n∑

i=1

E

[(
X(i R) − X(i R−R+1)

)2
∣∣∣∣X

]
. (6)

The first equality (4) is due to the fact that givenX ,Yi is randomly and independently
selected from the block {X(i R−R+1), . . . , X(i R)}. This gives

E[(μ̂I
n − μ̂N )2] ≤ C2

n2

n∑

i=1

E

[(
X(i R) − X(i R−R+1)

)2]

= C2

n2

n∑

i=1

(R − 1)2 + R − 1

(N + 1)(N + 2)
(7)

= C2(R2 − R)

(N + 1)(N + 2)n

≤ C2R2

N 2n
= C2n−3,

where we use Lemma 1 from the Appendix in establishing (7). More generally, we
have the following theorem.

Theorem 1 Suppose that Xi are iid with a density q(x) on a bounded support
D = [a, b]. Assume that qmin = inf x∈D q(x) > 0. If f is Lipschitz continuous with
constant C > 0, then
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E[(μ̂I
n − μ̂N )2] ≤ C2

q2
minn

3
. (8)

If f is piecewise Lipschitz continuous with jumps at position a j , j = 1, . . . , k, then

E[(μ̂I
n − μ̂N )2] ≤ C2

1

q2
minn

3
+ 4kC2

2

n2
, (9)

where C1 is the Lipschitz constant and C2 = supx∈D | f (x)|.
Proof Note that for any 1 ≤ i, j ≤ N ,

∣∣Xi − X j

∣∣ = ∣∣F(Xi ) − F(X j )
∣∣ /q(ξ) ≤ ∣∣F(Xi ) − F(X j )

∣∣ /qmin, (10)

where ξ is a constant between Xi and X j , and F is the CDF of the Xi . Let Ỹi =
F(X(i)). Then Ỹi are the order statistic of the uniform distribution. If f is Lipschitz
continuous, by (6) and (10), we have

E
[
(μ̂I

n − μ̂N )2
] ≤ C2

n2q2
min

n∑

i=1

E

[(
Ỹi R − Ỹi R−R+1

)2
]

≤ C2

q2
min

n−3.

Now assume that f is piecewise Lipschitz continuous with jumps at position
a j , j = 1, . . . , k. There are at most k intervals of the form [X(i R−R+1), X(i R)) in
which f is not Lipschitz continuous. For each of them,

E

⎡

⎣

⎛

⎝ 1

R

R∑

j=1

( f (Yi ) − f (X(i R−R+ j)))

⎞

⎠
2 ∣∣∣∣X

⎤

⎦ ≤ 4C2
2 .

We thus establish (9). �

The mean squared error (MSE) of the QMC estimate (2) can be decomposed into
two terms, that is

MSE(μ̂I
n) = E[(μ̂I

n − μ)2] = E[(μ̂I
n − μ̂N + μ̂N − μ)2]

= E[(μ̂I
n − μ̂N )2] + E[(μ̂N − μ)2] + 2E[(μ̂I

n − μ̂N )(μ̂N − μ)]
= E[(μ̂I

n − μ̂N )2] + E[(μ̂N − μ)2], (11)

where we use the fact that E[μ̂I
n − μ̂N |X ] = 0 and thus

E[(μ̂I
n − μ̂N )(μ̂N − μ)] = E[E[(μ̂I

n − μ̂N )(μ̂N − μ)|X ]]
= E[(μ̂N − μ)E[μ̂I

n − μ̂N |X ]] = 0.
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The first term in (11) is the error due to selecting a few samples from the original
datasets, and the second term is due to the original sampling error. The mean square
selection error E[(μ̂I

n − μ̂N )2] is related to n, the size of the thinned sample set,
and the dimension d, and intuitively this quantity should decrease with increasing
n. What we are interested in determining is the minimum size of n to ensure the
selection error is no bigger than the sampling error, so that at this level of n, the
accuracy of the estimate μ̂I

n is comparable to μ̂N . For an iid dataset, the mean square
error E[(μ̂N − μ)2] = σ 2/N , where σ 2 is the variance of Xi . To make the two terms
in the right-hand side of (11) comparable, the optimal n is

n∗ =
{
O(N 1/3), if f is Lipschitz,

O(N 1/2), if f is piecewise Lipschitz.,
(12)

for d = 1. As a result, the MSE of the QMC estimate is

MSE(μ̂I
n) =

{
O(n−3), if f is Lipschitz,

O(n−2), if f is piecewise Lipschitz,
(13)

for n ≤ n∗ and as N → ∞.
Things become more complicated for d > 1. We leave these cases for future

research. Instead,wegive numerical analysis for an alternativewayofQMCsampling
by making use of the Hilbert space-filling curve.

3 Sorting the Dataset via the Hilbert Space-Filling Curve

Instead of using the recursive bisection mapping in Sect. 2, we map the dataset in
dimensiond > 2 to the one-dimensional unit interval via aHilbert space-filling curve.
The data then are simply sorted in natural order. Formally, let H : [0, 1] → [0, 1]d be
theHilbert curvewith H(0) = (0, . . . , 0). It is important to noting that themapping is
not a bijection because certain points in [0, 1]d have more than one preimage through
H . However, the set of such points is of Lebesgue measure 0. There exists a one-
to-one Borel measurable pseudo-inverse h : [0, 1]d → [0, 1] such that H(h(x)) = x
for all x ∈ [0, 1]d . There are some properties of the Hilbert curve and its inverse h:

• For any measurable set I ⊂ [0, 1], λd(H(I ))) = λ1(I );
• For any x, y ∈ [0, 1], then

‖H(y) − H(x)‖ ≤ 2
√
d + 3 |y − x |1/d ; (14)

• If u ∼ U([0, 1]), then H(u) ∼ U([0, 1]d);
• If U ∼ U([0, 1]d), then h(U ) ∼ U([0, 1]).
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See [5] for the properties of the Hilbert curve. Gerber and Chopin [4] uses the
inverse function h to sort the particles in the particle filtering algorithm to combine
with QMC. Let D be the support of Xi , and let

xi = h ◦ ψ(Xi ) ∈ [0, 1], (15)

where ψ : D → [0, 1]d is some user-chosen bijection between D and ψ(D) ⊂
[0, 1]d , and Xi s are still the points of an empirical dataset as in Sect. 2. We may
simply take ψ(Xi ) = (ψ1(xi1), . . . , ψd(xid)), where xi j is the j th component of Xi ,
and the ψi s are continuous and strictly monotone. Particularly, if the Xi are in a
bounded cube

∏d
i=1[ai , bi ], then we can simply take

ψi (t) = t − ai
bi − ai

, i = 1, . . . , d.

WhenD = R
d , [4] suggested to use the logistic transformation componentwise. Let

F̃N (x) be the empirical CDF of the transformed dataset {x1, . . . , xN }:

F̃N (x) = 1

N

N∑

i=1

1{xi ≤ x}. (16)

Let τ̃ be a mapping from [0, 1] to D , defined by

τ̃ (u) = ψ−1(H(F̃−1
N (u))).

This gives an estimate

μ̂II
n = 1

n

n∑

i=1

f (τ̃ (ui )), (17)

where ui ∈ [0, 1] are one-dimensional RQMC points. We focus on the case of using
a scrambled (0,m, 1)-net in base b = 2 as inputs.

For simplicity, let’s consider the case X j
iid∼ U([0, 1]d) for j = 1, . . . , N . Now

ψ is set to the identity function. By the properties of h listed above, we have x j
iid∼

U([0, 1]), j = 1, . . . , N . Again, by the properties of a scrambled (0,m, 1)-net, we
have the order statistic u(i) ∼ U([(i − 1)/n, i/n)) independently with probability
one. Let Yi := τ̃ (u(i)) i = 1, . . . , n, and let Ỹ j = ψ−1 ◦ H(x( j)), j = 1, . . . , N . The
Hilbert curve based estimate becomes

μ̂II
n = 1

n

n∑

i=1

f (Yi ), (18)

where Yi is randomly and independently selected from the block {Ỹi R−R+1, . . . , Ỹi R}
for i = 1, . . . , n. Thus if f is Lipschitz continuous with constant C > 0, by (14), we
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have
∣∣∣ f (Yi ) − f (Ỹi R−R+ j )

∣∣∣ ≤ C
∥∥∥Yi − Ỹi R−R+ j

∥∥∥

≤ C sup
k,�=1,...,R

∥∥∥Ỹi R−R+k − Ỹi R−R+�

∥∥∥

= C sup
k,�=1,...,R

∥∥ψ−1 ◦ H(x(i R−R+k)) − ψ−1 ◦ H(x(i R−R+�))
∥∥

(19)

= C sup
k,�=1,...,R

∥∥H(x(i R−R+k)) − H(x(i R−R+�))
∥∥

≤ 2C
√
d + 3(x(i R) − x(i R−R+1))

1/d

for j = 1, . . . , R. Similarly to (5), we have

E[(μ̂II
n − μ̂N )2|X ] ≤ 4C2(d + 3)

n2

n∑

i=1

E

[
(x(i R) − x(i R−R+1))

2/d

∣∣∣∣X
]

. (20)

As a result, for any d ≥ 2,

E[(μ̂II
n − μ̂N )2] ≤ 4C2(d + 3)

n2

n∑

i=1

E
[
(x(i R) − x(i R−R+1))

2/d
]

≤ 4C2(d + 3)

n2

n∑

i=1

(
E[x(i R) − x(i R−R+1)]

)2/d
(21)

= 4C2(d + 3)

n2

n∑

i=1

(
R − 1

N + 1

)2/d

(22)

≤ 4C2(d + 3)

n

(
R − 1

N + 1

)2/d

≤ 4C2(d + 3)n−1−2/d , (23)

where in (21) we use Jensen’s inequality (because 2/d ≤ 1), and we use Lemma 1
in establishing (22).

Theorem 2 Suppose that Xi are iid with a density q(X) on a bounded support
D = ∏d

i=1[ai , bi ]. Assume that qmin = inf X∈D q(X) > 0. Let

ψi (t) = t − ai
bi − ai

, i = 1, . . . , d.

If f is Lipschitz continuous with constant C > 0, then
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E[(μ̂II
n − μ̂N )2] ≤ 4C2L2

1(d + 3)

q2/d
min L

2
2n

1+2/d
, (24)

where L1 = maxi=1,...,d{bi − ai } and L2 = mini=1,...,d{bi − ai }.
Proof Let F1(t) be the CDF of x = h ◦ ψ(X). For any t1 < t2, we have

F1(t2) − F1(t1) = P[t1 < h ◦ ψ(X) ≤ t2] = P[ψ(X) ∈ H((t1, t2])]

=
d∏

i=1

(bi − ai )
∫

Y∈H((t1,t2])
q(ψ−1(Y ))dY

≥ qmin

d∏

i=1

(bi − ai )λd(H((t1, t2]))

= qmin(t2 − t1)
d∏

i=1

(bi − ai ).

Let x̃i = F1(xi ), i = 1, . . . , N . Then for any 1 ≤ i, j ≤ N ,

∣∣xi − x j

∣∣ ≤
∣∣x̃i − x̃ j

∣∣

qmin
∏d

i=1(bi − ai )
. (25)

Then x̃(i)s are the order statistics of the uniform distribution. By (19) and (25), we
have
∣∣∣ f (Yi ) − f (Ỹi R−R+ j )

∣∣∣ ≤ C sup
k,�=1,...,R

∥∥ψ−1 ◦ H(x(i R−R+k)) − ψ−1 ◦ H(x(i R−R+�))
∥∥

≤ CL1 sup
k,�=1,...,R

∥∥H(x(i R−R+k)) − H(x(i R−R+�))
∥∥

≤ 2CL1

√
d + 3(x(i R) − x(i R−R+1))

1/d

≤ 2CL1
√
d + 3

q1/d
min

∏d
i=1(bi − ai )1/d

(x̃(i R) − x̃(i R−R+1))
1/d

≤ 2CL1
√
d + 3

q1/d
min L2

(x̃(i R) − x̃(i R−R+1))
1/d ,

where L1 = maxi=1,...,d{bi − ai }, L2 = mini=1,...,d{bi − ai }. If f is Lipschitz con-
tinuous, similarly to (23), we have

E[(μ̂II
n − μ̂N )2] ≤ 4C2L2

1(d + 3)

n2q2/d
min L

2
2

n∑

i=1

E(x̃(i R) − x̃(i R−R+1))
2/d ] ≤ 4C2L2

1(d + 3)

q2/d
min L

2
2n

1+2/d
.

�
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As a result, for Lipschitz functions in dimensions d ≥ 2, we may take n =
O(Nd/(d+2)) so that MSE(μ̂II

n ) = O(n−1−2/d). This error rate is in line with the
one reported in [5], where for an RQMC quadrature based on the Hilbert curve an
MSE of size O(n−1−2/d) is found for a class of Lipschitz functions.

4 Numerical Tests

To test the effectiveness of the QMC sampling methods, we apply it to datasets
generated from four different distributions to estimate μ = E[ f (X1, . . . , Xd)] with
two different integrand functions, and compare the accuracy to the standard MC and
QMC methods applied to the same problems.

The integrands include a continuous one

f (x1, . . . , xd) =
d∏

i=1

(x2i + 1), (26)

and a discontinuous one

f (x1, . . . , xd) = 1

{
d∑

i=1

xi > d/2

}
. (27)

The four distributions, based on independent Normals Z1, Z2, Z3
iid∼ N (0, 1) and

uniformly distributed U ∼ U (0, 1) are:

• Correlated Normals: X1 = Z1 + 0.5Z2, X2 = Z1 − 0.5Z2,
• Distorted Gaussian: X1 = Z1 and X2 = X2

1 + Z2;
• Double well: X1 = sign(U−0.5)

(
2 + Φ−1(2|U−0.5|)) and X2 = 2Z2

• Unit ball surface: Xi = Zi/

√∑3
j=1 Z

2
j , i = 1, 2, 3

The empirical dataset is generated via crude MC sampling. We focus on four
schemes of sampling:

• Standard MC (labelled as “std MC”), which estimates it by averaging function
values based on n random samples;

• Standard QMC (labelled as “std QMC”), which generates samples from the two
or three dimensional Sobol’ points u using the mapping z = Φ−1(u) to generate
the quasi-Normal random vectors z;

• QMC sampling based on recursive bisection (labelled as “bQMC”), which selects
n samples from a dataset of size N =220 using two or three dimensional Sobol’
points according to the procedure described in Sect. 2.

• QMC sampling based on the Hilbert curve (labelled as “hQMC”), which also
selects n samples from the Hilbert sorted dataset of size N = 220.
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Fig. 2 Results for continuous test function

Under each scheme, the RMS (root mean squared) error is calculated for different
numbers of samples n=2m, m = 1, . . . , 19 and plotted for comparison. To obtain
these values, all experiments are replicated r =256 times, resulting in estimates μ̂N , j

(dataset), μ̂I
n, j (bQMC) and μ̂II

n, j (hQMC), respectively, for j = 1, . . . , r . The Sobol’
points are randomized by the digital scrambling [9]. The “true” valueμ is taken to be
the average over the r =256 estimates based on the datasets when estimating RMS
errors for “bQMC” and “hQMC”, while for “std MC” and “std QMC”, we use the
standard deviation as an estimate of the RMS error since they are unbiased.

Figure2 presents the results for estimating the expectation of the continuous inte-
grand (26)with datasets from the four distributions.Generally speaking, the proposed
QMC sampling method based on recursive bisection has an accuracy which is com-
parable to the standard QMC method until it reaches a plateau which corresponds
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Fig. 3 Results for discontinuous test function

to the inherent error, i.e., the original sampling error. In particular, with the unit ball
surface distribution, the QMC sampling method converges faster than the standard
QMC method before it reaches the plateau. The mapping via a Hilbert curve gives
similar results.
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Figure3 presents the results for the discontinuous integrand (27). Again the two
QMC sampling methods result in a comparable accuracy to the standard QMC,
with the Hilbert curve mapping scheme showing small advantage over the recursive
bisection scheme.

5 Conclusions

The proposed QMC sampling technique provides a novel way in which to improve
the accuracy of estimates obtained using empirical datasets, such as those produced
byMCMCmethods. Error analysis for the d = 1 case is provided, and the numerical
results for the 2-dimensional and 3-dimensional cases are presented. These show that
when applied to datasets coming from known distributions the effectiveness is very
similar to the standard QMCmethod applied to those distributions. Furthermore, the
technique is very easy to apply. In addition, the Hilbert space-filling curve can also
be made use of for mapping QMC points to the dataset. Theoretical and empirical
error analyses are also provided for this QMC sampling method based on the Hilbert
curve. Numerical comparison results show that these two QMC sampling methods
demonstrate similar performance, both are comparable to the standardQMCmethod.
Supporting theory for the proposed recursive bisection based QMC samplingmethod
will need to be the subject of future research.

6 Appendix

Lemma 1 If Yk, k = 1, . . . , N, are the order statistics of N iid uniformly distributed
random variables over [0, 1], then for any 1 ≤ i < j ≤ N, we have

E[Y j − Yi ] = j − i

N + 1
,

and

E[(Y j − Yi )
2] = ( j − i)2 + ( j − i)

(N + 1)(N + 2)
.

Proof Since Yk ∼ Beta(k, N + 1 − k) for any 1 ≤ k ≤ N , we have

E[Yk] = k

N + 1
, E[Y 2

k ] = k(k + 1)

(N + 1)(N + 2)
.

By [7], we have

E[YiY j ] = i( j + 1)

(N + 1)(N + 2)
.
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We therefore obtain

E[(Y j − Yi )
2] = E[Y 2

i ] + E[Y 2
j ] − 2E[YiY j ]

= i(i + 1) + j ( j + 1)

(N + 1)(N + 2)
− 2i( j + 1)

(N + 1)(N + 2)

= ( j − i)2 + ( j − i)

(N + 1)(N + 2)
.
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