Idempotence and Divisoriality in Prüfer-Like Domains

Marco Fontana, Evan Houston, and Mi Hee Park

Abstract Let D be a Prüfer \star -multiplication domain, where \star is a semistar operation on D. We show that certain ideal-theoretic properties related to idempotence and divisoriality hold in Prüfer domains, and we use the associated semistar Nagata ring of D to show that the natural counterparts of these properties also hold in D.

Keywords Idempotent ideal \cdot Semistar operation \cdot Prüfer \star -multiplication domain \cdot Nagata ring \cdot Divisorial ideal

1 Introduction and Preliminaries

Throughout this work, D will denote an integral domain, and K will denote its quotient field. Recall that Arnold [1] proved that D is a Prüfer domain if and only if its associated Nagata ring $D[X]_N$, where N is the set of polynomials in D[X] whose coefficients generate the unit ideal, is a Prüfer domain. This was generalized

M. Fontana

E. Houston (⊠) Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA e-mail: eghousto@uncc.edu

The first-named author was partially supported by GNSAGA of Istituto Nazionale di Alta Matematica.

The second-named author was supported by a grant from the Simons Foundation (#354565).

The third-named author was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2015R1C1A2A01055124).

Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Largo San Leonardo Murialdo, 1, 00146 Roma, Italy e-mail: fontana@mat.uniroma3.it

M. H. Park Department of Mathematics, Chung-Ang University, Seoul 06974, Korea e-mail: mhpark@cau.ac.kr

[©] Springer Nature Switzerland AG 2020 A. Facchini et al. (eds.), *Advances in Rings, Modules and Factorizations*, Springer Proceedings in Mathematics & Statistics 321, https://doi.org/10.1007/978-3-030-43416-8_9

to Prüfer *v*-multiplication domains (P*v*MDs) by Zafrullah [16] and Kang [14] and to Prüfer ***-multiplication domains (P***MDs) by Fontana, Jara, and Santos [8].

Our goal in this paper is to show that certain ideal-theoretic properties that hold in Prüfer domains transfer in a natural way to P*MDs. For example, we show that an ideal *I* of a Prüfer domain is idempotent if and only if it is a radical ideal each of whose minimal primes is idempotent (Theorem 2.9), and we use a Nagata ring transfer "machine" to transfer a natural counterpart of this characterization to P*MDs. For another example, in Theorem 3.5 we show that an ideal in a Prüfer domain of finite character is idempotent if and only if it is a product of idempotent prime ideals and, perhaps more interestingly, we characterize ideals that are simultaneously idempotent and divisorial as (unique) products of incomparable divisorial idempotent primes; and we then extend this to P*MDs.

Let us review the terminology and notation. Denote by $\overline{F}(D)$ the set of all nonzero D-submodules of K, and by F(D) the set of all nonzero fractional ideals of D, i.e., $E \in F(D)$ if $E \in \overline{F}(D)$ and there exists a nonzero $d \in D$ with $dE \subseteq D$. Let f(D) be the set of all nonzero finitely generated D-submodules of K. Then, obviously, $f(D) \subseteq F(D) \subseteq \overline{F}(D)$.

Following Okabe-Matsuda [15], a *semistar operation* on D is a map $\star : \overline{F}(D) \to \overline{F}(D)$, $E \mapsto E^{\star}$, such that, for all $x \in K$, $x \neq 0$, and for all $E, F \in \overline{F}(D)$, the following properties hold:

 $\begin{aligned} (\star_1) & (xE)^{\star} = xE^{\star}; \\ (\star_2) & E \subseteq F \text{ implies } E^{\star} \subseteq F^{\star}; \\ (\star_3) & E \subseteq E^{\star} \text{ and } E^{\star\star} := (E^{\star})^{\star} = E^{\star}. \end{aligned}$

Of course, semistar operations are natural generalizations of star operations–see the discussion following Corollary 2.5 below.

The semistar operation \star is said to have *finite type* if $E^{\star} = \bigcup \{F^{\star} \mid F \in f(D), F \subseteq E\}$ for each $E \in \overline{F}(D)$. To any semistar operation \star we can associate a finite-type semistar operation \star_f given by

$$E^{\star_f} := \bigcup \{ F^{\star} \mid F \in f(D), F \subseteq E \}.$$

We say that a nonzero ideal I of D is a quasi-*-ideal if $I = I^* \cap D$, a quasi-*prime ideal if it is a prime quasi-*-ideal, and a quasi-*-maximal ideal if it is maximal in the set of all proper quasi-*-ideals. A quasi-*-maximal ideal is a prime ideal. We will denote by QMax*(D) (QSpec*(D)) the set of all quasi-*-maximal ideals (quasi-*-prime ideals) of D. While quasi-*-maximal ideals may not exist, quasi-*_j-maximal ideals are plentiful in the sense that each proper quasi-*_j-ideal is contained in a quasi-*_j-maximal ideal. (See [9] for details.) Now we can associate to * yet another semistar operation: for $E \in \overline{F}(D)$, set

$$E^{\widetilde{\star}} := \bigcap \{ ED_Q \mid Q \in QMax^{\star_f}(D) \}.$$

Then $\widetilde{\star}$ is also a finite-type semistar operation, and we have $E^{\widetilde{\star}} \subseteq E^{\star_f} \subseteq E^{\star}$ for all $E \in \overline{F}(D)$.

Let \star be a semistar operation on *D*. Set $N(\star) = \{g \in D[X] \mid c(g)^{\star} = D^{\star}\}$, where c(g) is the *content* of the polynomial *g*, i.e., the ideal of *D* generated by the coefficients of *g*. Then $N(\star)$ is a saturated multiplicatively closed subset of D[X], and we call the ring Na(D, \star) := $D[X]_{N(\star)}$ the *semistar Nagata ring of* D with respect to \star . The domain *D* is called a *Prüfer* \star - *multiplication domain* (P \star MD) if $(FF^{-1})^{\star_f} = D^{\star_f}$ (= D^{\star}) for each $F \in f(D)$ (i.e., each such *F* is \star_f -invertible). (Recall that $F^{-1} = (D : F) = \{u \in K \mid uF \subseteq D\}$.)

In the following two lemmas, we assemble the facts we need about Nagata rings and P \star MDs. Most of the proofs can be found in [6, 9] or [5].

Lemma 1.1. Let \star be a semistar operation on D. Then:

- (1) $D^* = D^{*_f}$.
- (2) $\operatorname{QMax}^{\star_f}(D) = \operatorname{QMax}^{\widetilde{\star}}(D).$
- (3) The map $\operatorname{QMax}^{\star_f}(D) \to \operatorname{Max}(\operatorname{Na}(D, \star)), P \mapsto P\operatorname{Na}(D, \star)$, is a bijection with inverse map $M \mapsto M \cap D$.
- (4) $P \mapsto P \operatorname{Na}(D, \star)$ defines an injective map $\operatorname{QSpec}^{\widetilde{\star}}(D) \to \operatorname{Spec}(\operatorname{Na}(D, \star)).$
- (5) $N(\star) = N(\star_f) = N(\widetilde{\star})$ and (hence) $\operatorname{Na}(D, \star) = \operatorname{Na}(D, \star_f) = \operatorname{Na}(D, \widetilde{\star})$.
- (6) For each $E \in \overline{F}(D)$, $E^{\tilde{\star}} = E \operatorname{Na}(D, \star) \cap K$, and $E^{\tilde{\star}} \operatorname{Na}(D, \star) = E \operatorname{Na}(D, \star)$.
- (7) A nonzero ideal I of D is a quasi- $\tilde{\star}$ -ideal if and only if $I = INa(D, \star) \cap D$.

Lemma 1.2. Let \star be a semistar operation on D.

- (1) The following statements are equivalent.
 - (a) D is a $P \star MD$.
 - (b) $Na(D, \star)$ is a Prüfer domain.
 - (c) The ideals of $Na(D, \star)$ are extended from ideals of D.
 - (d) D_P is a valuation domain for each $P \in QMax^{*_f}(D)$.
- (2) Assume that D is a $P \star MD$. Then:
 - (a) $\widetilde{\star} = \star_{e}$ and (hence) $D^{\star} = D^{\widetilde{\star}}$.
 - (b) The map QSpec^{*} (D) → Spec(Na(D, *)), P → PNa(D, *), is a bijection with inverse map Q → Q ∩ D.
 - (c) Finitely generated ideals of $Na(D, \star)$ are extended from finitely generated ideals of D.

2 Idempotence

We begin with our basic definition.

Definition 2.1. Let \star be a semistar operation on *D*. An element $E \in \overline{F}(D)$ is said to be \star -idempotent if $E^{\star} = (E^2)^{\star}$.

Our primary interest will be in (nonzero) \star -idempotent *ideals* of D. Let \star be a semistar operation on D, and let I be a nonzero ideal of D. It is well known that $I^{\star} \cap D$ is a quasi- \star -ideal of D. (This is easy to see: we have

$$(I^* \cap D)^* \subseteq I^{**} = I^* = (I \cap D)^* \subseteq (I^* \cap D)^*,$$

and hence $I^* = (I^* \cap D)^*$; it follows that $I^* \cap D = (I^* \cap D)^* \cap D$.) It, therefore, seems natural to call $I^* \cap D$ the *quasi-*-closure* of *I*. If we also call I *-*proper* when $I^* \subsetneq D^*$, then it is easy to see that *I* is *-proper if and only if its quasi-*-closure is a proper quasi-*-ideal. Now suppose that *I* is *-idempotent. Then

$$(I^* \cap D)^* = I^* = (I^2)^* = ((I^*)^2)^* = (((I^* \cap D)^*)^2)^* = ((I^* \cap D)^2)^*,$$

whence $I^* \cap D$ is a *-idempotent quasi-*-ideal of D. A similar argument gives the converse. Thus a (*-proper) nonzero ideal is *-idempotent if and only if its quasi-*- closure is a (proper) *-idempotent quasi-*-ideal.

Our study of idempotence in Prüfer domains and P*MDs involves the notions of sharpness and branchedness. We recall some notation and terminology.

Given an integral domain D and a prime ideal $P \in \text{Spec}(D)$, set

$$\nabla(P) := \{ M \in \operatorname{Max}(D) \mid M \not\supseteq P \} \text{ and} \\ \Theta(P) := \bigcap \{ D_M \mid M \in \nabla(P) \}.$$

We say that *P* is *sharp* if $\Theta(P) \nsubseteq D_P$ (see [11, Lemma 1] and [3, Section 1 and Proposition 2.2]). The domain *D* itself is *sharp* (*doublesharp*) if every maximal (prime) ideal of *D* is sharp. (Note that a Prüfer domain *D* is doublesharp if and only if each overring of *D* is sharp [7, Theorem 4.1.7].) Now let \star be a semistar operation on *D*. Given a prime ideal $P \in QSpec^{\star_f}(D)$, set

$$\nabla^{\star_f}(P) := \{ M \in \operatorname{QMax}^{\star_f}(D) \mid M \not\supseteq P \} \text{ and } \\ \Theta^{\star_f}(P) := \bigcap \{ D_M \mid M \in \nabla^{\star_f}(P) \}.$$

Call $P \star_{f}$ -sharp if $\Theta^{\star_{f}}(P) \notin D_{P}$. For example, if $\star = d$ is the identity, then the \star_{f} -sharp property coincides with the sharp property. We then say that D is \star_{f} -(double)sharp if each quasi- \star_{f} -maximal (quasi- \star_{f} -prime) ideal of D is \star_{f} -sharp. (For more on sharpness, see [10, 11, 13], [7, page 62], [3], [4, Chapter 2, Section 3] and [5].)

Recall that a prime ideal P of a ring is said to be *branched* if there is a P-primary ideal distinct from P. Also, recall that the domain D has *finite character* if each nonzero ideal of D is contained in only finitely many maximal ideals of D.

We now prove a lemma that discusses the transfer of ideal-theoretic properties between D (on which a semistar operation \star has been defined) and its associated Nagata ring.

Lemma 2.2. Let \star be a semistar operation on D.

- (1) Let $E \in \overline{F}(D)$. Then E is $\tilde{\star}$ -idempotent if and only if $ENa(D, \star)$ is idempotent. In particular, if D is a P \star MD, then E is \star_f -idempotent if and only if $ENa(D, \star)$ is idempotent.
- (2) Let P be a quasi- $\tilde{\star}$ -prime of D and I a nonzero ideal of D. Then:
 - (a) I is P-primary in D if and only if I is a quasi- $\tilde{\star}$ -ideal of D and INa(D, \star) is PNa(D, \star)-primary in Na(D, \star).
 - (b) *P* is branched in *D* if and only if $PNa(D, \star)$ is branched in $Na(D, \star)$.
- (3) D has \star_{f} -finite character (i.e., each nonzero element of D belongs to only finitely many (possibly zero) $M \in QMax^{\star_{f}}(D)$) if and only if $Na(D, \star)$ has finite character.
- (4) Let I be a quasi-*⋆*-ideal of D. Then I is a radical ideal if and only if INa(D, ⋆) is a radical ideal of Na(D, ⋆).
- (5) Assume that D is a $P \star MD$. Then:
 - (a) If $P \in QSpec^{\star_f}(D)$, then P is \star_f -sharp if and only if $PNa(D, \star)$ is sharp in $Na(D, \star)$.
 - (b) D is \star_{f} -(double)sharp if and only if Na(D, \star) is (double)sharp.

Proof. (1) We use Lemma 1.1(6). If $ENa(D, \star)$ is idempotent, then $E^{\star} = ENa(D, \star) \cap K = E^2Na(D, \star) \cap K = (E^2)^{\star}$. Conversely, if *E* is $\tilde{\star}$ -idempotent, then $(ENa(D, \star))^2 = E^2Na(D, \star) = (E^2)^{\star}Na(D, \star) = E^{\star}Na(D, \star) = ENa(D, \star)$. The "in particular" statement follows because $\star_f = \tilde{\star}$ in a P*MD (Lemma 1.2(2a)).

(2) (a) Suppose that *I* is *P*-primary. Then ID[X] is PD[X]-primary. Since *P* is a quasi- $\tilde{\star}$ -prime of *D*, $PNa(D, \star)$ is a prime ideal of $Na(D, \star)$ (Lemma 1.1(4)), and then, since $Na(D, \star)$ is a quotient ring of D[X], $INa(D, \star)$ is $PNa(D, \star)$ -primary in $Na(D, \star)$. Also, again using the fact that ID[X] is PD[X]-primary (along with Lemma 1.1(6)), we have

$$I^{\widetilde{\star}} \cap D = I \operatorname{Na}(D, \star) \cap D \subseteq I D[X]_{PD[X]} \cap D[X] \cap D = I D[X] \cap D = I,$$

whence *I* is a quasi- $\tilde{\star}$ -ideal of *D*. Conversely, assume that *I* is a quasi- $\tilde{\star}$ -ideal of *D* and that $INa(D, \star)$ is $PNa(D, \star)$ -primary. Then for $a \in P$, there is a positive integer *n* for which $a^n \in INa(D, \star) \cap D = I^{\tilde{\star}} \cap D = I$. Hence P = rad(I). It now follows easily that *I* is *P*-primary. (b) Suppose that *P* is branched in *D*. Then there is a *P*-primary ideal *I* of *D* distinct from *P*, and $INa(D, \star)$ is $PNa(D, \star)$ -primary by (a). Also by (a), *I* is a quasi- $\tilde{\star}$ -ideal, from which it follows that $INa(D, \star) \neq PNa(D, \star)$. Now suppose that $PNa(D, \star)$ is branched and that *J* is a $PNa(D, \star)$ -primary ideal of $Na(D, \star)$ distinct from $PNa(D, \star)$. Then it is straightforward to show that $J \cap D$ is distinct from *P* and is *P*-primary.

(3) Let ψ be a nonzero element of Na(D, \star), and let N be a maximal ideal with $\psi \in N$. Then ψ Na(D, \star) = fNa(D, \star) for some $f \in D[X]$, and writing N = MNa(D, \star) for some $M \in Q$ Max^{*} $_f(D)$ (Lemma 1.1(3)), we must have $f \in MD[X]$

and hence $c(f) \subseteq M$. Therefore, if *D* has finite \star_f -character, then Na(*D*, \star) has finite character. The converse is even more straightforward.

(4) Suppose that *I* is a radical ideal of *D*, and let $\psi^n \in INa(D, \star)$ for some $\psi \in Na(D, \star)$ and positive integer *n*. Then there is an element $g \in N(\star)$ with $(g\psi^n$ and hence) $(g\psi)^n \in ID[X]$. Since ID[X] is a radical ideal of D[X], $g\psi \in ID[X]$ and we must have $\psi \in INa(D, \star)$. Therefore, $INa(D, \star)$ is a radical ideal of $Na(D, \star)$. The converse follows easily from the fact that $INa(D, \star) \cap D = I^{\tilde{\star}} \cap D = I$ (Lemma 1.1(7)).

(5) (a) This is part of [5, Proposition 3.5], but we give here a proof more in the spirit of this paper. Let $P \in QSpec^{*_f}(D)$. If P is $*_f$ -sharp, then by [5, Proposition 3.1] P contains a finitely generated ideal I with $I \nsubseteq M$ for all $M \in \nabla^{*_f}(P)$, and, using the description of Max(Na(D, *)) given in Lemma 1.1(3), INa(D, *) is a finitely generated ideal of Na(D, *) contained in PNa(D, *) but in no element of $\nabla(PNa(D, *))$. Therefore, PNa(D, *) is sharp in the Prüfer domain Na(D, *). For the converse, assume that PNa(D, *) is sharp in Na(D, *). Then PNa(D, *) contains a finitely generated ideal J with $J \subseteq PNa(D, *)$ but $J \nsubseteq N$ for $N \in \nabla(PNa(D, *))$ [13, Corollary 2]. Then J = INa(D, *) for some finitely generated ideal I of D (necessarily) contained in P by Lemma 1.2(2c), and it is easy to see that $I \nsubseteq M$ for $M \in \nabla^{*_f}(D)$. Then by [5, Proposition 3.1], P is $*_f$ -sharp. Statement (b) follows easily from (a) (using Lemma 1.2).

Let *D* be an almost Dedekind domain with a non-finitely generated maximal ideal *M*. Then $M^{-1} = D$, but *M* is not idempotent (since MD_M is not idempotent in the Noetherian valuation domain D_M). Our next result shows that this cannot happen in a sharp Prüfer domain.

Theorem 2.3. Let D be a Prüfer domain. If D is (d-)sharp and I is a nonzero ideal of D with $I^{-1} = D$, then I is idempotent.

Proof. Assume that *D* is sharp. Proceeding contrapositively, suppose that *I* is a nonzero, non-idempotent ideal of *D*. Then, for some maximal ideal *M* of *D*, ID_M is not idempotent in D_M . Since *D* is a sharp domain, we may choose a finitely generated ideal *J* of *D* with $J \subseteq M$ but $J \nsubseteq N$ for all maximal ideals $N \neq M$. Since ID_M is a non-idempotent ideal in the valuation domain D_M , there is an element $a \in I$ for which $I^2D_M \subsetneq aD_M$. Let B := J + Da. Then $I^2D_M \subseteq BD_M$ and, for $N \in Max(D) \setminus \{M\}, I^2D_N \subseteq D_N = BD_N$. Hence $I^2 \subseteq B$. Since *B* is a proper finitely generated ideal, we then have $(I^2)^{-1} \supseteq B^{-1} \supseteq D$. Hence $(I^2)^{-1} \neq D$, from which it follows that $I^{-1} \neq D$, as desired.

Kang [14, Proposition 2.2] proves that, for a nonzero ideal *I* of *D*, we always have I^{-1} Na(D, v) = (Na(D, v)) : I). This cannot be extended to general semistar Nagata rings; for example, if *D* is an almost Dedekind domain with non-invertible maximal ideal *M* and we define a semistar operation \star by $E^{\star} = ED_M$ for $E \in \overline{F}(D)$, then (D:M) = D and hence (D:M)Na $(D, \star) =$ Na $(D, \star) = D[X]_{M[X]} = D_M(X) \subsetneq (D_M:MD_M)D_M(X) = ($ Na $(D, \star) : M$ Na $(D, \star))$ (where the proper inclusion holds because MD_M is principal in D_M). At any rate, what we really require is the equality

 $(D^*: E)$ Na $(D, \star) = ($ Na $(D, \star): E)$ for $E \in \overline{F}(D)$. In the next lemma, we show that this holds in a P*MD but not in general. The proof of part (1) of the next lemma is a relatively straightforward translation of the proof of [14, Proposition 2.2] to the semistar setting. In carrying this out, however, we discovered a minor flaw in the proof of [14, Proposition 2.2]. The flaw involves a reference to [12, Proposition 34.8], but this result requires that the domain *D* be integrally closed. To ensure complete transparency, we give the proof in full detail.

Lemma 2.4. Let \star be a semistar operation on D. Then:

- (1) $(D^{\star}: E)$ Na $(D, \star) \supseteq$ (Na $(D, \star): E)$ for each $E \in \overline{F}(D)$.
- (2) The following statements are equivalent:
 - (a) $(D^{\star}: E)$ Na $(D, \star) = ($ Na $(D, \star): E)$ for each $E \in \overline{F}(D)$.
 - (b) $D^{\star} = D^{\widetilde{\star}}$.
 - (c) $D^* \subseteq \operatorname{Na}(D, \star)$.
- (3) $(D^{\tilde{\star}}: E)$ Na $(D, \star) = ($ Na $(D, \star): E)$ for each $E \in \overline{F}(D)$.
- (4) If D is a $P \star MD$, then the equivalent conditions in (2) hold.

Proof. (1) Let $E \in \overline{F}(D)$, and let $\psi \in (\operatorname{Na}(D, \star) : E)$. For $a \in E$, $a \neq 0$, we may find $g \in N(\star)$ such that $\psi ag \in D[X]$. This yields $\psi g \in a^{-1}D[X] \subseteq K[X]$, and hence $\psi = f/g$ for some $f \in K[X]$. We claim that $c(f) \subseteq (D^{\star} : E)$. Granting this, we have $f \in (D^{\star} : E)D[X]$, from which it follows that $\psi = f/g \in (D^{\star} : E)$ Na (D, \star) , as desired. To prove the claim, take $b \in E$, and note that $fb \in \operatorname{Na}(D, \star)$. Hence $fbh \in D[X]$ for some $h \in N(\star)$, and so $c(fh)b \subseteq D$. By the content formula [12, Theorem 28.1], there is an integer *m* for which $c(f)c(h)^{m+1} = c(fh)c(h)^m$. Using the fact that $c(h)^{\star} = D^{\star}$, we obtain $c(f)^{\star} = c(fh)^{\star}$ and hence that $c(f)b \subseteq c(fh)^{\star}b \subseteq D^{\star}$. Therefore, $c(f) \subseteq (D^{\star} : E)$, as claimed.

(2) Under the assumption in (c), $D^* \subseteq \operatorname{Na}(D, \star) \cap K = D^{\widetilde{\star}}$ (Lemma 1.1(6)). Hence (c) \Rightarrow (b). Now assume that $D^* = D^{\widetilde{\star}}$. Then for $E \in \overline{F}(D)$, we have $(D^* : E)E \subseteq D^* = D^{\widetilde{\star}} \subseteq \operatorname{Na}(D, \star)$; using (1), the implication (b) \Rightarrow (a) follows. That (a) \Rightarrow (c) follows upon taking E = D in (a).

(3) This follows easily from (2), because $Na(D, \star) = Na(D, \tilde{\star})$ by Lemma 1.1(5).

(4) This follows from (2), since if D is a P*MD, then $D^* = D^{\tilde{*}}$ by Lemma 1.2(2a).

The conditions in Lemma 2.4(2) need not hold: Let $F \subsetneq k$ be fields, V = k[[x]] the power series ring over *V* in one variable, and D = F + M, where M = xk[[x]]. Define a (finite-type) semistar operation \star on *D* by $A^{\star} = AV$ for $A \in \overline{F}(D)$. Then $D^{\star} = V \supsetneq D = D_M = D^{\widetilde{\star}}$.

We can now extend Theorem 2.3 to P*MDs.

Corollary 2.5. Let \star be a semistar operation on D such that D is a \star_f -sharp $P\star MD$, and let I be a nonzero ideal of D with $(D^* : I) = D^*$. Then I is \star_f -idempotent.

Proof. By Lemma 2.4(3), we have

$$(\operatorname{Na}(D, \star) : I\operatorname{Na}(D, \star)) = (D^{\star} : I)\operatorname{Na}(D, \star) = D^{\star}\operatorname{Na}(D, \star) = \operatorname{Na}(D, \star).$$

Hence $INa(D, \star)$ is idempotent in the Prüfer domain $Na(D, \star)$ by Theorem 2.3. Lemma 2.2(1) then yields that I is \star_f -idempotent.

Many semistar counterparts of ideal-theoretic properties in domains result in equations that are "external" to D, since for a semistar operation \star on D and a nonzero ideal I of D, it is possible that $I^{\star} \not\subseteq D$. Of course, \star -idempotence is one such property. Often, one can obtain a "cleaner" counterpart by specializing from P \star MDs to "ordinary" PvMDs. We recall some terminology. Semistar operations are generalizations of *star* operations, first considered by Krull and repopularized by Gilmer [12, Sections 32, 34]. Roughly, a star operation is a semistar operation restricted to the set F(D) of nonzero fractional ideals of D with the added requirement that one has $D^{\star} = D$. The most important star operation (aside from the d-, or trivial, star operation) is the *v*-operation: For $E \in F(D)$, put $E^{-1} = \{x \in K \mid xE \subseteq D\}$ and $E^{v} = (E^{-1})^{-1}$. Then v_f (restricted to F(D)) is the *t*-operation and \tilde{v} is the *w*-operation. Thus a *PvMD* is a domain in which each nonzero finitely generated ideal is *t*-invertible. Corollary 2.5 then has the following restricted interpretation (which has the advantage of being *internal* to *D*).

Corollary 2.6. If D is a t-sharp PvMD and I is a nonzero ideal of D for which $I^{-1} = D$, then I is t-idempotent.

Our next result is a partial converse to Theorem 2.3.

Proposition 2.7. Let D be a Prüfer domain such that I is idempotent whenever I is a nonzero ideal of D with $I^{-1} = D$. Then, every branched maximal ideal of D is sharp.

Proof. Let *M* be a branched maximal ideal of *D*. Then $MD_M = \operatorname{rad}(aD_M)$ for some nonzero element $a \in M$ [12, Theorem 17.3]. Let $I := aD_M \cap D$. Then *I* is *M*-primary, and since $ID_M = aD_M$, $(ID_M$ and hence) *I* is not idempotent. By hypothesis, we may choose $u \in I^{-1} \setminus D$. Since $Iu \subseteq D$ and $ID_N = D_N$ for $N \in$ $\operatorname{Max}(D) \setminus \{M\}$, then $u \in \bigcap \{D_N \mid N \in \operatorname{Max}(D), N \neq M\}$. On the other hand, since $u \notin D, u \notin D_M$. It follows that *M* is sharp. \Box

Now we extend Proposition 2.7 to $P\star MDs$.

Corollary 2.8. Let \star be a semistar operation on D, and assume that D is a $P\star MD$ such that I is \star_{f} -idempotent whenever I is a nonzero ideal of D with $(D^{\star} : I) = D^{\star}$. Then, each branched quasi- \star_{f} -maximal ideal of D is \star_{f} -sharp. (In particular if D is a PvMD in which I is t-idempotent whenever I is a nonzero ideal of D with $I^{-1} = D$, then each branched maximal t-ideal of D is t-sharp.) *Proof.* Let *J* be a a nonzero ideal of the Prüfer domain Na(*D*, \star) with (Na(*D*, \star) : *J*) = Na(*D*, \star). By Lemma 1.2(1c), *J* = *I*Na(*D*, \star) for some ideal *I* of *D*. Applying Lemma 2.4(3) and Lemma 1.1(6), we obtain ($D^* : I$) = D^* . Hence, by hypothesis, *I* is \star_j -idempotent, and this yields that *J* = *I*Na(*D*, \star) is idempotent in the Prüfer domain Na(*D*, \star) (Lemma 2.2(1)). Now, let *M* be a branched quasi- \star_j -maximal ideal of *D*. Then, by Lemma 2.2(2), *M*Na(*D*, \star) is a branched maximal ideal of Na(*D*, \star). We may now apply Proposition 2.7 to conclude that *M*Na(*D*, \star) is sharp. Therefore, *M* is \star_i -sharp in *D* by Lemma 2.2(5).

If *P* is a prime ideal of a Prüfer domain *D*, then powers of *P* are *P*-primary by [12, Theorem 23.3(b)]; it follows that *P* is idempotent if and only if PD_P is idempotent. We use this fact in the next result.

It is well known that a proper idempotent ideal of a valuation domain must be prime [12, Theorem 17.1(3)]. In fact, according to [12, Exercise 3, p. 284], a proper idempotent ideal in a Prüfer domain must be a radical ideal. We (re-)prove and extend this fact and add a converse.

Theorem 2.9. Let D be a Prüfer domain, and let I be an ideal of D. Then I is idempotent if and only if I is a radical ideal each of whose minimal primes is idempotent.

Proof. The result is trivial for I = (0) and vacuously true for I = D. Suppose that I is a proper nonzero idempotent ideal of D, and let P be a prime minimal over I. Then ID_P is idempotent, and we must have $ID_P = PD_P$ [12, Theorem 17.1(3)]. Hence PD_P is idempotent, and therefore, by the comment above, so is P. Now let M be a maximal ideal containing I. Then ID_M is idempotent, hence prime (hence radical). It follows (checking locally) that I is a radical ideal.

Conversely, let *I* be a radical ideal each of whose minimal primes is idempotent. If *M* is a maximal ideal containing *I* and *P* is a minimal prime of *I* contained in *M*, then $ID_M = PD_M$. Since *P* is idempotent, this yields $ID_M = I^2D_M$. It follows that *I* is idempotent.

We next extend Theorem 2.9 to P*MDs.

Corollary 2.10. Let D be a P*MD, where \star is a semistar operation on D, and let I be a quasi- \star_f -ideal of D. Then I is \star_f -idempotent if and only if I is a radical ideal each of whose minimal primes is \star_f -idempotent. (In particular, if D is a PvMD and I is a t-ideal of D, then I is t-idempotent if and only if I is a radical ideal each of whose minimal primes is t-idempotent.)

Proof. Suppose that *I* is \star_f -idempotent. Then $INa(D, \star)$ is an idempotent ideal in Na(*D*, \star) by Lemma 2.2(1). By Theorem 2.9, $INa(D, \star)$ is a radical ideal of Na(*D*, \star), and hence, by Lemma 2.2(4), *I* is a radical ideal of *D*. Now let *P* be a minimal prime of *I* in *D*. Then *P* is a quasi- \star_f -prime of *D*. By Lemma 1.2(2b) $PNa(D, \star)$ is minimal over $INa(D, \star)$, whence $PNa(D, \star)$ is idempotent, again by Theorem 2.9. The \star_f -idempotence of *P* now follows from Lemma 2.2(1).

The converse follows by similar applications of Theorem 2.9 and Lemma 2.2. \Box

Recall that a Prüfer domain is said to be *strongly discrete* (*discrete*) if it has no nonzero (branched) idempotent prime ideals. Since unbranched primes in a Prüfer domain must be idempotent [12, Theorem 23.3(b)], a Prüfer domain is strongly discrete if and only if it is discrete and has no unbranched prime ideals. We have the following straightforward application of Theorem 2.9.

Corollary 2.11. Let D be a Prüfer domain.

- (1) If D is discrete, then an ideal I of D is idempotent if and only if I is a radical ideal each of whose minimal primes is unbranched.
- (2) If D is strongly discrete, then D has no proper nonzero idempotent ideals.

Let us call a P*MD \star_{f} - strongly discrete (\star_{f} - discrete) if it has no (branched) \star_{f} -idempotent quasi- \star_{f} -prime ideals. From Lemma 2.2(1, 2), we have the usual connection between a property of a P*MD and the corresponding property of its \star -Nagata ring.

Proposition 2.12. Let \star be a semistar operation on *D*. Then *D* is \star_f -(strongly) discrete $P\star MD$ if and only if $\operatorname{Na}(D, \star)$ is a (strongly) discrete Prüfer domain.

Applying Corollary 2.10 and Lemma 2.2(1, 2), we have the following extension of Corollary 2.11.

Corollary 2.13. Let D be a domain.

- (1) Assume that D is a $P \star MD$ for some semistar operation \star on D.
 - (a) If D is \star_f -discrete, then a nonzero quasi- \star_f -ideal I of D is \star_f -idempotent if and only if I is a radical ideal each of whose minimal primes is unbranched.
 - (b) If D is \star_{f} -strongly discrete, then D has no \star_{f} -proper \star_{f} -idempotent ideals.
- (2) Assume that D is a PvMD.
 - (a) If D is t-discrete, then a t-ideal I of D is t-idempotent if and only if I is a radical ideal each of whose minimal primes is unbranched.
 - (b) If D is t-strongly discrete, then D has no t-proper t-idempotent ideals.

3 Divisoriality

According to [7, Corollary 4.1.14], if *D* is a doublesharp Prüfer domain and *P* is a nonzero, nonmaximal ideal of *D*, then *P* is divisorial. The natural question arises: If *D* is a \star_f -doublesharp P \star MD and $P \in QSpec^{\star_f}(D) \setminus QMax^{\star_f}(D)$, is *P* necessarily divisorial? Since \star is an arbitrary semistar operation and divisoriality specifically involves the *v*-operation, one might expect the answer to be negative. Indeed, we give a counterexample in Example 3.4 below. However, in Theorem 3.2 we prove a general result, a corollary of which does yield divisoriality in the "ordinary" P*v*MD case. First, we need a lemma, the first part of which may be regarded as an extension of [14, Proposition 2.2(2)].

Lemma 3.1. Let \star be a semistar operation on D. Then

- (1) $(D^{\tilde{\star}}: (D^{\tilde{\star}}: E))$ Na $(D, \star) = ($ Na $(D, \star): ($ Na $(D, \star): E))$ for each $E \in \overline{F}(D)$, and
- (2) if I is a nonzero ideal of D, then I[×] is a divisorial ideal of D[×] if and only if INa(D, ★) is a divisorial ideal of Na(D, ★).

In particular, if D is a $P \star MD$, then $(D^* : (D^* : E)) \operatorname{Na}(D, \star) = (\operatorname{Na}(D, \star) : (\operatorname{Na}(D, \star) : E))$ for each $E \in \overline{F}(D)$; and, for a nonzero ideal I of D, I^{\star_f} is divisorial in D^* if and only if $I\operatorname{Na}(D, \star)$ is divisorial in $\operatorname{Na}(D, \star)$.

Proof. Set $\mathcal{N} = \text{Na}(D, \star)$. For (1), applying Lemma 2.4, we have

$$(D^{\widetilde{\star}}: (D^{\widetilde{\star}}:E))\mathcal{N} = (\mathcal{N}: (D^{\widetilde{\star}}:E)) = (\mathcal{N}: (\mathcal{N}:E)).$$

(2) Assume that I is a nonzero ideal of D. If $I^{\tilde{\star}}$ is divisorial in $D^{\tilde{\star}}$, then (using (1))

$$(\mathcal{N}:(\mathcal{N}:I\mathcal{N}))=(D^{\widetilde{\star}}:(D^{\widetilde{\star}}:I^{\widetilde{\star}}))\mathcal{N}=I^{\widetilde{\star}}\mathcal{N}=I\mathcal{N}.$$

Now suppose that IN is divisorial. Then

$$(D^{\widetilde{\star}}: (D^{\widetilde{\star}}: I^{\widetilde{\star}}))\mathcal{N} = (\mathcal{N}: (\mathcal{N}: I)) = I\mathcal{N},$$

whence

$$(D^{\widetilde{\star}}: (D^{\widetilde{\star}}: I^{\widetilde{\star}})) \subseteq I\mathcal{N} \cap K = I^{\widetilde{\star}}.$$

The "in particular" statement follows from standard considerations.

Theorem 3.2. Let \star be a semistar operation on D such that D is a \star_f -doublesharp $P\star MD$, and let $P \in \operatorname{QSpec}^{\star_f}(D) \setminus \operatorname{QMax}^{\star_f}(D)$. Then P^{\star_f} is a divisorial ideal of D^{\star} .

Proof. Since Na(D, \star) is a doublesharp Prüfer domain (Lemma 2.2(5)), $PNa(D, \star)$ is divisorial by [7, Corollary 4.1.14]. Hence P^{\star_f} is divisorial in D^{\star} by Lemma 3.1.

Corollary 3.3. If D is a t-doublesharp PvMD, and P is a non-t-maximal t-prime of D, then P is divisorial.

Proof. Take $\star = v$ in Theorem 3.2. (More precisely, take \star to be any extension of the star operation v on D to a semistar operation on D, so that \star_f (restricted to D) is the *t*-operation on D.) Then $P = P^t = P^{\star_f}$ is divisorial by Theorem 3.2.

Example 3.4. Let p be a prime integer and let $D := Int(\mathbb{Z}_{(p)})$. Then D is a twodimensional Prüfer domain by [2, Lemma VI.1.4 and Proposition V.1.8]. Choose a height 2 maximal ideal M of D, and let P be a height 1 prime ideal of D contained in M. Then $P = q\mathbb{Q}[X] \cap D$ for some irreducible polynomial $q \in \mathbb{Q}[X]$ [2, Proposition V.2.3]. By [2, Theorems VIII.5.3 and VIII.5.15], P is not a divisorial ideal of D. Set $E^* = ED_M$ for $E \in \overline{F}(D)$. Then \star is a finite-type semistar operation on D.

Clearly, *M* is the only quasi-*-maximal ideal of *D*, and, since D_M is a valuation domain, *D* is a P*MD by Lemma 1.2. Moreover, $\operatorname{Na}(D, \star) = D_M(X)$ is also a valuation domain and hence a doublesharp Prüfer domain, which yields that *D* is a \star_f -doublesharp P*MD (Lemma 2.2). Finally, since $P = PD_M \cap D = P^* \cap D$, *P* is a non- \star_f -maximal quasi- \star_f -prime of *D*.

In the remainder of the paper, we impose on Prüfer domains (P*MDs) the finite character (finite \star_{f} -character) condition. As we shall see, this allows improved versions of Theorem 2.9 and Corollary 2.10. It also allows a type of unique factorization for (quasi- \star_{f} -)ideals that are simultaneously (\star_{f} -)idempotent and (\star_{f} -)divisorial.

Theorem 3.5. *Let D be a Prüfer domain with finite character, and let I be a nonzero ideal of D. Then:*

- (1) I is idempotent if and only if I is a product of idempotent prime ideals.
- (2) The following statements are equivalent.
 - (a) I is idempotent and divisorial.
 - (b) *I* is a product of non-maximal idempotent prime ideals.
 - (c) *I* is a product of divisorial idempotent prime ideals.
 - (d) *I* has a unique representation as the product of incomparable divisorial idempotent primes.

Proof. (1) Suppose that I is idempotent. By Theorem 2.9, I is the intersection of its minimal primes, each of which is idempotent. Since D has finite character, I is contained in only finitely many maximal ideals, and, since no two distinct minimal primes of I can be contained in a single maximal ideal, I has only finitely many minimal primes and they are comaximal. Hence I is the product of its minimal primes (and each is idempotent). The converse is trivial.

(2) (a) \Rightarrow (b): Assume that *I* is idempotent and divisorial. By (1) and its proof, $I = P_1 \cdots P_n = P_1 \cap \cdots \cap P_n$, where the P_i are the minimal primes of *I*. We claim that each P_i is divisorial. To see this, observe that

$$(P_1)^{\nu} P_2 \cdots P_n \subseteq (P_1 \cdots P_n)^{\nu} = I^{\nu} = I \subseteq P_1.$$

Since the P_i are incomparable, this gives $(P_1)^v \subseteq P_1$, that is, P_1 is divisorial. By symmetry each P_i is divisorial. It is well known that in a Prüfer domain, a maximal ideal cannot be both idempotent and divisorial. Hence the P_i are non-maximal.

(b) \Rightarrow (c): Since *D* has finite character, it is a (*d*)-doublesharp Prüfer domain [13, Theorem 5], whence nonmaximal primes are automatically divisorial by [7, Corollary 4.1.14].

(c) \Rightarrow (a): Write $I = Q_1 \cdots Q_m$, where each Q_j is a divisorial idempotent prime. Since *I* is idempotent (by (1)), we may also write $I = P_1 \cdots P_n$, where the P_i are the minimal primes of *I*. For each *i*, we have $Q_1 \cdots Q_m = I \subseteq P_i$, from which it follows that $Q_j \subseteq P_i$ for some *j*. By minimality, we must then have $Q_j = P_i$. Thus each P_i is divisorial, whence $I = P_1 \cap \cdots \cap P_n$ is divisorial. Finally, we show that (d) follows from the other statements. We use the notation in the proof of (c) \Rightarrow (a). In the expression $I = P_1 \cdots P_n$, the P_i are (divisorial, idempotent, and) incomparable, and it is clear that no P_i can be omitted. To see that this is the only such expression, consider a representation $I = Q_1 \cdots Q_m$, where the Q_i are divisorial, idempotent, and incomparable. Fix a Q_k . Then $P_1 \cdots P_n = I \subseteq$ Q_k , and we have $P_i \subseteq Q_k$ for some *i*. However, as above, $Q_j \subseteq P_i$ for some *j*, whence, by incomparability, $Q_k = P_i$. The conclusion now follows easily.

We note that incomparability is necessary for uniqueness above, for example, if D is a valuation domain and $P \subsetneq Q$ are non-maximal (necessarily divisorial) primes, then P = PQ.

We close by extending Theorem 3.5 to P*MDs and then to "ordinary" PvMDs. We omit the (by now) straightforward proofs.

Corollary 3.6. Let \star be a semistar operation on D such that D is a $P\star MD$ with finite \star_r -character, and let I be a quasi- \star_r -ideal of D. Then:

- (1) I is \star_{f} -idempotent if and only if $I^{\star_{f}}$ is a \star_{f} -product of \star_{f} -idempotent quasi- \star_{f} -prime ideals in D, that is, $I^{\star_{f}} = (P_{1} \cdots P_{n})^{\star_{f}}$, where the P_{i} are \star_{f} -idempotent quasi- \star_{f} -primes of D.
- (2) The following statements are equivalent.
 - (a) I is \star_{f} -idempotent and \star_{f} -divisorial ($I^{\star_{f}}$ is divisorial in D^{\star}).
 - (b) I is $a \star_{f}$ -product of non-quasi- \star_{f} -maximal idempotent quasi- \star_{f} -prime ideals.
 - (c) I is a \star_{f} -product of \star_{f} -divisorial \star_{f} -idempotent prime ideals.
 - (d) I has a unique representation as a ★_f-product of incomparable ★_f-divisorial ★_f-idempotent primes.

Corollary 3.7. Let D be a PvMD with finite t-character, and let I be a nonzero t-ideal of D. Then:

- (1) *I* is *t*-idempotent if and only if *I* is a *t*-product of *t*-idempotent *t*-prime ideals in *D*.
- (2) The following statements are equivalent.
 - (a) *I* is *t*-idempotent and divisorial.
 - (b) *I* is a *t*-product of non-*t*-maximal *t*-idempotent *t*-primes.
 - (c) *I* is a *t*-product of divisorial *t*-idempotent *t*-primes.
 - (d) *I* has a unique representation as a *t*-product of incomparable divisorial *t*-idempotent *t*-primes.

References

- Arnold, J.: On the ideal theory of the Kronecker function ring and the domain D(X). Can. J. Math. 21, 558–563 (1969)
- Cahen, P.-J., Chabert, J.-L.: Integer-Valued Polynomials, vol. 48. Providence (1997) (Amer. Math. Soc. Surv. Monogr.)

- 3. Fontana, M., Houston, E., Lucas, T.: Toward a classification of prime ideals in Prüfer domains. Forum Math. 22, 741–766 (2010)
- Fontana, M., Houston, E., Lucas, T.: Factoring Ideals in Integral Domains. Lectures Notes of U.M.I. Springer, Berlin (2013)
- Fontana, M., Houston, E., Park, M.H.: Sharpness and semistar operations in Pr
 üfer-like domains. Commun. Algebra 47, 1478–1489 (2019)
- Fontana, M., Huckaba, J.A.: Localizing systems and semistar operations. In: Chapman, S.T., Glaz, S. (eds.) Non-Noetherian Commutative Ring Theory. Kluwer Academic Publishers, pp. 169–198 (2000)
- 7. Fontana, M., Huckaba, J.A., Papick, I.J.: Prüfer Domains. Marcel Dekker Inc., New York (1997)
- 8. Fontana, M., Jara, P., Santos, E.: Prüfer ★-multiplication domains and semistar operations. J. Algebra Appl. 2, 21–50 (2003)
- Fontana, M., Loper, K.A.: Nagata rings, Kronecker function rings and related semistar operations. Commun. Algebra 31, 4775–4805 (2003)
- Gilmer, R.: Integral domains which are almost Dedekind. Proc. Am. Math. Soc. 15, 813–818 (1964)
- 11. Gilmer, R.: Overrings of Prüfer domains. J. Algebra 4, 331-340 (1966)
- 12. Gilmer, R.: Multiplicative Ideal Theory. Marcel Dekker, New York (1972)
- 13. Gilmer, R., Heinzer, W.: Overrings of Prüfer domains, II. J. Algebra 7, 281-302 (1967)
- 14. Kang, B.G.: Prüfer *v*-multiplication domains and the ring $R[X]_{N_v}$. J. Algebra **123**, 151–170 (1989)
- Okabe, A., Matsuda, R.: Semistar operations on integral domains. Math. J. Toyama Univ. 17, 1–21 (1994)
- Zafrullah, M.: Some polynomial characterizations of Prüfer *v*-multiplication domains. J. Pure Appl. Algebra 32, 231–237 (1984)