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Abstract Let D be a Priifer x-multiplication domain, where « is a semistar operation
on D. We show that certain ideal-theoretic properties related to idempotence and
divisoriality hold in Priifer domains, and we use the associated semistar Nagata ring
of D to show that the natural counterparts of these properties also hold in D.
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1 Introduction and Preliminaries

Throughout this work, D will denote an integral domain, and K will denote its
quotient field. Recall that Arnold [1] proved that D is a Priifer domain if and only
if its associated Nagata ring D[X]y, where N is the set of polynomials in D[X]
whose coefficients generate the unit ideal, is a Priifer domain. This was generalized
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to Priifer v-multiplication domains (PvMDs) by Zafrullah [16] and Kang [14] and
to Priifer x-multiplication domains (PxMDs) by Fontana, Jara, and Santos [8].

Our goal in this paper is to show that certain ideal-theoretic properties that hold
in Priifer domains transfer in a natural way to PAMDs. For example, we show that
an ideal / of a Priifer domain is idempotent if and only if it is a radical ideal each of
whose minimal primes is idempotent (Theorem 2.9), and we use a Nagataring transfer
“machine” to transfer a natural counterpart of this characterization to PxMDs. For
another example, in Theorem 3.5 we show that an ideal in a Priifer domain of finite
character is idempotent if and only if it is a product of idempotent prime ideals and,
perhaps more interestingly, we characterize ideals that are simultaneously idempotent
and divisorial as (unique) products of incomparable divisorial idempotent primes;
and we then extend this to PAMDs.

Let us review the terminology and notation. Denote by F (D) the set of all nonzero
D—submodules of K, and by F (D) the set of all nonzero fractional ideals of D, i.e.,
E € F(D)if E € F(D) and there exists a nonzero d € D withdE C D. Let f(D)
be the set of all nonzero finitely generated D—submodules of K. Then, obviously,
f(D) € F(D) € F(D).

Following Okabe-Matsuda [15], a semistar operation on D is amap * : f(D) —
F(D), E + E*, such that, for all x € K, x # 0, and for all E, F € F(D), the
following properties hold:

(*x1) (xE)* =xE™;
(x2) E C F implies E* C F*;
(x3) EC E*and E** := (E*)* = E*.

Of course, semistar operations are natural generalizations of star operations—see
the discussion following Corollary 2.5 below.

The semistar operation  is said to have finite type if E* = | J{F* | F € f(D),
F C E} for each E € F(D). To any semistar operation  we can associate a finite-
type semistar operation *, given by

E :=| JIF*| F € (D). F C E}.

We say that a nonzero ideal I of D is a quasi-x-ideal if I = I* N D, a quasi-*-
prime ideal if it is a prime quasi-x-ideal, and a quasi-x-maximal ideal if it is maximal
in the set of all proper quasi-*-ideals. A quasi-*-maximal ideal is a prime ideal. We
will denote by QMax* (D) (QSpec*(D)) the set of all quasi-*-maximal ideals (quasi-
x-prime ideals) of D. While quasi-*-maximal ideals may not exist, quasi-*.-maximal
ideals are plentiful in the sense that each proper quasi-*,-ideal is contained in a quasi-
* -maximal ideal. (See [9] for details.) Now we can associate to  yet another semistar

operation: for E € F(D), set

E*:= ﬂ{EDQ | 0 € QMax™ (D)}.
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Then * is also a finite-type semistar operation, and we have E* C E* C E* for all
E € F(D).

Let » be a semistar operation on D. Set N (x) = {g € D[X] | c¢(g9)* = D*}, where
c(g) is the content of the polynomial g, i.e., the ideal of D generated by the coefficients
of g. Then N (%) is a saturated multiplicatively closed subset of D[X], and we call
the ring Na(D, x) := D[X]y() the semistar Nagata ring of D with respect to .
The domain D is called a Priifer x- multiplication domain (PxMD) if (FF~")"r =
D’ (= D*) for each F € f(D) (i.e., each such F is * -invertible). (Recall that
F'=MD:F)={uekK|uF CD})

In the following two lemmas, we assemble the facts we need about Nagata rings
and PxMDs. Most of the proofs can be found in [6, 9] or [5].

Lemma 1.1. Let x be a semistar operation on D. Then:

(1) D*=D%.

(2) QMax* (D) = QMax*(D).

(3) The map QMax™ (D) — Max(Na(D, x)), P — PNa(D, %), is a bijection with
inverse map M +— M N D.

(4) P +— PNa(D, %) defines an injective map QSpec:(D) — Spec(Na(D, x)).

(5) N(x) = N(*,) = N (%) and (hence) Na(D, ») = Na(D, »,) = Na(D, %).

(6) Foreach E € F(D), E* = ENa(D, x) N K, and E*Na(D, x) = ENa(D, %).

(7) A nonzero ideal I of D is a quasi-*-ideal if and only if I = INa(D, x) N D.

Lemma 1.2. Let x be a semistar operation on D.

(1) The following statements are equivalent.

(@) D isa PxMD.

(b) Na(D, %) is a Priifer domain.

(c) The ideals of Na(D, %) are extended from ideals of D.
(d) Dp is a valuation domain for each P € QMax™ (D).

(2) Assume that D is a PxMD. Then:

(a) ¥ =« and (hence) D* = D*.

(b) The map QSpec™ (D) — Spec(Na(D, %)), P — PNa(D, %), is a bijection
with inverse map Q — Q N D.

(c) Finitely generated ideals of Na(D, x) are extended from finitely generated
ideals of D.

2 Idempotence

We begin with our basic definition.

Definition 2.1. Let x be a semistar operation on D. An element E € F (D) is said
to be x-idempotent if E* = (E?)*.
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Our primary interest will be in (nonzero) x-idempotent ideals of D. Let » be a
semistar operation on D, and let / be a nonzero ideal of D. It is well known that
I* N D is a quasi-*-ideal of D. (This is easy to see: we have

(I*ND)CI*=1"=(IND)*C< I ND),

and hence I* = (I* N D)*; it follows that I* N D = (I* N D)* N D.) It, therefore,
seems natural to call I* N D the quasi-x-closure of I.If we also call I x-proper when
I* C D~ then it is easy to see that [ is x-proper if and only if its quasi-x-closure is
a proper quasi-x-ideal. Now suppose that / is x-idempotent. Then

(I*ND) =1"= I = (IHH* = ((I* N DMHH* = ((I* N D),

whence I* N D is a x-idempotent quasi--ideal of D. A similar argument gives the
converse. Thus a (x-proper) nonzero ideal is x-idempotent if and only if its quasi--
closure is a (proper) x-idempotent quasi-x-ideal.

Our study of idempotence in Priifer domains and PxMDs involves the notions of
sharpness and branchedness. We recall some notation and terminology.

Given an integral domain D and a prime ideal P € Spec(D), set

V(P) :={M € Max(D) | M 2 P} and
O(P) :=({Du | M € V(P)}.

We say that P is sharp if ©(P) g Dp (see [11, Lemma 1] and [3, Section 1
and Proposition 2.2]). The domain D itself is sharp (doublesharp) if every maximal
(prime) ideal of D is sharp. (Note that a Priifer domain D is doublesharp if and only
if each overring of D is sharp [7, Theorem 4.1.7].) Now let x be a semistar operation
on D. Given a prime ideal P € QSpec™ (D), set

V* (P) := {M € QMax" (D) | M 2 P} and
®% (P) := ({{Dy | M € V' (P)}.

Call P *f—sharp if ©% (P) 52 Dp. For example, if » = d is the identity, then
the «,-sharp property coincides with the sharp property. We then say that D is x,-
(double)sharp if each quasi-*,-maximal (quasi-*,-prime) ideal of D is *,-sharp. (For
more on sharpness, see [10, 11, 13], [7, page 62], [3], [4, Chapter 2, Section 3] and
[51)

Recall that a prime ideal P of a ring is said to be branched if there is a P-primary
ideal distinct from P. Also, recall that the domain D has finite character if each
nonzero ideal of D is contained in only finitely many maximal ideals of D.

We now prove a lemma that discusses the transfer of ideal-theoretic properties
between D (on which a semistar operation * has been defined) and its associated
Nagata ring.
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Lemma 2.2. Let x be a semistar operation on D.

(1) Let E € F(D). Then E is %-idempotent if and only if ENa(D, %) is idempotent.
In particular, if D is a PxMD, then E is x,-idempotent if and only if ENa(D, %)
is idempotent.

(2) Let P be a quasi-x-prime of D and I a nonzero ideal of D. Then:

(a) I is P-primary in D if and only if I is a quasi-x-ideal of D and INa(D, )
is PNa(D, x)-primary in Na(D, ).
(b) P is branched in D if and only if PNa(D, %) is branched in Na(D, x).

(3) D has %,-finite character (i.e., each nonzero element of D belongs to only finitely
many (possibly zero) M € QMax™ (D)) if and only if Na(D, %) has finite char-
acter.

(4) Let I be a quasi-x-ideal of D. Then I is a radical ideal if and only if INa(D, %)
is a radical ideal of Na(D, *).

(5) Assume that D is a PxMD. Then:

(a) If P € QSpec™ (D), then P is x,-sharp if and only if PNa(D, %) is sharp in
Na(D, x).
(b) D is *,-(double)sharp if and only if Na(D, *) is (double)sharp.

Proof. (1) We use Lemma 1.1(6). If ENa(D, ) is idempotent, then E* =
ENa(D,*) N K = E2Na(D, x) N K = (E?)*. Conversely, if E is *-idempotent,
then (ENa(D, %))> = E2Na(D, *) = (E*)*Na(D, ) = E*Na(D, )= ENa(D, *).
The “in particular” statement follows because x, = % in a PAMD (Lemma 1.2(2a)).

(2) (a) Suppose that [ is P-primary. Then I D[X] is P D[X]-primary. Since P is
a quasi-*-prime of D, PNa(D, %) is a prime ideal of Na(D, x) (Lemma 1.1(4)), and
then, since Na(D, %) is a quotient ring of D[X], INa(D, x) is PNa(D, )-primary
in Na(D, %). Also, again using the fact that / D[X] is P D[X]-primary (along with
Lemma 1.1(6)), we have

I*ND =1INa(D,*)ND C ID[X]ppx; N DIX]ND = ID[X]ND =1,

whence [ is a quasi-*-ideal of D. Conversely, assume that / is a quasi-x-ideal of
D and that INa(D, x) is PNa(D, x)-primary. Then for a € P, there is a positive
integer n for which a” € INa(D,x) N D = I*ND=1.Hence P = rad(7). It now
follows easily that I is P-primary. (b) Suppose that P is branchedin D. Then thereisa
P-primary ideal I of D distinct from P, and INa(D, ) is PNa(D, x)-primary by (a).
Also by (a), I is a quasi-*-ideal, from which it follows that INa(D, x) # PNa(D, ).
Now suppose that PNa(D, %) is branched and that J is a PNa(D, x)-primary ideal
of Na(D, «) distinct from PNa(D, x). Then it is straightforward to show that J N D
is distinct from P and is P-primary.

(3) Let ¥ be a nonzero element of Na(D, ), and let N be a maximal ideal
with ¢» € N. Then y)Na(D, x) = fNa(D, ) for some f € D[X], and writing N =
MNa(D, %) for some M € QMax™ (D) (Lemma 1.1(3)), we must have f € M D[X]
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and hence c(f) € M. Therefore, if D has finite . -character, then Na(D, x) has finite
character. The converse is even more straightforward.

(4) Suppose that [ is a radical ideal of D, and let ¢" € INa(D, x) for some
1) € Na(D, ) and positive integer n. Then there is an element g € N (x) with (gy"
and hence) (gy)" € I D[X]. Since I D[X] is a radical ideal of D[X], gy € I D[X]
and we must have v € INa(D, x). Therefore, INa(D, x) is a radical ideal of
Na(D, x). The converse follows easily from the factthat INa(D, x) N D = 'nD=
I (Lemma 1.1(7)).

(5) (a) This is part of [5, Proposition 3.5], but we give here a proof more in the
spirit of this paper. Let P € QSpec™ (D). If P is *, -sharp, then by [5, Proposition
3.1] P contains a finitely generated ideal I with [ ;(_ M for all M € V7 (P), and,
using the description of Max(Na(D, x)) given in Lemma 1.1(3), INa(D, %) is a
finitely generated ideal of Na(D, x) contained in PNa(D, x) but in no element of
V(PNa(D, «)). Therefore, PNa(D, %) is sharp in the Priifer domain Na(D, *). For
the converse, assume that PNa (D, %) is sharpin Na(D, x). Then PNa(D, *) contains
afinitely generated ideal J with J/ € PNa(D, %) but J ,Q_ N for N € V(PNa(D, %))
[13, Corollary 2]. Then J = INa(D, %) for some finitely generated ideal I of D
(necessarily) contained in P by Lemma 1.2(2c), and it is easy to see that / g_ M
for M € V*r (D). Then by [5, Proposition 3.1], P is *,-sharp. Statement (b) follows
easily from (a) (using Lemma 1.2). O

Let D be an almost Dedekind domain with a non-finitely generated maximal ideal
M. Then M~' = D, but M is not idempotent (since M Dy, is not idempotent in the
Noetherian valuation domain D). Our next result shows that this cannot happen in
a sharp Priifer domain.

Theorem 2.3. Let D be a Priifer domain. If D is (d-)sharp and I is a nonzero ideal
of D with I™" = D, then I is idempotent.

Proof. Assume that D is sharp. Proceeding contrapositively, suppose that I is a
nonzero, non-idempotent ideal of D. Then, for some maximal ideal M of D, I Dy, is
notidempotentin D,,. Since D is a sharp domain, we may choose a finitely generated
ideal J of D with J € M but J g N for all maximal ideals N # M. Since I Dy,
is a non-idempotent ideal in the valuation domain D, there is an element a € |
for which 12Dy C aDy. Let B := J + Da. Then 1Dy, € BDy; and, for N €
Max(D) \ {M}, I’Dy € Dy = BDy. Hence I> C B. Since B is a proper finitely
generated ideal, we then have (72)~! 2 B~! O D. Hence (1?)~! # D, from which
it follows that 7! # D, as desired. O

Kang [14, Proposition 2.2] proves that, for a nonzero ideal I of D, we always have
I~'Na(D, v) = (Na(D, v)) : I). This cannot be extended to general semistar Nagata
rings; for example, if D is an almost Dedekind domain with non-invertible maximal
ideal M and we define a semistar operation » by E* = ED), for E € F(D), then
(D : M) = D and hence (D : M)Na(D, x) = Na(D, x) = D[X]ux; = Du(X) C
(Dy : MDy) Dy (X) = (Na(D, %) : MNa(D, x)) (where the proper inclusion holds
because M Dy, is principal in D)ys). At any rate, what we really require is the equality
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(D* : E)Na(D, x) = (Na(D, %) : E) for E € F(D). In the next lemma, we show
that this holds in a PAMD but not in general. The proof of part (1) of the next lemma
is a relatively straightforward translation of the proof of [14, Proposition 2.2] to
the semistar setting. In carrying this out, however, we discovered a minor flaw in the
proof of [14, Proposition 2.2]. The flaw involves a reference to [12, Proposition 34.8],
but this result requires that the domain D be integrally closed. To ensure complete
transparency, we give the proof in full detail.

Lemma 2.4. Let x be a semistar operation on D. Then:

(1) (D*: E)Na(D, ) 2 (Na(D, ) : E) for each E € F(D).
(2) The following statements are equivalent:

(a) (D*: E)Na(D, x) = (Na(D, %) : E) for each E € F(D).
(b) D* = D*.
(c) D* C Na(D, x).

(3) (D*: E)Na(D, x) = (Na(D, %) : E) for each E € F(D).
4) If D is a PxMD, then the equivalent conditions in (2) hold.

Proof. (1) Let E € f(D), and let ¢ € (Na(D, %) : E). Fora € E, a # 0, we may
find g € N (%) such that Yag € D[X]. This yields g € a~'D[X] € K[X], and
hence i) = f/g for some f € K[X]. We claim that c¢(f) € (D*: E). Granting
this, we have f € (D*: E)D[X], from which it follows that ¢ = f/g € (D*:
E)Na(D, x), asdesired. To prove the claim, take b € E,and notethat fb € Na(D, x).
Hence fbh € D[X]forsomeh € N(x),andsoc(fh)b C D.By the content formula
[12, Theorem 28.1], there is an integer m for which c(f)c(h)"*! = c(fh)c(h)™.
Using the fact that c(h)* = D*, we obtain c(f)* = ¢(fh)* and hence that c(f)b C
c(fh)*b € D*. Therefore, c(f) € (D* : E), as claimed.

(2) Under the assumption in (c), D* € Na(D,») N K = D* (Lemma 1.1(6)).
Hence (¢) = (b). Now assume that D* = D*. Then for E € f(D), we have (D* :
E)E C D* = D* C Na(D, %); using (1), the implication (b) = (a) follows. That (a)
= (c) follows upon taking £ = D in (a).

(3) This follows easily from (2), because Na(D, x) = Na(D, %) by Lemma 1.1(5).

(4) This follows from (2), since if D is a PxMD, then D* = D* by
Lemma 1.2(2a). [l

The conditions in Lemma 2.4(2) need not hold: Let F C k be fields, V = k[[x]]
the power series ring over V in one variable, and D = F + M, where M = xk[[x]].
Define a (finite-type) semistar operation » on D by A* = AV for A € F(D). Then
D*=V 2D =Dy = D*.

We can now extend Theorem 2.3 to PxMDs.

Corollary 2.5. Let  be a semistar operation on D such that D is a x.-sharp PxMD,
and let I be a nonzero ideal of D with (D* : I) = D*. Then I is %.-idempotent.
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Proof. By Lemma 2.4(3), we have
(Na(D, x) : INa(D, x)) = (D* : I)Na(D, x) = D*Na(D, x) = Na(D, x).

Hence INa(D, ) is idempotent in the Priifer domain Na(D, ) by Theorem 2.3.
Lemma 2.2(1) then yields that / is %, -idempotent. U

Many semistar counterparts of ideal-theoretic properties in domains result in equa-
tions that are “external” to D, since for a semistar operation * on D and a nonzero
ideal I of D, it is possible that /* ¢ D. Of course, x-idempotence is one such prop-
erty. Often, one can obtain a “cleaner” counterpart by specializing from PxMDs to
“ordinary” PuMDs. We recall some terminology. Semistar operations are general-
izations of star operations, first considered by Krull and repopularized by Gilmer
[12, Sections 32, 34]. Roughly, a star operation is a semistar operation restricted
to the set F (D) of nonzero fractional ideals of D with the added requirement that
one has D* = D. The most important star operation (aside from the d-, or trivial,
star operation) is the v-operation: For E € F(D), put E-' = {x € K | xE C D}
and EV = (E~')~!. Then vy (restricted to F(D)) is the t-operation and 7V is the
w-operation. Thus a PuMD is a domain in which each nonzero finitely generated
ideal is z-invertible. Corollary 2.5 then has the following restricted interpretation
(which has the advantage of being internal to D).

Corollary 2.6. If D is a t-sharp PvMD and I is a nonzero ideal of D for which
IV =D, then I is t-idempotent.

Our next result is a partial converse to Theorem 2.3.

Proposition 2.7. Let D be a Priifer domain such that I is idempotent whenever I
is a nonzero ideal of D with I~' = D. Then, every branched maximal ideal of D is
sharp.

Proof. Let M be a branched maximal ideal of D. Then M Dy = rad(aDy,) for
some nonzero element a € M [12, Theorem 17.3]. Let I :=aDy; N D. Then I is
M -primary, and since I Dy = aDy, (IDy and hence) I is not idempotent. By
hypothesis, we may choose u € I='\ D. Since Iu € D and IDy = Dy for N €
Max(D) \ {M},thenu € ({Dn | N € Max(D), N # M}. On the other hand, since
u ¢ D,u ¢ Dy. It follows that M is sharp. (]

Now we extend Proposition 2.7 to PxMDs.

Corollary 2.8. Let x be a semistar operation on D, and assume that D is a PxMD
such that 1 is x,-idempotent whenever I is a nonzero ideal of D with (D* : I) = D*.
Then, each branched quasi-x,-maximal ideal of D is *,-sharp. (In particular if D is a
PvMD in which I is t-idempotent whenever I is a nonzero ideal of D with [ ! = D,
then each branched maximal t-ideal of D is t-sharp.)
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Proof. Let J be a a nonzero ideal of the Priifer domain Na(D, ) with (Na(D, x) :
J) = Na(D, x). By Lemma 1.2(1c), J = INa(D, x) for some ideal I of D. Applying
Lemma 2.4(3) and Lemma 1.1(6), we obtain (D* : I) = D*. Hence, by hypothesis,
I is x,-idempotent, and this yields that J = INa(D, *) is idempotent in the Priifer
domain Na(D, ) (Lemma 2.2(1)). Now, let M be a branched quasi-x, -maximal ideal
of D. Then, by Lemma 2.2(2), MNa(D, %) is a branched maximal ideal of Na(D, *).
We may now apply Proposition 2.7 to conclude that MNa(D, *) is sharp. Therefore,
M is x,-sharp in D by Lemma 2.2(5). O

If P is a prime ideal of a Priifer domain D, then powers of P are P-primary by [12,
Theorem 23.3(b)]; it follows that P is idempotent if and only if P Dp is idempotent.
We use this fact in the next result.

It is well known that a proper idempotent ideal of a valuation domain must be
prime [12, Theorem 17.1(3)]. In fact, according to [12, Exercise 3, p. 284], a proper
idempotent ideal in a Priifer domain must be a radical ideal. We (re-)prove and extend
this fact and add a converse.

Theorem 2.9. Let D be a Priifer domain, and let I be an ideal of D. Then I is
idempotent if and only if I is a radical ideal each of whose minimal primes is
idempotent.

Proof. The result is trivial for I = (0) and vacuously true for / = D. Suppose that
I is a proper nonzero idempotent ideal of D, and let P be a prime minimal over /.
Then I Dp is idempotent, and we must have I/ Dp = P Dp [12, Theorem 17.1(3)].
Hence P Dp is idempotent, and therefore, by the comment above, so is P. Now let
M be a maximal ideal containing /. Then I D, is idempotent, hence prime (hence
radical). It follows (checking locally) that [ is a radical ideal.

Conversely, let I be a radical ideal each of whose minimal primes is idempotent.
If M is a maximal ideal containing / and P is a minimal prime of / contained in
M, then I Dy; = P D). Since P is idempotent, this yields I Dy, = 12Dy, It follows
that / is idempotent. O

‘We next extend Theorem 2.9 to PxMDs.

Corollary 2.10. Let D be a PxMD, where * is a semistar operation on D, and let 1
be a quasi-x,-ideal of D. Then I is x,-idempotent if and only if I is a radical ideal
each of whose minimal primes is ,-idempotent. (In particular, if D is a PvMD and
I is a t-ideal of D, then I is t-idempotent if and only if I is a radical ideal each of
whose minimal primes is t-idempotent.)

Proof. Suppose that [ is x,-idempotent. Then /Na(D, *) is an idempotent ideal
in Na(D, x) by Lemma 2.2(1). By Theorem 2.9, INa(D, %) is a radical ideal of
Na(D, %), and hence, by Lemma 2.2(4), I is a radical ideal of D. Now let P be
a minimal prime of / in D. Then P is a quasi-* -prime of D. By Lemma 1.2(2b)
PNa(D, %) is minimal over I/Na(D, x), whence PNa(D, «) is idempotent, again by
Theorem 2.9. The *,-idempotence of P now follows from Lemma 2.2(1).

The converse follows by similar applications of Theorem 2.9 and
Lemma 2.2. O
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Recall that a Priifer domain is said to be strongly discrete (discrete) if it has no
nonzero (branched) idempotent prime ideals. Since unbranched primes in a Priifer
domain must be idempotent [12, Theorem 23.3(b)], a Priifer domain is strongly
discrete if and only if it is discrete and has no unbranched prime ideals. We have the
following straightforward application of Theorem 2.9.

Corollary 2.11. Let D be a Priifer domain.

(1) If D is discrete, then an ideal I of D is idempotent if and only if I is a radical
ideal each of whose minimal primes is unbranched.
(2) If D is strongly discrete, then D has no proper nonzero idempotent ideals.

Let us call a PxMD x,- strongly discrete (x,- discrete) if it has no (branched)
*,-idempotent quasi-,-prime ideals. From Lemma 2.2(1, 2), we have the usual con-
nection between a property of a PAMD and the corresponding property of its x-Nagata
ring.

Proposition 2.12. Let x be a semistar operation on D. Then D is % -(strongly)
discrete PxMD if and only if Na(D, x) is a (strongly) discrete Priifer domain.

Applying Corollary 2.10 and Lemma 2.2(1, 2), we have the following extension
of Corollary 2.11.

Corollary 2.13. Let D be a domain.
(1) Assume that D is a PxMD for some semistar operation = on D.

(@) If D is *,-discrete, then a nonzero quasi-,-ideal I of D is x -idempotent if
and only if I is a radical ideal each of whose minimal primes is unbranched.
(b) If D is x,-strongly discrete, then D has no *,-proper %, -idempotent ideals.

(2) Assume that D is a PvMD.

(a) If D is t-discrete, then a t-ideal 1 of D is t-idempotent if and only if I is a
radical ideal each of whose minimal primes is unbranched.
(b) If D is t-strongly discrete, then D has no t-proper t-idempotent ideals.

3 Divisoriality

According to [7, Corollary 4.1.14], if D is a doublesharp Priifer domain and P is a
nonzero, nonmaximal ideal of D, then P is divisorial. The natural question arises: If
D is a »,-doublesharp PxMD and P € QSpec™ (D) \ QMax™ (D), is P necessarily
divisorial? Since « is an arbitrary semistar operation and divisoriality specifically
involves the v-operation, one might expect the answer to be negative. Indeed, we
give a counterexample in Example 3.4 below. However, in Theorem 3.2 we prove a
general result, a corollary of which does yield divisoriality in the “ordinary” PuMD
case. First, we need a lemma, the first part of which may be regarded as an extension
of [14, Proposition 2.2(2)].
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Lemma 3.1. Let x be a semistar operation on D. Then

(1) (D*: (D*: E))Na(D, ) = (Na(D, %) : (Na(D, *) : E)) for each E € F(D),
and

(2) if I is a nonzero ideal of D, then I* is a divisorial ideal of D* if and only if
INa(D, %) is a divisorial ideal of Na(D, x).

In particular, if D is a PxMD, then (D*:(D*: E))Na(D,*) = (Na(D, %) :
(Na(D, %) : E)) foreach E € F(D); and, for anonzero ideal I of D, I'f is divisorial
in D* if and only if INa(D, %) is divisorial in Na(D, x).

Proof. Set N' = Na(D, *). For (1), applying Lemma 2.4, we have
(D* : (D* : E)N = (N : (D* : E)) = (W : (N : E)).

(2) Assume that / is a nonzero ideal of D. If I* is divisorial in D*, then (using

1) - -
WN:WN:IN))=D": (D :I"')N =I'N = IN.

Now suppose that I\ is divisorial. Then
(D*: (D" : PON =N : NV : D) = IN,

whence ~ o ~
(D*:(D*: I")) CINNK =1I".

The “in particular” statement follows from standard considerations. (]

Theorem 3.2. Let x be a semistar operation on D such that D is a x,-doublesharp
PxMD, and let P € QSpec™ (D) \ QMax™ (D). Then P is a divisorial ideal of D*.

Proof. Since Na(D, %) is a doublesharp Priifer domain (Lemma 2.2(5)), PNa(D, %)
is divisorial by [7, Corollary 4.1.14]. Hence P* is divisorial in D* by
Lemma 3.1. O

Corollary 3.3. If D is a t-doublesharp PvMD, and P is a non-t-maximal t-prime
of D, then P is divisorial.

Proof. Take x = v in Theorem 3.2. (More precisely, take » to be any extension of
the star operation v on D to a semistar operation on D, so that x, (restricted to D) is
the 7-operation on D.) Then P = P’ = P/ is divisorial by Theorem 3.2. (]

Example 3.4. Let p be a prime integer and let D := Int(Z,)). Then D is a two-
dimensional Priifer domain by [2, Lemma VI.1.4 and Proposition V.1.8]. Choose a
height 2 maximal ideal M of D, and let P be a height I prime ideal of D contained
in M. Then P = qQ[X] N D for some irreducible polynomial g € Q[X] [2, Propo-
sition V.2.3]. By [2, Theorems VIIL.5.3 and VIIL.5.15], P is not a divisorial ideal of
D. Set E* = EDy for E € F(D). Then « is a finite-type semistar operation on D.
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Clearly, M is the only quasi-x-maximal ideal of D, and, since Dy is a valuation
domain, D is a PxMD by Lemma 1.2. Moreover, Na(D, x) = Dy (X) is also a val-
uation domain and hence a doublesharp Priifer domain, which yields that D is a
*; -doublesharp PxMD (Lemma 2.2). Finally, since P = PDy N D = P*N D, P is
a non-x.-maximal quasi-x,-prime of D. (]

In the remainder of the paper, we impose on Priifer domains (PxMDs) the finite
character (finite *f—character) condition. As we shall see, this allows improved ver-
sions of Theorem 2.9 and Corollary 2.10. It also allows a type of unique factorization
for (quasi-x,-)ideals that are simultaneously (x,-)idempotent and (, -)divisorial.

Theorem 3.5. Let D be a Priifer domain with finite character, and let I be a nonzero
ideal of D. Then:

(1) I is idempotent if and only if I is a product of idempotent prime ideals.
(2) The following statements are equivalent.

(a) I is idempotent and divisorial.

(b) I is a product of non-maximal idempotent prime ideals.

(c) I is a product of divisorial idempotent prime ideals.

(d) I has a unique representation as the product of incomparable divisorial
idempotent primes.

Proof. (1) Suppose that [ is idempotent. By Theorem 2.9, I is the intersection of
its minimal primes, each of which is idempotent. Since D has finite character, I is
contained in only finitely many maximal ideals, and, since no two distinct minimal
primes of I can be contained in a single maximal ideal, I has only finitely many
minimal primes and they are comaximal. Hence I is the product of its minimal
primes (and each is idempotent). The converse is trivial.

(2) (a) = (b): Assume that [ is idempotent and divisorial. By (1) and its proof,
I=P---P,=P N---N P, where the P; are the minimal primes of /. We claim
that each P; is divisorial. To see this, observe that

(P)'Py--- P, C(P---P)'=1"=1C P.

Since the P; are incomparable, this gives (P;)" € Py, that is, P; is divisorial. By
symmetry each P; is divisorial. It is well known that in a Priifer domain, a maximal
ideal cannot be both idempotent and divisorial. Hence the P; are non-maximal.

(b) = (c): Since D has finite character, it is a (d)-doublesharp Priifer domain
[13, Theorem 5], whence nonmaximal primes are automatically divisorial by [7,
Corollary 4.1.14].

(¢)= (a): Write I = Q- -- Q,,, where each Q; is a divisorial idempotent prime.
Since [ is idempotent (by (1)), we may also write I = P, - - - P,,, where the P; are
the minimal primes of I. For each i, we have Q;--- Q,, = I € P;, from which it
follows that Q; C P; for some j. By minimality, we must then have Q; = P;. Thus
each P; is divisorial, whence I = P; N ---N P, is divisorial.
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Finally, we show that (d) follows from the other statements. We use the notation
in the proof of (c) = (a). In the expression [ = P; - -- P,, the P; are (divisorial,
idempotent, and) incomparable, and it is clear that no P; can be omitted. To see that
this is the only such expression, consider a representation / = Q; - - - Q,,, where the
Q; are divisorial, idempotent, and incomparable. Fix a Q. Then P, --- P, =1 C
Ok, and we have P; C Qy for some i. However, as above, Q; € P; for some j,
whence, by incomparability, O, = P;. The conclusion now follows easily. O

We note that incomparability is necessary for uniqueness above, for example, if D
is a valuation domain and P C Q are non-maximal (necessarily divisorial) primes,
then P = PQ.

We close by extending Theorem 3.5 to PxMDs and then to “ordinary” PvMDs.
We omit the (by now) straightforward proofs.

Corollary 3.6. Let x be a semistar operation on D such that D is a PxMD with
finite ,-character, and let I be a quasi-*,-ideal of D. Then:

(1) 1 is *.-idempotent if and only if I is a *,-product of x, -idempotent quasi-x, -
prime ideals in D, that is, I'f = (P - -- P,)*, where the P; are x, -idempotent
quasi-* -primes of D.

(2) The following statements are equivalent.

(@) I is x,-idempotent and x,-divisorial (I *r is divisorial in D*).

(b) 1 isax,-product of non-quasi-x,-maximal idempotent quasi-*, -prime ideals.

(¢) I is a % -product of x,-divisorial x,-idempotent prime ideals.

(d) I has a unique representation as a .-product of incomparable x -divisorial
*,-idempotent primes.

Corollary 3.7. Let D be a PvMD with finite t-character, and let I be a nonzero
t-ideal of D. Then:

(1) I is t-idempotent if and only if I is a t-product of t-idempotent t-prime ideals
in D.
(2) The following statements are equivalent.

(a) I is t-idempotent and divisorial.

(b) I is a t-product of non-t-maximal t-idempotent t-primes.

(c) I is at-product of divisorial t-idempotent t-primes.

(d) I has a unique representation as a t-product of incomparable divisorial
t-idempotent t-primes.
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