Idempotence and Divisoriality in Prüfer-Like Domains

Marco Fontana, Evan Houston, and Mi Hee Park

Abstract Let *D* be a Prüfer \star -multiplication domain, where \star is a semistar operation on *D*. We show that certain ideal-theoretic properties related to idempotence and divisoriality hold in Prüfer domains, and we use the associated semistar Nagata ring of *D* to show that the natural counterparts of these properties also hold in *D*.

Keywords Idempotent ideal · Semistar operation · Prüfer *-multiplication domain · Nagata ring · Divisorial ideal

1 Introduction and Preliminaries

Throughout this work, *D* will denote an integral domain, and *K* will denote its quotient field. Recall that Arnold [\[1\]](#page-12-0) proved that *D* is a Prüfer domain if and only if its associated Nagata ring $D[X]_N$, where N is the set of polynomials in $D[X]$ whose coefficients generate the unit ideal, is a Prüfer domain. This was generalized

M. Fontana

E. Houston (\boxtimes) Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA e-mail: eghousto@uncc.edu

M. H. Park Department of Mathematics, Chung-Ang University, Seoul 06974, Korea e-mail: mhpark@cau.ac.kr

© Springer Nature Switzerland AG 2020 A. Facchini et al. (eds.), *Advances in Rings, Modules and Factorizations*, Springer Proceedings in Mathematics & Statistics 321, https://doi.org/10.1007/978-3-030-43416-8_9

The first-named author was partially supported by GNSAGA of Istituto Nazionale di Alta Matematica.

The second-named author was supported by a grant from the Simons Foundation (#354565).

The third-named author was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2015R1C1A2A01055124).

Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Largo San Leonardo Murialdo, 1, 00146 Roma, Italy e-mail: fontana@mat.uniroma3.it

to Prüfer v-multiplication domains (PvMDs) by Zafrullah [\[16](#page-13-0)] and Kang [\[14\]](#page-13-1) and to Prüfer \star -multiplication domains (P \star MDs) by Fontana, Jara, and Santos [\[8\]](#page-13-2).

Our goal in this paper is to show that certain ideal-theoretic properties that hold in Prüfer domains transfer in a natural way to P \star MDs. For example, we show that an ideal *I* of a Prüfer domain is idempotent if and only if it is a radical ideal each of whose minimal primes is idempotent (Theorem [2.9\)](#page-8-0), and we use a Nagata ring transfer "machine" to transfer a natural counterpart of this characterization to P-MDs. For another example, in Theorem [3.5](#page-11-0) we show that an ideal in a Prüfer domain of finite character is idempotent if and only if it is a product of idempotent prime ideals and, perhaps more interestingly, we characterize ideals that are simultaneously idempotent and divisorial as (unique) products of incomparable divisorial idempotent primes; and we then extend this to $P \star MDs$.

Let us review the terminology and notation. Denote by $\overline{F}(D)$ the set of all nonzero *D*–submodules of *K*, and by $F(D)$ the set of all nonzero fractional ideals of *D*, i.e., $E \in F(D)$ if $E \in F(D)$ and there exists a nonzero $d \in D$ with $dE \subseteq D$. Let $f(D)$ be the set of all nonzero finitely generated *D*–submodules of *K*. Then, obviously, *f*(*D*) ⊂ *F*(*D*) ⊂ *F*(*D*).

Following Okabe-Matsuda [\[15](#page-13-3)], a *semistar operation* on *D* is a map \star : $\vec{F}(D) \rightarrow$ $\overline{F}(D)$, $E \mapsto E^*$, such that, for all $x \in K$, $x \neq 0$, and for all $E, F \in \overline{F}(D)$, the following properties hold:

 (\star_1) $(xE)^* = xE^*;$ (★₂) $E \subseteq F$ implies $E^* \subseteq F^*$; (\star_3) $E \subseteq E^*$ and $E^{**} := (E^*)^* = E^*.$

Of course, semistar operations are natural generalizations of star operations–see the discussion following Corollary [2.5](#page-6-0) below.

The semistar operation \star is said to have *finite type* if $E^{\star} = \bigcup \{ F^{\star} | F \in f(D), \}$ $F \subseteq E$ for each $E \in F(D)$. To any semistar operation \star we can associate a finitetype semistar operation \star_f given by

$$
E^{\star_f} := \bigcup \{ F^{\star} \mid F \in f(D), F \subseteq E \}.
$$

We say that a nonzero ideal *I* of *D* is a *quasi-* \star -ideal if $I = I^* \cap D$, a *quasi-* \star *prime ideal* if it is a prime quasi---ideal, and a *quasi*---*maximal ideal* if it is maximal in the set of all proper quasi- \star -ideals. A quasi- \star -maximal ideal is a prime ideal. We will denote by QMax^{*}(D) (QSpec^{*}(D)) the set of all quasi-*-maximal ideals (quasi-*-prime ideals) of *D*. While quasi-*-maximal ideals may not exist, quasi-*_{*f*}-maximal ideals are plentiful in the sense that each proper quasi--*^f* -ideal is contained in a quasi- \star_f -maximal ideal. (See [\[9\]](#page-13-4) for details.) Now we can associate to \star yet another semistar operation: for $E \in \overline{F}(D)$, set

$$
E^{\widetilde{\star}} := \bigcap \{ ED_{\mathcal{Q}} \mid \mathcal{Q} \in \mathrm{QMax}^{\star_{f}}(D) \}.
$$

Then $\widetilde{\star}$ is all $E \in \overline{F}(D)$. \widetilde{f} is also a finite-type semistar operation, and we have $E^{\widetilde{\star}} \subseteq E^{\star_f} \subseteq E^{\star}$ for all

Let \star be a semistar operation on *D*. Set $N(\star) = \{g \in D[X] \mid c(g)^{\star} = D^{\star}\}$, where a is the *content* of the polynomial *a* i e the ideal of *D* generated by the coefficients $c(q)$ is the *content* of the polynomial q, i.e., the ideal of *D* generated by the coefficients of g. Then $N(\star)$ is a saturated multiplicatively closed subset of $D[X]$, and we call
the ring $N_a(D \star) := D[X]_{N(\star)}$ the *semistar Nagata ring of D, with respect to* \star the ring Na(*D*, \star) := *D*[*X*]_{*N*(\star)} the *semistar Nagata ring of D with respect to* \star . The domain *D* is called a *Prüfer* \star -*multiplication domain* (P \star MD) if $(FF^{-1})^{\star}$ *f* = D^{\star} (= *D*^{*}) for each $F \in f(D)$ (i.e., each such *F* is \star _{*f*}-invertible). (Recall that *F*^{−1} = (*D* : *F*) = { $u \in K \mid uF ⊆ D$ }.)

In the following two lemmas, we assemble the facts we need about Nagata rings and $P \star MDs$. Most of the proofs can be found in [\[6](#page-13-5), [9](#page-13-4)] or [\[5](#page-13-6)].

Lemma 1.1. Let \star be a semistar operation on D. Then:

- (1) $D^* = D^{*f}$.
- (2) $\text{QMax}^{\star_f}(D) = \text{QMax}^{\widetilde{\star}}(D)$.
- (3) *The map* $QMax^{\star_f}(D) \rightarrow Max(Na(D, \star))$, $P \mapsto PNa(D, \star)$, is a bijection with *inverse map* $M \mapsto M \cap D$.
- (4) $P \mapsto P\text{Na}(D, \star)$ *defines an injective map* $\text{QSpec}^{\star}(D) \to \text{Spec}(\text{Na}(D, \star))$ *.*
- (5) $N(\star) = N(\star_f) = N(\widetilde{\star})$ and (hence) $\text{Na}(D, \star) = \text{Na}(D, \star_f) = \text{Na}(D, \widetilde{\star})$.
(6) For each $F \in \overline{E}(D) \cdot F^{\widetilde{\star}}$. $F^{\text{Na}}(D, \star) \cap K$ and $F^{\widetilde{\star}}(\widetilde{D}, \star)$. $F^{\text{Na}}(D, \star)$
- (6) *For each* $E \in \overline{F}(D)$, $E^* = E\text{Na}(D, \star) \cap K$, and $E^* \text{Na}(D, \star) = E\text{Na}(D, \star)$.
- (7) *A nonzero ideal I of D is a quasi-* $\tilde{\star}$ *-ideal if and only if* $I = I\text{Na}(D, \star) \cap D$ *.*

Lemma 1.2. Let \star be a semistar operation on D.

- (1) *The following statements are equivalent.*
	- (a) *D* is a $P \star MD$.
	- (b) $\text{Na}(D, \star)$ *is a Prüfer domain.*
	- (c) The ideals of $\text{Na}(D, \star)$ are extended from ideals of D.
	- (d) D_P *is a valuation domain for each* $P \in QMax^{\star_f}(D)$ *.*
- (2) Assume that D is a $P \star MD$. Then:
	- (a) $\widetilde{\star} = \star_f$ and (hence) $D^{\star} = D^{\widetilde{\star}}$.
(b) *The man* OSpec^{*}_{*f*} (*D*) \to Spec
	- (b) *The map* $QSpec^{\star_f}(D) \to Spec(Na(D, \star)), P \mapsto PNa(D, \star),$ *is a bijection with inverse map* $Q \mapsto Q \cap D$.
	- (c) Finitely generated ideals of $\text{Na}(D, \star)$ are extended from finitely generated *ideals of D.*

2 Idempotence

We begin with our basic definition.

Definition 2.1. Let \star be a semistar operation on D. An element $E \in F(D)$ is said *to be* \star *-idempotent if* $E^{\star} = (E^2)^{\star}$ *.*

Our primary interest will be in (nonzero) \star -idempotent *ideals* of *D*. Let \star be a semistar operation on *D*, and let *I* be a nonzero ideal of *D*. It is well known that $I^* \cap D$ is a quasi- \star -ideal of *D*. (This is easy to see: we have

$$
(I^{\star}\cap D)^{\star}\subseteq I^{\star\star}=I^{\star}=(I\cap D)^{\star}\subseteq (I^{\star}\cap D)^{\star},
$$

and hence $I^* = (I^* \cap D)^*$; it follows that $I^* \cap D = (I^* \cap D)^* \cap D$.) It, therefore, seems natural to call $I^* \cap D$ the *quasi-* \star -*closure* of *I*. If we also call $I \star$ -*proper* when $I^{\star} \subsetneq D^{\star}$, then it is easy to see that *I* is \star -proper if and only if its quasi- \star -closure is a proper quasi- \star -ideal. Now suppose that *I* is \star -idempotent. Then

$$
(I^* \cap D)^* = I^* = (I^2)^* = ((I^*)^2)^* = (((I^* \cap D)^*)^2)^* = ((I^* \cap D)^2)^*,
$$

whence $I^* \cap D$ is a \star -idempotent quasi- \star -ideal of *D*. A similar argument gives the converse. Thus a $(\star\text{-proper})$ nonzero ideal is $\star\text{-idempotent}$ if and only if its quasi- $\star\text{-}$ closure is a (proper) \star -idempotent quasi- \star -ideal.

Our study of idempotence in Prüfer domains and P*MDs involves the notions of sharpness and branchedness. We recall some notation and terminology.

Given an integral domain *D* and a prime ideal $P \in \text{Spec}(D)$, set

$$
\nabla(P) := \{ M \in \text{Max}(D) \mid M \nsubseteq P \} \text{ and}
$$

\n
$$
\Theta(P) := \bigcap \{ D_M \mid M \in \nabla(P) \}.
$$

We say that *P* is *sharp* if $\Theta(P) \nsubseteq D_P$ (see [\[11,](#page-13-7) Lemma 1] and [\[3,](#page-13-8) Section 1] and Proposition 2.2]). The domain *D* itself is *sharp* (*doublesharp*) if every maximal (prime) ideal of *D* is sharp. (Note that a Prüfer domain *D* is doublesharp if and only if each overring of *D* is sharp [\[7,](#page-13-9) Theorem 4.1.7].) Now let \star be a semistar operation on *D*. Given a prime ideal $P \in \text{QSpec}^{\star}(\mathcal{D})$, set

$$
\nabla^{\star_f}(P) := \{ M \in \mathrm{QMax}^{\star_f}(D) \mid M \nsubseteqq P \} \text{ and}
$$

\n
$$
\Theta^{\star_f}(P) := \bigcap \{ D_M \mid M \in \nabla^{\star_f}(P) \}.
$$

Call *P* \star_f -*sharp* if $\Theta^{\star_f}(P) \nsubseteq D_P$. For example, if $\star = d$ is the identity, then the \star_f -sharp property coincides with the sharp property. We then say that *D* is \star_f -(double)sharp if each quasi- \star_f -maximal (quasi- \star_f -prime) ideal of *D* is \star_f -sharp. (For more on sharpness, see [\[10,](#page-13-10) [11](#page-13-7), [13](#page-13-11)], [\[7,](#page-13-9) page 62], [\[3\]](#page-13-8), [\[4,](#page-13-12) Chapter 2, Section 3] and [\[5\]](#page-13-6).)

Recall that a prime ideal *P* of a ring is said to be *branched* if there is a *P*-primary ideal distinct from *P*. Also, recall that the domain *D* has *finite character* if each nonzero ideal of *D* is contained in only finitely many maximal ideals of *D*.

We now prove a lemma that discusses the transfer of ideal-theoretic properties between D (on which a semistar operation \star has been defined) and its associated Nagata ring.

Lemma 2.2. *Let* - *be a semistar operation on D.*

- (1) Let $E \in F(D)$. Then E is $\tilde{\star}$ -idempotent if and only if $E\text{Na}(D, \star)$ is idempotent.
In particular if D is a P**+MD** then E is \star -idempotent if and only if $F\text{Na}(D, \star)$ In particular, if D is a P \star MD, then E is \star _f-idempotent if and only if E Na(D, \star) *is idempotent.*
- (2) *Let P be a quasi-*-*-prime of D and I a nonzero ideal of D. Then:*
	- (a) *I is P-primary in D if and only if I is a quasi-* $\tilde{\star}$ *-ideal of D and INa(D,* \star *)*
is PNa(D, \star *)-primary in Na(D,* \star *) is PNa* (D, \star) -primary in Na (D, \star) .
	- (b) *P* is branched in *D* if and only if $P\text{Na}(D, \star)$ is branched in $\text{Na}(D, \star)$.
- (3) *D has* -*^f -finite character*(*i.e., each nonzero element of D belongs to only finitely many* (*possibly zero*) $M \in QMax^{\star_f}(D)$) *if and only if* $Na(D, \star)$ *has finite character.*
- (4) Let *I* be a quasi- $\tilde{\star}$ -ideal of *D*. Then *I* is a radical ideal if and only if $INA(D, \star)$
is a radical ideal of $Na(D, \star)$ *is a radical ideal of* $Na(D, \star)$ *.*
- (5) *Assume that D is a P* \star *MD. Then:*
	- (a) If $P \in \text{QSpec}^{\star}(\mathcal{D})$, then P is \star_{f} -sharp if and only if $P\text{Na}(D, \star)$ is sharp in $Na(D, \star).$
	- *(b)* D is \star _{*f*} -(*double*)*sharp if and only if* $\text{Na}(D, \star)$ *is* (*double*)*sharp.*

Proof. (1) We use Lemma [1.1\(](#page-2-0)6). If $E\text{Na}(D, \star)$ is idempotent, then $E^{\star} =$ $E\text{Na}(D, \star) \cap K = E^2\text{Na}(D, \star) \cap K = (E^2)^{\tilde{\star}}$. Conversely, if *E* is $\tilde{\star}$ -idempotent,
then $(F\text{Na}(D, \star))^2 = E^2\text{Na}(D, \star) = (E^2)^{\tilde{\star}}\text{Na}(D, \star) = E^{\tilde{\star}}\text{Na}(D, \star) = F\text{Na}(D, \star)$ then $(ENa(D, \star))^2 = E^2Na(D, \star) = (E^2)^TNa(D, \star) = E^TNa(D, \star) = ENa(D, \star).$ The "in particular" statement follows because $\star_f = \tilde{\star}$ in a P $\star M D$ (Lemma [1.2\(](#page-2-1)2a)).
(2) (a) Suppose that *I* is *P*-primary Then *I DV* I is *P DV* I-primary Since *P* is

(2) (a) Suppose that *I* is *P*-primary. Then $ID[X]$ is $PD[X]$ -primary. Since *P* is a quasi- $\tilde{\star}$ -prime of *D*, *P*Na(*D*, \star) is a prime ideal of Na(*D*, \star) (Lemma [1.1\(](#page-2-0)4)), and
then since Na(*D*, \star) is a quotient ring of *D*[*X*], *INa*(*D*, \star) is *PNa*(*D*, \star)-primary then, since $\text{Na}(D, \star)$ is a quotient ring of $D[X]$, $I\text{Na}(D, \star)$ is $P\text{Na}(D, \star)$ -primary in Na(D , \star). Also, again using the fact that *ID*[*X*] is *PD*[*X*]-primary (along with Lemma $1.1(6)$ $1.1(6)$, we have

$$
I^{\tilde{\star}} \cap D = I \text{Na}(D, \star) \cap D \subseteq ID[X]_{PD[X]} \cap D[X] \cap D = ID[X] \cap D = I,
$$

whence *I* is a quasi- $\tilde{\star}$ -ideal of *D*. Conversely, assume that *I* is a quasi- $\tilde{\star}$ -ideal of *D* and that *I*Na(*D* \star) is *PNa(D* \star)-primary. Then for $a \in P$ there is a positive *D* and that $INa(D, \star)$ is $PNa(D, \star)$ -primary. Then for $a \in P$, there is a positive integer *n* for which $a^n \in I\text{Na}(D, \star) \cap D = I^{\star} \cap D = I$. Hence $P = \text{rad}(I)$. It now follows easily that *I* is *P*-primary. (b) Suppose that *P* is branched in *D*. Then there is a *P*-primary ideal *I* of *D* distinct from *P*, and $INa(D, \star)$ is $PNa(D, \star)$ -primary by (a). Also by (a), *I* is a quasi- $\tilde{\star}$ -ideal, from which it follows that $I\text{Na}(D, \star) \neq P\text{Na}(D, \star)$.
Now suppose that $P\text{Na}(D, \star)$ is branched and that *I* is a $P\text{Na}(D, \star)$ -primary ideal Now suppose that $P\text{Na}(D, \star)$ is branched and that *J* is a $P\text{Na}(D, \star)$ -primary ideal of Na(D , \star) distinct from P Na(D , \star). Then it is straightforward to show that $J \cap D$ is distinct from *P* and is *P*-primary.

(3) Let ψ be a nonzero element of Na(*D*, \star), and let *N* be a maximal ideal $h \psi \in N$. Then ψ Na(*D*, \star) = $fN_3(D, \star)$ for some $f \in D[X]$ and writing $N =$ with $\psi \in N$. Then $\psi \text{Na}(D, \star) = f \text{Na}(D, \star)$ for some $f \in D[X]$, and writing $N = MN_1 \Omega(D, \star)$ for some $M \in \text{OMay}^*(D)$ (Lemma 1.1(3)) we must have $f \in MD[X]$ $MNa(D, \star)$ for some $M \in QMax^{\star_f}(D)$ (Lemma [1.1\(](#page-2-0)3)), we must have $f \in MD[X]$

and hence $c(f) \subseteq M$. Therefore, if *D* has finite \star_f -character, then Na(*D*, \star) has finite character. The converse is even more straightforward.

(4) Suppose that *I* is a radical ideal of *D*, and let $\psi^n \in I\text{Na}(D, \star)$ for some $\in \text{Na}(D, \star)$ and positive integer *n*. Then there is an element $a \in N(\star)$ with $\frac{a\psi^n}{a\psi^n}$ $\psi \in \text{Na}(D, \star)$ and positive integer *n*. Then there is an element $g \in N(\star)$ with $(g\psi^n)$
and hence) $(g\psi)^n \in ID[X]$ Since $ID[X]$ is a radical ideal of $DI[X]$ $(g\psi \in ID[X])$ and hence) $(q\psi)^n \in ID[X]$. Since $ID[X]$ is a radical ideal of $D[X]$, $q\psi \in ID[X]$ and we must have $\psi \in I\text{Na}(D, \star)$. Therefore, $I\text{Na}(D, \star)$ is a radical ideal of $\text{Na}(D, \star)$. The converse follows easily from the fact that $I\text{Na}(D, \star) \cap D = I^{\tilde{\star}} \cap D =$). Therefore, $INa(D, \star)$ is a radical ideal of *I* (Lemma [1.1\(](#page-2-0)7)).

(5) (a) This is part of [\[5](#page-13-6), Proposition 3.5], but we give here a proof more in the spirit of this paper. Let $P \in \text{QSpec}^{\star}(\mathcal{D})$. If P is \star_f -sharp, then by [\[5,](#page-13-6) Proposition 3.1] *P* contains a finitely generated ideal *I* with $I \nsubseteq M$ for all $M \in \nabla^{*f}(P)$, and, using the description of $Max(Na(D, \star))$ given in Lemma [1.1\(](#page-2-0)3), $INa(D, \star)$ is a finitely generated ideal of $\text{Na}(D, \star)$ contained in $P\text{Na}(D, \star)$ but in no element of $\nabla(PNa(D, \star))$. Therefore, $PNa(D, \star)$ is sharp in the Prüfer domain Na(*D*, \star). For the converse, assume that $P\text{Na}(D, \star)$ is sharp in $\text{Na}(D, \star)$. Then $P\text{Na}(D, \star)$ contains a finitely generated ideal *J* with $J \subseteq P\text{Na}(D, \star)$ but $J \nsubseteq N$ for $N \in \nabla(P\text{Na}(D, \star))$ [\[13,](#page-13-11) Corollary 2]. Then $J = I\text{Na}(D, \star)$ for some finitely generated ideal *I* of *D* (necessarily) contained in *P* by Lemma [1.2\(](#page-2-1)2c), and it is easy to see that $I \nsubseteq M$ for $M \in \nabla^{\star}(\mathbf{D})$. Then by [\[5,](#page-13-6) Proposition 3.1], *P* is \star_f -sharp. Statement (b) follows easily from (a) (using Lemma [1.2\)](#page-2-1). \Box

Let *D* be an almost Dedekind domain with a non-finitely generated maximal ideal *M*. Then $M^{-1} = D$, but *M* is not idempotent (since MD_M is not idempotent in the Noetherian valuation domain D_M). Our next result shows that this cannot happen in a sharp Prüfer domain.

Theorem 2.3. *Let D be a Prüfer domain. If D is* (*d-*)*sharp and I is a nonzero ideal of D with* $I^{-1} = D$ *, then I is idempotent.*

Proof. Assume that *D* is sharp. Proceeding contrapositively, suppose that *I* is a nonzero, non-idempotent ideal of *D*. Then, for some maximal ideal *M* of *D*, ID_M is not idempotent in D_M . Since D is a sharp domain, we may choose a finitely generated ideal *J* of *D* with *J* ⊆ *M* but *J* \nsubseteq *N* for all maximal ideals $N \neq M$. Since *ID_M* is a non-idempotent ideal in the valuation domain D_M , there is an element $a \in I$ for which $I^2D_M \subsetneq aD_M$. Let $B := J + Da$. Then $I^2D_M \subseteq BD_M$ and, for $N \in$ $\text{Max}(D) \setminus \{M\}, I^2D_N \subseteq D_N = BD_N.$ Hence $I^2 \subseteq B$. Since *B* is a proper finitely generated ideal, we then have $(I^2)^{-1} \supseteq B^{-1} \supsetneq D$. Hence $(I^2)^{-1} \neq D$, from which it follows that $I^{-1} \neq D$, as desired. \Box it follows that I^{-1} ≠ *D*, as desired.

Kang [\[14](#page-13-1), Proposition 2.2] proves that, for a nonzero ideal *I* of *D*, we always have $I^{-1}Na(D, v) = (Na(D, v)) : I$. This cannot be extended to general semistar Nagata rings; for example, if *D* is an almost Dedekind domain with non-invertible maximal ideal *M* and we define a semistar operation \star by $E^* = ED_M$ for $E \in \overline{F}(D)$, then $(D : M) = D$ and hence $(D : M)Na(D, \star) = Na(D, \star) = D[X]_{M[X]} = D_M(X) \subsetneq$ $(D_M : M D_M)D_M(X) = (Na(D, \star) : M Na(D, \star))$ (where the proper inclusion holds because MD_M is principal in D_M). At any rate, what we really require is the equality

 $(D^* : E) \text{Na}(D, \star) = (\text{Na}(D, \star) : E)$ for $E \in \overline{F}(D)$. In the next lemma, we show that this holds in a $P \star MD$ but not in general. The proof of part (1) of the next lemma is a relatively straightforward translation of the proof of $[14,$ $[14,$ Proposition 2.2] to the semistar setting. In carrying this out, however, we discovered a minor flaw in the proof of [\[14](#page-13-1), Proposition 2.2]. The flaw involves a reference to [\[12](#page-13-13), Proposition 34.8], but this result requires that the domain *D* be integrally closed. To ensure complete transparency, we give the proof in full detail.

Lemma 2.4. *Let* \star *be a semistar operation on D. Then:*

- (1) $(D^* : E) \text{Na}(D, \star) \supseteq (\text{Na}(D, \star) : E)$ *for each* $E \in \overline{F}(D)$ *.*
- (2) *The following statements are equivalent:*
	- (a) $(D^* : E) \text{Na}(D, \star) = (\text{Na}(D, \star) : E)$ *for each* $E \in \overline{F}(D)$ *.*
	- (b) $D^* = D^*$.
	- (c) $D^* \subseteq \text{Na}(D, \star)$.
- (3) $(D^{\tilde{\star}} : E) \text{Na}(D, \star) = (\text{Na}(D, \star) : E) \text{ for each } E \in \overline{F}(D).$
- (4) If D is a $P \star M D$, then the equivalent conditions in (2) hold.

Proof. (1) Let $E \in F(D)$, and let $\psi \in (\text{Na}(D, \star): E)$. For $a \in E$, $a \neq 0$, we may find $a \in N(\star)$ such that $\psi a \in B[X]$. This yields $\psi a \in a^{-1}D[X] \subset K[X]$ and find $g \in N(\star)$ such that $\psi gg \in D[X]$. This yields $\psi g \in a^{-1}D[X] \subseteq K[X]$, and hence $\psi = f/a$ for some $f \in K[X]$. We claim that $c(f) \subseteq (D^{\star} \cdot F)$. Granting hence $\psi = f/g$ for some $f \in K[X]$. We claim that $c(f) \subseteq (D^* : E)$. Granting this we have $f \in (D^* : F)$ *DV*. from which it follows that $\psi = f/g \in (D^* : E)$ this, we have $f \in (D^* : E)D[X]$, from which it follows that $\psi = f/g \in (D^* : E)N_3(D)$ + \rightarrow as desired To prove the claim take $h \in E$ and note that $fh \in Na(D)$ + \rightarrow E)Na(D , \star), as desired. To prove the claim, take $b \in E$, and note that $fb \in Na(D, \star)$. Hence $fbh \in D[X]$ for some $h \in N(\star)$, and so $c(fh)b \subseteq D$. By the content formula [\[12,](#page-13-13) Theorem 28.1], there is an integer *m* for which $c(f)c(h)^{m+1} = c(fh)c(h)^m$. Using the fact that $c(h)^* = D^*$, we obtain $c(f)^* = c(fh)^*$ and hence that $c(f)$ \subseteq $c(fh)^{\star}b \subseteq D^{\star}$. Therefore, $c(f) \subseteq (D^{\star}: E)$, as claimed.

(2) Under the assumption in (c), $D^* \subseteq \text{Na}(D, \star) \cap K = \underline{D}^*$ (Lemma [1.1\(](#page-2-0)6)). Hence (c) \Rightarrow (b). Now assume that $D^* = D^*$. Then for $E \in \overline{F}(D)$, we have $(D^* :$ E) $E \subseteq D^* = D^* \subseteq \text{Na}(D, \star)$; using (1), the implication (b) \Rightarrow (a) follows. That (a) \Rightarrow (c) follows upon taking $E = D$ in (a).

(3) This follows easily from (2), because $\text{Na}(D, \star) = \text{Na}(D, \star)$ by Lemma [1.1\(](#page-2-0)5).
(4) This follows from (2) since if D is a P+MD then $D^{\star} - D^{\tilde{\star}}$ by

(4) This follows from (2), since if *D* is a P*MD, then $D^* = D^*$ by Lemma [1.2\(](#page-2-1)2a). \Box

The conditions in Lemma [2.4\(](#page-6-1)2) need not hold: Let $F \subsetneq k$ be fields, $V = k[[x]]$ the power series ring over *V* in one variable, and $D = F + M$, where $M = xk[[x]]$. Define a (finite-type) semistar operation \star on *D* by $A^* = AV$ for $A \in \overline{F}(D)$. Then $D^* = V \supsetneq D = D_M = D^*$.

We can now extend Theorem 2.3 to P \star MDs.

Corollary 2.5. Let \star be a semistar operation on D such that D is a \star_f -sharp P \star MD, *and let I be a nonzero ideal of D with* $(D^* : I) = D^*$. Then I is \star_f -idempotent.

Proof. By Lemma [2.4\(](#page-6-1)3), we have

$$
(\text{Na}(D, \star) : I\text{Na}(D, \star)) = (D^{\star} : I)\text{Na}(D, \star) = D^{\star}\text{Na}(D, \star) = \text{Na}(D, \star).
$$

Hence $INa(D, \star)$ is idempotent in the Prüfer domain $Na(D, \star)$ by Theorem [2.3.](#page-5-0) Lemma [2.2\(](#page-4-0)1) then yields that *I* is \star_f -idempotent.

Many semistar counterparts of ideal-theoretic properties in domains result in equations that are "external" to D , since for a semistar operation \star on D and a nonzero ideal *I* of *D*, it is possible that $I^* \nsubseteq D$. Of course, \star -idempotence is one such property. Often, one can obtain a "cleaner" counterpart by specializing from P-MDs to "ordinary" PvMDs. We recall some terminology. Semistar operations are generalizations of *star* operations, first considered by Krull and repopularized by Gilmer [\[12,](#page-13-13) Sections 32, 34]. Roughly, a star operation is a semistar operation restricted to the set $F(D)$ of nonzero fractional ideals of D with the added requirement that one has $D^* = D$. The most important star operation (aside from the *d*-, or trivial, star operation) is the *v-operation*: For $E \in F(D)$, put $E^{-1} = \{x \in K \mid xE \subseteq D\}$ and $E^v = (E^{-1})^{-1}$. Then v_f (restricted to $F(D)$) is the *t*-operation and \tilde{v} is the w-operation. Thus a *P*v*MD* is a domain in which each nonzero finitely generated ideal is *t*-invertible. Corollary [2.5](#page-6-0) then has the following restricted interpretation (which has the advantage of being *internal* to *D*).

Corollary 2.6. *If D is a t -sharp P*v*MD and I is a nonzero ideal of D for which* $I^{-1} = D$, then *I* is *t*-idempotent.

Our next result is a partial converse to Theorem [2.3.](#page-5-0)

Proposition 2.7. *Let D be a Prüfer domain such that I is idempotent whenever I is a nonzero ideal of D with* $I^{-1} = D$. Then, every branched maximal ideal of D is *sharp.*

Proof. Let *M* be a branched maximal ideal of *D*. Then $MD_M = \text{rad}(a D_M)$ for some nonzero element $a \in M$ [\[12](#page-13-13), Theorem 17.3]. Let $I := aD_M \cap D$. Then *I* is *M*-primary, and since $ID_M = aD_M$, $(ID_M$ and hence) *I* is not idempotent. By hypothesis, we may choose $u \in I^{-1} \setminus D$. Since $I u \subseteq D$ and $I D_N = D_N$ for $N \in$ $Max(D) \setminus \{M\}$, then $u \in \bigcap \{D_N \mid N \in Max(D), N \neq M\}$. On the other hand, since $u \notin D$, $u \notin D_M$. It follows that *M* is sharp. \Box

Now we extend Proposition 2.7 to P \star MDs.

Corollary 2.8. Let \star be a semistar operation on D, and assume that D is a P \star MD such that I is \star _{*f*} -idempotent whenever I is a nonzero ideal of D with $(D^* : I) = D^*$. *Then, each branched quasi-*-*^f -maximal ideal of D is* -*^f -sharp.*(*In particular if D is a PvMD in which I is t-idempotent whenever I is a nonzero ideal of D with* $I^{-1} = D$, *then each branched maximal t -ideal of D is t -sharp.*)

Proof. Let *J* be a a nonzero ideal of the Prüfer domain Na(*D*, \star) with (Na(*D*, \star): J) = Na(*D*, \star). By Lemma [1.2\(](#page-2-1)1c), $J = I$ Na(*D*, \star) for some ideal *I* of *D*. Applying Lemma [2.4\(](#page-6-1)3) and Lemma [1.1\(](#page-2-0)6), we obtain $(D^* : I) = D^*$. Hence, by hypothesis, *I* is \star_f -idempotent, and this yields that $J = I\text{Na}(D, \star)$ is idempotent in the Prüfer domain Na (D, \star) (Lemma [2.2\(](#page-4-0)1)). Now, let *M* be a branched quasi- \star_f -maximal ideal of *D*. Then, by Lemma [2.2\(](#page-4-0)2), $M\text{Na}(D, \star)$ is a branched maximal ideal of Na(D, \star). We may now apply Proposition [2.7](#page-7-0) to conclude that $MNa(D, \star)$ is sharp. Therefore, *M* is \star_f -sharp in *D* by Lemma [2.2\(](#page-4-0)5).

If *P* is a prime ideal of a Prüfer domain *D*, then powers of *P* are *P*-primary by [\[12,](#page-13-13) Theorem 23.3(b)]; it follows that *P* is idempotent if and only if PD_P is idempotent. We use this fact in the next result.

It is well known that a proper idempotent ideal of a valuation domain must be prime [\[12](#page-13-13), Theorem 17.1(3)]. In fact, according to [\[12](#page-13-13), Exercise 3, p. 284], a proper idempotent ideal in a Prüfer domain must be a radical ideal. We (re-)prove and extend this fact and add a converse.

Theorem 2.9. *Let D be a Prüfer domain, and let I be an ideal of D. Then I is idempotent if and only if I is a radical ideal each of whose minimal primes is idempotent.*

Proof. The result is trivial for $I = (0)$ and vacuously true for $I = D$. Suppose that *I* is a proper nonzero idempotent ideal of *D*, and let *P* be a prime minimal over *I*. Then ID_P is idempotent, and we must have $ID_P = PD_P$ [\[12,](#page-13-13) Theorem 17.1(3)]. Hence PD_P is idempotent, and therefore, by the comment above, so is P . Now let *M* be a maximal ideal containing *I*. Then ID_M is idempotent, hence prime (hence radical). It follows (checking locally) that *I* is a radical ideal.

Conversely, let *I* be a radical ideal each of whose minimal primes is idempotent. If *M* is a maximal ideal containing *I* and *P* is a minimal prime of *I* contained in *M*, then $ID_M = PD_M$. Since *P* is idempotent, this yields $ID_M = I^2D_M$. It follows that *I* is idempotent. that I is idempotent.

We next extend Theorem 2.9 to $P \star MDs$.

Corollary 2.10. Let D be a $P \star MD$, where \star is a semistar operation on D , and let D *be a quasi-* \star _{*f*}-ideal of D. Then I is \star _{*f*}-idempotent if and only if I is a radical ideal *each of whose minimal primes is* -*^f -idempotent.* (*In particular, if D is a P*v*MD and I is a t -ideal of D, then I is t -idempotent if and only if I is a radical ideal each of whose minimal primes is t -idempotent.)*

Proof. Suppose that *I* is \star_f -idempotent. Then $INa(D, \star)$ is an idempotent ideal in Na(D , \star) by Lemma [2.2\(](#page-4-0)1). By Theorem [2.9,](#page-8-0) I Na(D , \star) is a radical ideal of Na(D, \star), and hence, by Lemma [2.2\(](#page-4-0)4), *I* is a radical ideal of *D*. Now let *P* be a minimal prime of *I* in *D*. Then *P* is a quasi- \star_f -prime of *D*. By Lemma [1.2\(](#page-2-1)2b) $P\text{Na}(D, \star)$ is minimal over $I\text{Na}(D, \star)$, whence $P\text{Na}(D, \star)$ is idempotent, again by Theorem [2.9.](#page-8-0) The \star_f -idempotence of *P* now follows from Lemma [2.2\(](#page-4-0)1).

The converse follows by similar applications of Theorem [2.9](#page-8-0) and Lemma [2.2.](#page-4-0) \Box

Recall that a Prüfer domain is said to be *strongly discrete* (*discrete*) if it has no nonzero (branched) idempotent prime ideals. Since unbranched primes in a Prüfer domain must be idempotent [\[12](#page-13-13), Theorem 23.3(b)], a Prüfer domain is strongly discrete if and only if it is discrete and has no unbranched prime ideals. We have the following straightforward application of Theorem [2.9.](#page-8-0)

Corollary 2.11. *Let D be a Prüfer domain.*

- (1) *If D is discrete, then an ideal I of D is idempotent if and only if I is a radical ideal each of whose minimal primes is unbranched.*
- (2) *If D is strongly discrete, then D has no proper nonzero idempotent ideals.*

Let us call a P \star MD \star _{*f*}- *strongly discrete* (\star _{*f*}- *discrete*) if it has no (branched) \star_f -idempotent quasi- \star_f -prime ideals. From Lemma [2.2\(](#page-4-0)1, 2), we have the usual connection between a property of a P \star MD and the corresponding property of its \star -Nagata ring.

Proposition 2.12. Let \star be a semistar operation on D. Then D is \star_f -(strongly) *discrete P*-*MD if and only if* Na(*D*, -) *is a* (*strongly*) *discrete Prüfer domain.*

Applying Corollary [2.10](#page-8-1) and Lemma [2.2\(](#page-4-0)1, 2), we have the following extension of Corollary [2.11.](#page-9-0)

Corollary 2.13. *Let D be a domain.*

- (1) Assume that D is a $P \star MD$ for some semistar operation \star on D.
	- (a) If D is \star _f-discrete, then a nonzero quasi- \star _f-ideal I of D is \star _f-idempotent if *and only if I is a radical ideal each of whose minimal primes is unbranched.*
	- (b) If D is \star _f-strongly discrete, then D has no \star _f-proper \star _f-idempotent ideals.
- (2) *Assume that D is a P*v*MD.*
	- (a) *If D is t -discrete, then a t -ideal I of D is t -idempotent if and only if I is a radical ideal each of whose minimal primes is unbranched.*
	- (b) *If D is t -strongly discrete, then D has no t -proper t -idempotent ideals.*

3 Divisoriality

According to [\[7,](#page-13-9) Corollary 4.1.14], if *D* is a doublesharp Prüfer domain and *P* is a nonzero, nonmaximal ideal of *D*, then *P* is divisorial. The natural question arises: If *D* is a \star_f -doublesharp P \star MD and $P \in \text{QSpec}^{\star_f}(D) \setminus \text{QMax}^{\star_f}(D)$, is *P* necessarily divisorial? Since \star is an arbitrary semistar operation and divisoriality specifically involves the *v*-operation, one might expect the answer to be negative. Indeed, we give a counterexample in Example [3.4](#page-10-0) below. However, in Theorem [3.2](#page-10-1) we prove a general result, a corollary of which does yield divisoriality in the "ordinary" PvMD case. First, we need a lemma, the first part of which may be regarded as an extension of $[14,$ Proposition 2.2(2)].

Lemma 3.1. *Let* - *be a semistar operation on D. Then*

- (1) $(D^{\star} : (D^{\star} : E))$ Na $(D, \star) = (Na(D, \star) : (Na(D, \star) : E))$ *for each* $E \in \overline{F}(D)$ *, and*
- (2) if *I* is a nonzero ideal of *D*, then I^* is a divisorial ideal of D^* if and only if $I\text{Na}(D, \star)$ *is a divisorial ideal of* $\text{Na}(D, \star)$ *.*

In particular, if D is a P \star *MD, then* $(D^* : (D^* : E))$ Na $(D, \star) = (\text{Na}(D, \star) :$ $(Na(D, \star): E)$ *for each* $E \in \overline{F}(D)$ *; and, for a nonzero ideal I of D, I*^{**f*} *is divisorial in* D^* *if and only if* $INA(D, \star)$ *is divisorial in* $Na(D, \star)$ *.*

Proof. Set $\mathcal{N} = \text{Na}(D, \star)$. For (1), applying Lemma [2.4,](#page-6-1) we have

$$
(D^{\widetilde{\star}}:(D^{\widetilde{\star}}:E))\mathcal{N}=(\mathcal{N}:(D^{\widetilde{\star}}:E))=(\mathcal{N}:(\mathcal{N}:E)).
$$

(2) Assume that *I* is a nonzero ideal of *D*. If I^* is divisorial in D^* , then (using (1))

$$
(\mathcal{N} : (\mathcal{N} : I\mathcal{N})) = (D^{\widetilde{\star}} : (D^{\widetilde{\star}} : I^{\widetilde{\star}}))\mathcal{N} = I^{\widetilde{\star}}\mathcal{N} = I\mathcal{N}.
$$

Now suppose that *IN* is divisorial. Then

$$
(D^{\widetilde{\star}}:(D^{\widetilde{\star}}:I^{\widetilde{\star}}))\mathcal{N}=(\mathcal{N}:(\mathcal{N}:I))=I\mathcal{N},
$$

whence

$$
(\tilde{D^*}: (\tilde{D^*}: \tilde{I^*}) \subseteq I \mathcal{N} \cap K = \tilde{I^*}.
$$

The "in particular" statement follows from standard considerations. \Box

Theorem 3.2. Let \star be a semistar operation on D such that D is a \star_f -doublesharp $P \star MD$, and let $P \in \text{QSpec}^{\star}(\mathbb{D}) \setminus \text{QMax}^{\star}(\mathbb{D})$. Then P^{\star} *is a divisorial ideal of* D^{\star} .

Proof. Since $\text{Na}(D, \star)$ is a doublesharp Prüfer domain (Lemma [2.2\(](#page-4-0)5)), $P\text{Na}(D, \star)$ is divisorial by [\[7,](#page-13-9) Corollary 4.1.14]. Hence P^{*f} is divisorial in D^* by Lemma [3.1.](#page-9-1) \Box

Corollary 3.3. *If D is a t -doublesharp P*v*MD, and P is a non-t -maximal t -prime of D, then P is divisorial.*

Proof. Take $\star = v$ in Theorem [3.2.](#page-10-1) (More precisely, take \star to be any extension of the star operation v on D to a semistar operation on D, so that \star_f (restricted to D) is the *t*-operation on *D*.) Then $P = P^t = P^{*f}$ is divisorial by Theorem [3.2.](#page-10-1) \Box

Example 3.4. Let p be a prime integer and let $D := \text{Int}(\mathbb{Z}_{(p)})$. Then D is a two*dimensional Prüfer domain by [\[2](#page-12-1), Lemma VI.1.4 and Proposition V.1.8]. Choose a height 2 maximal ideal M of D, and let P be a height 1 prime ideal of D contained in M. Then P* = q ⊙[*X*] ∩ *D* for some irreducible polynomial $q \in \mathbb{O}[X]$ [\[2,](#page-12-1) *Proposition V.2.3]. By [\[2,](#page-12-1) Theorems VIII.5.3 and VIII.5.15], P is not a divisorial ideal of D.* Set $E^* = ED_M$ for $E \in \overline{F}(D)$. Then \star is a finite-type semistar operation on D.

Clearly, M is the only quasi- \star *-maximal ideal of D, and, since* D_M *is a valuation domain, D is a P* \star *MD by Lemma [1.2.](#page-2-1) Moreover,* Na(*D*, \star) = *D_M*(*X*) *is also a valuation domain and hence a doublesharp Prüfer domain, which yields that D is a* \star_f -doublesharp P★MD (Lemma [2.2](#page-4-0)). Finally, since $P = PD_M \cap D = P^* \cap D$, P is *a* non- \star _f -maximal quasi- \star _f -prime of D. \Box

In the remainder of the paper, we impose on Prüfer domains $(P \star MDs)$ the finite character (finite \star_f -character) condition. As we shall see, this allows improved versions of Theorem [2.9](#page-8-0) and Corollary [2.10.](#page-8-1) It also allows a type of unique factorization for (quasi- \star_f -)ideals that are simultaneously (\star_f -)idempotent and (\star_f -)divisorial.

Theorem 3.5. *Let D be a Prüfer domain with finite character, and let I be a nonzero ideal of D. Then:*

- (1) *I is idempotent if and only if I is a product of idempotent prime ideals.*
- (2) *The following statements are equivalent.*
	- (a) *I is idempotent and divisorial.*
	- (b) *I is a product of non-maximal idempotent prime ideals.*
	- (c) *I is a product of divisorial idempotent prime ideals.*
	- (d) *I has a unique representation as the product of incomparable divisorial idempotent primes.*

Proof. (1) Suppose that *I* is idempotent. By Theorem [2.9,](#page-8-0) *I* is the intersection of its minimal primes, each of which is idempotent. Since *D* has finite character, *I* is contained in only finitely many maximal ideals, and, since no two distinct minimal primes of *I* can be contained in a single maximal ideal, *I* has only finitely many minimal primes and they are comaximal. Hence I is the product of its minimal primes (and each is idempotent). The converse is trivial.

(2) (a) \Rightarrow (b): Assume that *I* is idempotent and divisorial. By (1) and its proof, $I = P_1 \cdots P_n = P_1 \cap \cdots \cap P_n$, where the P_i are the minimal primes of *I*. We claim that each P_i is divisorial. To see this, observe that

$$
(P_1)^{\nu} P_2 \cdots P_n \subseteq (P_1 \cdots P_n)^{\nu} = I^{\nu} = I \subseteq P_1.
$$

Since the P_i are incomparable, this gives $(P_1)^v \subseteq P_1$, that is, P_1 is divisorial. By symmetry each P_i is divisorial. It is well known that in a Prüfer domain, a maximal ideal cannot be both idempotent and divisorial. Hence the P_i are non-maximal.

(b) ⇒ (c): Since *D* has finite character, it is a (*d*)-doublesharp Prüfer domain [\[13,](#page-13-11) Theorem 5], whence nonmaximal primes are automatically divisorial by [\[7,](#page-13-9) Corollary 4.1.14].

 $(c) \Rightarrow (a)$: Write $I = Q_1 \cdots Q_m$, where each Q_i is a divisorial idempotent prime. Since *I* is idempotent (by (1)), we may also write $I = P_1 \cdots P_n$, where the P_i are the minimal primes of *I*. For each *i*, we have $Q_1 \cdots Q_m = I \subseteq P_i$, from which it follows that $Q_i \subseteq P_i$ for some *j*. By minimality, we must then have $Q_i = P_i$. Thus each P_i is divisorial, whence $I = P_1 \cap \cdots \cap P_n$ is divisorial.

Finally, we show that (d) follows from the other statements. We use the notation in the proof of (c) \Rightarrow (a). In the expression $I = P_1 \cdots P_n$, the P_i are (divisorial, idempotent, and) incomparable, and it is clear that no P_i can be omitted. To see that this is the only such expression, consider a representation $I = Q_1 \cdots Q_m$, where the *Q_i* are divisorial, idempotent, and incomparable. Fix a Q_k . Then $P_1 \cdots P_n = I$ *Q_k*, and we have P_i ⊆ Q_k for some *i*. However, as above, Q_j ⊆ P_i for some *j*, whence, by incomparability, $Q_k = P_i$. The conclusion now follows easily.

We note that incomparability is necessary for uniqueness above, for example, if *D* is a valuation domain and $P \subsetneq Q$ are non-maximal (necessarily divisorial) primes, then $P = PO$.

We close by extending Theorem 3.5 to P \star MDs and then to "ordinary" PvMDs. We omit the (by now) straightforward proofs.

Corollary 3.6. Let \star be a semistar operation on D such that D is a $P \star MD$ with *finite* -*^f -character, and let I be a quasi-*-*^f -ideal of D. Then:*

- (1) *I* is \star_f -idempotent if and only if I^{\star_f} is a \star_f -product of \star_f -idempotent quasi- \star_f *prime ideals in D, that is,* $I^{\star_f} = (P_1 \cdots P_n)^{\star_f}$, where the P_i are \star_f -idempotent *quasi-*-*^f -primes of D.*
- (2) *The following statements are equivalent.*
	- (a) *I* is \star_{f} -idempotent and \star_{f} -divisorial (*I*^{*}*f* is divisorial in D^{*}).
	- (b) I is a \star -product of non-quasi- \star -maximal idempotent quasi- \star -prime ideals.
	- (c) *I* is a \star _{*f*}-product of \star _{*f*}-divisorial \star _{*f*}-idempotent prime ideals.
	- (d) *I has a unique representation as a* \star _{*f*}-product of incomparable \star _{*f*-divisorial} -*^f -idempotent primes.*

Corollary 3.7. *Let D be a P*v*MD with finite t -character, and let I be a nonzero t -ideal of D. Then:*

- (1) *I is t -idempotent if and only if I is a t -product of t -idempotent t -prime ideals in D.*
- (2) *The following statements are equivalent.*
	- (a) *I is t -idempotent and divisorial.*
	- (b) *I is a t -product of non-t -maximal t -idempotent t -primes.*
	- (c) *I is a t -product of divisorial t -idempotent t -primes.*
	- (d) *I has a unique representation as a t -product of incomparable divisorial t -idempotent t -primes.*

References

- 1. Arnold, J.: On the ideal theory of the Kronecker function ring and the domain D(X). Can. J. Math. **21**, 558–563 (1969)
- 2. Cahen, P.-J., Chabert, J.-L.: Integer-Valued Polynomials, vol. 48. Providence (1997) (Amer. Math. Soc. Surv. Monogr.)
- 3. Fontana, M., Houston, E., Lucas, T.: Toward a classification of prime ideals in Prüfer domains. Forum Math. **22**, 741–766 (2010)
- 4. Fontana, M., Houston, E., Lucas, T.: Factoring Ideals in Integral Domains. Lectures Notes of U.M.I. Springer, Berlin (2013)
- 5. Fontana, M., Houston, E., Park, M.H.: Sharpness and semistar operations in Prüfer-like domains. Commun. Algebra **47**, 1478–1489 (2019)
- 6. Fontana, M., Huckaba, J.A.: Localizing systems and semistar operations. In: Chapman, S.T., Glaz, S. (eds.) Non-Noetherian Commutative Ring Theory. Kluwer Academic Publishers, pp. 169–198 (2000)
- 7. Fontana, M., Huckaba, J.A., Papick, I.J.: Prüfer Domains. Marcel Dekker Inc., New York (1997)
- 8. Fontana, M., Jara, P., Santos, E.: Prüfer \star -multiplication domains and semistar operations. J. Algebra Appl. **2**, 21–50 (2003)
- 9. Fontana, M., Loper, K.A.: Nagata rings, Kronecker function rings and related semistar operations. Commun. Algebra **31**, 4775–4805 (2003)
- 10. Gilmer, R.: Integral domains which are almost Dedekind. Proc. Am. Math. Soc. **15**, 813–818 (1964)
- 11. Gilmer, R.: Overrings of Prüfer domains. J. Algebra **4**, 331–340 (1966)
- 12. Gilmer, R.: Multiplicative Ideal Theory. Marcel Dekker, New York (1972)
- 13. Gilmer, R., Heinzer, W.: Overrings of Prüfer domains, II. J. Algebra **7**, 281–302 (1967)
- 14. Kang, B.G.: Prüfer v-multiplication domains and the ring $R[X]_{N_v}$. J. Algebra 123, 151–170 (1989)
- 15. Okabe, A., Matsuda, R.: Semistar operations on integral domains. Math. J. Toyama Univ. **17**, 1–21 (1994)
- 16. Zafrullah, M.: Some polynomial characterizations of Prüfer v-multiplication domains. J. Pure Appl. Algebra **32**, 231–237 (1984)