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Abstract Let D be a Prüfer �-multiplication domain, where � is a semistar operation
on D. We show that certain ideal-theoretic properties related to idempotence and
divisoriality hold in Prüfer domains, and we use the associated semistar Nagata ring
of D to show that the natural counterparts of these properties also hold in D.
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1 Introduction and Preliminaries

Throughout this work, D will denote an integral domain, and K will denote its
quotient field. Recall that Arnold [1] proved that D is a Prüfer domain if and only
if its associated Nagata ring D[X ]N , where N is the set of polynomials in D[X ]
whose coefficients generate the unit ideal, is a Prüfer domain. This was generalized
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to Prüfer v-multiplication domains (PvMDs) by Zafrullah [16] and Kang [14] and
to Prüfer �-multiplication domains (P�MDs) by Fontana, Jara, and Santos [8].

Our goal in this paper is to show that certain ideal-theoretic properties that hold
in Prüfer domains transfer in a natural way to P�MDs. For example, we show that
an ideal I of a Prüfer domain is idempotent if and only if it is a radical ideal each of
whoseminimal primes is idempotent (Theorem2.9), andweuse aNagata ring transfer
“machine” to transfer a natural counterpart of this characterization to P�MDs. For
another example, in Theorem 3.5 we show that an ideal in a Prüfer domain of finite
character is idempotent if and only if it is a product of idempotent prime ideals and,
perhapsmore interestingly,we characterize ideals that are simultaneously idempotent
and divisorial as (unique) products of incomparable divisorial idempotent primes;
and we then extend this to P�MDs.

Let us review the terminology and notation. Denote by F(D) the set of all nonzero
D–submodules of K , and by F(D) the set of all nonzero fractional ideals of D, i.e.,
E ∈ F(D) if E ∈ F(D) and there exists a nonzero d ∈ D with dE ⊆ D. Let f (D)

be the set of all nonzero finitely generated D–submodules of K . Then, obviously,
f (D) ⊆ F(D) ⊆ F(D).
Following Okabe-Matsuda [15], a semistar operation on D is a map � : F(D) →

F(D), E �→ E�, such that, for all x ∈ K , x �= 0, and for all E, F ∈ F(D), the
following properties hold:

(�1) (xE)� = xE�;
(�2) E ⊆ F implies E� ⊆ F�;
(�3) E ⊆ E� and E�� := (E�)� = E�.

Of course, semistar operations are natural generalizations of star operations–see
the discussion following Corollary 2.5 below.

The semistar operation � is said to have finite type if E� = ⋃{F� | F ∈ f (D),

F ⊆ E} for each E ∈ F(D). To any semistar operation � we can associate a finite-
type semistar operation �f given by

E�f :=
⋃

{F� | F ∈ f (D), F ⊆ E}.

We say that a nonzero ideal I of D is a quasi-�-ideal if I = I � ∩ D, a quasi-�-
prime ideal if it is a prime quasi-�-ideal, and a quasi-�-maximal ideal if it is maximal
in the set of all proper quasi-�-ideals. A quasi-�-maximal ideal is a prime ideal. We
will denote by QMax�(D) (QSpec�(D)) the set of all quasi-�-maximal ideals (quasi-
�-prime ideals) of D. While quasi-�-maximal ideals may not exist, quasi-�f -maximal
ideals are plentiful in the sense that each proper quasi-�f -ideal is contained in a quasi-
�f -maximal ideal. (See [9] for details.) Nowwe can associate to � yet another semistar
operation: for E ∈ F(D), set

E �̃ :=
⋂

{EDQ | Q ∈ QMax�f (D)}.
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Then �̃ is also a finite-type semistar operation, and we have E �̃ ⊆ E�f ⊆ E� for all
E ∈ F(D).

Let � be a semistar operation on D. Set N (�) = {g ∈ D[X ] | c(g)� = D�}, where
c(g) is the content of the polynomial g, i.e., the ideal of D generated by the coefficients
of g. Then N (�) is a saturated multiplicatively closed subset of D[X ], and we call
the ring Na(D, �) := D[X ]N (�) the semistar Nagata ring of D with respect to �.
The domain D is called a Prüfer �- multiplication domain (P�MD) if (FF−1)

�f =
D�f (= D�) for each F ∈ f (D) (i.e., each such F is �f -invertible). (Recall that
F−1 = (D : F) = {u ∈ K | uF ⊆ D}.)

In the following two lemmas, we assemble the facts we need about Nagata rings
and P�MDs. Most of the proofs can be found in [6, 9] or [5].

Lemma 1.1. Let � be a semistar operation on D. Then:

(1) D� = D�f .
(2) QMax�f (D) = QMax�̃(D).
(3) The map QMax�f (D) → Max(Na(D, �)), P �→ PNa(D, �), is a bijection with

inverse map M �→ M ∩ D.
(4) P �→ PNa(D, �) defines an injective map QSpec�̃(D) → Spec(Na(D, �)).
(5) N (�) = N (�f ) = N (̃�) and (hence) Na(D, �) = Na(D, �f ) = Na(D, �̃).
(6) For each E ∈ F(D), E �̃ = ENa(D, �) ∩ K, and E �̃Na(D, �) = ENa(D, �).
(7) A nonzero ideal I of D is a quasi-̃�-ideal if and only if I = INa(D, �) ∩ D.

Lemma 1.2. Let � be a semistar operation on D.

(1) The following statements are equivalent.

(a) D is a P�MD.
(b) Na(D, �) is a Prüfer domain.
(c) The ideals of Na(D, �) are extended from ideals of D.
(d) DP is a valuation domain for each P ∈ QMax�f (D).

(2) Assume that D is a P�MD. Then:

(a) �̃ = �f and (hence) D� = D�̃.
(b) The map QSpec�f (D) → Spec(Na(D, �)), P �→ PNa(D, �), is a bijection

with inverse map Q �→ Q ∩ D.
(c) Finitely generated ideals of Na(D, �) are extended from finitely generated

ideals of D.

2 Idempotence

We begin with our basic definition.

Definition 2.1. Let � be a semistar operation on D. An element E ∈ F(D) is said
to be �-idempotent if E� = (E2)�.
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Our primary interest will be in (nonzero) �-idempotent ideals of D. Let � be a
semistar operation on D, and let I be a nonzero ideal of D. It is well known that
I � ∩ D is a quasi-�-ideal of D. (This is easy to see: we have

(I � ∩ D)� ⊆ I �� = I � = (I ∩ D)� ⊆ (I � ∩ D)�,

and hence I � = (I � ∩ D)�; it follows that I � ∩ D = (I � ∩ D)� ∩ D.) It, therefore,
seems natural to call I � ∩ D the quasi-�-closure of I . If we also call I �-proper when
I � � D�, then it is easy to see that I is �-proper if and only if its quasi-�-closure is
a proper quasi-�-ideal. Now suppose that I is �-idempotent. Then

(I � ∩ D)� = I � = (I 2)� = ((I �)2)� = (((I � ∩ D)�)2)� = ((I � ∩ D)2)�,

whence I � ∩ D is a �-idempotent quasi-�-ideal of D. A similar argument gives the
converse. Thus a (�-proper) nonzero ideal is �-idempotent if and only if its quasi-�-
closure is a (proper) �-idempotent quasi-�-ideal.

Our study of idempotence in Prüfer domains and P�MDs involves the notions of
sharpness and branchedness. We recall some notation and terminology.

Given an integral domain D and a prime ideal P ∈ Spec(D), set

∇(P) := {M ∈ Max(D) | M � P} and
�(P) := ⋂{DM | M ∈ ∇(P)} .

We say that P is sharp if �(P) � DP (see [11, Lemma 1] and [3, Section1
and Proposition 2.2]). The domain D itself is sharp (doublesharp) if every maximal
(prime) ideal of D is sharp. (Note that a Prüfer domain D is doublesharp if and only
if each overring of D is sharp [7, Theorem 4.1.7].) Now let � be a semistar operation
on D. Given a prime ideal P ∈ QSpec�f (D), set

∇�f (P) := {M ∈ QMax�f (D) | M � P} and
�

�f (P) := ⋂{DM | M ∈ ∇�f (P)} .

Call P �f -sharp if �
�f (P) � DP . For example, if � = d is the identity, then

the �f -sharp property coincides with the sharp property. We then say that D is �f -
(double)sharp if each quasi-�f -maximal (quasi-�f -prime) ideal of D is �f -sharp. (For
more on sharpness, see [10, 11, 13], [7, page 62], [3], [4, Chapter 2, Section3] and
[5].)

Recall that a prime ideal P of a ring is said to be branched if there is a P-primary
ideal distinct from P . Also, recall that the domain D has finite character if each
nonzero ideal of D is contained in only finitely many maximal ideals of D.

We now prove a lemma that discusses the transfer of ideal-theoretic properties
between D (on which a semistar operation � has been defined) and its associated
Nagata ring.
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Lemma 2.2. Let � be a semistar operation on D.

(1) Let E ∈ F(D). Then E is �̃-idempotent if and only if ENa(D, �) is idempotent.
In particular, if D is a P�MD, then E is �f -idempotent if and only if ENa(D, �)

is idempotent.
(2) Let P be a quasi-̃�-prime of D and I a nonzero ideal of D. Then:

(a) I is P-primary in D if and only if I is a quasi-̃�-ideal of D and INa(D, �)

is PNa(D, �)-primary in Na(D, �).
(b) P is branched in D if and only if PNa(D, �) is branched in Na(D, �).

(3) D has �f -finite character (i.e., each nonzero element of D belongs to only finitely
many (possibly zero) M ∈ QMax�f (D)) if and only if Na(D, �) has finite char-
acter.

(4) Let I be a quasi-̃�-ideal of D. Then I is a radical ideal if and only if INa(D, �)

is a radical ideal of Na(D, �).
(5) Assume that D is a P�MD. Then:

(a) If P ∈ QSpec�f (D), then P is �f -sharp if and only if PNa(D, �) is sharp in
Na(D, �).

(b) D is �f -(double)sharp if and only if Na(D, �) is (double)sharp.

Proof. (1) We use Lemma 1.1(6). If ENa(D, �) is idempotent, then E �̃ =
ENa(D, �) ∩ K = E2Na(D, �) ∩ K = (E2)�̃. Conversely, if E is �̃-idempotent,
then (ENa(D, �))2 = E2Na(D, �) = (E2)�̃Na(D, �) = E �̃Na(D, �)=ENa(D, �).
The “in particular” statement follows because �f = �̃ in a P�MD (Lemma 1.2(2a)).

(2) (a) Suppose that I is P-primary. Then I D[X ] is PD[X ]-primary. Since P is
a quasi-̃�-prime of D, PNa(D, �) is a prime ideal of Na(D, �) (Lemma 1.1(4)), and
then, since Na(D, �) is a quotient ring of D[X ], INa(D, �) is PNa(D, �)-primary
in Na(D, �). Also, again using the fact that I D[X ] is PD[X ]-primary (along with
Lemma 1.1(6)), we have

I �̃ ∩ D = INa(D, �) ∩ D ⊆ I D[X ]PD[X ] ∩ D[X ] ∩ D = I D[X ] ∩ D = I,

whence I is a quasi-̃�-ideal of D. Conversely, assume that I is a quasi-̃�-ideal of
D and that INa(D, �) is PNa(D, �)-primary. Then for a ∈ P , there is a positive
integer n for which an ∈ INa(D, �) ∩ D = I �̃ ∩ D = I . Hence P = rad(I ). It now
follows easily that I is P-primary. (b) Suppose that P is branched in D. Then there is a
P-primary ideal I of D distinct from P , and INa(D, �) is PNa(D, �)-primary by (a).
Also by (a), I is a quasi-̃�-ideal, fromwhich it follows that INa(D, �) �= PNa(D, �).
Now suppose that PNa(D, �) is branched and that J is a PNa(D, �)-primary ideal
of Na(D, �) distinct from PNa(D, �). Then it is straightforward to show that J ∩ D
is distinct from P and is P-primary.

(3) Let ψ be a nonzero element of Na(D, �), and let N be a maximal ideal
with ψ ∈ N . Then ψNa(D, �) = fNa(D, �) for some f ∈ D[X ], and writing N =
MNa(D, �) for some M ∈ QMax�f (D) (Lemma 1.1(3)), wemust have f ∈ MD[X ]
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and hence c( f ) ⊆ M . Therefore, if D has finite �f -character, then Na(D, �) has finite
character. The converse is even more straightforward.

(4) Suppose that I is a radical ideal of D, and let ψn ∈ INa(D, �) for some
ψ ∈ Na(D, �) and positive integer n. Then there is an element g ∈ N (�) with (gψn

and hence) (gψ)n ∈ I D[X ]. Since I D[X ] is a radical ideal of D[X ], gψ ∈ I D[X ]
and we must have ψ ∈ INa(D, �). Therefore, INa(D, �) is a radical ideal of
Na(D, �). The converse follows easily from the fact that INa(D, �) ∩ D = I �̃ ∩ D =
I (Lemma 1.1(7)).

(5) (a) This is part of [5, Proposition 3.5], but we give here a proof more in the
spirit of this paper. Let P ∈ QSpec�f (D). If P is �f -sharp, then by [5, Proposition
3.1] P contains a finitely generated ideal I with I � M for all M ∈ ∇�f (P), and,
using the description of Max(Na(D, �)) given in Lemma 1.1(3), INa(D, �) is a
finitely generated ideal of Na(D, �) contained in PNa(D, �) but in no element of
∇(PNa(D, �)). Therefore, PNa(D, �) is sharp in the Prüfer domain Na(D, �). For
the converse, assume that PNa(D, �) is sharp inNa(D, �). Then PNa(D, �) contains
a finitely generated ideal J with J ⊆ PNa(D, �) but J � N for N ∈ ∇(PNa(D, �))

[13, Corollary 2]. Then J = INa(D, �) for some finitely generated ideal I of D
(necessarily) contained in P by Lemma 1.2(2c), and it is easy to see that I � M
for M ∈ ∇�f (D). Then by [5, Proposition 3.1], P is �f -sharp. Statement (b) follows
easily from (a) (using Lemma 1.2). �

Let D be an almost Dedekind domain with a non-finitely generated maximal ideal
M . Then M−1 = D, but M is not idempotent (since MDM is not idempotent in the
Noetherian valuation domain DM ). Our next result shows that this cannot happen in
a sharp Prüfer domain.

Theorem 2.3. Let D be a Prüfer domain. If D is (d-)sharp and I is a nonzero ideal
of D with I−1 = D, then I is idempotent.

Proof. Assume that D is sharp. Proceeding contrapositively, suppose that I is a
nonzero, non-idempotent ideal of D. Then, for some maximal ideal M of D, I DM is
not idempotent in DM . Since D is a sharp domain, wemay choose a finitely generated
ideal J of D with J ⊆ M but J � N for all maximal ideals N �= M . Since I DM

is a non-idempotent ideal in the valuation domain DM , there is an element a ∈ I
for which I 2DM � aDM . Let B := J + Da. Then I 2DM ⊆ BDM and, for N ∈
Max(D) \ {M}, I 2DN ⊆ DN = BDN . Hence I 2 ⊆ B. Since B is a proper finitely
generated ideal, we then have (I 2)−1 ⊇ B−1 � D. Hence (I 2)−1 �= D, from which
it follows that I−1 �= D, as desired. �

Kang [14, Proposition 2.2] proves that, for a nonzero ideal I of D, we always have
I−1Na(D, v) = (Na(D, v)) : I ). This cannot be extended to general semistarNagata
rings; for example, if D is an almost Dedekind domain with non-invertible maximal
ideal M and we define a semistar operation � by E� = EDM for E ∈ F(D), then
(D : M) = D and hence (D : M)Na(D, �) = Na(D, �) = D[X ]M[X ] = DM(X) �

(DM : MDM)DM(X) = (Na(D, �) : MNa(D, �)) (where the proper inclusion holds
because MDM is principal in DM ). At any rate, what we really require is the equality
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(D� : E)Na(D, �) = (Na(D, �) : E) for E ∈ F(D). In the next lemma, we show
that this holds in a P�MD but not in general. The proof of part (1) of the next lemma
is a relatively straightforward translation of the proof of [14, Proposition 2.2] to
the semistar setting. In carrying this out, however, we discovered a minor flaw in the
proof of [14, Proposition 2.2]. The flaw involves a reference to [12, Proposition 34.8],
but this result requires that the domain D be integrally closed. To ensure complete
transparency, we give the proof in full detail.

Lemma 2.4. Let � be a semistar operation on D. Then:

(1) (D� : E)Na(D, �) ⊇ (Na(D, �) : E) for each E ∈ F(D).
(2) The following statements are equivalent:

(a) (D� : E)Na(D, �) = (Na(D, �) : E) for each E ∈ F(D).
(b) D� = D�̃.
(c) D� ⊆ Na(D, �).

(3) (D�̃ : E)Na(D, �) = (Na(D, �) : E) for each E ∈ F(D).
(4) If D is a P�MD, then the equivalent conditions in (2) hold.

Proof. (1) Let E ∈ F(D), and let ψ ∈ (Na(D, �) : E). For a ∈ E , a �= 0, we may
find g ∈ N (�) such that ψag ∈ D[X ]. This yields ψg ∈ a−1D[X ] ⊆ K [X ], and
hence ψ = f/g for some f ∈ K [X ]. We claim that c( f ) ⊆ (D� : E). Granting
this, we have f ∈ (D� : E)D[X ], from which it follows that ψ = f/g ∈ (D� :
E)Na(D, �), as desired. Toprove the claim, takeb ∈ E , and note that f b ∈ Na(D, �).
Hence f bh ∈ D[X ] for some h ∈ N (�), and so c( f h)b ⊆ D. By the content formula
[12, Theorem 28.1], there is an integer m for which c( f )c(h)m+1 = c( f h)c(h)m .
Using the fact that c(h)� = D�, we obtain c( f )� = c( f h)� and hence that c( f )b ⊆
c( f h)�b ⊆ D�. Therefore, c( f ) ⊆ (D� : E), as claimed.

(2) Under the assumption in (c), D� ⊆ Na(D, �) ∩ K = D�̃ (Lemma 1.1(6)).
Hence (c) ⇒ (b). Now assume that D� = D�̃. Then for E ∈ F(D), we have (D� :
E)E ⊆ D� = D�̃ ⊆ Na(D, �); using (1), the implication (b)⇒ (a) follows. That (a)
⇒ (c) follows upon taking E = D in (a).

(3) This follows easily from (2), because Na(D, �) = Na(D, �̃) by Lemma 1.1(5).
(4) This follows from (2), since if D is a P�MD, then D� = D�̃ by

Lemma 1.2(2a). �

The conditions in Lemma 2.4(2) need not hold: Let F � k be fields, V = k[[x]]
the power series ring over V in one variable, and D = F + M , where M = xk[[x]].
Define a (finite-type) semistar operation � on D by A� = AV for A ∈ F(D). Then
D� = V � D = DM = D�̃.

We can now extend Theorem 2.3 to P�MDs.

Corollary 2.5. Let � be a semistar operation on D such that D is a �f -sharp P�MD,
and let I be a nonzero ideal of D with (D� : I ) = D�. Then I is �f -idempotent.
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Proof. By Lemma 2.4(3), we have

(Na(D, �) : INa(D, �)) = (D� : I )Na(D, �) = D�Na(D, �) = Na(D, �).

Hence INa(D, �) is idempotent in the Prüfer domain Na(D, �) by Theorem 2.3.
Lemma 2.2(1) then yields that I is �f -idempotent. �

Many semistar counterparts of ideal-theoretic properties in domains result in equa-
tions that are “external” to D, since for a semistar operation � on D and a nonzero
ideal I of D, it is possible that I � � D. Of course, �-idempotence is one such prop-
erty. Often, one can obtain a “cleaner” counterpart by specializing from P�MDs to
“ordinary” PvMDs. We recall some terminology. Semistar operations are general-
izations of star operations, first considered by Krull and repopularized by Gilmer
[12, Sections32, 34]. Roughly, a star operation is a semistar operation restricted
to the set F(D) of nonzero fractional ideals of D with the added requirement that
one has D� = D. The most important star operation (aside from the d-, or trivial,
star operation) is the v-operation: For E ∈ F(D), put E−1 = {x ∈ K | xE ⊆ D}
and Ev = (E−1)−1. Then vf (restricted to F(D)) is the t-operation and ṽ is the
w-operation. Thus a PvMD is a domain in which each nonzero finitely generated
ideal is t-invertible. Corollary 2.5 then has the following restricted interpretation
(which has the advantage of being internal to D).

Corollary 2.6. If D is a t-sharp PvMD and I is a nonzero ideal of D for which
I−1 = D, then I is t-idempotent.

Our next result is a partial converse to Theorem 2.3.

Proposition 2.7. Let D be a Prüfer domain such that I is idempotent whenever I
is a nonzero ideal of D with I−1 = D. Then, every branched maximal ideal of D is
sharp.

Proof. Let M be a branched maximal ideal of D. Then MDM = rad(aDM) for
some nonzero element a ∈ M [12, Theorem 17.3]. Let I := aDM ∩ D. Then I is
M-primary, and since I DM = aDM , (I DM and hence) I is not idempotent. By
hypothesis, we may choose u ∈ I−1 \ D. Since I u ⊆ D and I DN = DN for N ∈
Max(D) \ {M}, then u ∈ ⋂{DN | N ∈ Max(D), N �= M}. On the other hand, since
u /∈ D, u /∈ DM . It follows that M is sharp. �

Now we extend Proposition 2.7 to P�MDs.

Corollary 2.8. Let � be a semistar operation on D, and assume that D is a P�MD
such that I is �f -idempotent whenever I is a nonzero ideal of D with (D� : I ) = D�.
Then, each branched quasi-�f -maximal ideal of D is �f -sharp. (In particular if D is a
PvMD in which I is t-idempotent whenever I is a nonzero ideal of D with I−1 = D,
then each branched maximal t-ideal of D is t-sharp.)
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Proof. Let J be a a nonzero ideal of the Prüfer domain Na(D, �) with (Na(D, �) :
J ) = Na(D, �). By Lemma 1.2(1c), J = INa(D, �) for some ideal I of D. Applying
Lemma 2.4(3) and Lemma 1.1(6), we obtain (D� : I ) = D�. Hence, by hypothesis,
I is �f -idempotent, and this yields that J = INa(D, �) is idempotent in the Prüfer
domain Na(D, �) (Lemma 2.2(1)). Now, letM be a branched quasi-�f -maximal ideal
of D. Then, by Lemma 2.2(2), MNa(D, �) is a branched maximal ideal of Na(D, �).
We may now apply Proposition 2.7 to conclude that MNa(D, �) is sharp. Therefore,
M is �f -sharp in D by Lemma 2.2(5). �

If P is a prime ideal of a Prüfer domain D, then powers of P are P-primary by [12,
Theorem 23.3(b)]; it follows that P is idempotent if and only if PDP is idempotent.
We use this fact in the next result.

It is well known that a proper idempotent ideal of a valuation domain must be
prime [12, Theorem 17.1(3)]. In fact, according to [12, Exercise 3, p. 284], a proper
idempotent ideal in a Prüfer domainmust be a radical ideal.We (re-)prove and extend
this fact and add a converse.

Theorem 2.9. Let D be a Prüfer domain, and let I be an ideal of D. Then I is
idempotent if and only if I is a radical ideal each of whose minimal primes is
idempotent.

Proof. The result is trivial for I = (0) and vacuously true for I = D. Suppose that
I is a proper nonzero idempotent ideal of D, and let P be a prime minimal over I .
Then I DP is idempotent, and we must have I DP = PDP [12, Theorem 17.1(3)].
Hence PDP is idempotent, and therefore, by the comment above, so is P . Now let
M be a maximal ideal containing I . Then I DM is idempotent, hence prime (hence
radical). It follows (checking locally) that I is a radical ideal.

Conversely, let I be a radical ideal each of whose minimal primes is idempotent.
If M is a maximal ideal containing I and P is a minimal prime of I contained in
M , then I DM = PDM . Since P is idempotent, this yields I DM = I 2DM . It follows
that I is idempotent. �

We next extend Theorem 2.9 to P�MDs.

Corollary 2.10. Let D be a P�MD, where � is a semistar operation on D, and let I
be a quasi-�f -ideal of D. Then I is �f -idempotent if and only if I is a radical ideal
each of whose minimal primes is �f -idempotent. (In particular, if D is a PvMD and
I is a t-ideal of D, then I is t-idempotent if and only if I is a radical ideal each of
whose minimal primes is t-idempotent.)

Proof. Suppose that I is �f -idempotent. Then INa(D, �) is an idempotent ideal
in Na(D, �) by Lemma 2.2(1). By Theorem 2.9, INa(D, �) is a radical ideal of
Na(D, �), and hence, by Lemma 2.2(4), I is a radical ideal of D. Now let P be
a minimal prime of I in D. Then P is a quasi-�f -prime of D. By Lemma 1.2(2b)
PNa(D, �) is minimal over INa(D, �), whence PNa(D, �) is idempotent, again by
Theorem 2.9. The �f -idempotence of P now follows from Lemma 2.2(1).

The converse follows by similar applications of Theorem 2.9 and
Lemma 2.2. �



178 M. Fontana et al.

Recall that a Prüfer domain is said to be strongly discrete (discrete) if it has no
nonzero (branched) idempotent prime ideals. Since unbranched primes in a Prüfer
domain must be idempotent [12, Theorem 23.3(b)], a Prüfer domain is strongly
discrete if and only if it is discrete and has no unbranched prime ideals. We have the
following straightforward application of Theorem 2.9.

Corollary 2.11. Let D be a Prüfer domain.

(1) If D is discrete, then an ideal I of D is idempotent if and only if I is a radical
ideal each of whose minimal primes is unbranched.

(2) If D is strongly discrete, then D has no proper nonzero idempotent ideals.

Let us call a P�MD �f - strongly discrete (�f - discrete) if it has no (branched)
�f -idempotent quasi-�f -prime ideals. From Lemma 2.2(1, 2), we have the usual con-
nection between a property of a P�MDand the corresponding property of its �-Nagata
ring.

Proposition 2.12. Let � be a semistar operation on D. Then D is �f -(strongly)
discrete P�MD if and only if Na(D, �) is a (strongly) discrete Prüfer domain.

Applying Corollary 2.10 and Lemma 2.2(1, 2), we have the following extension
of Corollary 2.11.

Corollary 2.13. Let D be a domain.

(1) Assume that D is a P�MD for some semistar operation � on D.

(a) If D is �f -discrete, then a nonzero quasi-�f -ideal I of D is �f -idempotent if
and only if I is a radical ideal each of whose minimal primes is unbranched.

(b) If D is �f -strongly discrete, then D has no �f -proper �f -idempotent ideals.

(2) Assume that D is a PvMD.

(a) If D is t-discrete, then a t-ideal I of D is t-idempotent if and only if I is a
radical ideal each of whose minimal primes is unbranched.

(b) If D is t-strongly discrete, then D has no t-proper t-idempotent ideals.

3 Divisoriality

According to [7, Corollary 4.1.14], if D is a doublesharp Prüfer domain and P is a
nonzero, nonmaximal ideal of D, then P is divisorial. The natural question arises: If
D is a �f -doublesharp P�MD and P ∈ QSpec�f (D) \ QMax�f (D), is P necessarily
divisorial? Since � is an arbitrary semistar operation and divisoriality specifically
involves the v-operation, one might expect the answer to be negative. Indeed, we
give a counterexample in Example 3.4 below. However, in Theorem 3.2 we prove a
general result, a corollary of which does yield divisoriality in the “ordinary” PvMD
case. First, we need a lemma, the first part of which may be regarded as an extension
of [14, Proposition 2.2(2)].
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Lemma 3.1. Let � be a semistar operation on D. Then

(1) (D�̃ : (D�̃ : E))Na(D, �) = (Na(D, �) : (Na(D, �) : E)) for each E ∈ F(D),
and

(2) if I is a nonzero ideal of D, then I �̃ is a divisorial ideal of D�̃ if and only if
INa(D, �) is a divisorial ideal of Na(D, �).

In particular, if D is a P�MD, then (D� : (D� : E))Na(D, �) = (Na(D, �) :
(Na(D, �) : E)) for each E ∈ F(D); and, for a nonzero ideal I of D, I �f is divisorial
in D� if and only if INa(D, �) is divisorial in Na(D, �).

Proof. Set N = Na(D, �). For (1), applying Lemma 2.4, we have

(D�̃ : (D�̃ : E))N = (N : (D�̃ : E)) = (N : (N : E)).

(2) Assume that I is a nonzero ideal of D. If I �̃ is divisorial in D�̃, then (using
(1))

(N : (N : IN )) = (D�̃ : (D�̃ : I �̃))N = I �̃N = IN .

Now suppose that IN is divisorial. Then

(D�̃ : (D�̃ : I �̃))N = (N : (N : I )) = IN ,

whence
(D�̃ : (D�̃ : I �̃)) ⊆ IN ∩ K = I �̃.

The “in particular” statement follows from standard considerations. �

Theorem 3.2. Let � be a semistar operation on D such that D is a �f -doublesharp
P�MD, and let P ∈ QSpec�f (D) \ QMax�f (D). Then P�f is a divisorial ideal of D�.

Proof. Since Na(D, �) is a doublesharp Prüfer domain (Lemma 2.2(5)), PNa(D, �)

is divisorial by [7, Corollary 4.1.14]. Hence P�f is divisorial in D� by
Lemma 3.1. �

Corollary 3.3. If D is a t-doublesharp PvMD, and P is a non-t-maximal t-prime
of D, then P is divisorial.

Proof. Take � = v in Theorem 3.2. (More precisely, take � to be any extension of
the star operation v on D to a semistar operation on D, so that �f (restricted to D) is
the t-operation on D.) Then P = Pt = P�f is divisorial by Theorem 3.2. �

Example 3.4. Let p be a prime integer and let D := Int(Z(p)). Then D is a two-
dimensional Prüfer domain by [2, Lemma VI.1.4 and Proposition V.1.8]. Choose a
height 2 maximal ideal M of D, and let P be a height 1 prime ideal of D contained
in M. Then P = qQ[X ] ∩ D for some irreducible polynomial q ∈ Q[X ] [2, Propo-
sition V.2.3]. By [2, Theorems VIII.5.3 and VIII.5.15], P is not a divisorial ideal of
D. Set E� = EDM for E ∈ F(D). Then � is a finite-type semistar operation on D.
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Clearly, M is the only quasi-�-maximal ideal of D, and, since DM is a valuation
domain, D is a P�MD by Lemma 1.2. Moreover, Na(D, �) = DM(X) is also a val-
uation domain and hence a doublesharp Prüfer domain, which yields that D is a
�f -doublesharp P�MD (Lemma 2.2). Finally, since P = PDM ∩ D = P� ∩ D, P is
a non-�f -maximal quasi-�f -prime of D. �

In the remainder of the paper, we impose on Prüfer domains (P�MDs) the finite
character (finite �f -character) condition. As we shall see, this allows improved ver-
sions of Theorem 2.9 and Corollary 2.10. It also allows a type of unique factorization
for (quasi-�f -)ideals that are simultaneously (�f -)idempotent and (�f -)divisorial.

Theorem 3.5. Let D be a Prüfer domain with finite character, and let I be a nonzero
ideal of D. Then:

(1) I is idempotent if and only if I is a product of idempotent prime ideals.
(2) The following statements are equivalent.

(a) I is idempotent and divisorial.
(b) I is a product of non-maximal idempotent prime ideals.
(c) I is a product of divisorial idempotent prime ideals.
(d) I has a unique representation as the product of incomparable divisorial

idempotent primes.

Proof. (1) Suppose that I is idempotent. By Theorem 2.9, I is the intersection of
its minimal primes, each of which is idempotent. Since D has finite character, I is
contained in only finitely many maximal ideals, and, since no two distinct minimal
primes of I can be contained in a single maximal ideal, I has only finitely many
minimal primes and they are comaximal. Hence I is the product of its minimal
primes (and each is idempotent). The converse is trivial.

(2) (a) ⇒ (b): Assume that I is idempotent and divisorial. By (1) and its proof,
I = P1 · · · Pn = P1 ∩ · · · ∩ Pn , where the Pi are the minimal primes of I . We claim
that each Pi is divisorial. To see this, observe that

(P1)
vP2 · · · Pn ⊆ (P1 · · · Pn)v = I v = I ⊆ P1.

Since the Pi are incomparable, this gives (P1)v ⊆ P1, that is, P1 is divisorial. By
symmetry each Pi is divisorial. It is well known that in a Prüfer domain, a maximal
ideal cannot be both idempotent and divisorial. Hence the Pi are non-maximal.

(b) ⇒ (c): Since D has finite character, it is a (d)-doublesharp Prüfer domain
[13, Theorem 5], whence nonmaximal primes are automatically divisorial by [7,
Corollary 4.1.14].

(c)⇒ (a): Write I = Q1 · · · Qm , where each Q j is a divisorial idempotent prime.
Since I is idempotent (by (1)), we may also write I = P1 · · · Pn , where the Pi are
the minimal primes of I . For each i , we have Q1 · · · Qm = I ⊆ Pi , from which it
follows that Q j ⊆ Pi for some j . By minimality, we must then have Q j = Pi . Thus
each Pi is divisorial, whence I = P1 ∩ · · · ∩ Pn is divisorial.
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Finally, we show that (d) follows from the other statements. We use the notation
in the proof of (c) ⇒ (a). In the expression I = P1 · · · Pn , the Pi are (divisorial,
idempotent, and) incomparable, and it is clear that no Pi can be omitted. To see that
this is the only such expression, consider a representation I = Q1 · · · Qm , where the
Qi are divisorial, idempotent, and incomparable. Fix a Qk . Then P1 · · · Pn = I ⊆
Qk , and we have Pi ⊆ Qk for some i . However, as above, Q j ⊆ Pi for some j ,
whence, by incomparability, Qk = Pi . The conclusion now follows easily. �

We note that incomparability is necessary for uniqueness above, for example, if D
is a valuation domain and P � Q are non-maximal (necessarily divisorial) primes,
then P = PQ.

We close by extending Theorem 3.5 to P�MDs and then to “ordinary” PvMDs.
We omit the (by now) straightforward proofs.

Corollary 3.6. Let � be a semistar operation on D such that D is a P�MD with
finite �f -character, and let I be a quasi-�f -ideal of D. Then:

(1) I is �f -idempotent if and only if I �f is a �f -product of �f -idempotent quasi-�f -
prime ideals in D, that is, I �f = (P1 · · · Pn)�f , where the Pi are �f -idempotent
quasi-�f -primes of D.

(2) The following statements are equivalent.

(a) I is �f -idempotent and �f -divisorial (I
�f is divisorial in D�).

(b) I is a �f -product of non-quasi-�f -maximal idempotent quasi-�f -prime ideals.
(c) I is a �f -product of �f -divisorial �f -idempotent prime ideals.
(d) I has a unique representation as a �f -product of incomparable �f -divisorial

�f -idempotent primes.

Corollary 3.7. Let D be a PvMD with finite t-character, and let I be a nonzero
t-ideal of D. Then:

(1) I is t-idempotent if and only if I is a t-product of t-idempotent t-prime ideals
in D.

(2) The following statements are equivalent.

(a) I is t-idempotent and divisorial.
(b) I is a t-product of non-t-maximal t-idempotent t-primes.
(c) I is a t-product of divisorial t-idempotent t-primes.
(d) I has a unique representation as a t-product of incomparable divisorial

t-idempotent t-primes.
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