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Abstract For a category C with finite limits and a class S of monomorphisms in
C that is pullback stable, contains all isomorphisms, is closed under composition,
and has the strong left cancellation property, we use pullback stable S-essential
monomorphisms in C to construct a spectral category Spec(C,S). We show that
it has finite limits and that the canonical functor C → Spec(C,S) preserves finite
limits. When C is a normal category, assuming for simplicity that S is the class of
all monomorphisms in C, we show that pullback stable S-essential monomorphisms
are the same as what we call subobject-essential monomorphisms.
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1 Introduction

The spectral category Spec(C) of a Grothendieck category C was introduced by
Gabriel and Oberst [11]. According to the Abstract of [11], Spec(C) is obtained
from C by formally inverting all essential monomorphisms. Although there is no
reference to Gabriel and Zisman [12], the definition given in Section1.2 of [11] is,
in fact, a construction based on the fact that the class of essential monomorphisms
in C admits the calculus of right fractions. Indeed, it presents the abelian groups
HomSpec(C)(A, B) (for all A, B ∈ Ob(C) = Ob(Spec(C))) as directed colimits

HomSpec(C)(A, B) = colim HomC(A′, B)

taken over all subobjects A′ of A. It is also easy to see that the spectral category
Spec(C) can equivalently be defined as the quotient category of the category of
injective objects in C modulo the ideal consisting of all morphisms in C whose
kernels are essential monomorphisms. Although this is not mentioned in [11], it is
said there that Spec(C) is a replacement of the spectrum of C, which is defined (when
C is the category of modules over a ring) as the collection of isomorphism classes of
indecomposable injective objects.

Introducing the spectral category of a Grothendieck category C can also be moti-
vated by non-functoriality of injective envelopes as follows. For each object C in
C, let us fix an injective envelope (=injective hull) ιC : C → E(C) of it. One might
expect E to become an endofunctor of C, and ι to become a natural transformation
1C → E . However, there are strong negative results against these expectations:

– According to Proposition 1.12 in [13], E cannot be made a functor even when C
is the category of abelian groups.

– Let R be a ring and C the category of R-modules. The ring R can be chosen in
such a way that not all R-modules are injective, but E can be made an endofunctor
of C (see [13, Exercise 24, p. 48] or [8]), but even in those cases ι will not become
a natural transformation 1C → E . This follows from a very general Theorem 3.2
of [2].

On the other hand, the canonical functor P : C → Spec(C), which the spectral cat-
egory Spec(C) comes equipped with, nicely plays the roles of both 1C and E , since
each object in Spec(C) is injective, as shown in [11].

In this paper, however, we are not interested in injective objects, and our main
aim is to construct Spec(C) in full generality, when C is supposed to be an arbitrary
category with finite limits. Apart from the Grothendieck category case above, this
was already done in the case of an arbitrary abelian category [13, p. 15], and for
some nonadditive categories [3].

In fact we begin by taking not just an arbitrary category C with finite limits, but
also any classS of itsmonomorphisms that contains all isomorphisms and is pullback
stable and closed under composition. We define the spectral category Spec(C,S) of
the pair (C,S) to be the category



What is the Spectral Category? 137

C[(St(MonoE (C,S)))−1]

of fractions of C for the class St(MonoE (C,S)) of pullback stable S-essential
monomorphisms of C. When S is the class of all monomorphisms in C, we write
Spec(C,S) = Spec(C) and call this category the spectral category of C.

We make various observations concerning the spans and fractions involved. The
most important one is that the class St(MonoE (C,S)) admits the calculus of right
fractions, just as the class of essential monomorphism in an abelian category does.

We point out that the spectral category Spec(C) has finite limits and that the canon-
ical functor P : C → Spec(C) preserves finite limits. When C is a normal category
[18], assuming for simplicity that S is the class of all monomorphisms in C, we
show that pullback stable S-essential monomorphisms are the same as what we call
subobject-essential monomorphisms. These are those monomorphismsm : M → A
in C such that, for any monomorphism n : N → A, one has that N = 0 whenever
M ×A N = 0. Finally, when C is normal, the monoid EndSpec(C)(P(A)) of endomor-
phisms of an object P(A) in the spectral category is a division monoid whenever A
is a uniform object (a notion extending the classical one of uniform module in the
additive context).

The theorywe develop is indeed an extension of what was done in [11] for the case
of Grothendieck categories and in [3] for the category of G-groups. Note that there
are several papers involving essential monomorphisms in non-abelian contexts (see
e.g. [4, 21] and the references therein), although it is not their purpose to introduce
spectral categories.

Throughout this paper, C denotes a category with finite limits.

2 Stabilization of Classes of Morphisms

Let M be a class of morphisms in C. Following [7], define the stabilization St(M)

of M as the class of morphisms m : M → A such that, for every pullback diagram
of the form

U
u

X

M m A,

u is in M. Let us recall that the symbol “St” was used in [15], while in [7] the
stabilization ofMwas simply denoted byM′. Similar constructions were also used
before, of course.
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Proposition 1. The stabilization St(M) of M has the following properties:

(a) The class St(M) is pullback stable.
(b) IfM contains all isomorphisms, then so does St(M).
(c) IfM is closed under composition, then so is St(M).
(d) IfM has the right cancellation property of the form

(mm ′ ∈ M & m ′ ∈ S) ⇒ m ∈ M

for some pullback stable class S of morphisms in C, then St(M) has the same
property with respect to the same class S.

(e) IfM has the weak right cancellation property

(mm ′ ∈ M & m ′ ∈ M) ⇒ m ∈ M,

then St(M) has the same property.
(f) St(M) has the left cancellation property of the form

(mm ′ ∈ St(M) & m ∈ Mono(C)) ⇒ m ′ ∈ St(M),

where Mono(C) denotes the class of all monomorphisms in C.
Proof. (a) and (b) are obvious.

To prove (c), (d), and (e), use a diagram of the form

U ′ U X

M ′
m ′ M m A,

where the squares are pullbacks and the unlabeled arrows are the suitable pullback
projections.

To prove (f), consider the diagram

M ′ ×M L L

l

1L
L

l

M ′

1M ′

m ′
M

1M

1M
M

m

M ′
m ′ M m A,

where l : L → M is an arbitrary morphism and the unlabeled arrows are the pullback
projections. Note that all its squares are pullbacks, except for the right-hand bottom
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square, although it is also a pullback if m is a monomorphism. Therefore, if mm ′ is
in St(M) and m is a monomorphism, the pullback projection M ′ ×M L → L is in
M. This proves the desired implication. �

Remark 1. Properties 1(a)–(c) are mentioned in [7] and 1(d) is ‘almost’ there, with
E instead ofM. Property 1(e) also holds in the main example there, but for the trivial
reason that (mm ′ ∈ St(E) & m ∈ Mono(C)) implies that m is an isomorphism.

3 Essential and Pullback Stable Essential Monomorphisms

Throughout this paper, we will consider a class S of monomorphisms in C that is
pullback stable, contains all isomorphisms, is closed under composition, and has the
strong left cancellation property

mm ′ ∈ S ⇒ m ′ ∈ S.

According to a well-known definition, a morphism m : M → A from S is said to
be anS-essential monomorphism, if amorphism f : A → B from C is inS whenever
so is f m. When S is the class of all monomorphisms in C, we will say “essential”
instead of “S-essential”. The class of allS-essential monomorphismswill be denoted
by MonoE (C,S). This class has many “good” properties well-known in the case of
an abelian C with S being the class of all monomorphisms in C (see, e.g., any of
the following: Section5 in Chapter II of [10], Section2 in Chapter III of [19], or
Section15.2 of [20]), and also known in the general case, as briefly mentioned in
Remark 9.23 of [1]. The known properties we will need are collected in:

Proposition 2. The class MonoE (C,S) of S-essential monomorphisms
(a) contains all isomorphisms;
(b) is closed under composition;
(c) has the right cancellation property of the form

(mm ′ ∈ MonoE (C,S) & m ∈ S) ⇒ m ∈ MonoE (C,S);

(d) has the weak right cancellation property

(mm ′ ∈ MonoE (C,S) & m ′ ∈ MonoE (C,S)) ⇒ m ∈ MonoE (C,S),

and, in particular, every split monomorphism that belongs to MonoE (C,S) is
an isomorphism. �

Remark 2. Note the difference between our Proposition 2(c) and Proposition 9.14(3)
of [1]: we have omitted the redundant assumption m ′ ∈ S.

From Propositions1 and 2, we immediately obtain:
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Theorem 1. The class St(MonoE (C,S)) of pullback stable S-essential monomor-
phisms in C
(a) is pullback stable;
(b) contains all isomorphisms;
(c) is closed under composition;
(d) has the right cancellation property of the form

(mm ′ ∈ St(MonoE (C,S)) & m ∈ S) ⇒ m ∈ St(MonoE (C,S));
(e) has the weak right cancellation property

(mm′ ∈ St(MonoE (C,S)) & m′ ∈ St(MonoE (C,S))) ⇒ m ∈ St(MonoE (C,S)),

and, in particular, every split monomorphism that belongs to St(MonoE (C,S))

is an isomorphism;
(f) has the left cancellation property of the form

(mm ′ ∈ St(MonoE (C,S)) & m ∈ Mono(C)) ⇒ m ′ ∈ St(MonoE (C,S)).

�

4 Spans and Fractions

Let C be a category with pullbacks. The bicategory Span(C) of spans in C, originally
introduced in [5] (motivated by the study of spans of additive categories in [22]) is
constructed as follows, omitting obvious coherent isomorphisms:

– The objects (=0-cells) of Span(C) are the same as the objects of C.
– A morphism (1-cell) A → B in Span(C) is a diagram in C of the form

A X
x f

B,

usually written either as the triple ( f, X, x) or as the pair ( f, x).
– The composite (g, Y, y)( f, X, x) = (gq, X ×B Y, xp) of ( f, X, x) : A → B and

(g,Y, y) : B → C is defined via the diagram
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X ×B Y
p q

X
x f

Y
y g

A B C

in which p : X ×B Y → X and q : X ×B Y → Y are the pullback projections.
– A 2-cell from ( f, X, x) : A → B to ( f ′, X ′, x ′) : A → B is a morphism s : X →

X ′ with x ′s = x and f ′s = f , and the 2-cells compose as in C.
More generally, given a pullback stable classM of morphisms in C that contains

all identity morphisms and is closed under composition—we can then form the
bicategory SpanM(C) as above but requiring itsmorphisms ( f, x) to have x inM. As
it was observed in a discussion with Janelidze andMac Lane [14] (andmost probably
known before, which is why the content of that discussion was never published), the
assignment (cls( f, x) : A → B) �→ ( f x−1 : A → B) (here cls is the abbreviation
for “class”) determines an isomorphism

�(SpanM(C)) ≈ C[M−1],

in which:

– �(SpanM(C)) is the Poincaré category of SpanM(C) (in the sense of [5]), that
is, it has the same objects as SpanM(C), and its hom sets are the sets of connected
components of hom categories of SpanM(C).

– C[M−1] is the category of fractions [12] of C forM.

We are assuming that the reader is familiar with the content of [5]. Repeating here
the necessary details from that influential paper would take too much space.

Under the isomorphism above, the functor C → �(SpanM(C)), corresponding
to the canonical functor

PM : C → C[M−1],

is defined by ( f : A → B) �→ (cls( f, 1A) : A → B).

Recall that a classM is focal [6] if it satisfies the following four conditions:

(F0) For each object X ∈ C there exists an s ∈ M with codomain X .

(F1) For all
s1 s0 with si ∈ M, there exists a morphism f in C such that

the composite s0s1 f is defined and is inM.
(F2) Each diagram

s

f
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with s ∈ M can be completed in a commutative square

s ′

f ′

s

f

where s ′ ∈ M.
(F3) If a pair ( f, g) of parallel morphisms is coequalized by some s ∈ M, it is also

equalized by some s ′ ∈ M.

Proposition 3. If M is a pullback stable class of morphisms in C that contains all
identity morphisms and is closed under composition, with M ⊆ Mono(C), then M
is focal and, moreover,M admits the calculus of right fractions in the sense of [12].

Proof. All we need to check is that M satisfies the condition dual to condition
2.2(d) in Chapter I of [12], i.e., that whenever two parallel morphisms f and g
admit a morphismm ∈ Mwithm f = mg, they also admit a morphism n ∈ Mwith
f n = gn. This condition holds trivially because M ⊆ Mono(C). �

Remark 3. Note the following levels of generality (in fact there are many more of
them, including those suggested by distinguishing sets of morphisms from proper
classes of morphisms), where we omitted all required conditions on M in the first
five items:

(a) For an arbitrary class M of morphisms of C, we can still form the category
C[M−1] of fractions of C for M.

(b) As shown in [6], the morphisms of C[M−1] can be presented in the form
PM( f )PM(x)−1 with x ∈ M if and only if M satisfies conditions (F0), (F1),
and (F2).

(c) In particular, this is the case whenM satisfies the conditions dual to conditions
2.2(a), 2.2(b), and 2.2(c) in Chapter I of [12].

(d) If the equivalent conditions in (b) hold, then the following conditions are equiva-
lent: (d1) M is focal; (d2) M satisfies condition (F3), which is the same as con-
dition 2.2(d) in Chapter I of [12]; (d3) not only can the morphisms of C[M−1] be
presented as in (b), but also PM( f )PM(x)−1 = PM( f ′)PM(x ′)−1 if and only
there exists a commutative diagram in C of the form

X
x f

A Y

u

v

B

X ′
x ′ f ′

with xu ∈ M.
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(e) In particular, the equivalent conditions (d1)–(d3) hold when the classM admits
the calculus of right fractions in the sense of [12].

(f) IfM contains all identity morphisms, is closed under composition, and is pull-
back stable, then not only are we in the situation (c), but we also have the
isomorphism between C[M−1] and �(SpanM(C)) mentioned above.

(g) The situation of Proposition 3. Note, in particular, that in this case the mor-
phisms u and v in the diamond diagram of (d) belong to M. This follows from
Proposition1(f) and the fact that St(M) = M here.

The levels of generality listed above are related as follows:

(a) (b) (c) ( f )

(d) (d)&( f )

(e) (e)&( f )

(g)

Remark 4. We recall from [12] that already in the situation (d), the equivalent con-
ditions mentioned there imply that the hom sets of C[M−1] can be constructed as
filtered colimits

homC[M−1](A, B) = colim(hom(M, B)),

where the colimit is taken over all m : M → A inM (see Page 13 in [12], where the
dual construction is described explicitly).

5 The Spectral Category

Let S be a class of monomorphisms in C satisfying the conditions required at the
beginning of Section3. Then, as follows from (a)–(c) and (f) of Theorem1, the class
M = St(MonoE (C,S)) satisfies the conditions required in Proposition3. We are
ready to give the following:

Definition 1. The spectral category Spec(C,S) of (C,S) is the category

C[(St(MonoE (C,S)))−1]
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of fractions of C for the class St(MonoE (C,S)) of pullback stable S-essential
monomorphisms of C. When S is the class of all monomorphisms in C, we shall
simply write MonoE (C,S) = MonoE (C) and Spec(C,S) = Spec(C), and say that
Spec(C) is the spectral category of C.

Thanks to the results of [12], specifically Proposition 3.1 and Corollary 3.2 of
Chapter I there, our Proposition 3 implies:

Theorem 2. The spectral categorySpec(C,S)has finite limits.Moreover, the canon-
ical functor

PC,S = PSt(MonoE (C,S)) : C → Spec(C,S),

defined by ( f : A → B) �→ (cls( f, 1A) : A → B), preserves finite limits. �

6 Subobject-Essential Monomorphisms

Assuming C to be pointed, we define:

Definition 2. A monomorphism m : M → A in C is said to be subobject-essential
if, for a monomorphism n : N → A, one has M ×A N = 0 ⇒ N = 0. The class of
all subobject-essential monomorphisms in C will be denoted by MonoSE (C).

Recall that a regular epimorphism in a category C is a morphism that is the
coequalizer of two morphisms in C.

A finitely complete category C is regular if any morphism f : A → B can be
factorized as the composite morphism of a regular epimorphism p : A → I and a
monomorphism m : I → B

A
f

p

B

I

m

and these factorizations are pullback stable. Following [18], we will call C normal if
it is pointed, regular, and any regular epimorphism is a normal epimorphism (i.e., a
cokernel of some arrow in C). In such a category, any regular epimorphism is then the
cokernel of its kernel and, as a consequence, a morphism in C is a monomorphism if
and only if its kernel is zero.

Remark 5. For a pointed variety V of universal algebras, being a normal category
is the same as being a 0-regular variety in the sense of [9] (see [17] for further
explanations and historical remarks about the relationship between the properties of
0-regularity and normality). The algebraic theory of a pointed 0-regular variety V is
characterized by the existence of a unique constant 0 and binary terms d1, ..., dn such
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that the identities di (x, x) = 0 (for i ∈ {1, . . . , n}) and the implication (d1(x, y) =
0& . . . & dn(x, y) = 0) ⇒ x = y hold. Intuitively, these operations di (x, y) can
then be thought of as a kind of “generalized subtraction”. This implies that the
varieties of groups, loops, rings, associative algebras, Lie algebras, crossed modules,
and G-groups (for a group G) are all normal. There are also plenty of examples of
normal categories that are not varieties, such as the categories of topological groups,
cocommutative K -Hopf algebras over a field K , and C∗-algebras, for instance. In
general, any semi-abelian category [16] is, in particular, a normal category.

For an object A in C, the smallest and the largest congruence (=effective equiva-
lence relation) on A will be denoted byΔA and∇A, respectively. Note that equalities
like E = ΔA should usually be understood as equalities of subobjects (of A × A in
this case).

When C is normal, it is natural to ask how different subobject-essential monomor-
phisms are from essential ones (recall that “essential” means S-essential for S =
Mono(C)). Most of this section is devoted to studying various ways to compare
them.

Let us begin with the following proposition, well-known in the case of an abelian
category C:
Proposition 4. If C is normal, then the following conditions on a monomorphism
m : M → A in C are equivalent:

(a) m is an essential monomorphism, that is, a morphism f : A → B is a monomor-
phism whenever so is f m.

(b) For any congruence E on A, one has (M × M) ×A×A E = ΔM ⇒ E = ΔA.
(c) For any normal monomorphism n : N → A, one has M ×A N = 0 ⇒ N = 0.
(d) For any morphism f : A → B, one has Ker( f m) = 0 ⇒ Ker( f ) = 0.

Proof. (a) ⇒ (b). Let (E, e1, e2) be a congruence on A, and f : A → C a morphism
such that E is the kernel pair of f :

E
e2

e1

A

f

A
f

C.

(1)

Consider the commutative diagram

M

(1M ,1M )

E

(e1,e2)

C

(1C ,1C )

M × M
m×m

A × A
f × f

C × C

where the right-hand square is a pullback by definition of kernel pair, and the left-
hand square is a pullback by the assumption (M × M) ×A×A E = ΔM . The fact
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that the rectangle is a pullback means that f m is a monomorphism. Since m is an
essential monomorphism, it follows that f is a monomorphism and E = ΔA.

(b) ⇒ (c) This follows from the fact that a congruence (E, e1, e2) as in (1)
is the discrete equivalence relation ΔA if and only if the normal monomorphism
ker( f ) : N → A corresponding to E is 0 → A.

(c) ⇒ (d) It suffices to apply the assumption to the pullback

0 = Ker( f m) Ker( f )

M m A.

(d) ⇒ (a) This is immediate since, in a normal category, monomorphisms are
characterized by the fact that their kernel is 0. �

From Proposition 4, we immediately obtain:

Corollary 1. Let C be a normal category. Then:

(a) Every subobject-essential monomorphism is essential.
(b) If A is an object in C for which every monomorphismwith codomain A is normal,

then a monomorphism m : M → A is subobject-essential if and only if it is
essential.

(c) In particular, if C is abelian, then a monomorphism in C is subobject-essential
if and only if it is essential.

Next, we have:

Proposition 5. The class MonoSE (C) of subobject-essential monomorphisms in C
(a) contains all isomorphisms;
(b) is closed under composition;
(c) has the right cancellation property of the form

(mm ′ ∈ MonoSE (C) & m ∈ Mono(C)) ⇒ m ∈ MonoSE (C).

(d) IfC is normal, then the classMonoSE (C) has theweak right cancellation property

(mm ′ ∈ MonoSE (C) & m ′ ∈ MonoSE (C)) ⇒ m ∈ MonoSE (C)

and, in particular, every splitmonomorphism that belongs to it is an isomorphism.
(e) It has the left cancellation property of the form

(mm ′ ∈ MonoSE (C) & m ∈ Mono(C)) ⇒ m ′ ∈ MonoSE (C).

(f) If C is normal, then the classMonoSE (C) is pullback stable.
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Proof. (a) is obvious.
(b) and (c): Given monomorphisms m : M → A, m ′ : M ′ → M and n : N → A,

consider the diagram

M ′ ×A N
m ′×1

M ×A N N

n

M ′
m ′ M m A,

where the unlabeled arrows are the suitable pullback projections. Since both squares
in this diagram are pullbacks, we can argue as follows:

– If m,m ′ ∈ M, then M ′ ×A N = 0 ⇒ M ×A N = 0 ⇒ N = 0.
– If mm ′ ∈ M, then M ×A N = 0 ⇒ M ′ ×A N = 0 ⇒ N = 0, where the first
implication holds because Ker(m ′) = 0.

(d): Suppose mm ′ and m are in MonoSE (C). Thanks to (c), we only need to prove
that m is a monomorphism. Therefore, since C is normal, it suffices to prove that m
has zero kernel. For, consider the diagram

0 Ker(m)

ker(m)

0

M ′
m ′ M m A

and observe that:

– Its left-hand square is a pullback because so is its right-hand square, and mm ′ is a
monomorphism because it is in MonoSE (C).

– Since m ′ is in MonoSE (C), we have that Ker(m) = 0.

(e): Suppose mm ′ is in MonoSE (C) and m is a monomorphism. First notice that,
since mm ′ is a monomorphism, so is m ′. After that, consider the diagram

M ′ ×M L L

l

1L
L

ml

M ′
m ′ M m A,

where the unlabeled arrows are the suitable pullback projections. Since both squares
in this diagram are pullbacks, we have

M ′ ×M L = 0 ⇒ M ′ ×A L = 0 ⇒ L = 0.
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(f):Givenm : M → A fromMonoSE (C), amorphism x : X → A, and amonomor-
phism u : U → X , consider the diagram

M ×A U

1×e

1×u

U

e

u

M ×A X X

x

M ×A N N

n

M m A,

in which M ×A U = (M ×A X) ×X U, xu = ne is a (regular epi, mono) factoriza-
tion of xu, and the unlabeled arrows are the suitable pullback projections. Assuming
M ×A U = 0, we have to prove that U = 0. Indeed:

– Since e is a regular epimorphism, so is 1 × e.
– Since 1 × e is an epimorphism and M ×A U = 0, we have M ×A N = 0.
– Since M ×A N = 0 and m is in MonoSE (C), we have that N = 0.
– Since N = 0, we have xe = ne = 0, and so u factors through the kernel of x .
– Since u factors through the kernel of x , it also factors through the pullback pro-
jection M ×A X → X .

– Since u factors through the pullback projection M ×A X → X , and the top part
of our diagram is a pullback, the pullback projection M ×A U → U is a split
epimorphism.

It follows that U = 0, as desired. �

Remark 6. For a composable pair (m,m ′) of monomorphisms, m ′ can be seen as a
pullback of mm ′ along m (this well-known fact was used in the proof of Proposi-
tion1(f) for the pair (m, l)). This implies that every pullback stable class ofmonomor-
phisms has the strong left cancellation property and, in particular, that, in the case of
normal C, Proposition 5(e) could be deduced from Proposition 5(f).

Remark 7. In contrast to Theorem 1(f) and Proposition 5(e), the class MonoE (C)

does not even have, in general, the weak left cancellation property m, mm ′ ∈
MonoE (C) ⇒ m ′ ∈ MonoE (C). One can easily construct counterexamples in many
non-abelian semi-abelian algebraic categories by suitably choosing m ′ : M ′ → M
to be a split monomorphism (that is not an isomorphism) and choosing m : M → A
with simple A. For example:
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(a) Let C be the category of groups, A any simple group that has an element a of
order pq with relatively prime p and q, M the subgroup of A generated by a,
M ′ the subgroup of A generated by a p, and m : M → A and m ′ : M ′ → M the
inclusion maps. Then m and mm ′ are in ME , but m ′ is not.

(b) Let C be the category of rings (commutative or not; we do not require them to
have identity element, to make C semi-abelian), M ′ = K be a field, M = K [x]
the polynomial ring in one variable x over K , A = K (x) the field of fractions of
M , and m : M → A and m ′ : M ′ → M the canonical monomorphisms. Then,
again, m and mm ′ are in ME , but m ′ is not.

Remark 8. Although the non-pullback-stability of MonoE (C) in the category of
groups follows from Remark 7(a), let us give what seems to be the simplest coun-
terexample. Consider the pullback

0 S2

A3 S3

of monomorphisms, where S2, S3, A3 are the symmetric/alternating groups. Its bot-
tom arrow is an essential monomorphism, while the top one is not. This also shows
that A3 → S3 is an example of an essential monomorphism that is not subobject-
essential.

Theorem 3. If C is normal, thenMonoSE (C) = St(MonoE (C)), that is, a morphism
in C is a subobject-essential monomorphism if and only if it is a pullback stable
essential monomorphism.

Proof. The inclusionMonoSE (C) ⊆ St(MonoE (C)) follows fromCorollary 1(a) and
Proposition 5(f). Conversely, letm : M → A be a pullback stable essentialmonomor-
phism in C and n : N → A a monomorphism in C with M ×A N = 0. Then 0 → N
is an essential monomorphism because it is a pullback of m. Hence, from the last
assertion of Proposition 2(d), 0 → N is an isomorphism, that is, N = 0. �

Since every abelian category is normal, we easily get:

Corollary 2. If C is abelian then Spec(C) is the same as the spectral category of C
in the usual sense (see [11] and [12]).

Proof. Having in mind Corollary 1(c), this follows from Theorem 3 and the descrip-
tion of the spectral category of an abelian category given in 2.5(e) of [12, Chapter I].�

7 Uniform Objects

Let us return to the general situation of Remark4(a), where M is an arbitrary class
of morphisms in C, but let us assume that C is pointed and that
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x ∈ M ⇒ Ker(x) = 0.

As already observed, in any normal category, this property simply says that M
is a class of monomorphisms.

Definition 3. An object A of C is said to be M-uniform if a morphism x : X → A
belongs toM whenever X �= 0 and Ker(x) = 0.

The term uniform comes frommodule theory, where a nonzeromoduleM is called
a uniform module if every nonzero submodule N of M is an essential submodule.
Note that this term was also used in [3] for an analogue notion in the category of
G-groups.

Proposition 6. Let A and B be M-uniform objects in C. Every nonzero morphism
A → B in C[M−1] of the form PM( f )PM(x)−1 with x inM is an isomorphism.

Proof. Consider the diagram

Ker( f )

ker( f )

A X
x f

B,

where X is the domain of x (the domain of f ).
SupposeKer( f ) �= 0. Since A isM-uniform and x and ker( f ) have zero kernels,

the composite Ker( f ) → X → A belongs to M. As x also belongs to M, this
implies that PM(ker( f )) is an isomorphism, and we can write

PM( f )PM(x)−1 = PM( f )PM(ker( f ))PM(ker( f ))−1PM(x)−1

= PM( f (ker( f ))PM(ker( f ))−1PM(x)−1

= PM(0)PM(ker( f ))−1PM(x)−1

= 0.

That is, we can suppose Ker( f ) = 0. If so, then, since B is M-uniform, f belongs
toM, which makes PM( f )PM(x)−1 an isomorphism. �

In order to state the next result, let us recall that a division monoid is a nontrivial
monoidM with the property that the submonoidU (M) of invertible elements is given
by U (M) = M \ {0}. We write EndSpec(C)(A) for the monoid of endomorphisms of
an object A in the spectral category Spec(C), where C is a normal category.

Corollary 3. Let C be a normal category, and A an M-uniform object in C for
M being the class of subobject-essential monomorphisms in C. Then the monoid
EndSpec(C)(A) of endomorphisms of A in Spec(C) is a division monoid.
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Proof. This immediately follows from Proposition 6, by taking into account the
fact that the class of subobject-essential monomorphisms coincides with the class
of pullback stable essential monomorphisms whenever C is a normal category (by
Theorem 3). �

This last result extends Lemma 5.4 in [3], where the base category C was the category
of G-groups, to the general context of a normal category C.
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