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Abstract We prove a Bazzoni-type theorem for multiplicative lattices thus unifying
several ring/monoid theoretic results of this type.
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1 Introduction

Let D be an integral domain. Consider the following two assertions:
(i) If I is an ideal of D whose localizations at the maximal ideals are finitely

generated, then I is finitely generated.
(ii) Every x ∈ D − {0} belongs to only finitely many maximal ideals of D.
While (i i) ⇒ (i) is well-known and easy to prove, Bazzoni [3, p. 630] conjectured

that the converse is true for Prüfer domains. Recall that D is a Prüfer domain if every
finitely generated ideal I of D is locally principal.

Holland et al. [10, Theorem 10] proved Bazzoni’s conjecture for Prüfer domains
using techniques from lattice-ordered groups theory and McGovern [14, Theorem
11] proved the same result using a direct ring theoretic approach. Halter-Koch [9,
Theorem 6.11] proved Bazzoni’s conjecture for r -Prüfer monoids (see Section4).
Zafrullah [16, Proposition 5] proved Bazzoni’s conjecture for Prüfer v-multiplication
domains. Finocchiaro and Tartarone [6, Theorem 4.5] proved Bazzoni’s conjecture
for almost Prüfer ring extensions (see Section3). Recently, Chang andHamdi [4, The-
orem 2.4] proved Bazzoni’s conjecture for almost Prüfer v-multiplication domains
(see Section4).
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The purpose of this paper is to prove a Bazzoni-type theorem for multiplicative
lattices (see Section2), thus unifying the results mentioned above (see Sections3
and 4). Our standard references are [1, 7, 8].

2 Main Result

We use an abstract ideal theory approach, so we work with multiplicative lattices.

Definition 1. A multiplicative lattice is a complete lattice (L ,≤) (with bottom ele-
ment 0 and top element 1) which is also a multiplicative commutative monoid with
identity 1 (the top element) and satisfies a(

∨
bα) = ∨

abα for each a, bα ∈ L .

Let L be a multiplicative lattice. The elements in L − {1} are said to be proper.
Denote by Max(L) the set of maximal elements of L . For x, y ∈ L , set (y : x) =∨{a ∈ L; ax ≤ y}.

We recall some standard terminology.

Definition 2. Let L be a multiplicative lattice and let x, p ∈ L .
(1) p is prime if p �= 1 and for all a, b ∈ L , ab ≤ p implies a ≤ p or b ≤ p. It

follows easily that every maximal element is prime.
(2) x is compact if whenever x ≤ ∨

y∈S y with S ⊆ L , we have x ≤ ∨
y∈T y for

some finite subset T of S.
(3) L is a C-lattice if the set L∗ of compact elements of L is closed under multi-

plication, 1 ∈ L∗ and every element in L is a join of compact elements.
(4) x is meet-principal if y ∧ zx = ((y : x) ∧ z)x for all y, z ∈ L (in particular

(y : x)x = x ∧ y).
(5) x is join-principal if y ∨ (z : x) = ((yx ∨ z) : x) for all y, z ∈ L (in particular

(xy : x) = y ∨ (0 : x)).
(6) x is cancellative if for all y, z ∈ L , xy = xz implies y = z.
(7) x is CMP (ad hoc name) if x is cancellative and meet-principal.
(8) L is a lattice domain if (0 : a) = 0 for all a ∈ L − {0}.
In the sequel, we work with C-lattices and their localization theory. Let L be a

C-lattice. For p ∈ L a prime element and x ∈ L , we set

x p =
∨

{a ∈ L∗; ab ≤ x for some b ∈ L∗ with b � p}.

Then L p := {x p; x ∈ L} is again a lattice with multiplication (x p, yp) 
→ (xy)p =
(x p yp)p, join {(bα)p} 
→ (

∨
(bα)p)p = (

∨
bα)p and meet {(bα)p} 
→ (

∧
(bα)p)p.

The next lemma collects several basic properties.

Lemma 3. Let L be a C-lattice, let x, y ∈ L and let p ∈ L be a prime element.
(1) x p = 1 if and only if x � p.
(2) (x ∧ y)p = x p ∧ yp.
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(3) If x is compact, then (y : x)p = (yp : x p).
(4) x = y if and only if xm = ym for each m ∈ Max(L).
(5) A cancellative element x is CMP if and only if (y : x)x = x ∧ y for all y ∈ L.
(6) If x is compact, then x p is compact in L p. Conversely, if x p is compact in L p,

then x p = cp for some compact element c ≤ x.
(7) If x and y are CMP elements, then so is xy.
(8) If x is compact, y is CMP and x ≤ y, then (x : y) is compact.

Proof. For (1–4) see [11, pp. 201–202], for (5) see [15, Lemma 2.10], while (6–7)
follow easily from definitions. We prove (8). Note that (x : y)y = x ∧ y = x . Sup-
pose that (x : y) ≤ ∨

i∈A zi . Then x = (x : y)y ≤ ∨
i∈A zi y, so (x : y)y ≤ ∨

i∈B zi y
for some finite subset B of A. Cancel y to get (x : y) ≤ ∨

i∈B zi . �

Say that x and y ∈ L are comaximal if x ∨ y = 1. Clearly, x ∨ yz = 1 if and only
if x ∨ y = 1 and x ∨ z = 1. When t ≤ u we say that t is below u or that u is above t .

Lemma 4. Let L be a C-lattice and z ∈ L − {1} a compact element such that {m ∈
Max(L); z ≤ m} is infinite. There exists an infinite set {an; n ≥ 1} of pairwise
comaximal proper compact elements such that z ≤ an for each n.

Proof. We may clearly assume that z = 0 (just change L by {x ∈ L; x ≥ z}). Say
that a proper compact element h is big (ad hoc name) if h is below only one maximal
element M(h). We separate in two cases.

Case (1): Every proper compact element is below some big compact element. We
proceed by induction. Suppose that n ≥ 1 and we already have big compacts a1,...,an

such that M(a1),...,M(an) are distinct maximal elements (for n = 1 just pick an
arbitrary big compact a1). Let p be a maximal element other than M(a1),...,M(an).
There exists a compact element c ≤ p such that c � M(ai ) for 1 ≤ i ≤ n (take c =
c1 ∨ · · · ∨ cn where each ci ∈ L∗ satisfies ci ≤ p and ci � M(ai )). Then take a big
compact element an+1 ≥ c. This way we construct an infinite set {an; n ≥ 1} of big
compacts such that all M(an)’s are distinct. Hence the an’s are pairwise comaximal.

Case (2): There exists a proper compact element a0 which is not below any big
compact element. Clearly every proper compact above a0 inherits this property. Pick
two distinct maximal elements p and q above a0. As L is a C-lattice, there exist
two comaximal compacts a1 ≤ p and b1 ≤ q (note that p ∨ q = 1, express p and
q as joins of compact elements and use the fact that 1 is compact). Repeating this
argument for a1, there exist two comaximal proper compacts a2 ≥ a1 and b2 ≥ a1.
Note that b2 and b1 are comaximal. Thus we construct inductively an infinite set
{bn; n ≥ 1} of pairwise comaximal proper compact elements. �

In a C-lattice L , we say that an element x is locally compact if xm is compact in
Lm for each m ∈ Max(L). We state our main result which is a Bazzoni-type theorem
for C-lattices.
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Theorem 5. Let L be a C-lattice domain satisfying the following two conditions:
(a) every nonzero element is above some cancellative compact element, and
(b) every compact element x �= 1 has some power xn below some proper CMP

element.
Then the following conditions are equivalent:

(i) Every locally compact element of L is compact.
(i i) Every nonzero element is below at most finitely many maximal elements.

Proof. (i i) ⇒ (i).Although this part is well-known and easy, we include a proof for
the reader’s convenience. Let x be a nonzero locally compact element of L and let
a ≤ x be a nonzero compact element. By (i i), there are only finitely many maximal
elements above a, say m1,...,mk . For each i between 1 and k, pick a compact element
ci ≤ x such that xmi = (ci )mi . A local check shows that x = a ∨ c1 ∨ · · · ∨ ck , so x
is compact. Note that this part works for any C-lattice.

(i) ⇒ (i i). Deny, so suppose that somenonzero element c is below infinitelymany
maximal elements. By hypothesis (a), wemay assume that c is a cancellative compact
element. By Lemma 4 and hypothesis (b), there exist an infinite set {bn; n ≥ 1} of
proper pairwise comaximal CMP elements and integers kn ≥ 1 such that ckn ≤ bn for
n ≥ 1 (kn minimal with this property). Restricting to a subsequence, we may assume
that kn ≤ kn+1 for all n. We then have ckn ≤ b1 ∧ · · · ∧ bn = b1 · · · bn for all n.

Claim (∗) : The element a := ∨
n≥1(c

kn : b1 · · · bn) is locally compact.
Pick m ∈ Max(L). Since the bn’s are pairwise comaximal, m is above at most one
of them. Assume first that m ≥ bs . Since each product b1 · · · bn is compact, we get

am = (
∨

n≥1

((ckn )m : (b1 · · · bn)m))m = (ck1 ∨ (cks : bs))m

which is compact in Lm , cf. Lemma 3. Similarly, when m is above no bn , we get
am = (ck1)m , so am is compact in Lm , hence Claim (∗) is proved. By (i), a is compact.
So a = ∨q

n=1(c
kn : b1 · · · bn) for some q ≥ 1. We get

(ckq+1 : b1 · · · bq+1) ≤ (ck1 : b1 · · · bq)

so multiplying by b1 · · · bq+1 (which is a CMP element) and taking into account that
ckq+1 ≤ b1 · · · bq+1, we get

ckq+1 ≤ (ck1 : b1 · · · bq)b1 · · · bq+1 ≤ ck1bq+1.

Since kq+1 ≥ k1 and ck1 is cancellative, we get ckq+1−k1 ≤ bq+1, which is a contra-
diction since kq+1 was minimal with ckq+1 ≤ bq+1. �

Recall that aC-lattice domain is aPrüfer lattice if every compact element is princi-
pal (i.e.,meet-principal and join-principal). In aC-lattice domain, every nonzero join-
principal element x is cancellative (because (yx : x) = y ∨ (0 : x) = y for each y).
So in a Prüfer lattice domain every nonzero compact element is CMP.
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Corollary 6. Let L be a C-lattice domain in which every nonzero compact element
is CMP (e.g., a Prüfer lattice domain). Then conditions (i) and (i i) of Theorem 5
are equivalent.

Bazzoni’s conjecture for Prüfer domains [10, Theorem 10] (see Introduction)
follows from Corollary 6 since the ideal lattice of a Prüfer domain is clearly a Prüfer
lattice.

3 Almost Prüfer Extensions

Werecall several definitions from [6, 12]. Let A ⊆ B be a commutative ring extension
and I an ideal of A. Then I is called B-regular if I B = B and I is called B-invertible
if I J = A for some A-submodule J of B. Every B-invertible ideal is B-regular, since
A = I J ⊆ I B implies I B = B. We say that A ⊆ B is an almost Prüfer extension if
every finitely generated B-regular ideal of A is B-invertible.

Finocchiaro and Tartarone [6, Theorem 4.5] proved Bazzoni’s conjecture for
almost Prüfer ring extensions. We state their result and derive it from Corollary 6.

Theorem 7. (Finocchiaro and Tartarone) If A ⊆ B is an almost Prüfer extension,
the following are equivalent:

(i) Every B-regular locally principal ideal of A is B-invertible.
(i i) Every B-regular ideal of A is contained in only finitely many maximal ideals

of A.

Proof. It is well-known and easy to prove that (i i) implies (i), see [6, Corollary 3.5].
We prove the converse. Let L be the set of all B-regular ideals of A together with the
zero ideal and order L by inclusion. As shown in [15, Lemma 7.1], L is a C-lattice
domain under usual ideal multiplication, where the join is the ideal sum and the meet
is the ideal intersection except the case when we get a non-B-regular ideal when we
put

∧ = 0. By [15, Lemma 7.1], the set L∗ of compact elements in L is exactly the
set of (B-regular) finitely generated ideals of A together with the zero ideal. After
this preparation it becomes clear that [(i) ⇒ (i i)] follows from Corollary 6 provided
we prove the two claims below. Write x ∈ L as x̂ when considered as an ideal of A.

Claim 1: Every nonzero compact element of L is a CMP element.
Let c be a nonzero compact element of L . As A ⊆ B is almost Prüfer, ĉ is a B-
invertible ideal, so ĉ J = A for some A-submodule J of B. Then c is clearly can-
cellative. By Lemma 3, it suffices to show that (x : c)c = x ∧ c for each x ∈ L .
Changing x by x ∧ c, wemay assume that x ≤ c.We have x̂ = x̂ J ĉ, so x = ycwhere
y ∈ L is such that ŷ = x̂ J (note that x̂ J ⊆ A). From x = yc we get y ≤ (x : c), so
x = yc ≤ (x : c)c ≤ x , thus (x : c)c = x .

Claim 2: Every locally compact element of L is compact.
Suppose that c is a nonzero locally compact element of L . Letm be amaximal element
of L , that is, m̂ is a B-regular maximal ideal of A. So cm = ∨{y ∈ L∗; ys ≤ c for
some s ∈ L∗, s � m} is compact in the lattice Lm = {xm; x ∈ L}. Then cm = hm for
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some h ∈ L∗. Extending these ideals in Am̂ , we get ĉAm̂ = ĉm Am̂ = ĥm Am̂ = ĥ Am̂ .
Since A ⊆ B is almost Prüfer, ĥ is B-invertible. By [12, Proposition 2.3], ĥ Am̂ =
ĉAm̂ is a principal ideal of Am̂ . Thus ĉ is a locally principal ideal of A. By (i), ĉ is
B-invertible, so ĉ is finitely generated, cf. [12, Proposition 2.3]. Thus c is compact
in L . �

4 Ideal Systems on Monoids and Integral Domains

Let H be a commutativemultiplicativemonoid (with zero element 0 and unit element
1) such that every nonzero element of H is cancellative and letP(H) be the power set
of H . A map r : P(H) → P(H), X 
→ Xr , is an ideal system on H if the following
conditions hold for all X, Y ∈ P(H) and c ∈ H :

(1) cXr = (cX)r , (2) X ⊆ Xr , (3) X ⊆ Y implies Xr ⊆ Yr , (4) (Xr )r = Xr .

Then Xr is called the r-closure of X and a set of the form Xr is called an r -ideal.
An r -ideal I is r-finite if I = Yr for some finite subset Y of I . The ideal system r is
called finitary if Xr = ⋃{Yr ; Y ⊆ X finite}.

Assume that r is finitary. A proper r -ideal P is prime if, for x, y ∈ H , xy ∈ P
implies x ∈ P or y ∈ P . The localization of H at P is the fraction monoid
HP = {x/t; x ∈ H, t ∈ H − P} which comes together with the finitary ideal sys-
tem rP defined by {a1/s1, ..., an/sn}rP = ({a1, ..., an}r )P for all a1, ..., an ∈ H and
s1, ..., sn ∈ H − P . A maximal r-ideal is a maximal element of the set of proper r -
ideals of H . Any proper r -ideal is contained in a maximal one and a maximal r -ideal
is prime. A nonzero r -ideal I is r-invertible if I is r -finite and r-locally principal
(i.e., IM = {x/t; x ∈ I, t ∈ H − M} = y HM with y ∈ IM (depending on M) for all
maximal r -ideals M). Next H is an r-Prüfer monoid if every nonzero r -finite r -ideal
of H is r -invertible. For complete details we refer to [8].

Halter-Koch [9, Theorem6.11] provedBazzoni’s conjecture for r -Prüfermonoids.
We state his result and derive it from Corollary 6.

Theorem 8. (Halter-Koch) If H is an r-Prüfer monoid for some finitary ideal system
r on H, the following are equivalent.

(i) Every r-locally principal r-ideal of H is r-finite.
(i i) Every nonzero r-ideal of H is contained in only finitely many maximal r-

ideals.

Proof. It is well-known and easy to prove that (i i) implies (i).We prove the converse.
Let L be the set of all r -ideals of H ordered by inclusion. As shown in [8, Chapter 8],
L is a C-lattice domain under r -ideal multiplication (I, J ) 
→ (I J )r , join

∨{Jα} :=
(
⋃

Jα)r and meet
∧{Jα} := ⋂

Jα . By [15, Lemma 8.1], the set L∗ of compact
elements in L is exactly the set of r -finite r -ideals of H . After this preparation it
becomes clear that [(i) ⇒ (i i)] follows from Corollary 6 provided we prove the two
claims below. Write x ∈ L as x̂ when considered as an r -ideal of H .
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Claim 1: Every nonzero compact element of L is a CMP element.
Let c ∈ L be a nonzero compact, in other words ĉ is nonzero r -finite r -ideal. Since
H is r -Prüfer, ĉ is r -invertible. So c is a CMP element of L , cf. [15, Lemma 8.2].

Claim 2: Every locally compact element of L is compact.
Suppose that c is a locally compact element of L . Let m be a maximal element
of L , that is, m̂ is a maximal r -ideal of H . So cm = ∨{y ∈ L∗; ys ≤ c for some
s ∈ L∗, s � m} is compact in the lattice Lm = {xm; x ∈ L}. Then cm = hm for some
h ∈ L∗. Switching to H , we have (̂c)m̂ = (ĉm)m̂ = (ĥm)m̂ = ĥm̂ . Since H is an r -
Prüfer monoid, ĥm̂ is a principal rm̂-ideal of Hm̂ , cf. [8, Theorem 12.3]. Thus ĉ is an
r -locally principal r -ideal. By (i), ĉ is r -finite, thus c is compact in L . �

Next we present an application for integral domains. Let D be an integral domain.
The t ideal system on D is defined by Xt = ⋃{Yv; Y ⊆ X finite} for all X ⊆ D,
where Yv = ⋂{(aD :D b); a, b ∈ D, bY ⊆ aD}. Clearly t is finitary, so the set
Maxt (D) of maximal t-ideals is nonempty, see [8, Chapter 11].

The w ideal system on D is defined by Xw = ⋂{X DM ; M ∈ Maxt (D)} for all
X ⊆ D, where X DM is the ideal generated by X in DM . So a w-ideal is an ideal
of the ring D. For X ⊆ D, we have Xw = (X D)w and Xw DM = X DM for each
M ∈ Maxt (D). Moreover, w is finitary and the set of maximal w-ideals is exactly
Maxt (D). A w-finite ideal has the form ((a1, ..., an)D)w for some ai ’s in D. And a
nonzero w-ideal is w-invertible if it is w-finite and t-locally principal (i.e., I DM is
a principal ideal of DM for each M ∈ Maxt (D)). For details on the w ideal system
we refer to [2, 5].

According to [13], D is an almost Prüfer v-multiplication domain (in short
APVMD) if for every a1, ..., an ∈ D − {0}, the ideal ((ak

1, ..., ak
n)D)w isw-invertible

for some k ≥ 1. Say that a w-ideal I of D is t-locally finitely generated, if I DM is
a finitely generated ideal of DM for each M ∈ Maxt (D).

Chang and Hamdi [4, Theorem 2.4] proved Bazzoni’s conjecture for APVMDs.
We state their result and derive it from Theorem 5.

Theorem 9. (Chang and Hamdi) For an APVMD D, the following statements are
equivalent:

(i) Each nonzero t-locally finitely generated w-ideal of D is w-finite.
(i i) Every nonzero ideal of D is contained in only finitely many maximal t-ideals.

Proof. It is well-known and easy to prove that (i i) implies (i), see for instance the
proof of (3) ⇒ (1) in [4, Theorem2.4].We prove that (i) implies (i i). Let L be the set
of allw-ideals of D ordered by inclusion. As shown in [8, Chapter 8], L is aC-lattice
domain under w-ideal multiplication (I, J ) 
→ (I J )w, join

∨{Jα} := (
⋃

Jα)w and
meet

∧{Jα} := ⋂
Jα . By [15, Lemma 8.1], the set L∗ of compact elements in L is

exactly the set of w-finite ideals of D. Condition (a) of Theorem 5 holds clearly for
L (any nonzero ideal contains a nonzero principal ideal). After this preparation it
becomes clear that [(i) ⇒ (i i)] follows from Theorem 5 provided we prove the two
claims below. Write x ∈ L as x̂ when considered as a w-ideal of D.
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Claim 1: Every d ∈ L∗ − {1} has some power dn below some proper CMP
element.
Let d ∈ L∗ − {1}. Then d̂ = (a1, ..., ak)w for some elements ai ∈ d̂ . Since D is
an APVMD, (as

1, ..., as
k)w is w-invertible for some s ≥ 1. If (as

1, ..., as
k)w = f̂ with

f ∈ L , then f is a properCMPelement of L , cf. [15, Lemma8.2].Moreover dsk ≤ f ,
so Claim 1 is proved.

Claim 2: Every locally compact element of L is compact.
Suppose that c is a locally compact element of L . Let m be a maximal element
of L , that is, m̂ is a maximal w-ideal of D. So cm = ∨{y ∈ L∗; ys ≤ c for some
s ∈ L∗, s � m} is compact in the lattice Lm = {xm; x ∈ L}. Then cm = hm for some
h ∈ L∗. Hence ĥ = (b1, ..., bn)w for some elements bi ∈ ĥ. Switching to D, we have

ĉDm̂ = ĉm Dm̂ = (ĥm)Dm̂ = ĥ Dm̂ = (b1, ..., bn)w Dm̂ = (b1, ..., bn)Dm̂ .

Thus ĉ is a t-locally finitely generated ideal of D. By (i), ĉ is w-finite, thus c is
compact in L . �
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