A Bazzoni-Type Theorem for Multiplicative Lattices

Tiberiu Dumitrescu

Abstract We prove a Bazzoni-type theorem for multiplicative lattices thus unifying several ring/monoid theoretic results of this type.

Keywords Prüfer domain · Multiplicative lattice

2010 Mathematics Subject Classification Primary 06F05 · Secondary 13F15

1 Introduction

Let *D* be an integral domain. Consider the following two assertions:

(i) If *I* is an ideal of *D* whose localizations at the maximal ideals are finitely generated, then *I* is finitely generated.

(ii) Every $x \in D - \{0\}$ belongs to only finitely many maximal ideals of *D*.

While $(ii) \Rightarrow (i)$ is well-known and easy to prove, Bazzoni [\[3,](#page-7-0) p. 630] conjectured that the converse is true for Prüfer domains. Recall that *D* is a *Prüfer domain* if every finitely generated ideal *I* of *D* is locally principal.

Holland et al. [\[10](#page-7-1), Theorem 10] proved Bazzoni's conjecture for Prüfer domains using techniques from lattice-ordered groups theory and McGovern [\[14,](#page-8-0) Theorem 11] proved the same result using a direct ring theoretic approach. Halter-Koch [\[9,](#page-7-2) Theorem 6.11] proved Bazzoni's conjecture for *r*-Prüfer monoids (see Section [4\)](#page-5-0). Zafrullah [\[16,](#page-8-1) Proposition 5] proved Bazzoni's conjecture for Prüfer v-multiplication domains. Finocchiaro and Tartarone [\[6](#page-7-3), Theorem 4.5] proved Bazzoni's conjecture for almost Prüfer ring extensions (see Section [3\)](#page-4-0). Recently, Chang and Hamdi [\[4](#page-7-4), Theorem 2.4] proved Bazzoni's conjecture for almost Prüfer v -multiplication domains (see Section [4\)](#page-5-0).

T. Dumitrescu (B)

Facultatea de Matematica si Informatica, University of Bucharest, 14 Academiei Street, 010014 Bucharest, RO, Romania

e-mail: tiberiu@fmi.unibuc.ro

[©] Springer Nature Switzerland AG 2020

A. Facchini et al. (eds.), *Advances in Rings, Modules and Factorizations*, Springer Proceedings in Mathematics & Statistics 321, https://doi.org/10.1007/978-3-030-43416-8_6

The purpose of this paper is to prove a Bazzoni-type theorem for multiplicative lattices (see Section [2\)](#page-1-0), thus unifying the results mentioned above (see Sections [3](#page-4-0)) and [4\)](#page-5-0). Our standard references are [\[1](#page-7-5), [7](#page-7-6), [8\]](#page-7-7).

2 Main Result

We use an abstract ideal theory approach, so we work with multiplicative lattices.

Definition 1. A *multiplicative lattice* is a complete lattice (L, \leq) (with bottom element 0 and top element 1) which is also a multiplicative commutative monoid with identity 1 (the top element) and satisfies $a(\bigvee b_{\alpha}) = \bigvee ab_{\alpha}$ for each $a, b_{\alpha} \in L$.

Let *L* be a multiplicative lattice. The elements in $L - \{1\}$ are said to be *proper*. Denote by $Max(L)$ the set of maximal elements of *L*. For *x*, $y \in L$, set $(y : x) =$ $\bigvee \{a \in L; \ ax \leq y\}.$

We recall some standard terminology.

Definition 2. Let *L* be a multiplicative lattice and let $x, p \in L$.

(1) *p* is *prime* if $p \neq 1$ and for all $a, b \in L$, $ab \leq p$ implies $a \leq p$ or $b \leq p$. It follows easily that every maximal element is prime.

(2) *x* is *compact* if whenever $x \le \bigvee_{y \in S} y$ with $S \subseteq L$, we have $x \le \bigvee_{y \in T} y$ for some finite subset *T* of *S*.

(3) L is a C -lattice if the set L^* of compact elements of L is closed under multiplication, $1 \in L^*$ and every element in *L* is a join of compact elements.

(4) *x* is *meet-principal* if $y \wedge zx = ((y : x) \wedge z)x$ for all $y, z \in L$ (in particular $(y : x)x = x \wedge y$.

(5) *x* is *join-principal* if $y \lor (z : x) = ((yx \lor z) : x)$ for all $y, z \in L$ (in particular $(xy : x) = y \vee (0 : x)$.

(6) *x* is *cancellative* if for all $y, z \in L$, $xy = xz$ implies $y = z$.

(7) *x* is *CMP* (ad hoc name) if *x* is cancellative and meet-principal.

(8) *L* is a *lattice domain* if $(0 : a) = 0$ for all $a \in L - \{0\}$.

In the sequel, we work with *C*-lattices and their localization theory. Let *L* be a *C*-lattice. For $p \in L$ a prime element and $x \in L$, we set

$$
x_p = \bigvee \{ a \in L^*; \ ab \le x \text{ for some } b \in L^* \ with \ b \nleq p \}.
$$

Then $L_p := \{x_p; x \in L\}$ is again a lattice with multiplication $(x_p, y_p) \mapsto (xy)_p =$ $(x_p y_p)_p$, join $\{(b_\alpha)_p\} \mapsto (\bigvee (b_\alpha)_p)_p = (\bigvee b_\alpha)_p$ and meet $\{(b_\alpha)_p\} \mapsto (\bigwedge (b_\alpha)_p)_p$. The next lemma collects several basic properties.

Lemma 3. *Let L be a C-lattice, let x, y* \in *L and let p* \in *L be a prime element.* (1) $x_p = 1$ *if and only if* $x \nleq p$. (2) $(x \wedge y)_p = x_p \wedge y_p$.

(3) If x is compact, then $(y : x)_p = (y_p : x_p)$.

(4) $x = y$ if and only if $x_m = y_m$ for each $m \in Max(L)$.

(5) *A cancellative element x is CMP if and only if* $(y : x)x = x \wedge y$ *for all* $y \in L$.

(6) If x is compact, then x_p is compact in L_p . Conversely, if x_p is compact in L_p , *then* $x_p = c_p$ *for some compact element* $c \leq x$ *.*

(7) *If x and y are CMP elements, then so is xy.*

(8) If x is compact, y is CMP and $x \le y$, then $(x : y)$ is compact.

Proof. For (1–4) see [\[11,](#page-7-8) pp. 201–202], for (5) see [\[15](#page-8-2), Lemma 2.10], while (6–7) follow easily from definitions. We prove (8). Note that $(x : y)y = x \land y = x$. Suppose that $(x : y) \le \bigvee_{i \in A} z_i$. Then $x = (x : y)y \le \bigvee_{i \in A} z_i y$, so $(x : y)y \le \bigvee_{i \in B} z_i y$ for some finite subset *B* of *A*. Cancel *y* to get $(x : y) \le \bigvee_{i \in B} z_i$.

Say that *x* and $y \in L$ are *comaximal* if $x \vee y = 1$. Clearly, $x \vee yz = 1$ if and only if *x* ∨ *y* = 1 and *x* ∨ *z* = 1. When *t* ≤ *u* we say that *t* is *below u* or that *u* is *above t*.

Lemma 4. Let L be a C-lattice and $z \in L - \{1\}$ a compact element such that $\{m \in L\}$ *Max*(*L*); $z \le m$ } *is infinite. There exists an infinite set* $\{a_n; n \ge 1\}$ *of pairwise comaximal proper compact elements such that* $z \le a_n$ *for each n.*

Proof. We may clearly assume that $z = 0$ (just change *L* by $\{x \in L; x \ge z\}$). Say that a proper compact element *h* is *big* (ad hoc name) if *h* is below only one maximal element *M*(*h*). We separate in two cases.

Case (1): *Every proper compact element is below some big compact element*. We proceed by induction. Suppose that $n > 1$ and we already have big compacts a_1, \ldots, a_n such that $M(a_1),...,M(a_n)$ are distinct maximal elements (for $n = 1$ just pick an arbitrary big compact a_1). Let p be a maximal element other than $M(a_1),...,M(a_n)$. There exists a compact element *c* $\leq p$ such that *c* $\nleq M(a_i)$ for $1 \leq i \leq n$ (take *c* = *c*₁ ∨ ··· ∨ *c_n* where each *c_i* ∈ *L*[∗] satisfies *c_i* ≤ *p* and *c_i* ≰ *M*(*a_i*)). Then take a big compact element $a_{n+1} \geq c$. This way we construct an infinite set $\{a_n; n \geq 1\}$ of big compacts such that all $M(a_n)$'s are distinct. Hence the a_n 's are pairwise comaximal.

Case (2): *There exists a proper compact element a*₀ *which is not below any big compact element*. Clearly every proper compact above a_0 inherits this property. Pick two distinct maximal elements p and q above a_0 . As L is a C -lattice, there exist two comaximal compacts $a_1 < p$ and $b_1 < q$ (note that $p \vee q = 1$, express p and *q* as joins of compact elements and use the fact that 1 is compact). Repeating this argument for a_1 , there exist two comaximal proper compacts $a_2 \ge a_1$ and $b_2 \ge a_1$. Note that b_2 and b_1 are comaximal. Thus we construct inductively an infinite set ${b_n; n \geq 1}$ of pairwise comaximal proper compact elements.

In a *C*-lattice *L*, we say that an element *x* is *locally compact* if x_m is compact in *L_m* for each *m* ∈ *Max*(*L*). We state our main result which is a Bazzoni-type theorem for *C*-lattices.

Theorem 5. *Let L be a C-lattice domain satisfying the following two conditions:*

(*a*) *every nonzero element is above some cancellative compact element, and*

(*b*) *every compact element* $x \neq 1$ *has some power* x^n *below some proper* CMP *element.*

Then the following conditions are equivalent:

(*i*) *Every locally compact element of L is compact.*

(*ii*) *Every nonzero element is below at most finitely many maximal elements.*

Proof. (*ii*) \Rightarrow (*i*). Although this part is well-known and easy, we include a proof for the reader's convenience. Let *x* be a nonzero locally compact element of *L* and let $a \leq x$ be a nonzero compact element. By (ii) , there are only finitely many maximal elements above a, say $m_1,...,m_k$. For each *i* between 1 and *k*, pick a compact element $c_i \leq x$ such that $x_{m_i} = (c_i)_{m_i}$. A local check shows that $x = a \vee c_1 \vee \cdots \vee c_k$, so *x* is compact. Note that this part works for any *C*-lattice.

 $(i) \Rightarrow (ii)$. Deny, so suppose that some nonzero element *c* is below infinitely many maximal elements. By hypothesis(*a*), we may assume that *c* is a cancellative compact element. By Lemma [4](#page-2-0) and hypothesis (*b*), there exist an infinite set $\{b_n; n \geq 1\}$ of proper pairwise comaximal CMP elements and integers $k_n \geq 1$ such that $c^{k_n} \leq b_n$ for $n \geq 1$ (k_n minimal with this property). Restricting to a subsequence, we may assume that $k_n \leq k_{n+1}$ for all *n*. We then have $c^{k_n} \leq b_1 \wedge \cdots \wedge b_n = b_1 \cdots b_n$ for all *n*.

Claim (*) : *The element a* := $\bigvee_{n \geq 1} (c^{k_n} : b_1 \cdots b_n)$ *is locally compact.* Pick $m \in \text{Max}(L)$. Since the b_n 's are pairwise comaximal, m is above at most one of them. Assume first that $m \ge b_s$. Since each product $b_1 \cdots b_n$ is compact, we get

$$
a_m = (\bigvee_{n \geq 1} ((c^{k_n})_m : (b_1 \cdots b_n)_m))_m = (c^{k_1} \vee (c^{k_s} : b_s))_m
$$

which is compact in L_m , cf. Lemma [3.](#page-1-1) Similarly, when *m* is above no b_n , we get $a_m = (c^{k_1})_m$, so a_m is compact in L_m , hence Claim (*) is proved. By (*i*), *a* is compact. So $a = \bigvee_{n=1}^{q} (c^{k_n} : b_1 \cdots b_n)$ for some $q \ge 1$. We get

$$
(c^{k_{q+1}}:b_1\cdots b_{q+1})\leq (c^{k_1}:b_1\cdots b_q)
$$

so multiplying by $b_1 \cdots b_{q+1}$ (which is a CMP element) and taking into account that $c^{k_{q+1}} \leq b_1 \cdots b_{q+1}$, we get

$$
c^{k_{q+1}} \leq (c^{k_1} : b_1 \cdots b_q) b_1 \cdots b_{q+1} \leq c^{k_1} b_{q+1}.
$$

Since $k_{q+1} \ge k_1$ and c^{k_1} is cancellative, we get $c^{k_{q+1}-k_1} \le b_{q+1}$, which is a contra-diction since k_{q+1} was minimal with $c^{k_{q+1}} \le b_{q+1}$. □ diction since k_{q+1} was minimal with $c^{k_{q+1}} \leq b_{q+1}$.

Recall that a*C*-lattice domain is a *Prüfer lattice* if every compact element is principal (i.e., meet-principal and join-principal). In a*C*-lattice domain, every nonzero joinprincipal element *x* is cancellative (because $(yx : x) = y \lor (0 : x) = y$ for each *y*). So in a Prüfer lattice domain every nonzero compact element is CMP.

Corollary 6. *Let L be a C-lattice domain in which every nonzero compact element is CMP (e.g., a Prüfer lattice domain). Then conditions* (*i*) *and* (*ii*) *of Theorem [5](#page-3-0) are equivalent.*

Bazzoni's conjecture for Prüfer domains [\[10](#page-7-1), Theorem 10] (see Introduction) follows from Corollary [6](#page-3-1) since the ideal lattice of a Prüfer domain is clearly a Prüfer lattice.

3 Almost Prüfer Extensions

We recall several definitions from [\[6,](#page-7-3) [12](#page-7-9)]. Let $A \subseteq B$ be a commutative ring extension and *I* an ideal of *A*. Then *I* is called *B-regular*if *I B* = *B* and *I* is called *B-invertible* if $I J = A$ for some A-submodule *J* of *B*. Every *B*-invertible ideal is *B*-regular, since $A = I J \subseteq I B$ implies $I B = B$. We say that $A \subseteq B$ is an *almost Prüfer extension* if every finitely generated *B*-regular ideal of *A* is *B*-invertible.

Finocchiaro and Tartarone [\[6](#page-7-3), Theorem 4.5] proved Bazzoni's conjecture for almost Prüfer ring extensions. We state their result and derive it from Corollary [6.](#page-3-1)

Theorem 7. (Finocchiaro and Tartarone) *If* $A \subseteq B$ *is an almost Prüfer extension, the following are equivalent:*

(*i*) *Every B-regular locally principal ideal of A is B-invertible.*

(*ii*) *Every B-regular ideal of A is contained in only finitely many maximal ideals of A.*

Proof. It is well-known and easy to prove that (*ii*) implies (*i*), see [\[6](#page-7-3), Corollary 3.5]. We prove the converse. Let *L* be the set of all *B*-regular ideals of *A* together with the zero ideal and order *L* by inclusion. As shown in [\[15](#page-8-2), Lemma 7.1], *L* is a *C*-lattice domain under usual ideal multiplication, where the join is the ideal sum and the meet is the ideal intersection except the case when we get a non-*B*-regular ideal when we put $\bigwedge = 0$. By [\[15,](#page-8-2) Lemma 7.1], the set L^* of compact elements in L is exactly the set of (*B*-regular) finitely generated ideals of *A* together with the zero ideal. After this preparation it becomes clear that $[(i) \Rightarrow (ii)]$ follows from Corollary [6](#page-3-1) provided we prove the two claims below. Write $x \in L$ as \hat{x} when considered as an ideal of A. *Claim* 1: *Every nonzero compact element of L is a CMP element.*

Let *c* be a nonzero compact element of *L*. As $A \subseteq B$ is almost Prüfer, \hat{c} is a *B*invertible ideal, so $\hat{c}J = A$ for some A-submodule *J* of *B*. Then *c* is clearly can-cellative. By Lemma [3,](#page-1-1) it suffices to show that $(x : c)c = x \wedge c$ for each $x \in L$. Changing *x* by $x \wedge c$, we may assume that $x \leq c$. We have $\hat{x} = \hat{x}J\hat{c}$, so $x = yc$ where *y* ∈ *L* is such that $\hat{y} = \hat{x}J$ (note that $\hat{x}J \subseteq A$). From $x = yc$ we get $y \leq (x : c)$, so $x = yc \leq (x : c)c \leq x$, thus $(x : c)c = x$.

Claim 2: *Every locally compact element of L is compact.* Suppose that *c* is a nonzero locally compact element of *L*. Let *m* be a maximal element of *L*, that is, \hat{m} is a *B*-regular maximal ideal of *A*. So $c_m = \sqrt{\{y \in L^*; y s \leq c \text{ for } g \text{ is a } B\}}$ for some $s \in L^*$, $s \nleq m$ is compact in the lattice $L_m = \{x_m : x \in L\}$. Then $c_m = h_m$ for

some *h* ∈ *L*[∗]. Extending these ideals in $A_{\hat{m}}$, we get $\hat{c}A_{\hat{m}} = \hat{c}_m A_{\hat{m}} = h_m A_{\hat{m}} = h A_{\hat{m}}$.
Since *A* ⊂ *R* is almost Prijfer \hat{h} is *R*-invertible. By [12 Proposition 2.31 $\hat{h}A \sim$ Since *A* ⊆ *B* is almost Prüfer, \hat{h} is *B*-invertible. By [\[12,](#page-7-9) Proposition 2.3], $\hat{h}A_{\hat{m}} =$ $\hat{c}A_{\hat{m}}$ is a principal ideal of $A_{\hat{m}}$. Thus \hat{c} is a locally principal ideal of *A*. By (*i*), \hat{c} is *B*-invertible, so \hat{c} is finitely generated, cf. [\[12,](#page-7-9) Proposition 2.3]. Thus *c* is compact in *L*. in L.

4 Ideal Systems on Monoids and Integral Domains

Let *H* be a commutative multiplicative monoid (with zero element 0 and unit element 1) such that every nonzero element of *H* is cancellative and let $P(H)$ be the power set of *H*. A map $r : \mathcal{P}(H) \to \mathcal{P}(H), X \mapsto X_r$, is an *ideal system* on *H* if the following conditions hold for all *X*, $Y \in \mathcal{P}(H)$ and $c \in H$:

 $(X, Y) \subset (X, Y) \subset (X, Y) \subset (X, Y) \subset (X, Y) \subset (Y, Y)$ implies $X_r \subseteq Y_r$, (4) $(X_r)_r = X_r$.

Then X_r is called the *r*-closure of X and a set of the form X_r is called an *r*-ideal. An *r*-ideal *I* is *r*-finite if $I = Y_r$ for some finite subset *Y* of *I*. The ideal system *r* is called *finitary* if $X_r = \left[\int \{Y_r : Y \subseteq X \text{ finite} \} \right]$.

Assume that *r* is finitary. A proper *r*-ideal *P* is *prime* if, for $x, y \in H$, $xy \in P$ implies $x \in P$ or $y \in P$. The *localization of H at P* is the fraction monoid $H_P = \{x/t; x \in H, t \in H - P\}$ which comes together with the finitary ideal system r_P defined by $\{a_1/s_1, ..., a_n/s_n\}_{r_P} = (\{a_1, ..., a_n\}_r)P$ for all $a_1, ..., a_n \in H$ and $s_1, ..., s_n \in H - P$. A *maximal r-ideal* is a maximal element of the set of proper *r*ideals of *H*. Any proper*r*-ideal is contained in a maximal one and a maximal*r*-ideal is prime. A nonzero *r*-ideal *I* is *r-invertible* if *I* is *r*-finite and *r-locally principal* (i.e., $I_M = \{x/t; x \in I, t \in H - M\} = yH_M$ with $y \in I_M$ (depending on *M*) for all maximal*r*-ideals *M*). Next *H* is an *r-Prüfer monoid* if every nonzero *r*-finite *r*-ideal of *H* is *r*-invertible. For complete details we refer to [\[8](#page-7-7)].

Halter-Koch [\[9,](#page-7-2) Theorem 6.11] proved Bazzoni's conjecture for*r*-Prüfer monoids. We state his result and derive it from Corollary [6.](#page-3-1)

Theorem 8. (Halter-Koch) *If H is an r-Prüfer monoid for some finitary ideal system r on H, the following are equivalent.*

(*i*) *Every r-locally principal r-ideal of H is r-finite.*

(*ii*) *Every nonzero r-ideal of H is contained in only finitely many maximal rideals.*

Proof. It is well-known and easy to prove that (ii) implies (i) . We prove the converse. Let *L* be the set of all *r*-ideals of *H* ordered by inclusion. As shown in [\[8,](#page-7-7) Chapter 8], *L* is a *C*-lattice domain under *r*-ideal multiplication $(I, J) \mapsto (IJ)_r$, join $\bigvee \{J_\alpha\} :=$ $(\bigcup J_\alpha)_r$ and meet $\bigwedge \{J_\alpha\} := \bigcap J_\alpha$. By [\[15](#page-8-2), Lemma 8.1], the set L^* of compact elements in *L* is exactly the set of *r*-finite *r*-ideals of *H*. After this preparation it becomes clear that $[(i) \Rightarrow (ii)]$ follows from Corollary [6](#page-3-1) provided we prove the two claims below. Write $x \in L$ as \hat{x} when considered as an *r*-ideal of *H*.

Claim 1: *Every nonzero compact element of L is a CMP element.* Let $c \in L$ be a nonzero compact, in other words \hat{c} is nonzero *r*-finite *r*-ideal. Since *H* is *r*-Prüfer, \hat{c} is *r*-invertible. So *c* is a CMP element of *L*, cf. [\[15,](#page-8-2) Lemma 8.2].

Claim 2: *Every locally compact element of L is compact.*

Suppose that *c* is a locally compact element of *L*. Let *m* be a maximal element of *L*, that is, \hat{m} is a maximal *r*-ideal of *H*. So $c_m = \sqrt{\{y \in L^*; y s \leq c \text{ for some } g \in L^* \mid s \leq m\}}$ is compact in the lattice $L_m = \{x : x \in L\}$. Then $c_m = h_m$ for some $s \in L^*$, $s \nleq m$ is compact in the lattice $L_m = \{x_m; x \in L\}$. Then $c_m = h_m$ for some *h* ∈ *L*[∗]. Switching to *H*, we have $(\widehat{c})_{\widehat{m}} = (\widehat{c}_m)_{\widehat{m}} = (h_m)_{\widehat{m}} = h_{\widehat{m}}$. Since *H* is an *r*-
Prijfer monoid \widehat{h} is a principal *r*-ideal of *H* is an *H* and *H* and *H* and *H* and *H* and *H* Prüfer monoid, $\widehat{h}_{\widehat{m}}$ is a principal $r_{\widehat{m}}$ -ideal of $H_{\widehat{m}}$, cf. [\[8,](#page-7-7) Theorem 12.3]. Thus \widehat{c} is an *r*-locally principal *r*-ideal. By (*i*), \hat{c} is *r*-finite, thus *c* is compact in *L*.

Next we present an application for integral domains. Let *D* be an integral domain. The *t* ideal system on *D* is defined by $X_t = \bigcup \{Y_v : Y \subseteq X \text{ finite}\}\)$ for all $X \subseteq D$, where $Y_v = \bigcap \{(aD : p \mid b); a, b \in D, bY \subseteq aD\}$. Clearly *t* is finitary, so the set $Max_t(D)$ of maximal *t*-ideals is nonempty, see [\[8,](#page-7-7) Chapter 11].

The w ideal system on *D* is defined by $X_w = \bigcap \{X D_M; M \in Max_t(D)\}$ for all $X \subseteq D$, where $X D_M$ is the ideal generated by *X* in D_M . So a w-ideal is an ideal of the ring *D*. For $X \subseteq D$, we have $X_w = (XD)_w$ and $X_w D_M = X D_M$ for each $M \in \text{Max}_{t}(D)$. Moreover, w is finitary and the set of maximal w-ideals is exactly *Max_t*(*D*). A *w*-finite ideal has the form $((a_1, ..., a_n)D)_w$ for some a_i 's in *D*. And a nonzero w-ideal is w-invertible if it is w-finite and *t*-locally principal (i.e., ID_M is a principal ideal of D_M for each $M \in Max_t(D)$). For details on the w ideal system we refer to $[2, 5]$ $[2, 5]$ $[2, 5]$ $[2, 5]$.

According to [\[13](#page-7-12)], *D* is an *almost Prüfer* v*-multiplication domain* (in short *APVMD*) if for every $a_1, ..., a_n \in D - \{0\}$, the ideal $((a_1^k, ..., a_n^k)D)_w$ is w-invertible for some $k \ge 1$. Say that a w-ideal *I* of *D* is *t*-locally finitely generated, if ID_M is a finitely generated ideal of D_M for each $M \in Max_t(D)$.

Chang and Hamdi [\[4,](#page-7-4) Theorem 2.4] proved Bazzoni's conjecture for APVMDs. We state their result and derive it from Theorem [5.](#page-3-0)

Theorem 9. (Chang and Hamdi) *For an APVMD D, the following statements are equivalent:*

(*i*) *Each nonzero t-locally finitely generated* w*-ideal of D is* w*-finite.*

(*ii*) *Every nonzero ideal of D is contained in only finitely many maximal t-ideals.*

Proof. It is well-known and easy to prove that (*ii*) implies (*i*), see for instance the proof of (3) \Rightarrow (1) in [\[4,](#page-7-4) Theorem 2.4]. We prove that (*i*) implies (*ii*). Let *L* be the set of all w-ideals of *D* ordered by inclusion. As shown in [\[8,](#page-7-7) Chapter 8], *L* is a *C*-lattice domain under w-ideal multiplication $(I, J) \mapsto (IJ)_w$, join $\bigvee \{J_\alpha\} := (\bigcup J_\alpha)_w$ and meet $\bigwedge \{J_\alpha\} := \bigcap J_\alpha$. By [\[15,](#page-8-2) Lemma 8.1], the set L^* of compact elements in L is exactly the set of w-finite ideals of *D*. Condition (*a*) of Theorem [5](#page-3-0) holds clearly for *L* (any nonzero ideal contains a nonzero principal ideal). After this preparation it becomes clear that $[(i) \Rightarrow (ii)]$ follows from Theorem [5](#page-3-0) provided we prove the two claims below. Write $x \in L$ as \hat{x} when considered as a w-ideal of *D*.

Claim 1: *Every d* $\in L^* - \{1\}$ *has some power dⁿ below some proper CMP element.*

Let $d \in L^* - \{1\}$. Then $d = (a_1, ..., a_k)_w$ for some elements $a_i \in d$. Since *D* is an APVMD, $(a_1^s, ..., a_k^s)_{w}$ is w-invertible for some $s \ge 1$. If $(a_1^s, ..., a_k^s)_{w} = \hat{f}$ with $f \in L$, then *f* is a proper CMP element of *L*, cf. [\[15](#page-8-2), Lemma 8.2]. Moreover $d^{sk} \leq f$, so Claim 1 is proved.

Claim 2: *Every locally compact element of L is compact.*

Suppose that *c* is a locally compact element of *L*. Let *m* be a maximal element of *L*, that is, \widehat{m} is a maximal w-ideal of *D*. So $c_m = \sqrt{\{y \in L^*; y s \leq c \text{ for some } g \in L^* \mid s \leq m\}}$ is compact in the lattice *L*_∞ = {*x* ∴ *x* ∈ *L*.} Then $c_n = h_n$ for some $s \in L^*$, $s \nleq m$ is compact in the lattice $L_m = \{x_m; x \in L\}$. Then $c_m = h_m$ for some *h* ∈ *L*[∗]. Hence *h* = $(b_1, ..., b_n)$ _w for some elements *b_i* ∈ *h*. Switching to *D*, we have

$$
\widehat{c}D_{\widehat{m}} = \widehat{c_m}D_{\widehat{m}} = (\widehat{h_m})D_{\widehat{m}} = \widehat{h}D_{\widehat{m}} = (b_1, ..., b_n)_w D_{\widehat{m}} = (b_1, ..., b_n)D_{\widehat{m}}.
$$

Thus \hat{c} is a *t*-locally finitely generated ideal of *D*. By (*i*), \hat{c} is w-finite, thus *c* is compact in *L* compact in L.

Acknowledgements I thank the referee for the close reading of the manuscript and for the detailed report which heavily improved the quality of this paper.

References

- 1. Anderson, D.D.: Abstract commutative ideal theory without chain conditions. Algebra Univ. **6**, 131–145 (1976)
- 2. Anderson, D.D., Cook, S.J.: Two star-operations and their induced lattices. Comm. Algebra **28**, 2461–2475 (2000)
- 3. Bazzoni, S.: Class semigroups of Prüfer domains. J. Algebra **184**, 613–631 (1996)
- 4. Chang, G.W. Hamdi, H.: Bazzoni's conjecture and almost Prüfer domains, to appear in Comm. Algebra
- 5. Fanggui, W., McCasland, R.L.: On w-modules over strong Mori domains. Comm. Algebra **25**, 1285–1306 (1997)
- 6. Finnochiaro, C., Tartarone, F.: Invertibility of ideals in Prüfer extensions. Comm. Algebra **45**, 4521–4527 (2017)
- 7. Gilmer, R.: Multiplicative Ideal Theory. Marcel Dekker, New York (1972)
- 8. Halter-Koch, F.: Ideal System. An Introduction to Multiplicative Ideal Theory, Marcel Dekker, New York (1998)
- 9. Halter-Koch, F.: Clifford semigroups of ideals in monoids and domains. Forum Math. **21**, 1001–1020 (2009)
- 10. Holland, W.C., Martinez, J., McGovern, W.W., Tesemma, M.: Bazzoni's conjecture. J. Algebra **320**, 1764–1768 (2008)
- 11. Jayaram, C., Johnson, E.G.: S-prime elements in multiplicative lattices. Periodica Math. Hungarica **31**, 201–208 (1995)
- 12. Knebusch, M., Zhang, D.: Manis Valuations and Prüfer Extensions I: A New Chapter in Commutative Algebra. Springer, Berlin, Heidelberg (2002)
- 13. Lewin, R.L.: Generalizations of GCD-domains and related topics, Ph.D. Thesis, University of Iowa (1991)
- 14. McGovern, W.W.: Prüfer domains with Clifford class semigroup. J. Comm. Algebra **3**, 551–559 (2011)
- 15. Olberding, B., Reinhart, A.: Radical factorization in commutative rings, monoids and multiplicative lattices, Math. (2018). [arXiv: 1811.00242v1,](http://arxiv.org/abs/1811.00242v1) math.AC
- 16. Zafrullah, M.: t-invertibility and Bazzoni-like statements. J. Pure Appl. Algebra **214**, 654–657 (2010)