A Bazzoni-Type Theorem for Multiplicative Lattices

Tiberiu Dumitrescu

Abstract We prove a Bazzoni-type theorem for multiplicative lattices thus unifying several ring/monoid theoretic results of this type.

Keywords Prüfer domain · Multiplicative lattice

2010 Mathematics Subject Classification Primary 06F05 · Secondary 13F15

1 Introduction

Let *D* be an integral domain. Consider the following two assertions:

(i) If I is an ideal of D whose localizations at the maximal ideals are finitely generated, then I is finitely generated.

(ii) Every $x \in D - \{0\}$ belongs to only finitely many maximal ideals of D.

While $(ii) \Rightarrow (i)$ is well-known and easy to prove, Bazzoni [3, p. 630] conjectured that the converse is true for Prüfer domains. Recall that *D* is a *Prüfer domain* if every finitely generated ideal *I* of *D* is locally principal.

Holland et al. [10, Theorem 10] proved Bazzoni's conjecture for Prüfer domains using techniques from lattice-ordered groups theory and McGovern [14, Theorem 11] proved the same result using a direct ring theoretic approach. Halter-Koch [9, Theorem 6.11] proved Bazzoni's conjecture for *r*-Prüfer monoids (see Section 4). Zafrullah [16, Proposition 5] proved Bazzoni's conjecture for Prüfer *v*-multiplication domains. Finocchiaro and Tartarone [6, Theorem 4.5] proved Bazzoni's conjecture for almost Prüfer ring extensions (see Section 3). Recently, Chang and Hamdi [4, Theorem 2.4] proved Bazzoni's conjecture for almost Prüfer *v*-multiplication domains (see Section 4).

T. Dumitrescu (🖂)

Facultatea de Matematica si Informatica, University of Bucharest,

¹⁴ Academiei Street, 010014 Bucharest, RO, Romania

e-mail: tiberiu@fmi.unibuc.ro

[©] Springer Nature Switzerland AG 2020

A. Facchini et al. (eds.), *Advances in Rings, Modules and Factorizations*, Springer Proceedings in Mathematics & Statistics 321, https://doi.org/10.1007/978-3-030-43416-8_6

The purpose of this paper is to prove a Bazzoni-type theorem for multiplicative lattices (see Section 2), thus unifying the results mentioned above (see Sections 3 and 4). Our standard references are [1, 7, 8].

2 Main Result

We use an abstract ideal theory approach, so we work with multiplicative lattices.

Definition 1. A *multiplicative lattice* is a complete lattice (L, \leq) (with bottom element 0 and top element 1) which is also a multiplicative commutative monoid with identity 1 (the top element) and satisfies $a(\bigvee b_{\alpha}) = \bigvee ab_{\alpha}$ for each $a, b_{\alpha} \in L$.

Let *L* be a multiplicative lattice. The elements in $L - \{1\}$ are said to be *proper*. Denote by Max(L) the set of maximal elements of *L*. For $x, y \in L$, set $(y : x) = \bigvee \{a \in L; ax \le y\}$.

We recall some standard terminology.

Definition 2. Let *L* be a multiplicative lattice and let $x, p \in L$.

(1) *p* is *prime* if $p \neq 1$ and for all $a, b \in L$, $ab \leq p$ implies $a \leq p$ or $b \leq p$. It follows easily that every maximal element is prime.

(2) *x* is *compact* if whenever $x \leq \bigvee_{y \in S} y$ with $S \subseteq L$, we have $x \leq \bigvee_{y \in T} y$ for some finite subset *T* of *S*.

(3) *L* is a *C*-lattice if the set L^* of compact elements of *L* is closed under multiplication, $1 \in L^*$ and every element in *L* is a join of compact elements.

(4) *x* is *meet-principal* if $y \wedge zx = ((y : x) \wedge z)x$ for all $y, z \in L$ (in particular $(y : x)x = x \wedge y$).

(5) *x* is *join-principal* if $y \lor (z : x) = ((yx \lor z) : x)$ for all $y, z \in L$ (in particular $(xy : x) = y \lor (0 : x)$).

(6) *x* is *cancellative* if for all $y, z \in L, xy = xz$ implies y = z.

(7) x is *CMP* (ad hoc name) if x is cancellative and meet-principal.

(8) *L* is a *lattice domain* if (0:a) = 0 for all $a \in L - \{0\}$.

In the sequel, we work with *C*-lattices and their localization theory. Let *L* be a *C*-lattice. For $p \in L$ a prime element and $x \in L$, we set

$$x_p = \bigvee \{a \in L^*; ab \le x \text{ for some } b \in L^* \text{ with } b \le p\}.$$

Then $L_p := \{x_p; x \in L\}$ is again a lattice with multiplication $(x_p, y_p) \mapsto (xy)_p = (x_p y_p)_p$, join $\{(b_\alpha)_p\} \mapsto (\bigvee (b_\alpha)_p)_p = (\bigvee b_\alpha)_p$ and meet $\{(b_\alpha)_p\} \mapsto (\bigwedge (b_\alpha)_p)_p$. The next lemma collects several basic properties.

Lemma 3. Let *L* be a *C*-lattice, let $x, y \in L$ and let $p \in L$ be a prime element. (1) $x_p = 1$ if and only if $x \nleq p$. (2) $(x \land y)_p = x_p \land y_p$. (3) If x is compact, then $(y : x)_p = (y_p : x_p)$.

(4) x = y if and only if $x_m = y_m$ for each $m \in Max(L)$.

(5) A cancellative element x is CMP if and only if $(y : x)x = x \land y$ for all $y \in L$.

(6) If x is compact, then x_p is compact in L_p . Conversely, if x_p is compact in L_p , then $x_p = c_p$ for some compact element $c \le x$.

(7) If x and y are CMP elements, then so is xy.

(8) If x is compact, y is CMP and $x \le y$, then (x : y) is compact.

Proof. For (1–4) see [11, pp. 201–202], for (5) see [15, Lemma 2.10], while (6–7) follow easily from definitions. We prove (8). Note that $(x : y)y = x \land y = x$. Suppose that $(x : y) \leq \bigvee_{i \in A} z_i$. Then $x = (x : y)y \leq \bigvee_{i \in A} z_i y$, so $(x : y)y \leq \bigvee_{i \in B} z_i y$ for some finite subset *B* of *A*. Cancel *y* to get $(x : y) \leq \bigvee_{i \in B} z_i$.

Say that x and $y \in L$ are *comaximal* if $x \lor y = 1$. Clearly, $x \lor yz = 1$ if and only if $x \lor y = 1$ and $x \lor z = 1$. When $t \le u$ we say that t is *below u* or that u is *above t*.

Lemma 4. Let *L* be a *C*-lattice and $z \in L - \{1\}$ a compact element such that $\{m \in Max(L); z \leq m\}$ is infinite. There exists an infinite set $\{a_n; n \geq 1\}$ of pairwise comaximal proper compact elements such that $z \leq a_n$ for each *n*.

Proof. We may clearly assume that z = 0 (just change L by $\{x \in L; x \ge z\}$). Say that a proper compact element h is big (ad hoc name) if h is below only one maximal element M(h). We separate in two cases.

Case (1): Every proper compact element is below some big compact element. We proceed by induction. Suppose that $n \ge 1$ and we already have big compacts $a_1,...,a_n$ such that $M(a_1),...,M(a_n)$ are distinct maximal elements (for n = 1 just pick an arbitrary big compact a_1). Let p be a maximal element other than $M(a_1),...,M(a_n)$. There exists a compact element $c \le p$ such that $c \nleq M(a_i)$ for $1 \le i \le n$ (take c = $c_1 \lor \cdots \lor c_n$ where each $c_i \in L^*$ satisfies $c_i \le p$ and $c_i \nleq M(a_i)$). Then take a big compact element $a_{n+1} \ge c$. This way we construct an infinite set $\{a_n; n \ge 1\}$ of big compacts such that all $M(a_n)$'s are distinct. Hence the a_n 's are pairwise comaximal.

Case (2): There exists a proper compact element a_0 which is not below any big compact element. Clearly every proper compact above a_0 inherits this property. Pick two distinct maximal elements p and q above a_0 . As L is a C-lattice, there exist two comaximal compacts $a_1 \le p$ and $b_1 \le q$ (note that $p \lor q = 1$, express p and q as joins of compact elements and use the fact that 1 is compact). Repeating this argument for a_1 , there exist two comaximal proper compacts $a_2 \ge a_1$ and $b_2 \ge a_1$. Note that b_2 and b_1 are comaximal. Thus we construct inductively an infinite set $\{b_n; n \ge 1\}$ of pairwise comaximal proper compact elements.

In a *C*-lattice *L*, we say that an element *x* is *locally compact* if x_m is compact in L_m for each $m \in Max(L)$. We state our main result which is a Bazzoni-type theorem for *C*-lattices.

Theorem 5. Let L be a C-lattice domain satisfying the following two conditions:

(a) every nonzero element is above some cancellative compact element, and

(b) every compact element $x \neq 1$ has some power x^n below some proper CMP element.

Then the following conditions are equivalent:

(i) Every locally compact element of L is compact.

(ii) Every nonzero element is below at most finitely many maximal elements.

Proof. $(ii) \Rightarrow (i)$. Although this part is well-known and easy, we include a proof for the reader's convenience. Let *x* be a nonzero locally compact element of *L* and let $a \le x$ be a nonzero compact element. By (ii), there are only finitely many maximal elements above *a*, say $m_1,...,m_k$. For each *i* between 1 and *k*, pick a compact element $c_i \le x$ such that $x_{m_i} = (c_i)_{m_i}$. A local check shows that $x = a \lor c_1 \lor \cdots \lor c_k$, so *x* is compact. Note that this part works for any *C*-lattice.

 $(i) \Rightarrow (ii)$. Deny, so suppose that some nonzero element *c* is below infinitely many maximal elements. By hypothesis (*a*), we may assume that *c* is a cancellative compact element. By Lemma 4 and hypothesis (*b*), there exist an infinite set $\{b_n; n \ge 1\}$ of proper pairwise comaximal CMP elements and integers $k_n \ge 1$ such that $c^{k_n} \le b_n$ for $n \ge 1$ (k_n minimal with this property). Restricting to a subsequence, we may assume that $k_n \le k_{n+1}$ for all *n*. We then have $c^{k_n} \le b_1 \land \cdots \land b_n = b_1 \cdots b_n$ for all *n*.

Claim (*) : The element $a := \bigvee_{n \ge 1} (c^{k_n} : b_1 \cdots b_n)$ is locally compact. Pick $m \in Max(L)$. Since the b_n 's are pairwise comaximal, m is above at most one of them. Assume first that $m \ge b_s$. Since each product $b_1 \cdots b_n$ is compact, we get

$$a_m = (\bigvee_{n \ge 1} ((c^{k_n})_m : (b_1 \cdots b_n)_m))_m = (c^{k_1} \lor (c^{k_s} : b_s))_m$$

which is compact in L_m , cf. Lemma 3. Similarly, when *m* is above no b_n , we get $a_m = (c^{k_1})_m$, so a_m is compact in L_m , hence Claim (*) is proved. By (*i*), *a* is compact. So $a = \bigvee_{n=1}^{q} (c^{k_n} : b_1 \cdots b_n)$ for some $q \ge 1$. We get

$$(c^{k_{q+1}}:b_1\cdots b_{q+1}) \le (c^{k_1}:b_1\cdots b_q)$$

so multiplying by $b_1 \cdots b_{q+1}$ (which is a CMP element) and taking into account that $c^{k_{q+1}} \leq b_1 \cdots b_{q+1}$, we get

$$c^{k_{q+1}} \leq (c^{k_1}: b_1 \cdots b_q) b_1 \cdots b_{q+1} \leq c^{k_1} b_{q+1}.$$

Since $k_{q+1} \ge k_1$ and c^{k_1} is cancellative, we get $c^{k_{q+1}-k_1} \le b_{q+1}$, which is a contradiction since k_{q+1} was minimal with $c^{k_{q+1}} \le b_{q+1}$.

Recall that a *C*-lattice domain is a *Prüfer lattice* if every compact element is principal (i.e., meet-principal and join-principal). In a *C*-lattice domain, every nonzero join-principal element *x* is cancellative (because $(yx : x) = y \lor (0 : x) = y$ for each *y*). So in a Prüfer lattice domain every nonzero compact element is CMP.

Corollary 6. Let *L* be a *C*-lattice domain in which every nonzero compact element is CMP (e.g., a Prüfer lattice domain). Then conditions (i) and (ii) of Theorem 5 are equivalent.

Bazzoni's conjecture for Prüfer domains [10, Theorem 10] (see Introduction) follows from Corollary 6 since the ideal lattice of a Prüfer domain is clearly a Prüfer lattice.

3 Almost Prüfer Extensions

We recall several definitions from [6, 12]. Let $A \subseteq B$ be a commutative ring extension and I an ideal of A. Then I is called *B*-regular if IB = B and I is called *B*-invertible if IJ = A for some A-submodule J of B. Every B-invertible ideal is B-regular, since $A = IJ \subseteq IB$ implies IB = B. We say that $A \subseteq B$ is an *almost Prüfer extension* if every finitely generated *B*-regular ideal of A is *B*-invertible.

Finocchiaro and Tartarone [6, Theorem 4.5] proved Bazzoni's conjecture for almost Prüfer ring extensions. We state their result and derive it from Corollary 6.

Theorem 7. (Finocchiaro and Tartarone) If $A \subseteq B$ is an almost Prüfer extension, the following are equivalent:

(i) Every B-regular locally principal ideal of A is B-invertible.

(ii) Every B-regular ideal of A is contained in only finitely many maximal ideals of A.

Proof. It is well-known and easy to prove that (ii) implies (i), see [6, Corollary 3.5]. We prove the converse. Let *L* be the set of all *B*-regular ideals of *A* together with the zero ideal and order *L* by inclusion. As shown in [15, Lemma 7.1], *L* is a *C*-lattice domain under usual ideal multiplication, where the join is the ideal sum and the meet is the ideal intersection except the case when we get a non-*B*-regular ideal when we put $\bigwedge = 0$. By [15, Lemma 7.1], the set L^* of compact elements in *L* is exactly the set of (*B*-regular) finitely generated ideals of *A* together with the zero ideal. After this preparation it becomes clear that $[(i) \Rightarrow (ii)]$ follows from Corollary 6 provided we prove the two claims below. Write $x \in L$ as \hat{x} when considered as an ideal of *A*. *Claim* 1: *Every nonzero compact element of L is a CMP element*.

Let *c* be a nonzero compact element of *L*. As $A \subseteq B$ is almost Prüfer, \hat{c} is a *B*-invertible ideal, so $\hat{c}J = A$ for some *A*-submodule *J* of *B*. Then *c* is clearly cancellative. By Lemma 3, it suffices to show that $(x : c)c = x \wedge c$ for each $x \in L$. Changing *x* by $x \wedge c$, we may assume that $x \leq c$. We have $\hat{x} = \hat{x}J\hat{c}$, so x = yc where $y \in L$ is such that $\hat{y} = \hat{x}J$ (note that $\hat{x}J \subseteq A$). From x = yc we get $y \leq (x : c)$, so $x = yc \leq (x : c)c \leq x$, thus (x : c)c = x.

Claim 2: Every locally compact element of L is compact. Suppose that c is a nonzero locally compact element of L. Let m be a maximal element of L, that is, \hat{m} is a B-regular maximal ideal of A. So $c_m = \bigvee \{y \in L^*; ys \le c \text{ for some } s \in L^*, s \le m\}$ is compact in the lattice $L_m = \{x_m; x \in L\}$. Then $c_m = h_m$ for some $h \in L^*$. Extending these ideals in $A_{\widehat{m}}$, we get $\widehat{c}A_{\widehat{m}} = \widehat{c}_{\widehat{m}}A_{\widehat{m}} = \widehat{h}A_{\widehat{m}} = \widehat{h}A_{\widehat{m}}$. Since $A \subseteq B$ is almost Prüfer, \widehat{h} is *B*-invertible. By [12, Proposition 2.3], $\widehat{h}A_{\widehat{m}} = \widehat{c}A_{\widehat{m}}$ is a principal ideal of $A_{\widehat{m}}$. Thus \widehat{c} is a locally principal ideal of *A*. By $(i), \widehat{c}$ is *B*-invertible, so \widehat{c} is finitely generated, cf. [12, Proposition 2.3]. Thus *c* is compact in *L*.

4 Ideal Systems on Monoids and Integral Domains

Let *H* be a commutative multiplicative monoid (with zero element 0 and unit element 1) such that every nonzero element of *H* is cancellative and let $\mathcal{P}(H)$ be the power set of *H*. A map $r : \mathcal{P}(H) \to \mathcal{P}(H), X \mapsto X_r$, is an *ideal system* on *H* if the following conditions hold for all $X, Y \in \mathcal{P}(H)$ and $c \in H$:

(1) $cX_r = (cX)_r$, (2) $X \subseteq X_r$, (3) $X \subseteq Y$ implies $X_r \subseteq Y_r$, (4) $(X_r)_r = X_r$.

Then X_r is called the *r*-closure of X and a set of the form X_r is called an *r*-ideal. An *r*-ideal I is *r*-finite if $I = Y_r$ for some finite subset Y of I. The ideal system r is called *finitary* if $X_r = \bigcup \{Y_r; Y \subseteq X \text{ finite}\}.$

Assume that *r* is finitary. A proper *r*-ideal *P* is prime if, for $x, y \in H$, $xy \in P$ implies $x \in P$ or $y \in P$. The *localization of H* at *P* is the fraction monoid $H_P = \{x/t; x \in H, t \in H - P\}$ which comes together with the finitary ideal system r_P defined by $\{a_1/s_1, ..., a_n/s_n\}_{r_P} = (\{a_1, ..., a_n\}_r)_P$ for all $a_1, ..., a_n \in H$ and $s_1, ..., s_n \in H - P$. A maximal *r*-ideal is a maximal element of the set of proper *r*ideals of *H*. Any proper *r*-ideal is contained in a maximal one and a maximal *r*-ideal is prime. A nonzero *r*-ideal *I* is *r*-invertible if *I* is *r*-finite and *r*-locally principal (i.e., $I_M = \{x/t; x \in I, t \in H - M\} = yH_M$ with $y \in I_M$ (depending on *M*) for all maximal *r*-ideals *M*). Next *H* is an *r*-Priifer monoid if every nonzero *r*-finite *r*-ideal of *H* is *r*-invertible. For complete details we refer to [8].

Halter-Koch [9, Theorem 6.11] proved Bazzoni's conjecture for r-Prüfer monoids. We state his result and derive it from Corollary 6.

Theorem 8. (Halter-Koch) If H is an r-Prüfer monoid for some finitary ideal system r on H, the following are equivalent.

(i) Every r-locally principal r-ideal of H is r-finite.

(ii) Every nonzero r-ideal of H is contained in only finitely many maximal r-ideals.

Proof. It is well-known and easy to prove that (ii) implies (i). We prove the converse. Let *L* be the set of all *r*-ideals of *H* ordered by inclusion. As shown in [8, Chapter 8], *L* is a *C*-lattice domain under *r*-ideal multiplication $(I, J) \mapsto (IJ)_r$, join $\bigvee \{J_\alpha\} := (\bigcup J_\alpha)_r$ and meet $\bigwedge \{J_\alpha\} := \bigcap J_\alpha$. By [15, Lemma 8.1], the set L^* of compact elements in *L* is exactly the set of *r*-finite *r*-ideals of *H*. After this preparation it becomes clear that $[(i) \Rightarrow (ii)]$ follows from Corollary 6 provided we prove the two claims below. Write $x \in L$ as \hat{x} when considered as an *r*-ideal of *H*. Claim 1: Every nonzero compact element of L is a CMP element. Let $c \in L$ be a nonzero compact, in other words \hat{c} is nonzero r-finite r-ideal. Since H is r-Prüfer, \hat{c} is r-invertible. So c is a CMP element of L, cf. [15, Lemma 8.2].

Claim 2: Every locally compact element of L is compact.

Suppose that *c* is a locally compact element of *L*. Let *m* be a maximal element of *L*, that is, \widehat{m} is a maximal *r*-ideal of *H*. So $c_m = \bigvee \{y \in L^*; ys \leq c \text{ for some } s \in L^*, s \not\leq m\}$ is compact in the lattice $L_m = \{x_m; x \in L\}$. Then $c_m = h_m$ for some $h \in L^*$. Switching to *H*, we have $(\widehat{c})_{\widehat{m}} = (\widehat{c_m})_{\widehat{m}} = (\widehat{h_m})_{\widehat{m}} = \widehat{h_{\widehat{m}}}$. Since *H* is an *r*-Prüfer monoid, $\widehat{h_{\widehat{m}}}$ is a principal $r_{\widehat{m}}$ -ideal of $H_{\widehat{m}}$, cf. [8, Theorem 12.3]. Thus \widehat{c} is an *r*-locally principal *r*-ideal. By $(i), \widehat{c}$ is *r*-finite, thus *c* is compact in *L*.

Next we present an application for integral domains. Let *D* be an integral domain. The *t* ideal system on *D* is defined by $X_t = \bigcup \{Y_v; Y \subseteq X \text{ finite}\}$ for all $X \subseteq D$, where $Y_v = \bigcap \{(aD:_D b); a, b \in D, bY \subseteq aD\}$. Clearly *t* is finitary, so the set $Max_t(D)$ of maximal *t*-ideals is nonempty, see [8, Chapter 11].

The *w* ideal system on *D* is defined by $X_w = \bigcap \{XD_M; M \in Max_t(D)\}$ for all $X \subseteq D$, where XD_M is the ideal generated by *X* in D_M . So a *w*-ideal is an ideal of the ring *D*. For $X \subseteq D$, we have $X_w = (XD)_w$ and $X_wD_M = XD_M$ for each $M \in Max_t(D)$. Moreover, *w* is finitary and the set of maximal *w*-ideals is exactly $Max_t(D)$. A *w*-finite ideal has the form $((a_1, ..., a_n)D)_w$ for some a_i 's in *D*. And a nonzero *w*-ideal is *w*-invertible if it is *w*-finite and *t*-locally principal (i.e., ID_M is a principal ideal of D_M for each $M \in Max_t(D)$). For details on the *w* ideal system we refer to [2, 5].

According to [13], D is an almost Prüfer *v*-multiplication domain (in short *APVMD*) if for every $a_1, ..., a_n \in D - \{0\}$, the ideal $((a_1^k, ..., a_n^k)D)_w$ is *w*-invertible for some $k \ge 1$. Say that a *w*-ideal I of D is *t*-locally finitely generated, if ID_M is a finitely generated ideal of D_M for each $M \in Max_t(D)$.

Chang and Hamdi [4, Theorem 2.4] proved Bazzoni's conjecture for APVMDs. We state their result and derive it from Theorem 5.

Theorem 9. (Chang and Hamdi) For an APVMD D, the following statements are equivalent:

(i) Each nonzero t-locally finitely generated w-ideal of D is w-finite.

(ii) Every nonzero ideal of D is contained in only finitely many maximal t-ideals.

Proof. It is well-known and easy to prove that (ii) implies (i), see for instance the proof of $(3) \Rightarrow (1)$ in [4, Theorem 2.4]. We prove that (i) implies (ii). Let *L* be the set of all *w*-ideals of *D* ordered by inclusion. As shown in [8, Chapter 8], *L* is a *C*-lattice domain under *w*-ideal multiplication $(I, J) \mapsto (IJ)_w$, join $\bigvee \{J_\alpha\} := (\bigcup J_\alpha)_w$ and meet $\bigwedge \{J_\alpha\} := \bigcap J_\alpha$. By [15, Lemma 8.1], the set L^* of compact elements in *L* is exactly the set of *w*-finite ideals of *D*. Condition (a) of Theorem 5 holds clearly for *L* (any nonzero ideal contains a nonzero principal ideal). After this preparation it becomes clear that $[(i) \Rightarrow (ii)]$ follows from Theorem 5 provided we prove the two claims below. Write $x \in L$ as \hat{x} when considered as a *w*-ideal of *D*.

Claim 1: Every $d \in L^* - \{1\}$ has some power d^n below some proper CMP element.

Let $d \in L^* - \{1\}$. Then $\widehat{d} = (a_1, ..., a_k)_w$ for some elements $a_i \in \widehat{d}$. Since *D* is an APVMD, $(a_1^s, ..., a_k^s)_w$ is *w*-invertible for some $s \ge 1$. If $(a_1^s, ..., a_k^s)_w = \widehat{f}$ with $f \in L$, then *f* is a proper CMP element of *L*, cf. [15, Lemma 8.2]. Moreover $d^{sk} \le f$, so Claim 1 is proved.

Claim 2: Every locally compact element of L is compact.

Suppose that *c* is a locally compact element of *L*. Let *m* be a maximal element of *L*, that is, \widehat{m} is a maximal *w*-ideal of *D*. So $c_m = \bigvee \{y \in L^*; ys \le c \text{ for some } s \in L^*, s \nleq m\}$ is compact in the lattice $L_m = \{x_m; x \in L\}$. Then $c_m = h_m$ for some $h \in L^*$. Hence $\widehat{h} = (b_1, ..., b_n)_w$ for some elements $b_i \in \widehat{h}$. Switching to *D*, we have

$$\widehat{c}D_{\widehat{m}} = \widehat{c_m}D_{\widehat{m}} = (\widehat{h_m})D_{\widehat{m}} = \widehat{h}D_{\widehat{m}} = (b_1, ..., b_n)_w D_{\widehat{m}} = (b_1, ..., b_n)D_{\widehat{m}}.$$

Thus \hat{c} is a *t*-locally finitely generated ideal of *D*. By (*i*), \hat{c} is *w*-finite, thus *c* is compact in *L*.

Acknowledgements I thank the referee for the close reading of the manuscript and for the detailed report which heavily improved the quality of this paper.

References

- Anderson, D.D.: Abstract commutative ideal theory without chain conditions. Algebra Univ. 6, 131–145 (1976)
- Anderson, D.D., Cook, S.J.: Two star-operations and their induced lattices. Comm. Algebra 28, 2461–2475 (2000)
- 3. Bazzoni, S.: Class semigroups of Prüfer domains. J. Algebra 184, 613-631 (1996)
- 4. Chang, G.W. Hamdi, H.: Bazzoni's conjecture and almost Prüfer domains, to appear in Comm. Algebra
- Fanggui, W., McCasland, R.L.: On w-modules over strong Mori domains. Comm. Algebra 25, 1285–1306 (1997)
- Finnochiaro, C., Tartarone, F.: Invertibility of ideals in Prüfer extensions. Comm. Algebra 45, 4521–4527 (2017)
- 7. Gilmer, R.: Multiplicative Ideal Theory. Marcel Dekker, New York (1972)
- Halter-Koch, F.: Ideal System. An Introduction to Multiplicative Ideal Theory, Marcel Dekker, New York (1998)
- 9. Halter-Koch, F.: Clifford semigroups of ideals in monoids and domains. Forum Math. 21, 1001–1020 (2009)
- Holland, W.C., Martinez, J., McGovern, W.W., Tesemma, M.: Bazzoni's conjecture. J. Algebra 320, 1764–1768 (2008)
- Jayaram, C., Johnson, E.G.: S-prime elements in multiplicative lattices. Periodica Math. Hungarica 31, 201–208 (1995)
- Knebusch, M., Zhang, D.: Manis Valuations and Prüfer Extensions I: A New Chapter in Commutative Algebra. Springer, Berlin, Heidelberg (2002)
- Lewin, R.L.: Generalizations of GCD-domains and related topics, Ph.D. Thesis, University of Iowa (1991)

- 14. McGovern, W.W.: Prüfer domains with Clifford class semigroup. J. Comm. Algebra **3**, 551–559 (2011)
- Olberding, B., Reinhart, A.: Radical factorization in commutative rings, monoids and multiplicative lattices, Math. (2018). arXiv: 1811.00242v1, math.AC
 Zafrullah, M.: t-invertibility and Bazzoni-like statements. J. Pure Appl. Algebra 214, 654–657
- Zafrullah, M.: t-invertibility and Bazzoni-like statements. J. Pure Appl. Algebra 214, 654–657 (2010)