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Abstract It is well known that results on zero-sum sequences over a finitely gener-
ated abelian group can be translated to statements on generators of rings of invariants
of the dual group. Here the direction of the transfer of information between zero-sum
theory and invariant theory is reversed. First it is shown how a presentation by gen-
erators and relations of the ring of invariants of an abelian group acting linearly on
a finite-dimensional vector space can be obtained from a presentation of the ring of
invariants for the corresponding multiplicity free representation. This combined with
a known degree bound for syzygies of rings of invariants yields bounds on the pre-
sentation of a block monoid associated to a finite sequence of elements in an abelian
group. The results have an equivalent formulation in terms of binomial ideals, but
here the language of monoid congruences and the notion of catenary degree is used.

Keywords Affine monoid · Ring of invariants · Catenary degree · Syzygies ·
Toric variety

1 Introduction

LetG be an abelian group (writtenmultiplicatively) andG0 ⊆ G a finite subset. Con-
sider the additive monoid N

G0
0 (maps from G0 into the set of non-negative integers,

with pointwise addition). It contains the submonoid

B(G0) := {α ∈ N
G0
0 |

∏

g∈G0

gα(g) = 1 ∈ G} (1)
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called the block monoid of G0 or the monoid of product-one sequences over G0, see
[14, Definition 3.4.1]. It causes no loss of generality in the construction of B(G0) if
we assume that the group G is generated by G0. We note that in most of the related
literature the group is written additively, and therefore the terminology of zero-sum
sequences is used. B(G0) is a reduced affine monoid (see for example [14, Theorem
3.4.2.1]), write A(B(G0)) for the finite set of its atoms.

Our focus is on a similar but more general construction. Fix an m-tuple g =
(g1, . . . , gm) ∈ Gm of elements of the abelian group G, and set

B(g) = {α ∈ N
m
0 |

m∏

i=1

gαi
i = 1 ∈ G}. (2)

This is a finitely generated submonoid of the additive monoidNm
0 . Write supp(g) for

the subset {g1, . . . , gm} of G. In the special case when g1, . . . , gm are distinct, the
monoidB(g) can be identified withB(supp(g)). In general (i.e., when g1, . . . , gm are
not all distinct) the monoid B(g) is different from B(supp(g)). So the construction
(2) is indeed a generalization of (1) (however, see Remark 6 in Section4).

Interest in the monoids B(G0) and B(g) and their semigroup rings comes from
several mathematical topics: factorization theory in monoids, multiplicative ideal
theory, zero-sum theory, invariant theory, toric varieties, binomial or toric ideals.
For example, it has been long known that results on the atoms in monoids of the
form B(g) can be reformulated in terms of generators or degree bounds for rings of
invariants of abelian groups (see, e.g., [9] for some details and references).

In this paper we shall study presentations of reduced affine monoids, with a
particular attention on the monoids B(g). By a monoid we mean a commutative
cancellative semigroup with an identity element. A monoid is affine if it is a finitely
generated submonoid of a finitely generated free abelian group.We say that amonoid
is reduced if the identity element is its only unit (invertible element). Recall that by
Grillet’s theorem, reduced affinemonoids are exactly themonoids that are isomorphic
to a finitely generated submonoid of the additive monoid N

k
0 for some k (see for

example [3, Proposition 2.16]).
Let S be a reduced affine monoid (written multiplicatively) and A(S) the set of

atoms in S. Then A(S) is finite, and it is a minimal generating set of S, see for
example Proposition 1.1.7 in [14]. Denote byNA(S)

0 the additive monoid of functions
fromA(S) into the additivemonoidN0 of non-negative integers; this is a freemonoid
generated by |A(S)| elements. Take commuting indeterminates {xa | a ∈ A(S)}, and
let M denote the free monoid generated by them (written multiplicatively):

M = {xα =
∏

a∈A(S)

xα(a)
a | α ∈ N

A(S)
0 }

with multiplication xαxγ = xα+γ . Consider the unique semigroup homomorphism

π : M → S given by xa �→ a, a ∈ A(S)
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(called factorization homomorphism in [1]). Denote by ∼S the congruence on M
defined by

xα ∼S xγ ⇐⇒ π(xα) = π(xγ) ∈ S,

and call it the defining congruence of S (it is called the monoid of relations of S in
[1]). The semigroup homomorphism π factors through a monoid isomorphism

M/ ∼S
∼=−→ S.

Formally the congruence ∼S will be viewed as a subset of M × M . The congruence
∼S is finitely generated by [25]. By a presentation of S we mean a finite subset of
M × M generating the conguence ∼S (see for example [16, Section I.4] for basic
notions related to semigroup congruences).

Now let us summarize the content of the present paper. Our Theorem 1 tells in par-
ticular how a presentation of B(g) can be derived from a presentation of B(supp(g)).
It turns out that in most cases the catenary degree (cf. Definition 1) of B(g) coincides
with the catenary degree ofB(supp(g)) (seeCorollary 3). CombiningTheorem1with
a degree bound of Derksen [10] for the defining relations of the ring of invariants of
a linearly reductive group, we derive in Theorem 4 degree bounds for a presentation
of B(g). In order to formulate this result, we introduce the notion of graded catenary
degree of a graded monoid (see Definition 2), which is a refinement of (and an upper
bound for) the ordinary catenary degree. These results on presentations of monoids
have an equivalent formulation in terms of generators of (binomial) ideals of rela-
tions of semigroup rings of monoids, this is pointed out in Section2. A Gröbner
basis version of Theorem 1 is given in Theorem 2. Since the semigroup rings of the
form C[B(G)] are exactly the rings of invariants of abelian groups, the results have
relevance for toric varieties; this is expanded a bit in Section7, and some examples
of toric quiver varieties are reviewed. We point out finally that Theorem 2 provides
a source of Koszul algebras.

2 Ring Theoretic Characterization of the Catenary Degree

From now on S will be a reduced affine monoid. The catenary degree c(S) of the
monoid S is a basic arithmetical invariant studied in factorization theory, let us recall
its definition. For α ∈ N

A(S)
0 we set

|α| =
∑

a∈A(S)

|α(a)|

and
aα :=

∏

a∈A(S)

aα(a) ∈ S.
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For α, γ ∈ N
A(S)
0 we write gcd(α, γ) for the greatest common divisor of α, γ in the

additive monoid N
A(S)
0 (i.e., gcd(α, γ)(a) = min{α(a), γ(a)} for each a ∈ A(S)).

Definition 1. (see [14, Definition 1.6.1]) For α, γ ∈ N
A(S)
0 set

d(α, γ) := max{|α − gcd(α, γ)|, |γ − gcd(α, γ)|}.

Given the monoid S as above, we say that α and γ can be connected by a d-chain if
there exists a sequenceα(0) = α,α(1), . . . ,α(k) = γ ∈ N

A(S)
0 such that aα( j) = aα( j+1)

and d(α( j),α( j+1)) ≤ d for j = 0, 1, . . . , k − 1. The catenary degree c(S) is the
minimal non-negative integer d such that if aα = aγ , then α and γ can be connected
by a d-chain.

Remark 1. Note that c(S) = 0 if and only if S is a free (or factorial) monoid (i.e., S
is isomorphic to the additive monoid N

m
0 for some m), and c(S) is never equal to 1.

Characterizations of the catenary degree and its variants are given in [22, 23].
In particular, [22, Proposition 16] characterizes the catenary degree in terms of the
monoid of relations. Now extending an observation from [4] we formulate a char-
acterization of the catenary degree in terms of semigroup congruences. Denote by
c′(S) the minimal non-negative integer d such that there exists a generating set
Λ ⊂ M × M of the semigroup congruence ∼S , satisfying that for all (xα, xγ) ∈ Λ

we have |α| ≤ d and |γ| ≤ d. An explicit description of the semigroup congruence
generated by a subset of M × M can be found for example in [18, page 176].

Proposition 1. We have c(S) = c′(S).

Proof. Set

Λ := {(xα, xγ) | xα ∼S xγ and |α| ≤ c(S), |γ| ≤ c(S)}.

Weclaim thatΛ generates the semigroup congruence∼S . Indeed, take a pair (α, γ) ∈
N

A(S)
0 × N

A(S)
0 such that xα ∼S xγ . Then α and γ can be connected by a c(S)-chain

α(0) = α,α(1), . . . ,α(k) = γ. For i = 0, 1, . . . , k − 1 the pair (α(i),α(i+1)) is of
the form (β(i) + δ(i), ρ(i) + δ(i)), where δ(i),β(i), ρ(i) ∈ N

A(S)
0 , |β(i)| ≤ c(S), |ρ(i)| ≤

c(S).Moreover, since S is cancellative,aα(i) = aα(i+1)
, impliesaβ(i) = aρ(i)

, so xβ(i) ∼S

xρ(i)
. Thus (xβ(i)

, xρ(i)
) ∈ Λ. It follows that (xα(i)

, xα(i+1)
) = (xβ(i)

xδ(i)
, xρ(i)

xδ(i)
)

belongs to the congruence generated by Λ for i = 0, . . . , k − 1, implying in turn
that (xα, xγ) = (xα(0)

, xα(k)
) belongs to the congruence generated by Λ. This proves

the inequality c′(S) ≤ c(S).
The reverse inequality c(S) ≤ c′(S) is pointed out in [4, Proposition 3.1].

Fix a commutative ring R (having an identity element) and consider the semigroup
rings R[M] and R[S]. Note that R[M] = R[xa | a ∈ A(S)] is the polynomial ring
over R with indeterminates {xa | a ∈ A(S)}. The monoid homomorphism π : M →
S extends uniquely to an R-algebra homomorphism
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πR : R[M] → R[S], π(xα) = aα. (3)

The statement below is well known, see [18, Proposition 1.5] or [16, Chapter II.7.]:

Proposition 2. The following conditions are equivalent for a set of pairs B ⊂
N

A(S)
0 × N

A(S)
0 :

(1) The semigroup congruence ∼S is generated by {(xα, xγ) | (α, γ) ∈ B}.
(2) The ideal ker(πR) is generated by the binomials {xα − xγ | (α, γ) ∈ B}.
Remark 2. Condition (1) of Proposition 2 does not depend on the ring R; therefore, a
set of binomials generates the ideal ker(πR) for some ring R if and only if it generates
ker(πR) for any ring R.

Propositions 1 and 2 imply the following ring theoretic characterization of c(S):

Corollary 1. The catenary degree c(S) is the minimal positive integer d such that
the kernel of πR : R[M] → R[S] is generated (as an ideal) by binomials of degree
at most d for some (hence any) commutative ring R (where R[M] is graded in the
standard way, namely, the generators xa have degree 1 and the non-zero scalars in
R have degree 0).

3 Graded Monoids

Let S be a graded monoid; that is, S is partitioned into the disjoint union of subsets
Sd , d ∈ N0, such that Sd · Se ⊆ Sd+e. For s ∈ S write |s| = d if s ∈ Sd . The identity
element of S necessarily belongs to S0. We call a graded monoid connected graded
if S0 consists only of the identity element. It seems natural to modify Definition 1
for graded monoids as follows:

Definition 2. Given a connected graded reduced affine monoid S, for α, γ ∈ N
A(S)
0

set

|α|gr =
∑

a∈A(S)

α(a)|a|

and

dgr(α, γ) := max{|α − gcd(α, γ)|gr, |γ − gcd(α, γ)|gr}.

We say that α and γ can be connected by a chain of weight at most d if there
exists a sequence α(0) = α,α(1), . . . ,α(k) = γ ∈ N

A(S)
0 such that aα( j) = aα( j+1)

and
dgr(α( j),α( j+1) ≤ d for j = 0, 1, . . . , k − 1. The graded catenary degree cgr(S) is
the minimal d such that if aα = aγ , then α and γ can be connected by a chain of
weight at most d.
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As a straightforward modification of Proposition 1 we get the following.

Proposition 3. The graded catenary degree cgr(S) is the minimal non-negative inte-
ger d such that there exists a generating set Λ ⊂ M × M of the semigroup congru-
ence ∼S satisfying that for all (xα, xγ) ∈ Λ we have |α|gr ≤ d (note that xα ∼S xγ

implies |α|gr = |γ|gr).
The grading of S induces a grading on the semigroup ring R[S] = ⊕∞

d=0 R[S]d ,
where R[S]d is the R-submodule generated by Sd . Lift the grading to M and R[M]
by setting the degree of xa to be equal to the degree |a| of a ∈ A(S). Then the map
πR : R[M] → R[S] is a homomorphism of graded algebras, and so ker(πR) is a
homogeneous ideal. Our assumptions on the grading imply that all indeterminates
xa have positive degree. Moreover, xα ∼S xγ implies that aα and aγ belong to the
same homogeneous component of S, and therefore the binomials in ker(πR) are
homogeneous. For an ideal I in R[M] denote by μ(I ) the minimal non-negative
integer d such that I is generated by elements of degree at most d; this number is
finite for any binomial ideal I .

Corollary 2. For any connected graded reduced affine monoid we have the equality

cgr(S) = μ(ker(πR)),

where R[M] is endowed with the grading that makes πR a homomorphism of graded
algebras.

Proof. Recall that any homogeneous generating system of a homogeneous ideal I
contains a minimal (with respect to inclusion) homogeneous generating system, and
μ(I ) is the maximal degree of an element in any minimal homogeneous generat-
ing system (this follows from the graded Nakayama lemma). The ideal ker(πR) is
generated by homogeneous binomials. Take a minimal set of binomials generating
ker(πR). Then the maximal degree of an element in this set of binomials equals
μ(ker(πR)) on one hand, and it equals cgr(S) by Propositions 2 and 3, on the other
hand.

Remark 3. The notions introduced in this section apply for block monoids. Indeed,
N

m
0 is graded by setting the degree of α = (α1, . . . ,αm) ∈ N

m
0 to be α1 + · · · + αm ,

and the submonoid B(g) inherits this grading.

4 Repetition of Elements

A surjective monoid homomorphism θ : T → B between reduced affine monoids T
and B is called a transfer homomorphism if for any t ∈ T , b, c ∈ B with θ(t) = bc,
there exist elements u, v ∈ T such that t = uv and θ(u) = b, θ(v) = c (see [14,
Definition 3.2.1]).
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Now let g be an m-tuple of elements in an abelian group G and B(g), B(supp(g))

the monoids introduced in Section1. The map

N
m
0 → N

supp(g)

0 , α �→ (g �→
∑

gi=g

αi ) (4)

restricts to a transfer homomorphism B(g) → B(supp(g)). In factorization theory
transfer homomorphisms are used to reduce the computation of arithmetic invariants
of monoids to the corresponding invariants of other monoids (frequently of block
monoids). In particular, it is known that the catenary degrees of monoids connected
by a transfer homomorphism are linked as follows:

Lemma 1. [14, Theorem 3.2.5.5] Let θ : T → B be a transfer homomorphism,
where T and B are reduced affine monoids. Then we have the inequalities

c(B) ≤ c(T ) ≤ max{c(B), c(T, θ)}

(see [14, page 171] for the definition of c(T, θ)).

The aim of this section is to refine Lemma 1 for the transfer homomorphism
B(g) → B(supp(G)) given by (4). More precisely, it will be shown how one can
get a generating system of the defining congruence of B(g) from a given generating
system of the defining congruence ofB(supp(g)). This will be done in amore general
setup.

Assume that S is a (not necessarily connected) graded, reduced, affine monoid,
and denote by S̃ the monoid

S̃ = {s[i] | s ∈ S, 0 ≤ i ≤ |s|} with multiplication s[i] · t[ j] = (s · t)[i + j]. (5)

So S̃ is a submonoid of the direct product of S and the additivemonoidN0. Obviously
the map S̃ → S, s[i] �→ s is a transfer homomorphism, and

A(S̃) = {a[i] | a ∈ A(S), 0 ≤ i ≤ |a|}.

This transfer homomorphism S̃ → S induces a monoid homomorphism

κ : NA(S̃)
0 → N

A(S)
0 , λ �→

(
a �→

|a|∑

i=0

λ(a[i])
)

.

Set
δ : NA(S̃)

0 → N0, λ �→
∑

a[i]∈A(S̃)

iλ(a[i]).
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Note that for λ,μ ∈ N
A(S̃)
0 we have

xλ ∼S̃ xμ ⇐⇒ xκ(λ) ∼S xκ(μ) and δ(λ) = δ(μ). (6)

Also we have δ(λ) ≤ |aκ(λ)|.

Lemma 2. Assume that α,β ∈ N
A(S̃)
0 satisfy

κ(α) = κ(β) and δ(α) = δ(β).

Then xα ∼ xβ with respect to the semigroup congruence ∼ on the free monoid

M̃ = {xα | α ∈ N
A(S̃)
0 } generated by

{(xa[k]xb[l], xa[k+1]xb[l−1]) | a, b ∈ A(S), 0 ≤ k ≤ |a| − 1, 1 ≤ l ≤ |b|}.

Proof. Apply induction on
∑

a[ j]∈A(S̃)

α(a[ j]). If this number is 1, then clearly α = β,

and so the desired conclusion holds. Assume
∑

a[ j]∈A(S̃)

α(a[ j]) > 1.

Case I: xα and xβ involve a common variable xa[i]. Then xα = xa[i]xα′
, xβ =

xa[i]xβ′
, and the assumptions on the pair (α,β) in the statement of the lemma hold

for the pair (α′,β′). By the induction hypothesis we may conclude that xα′ ∼ xβ′
,

implying in turn that xα ∼ xβ .
Case II: xα and xβ are not divisible by a common variable. Take a variable xa[i]

dividing xα. Then κ(α) = κ(β) implies that xβ is divisible by xa[k] for some k 
= i .
By symmetry it is sufficient to deal with the case i > k. By the assumptions on α,β
there must exist an atom b ∈ A(S) and integers j < l such that xa[i]xb[ j] divides
xα and xa[k]xb[l] divides T β . We have xα = xa[i]xb[ j]xγ ∼ xa[i−1]xb[ j+1]xγ = xα′

.
The conditions of the lemma on the pair (α,β) hold also for the pair (α′,β). If
i − 1 = k, then xα′

and xβ are divisible by a common variable, and we are back in
Case I. Otherwise similarly to the above process we have xα′ ∼ xα′′

where xα′′
is

divisible by xa[i−2] and κ(α′′) = κ(β) and δ(α′′) = δ(β). After finitely many such
steps we get back to Case I.

Remark 4. Lemma 2 says that for the transfer homomorphism θ : S̃ → S, s[i] �→ s
we have c(S̃, θ) ≤ 2 in Lemma 1.

Theorem 1. Suppose that the congruence ∼S is generated by {(xλ, xμ) | (λ,μ) ∈
Λ} for some Λ ⊂ N

A(S)
0 × N

A(S)
0 . For each λ ∈ N

A(S)
0 such that (λ,μ) ∈ Λ or

(μ,λ) ∈ Λ for some μ, and for each 0 ≤ i ≤ |aλ| choose λ[i] ∈ N
A(S̃)
0 such that

κ(λ[i]) = λ and δ(λ[i]) = i (this is clearly possible). Then the congruence ∼S̃ is
generated by
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{(xλ[i], xμ[i]), (xa[k]xb[l], xa[k+1]xb[l−1]) | (λ,μ) ∈ Λ, 0 ≤ i ≤ |aλ|,
a, b ∈ A(S), 0 ≤ k ≤ |a| − 1, 1 ≤ l ≤ |b|}.

Proof. The pairs given in the statement do belong to the congruence ∼S̃ . Denote

by ∼ the semigroup congruence on M̃ = {xα | α ∈ N
A(S̃)
0 } generated by them. It is

sufficient to show that if xα ∼S̃ xβ for some α,β ∈ N
A(S̃)
0 , then xα ∼ xβ . By (6) we

have xκ(α) ∼S xκ(β) and δ(α) = δ(β). Therefore there exists a sequence (λ j ,μ j ) ∈
N

A(S)
0 × N

A(S)
0 and γ j ∈ N

A(S)
0 ( j = 1, . . . , s) such that (λ j ,μ j ) ∈ Λ or (μ j ,λ j ) ∈

Λ (implying in particular that |aλ j | = |aμ j |), λ1 + γ1 = κ(α), μs + γs = κ(β), and
μ j + γ j = λ j+1 + γ j+1 for j = 1, . . . , s − 1. Set d := δ(α) = δ(β). For each j =
1, . . . , s choose a non-negative integer k j with

d − |aγ j | ≤ k j ≤ |aλ j |.

This is possible, because

d ≤ |aκ(α)| = |aλ j+γ j | = |aλ j | + |aγ j |.

Taking into account Lemma 2 we get

xα ∼ xκ(α)[d] = x (λ1+γ1)[d] ∼ xλ1[k1]xγ1[d−k1] ∼ xμ1[k1]xγ1[d−k1] ∼
x (μ1+γ1)[d] = x (λ2+γ2)[d] ∼ xλ2[k2]xγ2[d−k2] ∼ xμ2[k2]xγ2[d−k2] ∼
x (μ2+γ2)[d] = x (λ3+γ3)[d] ∼ · · · ∼ x (μs+γs )[d] = xκ(β)[d] ∼ xβ .

Remark 5. Statements related to Theorem 1 are proved in [21], studying toric ide-
als associated to nested configurations (see also [26] for some generalization). The
construction of S̃ from S (see (5)) can be seen as a special case of the construction of
nested configurations. In particular,when S is a submonoidofNd

0 generatedbyfinitely
many elements α(1), . . . ,α(m) such that there exists a v ∈ R

d with
∑d

j=1 α(i)
j v j = 1

for all i = 1, . . . ,m (this implies that S can be graded in such a way that each gen-
erator has degree 1), the results of [21] apply to the binomial ideal associated to the
monoid S̃ and yield a system of generators similar to the one given by Theorem 1.

The monoid B(g) can be obtained from the monoid B(supp(g)) by a repeated
application of the construction (5), and therefore Theorem 1 can be applied to relate
the catenary degree of B(g) to the catenary degree of B(supp(g)). Indeed, start with
an m-tuple g = (g1, . . . , gm) ∈ Gm of not necessarily distinct elements in G, and
denote by g̃ the m + 1-tuple (g1, . . . , gm, gm) obtained from g by repeating the mth
component. Consider the grading on the monoid B(g) given by

B(g)d = {α ∈ B(g) ⊆ N
m
0 | αm = d}.
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Proposition 4. WehaveB(g̃) ∼= S̃, where S = B(g) is endowedwith the above grad-

ing and S̃ is defined as in (5).

Proof. A general element of S̃ is of the form α[i] where α = (α1, . . . ,αm) ∈ B(g)

and 0 ≤ i ≤ αm . The map S̃ → B(g̃) sending α[i] ∈ S̃ to (α1, . . . ,αm−1,αm − i, i)

is an isomorphism between the monoids S̃ and B(g̃).

Proposition 1, Theorem 1, and Proposition 4 imply the following:

Corollary 3. We have c(B(g)) = c(B(supp(g)), unlessB(supp(g)) is a free monoid
and the components g1, . . . , gm of g are not all distinct. In the latter case we have
c(B(supp(g))) = 0 whereas c(B(g)) = 2.

Remark 6. Being afinitely generated reducedKrullmonoid,B(g) ∼= B(H0) for some
finite subset H0 in an abelian group H (different fromG in general) by [14, Theorem
2.7.14] also when g1, . . . , gm are not all distinct. However, the representation of our
monoid in the form B(g) is fundamental for our discussions.

An easy direct proof of the isomorphism B(g) ∼= B(H0) can be derived from
the following observation. Take g ∈ Gm , and suppose that gm−1 = gm . Consider the
group H := G × Z, and the sequence

h := ((g1, 0), . . . , (gm−1, 0), (gm−1, 1), (0,−1)) ∈ Hm+1.

It is easy to see that we have a monoid isomorphism B(g) ∼= B(h). Now observe that
there are less component repetitions in the sequence h then the number of component
repetitions in g. Note that the “price” for this manipulation was that we had to extend
the group G.

5 Gröbner Bases

In this section we give a Gröbner basis variant of the results of Section4. As it was
explained in Sections2 and 3, the catenary degree of a monoid can be expressed
in terms of generators of a binomial ideal associated to the monoid. Since Gröbner
bases are special generating systems of ideals in a polynomial algebra that are at the
heart of many algorithms in computational commutative algebra (see for example
[7] for Gröbner basis theory), it is worthwhile to translate this notion to the language
of semigroup congruences.

Fix an admissible total order≺ on the finitely generated freemultiplicativemonoid
M ; that is, ≺ is a total order such that for x, y, z ∈ M with x ≺ y we have xz ≺ yz,
and 1 ≺ x for each x ∈ M \ {1}. The latter condition ensures that the order ≺ is
artinian (i.e., there is no infinite strictly descending chain with respect to ≺ in M),
so any non-empty subset of M contains a unique minimal element. Note also that
≺ is a term order of the polynomial ring F[M] (where F is a field) in the sense of
Gröbner basis theory.
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Definition 3. A finite set Λ ⊂ M × M is a Gröbner system of the semigroup con-
gruence ∼ on M if the following conditions hold:

(i) x ∼ y and y ≺ x for each (x, y) ∈ Λ;
(ii) z ∈ M is the minimal element in its congruence class with respect to ∼ if there

is no (x, y) ∈ Λ such that x divides z in M.

The name Gröbner system is justified by the relation to Gröbner bases given in
Proposition 5 (iii).

Proposition 5. (i) If Λ ⊂ M × M is a Gröbner system of the semigroup congru-
ence ∼ then Λ generates ∼.

(ii) Every semigroup congruence ∼ on M has a Gröbner system.
(iii) Λ ⊂ M × M is a Gröbner system of ∼ if and only if {x − y | (x, y) ∈ Λ} is

a Gröbner basis (satisfying y ≺ x for each of its elements x − y) of the ideal
ker(πF), whereF is a field and πF : F[M] → F[M/ ∼] is induced by the natural
surjection M → M/ ∼.

Proof. (i) Denote by ∼Λ the congruence generated by Λ. By assumption it is con-
tained in ∼, since for each (x, y) ∈ Λ we have x ∼ y. To see the reverse inclusion
it is sufficient to show that for any z ∈ M we have z ∼Λ u, where u is the minimal
element in the ∼-congruence class of z. If z = u, we are done. Otherwise u ≺ z,
hence, by assumption there exists a pair (x, y) ∈ Λ and v ∈ M such that z = xv.
Set z1 = yv. Then z1 = yv ≺ xv = z and z ∼Λ z1. If z1 = u, then we are done.
Otherwise repeat the same step for z1 instead of z (note that z1 ∼ z ∼ u). We obtain
z2 ∈ M with z2 ≺ z1 and z2 ∼Λ z1. If z2 = u we are done, otherwise repeat the above
step with z2 instead of z1. Since the order ≺ is artinian, in finitely many steps we
must end up with z ∼Λ zk = u.

(ii) It is well known that any binomial ideal has a Gröbner basis consisting of
binomials, see for example [28, Lemma 8.2.17]. Therefore the statement follows
from (iii).

(iii) Suppose {x − y | (x, y) ∈ Λ} is a Gröbner basis of the ideal ker(πF) (where
y ≺ x for each (x, y) ∈ Λ). It follows that the initial ideal of ker(πF) is generated
by L := {x | ∃y : (x, y) ∈ Λ}. Now take any z ∈ M which is not minimal in its
congruence class with respect to ∼. Then there is an u ≺ z such that z ∼ u, so
z − u ∈ ker(πF) has initial term z. Therefore there is an x ∈ L such that x divides
z, so condition (ii) of Definition 3 holds for Λ (it is obvious that condition (i) of
Definition 3 holds for Λ).

Conversely, assume that Λ is a Gröbner system of ∼, and consider the subset
L := {x − y | (x, y) ∈ Λ} in F[M]. Denote by J the ideal generated by the initial
terms of the elements in L . Clearly L ⊆ ker(πF), hence, J is contained in the ideal
K generated by the initial terms of the ideal ker(πF). By assumption the elements of
M \ J are all minimal in their congruence class with respect to ∼. In particular, they
are pairwise incongruent; hence, they are mapped by πF to elements in F[M/ ∼]
that are linearly independent over F. On the other hand, M \ J ⊇ M \ K , and the
latter is mapped by πF to an F-vector space basis of F[M/ ∼] (see for example [27,
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Proposition 1.1]). It follows that M \ J = M \ K , implying in turn that J = K . The
latter equality means that L is a Gröbner basis of ker(πF).

We keep the notation of Section4. In particular, S is a reduced, affine, graded
monoid, and S̃ is the monoid defined as in (5). Fix an admissible total order ≺
on M = {xα | α ∈ N

A(S)
0 }. Define an admissible total order (denoted also by ≺) on

the free monoid M̃ generated by {xa | a ∈ A(S̃)} as follows. Enumerate the atoms
in A(S) = {a1, . . . , an} such that xa1 ≺ xa2 ≺ · · · ≺ xan . Set di = |ai |. For λ,μ ∈
N

A(S̃)
0 we set xμ ≺ xλ ∈ M̃ if

1. xκ(μ) ≺ xκ(λ) in (M,≺); or
2. κ(μ) = κ(λ) and the sequence

(μ(a1[0]),μ(a1[1]), . . . ,μ(a1[d1]),μ(a2[0]), . . . ,μ(an[0]), . . . ,μ(an[dn]))

is lexicographically greater than

(λ(a1[0]),λ(a1[1]), . . . ,λ(a1[d1]),λ(a2[0]), . . . ,λ(an[0]), . . . ,λ(an[dn])).

Theorem 2. Suppose that {(xλ, xμ) | (λ,μ) ∈ Λ} is a Gröbner system of the semi-
group congruence ∼S. Then Γ1 ∪ Γ2 ∪ Γ3 is a Gröbner system of the defining con-
gruence ∼S̃ of S̃, where

Γ1 = {(xλ, xμ) | λ,μ ∈ N
A(S̃)
0 , (κ(λ),κ(μ)) ∈ Λ, δ(λ) = δ(μ)}

Γ2 = {(xa[i]xb[ j], xa[i−1]xb[ j+1]) | a, b ∈ A(S), xa ≺ xb, 0 < i ≤ |a|, 0 ≤ j < |b|}

Γ3 = {(xa[i]xa[ j], xa[i−1]xa[ j+1]) | a ∈ A(S), 0 < i ≤ j < |a|}.

Proof. Take (xλ, xμ) ∈ Γ1. Then (κ(λ),κ(μ)) ∈ Λ, hence, xκ(λ) ∼S xκ(μ) and
xκ(μ) ≺ xκ(λ) ∈ M . It follows that xμ ≺ xλ ∈ M̃ . Moreover, xκ(λ) ∼S xκ(μ) and
δ(λ) = δ(μ) imply xλ ∼S̃ xμ by (6). Therefore condition (i) of Definition 3 holds
for the elements of Γ1. It obviously holds for the elements of Γ2 and Γ3 by definition
of the ordering ≺ on M̃ .

It remains to check that condition (ii) of Definition 3 holds for Γ1 ∪ Γ2 ∪ Γ3. In

order to do so, take λ ∈ N
A(S̃)
0 such that xλ ∈ M̃ is not minimal in its congruence

class with respect to ∼S̃ .
Assume first that xκ(λ) ∈ M is not minimal in its congruence class with respect

to ∼S . Then by the assumption of the theorem on Λ, there exist (α,β) ∈ Λ

and γ ∈ N
A(S)
0 such that κ(λ) = α + γ. Clearly there exist α̃, γ̃ ∈ N

A(S̃)
0 with

λ = α̃ + γ̃, κ(α̃) = α, and κ(γ̃) = γ. Also xα ∼S xβ implies
∑

a∈A(S) α(a)|a| =
∑

a∈A(S) β(a)|a|. It is easy to infer from this equality the existence of β̃ ∈ N
A(S̃)
0 with

κ(β̃) = β and δ(β̃) = δ(α̃).Moreover, (α,β) ∈ Λ implies xβ ≺ xα, hence, x β̃ ≺ x α̃.
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So (x α̃, x β̃) ∈ Γ1 by definition of Γ1. Therefore Γ1 testifies the non-minimality of
xλ as it is required by (ii) of Definition 3.

Suppose next that xκ(λ) is minimal in its congruence class in M with respect to
∼s , and xλ ∈ M̃ is not minimal in its congruence class with respect to ∼S̃ . It is easy
to deduce from condition 2. of the definition of the ordering ≺ on M̃ that there must
exist (y, z) ∈ Γ2 ∪ Γ3 such that y divides xλ. Consequently, the non-minimality of
xλ is testified by Γ2 ∪ Γ3 as it is required by (ii) of Definition 3.

Remark 7. The papers [21, 26] mentioned in Remark 7 also give Gröbner bases of
the binomial ideals considered there.

We call a Gröbner system Λ quadratic if |λ| ≤ 2, |μ| ≤ 2 for all (λ,μ) ∈ Λ.

Corollary 4. If the semigroup congruence∼S has a quadratic Gröbner system, then
the semigroup congruence ∼S̃ also has a quadratic Gröbner system.

Koszul algebras form an interesting class of rings well studied in commutative
algebra, see for example [5]. In general it is a difficult task to decide whether a
quadratic algebra (a factor of the multivariate polynomial algebra modulo an ideal
generated by homogeneous quadratic elements) is Koszul or not. The significance
of Corollary 4 is that it can be used to produce examples of Koszul algebras. Indeed,
note that if S has a quadratic Göbner system, then by Proposition 5 (iii) the ideal of
relations among the generators of the semigroup algebraF[S] has a quadraticGröbner
basis, hence is Koszul (see [24] for background on Koszul algebras). Therefore an
iterated use of Corollary 4 yields the following:

Corollary 5. If B(supp(g)) has a quadratic Gröbner system, then B(g) also has a
quadratic Gröbner system, and hence, the semigroup algebra F[B(g)] is Koszul.
Example 1. Consider the additive group Z/6Z = {0, 1, 2, 3, 4, 5}, and the monoid
S := B((1, 2, 3)). The atoms in this monoid are

A(S) = {(1, 1, 1), (4, 1, 0), (3, 0, 1), (2, 2, 0), (0, 0, 2), (0, 3, 0), (6, 0, 0)}.

The commuting indeterminates corresponding to the atoms will be denoted by
x1, x2, x3, x4, x5, x6, x7, and π : M → S is the monoid homomorphism mapping the
generator xi of the free monoid M to the i th atom in the above list (i = 1, . . . , 7).
Denote by ≺ the graded reverse lexicographic order on M . That is, xα ≺ xβ if∑7

i=1 αi <
∑7

i=1 βi , or if
∑7

i=1 αi = ∑7
i=1 βi and for the largest j with α j 
= β j we

have α j > β j (in particular, x7 ≺ x6 ≺ · · · ≺ x1). We claim that the following is a
Gröbner system for S:

Λ := {(x21 , x4x5), (x22 , x4x7), (x23 , x5x7), (x24 , x2x6), (x1x2, x3x4),

(x1x3, x2x5), (x2x3, x1x7), (x1x4, x3x6), (x2x4, x6x7)}.
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Indeed, for each pair (x, y) ∈ Λ we have x ∼S y and y ≺ x . Moreover, it is easy to
see that the elements in M not divisible by any of the first components of the pairs
in Λ are the following:

{wxi5x
j
6 x

k
7 | i, j, k ∈ N0, w ∈ {1, x1, x2, x3, x4, x3x4}}.

Now the above elements are mapped by π to distinct elements in S. To see this note
that the modulo 6 residue of the first component of π(wxi5x

j
6 x

k
7 ) uniquely determines

w, and then i, j, k are determined by π(wxi5x
j
6 x

k
7 ). Thus S has a quadratic Gröbner

system, and consequently by Corollary 5 the algebra F[B(g)] is Koszul for any g
with supp(g) = {1, 2, 3} ⊂ Z/6Z.

6 Relation to Invariant Theory

We need to recall a result from invariant theory (see [11] for an introduction to
invariant theory). Let H be a linearly reductive subgroup of the group GL(V ) of
invertible linear transformations of a finite-dimensional vector space V over an
algebraically closed field F. The action of H on V induces an action via graded
F-algebra automorphism on the symmetric tensor algebra S(V ) of V (graded in the
standard way, namely, V ⊂ S(V ) is the degree 1 homogeneous component). Since
H is linearly reductive, the algebra S(V )H = { f ∈ S(V ) | h · f = f ∀h ∈ H} of
polynomial invariants is known to be finitely generated. Let f1, . . . , fn be a minimal
homogeneous generating systemof S(V )H , enumerated so that deg( f1) ≥ deg( f2) ≥
· · · ≥ deg( fn). Consider the F-algebra surjection

ϕ : F[x1, . . . , xn] → S(V )H with xi �→ fi (i = 1, . . . , n). (7)

Endow F[x1, . . . , xn] with the grading given by deg(xi ) = deg( fi ), so ϕ is a homo-
morphism of graded algebras. Recall that the factor of S(V ) modulo the ideal gen-
erated by f1, . . . , fn is called the algebra of coinvariants. It is a finite-dimensional
graded vector space when H is finite; in this case write b(H, V ) for its top degree
(equivalently, all homogeneous elements in S(V ) of degree greater than b(H, V )

belong to the Hilbert ideal S(V ) f1 + · · · + S(V ) fn , and there is a homogeneous
element in S(V ) of degree b(H, V ) not contained in the Hilbert ideal). Denote by s
the Krull dimension of S(V )H . Note that s ≤ n with equality only if ker(ϕ) = {0}.
Theorem 3. (Derksen [10, Theorems 1 and 2])

(i) We have the inequality μ(ker(ϕ)) ≤
min{n,s+1}∑

i=1

deg( fi ) − s,

(ii) When H is finite, we have the inequality μ(ker(ϕ)) ≤ 2b(G, V ) + 2.
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The Davenport constant of a finite subset G0 of an abelian group G is defined as

D(G0) = max{|α| : α ∈ A(B(G0))},

where |α| = ∑
g∈G0

α(g). When G0 generates a finite subgroup in G, the little Dav-
enport constant of G0 can be defined as

d(G0) = max{|α| : α ∈ N
G0
0 , ∀γ ∈ A(B(G0)) ∃g ∈ G0 with γ(g) > α(g)},

the maximal length of a sequence over G0 containing no product-one subsequence
(see [14, Proposition 5.1.3.2]).

Now let g = (g1, . . . , gm) be a sequence of elements from an arbitrary abelian
group G, and use the notation developed in Section4. Consider the following grad-
ing of the block monoid B(g): for α ∈ B(g) its degree is |α| = ∑m

i=1 αi . The
graded catenary degree cgr(B(g)) is defined in Definition 2 accordingly. Denote by
r(B(g)) the rank of the free abelian subgroup in Z

m generated by B(g). Obviously
|A(B(g))| ≥ r(B(g)) with equality if and only if B(g) is a free monoid. Set

A(B(supp(g))) := {a1, . . . , an} with |a1| ≥ |a2| ≥ · · · ≥ |an|.

Theorem 4. (i) We have the inequalities

cgr(B(g)) ≤ max{2|a1|, cgr(B(supp(g)))}, (8)

and

cgr(B(supp(g))) ≤
min{n,r+1}∑

i=1

|ai | − r, (9)

where r = r(B(supp(g))).
(ii) If g1, . . . , gm generate a finite subgroup of G, then

cgr(B(g)) ≤ 2d(supp(g)) + 2. (10)

Proof. We may assume that the components of g generate G. So G is a finitely
generated abelian group, whence it is isomorphic to G1 × Z

k , where G1 is a finite
abelian group, andZk is the free abelian group of rank k. Consider the linear algebraic
group H = G1 × T , where T is the torus (C×)k . For an abelian linear algebraic group
A denote by X (A) the group of homomorphisms A → C

× (as algebraic groups).
Then X (G1) ∼= G1 and X (T ) ∼= Z

k , whence X (H) ∼= G1 × Z
k ∼= G. From now on

we identify G with X (H). Let V be a C-vector space with basis x1, . . . , xm , and
define an action of H on V via linear transformations by setting h · xi = gi (h)xi
for i = 1, . . . ,m. The algebra S(V ) is the polynomial algebra C[x1, . . . , xm]. The
monomials span 1-dimensional invariant subspaces, and forα = (α1, . . . ,αm) ∈ N

m
0

and h ∈ H we have that
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h · xα =
(

m∏

i=1

gi (h)αi

)
xα.

It follows that the map N
m
0 → S(V ), α �→ xα induces an isomorphism of the semi-

group algebras

C[B(g)] ∼=−→ C[x1, . . . , xm]H . (11)

The isomorphism (11) is an isomorphism of graded algebras. We may select as
homogeneous generators of S(V )H the monomials {xα | α ∈ A(B(g))}. Then the
presentation (7) of S(V )H is identified via (11) with the presentation (3) of the
semigroup algebraC[B(g)]. So μ(ker(ϕ)) = μ(ker(πC)) (see (3) in Section2 for the
definition of πC : C[M] → C[B(g)]). By Corollary 2 we know that μ(ker(πC)) =
cgr(B(g)). Thus we have μ(ker(ϕ)) = cgr(B(g)). On the other hand applying Theo-
rem 3 (i) for μ(ker(ϕ)) in the special case when g1, . . . , gm are distinct (i.e., when
B(g) = B(supp(g))) we obtain the inequality (9) (by (11) the Krull dimension of
C[x1, . . . , xm]H equals the Krull dimension ofC[B(g)], and the latter coincides with
the rank of the free abelian subgroup of Zm generated by B(g)). Combining (9) with
Theorem 1 and Proposition 4 we get the inequality (8). The explanation of (11)
shows also b(G, V ) = d(supp(g)), so Theorem 3 (ii) yields (10).

Remark 8. When G ∼= Z
k , the group H in the above proof is an algebraic torus,

and the results in [29] give various bounds for |a1| in Theorem 4 (i). Moreover, [30]
characterizes the cases whenC[B(g)] ∼= S(V )H (for a torus H ) is a polynomial ring,
i.e., when cgr(B(g) = 0.

Corollary 6. For any subset G0 of a finite abelian group G we have the inequalities

cgr(B(G0)) ≤ 2d(G0) + 2 ≤ 2D(G) ≤ 2|G|.

Proof. The first inequality is a special case of Theorem 4 (ii). To see the second
inequality note the trivial inequality d(G0) ≤ d(G), and the well known equality
d(G) + 1 = D(G) (cf. [14, Proposition 5.1.3.2]).

It follows immediately from Definitions 1 and 2 that

c(S) ≤ 1

min{|a| : a ∈ A(S)}cgr(S). (12)

ThereforeTheorem4 implies bounds on the ordinary (not graded) catenary degree.
For example, an immediate consequence of Corollary 6 and (12) is the following:

Corollary 7. Let G0 be a subset in a finite abelian group G. Then

c(B(G0)) ≤ 2d(G0) + 2

min{|α| : α ∈ A(B(G0))} .
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As an application we recover the following known bound on c(B(G)):

Corollary 8. [14, Theorem 3.4.10.5] For any finite abelian group G we have the
inequality c(B(G)) ≤ D(G).

Proof. Themonoid isomorphismB(G) ∼= B(G \ {1G}) × B({1G}) ∼= B(G \ {1G})×
N0 implies that c(B(G)) = c(B(G \ {1G}). For a nontrivial group G the minimal
degree of an atom in B(G \ {1G}) is 2, hence, Corollary 7 gives c(B(G \ {1G}) ≤
2d(G)+2

2 = d(G) + 1 = D(G).

Example 2. It is known that the bound in Corollary 8 is sharp for G with |G| ≥ 3 if
and only if G is cyclic or G is an elementary 2-group by [14, Theorem 6.4.7] (see
also [15], where the finite groups with c(B(G)) = D(G) − 1 are characterized). The
inequality cgr(B(G0)) ≤ 2d(G0) + 2 in Corollary 6, the inequality in Corollary 7,
and the inequalities (8) and (10) in Theorem 4 are also sharp for these groups:

(i) Set G0 := {1,−1} ⊂ Z/nZ, S := B(G0). ThenA(S) = {(n, 0), (0, n), (1, 1)}.
The defining congruence ∼S of S is generated by (xn(1,1), x(n,0)x(0,n)) (a single
generator). We have d(G0) = n − 1 and cgr(S) = 2n, whereas min{|α| : α ∈
A(S)} = 2 and max{|α| : α ∈ A(S)} = n.

(ii) Let e1, . . . , en be a basis of the elementary 2-group of rank n ≥ 2, and G0 :=
{e1 + · · · + en, e1, . . . , en}, S := B(G0). Then A(S) = {a1 := (1, 1, . . . ,
1), a2 := (2, 0, . . . , 0), a3 := (0, 2, 0, . . . , 0), . . . , an+2 := (0, . . . , 0, 2)}. The
defining congruence of S is generated by (x2a1 , xa2 · · · xan+2). We have d(G0) =
n and cgr(S) = 2n + 2, whereas min{|α| : α ∈ A(S)} = 2 and max{|α| : α ∈
A(S)} = n + 1.

7 Relation to Toric Varieties

The quotient construction of toric varieties (cf. [6]) represents a toric variety as the
categorical quotient of a Zariski open subset in a vector space endowed with an
action of a diagonalizable group (see [8] for background on toric varieties). Rings
of invariants are at the basis of quotient constructions in algebraic geometry. In the
proof of Theorem 4, we recalled that the ring of invariants C[x1, . . . , xm]H of a
diagonalizable group action is isomorphic to a semigroup ring C[B(g)] of a block
monoid. Therefore the results in Sections4, 5, 6 have relevance for toric varieties.

In more details, the coordinate rings of affine toric varieties with no torus factors
are the semigroup rings (overC) of reduced, affine Krull monoids. This class of rings
(up to isomorphism) is the same as the class of rings of invariants C[x1, . . . , xm]H ,
where H is an abelian group, and each variable spans an H -invariant subspace (see
for example [3, Corollary 5.19]), which is the same as the class of rings of the form
C[B(g)].

Projective toric varieties can be constructed as the projective spectrum of semi-
group algebras of reduced affine Krull monoids, see for example [20, Chapter
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10], [8, Theorem 14.2.13]. Namely, take g = (g1, . . . , gm) ∈ Gm such that B(g) =
{0}, and fix an element h ∈ G. Endow the monoid B((g, h)) with the grading

given by B((g, h))d = {α ∈ B((g, h)) ⊆ N
m+1
0 | αm+1 = d}, d = 0, 1, 2, . . . . Then

C[B((g, h))] becomes a graded algebra, whose projective spectrum is a projective
toric variety.

Example 3. We reformulate a result on presentations of homogeneous coordinate
rings of projective toric quiver varieties from [12] in the terminology of the present
paper. Let Γ be an acyclic quiver (i.e., a finite directed graph having no oriented
cycles), with vertex set {1, . . . , k} and arrow set {e1, . . . , em}. For an arrow ei denote
by s(ei ) the starting vertex of ei , and denote by t (ei ) the terminating vertex of ei . In
the additive group Zk consider the elements gi = (gi1, . . . , gik), i = 1, . . . ,m given
by

gi j =

⎧
⎪⎨

⎪⎩

−1, if j = s(ei )

1 if j = t (ei )

0 otherwise.

Pick an element h ∈ Z
k whose additive inverse is contained in the subgroup of Zk

generated by g1, . . . , gm . Then [12, Theorem 9.3] asserts that the catenary degree
c(B((g, h))) of B((g, h)) is at most 3. Moreover, it is shown in [13] that if we
assume in addition that if r(B((g, h))) ≤ 5 (i.e., the corresponding toric variety has
dimension at most 4), then c(B((g, h))) ≤ 2 with essentially one exception. We
mention that presentations of the coordinate ring of affine toric quiver varieties are
studied in [19].

Well known open conjectures (of increasing strength) in combinatorial commu-
tative algebra are the following (called sometimes Bøgvad’s conjecture; see [27,
Conjecture 13.19] or [2]): Given a smooth, projectively normal projective toric vari-
ety, its

(i) vanishing ideal is generated by quadratic elements.
(ii) homogeneous coordinate ring is Koszul.
(iii) vanishing ideal has a quadratic Göbner basis.

For a finite subset G0 of G with B(G0) = {0} and an element h whose inverse
belongs to the subgroup generated by G0, the monoid B(G0 ∪ {h}) is endowed with
the grading such that the degree d component consists of the elements α in B(G0 ∪
{h}) with α(h) = d. Suppose that B(G0 ∪ {h}) has a quadratic Gröbner system.
According to the above conjecture this is expected to happen when B(G0 ∪ {h}) is
generated in degree 1 (so B(G0 ∪ {h}) is half-factorial in the sense of factorization
theory), and the projective spectrumofC[B(G0 ∪ {h})] is a smooth projective variety.
(For instance, in the setup of Example 3 this holds by [17] for almost all choices
of h when Γ is a bipartite directed graph with 3 source and 3 sink vertices.) Then
for any g with supp(g) = G0 we have by Corollary 5 that B((g, h)) has a quadratic
Gröbner basis, and hence the algebra C[B((g, h))] is Koszul (although its projective
spectrum typically fails to be a smooth projective variety).
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