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1 Introduction

Factorization theory for Mori domains and their semigroups of ideals splits into two
cases. The first and best understood case is that of Krull domains (i.e., of completely
integrally closed Mori domains). The arithmetic of a Krull domain depends only on
the class group and on the distribution of prime divisors in the classes, and it can be
studied—at least to a large extent—with methods from additive combinatorics. The
link to additive combinatorics is most powerful when the Krull domain has a finite
class group and when each class contains at least one prime divisor (this holds true,
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among others, for rings of integers in number fields). Then sets of lengths, sets of
distances, and of catenary degrees of the domain can be studied in terms of zero-
sum problems over the class group. Moreover, we obtain a variety of explicit results
for arithmetical invariants in terms of classical combinatorial invariants (such as the
Davenport constant of the class group) or even in terms of the group invariants of the
class group. We refer to [15] for a description of the link to additive combinatorics
and to the recent survey [32] discussing explicit results for arithmetical invariants.

Let us consider Mori domains that are not completely integrally closed but have
a nonzero conductor toward their complete integral closure. The best investigated
classes of such domains are weakly Krull Mori domains with finite v-class group
and C-domains. For them there is a variety of abstract arithmetical finiteness results
but in general there are no precise results. For example, it is well-known that sets of
distances and of catenary degrees are finite but there are no reasonable bounds for
their size. The simplest not completely integrally closed Mori domains are orders
in number fields. They are one-dimensional noetherian with nonzero conductor,
finite Picard group, and all factor rings modulo nonzero ideals are finite. Thus they
are weakly Krull domains and C-domains. Although there is recent progress for
seminormal orders, for general orders in number fields there is no characterization
of half-factoriality (for progress in the local case see [26]) and there is no information
on the structure of their sets of distances or catenary degrees (neither for orders nor
for their monoids of ideals).

In the present paper, we focus on monoids of ideals of orders in quadratic number
fields and establish precise results for their set of distances Δ(·) and their set of
catenary degrees Ca(·). Orders in quadratic number fields are intimately related to
quadratic irrationals, continued fractions, and binary quadratic forms and all these
areas provide a wealth of number theoretic tools for the investigation of orders. We
refer to [25] for a modern presentation of these connections and to [9, 29] for recent
progress on the arithmetic and ideal theoretic structure of quadratic orders.

LetO be an order in a quadratic number field, I∗(O) be the monoid of invertible
ideals, and I(O) be the monoid of nonzero ideals (note that I(O) is not cancellative
if O is not maximal). Since I∗(O) is a divisor-closed submonoid of I(O), the set
of catenary degrees and the set of distances of I∗(O) are contained in the respective
sets of I(O). We formulate a main result of this paper and then we compare it with
related results in the literature.

Theorem 1.1. Let O be an order in a quadratic number field K with discriminant
dK and conductor f = fOK for some f ∈ N≥2.

1. The following statements are equivalent:

(a) I(O) is half-factorial.
(b) c

(I(O)
) = 2.

(c) c
(I∗(O)

) = 2.
(d) I∗(O) is half-factorial.
(e) f is squarefree and all prime divisors of f are inert.
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2. Suppose that I∗(O) is not half-factorial.

(a) If f is squarefree, then Ca
(I(O)

) = [1, 3], Ca
(I∗(O)

) = [2, 3],
Δ

(I(O)
) = Δ

(I∗(O)
) = {1}.

(b) Suppose that f is not squarefree.
(i) If v2 ( f ) /∈ {2, 3} or dK �≡ 1 mod 8, then Ca

(I(O)
) = [1, 4],

Ca
(I∗(O)

) = [2, 4], and Δ
(I(O)

) = Δ
(I∗(O)

) = [1, 2].
(ii) If v2 ( f ) ∈ {2, 3} and dK ≡ 1 mod 8, then Ca

(I(O)
) = [1, 5],

Ca
(I∗(O)

) = [2, 5], and Δ
(I(O)

) = Δ
(I∗(O)

) = [1, 3].
We say that a cancellative monoid H is weakly Krull if

⋂
P∈X(H) HP = H and

{P ∈ X(H) | a ∈ P} is finite for each a ∈ H (whereX(H) denotes the set of height-
one prime ideals of H ). Moreover, a cancellative monoid H is calledweakly factorial
if every nonunit of H is a finite product of primary elements of H . Let all notation
be as in Theorem 1.1, and recall that I∗(O) is a weakly factorial C-monoid, and that
for every atomic monoid H with Δ(H) �= ∅ we have minΔ(H) = gcdΔ(H).

There is a characterization (due to Halter-Koch) when the orderO is half-factorial
[16, Theorem 3.7.15]. This characterization and Theorem 1.1 or [30, Corollary 4.6]
show that the half-factoriality of O implies the half-factoriality of I∗(O). Consider
the case of seminormal orders whence suppose that O is seminormal. Then f is
squarefree (this follows from an explicit characterization of seminormal orders given
by Dobbs and Fontana in [10, Corollary 4.5]). Moreover, I∗(O) is seminormal and
if I∗(O) is not half-factorial, then its catenary degree equals three by [18, Theorems
5.5 and 5.8]. Clearly, this coincides with 2.(a) of the above theorem. Among others,
Theorem 1.1 shows that the sets of distances and of catenary degrees are intervals and
that the minimum of the set of distances equals 1. We discuss some analogous results
and some results which are in sharp contrast to this. If H is a Krull monoid with finite
class group, then H is a weakly Krull C-monoid and if there are prime divisors in all
classes, then the sets Ca(H) and Δ(H) are intervals [23, Theorem 4.1]. On the other
hand, for every finite set S ⊂ N with min S = gcd S (resp. every finite set S ⊂ N≥2)
there is a finitely generated Krull monoid H such thatΔ(H) = S (resp. Ca(H) = S)
[21] resp. [11, Proposition 3.2]. Just as the monoids of ideals under discussion, every
numerical monoid is a weakly factorial C-monoid. However, in contrast to them, the
set of distances need not be an interval [8], its minimum need not be 1 [5, Proposition
2.9], and a recent result of O’Neill and Pelayo [28] shows that for every finite set
S ⊂ N≥2 there is a numerical monoid H such that Ca(H) = S.

We proceed as follows. In Section2 we summarize the required background on
the arithmetic of monoids. In Section3 we do the same for orders in quadratic num-
ber fields and we provide an explicit description of (invertible) irreducible ideals in
orders of quadratic number fields (Theorem 3.6). In Section4 we give the proof of
Theorem 1.1. Based on this result we establish a characterization of those orders O
with minΔ(O) > 1 (Theorem 4.14) which allows us to give the first explicit exam-
ples of orders O with minΔ(O) > 1. Our third main result (given in Theorem 5.2)
states that unions of sets of lengths of I(O) and of I∗(O) are intervals.
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2 Preliminaries on the Arithmetic of Monoids

Let N be the set of positive integers, P ⊂ N the set of prime numbers, and for every
m ∈ N, we denote by

ϕ(m) = ∣∣(Z/mZ)×
∣∣ Euler ′s ϕ- f unction.

For a, b ∈ Q ∪ {−∞,∞}, [a, b] = {x ∈ Z | a ≤ x ≤ b} denotes the discrete inter-
val betweena andb. Let L , L ′ ⊂ Z.Wedenote by L + L ′ = {a + b | a ∈ L , b ∈ L ′}
their sumset. A positive integer d ∈ N is called a distance of L if there exists a k ∈ L
such that L ∩ [k, k + d] = {k, k + d}, and we denote by Δ(L) the set of distances
of L . If ∅ �= L ⊂ N, we denote by ρ(L) = sup L/min L ∈ Q≥1 ∪ {∞} the elasticity
of L . We set ρ({0}) = 1 and max ∅ = min ∅ = sup∅ = 0. All rings and semigroups
are commutative and have an identity element.

2.1 Monoids

Let H be a multiplicatively written commutative semigroup. We denote by H×
the group of invertible elements of H . We say that H is reduced if H× = {1} and
we denote by Hred = {aH× | a ∈ H} the associated reduced semigroup of H . An
element u ∈ H is said to be cancellative if au = bu implies that a = b for all a, b ∈
H . The semigroup H is said to be

– cancellative if every element of H is cancellative.
– unit-cancellative if a, u ∈ H and a = au implies that u ∈ H×.

By definition, every cancellative semigroup is unit-cancellative. All semigroups
of ideals, that are studied in this paper, are unit-cancellative but not necessarily
cancellative.

Throughout this paper, a monoid means a
commutative unit-cancellative semigroup with identity element.

Let H be a monoid. A submonoid S ⊂ H is said to be divisor-closed if a ∈ S and
b ∈ H with b | a implies that b ∈ S. An element u ∈ H is said to be

– prime if u /∈ H× and, for all a, b ∈ H , u | ab and u � a implies u | b.
– primary if u /∈ H× and, for all a, b ∈ H , u | ab and u � a implies u | bn for some
n ∈ N.

– irreducible (or an atom) if u /∈ H× and, for all a, b ∈ H , u = ab implies that
a ∈ H× or b ∈ H×.

The monoid H is said to be atomic if every a ∈ H \ H× is a product of finitely many
atoms. If H satisfies the ascending chain condition (ACC) on principal ideals, then
H is atomic [12, Lemma 3.1].
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2.2 Sets of Lengths

For a set P , we denote by F(P) the free abelian monoid with basis P . Every a ∈
F(P) is written in the form

a =
∏

p∈P

pvp(a) with vp(a) ∈ N0 and vp(a) = 0 for almost all p ∈ P.

We call |a| = ∑
p∈P vp(a) the length of a and supp(a) = {p ∈ P | vp(a) > 0} ⊂ P

the support of a. Let H be an atomic monoid. The free abelian monoid Z(H) =
F(A(H red)) denotes the factorization monoid of H and

π : Z(H) → H red satisfying π(u) = u for all u ∈ A(H red)

denotes the factorization homomorphism of H . For every a ∈ H ,

ZH (a) = Z(a) = π−1(aH×) is the set o f f actori zations of a and

LH (a) = L(a) = {|z| | z ∈ Z(a)} is the set o f lengths of a.

For a divisor-closed submonoid S ⊂ H and an element a ∈ S, we haveZ(S) ⊂ Z(H)

whence ZS(a) = ZH (a), and LS(a) = LH (a). We denote by

– L(H) = {L(a) | a ∈ H} the system of sets of lengths of H and by
– Δ(H) = ⋃

L∈L(H) Δ(L) ⊂ N the set of distances of H .

The monoid H is said to be half-factorial ifΔ(H) = ∅ and if H is not half-factorial,
then minΔ(H) = gcdΔ(H).

2.3 Distances and Chains of Factorizations

Let two factorizations z, z′ ∈ Z(H) be given, say

z = u1 · . . . · u�v1 · . . . · vm and z′ = u1 · . . . · u�w1 · . . . · wn ,

where �,m, n ∈ N0 and all ui , v j , wk ∈ A(H red) such that v j �= wk for all j ∈ [1,m]
and all k ∈ [1, n]. Then d(z, z′) = max{m, n} is the distance between z and z′. If
π(z) = π(z′) and z �= z′, then

1 + ∣∣|z| − |z′|∣∣ ≤ d(z, z′) resp. 2 + ∣∣|z| − |z′|∣∣ ≤ d(z, z′) if H is cancellative
(2.1)

(see [12, Proposition 3.2] and [16, Lemma 1.6.2]). Let a ∈ H and N ∈ N0. A finite
sequence z0, . . . , zk ∈ Z(a) is called an N -chain of factorizations (concatenating z0
and zk) if d(zi−1, zi ) ≤ N for all i ∈ [1, k]. For z, z′ ∈ Z(H) with π(z) = π(z′), we
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set c(z, z′) = min{N ∈ N0 | z and z′ can be concatenated by an N -chain of factor-
izations from Z

(
π(z)

)}. Then, for every a ∈ H ,

c(a) = sup{c(z, z′) | z, z′ ∈ Z(a)} ∈ N0 ∪ {∞} is the catenary degree of a.

Clearly, a has unique factorization (i.e., |Z(a)| = 1) if and only if c(a) = 0. We
denote by

Ca(H) = {c(a) | a ∈ H, c(a) > 0} ⊂ N the set o f catenary degrees of H,

and then

c(H) = supCa(H) ∈ N0 ∪ {∞} is the catenary degree of H.

We use the convention that sup∅ = 0 whence H is factorial if and only if c(H) = 0.
Note that c(a) = 0 for all atoms a ∈ H . The restriction to positive catenary degrees
in the definition of Ca(H) simplifies the statement of some results whence it is
usual to restrict to elements with positive catenary degrees. If H is cancellative, then
Equation (2.1) implies that min Ca(H) ≥ 2 and

2 + supΔ(H) ≤ c(H) if H is not factorial.

If H = ∐
i∈I Hi , then a straightforward argument shows that

Ca(H) =
⋃

i∈I
Ca(Hi ) whence c(H) = sup{c(Hi ) | i ∈ I }. (2.2)

2.4 Semigroups of Ideals

Let R be a domain. We denote by q(R) its quotient field, byX(R) the set of minimal
nonzero prime ideals of R, and by R its integral closure. Then R \ {0} is a cancellative
monoid,

– I(R) is the semigroup of nonzero ideals of R (with usual ideal multiplication),
– I∗(R) is the subsemigroup of invertible ideals of R, and
– Pic(R) is the Picard group of R.

For every I ∈ I(R), we denote by
√
I its radical and byN (I ) = (R : I ) = |R/I | ∈

N ∪ {∞} its norm.
Let S be a Dedekind domain and R ⊂ S a subring. Then R is called an order in

S if one of the following two equivalent conditions hold:

– q(R) = q(S) and S is a finitely generated R-module.
– R is one-dimensional noetherian and R = S is a finitely generated R-module.
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Let R be an order in a Dedekind domain S = R. We analyze the structure of I∗(R)

and of I(R).
Since R is noetherian, Krull’s intersection theorem holds for R whence I(R)

is unit-cancellative [20, Lemma 4.1]. Thus I(R) is a reduced atomic monoid with
identity R and I∗(R) is a reduced cancellative atomic divisor-closed submonoid. For
the sake of clarity, we will say that an ideal of R is an ideal atom if it is an atom of the
monoid I(R). If I, J ∈ I∗(R), then I | J if and only if J ⊂ I . The prime elements
of I∗(R) are precisely the invertible prime ideals of R. Every ideal is a product of
primary ideals belonging to distinct prime ideals (in particular, I∗(R) is a weakly
factorial monoid). Thus every ideal atom (i.e., every I ∈ A(I(R)) is primary, and if√
I = p ∈ X(R), then I is p-primary. Since R is a finitely generated R-module, the

conductor f = (R : R) is nonzero, and we set

P = {p ∈ X(R) | p �⊃ f} and P∗ = X(R) \ P.

Let p ∈ X(R). We denote by

I∗
p(R) = {I ∈ I∗(R) | √

I ⊃ p} and Ip(R) = {I ∈ I(R) | √
I ⊃ p}

the set of invertible p-primary ideals of R and the set of p-primary ideals of R.
Clearly, these are monoids and, moreover,

Ip(R) ⊂ I(R), I∗
p(R) ⊂ Ip(R), and I∗

p(R) ⊂ I∗(R)

are divisor-closed submonoids. Thus I∗
p(R) is a reduced cancellative atomicmonoid,

Ip(R) is a reduced atomicmonoid, and if p ∈ P , then I∗
p(R) = Ip(R) is free abelian.

Since R is noetherian and one-dimensional,

α : I(R) →
∐

p∈X(R)

Ip(R), defined by α(I ) = (Ip ∩ R)p∈X(R) (2.3)

is a monoid isomorphism which induces a monoid isomorphism

α|I∗(R) : I∗(R) →
∐

p∈X(R)

I∗
p(R). (2.4)

3 Orders in Quadratic Number Fields

Thegoal of this section is to proveTheorem3.6which provides an explicit description
of (invertible) ideal atoms of an order in a quadratic number field. These results
are essentially due to Butts and Pall (see [6] where they are given in a different
style), and they were summarized without proof by Geroldinger and Lettl in [19].
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Unfortunately, that presentation is misleading in one case (namely, in case p = 2
and dK ≡ 5 mod 8). Thus we restate the results and provide a full proof.

First we put together some facts on orders in quadratic number fields and fix our
notation which remains valid throughout the rest of this paper. For proofs, details,
and any undefined notions, we refer to [25]. Let d ∈ Z \ {0, 1} be squarefree, K =
Q(

√
d) be a quadratic number field,

ω =
{√

d, if d ≡ 2, 3 mod 4;
1+√

d
2 , if d ≡ 1 mod 4.

and dK =
{
4d, if d ≡ 2, 3 mod 4;
d, if d ≡ 1 mod 4.

Then OK = Z[ω] is the ring of integers and dK is the discriminant of K . For every
f ∈ N, we define

ε ∈ {0, 1} with ε ≡ f dK mod 2 , η = ε − f 2dK
4

, and τ = ε + f
√
dK

2
.

Then
O f = Z ⊕ f ωZ = Z ⊕ τZ

is an order in OK with conductor f = fOK , and every order in OK has this form.
With the notation of Section 2.4 we have

P∗ = {p ∈ X(O f ) | p ⊃ f} = {pZ + f ωZ | p ∈ P, p | f }.

If α = a + b
√
d ∈ K , then α = a − b

√
d is its conjugate, NK/Q(α) = αα = a2 −

b2d is its norm, and tr(α) = α + α = 2a is its trace. For an I ∈ I(O f ), I = {α |
α ∈ I } denotes the conjugate ideal. A simple calculation shows that

NK/Q(r + τ ) = r2 + εr + η for each r ∈ Z.

If O is an order and I ∈ I∗(O), then (OK : IOK ) = (O : I ) and if a ∈ O \ {0}, then

(O :aO) = (OK :aOK ) = |NK/Q(a)|

(see [17, Pages 99 and 100] and note that the factor rings OK /IOK and O/I need

not be isomorphic). For p ∈ P and for a ∈ Z we denote by
(
a
p

)
∈ {−1, 0, 1} the

Kronecker symbol of a modulo p. A prime number p ∈ Z is called

– inert if pOK ∈ spec(OK ).
– split if pOK is a product of two distinct prime ideals of OK .
– ramified if pOK is the square of a prime ideal of OK .

An odd prime
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p is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

inert if
(
dK
p

)
= −1;

split if
(
dK
p

)
= 1;

ramified if
(
dK
p

)
= 0.

and 2 is

⎧
⎪⎨

⎪⎩

inert if dK ≡ 5 mod 8;
split if dK ≡ 1 mod 8;
ramified if dK ≡ 0 mod 2.

Proposition 3.1. Let p be a prime divisor of f , O = O f , and p = pZ + f ωZ.

1. The primary ideals with radical p are exactly the ideals of the form

q = p�(pmZ + (r + τ )Z)

with �,m ∈ N0, � + m ≥ 1, 0 ≤ r < pm andNK/Q(r + τ ) ≡ 0 mod pm. More-
over, N (q) = p2�+m.

2. A primary ideal q = p�(pmZ + (r + τ )Z) is invertible if and only if

NK/Q(r + τ ) �≡ 0 mod pm+1.

Proof. 1. Let q be a p-primary ideal inO. By [25, Theorem 5.4.2] there exist nonneg-
ative integers �,m, r such that q = �(mZ + (r + τ )Z), r < m andNK/Q(r + τ ) ≡ 0
mod m. Since q is nonzero and proper, we have �m > 1.We prove, that �m is a power
of p. First observe that q ⊂ √

q = p implies that p | �m. Assume to the contrary that
there exists another rational prime p′ �= p dividing �m, say �m = p′s. But then
p′s ∈ q, s /∈ q and p′ /∈ p = √

q. A contradiction to q being primary. Conversely,
assume that q = p�(pmZ + (r + τ )Z) for integers �,m ∈ N0, � + m ≥ 1, 0 ≤ r <

pm and NK/Q(r + τ ) ≡ 0 mod pm . By [25, Theorem 5.4.2], q is an ideal of O.
Since p ∈ √

q and p is the only prime ideal in O containing p we obtain that√
q = ⋂

a∈spec(O),a⊃q a = p. The nonzero prime ideal p is maximal, since O is one-
dimensional. Therefore, q is p-primary. It follows from [25, Theorem 5.4.2] that
N (q) = p2�+m .

2. By [25, Theorem 5.4.2], q = p�(pmZ + (r + τ )Z) is invertible if and only if

gcd
(
pm, 2r + ε,

NK/Q(r + τ )

pm

)
= 1. Since p | f andNK/Q(r + τ ) = 1

4 ((2r + ε)2 −
f 2dK ), this is the case if and only if p �

NK/Q(r + τ )

pm , that is NK/Q(r + τ ) �≡ 0

mod pm+1. �

If x ∈ Z and y ∈ N, then let rem(x, y) be the unique z ∈ [0, y − 1] such that
y | x − z. Let p be a prime divisor of f . Note that vp(0) = ∞, and if ∅ �= A ⊂ N0,
then min(A ∪ {∞}) = min A. We set

Pf,p = pZ + f ωZ, I∗
p(O f ) = I∗

Pf,p
(O f ), Ip(O f ) = IPf,p (O f ), and

M f,p = {(x, y, z) ∈ N
3
0 | z < py, vp(z

2 + εz + η) ≥ y}.

Let∗ : M f,p × M f,p → M f,p bedefinedby (u, v, w) ∗ (x, y, z) = (a, b, c),where
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a = u + x + g, b = v + y + e − 2g,

c = rem

(
h − t

h2 + εh + η

pg
, pb

)
, g = min{v, y, vp(w + z + ε)},

e = min{g, vp(w − z), vp(w
2 + εw + η) − v, vp(z

2 + εz + η) − y},

t ∈ Z is such that t
w + z + ε

pg
≡ 1 mod pmin{v,y}−g, and h =

{
z if y ≥ v

w if v > y
.

Let ξ f,p : M f,p → Ip(O f ) be defined by ξ f,p(x, y, z) = px (py
Z + (z + τ )Z).

Proposition 3.2. Let p be a prime divisor of f and I, J ∈ Ip(O f ).

1. (M f,p, ∗) is a reduced monoid and ξ f,p is a monoid isomorphism.
2. If w, z ∈ Z are such that vp(w

2 + εw + η) > 0 and vp(z2 + εz + η) > 0, then
vp(w + z + ε) > 0 and vp(w − z) > 0.

3. N (I )N (J ) | N (I J ) and N (I J ) = N (I )N (J ) if and only if I is invertible or
J is invertible. If I and J are proper, then I J ⊂ pO f .

4. If I ∈ A(Ip(O f )), then there is some I ′ ∈ A(I∗
p(O f )) such that N (I J ) |

N (I ′ J ). If I ∈ A(Ip(O f )) is not invertible, then N (I ) | N (I ′) and N (I ) <

N (I ′) for some I ′ ∈ A(I∗
p(O f )).

5. If I ∈ A(I∗
p(O f )), then I ∈ A(I∗

p(O f )) and I I = N (I )O f .

Proof. 1. Let (u, v, w), (x, y, z) ∈ M f,p. Set g = min{v, y, vp(w + z + ε)} and
e = min{g, vp(w − z), vp(w

2 + εw + η) − v, vp(z2 + εz + η) − y}. Note that
gcd(pmin{v,y}, w + z + ε) = pg , and hence there are some s, t ∈ Z such that
spmin{v,y} + t (w + z + ε) = pg. This implies that t w + z + ε

pg ≡ 1 mod pmin{v,y}−g .
Set a = u + x + g, b = v + y + e − 2g and let h = z if y ≥ v and h = w if v > y.
Finally, set c = rem(h − t h

2 + εh + η
pg , pb). First we show that c does not depend

on the choice of t . Let t ′ ∈ Z be such that t ′ w + z + ε
pg ≡ 1 mod pmin{v,y}−g . Then

pmin{v,y}−g | t − t ′. Note that min{v, y} + vp(h2 + εh + η) ≥ v + y + e, and hence

pb | (t − t ′) h
2 + εh + η

pg . Consequently, c = rem(h − t ′ h
2 + εh + η

pg , pb).

Next we show that (a, b, c) ∈ M f,p. It is clear that (a, b, c) ∈ N
3
0 and c < pb.

It remains to show that vp(c2 + εc + η) ≥ b. Without restriction we can assume

that v ≤ y. Then h = z. Set k = z − t z
2 + εz + η

pg . There is some r ∈ Z such that c =
k + rpb. Since c2 + εc + η = k2 + εk + η + mpb for somem ∈ Z, it is sufficient to
show that vp(k2 + εk + η) ≥ b.

Observe that k2 + εk + η = z2 + εz + η
p2g (p2g − tpg(2z + ε) + t2(z2 + εz + η)) =

z2 + εz + η
p2g (spv+g + tpg(w − z) + t2(z2 + εz + η)). Note that g + vp(w − z) =

min{v + vp(w − z), vp(w + z + ε) + vp(w − z)} = min{v + vp(w − z), vp(w
2 +

εw + η − (z2 + εz + η))} ≥ min{v + vp(w − z), vp(z2 + εz + η), vp(w
2 + εw +

η)} ≥ v. Moreover, we have vp(z2 + εz + η) ≥ y + e. Therefore, vp(k2 + εk +
η) ≥ vp(z2 + εz + η) − 2g + min{v + g, g + vp(w − z), vp(z2 + εz + η)} ≥ y +
e − 2g + v = b.
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Nowweprove that pu(pv
Z + (w + τ )Z)px (py

Z + (z + τ )Z) = pa(pbZ + (c +
τ )Z). (Note that this can be shown by using [25, Theorem 5.4.6].) Set I =
pu(pv

Z + (w + τ )Z)px (py
Z + (z + τ )Z). Without restriction let v ≤ y. Note that

(w + τ )(z + τ ) = wz − η + (w + z + ε)τ . Set α = pv(z + τ ) and β = wz − η +
(w + z + ε)τ . We infer that I = pu+x (pv+y

Z + py(w + τ )Z + αZ + βZ).
Moreover, py(w + τ )Z + αZ = py(w − z)Z + αZ. Observe that sα + tβ =

pgz − t (z2 + εz + η) + pgτ . Set k = z − t z
2 + εz + η

pg . Then sα + tβ = pg(k + τ ).

We have α − pv(k + τ ) = tpv−g(z2 + εz + η) and (w + z + ε)(k + τ ) − β =
spv−g(z2 + εz + η). Set r = pv−g(z2 + εz + η). Consequently, αZ + βZ = srZ +
trZ + pg(k + τ )Z = rZ + pg(k + τ )Z, since gcd(s, t) = 1. Putting these facts
together gives us I = pu+x (pv+y

Z + py(w − z)Z + rZ + pg(k + τ )Z).
We have gcd(pv+y, py(w − z), r) = p� with � = min{v + y, y + vp(w − z),

v − g + vp(z2 + εz + η)} and pv+y
Z + py(w − z)Z + rZ = p�

Z. Note that � =
v + y − g + min{g, vp(w − z) − v + g, vp(z2 + εz + η) − y} and vp(w − z)
− v + g = min{vp(w − z), vp(w − z) + vp(w + z + ε) − v}= min{vp(w − z), vp

(w2 + εw + η − (z2 + εz + η)) − v}, and hence � = v + y − g + min{g,

vp(w − z), vp(w
2 + εw + η − (z2 + εz + η)) − v, vp(z2 + εz + η) − y}.

CASE 1: vp(w
2 + εw + η) ≥ vp(z2 + εz + η). Then vp(w

2 + εw + η) − v ≥
vp(z2 + εz + η) − y and vp(w

2 + εw + η − (z2 + εz + η)) − v ≥ vp(z2 +
εz + η) − y.

CASE 2: vp(z2 + εz + η) > vp(w
2 + εw + η). Then vp(w

2 + εw + η − (z2 +
εz + η)) − v = vp(w

2 + εw + η) − v.

In any case we have min{vp(w
2 + εw + η − (z2 + εz + η)) − v, vp(z2 + εz +

η) − y} = min{vp(w
2 + εw + η) − v, vp(z2 + εz + η) − y}. Obviously, � = v +

y + e − g and I = pu+x+g(pv+y+e−2g
Z + (z − t z

2 + εz + η
pg + τ )Z). Consequently,

I = pa(pbZ + (c + τ )Z).
So far we know that ∗ is an inner binary operation on M f,p. It follows from

Proposition 3.1.1 that ξ f,p is surjective. It follows from [25, Theorem 5.4.2] that ξ f,p

is injective. It is clear that (Ip(O f ), ·) is a reduced monoid. We have shown that
ξ f,p maps products of elements of M f,p to products of elements of Ip(O f ). It is
clear that (0, 0, 0) is an identity element ofM f,p and ξ f,p(0, 0, 0) = O f . Therefore,
(M f,p, ∗) is a reduced monoid and ξ f,p is a monoid isomorphism.

2. Let w, z ∈ Z be such that vp(w
2 + εw + η) > 0 and vp(z2 + εz + η)

> 0.Then p | z2 + εz + η = 1
4 ((2z + ε)2 − f 2dK ), and hence p | 2z + ε.Moreover

p | w2 + εw + η − (z2 + εz + η) = (w + z + ε)(w − z), and thus p | w + z + ε
or p | w − z. Since p | 2z + ε, we infer that p | w + z + ε if and only if p | w − z.
Consequently, min{vp(w + z + ε), vp(w − z)} > 0.

3. By 1., there are (u, v, w), (x, y, z), (a, b, c) ∈ M f,p such that I = pu(pv
Z +

(w + τ )Z), J = px (py
Z + (z + τ )Z), and I J = pa(pbZ + (c + τ )Z) with a =

u + x + g, b = v + y + e − 2g, g = min{v, y, vp(w + z + ε)} and e = min
{g, vp(w − z), vp(w

2 + εw + η) − v, vp(z2 + εz + η) − y}. It follows by
Proposition 3.1.1 that N (I ) = p2u+v , N (J ) = p2x+y , and N (I J ) = p2a+b =
p2(u+x)+v+y+e. It is obvious that N (I )N (J ) | N (I J ). Moreover, N (I J ) = N (I )
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N (J ) if and only if e = 0. We infer by 2. that e = 0 if and only if v = 0 or
y = 0 or vp(w

2 + εw + η) = v or vp(z2 + εz + η) = y, which is the case if and
only if I is invertible or J is invertible by Proposition 3.1.2. If I and J are
proper, then u + v > 0 and x + y > 0, and hence a > 0 by 2. This implies that
I J ⊂ p(pbZ + (c + τ )Z) ⊂ pO f .

4. Let I ∈ A(Ip(O f )). Without restriction let I be not invertible. We have
I = pbZ + (r + τ )Z for some (0, b, r) ∈ M f,p and b < vp(r2 + εr + η). Set c =
vp(r2 + εr + η) and I ′ = pcZ + (r + τ )Z. Then I ′ ∈ A(I∗

p(O f )), N (I ) | N (I ′),
andN (I ) < N (I ′) byProposition 3.1. There is some (x, y, z) ∈ M f,p such that J =
px (py

Z + (z + τ )Z). Then N (I ′ J ) = pc+2x+y and N (I J ) = pb+2x+y+e

with e = min{b, y, vp(r + z + ε), vp(r − z), c − b, vp(z2 + εz + η) − y} ≤ c − b.
Therefore, N (I J ) | N (I ′ J ).

5. Let I ∈ A(I∗
p(O f )). If I = pO f , then I = pO f and N (I ) = p2 by Proposi-

tion 3.1.1. Therefore, I I = N (I )O f . Now let I �= pO f . There is some (0,m, r) ∈
M f,p such that I = pmZ + (r + τ )Z. Set s = pm − r − ε. It follows that I =
pmZ + (r + τ )Z = pmZ + (r + ε − τ )Z = pmZ + (s + τ )Z. Observe that s2 +
εs + η = r2 + εr + η + pm(pm − (2r + ε)). Since p | r2 + εr + η = 1

4 ((2r +
ε)2 − f 2dK ), we have vp(2r + ε) > 0, and hence vp(pm(pm − (2r + ε))) > m.
Since vp(r2 + εr + η) = m, we infer that vp(s2 + εs + η) = m, and thus (0,m, s) ∈
M f,p. Therefore, I ∈ A(I∗

p(O f )). Note that min{m, vp(r + s + ε)} = m, and thus

I I = pmO f = N (I )O f by 1. and Proposition 3.1.1. �

Proposition 3.3. Let p be a prime divisor of f and f ′ = pvp( f ). Set O = O f ,
O′ = O f ′ , P = Pf,p and P ′ = Pf ′,p. For g ∈ N letϕg,p : Ip(Og) → I((Og)Pg,p ) be
defined byϕg,p(I ) = IPg,p and ζg,p : I((Og)Pg,p ) → Ip(Og) be defined by ζg,p(J ) =
J ∩ Og .

1. OP = O′
P ′ .

2. ϕ f,p and ζ f,p are mutually inverse monoid isomorphisms.
3. There is a monoid isomorphism δ : Ip(O) → Ip(O′) such that δ(pO) = pO′

and δ|I∗
p(O) : I∗

p(O) → I∗
p(O′) is a monoid isomorphism.

Proof. 1. It is clear that O ⊂ O′ and P ′ ∩ O = P . Therefore, OP ⊂ O′
P ′ . Observe

thatO \ P = (Z \ pZ) + f ωZ andO′ \ P ′ = (Z \ pZ) + f ′ωZ. It remains to show
that { f ′ω} ∪ {x−1 | x ∈ (Z \ pZ) + f ′ωZ} ⊂ OP . Since

f
f ′ f ′ω = f ω ∈ O and f

f ′ ∈
Z \ pZ ⊂ O \ P , we have f ′ω ∈ OP . Therefore,O′ ⊂ OP . Now let a ∈ Z \ pZ and
b ∈ Z. Observe that a + b f ′ω ∈ O′ ⊂ OP . Since ω + ω,ωω ∈ Z, we
have (a + b f ′ω)(a + b f ′ω) = a2 + ab f ′(ω + ω) + b2( f ′)2ωω ∈ Z \ pZ ⊂ O \ P .
Therefore, 1

a + b f ′ω = a + b f ′ω
(a + b f ′ω)(a + b f ′ω)

∈ OP .

2. It is clear that ϕ f,p is a well-defined monoid homomorphism. Note that ζ f,p is a
well-definedmap (since every nonzero proper ideal J ofOP is PP -primary, and hence
J ∩ O is P-primary). Moreover, ζ f,p(OP) = O. Now let J1, J2 ∈ I(OP). Observe
that J1 J2 ∩ O and (J1 ∩ O)(J2 ∩ O) coincide locally (note that both are either
P-primary or not proper). Therefore, J1 J2 ∩ O = (J1 ∩ O)(J2 ∩ O), and hence
ζ f,p is a monoid homomorphism. If J ∈ I(OP), then (J ∩ O)P = J . Therefore,
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ϕ f,p ◦ ζ f,p = idI(OP ). If I is a P-primary ideal ofO, then IP ∩ O = I . This implies
that ζ f,p ◦ ϕ f,p = idIp(O).

3. Set δ = ζ f ′,p ◦ ϕ f,p. Then δ : Ip(O) → Ip(O′) is a monoid isomorphism by 1.
and 2. Furthermore, we have by 1. that δ(pO) = ζ f ′,p(ϕ f,p(pO)) = ζ f ′,p(pOP) =
ζ f ′,p(pO′

P ′) = pO′
P ′ ∩ O′ = pO′.

SinceO is noetherian, we have I∗
p(O) is the set of cancellative elements of Ip(O).

It follows by analogy that I∗
p(O′) is the set of cancellative elements of Ip(O′).

Therefore, δ(I∗
p(O)) = I∗

p(O′), and hence δ|I∗
p(O) is a monoid isomorphism. �

Lemma 3.4. Let p be a prime number, let k ∈ N0, let c, n ∈ N be such that
gcd(c, p) = 1 and for each � ∈ N let g� = |{y ∈ [0, p� − 1] | y2 ≡ c mod p�}|.
1. If p �= 2, then pkc is a square modulo pn if and only if k ≥ n or (k < n, k is

even and ( c
p ) = 1).

2. 2kc is a square modulo 2n if and only if one of the following conditions holds.

(a) k ≥ n.
(b) k is even and n = k + 1.
(c) k is even, n = k + 2 and c ≡ 1 mod 4.
(d) k is even, n ≥ k + 3 and c ≡ 1 mod 8.

3. If � ∈ N, then g� =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

4 if p = 2, � ≥ 3, c ≡ 1 mod 8

2 if (p �= 2, ( c
p ) = 1) or (p = 2, � = 2, c ≡ 1 mod 4)

1 if p = 2, � = 1

0 else

.

Proof. Note that pkc is a square modulo pn if and only if k ≥ n or (k < n, k is even
and c is a square modulo pn−k).

1. Let p �= 2. It remains to show that if � ∈ N, then c is a square modulo p�

if and only if ( c
p ) = 1. If � ∈ N and c is a square modulo p�, then c is a square

modulo p, and hence ( c
p ) = 1. Now let ( c

p ) = 1. It suffices to show by induction

that c is a square modulo p� for all � ∈ N. The statement is clearly true for � = 1.
Now let � ∈ N and let x ∈ Z be such that x2 ≡ c mod p�. Without restriction let
vp(x2 − c) = �. Note that p � x , and hence 2bx ≡ −1 mod p for some b ∈ Z. Set
y = x + b(x2 − c). Then y2 ≡ c mod p�+1.

2. It remains to show that if � ∈ N, then c is a square modulo 2� if and only if
� = 1 or (� = 2 and c ≡ 1 mod 4) or (� ≥ 3 and c ≡ 1 mod 8). Let � ∈ N and let
c be a square modulo 2�. If � = 2, then c is a square modulo 4 and c ≡ 1 mod 4.
Moreover, if � ≥ 3, then c is a square modulo 8 and c ≡ 1 mod 8.

Clearly, if � = 1 or (� = 2 and c ≡ 1 mod 4), then c is a square modulo 2�. Now
let c ≡ 1 mod 8. It is sufficient to show by induction that c is a square modulo 2�

for each � ∈ N≥3. The statement is obviously true for � = 3. Now let � ∈ N≥3 and
let x ∈ Z be such that x2 ≡ c mod 2�. Without restriction let v2(x2 − c) = �. Set
y = x + 2�−1. Then y2 ≡ c mod 2�+1.
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3. Let � ∈ N. By 1. and 2., it is sufficient to consider the case g� > 0. Let g� > 0.
Observe that g� = |{y ∈ [0, p� − 1] | y2 ≡ 1 mod p�}| = |{y ∈ (Z/p�

Z)× |
ord(y) ≤ 2}|. If p = 2 and � = 1, then (Z/p�

Z)× is trivial, and hence g� = 1. If
(p = 2, � = 2 and c ≡ 1 mod 4) or (p �= 2 and ( c

p ) = 1), then (Z/p�
Z)× is a cyclic

group of even order, and thus g� = 2. Finally, if p = 2, � ≥ 3 and c ≡ 1 mod 8,
then (Z/2�

Z)× ∼= Z/2Z × C2�−2 is the product of two cyclic groups of even order.
Consequently, g� = 4. �

Lemma 3.5. Let p be a prime number, a,m ∈ N, c = a
pvp (a) , M = {x ∈ [0, pm −

1] | vp(x2 − a) = m}, N = |M | and for each � ∈ N let g� = |{y ∈ [0, p� − 1] |
y2 ≡ c mod p�}|.

1. If m < vp(a), then N =
{

ϕ(pm/2) if m is even

0 if m is odd
.

2. Let m = vp(a).

(a) If a is a square modulo pm+1, then N =
{
pm/2−1(p − 2) if p �= 2

2m/2−1 if p = 2
.

(b) If a is not a square modulo pm+1, then N = p�m/2�.

3. If m > vp(a) and a is not a square modulo pm, then N = 0.
4. If k ∈ N is such that m = k + vp(a) and a is a square modulo pm, then N =

pvp(a)/2−1(pgk − gk+1).

Proof. 1. Let m < vp(a). Observe that M = {x ∈ [0, pm − 1] | 2vp(x) = m}.
Clearly, if m is odd, then N = 0. Now let m be even. We have M = {pm/2y |
y ∈ [0, pm/2 − 1], gcd(y, p) = 1}, and thus N = |{y ∈ [0, pm/2 − 1] | gcd(y, p) =
1}| = ϕ(pm/2).

2. Note thatM = {x ∈ [0, pm − 1] | 2vp(x) ≥ m, x2 �≡ a mod pm+1} and |{x ∈
[0, pm − 1] | 2vp(x) ≥ m}| = p�m/2�. Set M ′ = {x ∈ [0, pm − 1] | x2 ≡ a mod
pm+1}. Then M ′ = {x ∈ [0, pm − 1] | 2vp(x) ≥ m, x2 ≡ a mod pm+1} and N =
p�m/2� − |M ′|. Ifa is not a squaremodulo pm+1, thenM ′ = ∅, and hence N = p�m/2�.
Now let a be a square modulo pm+1. Then M ′ �= ∅, and thus m is even. Observe that
M ′ = {x ∈ [0, pm − 1] | 2vp(x) = m, x2 ≡ a mod pm+1} = {pm/2y | y ∈ [0, pm/2

− 1], y2 ≡ c mod p}. Therefore, |M ′| = |{y ∈ [0, pm/2 − 1] | y2 ≡ c mod p}| =
pm/2−1|{y ∈ [0, p − 1] | y2 ≡ c mod p}|.

If p �= 2, then N = p�m/2� − |M ′| = pm/2 − 2pm/2−1 = pm/2−1(p − 2) by
Lemma 3.4.3. Moreover, if p = 2, then N = 2�m/2� − |M ′| = 2m/2 − 2m/2−1 =
2m/2−1 by Lemma 3.4.3.

3. This is obvious.
4. Let k ∈ N be such that m = k + vp(a) and let a be a square modulo pm . It fol-

lows by Lemma 3.4 that vp(a) is even. Set r = vp(a)/2 and for θ ∈ {0, 1} set Mθ =
{x ∈ [0, pm − 1] | 2vp(x) = vp(a), x2 ≡ a mod pm+θ}. ThenM = {x ∈ [0, pm −
1] | vp(x) = r, vp(x2 − a) = m} = M0 \ M1. Since {x ∈ [0, pm − 1] | vp(x) =
r} = {pr y | y ∈ [0, pk+r − 1], gcd(y, p) = 1}, we infer that Mθ = {pr y | y ∈
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[0, pk+r − 1], y2 ≡ c mod pk+θ}. Therefore, |Mθ| = |{y ∈ [0, pk+r − 1] | y2 ≡ c
mod pk+θ}| = pr−θ|{y ∈ [0, pk+θ − 1] | y2 ≡ c mod pk+θ}| = pr−θgk+θ. This
implies that N = |M0| − |M1| = prgk − pr−1gk+1 = pr−1(pgk − gk+1). �

Theorem 3.6. Let O be an order in a quadratic number field K with conductor
f = fOK for some f ∈ N≥2, p be a prime divisor of f , and p = Pf,p.

1. The primary ideals with radical p are exactly the ideals of the form

q = p�(pmZ + (r + τ )Z)

with �,m ∈ N0, � + m ≥ 1,0 ≤ r < pm, andNK/Q(r + τ ) ≡ 0 mod pm.More-
over, N (q) = p2�+m.

2. A primary ideal q = p�(pmZ + (r + τ )Z) is invertible if and only if

NK/Q(r + τ ) �≡ 0 mod pm+1.

3. A primary ideal q with radical p is an ideal atom if and only if q = pO or
q = pmZ + (r + τ )Z with m ∈ N and pm | NK/Q(r + τ ).

4. Table1 gives the number of invertible ideal atoms of the form pmZ + (r + τ )Z

with norm pm; this number is 0 if m is not listed in the table.

Table 1 Number of nontrivial invertible p-primary ideal atoms
m 2h 2vp (f) 2vp (f) + 1 > 2vp (f) + 1

1 ≤ h < vp (f)
p is inert

ϕ
(
pm/2

) pvp(f) 0
p is ramified pvp(f)

p splits pvp(f)−1 (p − 2) 2ϕ pvp(f)

5. The number of ideal atoms with radical p is finite if and only if the number of
invertible ideal atoms with radical p is finite if and only if p does not split.

Proof. 1. and 2. are an immediate consequence of Proposition 3.1.

3. In 1. we have seen, that all p-primary ideals ofO are of the form q = p�(pmZ +
(r + τ )Z). If both � and m are greater than 0, then q is not an ideal atom. Indeed,
q = (pO)�(pmZ + (r + τ )Z) is a nontrivial factorization. It remains to be proven
that pO and pmZ + (r + τ )Z are ideal atoms.

Assume that there exist proper ideals a1, a2 ofO such that pO = a1a2. Since pO
is p-primary, we have a1 and a2 are p-primary. Using this information, we deduce
that pO ⊂ p2, implying

p ∈ pO ⊂ p2 = (p2, p f ω, f 2ω2) = p(p, f ω,
f

p
ω f ω) = p(p, f ω) = pp.
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Therefore, 1 ∈ p, a contradiction.
Assume that there exist proper ideals a1, a2 of O such that pmZ + (r + τ )Z =

a1a2. Note that a1 and a2 are p-primary. By Proposition 3.2.3, it follows that pmZ +
(r + τ )Z ⊂ pO, a contradiction to r + τ /∈ pO.

4. By 1. and 3., the nontrivial p-primary ideal atoms of norm pm are all q =
pmZ + (r + τ )Z with m ∈ N, 0 ≤ r < pm and NK/Q(r + τ ) ≡ 0 mod pm . By 2.,
an ideal of this form is invertible if and only if NK/Q(r + τ ) �≡ 0 mod pm+1.

Thus if we want to count the number of invertible p-primary ideal atoms of the
formq = pmZ + (r + τ )Z,wehave to count the number of solutions r ∈ [0, pm − 1]
of the equation

vp(NK/Q(r + τ )) = m. (3.1)

Set N = |{r ∈ [0, pm − 1] | vp(NK/Q(r + τ )) = m}| and a =
{

(
f
2 )2dK if p = 2

f 2dK if p �= 2
.

Next we show that N = |{r ∈ [0, pm − 1] | vp(r2 − a) = m}|. Note thatNK/Q(r +
τ ) = (2r + ε)2 − f 2dK

4 for each r ∈ [0, pm − 1]. If p = 2, then ε = 0, and henceNK/Q

(r + τ ) = r2 − a. Now let p �= 2. Then vp(NK/Q(r + τ )) = vp((2r + ε)2 − a) for
each r ∈ [0, pm − 1]. Let f : {r ∈ [0, pm − 1] | vp(r2 − a) = m} → {r ∈ [0, pm −
1] | vp((2r + ε)2 − a) = m} and g : {r ∈ [0, pm − 1] | vp((2r + ε)2 − a) = m} →
{r ∈ [0, pm − 1] | vp(r2 − a) = m} be defined by f (r) =

{
r − ε
2 if r − ε is even

r + pm − ε
2 if r − ε is odd

and g(r) = rem(2r + ε, pm) for each r ∈ [0, pm − 1]. Observe that f and g arewell-
defined injectivemaps. Therefore, N = |{r ∈ [0, pm − 1] | vp(r2 − a) = m}| in any
case. Set c = a

pvp (a) and for � ∈ N set g� = |{y ∈ [0, p� − 1] | y2 ≡ c mod p�}|. If
m < vp(a), then the statement follows immediately by Lemma 3.5.1. Therefore, let
m ≥ vp(a). In what follows we use Lemmas 3.4 and 3.5 without further citation.

CASE 1: p = 2 and 2 is inert.We have v2(a) = 2v2( f ) − 2, c ≡ dK ≡ 5 mod 8,
g1 = 1, g2 = 2 and g3 = 0. If m = v2(a), then a is a square modulo 2m+1, and
hence N = 2m/2−1 = ϕ(2m/2). If m = v2(a) + 1, then a is a square modulo 2m , and
thus N = 2v2(a)/2−1(2g1 − g2) = 0. Ifm = v2(a) + 2, then a is a square modulo 2m ,
whence N = 2v2(a)/2−1(2g2 − g3) = 2v2(a)/2+1 = 2v2( f ). Finally, let m ≥ v2(a) + 3.
Then a is not a square modulo 2m , and hence N = 0.

CASE 2: p = 2 and 2 is ramified. Note that v2(a) ∈ {2v2( f ), 2v2( f ) + 1}. First
let v2(a) = 2v2( f ). Then a = f 2d with c ≡ d ≡ 3 mod 4, g1 = 1 and g� = 0 for
each � ∈ N≥2. Ifm = v2(a), then a is a square modulo 2m+1, and thus N = 2m/2−1 =
2v2( f )−1 = ϕ(2v2( f )). If m = v2(a) + 1, then a is a square modulo 2m , and hence
N = 2v2(a)/2−1(2g1 − g2) = 2v2( f ). Finally, letm ≥ v2(a) + 2. Then a is not a square
modulo 2m , and thus N = 0.

Now let v2(a) = 2v2( f ) + 1. If m = v2(a), then a is not a square modulo 2m+1,
and hence N = 2�m/2� = 2v2( f ). Ifm > v2(a), then a is not a square modulo 2m , and
thus N = 0.
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CASE 3: p = 2 and 2 splits. Observe that v2(a) = 2v2( f ) − 2, c ≡ dK ≡ 1
mod 8, g1 = 1, g2 = 2 and g� = 4 for each � ∈ N≥3. Ifm = v2(a), then a is a square
modulo 2m+1, and hence N = 2m/2−1 = ϕ(2m/2). Now let m > v2(a) and set k =
m − v2(a). Note that a is a squaremodulo 2m , and hence N = 2v2(a)/2−1(2gk − gk+1).
If m < v2(a) + 3, then N = 0. Finally, let m ≥ v2(a) + 3. Then N = 2v2(a)/2+1 =
2v2( f ) = 2ϕ(2v2( f )).

CASE 4: p �= 2 and p is inert. We have vp(a) = 2vp( f ), ( c
p ) = ( dKp ) = −1 and

g� = 0 for each � ∈ N. Ifm = vp(a), then a is not a square modulo pm+1, and hence
N = p�m/2� = pvp( f ). If m > vp(a), then a is not a square modulo pm , and thus
N = 0.

CASE 5: p �= 2 and p is ramified. It follows that vp(a) = 2vp( f ) + 1. If m =
vp(a), then a is not a square modulo pm+1, and thus N = p�m/2� = pvp( f ). If m >

vp(a), then a is not a square modulo pm , and thus N = 0.

CASE 6: p �= 2 and p splits. Note that vp(a) = 2vp( f ), ( c
p ) = ( dKp ) = 1 and

g� = 2 for each � ∈ N. If m = vp(a), then a is a square modulo pm+1, and hence
N = pm/2−1(p − 2) = pvp( f )−1(p − 2). If m > vp(a), then a is a square modulo
pm , and thus N = pvp(a)/2−1(pgk − gk+1) = 2pvp( f )−1(p − 1) = 2ϕ(pvp( f )).

5. It is an immediate consequence of 4. that the number of invertible ideal atoms
with radical p is finite if and only if p does not split. It remains to show thatA(Ip(O))

is finite if and only ifA(I∗
p(O)) is finite. It follows from [1, Theorem 4.3] that I(Op)

is a finitely generated monoid if and only if I∗(Op) is a finitely generated monoid.
Therefore, Proposition 3.3.2 implies that Ip(O) is a finitely generated monoid if
and only if I∗

p(O) is a finitely generated monoid. Observe that Ip(O) and I∗
p(O)

are atomic monoids. Therefore, A(Ip(O)) is finite if and only if Ip(O) is a finitely
generated monoid if and only if I∗

p(O) is a finitely generated monoid if and only if
A(I∗

p(O)) is finite. �

4 Sets of Distances and Sets of Catenary Degrees

The goal in this section is to prove Theorem 1.1. The proof is based on the precise
description of ideals given in Theorem 3.6. We proceed in a series of lemmas and
propositions and use all notation on orders as introduced at the beginning of Section3.
In particular, O = O f is an order in a quadratic number with conductor fOK for
some f ∈ N≥2.

Proposition 4.1. Let H be a reduced atomicmonoid and suppose there is a cancella-
tive atom u ∈ A(H) such that for each a ∈ H \ H× there are n ∈ N0 and v ∈ A(H)

such that a = unv.

1. For all n,m ∈ N0 and v,w ∈ A(H) such that unv = umw, it follows that n = m
and v = w.

2. For all n ∈ N0 and v ∈ A(H), it follows that max L(unv) = n + 1.
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3. c(H) = sup{c(w · y, un · v) | n ∈ N and v,w, y ∈ A(H) such that wy = unv}.
4. If H is half-factorial, then c(H) ≤ 2.
5. supΔ(H) = sup{� − 2 | � ∈ N≥3 such that L(vw) ∩ [2, �] = {2, �} for some

v,w ∈ A(H)}.
Proof. 1. Let n,m ∈ N0 and v,w ∈ A(H) be such that unv = umw. Without restric-
tion let n ≤ m. Since u is cancellative, we infer that v = um−nw. Since v ∈ A(H),
we have n = m, and thus v = w.

2. It is clear that n + 1 ∈ L(unv) for all n ∈ N0 and v ∈ A(H). Therefore, it is suf-
ficient to show by induction that for all n ∈ N0 and v ∈ A(H), max L(unv) ≤ n + 1.
Let n ∈ N0 and v ∈ A(H). If n = 0, then the assertion is obviously true. Now let
n > 0 and z ∈ Z(unv). Then there are some z′, z′′ ∈ Z(H) \ {1} such that z = z′ · z′′.
There are some m ′,m ′′ ∈ N0 and w′, w′′ ∈ A(H) such that π(z′) = um

′
w′ and

π(z′′) = um
′′
w′′. There are some � ∈ N and y ∈ A(H) such that w′w′′ = u�y. We

infer that unv = um
′+m ′′+�y, and thus n = m ′ + m ′′ + � by 1. Since m ′,m ′′ < n, it

follows by the induction hypothesis that |z′| ≤ m ′ + 1 and |z′′| ≤ m ′′ + 1. Conse-
quently, |z| ≤ m ′ + m ′′ + 2 ≤ m ′ + m ′′ + � + 1 = n + 1.

3. Set k = sup{c(w · y, un · v) | n ∈ N0 and v,w, y ∈ A(H) such that wy =
unv}. Since c(H) = sup{c(z, z′) | a ∈ H, z, z′ ∈ Z(a)}, it is obvious that k ≤ c(H).
It remains to show by induction that for all n ∈ N0 and v ∈ A(H), it follows that
c(unv) ≤ k. Let n ∈ N0 and v ∈ A(H). Since c(v) = 0, we can assume without
restriction that n > 0. Since c(unv) = sup{c(z, un · v) | z ∈ Z(unv)}, it remains to
show that c(z, un · v) ≤ k for all z ∈ Z(unv). Let z ∈ Z(unv).

CASE 1: For all w, y ∈ A(H) \ {u}, we have w · y � z. There are some m ∈
N and w ∈ A(H) such that z = um · w. We infer by 1. that z = un · v, and thus
c(z, un · v) = 0 ≤ k.

CASE 2: There are some w, y ∈ A(H) \ {u} such that w · y | z. Set z′ = z
w·y .

There exist m ∈ N and a ∈ A(H) such that wy = uma. We infer that m ≤ n
and unv = π(z) = π(w · y)π(z′) = umaπ(z′), and thus aπ(z′) = un−mv. Observe
that c(z, um · a · z′) ≤ c(w · y, um · a) ≤ k. Since n − m < n, it follows by the
induction hypothesis that c(um · a · z′, un · v) ≤ c(a · z′, un−m · v) ≤ k, and hence
c(z, un · v) ≤ k.

4. Let H be half-factorial, n ∈ N and v,w, y ∈ A(H) be such thatwy = unv. We
infer that n = 1, and thus c(w · y, un · v) ≤ d(w · y, u · v) ≤ 2. Therefore, c(H) ≤
2 by 3.

5. Set N = sup{� − 2 | � ∈ N≥3 such thatL(vw) ∩ [2, �] = {2, �} for somev,w ∈
A(H)}. It is obvious that N ≤ supΔ(H). It remains to show that k ≤ N for each
k ∈ Δ(H). Let k ∈ Δ(H). Then there are some a ∈ H and r, s ∈ L(a) such that
r < s, L(a) ∩ [r, s] = {r, s}, and k = s − r . Let z ∈ Z(a) with |z| = r be such that
vu(z) = max{vu(z′) | z′ ∈ Z(a) with |z′| = r}. Since r < max L(a), it follows by 2.,
that there are some v,w ∈ A(H) \ {u} such that v · w | z. There are some n ∈ N

and y ∈ A(H) such that vw = un y. Since vu(z) is maximal among all factorizations
of a of length r , we have n ≥ 2. Consequently, there is some � ∈ L(vw) such that
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2 < � ≤ n + 1 and L(vw) ∩ [2, �] = {2, �}. Note that r + � − 2 ∈ L(a), and thus
s ≤ r + � − 2. This implies that k ≤ � − 2 ≤ N . �

Theorem 3.6 implies that, for all prime divisors p of f , I∗
p(O f ) and Ip(O f ) are

reduced atomic monoids satisfying the assumption in Proposition 4.1.

Lemma 4.2. Let p be a prime divisor of f .

1. Z(pPf,p) = {A · Pf,p | A = Pf,p or A ∈ A(I∗
p(O f )) such that N (A) = p2}

and 1 ∈ Ca(Ip(O f )).
2. If I, J ∈ A(I∗

p(O f )) are such thatN (I ) = p2 andN (J ) > p2, then I J = pL
for some L ∈ A(I∗

p(O f )).
3. 2 ∈ Ca(I∗

p(O f )).

Proof. 1. Note that {I ∈ Ip(O f ) | N (I ) = p} = {Pf,p}. First we show that
Z(pPf,p) = {A · Pf,p | A = Pf,p or A ∈ A(I∗

p(O f )) such that N (A) = p2}.
Let z ∈ Z(pPf,p). It follows from Proposition 4.1.2 that |z| ≤ 2, and hence |z| =

2. Consequently, z = A · B for some A, B ∈ A(Ip(O f )). By Proposition 3.2.1 there
are some (u, v, w), (x, y, t) ∈ M f,p such that A = pu(pv

Z + (w + τ )Z) and B =
px (py

Z + (t + τ )Z). Set g = min{v, y, vp(w + t + ε)} and e = min{g, vp(w −
t), vp(w

2 + εw + η) − v, vp(t2 + εt + η) − y}. We infer by Proposition 3.2.1 that
u + x + g = 1 and v + y + e − 2g = 1. Note that g ∈ {0, 1}. If g = 0, then u + x =
v + y = 1, and thus (A = pO f and B = Pf,p) or (A = Pf,p and B = pO f ). Now
let g = 1. Then u = x = 0, v, y ≥ 1, v + y + e = 3, and e ∈ {0, 1}. If e = 1,
then v = y = 1, and thus A = B = Pf,p. Now let e = 0. Then (v = 1 and y = 2)
or (v = 2 and y = 1). Without restriction let v = 2 and y = 1. Then B = Pf,p,
N (A) = pv = p2, and N (A)N (B) = p3 = N (pPf,p) = N (AB). Since B is not
invertible, it follows by Proposition 3.2.3 that A is invertible.

To prove the converse inclusion note that Pf,p = pZ + (r + τ )Z for some
(0, 1, r) ∈ M f,p. By Proposition 3.2.1 we have P2

f,p = pa(pbZ + (c + τ )Z with
(a, b, c) ∈ M f,p, a = min{1, vp(2r + ε)} and b = 2 + e − 2a with e = min{a,

vp(r2 + εr + η) − 1}. By Proposition 3.2.3 we have a > 0, and thus a = b = e = 1.
Consequently, P2

f,p = pPf,p. Now let A ∈ A(I∗
p(O f )) be such that N (A) = p2. It

follows by Proposition 3.2.3 that N (APf,p) = N (A)N (Pf,p) = p3 and APf,p =
pI for some I ∈ Ip(O f ). We infer that N (I ) = p, and hence I = Pf,p.

Observe that d(z′, z′′) ≤ 1 for all z′, z′′ ∈ Z(pPf,p) and (pO f ) · Pf,p and P2
f,p

are distinct factorizations of pPf,p. Therefore, 1 = c(pPf,p) ∈ Ca(Ip(O f )).

2. Let I, J ∈ A(I∗
p(O f )) be such that N (I ) = p2 and N (J ) > p2. Without

restriction we can assume that I �= pO f . There are some (0, 2, r), (0, k, s) ∈
M f,p such that I = p2Z + (r + τ )Z and J = pkZ + (s + τ )Z. Since I and J
are invertible, we have vp(r2 + εr + η) = 2 and vp(s2 + εs + η) = k > 2. There-
fore, vp(r + s + ε) + vp(r − s) = vp(r2 + εr + η − (s2 + εs + η)) = 2, and thus
vp(r + s + ε) = 1, by Proposition 3.2.2. Therefore, min{2, k, vp(r + s + ε)} = 1,
and hence I J = pL for some L ∈ A(I∗

p(O f )) by Proposition 3.2.1.

3. We distinguish two cases.
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CASE 1: p �= 2 or vp( f ) ≥ 2 or d �≡ 1 mod 8. It follows from Theorem 3.6
that there is some I ∈ A(I∗

p(O f )) such that N (I ) = p2 and I �= pO f . We have

I I = (pO f )
2, and hence L(I I ) = {2}. Since I · I and (pO f ) · (pO f ) are distinct

factorizations of I I , we have 2 = c(I I ) ∈ Ca(I∗
p(O f )).

CASE 2: p = 2, vp( f ) = 1 and d ≡ 1 mod 8. By Proposition 3.3.3 we can
assumewithout restriction that f = 2. ByTheorem3.6 there is some I ∈ A(I∗

2 (O f ))

such that N (I ) = 8. There is some (0, 3, r) ∈ M f,2 such that I = 8Z + (r + τ )Z.
We have v2(r2 − d) = 3, and hence v2(r) = 0. Therefore, min{3, v2(2r)} = 1,
and thus I 2 = 2J for some J ∈ A(I∗

2 (O f )). Consequently, L(I 2) = {2}. Since
I · I and (2O f ) · J are distinct factorizations of I 2, it follows that 2 = c(I 2) ∈
Ca(I∗

p(O f )). �
Proposition 4.3. Let p be an odd prime divisor of f such that vp( f ) ≥ 2.

1. There is a C ∈ A(I∗
p(O f )) such that L(C2) = {2, 3} whence 1 ∈ Δ(I∗

p(O f ))

and 3 ∈ Ca(I∗
p(O f )). Moreover, if (p �= 3 or d �≡ 2 mod 3 or vp( f ) > 2), then

there are I, J, L ∈ A(I∗
p(O f )) such that I 2 = p2 J and J 2 = p2L.

2. If |Pic(O f )| ≤ 2 and (p �= 3 or d �≡ 2 mod 3 or vp( f ) > 2), then there is a
nonzero primary a ∈ O f such that 2, 3 ∈ L(a) whence 1 ∈ Δ(O f ).

Proof. 1. By Proposition 3.3.3 there is a monoid isomorphism δ : I∗
p(O f ) →

I∗
p(O f

2v2( f )
) such that δ(pO f ) = pO f

2v2( f )
. Therefore, we can assume without restric-

tion that f is odd.

CLAIM: L(I 2) = {2, 3} for some I ∈ A(I∗
p(O f )), 1 ∈ Δ(I∗

p(O f )), 3 ∈ Ca
(I∗

p(O f )) and if vp(p4 + f 2d) = 4, then I 2 = p2 J and J 2 = p2L for some I, J, L ∈
A(I∗

p(O f )).

For r ∈ N0 set k = vp(NK/Q(r + τ )) and I = pkZ + (r + τ )Z. Let k > 0 and
r < pk . Then I ∈ A(I∗

p(O f )). Moreover, I 2 = pa(pbZ + (c + τ )Z) with a = min

{k, vp(2r + ε)}, b = 2(k − a) and c = rem(r − t NK/Q(r + τ )

pa , pb) for each t ∈ Zwith

t 2r + ε
pa ≡ 1 mod pk−a . Set J = pbZ + (c + τ )Z. Then I 2 = pa J and if b > 0, then

J ∈ A(I∗
p(O f )). In particular, if a = 2 and b > 0, then I, J ∈ A(I∗

p(O f )) and
L(I 2) = {2, 3}, and hence 1 ∈ Δ(I 2) ⊂ Δ(I∗

p(O f )) and 3 = c(I 2) ∈ Ca(I∗
p(O f )).

Observe that J 2 = pa
′
(pb

′
Z + (c′ + τ )Z)witha′ = min{b, vp(2c + ε)},b′ = 2(b −

a′) and c′ ∈ N0 such that c′ < pb
′
. Set L = pb

′
Z + (c′ + τ )Z. Then J 2 = pa

′
L and

if b′ > 0, then L ∈ A(I∗
p(O f )).

CASE 1: d �≡ 1 mod 4. Set r = p2. We haveNK/Q(r + τ ) = p4 − f 2d, k ≥ 4,

a = 2, b = 2(k − 2) > 0, r < pk , and t = pk−2 + 1
2 satisfies the congruence. There-

fore, c = rem(p2 − (pk−2 + 1)(p4 − f 2d)

2p2 , p2(k−2)) = p4 + f 2d + pk−2 f 2d − pk+2 + 2�p2(k−1)

2p2 for

some � ∈ Z. For the rest of this case let vp(p4 + f 2d) = 4. It follows that vp(c) = 2,
and hence a′ = min{2(k − 2), vp(2c)} = 2 and b′ = 4(k − 3) > 0.

CASE 2: d ≡ 1 mod 4. Set r = p2 − 1
2 . Observe that NK/Q(r + τ ) = p4 − f 2d

4 ,
k ≥ 4, a = 2, b = 2(k − 2) > 0, r < pk , and t = 1 satisfies the congruence. Conse-
quently, 2c + ε = 2rem(

p2 − 1
2 − p4 − f 2d

4p2 , p2(k−2)) + 1 = p4 + f 2d + 4�p2(k−1)

2p2 for some
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� ∈ Z. For the rest of this case let vp(p4 + f 2d) = 4. We infer that a′ = min{2(k −
2), vp(2c + ε)} = 2. Moreover, b′ = 4(k − 3) > 0. This proves the claim.

Note that if g ∈ N with vp(g) = vp( f ), then there is a monoid isomorphism
α : I∗

p(O f ) → I∗
p(Og) such thatα(pO f ) = pOg by Proposition 3.3.3. By the claim

it remains to show that if (p �= 3 or d �≡ 2 mod 3 or vp( f ) > 2), then there is some
odd g ∈ N such that vp(g) = vp( f ) and vp(p4 + g2d) = 4.

Let (p �= 3 or d �≡ 2 mod 3 or vp( f ) > 2). Furthermore, let vp(p4 + f 2d) >

4. This implies that vp( f ) = 2 and p � d. Without restriction we can assume
that vp(p4 + (p2)2d) > 4. We have vp(1 + d) > 0, and hence p �= 3. Set g =
(p − 2)p2. Then vp(g) = vp( f ). Assume that vp(p4 + g2d) > 4. Then p5 | p4 +
(p − 2)2 p4d − p4(1 + d), and thus p | (p − 2)2 − 1 = p2 − 4p + 3. It follows that
p = 3, a contradiction.

2. Let |Pic(O f )| ≤ 2 and let p �= 3 or d �≡ 2 mod 3 or vp( f ) > 2. By 1. there
are some I, J, L ∈ A(I∗

p(O f )) such that I 2 = p2 J and J 2 = p2L . We infer that
I 2 is principal, and hence J and L are principal. Consequently, there are some
u, v ∈ A(O f ) such that J = uO f , L = vO f and u2 = p2v. Note that u2 is primary.
Since p ∈ A(O f ), we have 2, 3 ∈ L(u2). Therefore, 1 ∈ Δ(O f ). �

Proposition 4.4. Let p be a prime divisor of f such that vp( f ) ≥ 2. Then there
are I, J ∈ A(I∗

p(O f )) such that L(I J ) = {2, 4} whence 2 ∈ Δ(I∗
p(O f )) and 4 ∈

Ca(I∗
p(O f )).

Proof. CASE 1: p �= 2 or vp( f ) > 2 or d �≡ 1 mod 8. By Theorem 3.6 there is
some I ∈ A(I∗

p(O f )) such thatN (I ) = p4. Set J = I . We infer that I J = (pO f )
4,

and hence {2, 4} ⊂ L(I J ) ⊂ {2, 3, 4}. Assume that 3 ∈ L(I J ). Then there are some
A, B,C ∈ A(I∗

p(O f )) such that I J = ABC and N (A) ≤ N (B) ≤ N (C). Again
by Theorem 3.6 we have N (L) ∈ {p2} ∪ {pn | n ∈ N≥4} for all L ∈ A(I∗

p(O f )).
This implies thatN (A) = N (B) = p2 andN (C) = p4. It follows by Lemma 4.2.2
that ABC = p2L for some L ∈ A(I∗

p(O f )). Consequently, L = p2O f , a contradic-
tion. We infer that L(I J ) = {2, 4} whence 2 ∈ Δ(I∗

2 (O f )) and 4 ∈ Ca(I∗
2 (O f )).

CASE 2: p = 2, vp( f ) = 2 and d ≡ 1 mod 8. Since I∗
2 (O4) ∼= I∗

2 (O f ) by
Proposition 3.3.3, we can assume without restriction that f = 4. We set

w =
{
6 if d ≡ 1 mod 16

2 if d ≡ 9 mod 16
and z =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

18 if d ≡ 1 mod 32

22 if d ≡ 9 mod 32

2 if d ≡ 17 mod 32

6 if d ≡ 25 mod 32

.

In any case, we have v2(NK/Q(w + τ )) = 5 and v2(NK/Q(z + τ )) = 6. Set I =
32Z + (w + τ )Z and J = 64Z + (z + τ )Z. Then I, J ∈ A(I∗

2 (O4)) and Proposi-
tion 3.2.1 implies that I J = 2a(2bZ + (c + τ )Z) with a = min{5, 6, v2(w + z)},
b = 5 + 6 − 2a and c ∈ N0 such that c < 2b. Observe that v2(w + z) = 3, and
thus a = 3 and b = 5. Set L = 32Z + (c + τ )Z. Then L ∈ A(I∗

2 (O4)) and I J =
(2O4)

3L . We infer that {2, 4} ⊂ L(I J ) ⊂ {2, 3, 4}, by Proposition 4.1.2.
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Assume that 3 ∈ L(I J ). Then there are some A, B,C ∈ A(I∗
2 (O4)) such that

I J = ABC and N (A) ≤ N (B) ≤ N (C). It follows by Theorem 3.6 that N (U ) ∈
{4} ∪ {2n | n ≥ 5} for allU ∈ A(I∗

2 (O4)). SinceN (A)N (B)N (C) = N (I )N (J ) =
2048,we infer thatN (A) = N (B) = 4 andN (C) = 128. It follows byLemma4.2.2
that ABC = 4D for some D ∈ A(I∗

2 (O4)). This implies that D = 2L , a contra-
diction. Consequently, L(I J ) = {2, 4}, and thus 2 ∈ Δ(I∗

2 (O4)) and 4 = c(I J ) ∈
Ca(I∗

2 (O4)). �
Proposition 4.5. Suppose that one of the following conditions hold:

(a) v2( f ) ≥ 5 or (v2( f ) = 4 and d �≡ 1 mod 4).
(b) v2( f ) = 3 and d ≡ 2 mod 4.
(c) v2( f ) = 2 and d ≡ 1 mod 4.

Then there are I, J ∈ A(I∗
2 (O f )) with L(I J ) = {2, 3} whence 1 ∈ Δ(I∗

2 (O f )) and
3 ∈ Ca(I∗

2 (O f )). If |Pic(O f )| ≤ 2, then there is a nonzero primary a ∈ O f with
2, 3 ∈ L(a) whence 1 ∈ Δ(O f ).

Proof. CASE1: v2( f ) ≥ 5or (v2( f ) = 4 andd �≡ 1 mod 4).We show that there are
some A, B, I, J, L ∈ A(I∗

2 (O f )) such that A2 = 32I , B2 = 16J and I J = 4L . Set
k = v2(NK/Q(16 + τ )) and A = 2kZ + (16 + τ )Z. Then k ≥ 8, A ∈ A(I∗

2 (O f ))

and A2 = 32(22k−10
Z + (c + τ )Z) with (5, 2k − 10, c) ∈ M f,2 and v2(c) ≥ 3. Set

I = 22k−10
Z + (c + τ )Z. Then I ∈ A(I∗

2 (O f )). Set B = 64Z + (8 + τ )Z. Then
B ∈ A(I∗

2 (O f )) and B2 = 16(16Z + (4 + τ )Z). Set J = 16Z + (4 + τ )Z. Then
B2 = 16J , J ∈ A(I∗

2 (O f )) and I J = 4L with L ∈ A(I∗
2 (O f )).

CASE 2: v2( f ) = 3 and d ≡ 2 mod 4. We show that AB = 2I , AC = 2I ′,
BC = 8I ′′, B2 = 16J , I J = 4L , I ′ J = 4L ′, I ′′ J = 4L ′′ for some A, B,C, I, I ′,
I ′′, J, L , L ′, L ′′ ∈ A(I∗

2 (O f )). By Proposition 3.3.3, we can assumewithout restric-
tion that f = 8. Set A = 4Z + (2 + τ )Z, B = 64Z + (8 + τ )Z and C = 128Z +
τZ. Then A, B,C ∈ A(I∗

2 (O f )), AB = 2(64Z + (40 + τ )Z), AC = 2(128Z +
(64 + τ )Z), B2 = 16(16Z + (12 + τ )Z) and BC = 8(128Z + (c + τ )Z) with
(3, 7, c) ∈ M f,2 and v2(c) = 4. Furthermore, (64Z + (40 + τ )Z)(16Z + (12 + τ )

Z) = 4(64Z + (56 + τ )Z), (128Z + (64 + τ )Z)(16Z + (12 + τ )Z) = 4(128
Z + (r + τ )Z) with (2, 7, r) ∈ M f,2 and (128Z + (c + τ )Z)(16Z + (12 + τ )Z) =
4(128Z + (s + τ )Z) with (2, 7, s) ∈ M f,2. Set J = 16Z + (12 + τ )Z. In partic-
ular, if I ∈ {64Z + (40 + τ )Z, 128Z + (64 + τ )Z, 128Z + (c + τ )Z}, then I, J ∈
A(I∗

2 (O f )) and I J = 4L for some L ∈ A(I∗
2 (O f )).

CASE 3: v2( f ) = 2 and d ≡ 1 mod 4. We show that A2 = 4I and I 2 = 4L for
some A, I, L ∈ A(I∗

2 (O f )). By Proposition 3.3.3, we can assumewithout restriction
that f = 4. First let d ≡ 1 mod 8. If d ≡ 1 mod 16, then set A = 32Z + (6 +
τ )Z and if d ≡ 9 mod 16, then set A = 32Z + (2 + τ )Z. In any case, we have
A ∈ A(I∗

2 (O f )) and A2 = 4(64Z + (c + τ )Z)with (2, 6, c) ∈ M f,2 and v2(c) = 1.
Set I = 64Z + (c + τ )Z. Then I ∈ A(I∗

2 (O f )), A2 = 4I and I 2 = 4(256Z + (r +
τ )Z) with (2, 8, r) ∈ M f,2.

Now let d ≡ 5 mod 8. Set A = 16Z + (2 + τ )Z. Then A ∈ A(I∗
2 (O f )) and

A2 = 4(16Z + (c + τ )Z)with (2, 4, c) ∈ M f,2 and v2(c) = 1. Set I = 16Z + (c +
τ )Z. Then A2 = 4I and I 2 = 4(16Z + (z + τ )Z) with (2, 4, z) ∈ M f,2.
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Using the case analysis above we can find I, J, L ∈ A(I∗
2 (O f )) such that I J =

4L . In particular, L(I J ) = {2, 3}, 1 ∈ Δ(I∗
p(O f )) and 3 = c(I J ) ∈ Ca(I∗

p(O f )).
Now let |Pic(O f )| ≤ 2. Observe that if A, B,C ∈ A(I∗

2 (O f )), then A2 is principal
and {AB, AC, BC} contains a principal ideal of O f . In any case we can choose
I, J, L to be principal. There are some u, v, w ∈ A(O f ) such that I = uO f , J =
vO f , L = wO f and uv = 4w. Note that uv is primary. Since 2 ∈ A(O f ), we have
2, 3 ∈ L(uv), and thus 1 ∈ Δ(O f ). �

Proposition 4.6. Let p be a prime divisor of f . Then the following statements are
equivalent:

(a) I∗
p(O f ) is half-factorial.

(b) Ip(O f ) is half-factorial.
(c) c(I∗

p(O f )) = 2.
(d) c(Ip(O f )) = 2.
(e) vp( f ) = 1 and p is inert.

Proof. (a) ⇒ (e) If vp( f ) > 1 or p is not inert, then there is some I ∈ A(I∗
p(O f ))

such that N (I ) > p2 by Theorem 3.6.4. Set k = vp(N (I )). Then k ≥ 3 and I I =
(pO f )

k by Proposition 3.2.5. Since I ∈ A(I∗
p(O f )), we have 2, k ∈ L(I I ).

(e) ⇒ (b) Observe that N (A) ∈ {p, p2} for each A ∈ A(Ip(O f )), and thus
A(Ip(O f )) = {Pf,p} ∪ {A ∈ A(I∗

p(O f )) | N (A) = p2}. Let I ∈ Ip(O f ) \ {O f }.
There are some k ∈ N0 and J ∈ A(Ip(O f )) such that I = pk J . Let z ∈ Z(I ). Then
z = (

∏n
i=1 Ii ) · P�

f,p with �, n ∈ N0 and Ii ∈ A(I∗
p(O f )) for each i ∈ [1, n]. Note

that |z| = n + �. It is sufficient to show that n + � = k + 1.

CASE 1: I is invertible. Then J is invertible and � = 0. It follows that p2n =
N (

∏n
i=1 Ii ) = N (I ) = N (pk J ) = p2k+2 by Proposition 3.2.3, and thus n + � =

n = k + 1.

CASE 2: I is not invertible. Then J = Pf,p and � > 0. It follows from Lemma 4.2
that P�

f,p = p�−1Pf,p. Consequently,

p2(n+�)−1 = N (

n∏

i=1

Ii )N (p�−1Pf,p) = N (I ) = N (pk Pf,p) = p2k+1

by Proposition 3.2.3, and hence n + � = k + 1.

(b) ⇒ (d) Since I∗
p(O f ) is a cancellative divisor-closed submonoid of Ip(O f )

and not factorial, we infer by Proposition 4.1.4 that

2 ≤ c(I∗
p(O f )) ≤ c(Ip(O f )) ≤ 2.

(d) ⇒ (c) Note that I∗
p(O f ) is a divisor-closed submonoid of Ip(O f ), and

thus c(I∗
p(O f )) ≤ c(Ip(O f )) = 2. Since I∗

p(O f ) is not factorial, we infer that
c(I∗

p(O f )) = 2.
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(c) ⇒ (a) Since I∗
p(O f ) is cancellative and not factorial, it follows that 2 +

supΔ(I∗
p(O f )) ≤ c(I∗

p(O f )) = 2, and thus supΔ(I∗
p(O f )) = 0. Consequently,

Δ(I∗
p(O f )) = ∅, and hence I∗

p(O f ) is half-factorial. �

Lemma 4.7. Let p be a prime divisor of f , |Pic(O f )| ≤ 2, I, J, L ∈ A(I∗
p(O f )).

1. If J is principal and I J = p2L, then 1 ∈ Δ(O f ).
2. If I and J are not principal and I J = pL, then 1 ∈ Δ(O f ).

Proof. Note that if |Pic(O f )| > 1, then it follows from [16, Corollary 2.11.16] that
there is some invertible prime ideal P of O f that is not principal. Observe that
p ∈ A(O f ). Also note that if I is not principal, then P I is principal, and hence P I
is generated by an atom ofO f , since P I has no nontrivial factorizations in I∗(O f ).

1. Let J be principal and I J = p2L . There is some v ∈ A(O f ) such that J =
vO f .

CASE 1: I is principal. Then L is principal, and hence there are some u, w ∈
A(O f ) such that I = uO f , L = wO f and uv = p2w. We infer that 2, 3 ∈ L(uv),
and thus 1 ∈ Δ(O f ).

CASE 2: I is not principal. Then L is not principal and |Pic(O f )| > 1, and thus
there are some u, w ∈ A(O f ) such that P I = uO f , PL = wO f and uv = p2w. It
follows that 2, 3 ∈ L(uv), and thus 1 ∈ Δ(O f ).

2. Let I and J not be principal and I J = pL . Then L is principal and |Pic(O f )| >

1, and hence there are some u, v, w, y ∈ A(O f ) such that P I = uO f , P J = vO f ,
P2 = wO f , L = yO f and uv = pwy. Therefore, 2, 3 ∈ L(uv), and hence 1 ∈
Δ(O f ). �

Proposition 4.8. Let p be a prime divisor of f .

1. If vp( f ) ≥ 2 or p is not inert, then there are I, J ∈ A(I∗
p(O f )) such thatL(I J ) =

{2, 3} whence 1 ∈ Δ(I∗
p(O f )) and 3 ∈ Ca(I∗

p(O f )).
2. Suppose that O f is not half-factorial and that one of the following conditions

holds:

(i) |Pic(O f )| ≥ 3 or vp( f ) ≥ 2 or p does split.
(ii) p is inert and there is some C ∈ A(I∗

p(O f )) that is not principal.
(iii) p is ramified and there is some principal C ∈ A(I∗

p(O f )) such thatN (C) =
p3.

(iv) f is a squarefree product of inert primes.

Then 1 ∈ Δ(O f ).

Proof. Weprove 1. and2. simultaneously. SetG = Pic(O f ). LetB(G)be themonoid
of zero-sum sequences of G. It follows by [16, Theorem 6.7.1.2] that if |G| ≥ 3,
then 1 ∈ Δ(B(G)). We infer by [16, Proposition 3.4.7 and Theorems 3.4.10.3 and
3.7.1.1] that there exists an atomic monoid B(O f ) such that Δ(B(O f )) = Δ(O f )

and B(G) is a divisor-closed submonoid of B(O f ). In particular, if |G| ≥ 3, then
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1 ∈ Δ(O f ). Thus, for the second assertionwe only need to consider the case |G| ≤ 2.
By Propositions 4.3 and 4.5 we can restrict to the following cases.

CASE 1: p = 2 and ((v2( f ) ∈ {3, 4} and d ≡ 1 mod 4) or (v2( f ) ∈ {2, 3}
and d ≡ 3 mod 4)). If (v2( f ) = 4 and d ≡ 1 mod 4) or (v2( f ) = 3 and d ≡ 3
mod 4), then set I = 16Z + (4 + τ )Z. If v2( f ) = 3 and d ≡ 1 mod 4, then set
I = 16Z + τZ. Finally, if v2( f ) = 2 and d ≡ 3 mod 4, then there is some I ∈
A(I∗

2 (O f )) such that N (I ) = 32 by Theorem 3.6. In any case, it follows that
I ∈ A(I∗

2 (O f )).
It is a consequence of Proposition 3.2.1 and Theorem 3.6 that there are some

A, J ∈ A(I∗
2 (O f )) and � ∈ N such that A2 = �J with values according to the

following table. Let k ∈ {1, 3, 5, 7} be such that d ≡ k mod 8. Note that I =
2aZ + (r + τ )Z and J = 2bZ + (s + τ )Z with (0, a, r), (0, b, s) ∈ M f,2.

v2( f ) k N (A) � N (J ) v2(r) v2(s)
4 1 512 16 1024 2 3
4 5 256 16 256 2 3
3 1 128 8 256 ∞ 2
3 5 64 8 64 ∞ 2
3 3 or 7 128 16 64 2 ≥4
2 3 or 7 32 8 16 2 ≥3

Since v2(r + s) = 2 in any case,we infer that I J = 4L for some L ∈ A(I∗
2 (O f )).

Now let |G| ≤ 2. We have J is principal, and hence 1 ∈ Δ(O f ) by Lemma 4.7.1.

CASE 2: p = 2, v2( f ) = 2 and d ≡ 2 mod 4. Set A = 32Z + τZ and B =
32Z + (8 + τ )Z. Then A, B ∈ A(I∗

2 (O f )) and AB = 8I for some I ∈ A(I∗
2 (O f ))

with I = 16Z + (r + τ )Z, (0, 4, r) ∈ M f,2, and v2(r) = 2. Therefore, we have
AI = 4J and BI = 4L for some J, L ∈ A(I∗

2 (O f )). Now let |G| ≤ 2. Since
{A, B, I } contains a principal ideal ofO f , we infer by Lemma 4.7.1 that 1 ∈ Δ(O f ).

CASE 3: p = 3, v3( f ) = 2 and d ≡ 2 mod 3. First let d �≡ 1 mod 4. Set
I = 81Z + τZ and J = 81Z + (9 + τ )Z. Then I, J ∈ A(I∗

3 (O f )) and I J = 9L for
some L ∈ A(I∗

3 (O f )) with L = 81Z + (r + τ )Z, (0, 4, r) ∈ M f,3, and v3(r) = 2.
It follows that I L = 9A for some A ∈ A(I∗

3 (O f )).
Now let d ≡ 1 mod 4. By Proposition 3.3.3 we can assume without restriction

that f is odd. Set I = 81Z + (4 + τ )Z and J = 81Z + (13 + τ )Z. Then I, J ∈
A(I∗

3 (O f )) and I J = 9L for some L ∈ A(I∗
3 (O f )). There is some (0, 4, r) ∈ M f,3

such that L = 81Z + (r + τ )Z. Since v3(2r + 1) ≥ 2, we have I L = 9A for some
A ∈ A(I∗

3 (O f )) or J L = 9A for some A ∈ A(I∗
3 (O f )).

In any case if |G| ≤ 2, then {I, J, L} contains a principal ideal of O f , and hence
1 ∈ Δ(O f ) by Lemma 4.7.1.

CASE 4: vp( f ) = 1 and p splits. By Theorem 3.6 there is some I ∈ A(I∗
p(O f ))

such that N (I ) = p3. There is some (0, 3, r) ∈ M f,p such that I = p3Z + (r +
τ )Z. Observe that vp(2r + ε) = 1. We infer that I 2 = pJ for some J ∈ A(I∗

p(O f ))
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and I I = p2L with I ∈ A(I∗
p(O f )) and L = pO f ∈ A(I∗

p(O f )). Now let |G| ≤ 2.
We infer by Lemma 4.7 that 1 ∈ Δ(O f ).

CASE 5: vp( f ) = 1 and p is ramified. By Theorem 3.6 there is some C ∈
A(I∗

p(O f )) such that N (C) = p3. Note that CC = p3O f and C ∈ A(I∗
p(O f )).

Now let C be principal. It follows by Lemma 4.7.1 that 1 ∈ Δ(O f ).

Cases 1-5 show that there are some I, J, L ∈ A(I∗
p(O f )) such that I J = p2L .

In particular, L(I J ) = {2, 3}, 1 ∈ Δ(I∗
p(O f )) and 3 = c(I J ) ∈ Ca(I∗

p(O f )). This
proves 1. For the rest of this proof let O f be not half-factorial and |G| ≤ 2.

CASE 6: vp( f ) = 1, p is inert and there is some C ∈ A(I∗
p(O f )) that is not

principal. We have C2 = pL for some L ∈ A(I∗
p(O f )), and thus 1 ∈ Δ(O f ) by

Lemma 4.7.2.

CASE 7: f is a squarefree product of inert primes. Then I∗
p(O f ) is half-factorial

by Proposition 4.6. If G is trivial, thenO f is half-factorial, a contradiction. Note that
O f is seminormal by [10, Corollary 4.5]. It follows from [18, Theorem 6.2.2.(a)]
that 1 ∈ Δ(O f ). �

Lemma 4.9. Let p be a prime divisor of f , k ∈ N≥2, and N = sup{vp(N (A)) | A ∈
A(I∗

p(O f ))}. If � ∈ N and A ∈ Ip(O f )) is both a product of k atoms and a product

of � atoms, then � ≤ kN
2 .

Proof. Let � ∈ N and suppose that a product of k atoms can be written as a product
of � atoms and set P = Pf,p. There are some a, b ∈ N0, Ii ∈ A(Ip(O f )) \ {P}
for each [1, b] and Jj ∈ A(Ip(O f )) for each j ∈ [1, k] such that � = a + b and∏k

j=1 Jj = Pa
∏b

i=1 Ii . Note that p
2 | N (Ii ) for each i ∈ [1, b].

CASE 1: a = 0. Then b = �. It follows by induction from Proposition 3.2.4 that
there are J ′

j ∈ A(I∗
p(O f )) for each j ∈ [1, k] such thatN (

∏k
j=1 Jj ) | N (

∏k
j=1 J

′
j ).

SetM = lcm{N (J ′
j ) | j ∈ [1, k]}. Then p2� | ∏�

i=1 N (Ii ) | N (
∏�

i=1 Ii ) = N (
∏k

j=1

Jj ) | N (
∏k

j=1 J
′
j ) = ∏k

j=1 N (J ′
j ) | Mk . This implies that 2� ≤ kvp(M) ≤ kN , and

thus � ≤ kN
2 .

CASE 2: a > 0. By Lemma 4.2 we have Pa = pa−1P , and thusN (Pa) = p2a−1.
Note that

∏k
j=1 Jj is not invertible, and hence one member of the product, say J1, is

not invertible. Observe that vp(N (J1)) ≤ N − 1 by Proposition 3.2.4. We infer by
induction from Proposition 3.2.4 that there are J ′

j ∈ A(I∗
p(O f )) for each j ∈ [2, k]

such that N (
∏k

j=1 Jj ) | N (J1
∏k

j=2 J
′
j ). Set M = lcm{N (J ′

j ) | j ∈ [2, k]}. Then
p2�−1 | N (Pa)

∏b
i=1 N (Ii ) | N (Pa

∏b
i=1 Ii ) =N (

∏k
j=1 Jj ) | N (J1

∏k
j=2 J

′
j ) =N

(J1)
∏k

j=2 N (J ′
j ) | N (J1)Mk−1. This implies that 2� − 1 ≤ vp(N (J1)) + (k − 1)vp

(M) ≤ kN − 1, and hence � ≤ kN
2 . �

Lemma 4.10. Let p be a prime divisor of f . For every I ∈ A(I∗
p(O f )), we set

vI = vp(N (I )), and let B = {vA | A ∈ A(I∗
p(O f ))}.

1. For all I ∈ A(I∗
p(O f )), we have c(I · I , (pO f )

vI ) ≤ 2 + supΔ(B).
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2. Let p = 2, d ≡ 1 mod 8, and vp( f ) ≥ 4. Then c(I · I , (pO f )
vI ) ≤ 4 for all

I ∈ A(I∗
p(O f )).

Proof. 1. It is sufficient to showby induction that for all n ∈ N≥2 and I ∈ A(I∗
p(O f ))

with vI = n, it follows that c(I · I , (pO f )
n) ≤ 2 + supΔ(B). Let n ∈ N≥2 and I ∈

A(I∗
p(O f )) be such that vI = n. If n = 2, then c(I · I , (pO f )

2) ≤ d(I · I , (pO f )
2)

≤ 2 ≤ 2 + supΔ(B). Now let n > 2. Note that 2 = vpO f ∈ B, and hence there
is some k ∈ B such that 2 ≤ k < n and B ∩ [k, n] = {k, n}. Observe that n −
k ∈ Δ(B). Furthermore, there is some J ∈ A(I∗

p(O f )) such that k = vJ . Note

that J J = (pO f )
k , and thus I I = (pO f )

n−k J J . By the induction hypothesis, we
infer that c((pO f )

n−k · J · J , (pO f )
n) ≤ c(J · J , (pO f )

k) ≤ 2 + supΔ(B). Since
d(I · I , (pO f )

n−k · J · J ) ≤ 2 + (n − k) ≤ 2 + supΔ(B), it follows that c(I · I ,
(pO f )

n) ≤ 2 + supΔ(B).

2. By Proposition 3.3.3 we can assume without restriction that f = 2v2( f ). We
show by induction that for all n ∈ N≥2 and I ∈ A(I∗

2 (O f )) with vI = n, we have
c(I · I , (2O f )

n) ≤ 4. Let n ∈ N≥2 and I ∈ A(I∗
2 (O f )) be such that vI = n. If n =

2, then c(I · I , (2O f )
2) ≤ d(I · I , (2O f )

2) ≤ 2 ≤ 2 + supΔ(B). Next let n > 2.
Observe that 2 = v2O f ∈ B, and hence there is some k ∈ B such that 2 ≤ k < n
and B ∩ [k, n] = {k, n}. There is some J ∈ A(I∗

2 (O f )) such that k = vJ . Note that
J J = (2O f )

k , and hence I I = (2O f )
n−k J J . By the induction hypothesis, we have

c((2O f )
n−k · J · J , (2O f )

n) ≤ c(J · J , (2O f )
k) ≤ 4.

CASE 1: n �= 2v2( f ) + 1. It follows from Theorem 3.6 that n − k ≤ 2. Since
d(I · I , (2O f )

n−k · J · J ) ≤ 4, we infer that c(I · I , (2O f )
n) ≤ 4.

CASE 2: n = 2v2( f ) + 1. By Theorem 3.6 we have n − k = 3. Set A = 16Z +
(4 + τ )Z, B = 2n−3

Z + (2n−5 + τ )Z, and C = 2n−3
Z + (2n−4 + τ )Z. Then

A, B,C ∈ A(I∗
2 (O f )) and ABC = 2n−5A(16Z + (12 + τ )Z) = (2O f )

n−1.
Observe that d(I · I , (2O f ) · A · B · C) ≤ 4 and d((2O f ) · A · B · C, (2O f )

n−k ·
J · J )) ≤ 4. Therefore, c(I · I , (2O f )

n) ≤ 4. �

Proposition 4.11. Let p be a prime divisor of f and set B = {vp(N (A)) | A ∈
A(I∗

p(O f ))}.
1. supΔ(Ip(O f )) ≤ supΔ(B) and c(Ip(O f )) ≤ 2 + supΔ(B).
2. Let p = 2, d ≡ 1 mod 8, and vp( f ) ≥ 4. Then supΔ(I2(O f )) ≤ 2 and c(I2

(O f )) ≤ 4.

Proof. 1. First we consider the case that vp( f ) = 1 and p is inert. It follows from
Theorem 3.6 that supΔ(B) = 0. Proposition 4.6 implies that supΔ(Ip(O f )) = 0
and c(Ip(O f )) = 2. Now let vp( f ) ≥ 2 or p not inert. Observe that supΔ(B) ≥ 1
by Theorem 3.6. Let I, J ∈ A(Ip(O f )). There are some n ∈ N and L ∈ A(Ip(O f ))

such that I J = pnL .
By Proposition 4.1, it remains to show that c(I · J, (pO f )

n · L) ≤ 2 + supΔ(B)

and if � ∈ N≥3 is such that L(I J ) ∩ [2, �] = {2, �}, then � − 2 ≤ supΔ(B). Set N =
supB. Since a product of two atoms of Ip(O f ) can be written as a product of n + 1
atoms, Lemma 4.9 implies that n + 1 ≤ N . If n = 1, then d(I · J, (pO f ) · L) ≤ 2 ≤
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2 + supΔ(B) and there is no � ∈ N≥3 with L(I J ) ∩ [2, �] = {2, �}. Now let n ≥ 2
and � ∈ N≥3 be such that L(I J ) ∩ [2, �] = {2, �}.

CASE 1: n ∈ B. Then AA = (pO f )
n for some A ∈ A(I∗

p(O f )). Therefore,

c(A · A · L , (pO f )
n · L) ≤ c(A · A, (pO f )

n) ≤ 2 + supΔ(B) by Lemma 4.10.1.
Moreover, d(I · J, A · A · L) ≤ 3 ≤ 2 + supΔ(B), and thus c(I · J, (pO f )

n · L) ≤
2 + supΔ(B) and � − 2 = 1 ≤ supΔ(B).

CASE 2: n /∈ B. Note that n ≥ 3. It follows by Theorem 3.6 that vp( f ) ≥ 2 and
supΔ(B) ≥ 2.

CASE 2.1: p �= 2 or d �≡ 1 mod 8 or n �= 2vp( f ). Since n ≤ N , it follows
from Theorem 3.6 that n − 1 = N (A) for some A ∈ A(I∗

p(O f )), and hence AA =
(pO f )

n−1.We infer thatc((pO f ) · A · A · L , (pO f )
n · L) ≤ c(A · A, (pO f )

n−1) ≤
2 + supΔ(B) by Lemma 4.10.1. Moreover, we have d(I · J, A · A · (pO f ) · L) ≤
4 ≤ 2 + supΔ(B), and thus c(I · J, (pO f )

n · L) ≤ 2 + supΔ(B) and � − 2 ≤ 2 ≤
supΔ(B).

CASE 2.2: p = 2, d ≡ 1 mod 8 and n = 2vp( f ). We infer by Theorem 3.6
that supΔ(B) = 3. By Theorem 3.6 there is some A ∈ A(I∗

2 (O f )) such that
n − 2 = N (A), and thus AA = (2O f )

n−2. This implies that c((2O f )
2 · A · A ·

L , (2O f )
n · L) ≤ c(A · A, (2O f )

n−2) ≤ 2 + supΔ(B) by Lemma 4.10.1. Observe
that d(I · J, A · A · (2O f )

2 · L) ≤ 5 = 2 + supΔ(B), and hence c(I · J, (2O f )
n ·

L) ≤ 2 + supΔ(B) and � − 2 ≤ 3 = supΔ(B).

2. By Proposition 3.3.3 we can assume without restriction that f = 2v2( f ). Let
I, J ∈ A(I2(O f )). There are some n ∈ N and L ∈ A(I2(O f )) such that I J = 2n L .
It follows from Lemma 4.9 that n + 1 ≤ supB. By Proposition 4.1, it is sufficient
to show that c(I · J, (2O f )

n · L) ≤ 4 and if � ∈ N≥3 is such that L(I J ) ∩ [2, �] =
{2, �}, then � − 2 ≤ 2. The assertion is trivially true for n = 1. Let n ≥ 2 and let
� ∈ N≥3 be such that L(I J ) ∩ [2, �] = {2, �}.

CASE 1: n ∈ B. There is some A ∈ A(I∗
2 (O f )) such that AA = (2O f )

n . It fol-
lows by Lemma 4.10.2 that c(A · A · L , (2O f )

n · L) ≤ c(A · A, (2O f )
n) ≤ 4. Fur-

thermore, d(I · J, A · A · L) ≤ 3, and thus c(I · J, (2O f )
n · L) ≤ 4 and � − 2 ≤ 1.

CASE 2: n /∈ B and n �= 2v2( f ). It follows by Theorem 3.6 that there is some A ∈
A(I∗

2 (O f )) such that AA = (2O f )
n−1.We infer by Lemma 4.10.2 that c((2O f ) · A ·

A · L , (2O f )
n · L) ≤ c(·A · A, (2O f )

n−1) ≤ 4. Furthermore, d(I · J, (2O f ) · A ·
A · L) ≤ 4, and thus c(I · J, (2O f )

n · L) ≤ 4 and � − 2 ≤ 2.

CASE 3: n = 2v2( f ). By Theorem 3.6 there is some D ∈ A(I∗
2 (O f )) such that

DD = (2O f )
n−2. Set A = 16Z + (4 + τ )Z, B = 2n−2

Z + (2n−4 + τ )Z and C =
2n−2

Z + (2n−3 + τ )Z. Then A, B,C ∈ A(I∗
2 (O f )) and ABC = 2n−4A(16Z +

(12 + τ )Z) = (2O f )
n . This implies that c((2O f )

2 · D · D · L , (2O f )
n · L) ≤ c(D ·

D, (2O f )
n−2) ≤ 4 by Lemma 4.10.2. Moreover, d(A · B · C · L , (2O f )2 · D · D ·

L) ≤ 4 and d(I · J, A · B · C · L) ≤ 4. Consequently, c(I · J, (2O f )
n · L) ≤ 4 and

� − 2 ≤ 2. �

Proposition 4.12. Let v2( f ) ∈ {2, 3} and d ≡ 1 mod 8. Then 3 ∈ Δ(I∗
2 (O f )) and

5 ∈ Ca(I∗
2 (O f )).



On Monoids of Ideals of Orders in Quadratic Number Fields 39

Proof. We distinguish two cases.
CASE 1: v2( f ) = 2. By Theorem 3.6 there is some I ∈ A(I∗

2 (O f )) such that
N (I ) = 32. Set J = I . Then I J = 32O f , and hence {2, 5} ⊂ L(I J ) ⊂ [2, 5].Again
by Theorem 3.6 we have N (L) ∈ {4} ∪ {2n | n ∈ N≥5} for all L ∈ A(I∗

2 (O f )).
Note that if A, B,C, D ∈ A(I∗

2 (O f )), then N (ABCD) ∈ {256} ∪ N≥2048. Since
N (I J ) = 1024, we have 4 /∈ L(I J ). Assume that 3 ∈ L(I J ). Then there are some
A, B,C ∈ A(I∗

2 (O f )) such that I J = ABC and N (A) ≤ N (B) ≤ N (C). There-
fore, N (A) = N (B) = 4 and N (C) = 64. We infer by Lemma 4.2.2 that ABC =
4L for some L ∈ A(I∗

2 (O f )), and hence L = 8O f , a contradiction. We have
L(I J ) = {2, 5}, and thus 3 ∈ Δ(I∗

2 (O f )) and 5 = c(I J ) ∈ Ca(I∗
2 (O f )).

CASE 2: v2( f ) = 3. By Proposition 3.3.3 we can assume without restriction that
f = 8. By Theorem 3.6 there are some I, J ∈ A(I∗

2 (O f )) such that N (I ) = 128
andN (J ) = 16.We have I I = 128O f and J J = 16O f , and hence I I = 8J J . This
implies that {2, 5} ⊂ L(I I ). It follows fromTheorem3.6 thatN (L) ∈ {4, 16} ∪ {2n |
n ∈ N≥7} for all L ∈ A(I∗

2 (O f )).
First assume that 3 ∈ L(I I ). Then there exist A, B,C ∈ A(I∗

2 (O f )) such that
I I = ABC , and N (A) ≤ N (B) ≤ N (C). Therefore, (N (A),N (B),N (C)) ∈
{(4, 16, 256), (4, 4, 1024)}. If (N (A),N (B),N (C)) = (4, 16, 256), then it fol-
lows by Lemma 4.2.2 that AB = 2D for some D ∈ A(I∗

2 (O f )) with N (D) =
16. We infer that DC = 64O f , and hence C = 4D, a contradiction. Now let
(N (A),N (B),N (C)) = (4, 4, 1024). Then ABC = 4D for some D ∈ A(I∗

2 (O f ))

by Lemma 4.2.2, and thus D = 32O f , a contradiction. Consequently, 3 /∈ L(I I ).
Next assume that 4 ∈ L(I I ). Then there exist A, B,C, D ∈ A(I∗

2 (O f )) such that
I I = ABCD, and N (A) ≤ N (B) ≤ N (C) ≤ N (D).

Then (N (A),N (B),N (C),N (D)) ∈ {(4, 4, 4, 256), (4, 16, 16, 16)}.
If (N (A),N (B),N (C),N (D)) = (4, 4, 4, 256), then ABCD = 8E for E ∈

A(I∗
2 (O f )) by Lemma 4.2.2, and hence E = 16O f , a contradiction. Now let

(N (A),N (B),N (C),N (D)) = (4, 16, 16, 16). ByLemma4.2.2 there is some E ∈
A(I∗

2 (O f )) with N (E) = 16 such that AB = 2E . Therefore, ECD = 64O f , and
hence CD = 4E . There are some (0, 4, r), (0, 4, s) ∈ M f,2 such that C = 16Z +
(r + τ )Z and D = 16Z + (s + τ )Z. We have v2(r2 − 16d) = v2(s2 − 16d) = 4.
Since d ≡ 1 mod 8, this implies that v2(r), v2(s) ≥ 3. Therefore, min{4, v2(r +
s + ε)} ∈ {3, 4}, and hence CD = 8F for some F ∈ A(I∗

2 (O f )). We infer that
E = 2F , a contradiction. Consequently, 4 /∈ L(I I ).

Therefore, 2 and 5 are adjacent lengths of I I , and hence 3 ∈ Δ(I∗
2 (O f )). Note

that c(I∗
2 (O f )) ≤ 5 by Proposition 4.11.1 andTheorem3.6.Moreover, since I∗

2 (O f )

is a cancellative monoid, we have 5 ≤ 2 + supΔ(L(I I )) ≤ c(I I ) ≤ 5, and thus 5 =
c(I I ) ∈ Ca(I∗

2 (O f )). �

Lemma 4.13. Let H ∈ {I(O f ), I∗(O f )}. For every prime divisor p of f , we set
Hp = Ip(O f ) if H = I(O f ) and Hp = I∗

p(O f ) if H = I∗(O f ).

1. H is half-factorial if and only if Hp is half-factorial for every p ∈ P with p | f .
2. If H is not half-factorial, then supΔ(H) = sup{supΔ(Hp) | p ∈ Pwith p | f }.
3. c(H) = sup{c(Hp) | p ∈ P with p | f }.
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Proof. By Eqs. 2.3 and 2.4, we have

I∗(O f ) ∼=
∐

P∈X(O f )

I∗
P(O f ) and I(O f ) ∼=

∐

P∈X(O f )

IP(O f ).

Thus the assertions are easy consequences (see [16, Propositions 1.4.5.3 and
1.6.8.1]). �

Proof (ProofofTheorem 1.1). 1. This is an immediate consequence of Proposition 4.6
and Lemma 4.13.

2. First, suppose that f is squarefree. By 1., we have f is not a product of
inert primes. It follows from Lemma 4.13, Proposition 4.11.1, and Theorem 3.6 that
c(I∗(O)) ≤ c(I(O)) ≤ 3 and supΔ(I∗(O)) ≤ supΔ(I(O)) ≤ 1. By Lemma 4.2
and Proposition 4.8.1, it follows that 1 ∈ Δ(I∗(O)), 1 ∈ Ca(I(O)) and [2, 3] ⊂
Ca(I∗(O)), and thus Ca(I(O)) = [1, 3], Ca(I∗(O)) = [2, 3], and Δ(I(O)) =
Δ(I∗(O)) = {1}.

Now we suppose that f is not squarefree and we distinguish two cases.
CASE 1: v2 ( f ) /∈ {2, 3} or dK �≡ 1 mod 8. By Lemma 4.13, Proposition 4.11,

and Theorem 3.6 it follows that c(I∗(O)) ≤ c(I(O)) ≤ 4 and supΔ(I∗(O)) ≤
supΔ(I(O)) ≤ 2.We infer by Lemma 4.2 and Propositions 4.4 and 4.8 that [1, 2] ⊂
Δ(I∗(O)), 1 ∈ Ca(I(O)), and [2, 4] ⊂ Ca(I∗(O)), and hence Ca(I(O)) = [1, 4],
Ca(I∗(O)) = [2, 4], and Δ(I(O)) = Δ(I∗(O)) = [1, 2].

CASE 2: v2 ( f ) ∈ {2, 3} and dK ≡ 1 mod 8. We infer by Lemma 4.13,
Proposition 4.11.1, and Theorem 3.6 that c(I∗(O)) ≤ c(I(O)) ≤ 5 and sup
Δ(I∗(O)) ≤ supΔ(I(O)) ≤ 3. Lemma 4.2 and Propositions 4.4, 4.8 and 4.12 imply
that [1, 3] ⊂ Δ(I∗(O)), 1 ∈ Ca(I(O)) and [2, 5] ⊂ Ca(I∗(O)). Consequently,
Ca(I(O)) = [1, 5], Ca(I∗(O)) = [2, 5], and Δ(I(O)) = Δ(I∗(O)) = [1, 3]. �

Based on the results of this section we derive a result on the set of distances of
orders. LetO be a non-half-factorial order in a number field. Then the set of distances
Δ(O) is finite. If O is a principal order, then it is easy to show that minΔ(O) = 1
(indeed much stronger results are known, namely, that sets of lengths of almost
all elements—in a sense of density—are intervals, see [16, Theorem 9.4.11]). The
same is true if |Pic(O)| ≥ 3 or ifO is seminormal [24, Theorem 1.1]. However, it was
unknown so farwhether there exists an orderOwithminΔ(O) > 1. In the next result
of this sectionwe characterize all non-half-factorial orders in quadratic number fields
with minΔ(O) > 1 which allows us to give the first explicit examples of orders O
with minΔ(O) > 1. A characterization of half-factorial orders in quadratic number
fields is given in [16, Theorem 3.7.15].

Let O be an order in a quadratic number field K with conductor f ∈ N≥2. Then
the class numbers |Pic(OK )| and |Pic(O)| are linked by the formula [25, Corollary
5.9.8]

|Pic(O)| = |Pic(OK )| f

(O×
K : O×)

∏

p∈P,p| f

(
1 −

(dK
p

)
p−1

)
, (4.1)
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and |Pic(O)| is a multiple of |Pic(OK )|.
Since the number of imaginary quadratic number fields with class number at

most two is finite (an explicit list of these fields can be found, for example, in
[31]), (4.1) shows that the number of orders in imaginary quadratic number fields
with |Pic(O)| = 2 is finite. The complete list of non-maximal orders in imaginary
quadratic number fields with |Pic(O)| = 2 is given in [27, page 16]. We refer to
[25] for more information on class groups and class numbers and end with explicit
examples of non-half-factorial orders O satisfying minΔ(O) > 1.

Theorem 4.14. Let O be a non-half-factorial order in a quadratic number field
K with conductor fOK for some f ∈ N≥2. Then the following statements are
equivalent:

(a) minΔ(O) > 1.
(b) |Pic(O)| = 2, f is a nonempty squarefree product of ramified primes times a

(possibly empty) squarefree product of inert primes, and for every prime divisor
p of f and every I ∈ A(I∗

p(O)), I is principal if and only if N (I ) = p2.

If these equivalent conditions are satisfied, then K is a real quadratic number field
and minΔ(O) = 2.

Proof. CLAIM: If |Pic(O)| = 2, p is a ramified prime with vp( f ) = 1, and every
I ∈ A(I∗

p(O)) with N (I ) = p3 is not principal, then every L ∈ A(I∗
p(O)) with

N (L) = p2 is principal.

Let |Pic(O)| = 2, let p be a ramifiedprimewith vp( f ) = 1, and suppose that every
I ∈ A(I∗

p(O)) with N (I ) = p3 is not principal. By Theorem 3.6 we have {N (J ) |
J ∈ A(I∗

p(O))} = {p2, p3}. There is some I ∈ A(I∗
p(O)) such that N (I ) = p3.

If J ∈ A(I∗
p(O)) with N (J ) = p3, then I J = p2L for some L ∈ A(I∗

p(O)) with
N (L) = p2 (since there are no atoms with norm bigger than p3). It follows
by Theorem 3.6 that |{J ∈ A(I∗

p(O)) | N (J ) = p3}| = |{L ∈ A(I∗
p(O)) | N (L) =

p2}| = p (note that N (pO) = p2). Let g : {J ∈ A(I∗
p(O)) | N (J ) = p3} → {L ∈

A(I∗
p(O)) | N (L) = p2} be defined by g(J ) = L where L ∈ A(I∗

p(O)) is such
that N (L) = p2 and I J = p2L . Then g is a well-defined bijection. Now let L ∈
A(I∗

p(O)) with N (L) = p2. There is some J ∈ A(I∗
p(O)) such that N (J ) = p3

and I J = p2L . Since |Pic(O)| = 2 and I and J are not principal, we have I J is
principal, and hence L is principal. This proves the claim.

(a)⇒ (b)Observe that if p is an inert prime such that vp( f ) = 1, then {N (J ) | J ∈
A(I∗

p(O))} = {p2} by Theorem 3.6. Also note that if p is a ramified prime such that
vp( f ) = 1, then {N (J ) | J ∈ A(I∗

p(O))} = {p2, p3} by Theorem 3.6. The assertion
now follows by the claim and Proposition 4.8.2.

(b) ⇒ (a) Assume to the contrary that minΔ(O) = 1. Let H be the monoid of
nonzero principal ideals of O. There is some minimal k ∈ N such that

∏k
i=1Ui =∏k+1

j=1U
′
j withUi ∈ A(H) for each i ∈ [1, k] andU ′

j ∈ A(H) for each j ∈ [1, k + 1].
SetQ1 = {P ∈ X(O) | P is principal},Q2 = {P ∈ X(O) | P is invertible and not

principal}, L = {p ∈ P | p | f, p is ramified}, andK = {{p, q} | p, q ∈ L, p �= q}.
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For every prime divisor p of f setAp = {V ∈ A(I∗
p(O)) | N (V ) = p2}, ap = |{i ∈

[1, k] | Ui ∈ Ap}| and a′
p = |{ j ∈ [1, k + 1] | U ′

j ∈ Ap}|. For p ∈ L setDp = {V ∈
A(I∗

p(O)) | N (V ) = p3}, Bp = {PV | P ∈ Q2 and V ∈ Dp}, bp = |{i ∈ [1, k] |
Ui ∈ Bp}| and b′

p = |{ j ∈ [1, k + 1] | U ′
j ∈ Bp}|. Set C = {PQ | P, Q ∈ Q2}, c =

|{i ∈ [1, k] | Ui ∈ C}| and c′ = |{ j ∈ [1, k + 1] | U ′
j ∈ C}|. If z ∈ K is such that

z = {p, q} with p, q ∈ L and p �= q, then set Ez = {VW | V ∈ Dp,W ∈ Dq},
ez = |{i ∈ [1, k] | Ui ∈ Ez}| and e′

z = |{ j ∈ [1, k + 1] | U ′
j ∈ Ez}|.

Since |Pic(O)| = 2, we have A(H) ⊂ (A(I∗(O)) ∩ H) ∪ {VW | V,W ∈ A(I∗
(O)), V and W are not principal}. As shown in the proof of the claim, VW /∈
A(H) for all p ∈ L and V,W ∈ Dp. We infer that A(H) = Q1 ∪ ⋃

p∈P,p| f Ap ∪⋃
p∈L Bp ∪ C ∪ ⋃

z∈K Ez .
Since k is minimal, we have Ui ,U ′

j /∈ Q1 for all i ∈ [1, k] and j ∈ [1, k + 1].
Again since k is minimal and I∗

p(O) is half-factorial for all inert prime divisors p
of f by Proposition 4.6, we have ap = a′

p = 0 for all inert prime divisors p of f .
Therefore,

k =
∑

p∈L
(ap + bp) + c +

∑

z∈K
ez and k + 1 =

∑

p∈L
(a′

p + b′
p) + c′ +

∑

z∈K
e′
z .

If i ∈ [1, k], then ∑
P∈Q2

vP(Ui ) =

⎧
⎪⎨

⎪⎩

2 if Ui ∈ C
1 if Ui ∈ ⋃

p∈L Bp

0 else

. This implies that

∑
P∈Q2

vP(
∏k

i=1Ui ) = ∑k
i=1

∑
P∈Q2

vP(Ui ) = ∑
p∈L bp + 2c. It follows by anal-

ogy that
∑

P∈Q2
vP(

∏k+1
j=1U

′
j ) = ∑

p∈L b′
p + 2c′. Therefore,

∑
p∈L bp + 2c =∑

p∈L b′
p + 2c′. Let r ∈ L.

If i ∈ [1, k], then vr (N ((Ui )Pf,r ∩ O)) =

⎧
⎪⎨

⎪⎩

3 if Ui ∈ Br ∪ ⋃
q∈L\{r} E{r,q}

2 if Ui ∈ Ar

0 else

.

Consequently,

vr (N ((

k∏

i=1

Ui )Pf,r ∩ O)) =
k∑

i=1

vr (N ((Ui )Pf,r ∩ O)) = 2ar + 3br + 3
∑

q∈L\{r}
e{r,q}.

By analogy we have vr (N ((
∏k+1

j=1U
′
j )Pf,r ∩ O)) = 2a′

r + 3b′
r + 3

∑
q∈L\{r} e

′
{r,q}.

This implies that 2ar + 3br + 3
∑

q∈L\{r} e{r,q} = 2a′
r + 3b′

r + 3
∑

q∈L\{r} e
′
{r,q}.

We infer that
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∑

p∈L
(a′

p − ap + b′
p − bp) + c′ − c +

∑

z∈K
(e′

z − ez) = 1,
∑

p∈L
(b′

p − bp) = 2(c − c′)

and 2
∑

p∈L
(a′

p − ap) + 3
∑

p∈L
(b′

p − bp) + 3
∑

p∈L

∑

q∈L\{p}
(e′

{p,q} − e{p,q}) = 0.

Note that
∑

p∈L
∑

q∈L\{p}(e
′
{p,q} − e{p,q}) = 2

∑
z∈K(e′

z − ez), and hence∑
p∈L(a′

p − ap) = 3(c′ − c) − 3
∑

z∈K(e′
z − ez). Consequently,

1 =
∑

p∈L
(a′

p − ap + b′
p − bp) + c′ − c +

∑

z∈K
(e′

z − ez)

= 3(c′ − c) − 3
∑

z∈K
(e′

z − ez) + 2(c − c′) + c′ − c +
∑

z∈K
(e′

z − ez)

= 2(c′ − c −
∑

z∈K
(e′

z − ez)),

a contradiction.
Now let the equivalent conditions be satisfied. Assume to the contrary that K

is an imaginary quadratic number field. Since O is a non-maximal order with
|Pic(O)| = 2, it follows from [27, page 16] that ( f, dK ) ∈ {(2,−8), (2,−15)}∪
{(3,−4), (3,−8), (3,−11), (4,−3), (4,−4), (4,−7), (5,−3), (5,−4), (7,−3)}.

Since f is squarefree and divisible by a ramified prime, we infer that f = 2
and dK = −8. Therefore, O = Z + 2

√−2Z. Set I = 8Z + 2
√−2Z. Observe that

I ∈ A(I∗
2 (O)) andN (I ) = 8. Moreover, I = 2

√−2O is principal, a contradiction.
Consequently, K is a real quadratic number field.

It remains to show that minΔ(O) = 2. There is some ramified prime p which
divides f and there is some J ∈ A(I∗

p(O)) withN (J ) = p3. As shown in the proof
of the claim, J 2 = p2L for some L ∈ A(I∗

p(O)). By [16, Corollary 2.11.16], there
is some invertible prime ideal P of O that is not principal. Observe that J is not
principal. We have P J , P2 and L are principal, and hence there are some u, v, w ∈
A(O) such that P J = uO, P2 = vO, L = wO, and u2 = p2vw. Therefore, {2, 4} ⊂
L(u2), and since minΔ(O) > 1, we infer that minΔ(O) = 2. �

Proposition 4.15. LetO be an order in the quadratic number field K with conductor
fOK for some f ∈ N≥2 such that minΔ(O) > 1, let g be the product of all inert
prime divisors of f and let O′ be the order in K with conductor gOK . Then O′ is
half-factorial and, in particular, g ∈ {1} ∪ P ∪ {2p | p ∈ P \ {2}}.
Proof. SetQ1 = {P ∈ X(O′) | P is principal} andQ2 = {P ∈ X(O′) | P is invert-
ible and not principal}. Observe that N (I ) = |O/I | = |O′/IO′| = N (IO′) for all
I ∈ I∗(O). Note that for all inert prime divisors p of f and all I ∈ A(I∗

p(O)) and
J ∈ A(I∗

p(O′)), we haveN (I ) = N (J ) = p2.Moreover, for all ramified prime divi-
sors p of f , we have {N (I ) | I ∈ A(I∗

p(O))} = {p2, p3}. In this proof we will use
Theorem 4.14 without further citation.
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CLAIM 1: For all prime divisors p of g and all I ∈ A(I∗
p(O′)), it follows that

I is principal. Let p be a prime divisor of g and let I ∈ A(I∗
p(O′)). Set P = Pf,p

and P ′ = Pg,p. It follows by Proposition 3.3 that OP = O′
P ′ and that δ : I∗

p(O) →
I∗
p(O′) defined by δ(J ) = JP ∩ O′ for all J ∈ I∗

p(O) is a monoid isomorphism.
In particular, we have A(I∗

p(O′)) = {JP ∩ O′ | J ∈ A(I∗
p(O))}. Therefore, there

is some J ∈ A(I∗
p(O)) such that JP ∩ O′ = I . Note that N (I ) = p2 = N (J ) =

N (JO′). Since JO′ ⊂ JO′
P ′ ∩ O′ = JOP ∩ O′ = I , we infer that I = JO′. Since

J is a principal ideal of O, it follows that I is principal. This proves Claim 1.

CLAIM2: If P ∈ Q2, p is a ramified prime divisor of f such that P ∩ Z = pZ and
I ∈ A(I∗

p(O)) with N (I ) = p3, then P2 is principal and IO′ = P3. Let P ∈ Q2,
p a ramified prime divisor of f such that P ∩ Z = pZ and I ∈ A(I∗

p(O)) with
N (I ) = p3. Since p is ramified, there is some A ∈ X(OK ) such that pOK = A2.
Observe that N (A2) = p2, and thus N (A) = p. We have A ∩ O′ = P , POK = A
and N (P) = N (A) = p. Note that since P is invertible, it follows that every P-
primary ideal ofO′ is a power of P . Therefore, pO′ = Pk for some k ∈ N, and hence
pk = N (Pk) = N (pO′) = p2. Consequently, k = 2 and P2 is principal. Clearly,
IO′ is a P-primary ideal of O′, and thus IO′ = Pm for some m ∈ N. We infer
that pm = N (Pm) = N (IO′) = N (I ) = p3, and thus m = 3 and IO′ = P3. This
proves Claim 2.

CLAIM 3: PQ is principal for all P, Q ∈ Q2. Let P, Q ∈ Q2.

CASE 1: P ∩ O and Q ∩ O are invertible. Note that P = (P ∩ O)O′, Q =
(Q ∩ O)O′ and P ∩ O and Q ∩ O are not principal. Since |Pic(O)| = 2, we have
(P ∩ O)(Q ∩ O) is a principal ideal of O, and thus PQ = (P ∩ O)(Q ∩ O)O′ is
principal.

CASE 2: (P ∩ O is invertible and Q ∩ O is not invertible) or (P ∩ O is not
invertible and Q ∩ O is invertible).Without restriction let P ∩ O be invertible and let
Q ∩ O be not invertible. Observe that P = (P ∩ O)O′.Moreover, there is some ram-
ified prime q that divides f such that Q ∩ Z = qZ and there is some J ∈ A(I∗

q (O))

with N (J ) = q3. Observe that P ∩ O and J are not principal. Since |Pic(O)| = 2,
it follows that (P ∩ O)J is a principal ideal of O. Note that PQ3 = (P ∩ O)JO′
by Claim 2, and thus PQ3 is principal. Since Q2 is principal by Claim 2, we infer
that PQ is principal.

CASE 3: P ∩ O and Q ∩ O are not invertible. There are ramified primes p and q
that divide f such that P ∩ Z = pZ and Q ∩ Z = qZ. There are some I ∈ A(I∗

p(O))

and J ∈ A(I∗
q (O)) withN (I ) = p3 andN (J ) = q3. Since |Pic(O)| = 2 and I and

J are not principal, we have I J is a principal ideal ofO. It follows that P3Q3 = I JO′
by Claim 2, and hence P3Q3 is principal. Since P2 and Q2 are principal by Claim
2, we have PQ is principal. This proves Claim 3.

Finally, we show that O′ is half-factorial. Set C = {PQ | P, Q ∈ Q2} and let H
denote the monoid of nonzero principal ideals ofO′. It is an immediate consequence
of Claim 1 and Claim 3 that A(H) = Q1 ∪ C ∪ ⋃

p∈P,p|g A(I∗
p(O′)).

Let k, � ∈ N and Ii , I ′
j ∈ A(H) for each i ∈ [1, k] and j ∈ [1, �] be such that

∏k
i=1 Ii = ∏�

j=1 I
′
j . It remains to show that k = �. Set b = |{i ∈ [1, k] | Ii ∈ Q1}|,
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b′ = |{ j ∈ [1, �] | I ′
j ∈ Q1}|, c = |{i ∈ [1, k] | Ii ∈ C}|, c′ = |{ j ∈ [1, �] | I ′

j ∈ C}|
and for each prime divisor p of g set ap = |{i ∈ [1, k] | Ii ∈ A(I∗

p(O′))}| and
a′
p = |{ j ∈ [1, �] | I ′

j ∈ A(I∗
p(O′))}|. If p is a prime divisor of g, then I∗

p(O′) is
half-factorial by Proposition 4.6, and hence ap = a′

p by Claim 1. We have b =
∑k

i=1

∑
P∈Q1

vP(Ii ) = ∑
P∈Q1

vP(
∏k

i=1 Ii ) = ∑
P∈Q1

vP(
∏�

j=1 I
′
j ) = ∑�

j=1∑
P∈Q1

vP(I ′
j ) = b′.

Moreover, 2c = ∑
P∈Q2

vP(
∏k

i=1 Ii ) = ∑
P∈Q2

vP(
∏�

j=1 I
′
j ) = 2c′. Therefore,

k = b + c + ∑
p∈P,p|g ap = b′ + c′ + ∑

p∈P,p|g a′
p = �.

The remaining assertion follows from [16, Theorem 3.7.15]. �

Remark 4.16. Let O be an order in the quadratic number field K with conductor
fOK for some f ∈ N such that |Pic(O)| = 2 and let p be an odd ramified prime
such that vp( f ) = 1 and I ∈ A(I∗

p(O)) such that N (I ) = p3 and I not principal.
Then every J ∈ A(I∗

p(O)) with N (J ) = p3 is not principal.

Proof. SetL = {J ∈ A(I∗
p(O)) | N (J ) = p3} andK = {L ∈ A(I∗

p(O)) | N (L) =
p2}. It follows by the claim in the proof of Theorem 4.14 that for all J ∈ L and
L ∈ K, there is a unique A ∈ L such that AJ = p2L . By Theorem 3.6 we have
|L| = |K| = p, and hence |{(A, J ) ∈ L2 | AJ = p2L}| = p for all L ∈ K. Since
p is odd, we infer that for each L ∈ K there is some A ∈ L such that A2 = p2L .
Consequently, every L ∈ K is principal. Now let J ∈ L. There is some B ∈ K such
that I J = p2B, and thus I J is principal. Therefore, J is not principal. �

Next we show that the assumption that p is odd in Remark 4.16 is crucial.

Example 4.17. Let O = Z + 2
√−2Z be the order in the quadratic number field

K = Q(
√−2) with conductor 2OK . Let I = 8Z + 2

√−2Z and J = 8Z + (4 +
2
√−2)Z. Then 2 is ramified, |Pic(O)| = 2, I, J ∈ A(I∗

2 (O)), N (I ) = N (J ) = 8,
I is principal and J is not principal.

Proof. It is clear that J ∈ A(I∗
2 (O)) andN (J ) = 8. By the proof of Theorem 4.14,

it remains to show that J is not principal. Assume that J is principal. Then there
are some a, b ∈ Z such that J = (8a + 4b + 2

√−2b)O, and hence 8 = N (J ) =
|NK/Q(8a + 4b + 2

√−2b)| = |(8a + 4b)2 + 8b2|. Therefore, 2(2a + b)2 + b2 =
1. It is clear that |b| ≤ 1. If b = 0, then 8a2 = 1, a contradiction. Therefore, |b| = 1
and 2a + b = 0, a contradiction. �

Lemma 4.18. Let d ∈ N≥2 be squarefree, let K = Q(
√
d), let O be the order in

K with conductor fOK for some f ∈ N≥2, and let p be a ramified prime with
vp( f ) = 1. If (p ≡ 1 mod 4 and (

d/p
p ) = −1) or ((

p
q ) = −1 for some prime q

with q ≡ 1 mod 4 and q | d f ), then each I ∈ A(I∗
p(O)) with N (I ) = p3 is not

principal.

Proof. Note that if p is odd, then {I ∈ A(I∗
p(O)) | N (I ) = p3} = {p3Z + (p2k +

εp2 + f
√
dK

2 )Z | k ∈ [0, p − 1]}. Moreover, if p = 2 and d is odd, then {I ∈ A(I∗
p
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(O)) | N (I ) = p3} = {8Z + (2k + f
√
d)Z | k ∈ {1, 3}}. Furthermore, if p = 2 and

d is even, then {I ∈ A(I∗
p(O)) | N (I ) = p3} = {8Z + (2k + f

√
d)Z | k ∈ {0, 2}}.

CASE 1: p ≡ 1 mod 4 and (
d/p
p ) = −1. Let I ∈ A(I∗

p(O)) be such thatN (I ) =
p3. Since p is odd, we have I = p3Z + (p2k + εp2 + f

√
dK

2 )Z for some k ∈ [0, p −
1]. Assume that I is principal. Then there are some a, b ∈ Z such that I =
(p3a + p2bk + εp2 + f

√
dK

2 b)O. We infer that p3 = N (I ) = |NK/Q(p3a + p2bk +
εp2 + f

√
dK

2 b)| = 1
4 |p4(2pa + 2bk + εb)2 − f 2b2dK |, and hence f 2

p2 b
2 dK

p ≡ 4β

mod p for some β ∈ {−1, 1}. Since p ≡ 1 mod 4, we have (−1
p ) = 1, and thus

(
d/p
p ) = (

dK /p
p ) = (

f 2b2dK /p3

p ) = (
4β
p ) = 1, a contradiction.

CASE 2: There is some prime q such that q ≡ 1 mod 4, q | d f and (
p
q ) = −1.

Let I ∈ A(I∗
p(O)) be such that N (I ) = p3. First let p be odd. Then I = p3Z +

(p2k + εp2 + f
√
dK

2 )Z for some k ∈ [0, p − 1]. Assume that I is principal. Then

there are some a, b ∈ Z such that I = (p3a + p2bk + εp2 + f
√
dK

2 b)O. This implies

that p3 = N (I ) = |NK/Q(p3a + p2bk + εp2 + f
√
dK

2 b)| = 1
4 |p4(2pa + 2bk + εb)2

− f 2b2dK |, and thus �2 ≡ 4β p3 mod q for some � ∈ Z and β ∈ {−1, 1}. Since
q ≡ 1 mod 4, we have (−1

q ) = 1, and hence (
p
q )3 = (

4β p3

q ) = 1. Therefore, ( p
q ) =

1, a contradiction.
Now let p = 2. Then I = 8Z + (2k + f

√
d)Z for some k ∈ [0, 3]. Assume that

I is principal. Then there are some a, b ∈ Z such that I = (8a + 2bk + b f
√
d)O.

Consequently, 8 = N (I ) = |(8a + 2bk)2 − b2 f 2d|, and thus �2 ≡ 8β mod q for
some � ∈ Z andβ ∈ {−1, 1}. This implies that ( 2q )3 = (

8β
q ) = 1. Therefore, ( 2q ) = 1,

a contradiction. �

Proposition 4.19. Let d ∈ N≥2 be squarefree, let K = Q(
√
d), and let O be the

order in K with conductor fOK such that f is a nonempty squarefree product of rami-
fied primes times a squarefree product of inert primes and |Pic(O)| = |Pic(OK )| = 2.
If for every ramified prime divisor p of f , we have (p ≡ 1 mod 4 and (

d/p
p ) = −1)

or ((
p
q ) = −1 for some prime q with q ≡ 1 mod 4 and q | d f ), thenminΔ(O) = 2.

Proof. It follows by Lemma 4.18 that for every ramified prime divisor p of f and
every I ∈ A(I∗

p(O)) with N (I ) = p3, we have I is not principal. It follows by
the claim in the proof of Theorem 4.14 that I ∈ A(I∗

p(O)) is principal if and only
if N (I ) = p2. Now let p be an inert prime divisor of f and let J ∈ A(I∗

p(O)).
Since |Pic(O)| = |Pic(OK )|, it follows that the group epimorphism θ : Pic(O) →
Pic(OK ) defined by θ([L]) = [LOK ] for all L ∈ I∗(O) is a group isomorphism. Set
P = pOK . Then JOK is a P-primary ideal of OK , and hence JOK is a principal
ideal of OK . Since θ is an isomorphism, we infer that J is a principal ideal of O.
Now it follows by Theorem 4.14 that minΔ(O) = 2. �

Next we provide two counterexamples that show that the additional assumption
on the ramified prime divisors of f in Proposition 4.19 is important.
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Example 4.20. There is some real quadratic number field K and some order O
in K with conductor pOK for some ramified prime p such that p ≡ 1 mod 4,
|Pic(O)| = |Pic(OK )| = 2, and minΔ(O) = 1.

Proof. Let O = Z + 5
√
30Z be the order in the real quadratic number field K =

Q(
√
30)with conductor 5OK .Observe that 5 is ramified, 5 ≡ 1 mod 4, |Pic(OK )| =

2 andα = 11 + 2
√
30 is a fundamental unit ofOK . Sinceα /∈ O and (O×

K : O×) | 5,
we infer that (O×

K : O×) = 5, and hence |Pic(O)| = |Pic(OK )| 5
(O×

K :O×)
= 2. Let

I = 125Z + 5
√
30Z. Then I ∈ A(I∗

5 (O)) with N (I ) = 125. Since I = (12625 +
2305

√
30)O is principal, we infer by Theorem 4.14 that minΔ(O) = 1. �

Example 4.21. There is some real quadratic number field K = Q(
√
d)with d ∈ N≥2

squarefree and some orderO in K with conductor pOK for some odd ramified prime
p such that ( d/p

p ) = −1, |Pic(O)| = |Pic(OK )| = 2, and minΔ(O) = 1.

Proof. Let O = Z + 7
√
42Z be the order in the real quadratic number field K =

Q(
√
42) with conductor 7OK . Note that 7 is an odd ramified prime, (

42/7
7 ) = −1,

|Pic(OK )| = 2 and α = 13 + 2
√
42 is a fundamental unit of OK . We have α /∈

O and (O×
K : O×) | 7. Therefore, (O×

K : O×) = 7, and thus |Pic(O)| = |Pic(OK )|
7

(O×
K :O×)

= 2. Set I = 343Z + 7
√
42Z. Then I ∈ A(I∗

7 (O)),N (I ) = 343, and I =
(825601 + 127393

√
42)O is principal. Consequently, minΔ(O) = 1 by

Theorem 4.14. �

Finally, we provide the examples of orders O in quadratic number fields with
minΔ(O) = 2.

Example 4.22. Let K be a quadratic number field and O the order in K with
conductor fOK such that ( f, dK ) ∈ {(2, 60), (3, 60), (5, 60), (6, 60), (10, 60)}∪
{(15, 60), (30, 60), (10, 85), (35, 40), (195, 65), (30, 365)}.
1. If ( f, dK ) ∈ {(2, 60), (3, 60), (5, 60)}, then f is a ramified prime.
2. If ( f, dK ) ∈ {(6, 60), (10, 60), (15, 60)}, then f is the product of two distinct

ramified primes.
3. If ( f, dK ) = (30, 60), then f is the product of three distinct ramified primes.
4. If ( f, dK ) ∈ {(10, 85), (35, 40)}, then f is the product of an inert prime and a

ramified prime.
5. If ( f, dK ) = (195, 65), then f is the product of an inert prime and two distinct

ramified primes.
6. If ( f, dK ) = (30, 365), then f is the product of two distinct inert primes and a

ramified prime.
7. minΔ(O) = 2.

Proof. It is straightforward to prove the first six assertions.Weprove the last assertion
in the case that dK = 60 and f ∈ N≥2 is a divisor of 30. The remaining cases can
be proved in analogy by using Proposition 4.19. It is clear that 2, 3, and 5 are
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ramified primes. Note that |Pic(OK )| = 2 (e.g., [25, page 22]) and α = 4 + √
15 is

a fundamental unit of OK .
We have α2 = 31 + 8

√
15, α3 = 244 + 63

√
15, and α5 = 15124 + 3905

√
15.

Moreover, α6 = 119071 + 30744
√
15, α10 = 457470751 + 118118440

√
15, and

α15 = 13837575261124 + 3572846569215
√
15. Set k = (O×

K : O×). Then k is a
divisor of f by (4.1). Observe that α /∈ Z + 2

√
15Z, α /∈ Z + 3

√
15Z, α /∈ Z +

5
√
15Z, α2,α3 /∈ Z + 6

√
15Z, α2,α5 /∈ Z + 10

√
15Z, α3,α5 /∈ Z + 15

√
15Z, and

α6,α10,α15 /∈ Z + 30
√
15Z. This implies that k = f , and hence |Pic(O)| =

f
k |Pic(OK )| = |Pic(OK )| = 2 by (4.1). We have 5 ≡ 1 mod 4 and (

15/5
5 ) = ( 35 ) =

( 25 ) = −1. We infer by Proposition 4.19 that minΔ(O) = 2. �

5 Unions of Sets of Lengths

The goal of this section is to show that all unions of sets of lengths of the monoid of
(invertible) ideals in orders of quadratic number fields are intervals (Theorem 5.2).
To gather the background on unions of sets of lengths, let H be an atomic monoid
with H �= H× and k ∈ N0. Then

Uk(H) =
⋃

k∈L∈L(H)

L denotes the union of sets o f lengths containing k and

ρk(H) = supUk(H) is the kth elastici t y of H.

Then, for the elasticity ρ(H) of H , we have [12, Proposition 2.7],

ρ(H) = sup{ρ(L) | L ∈ L(H)} = lim
k→∞

ρk(H)

k
.

Clearly, U0(H) = {0}, U1(H) = {1} and Uk(H) is the set of all � ∈ N0 with the
following property:

There are atoms u1, . . . , uk, v1, . . . , v� in H such that u1 · . . . · uk = v1 · . . . · v�.

Let d ∈ N and M ∈ N0. A subset L ⊂ Z is called an AAP (with difference d and
bound M) if

L = y + (
L ′ ∪ L∗ ∪ L ′′) ⊂ y + dZ ,

where y ∈ Z, L∗ is a nonempty arithmetical progression with difference d and
min L∗ = 0, L ′ ⊂ [−M,−1], and L ′′ ⊂ sup L∗ + [1, M] (with the convention that
L ′′ = ∅ if L∗ is infinite). We say that H satisfies the Structure Theorem for Unions
if there are d ∈ N and M ∈ N0 such that Uk(H) is an AAP with difference d and
bound M for all sufficiently large k ∈ N. If Δ(H) is finite and the structure theorem
for unions holds for some parameter d ∈ N, then d = minΔ(H) [12, Lemma 2.12].

The structure theorem for unions holds for a wealth of monoids and domains (see
[2, 13, 34] for recent contributions and see [12, Theorem 4.2] for an example where it
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does not hold). Since it holds for C-monoids [14], it holds for themonoid of invertible
ideals of orders in number fields. In some special cases (including Krull monoids
having prime divisors in all classes) all unions of sets of lengths are intervals, in other
words the structure theorem for unions holds with d = 1 and M = 0 [15, Theorem
3.1.3], [18, Theorem 5.8], [33]. In Theorem 5.2 we show that the same is true for the
monoids of (invertible) ideals of orders in quadratic number fields.

Proposition 5.1. Let p be a prime divisor of f and let N = sup{vp(N (A)) | A ∈
A(I∗

p(O f ))}.
1. If p splits, then U�(Ip(O f )) = U�(I∗

p(O f )) = N≥2 for all � ∈ N≥2.

2. If p does not split, thenU�(Ip(O f )) ∩ N≥� = U�(I∗
p(O f )) ∩ N≥� = [�, � �N

2 �] for
all � ∈ N≥2.

Proof. We prove 1. and 2. simultaneously. By Proposition 3.3.3 we can assume
without restriction that f = pvp( f ). First we show that both assertions are true
for � = 2. It follows from Theorem 3.6 that [2, N ] = [2, 2vp( f )] ∪ {vp(N (A)) |
A ∈ A(I∗

p(O f ))}. It is obvious that U2(I∗
p(O f )) ⊂ U2(Ip(O f )). It follows from

Lemma 4.9 that U2(Ip(O f )) ⊂ [2, N ].
Let k ∈ [2, N ]. It remains to show that k ∈ U2(I∗

p(O f )). If k > 2vp( f ), then there
is some I ∈ A(I∗

p(O f )) such that N (I ) = pk . It follows by Proposition 3.2.5 that

I I = (pO f )
k , and hence k ∈ U2(I∗

p(O f )). Now let k ≤ 2vp( f ). By
Proposition 4.8.1 we can assume without restriction that vp( f ) ≥ 2 and k ≥ 4.

CASE 1: d �≡ 1 mod 4 or (d ≡ 1 mod 4, p = 2 and k ≤ 2(v2( f ) − 1)). We
set a = vp(NK/Q(pk−2 + τ )) and b = vp(NK/Q(pk−2(p − 1) + τ )). Observe that if
d �≡ 1 mod 4, then a, b ≥ min{2k − 4, 2vp( f )} ≥ k. Moreover, if d ≡ 1 mod 4,
p = 2 and k ≤ 2(v2( f ) − 1), then a, b ≥ min{2k − 4, 2(v2( f ) − 1)} ≥ k. Set I =
paZ + (pk−2 + τ )Z and J = pbZ + (pk−2(p − 1) + τ )Z. Then I, J ∈ A(I∗

p(O f )),
min{a, b, vp(pk−2 + pk−2(p − 1) + ε)} = k − 1, and a + b − 2(k − 1) > 0.
Therefore, there is some L ∈ A(I∗

p(O f )) such that I J = pk−1L , and hence k ∈
L(I J ) ⊂ U2(I∗

p(O f )).

CASE 2: d ≡ 1 mod 4 and p �= 2. We set a = vp(NK/Q(
pk−2 − 1

2 + τ )) and b =
vp(NK/Q(

pk−2(p2 + p− 1) − 1
2 + τ )). Note that a, b ≥ min{2k − 4, 2vp( f )} ≥ k. Set

I = paZ + (
pk−2 − 1

2 + τ )Z and J = pbZ + (
pk−2(p2 + p− 1) −1

2 + τ )Z. Then I, J ∈
A(I∗

p(O f )), min{a, b, vp(
pk−2 − 1

2 + pk−2(p2 + p− 1)− 1
2 + ε)} = k − 1, and a + b

− 2(k − 1) > 0. Consequently, there is some L ∈ A(I∗
p(O f )) such that I J =

pk−1L , and thus k ∈ L(I J ) ⊂ U2(I∗
p(O f )).

CASE 3: d ≡ 1 mod 8, p = 2 and k ∈ {2v2( f ) − 1, 2v2( f )}. Set h = v2( f ).
If h = 2, then k = 4, and hence k ∈ U2(I∗

2 (O f )) by Proposition 4.4. Now let h ≥
3. Note that 2 splits. By Theorem 3.6 there are some I, J, L ∈ A(I∗

2 (O f )) such
that N (I ) = 22h+1, N (J ) = 22h+2 and N (L) = 16. By Proposition 3.2.5 we have
LL = 16O f , I I = 22h+1O f = 22h−3LL and J J = 22h+2O f = 22h−2LL . We infer
that k ∈ {2h − 1, 2h} ⊂ U2(I∗

2 (O f )).



50 J. Brantner et al.

CASE 4: d ≡ 5 mod 8, p = 2 and k ∈ {2v2( f ) − 1, 2v2( f )}. Set h = v2( f ).
If h = 2, then k = 4, and thus k ∈ U2(I∗

2 (O f )) by Proposition 4.4. Now let h ≥ 3.
Set A = 22hZ + (2h−1 + τ )Z, B = 22hZ + (22h−2 − 2h−1 + τ )Z, and C = 22hZ +
(22h−1 − 2h−1 + τ )Z. Then A, B,C ∈ A(I∗

2 (O f )), AB = 22h−2 I and AC = 22h−1 J
for some I, J ∈ A(I∗

2 (O f )). Therefore, k ∈ {2h − 1, 2h} ⊂ U2(I∗
2 (O f )).

So far we have proved that both assertions are true for � = 2. If p splits, then
we have N = ∞ by Theorem 3.6, and hence U2(Ip(O f )) = U2(I∗

p(O f )) = N≥2.
The first assertion now follows easily by induction on �. Now let p not split. Then
N < ∞. Next we show that 2. is true for � = 3.

Since [3, N + 1] = {1} + U2(I∗
p(O f )) ⊂ U3(I∗

p(O f )) ∩ N≥3 ⊂ U3(Ip(O f )) ∩
N≥3 ⊂ [3, � 3N

2 �] by Lemma 4.9 and N ∈ {2vp( f ), 2vp( f ) + 1}, it remains to show
that N + m ∈ U3(I∗

p(O f )) for all m ∈ [2, vp( f )]. Let m ∈ [2, vp( f )]. It is suffi-
cient to show that there are some I, J, L ∈ A(I∗

p(O f )) such that I J = pmL and

N (L) = pN , since then I J L = pN+mO f by Proposition 3.2.5, and thus N + m ∈
U3(I∗

p(O f )).

CASE 1: p is inert. Observe that N = 2vp( f ) by Theorem 3.6. Let m ∈
[2, vp( f )]. First let p �= 2. If d �≡ 1 mod 4, then set I = p2mZ + (pm + τ )Z and
J = p2vp( f )Z + (p2vp( f )−m + τ )Z. If d ≡ 1 mod 4, then set I = p2mZ + (

pm − 1
2 +

τ )Z and J = p2vp( f )Z + (
p2vp ( f )−m−1

2 + τ )Z. In any case we have I, J ∈ A(I∗
p(O f ))

and I J = pmL for some L ∈ A(I∗
p(O f )) with N (L) = pN .

Next let p = 2. Since 2 is inert, it follows that d ≡ 5 mod 8. If m < v2( f ) −
1, then set I = 22mZ + (2m + τ )Z. If m = v2( f ) − 1, then set I = 22mZ + τZ.
Finally, if m = v2( f ), then set I = 22mZ + (2m−1 + τ )Z. Set J = 22v2( f )Z +
(2v2( f )−1 + τ )Z. Observe that I, J ∈ A(I∗

2 (O f )) and I J = 2mL for some L ∈
A(I∗

2 (O f )) with N (L) = 2N .

CASE 2: p is ramified. It follows that N = 2vp( f ) + 1 by Theorem 3.6. Let
m ∈ [2, vp( f )]. First let p �= 2. Since p is ramified, we have p | d. If d �≡ 1 mod 4,
then set I = p2mZ + (pm + τ )Z and J = p2vp( f )+1

Z + (pvp( f )+1 + τ )Z. If d ≡ 1
mod 4, then set I = p2mZ + (

pm − 1
2 + τ )Z and J = p2vp( f )+1

Z + (
pvp ( f )+1 − 1

2 +
τ )Z. We infer that I, J ∈ A(I∗

p(O f )) and I J = pmL for some L ∈ A(I∗
p(O f ))

with N (L) = pN in any case.
Now let p = 2. Since 2 is ramified, we have d �≡ 1 mod 4. If d is even or m <

v2( f ), then set I = 22mZ + (2m + τ )Z. If d is odd and m = v2( f ), then set I =
22mZ + τZ. If d is even, then set J = 22v2( f )+1

Z + τZ. If d is odd, then set J =
22v2( f )+1

Z + (2v2( f ) + τ )Z. In any case we have I, J ∈ A(I∗
2 (O f )) and I J = 2mL

for some L ∈ A(I∗
2 (O f )) with N (L) = 2N .

Finally, we prove the second assertion by induction on �. Let � ∈ N≥2 and let
H ∈ {Ip(O f ), I∗

p(O f )}. Without restriction we can assume that � ≥ 4. We infer by

the induction hypothesis that (U�−2(H) ∩ N≥�−2) + U2(H) = [� − 2, � (�−2)N
2 �] +

[2, N ] = [�, � �N
2 �]. Observe that (U�−2(H) ∩ N≥�−2) + U2(H) ⊂ U�(H) ∩ N≥�. It

follows by Lemma 4.9 that U�(H) ∩ N≥� ⊂ [�, � �N
2 �], and thus U�(H) ∩ N≥� =

[�, � �N
2 �]. �
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Theorem 5.2. Let O be an order in a quadratic number field K with conductor
fOK for some f ∈ N≥2.

1. If f is divisible by a split prime, then Uk(I(O)) = Uk(I∗(O)) = N≥2 for all
k ∈ N≥2.

2. Suppose that f is not divisible by a split primeand set M = max{vp( f ) | p ∈ P}.
Then Uk(I(O)) = Uk(I∗(O)) is a finite interval for all k ∈ N≥2, and for their
maxima we have

(a) If vq( f ) = M for a ramified prime q, then ρk(I(O)) = ρk(I∗(O)) = kM +
� k
2� for all k ∈ N≥2 and ρ(I(O)) = ρ(I∗(O)) = M + 1

2 .
(b) If vq( f ) < M for all ramified primes q, then ρk(I(O)) = ρk(I∗(O)) = kM

for all k ∈ N≥2 and ρ(I(O)) = ρ(I∗(O)) = M.

Proof. 1. Let f be divisible by a split prime p and let k ∈ N≥2. Since I∗
p(O) is

a divisor-closed submonoid of I∗(O) and Ip(O) is a divisor-closed submonoid of
I(O), it follows from Proposition 5.1.1 that Uk(I(O)) = Uk(I∗(O)) = N≥2.

2. Let k ∈ N≥2 and � ∈ Uk(I(O)). There are Ii ∈ A(I(O)) for each i ∈ [1, k]
and Jj ∈ A(I(O)) for each j ∈ [1, �] such that

∏k
i=1 Ii = ∏�

j=1 Jj . Note that√
Ii ,

√
Jj ∈ X(O) for all i ∈ [1, k] and j ∈ [1, �]. For P ∈ X(O) set kP = |{i ∈

[1, k] | √
Ii = P}| and �P = |{ j ∈ [1, �] | √

Jj = P}|. If p is a prime divisor of
f , then set kp = kPf,p and �p = �Pf,p . Observe that k = ∑

P∈X(O) kP and � =
∑

P∈X(O) �P . Recall that the P-primary components of
∏k

i=1 Ii are uniquely deter-
mined, and thus �P ∈ UkP (IP(O)) for all P ∈ X(O). If P ∈ X(O) does not con-
tain the conductor, then IP(O) is factorial, and hence �P = kP . Also note that if
P ∈ X(O) and kP ≤ 1, then �P = kP . If p is an inert prime that divides f , then it
follows from Proposition 5.1.2 and Theorem 3.6 that ρr (Ip(O)) = ρr (I∗

p(O)) =
rvp( f ) for all r ∈ N≥2. We infer again by Proposition 5.1.2 and Theorem 3.6
that ρr (Ip(O)) = ρr (I∗

p(O)) = rvp( f ) + � r
2� for all ramified primes p that divide

f and all r ∈ N≥2.

CASE 1: vq( f ) = M for some ramified prime q. If P ∈ X(O), then �P ≤ kPM +
� kP

2 �.
Consequently, � = ∑

P∈X(O) �P ≤ (
∑

P∈X(O) kP)M + ∑
P∈X(O)� kP

2 � ≤ kM +
� k
2�. In particular, ρk(I(O)) ≤ kM + � k

2� = max{ρk(I∗
p(O)) | p ∈ P, p | f } ≤ ρk

(I∗(O)) ≤ ρk(I(O)). This implies thatρk(I(O)) = ρk(I∗(O)) = max{ρk(I∗
p(O)) |

p ∈ P, p | f } = kM + � k
2�.

CASE 2: vq( f ) < M for all ramified primes q. Note that �p ≤ kpvp( f ) + � kp
2 � ≤

kpM for all ramified primes p that divide f . Therefore, �P ≤ kPM for all P ∈
X(O). This implies that � = ∑

P∈X(O) �P ≤ (
∑

P∈X(O) kP)M = kM . We infer that
ρk(I(O)) ≤ kM = max{ρk(I∗

p(O)) | p ∈ P, p | f } ≤ ρk(I∗(O)) ≤ ρk(I(O)), and
thus ρk(I(O)) = ρk(I∗(O)) = max{ρk(I∗

p(O)) | p ∈ P, p | f } = kM .

By Proposition 5.1.2, we obtain that Uk(I(O)) ∩ N≥k = Uk(I∗(O)) ∩ N≥k is
a finite interval. Since the last assertion holds for every k ∈ N≥2, we infer that
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Uk(I(O)) = Uk(I∗(O)) is a finite interval for all k ∈ N≥2. If vq( f ) = M for some
ramified prime q, then

ρ(I(O)) = ρ(I∗(O)) = lim
k→∞

ρk(I(O))

k
= lim

k→∞ M + 1

k

⌊
k

2

⌋
= M + 1

2
.

Finally, let vq( f ) < M for all ramified primes q. Then

ρ(I(O)) = ρ(I∗(O)) = lim
k→∞

ρk(I(O))

k
= lim

k→∞
kM

k
= M. �

In a final remark we gather what is known on further arithmetical invariants of
monoids of ideals of orders in quadratic number fields.

Remark 5.3. LetO be an order in a quadratic number field K with conductor fOK

for some f ∈ N≥2.
1. Themonotone catenary degree ofI∗(O) is finite by [20,Corollary 5.14]. Precise

values for the monotone catenary degree are available so far only in the seminormal
case [18, Theorem 5.8].

2. The tame degree of I∗(O) is finite if and only if the elasticity is finite if and
only if f is not divisible by a split prime. This follows from Equations. 2.3 and 2.4,
Theorem 5.2, and from [16, Theorem 3.1.5]. Precise values for the tame degree are
not known so far.

3. For an atomic monoid H , the set {ρ(L) | L ∈ L(H)} ⊂ Q≥1 of all elasticities
was first studied by Chapman et al. and then it found further attention by several
authors (e.g., [4, 7], [22, Theorem 5.5], [23, 35]). We say that H is fully elastic if
for every rational number q with 1 < q < ρ(H) there is an L ∈ L(H) with ρ(L) =
q. Since I∗(O) is cancellative and has a prime element, it is fully elastic by [3,
Lemma 2.1]. Since I∗(O) ⊂ I(O) is divisor-closed and ρ(I(O)) = ρ(I∗(O)) by
Theorem 5.2, it follows that I(O) is fully elastic.

4. For an atomic monoid H , let

�
∗(H) = {min(L \ {2}) | 2 ∈ L ∈ L(H) with |L| > 1} ⊂ N≥3.

By definition, we have �
∗(H) ⊂ 2 + Δ(H) and in [11, 23] the invariant �∗(H) was

used as a tool to study Δ(H). Proposition 4.1.4 shows that, both for H = I(O) and
for H = I∗(O), we have max�

∗(H) = 2 + maxΔ(H).
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