
Tilting Modules and Tilting Torsion Pairs

Filtrations Induced by Tilting Modules

Francesco Mattiello, Sergio Pavon and Alberto Tonolo

Abstract Tilting modules, generalising the notion of progenerator, furnish equiv-
alences between pieces of module categories. This paper is dedicated to study how
much these pieces say about the whole category. We will survey the existing results
in the literature, introducing also some new insights.
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1 Introduction

In 1958, Morita characterised equivalences between the entire categories of left (or
right) modules over two rings. Let A be an arbitrary associative ring with 1 �= 0.
A left A-module AP is a progenerator if it is projective, finitely generated and
generates the category A-Mod of left A-modules. Set B := End(AP), the covariant
functor HomA(P, ?) gives an equivalence between A-Mod and B-Mod; moreover,
any equivalence between modules categories is of this type.

The notion of tilting module has been axiomatised in 1979 by Brenner and Butler
[BB], generalising that of progenerator for modules of projective dimension 1. The
various forms of generalisations to higher projective dimensions considered until
today continue to follow their approach.
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A tilting module T of projective dimension n naturally gives rise to n + 1 cor-
responding classes of modules in A-Mod and B-Mod, the Miyashita classes, with
n + 1 equivalences between them. These classes are

KEe(T ) = {M ∈ A-Mod : ExtiA(T, M) = 0 ∀i �= e}

KTe(T ) = {N ∈ B-Mod : TorBi (T, M) = 0 ∀i �= e}, e = 0, 1, ..., n

and the n + 1 equivalences are

K Ee(T )
ExteA(T,?)

KT e(T )
TorBe (T,?)

, e = 0, 1, ..., n.

In the n = 0 case (progenerator), there is only one class on each side, and so
every module is subject to the equivalence of categories (that of Morita); for n = 1,
on each side, the two Miyashita classes form torsion pairs, so every module in both
A-Mod and B-Mod can be decomposed in terms ofmodules in theMiyashita classes:
precisely every module admits a composition series of length 2 with composition
factors in the Miyashita classes.

For n > 1, the Miyashita classes fail to decompose every module; the way to
recover a similar decomposition is the subject of this paper.

In Section2, we define classical n-tiltingmodules andMiyashita classes; we show
that they give a torsion pair for n = 1, and hence they can be used to decompose
every module; we give an example showing that a similar decomposition does not
exist for n > 1, and characterise those modules which can be decomposed.

In Section3, we present some previous attempts to recover the decomposition for
n > 1 as well, by extending the Miyashita classes, due to Jensen, Madsen, Su [11]
and to Lo [13]. A useful tool in our analysis will be a characterisation of modules
in ∩i>e Ker ExtiA(T, ?), 0 ≤ e ≤ n (see Lemma 1), which generalises the character-
isation of modules in ∩i>0 Ker ExtiA(T, ?) given by Bazzoni [3, Lemma 3.2]. These
extensions deform in an irreversible way theMiyashita classes, weakening their role.

In Section4, we recall some introductory notions about the derived category of
an abelian category and about t-structures.

In Section5, we drop the finiteness assumptions on the tilting modules, recalling
the definition of non classical n-tilting modules [2]. In this setting, we recall the
definition of the t-structure associated to such a module; we then study its interaction
with the natural t-structure of the derived category.

In Section6, we exploit the results of Section5 to construct in the derived category
the t-tree of a module with respect to a tilting module. This procedure, discovered in
the classical tilting case by Fiorot, the first and the third author in [8], solves satisfac-
torily the decomposition problem for n > 1: the classes used for the decomposition
intersect the module category exactly in the Miyashita classes. As a result of the
work of the previous section, we prove that this construction can be reproduced also
in the non classical case.
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Throughout the paper, the concrete case considered in Example 1 introduced in
Section2 will be used to illustrate the various attempts to solve the decomposition
problem (see Examples 2, 3).

2 Classical n-tilting Modules

In 1986, Miyashita [14] and Cline, Parshall and Scott [7] gave similar definitions of
a tilting module of projective dimension n.

Definition 1 (Miyashita [14]) A left A-module T is a classical n-tilting module, for
some integer n ≥ 0, if

pn) T has a finitely generated projective resolution of length n, i.e. a projective
resolution

0 Pn · · · P0 T 0

with the Pi finitely generated;
en) T is rigid, i.e. ExtiA(T, T ) = 0 for every 0 < i ≤ n;
gn) the ring A admits a coresolution of length n

0 A T0 · · · Tn 0

with the Ti finitely generated direct summands of arbitrary coproducts of copies
of T .

In the case when n = 0, p0) says that the module is a finitely generated projective,
e0) is empty and g0) says that it is a generator: this is then the definition of a progener-
ator module. As such, a classical 0-tilting module T induces a Morita equivalence of
categories of modules, as follows. Let B = EndA(T ) be its ring of endomorphisms,
which acts on the right on T , and consider the category B-Mod of left B-modules.
There are functors

HomA(T, ?) : A-Mod → B-Mod

T⊗B? : B-Mod → A-Mod

which are category equivalences, with the unit and counit morphisms being those of
the adjunction. This is the motivating example for the definition of tilting modules,
along with the next case.

In the case when n = 1, we find what was originally (see Brenner and Butler [6])
defined as a tilting module; we will give a brief and incomplete overview of what is
known about them.
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Let T be a classical 1-tilting left A-module, and let as before B = EndA(T ) be its
ring of endomorphisms. In this case, the pair (HomA(T, ?), T⊗B?) does not induce
an equivalence of A-Mod and B-Mod anymore; however, a little less can be proved,
as follows.

Define the following pairs of full subcategories of A-Mod and B-Mod, respec-
tively,

K E0(T ) = {
X ∈ A-Mod : Ext1A(T, X) = 0

}

K E1(T ) = {X ∈ A-Mod : HomA(T, X) = 0}
KT 0(T ) = {

Y ∈ B-Mod : TorB1 (T,Y ) = 0
}

KT 1(T ) = {Y ∈ B-Mod : T ⊗B Y = 0} .

Then we have the following results.

Theorem 1 (Brenner and Butler [6]) Let A be a ring, T a classical 1-tilting left
A-module, B = EndA(T ).

i) The pairs (K E0(T ), K E1(T )) and (KT 1(T ), KT 0(T )) defined above are
torsion pairs, respectively, in A-Mod and B-Mod.

ii) There are equivalences of (sub)categories

K E0(T )
HomA(T,?)

KT 0(T )
T⊗B?

K E1(T )
Ext1A(T,?)

KT 1(T )
TorB1 (T,?)

.

This theorem shows that the 1-tilting case is slightly more complex than the 0-
tilting one. Instead of having an equivalence of the whole categories A-Mod and
B-Mod, we have two pairs of equivalent subcategories, giving a functorial decom-
position of every module in its torsion and torsion free parts.

For an arbitrary n ≥ 0, following Miyashita, we find that every classical n-tilting
module T gives rise to two sets of n + 1 full subcategories of A-Mod and B-Mod,
respectively, defined as follows for e = 0, . . . , n:

K Ee(T ) = {
X ∈ A-Mod : ExtiA(T, X) = 0 for every i �= e

} ⊂ A-Mod

KT e(T ) = {
Y ∈ B-Mod : TorBi (T,Y ) = 0 for every i �= e

} ⊂ B-Mod

where conventionally Ext0A(T, X) = HomA(T, X) and TorB0 (T,Y ) = T ⊗B Y . As a
generalisation of point (i i) of Theorem1, we may state the following result.



Tilting Modules and Tilting Torsion Pairs … 321

Theorem 2 (Miyashita [14, Theorem 1.16]) In the setting above, there are equiva-
lences of (sub)categories, for every e = 0, . . . , n:

K Ee(T )
ExteA(T,?)

KT e(T )
TorBe (T,?)

.

For n ≥ 2, however, theMiyashita classes do not provide a decomposition of every
module, as it used to happen for n = 1. This is proved by the existence of simple
modules (which can have only a trivial decomposition in the module category) not
belonging to any class.

Example 1 ([20, Example 2.1]) Let k be an algebraically closed field. Let A be the

k-algebra associated to the quiver 1
a

2
b

3 with the relation b ◦ a = 0. The
indecomposable projectives are 1

2 , 2
3 , 3 , while the indecomposable injectives are

1 , 1
2 , 2

3 . It follows that the module T = 2
3 ⊕ 1

2 ⊕ 1 is a classical 2-tilting module:
a p2) resolution is

P• → T → 0 : 0 0 ⊕ 0 ⊕ 3 0 ⊕ 0 ⊕ 2
3

2
3 ⊕ 1

2 ⊕ 1
2

2
3 ⊕ 1

2 ⊕ 1 0 ;

T is a direct sum of injectives, so it is rigid; lastly, A = 3 ⊕ 2
3 ⊕ 1

2 and so a g2)
co-resolution can be easily found. We shall show that the simple module 2 does not
belong to any of the Miyashita classes.

In order to compute the ExtiA(T, 2 ), we apply the contravariant functor
HomA(?, 2 ) to the resolution P•, obtaining

0 HomA(
2
3 ⊕ 1

2 ⊕ 1
2 , 2 ) HomA(0 ⊕ 0 ⊕ 2

3 , 2 ) HomA(0 ⊕ 0 ⊕ 3 , 2 ) 0

which is isomorphic to

0 HomA(
2
3 , 2 )

0 HomA(
2
3 , 2 )

0 0 0 .

Hence, HomA(T, 2 )  Ext1A(T, 2 )  HomA(
2
3 , 2 ) �= 0 as abelian groups.

Indeed, thosemodules forwhich the K Ei (T ) (resp. the KT i (T )) provide a decom-
position can be characterised in the following way.

Definition 2 A left A-module M (resp. a left B-module N ) is sequentially static
(resp. costatic) if for every i �= j ≥ 0,

TorBi (T,Ext jA(T, M)) = 0 (resp. ExtiB(T,TorAj (T, N )) = 0).

Notice that for an A-module M (resp. a B-module N ) to be sequentially static (resp.
costatic) means that for every e = 0, . . . , n, we have that ExteA(T, M) belongs to
KT e (resp. TorBe (T, N ) belongs to K Ee).
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Proposition 1 ([20, Theorem 2.3]) A left A-module M is sequentially static if and
only if there exists a filtration

M = Mn ≥ Mn−1 ≥ Mn−2 ≥ · · · ≥ M0 ≥ M−1 = 0

such that for every i = 0, . . . , n, the quotient Mi/Mi−1 belongs to K Ei (T ). In this
case, for every such i , we have that Mi/Mi−1  TorBi (T,ExtiA(T, M)).

Dually, a left B-module M is sequentially costatic if and only if there exists a
filtration

N = N−1 ≥ N0 ≥ N1 ≥ · · · ≥ Nn−1 ≥ Nn = 0

such that for every i = 0, . . . , n, the quotient Ni−1/Ni belongs to KT i (T ). In this
case, for every such i , we have that Ni−1/Ni  ExtiA(T,TorBi (T, N )).

Remark 1 In Example 1, the module 2 was not sequentially static. Let us check that

TorB2 (T,HomA(T, 2 )) �= 0.

The ring B = EndA(T ) (with multiplication the composition left to right) is the

k-algebra associated to the quiver 4
c

5
d

6 with the relation d ◦ c = 0. In
detail, the idempotents are the endomorphisms of T induced by the identities of its
direct summands, e4 of 1 , e5 of 1

2 and e6 of 2
3 , respectively; and c and d are the

endomorphisms of T induced by the morphisms 1
2 → 1 and 2

3 → 1
2 , respectively.

In order to compute the right B-module structure of T , we notice first that as a
k-vector space T is generated by five elements: x ∈ 2

3 \ 3 and y = bx ∈ 3 , v ∈ 1
2 \ 2

andw = av ∈ 2 , and z ∈ 1 . If we look at how B acts on the right on these elements,
we see that T as a right B-module is isomorphic to 5

4 ⊕ 6
5 ⊕ 6 = v

z ⊕ x
w ⊕ y .

To compute Ext1A(T, 2 ), we consider the injective coresolution of 2 in A-Mod

0 2 1
2 1 0

and compute coker
[
HomA(T, 1

2 ) → HomA(T, 1 )
]
as left B-modules.

The left B-module HomA
(
T, 1

2

)
is generated as a k-vector space by (the mor-

phisms induced on T by) two morphisms 2
3 → 1

2 and 1
2 → 1

2 . When we look at how
B acts on the left on these elements, we see that the module is isomorphic to B

(
5
6

)
.

Similarly, it can be seen that HomA(T, 1 ) as a left B-module is isomorphic to 4
5 ,

hence the cokernel we are interested in is the simple 4 . To compute TorB2 (T, 4 ), we
now consider the presentation

0 5 4
5 4 0
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where 4
5 is a projective left B-module. It can be easily seen that TorB2 (T, 4 ) 

TorB1 (T, 5 ). Take the injective coresolution of B 5

0 6 5
6 5 0 ;

similarly to what we did to compute Ext1A(T, 2 ), we can compute TorB1 (T, 5 ) as the
kernel of T ⊗B 6 → T ⊗B

5
6 as a morphism of left A-modules.

If we call t a generator of 6 , with the previous notation for the generators of TB ,
as a k-vector space T ⊗B 6 is generated by v ⊗ t, z ⊗ t, x ⊗ t, w ⊗ t, y ⊗ t . Since
however e6t = t , the only generators of these which are not zero are x ⊗ t = xe6 ⊗ t
and y ⊗ t = ye6 ⊗ t . If we look at the action of A on the left of these elements, we
deduce that T ⊗B 6 is isomorphic to 2

3 as a left A-module. Similarly, T ⊗B
5
6 turns

out to be isomorphic to 2 , so in the end

TorB2 (T,HomA(T, 2 ))  3 �= 0.

3 First Attempts to Recover the Decomposition

In order to recover a decomposition of every module induced by a classical n-tilting
module, different strategies have been proposed.

In [11], Jensen, Madsen and Su suggested a solution for the n = 2 case by enlarg-
ing the subcategories K E0, K E1, K E2 in the following way. Let K0 be the full
subcategory of cokernels of monomorphisms from objects in K E2 to objects in
K E0; letK1 be K E1; letK2 be the full subcategory of kernels of epimorphisms from
objects in K E2 to objects in K E0:

K0 =
{
coker f : X2

f
↪→ X0, X2 ∈ K E2, X0 ∈ K E0

}

K1 = K E1

K2 =
{
ker g : X2

g
� X0, X2 ∈ K E2, X0 ∈ K E0

}
.

Byconsidering themorphisms f : 0 ↪→ X0 and g : X2 � 0,we can see that K Ei ⊂
Ki for every i = 0, 1, 2, so this is indeed an enlargement.

Now, for i = 0, 1, 2, let Ei be the extension closure of Ki , i.e. the smallest sub-
category containing Ki and closed under extensions.

Proposition 2 ([11, Corollary 15, Theorem 19, Lemma 24]) For any left A-module
X, there exists a unique filtration

0 = X0 ⊆ X1 ⊆ X2 ⊆ X3 = X
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with the quotients Xi+1/Xi ∈ Ei for every i = 0, 1, 2. Moreover, such a filtration is
functorial.

Example 2 Let us apply this construction to find a decomposition of the simple
module 2 considered in the Example 1. In a way similar to that used to study the
ExtiA(T, 2 ), i = 0, 1, 2, wemay prove that 2

3 belongs to K E0 and 3 belongs to K E2.
Then, 2 belongs to K0 ⊆ E0, being the cokernel of the monomorphism 3 → 2

3 .
Therefore, the trivial filtration 0 ≤ 2 has its only filtration factor in the new class E0.

In [13], Lo generalised this filtration to the n > 2 case as well. After giving a
different proof of Proposition 2, he introduced the following subcategories. For a
class of objects S, denote by [S] the extension closure of the full subcategory of
quotients of objects of S:

[S] = 〈{X : ∃(S � X) for some S ∈ S}〉ext.

This subcategory is closed under quotients ([13, Lemma 5.1]). Then set, for i =
0, . . . , n:

Ti = [
Ker ExtiA(T, ?) ∩ · · · ∩ Ker ExtnA(T, ?)

]

Fi = Ker HomA(Ti , ?) = {X : HomA(Ti , X) = 0}

with our usual convention that Ext0A = HomA. Define also Tn+1 = A-Mod and
Fn+1 = 0.

This provides pairs (Ti ,Fi ) of full subcategories, which are torsion pairs since the
Ti ’s are closed under extensions and quotients (see Polishchuk [16]). The following
easy proposition can then be applied to these torsion pairs.

Proposition 3 ([13, Theorem 5.3]) Let (Ti ,Fi ) be torsion pairs in A-Mod, for
i = 0, . . . , n + 1, such that

0 = T0 ⊆ T1 ⊆ · · · ⊆ Tn+1 = A-Mod.

Then for every left A-module X, there exists a functorial filtration

0 = X0 ⊆ X1 ⊆ · · · ⊆ Xn+1 = X

such that Xi ∈ Ti for i = 0, . . . , n + 1 and Xi/Xi−1∈Ti ∩ Fi−1 for i=1, . . . , n + 1.
Moreover, the Ti ∩ Fi−1 have pairwise trivial intersection.

We now prove that the subcategories Ti ∩ Fi−1 introduced by Lo are indeed
enlargements of the Miyashita classes using the following generalisation of [3,
Lemma 3.2], which we find of independent interest.
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Lemma 1 Let X be a module belonging to∩i>e Ker ExtiA(T, X) for some 0 ≤ e≤n.
Then, there exists a sequence of direct summands of coproducts of copies of T ,

· · · T−1
d−1

T0
d0 · · · Te 0

which is exactly everywhere except for degree 0, and having ker d0/ im d−1  X.
In particular, for e = n, ∩i>n Ker ExtiA(T, X) = A-Mod and hence X may be any
module.

Proof Set T⊥∞ := ∩i>0 Ker Exti (T, ?) and, for a family of modules S, ⊥S :=
Ker Ext1(?,S). It is well known (see [9], after Definition 5.1.1) that the pair of sub-
categories (⊥(T⊥∞), T⊥∞) is a complete hereditary cotorsion pair. This means (see
[9, Lemma 2.2.6]) that X (as any other module) admits a special ⊥(T⊥∞)-precover

0 J K X 0 .

In particular, J belongs to (⊥(T⊥∞))⊥, which equals T⊥∞ by definition of cotorsion
pair. Now we can apply [3, Lemma 3.2] to J and [9, Proposition 5.1.9] to K in order
to construct a sequence of direct summands of coproducts of copies of T

· · · T−2 T−1
d−1

T0
d0 · · · Tn 0 (∗)

J K
π

X

By construction, the first row is a sequence which is exact everywhere except for
degree 0, where ker d0/ im d−1  K/J  X .

This concludes the proof for the case where e = n. Otherwise, it can be easily
proved that since by hypothesis ExtiA(T, X) = 0 for i > e, then for these indices
Ti = 0: let us show it for i = n, then the other cases follow similarly. First, notice
that since Ext jA(T, J ) = 0, one gets Ext jA(T, K ) = Ext jA(T, X) for every j > 0.
Then, if we call K j = ker d j for j ≥ 0, we have

Ext1A(T, Kn−1) ∼= ExtnA(T, K0) = ExtnA(T, X) = 0;

applying the functor HomA(T, ?) to the short exact sequence

0 → Kn−1 → Tn−1 → Kn = Tn → 0

we get that HomA(T, Tn−1) → HomA(T, Tn) is an epimorphism and hence all mor-
phisms T → Tn factorise through Tn−1. Using the universal property of the coprod-
uct of which Tn is a direct summand, it is easy to prove that this implies that
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0 → Kn−1 → Tn−1 → Tn → 0 splits. Thus Kn−1 is a direct summand of a coproduct
of copies of T . Therefore, we may truncate the sequence (∗) as

· · · Tn−3 Tn−2 Kn−1 0 .

Notice that this lemma generalises [3, Lemma 3.2], which is the case where e = 0.

Remark 2 We shall prove that K Ee ⊆ Te+1 ∩ Fe for every e = 0, . . . , n. Indeed, it
is obvious that K Ee ⊆ Te+1. To see that any M ∈ K Ee belongs to Fe as well, we
will proceed in subsequent steps.

First, we prove that for every X ∈ ∩i>e−1 Ker ExtiA(T, ?) ⊆ Te, there are no non
zero morphisms X → M . Indeed, if e = 0, then X = 0; if e > 0, consider the
sequence

T • := · · · T−1
d−1

T0
d0 · · · Te−1 0

given by Lemma 1 applied to X . Set K j = ker d j for j ≥ 0 (and so K0 = K ), apply-
ing the functor Hom(−, M) to the epimorphism K0 → X , one gets

HomA(X, M) ↪→ HomA(K0, M) ∼= Ext1A(K1, M) ∼= · · ·

· · · ∼= Exte−1
A (Ke−1, M) = Exte−1

A (Te−1, M) = 0,

and hence HomA(X, M) = 0.
Now, if X ′ is the epimorphic image of some X ∈ ∩i>e−1 Ker ExtiA(T, ?), we have

HomA(X ′, M) ↪→ HomA(X, M) = 0 so HomA(X ′, M) = 0 as well. Lastly, if X ′′ is
an extension of such epimorphic images, we still find that HomA(X ′′, M) = 0.

This proves the claim that M has no non zero morphisms from objects of Te, and
therefore it belongs to Fe.

The last result of [13] is the proof that for n = 2, the filtration procedure of
Proposition 3 reduces to that provided by Jensen, Madsen, and Su.

It should benoted that these results,while providing away togeneralise the decom-
position of every module found in the n = 1 case, do so by introducing enlargements
of the Miyashita classes K Ei which are not very natural, at the point that the con-
nection to the tilting object they originate from seems a bit weak.

The rest of the article is devoted to the description of an alternative approach to
this enlarging strategy, introduced in [8], which takes place in the derived category
D(A) of A-Mod. In the following section, we recall some basic facts about derived
categories and t-structures.
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4 Introducing Derived Categories and t-structures

Given an abelian categoryA, one may construct its derived category D(A) defining
objects and morphisms in the following way. As objects, one takes the cochain
complexes with terms in A:

· · · Xn
dn
X

Xn+1
dn+1
X

Xn+2 · · ·

In order to define morphisms, one first takes the quotient of morphisms of complexes
modulo those satisfying the nullohomotopy condition; the category having these
equivalence classes as morphisms is called the homotopy category. The step from
this to the derived category is performed by an argument of localisation; in this way,
morphisms of complexes which induce isomorphisms on the cohomologies get an
inverse in the derived category.

The category D(A) so obtained is not abelian anymore, but it is a triangulated
category. This means that it is equipped with the following structure. First, there
is an autoequivalence, whose action on the complex X• is denoted as X•[1] and is
defined as follows:

(X•[1])n = Xn+1 dn
X [1] = −dn+1

X .

This functor is called the suspension functor; its natural definition on chain mor-
phisms induces a good definition on morphisms inD(A). We will sometimes denote
this functor also as �; its inverse as �−1 or ?[−1]; their powers as �i or ?[i] for
i ∈ Z.

Given this autoequivalence, one calls triangles the diagrams of the form

X• u
Y • v

Z• w
X [1]

such that v ◦ u = 0 = w ◦ v; in D(A), a particular role is played by the triangles
isomorphic (as diagrams) to those of the form

X• f
Y • Cone f X [1]

where Cone f is defined as the complex having terms (Cone f )i = Xi+1 ⊕ Y i and

differentials di
Cone f =

[ −di+1
X 0

f i+1 diY

]
. These triangles are called distinguished triangles

and are the analogous of short exact sequences in abelian categories.
In a triangulated category, hence also inD(A), products and coproducts of distin-

guished triangles, when they exist, are distinguished (see [15, Proposition 1.2.1, and
its dual]). In particular, ifA has arbitrary products or coproducts,D(A) has them as
well: they are constructed degree-wise using those of A.

Once we have set our context, we now define the main object which we will work
with.
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Definition 3 Let S = (S≤0,S≥0) be a pair of full, strict (i.e. closed under isomor-
phisms) subcategories ofD(A), and denote S≤i = S≤0[−i] and S≥i = S≥0[−i], for
every i ∈ Z.

The pair S is a t-structure if it satisfies the following properties:

T1) S≤0 ⊆ S≤1 and S≥0 ⊇ S≥1;
T2) HomD(A)(S≤0,S≥1) = 0;
T3) For any complex X• in D(A), there exist complexes A• ∈ S≤0 and B• ∈ S≥1

and morphisms such that

A• X• B• A•[1]

is a distinguished triangle in D(A). This is called an approximating triangle
of X•.

In this case, S≤0 is called an aisle, S≥0 a coaisle. The t-structure S is called non
degenerate if

⋂
i∈Z S≤i = 0 (or equivalently

⋂
i∈Z S≥i = 0). The full subcategory

HS = S≤0 ∩ S≥0 is called the heart of S.

This definition immediately resembles that of a torsion pair in an abelian category.
As it holds for torsion pairs, the approximating triangle of a complex with respect to
a t-structure is functorial, as we are going to state.

Given a t-structure S in D(A), it can be proved that the embeddings of subcate-
gories S≤0 ⊆ D(A) and S≥0 ⊆ D(A) have a right adjoint σ≤0 : D(A) → S≤0 and
a left adjoint σ≥0 : D(A) → S≥0, respectively.

For i ∈ Z, let us write σ≤i = �−i ◦ σ≤0 ◦ �i : D(A) → S≤i and similarly
σ≥i = �−i ◦ σ≥0 ◦ �i : D(A) → S≥i ; σ≤i and σ≥i will be called, respectively,
the left and the right truncation functors at i with respect to S, for i ∈ Z.

It can be proved that for every X• in D(A), the approximation triangle for X•
provided by the definition of the t-structure S is precisely (isomorphic to):

σ≤0(X•) X• σ≥1(X•) (σ≤0(X•))[1] .

The truncation functors of S can be used to define the i-th cohomology with
respect to S. It can be proved that for every i, j ∈ Z, there is a canonical natural iso-
morphism σ≤iσ≥ j  σ≥ jσ≤i . Then, for every i ∈ Z, the functor Hi

S = �iσ≤iσ≥i 
�iσ≥iσ≤i : D(A) → HS is called the i-th cohomology functor with respect to the
t-structure S (or simply S-cohomology).

We introduce now the first t-structure in D(A) we are going to use.

Definition 4 The natural t-structure D of D(A) has aisle and coaisle:

D≤0 = {
X• ∈ D(A) : Hi (X•) = 0 for every i > 0

}

D≥0 = {
X• ∈ D(A) : Hi (X•) = 0 for every i < 0

}
.
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Notice that by construction, the i th D-cohomology of X• is a complex having zero
cohomology everywhere except for degree 0, where it has Hi (X•), the usual i-th
cohomology of X•: i.e., Hi

D(X•) = Hi (X•)[0].
The original proof that this is indeed a t-structure can be found in [5].
We now state the following fundamental theorem about t-structures. One may

read it with our example D in mind.

Theorem 3 Let S be a non degenerate t-structure in D(A). Then

1. The heart HS is an abelian category; moreover, a short sequence

0 X• Y • Z• 0

in HS is exact if and only if there exists a morphism Z → X [1] in D(A) such
that the triangle

X• Y • Z• X•[1]

is distinguished.
2. Given any distinguished triangle

X• Y • Z• X•[1]

in D(A), there is a long exact sequence inHS

· · · Hi−1
S Z• Hi

SX
• Hi

SY
• Hi

S Z
• Hi+1

S · · ·

Ascanbe easily seen, the heartHD of the natural t-structure ofD(A) is (equivalent
to) A itself via the embedding A → D(A) defined by

X �→ X [0] = ( · · · 0 X 0 · · ·)

whose quasi-inverse is H 0, the usual 0th-cohomology functor.
As it happens for torsion pairs, the aisle or the coaisle of a t-structure is sufficient

to characterise the whole t-structure. Indeed, we give the following lemma by Keller
and Vossieck [12].

Lemma 2 Let R = (R≤0,R≥0) be a t-structure in D(A). Then

R≤0 = {
X• ∈ D(A) : HomD(A)(X

•,Y •) = 0 for all Y • ∈ R≥1
}

R≥0 = {
Y • ∈ D(A) : HomD(A)(X

•,Y •) = 0 for all X• ∈ R≤−1
}
.

Wenow give the following proposition, which gives a very useful way to construct
t-structures in the derived category of a Grothendieck category G.

Proposition 4 ([1, Lemma 3.1, Theorem 3.4]) Let G be a Grothendieck category.
Given any complex E in D(G), let U be the smallest cocomplete pre-aisle contain-
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ing E, that is, the smallest full, strict subcategory ofD(G) closed under positive shifts,
extensions and coproducts. Then, U is an aisle and the corresponding coaisle is

U⊥ = {
Y • ∈ D(G) : HomD(G)(X

•,Y •) = 0 for every X• ∈ U[1]}

= {
Y • ∈ D(G) : HomD(G)(E,Y •[i]) = 0 for every i < 0

}
.

Remark 3 As a first application of this proposition, it is easy to see that if G has a
projective generator E , then the natural t-structure of D(G) will be that generated
by E (in the sense of the proposition). This will be the case when we will consider
G = A-Mod, with E = A.

Remark 4 In the case where the object E is in fact a module, that is, a complex
concentrated in degree zero, we shall give a characterisation of the aisle U generated
by E .

First, U contains E ; and it is closed under positive shifts, hence it contains E[i]
for every i > 0. U is closed under arbitrary coproducts; let then J = ∪i>0 Ji be a
set of indices, and let E j = E[i] for every j ∈ Ji . Then the coproduct

∐
j∈J E j =

∐
i>0 E

(Ji )[i] belongs to U as well. If V is the full subcategory of all objects iso-
morphic to these coproducts, this means that V ⊆ U . Since U is also closed under
extensions, if we call V ′ the extension closure of V , we have V ′ ⊆ U as well. More-
over, since coproducts of distinguished triangles are distinguished, from the fact that
V is closed under arbitrary coproducts follows easily that V ′ is as well. Hence, V ′ is
a cocomplete pre-aisle, and by definition U ⊆ V ′.

In conclusion, objects of U are isomorphic to complexes having zero terms in
positive degrees and coproducts of E in nonpositive degrees.

5 n-Tilting Objects and Associated t-structures

In the following, we are going to work with a generalisation of classical n-tilting
modules, introduced by Angeleri Hügel and Coelho [2]; the equivalent definition we
give is more oriented towards the derived category D(A) of A-Mod, which will be
our setting.

Definition 5 A left A-module T is (non necessarily classical) n-tilting if it satisfies
the following properties:

Pn) T has projective dimensions at most n, i.e. there exists an exact sequence

0 Pn · · · P1 P0 T 0

in A-Mod with the Pi projectives;
En) T is rigid, i.e. ExtiA(T, T (�)) = 0 for every index 0 < i ≤ n and set �;
Gn) T is a generator in D(A), meaning that if for a complex X• we have

HomD(A)(T, X [i]) = 0 for every i ∈ Z, then X• = 0 in D(A).
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Notice that a classical n-tiltingmodule is indeedn-tilting: in particular, pn) implies
Pn), pn) and en) imply En) (see the Stacks Project [19, Proposition 15.72.3] and gn)
implies Gn) (see Positselski and Stovicek [17, Corollary 2.6]).

The discussion about t-structures in the previous section is justified by the
following construction. Let T be a n-tilting left A-module and consider the pair
T = (T ≤0, T ≥0) of subcategories of D(A)

T ≤0 = {
X• ∈ D(A) : HomD(A)(T, X•[i]) = 0 for every i > 0

}

T ≥0 = {
X• ∈ D(A) : HomD(A)(T, X•[i]) = 0 for every i < 0

}
.

Remark 5 This is the t-structure generated by T in the sense of Proposition 4, as
proved in [4, Lemma 3.4], which in turn follows [18, Lemma 4.4]. We provide here
another proof.

Let G = (G≤0,G≥0) be the generated t-structure. We have T ≥0 = G≥0. For the
aisle, notice that T ≤0 contains T by (En); and it is clearly closed under positive
shifts, hence it contains any T [i] for i > 0. Now, we show that it is closed under
arbitrary coproducts of such complexes T [i]. Let J = ∪i>0 Ji be a set, let Tj = T [i]
for every j ∈ Ji , and consider the coproduct

∐
j∈J Tj = ∐

i>0 T
(Ji )[i]. Notice that

since by (Pn) T has projective dimension n, we have

HomD(A)

⎛

⎝T,
∐

j∈J

Tj

⎞

⎠ = HomD(A)

(

T,
∐

i>0

T (Ji )[i]
)

= HomD(A)

⎛

⎝T,
∐

1≤i≤n

T (Ji )[i]
⎞

⎠ .

Now, since D(A) is an additive category, this is itself isomorphic to

HomD(A)

(

T,
∏

1≤i≤n

T (Ji )[i]
)


∏

1≤i≤n

HomD(A)

(
T, T (Ji )[i]) = 0

which is zero by property (En). Lastly, T ≤0 is clearly closed under extensions, and
so by Remark4, it contains G≤0.

For the inclusion T ≤0 ⊆ G≤0, take an object X• ∈ T ≤0 and consider its approxi-
mation triangle with respect to G,

A• X• B• +1
.

We have A• ∈ G≤0 ⊆ T ≤0; and since T ≤0 is clearly closed under cones, B• ∈ T ≤0

as well. So in the end B• ∈ T ≤0 ∩ G≥1 = T ≤0 ∩ T ≥1 which is 0 by G3).

As a side note, observe that if T is classical n-tilting, it induces a triangulated
equivalence RHomA(T, ?) : D(A) → D(B) (see [7]); then, by the fact that

HomD(A)(T, X•[i]) = Hi RHomA(T, X•)
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we may recognise in T := (T ≤0, T ≥0) the “pullback” of the natural t-structure of
D(B) along RHomA(T, ?).

Remark 6 Without further study, the t-structureT can be immediately used to review
some previous results.

First, we can greatly simplify the proof of Remark2. In the notation used there, to
prove that there are no non zero morphisms X → M , for X in∩i>e−1 Ker ExtiA(T, ?)
and M in K Ee, we may just recognise that we have X = X [0] ∈ T ≤e−1 and M ∈
T ≥e, and use axiom (T2) of t-structures.

Second, we may read our Lemma 1 under a different light: given the characteri-
sation of objects in T ≤0 as in Remark4, the lemma can be seen to be the equality

∩i>e Ker Ext
i
A(T, ?) = A-Mod ∩ T ≤e.

In the following, T will be a n-tilting module; T will be the associated t-structure,
as defined above. The solution thatwe are going to give to our decomposition problem
originates from the interaction of the t-structure T with the natural t-structure D of
D(A) (see Definition 4). First, we make an easy observation.

Proposition 5 The following inclusions of aisles and coaisles hold:

D≤−n ⊆ T ≤0 ⊆ D≤0 and D≥0 ⊆ T ≥0 ⊆ D≥−n.

Proof Some of the inclusions are easy to prove: if X• ∈ D≤−n , then for every i > 0
wewill have X•[i] ∈ D≤−n−i ⊆ D≤−n−1, henceHomD(A)(T, X•[i]) = 0 since T has
projective dimension n. On the other hand, if X• ∈ D≥0, then for every i < 0 we will
have X•[i] ∈ D≥0−i ⊆ D≥1, hence again HomD(A)(T, X•[i]) = 0 since T ∈ D≤0.
The other two inclusions can be easily proved from these using Lemma 2.

Remark 7 With Proposition 5, we are ready to notice an important fact, which will
be key later. Take a module X in K Ee, for some e = 0, . . . , n; in particular, being
a module, it belongs to A-Mod  HD ⊆ D≥0 ⊆ T ≥0. Moreover, by definition, for
every i = 0, . . . , e − 1, we have 0 = ExtiA(T, X)  HomD(A)(T, X [i]), hence X
belongs in fact to T ≥e. Lastly, again by definition, for every i > e, we have 0 =
ExtiA(T, X)  HomD(A)(T, X [i]), hence X belongs to T ≤e as well.

This proves that, after identifying A-Mod  HD, for every e = 0, . . . , n the e-th
Miyashita class is

K Ee = A-Mod ∩ HT [−e].

Let us now look at Proposition 5 in the n = 1 case. Its proof suggests that we may
focus on the inclusions between the aisles (those between the coaisles being their
“dual” in the sense of Lemma 2). If T is a 1-tilting module, we will then have

D≤−1 ⊆ T ≤0 ⊆ D≤0. (∗)

In other words, complexes in T ≤0 are allowed to have any cohomology (with respect
to D, which means the usual complex cohomology Hi ) in degrees ≤ −1 and some
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kind of cohomology in degree 0, while they must have 0 cohomology in higher
degrees.

Remark 8 In this situation, with T a 1-tilting module, we may try to characterise
H 0(X•) for X• ∈ T ≤0. Notice that X• sits in the approximation triangle with respect
to D

δ≤−1(X•) X• H 0(X•)[0] +1

where
H 0(X•)[0] = H 0

D(X•) = δ≥0δ≤0(X•)  δ≥0(X•) since X• ∈ D≤0. If we apply
the homological functor HomD(A)(T, ?) to it, we get the long exact sequence of
abelian groups

· · · HomD(A)(T, X•[1]) HomD(A)(T, H 0(X•)[1]) HomD(A)(T, δ≤−1(X•)[2]) · · ·

The last term is 0 because δ≤−1(X•) ∈ D≤−1 ⊆ T ≤0; similarly, the first is 0 because
X• ∈ T ≤0. This means that

Ext1A(T, H 0(X•))  HomD(A)(T, H 0(X•)[1]) = 0

as well, i.e. that H 0(X•) ∈ K E0. �

The inclusions (∗) are precisely the hypothesis of the following proposition by
Polishchuk.

Proposition 6 ([16, Lemma 1.1.2]) Let R,S be two t-structures in a triangulated
category C such that

R≤−1 ⊆ S≤0 ⊆ R≤0 (or equivalently R≥0 ⊆ S≥0 ⊆ R≥−1).

Then the classes:

X = HR ∩ S≤0 = R≥0 ∩ S≤0, Y = HR ∩ S≥1 = R≤0 ∩ S≥1

form a torsion pair (X ,Y) inHR. S can be reconstructed from R and (X ,Y) as

S≤0 = {
X• ∈ R≤0 : H 0

R(X•) ∈ X
}

S≥0 = {
X• ∈ R≥−1 : H−1

R (X•) ∈ Y
}
.

This procedure to recover S is called tilting of the t-structure R with respect to
the torsion pair (X ,Y) in HR. It was introduced by Happel et al. [10], and it is a
central tool in the construction we are going to present.

Remark 9 It can be proved without too much effort that in our case the torsion pair
(X ,Y) in HD  A-Mod so identified is exactly the pair (K E0, K E1) induced by
the 1-tilting module T ; this confirms Remark8.
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We would like to use a procedure analogous to the Happel-Reiten-Smalø tilting
of Proposition 6 in order to link D and T in the n > 1 case. Notice that if we repeat
this tilting operation n times, the first and last of the produced t-structures will be
related by the inclusions of Proposition 5. Indeed, let R0, . . . ,Rn be t-structures
such thatRi is obtained by tiltingRi−1 with respect to some torsion pair onHRi−1 ,
for every i = 1, . . . , n. Then, we have by construction

R≤−1
0 ⊆ R≤0

1 ⊆ R≤0
0 and R≤−1

1 ⊆ R≤0
2 ⊆ R≤0

1

which combined give
R≤−2

0 ⊆ R≤0
2 ⊆ R≤0

0 .

One can then clearly prove by induction that

R≤−n
0 ⊆ R≤0

n ⊆ R≤0
0 .

If T is an n-tilting A-module, we shall show that the associated t-structure T in
D(A) can indeed be constructed from the natural t-structureD with this iterated pro-
cedure. To do so, we are going to construct the “intermediate” t-structures produced
after each tilting.

For i = 0, . . . , n, consider the strict full subcategoriesD≥
i = D≥−i ∩ T ≥0 (notice

that we are working with the coaisles). We have as wanted that

D≥0 = D≥
0 ⊆ D≥

1 ⊆ · · · ⊆ D≥
n = T ≥0

andD≥
i−1 ⊆ D≥

i ⊆ D≥
i−1[1] for i = 1, . . . , n. The only thing needed to proceed with

an iterated application of Proposition 6 is to prove that these D≥
i are indeed the

coaisles of some t-structures, for i = 1, . . . , n − 1.

Lemma 3 The D≥
i = D≥−i ∩ T ≥0 are coaisles of t-structures.

Proof As we noticed before (see Remark3 and the definition of T ), we have

D≥−i = {
Y • ∈ D(A) : HomD(A)(A[i],Y •[ j]) = 0 for every j < 0

}

T ≥0 = {
Y • ∈ D(A) : HomD(A)(T, Y •[ j]) = 0 for every j < 0

}
.

Hence, we have

D≥−i ∩ T ≥0 = {
Y • ∈ D(A) : HomD(A)(T ⊕ A[i]),Y •[ j]) = 0 for every j < 0

}

which is the coaisle of the t-structure generated by T ⊕ A[i] in the sense of Propo-
sition 4.

This concludes our previous discussion, making sure that T can be constructed
from D with (at most) n applications of the procedure of tilting a t-structure with
respect to a torsion pair on its heart.
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6 The t-tree

We are now going to exploit this fact to solve our decomposition problem.
First, we characterise the torsion pairs involved. According to Proposition 6, at

the i-th step, the t-structure Di (having coaisle D≥0
i = D≥

i = D≥−i ∩ T ≥0) is tilted
with respect to the torsion pair (Xi ,Yi ) = (D≥0

i ∩ D≤0
i+1,D

≤0
i ∩ D≥1

i+1) in the heart
Hi of Di , i = 0, . . . , n − 1, thus producing the t-structure Di+1.

Theorem 4 Let T be a n-tilting left A-module. We can associate to each left
A-module X a tree (we call it the t-tree of X with respect to the t-structure induced
by the tilting module T )

X

X0 X1

· · · · · · · · · · · ·

X0···00 X0···01 · · · X1···10 X1···11

with n + 1 rows, where

Xb1...bi

Xb1...bi0 Xb1...bi1

is the short exact sequence obtained decomposing Xb1...bi with respect to the torsion
pair (Xi [−(b1 + · · · + bi )],Yi [−(b1 + · · · + bi )]) inHi [−(b1 + · · · + bi )].
Proof We may regard the left A-module X as a complex concentrated in degree 0,
X [0] in the heart HD = H0. The first torsion pair (X0,Y0) provides then a decom-
position

X0 X X1 inH0

with X0 ∈ X0, X1 ∈ Y0. Notice that by construction X0 ⊆ H1 and Y0 ⊆ H1[−1]
(see Proposition 6); this means that we can use (X1,Y1) and (X1[−1],Y1[−1]) to
further decompose X0 and X1, respectively, obtaining

X

X0 X1

X00 X01 X10 X11
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with the exact sequences in the respective abelian categories:

X

X0 X1

inH0

X0

X00 X01

inH1

X1

X10 X11

inH1[−1]

Now, notice again that since X1 ⊆ H2 and Y1 ⊆ H2[−1], we have that X00 ∈ H2,
X01, X10 ∈ H2[−(0 + 1)] = H2[−(1 + 0)] and X11 ∈ H2[−(1 + 1)].

Inductively, by decomposing each Xb1...bi with respect to the torsion pair
(Xi [−(b1 + · · · + bi )],Yi [−(b1 + · · · + bi )]) in Hi [−(b1 + · · · + bi )] we obtain
objects Xb1...bi0 ∈ Hi+1[−(b1 + · · · + bi )] and Xb1...bi1 ∈ Hi+1[−(b1 + · · · +
bi + 1)].

After n steps, we obtain the complete diagram.

We claim that Theorem 4 solves our decomposition problem. Indeed, by con-
struction each object Xb1···bn in the last row (called a t-leaf ) belongs to Hn[−(b1 +
· · · + bn)] = HT [−(b1 + · · · + bn)]: as noted in Remark7, these shifted hearts
are extensions of the Miyashita classes: K Eb1+···+bn = A-Mod ∩ HT [−(b1 + · · · +
bn)]. Moreover, these shifted hearts are obtained by adding only non-module objects
(i.e., objects of D(A) outside of HD) to the corresponding Miyashita class; for this
reason, they are less artificial than other enlargments, and instead shed a new light
on the Miyashita classes. The latter can indeed be regarded as the piece of the shifted
hearts of T visible in the category of modules.

Example 3 We recall one last time the situation considered in Example 1 to show
an application of the construction of the t-tree; we will do it for the simple module 2

again.
First, a computation shows that the indecomposable complexes in D(A) are

(shifts of) {
1 , 2 , 3 , 1

2 , 2
3 , 2

3 → 1
2

}
.

Since we know that D≥0 ⊆ T ≥0, any bounded below complex will belong to T ≥0,
up to shifiting it enough to the right.Wecan then check for eachof the indecomposable
complexes what is their leftmost shift which still belongs to T ≥0; with an easy
computation, the following is the result:

T ≥0 =
〈
1 , 2 , 3 [2], 1

2 , 2
3 , 2

3 →
•
1
2

〉

where the dot over a complex indicates its degree 0. The angle brackets will be used
to denote the closure under direct sums and negative shifts.
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Following the construction, we can compute the intermediate coaisles:

D≥0
0 =

〈
1 , 2 , 3 , 1

2 , 2
3 ,

•
2
3 → 1

2

〉
= D≥0

D≥0
1 =

〈
1 , 2 , 3 [1], 1

2 , 2
3 , 2

3 →
•
1
2

〉

D≥0
2 =

〈
1 , 2 , 3 [2], 1

2 , 2
3 , 2

3 →
•
1
2

〉
= T ≥0.

Nowwe compute the hearts of the respective t-structures: to do this, we use Lemma 2.
An object X of D≥0

i will belong to Hi if and only if HomD(A)(X,Y ) = 0 for every
Y ∈ D≥1

i = D≥0
i [−1]. In particular, it is easy to see that we must look for objects of

the heart only among the “leftmost shifts” we have listed. The resulting computation
gives (only indecomposable objects are listed)

H0 = {
1 , 2 , 3 , 1

2 , 2
3

} = HD = A-Mod

H1 =
{

1 , 2 , 3 [1], 1
2 , 2

3 , 2
3 →

•
1
2

}

H2 =
{

1 , 3 [2], 1
2 , 2

3 , 2
3 →

•
1
2

}
= HT .

Notice that neither 2 nor its shifts belong to HT , which means exactly that it does
not belong to any Miyashita class.

Lastly, we can compute the torsion pairs (Xi ,Yi ) inHi , for i = 0, 1. We have

X0 = H0 ∩ H1 = {
1 , 2 , 1

2 , 2
3

}
, Y0 = H0 ∩ H1[−1] = { 3 }

X1 = H1 ∩ H2 =
{

1 , 1
2 , 2

3 , 2
3 →

•
1
2

}
, Y1 = H1 ∩ H2[−1] = { 3 [1]} .

The t-tree for the module 2 is then

2

2 0

2
3 3 [1] 0 0

where the bottom left exact sequence is that associated to the distinguished triangle

2
3 2 3 [1] +1

.



338 F. Mattiello et al.

Notice that this triangle can be shifted to become 3 2
3 2

+1
, which

can be read as a short exact sequence of modules. This says that 2 is realised as the
cokernel of the monomorphism 3 → 2

3 , which is what was found following Jensen
et al. in Example 2.

We conclude with a remark about the construction presented above, giving a
possible direction for future developments.

Remark 10 Notice that while our motivation comes from an n-tilting A-module,
the construction of the t-tree only relies on the existence of some t-structures Di ,
for i = 0, . . . , n, having the property that D≥0

i ⊆ D≥0
i+1 ⊆ D≥−1

i . Therefore, it can
be replicated in an arbitrary triangulated category C, given such t-structures: to any
object in the heartH0 ofD0, it is possible to associate a tree-like diagram with n + 1
rows having leaves in the shifts Hn[−e] of the heart Hn of Dn , for e = 0, . . . , n. It
is of natural interest to investigate other situations in which such t-structures may
appear.
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