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Abstract Let L be the Leavitt path algebra of an arbitrary directed graph E over a
field K . This survey article describes how this highly non-commutative ring L shares
a number of the characterizing properties of a Dedekind domain or a Prüfer domain
expressed in terms of their ideal lattices. Special types of ideals such as the prime,
the primary, the irreducible, and the radical ideals of L are described in terms of the
graphical properties of E . The existence and the uniqueness of the factorization of
a non-zero ideal of L as an irredundant product of prime or primary or irreducible
ideals are established. Such factorization always exists for every ideal in L if the
graph E is finite or if L is two-sided Artinian or two-sided Noetherian. In all these
factorizations, the graded ideals of L seem to play an important role. Necessary and
sufficient conditions are given under which L is a generalized ZPI ring, that is, when
every ideal of L is a product of prime ideals. Intersections of various special types
of ideals are investigated and an analogue of Krull’s theorem on the intersection of
powers of an ideal in L is established.

Keywords Leavitt path algebras · Multiplicative ideal theory · Factorization
of ideals

1 Introduction

Leavitt path algebras of directed graphs are algebraic analogues of graphC*-algebras
and, ever since they were introduced in 2004, have become an active area of research
[1]. Every Leavitt path algebra L := LK (E) of a directed graph E over a field K is
equippedwith threemutually compatible structures: L is an associative K -algebra, L
is a Z-graded algebra, and L is an algebra with an involution ∗. Further, L possesses
a large supply of idempotents, but it is highly non-commutative. Indeed, in most
of the cases, the center of this K -algebra is trivial, being just the field K . In spite
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of this, it is somewhat intriguing and certainly interesting that the ideals of such a
non-commutative algebra L exhibit the behavior of the ideals of a Prüfer domain
and sometimes that of a Dedekind domain, thus making the multiplicative ideal
theory of these algebras L worth investigating. The purpose of this survey is to give
a detailed account of some of these properties of L and the resulting factorizations
of its ideals. To start with, the ideal multiplication in L is commutative: AB = BA
for any two ideals A, B of L . As we shall see, the Prüfer-domain-like properties of
L lead to satisfactory factorizations of ideals of L as products of prime, primary,
or irreducible ideals. The graded ideals of L seem to possess interesting properties
such as coinciding with their own radical, being realizable as Leavitt path algebras
of suitable graphs, possessing local units and many others. They play an important
role in the factorization of non-graded ideals of L . As noted in ([1], Theorem 2.8.10
and in [19]), the two-sided ideal structure of L can be described completely in terms
of the hereditary saturated subsets and breaking vertices and cycles without exits in
the graph E and irreducible polynomials in K [x, x−1], and the association preserves
the lattice structures. This fact facilitates the description of various factorization
properties of the two-sided ideals in L .

This paper is organized as follows. After the preliminaries, Section3 describes the
various properties of the graded ideals of L which are foundational to the study of
non-graded ideals and in the factorization of ideals in L . In Section4, L is shown to be
an arithmetical ring, that is, its ideal lattice is distributive and, as a consequence, the
ChineseRemainderTheoremholds in L . In addition, L is shown to be amultiplication
ring. The ideal version of the number-theoretic theorem gcd(m, n) · lcm(m, n) =
mn for positive integers m, n holds in L , namely, for any two ideals M, N in L ,
(M ∩ N )(M + N ) = MN , again a characterizing property of Prüfer domains. In
the next section, the prime, the primary, the irreducible, and the radical ideals of
L are described in terms of the graph properties of E . It is interesting to note that
for a graded ideal I of L the first three of these properties coincide and that I is
always a radical ideal. In Section6, we consider the existence and the uniqueness
of factorizations of a non-zero ideal I as a product of prime, primary, or irreducible
ideals of L . It is shown that if E is a finite graph or more generally, if L is two-sided
Noetherian or Artinian, then every ideal of L is a product of prime ideals. This leads
to a complete characterization of L as a generalized ZPI ring, that is, a ring in which
every ideal of L is a product of prime ideals. Finally, an analogue of the Krull’s
theorem on powers of an ideal is proved for Leavitt path algebras. The results of this
paper indicate the potential for successful utilization of the ideas and results from the
ideal theory of commutative rings in the deeper study of the ideal theory of Leavitt
path algebras (of course using different techniques, as L is non-commutative, and
using the graphical properties of E and the nature of the graded ideals of L).
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2 Preliminaries

For the general notation, terminology and results in Leavitt path algebras, we refer
to [1, 18, 22] and for those in graded rings, we refer to [14, 17]. We refer to [8–13,
16] for results in commutative rings. Below we give an outline of some of the needed
basic concepts and results.

A (directed) graph E = (E0, E1, r, s) consists of two sets E0 and E1 together
with maps r, s : E1 → E0. The elements of E0 are called vertices and the elements
of E1 edges. For each e ∈ E1, say,

•s(e) e−→ •r(e)

s(e) is called the source of e and r(e) the range of e. If
u• e−→ v• is an edge, then

u• e∗←− v• denotes the ghost edge e∗ with s(e∗) = v and r(e∗) = u.
A vertex v is called a sink if it emits no edges and a vertex v is called a regular

vertex if it emits a non-empty finite set of edges. An infinite emitter is a vertex
which emits infinitely many edges.

A path μ of length n is a sequences of edges μ = e1 . . . en where r(ei ) = s(ei+1)

for all i = 1, · · ·, n − 1. |μ| denotes the length of μ. The path μ = e1 . . . en in E is
closed if r(en) = s(e1), in which case μ is said to be based at the vertex s(e1). A
closed path μ as above is called simple provided it does not pass through its base
more than once, i.e., s(ei ) �= s(e1) for all i = 2, . . . , n. The closed path μ is called a
cycle if it does not pass through any of its vertices twice, that is, if s(ei ) �= s(e j ) for
every i �= j .

An exit for a path μ = e1 . . . en is an edge e such that s(e) = s(ei ) for some i and
e �= ei .

If there is a path from vertex u to a vertex v, we write u ≥ v. A subset D of
vertices is said to be downward directed if for any u, v ∈ D, there exists a w ∈ D
such that u ≥ w and v ≥ w. A subset H of E0 is called hereditary if, whenever
v ∈ H and w ∈ E0 satisfy v ≥ w, then w ∈ H . A hereditary set is saturated if, for
any regular vertex v, r(s−1(v)) ⊆ H implies v ∈ H .

Definition 1. Given an arbitrary graph E and a field K , the Leavitt path algebra
LK (E) is defined to be the K -algebra generated by a set {v : v ∈ E0} of pair-wise
orthogonal idempotents, togetherwith a set of variables {e, e∗ : e ∈ E1}which satisfy
the following conditions:

(1) s(e)e = e = er(e) for all e ∈ E1.
(2) r(e)e∗ = e∗ = e∗s(e) for all e ∈ E1.
(3) (The “CK-1 relations”) For all e, f ∈ E1, e∗e = r(e) and e∗ f = 0 if e �= f .
(4) (The “CK-2 relations”) For every regular vertex v ∈ E0,

v =
∑

e∈E1,s(e)=v

ee∗.
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Note that L need not have an identity. Indeed, L will have the identity 1 exactly
when the vertex set E0 is finite and in that case 1 =

∑

v∈E0

v. However, L possesses local

units, namely, given any finite set of elements a1, . . . , an ∈ L , there is an idempotent
u such that uai = ai = aiu for all i = 1, . . . , n. Every element a ∈ L := LK (E)

can be written as a =
n∑

i=1

kiαiβ
∗
i where αi ,βi are paths and ki ∈ K . Here r(αi ) =

s(β∗
i ) = r(βi ). From this, it is easy to see that L =

⊕

u∈E0

Lu.

Many well-known examples of rings occur as Leavitt path algebras.

Example 1. The Leavitt path algebra of the straight line graph E :

•v1

e1−→ •v2

e2−→ · · · en−1−→ •vn

is isomorphic to the matrix ring Mn(K ).

(Indeed, if p1 = e1 · · · en−1, p2 = e2 . . . en−1, . . ., pn−1 = en−1, pn = vn , then
{εi j = pi p∗

j : 1 ≤ i, j ≤ n} is a set of matrix units, that is, ε2i i = εi i and εi jε jk = εik .
Then εi j �−→ Ei j induces the isomorphism, where Ei j is the n × n matrix with 1 at
(i, j) position and 0 everywhere else.)

Example 2. If E is the graph with a single vertex and a single loop

•vx

then LK (E) ∼= K [x, x−1], the Laurent polynomial ring, induced by the map v �→ 1,
x �→ x , x∗ �→ x−1.

The defining relations of a Leavitt path algebra LK (E) show that it is a non-

commutative ring. Indeed if e is an edge in E , say,
u• e−→ v• where u �= v, then by

defining relation (1), ue = e, but eu = evu = e(vu) = 0. The following proposition
describes when LK (E) becomes a commutative ring.

Proposition 1. Let E be a connected graph. Then the Leavitt path algebra LK (E)

is commutative if and only if either E consists of just a single vertex {•} or E is the
graph with a single vertex and a single loop as in Example 2. In this case LK (E)
∼= K or K [x, x−1].

Every Leavitt path algebra LK (E) is a Z -graded algebra, namely, LK (E) =⊕

n∈Z
Ln induced by defining, for all v ∈ E0 and e ∈ E1, deg(v) = 0, deg(e) = 1,

deg(e∗) = −1. Here the Ln , called homogeneous components, are abelian sub-
groups satisfying LmLn ⊆ Lm+n for all m, n ∈ Z. Further, for each n ∈ Z, the
subgroup Ln is given by
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Ln = {∑kiαiβ
∗
i ∈ L : |αi | − |βi | = n}.

An ideal I of LK (E) is said to be a graded ideal if I =
⊕

n∈Z
(I ∩ Ln). If I is a

non-graded ideal, then
⊕

n∈Z
(I ∩ Ln) is the largest graded ideal contained in I and is

called the graded part of I , denoted by gr(A).
We will also be using the fact that the Jacobson radical (and in particular, the

prime/Baer radical) of LK (E) is always zero (see [1]).
Let Λ be an arbitrary non-empty (possibly, infinite) index set. For any ring R, we

denote by MΛ(R) the ring of matrices over R whose entries are indexed by Λ × Λ

and whose entries, except for possibly a finite number, are all zero. It follows from
the works in [4] that MΛ(R) is Morita equivalent to R.

Throughout this paper L will denote the Leavitt path algebra LK (E) of an
arbitrary directed graph E over a field K .

3 Graded Ideals of a Leavitt Path Algebra

In this section, we shall describe some of the salient properties of the graded ideals
of a Leavitt path algebra L . As we shall see in a later section, these properties impact
the factorization of ideals of L . Every ideal of L , whether graded or not, is shown
to possess an orthogonal set of generators. As a consequence, we get the interesting
property that every finitely generated ideal of L is a principal ideal. It is interesting
to note that if I is a graded ideal of L , then both I and L/I can be realized as Leavitt
path algebras of suitable graphs.

Suppose H is a hereditary saturated subset of vertices. A breaking vertex of H is
an infinite emitter w ∈ E0\H with the property that 0 < |s−1(w) ∩ r−1(E0\H)| <

∞. The set of all breaking vertices of H is denoted by BH . For any v ∈ BH , vH

denotes the element v − ∑
s(e)=v,r(e)/∈H ee∗. The following theorem of Tomforde

describes graded ideals of L by means of their generators.

Theorem 1. ([22]) Suppose H is a hereditary saturated set of vertices and S is a
subset of BH . Then the ideal I (H, S) generated by the set of idempotents H ∪ {vH :
v ∈ S} is a graded ideal of L, and conversely every graded ideal I of L is of the form
I (H, S) where H = I ∩ E0 and S = {u ∈ BH : uH ∈ I }.

Given a pair (H, S) where H is a hereditary saturated set of vertices in the
graph E and S is a subset of BH , one could construct the Quotient graph
E\(H, S) given by (E\(H, S))0 = E0\H ∪ {u′ : u ∈ BH\S}, (E\(H, S))1 = {e ∈
E1 : r(e) /∈ H} ∪ {e′ : e ∈ E1 with r(e) ∈ BH\S} and r, s are extended to
(E\(H, S))0 by setting s(e′) = s(e) and r(e′) = r(e)′.

The next theorem describes a generating set Y for a not necessarily graded non-
zero ideal of L . This set Y is actually an orthogonal set of generators.
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Theorem 2. ([19]) Let E be an arbitrary graph and let I be an arbitrary non-
zero ideal of L = LK (E) with H = I ∩ E0 and S = {u ∈ BH : uH ∈ I }. Then I is
generated by the set

Y = H ∪ {vH : v ∈ S} ∪ { ft (ct ) : t ∈ T },

where T is some index set (which may be empty), for each t ∈ T , ct is a cycle without
exits in E\(H, S), no v in S is on any cycle ct , and ft (x) ∈ K [x] is a polynomial
with a non-zero constant term and is of the smallest degree such that ft (ct ) ∈ I . Any
two elements x �= y in Y are orthogonal, that is, xy = 0 = yx.

If I is a finitely generated ideal, then the orthogonal set Y of generators mentioned
in the above theorem can be shown to be finite and, in that case, the single element
a =

∑

y∈Y
y will be a generator for the ideal I . Consequently, we obtain the following

interesting result.

Theorem 3. ([19]) Every finitely generated ideal in a Leavitt path algebra is a
principal ideal, i.e., of the form LaL for some a ∈ L.

Remark 1. In [3], the above theoremhas been extended by showing that everyfinitely
generated one-sided ideal of L is a principal ideal, that is, L is a Bêzout ring.

An important property of graded ideals is the following.

Theorem 4. ([21]) Every graded ideal I (H, S) of L can be realized as a Leavitt
path algebra LK (F) of some graph F and further the corresponding quotient ring
L/I (H, S) is also a Leavitt path algebra, being isomorphic to the Leavitt path
algebra LK (E\(H, S)) of the quotient graph E\(H, S).

Since Leavitt path algebras possess local units, we conclude that the graded ideals
I of L possess local units. Using this, we obtain some interesting properties of graded
ideals.

Proposition 2. ([20]) (i) Let A be a graded ideal of L. Then
(a) for any ideal B of L, AB = A ∩ B, BA = B ∩ A and, in particular, A2 = A;
(b) AB = BA for all ideals B;

(c) If A = A1 · · · Am is a product of ideals, then A =
m⋂

i=1

gr(Ai ) =
m∏

i=1

gr(Ai ).

Similarly, if A = A1 ∩ · · · ∩ Am is an intersectionof ideals Ai , then A =
m⋂

i=1

gr(Ai ) =
m∏

i=1

gr(Ai ).

(ii) If A1, . . . , Am are graded ideals of L, then
m∏

i=1

Ai =
m⋂

i=1

Ai .
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Proof. We shall point out the easy proof of (i)(a). We need only to prove A ∩ B �
AB. Let x ∈ A ∩ B. Since the graded ideal A has local units, there is an idempo-
tent u ∈ A such that ua = a = au. Clearly then a = ua ∈ AB. So A ∩ B = AB.
Similarly, B ∩ A = BA. Hence AB = BA. In particular, A2 = A ∩ A = A.

A natural question is when every ideal of L will be a graded ideal. This can happen
when E satisfies the following graph property.

Definition 2. A graph E satisfies Condition (K) if whenever a vertex v lies on a
simple closed path α, v also lies on another simple closed path β distinct from α.

Here is a simple graph satisfying Condition (K), where every vertex satisfies the
required property.

• ←− • ←− •
↘ ↗

•
↗ ↘

• ←− • ←− •

Theorem 5. ([18, 22]) The following conditions are equivalent for L := LK (E):
(a) Every ideal of L is graded;
(b) Every prime ideal of L is graded;
(c) The graph E satisfies Condition (K).

4 The Lattice of Ideals of a Leavitt Path Algebra

This section describes how the ideals of aLeavitt path algebra L share lattice-theoretic
properties and module-theoretic properties of the ideals of a Dedekind domain or
a Prüfer domain. We start with noting that, in this non-commutative ring L , the
multiplication of ideals is commutative. Moreover, L is left/right hereditary, that is,
every left/right or two-sided ideal of L is projective as a left or a right ideal. The
ideal lattice of L is distributive and multiplicative. It is also shown how many of the
characterizing properties of a Prüfer domain stated in terms of its ideals hold in L .

Using a deep theoremofGeorgeBergman,Ara andGoodearl proved the following
result that every Leavitt path algebra is a left/right hereditary ring, a property shared
by Dedekind domains.

Theorem 6. (Theorem 3.7, [5]) Every ideal (including any one-sided ideal) of a
Leavitt path algebra L is projective as a left/right L-module.

In Section3, we noted that if A is a graded ideal of L , then AB = BA for any
ideal B of L . What happens if A is not a graded ideal? With an analysis of the “non-
graded parts” of A and B, it was shown in [1, 20] that even though L is, in general,
non-commutative, the multiplication of its ideals is commutative as noted next.
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Theorem 7. ([1, 20]) For any two arbitrary ideals A, B of a Leavitt path algebra
L, AB = BA.

The next result shows that every Leavitt path algebra L is an arithmetical ring, that
is, the ideal lattice of L is distributive, a property that characterizes Prüfer domains.

Theorem 8. ([20]) For any three ideals A, B,C of the Leavitt path algebra L, we
have

A ∩ (B + C) = (A ∩ B) + (A ∩ C).

Remark 2. A well-known result in commutative rings (see, e.g., Theorem 18,
Chapter V, [23]) states that if the ideal lattice of a commutative ring R is distribu-
tive (such as when R is a Dedekind domain), then the Chinese Remainder Theo-
rem holds in R: This means that the simultaneous congruences x ≡ xi (mod Ai )

(i = 1, · · ·, n) where the Ai are ideals and the elements xi ∈ R, admits a solution for
x in R provided the compatibility condition xi + x j ≡ 0 (mod Ai + A j ) holds for
all i �= j . The proof of this theorem does not require R to be commutative and nor
does it require the existence of a multiplicative identity in R. So, as a consequence of
Theorem 8, one can show that the Chinese Remainder Theorem holds in Leavitt path
algebras. (Thus Leavitt path algebras satisfy another property of Dedekind domains.)

We next use Theorem 8 to show that every Leavitt path algebra is a multiplication
ring, a useful property in the multiplicative ideal theory of Leavitt path algebras.

Theorem 9. ([20]) The Leavitt path algebra L = LK (E) of an arbitrary graph E
is a multiplication ring, that is, for any two ideals A, B of L with A ⊆ B, there is
an ideal C of L, such that A = BC = CB. Moreover, if A is a prime ideal, then
AB = A = BA.

A well-known property of a Dedekind domain R is that if there are only finitely
many prime ideals in R, then R is a principal ideal domain (see Theorem 16, Chapter
V in [23]). Interestingly, as the next theorem shows, a Leavitt path algebra possesses
this property.

Theorem 10. ([6]) Let L := LK (E) be the Leavitt path algebra of an arbitrary
graph E. If L has only a finite number of prime ideals, then every ideal of L is a
principal ideal, i.e., of the form LaL for some a ∈ L.

Recently, it was shown (see [7]) that the ideals of a Leavitt path algebra satisfy
two more characterizing properties of Prüfer domains.

Theorem 11. ([7]) Let A, B,C be any three ideals of a Leavitt path algebra L. Then
(i) A(B ∩ C) = AB ∩ AC;
(ii) (A ∩ B)(A + B) = AB.

Note that the statement (ii) in the preceding theorem is the ideal version of a
well-known theorem in elementary number theory that, for any two positive integers
a, b, gcd(a, b) · lcm(a, b) = ab.
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However not all characterizing properties of a Prüfer domain hold in a Leavitt
path algebra. For instance, a domain R is a Prüfer domain if and only if finitely
generated ideals of R are cancellative, that is, if A is a non-zero finitely generated
ideal, then for any two ideals B,C of R, AB = AC implies B = C . This property
may not hold in a Leavitt path algebra as the next example shows.

Example 3. Consider the graph E

•uc •v •w •z

Here H = {v} is a hereditary saturated subset. Let A = 〈H〉, the ideal generated
by H . Clearly the cycle c has no exits in E\H . Let B be the non-graded ideal
A + 〈p(c)〉, where p(x) = 1 + x ∈ K [x]. Clearly gr(B) = A. Since A is a graded
ideal, we apply Proposition 2 (a), to conclude that AB = A ∩ B = A = A2 = AA.
But A �= B.

5 Prime, Radical, Primary, and Irreducible Ideals
of a Leavitt Path Algebra

In this section, we describe special types of ideals in L such as the prime, the irre-
ducible, the primary, and the radical (= semiprime) ideals using graphical properties.
While these concepts are independent for ideals in a commutative ring, we show
that the first three properties of ideals coincide for graded ideals in the Leavitt path
algebra L . We also show that a non-graded ideal I of L is irreducible if and only if I
is a primary ideal if and only if I = Pn , a power of a prime ideal P . This is useful in
the factorization of ideals in the next section. We also characterize the radical ideals
of L . It may be some interest to note that every graded ideal of L is a radical ideal.

The following description of prime ideals of L was given in [18].

Theorem 12. (Theorem 3.2, [18]) An ideal P of L := LK (E) with P ∩ E0 = H
is a prime ideal if and only if P satisfies one of the following properties:

(i) P = I (H, BH ) and E0\H is downward directed;
(ii) P = I (H, BH\{u}), v ≥ u for all v ∈ E0\H and the vertex u′ that corre-

sponds to u in E\(H, BH\{u}) is a sink;
(iii) P is a non-graded ideal of the form P = I (H, BH ) + 〈p(c)〉, where c is a

cycle without exits based at a vertex u in E\(H, BH ), v ≥ u for all v ∈ E0\H and
p(x) is an irreducible polynomial in K [x, x−1] such that p(c) ∈ P.

Recall, an ideal I of a ring R is called an irreducible ideal if, for ideals A, B of R,
I = A ∩ B implies that either I = A or I = B. Given an ideal I , the radical of the
ideal I , denoted by Rad(I ) or

√
I , is the intersection of all prime ideals containing I .

A useful property is that if a ∈ Rad(I ), then an ∈ I for some integer n ≥ 0. (The
proof of this property is given in Theorem 10.7 of [15] for non-commutative rings
with identity, but the proof also works for rings without identity but with local units.)
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If Rad(I ) = I for an ideal I , then I is called a radical ideal or a semiprime ideal.
An ideal I of R is said to be a primary ideal if, for any two ideals A, B, if AB ⊆ I
and A � I , then B ⊆ Rad(I ).

Remark 3. We note in passing that for any graded ideal I of L , say I = I (H, S),
Rad(I ) = I . Because, Rad(I )/I is a nil ideal in L/I and L/I , being isomorphic to
the Leavitt path algebra LK (E\(H, S)), has no non-zero nil ideals.

We now point out an interesting property of graded ideals of L .

Theorem 13. ([20]) Suppose I is a graded ideal of L. Then the following are equiv-
alent:

(i) I is a primary ideal;
(ii) I is a prime ideal;
(iii) I is an irreducible ideal.

The next theorem extends the above result to arbitrary ideals of L .

Theorem 14. ([20]) Suppose I is a non-graded ideal of L. Then the following are
equivalent:

(i) I is a primary ideal;
(ii) I = Pn, a power of a prime ideal P for some n ≥ 1;
(iii) I is an irreducible ideal.

The final result of this section describes the radical (also known as semiprime)
ideals of L .

Theorem 15. ([2]) Let A be an arbitrary ideal of L with A ∩ E0 = H and S =
{v ∈ BH : vH ∈ A}. Then the following properties are equivalent:

(i) A is a radical ideal of L;
(ii) A = I (H, S) +

∑

i∈Y
〈 fi (ci )〉, where Y is an index set which may be empty, for

each i ∈ Y , ci is a cycle without exits based at a vertex vi in E\(H, S) and fi (x) is a
polynomial with its constant term non-zero which is a product of distinct irreducible
polynomials in K [x, x−1].

6 Factorization of Ideals in L

As noted in the introduction, ideals in an arithmetical ring admit interesting repre-
sentations as products of special types of ideals ([10–12]). In this section, we explore
the existence and the uniqueness of factorizations of an arbitrary ideal in a Leavitt
path algebra L as a product of prime ideals and as a product of irreducible/primary
ideals. The prime factorization of graded ideals of L seems to influence that of the
non-graded ideals in L . Indeed, an ideal I is a product of prime ideals in L if and
only its graded part gr(I ) has the same property and, moreover, I/gr(I ) is finitely
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generated with a generating set of cardinality no more than the number of distinct
prime ideals in an irredundant factorization of gr(I ). It is interesting to note that if
I is a graded ideal and if I = P1 · · · Pn is an irredundant product of prime ideals,
then necessarily each of the ideals Pj must be graded. We also show that I is an
intersection of irreducible ideals if and only if I is an intersection of prime ideals.
If L is the Leavitt path algebra of a finite graph or, more generally, if L is two-sided
Noetherian or two-sided Artinian, then every ideal of L is shown to be a product
of prime ideals. We also give necessary and sufficient conditions under which every
non-zero ideal of L is a product of prime ideals, that is, when L is a generalized ZPI
ring. We end this section by proving for L an analogue of the Krull’s theorem on the
intersection of powers of an ideal.

We begin with the following useful proposition.

Proposition 3. ([20]) Suppose I is a non-graded ideal of L. If gr(I ) is a prime
ideal, then I is a product of prime ideals.

Using this, we obtain the following main factorization theorem.

Theorem 16. ([20]) Let E be an arbitrary graph. For a non-graded ideal I of
L := LK (E), the following are equivalent:

(i) I is a product of prime ideals;
(ii) I is a product of primary ideals;
(iii) I is a product of irreducible ideals;
(iv) gr(I ) is a product of (graded) prime ideals;
(v) gr(I ) = P1 ∩ · · · ∩ Pm is an irredundant intersection ofm graded prime ideals

Pj and I/gr(I ) is generated by at most m elements and is of the form I/gr(I ) =
k⊕

r=1

〈 fr (cr )〉 where k ≤ m and, for each r = 1 · · · k, cr is a cycle without exits in

E0\I and fr (x) ∈ K [x] is a polynomial with non-zero constant term of smallest
degree such that fr (cr ) ∈ I .

As a consequence of Theorem 16, we obtain a number of corollaries.

Corollary 1. ([20]) Let E be a finite graph, or more generally, let E0 be finite. Then
every non-zero ideal of L = LK (E) is a product of prime ideals.

Using a minimal or maximal argument, the above corollary can be extended to
the case when the ideals of L satisfy the DCC or ACC as noted below.

Corollary 2. ([20]) Suppose L is two-sided Artinian or two-sided Noetherian. Then
every non-zero ideal of L is a product of prime ideals.

Wenowgive the necessary and sufficient conditions underwhich L is a generalized
ZPI ring, that is, when every ideal of L is a product of prime ideals.

Theorem 17. ([20]) Let E be an arbitrary graph and let L := LK (E). Then every
proper ideal of L is a product of prime ideals if and only if every homomorphic image
of L is either a prime ring or contains only finitely many minimal prime ideals.
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The next theorem states that an irredundant factorization of an ideal A as a product
of prime ideals in L is unique up to a permutation of the factors. It also points out
the interesting fact that if A is a graded ideal, then every factor in this irredundant
factorization must also be a graded ideal.

Recall that A = P1 · · · Pn is an irredundant product of the ideals Pi , if A is not
the product of a proper subset of the set {P1, . . . , Pn}.
Theorem 18. ([6]) (a) Suppose A is an arbitrary ideal of L and A = P1 · · · Pm =
Q1 · · · Qn are two representations of A as irredundant products of prime ideals
Piand Q j . Then m = n and {P1, . . . , Pm} = {Q1, . . . , Qn};

(b) If A is a graded ideal of L and if A = P1 · · · Pm is an irredundant product of
prime ideals Pj , then the ideals are all graded and A = P1 ∩ · · · ∩ Pm.

From Proposition 2(c) and the equivalence of conditions (i) and (iv) of
Theorem 16, we derive following proposition.

Proposition 4. If an ideal I of L is an intersection of finitely many prime ideals,
then I is a product of (finitely many) prime ideals.

But a product of prime ideals in L need not be an intersection of prime ideals as
the next example shows.

Example 4. If E is the graph with a single vertex and a single loop

•vx

then LK (E) ∼= K [x, x−1], the Laurent polynomial ring, induced by the map v �→ 1,
x �→ x , x∗ �→ x−1. So it is enough to find a ideal A in K [x, x−1] with the desired
property. Consider the prime ideal A = 〈p(x)〉 in K [x, x−1], where p(x) is an irre-
ducible polynomial. We claim that B = A2 is not an intersection of prime ideals in
K [x, x−1]. Suppose, on the contrary, B =

⋂

λ∈Λ

Mλ where Λ is some (finite or infi-

nite) index set and each Mλ is a (non-zero) prime ideal of K [x, x−1] and hence a
maximal ideal of the principal ideal domain K [x, x−1]. Now there is a homomor-
phismφ : R −→

∏

λ∈Λ

R/Mλ givenby r �→ (. . . , r + Mλ, . . .)with ker(φ) = B. Then

Ā = φ(A) ∼= A/B �= 0 satisfies ( Ā)2 = 0 and this is impossible since
∏

λ∈Λ

R/Mλ,

being a direct product of fields, does not contain any non-zero nilpotent ideals.

The next proposition is new and gives necessary and sufficient conditions under
which a product of prime ideals in a Leavitt path algebra is also an intersection of
prime ideals. This happens exactly when every ideal of L is a radical ideal.
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Proposition 5. Let E be an arbitrary graph and let L := LK (E). Then the following
properties are equivalent:

(i) Every product of prime ideals in L is an intersection of prime ideals;
(ii) The graph E satisfies Condition (K);
(iii) Every ideal of L is a radical ideal;
(iv) Every ideal of L is a graded ideal.

Proof. Assume (i). Assume, by way of contradiction, that the graph E does not
satisfy Condition (K). Then, for some admissible pair (H, S), the quotient graph
E\(H, S) does not satisfy Condition (L) (see [1]) and thus there is a cycle c without
exits in E\(H, S). By [1, Lemma 2.7.1], the ideal M of LK (E\(H, S)) generated
by {c0} is isomorphic to the matrix ring MΛ(K [x, x−1]) where Λ is some index set.
Then [7, Proposition 1] and Example 4 imply that, for any prime ideal P of M , P2

is not an intersection of prime ideals of M . Since the graded ideal M is a ring with
local units ([1, Corollary 2.5.23]), every ideal (prime ideal) of M is an ideal (prime
ideal) of LK (E\(H, S)) and, for any prime ideal Q of LK (E\(H, S)), M ∩ Q is
a prime ideal of M . Consequently, P2 cannot be an intersection of prime ideals of
LK (E\(H, S)). This is a contradiction, since LK (E\(H, S)), being isomorphic to
the quotient ring L/I (H, S), satisfies (i). Consequently, the graph E must satisfy
Condition (K), thus proving (ii).

Assume (ii). By [1, Proposition 2.9.9], every ideal of L is graded. On the other
hand if I = I (H, S) is a graded ideal, then L/I is isomorphic to the Leavitt path
algebra LK (E\(H, S) and since the prime radical (the intersection of all prime ideals
of LK (E\(H, S)) is zero, I is the intersection of all the prime ideals containing I
and hence is a radical ideal. This proves (iii).

Assume (iii). We claim that every ideal of L must be a graded ideal. Suppose,
by way of contradiction, there is a non-graded ideal I in L , say, I = I (H, S) +∑

i∈Y
〈 fi (ci )〉, where Y is an index set and, for each i ∈ Y , fi (x) ∈ K [x] and ci is a

cycle without exits in E\(H, S). Now for a fixed i ∈ Y and an irreducible polynomial
p(x) ∈ K [x, x−1], P = I (H, S) + 〈p(ci )〉 is a prime ideal and P̄ = P/I (H, S) =
〈p(ci )〉 � M = 〈{c0i }〉. As noted in the proof of (i) =⇒ (ii), P̄2 is not a radical ideal
of L/I (H, S) and hence P2 is not a radical ideal in L , a contradiction. Hence every
ideal of L is a graded ideal. This proves (iv).

Now (iv) =⇒ (i), by Proposition 2(c).

We end this section by considering the powers of an ideal in L . FromProposition 2,
it is clear that if A is a graded ideal of L , then A = A2 and so A = An for all n ≥ 1.
What happens if A is a non-graded ideal? The next proposition implies that, for such
an A, A �= An for any n > 1.

Proposition 6. ([6]) If A is a non-graded ideal in L, then
∞⋂

n=1

An is a graded ideal,

being equal to gr(A).

As a corollary, we obtain
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Corollary 3. An ideal A of L is a graded ideal if and only if A = An for all n ≥ 1.

W. Krull showed that if A is an ideal of a commutative Noetherian ring with

identity 1, then
∞⋂

n=1

An = 0 if and only if 1 − x is not a zero divisor for all x ∈ A

(see Theorem 12, Section7 in [23]). As a consequence of Proposition 6, we obtain
an analogue of Krull’s theorem for Leavitt path algebras.

Corollary 4. ([6]) Let A be an arbitrary ideal of L. Then
∞⋂

n=1

An = 0 if and only if

A contains no vertices of the graph E.

Acknowledgements My thanks to Gene Abrams for carefully reading this article, making correc-
tions, and offering suggestions.
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