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Abstract The category of distributive lattices is, in classical mathematics, anti-
equivalent to the category of spectral spaces. We give here some examples and a
short dictionary for this antiequivalence. We propose a translation of several abstract
theorems (in classical mathematics) into constructive ones, even in the case where
points of a spectral space have no clear constructive content.
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Introduction

This paper is written in Bishop’s style of constructive mathematics [3, 4, 6, 17,
22]. We give a short dictionary between classical and constructive mathematics w.r.t.
properties of spectral spaces and of the associated dual distributive lattices. We give
several examples of how this works.

1 Distributive Lattices and Spectral Spaces: Some General
Facts

References: [7, 10, 19, 20, 23], [1, Chapter 4] and [17, Chapters XI and XIII].
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1.1 The Seminal Paper by Stone

In classical mathematics, a prime ideal p of a distributive lattice T �= 1 is an ideal
whose complement f is a filter (a prime filter). The quotient lattice T/(p = 0, f = 1)
is isomorphic to 2. Giving a prime ideal of T is the same thing as giving a lattice
morphism T→ 2. We will write θp : T→ 2 the morphism corresponding to p.

If S is a system of generators for a distributive lattice T, a prime ideal p of T is
characterised by its trace p ∩ S (cf. [7]).

The (Zariski) spectrum of the distributive lattice T is the set SpecT whose ele-
ments are prime ideals of T, with the following topology: an open basis is provided

by the subsets DT(a)
def= { p ∈ SpecT | a /∈ p } = {

p | θp(a) = 1
}
. One has

DT(a ∧ b) = DT(a) ∩DT(b), DT(0) = ∅,
DT(a ∨ b) = DT(a) ∪DT(b), DT(1) = SpecT.

}
(1)

The complement ofDT(a) is a basic closed set denoted byVT(a). This notation

is extended to I ⊆ T: we let VT(I )
def= ⋂

x∈I VT(x). If I is the ideal generated by
I , one has VT(I ) = VT(I). The closed set VT(I ) is also called the subvariety of
Spec T defined by I .

The adherence of a point p ∈ Spec T is provided by all q ⊇ p. Maximal ideals
are the closed points of Spec T. The spectrum Spec T is empty iff 0 = T1.

The spectrum of a distributive lattice is the paradigmatic example of a spectral
space. Spectral spaces can be characterised as the topological spaces satisfying the
following properties:

• the space is quasi-compact,1

• every open set is a union of quasi-compact open sets,
• the intersection of two quasi-compact open sets is a quasi-compact open set,
• for two distinct points, there is an open set containing one of them but not the
other,

• every irreducible closed set is the adherence of a point.

The quasi-compact open sets then form a distributive lattice, the supremum and
the infimum being the union and the intersection, respectively. A continuous map
between spectral spaces is said to be spectral if the inverse image of every quasi-
compact open set is a quasi-compact open set.

Stone’s fundamental result [23] can be stated as follows. The category of distribu-
tive lattice is, in classical mathematics, antiequivalent to the category of spectral
spaces.

Here is how this works.

1. The quasi-compact open sets ofSpec T are exactly the DT(u)’s.
2. The map u �→ DT(u) is well-defined and it is an isomorphism of distributive

lattices.

1The nowadays standard terminology is quasi-compact, as in Bourbaki and Stacks, rather than
compact.
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In the other direction, if X is a spectral space we letOqc(X) be the distributive lattice
formed by its quasi-compact open sets. If ξ : X → Y is a spectral map, the map

Oqc(ξ) : Oqc(Y )→ Oqc(X), U �→ ξ−1(U )

is a morphism of distributive lattices. This defines Oqc as a contravariant functor.

Johnstone calls coherent spaces the spectral spaces [16]. Balbes and Dwinger [1]
give them the name Stone space. The name spectral space is given by Hochster in a
famous paper [15] where he proves that all spectral spaces can be obtained as Zariski
spectra of commutative rings.

In constructivemathematics, spectral spacesmay have no points. So it is necessary
to translate the classical stuff about spectral spaces into a constructive rewriting about
distributive lattices. It is remarkable that all useful spectral spaces in the literature
correspond to simple distributive lattices.

Two other natural spectral topologies can be defined on Spec T by changing the
definition of basic open sets. When one chooses the V(a)’s as basic open sets, one
gets the spectral space corresponding to T◦ (obtained by reversing the order). When
one chooses Boolean combinations of the D(a)’s as basic open sets one gets the
constructible topology (also called the patch topology). This spectral space can be
defined as the spectrum of Bo(T) (the Boolean algebra generated by T).

1.1.1 Spectral Subspaces Versus Quotient Lattices

Theorem 1. (Subspectral spaces) Let T′ be a quotient lattice of T and π : T→ T′
the quotient morphism. Let us write X ′ = SpecT′, X = SpecT and π� : X ′ → X
the dual map of π .

1. π� identifies X ′ with a topological subspace of X. Moreover Oqc(X ′) ={
U ∩ X ′ |U ∈ Oqc(X)

}
. We say that X ′ is a subspectral space of X.

2. A subset X ′ of X is a subspectral space of X if and only if
– the induced topology by X on X ′ is spectral and
– Oqc(X ′) = {

U ∩ X ′ |U ∈ Oqc(X)
}
.

3. A subset X ′ of X is a subspectral space if and only if it is closed for the patch
topology.

4. If Z is an arbitrary subset of X = SpecT, its adherence for the patch topology
is given by X ′ = SpecT′, where T′ is the quotient lattice of T defined by the
following preorder �:

a � b ⇐⇒ (DT(a) ∩ Z) ⊆ (DT(b) ∩ Z). (2)
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1.1.2 Gluing Distributive Lattices and Spectral Subspaces

Let (x1, . . . , xn) be a system of comaximal elements in a commutative ring A. Then
the canonical morphismA→∏

i∈�1..n� A[1/xi ] identifiesAwith a finite subproduct
of localisations of A.

Similarly a distributive lattice can be recovered from a finite number of good
quotient lattices.

Definition 1. Let T be a distributive lattice and (ai )i∈�1..n� (resp. (fi )i∈�1..n�) a finite
family of ideals (resp. of filters) ofT.We say that the idealsai cover T if

⋂
i ai = { 0 }.

Similarly we say that the filters fi cover T if
⋂

i fi = { 1 }.
Let b be an ideal of T; we write x ≡ y mod b as meaning x ≡ y mod (b = 0).

Let us recall that for s ∈ T the quotientT/(s = 0) is isomorphic to the principal filter
↑s (one sees this filter as a distributive lattice with s as 0 element).

Fact 1. Let T be a distributive lattice, (ai )i∈�1..n� a finite family of principal ideals
(ai = ↓si ) and a =⋂

i ai .

1. If (xi ) is a family in T s.t. for each i, j one has xi ≡ x j mod ai ∨ a j , then there
exists a unique x modulo a satisfying: x ≡ xi mod ai (i ∈ �1..n�).

2. Let us write Ti = T/(ai = 0), Ti j = T j i = T/(ai ∨ a j = 0), πi : T→ Ti and
πi j : Ti → Ti j the canonical maps. If the ideals ai cover T, the system
(T, (πi )i∈�1..n�) is the inverse limit of the diagram

((Ti )1≤i≤n, (Ti j )1≤i< j≤n; (πi j )1≤i �= j≤n).

3. The analogous result works with quotients by principal filters.

T
πk

π j
πi

Ti

πi j

πik T j
π j iπ jk

Tkπki

πk j

Ti j Tik T jk

We have also a gluing procedure described in the following proposition.2

Proposition 1. (Gluing distributive lattices) Let I be a finite set and a diagram of
distributive lattices

(
(Ti )i∈I , (Ti j )i< j∈I , (Ti jk)i< j<k∈I ; (πi j )i �= j , (πi jk)i< j, j �=k �=i

)

and a family of elements (si j )i �= j∈I ∈∏
i �= j∈I Ti satisfying the following properties:

2In commutative algebra, a similar procedure works for A-modules [17, XV-4.4]. But in order to
glue commutative rings, it is necessary to pass to the category of Grothendieck schemes.
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• the diagram is commutative,
• if i �= j , πi j is a quotient morphism w.r.t. the ideal ↓si j ,
• if i , j , k are distinct, πi j (sik) = π j i (s jk) and πi jk is a quotient morphism w.r.t. the
ideal ↓π i j (sik).

Ti

πi j

πik T j
π j iπ jk

Tkπki

πk j

Ti j

πi jk

Tik

πik j

T jk

π jki

Ti jk

Let
(
T ; (πi )i∈I

)
be the limit of the diagram. Then there exist si ’s in T such that the

principal ideals ↓si cover T and the diagram is isomorphic to the one in Fact 1.
More precisely each πi is a quotient morphism w.r.t. the ideal ↓si and πi (s j ) = si j
for all i �= j .
The analogous result works with quotients by principal filters.

Remark 1. The reader can translate the previous result in gluing of spectral spaces.

1.1.3 Heitmann Lattice and J-Spectrum

An ideal m of a distributive lattice T is maximal when T/(m = 0) � 2, i.e. if 1 /∈ m
and ∀x ∈ T (x ∈ m or ∃y ∈ m x ∨ y = 1).

In classical mathematics we have the following result.

Lemma 1. The intersection of all maximal ideals containing an ideal J is called the
Jacobson radical of J and is equal to

JT(J) = { a ∈ T | ∀x ∈ T (a ∨ x = 1⇒ ∃z ∈ J z ∨ x = 1) } . (3)

We write JT(b) for JT(↓b). The ideal JT(0) is the Jacobson radical of T.

In constructive mathematics, equality (3) is used as definition.
TheHeitmann lattice of T, denoted byHe(T), is the quotient of T corresponding

to the following preorder �He(T):

a �He(T) b
def⇐⇒ JT(a) ⊆ JT(b) ⇐⇒ a ∈ JT(b). (4)

Elements of He(T) can be identified with ideals JT(a), via the canonical map

T −→ He(T), a �−→ JT(a).

The next definition follows the remarkable paper by Heitmann [14].
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Definition 2. Let T be a distributive lattice.

1. The maximal spectrum of T, denoted by MaxT, is the topological subspace of
SpecT provided by the maximal ideals of T.

2. The j-spectrum of T, denoted by jspecT, is the topological subspace of SpecT
provided by the primes p s.t. JT(p) = p, i.e. the prime ideals p which are inter-
sections of maximal ideals.

3. The Heitmann J-spectrum of T, denoted by JspecT, is the adherence ofMaxT
in SpecT for the patch topology. It is a spectral subspace of SpecT.

4. The minimal spectrum of T, denoted by MinT, is the topological subspace of
SpecT provided by minimal primes of T.

In general, MaxT, jspecT and MinT are not spectral spaces.

Theorem 2. JspecT is a spectral subspace of SpecT canonically homeomorphic
to Spec (He(T)).

1.2 Distributive Lattices and Entailment Relations

A particularly important rule for distributive lattices, known as cut, is

(
x ∧ a � b

)
&

(
a � x ∨ b

) =⇒ a � b. (5)

For A ∈ Pfe(T) (finitely enumerated subsets of T) we write

∨
A :=∨

x∈A x and
∧

A :=∧
x∈A x .

We denote by A � B or A �T B the relation defined as follows over the set Pfe(T):

A � B
def⇐⇒

∧
A �

∨
B.

This relation satisfies the following axioms, in which we write x for {x} and A, B
for A ∪ B:

a � a (R)

A � B =⇒ A, A′ � B, B ′ (M)

(A, x � B) & (A � B, x) =⇒ A � B (T ).

We say that the relation is reflexive, monotone and transitive. The third rule (transi-
tivity) can be seen as a version of rule (5) and is also called the cut rule.

Definition 3. For an arbitrary set S, a relation over Pfe(S) which is reflexive, mono-
tone and transitive is called an entailment relation.
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The following theorem is fundamental. It says that the three properties of entail-
ment relations are exactly what is needed for the interpretation in the form of a
distributive lattice to be adequate.

Theorem 3. (Fundamental theorem of entailment relations) [7], [17, XI-5.3], [21,
Satz 7] Let S be a set with an entailment relation �S on Pfe(S). We consider the
distributive lattice T defined by generators and relations as follows: the generators
are the elements of S and the relations are

A �T B

each time that A �S B. Then, for all A, B in Pfe(S), we have

A �T B =⇒ A �S B.

2 Spectral Spaces in Algebra

The usual spectral spaces in algebra are (always?) understood as spectra of distribu-
tive lattices associated to coherent theories describing relevant algebraic structures.
We describe this general situation and give some examples.

2.1 Dynamical Algebraic Structures, Distributive Lattices
and Spectra

References: [13, 20]. The paper [13] introduces the general notion of “dynamical the-
ory” and of “dynamical proof”. See also the paper [2] which illustrates the usefulness
of these notions.

2.1.1 Dynamical Theories and Dynamical Algebraic Structures

Dynamical theories are a version “without logic, purely computational” of coherent
theories (we say theory for “first order formal theory”).

Dynamical theories use only dynamical rules, i.e. deduction rules of the form

� � ∃y1 �1 or · · · or ∃ym �m,

where � and the �i ’s are lists of atomic formulae in the language L of the theory
T = (L,A).
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The computational meaning of “∃y �” is “Introduce y such that �”. The
computational meaning of “U or V orW” is “open three branches of computations
…”.

Axioms (elements of A) are dynamical rules and theorems are valid dynamical
rules (validity is described in a simpleway and uses only a computationalmachinery).

A dynamical algebraic structure for a dynamical theory T is given through a
presentation (G, R) by generators and relations. Generators are the element of G
and they are added to the constants in the language. Relations are the elements of R.
They are dynamical rules without free variables and they are added to the axioms of
the theory.

A dynamical algebraic structure is intuitively thought of as an incompletely spec-
ified algebraic structure. The notion corresponds to lazy evaluation in Computer
Algebra.

Purely equational algebraic structures correspond to the case where the only pred-
icate is equality and the axioms are Horn rules.

Dynamical theories whose axioms contain neither or nor ∃ are called Horn
theories (algebraic theories in [13]). For example, theories of absolutely flat rings
and of pp-rings can be given as Horn theories.

A coherent theory is a first order geometric theory. In non-first order geometric
theories we accept dynamical rules that use infinite disjunctions at the right of �. In
this paper we speak only of first order geometric theories.

A fundamental result about dynamical theories says that adding the classical first
order logic to a dynamical theory does not change valid rules: first order classical
mathematic is conservative over dynamical theories [13, Theorem 1.1].

2.1.2 Distributive Lattices Associated to a Dynamical Algebraic
Structure

Let A = (
(G, R),T

)
be a dynamical algebraic structure for T = (L,A).

• First example. If P(x, y) belongs to L and if Clt is the set of closed terms of A,
we get the following entailment relation �A,P for Clt × Clt:

(a1, b1), . . . , (an, bn) �A,P (c1, d1), . . . , (cm, dm)
def⇐⇒

P(a1, b1), . . . , P(an, bn) �A P(c1, d1) or . . . or P(cm, dm).
(6)

Intuitively the distributive latticeTgenerated by this entailment relation represents
the “truth values” of P in the dynamical algebraic structure A. In fact to give an
element α : T→ 2 of SpecT amounts to giving the value � (resp. ⊥) to P(a, b)
when α(a, b) = 1 (resp. α(a, b) = 0).
• Second example, the Zariski lattice of a commutative ring. LetAl be a dynam-
ical theory of nontrivial local rings, e.g. with signature

( · = 0,U(·) ; · + ·, · × ·,− ·, 0, 1 ).
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This is an extension of the purely equational theory of commutative rings. The pred-
icate U(x) is defined as meaning the invertibility of x ,

• U(x) � ∃y xy = 1 • xy = 1 � U(x)

and the axioms of nontrivial local rings are written as

AL U(x + y) � U(x) or U(y) • U(0) � ⊥
The Zariski lattice ZarA of a commutative ring A is defined as the distributive

lattice generated by the entailment relation �ZarA for A defined as

a1, . . . , an �ZarA c1, . . . , cm
def⇐⇒

U(a1), . . . , U(an) �Al (A) U(c1) or . . . or U(cm).
(7)

Here Al (A) is the dynamical algebraic structure of type Al over A.
We get the following equivalence (we call it a formal Nullstellensatz):

a1, . . . , an �ZarA c1, . . . , cm ⇐⇒ ∃k > 0 (a1 · · · an)k ∈ 〈c1, . . . , cm〉 .

So, ZarA can be identified with the set of ideals DA(x) = A

√〈
x
〉
, with DA(j1) ∧

DA(j2) = DA(j1j2) and DA(j1) ∨ DA(j2) = DA(j1 + j2).
Now, the usual Zariski spectrum Spec A is canonically homeomorphic to

Spec (ZarA). Indeed, to give a point of Spec A (a prime ideal) amounts to giving
an epimorphism A→ B where B is a local ring, or also, that is the same thing, to
giving a minimal model of Al (A). This corresponds to the intuition of “forcing the
ring to be a local ring”.

•More generally.Let us consider a set S of closed atomic formulae of the dynamical
algebraic structure A = (

(G, R),T
)
. We define a corresponding entailment relation

(with the Ai ’s and Bj ’s in S):

A1, . . . , An �A,S B1, . . . , Bm
def⇐⇒

A1, . . . , An �A B1 or . . . or Bm .
(8)

We may denote by Zar(A, S) this distributive lattice.

•Points of a spectrum and models in classical mathematics.With agoodchoice of
predicates in the language, to give a point of the spectrum of the corresponding lat-
tice amounts often to giving a minimal model of the dynamical algebraic structure.
This is the case when all existence axioms in the theory imply unique existence.
The topology of the spectrum is in any case strongly dependent on the choice of
predicates.
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• The complete Zarisiki lattice of a dynamical algebraic structure A is defined
by choosing for S the set Clat(A) of all closed atomic formulas of A. When the
theory has no existential axioms, this lattice corresponds to the entailment relation
forClat(A) generated by the axioms of T , replacing the variables by arbitrary closed
terms of A.

2.2 A Very Simple Case

Let T be a Horn theory. Any dynamical algebraic structureA = ((G, R),T ) of type
T defines an ordinary algebraic structure B and there is no significant difference
between dynamical algebraic structures and ordinary algebraic structures.

Theminimalmodels ofA are (identifiedwith) the quotient structuresC = B/∼. If
we choose convenient predicates for defining a distributive lattice associated toB, the
points of the corresponding spectrum are (identified with) these quotient structures.

For example, in the case of the purely equational theory T =Mod A (the theory
of modules over a fixed ring A), and choosing the predicate x = 0 (or the predicate
x �= 0), we get the lattice generated by the following entailment relation for an A-
module M :

• x1 = 0, . . . , xn = 0 � y1 = 0 or . . . or ym = 0,

or by

• y1 �= 0, . . . , ym �= 0 � x1 �= 0 or . . . or xn �= 0,

which means “one y j is in the submodule 〈x1, . . . , xn〉” (formal Nullstellensatz for
linear algebra).

Here the points of the spectrum are (identified with) submodules of M and a basic
open (or a basic closed) set D(a) is the set of submodules containing a.

It might be that these kinds of lattices and spectra are too simple to lead to
interesting results in algebra.

2.3 The Real Spectrum of a Commutative Ring

The real spectrum SperA of a commutative ring corresponds to the intuition of
“forcing the ring A to be an ordered (discrete3)” field.

A point of SperA can be given as an epimorphism ϕ : A→ K, where (K,C)

is an ordered field.4 Moreover two such morphisms ϕ : A→ K and ϕ′ : A→ K′
define the same point of the spectrum if there exists an isomorphism of ordered
fields ψ : K→ K′ making the suitable diagram commutative.

3We ask the order relation to be decidable.
4C is the cone of nonnegative elements.
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We write “x ≥ 0” the predicate overA corresponding to “ϕ(x) ≥ 0 inK”. We get
the following axioms:

• � x2 ≥ 0
• x ≥ 0, y ≥ 0 � x + y ≥ 0
• x ≥ 0, y ≥ 0 � xy ≥ 0

• −1 ≥ 0 � ⊥
• −xy ≥ 0 � x ≥ 0 or y ≥ 0

This means that { x ∈ A | x ≥ 0 } is a prime cone: to give a model of this theory
is the same thing as to give a point of SperA.

In order to get the usual topology of SperA, it is necessary to use the opposite
predicate x < 0. For the sake of comfort, we take x > 0. This predicate satisfies the
dual axioms to those for −x ≥ 0:

• −x2 > 0 � ⊥
• x + y > 0 � x > 0 or y > 0
• xy > 0 � x > 0 or −y > 0

• � 1 > 0
• x > 0, y > 0 � xy > 0

So the real lattice of A, denoted by Real(A), is the distributive lattice generated
by the minimal entailment relation for A satisfying the following relations (we write
R(a) instead of a):

• R(−x2) �
• R(x + y) � R(x),R(y)
• R(xy) � R(x),R(−y)

• � R(1)
• R(x),R(y) � R(xy)

So Spec (RealA) is isomorphic to SperA, viewed as the set of prime cones of
A. The spectral topology admits the basis of open sets

R(a1, . . . , an) =
{
c ∈ SperA |&n

i=1 − ai /∈ c
}
.

This approach to the real spectrum was proposed in [7].
An important point is the following formal Positivstellensatz.

Theorem 4. (Formal Positivstellensatz for ordered fields) T.F.A.E.

1. We have R(x1), . . . ,R(xk) � R(a1), . . . ,R(an) in the lattice RealA.
2. We have x1 > 0, . . . , xk > 0 � a1 > 0 or . . . or an > 0 in the theory of

ordered fields over A.
3. We have x1 > 0, . . . , xk > 0, a1 ≤ 0, . . . , an ≤ 0 � ⊥ in the theory of ordered

fields over A.
4. We have an equality s + p = 0 in A, with s in the monoid generated by the xi ’s

and p in the cone generated by the xi ’s and the −a j ’s.
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2.4 Linear Spectrum of a Lattice-Group

The theory of lattice-groups, denoted by Lgr , is a purely equational theory over the
signature (· = 0; · + ·,−·, · ∨ ·, 0). The following rules express that∨ defines a join
semilattice and the compatibility of ∨ with +:
sdt1 � x ∨ x = x
sdt2 � x ∨ y = y ∨ x

sdt3 � (x ∨ y) ∨ z = x ∨ (y ∨ z)
grl � x + (y ∨ z) = (x + y) ∨ (x + z)

We get the theory Liog by adding to Lgr the axiom � x ≥ 0 or −x ≥ 0.
The linear spectrum of an �-group � corresponds to the intuition of “forcing

the group to be linearly ordered”. So a point of this spectrum can be given as a
minimal model of the dynamical algebraic structure Liog (�), or equivalently by a
linearly ordered group G quotient of �, or as the kernel H of the canonical mor-
phism π : � → G. This subgroup H is a prime solid subgroup of �.

The linear lattice of�, denoted byLiog(�), is generated by the entailment relation
for � defined in the following way:

a1, . . . , an �Liog� b1, . . . , bm
def⇐⇒

a1 ≥ 0, . . . , an ≥ 0 �Liog� b1 ≥ 0 or . . . or bm ≥ 0.

The spectral space previously defined is (isomorphic to) Spec (Liog�). We have a
formal Positivstellensatz for this entailment relation (m, n �= 0).

a1, . . . , an �Liog(�) b1, . . . , bm ⇐⇒ ∃k > 0 (b−1 ∧ . . . ∧ b−m) ≤ k(a−1 ∨ . . . ∨ a−n ).

2.5 Valuative Spectrum of a Commutative Ring

The valuative spectrum SpevA of a commutative ring corresponds to the intuition
of “forcing the ring to be a valued field”. A point of this spectrum is given by an
epimorphism ϕ : A→ K where (K,V) is a valued field.5 Moreover two such mor-
phisms ϕ : A→ K and ϕ′ : A→ K′ define the same point of the spectrum if there
exists an isomorphism of valued fields ψ : K→ K′ making the suitable diagram
commutative.

We denote by x | y the predicate over A× A corresponding to “ϕ(x) divides6

ϕ(y) in K”. We get the following axioms:

5V is a valuation ring of K.
6That is, ∃z ∈ V zϕ(x) = ϕ(y).
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• � 1 | 0
• � −1 | 1
• a | b � ac | bc
• � a | b or b | a

• 0 | 1 � ⊥
• a | b, b | c � a | c
• a | b, a | c � a | b + c
• ax | bx � a | b or 0 | x

Any predicate x | y overA× A satisfying these axioms defines a point inSpevA.
Sowedefine the valuative latticeofA, denotedbyVal(A) as generated by theminimal
entailment relation for A× A satisfying the following relations:

• � (1, 0)
• � (−1, 1)
• (a, b) � (ac, bc)
• � (a, b), (b, a)

• (0, 1) �
• (a, b), (b, c) � (a, c)
• (a, b), (a, c) � (a, b + c)
• (ax, bx) � (a, b), (0, x)

The two spectral spaces Spec (ValA) and SpevA can be identified. The spec-
tral topology of Spec (ValA) is generated by the basic open sets U

(
(a, b)) =

{ϕ ∈ SpevA |ϕ(a) |ϕ(b) } .
We have a formal Valuativstellensatz.

Theorem 5. (Formal Valuativstellensatz for valued fields) Let A be a commutative
ring, t.f.a.e.

1. One has (a1, b1), . . . , (an, bn) � (c1, d1), . . . , (cm, dm) in the lattice ValA.
2. Introducing indeterminates xi ’s (i ∈ �1..n�) and y j ’s ( j ∈ �1..m�) we have in the

ring A[x, y] an equality

d
(
1+

∑m

j=1 y j Pj (x, y)
) ∈ 〈

(xiai − bi )i∈�1..n�, (y jd j − c j ) j∈�1..m�

〉
,

where d is in the monoid generated by the d j ’s and the Pj (x1, . . . , xn, y1,
. . . , ym)’s are in Z[x, y].

2.6 Heitmann Lattice and J-Spectrum of a Commutative Ring

In a commutative ring the Jacobson radical of an ideal J denoted by JA(J) is defined
in classical mathematics as the intersection of the maximal ideals containing J. In
constructive mathematics we use the classically equivalent definition

JA(J)
def= { x ∈ A | ∀y ∈ A, 1+ xy is invertible modulo J } . (9)

We write JA(x1, . . . , xn) for JA(〈x1, . . . , xn〉). The ideal JA(0) is called the Jacobson
radical of A.
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The Heitmann lattice of A is He(ZarA), denoted by HeitA; it is a quotient of
ZarA. In fact HeitA can be identified with the set of ideals JA(x1, . . . , xn), with
JA(j1) ∧ JA(j2) = JA(j1j2) and JA(j1) ∨ JA(j2) = JA(j1 + j2).

We denote by Jspec(A) the spectral spaceSpec (HeitA). In classical mathemat-
ics it is the adherence (for the patch topology) of the maximal spectrum in Spec A.
We call it the (Heitmann) J-spectrum ofA. It is a subspectral space ofSpec A. When
A is Noetherian, Jspec(A) coincides with the subspace jspec(A) of Spec A made
of the prime ideals which are intersections of maximal ideals.

Remark. JA(x1, . . . , xn) is a radical ideal but not generally the nilradical of a finitely
generated ideal. �

3 A Short Dictionary

References: [1, Theorem IV-2.6], [7, 11].
In this section we consider the following context: f : T→ T′ is a morphism of

distributive lattices and Spec ( f ), denoted by f � : X ′ = SpecT′ → X = SpecT,
is the dual morphism.

3.1 Properties of Morphisms

Theorem 6. ([1, Theorem IV-2.6]) In classical mathematics we have the following
equivalences:

1. f � is onto ( f is lying over)⇐⇒ f is injective⇐⇒ f is a monomorphism⇐⇒
f � is an epimorphism.

2. f is an epimorphism⇐⇒ f � is a monomorphism⇐⇒ f � is injective.
3. f is onto7⇐⇒ f � is an isomorphism on its image, which is a subspectral space

of X.

There are bijective morphisms of spectral spaces that are not isomorphisms. For
example, the morphism Spec (Bo(T))→ SpecT is rarely an isomorphism and the
lattice morphism T→ Bo(T) is an injective epimorphism which is rarely onto.

Lemma 2. Let S be a system of generators for T. The morphism f is lying over if
and only if for all a1, . . . , an, b1, . . . , bm ∈ S we have

f (a1), . . . , f (an) �T′ f (b1), . . . , f (bm) ⇒ a1, . . . , an �T b1, . . . , bm .

Proposition 2. (Going up vs. lying over) In classical mathematics t.f.a.e. (see [11]):

1. For each prime ideal q of T′ and p = f −1(q), the morphism f ′ : T/(p = 0)→
T′/(q = 0) is lying over.

7In other words, f is a quotient morphism.
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2. For each ideal I of T′ and J := f −1(I ), the morphism fI : T/(J = 0)→
T′/(I = 0) is lying over.

3. For each y ∈ T′ and J = f −1(↓ y), themorphism fy : T/(J = 0)→ T′/(y = 0)
is lying over.

4. For each a, c ∈ T and y ∈ T′ we have

f (a) �T′ f (c), y =⇒ ∃x ∈ T a �T c, x and f ( j) ≤T′ x .

Theorem 7. In classical mathematics we have the following equivalences [11]:

1. f is going up⇐⇒ for each a, c ∈ T and y ∈ T′ we have

f (a) ≤ f (c) ∨ y ⇒ ∃x ∈ T (a ≤ c ∨ x and f (x) ≤ y).

2. f is going down⇐⇒ for each a, c ∈ T and y ∈ T′ we have

f (a) ≥ f (c) ∧ y ⇒ ∃x ∈ T (a ≥ c ∧ x and f (x) ≥ y).

3. f has the property of incomparability⇐⇒ f is zero-dimensional.8

Theorem 8. In classical mathematics t.f.a.e.

1. Spec ( f ) is an open map.
2. There exists a map f̃ : T′ → T with the following properties:

(a) For c ∈ T and b ∈ T′, one has b ≤ f (c)⇔ f̃ (b) ≤ c.
In particular, b ≤ f ( f̃ (b)) and f̃ (b1 ∨ b2) = f̃ (b1) ∨ f̃ (b2).

(b) For a, c ∈ T and b ∈ T′, one has f (a) ∧ b ≤ f (c)⇔ a ∧ f̃ (b) ≤ c.
(c) For a ∈ T and b ∈ T′, one has f̃ ( f (a) ∧ b) = a ∧ f̃ (b).
(d) For a ∈ T, one has f̃ ( f (a)) = f̃ (1) ∧ a.

3. There exists a map f̃ : T′ → T satisfying property 2b.
4. For b ∈ T the g.l.b.

∧

b≤ f (c)
c exists, and if we write it f̃ (b), the property 2b holds.

For this result in locales’ theory see [5, Section1.6]. We give now a proof for
spectral spaces. Implications concerning item 1 need classical mathematics. The
other equivalences are constructive.

Lemma 3. Let f : A→ A′ be a nondecreasing map between ordered sets (A,≤)

and (A′,≤′) and b ∈ A′. An element b1 ∈ A satisfies the equivalence

∀x ∈ A ( b ≤′ f (x) ⇐⇒ b1 ≤ x )

8See Theorem 10.
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if and only if

• on the one hand b ≤′ f (b1),
• and on the other hand b1 =∧

x :b≤′ f (x) x.

In particular, if b1 exists, it is uniquely determined.

Proof. If b1 satisfies the equivalence, one has b ≤′ f (b1) since b1 ≤ b1. If z ∈ A sat-
isfies the implication ∀x ∈ A (b ≤′ f (x)⇒ z ≤ x), we get z ≤ b1 since b ≤′ f (b1).
So when b1 satisfies the equivalence it is the maximum of Sb

def= ⋂
b≤′ f (x) ↓ x ⊆ A,

i.e. the g.l.b. of
{
x ∈ A | b ≤′ f (x) }

. Conversely, if such a g.l.b. b1 exists, it sat-
isfies the implication ∀x ∈ A (b ≤′ f (x)⇒ b1 ≤ x) since b1 ∈ Sb. Moreover, if
b ≤′ f (b1)wehave the converse implication∀x ∈ A (b1 ≤ x ⇒ b ≤′ f (x))because
if b1 ≤ x then b ≤′ f (b1) ≤′ f (x).
Proof of Theorem 8. 3⇒ 2. The property 2a is the particular case of 2b with a = 1.
The property 2d is the particular case of 2c with b = 1. It remains to see that 2b
implies 2c. Indeed

f̃ ( f (a) ∧ b) =
∧

c: f (a)∧b≤ f (c)
c (Lemma 3)

=
∧

c:a∧ f̃ (b)≤c c (item 2b)

= a ∧ f̃ (b)

1 ⇒ 3. We assume the map f � : SpecT′ → SpecT to be open. If b ∈ T′, the
quasi-compact open set DT′(b) = B has as image a quasi-compact open set of T,
written as f �(B) = DT(̃b) for a unique b̃ ∈ T. We write b̃ = f̃ (b) and we get a map
f̃ : T′ → T.
It remains to see that item 2b is satisfied. For a, c ∈ T let us write A = DT(a),

C = DT(c) and g = f �. We have to prove the equivalence 2b, written as

g−1(A) ∩B ⊆ g−1(C) ⇐⇒ A ∩ g(B) ⊆ C.

For the direct implication, we consider an x ∈ B such that g(x) ∈ A. We have to
show that g(x) ∈ C. But x ∈ g−1(A) ∩B, so x ∈ g−1(C), i.e. g(x) ∈ C.

For the converse implication, we transform the r.h.s. by g−1. This operation
respects inclusion and intersection. We get g−1(A) ∩ g−1(g(B)) ⊆ g−1(C) and we
conclude by noticing that B ⊆ g−1(g(B)).

2⇒ 1. We show that f �(DT′(b)) = DT( f̃ (b)).
First we show f �(DT′(b)) ⊆ DT( f̃ (b)). Let p′ ∈ SpecT′ with b /∈ p′ and let

p = f �(p′) = f −1(p′).

If one had f̃ (b) ∈ p one would have f ( f̃ (b)) ∈ f (p) ⊆ p′ and since b ≤ f ( f̃ (b)),
b ∈ p′. So we have p ∈ DT( f̃ (b)).
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For the reverse inclusion, let us consider a p ∈ DT( f̃ (b)). As f̃ is nondecreasing
and respects ∨, the inverse image q = f̃ −1(p) is an ideal.

We have b /∈ q because if b ∈ q we have f̃ (b) ∈ f̃ ( f̃ −1(p)) ⊆ p.
If y ∈ q then f̃ (y) = z ∈ p so y ≤ f (z) for a z ∈ p (item 2a). Conversely if y ≤ f (z)
for a z ∈ p, then f̃ (y) ≤ f̃ ( f (z)) ≤ z (item 2d), so f̃ (y) ∈ p. So we get

q = f̃ −1(p) = {
y ∈ T′ | ∃z ∈ p y ≤ f (z)

}
.

So f −1(q) = { x ∈ T | ∃z ∈ p f (x) ≤ f (z) }. But f (x) ≤ f (z) is equivalent to x ∧
f̃ (1) ≤ z (item2bwith b = 1).Moreover f̃ (1) /∈ p since f̃ (b) ≤ f̃ (1) and f̃ (b) /∈ p.
So

f −1(q) = {
x ∈ T

∣∣ ∃z ∈ p x ∧ f̃ (1) ≤ z
} = {

x ∈ T
∣∣ x ∧ f̃ (1) ∈ p

} = p.

Nevertheless it is possible that q be not a prime ideal. In this case let us consider an
ideal q′ which is maximal among those satisfying f −1(q′) = p and f̃ (b) /∈ q′. We
want to show that q′ is prime. Assumewe have y1 and y2 ∈ T′ \ q′ such that y = y1 ∧
y2 ∈ q′. By maximality there is an element zi ∈ T \ p such that f (zi ) is in the ideal
generated by q′ and yi (i = 1, 2), i.e. f (zi ) ≤ xi ∨ yi with xi ∈ q′. Taking z = z1 ∧ z2
(it is in T \ p) and x = x1 ∨ x2 we get f (zi ) ≤ x ∨ yi and f (z) = f (z1) ∧ f (z2) ≤
x ∨ yi , so f (z) ≤ x ∨ y ∈ q′, and finally z ∈ f −1(q′) = p: a contradiction.
4⇔ 3. Use Lemma 3 by noticing that 2b implies 2a.

3.2 Dimension Properties

Theorem 9. (Dimension of spaces, see [12, 18], [17, Chapter XIII]) In classical
mathematics t.f.a.e.

1. The spectral space Spec (T) is of Krull dimension ≤ n (with the meaning of
chains of primes).

2. For each sequence (x0, . . . , xn) in T there exists a complementary sequence
(y0, . . . , yn), which means

1 � yn, xn
yn, xn � yn−1, xn−1

...
...

...

y1, x1 � y0, x0
y0, x0 � 0

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(10)

For example, for the dimension n ≤ 2, the inequalities in (10) correspond to the
following diagram in T:



240 H. Lombardi

1

x2 y2
•
•

x1 y1
•
•

x0 y0

0

A zero-dimensional distributive lattice is a Boolean algebra.

Theorem 10. (Dimension of morphisms, see [11], [17, Section XIII-7]) Let T ⊆ T′
and f be the inclusion morphism. In classical mathematics t.f.a.e.

1. The morphism Spec ( f ) : Spec (T′)→ Spec (T) has Krull dimension ≤ n.
2. For any sequence (x0, . . . , xn) in T′ there exists an integer k ≥ 0 and elements

a1, . . . , ak ∈ T such that for each partition (H, H ′) of {1, . . . , k}, there exist
y0, . . . , yn ∈ T′ such that

∧
j∈H ′ a j � yn, xn
yn, xn � yn−1, xn−1

...
...

...

y1, x1 � y0, x0
y0, x0 � ∨

j∈H a j

(11)

For example, for the relative dimension n ≤ 2, the inequalities in (11) correspond to
the following diagram in T, with u =∧

j∈H ′ a j and i =∨
j∈H a j :

•
u

x2 y2
•
•

x1 y1
•
•

x0 y0
i
•

Note that the dimension of the morphism T→ T′ is less than or equal to the
dimension of T′: take k = 0 in item 2.
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The Krull dimension of a ringA and of a morphism ϕ : A→ B are those of ZarA
and Zar ϕ.

A commutative ringA is zero-dimensional when for each a ∈ A there exist n ∈ N

and x ∈ A such that xn(1− xa) = 0. A reduced zero-dimensional ring9 is a ring in
which any element a has a quasi-inverse b = a•, i.e. such that aba = a and bab = b.

Let A• the reduced zero-dimensional ring generated by A. Then the Krull dimen-
sion of a morphism ρ : A→ B equals the Krull dimension of the ring A• ⊗A B.

3.3 Properties of Spaces

The spectral space Spec T is said to be normal if any prime ideal of T is contained
in a unique maximal ideal.

Theorem 11. We have the following equivalences:

1. The spectral space Spec (T) is normal⇐⇒
for each x ∨ y = 1 in T there exist a, b such that a ∨ x = b ∨ y = 1 and
a ∧ b = 0.

2. In the spectral space Spec (T) each quasi-compact open set is a finite union of
irreducible quasi-compact open sets⇐⇒
the distributive lattice T is constructed from a dynamical algebraic structure
where all axioms are Horn rules (e.g. this is the case for purely equational theo-
ries).

4 Some Examples

Wegive in this section constructive versions of classical theorems.Often, the theorem
has exactly the same wording as the classical one. But now, these theorems have a
clear computational content, which was impossible when using classical definitions.
Sometimes the new theorem is stronger than the previously known classical results
(e.g. Theorems 17 or 18 or 19).

4.1 Relative Dimension, Lying Over, Going Up, Going Down

See [11] and [17, Section XIII-9].

Theorem 12. Let ρ : A→ B be a morphism of commutative rings or distributive
lattices. If Kdim A ≤ m and Kdim ρ ≤ n, then Kdim B ≤ (m + 1)(n + 1)− 1.

9Such a ring is also called absolutely flat or von Neumann regular.
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Theorem 13. If a morphism α : A→ B of distributive lattices or of commutative
rings is lying over and going up (or lying over and going down) one has Kdim(A) ≤
Kdim(B).

Lemma 4. Let ρ : A→ B be amorphism of commutative rings. IfB is generated by
primitively algebraic elements10 overA, thenKdim ρ ≤ 0 and soKdimB ≤ KdimA.

Lemma 5. Let ϕ : A→ B be a morphism of commutative rings. The morphism ϕ

is lying over if and only if for each ideal a of A and each x ∈ A, one has ϕ(x) ∈
ϕ(a)B ⇒ x ∈ A

√
a.

Lemma 6. Let ϕ : A→ B be a morphism of commutative rings. T.F.A.E.

1. The morphism ϕ is going up (i.e. the morphism Zar ϕ is going up).
2. For any ideal b of B, with a = ϕ−1(b), the morphism ϕb : A/a→ B/b is lying

over.
3. The same thing with finitely generated ideals b.
4. (In classical mathematics) the same thing with prime ideals.

Lemma 7. Let A ⊆ B be a faithfully flat A-algebra. The morphism A→ B is lying
over and going up. So Kdim A ≤ Kdim B.

Lemma 8. (A classical going up) Let A ⊆ B be commutative rings with B inte-
gral over A. Then the morphism A→ B is lying over and going up. So Kdim A ≤
Kdim B.

Lemma 9. Let ϕ : A→ B be a morphism of commutative rings. T.F.A.E.

1. The morphism ϕ is going down.

2. For b, a1, …, aq ∈ A and y ∈ B such that ϕ(b)y ∈ B

√〈
ϕ(a1, . . . , aq)

〉
, there exist

x1, …, xp ∈ A such that

〈
bx1, . . . , bxp

〉 ⊆ A

√〈
a1, . . . , aq

〉
and y ∈ B

√〈
ϕ(x1), . . . , ϕ(xp)

〉
.

3. (In classical mathematics) for each prime ideal p of B with q = ϕ−1(p) the mor-
phism Aq → Bp is lying over.

Theorem 14. (Going down) Let A ⊆ B be commutative rings. The inclusion mor-
phism A→ B is going down in the following cases:

1. B is flat over A.
2. B is a domain integral over A, and A is integrally closed.

10An element of B is said to be primitively algebraic over A if it annihilates a polynomial in A[X ]
whose coefficients are comaximal.
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4.2 Kronecker, Forster–Swan, Serre and Bass Theorems

References: [8, 9] and [17, Chapter XIV].

Theorem 15. (Kronecker–Heitmann theorem, with Krull dimension, without
Noetherianity)

1. Let n ≥ 0. If KdimA < n and b1, …, bn ∈ A, there exist x1, …, xn such that for
all a ∈ A, DA(a, b1, . . . , bn) = DA(b1 + ax1, . . . , bn + axn).

2. Consequently in a ring with Krull dimension ≤ n, every finitely generated ideal
has the same nilradical as an ideal generated by at most n + 1 elements.

For a commutative ring A we define JdimA (J-dimension of A) as being
Kdim(HeitA). In classical mathematics it is the dimension of the Heitmann
J-spectrum Jspec(A).

Another dimension, called Heitmann dimension and denoted by Hdim(A), has
been introduced in [8, 9]. One has always Hdim(A) ≤ Jdim(A) ≤ Kdim(A). The
following results with Jdim hold also for Hdim.

Definition 4. A ring A is said to have stable range (of Bass) less than or equal
to n when unimodular vectors of length n + 1 may be shortened in the following
meaning:

1 ∈ 〈a, a1, . . . , an〉 =⇒ ∃ x1, . . . , xn, 1 ∈ 〈a1 + x1a, . . . , an + xna〉 .

Theorem 16. (Bass–Heitmann Theorem, without Noetherianity) Let n ≥ 0. If
JdimA < n, then A has stable range ≤ n. In particular each stably free A-module
of rank ≥ n is free.

A matrix is said to be of rank ≥ k when the minors of size k are comaximal.

Theorem 17. (Serre’s Splitting Off theorem, for Jdim)
Let k ≥ 1 and M be a projectiveA-module of rank≥ k, ormore generally isomorphic
to the image of a matrix of rank ≥ k.
Assume that JdimA < k. Then M � N ⊕ A for a suitable module N isomorphic to
the image of a matrix of rank ≥ k − 1.

Corollary 1. LetA be a ring such that JdimA ≤ h and M be anA-module isomor-
phic to the image of a matrix of rank ≥ h + s. Then M has a direct summand which
is a free submodule of rang s. Precisely, if M is the image of a matrix F ∈ An×m of
rank≥ h + s, one has M = N ⊕ L where L is a direct summand that is free of rank
s in An, and N the image of a matrix of rank ≥ h.

In the following theorem we use the notion of finitely generated module locally
generated by k elements. In classical mathematics this means that after localisa-
tion at any maximal ideal, M is generated by k elements. A classically equivalent
constructive definition is that the k-th Fitting ideal of M is equal to 〈1〉.
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Theorem 18. (Forster–Swan theorem for Jdim) If JdimA ≤ k and if theA-module
M = 〈y1, . . . , yk+r+s〉 is locally generated by r elements, then it is generated by
k + r elements: one can compute z1, . . . , zk+r in 〈yk+r+1, . . . , yk+r+s〉 such that M
is generated by (y1 + z1, . . . , yk+r + zk+r ).

Theorem 19. (Bass’ cancellation theorem, with Jdim)
Let M be a finitely generated projective A-module of rank ≥ k. If JdimA < k, then
M is cancellative for every finitely generated projective A-module. That is, if Q is
finitely generated projective and M ⊕ Q � N ⊕ Q, then M � N.

Theorems 17, 18 and 19 were conjectured by Heitmann in [14] (he proved these
theorems for the Krull dimension without Noetherianity assumption).

4.3 Other Results Concerning Krull Dimension

In [17] TheoremXII-6.2 gives the following important characterisation.An integrally
closed coherent ringA of Krull dimension at most 1 is a Prüfer domain.This explains
in a constructive way the nowadays classical definition of Dedekind domains as
Noetherian, integrally closed domains of Krull dimension 1, and the fact that, from
this definition, in classical mathematics, one is able to prove that finitely generated
nonzero ideals are invertible.

In [17, Chapter XVI] there is a constructive proof of the Lequain–Simis theorem.
This proof uses the Krull dimension.

In [24, Section2.6] we find the following new result, with a constructive proof.
If A is a ring of Krull dimension≤ d, then the stably free modules of rank > d over
A[X ] are free.
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