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Abstract We investigate the class of commutative unital rings in which principal
ideals have unique generators. We prove that this class forms a finitely axiomatiz-
able, relatively ideal distributive quasivariety, and also that it equals the quasivariety
generated by the class of integral domains with trivial unit group.

Keywords Divisibility · Relatively distributive quasivariety

2010 Mathematics Subject Classification 13A05 · 13A15 · 08C15

1 Introduction

What can be said about the class of commutative rings in which, if a differs from
b, the set of elements divisible by a differs from the set of elements divisible by
b? Equivalently, what can be said about the class of rings where a �= b implies
(a) �= (b)? In this paper we show that this class is a relatively ideal distributive
quasivariety, and we give a set of axioms for the quasivariety. Along the waywe learn
that this quasivariety is exactly the quasivariety of commutative rings generated by
the class of integral domains with trivial unit group.
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2 The Quasivariety of Rings Whose Principal Ideals
have Unique Generators

Our goal in this section is to describe the class of commutative rings whose principal
ideals have unique generators. The main result is that this class is a relatively ideal
distributive quasivariety, so let us explain now what that means. (For more details
about relatively congruence distributive/modular quasivarieties, we refer to [1–3].)

A quasi-identity in the language of commutative rings is a universally quantified
implication of the form

(s1 = t1) ∧ · · · ∧ (sn = tn) → (s0 = t0)

where si and ti are ring terms (= “words”, or “polynomials”). We allow n = 0, in
which case the quasi-identity reduces to an identity: s0 = t0 (universally quantified).
To emphasize this last point: identities are special quasi-identities.

A variety is a class axiomatized by identities. A quasivariety is a class axiomatized
by quasi-identities. For an example of the former, the class of commutative rings is a
variety. For an example of the latter, the class of rings axiomatized by the identities
defining commutative rings together with the quasi-identity (x2 = 0) → (x = 0)
is the quasivariety of reduced commutative rings (rings with no nonzero nilpotent
elements).

If Q is a quasivariety of commutative rings, R ∈ Q, and I � R is an ideal of
R, then I is a Q-ideal (or a relative ideal) if R/I ∈ Q. For example, if Q is the
quasivariety of commutative reduced rings and R ∈ Q, then I is a relative ideal of
R exactly when I is a semiprime ideal of R.

The collection ofQ-ideals of some R ∈ Q, when ordered by inclusion, forms an
algebraic lattice. It is not a sublattice of the ordinary ideal lattice, but it is a subset
of the ordinary ideal lattice that is closed under arbitrary meet.

AquasivarietyQ of commutative rings is relatively ideal distributive if theQ-ideal
lattice of any member of Q satisfies the distributive law:

I ∧ (J ∨ K ) = (I ∧ J ) ∨ (I ∧ K ).

Here, the meet operation is just intersection (I ∧ J = I ∩ J ) while the join oper-
ation depends onQ; all that can be said is that I ∨ J is the leastQ-ideal that contains
I ∪ J (or, equivalently, contains I + J ).

It is interesting to find that some particular quasivariety of rings is relatively ideal
distributive. Any distributive algebraic lattice is isomorphic to the lattice of open
sets of a topology defined on the set of meet irreducible lattice elements. Therefore,
if Q is relatively ideal distributive, then to each member of Q there is a naturally
associated topological space, itsQ-spectrum. It is possible to treat a member R ∈ Q
as a ring of functions defined over its Q-spectrum. It turns out that the quasivariety
of commutative reduced rings, mentioned earlier as an example, is relatively ideal
distributive, and for this Q the Q-spectrum of any R ∈ Q is just the ordinary prime
spectrum of R.
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The main result of this section is that the class of commutative rings whose
principal ideals have unique generators is a relatively ideal distributive quasivariety,
and for which we provide an axiomatization.

Theorem 1. LetQ be the class of all commutative rings (with 1) having the property
that each principal ideal has a unique generator. LetD be the class of domains inQ.

(1) Q is a quasivariety. It is exactly the class of rings axiomatized by the quasi-
identity (xyz = z) → (yz = z) along with the identities defining the variety of
all commutative rings. All rings in Q have trivial unit group and are reduced.
Such rings are F2-algebras.

(2) D is exactly the class of domains with trivial unit group.
(3) Q consist of the subrings of products of members of D (we write Q = SP(D)).
(4) Q is a relatively ideal distributive quasivariety.
(5) The class of locally finite algebras inQ is the class of Boolean rings. This class

is the largest subvariety of Q.

Proof. We argue the first two claims of Item (1) together. Namely, we show that
R ∈ Q if and only if R belongs to the quasivariety of commutative rings satisfying
(xyz = z) → (yz = z).

For the “if” part, let R be a commutative ring satisfying (xyz = z) → (yz = z).
Choose r ∈ R and assume that (r) = (s) for some s. Then s = qr and r = ps for
some p, q ∈ R. Since pqr = r , the quasi-identity yields qr = r , or s = r . Thus,
(r) = (s) implies r = s, showing that R satisfies the unique generator property for
principal ideals. Conversely, for “only if”, suppose that R does not satisfy (xyz =
z) → (yz = z). R must have elements p, q, r such that pqr = r and qr �= r , Then
(r) = (qr) and qr �= r , so R does not have the unique generator property.

For the second to last statement of Item (1), suppose that R ∈ Q and that u is a
unit in R. Then (u) = R = (1), so by the unique generator property u = 1. Also, to
see that R is reduced, assume that n ∈ R satisfies n2 = 0. Then 1 + n is a unit (with
inverse 1 − n), so 1 + n = 1, so n = 0.

For the final statement of Item (1), the fact that any R ∈ Q is anF2-algebra follows
from the fact that−1 is a unit, so 1 = −1. Then the prime subring of R is isomorphic
to F2, which is enough to establish that R is an F2-algebra.

For Item (2), if D ∈ D, then D is a domain by definition, and it has trivial unit
group by Item (1). Conversely, suppose that D is a domain with trivial unit group. If
(a) = (b) in D, then a and b must differ by a unit, hence a = b, showing that D has
the unique generator property, so D is a domain in Q, yielding D ∈ D.

In order to establish Item (3) we first prove a claim.

Claim 2. If R ∈ Q and S ⊆ R is a subset, then the annihilator A = ann(S) is a
Q-ideal (meaning that R/A ∈ Q).
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Proof of claim. For this we must verify that R/A satisfies the quasi-identity
(xyz = z) → (yz = z). Equivalently, we must show that if x, y, z ∈ R and xyz ≡ z
(mod A), then yz ≡ z (mod A). We begin: If xyz ≡ z (mod A), then (xyz − z) ∈
A, so (xyz − z)s = 0 for any s ∈ S. This means that xy(zs) = (zs) for any s ∈ S.
Applying the quasi-identity from Item (1) with zs in place of z we derive that
yzs = zs, or (yz − z)s = 0 for any r ∈ I . Hence yz ≡ z (mod A), as desired.

Next we argue that if R ∈ Q is not a domain, then R has disjoint nonzeroQ-ideals
I and J . If R is not a domain, then there exist nonzero r and s such that rs = 0. Take
I = ann(r) and J = ann(I ). I is nonzero since it contains s, and J is nonzero since it
contains r . Both I and J areQ-ideals by Claim 2. If t ∈ I ∩ J , then t2 ∈ I J = {0},
so t is nilpotent. According to Item (1), any R ∈ Q is reduced, so t = 0. Thus I
and J are indeed disjoint nonzero Q-ideals.

The argument for Item (3) is completed by noting that any quasivariety Q is
expressible as SP(K) where K is the subclass of relatively subdirectly irreducible
members ofQ. This is a version ofBirkhoff’s subdirect representation theorem, stated
for quasivarieties, and it holds for quasivarieties because relative ideal/congruence
lattices are algebraic. The previous paragraph shows that the only members of Q
that could possibly be relatively subdirectly irreducible are the domains. (That is, R
not a domain ⇒ R has disjoint nonzero Q-ideals ⇒ R is not relatively subdirectly
irreducible.)

To prove Item (4), we refer to general criteria from [3] for proving that a quasi-
variety is relatively congruence distributive. Specifically, we will use Theorems4.1
and 4.3 of that paper, along with some of the remarks between those theorems.

Here is a summary of what we are citing. From Theorem 4.1 of [3], a quasivariety
is relatively congruence modular if and only if it satisfies the “extension principle”
and the “relative shifting lemma”. From remarks following the proof of Theorem
4.1, the “extension principle” can be replaced by the “weak extension principle”.
From Theorem 2.1 of that paper, the “relative shifting lemma” can be replaced by
the “existence of quasi-Day terms”. Finally, from Theorem 4.3 of that paper, a quasi-
variety is relatively congruence distributive if and only if it is relatively congruence
modular and no member has a nonzero abelian congruence.

What this reduces to in our setting is this: to prove that our quasivariety Q is
relatively ideal distributive (Item (4)) it suffices to show that Q
(i) has “quasi-Day terms”,
(ii) satisfies the “weak extension principle”, and
(iii) has no member with a nontrivial abelian congruence (i.e., with a nonzero ideal

A satisfying A2 = 0).

Condition (i) holds sinceQ has ordinary Day terms, in fact a Maltsev term. (More
explicitly, the singleton set �s := {(p(w, x, y, z), q(w, x, y, z)} where p(w, x,
y, z) := w − x + y and q(w, x, y, z) := z meets the defining conditions from
Theorem 2.1(2) of [3] for “quasi-Day terms”.)

Condition (iii) holds since if A � R ∈ Q and A2 = 0, then the elements of A
are nilpotent. As argued in the proof of Item (1), the only nilpotent element in R is
0, hence A = 0.
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Condition (ii) means that if R ∈ Q has disjoint ideals I and J , then I and J
can be extended to Q-ideals I ⊇ I and J ⊇ J that are also disjoint. To prove that
Condition (ii) holds we modify an argument from above: If R has ideals I and J
such that I ∩ J = 0, then I J = 0. TheQ-ideal J = ann(I ) contains J , theQ-ideal
I = ann(J ) contains I , both areQ-ideals, and I ∩ J = 0 (since the elements in this
intersection square to zero and R is reduced). This shows that disjoint ideals I and
J may be extended to disjoint Q-ideals.

For Item (5), to show that a locally finite ring inQ is a Boolean ring it suffices to
show that any finite ring F ∈ Q is Boolean. (The reason this reduction is permitted
is that the property of being a Boolean ring is expressible by the identity x2 = x ,
and a locally finite structure satisfies a universal sentence if and only if its finite
substructures satisfy the sentence.)

So choose a finite F ∈ Q. As F has trivial unit group, and 1 + rad(F) ⊆ U (F),
we get that F must be semiprimitive. Since F is finite it must be a product of fields.
Since F has only trivial units, each factor field must have size 2, so F is Boolean.

Conversely, if B is anyBoolean ring, thenmultiplication is a semilattice operation,
so xyz ≤ yz ≤ z in the semilattice order for any x, y, z ∈ B. If, in B, we have first =
last (xyz = z), then we must have middle = last (yz = z). Hence B ∈ Q.

To complete the proof of Item (5) we must show that if V is a variety and V ⊆ Q,
then V consists of Boolean rings. For this it suffices to show that if R ∈ Q is not
Boolean (i.e., R has an element r satisfying r �= r2), then R /∈ V . This holds because
〈r2〉 � 〈r〉 by the unique generator property, so r/〈r2〉 is a nonzero nilpotent element
of R/〈r2〉, establishing that some homomorphic image of R is not in Q. ��

By substituting z = 1 in the quasi-identity (xyz = z) → (yz = z) we obtain the
consequence (xy = 1) → (y = 1), which expresses that the unit group is trivial.
Since a consequence can be no stronger than the original statement, this is enough
to deduce that the quasivariety of commutative rings with trivial unit group contains
the quasivariety of commutative rings whose principal ideals have unique generators.
This containment is proper, and the following example describes a commutative ring
satisfying (xy = 1) → (y = 1) but not (xyz = z) → (yz = z).

Example 3. Let R be the commutative F2-algebra presented by

〈X,Y, Z | XY Z = Z〉.

That is, R is the quotient of the polynomial ring F2[X,Y, Z ] by the ideal
(XY Z − Z).

We may view the relation XY Z − Z = 0 as a reduction rule XY Z → Z to pro-
duce a normal form for elements of R. This single rule is applied as follows: choose
a monomial of the form XY ZW (W is a product of variables) of an element in a
coset of (XY Z − Z) ⊆ F2[X,Y, Z ] and replace XY ZW by ZW . That is, if each of
X,Y, Z appear in a monomial, we delete one instance of X and one instance of Y
from that monomial.
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The Diamond Lemma applies to show that there is a normal form for elements
of R, and the elements in normal form are exactly the polynomials over F2 in the
generators X,Y, Z where no monomial is divisible by each of X,Y , and Z .

Note that each application of the reduction rule reduces the X -degree and the
Y -degree of some monomial, but does not alter the Z -degree of any monomial. This
is enough to prove that the unit group of R is trivial. For if R had a unit u with
inverse v, then the Z -degree of the product uv = 1 is zero, but it is also the sum of
the Z -degrees of u and v. Hence the normal form of a unit must be Z -free. But then
u and v would then be inverse units in the subring F2[X,Y ], where all elements are
in normal form. Now one can argue in this subring, using X -degree and Y -degree, to
conclude that none of X,Y, Z appear in the normal form of a unit. We are left with
u = v = 1 as the only possibility.

Notice also that Y Z − Z is in normal form, so Y Z − Z �= 0 in R. This shows
that R fails to satisfy (xyz = z) → (yz = z), but does satisfy (xy = 1) → (y = 1).
In particular, the fact that XY Z = Z while Y Z �= Z means that (Y Z) = (Z), while
Y Z �= Z , so the principal ideal (Z) does not have a unique generator.

3 Some Related Quasivarieties

We saw in the previous section that the class of commutative rings whose principal
ideals have unique generators is the quasivariety generated by the class of domains
with trivial unit group. We also saw that this quasivariety is relatively ideal distribu-
tive, and that it is axiomatized by the quasi-identity (xyz = z) → (yz = z).

In this section we will show that the quasivarietyQ|n generated by those domains
D whose unit group U (D) is cyclic of order dividing n is also relatively ideal dis-
tributive, and we shall provide an axiomatization for Q|n .

WriteD|n for the class of domains whose unit group is cyclic of order dividing n.

Theorem 4. By definition, we have that Q|n is the quasivariety generated by D|n.

(1) Q|n is axiomatized by

(a) the identities defining commutative rings,
(b) the quasi-identity (x2 = 0) → (x = 0),which expresses that the only nilpo-

tent element is 0, and
(c) the quasi-identity (xyz = z) → (ynz = z).

(2) Q|n is a relatively ideal distributive quasivariety.

Proof. To prove Item (1), let K be the quasivariety axiomatized by the sentences in
(a), (b), and (c). It is easy to see that D|n satisfies the quasi-identities in (a), (b), and
(c), so D|n ⊆ K, and therefore Q|n ⊆ K.
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Conversely, wemust show thatK ⊆ Q|n For this, we need the analogue of Claim 2
for K:

Claim 5. If R ∈ K and S ⊆ R is a subset, then the annihilator A = ann(S) is a
K-ideal.

Proof of claim. Our goal is to prove that R/A ∈ K, so we must prove that R/A is
a commutative ring satisfying (x2 = 0) → (x = 0) and (xyz = z) → (ynz = z). It
is clear that R/A is a commutative ring (identities are preserved under quotients),
so we only need to verify that R/A satisfies (x2 = 0) → (x = 0) and (xyz = z) →
(ynz = z). For the second of these, the proof is exactly like the proof of Claim 2,
while for the first there is an extra idea. We prove the first only.

To prove that R/A satisfies (x2 = 0) → (x = 0), we must show that R satis-
fies x2 ≡ 0 (mod A) implies x ≡ 0 (mod A). If x2 ≡ 0 (mod A), or x2 ∈ A, then
x2s = 0 for all s ∈ S. This implies (xs)2 = (x2s)s = 0 for all s ∈ S. (This is the
“extra idea”.) But R satisfies (x2 = 0) → (x = 0), so from (xs)2 = 0 we deduce
xs = 0 for all s ∈ S. This proves that x ∈ A or x ≡ 0 (mod A).

We will use Claim 5 the same way we used Claim 2 in the proof of Theorem 1.
If R ∈ K is not a domain, then there exist nonzero r and s such that rs = 0. Take
I = ann(r) and J = ann(I ). I is nonzero since it contains s, and J is nonzero since
it contains r . By Claim 5, I and J areK-ideals. Any element in I ∩ J must square to
zero, so since K satisfies axiom (b) we get I ∩ J = {0}. Thus, if R is not a domain,
then it has a pair of nonzero, disjoint, K-ideals. This is enough to guarantee that R
is not subdirectly irreducible relative to K.

In the contrapositive form, we have shown that any relatively subdirectly irre-
ducible member of K is a domain. Hence K is generated by its subclass of domains.

But if D ∈ K is a domain, then by substituting z = 1 in the quasi-identity (1)(c)
we obtain that D satisfies (xy = 1) → (yn = 1). This implies that the unit group
U (D) of D is a cyclic group of order dividing n. The reason for this is that U (D) is
an abelian group satisfying xn = 1, hence U (D) is a locally finite abelian group. If
U (D) is not cyclic, then it contains a finite noncyclic subgroup G ⊆ U (D). But now
G is a finite noncyclic subgroup of the field of fractions of D, and we all know that
the multiplicative group of a field contains no finite noncyclic subgroup. This shows
that the domains in K lie in D|n , so K is contained in the quasivariety generated by
D|n , which is Q|n .

Item (2) of this theorem is proved exactly like Item (4) of Theorem 1. ��
Observations 6. A quick test to rule out that some nonzero ring R belongs to some
quasivarietyQ|n is to show that the prime subring of R does not belong toQ|n . Since
the prime subring of R is isomorphic either toZ or toZk for some k > 1, and since the
units of Z and Zk are easy to determine, it is not hard to derive some consequences.

Namely, Zk satisfies the quasi-identity in Theorem 4(1)(b) if and only if k is
square-free, and hence k = p1 . . . pm and Zk

∼= Zp1 × · · · × Zpm for distinct primes
p1, . . . , pm . Now, for such a k, Zk satisfies the quasi-identity in Theorem 4(1)(c) if
and only if pi − 1 divides n for each i . Therefore, these conditions on k are necessary
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for R to belong toQ|n whenever the prime subring of R is isomorphic toZk . Similarly,
Z satisfies the quasi-identity in Theorem 4(1)(c) if and only if n is even. Hence, if
the prime subring of R is isomorphic to Z, then for R to belong to Q|n the number
n must be even.

These considerations imply, in particular, that if n is odd, then Zk /∈ Q|n unless
k = 2, and Z /∈ Q|n . Hence, each ring in Q|n may be thought of as an F2-algebra.

Notice also that, when n is odd, the axiom (x2 = 0) → (x = 0) from
Theorem 4(1)(b) is a consequence of the axiom (xyz = z) → (ynz = z) from
Theorem 4(1)(c). For if R satisfies (xyz = z) → (ynz = z) for some odd n, and
some r ∈ R satisfies r2 = 0, then as observed in the previous paragraph the charac-
teristic of R must be 2, so (1 + r)2 = 1. This implies that 1 + r is a unit of order
dividing 2 (and also n), so necessarily 1 + r = 1, which implies that r = 0.

We can use Observation 6 to show that not all the quasivarieties Q|n are distinct,
in particular

Theorem 7. If p is an odd prime, then Q|p = Q|1 unless p is a Mersenne prime.

Proof. To prove that Q|p = Q|1 when p is an odd non-Mersenne prime, it will
suffice to show that these quasivarieties contain the same domains. We always have
Q|m ⊆ Q|n when m | n, from the definition of these quasivarieties, so we must show
that any domain D ∈ Q|p is contained in Q|1 (i.e., has a trivial unit group).

Choose D ∈ Q|p. From Observation 6, we know (since p is odd) that D is an
F2-algebra. Suppose that θ ∈ D is a nontrivial unit. Since θ has finite multiplicative
order, and the prime subring of D is finite, the subring S ⊆ D generated by θ is finite.
S is a subring of a domain itself, hence it is a field, and U (S) = S×. S belongs to
Q|p, so S× has order dividing p, and it must therefore be that |S×| = p. This shows
that S is a finite field of characteristic 2 and of cardinality |S| = p + 1. We derive
that p + 1 = 2s for some s, or p = 2s − 1. This completes the proof thatQ|p = Q|1
unless p is a Mersenne prime.

The primality of p did not play a big role in the proof. The same argument
shows that if n is any odd number, then Q|n = Q|1 unless n is divisible by some
number x > 1 of the form x = 2s − 1. So, for example, Q|55 = Q|25 = Q|1. But if
n is divisible by some number x > 1 of the form x = 2s − 1, then Q|n will contain
some finite fields that are not in Q|1.
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