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Preface

This volume is occasioned by the conference Rings and Factorizations that took
place at the University of Graz (Austria), February 19–23, 2018. The meeting
featured five days of lectures on a range of topics that reflected new research trends
in areas such as ideal theory (especially Prüfer, Krull, and Mori rings); topological
methods in ring theory; rings of integer-valued polynomials; module theory and
direct-sum decompositions; and factorization and divisibility theory in rings and
semigroups. The conference continues a long tradition of international conferences
in commutative ring theory, module theory and factorization theory that have been
held in Austria, France, Italy, South Korea, Morocco and the United States.

The volume consists of invited, refereed research and expository articles from
leading researchers in the fields represented at the conference. Most of the con-
tributors to the volume were speakers at the conference. The diverse list of topics in
the volume, like that of the lectures at the conference, represents areas of research
that are expanding and transcending traditional boundaries between fields of study.

The conference Rings and Factorizations was organized by Alfred Geroldinger,
Jun Seok Oh, Salvatore Tringali, and Qinghai Zhong. It was supported by the
University of Graz, Institute for Mathematics and Scientific Computing, NAWI
Graz, Federal State of Styria, and by the Austrian Science Fund FWF (Project
Numbers P28864-N35 and W1230 Doctoral Program Discrete Mathematics). We
thank all our sponsors. Without their assistance and support, the conference would
not have been possible.

Finally, we thank the authors for their contributions, the referees for their work,
and the editorial staff at Springer for their guidance and patience in directing this
volume to its publication.

Padua, Italy Alberto Facchini
Rome, Italy Marco Fontana
Graz, Austria Alfred Geroldinger
Las Cruces, NM, USA
September 2019

Bruce Olberding
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Commutative Rings Whose Principal
Ideals Have Unique Generators

P. N. Ánh, Keith A. Kearnes , and Ágnes Szendrei

Abstract We investigate the class of commutative unital rings in which principal
ideals have unique generators. We prove that this class forms a finitely axiomatiz-
able, relatively ideal distributive quasivariety, and also that it equals the quasivariety
generated by the class of integral domains with trivial unit group.

Keywords Divisibility · Relatively distributive quasivariety

2010 Mathematics Subject Classification 13A05 · 13A15 · 08C15

1 Introduction

What can be said about the class of commutative rings in which, if a differs from
b, the set of elements divisible by a differs from the set of elements divisible by
b? Equivalently, what can be said about the class of rings where a �= b implies
(a) �= (b)? In this paper we show that this class is a relatively ideal distributive
quasivariety, and we give a set of axioms for the quasivariety. Along the waywe learn
that this quasivariety is exactly the quasivariety of commutative rings generated by
the class of integral domains with trivial unit group.
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2 P. N. Ánh et al.

2 The Quasivariety of Rings Whose Principal Ideals
have Unique Generators

Our goal in this section is to describe the class of commutative rings whose principal
ideals have unique generators. The main result is that this class is a relatively ideal
distributive quasivariety, so let us explain now what that means. (For more details
about relatively congruence distributive/modular quasivarieties, we refer to [1–3].)

A quasi-identity in the language of commutative rings is a universally quantified
implication of the form

(s1 = t1) ∧ · · · ∧ (sn = tn) → (s0 = t0)

where si and ti are ring terms (= “words”, or “polynomials”). We allow n = 0, in
which case the quasi-identity reduces to an identity: s0 = t0 (universally quantified).
To emphasize this last point: identities are special quasi-identities.

A variety is a class axiomatized by identities. A quasivariety is a class axiomatized
by quasi-identities. For an example of the former, the class of commutative rings is a
variety. For an example of the latter, the class of rings axiomatized by the identities
defining commutative rings together with the quasi-identity (x2 = 0) → (x = 0)
is the quasivariety of reduced commutative rings (rings with no nonzero nilpotent
elements).

If Q is a quasivariety of commutative rings, R ∈ Q, and I � R is an ideal of
R, then I is a Q-ideal (or a relative ideal) if R/I ∈ Q. For example, if Q is the
quasivariety of commutative reduced rings and R ∈ Q, then I is a relative ideal of
R exactly when I is a semiprime ideal of R.

The collection ofQ-ideals of some R ∈ Q, when ordered by inclusion, forms an
algebraic lattice. It is not a sublattice of the ordinary ideal lattice, but it is a subset
of the ordinary ideal lattice that is closed under arbitrary meet.

AquasivarietyQ of commutative rings is relatively ideal distributive if theQ-ideal
lattice of any member of Q satisfies the distributive law:

I ∧ (J ∨ K ) = (I ∧ J ) ∨ (I ∧ K ).

Here, the meet operation is just intersection (I ∧ J = I ∩ J ) while the join oper-
ation depends onQ; all that can be said is that I ∨ J is the leastQ-ideal that contains
I ∪ J (or, equivalently, contains I + J ).

It is interesting to find that some particular quasivariety of rings is relatively ideal
distributive. Any distributive algebraic lattice is isomorphic to the lattice of open
sets of a topology defined on the set of meet irreducible lattice elements. Therefore,
if Q is relatively ideal distributive, then to each member of Q there is a naturally
associated topological space, itsQ-spectrum. It is possible to treat a member R ∈ Q
as a ring of functions defined over its Q-spectrum. It turns out that the quasivariety
of commutative reduced rings, mentioned earlier as an example, is relatively ideal
distributive, and for this Q the Q-spectrum of any R ∈ Q is just the ordinary prime
spectrum of R.
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The main result of this section is that the class of commutative rings whose
principal ideals have unique generators is a relatively ideal distributive quasivariety,
and for which we provide an axiomatization.

Theorem 1. LetQ be the class of all commutative rings (with 1) having the property
that each principal ideal has a unique generator. LetD be the class of domains inQ.

(1) Q is a quasivariety. It is exactly the class of rings axiomatized by the quasi-
identity (xyz = z) → (yz = z) along with the identities defining the variety of
all commutative rings. All rings in Q have trivial unit group and are reduced.
Such rings are F2-algebras.

(2) D is exactly the class of domains with trivial unit group.
(3) Q consist of the subrings of products of members of D (we write Q = SP(D)).
(4) Q is a relatively ideal distributive quasivariety.
(5) The class of locally finite algebras inQ is the class of Boolean rings. This class

is the largest subvariety of Q.

Proof. We argue the first two claims of Item (1) together. Namely, we show that
R ∈ Q if and only if R belongs to the quasivariety of commutative rings satisfying
(xyz = z) → (yz = z).

For the “if” part, let R be a commutative ring satisfying (xyz = z) → (yz = z).
Choose r ∈ R and assume that (r) = (s) for some s. Then s = qr and r = ps for
some p, q ∈ R. Since pqr = r , the quasi-identity yields qr = r , or s = r . Thus,
(r) = (s) implies r = s, showing that R satisfies the unique generator property for
principal ideals. Conversely, for “only if”, suppose that R does not satisfy (xyz =
z) → (yz = z). R must have elements p, q, r such that pqr = r and qr �= r , Then
(r) = (qr) and qr �= r , so R does not have the unique generator property.

For the second to last statement of Item (1), suppose that R ∈ Q and that u is a
unit in R. Then (u) = R = (1), so by the unique generator property u = 1. Also, to
see that R is reduced, assume that n ∈ R satisfies n2 = 0. Then 1 + n is a unit (with
inverse 1 − n), so 1 + n = 1, so n = 0.

For the final statement of Item (1), the fact that any R ∈ Q is anF2-algebra follows
from the fact that−1 is a unit, so 1 = −1. Then the prime subring of R is isomorphic
to F2, which is enough to establish that R is an F2-algebra.

For Item (2), if D ∈ D, then D is a domain by definition, and it has trivial unit
group by Item (1). Conversely, suppose that D is a domain with trivial unit group. If
(a) = (b) in D, then a and b must differ by a unit, hence a = b, showing that D has
the unique generator property, so D is a domain in Q, yielding D ∈ D.

In order to establish Item (3) we first prove a claim.

Claim 2. If R ∈ Q and S ⊆ R is a subset, then the annihilator A = ann(S) is a
Q-ideal (meaning that R/A ∈ Q).



4 P. N. Ánh et al.

Proof of claim. For this we must verify that R/A satisfies the quasi-identity
(xyz = z) → (yz = z). Equivalently, we must show that if x, y, z ∈ R and xyz ≡ z
(mod A), then yz ≡ z (mod A). We begin: If xyz ≡ z (mod A), then (xyz − z) ∈
A, so (xyz − z)s = 0 for any s ∈ S. This means that xy(zs) = (zs) for any s ∈ S.
Applying the quasi-identity from Item (1) with zs in place of z we derive that
yzs = zs, or (yz − z)s = 0 for any r ∈ I . Hence yz ≡ z (mod A), as desired.

Next we argue that if R ∈ Q is not a domain, then R has disjoint nonzeroQ-ideals
I and J . If R is not a domain, then there exist nonzero r and s such that rs = 0. Take
I = ann(r) and J = ann(I ). I is nonzero since it contains s, and J is nonzero since it
contains r . Both I and J areQ-ideals by Claim 2. If t ∈ I ∩ J , then t2 ∈ I J = {0},
so t is nilpotent. According to Item (1), any R ∈ Q is reduced, so t = 0. Thus I
and J are indeed disjoint nonzero Q-ideals.

The argument for Item (3) is completed by noting that any quasivariety Q is
expressible as SP(K) where K is the subclass of relatively subdirectly irreducible
members ofQ. This is a version ofBirkhoff’s subdirect representation theorem, stated
for quasivarieties, and it holds for quasivarieties because relative ideal/congruence
lattices are algebraic. The previous paragraph shows that the only members of Q
that could possibly be relatively subdirectly irreducible are the domains. (That is, R
not a domain ⇒ R has disjoint nonzero Q-ideals ⇒ R is not relatively subdirectly
irreducible.)

To prove Item (4), we refer to general criteria from [3] for proving that a quasi-
variety is relatively congruence distributive. Specifically, we will use Theorems4.1
and 4.3 of that paper, along with some of the remarks between those theorems.

Here is a summary of what we are citing. From Theorem 4.1 of [3], a quasivariety
is relatively congruence modular if and only if it satisfies the “extension principle”
and the “relative shifting lemma”. From remarks following the proof of Theorem
4.1, the “extension principle” can be replaced by the “weak extension principle”.
From Theorem 2.1 of that paper, the “relative shifting lemma” can be replaced by
the “existence of quasi-Day terms”. Finally, from Theorem 4.3 of that paper, a quasi-
variety is relatively congruence distributive if and only if it is relatively congruence
modular and no member has a nonzero abelian congruence.

What this reduces to in our setting is this: to prove that our quasivariety Q is
relatively ideal distributive (Item (4)) it suffices to show that Q
(i) has “quasi-Day terms”,
(ii) satisfies the “weak extension principle”, and
(iii) has no member with a nontrivial abelian congruence (i.e., with a nonzero ideal

A satisfying A2 = 0).

Condition (i) holds sinceQ has ordinary Day terms, in fact a Maltsev term. (More
explicitly, the singleton set �s := {(p(w, x, y, z), q(w, x, y, z)} where p(w, x,
y, z) := w − x + y and q(w, x, y, z) := z meets the defining conditions from
Theorem 2.1(2) of [3] for “quasi-Day terms”.)

Condition (iii) holds since if A � R ∈ Q and A2 = 0, then the elements of A
are nilpotent. As argued in the proof of Item (1), the only nilpotent element in R is
0, hence A = 0.
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Condition (ii) means that if R ∈ Q has disjoint ideals I and J , then I and J
can be extended to Q-ideals I ⊇ I and J ⊇ J that are also disjoint. To prove that
Condition (ii) holds we modify an argument from above: If R has ideals I and J
such that I ∩ J = 0, then I J = 0. TheQ-ideal J = ann(I ) contains J , theQ-ideal
I = ann(J ) contains I , both areQ-ideals, and I ∩ J = 0 (since the elements in this
intersection square to zero and R is reduced). This shows that disjoint ideals I and
J may be extended to disjoint Q-ideals.

For Item (5), to show that a locally finite ring inQ is a Boolean ring it suffices to
show that any finite ring F ∈ Q is Boolean. (The reason this reduction is permitted
is that the property of being a Boolean ring is expressible by the identity x2 = x ,
and a locally finite structure satisfies a universal sentence if and only if its finite
substructures satisfy the sentence.)

So choose a finite F ∈ Q. As F has trivial unit group, and 1 + rad(F) ⊆ U (F),
we get that F must be semiprimitive. Since F is finite it must be a product of fields.
Since F has only trivial units, each factor field must have size 2, so F is Boolean.

Conversely, if B is anyBoolean ring, thenmultiplication is a semilattice operation,
so xyz ≤ yz ≤ z in the semilattice order for any x, y, z ∈ B. If, in B, we have first =
last (xyz = z), then we must have middle = last (yz = z). Hence B ∈ Q.

To complete the proof of Item (5) we must show that if V is a variety and V ⊆ Q,
then V consists of Boolean rings. For this it suffices to show that if R ∈ Q is not
Boolean (i.e., R has an element r satisfying r �= r2), then R /∈ V . This holds because
〈r2〉 � 〈r〉 by the unique generator property, so r/〈r2〉 is a nonzero nilpotent element
of R/〈r2〉, establishing that some homomorphic image of R is not in Q. ��

By substituting z = 1 in the quasi-identity (xyz = z) → (yz = z) we obtain the
consequence (xy = 1) → (y = 1), which expresses that the unit group is trivial.
Since a consequence can be no stronger than the original statement, this is enough
to deduce that the quasivariety of commutative rings with trivial unit group contains
the quasivariety of commutative rings whose principal ideals have unique generators.
This containment is proper, and the following example describes a commutative ring
satisfying (xy = 1) → (y = 1) but not (xyz = z) → (yz = z).

Example 3. Let R be the commutative F2-algebra presented by

〈X,Y, Z | XY Z = Z〉.

That is, R is the quotient of the polynomial ring F2[X,Y, Z ] by the ideal
(XY Z − Z).

We may view the relation XY Z − Z = 0 as a reduction rule XY Z → Z to pro-
duce a normal form for elements of R. This single rule is applied as follows: choose
a monomial of the form XY ZW (W is a product of variables) of an element in a
coset of (XY Z − Z) ⊆ F2[X,Y, Z ] and replace XY ZW by ZW . That is, if each of
X,Y, Z appear in a monomial, we delete one instance of X and one instance of Y
from that monomial.



6 P. N. Ánh et al.

The Diamond Lemma applies to show that there is a normal form for elements
of R, and the elements in normal form are exactly the polynomials over F2 in the
generators X,Y, Z where no monomial is divisible by each of X,Y , and Z .

Note that each application of the reduction rule reduces the X -degree and the
Y -degree of some monomial, but does not alter the Z -degree of any monomial. This
is enough to prove that the unit group of R is trivial. For if R had a unit u with
inverse v, then the Z -degree of the product uv = 1 is zero, but it is also the sum of
the Z -degrees of u and v. Hence the normal form of a unit must be Z -free. But then
u and v would then be inverse units in the subring F2[X,Y ], where all elements are
in normal form. Now one can argue in this subring, using X -degree and Y -degree, to
conclude that none of X,Y, Z appear in the normal form of a unit. We are left with
u = v = 1 as the only possibility.

Notice also that Y Z − Z is in normal form, so Y Z − Z �= 0 in R. This shows
that R fails to satisfy (xyz = z) → (yz = z), but does satisfy (xy = 1) → (y = 1).
In particular, the fact that XY Z = Z while Y Z �= Z means that (Y Z) = (Z), while
Y Z �= Z , so the principal ideal (Z) does not have a unique generator.

3 Some Related Quasivarieties

We saw in the previous section that the class of commutative rings whose principal
ideals have unique generators is the quasivariety generated by the class of domains
with trivial unit group. We also saw that this quasivariety is relatively ideal distribu-
tive, and that it is axiomatized by the quasi-identity (xyz = z) → (yz = z).

In this section we will show that the quasivarietyQ|n generated by those domains
D whose unit group U (D) is cyclic of order dividing n is also relatively ideal dis-
tributive, and we shall provide an axiomatization for Q|n .

WriteD|n for the class of domains whose unit group is cyclic of order dividing n.

Theorem 4. By definition, we have that Q|n is the quasivariety generated by D|n.

(1) Q|n is axiomatized by

(a) the identities defining commutative rings,
(b) the quasi-identity (x2 = 0) → (x = 0),which expresses that the only nilpo-

tent element is 0, and
(c) the quasi-identity (xyz = z) → (ynz = z).

(2) Q|n is a relatively ideal distributive quasivariety.

Proof. To prove Item (1), let K be the quasivariety axiomatized by the sentences in
(a), (b), and (c). It is easy to see that D|n satisfies the quasi-identities in (a), (b), and
(c), so D|n ⊆ K, and therefore Q|n ⊆ K.
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Conversely, wemust show thatK ⊆ Q|n For this, we need the analogue of Claim 2
for K:

Claim 5. If R ∈ K and S ⊆ R is a subset, then the annihilator A = ann(S) is a
K-ideal.

Proof of claim. Our goal is to prove that R/A ∈ K, so we must prove that R/A is
a commutative ring satisfying (x2 = 0) → (x = 0) and (xyz = z) → (ynz = z). It
is clear that R/A is a commutative ring (identities are preserved under quotients),
so we only need to verify that R/A satisfies (x2 = 0) → (x = 0) and (xyz = z) →
(ynz = z). For the second of these, the proof is exactly like the proof of Claim 2,
while for the first there is an extra idea. We prove the first only.

To prove that R/A satisfies (x2 = 0) → (x = 0), we must show that R satis-
fies x2 ≡ 0 (mod A) implies x ≡ 0 (mod A). If x2 ≡ 0 (mod A), or x2 ∈ A, then
x2s = 0 for all s ∈ S. This implies (xs)2 = (x2s)s = 0 for all s ∈ S. (This is the
“extra idea”.) But R satisfies (x2 = 0) → (x = 0), so from (xs)2 = 0 we deduce
xs = 0 for all s ∈ S. This proves that x ∈ A or x ≡ 0 (mod A).

We will use Claim 5 the same way we used Claim 2 in the proof of Theorem 1.
If R ∈ K is not a domain, then there exist nonzero r and s such that rs = 0. Take
I = ann(r) and J = ann(I ). I is nonzero since it contains s, and J is nonzero since
it contains r . By Claim 5, I and J areK-ideals. Any element in I ∩ J must square to
zero, so since K satisfies axiom (b) we get I ∩ J = {0}. Thus, if R is not a domain,
then it has a pair of nonzero, disjoint, K-ideals. This is enough to guarantee that R
is not subdirectly irreducible relative to K.

In the contrapositive form, we have shown that any relatively subdirectly irre-
ducible member of K is a domain. Hence K is generated by its subclass of domains.

But if D ∈ K is a domain, then by substituting z = 1 in the quasi-identity (1)(c)
we obtain that D satisfies (xy = 1) → (yn = 1). This implies that the unit group
U (D) of D is a cyclic group of order dividing n. The reason for this is that U (D) is
an abelian group satisfying xn = 1, hence U (D) is a locally finite abelian group. If
U (D) is not cyclic, then it contains a finite noncyclic subgroup G ⊆ U (D). But now
G is a finite noncyclic subgroup of the field of fractions of D, and we all know that
the multiplicative group of a field contains no finite noncyclic subgroup. This shows
that the domains in K lie in D|n , so K is contained in the quasivariety generated by
D|n , which is Q|n .

Item (2) of this theorem is proved exactly like Item (4) of Theorem 1. ��
Observations 6. A quick test to rule out that some nonzero ring R belongs to some
quasivarietyQ|n is to show that the prime subring of R does not belong toQ|n . Since
the prime subring of R is isomorphic either toZ or toZk for some k > 1, and since the
units of Z and Zk are easy to determine, it is not hard to derive some consequences.

Namely, Zk satisfies the quasi-identity in Theorem 4(1)(b) if and only if k is
square-free, and hence k = p1 . . . pm and Zk

∼= Zp1 × · · · × Zpm for distinct primes
p1, . . . , pm . Now, for such a k, Zk satisfies the quasi-identity in Theorem 4(1)(c) if
and only if pi − 1 divides n for each i . Therefore, these conditions on k are necessary
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for R to belong toQ|n whenever the prime subring of R is isomorphic toZk . Similarly,
Z satisfies the quasi-identity in Theorem 4(1)(c) if and only if n is even. Hence, if
the prime subring of R is isomorphic to Z, then for R to belong to Q|n the number
n must be even.

These considerations imply, in particular, that if n is odd, then Zk /∈ Q|n unless
k = 2, and Z /∈ Q|n . Hence, each ring in Q|n may be thought of as an F2-algebra.

Notice also that, when n is odd, the axiom (x2 = 0) → (x = 0) from
Theorem 4(1)(b) is a consequence of the axiom (xyz = z) → (ynz = z) from
Theorem 4(1)(c). For if R satisfies (xyz = z) → (ynz = z) for some odd n, and
some r ∈ R satisfies r2 = 0, then as observed in the previous paragraph the charac-
teristic of R must be 2, so (1 + r)2 = 1. This implies that 1 + r is a unit of order
dividing 2 (and also n), so necessarily 1 + r = 1, which implies that r = 0.

We can use Observation 6 to show that not all the quasivarieties Q|n are distinct,
in particular

Theorem 7. If p is an odd prime, then Q|p = Q|1 unless p is a Mersenne prime.

Proof. To prove that Q|p = Q|1 when p is an odd non-Mersenne prime, it will
suffice to show that these quasivarieties contain the same domains. We always have
Q|m ⊆ Q|n when m | n, from the definition of these quasivarieties, so we must show
that any domain D ∈ Q|p is contained in Q|1 (i.e., has a trivial unit group).

Choose D ∈ Q|p. From Observation 6, we know (since p is odd) that D is an
F2-algebra. Suppose that θ ∈ D is a nontrivial unit. Since θ has finite multiplicative
order, and the prime subring of D is finite, the subring S ⊆ D generated by θ is finite.
S is a subring of a domain itself, hence it is a field, and U (S) = S×. S belongs to
Q|p, so S× has order dividing p, and it must therefore be that |S×| = p. This shows
that S is a finite field of characteristic 2 and of cardinality |S| = p + 1. We derive
that p + 1 = 2s for some s, or p = 2s − 1. This completes the proof thatQ|p = Q|1
unless p is a Mersenne prime.

The primality of p did not play a big role in the proof. The same argument
shows that if n is any odd number, then Q|n = Q|1 unless n is divisible by some
number x > 1 of the form x = 2s − 1. So, for example, Q|55 = Q|25 = Q|1. But if
n is divisible by some number x > 1 of the form x = 2s − 1, then Q|n will contain
some finite fields that are not in Q|1.

Acknowledgements This material is based upon work supported by the National Research, Devel-
opment and Innovation Office NKFIH K119934, the Vietnam Institute for Advanced Study in
Mathematics (VIASM), the Vietnamese Institute of Mathematics, the National Science Foundation
grant no. DMS 1500254, the Hungarian National Foundation for Scientific Research (OTKA) grant
no. K115518, and the National Research, Development and Innovation Fund of Hungary (NKFI)
grant no. K128042.



Commutative Rings Whose Principal Ideals Have Unique Generators 9

References

1. Kearnes, K.A.: Relatively congruence distributive subquasivarieties of a congruence mod-
ular variety. Bull. Austral. Math. Soc. 41(1), 87–96 (1990). https://doi.org/10.1017/
S0004972700017871

2. Kearnes K.A.: Relatively congruence modular quasivarieties of modules. In: Czelakowski, J.
(eds.) Don Pigozzi on Abstract Algebraic Logic, Universal Algebra, and Computer Science.
Outstanding Contributions to Logic, vol. 16, pp. 221–232. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-74772-9_8

3. Kearnes, K., McKenzie, R.: Commutator theory for relatively modular quasivarieties. Trans.
Amer. Math. Soc. 331(2), 465–502 (1992). https://doi.org/10.2307/2154123

https://doi.org/10.1017/S0004972700017871
https://doi.org/10.1017/S0004972700017871
https://doi.org/10.1007/978-3-319-74772-9_8
https://doi.org/10.1007/978-3-319-74772-9_8
https://doi.org/10.2307/2154123


On Monoids of Ideals of Orders
in Quadratic Number Fields
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Abstract We determine the set of catenary degrees, the set of distances, and the
unions of sets of lengths of the monoid of nonzero ideals and of the monoid of
invertible ideals of orders in quadratic number fields.
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Catenary degree
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1 Introduction

Factorization theory for Mori domains and their semigroups of ideals splits into two
cases. The first and best understood case is that of Krull domains (i.e., of completely
integrally closed Mori domains). The arithmetic of a Krull domain depends only on
the class group and on the distribution of prime divisors in the classes, and it can be
studied—at least to a large extent—with methods from additive combinatorics. The
link to additive combinatorics is most powerful when the Krull domain has a finite
class group and when each class contains at least one prime divisor (this holds true,
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among others, for rings of integers in number fields). Then sets of lengths, sets of
distances, and of catenary degrees of the domain can be studied in terms of zero-
sum problems over the class group. Moreover, we obtain a variety of explicit results
for arithmetical invariants in terms of classical combinatorial invariants (such as the
Davenport constant of the class group) or even in terms of the group invariants of the
class group. We refer to [15] for a description of the link to additive combinatorics
and to the recent survey [32] discussing explicit results for arithmetical invariants.

Let us consider Mori domains that are not completely integrally closed but have
a nonzero conductor toward their complete integral closure. The best investigated
classes of such domains are weakly Krull Mori domains with finite v-class group
and C-domains. For them there is a variety of abstract arithmetical finiteness results
but in general there are no precise results. For example, it is well-known that sets of
distances and of catenary degrees are finite but there are no reasonable bounds for
their size. The simplest not completely integrally closed Mori domains are orders
in number fields. They are one-dimensional noetherian with nonzero conductor,
finite Picard group, and all factor rings modulo nonzero ideals are finite. Thus they
are weakly Krull domains and C-domains. Although there is recent progress for
seminormal orders, for general orders in number fields there is no characterization
of half-factoriality (for progress in the local case see [26]) and there is no information
on the structure of their sets of distances or catenary degrees (neither for orders nor
for their monoids of ideals).

In the present paper, we focus on monoids of ideals of orders in quadratic number
fields and establish precise results for their set of distances Δ(·) and their set of
catenary degrees Ca(·). Orders in quadratic number fields are intimately related to
quadratic irrationals, continued fractions, and binary quadratic forms and all these
areas provide a wealth of number theoretic tools for the investigation of orders. We
refer to [25] for a modern presentation of these connections and to [9, 29] for recent
progress on the arithmetic and ideal theoretic structure of quadratic orders.

LetO be an order in a quadratic number field, I∗(O) be the monoid of invertible
ideals, and I(O) be the monoid of nonzero ideals (note that I(O) is not cancellative
if O is not maximal). Since I∗(O) is a divisor-closed submonoid of I(O), the set
of catenary degrees and the set of distances of I∗(O) are contained in the respective
sets of I(O). We formulate a main result of this paper and then we compare it with
related results in the literature.

Theorem 1.1. Let O be an order in a quadratic number field K with discriminant
dK and conductor f = fOK for some f ∈ N≥2.

1. The following statements are equivalent:

(a) I(O) is half-factorial.
(b) c

(I(O)
) = 2.

(c) c
(I∗(O)

) = 2.
(d) I∗(O) is half-factorial.
(e) f is squarefree and all prime divisors of f are inert.
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2. Suppose that I∗(O) is not half-factorial.

(a) If f is squarefree, then Ca
(I(O)

) = [1, 3], Ca
(I∗(O)

) = [2, 3],
Δ

(I(O)
) = Δ

(I∗(O)
) = {1}.

(b) Suppose that f is not squarefree.
(i) If v2 ( f ) /∈ {2, 3} or dK �≡ 1 mod 8, then Ca

(I(O)
) = [1, 4],

Ca
(I∗(O)

) = [2, 4], and Δ
(I(O)

) = Δ
(I∗(O)

) = [1, 2].
(ii) If v2 ( f ) ∈ {2, 3} and dK ≡ 1 mod 8, then Ca

(I(O)
) = [1, 5],

Ca
(I∗(O)

) = [2, 5], and Δ
(I(O)

) = Δ
(I∗(O)

) = [1, 3].
We say that a cancellative monoid H is weakly Krull if

⋂
P∈X(H) HP = H and

{P ∈ X(H) | a ∈ P} is finite for each a ∈ H (whereX(H) denotes the set of height-
one prime ideals of H ). Moreover, a cancellative monoid H is calledweakly factorial
if every nonunit of H is a finite product of primary elements of H . Let all notation
be as in Theorem 1.1, and recall that I∗(O) is a weakly factorial C-monoid, and that
for every atomic monoid H with Δ(H) �= ∅ we have minΔ(H) = gcdΔ(H).

There is a characterization (due to Halter-Koch) when the orderO is half-factorial
[16, Theorem 3.7.15]. This characterization and Theorem 1.1 or [30, Corollary 4.6]
show that the half-factoriality of O implies the half-factoriality of I∗(O). Consider
the case of seminormal orders whence suppose that O is seminormal. Then f is
squarefree (this follows from an explicit characterization of seminormal orders given
by Dobbs and Fontana in [10, Corollary 4.5]). Moreover, I∗(O) is seminormal and
if I∗(O) is not half-factorial, then its catenary degree equals three by [18, Theorems
5.5 and 5.8]. Clearly, this coincides with 2.(a) of the above theorem. Among others,
Theorem 1.1 shows that the sets of distances and of catenary degrees are intervals and
that the minimum of the set of distances equals 1. We discuss some analogous results
and some results which are in sharp contrast to this. If H is a Krull monoid with finite
class group, then H is a weakly Krull C-monoid and if there are prime divisors in all
classes, then the sets Ca(H) and Δ(H) are intervals [23, Theorem 4.1]. On the other
hand, for every finite set S ⊂ N with min S = gcd S (resp. every finite set S ⊂ N≥2)
there is a finitely generated Krull monoid H such thatΔ(H) = S (resp. Ca(H) = S)
[21] resp. [11, Proposition 3.2]. Just as the monoids of ideals under discussion, every
numerical monoid is a weakly factorial C-monoid. However, in contrast to them, the
set of distances need not be an interval [8], its minimum need not be 1 [5, Proposition
2.9], and a recent result of O’Neill and Pelayo [28] shows that for every finite set
S ⊂ N≥2 there is a numerical monoid H such that Ca(H) = S.

We proceed as follows. In Section2 we summarize the required background on
the arithmetic of monoids. In Section3 we do the same for orders in quadratic num-
ber fields and we provide an explicit description of (invertible) irreducible ideals in
orders of quadratic number fields (Theorem 3.6). In Section4 we give the proof of
Theorem 1.1. Based on this result we establish a characterization of those orders O
with minΔ(O) > 1 (Theorem 4.14) which allows us to give the first explicit exam-
ples of orders O with minΔ(O) > 1. Our third main result (given in Theorem 5.2)
states that unions of sets of lengths of I(O) and of I∗(O) are intervals.
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2 Preliminaries on the Arithmetic of Monoids

Let N be the set of positive integers, P ⊂ N the set of prime numbers, and for every
m ∈ N, we denote by

ϕ(m) = ∣∣(Z/mZ)×
∣∣ Euler ′s ϕ- f unction.

For a, b ∈ Q ∪ {−∞,∞}, [a, b] = {x ∈ Z | a ≤ x ≤ b} denotes the discrete inter-
val betweena andb. Let L , L ′ ⊂ Z.Wedenote by L + L ′ = {a + b | a ∈ L , b ∈ L ′}
their sumset. A positive integer d ∈ N is called a distance of L if there exists a k ∈ L
such that L ∩ [k, k + d] = {k, k + d}, and we denote by Δ(L) the set of distances
of L . If ∅ �= L ⊂ N, we denote by ρ(L) = sup L/min L ∈ Q≥1 ∪ {∞} the elasticity
of L . We set ρ({0}) = 1 and max ∅ = min ∅ = sup∅ = 0. All rings and semigroups
are commutative and have an identity element.

2.1 Monoids

Let H be a multiplicatively written commutative semigroup. We denote by H×
the group of invertible elements of H . We say that H is reduced if H× = {1} and
we denote by Hred = {aH× | a ∈ H} the associated reduced semigroup of H . An
element u ∈ H is said to be cancellative if au = bu implies that a = b for all a, b ∈
H . The semigroup H is said to be

– cancellative if every element of H is cancellative.
– unit-cancellative if a, u ∈ H and a = au implies that u ∈ H×.

By definition, every cancellative semigroup is unit-cancellative. All semigroups
of ideals, that are studied in this paper, are unit-cancellative but not necessarily
cancellative.

Throughout this paper, a monoid means a
commutative unit-cancellative semigroup with identity element.

Let H be a monoid. A submonoid S ⊂ H is said to be divisor-closed if a ∈ S and
b ∈ H with b | a implies that b ∈ S. An element u ∈ H is said to be

– prime if u /∈ H× and, for all a, b ∈ H , u | ab and u � a implies u | b.
– primary if u /∈ H× and, for all a, b ∈ H , u | ab and u � a implies u | bn for some
n ∈ N.

– irreducible (or an atom) if u /∈ H× and, for all a, b ∈ H , u = ab implies that
a ∈ H× or b ∈ H×.

The monoid H is said to be atomic if every a ∈ H \ H× is a product of finitely many
atoms. If H satisfies the ascending chain condition (ACC) on principal ideals, then
H is atomic [12, Lemma 3.1].
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2.2 Sets of Lengths

For a set P , we denote by F(P) the free abelian monoid with basis P . Every a ∈
F(P) is written in the form

a =
∏

p∈P

pvp(a) with vp(a) ∈ N0 and vp(a) = 0 for almost all p ∈ P.

We call |a| = ∑
p∈P vp(a) the length of a and supp(a) = {p ∈ P | vp(a) > 0} ⊂ P

the support of a. Let H be an atomic monoid. The free abelian monoid Z(H) =
F(A(H red)) denotes the factorization monoid of H and

π : Z(H) → H red satisfying π(u) = u for all u ∈ A(H red)

denotes the factorization homomorphism of H . For every a ∈ H ,

ZH (a) = Z(a) = π−1(aH×) is the set o f f actori zations of a and

LH (a) = L(a) = {|z| | z ∈ Z(a)} is the set o f lengths of a.

For a divisor-closed submonoid S ⊂ H and an element a ∈ S, we haveZ(S) ⊂ Z(H)

whence ZS(a) = ZH (a), and LS(a) = LH (a). We denote by

– L(H) = {L(a) | a ∈ H} the system of sets of lengths of H and by
– Δ(H) = ⋃

L∈L(H) Δ(L) ⊂ N the set of distances of H .

The monoid H is said to be half-factorial ifΔ(H) = ∅ and if H is not half-factorial,
then minΔ(H) = gcdΔ(H).

2.3 Distances and Chains of Factorizations

Let two factorizations z, z′ ∈ Z(H) be given, say

z = u1 · . . . · u�v1 · . . . · vm and z′ = u1 · . . . · u�w1 · . . . · wn ,

where �,m, n ∈ N0 and all ui , v j , wk ∈ A(H red) such that v j �= wk for all j ∈ [1,m]
and all k ∈ [1, n]. Then d(z, z′) = max{m, n} is the distance between z and z′. If
π(z) = π(z′) and z �= z′, then

1 + ∣∣|z| − |z′|∣∣ ≤ d(z, z′) resp. 2 + ∣∣|z| − |z′|∣∣ ≤ d(z, z′) if H is cancellative
(2.1)

(see [12, Proposition 3.2] and [16, Lemma 1.6.2]). Let a ∈ H and N ∈ N0. A finite
sequence z0, . . . , zk ∈ Z(a) is called an N -chain of factorizations (concatenating z0
and zk) if d(zi−1, zi ) ≤ N for all i ∈ [1, k]. For z, z′ ∈ Z(H) with π(z) = π(z′), we
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set c(z, z′) = min{N ∈ N0 | z and z′ can be concatenated by an N -chain of factor-
izations from Z

(
π(z)

)}. Then, for every a ∈ H ,

c(a) = sup{c(z, z′) | z, z′ ∈ Z(a)} ∈ N0 ∪ {∞} is the catenary degree of a.

Clearly, a has unique factorization (i.e., |Z(a)| = 1) if and only if c(a) = 0. We
denote by

Ca(H) = {c(a) | a ∈ H, c(a) > 0} ⊂ N the set o f catenary degrees of H,

and then

c(H) = supCa(H) ∈ N0 ∪ {∞} is the catenary degree of H.

We use the convention that sup∅ = 0 whence H is factorial if and only if c(H) = 0.
Note that c(a) = 0 for all atoms a ∈ H . The restriction to positive catenary degrees
in the definition of Ca(H) simplifies the statement of some results whence it is
usual to restrict to elements with positive catenary degrees. If H is cancellative, then
Equation (2.1) implies that min Ca(H) ≥ 2 and

2 + supΔ(H) ≤ c(H) if H is not factorial.

If H = ∐
i∈I Hi , then a straightforward argument shows that

Ca(H) =
⋃

i∈I
Ca(Hi ) whence c(H) = sup{c(Hi ) | i ∈ I }. (2.2)

2.4 Semigroups of Ideals

Let R be a domain. We denote by q(R) its quotient field, byX(R) the set of minimal
nonzero prime ideals of R, and by R its integral closure. Then R \ {0} is a cancellative
monoid,

– I(R) is the semigroup of nonzero ideals of R (with usual ideal multiplication),
– I∗(R) is the subsemigroup of invertible ideals of R, and
– Pic(R) is the Picard group of R.

For every I ∈ I(R), we denote by
√
I its radical and byN (I ) = (R : I ) = |R/I | ∈

N ∪ {∞} its norm.
Let S be a Dedekind domain and R ⊂ S a subring. Then R is called an order in

S if one of the following two equivalent conditions hold:

– q(R) = q(S) and S is a finitely generated R-module.
– R is one-dimensional noetherian and R = S is a finitely generated R-module.
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Let R be an order in a Dedekind domain S = R. We analyze the structure of I∗(R)

and of I(R).
Since R is noetherian, Krull’s intersection theorem holds for R whence I(R)

is unit-cancellative [20, Lemma 4.1]. Thus I(R) is a reduced atomic monoid with
identity R and I∗(R) is a reduced cancellative atomic divisor-closed submonoid. For
the sake of clarity, we will say that an ideal of R is an ideal atom if it is an atom of the
monoid I(R). If I, J ∈ I∗(R), then I | J if and only if J ⊂ I . The prime elements
of I∗(R) are precisely the invertible prime ideals of R. Every ideal is a product of
primary ideals belonging to distinct prime ideals (in particular, I∗(R) is a weakly
factorial monoid). Thus every ideal atom (i.e., every I ∈ A(I(R)) is primary, and if√
I = p ∈ X(R), then I is p-primary. Since R is a finitely generated R-module, the

conductor f = (R : R) is nonzero, and we set

P = {p ∈ X(R) | p �⊃ f} and P∗ = X(R) \ P.

Let p ∈ X(R). We denote by

I∗
p(R) = {I ∈ I∗(R) | √

I ⊃ p} and Ip(R) = {I ∈ I(R) | √
I ⊃ p}

the set of invertible p-primary ideals of R and the set of p-primary ideals of R.
Clearly, these are monoids and, moreover,

Ip(R) ⊂ I(R), I∗
p(R) ⊂ Ip(R), and I∗

p(R) ⊂ I∗(R)

are divisor-closed submonoids. Thus I∗
p(R) is a reduced cancellative atomicmonoid,

Ip(R) is a reduced atomicmonoid, and if p ∈ P , then I∗
p(R) = Ip(R) is free abelian.

Since R is noetherian and one-dimensional,

α : I(R) →
∐

p∈X(R)

Ip(R), defined by α(I ) = (Ip ∩ R)p∈X(R) (2.3)

is a monoid isomorphism which induces a monoid isomorphism

α|I∗(R) : I∗(R) →
∐

p∈X(R)

I∗
p(R). (2.4)

3 Orders in Quadratic Number Fields

Thegoal of this section is to proveTheorem3.6which provides an explicit description
of (invertible) ideal atoms of an order in a quadratic number field. These results
are essentially due to Butts and Pall (see [6] where they are given in a different
style), and they were summarized without proof by Geroldinger and Lettl in [19].
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Unfortunately, that presentation is misleading in one case (namely, in case p = 2
and dK ≡ 5 mod 8). Thus we restate the results and provide a full proof.

First we put together some facts on orders in quadratic number fields and fix our
notation which remains valid throughout the rest of this paper. For proofs, details,
and any undefined notions, we refer to [25]. Let d ∈ Z \ {0, 1} be squarefree, K =
Q(

√
d) be a quadratic number field,

ω =
{√

d, if d ≡ 2, 3 mod 4;
1+√

d
2 , if d ≡ 1 mod 4.

and dK =
{
4d, if d ≡ 2, 3 mod 4;
d, if d ≡ 1 mod 4.

Then OK = Z[ω] is the ring of integers and dK is the discriminant of K . For every
f ∈ N, we define

ε ∈ {0, 1} with ε ≡ f dK mod 2 , η = ε − f 2dK
4

, and τ = ε + f
√
dK

2
.

Then
O f = Z ⊕ f ωZ = Z ⊕ τZ

is an order in OK with conductor f = fOK , and every order in OK has this form.
With the notation of Section 2.4 we have

P∗ = {p ∈ X(O f ) | p ⊃ f} = {pZ + f ωZ | p ∈ P, p | f }.

If α = a + b
√
d ∈ K , then α = a − b

√
d is its conjugate, NK/Q(α) = αα = a2 −

b2d is its norm, and tr(α) = α + α = 2a is its trace. For an I ∈ I(O f ), I = {α |
α ∈ I } denotes the conjugate ideal. A simple calculation shows that

NK/Q(r + τ ) = r2 + εr + η for each r ∈ Z.

If O is an order and I ∈ I∗(O), then (OK : IOK ) = (O : I ) and if a ∈ O \ {0}, then

(O :aO) = (OK :aOK ) = |NK/Q(a)|

(see [17, Pages 99 and 100] and note that the factor rings OK /IOK and O/I need

not be isomorphic). For p ∈ P and for a ∈ Z we denote by
(
a
p

)
∈ {−1, 0, 1} the

Kronecker symbol of a modulo p. A prime number p ∈ Z is called

– inert if pOK ∈ spec(OK ).
– split if pOK is a product of two distinct prime ideals of OK .
– ramified if pOK is the square of a prime ideal of OK .

An odd prime
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p is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

inert if
(
dK
p

)
= −1;

split if
(
dK
p

)
= 1;

ramified if
(
dK
p

)
= 0.

and 2 is

⎧
⎪⎨

⎪⎩

inert if dK ≡ 5 mod 8;
split if dK ≡ 1 mod 8;
ramified if dK ≡ 0 mod 2.

Proposition 3.1. Let p be a prime divisor of f , O = O f , and p = pZ + f ωZ.

1. The primary ideals with radical p are exactly the ideals of the form

q = p�(pmZ + (r + τ )Z)

with �,m ∈ N0, � + m ≥ 1, 0 ≤ r < pm andNK/Q(r + τ ) ≡ 0 mod pm. More-
over, N (q) = p2�+m.

2. A primary ideal q = p�(pmZ + (r + τ )Z) is invertible if and only if

NK/Q(r + τ ) �≡ 0 mod pm+1.

Proof. 1. Let q be a p-primary ideal inO. By [25, Theorem 5.4.2] there exist nonneg-
ative integers �,m, r such that q = �(mZ + (r + τ )Z), r < m andNK/Q(r + τ ) ≡ 0
mod m. Since q is nonzero and proper, we have �m > 1.We prove, that �m is a power
of p. First observe that q ⊂ √

q = p implies that p | �m. Assume to the contrary that
there exists another rational prime p′ �= p dividing �m, say �m = p′s. But then
p′s ∈ q, s /∈ q and p′ /∈ p = √

q. A contradiction to q being primary. Conversely,
assume that q = p�(pmZ + (r + τ )Z) for integers �,m ∈ N0, � + m ≥ 1, 0 ≤ r <

pm and NK/Q(r + τ ) ≡ 0 mod pm . By [25, Theorem 5.4.2], q is an ideal of O.
Since p ∈ √

q and p is the only prime ideal in O containing p we obtain that√
q = ⋂

a∈spec(O),a⊃q a = p. The nonzero prime ideal p is maximal, since O is one-
dimensional. Therefore, q is p-primary. It follows from [25, Theorem 5.4.2] that
N (q) = p2�+m .

2. By [25, Theorem 5.4.2], q = p�(pmZ + (r + τ )Z) is invertible if and only if

gcd
(
pm, 2r + ε,

NK/Q(r + τ )

pm

)
= 1. Since p | f andNK/Q(r + τ ) = 1

4 ((2r + ε)2 −
f 2dK ), this is the case if and only if p �

NK/Q(r + τ )

pm , that is NK/Q(r + τ ) �≡ 0

mod pm+1. �

If x ∈ Z and y ∈ N, then let rem(x, y) be the unique z ∈ [0, y − 1] such that
y | x − z. Let p be a prime divisor of f . Note that vp(0) = ∞, and if ∅ �= A ⊂ N0,
then min(A ∪ {∞}) = min A. We set

Pf,p = pZ + f ωZ, I∗
p(O f ) = I∗

Pf,p
(O f ), Ip(O f ) = IPf,p (O f ), and

M f,p = {(x, y, z) ∈ N
3
0 | z < py, vp(z

2 + εz + η) ≥ y}.

Let∗ : M f,p × M f,p → M f,p bedefinedby (u, v, w) ∗ (x, y, z) = (a, b, c),where
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a = u + x + g, b = v + y + e − 2g,

c = rem

(
h − t

h2 + εh + η

pg
, pb

)
, g = min{v, y, vp(w + z + ε)},

e = min{g, vp(w − z), vp(w
2 + εw + η) − v, vp(z

2 + εz + η) − y},

t ∈ Z is such that t
w + z + ε

pg
≡ 1 mod pmin{v,y}−g, and h =

{
z if y ≥ v

w if v > y
.

Let ξ f,p : M f,p → Ip(O f ) be defined by ξ f,p(x, y, z) = px (py
Z + (z + τ )Z).

Proposition 3.2. Let p be a prime divisor of f and I, J ∈ Ip(O f ).

1. (M f,p, ∗) is a reduced monoid and ξ f,p is a monoid isomorphism.
2. If w, z ∈ Z are such that vp(w

2 + εw + η) > 0 and vp(z2 + εz + η) > 0, then
vp(w + z + ε) > 0 and vp(w − z) > 0.

3. N (I )N (J ) | N (I J ) and N (I J ) = N (I )N (J ) if and only if I is invertible or
J is invertible. If I and J are proper, then I J ⊂ pO f .

4. If I ∈ A(Ip(O f )), then there is some I ′ ∈ A(I∗
p(O f )) such that N (I J ) |

N (I ′ J ). If I ∈ A(Ip(O f )) is not invertible, then N (I ) | N (I ′) and N (I ) <

N (I ′) for some I ′ ∈ A(I∗
p(O f )).

5. If I ∈ A(I∗
p(O f )), then I ∈ A(I∗

p(O f )) and I I = N (I )O f .

Proof. 1. Let (u, v, w), (x, y, z) ∈ M f,p. Set g = min{v, y, vp(w + z + ε)} and
e = min{g, vp(w − z), vp(w

2 + εw + η) − v, vp(z2 + εz + η) − y}. Note that
gcd(pmin{v,y}, w + z + ε) = pg , and hence there are some s, t ∈ Z such that
spmin{v,y} + t (w + z + ε) = pg. This implies that t w + z + ε

pg ≡ 1 mod pmin{v,y}−g .
Set a = u + x + g, b = v + y + e − 2g and let h = z if y ≥ v and h = w if v > y.
Finally, set c = rem(h − t h

2 + εh + η
pg , pb). First we show that c does not depend

on the choice of t . Let t ′ ∈ Z be such that t ′ w + z + ε
pg ≡ 1 mod pmin{v,y}−g . Then

pmin{v,y}−g | t − t ′. Note that min{v, y} + vp(h2 + εh + η) ≥ v + y + e, and hence

pb | (t − t ′) h
2 + εh + η

pg . Consequently, c = rem(h − t ′ h
2 + εh + η

pg , pb).

Next we show that (a, b, c) ∈ M f,p. It is clear that (a, b, c) ∈ N
3
0 and c < pb.

It remains to show that vp(c2 + εc + η) ≥ b. Without restriction we can assume

that v ≤ y. Then h = z. Set k = z − t z
2 + εz + η

pg . There is some r ∈ Z such that c =
k + rpb. Since c2 + εc + η = k2 + εk + η + mpb for somem ∈ Z, it is sufficient to
show that vp(k2 + εk + η) ≥ b.

Observe that k2 + εk + η = z2 + εz + η
p2g (p2g − tpg(2z + ε) + t2(z2 + εz + η)) =

z2 + εz + η
p2g (spv+g + tpg(w − z) + t2(z2 + εz + η)). Note that g + vp(w − z) =

min{v + vp(w − z), vp(w + z + ε) + vp(w − z)} = min{v + vp(w − z), vp(w
2 +

εw + η − (z2 + εz + η))} ≥ min{v + vp(w − z), vp(z2 + εz + η), vp(w
2 + εw +

η)} ≥ v. Moreover, we have vp(z2 + εz + η) ≥ y + e. Therefore, vp(k2 + εk +
η) ≥ vp(z2 + εz + η) − 2g + min{v + g, g + vp(w − z), vp(z2 + εz + η)} ≥ y +
e − 2g + v = b.
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Nowweprove that pu(pv
Z + (w + τ )Z)px (py

Z + (z + τ )Z) = pa(pbZ + (c +
τ )Z). (Note that this can be shown by using [25, Theorem 5.4.6].) Set I =
pu(pv

Z + (w + τ )Z)px (py
Z + (z + τ )Z). Without restriction let v ≤ y. Note that

(w + τ )(z + τ ) = wz − η + (w + z + ε)τ . Set α = pv(z + τ ) and β = wz − η +
(w + z + ε)τ . We infer that I = pu+x (pv+y

Z + py(w + τ )Z + αZ + βZ).
Moreover, py(w + τ )Z + αZ = py(w − z)Z + αZ. Observe that sα + tβ =

pgz − t (z2 + εz + η) + pgτ . Set k = z − t z
2 + εz + η

pg . Then sα + tβ = pg(k + τ ).

We have α − pv(k + τ ) = tpv−g(z2 + εz + η) and (w + z + ε)(k + τ ) − β =
spv−g(z2 + εz + η). Set r = pv−g(z2 + εz + η). Consequently, αZ + βZ = srZ +
trZ + pg(k + τ )Z = rZ + pg(k + τ )Z, since gcd(s, t) = 1. Putting these facts
together gives us I = pu+x (pv+y

Z + py(w − z)Z + rZ + pg(k + τ )Z).
We have gcd(pv+y, py(w − z), r) = p� with � = min{v + y, y + vp(w − z),

v − g + vp(z2 + εz + η)} and pv+y
Z + py(w − z)Z + rZ = p�

Z. Note that � =
v + y − g + min{g, vp(w − z) − v + g, vp(z2 + εz + η) − y} and vp(w − z)
− v + g = min{vp(w − z), vp(w − z) + vp(w + z + ε) − v}= min{vp(w − z), vp

(w2 + εw + η − (z2 + εz + η)) − v}, and hence � = v + y − g + min{g,

vp(w − z), vp(w
2 + εw + η − (z2 + εz + η)) − v, vp(z2 + εz + η) − y}.

CASE 1: vp(w
2 + εw + η) ≥ vp(z2 + εz + η). Then vp(w

2 + εw + η) − v ≥
vp(z2 + εz + η) − y and vp(w

2 + εw + η − (z2 + εz + η)) − v ≥ vp(z2 +
εz + η) − y.

CASE 2: vp(z2 + εz + η) > vp(w
2 + εw + η). Then vp(w

2 + εw + η − (z2 +
εz + η)) − v = vp(w

2 + εw + η) − v.

In any case we have min{vp(w
2 + εw + η − (z2 + εz + η)) − v, vp(z2 + εz +

η) − y} = min{vp(w
2 + εw + η) − v, vp(z2 + εz + η) − y}. Obviously, � = v +

y + e − g and I = pu+x+g(pv+y+e−2g
Z + (z − t z

2 + εz + η
pg + τ )Z). Consequently,

I = pa(pbZ + (c + τ )Z).
So far we know that ∗ is an inner binary operation on M f,p. It follows from

Proposition 3.1.1 that ξ f,p is surjective. It follows from [25, Theorem 5.4.2] that ξ f,p

is injective. It is clear that (Ip(O f ), ·) is a reduced monoid. We have shown that
ξ f,p maps products of elements of M f,p to products of elements of Ip(O f ). It is
clear that (0, 0, 0) is an identity element ofM f,p and ξ f,p(0, 0, 0) = O f . Therefore,
(M f,p, ∗) is a reduced monoid and ξ f,p is a monoid isomorphism.

2. Let w, z ∈ Z be such that vp(w
2 + εw + η) > 0 and vp(z2 + εz + η)

> 0.Then p | z2 + εz + η = 1
4 ((2z + ε)2 − f 2dK ), and hence p | 2z + ε.Moreover

p | w2 + εw + η − (z2 + εz + η) = (w + z + ε)(w − z), and thus p | w + z + ε
or p | w − z. Since p | 2z + ε, we infer that p | w + z + ε if and only if p | w − z.
Consequently, min{vp(w + z + ε), vp(w − z)} > 0.

3. By 1., there are (u, v, w), (x, y, z), (a, b, c) ∈ M f,p such that I = pu(pv
Z +

(w + τ )Z), J = px (py
Z + (z + τ )Z), and I J = pa(pbZ + (c + τ )Z) with a =

u + x + g, b = v + y + e − 2g, g = min{v, y, vp(w + z + ε)} and e = min
{g, vp(w − z), vp(w

2 + εw + η) − v, vp(z2 + εz + η) − y}. It follows by
Proposition 3.1.1 that N (I ) = p2u+v , N (J ) = p2x+y , and N (I J ) = p2a+b =
p2(u+x)+v+y+e. It is obvious that N (I )N (J ) | N (I J ). Moreover, N (I J ) = N (I )
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N (J ) if and only if e = 0. We infer by 2. that e = 0 if and only if v = 0 or
y = 0 or vp(w

2 + εw + η) = v or vp(z2 + εz + η) = y, which is the case if and
only if I is invertible or J is invertible by Proposition 3.1.2. If I and J are
proper, then u + v > 0 and x + y > 0, and hence a > 0 by 2. This implies that
I J ⊂ p(pbZ + (c + τ )Z) ⊂ pO f .

4. Let I ∈ A(Ip(O f )). Without restriction let I be not invertible. We have
I = pbZ + (r + τ )Z for some (0, b, r) ∈ M f,p and b < vp(r2 + εr + η). Set c =
vp(r2 + εr + η) and I ′ = pcZ + (r + τ )Z. Then I ′ ∈ A(I∗

p(O f )), N (I ) | N (I ′),
andN (I ) < N (I ′) byProposition 3.1. There is some (x, y, z) ∈ M f,p such that J =
px (py

Z + (z + τ )Z). Then N (I ′ J ) = pc+2x+y and N (I J ) = pb+2x+y+e

with e = min{b, y, vp(r + z + ε), vp(r − z), c − b, vp(z2 + εz + η) − y} ≤ c − b.
Therefore, N (I J ) | N (I ′ J ).

5. Let I ∈ A(I∗
p(O f )). If I = pO f , then I = pO f and N (I ) = p2 by Proposi-

tion 3.1.1. Therefore, I I = N (I )O f . Now let I �= pO f . There is some (0,m, r) ∈
M f,p such that I = pmZ + (r + τ )Z. Set s = pm − r − ε. It follows that I =
pmZ + (r + τ )Z = pmZ + (r + ε − τ )Z = pmZ + (s + τ )Z. Observe that s2 +
εs + η = r2 + εr + η + pm(pm − (2r + ε)). Since p | r2 + εr + η = 1

4 ((2r +
ε)2 − f 2dK ), we have vp(2r + ε) > 0, and hence vp(pm(pm − (2r + ε))) > m.
Since vp(r2 + εr + η) = m, we infer that vp(s2 + εs + η) = m, and thus (0,m, s) ∈
M f,p. Therefore, I ∈ A(I∗

p(O f )). Note that min{m, vp(r + s + ε)} = m, and thus

I I = pmO f = N (I )O f by 1. and Proposition 3.1.1. �

Proposition 3.3. Let p be a prime divisor of f and f ′ = pvp( f ). Set O = O f ,
O′ = O f ′ , P = Pf,p and P ′ = Pf ′,p. For g ∈ N letϕg,p : Ip(Og) → I((Og)Pg,p ) be
defined byϕg,p(I ) = IPg,p and ζg,p : I((Og)Pg,p ) → Ip(Og) be defined by ζg,p(J ) =
J ∩ Og .

1. OP = O′
P ′ .

2. ϕ f,p and ζ f,p are mutually inverse monoid isomorphisms.
3. There is a monoid isomorphism δ : Ip(O) → Ip(O′) such that δ(pO) = pO′

and δ|I∗
p(O) : I∗

p(O) → I∗
p(O′) is a monoid isomorphism.

Proof. 1. It is clear that O ⊂ O′ and P ′ ∩ O = P . Therefore, OP ⊂ O′
P ′ . Observe

thatO \ P = (Z \ pZ) + f ωZ andO′ \ P ′ = (Z \ pZ) + f ′ωZ. It remains to show
that { f ′ω} ∪ {x−1 | x ∈ (Z \ pZ) + f ′ωZ} ⊂ OP . Since

f
f ′ f ′ω = f ω ∈ O and f

f ′ ∈
Z \ pZ ⊂ O \ P , we have f ′ω ∈ OP . Therefore,O′ ⊂ OP . Now let a ∈ Z \ pZ and
b ∈ Z. Observe that a + b f ′ω ∈ O′ ⊂ OP . Since ω + ω,ωω ∈ Z, we
have (a + b f ′ω)(a + b f ′ω) = a2 + ab f ′(ω + ω) + b2( f ′)2ωω ∈ Z \ pZ ⊂ O \ P .
Therefore, 1

a + b f ′ω = a + b f ′ω
(a + b f ′ω)(a + b f ′ω)

∈ OP .

2. It is clear that ϕ f,p is a well-defined monoid homomorphism. Note that ζ f,p is a
well-definedmap (since every nonzero proper ideal J ofOP is PP -primary, and hence
J ∩ O is P-primary). Moreover, ζ f,p(OP) = O. Now let J1, J2 ∈ I(OP). Observe
that J1 J2 ∩ O and (J1 ∩ O)(J2 ∩ O) coincide locally (note that both are either
P-primary or not proper). Therefore, J1 J2 ∩ O = (J1 ∩ O)(J2 ∩ O), and hence
ζ f,p is a monoid homomorphism. If J ∈ I(OP), then (J ∩ O)P = J . Therefore,
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ϕ f,p ◦ ζ f,p = idI(OP ). If I is a P-primary ideal ofO, then IP ∩ O = I . This implies
that ζ f,p ◦ ϕ f,p = idIp(O).

3. Set δ = ζ f ′,p ◦ ϕ f,p. Then δ : Ip(O) → Ip(O′) is a monoid isomorphism by 1.
and 2. Furthermore, we have by 1. that δ(pO) = ζ f ′,p(ϕ f,p(pO)) = ζ f ′,p(pOP) =
ζ f ′,p(pO′

P ′) = pO′
P ′ ∩ O′ = pO′.

SinceO is noetherian, we have I∗
p(O) is the set of cancellative elements of Ip(O).

It follows by analogy that I∗
p(O′) is the set of cancellative elements of Ip(O′).

Therefore, δ(I∗
p(O)) = I∗

p(O′), and hence δ|I∗
p(O) is a monoid isomorphism. �

Lemma 3.4. Let p be a prime number, let k ∈ N0, let c, n ∈ N be such that
gcd(c, p) = 1 and for each � ∈ N let g� = |{y ∈ [0, p� − 1] | y2 ≡ c mod p�}|.
1. If p �= 2, then pkc is a square modulo pn if and only if k ≥ n or (k < n, k is

even and ( c
p ) = 1).

2. 2kc is a square modulo 2n if and only if one of the following conditions holds.

(a) k ≥ n.
(b) k is even and n = k + 1.
(c) k is even, n = k + 2 and c ≡ 1 mod 4.
(d) k is even, n ≥ k + 3 and c ≡ 1 mod 8.

3. If � ∈ N, then g� =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

4 if p = 2, � ≥ 3, c ≡ 1 mod 8

2 if (p �= 2, ( c
p ) = 1) or (p = 2, � = 2, c ≡ 1 mod 4)

1 if p = 2, � = 1

0 else

.

Proof. Note that pkc is a square modulo pn if and only if k ≥ n or (k < n, k is even
and c is a square modulo pn−k).

1. Let p �= 2. It remains to show that if � ∈ N, then c is a square modulo p�

if and only if ( c
p ) = 1. If � ∈ N and c is a square modulo p�, then c is a square

modulo p, and hence ( c
p ) = 1. Now let ( c

p ) = 1. It suffices to show by induction

that c is a square modulo p� for all � ∈ N. The statement is clearly true for � = 1.
Now let � ∈ N and let x ∈ Z be such that x2 ≡ c mod p�. Without restriction let
vp(x2 − c) = �. Note that p � x , and hence 2bx ≡ −1 mod p for some b ∈ Z. Set
y = x + b(x2 − c). Then y2 ≡ c mod p�+1.

2. It remains to show that if � ∈ N, then c is a square modulo 2� if and only if
� = 1 or (� = 2 and c ≡ 1 mod 4) or (� ≥ 3 and c ≡ 1 mod 8). Let � ∈ N and let
c be a square modulo 2�. If � = 2, then c is a square modulo 4 and c ≡ 1 mod 4.
Moreover, if � ≥ 3, then c is a square modulo 8 and c ≡ 1 mod 8.

Clearly, if � = 1 or (� = 2 and c ≡ 1 mod 4), then c is a square modulo 2�. Now
let c ≡ 1 mod 8. It is sufficient to show by induction that c is a square modulo 2�

for each � ∈ N≥3. The statement is obviously true for � = 3. Now let � ∈ N≥3 and
let x ∈ Z be such that x2 ≡ c mod 2�. Without restriction let v2(x2 − c) = �. Set
y = x + 2�−1. Then y2 ≡ c mod 2�+1.
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3. Let � ∈ N. By 1. and 2., it is sufficient to consider the case g� > 0. Let g� > 0.
Observe that g� = |{y ∈ [0, p� − 1] | y2 ≡ 1 mod p�}| = |{y ∈ (Z/p�

Z)× |
ord(y) ≤ 2}|. If p = 2 and � = 1, then (Z/p�

Z)× is trivial, and hence g� = 1. If
(p = 2, � = 2 and c ≡ 1 mod 4) or (p �= 2 and ( c

p ) = 1), then (Z/p�
Z)× is a cyclic

group of even order, and thus g� = 2. Finally, if p = 2, � ≥ 3 and c ≡ 1 mod 8,
then (Z/2�

Z)× ∼= Z/2Z × C2�−2 is the product of two cyclic groups of even order.
Consequently, g� = 4. �

Lemma 3.5. Let p be a prime number, a,m ∈ N, c = a
pvp (a) , M = {x ∈ [0, pm −

1] | vp(x2 − a) = m}, N = |M | and for each � ∈ N let g� = |{y ∈ [0, p� − 1] |
y2 ≡ c mod p�}|.

1. If m < vp(a), then N =
{

ϕ(pm/2) if m is even

0 if m is odd
.

2. Let m = vp(a).

(a) If a is a square modulo pm+1, then N =
{
pm/2−1(p − 2) if p �= 2

2m/2−1 if p = 2
.

(b) If a is not a square modulo pm+1, then N = p�m/2�.

3. If m > vp(a) and a is not a square modulo pm, then N = 0.
4. If k ∈ N is such that m = k + vp(a) and a is a square modulo pm, then N =

pvp(a)/2−1(pgk − gk+1).

Proof. 1. Let m < vp(a). Observe that M = {x ∈ [0, pm − 1] | 2vp(x) = m}.
Clearly, if m is odd, then N = 0. Now let m be even. We have M = {pm/2y |
y ∈ [0, pm/2 − 1], gcd(y, p) = 1}, and thus N = |{y ∈ [0, pm/2 − 1] | gcd(y, p) =
1}| = ϕ(pm/2).

2. Note thatM = {x ∈ [0, pm − 1] | 2vp(x) ≥ m, x2 �≡ a mod pm+1} and |{x ∈
[0, pm − 1] | 2vp(x) ≥ m}| = p�m/2�. Set M ′ = {x ∈ [0, pm − 1] | x2 ≡ a mod
pm+1}. Then M ′ = {x ∈ [0, pm − 1] | 2vp(x) ≥ m, x2 ≡ a mod pm+1} and N =
p�m/2� − |M ′|. Ifa is not a squaremodulo pm+1, thenM ′ = ∅, and hence N = p�m/2�.
Now let a be a square modulo pm+1. Then M ′ �= ∅, and thus m is even. Observe that
M ′ = {x ∈ [0, pm − 1] | 2vp(x) = m, x2 ≡ a mod pm+1} = {pm/2y | y ∈ [0, pm/2

− 1], y2 ≡ c mod p}. Therefore, |M ′| = |{y ∈ [0, pm/2 − 1] | y2 ≡ c mod p}| =
pm/2−1|{y ∈ [0, p − 1] | y2 ≡ c mod p}|.

If p �= 2, then N = p�m/2� − |M ′| = pm/2 − 2pm/2−1 = pm/2−1(p − 2) by
Lemma 3.4.3. Moreover, if p = 2, then N = 2�m/2� − |M ′| = 2m/2 − 2m/2−1 =
2m/2−1 by Lemma 3.4.3.

3. This is obvious.
4. Let k ∈ N be such that m = k + vp(a) and let a be a square modulo pm . It fol-

lows by Lemma 3.4 that vp(a) is even. Set r = vp(a)/2 and for θ ∈ {0, 1} set Mθ =
{x ∈ [0, pm − 1] | 2vp(x) = vp(a), x2 ≡ a mod pm+θ}. ThenM = {x ∈ [0, pm −
1] | vp(x) = r, vp(x2 − a) = m} = M0 \ M1. Since {x ∈ [0, pm − 1] | vp(x) =
r} = {pr y | y ∈ [0, pk+r − 1], gcd(y, p) = 1}, we infer that Mθ = {pr y | y ∈



On Monoids of Ideals of Orders in Quadratic Number Fields 25

[0, pk+r − 1], y2 ≡ c mod pk+θ}. Therefore, |Mθ| = |{y ∈ [0, pk+r − 1] | y2 ≡ c
mod pk+θ}| = pr−θ|{y ∈ [0, pk+θ − 1] | y2 ≡ c mod pk+θ}| = pr−θgk+θ. This
implies that N = |M0| − |M1| = prgk − pr−1gk+1 = pr−1(pgk − gk+1). �

Theorem 3.6. Let O be an order in a quadratic number field K with conductor
f = fOK for some f ∈ N≥2, p be a prime divisor of f , and p = Pf,p.

1. The primary ideals with radical p are exactly the ideals of the form

q = p�(pmZ + (r + τ )Z)

with �,m ∈ N0, � + m ≥ 1,0 ≤ r < pm, andNK/Q(r + τ ) ≡ 0 mod pm.More-
over, N (q) = p2�+m.

2. A primary ideal q = p�(pmZ + (r + τ )Z) is invertible if and only if

NK/Q(r + τ ) �≡ 0 mod pm+1.

3. A primary ideal q with radical p is an ideal atom if and only if q = pO or
q = pmZ + (r + τ )Z with m ∈ N and pm | NK/Q(r + τ ).

4. Table1 gives the number of invertible ideal atoms of the form pmZ + (r + τ )Z

with norm pm; this number is 0 if m is not listed in the table.

Table 1 Number of nontrivial invertible p-primary ideal atoms
m 2h 2vp (f) 2vp (f) + 1 > 2vp (f) + 1

1 ≤ h < vp (f)
p is inert

ϕ
(
pm/2

) pvp(f) 0
p is ramified pvp(f)

p splits pvp(f)−1 (p − 2) 2ϕ pvp(f)

5. The number of ideal atoms with radical p is finite if and only if the number of
invertible ideal atoms with radical p is finite if and only if p does not split.

Proof. 1. and 2. are an immediate consequence of Proposition 3.1.

3. In 1. we have seen, that all p-primary ideals ofO are of the form q = p�(pmZ +
(r + τ )Z). If both � and m are greater than 0, then q is not an ideal atom. Indeed,
q = (pO)�(pmZ + (r + τ )Z) is a nontrivial factorization. It remains to be proven
that pO and pmZ + (r + τ )Z are ideal atoms.

Assume that there exist proper ideals a1, a2 ofO such that pO = a1a2. Since pO
is p-primary, we have a1 and a2 are p-primary. Using this information, we deduce
that pO ⊂ p2, implying

p ∈ pO ⊂ p2 = (p2, p f ω, f 2ω2) = p(p, f ω,
f

p
ω f ω) = p(p, f ω) = pp.
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Therefore, 1 ∈ p, a contradiction.
Assume that there exist proper ideals a1, a2 of O such that pmZ + (r + τ )Z =

a1a2. Note that a1 and a2 are p-primary. By Proposition 3.2.3, it follows that pmZ +
(r + τ )Z ⊂ pO, a contradiction to r + τ /∈ pO.

4. By 1. and 3., the nontrivial p-primary ideal atoms of norm pm are all q =
pmZ + (r + τ )Z with m ∈ N, 0 ≤ r < pm and NK/Q(r + τ ) ≡ 0 mod pm . By 2.,
an ideal of this form is invertible if and only if NK/Q(r + τ ) �≡ 0 mod pm+1.

Thus if we want to count the number of invertible p-primary ideal atoms of the
formq = pmZ + (r + τ )Z,wehave to count the number of solutions r ∈ [0, pm − 1]
of the equation

vp(NK/Q(r + τ )) = m. (3.1)

Set N = |{r ∈ [0, pm − 1] | vp(NK/Q(r + τ )) = m}| and a =
{

(
f
2 )2dK if p = 2

f 2dK if p �= 2
.

Next we show that N = |{r ∈ [0, pm − 1] | vp(r2 − a) = m}|. Note thatNK/Q(r +
τ ) = (2r + ε)2 − f 2dK

4 for each r ∈ [0, pm − 1]. If p = 2, then ε = 0, and henceNK/Q

(r + τ ) = r2 − a. Now let p �= 2. Then vp(NK/Q(r + τ )) = vp((2r + ε)2 − a) for
each r ∈ [0, pm − 1]. Let f : {r ∈ [0, pm − 1] | vp(r2 − a) = m} → {r ∈ [0, pm −
1] | vp((2r + ε)2 − a) = m} and g : {r ∈ [0, pm − 1] | vp((2r + ε)2 − a) = m} →
{r ∈ [0, pm − 1] | vp(r2 − a) = m} be defined by f (r) =

{
r − ε
2 if r − ε is even

r + pm − ε
2 if r − ε is odd

and g(r) = rem(2r + ε, pm) for each r ∈ [0, pm − 1]. Observe that f and g arewell-
defined injectivemaps. Therefore, N = |{r ∈ [0, pm − 1] | vp(r2 − a) = m}| in any
case. Set c = a

pvp (a) and for � ∈ N set g� = |{y ∈ [0, p� − 1] | y2 ≡ c mod p�}|. If
m < vp(a), then the statement follows immediately by Lemma 3.5.1. Therefore, let
m ≥ vp(a). In what follows we use Lemmas 3.4 and 3.5 without further citation.

CASE 1: p = 2 and 2 is inert.We have v2(a) = 2v2( f ) − 2, c ≡ dK ≡ 5 mod 8,
g1 = 1, g2 = 2 and g3 = 0. If m = v2(a), then a is a square modulo 2m+1, and
hence N = 2m/2−1 = ϕ(2m/2). If m = v2(a) + 1, then a is a square modulo 2m , and
thus N = 2v2(a)/2−1(2g1 − g2) = 0. Ifm = v2(a) + 2, then a is a square modulo 2m ,
whence N = 2v2(a)/2−1(2g2 − g3) = 2v2(a)/2+1 = 2v2( f ). Finally, let m ≥ v2(a) + 3.
Then a is not a square modulo 2m , and hence N = 0.

CASE 2: p = 2 and 2 is ramified. Note that v2(a) ∈ {2v2( f ), 2v2( f ) + 1}. First
let v2(a) = 2v2( f ). Then a = f 2d with c ≡ d ≡ 3 mod 4, g1 = 1 and g� = 0 for
each � ∈ N≥2. Ifm = v2(a), then a is a square modulo 2m+1, and thus N = 2m/2−1 =
2v2( f )−1 = ϕ(2v2( f )). If m = v2(a) + 1, then a is a square modulo 2m , and hence
N = 2v2(a)/2−1(2g1 − g2) = 2v2( f ). Finally, letm ≥ v2(a) + 2. Then a is not a square
modulo 2m , and thus N = 0.

Now let v2(a) = 2v2( f ) + 1. If m = v2(a), then a is not a square modulo 2m+1,
and hence N = 2�m/2� = 2v2( f ). Ifm > v2(a), then a is not a square modulo 2m , and
thus N = 0.
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CASE 3: p = 2 and 2 splits. Observe that v2(a) = 2v2( f ) − 2, c ≡ dK ≡ 1
mod 8, g1 = 1, g2 = 2 and g� = 4 for each � ∈ N≥3. Ifm = v2(a), then a is a square
modulo 2m+1, and hence N = 2m/2−1 = ϕ(2m/2). Now let m > v2(a) and set k =
m − v2(a). Note that a is a squaremodulo 2m , and hence N = 2v2(a)/2−1(2gk − gk+1).
If m < v2(a) + 3, then N = 0. Finally, let m ≥ v2(a) + 3. Then N = 2v2(a)/2+1 =
2v2( f ) = 2ϕ(2v2( f )).

CASE 4: p �= 2 and p is inert. We have vp(a) = 2vp( f ), ( c
p ) = ( dKp ) = −1 and

g� = 0 for each � ∈ N. Ifm = vp(a), then a is not a square modulo pm+1, and hence
N = p�m/2� = pvp( f ). If m > vp(a), then a is not a square modulo pm , and thus
N = 0.

CASE 5: p �= 2 and p is ramified. It follows that vp(a) = 2vp( f ) + 1. If m =
vp(a), then a is not a square modulo pm+1, and thus N = p�m/2� = pvp( f ). If m >

vp(a), then a is not a square modulo pm , and thus N = 0.

CASE 6: p �= 2 and p splits. Note that vp(a) = 2vp( f ), ( c
p ) = ( dKp ) = 1 and

g� = 2 for each � ∈ N. If m = vp(a), then a is a square modulo pm+1, and hence
N = pm/2−1(p − 2) = pvp( f )−1(p − 2). If m > vp(a), then a is a square modulo
pm , and thus N = pvp(a)/2−1(pgk − gk+1) = 2pvp( f )−1(p − 1) = 2ϕ(pvp( f )).

5. It is an immediate consequence of 4. that the number of invertible ideal atoms
with radical p is finite if and only if p does not split. It remains to show thatA(Ip(O))

is finite if and only ifA(I∗
p(O)) is finite. It follows from [1, Theorem 4.3] that I(Op)

is a finitely generated monoid if and only if I∗(Op) is a finitely generated monoid.
Therefore, Proposition 3.3.2 implies that Ip(O) is a finitely generated monoid if
and only if I∗

p(O) is a finitely generated monoid. Observe that Ip(O) and I∗
p(O)

are atomic monoids. Therefore, A(Ip(O)) is finite if and only if Ip(O) is a finitely
generated monoid if and only if I∗

p(O) is a finitely generated monoid if and only if
A(I∗

p(O)) is finite. �

4 Sets of Distances and Sets of Catenary Degrees

The goal in this section is to prove Theorem 1.1. The proof is based on the precise
description of ideals given in Theorem 3.6. We proceed in a series of lemmas and
propositions and use all notation on orders as introduced at the beginning of Section3.
In particular, O = O f is an order in a quadratic number with conductor fOK for
some f ∈ N≥2.

Proposition 4.1. Let H be a reduced atomicmonoid and suppose there is a cancella-
tive atom u ∈ A(H) such that for each a ∈ H \ H× there are n ∈ N0 and v ∈ A(H)

such that a = unv.

1. For all n,m ∈ N0 and v,w ∈ A(H) such that unv = umw, it follows that n = m
and v = w.

2. For all n ∈ N0 and v ∈ A(H), it follows that max L(unv) = n + 1.
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3. c(H) = sup{c(w · y, un · v) | n ∈ N and v,w, y ∈ A(H) such that wy = unv}.
4. If H is half-factorial, then c(H) ≤ 2.
5. supΔ(H) = sup{� − 2 | � ∈ N≥3 such that L(vw) ∩ [2, �] = {2, �} for some

v,w ∈ A(H)}.
Proof. 1. Let n,m ∈ N0 and v,w ∈ A(H) be such that unv = umw. Without restric-
tion let n ≤ m. Since u is cancellative, we infer that v = um−nw. Since v ∈ A(H),
we have n = m, and thus v = w.

2. It is clear that n + 1 ∈ L(unv) for all n ∈ N0 and v ∈ A(H). Therefore, it is suf-
ficient to show by induction that for all n ∈ N0 and v ∈ A(H), max L(unv) ≤ n + 1.
Let n ∈ N0 and v ∈ A(H). If n = 0, then the assertion is obviously true. Now let
n > 0 and z ∈ Z(unv). Then there are some z′, z′′ ∈ Z(H) \ {1} such that z = z′ · z′′.
There are some m ′,m ′′ ∈ N0 and w′, w′′ ∈ A(H) such that π(z′) = um

′
w′ and

π(z′′) = um
′′
w′′. There are some � ∈ N and y ∈ A(H) such that w′w′′ = u�y. We

infer that unv = um
′+m ′′+�y, and thus n = m ′ + m ′′ + � by 1. Since m ′,m ′′ < n, it

follows by the induction hypothesis that |z′| ≤ m ′ + 1 and |z′′| ≤ m ′′ + 1. Conse-
quently, |z| ≤ m ′ + m ′′ + 2 ≤ m ′ + m ′′ + � + 1 = n + 1.

3. Set k = sup{c(w · y, un · v) | n ∈ N0 and v,w, y ∈ A(H) such that wy =
unv}. Since c(H) = sup{c(z, z′) | a ∈ H, z, z′ ∈ Z(a)}, it is obvious that k ≤ c(H).
It remains to show by induction that for all n ∈ N0 and v ∈ A(H), it follows that
c(unv) ≤ k. Let n ∈ N0 and v ∈ A(H). Since c(v) = 0, we can assume without
restriction that n > 0. Since c(unv) = sup{c(z, un · v) | z ∈ Z(unv)}, it remains to
show that c(z, un · v) ≤ k for all z ∈ Z(unv). Let z ∈ Z(unv).

CASE 1: For all w, y ∈ A(H) \ {u}, we have w · y � z. There are some m ∈
N and w ∈ A(H) such that z = um · w. We infer by 1. that z = un · v, and thus
c(z, un · v) = 0 ≤ k.

CASE 2: There are some w, y ∈ A(H) \ {u} such that w · y | z. Set z′ = z
w·y .

There exist m ∈ N and a ∈ A(H) such that wy = uma. We infer that m ≤ n
and unv = π(z) = π(w · y)π(z′) = umaπ(z′), and thus aπ(z′) = un−mv. Observe
that c(z, um · a · z′) ≤ c(w · y, um · a) ≤ k. Since n − m < n, it follows by the
induction hypothesis that c(um · a · z′, un · v) ≤ c(a · z′, un−m · v) ≤ k, and hence
c(z, un · v) ≤ k.

4. Let H be half-factorial, n ∈ N and v,w, y ∈ A(H) be such thatwy = unv. We
infer that n = 1, and thus c(w · y, un · v) ≤ d(w · y, u · v) ≤ 2. Therefore, c(H) ≤
2 by 3.

5. Set N = sup{� − 2 | � ∈ N≥3 such thatL(vw) ∩ [2, �] = {2, �} for somev,w ∈
A(H)}. It is obvious that N ≤ supΔ(H). It remains to show that k ≤ N for each
k ∈ Δ(H). Let k ∈ Δ(H). Then there are some a ∈ H and r, s ∈ L(a) such that
r < s, L(a) ∩ [r, s] = {r, s}, and k = s − r . Let z ∈ Z(a) with |z| = r be such that
vu(z) = max{vu(z′) | z′ ∈ Z(a) with |z′| = r}. Since r < max L(a), it follows by 2.,
that there are some v,w ∈ A(H) \ {u} such that v · w | z. There are some n ∈ N

and y ∈ A(H) such that vw = un y. Since vu(z) is maximal among all factorizations
of a of length r , we have n ≥ 2. Consequently, there is some � ∈ L(vw) such that
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2 < � ≤ n + 1 and L(vw) ∩ [2, �] = {2, �}. Note that r + � − 2 ∈ L(a), and thus
s ≤ r + � − 2. This implies that k ≤ � − 2 ≤ N . �

Theorem 3.6 implies that, for all prime divisors p of f , I∗
p(O f ) and Ip(O f ) are

reduced atomic monoids satisfying the assumption in Proposition 4.1.

Lemma 4.2. Let p be a prime divisor of f .

1. Z(pPf,p) = {A · Pf,p | A = Pf,p or A ∈ A(I∗
p(O f )) such that N (A) = p2}

and 1 ∈ Ca(Ip(O f )).
2. If I, J ∈ A(I∗

p(O f )) are such thatN (I ) = p2 andN (J ) > p2, then I J = pL
for some L ∈ A(I∗

p(O f )).
3. 2 ∈ Ca(I∗

p(O f )).

Proof. 1. Note that {I ∈ Ip(O f ) | N (I ) = p} = {Pf,p}. First we show that
Z(pPf,p) = {A · Pf,p | A = Pf,p or A ∈ A(I∗

p(O f )) such that N (A) = p2}.
Let z ∈ Z(pPf,p). It follows from Proposition 4.1.2 that |z| ≤ 2, and hence |z| =

2. Consequently, z = A · B for some A, B ∈ A(Ip(O f )). By Proposition 3.2.1 there
are some (u, v, w), (x, y, t) ∈ M f,p such that A = pu(pv

Z + (w + τ )Z) and B =
px (py

Z + (t + τ )Z). Set g = min{v, y, vp(w + t + ε)} and e = min{g, vp(w −
t), vp(w

2 + εw + η) − v, vp(t2 + εt + η) − y}. We infer by Proposition 3.2.1 that
u + x + g = 1 and v + y + e − 2g = 1. Note that g ∈ {0, 1}. If g = 0, then u + x =
v + y = 1, and thus (A = pO f and B = Pf,p) or (A = Pf,p and B = pO f ). Now
let g = 1. Then u = x = 0, v, y ≥ 1, v + y + e = 3, and e ∈ {0, 1}. If e = 1,
then v = y = 1, and thus A = B = Pf,p. Now let e = 0. Then (v = 1 and y = 2)
or (v = 2 and y = 1). Without restriction let v = 2 and y = 1. Then B = Pf,p,
N (A) = pv = p2, and N (A)N (B) = p3 = N (pPf,p) = N (AB). Since B is not
invertible, it follows by Proposition 3.2.3 that A is invertible.

To prove the converse inclusion note that Pf,p = pZ + (r + τ )Z for some
(0, 1, r) ∈ M f,p. By Proposition 3.2.1 we have P2

f,p = pa(pbZ + (c + τ )Z with
(a, b, c) ∈ M f,p, a = min{1, vp(2r + ε)} and b = 2 + e − 2a with e = min{a,

vp(r2 + εr + η) − 1}. By Proposition 3.2.3 we have a > 0, and thus a = b = e = 1.
Consequently, P2

f,p = pPf,p. Now let A ∈ A(I∗
p(O f )) be such that N (A) = p2. It

follows by Proposition 3.2.3 that N (APf,p) = N (A)N (Pf,p) = p3 and APf,p =
pI for some I ∈ Ip(O f ). We infer that N (I ) = p, and hence I = Pf,p.

Observe that d(z′, z′′) ≤ 1 for all z′, z′′ ∈ Z(pPf,p) and (pO f ) · Pf,p and P2
f,p

are distinct factorizations of pPf,p. Therefore, 1 = c(pPf,p) ∈ Ca(Ip(O f )).

2. Let I, J ∈ A(I∗
p(O f )) be such that N (I ) = p2 and N (J ) > p2. Without

restriction we can assume that I �= pO f . There are some (0, 2, r), (0, k, s) ∈
M f,p such that I = p2Z + (r + τ )Z and J = pkZ + (s + τ )Z. Since I and J
are invertible, we have vp(r2 + εr + η) = 2 and vp(s2 + εs + η) = k > 2. There-
fore, vp(r + s + ε) + vp(r − s) = vp(r2 + εr + η − (s2 + εs + η)) = 2, and thus
vp(r + s + ε) = 1, by Proposition 3.2.2. Therefore, min{2, k, vp(r + s + ε)} = 1,
and hence I J = pL for some L ∈ A(I∗

p(O f )) by Proposition 3.2.1.

3. We distinguish two cases.
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CASE 1: p �= 2 or vp( f ) ≥ 2 or d �≡ 1 mod 8. It follows from Theorem 3.6
that there is some I ∈ A(I∗

p(O f )) such that N (I ) = p2 and I �= pO f . We have

I I = (pO f )
2, and hence L(I I ) = {2}. Since I · I and (pO f ) · (pO f ) are distinct

factorizations of I I , we have 2 = c(I I ) ∈ Ca(I∗
p(O f )).

CASE 2: p = 2, vp( f ) = 1 and d ≡ 1 mod 8. By Proposition 3.3.3 we can
assumewithout restriction that f = 2. ByTheorem3.6 there is some I ∈ A(I∗

2 (O f ))

such that N (I ) = 8. There is some (0, 3, r) ∈ M f,2 such that I = 8Z + (r + τ )Z.
We have v2(r2 − d) = 3, and hence v2(r) = 0. Therefore, min{3, v2(2r)} = 1,
and thus I 2 = 2J for some J ∈ A(I∗

2 (O f )). Consequently, L(I 2) = {2}. Since
I · I and (2O f ) · J are distinct factorizations of I 2, it follows that 2 = c(I 2) ∈
Ca(I∗

p(O f )). �
Proposition 4.3. Let p be an odd prime divisor of f such that vp( f ) ≥ 2.

1. There is a C ∈ A(I∗
p(O f )) such that L(C2) = {2, 3} whence 1 ∈ Δ(I∗

p(O f ))

and 3 ∈ Ca(I∗
p(O f )). Moreover, if (p �= 3 or d �≡ 2 mod 3 or vp( f ) > 2), then

there are I, J, L ∈ A(I∗
p(O f )) such that I 2 = p2 J and J 2 = p2L.

2. If |Pic(O f )| ≤ 2 and (p �= 3 or d �≡ 2 mod 3 or vp( f ) > 2), then there is a
nonzero primary a ∈ O f such that 2, 3 ∈ L(a) whence 1 ∈ Δ(O f ).

Proof. 1. By Proposition 3.3.3 there is a monoid isomorphism δ : I∗
p(O f ) →

I∗
p(O f

2v2( f )
) such that δ(pO f ) = pO f

2v2( f )
. Therefore, we can assume without restric-

tion that f is odd.

CLAIM: L(I 2) = {2, 3} for some I ∈ A(I∗
p(O f )), 1 ∈ Δ(I∗

p(O f )), 3 ∈ Ca
(I∗

p(O f )) and if vp(p4 + f 2d) = 4, then I 2 = p2 J and J 2 = p2L for some I, J, L ∈
A(I∗

p(O f )).

For r ∈ N0 set k = vp(NK/Q(r + τ )) and I = pkZ + (r + τ )Z. Let k > 0 and
r < pk . Then I ∈ A(I∗

p(O f )). Moreover, I 2 = pa(pbZ + (c + τ )Z) with a = min

{k, vp(2r + ε)}, b = 2(k − a) and c = rem(r − t NK/Q(r + τ )

pa , pb) for each t ∈ Zwith

t 2r + ε
pa ≡ 1 mod pk−a . Set J = pbZ + (c + τ )Z. Then I 2 = pa J and if b > 0, then

J ∈ A(I∗
p(O f )). In particular, if a = 2 and b > 0, then I, J ∈ A(I∗

p(O f )) and
L(I 2) = {2, 3}, and hence 1 ∈ Δ(I 2) ⊂ Δ(I∗

p(O f )) and 3 = c(I 2) ∈ Ca(I∗
p(O f )).

Observe that J 2 = pa
′
(pb

′
Z + (c′ + τ )Z)witha′ = min{b, vp(2c + ε)},b′ = 2(b −

a′) and c′ ∈ N0 such that c′ < pb
′
. Set L = pb

′
Z + (c′ + τ )Z. Then J 2 = pa

′
L and

if b′ > 0, then L ∈ A(I∗
p(O f )).

CASE 1: d �≡ 1 mod 4. Set r = p2. We haveNK/Q(r + τ ) = p4 − f 2d, k ≥ 4,

a = 2, b = 2(k − 2) > 0, r < pk , and t = pk−2 + 1
2 satisfies the congruence. There-

fore, c = rem(p2 − (pk−2 + 1)(p4 − f 2d)

2p2 , p2(k−2)) = p4 + f 2d + pk−2 f 2d − pk+2 + 2�p2(k−1)

2p2 for

some � ∈ Z. For the rest of this case let vp(p4 + f 2d) = 4. It follows that vp(c) = 2,
and hence a′ = min{2(k − 2), vp(2c)} = 2 and b′ = 4(k − 3) > 0.

CASE 2: d ≡ 1 mod 4. Set r = p2 − 1
2 . Observe that NK/Q(r + τ ) = p4 − f 2d

4 ,
k ≥ 4, a = 2, b = 2(k − 2) > 0, r < pk , and t = 1 satisfies the congruence. Conse-
quently, 2c + ε = 2rem(

p2 − 1
2 − p4 − f 2d

4p2 , p2(k−2)) + 1 = p4 + f 2d + 4�p2(k−1)

2p2 for some
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� ∈ Z. For the rest of this case let vp(p4 + f 2d) = 4. We infer that a′ = min{2(k −
2), vp(2c + ε)} = 2. Moreover, b′ = 4(k − 3) > 0. This proves the claim.

Note that if g ∈ N with vp(g) = vp( f ), then there is a monoid isomorphism
α : I∗

p(O f ) → I∗
p(Og) such thatα(pO f ) = pOg by Proposition 3.3.3. By the claim

it remains to show that if (p �= 3 or d �≡ 2 mod 3 or vp( f ) > 2), then there is some
odd g ∈ N such that vp(g) = vp( f ) and vp(p4 + g2d) = 4.

Let (p �= 3 or d �≡ 2 mod 3 or vp( f ) > 2). Furthermore, let vp(p4 + f 2d) >

4. This implies that vp( f ) = 2 and p � d. Without restriction we can assume
that vp(p4 + (p2)2d) > 4. We have vp(1 + d) > 0, and hence p �= 3. Set g =
(p − 2)p2. Then vp(g) = vp( f ). Assume that vp(p4 + g2d) > 4. Then p5 | p4 +
(p − 2)2 p4d − p4(1 + d), and thus p | (p − 2)2 − 1 = p2 − 4p + 3. It follows that
p = 3, a contradiction.

2. Let |Pic(O f )| ≤ 2 and let p �= 3 or d �≡ 2 mod 3 or vp( f ) > 2. By 1. there
are some I, J, L ∈ A(I∗

p(O f )) such that I 2 = p2 J and J 2 = p2L . We infer that
I 2 is principal, and hence J and L are principal. Consequently, there are some
u, v ∈ A(O f ) such that J = uO f , L = vO f and u2 = p2v. Note that u2 is primary.
Since p ∈ A(O f ), we have 2, 3 ∈ L(u2). Therefore, 1 ∈ Δ(O f ). �

Proposition 4.4. Let p be a prime divisor of f such that vp( f ) ≥ 2. Then there
are I, J ∈ A(I∗

p(O f )) such that L(I J ) = {2, 4} whence 2 ∈ Δ(I∗
p(O f )) and 4 ∈

Ca(I∗
p(O f )).

Proof. CASE 1: p �= 2 or vp( f ) > 2 or d �≡ 1 mod 8. By Theorem 3.6 there is
some I ∈ A(I∗

p(O f )) such thatN (I ) = p4. Set J = I . We infer that I J = (pO f )
4,

and hence {2, 4} ⊂ L(I J ) ⊂ {2, 3, 4}. Assume that 3 ∈ L(I J ). Then there are some
A, B,C ∈ A(I∗

p(O f )) such that I J = ABC and N (A) ≤ N (B) ≤ N (C). Again
by Theorem 3.6 we have N (L) ∈ {p2} ∪ {pn | n ∈ N≥4} for all L ∈ A(I∗

p(O f )).
This implies thatN (A) = N (B) = p2 andN (C) = p4. It follows by Lemma 4.2.2
that ABC = p2L for some L ∈ A(I∗

p(O f )). Consequently, L = p2O f , a contradic-
tion. We infer that L(I J ) = {2, 4} whence 2 ∈ Δ(I∗

2 (O f )) and 4 ∈ Ca(I∗
2 (O f )).

CASE 2: p = 2, vp( f ) = 2 and d ≡ 1 mod 8. Since I∗
2 (O4) ∼= I∗

2 (O f ) by
Proposition 3.3.3, we can assume without restriction that f = 4. We set

w =
{
6 if d ≡ 1 mod 16

2 if d ≡ 9 mod 16
and z =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

18 if d ≡ 1 mod 32

22 if d ≡ 9 mod 32

2 if d ≡ 17 mod 32

6 if d ≡ 25 mod 32

.

In any case, we have v2(NK/Q(w + τ )) = 5 and v2(NK/Q(z + τ )) = 6. Set I =
32Z + (w + τ )Z and J = 64Z + (z + τ )Z. Then I, J ∈ A(I∗

2 (O4)) and Proposi-
tion 3.2.1 implies that I J = 2a(2bZ + (c + τ )Z) with a = min{5, 6, v2(w + z)},
b = 5 + 6 − 2a and c ∈ N0 such that c < 2b. Observe that v2(w + z) = 3, and
thus a = 3 and b = 5. Set L = 32Z + (c + τ )Z. Then L ∈ A(I∗

2 (O4)) and I J =
(2O4)

3L . We infer that {2, 4} ⊂ L(I J ) ⊂ {2, 3, 4}, by Proposition 4.1.2.
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Assume that 3 ∈ L(I J ). Then there are some A, B,C ∈ A(I∗
2 (O4)) such that

I J = ABC and N (A) ≤ N (B) ≤ N (C). It follows by Theorem 3.6 that N (U ) ∈
{4} ∪ {2n | n ≥ 5} for allU ∈ A(I∗

2 (O4)). SinceN (A)N (B)N (C) = N (I )N (J ) =
2048,we infer thatN (A) = N (B) = 4 andN (C) = 128. It follows byLemma4.2.2
that ABC = 4D for some D ∈ A(I∗

2 (O4)). This implies that D = 2L , a contra-
diction. Consequently, L(I J ) = {2, 4}, and thus 2 ∈ Δ(I∗

2 (O4)) and 4 = c(I J ) ∈
Ca(I∗

2 (O4)). �
Proposition 4.5. Suppose that one of the following conditions hold:

(a) v2( f ) ≥ 5 or (v2( f ) = 4 and d �≡ 1 mod 4).
(b) v2( f ) = 3 and d ≡ 2 mod 4.
(c) v2( f ) = 2 and d ≡ 1 mod 4.

Then there are I, J ∈ A(I∗
2 (O f )) with L(I J ) = {2, 3} whence 1 ∈ Δ(I∗

2 (O f )) and
3 ∈ Ca(I∗

2 (O f )). If |Pic(O f )| ≤ 2, then there is a nonzero primary a ∈ O f with
2, 3 ∈ L(a) whence 1 ∈ Δ(O f ).

Proof. CASE1: v2( f ) ≥ 5or (v2( f ) = 4 andd �≡ 1 mod 4).We show that there are
some A, B, I, J, L ∈ A(I∗

2 (O f )) such that A2 = 32I , B2 = 16J and I J = 4L . Set
k = v2(NK/Q(16 + τ )) and A = 2kZ + (16 + τ )Z. Then k ≥ 8, A ∈ A(I∗

2 (O f ))

and A2 = 32(22k−10
Z + (c + τ )Z) with (5, 2k − 10, c) ∈ M f,2 and v2(c) ≥ 3. Set

I = 22k−10
Z + (c + τ )Z. Then I ∈ A(I∗

2 (O f )). Set B = 64Z + (8 + τ )Z. Then
B ∈ A(I∗

2 (O f )) and B2 = 16(16Z + (4 + τ )Z). Set J = 16Z + (4 + τ )Z. Then
B2 = 16J , J ∈ A(I∗

2 (O f )) and I J = 4L with L ∈ A(I∗
2 (O f )).

CASE 2: v2( f ) = 3 and d ≡ 2 mod 4. We show that AB = 2I , AC = 2I ′,
BC = 8I ′′, B2 = 16J , I J = 4L , I ′ J = 4L ′, I ′′ J = 4L ′′ for some A, B,C, I, I ′,
I ′′, J, L , L ′, L ′′ ∈ A(I∗

2 (O f )). By Proposition 3.3.3, we can assumewithout restric-
tion that f = 8. Set A = 4Z + (2 + τ )Z, B = 64Z + (8 + τ )Z and C = 128Z +
τZ. Then A, B,C ∈ A(I∗

2 (O f )), AB = 2(64Z + (40 + τ )Z), AC = 2(128Z +
(64 + τ )Z), B2 = 16(16Z + (12 + τ )Z) and BC = 8(128Z + (c + τ )Z) with
(3, 7, c) ∈ M f,2 and v2(c) = 4. Furthermore, (64Z + (40 + τ )Z)(16Z + (12 + τ )

Z) = 4(64Z + (56 + τ )Z), (128Z + (64 + τ )Z)(16Z + (12 + τ )Z) = 4(128
Z + (r + τ )Z) with (2, 7, r) ∈ M f,2 and (128Z + (c + τ )Z)(16Z + (12 + τ )Z) =
4(128Z + (s + τ )Z) with (2, 7, s) ∈ M f,2. Set J = 16Z + (12 + τ )Z. In partic-
ular, if I ∈ {64Z + (40 + τ )Z, 128Z + (64 + τ )Z, 128Z + (c + τ )Z}, then I, J ∈
A(I∗

2 (O f )) and I J = 4L for some L ∈ A(I∗
2 (O f )).

CASE 3: v2( f ) = 2 and d ≡ 1 mod 4. We show that A2 = 4I and I 2 = 4L for
some A, I, L ∈ A(I∗

2 (O f )). By Proposition 3.3.3, we can assumewithout restriction
that f = 4. First let d ≡ 1 mod 8. If d ≡ 1 mod 16, then set A = 32Z + (6 +
τ )Z and if d ≡ 9 mod 16, then set A = 32Z + (2 + τ )Z. In any case, we have
A ∈ A(I∗

2 (O f )) and A2 = 4(64Z + (c + τ )Z)with (2, 6, c) ∈ M f,2 and v2(c) = 1.
Set I = 64Z + (c + τ )Z. Then I ∈ A(I∗

2 (O f )), A2 = 4I and I 2 = 4(256Z + (r +
τ )Z) with (2, 8, r) ∈ M f,2.

Now let d ≡ 5 mod 8. Set A = 16Z + (2 + τ )Z. Then A ∈ A(I∗
2 (O f )) and

A2 = 4(16Z + (c + τ )Z)with (2, 4, c) ∈ M f,2 and v2(c) = 1. Set I = 16Z + (c +
τ )Z. Then A2 = 4I and I 2 = 4(16Z + (z + τ )Z) with (2, 4, z) ∈ M f,2.
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Using the case analysis above we can find I, J, L ∈ A(I∗
2 (O f )) such that I J =

4L . In particular, L(I J ) = {2, 3}, 1 ∈ Δ(I∗
p(O f )) and 3 = c(I J ) ∈ Ca(I∗

p(O f )).
Now let |Pic(O f )| ≤ 2. Observe that if A, B,C ∈ A(I∗

2 (O f )), then A2 is principal
and {AB, AC, BC} contains a principal ideal of O f . In any case we can choose
I, J, L to be principal. There are some u, v, w ∈ A(O f ) such that I = uO f , J =
vO f , L = wO f and uv = 4w. Note that uv is primary. Since 2 ∈ A(O f ), we have
2, 3 ∈ L(uv), and thus 1 ∈ Δ(O f ). �

Proposition 4.6. Let p be a prime divisor of f . Then the following statements are
equivalent:

(a) I∗
p(O f ) is half-factorial.

(b) Ip(O f ) is half-factorial.
(c) c(I∗

p(O f )) = 2.
(d) c(Ip(O f )) = 2.
(e) vp( f ) = 1 and p is inert.

Proof. (a) ⇒ (e) If vp( f ) > 1 or p is not inert, then there is some I ∈ A(I∗
p(O f ))

such that N (I ) > p2 by Theorem 3.6.4. Set k = vp(N (I )). Then k ≥ 3 and I I =
(pO f )

k by Proposition 3.2.5. Since I ∈ A(I∗
p(O f )), we have 2, k ∈ L(I I ).

(e) ⇒ (b) Observe that N (A) ∈ {p, p2} for each A ∈ A(Ip(O f )), and thus
A(Ip(O f )) = {Pf,p} ∪ {A ∈ A(I∗

p(O f )) | N (A) = p2}. Let I ∈ Ip(O f ) \ {O f }.
There are some k ∈ N0 and J ∈ A(Ip(O f )) such that I = pk J . Let z ∈ Z(I ). Then
z = (

∏n
i=1 Ii ) · P�

f,p with �, n ∈ N0 and Ii ∈ A(I∗
p(O f )) for each i ∈ [1, n]. Note

that |z| = n + �. It is sufficient to show that n + � = k + 1.

CASE 1: I is invertible. Then J is invertible and � = 0. It follows that p2n =
N (

∏n
i=1 Ii ) = N (I ) = N (pk J ) = p2k+2 by Proposition 3.2.3, and thus n + � =

n = k + 1.

CASE 2: I is not invertible. Then J = Pf,p and � > 0. It follows from Lemma 4.2
that P�

f,p = p�−1Pf,p. Consequently,

p2(n+�)−1 = N (

n∏

i=1

Ii )N (p�−1Pf,p) = N (I ) = N (pk Pf,p) = p2k+1

by Proposition 3.2.3, and hence n + � = k + 1.

(b) ⇒ (d) Since I∗
p(O f ) is a cancellative divisor-closed submonoid of Ip(O f )

and not factorial, we infer by Proposition 4.1.4 that

2 ≤ c(I∗
p(O f )) ≤ c(Ip(O f )) ≤ 2.

(d) ⇒ (c) Note that I∗
p(O f ) is a divisor-closed submonoid of Ip(O f ), and

thus c(I∗
p(O f )) ≤ c(Ip(O f )) = 2. Since I∗

p(O f ) is not factorial, we infer that
c(I∗

p(O f )) = 2.
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(c) ⇒ (a) Since I∗
p(O f ) is cancellative and not factorial, it follows that 2 +

supΔ(I∗
p(O f )) ≤ c(I∗

p(O f )) = 2, and thus supΔ(I∗
p(O f )) = 0. Consequently,

Δ(I∗
p(O f )) = ∅, and hence I∗

p(O f ) is half-factorial. �

Lemma 4.7. Let p be a prime divisor of f , |Pic(O f )| ≤ 2, I, J, L ∈ A(I∗
p(O f )).

1. If J is principal and I J = p2L, then 1 ∈ Δ(O f ).
2. If I and J are not principal and I J = pL, then 1 ∈ Δ(O f ).

Proof. Note that if |Pic(O f )| > 1, then it follows from [16, Corollary 2.11.16] that
there is some invertible prime ideal P of O f that is not principal. Observe that
p ∈ A(O f ). Also note that if I is not principal, then P I is principal, and hence P I
is generated by an atom ofO f , since P I has no nontrivial factorizations in I∗(O f ).

1. Let J be principal and I J = p2L . There is some v ∈ A(O f ) such that J =
vO f .

CASE 1: I is principal. Then L is principal, and hence there are some u, w ∈
A(O f ) such that I = uO f , L = wO f and uv = p2w. We infer that 2, 3 ∈ L(uv),
and thus 1 ∈ Δ(O f ).

CASE 2: I is not principal. Then L is not principal and |Pic(O f )| > 1, and thus
there are some u, w ∈ A(O f ) such that P I = uO f , PL = wO f and uv = p2w. It
follows that 2, 3 ∈ L(uv), and thus 1 ∈ Δ(O f ).

2. Let I and J not be principal and I J = pL . Then L is principal and |Pic(O f )| >

1, and hence there are some u, v, w, y ∈ A(O f ) such that P I = uO f , P J = vO f ,
P2 = wO f , L = yO f and uv = pwy. Therefore, 2, 3 ∈ L(uv), and hence 1 ∈
Δ(O f ). �

Proposition 4.8. Let p be a prime divisor of f .

1. If vp( f ) ≥ 2 or p is not inert, then there are I, J ∈ A(I∗
p(O f )) such thatL(I J ) =

{2, 3} whence 1 ∈ Δ(I∗
p(O f )) and 3 ∈ Ca(I∗

p(O f )).
2. Suppose that O f is not half-factorial and that one of the following conditions

holds:

(i) |Pic(O f )| ≥ 3 or vp( f ) ≥ 2 or p does split.
(ii) p is inert and there is some C ∈ A(I∗

p(O f )) that is not principal.
(iii) p is ramified and there is some principal C ∈ A(I∗

p(O f )) such thatN (C) =
p3.

(iv) f is a squarefree product of inert primes.

Then 1 ∈ Δ(O f ).

Proof. Weprove 1. and2. simultaneously. SetG = Pic(O f ). LetB(G)be themonoid
of zero-sum sequences of G. It follows by [16, Theorem 6.7.1.2] that if |G| ≥ 3,
then 1 ∈ Δ(B(G)). We infer by [16, Proposition 3.4.7 and Theorems 3.4.10.3 and
3.7.1.1] that there exists an atomic monoid B(O f ) such that Δ(B(O f )) = Δ(O f )

and B(G) is a divisor-closed submonoid of B(O f ). In particular, if |G| ≥ 3, then
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1 ∈ Δ(O f ). Thus, for the second assertionwe only need to consider the case |G| ≤ 2.
By Propositions 4.3 and 4.5 we can restrict to the following cases.

CASE 1: p = 2 and ((v2( f ) ∈ {3, 4} and d ≡ 1 mod 4) or (v2( f ) ∈ {2, 3}
and d ≡ 3 mod 4)). If (v2( f ) = 4 and d ≡ 1 mod 4) or (v2( f ) = 3 and d ≡ 3
mod 4), then set I = 16Z + (4 + τ )Z. If v2( f ) = 3 and d ≡ 1 mod 4, then set
I = 16Z + τZ. Finally, if v2( f ) = 2 and d ≡ 3 mod 4, then there is some I ∈
A(I∗

2 (O f )) such that N (I ) = 32 by Theorem 3.6. In any case, it follows that
I ∈ A(I∗

2 (O f )).
It is a consequence of Proposition 3.2.1 and Theorem 3.6 that there are some

A, J ∈ A(I∗
2 (O f )) and � ∈ N such that A2 = �J with values according to the

following table. Let k ∈ {1, 3, 5, 7} be such that d ≡ k mod 8. Note that I =
2aZ + (r + τ )Z and J = 2bZ + (s + τ )Z with (0, a, r), (0, b, s) ∈ M f,2.

v2( f ) k N (A) � N (J ) v2(r) v2(s)
4 1 512 16 1024 2 3
4 5 256 16 256 2 3
3 1 128 8 256 ∞ 2
3 5 64 8 64 ∞ 2
3 3 or 7 128 16 64 2 ≥4
2 3 or 7 32 8 16 2 ≥3

Since v2(r + s) = 2 in any case,we infer that I J = 4L for some L ∈ A(I∗
2 (O f )).

Now let |G| ≤ 2. We have J is principal, and hence 1 ∈ Δ(O f ) by Lemma 4.7.1.

CASE 2: p = 2, v2( f ) = 2 and d ≡ 2 mod 4. Set A = 32Z + τZ and B =
32Z + (8 + τ )Z. Then A, B ∈ A(I∗

2 (O f )) and AB = 8I for some I ∈ A(I∗
2 (O f ))

with I = 16Z + (r + τ )Z, (0, 4, r) ∈ M f,2, and v2(r) = 2. Therefore, we have
AI = 4J and BI = 4L for some J, L ∈ A(I∗

2 (O f )). Now let |G| ≤ 2. Since
{A, B, I } contains a principal ideal ofO f , we infer by Lemma 4.7.1 that 1 ∈ Δ(O f ).

CASE 3: p = 3, v3( f ) = 2 and d ≡ 2 mod 3. First let d �≡ 1 mod 4. Set
I = 81Z + τZ and J = 81Z + (9 + τ )Z. Then I, J ∈ A(I∗

3 (O f )) and I J = 9L for
some L ∈ A(I∗

3 (O f )) with L = 81Z + (r + τ )Z, (0, 4, r) ∈ M f,3, and v3(r) = 2.
It follows that I L = 9A for some A ∈ A(I∗

3 (O f )).
Now let d ≡ 1 mod 4. By Proposition 3.3.3 we can assume without restriction

that f is odd. Set I = 81Z + (4 + τ )Z and J = 81Z + (13 + τ )Z. Then I, J ∈
A(I∗

3 (O f )) and I J = 9L for some L ∈ A(I∗
3 (O f )). There is some (0, 4, r) ∈ M f,3

such that L = 81Z + (r + τ )Z. Since v3(2r + 1) ≥ 2, we have I L = 9A for some
A ∈ A(I∗

3 (O f )) or J L = 9A for some A ∈ A(I∗
3 (O f )).

In any case if |G| ≤ 2, then {I, J, L} contains a principal ideal of O f , and hence
1 ∈ Δ(O f ) by Lemma 4.7.1.

CASE 4: vp( f ) = 1 and p splits. By Theorem 3.6 there is some I ∈ A(I∗
p(O f ))

such that N (I ) = p3. There is some (0, 3, r) ∈ M f,p such that I = p3Z + (r +
τ )Z. Observe that vp(2r + ε) = 1. We infer that I 2 = pJ for some J ∈ A(I∗

p(O f ))
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and I I = p2L with I ∈ A(I∗
p(O f )) and L = pO f ∈ A(I∗

p(O f )). Now let |G| ≤ 2.
We infer by Lemma 4.7 that 1 ∈ Δ(O f ).

CASE 5: vp( f ) = 1 and p is ramified. By Theorem 3.6 there is some C ∈
A(I∗

p(O f )) such that N (C) = p3. Note that CC = p3O f and C ∈ A(I∗
p(O f )).

Now let C be principal. It follows by Lemma 4.7.1 that 1 ∈ Δ(O f ).

Cases 1-5 show that there are some I, J, L ∈ A(I∗
p(O f )) such that I J = p2L .

In particular, L(I J ) = {2, 3}, 1 ∈ Δ(I∗
p(O f )) and 3 = c(I J ) ∈ Ca(I∗

p(O f )). This
proves 1. For the rest of this proof let O f be not half-factorial and |G| ≤ 2.

CASE 6: vp( f ) = 1, p is inert and there is some C ∈ A(I∗
p(O f )) that is not

principal. We have C2 = pL for some L ∈ A(I∗
p(O f )), and thus 1 ∈ Δ(O f ) by

Lemma 4.7.2.

CASE 7: f is a squarefree product of inert primes. Then I∗
p(O f ) is half-factorial

by Proposition 4.6. If G is trivial, thenO f is half-factorial, a contradiction. Note that
O f is seminormal by [10, Corollary 4.5]. It follows from [18, Theorem 6.2.2.(a)]
that 1 ∈ Δ(O f ). �

Lemma 4.9. Let p be a prime divisor of f , k ∈ N≥2, and N = sup{vp(N (A)) | A ∈
A(I∗

p(O f ))}. If � ∈ N and A ∈ Ip(O f )) is both a product of k atoms and a product

of � atoms, then � ≤ kN
2 .

Proof. Let � ∈ N and suppose that a product of k atoms can be written as a product
of � atoms and set P = Pf,p. There are some a, b ∈ N0, Ii ∈ A(Ip(O f )) \ {P}
for each [1, b] and Jj ∈ A(Ip(O f )) for each j ∈ [1, k] such that � = a + b and∏k

j=1 Jj = Pa
∏b

i=1 Ii . Note that p
2 | N (Ii ) for each i ∈ [1, b].

CASE 1: a = 0. Then b = �. It follows by induction from Proposition 3.2.4 that
there are J ′

j ∈ A(I∗
p(O f )) for each j ∈ [1, k] such thatN (

∏k
j=1 Jj ) | N (

∏k
j=1 J

′
j ).

SetM = lcm{N (J ′
j ) | j ∈ [1, k]}. Then p2� | ∏�

i=1 N (Ii ) | N (
∏�

i=1 Ii ) = N (
∏k

j=1

Jj ) | N (
∏k

j=1 J
′
j ) = ∏k

j=1 N (J ′
j ) | Mk . This implies that 2� ≤ kvp(M) ≤ kN , and

thus � ≤ kN
2 .

CASE 2: a > 0. By Lemma 4.2 we have Pa = pa−1P , and thusN (Pa) = p2a−1.
Note that

∏k
j=1 Jj is not invertible, and hence one member of the product, say J1, is

not invertible. Observe that vp(N (J1)) ≤ N − 1 by Proposition 3.2.4. We infer by
induction from Proposition 3.2.4 that there are J ′

j ∈ A(I∗
p(O f )) for each j ∈ [2, k]

such that N (
∏k

j=1 Jj ) | N (J1
∏k

j=2 J
′
j ). Set M = lcm{N (J ′

j ) | j ∈ [2, k]}. Then
p2�−1 | N (Pa)

∏b
i=1 N (Ii ) | N (Pa

∏b
i=1 Ii ) =N (

∏k
j=1 Jj ) | N (J1

∏k
j=2 J

′
j ) =N

(J1)
∏k

j=2 N (J ′
j ) | N (J1)Mk−1. This implies that 2� − 1 ≤ vp(N (J1)) + (k − 1)vp

(M) ≤ kN − 1, and hence � ≤ kN
2 . �

Lemma 4.10. Let p be a prime divisor of f . For every I ∈ A(I∗
p(O f )), we set

vI = vp(N (I )), and let B = {vA | A ∈ A(I∗
p(O f ))}.

1. For all I ∈ A(I∗
p(O f )), we have c(I · I , (pO f )

vI ) ≤ 2 + supΔ(B).
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2. Let p = 2, d ≡ 1 mod 8, and vp( f ) ≥ 4. Then c(I · I , (pO f )
vI ) ≤ 4 for all

I ∈ A(I∗
p(O f )).

Proof. 1. It is sufficient to showby induction that for all n ∈ N≥2 and I ∈ A(I∗
p(O f ))

with vI = n, it follows that c(I · I , (pO f )
n) ≤ 2 + supΔ(B). Let n ∈ N≥2 and I ∈

A(I∗
p(O f )) be such that vI = n. If n = 2, then c(I · I , (pO f )

2) ≤ d(I · I , (pO f )
2)

≤ 2 ≤ 2 + supΔ(B). Now let n > 2. Note that 2 = vpO f ∈ B, and hence there
is some k ∈ B such that 2 ≤ k < n and B ∩ [k, n] = {k, n}. Observe that n −
k ∈ Δ(B). Furthermore, there is some J ∈ A(I∗

p(O f )) such that k = vJ . Note

that J J = (pO f )
k , and thus I I = (pO f )

n−k J J . By the induction hypothesis, we
infer that c((pO f )

n−k · J · J , (pO f )
n) ≤ c(J · J , (pO f )

k) ≤ 2 + supΔ(B). Since
d(I · I , (pO f )

n−k · J · J ) ≤ 2 + (n − k) ≤ 2 + supΔ(B), it follows that c(I · I ,
(pO f )

n) ≤ 2 + supΔ(B).

2. By Proposition 3.3.3 we can assume without restriction that f = 2v2( f ). We
show by induction that for all n ∈ N≥2 and I ∈ A(I∗

2 (O f )) with vI = n, we have
c(I · I , (2O f )

n) ≤ 4. Let n ∈ N≥2 and I ∈ A(I∗
2 (O f )) be such that vI = n. If n =

2, then c(I · I , (2O f )
2) ≤ d(I · I , (2O f )

2) ≤ 2 ≤ 2 + supΔ(B). Next let n > 2.
Observe that 2 = v2O f ∈ B, and hence there is some k ∈ B such that 2 ≤ k < n
and B ∩ [k, n] = {k, n}. There is some J ∈ A(I∗

2 (O f )) such that k = vJ . Note that
J J = (2O f )

k , and hence I I = (2O f )
n−k J J . By the induction hypothesis, we have

c((2O f )
n−k · J · J , (2O f )

n) ≤ c(J · J , (2O f )
k) ≤ 4.

CASE 1: n �= 2v2( f ) + 1. It follows from Theorem 3.6 that n − k ≤ 2. Since
d(I · I , (2O f )

n−k · J · J ) ≤ 4, we infer that c(I · I , (2O f )
n) ≤ 4.

CASE 2: n = 2v2( f ) + 1. By Theorem 3.6 we have n − k = 3. Set A = 16Z +
(4 + τ )Z, B = 2n−3

Z + (2n−5 + τ )Z, and C = 2n−3
Z + (2n−4 + τ )Z. Then

A, B,C ∈ A(I∗
2 (O f )) and ABC = 2n−5A(16Z + (12 + τ )Z) = (2O f )

n−1.
Observe that d(I · I , (2O f ) · A · B · C) ≤ 4 and d((2O f ) · A · B · C, (2O f )

n−k ·
J · J )) ≤ 4. Therefore, c(I · I , (2O f )

n) ≤ 4. �

Proposition 4.11. Let p be a prime divisor of f and set B = {vp(N (A)) | A ∈
A(I∗

p(O f ))}.
1. supΔ(Ip(O f )) ≤ supΔ(B) and c(Ip(O f )) ≤ 2 + supΔ(B).
2. Let p = 2, d ≡ 1 mod 8, and vp( f ) ≥ 4. Then supΔ(I2(O f )) ≤ 2 and c(I2

(O f )) ≤ 4.

Proof. 1. First we consider the case that vp( f ) = 1 and p is inert. It follows from
Theorem 3.6 that supΔ(B) = 0. Proposition 4.6 implies that supΔ(Ip(O f )) = 0
and c(Ip(O f )) = 2. Now let vp( f ) ≥ 2 or p not inert. Observe that supΔ(B) ≥ 1
by Theorem 3.6. Let I, J ∈ A(Ip(O f )). There are some n ∈ N and L ∈ A(Ip(O f ))

such that I J = pnL .
By Proposition 4.1, it remains to show that c(I · J, (pO f )

n · L) ≤ 2 + supΔ(B)

and if � ∈ N≥3 is such that L(I J ) ∩ [2, �] = {2, �}, then � − 2 ≤ supΔ(B). Set N =
supB. Since a product of two atoms of Ip(O f ) can be written as a product of n + 1
atoms, Lemma 4.9 implies that n + 1 ≤ N . If n = 1, then d(I · J, (pO f ) · L) ≤ 2 ≤
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2 + supΔ(B) and there is no � ∈ N≥3 with L(I J ) ∩ [2, �] = {2, �}. Now let n ≥ 2
and � ∈ N≥3 be such that L(I J ) ∩ [2, �] = {2, �}.

CASE 1: n ∈ B. Then AA = (pO f )
n for some A ∈ A(I∗

p(O f )). Therefore,

c(A · A · L , (pO f )
n · L) ≤ c(A · A, (pO f )

n) ≤ 2 + supΔ(B) by Lemma 4.10.1.
Moreover, d(I · J, A · A · L) ≤ 3 ≤ 2 + supΔ(B), and thus c(I · J, (pO f )

n · L) ≤
2 + supΔ(B) and � − 2 = 1 ≤ supΔ(B).

CASE 2: n /∈ B. Note that n ≥ 3. It follows by Theorem 3.6 that vp( f ) ≥ 2 and
supΔ(B) ≥ 2.

CASE 2.1: p �= 2 or d �≡ 1 mod 8 or n �= 2vp( f ). Since n ≤ N , it follows
from Theorem 3.6 that n − 1 = N (A) for some A ∈ A(I∗

p(O f )), and hence AA =
(pO f )

n−1.We infer thatc((pO f ) · A · A · L , (pO f )
n · L) ≤ c(A · A, (pO f )

n−1) ≤
2 + supΔ(B) by Lemma 4.10.1. Moreover, we have d(I · J, A · A · (pO f ) · L) ≤
4 ≤ 2 + supΔ(B), and thus c(I · J, (pO f )

n · L) ≤ 2 + supΔ(B) and � − 2 ≤ 2 ≤
supΔ(B).

CASE 2.2: p = 2, d ≡ 1 mod 8 and n = 2vp( f ). We infer by Theorem 3.6
that supΔ(B) = 3. By Theorem 3.6 there is some A ∈ A(I∗

2 (O f )) such that
n − 2 = N (A), and thus AA = (2O f )

n−2. This implies that c((2O f )
2 · A · A ·

L , (2O f )
n · L) ≤ c(A · A, (2O f )

n−2) ≤ 2 + supΔ(B) by Lemma 4.10.1. Observe
that d(I · J, A · A · (2O f )

2 · L) ≤ 5 = 2 + supΔ(B), and hence c(I · J, (2O f )
n ·

L) ≤ 2 + supΔ(B) and � − 2 ≤ 3 = supΔ(B).

2. By Proposition 3.3.3 we can assume without restriction that f = 2v2( f ). Let
I, J ∈ A(I2(O f )). There are some n ∈ N and L ∈ A(I2(O f )) such that I J = 2n L .
It follows from Lemma 4.9 that n + 1 ≤ supB. By Proposition 4.1, it is sufficient
to show that c(I · J, (2O f )

n · L) ≤ 4 and if � ∈ N≥3 is such that L(I J ) ∩ [2, �] =
{2, �}, then � − 2 ≤ 2. The assertion is trivially true for n = 1. Let n ≥ 2 and let
� ∈ N≥3 be such that L(I J ) ∩ [2, �] = {2, �}.

CASE 1: n ∈ B. There is some A ∈ A(I∗
2 (O f )) such that AA = (2O f )

n . It fol-
lows by Lemma 4.10.2 that c(A · A · L , (2O f )

n · L) ≤ c(A · A, (2O f )
n) ≤ 4. Fur-

thermore, d(I · J, A · A · L) ≤ 3, and thus c(I · J, (2O f )
n · L) ≤ 4 and � − 2 ≤ 1.

CASE 2: n /∈ B and n �= 2v2( f ). It follows by Theorem 3.6 that there is some A ∈
A(I∗

2 (O f )) such that AA = (2O f )
n−1.We infer by Lemma 4.10.2 that c((2O f ) · A ·

A · L , (2O f )
n · L) ≤ c(·A · A, (2O f )

n−1) ≤ 4. Furthermore, d(I · J, (2O f ) · A ·
A · L) ≤ 4, and thus c(I · J, (2O f )

n · L) ≤ 4 and � − 2 ≤ 2.

CASE 3: n = 2v2( f ). By Theorem 3.6 there is some D ∈ A(I∗
2 (O f )) such that

DD = (2O f )
n−2. Set A = 16Z + (4 + τ )Z, B = 2n−2

Z + (2n−4 + τ )Z and C =
2n−2

Z + (2n−3 + τ )Z. Then A, B,C ∈ A(I∗
2 (O f )) and ABC = 2n−4A(16Z +

(12 + τ )Z) = (2O f )
n . This implies that c((2O f )

2 · D · D · L , (2O f )
n · L) ≤ c(D ·

D, (2O f )
n−2) ≤ 4 by Lemma 4.10.2. Moreover, d(A · B · C · L , (2O f )2 · D · D ·

L) ≤ 4 and d(I · J, A · B · C · L) ≤ 4. Consequently, c(I · J, (2O f )
n · L) ≤ 4 and

� − 2 ≤ 2. �

Proposition 4.12. Let v2( f ) ∈ {2, 3} and d ≡ 1 mod 8. Then 3 ∈ Δ(I∗
2 (O f )) and

5 ∈ Ca(I∗
2 (O f )).
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Proof. We distinguish two cases.
CASE 1: v2( f ) = 2. By Theorem 3.6 there is some I ∈ A(I∗

2 (O f )) such that
N (I ) = 32. Set J = I . Then I J = 32O f , and hence {2, 5} ⊂ L(I J ) ⊂ [2, 5].Again
by Theorem 3.6 we have N (L) ∈ {4} ∪ {2n | n ∈ N≥5} for all L ∈ A(I∗

2 (O f )).
Note that if A, B,C, D ∈ A(I∗

2 (O f )), then N (ABCD) ∈ {256} ∪ N≥2048. Since
N (I J ) = 1024, we have 4 /∈ L(I J ). Assume that 3 ∈ L(I J ). Then there are some
A, B,C ∈ A(I∗

2 (O f )) such that I J = ABC and N (A) ≤ N (B) ≤ N (C). There-
fore, N (A) = N (B) = 4 and N (C) = 64. We infer by Lemma 4.2.2 that ABC =
4L for some L ∈ A(I∗

2 (O f )), and hence L = 8O f , a contradiction. We have
L(I J ) = {2, 5}, and thus 3 ∈ Δ(I∗

2 (O f )) and 5 = c(I J ) ∈ Ca(I∗
2 (O f )).

CASE 2: v2( f ) = 3. By Proposition 3.3.3 we can assume without restriction that
f = 8. By Theorem 3.6 there are some I, J ∈ A(I∗

2 (O f )) such that N (I ) = 128
andN (J ) = 16.We have I I = 128O f and J J = 16O f , and hence I I = 8J J . This
implies that {2, 5} ⊂ L(I I ). It follows fromTheorem3.6 thatN (L) ∈ {4, 16} ∪ {2n |
n ∈ N≥7} for all L ∈ A(I∗

2 (O f )).
First assume that 3 ∈ L(I I ). Then there exist A, B,C ∈ A(I∗

2 (O f )) such that
I I = ABC , and N (A) ≤ N (B) ≤ N (C). Therefore, (N (A),N (B),N (C)) ∈
{(4, 16, 256), (4, 4, 1024)}. If (N (A),N (B),N (C)) = (4, 16, 256), then it fol-
lows by Lemma 4.2.2 that AB = 2D for some D ∈ A(I∗

2 (O f )) with N (D) =
16. We infer that DC = 64O f , and hence C = 4D, a contradiction. Now let
(N (A),N (B),N (C)) = (4, 4, 1024). Then ABC = 4D for some D ∈ A(I∗

2 (O f ))

by Lemma 4.2.2, and thus D = 32O f , a contradiction. Consequently, 3 /∈ L(I I ).
Next assume that 4 ∈ L(I I ). Then there exist A, B,C, D ∈ A(I∗

2 (O f )) such that
I I = ABCD, and N (A) ≤ N (B) ≤ N (C) ≤ N (D).

Then (N (A),N (B),N (C),N (D)) ∈ {(4, 4, 4, 256), (4, 16, 16, 16)}.
If (N (A),N (B),N (C),N (D)) = (4, 4, 4, 256), then ABCD = 8E for E ∈

A(I∗
2 (O f )) by Lemma 4.2.2, and hence E = 16O f , a contradiction. Now let

(N (A),N (B),N (C),N (D)) = (4, 16, 16, 16). ByLemma4.2.2 there is some E ∈
A(I∗

2 (O f )) with N (E) = 16 such that AB = 2E . Therefore, ECD = 64O f , and
hence CD = 4E . There are some (0, 4, r), (0, 4, s) ∈ M f,2 such that C = 16Z +
(r + τ )Z and D = 16Z + (s + τ )Z. We have v2(r2 − 16d) = v2(s2 − 16d) = 4.
Since d ≡ 1 mod 8, this implies that v2(r), v2(s) ≥ 3. Therefore, min{4, v2(r +
s + ε)} ∈ {3, 4}, and hence CD = 8F for some F ∈ A(I∗

2 (O f )). We infer that
E = 2F , a contradiction. Consequently, 4 /∈ L(I I ).

Therefore, 2 and 5 are adjacent lengths of I I , and hence 3 ∈ Δ(I∗
2 (O f )). Note

that c(I∗
2 (O f )) ≤ 5 by Proposition 4.11.1 andTheorem3.6.Moreover, since I∗

2 (O f )

is a cancellative monoid, we have 5 ≤ 2 + supΔ(L(I I )) ≤ c(I I ) ≤ 5, and thus 5 =
c(I I ) ∈ Ca(I∗

2 (O f )). �

Lemma 4.13. Let H ∈ {I(O f ), I∗(O f )}. For every prime divisor p of f , we set
Hp = Ip(O f ) if H = I(O f ) and Hp = I∗

p(O f ) if H = I∗(O f ).

1. H is half-factorial if and only if Hp is half-factorial for every p ∈ P with p | f .
2. If H is not half-factorial, then supΔ(H) = sup{supΔ(Hp) | p ∈ Pwith p | f }.
3. c(H) = sup{c(Hp) | p ∈ P with p | f }.
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Proof. By Eqs. 2.3 and 2.4, we have

I∗(O f ) ∼=
∐

P∈X(O f )

I∗
P(O f ) and I(O f ) ∼=

∐

P∈X(O f )

IP(O f ).

Thus the assertions are easy consequences (see [16, Propositions 1.4.5.3 and
1.6.8.1]). �

Proof (ProofofTheorem 1.1). 1. This is an immediate consequence of Proposition 4.6
and Lemma 4.13.

2. First, suppose that f is squarefree. By 1., we have f is not a product of
inert primes. It follows from Lemma 4.13, Proposition 4.11.1, and Theorem 3.6 that
c(I∗(O)) ≤ c(I(O)) ≤ 3 and supΔ(I∗(O)) ≤ supΔ(I(O)) ≤ 1. By Lemma 4.2
and Proposition 4.8.1, it follows that 1 ∈ Δ(I∗(O)), 1 ∈ Ca(I(O)) and [2, 3] ⊂
Ca(I∗(O)), and thus Ca(I(O)) = [1, 3], Ca(I∗(O)) = [2, 3], and Δ(I(O)) =
Δ(I∗(O)) = {1}.

Now we suppose that f is not squarefree and we distinguish two cases.
CASE 1: v2 ( f ) /∈ {2, 3} or dK �≡ 1 mod 8. By Lemma 4.13, Proposition 4.11,

and Theorem 3.6 it follows that c(I∗(O)) ≤ c(I(O)) ≤ 4 and supΔ(I∗(O)) ≤
supΔ(I(O)) ≤ 2.We infer by Lemma 4.2 and Propositions 4.4 and 4.8 that [1, 2] ⊂
Δ(I∗(O)), 1 ∈ Ca(I(O)), and [2, 4] ⊂ Ca(I∗(O)), and hence Ca(I(O)) = [1, 4],
Ca(I∗(O)) = [2, 4], and Δ(I(O)) = Δ(I∗(O)) = [1, 2].

CASE 2: v2 ( f ) ∈ {2, 3} and dK ≡ 1 mod 8. We infer by Lemma 4.13,
Proposition 4.11.1, and Theorem 3.6 that c(I∗(O)) ≤ c(I(O)) ≤ 5 and sup
Δ(I∗(O)) ≤ supΔ(I(O)) ≤ 3. Lemma 4.2 and Propositions 4.4, 4.8 and 4.12 imply
that [1, 3] ⊂ Δ(I∗(O)), 1 ∈ Ca(I(O)) and [2, 5] ⊂ Ca(I∗(O)). Consequently,
Ca(I(O)) = [1, 5], Ca(I∗(O)) = [2, 5], and Δ(I(O)) = Δ(I∗(O)) = [1, 3]. �

Based on the results of this section we derive a result on the set of distances of
orders. LetO be a non-half-factorial order in a number field. Then the set of distances
Δ(O) is finite. If O is a principal order, then it is easy to show that minΔ(O) = 1
(indeed much stronger results are known, namely, that sets of lengths of almost
all elements—in a sense of density—are intervals, see [16, Theorem 9.4.11]). The
same is true if |Pic(O)| ≥ 3 or ifO is seminormal [24, Theorem 1.1]. However, it was
unknown so farwhether there exists an orderOwithminΔ(O) > 1. In the next result
of this sectionwe characterize all non-half-factorial orders in quadratic number fields
with minΔ(O) > 1 which allows us to give the first explicit examples of orders O
with minΔ(O) > 1. A characterization of half-factorial orders in quadratic number
fields is given in [16, Theorem 3.7.15].

Let O be an order in a quadratic number field K with conductor f ∈ N≥2. Then
the class numbers |Pic(OK )| and |Pic(O)| are linked by the formula [25, Corollary
5.9.8]

|Pic(O)| = |Pic(OK )| f

(O×
K : O×)

∏

p∈P,p| f

(
1 −

(dK
p

)
p−1

)
, (4.1)
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and |Pic(O)| is a multiple of |Pic(OK )|.
Since the number of imaginary quadratic number fields with class number at

most two is finite (an explicit list of these fields can be found, for example, in
[31]), (4.1) shows that the number of orders in imaginary quadratic number fields
with |Pic(O)| = 2 is finite. The complete list of non-maximal orders in imaginary
quadratic number fields with |Pic(O)| = 2 is given in [27, page 16]. We refer to
[25] for more information on class groups and class numbers and end with explicit
examples of non-half-factorial orders O satisfying minΔ(O) > 1.

Theorem 4.14. Let O be a non-half-factorial order in a quadratic number field
K with conductor fOK for some f ∈ N≥2. Then the following statements are
equivalent:

(a) minΔ(O) > 1.
(b) |Pic(O)| = 2, f is a nonempty squarefree product of ramified primes times a

(possibly empty) squarefree product of inert primes, and for every prime divisor
p of f and every I ∈ A(I∗

p(O)), I is principal if and only if N (I ) = p2.

If these equivalent conditions are satisfied, then K is a real quadratic number field
and minΔ(O) = 2.

Proof. CLAIM: If |Pic(O)| = 2, p is a ramified prime with vp( f ) = 1, and every
I ∈ A(I∗

p(O)) with N (I ) = p3 is not principal, then every L ∈ A(I∗
p(O)) with

N (L) = p2 is principal.

Let |Pic(O)| = 2, let p be a ramifiedprimewith vp( f ) = 1, and suppose that every
I ∈ A(I∗

p(O)) with N (I ) = p3 is not principal. By Theorem 3.6 we have {N (J ) |
J ∈ A(I∗

p(O))} = {p2, p3}. There is some I ∈ A(I∗
p(O)) such that N (I ) = p3.

If J ∈ A(I∗
p(O)) with N (J ) = p3, then I J = p2L for some L ∈ A(I∗

p(O)) with
N (L) = p2 (since there are no atoms with norm bigger than p3). It follows
by Theorem 3.6 that |{J ∈ A(I∗

p(O)) | N (J ) = p3}| = |{L ∈ A(I∗
p(O)) | N (L) =

p2}| = p (note that N (pO) = p2). Let g : {J ∈ A(I∗
p(O)) | N (J ) = p3} → {L ∈

A(I∗
p(O)) | N (L) = p2} be defined by g(J ) = L where L ∈ A(I∗

p(O)) is such
that N (L) = p2 and I J = p2L . Then g is a well-defined bijection. Now let L ∈
A(I∗

p(O)) with N (L) = p2. There is some J ∈ A(I∗
p(O)) such that N (J ) = p3

and I J = p2L . Since |Pic(O)| = 2 and I and J are not principal, we have I J is
principal, and hence L is principal. This proves the claim.

(a)⇒ (b)Observe that if p is an inert prime such that vp( f ) = 1, then {N (J ) | J ∈
A(I∗

p(O))} = {p2} by Theorem 3.6. Also note that if p is a ramified prime such that
vp( f ) = 1, then {N (J ) | J ∈ A(I∗

p(O))} = {p2, p3} by Theorem 3.6. The assertion
now follows by the claim and Proposition 4.8.2.

(b) ⇒ (a) Assume to the contrary that minΔ(O) = 1. Let H be the monoid of
nonzero principal ideals of O. There is some minimal k ∈ N such that

∏k
i=1Ui =∏k+1

j=1U
′
j withUi ∈ A(H) for each i ∈ [1, k] andU ′

j ∈ A(H) for each j ∈ [1, k + 1].
SetQ1 = {P ∈ X(O) | P is principal},Q2 = {P ∈ X(O) | P is invertible and not

principal}, L = {p ∈ P | p | f, p is ramified}, andK = {{p, q} | p, q ∈ L, p �= q}.
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For every prime divisor p of f setAp = {V ∈ A(I∗
p(O)) | N (V ) = p2}, ap = |{i ∈

[1, k] | Ui ∈ Ap}| and a′
p = |{ j ∈ [1, k + 1] | U ′

j ∈ Ap}|. For p ∈ L setDp = {V ∈
A(I∗

p(O)) | N (V ) = p3}, Bp = {PV | P ∈ Q2 and V ∈ Dp}, bp = |{i ∈ [1, k] |
Ui ∈ Bp}| and b′

p = |{ j ∈ [1, k + 1] | U ′
j ∈ Bp}|. Set C = {PQ | P, Q ∈ Q2}, c =

|{i ∈ [1, k] | Ui ∈ C}| and c′ = |{ j ∈ [1, k + 1] | U ′
j ∈ C}|. If z ∈ K is such that

z = {p, q} with p, q ∈ L and p �= q, then set Ez = {VW | V ∈ Dp,W ∈ Dq},
ez = |{i ∈ [1, k] | Ui ∈ Ez}| and e′

z = |{ j ∈ [1, k + 1] | U ′
j ∈ Ez}|.

Since |Pic(O)| = 2, we have A(H) ⊂ (A(I∗(O)) ∩ H) ∪ {VW | V,W ∈ A(I∗
(O)), V and W are not principal}. As shown in the proof of the claim, VW /∈
A(H) for all p ∈ L and V,W ∈ Dp. We infer that A(H) = Q1 ∪ ⋃

p∈P,p| f Ap ∪⋃
p∈L Bp ∪ C ∪ ⋃

z∈K Ez .
Since k is minimal, we have Ui ,U ′

j /∈ Q1 for all i ∈ [1, k] and j ∈ [1, k + 1].
Again since k is minimal and I∗

p(O) is half-factorial for all inert prime divisors p
of f by Proposition 4.6, we have ap = a′

p = 0 for all inert prime divisors p of f .
Therefore,

k =
∑

p∈L
(ap + bp) + c +

∑

z∈K
ez and k + 1 =

∑

p∈L
(a′

p + b′
p) + c′ +

∑

z∈K
e′
z .

If i ∈ [1, k], then ∑
P∈Q2

vP(Ui ) =

⎧
⎪⎨

⎪⎩

2 if Ui ∈ C
1 if Ui ∈ ⋃

p∈L Bp

0 else

. This implies that

∑
P∈Q2

vP(
∏k

i=1Ui ) = ∑k
i=1

∑
P∈Q2

vP(Ui ) = ∑
p∈L bp + 2c. It follows by anal-

ogy that
∑

P∈Q2
vP(

∏k+1
j=1U

′
j ) = ∑

p∈L b′
p + 2c′. Therefore,

∑
p∈L bp + 2c =∑

p∈L b′
p + 2c′. Let r ∈ L.

If i ∈ [1, k], then vr (N ((Ui )Pf,r ∩ O)) =

⎧
⎪⎨

⎪⎩

3 if Ui ∈ Br ∪ ⋃
q∈L\{r} E{r,q}

2 if Ui ∈ Ar

0 else

.

Consequently,

vr (N ((

k∏

i=1

Ui )Pf,r ∩ O)) =
k∑

i=1

vr (N ((Ui )Pf,r ∩ O)) = 2ar + 3br + 3
∑

q∈L\{r}
e{r,q}.

By analogy we have vr (N ((
∏k+1

j=1U
′
j )Pf,r ∩ O)) = 2a′

r + 3b′
r + 3

∑
q∈L\{r} e

′
{r,q}.

This implies that 2ar + 3br + 3
∑

q∈L\{r} e{r,q} = 2a′
r + 3b′

r + 3
∑

q∈L\{r} e
′
{r,q}.

We infer that
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∑

p∈L
(a′

p − ap + b′
p − bp) + c′ − c +

∑

z∈K
(e′

z − ez) = 1,
∑

p∈L
(b′

p − bp) = 2(c − c′)

and 2
∑

p∈L
(a′

p − ap) + 3
∑

p∈L
(b′

p − bp) + 3
∑

p∈L

∑

q∈L\{p}
(e′

{p,q} − e{p,q}) = 0.

Note that
∑

p∈L
∑

q∈L\{p}(e
′
{p,q} − e{p,q}) = 2

∑
z∈K(e′

z − ez), and hence∑
p∈L(a′

p − ap) = 3(c′ − c) − 3
∑

z∈K(e′
z − ez). Consequently,

1 =
∑

p∈L
(a′

p − ap + b′
p − bp) + c′ − c +

∑

z∈K
(e′

z − ez)

= 3(c′ − c) − 3
∑

z∈K
(e′

z − ez) + 2(c − c′) + c′ − c +
∑

z∈K
(e′

z − ez)

= 2(c′ − c −
∑

z∈K
(e′

z − ez)),

a contradiction.
Now let the equivalent conditions be satisfied. Assume to the contrary that K

is an imaginary quadratic number field. Since O is a non-maximal order with
|Pic(O)| = 2, it follows from [27, page 16] that ( f, dK ) ∈ {(2,−8), (2,−15)}∪
{(3,−4), (3,−8), (3,−11), (4,−3), (4,−4), (4,−7), (5,−3), (5,−4), (7,−3)}.

Since f is squarefree and divisible by a ramified prime, we infer that f = 2
and dK = −8. Therefore, O = Z + 2

√−2Z. Set I = 8Z + 2
√−2Z. Observe that

I ∈ A(I∗
2 (O)) andN (I ) = 8. Moreover, I = 2

√−2O is principal, a contradiction.
Consequently, K is a real quadratic number field.

It remains to show that minΔ(O) = 2. There is some ramified prime p which
divides f and there is some J ∈ A(I∗

p(O)) withN (J ) = p3. As shown in the proof
of the claim, J 2 = p2L for some L ∈ A(I∗

p(O)). By [16, Corollary 2.11.16], there
is some invertible prime ideal P of O that is not principal. Observe that J is not
principal. We have P J , P2 and L are principal, and hence there are some u, v, w ∈
A(O) such that P J = uO, P2 = vO, L = wO, and u2 = p2vw. Therefore, {2, 4} ⊂
L(u2), and since minΔ(O) > 1, we infer that minΔ(O) = 2. �

Proposition 4.15. LetO be an order in the quadratic number field K with conductor
fOK for some f ∈ N≥2 such that minΔ(O) > 1, let g be the product of all inert
prime divisors of f and let O′ be the order in K with conductor gOK . Then O′ is
half-factorial and, in particular, g ∈ {1} ∪ P ∪ {2p | p ∈ P \ {2}}.
Proof. SetQ1 = {P ∈ X(O′) | P is principal} andQ2 = {P ∈ X(O′) | P is invert-
ible and not principal}. Observe that N (I ) = |O/I | = |O′/IO′| = N (IO′) for all
I ∈ I∗(O). Note that for all inert prime divisors p of f and all I ∈ A(I∗

p(O)) and
J ∈ A(I∗

p(O′)), we haveN (I ) = N (J ) = p2.Moreover, for all ramified prime divi-
sors p of f , we have {N (I ) | I ∈ A(I∗

p(O))} = {p2, p3}. In this proof we will use
Theorem 4.14 without further citation.
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CLAIM 1: For all prime divisors p of g and all I ∈ A(I∗
p(O′)), it follows that

I is principal. Let p be a prime divisor of g and let I ∈ A(I∗
p(O′)). Set P = Pf,p

and P ′ = Pg,p. It follows by Proposition 3.3 that OP = O′
P ′ and that δ : I∗

p(O) →
I∗
p(O′) defined by δ(J ) = JP ∩ O′ for all J ∈ I∗

p(O) is a monoid isomorphism.
In particular, we have A(I∗

p(O′)) = {JP ∩ O′ | J ∈ A(I∗
p(O))}. Therefore, there

is some J ∈ A(I∗
p(O)) such that JP ∩ O′ = I . Note that N (I ) = p2 = N (J ) =

N (JO′). Since JO′ ⊂ JO′
P ′ ∩ O′ = JOP ∩ O′ = I , we infer that I = JO′. Since

J is a principal ideal of O, it follows that I is principal. This proves Claim 1.

CLAIM2: If P ∈ Q2, p is a ramified prime divisor of f such that P ∩ Z = pZ and
I ∈ A(I∗

p(O)) with N (I ) = p3, then P2 is principal and IO′ = P3. Let P ∈ Q2,
p a ramified prime divisor of f such that P ∩ Z = pZ and I ∈ A(I∗

p(O)) with
N (I ) = p3. Since p is ramified, there is some A ∈ X(OK ) such that pOK = A2.
Observe that N (A2) = p2, and thus N (A) = p. We have A ∩ O′ = P , POK = A
and N (P) = N (A) = p. Note that since P is invertible, it follows that every P-
primary ideal ofO′ is a power of P . Therefore, pO′ = Pk for some k ∈ N, and hence
pk = N (Pk) = N (pO′) = p2. Consequently, k = 2 and P2 is principal. Clearly,
IO′ is a P-primary ideal of O′, and thus IO′ = Pm for some m ∈ N. We infer
that pm = N (Pm) = N (IO′) = N (I ) = p3, and thus m = 3 and IO′ = P3. This
proves Claim 2.

CLAIM 3: PQ is principal for all P, Q ∈ Q2. Let P, Q ∈ Q2.

CASE 1: P ∩ O and Q ∩ O are invertible. Note that P = (P ∩ O)O′, Q =
(Q ∩ O)O′ and P ∩ O and Q ∩ O are not principal. Since |Pic(O)| = 2, we have
(P ∩ O)(Q ∩ O) is a principal ideal of O, and thus PQ = (P ∩ O)(Q ∩ O)O′ is
principal.

CASE 2: (P ∩ O is invertible and Q ∩ O is not invertible) or (P ∩ O is not
invertible and Q ∩ O is invertible).Without restriction let P ∩ O be invertible and let
Q ∩ O be not invertible. Observe that P = (P ∩ O)O′.Moreover, there is some ram-
ified prime q that divides f such that Q ∩ Z = qZ and there is some J ∈ A(I∗

q (O))

with N (J ) = q3. Observe that P ∩ O and J are not principal. Since |Pic(O)| = 2,
it follows that (P ∩ O)J is a principal ideal of O. Note that PQ3 = (P ∩ O)JO′
by Claim 2, and thus PQ3 is principal. Since Q2 is principal by Claim 2, we infer
that PQ is principal.

CASE 3: P ∩ O and Q ∩ O are not invertible. There are ramified primes p and q
that divide f such that P ∩ Z = pZ and Q ∩ Z = qZ. There are some I ∈ A(I∗

p(O))

and J ∈ A(I∗
q (O)) withN (I ) = p3 andN (J ) = q3. Since |Pic(O)| = 2 and I and

J are not principal, we have I J is a principal ideal ofO. It follows that P3Q3 = I JO′
by Claim 2, and hence P3Q3 is principal. Since P2 and Q2 are principal by Claim
2, we have PQ is principal. This proves Claim 3.

Finally, we show that O′ is half-factorial. Set C = {PQ | P, Q ∈ Q2} and let H
denote the monoid of nonzero principal ideals ofO′. It is an immediate consequence
of Claim 1 and Claim 3 that A(H) = Q1 ∪ C ∪ ⋃

p∈P,p|g A(I∗
p(O′)).

Let k, � ∈ N and Ii , I ′
j ∈ A(H) for each i ∈ [1, k] and j ∈ [1, �] be such that

∏k
i=1 Ii = ∏�

j=1 I
′
j . It remains to show that k = �. Set b = |{i ∈ [1, k] | Ii ∈ Q1}|,
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b′ = |{ j ∈ [1, �] | I ′
j ∈ Q1}|, c = |{i ∈ [1, k] | Ii ∈ C}|, c′ = |{ j ∈ [1, �] | I ′

j ∈ C}|
and for each prime divisor p of g set ap = |{i ∈ [1, k] | Ii ∈ A(I∗

p(O′))}| and
a′
p = |{ j ∈ [1, �] | I ′

j ∈ A(I∗
p(O′))}|. If p is a prime divisor of g, then I∗

p(O′) is
half-factorial by Proposition 4.6, and hence ap = a′

p by Claim 1. We have b =
∑k

i=1

∑
P∈Q1

vP(Ii ) = ∑
P∈Q1

vP(
∏k

i=1 Ii ) = ∑
P∈Q1

vP(
∏�

j=1 I
′
j ) = ∑�

j=1∑
P∈Q1

vP(I ′
j ) = b′.

Moreover, 2c = ∑
P∈Q2

vP(
∏k

i=1 Ii ) = ∑
P∈Q2

vP(
∏�

j=1 I
′
j ) = 2c′. Therefore,

k = b + c + ∑
p∈P,p|g ap = b′ + c′ + ∑

p∈P,p|g a′
p = �.

The remaining assertion follows from [16, Theorem 3.7.15]. �

Remark 4.16. Let O be an order in the quadratic number field K with conductor
fOK for some f ∈ N such that |Pic(O)| = 2 and let p be an odd ramified prime
such that vp( f ) = 1 and I ∈ A(I∗

p(O)) such that N (I ) = p3 and I not principal.
Then every J ∈ A(I∗

p(O)) with N (J ) = p3 is not principal.

Proof. SetL = {J ∈ A(I∗
p(O)) | N (J ) = p3} andK = {L ∈ A(I∗

p(O)) | N (L) =
p2}. It follows by the claim in the proof of Theorem 4.14 that for all J ∈ L and
L ∈ K, there is a unique A ∈ L such that AJ = p2L . By Theorem 3.6 we have
|L| = |K| = p, and hence |{(A, J ) ∈ L2 | AJ = p2L}| = p for all L ∈ K. Since
p is odd, we infer that for each L ∈ K there is some A ∈ L such that A2 = p2L .
Consequently, every L ∈ K is principal. Now let J ∈ L. There is some B ∈ K such
that I J = p2B, and thus I J is principal. Therefore, J is not principal. �

Next we show that the assumption that p is odd in Remark 4.16 is crucial.

Example 4.17. Let O = Z + 2
√−2Z be the order in the quadratic number field

K = Q(
√−2) with conductor 2OK . Let I = 8Z + 2

√−2Z and J = 8Z + (4 +
2
√−2)Z. Then 2 is ramified, |Pic(O)| = 2, I, J ∈ A(I∗

2 (O)), N (I ) = N (J ) = 8,
I is principal and J is not principal.

Proof. It is clear that J ∈ A(I∗
2 (O)) andN (J ) = 8. By the proof of Theorem 4.14,

it remains to show that J is not principal. Assume that J is principal. Then there
are some a, b ∈ Z such that J = (8a + 4b + 2

√−2b)O, and hence 8 = N (J ) =
|NK/Q(8a + 4b + 2

√−2b)| = |(8a + 4b)2 + 8b2|. Therefore, 2(2a + b)2 + b2 =
1. It is clear that |b| ≤ 1. If b = 0, then 8a2 = 1, a contradiction. Therefore, |b| = 1
and 2a + b = 0, a contradiction. �

Lemma 4.18. Let d ∈ N≥2 be squarefree, let K = Q(
√
d), let O be the order in

K with conductor fOK for some f ∈ N≥2, and let p be a ramified prime with
vp( f ) = 1. If (p ≡ 1 mod 4 and (

d/p
p ) = −1) or ((

p
q ) = −1 for some prime q

with q ≡ 1 mod 4 and q | d f ), then each I ∈ A(I∗
p(O)) with N (I ) = p3 is not

principal.

Proof. Note that if p is odd, then {I ∈ A(I∗
p(O)) | N (I ) = p3} = {p3Z + (p2k +

εp2 + f
√
dK

2 )Z | k ∈ [0, p − 1]}. Moreover, if p = 2 and d is odd, then {I ∈ A(I∗
p
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(O)) | N (I ) = p3} = {8Z + (2k + f
√
d)Z | k ∈ {1, 3}}. Furthermore, if p = 2 and

d is even, then {I ∈ A(I∗
p(O)) | N (I ) = p3} = {8Z + (2k + f

√
d)Z | k ∈ {0, 2}}.

CASE 1: p ≡ 1 mod 4 and (
d/p
p ) = −1. Let I ∈ A(I∗

p(O)) be such thatN (I ) =
p3. Since p is odd, we have I = p3Z + (p2k + εp2 + f

√
dK

2 )Z for some k ∈ [0, p −
1]. Assume that I is principal. Then there are some a, b ∈ Z such that I =
(p3a + p2bk + εp2 + f

√
dK

2 b)O. We infer that p3 = N (I ) = |NK/Q(p3a + p2bk +
εp2 + f

√
dK

2 b)| = 1
4 |p4(2pa + 2bk + εb)2 − f 2b2dK |, and hence f 2

p2 b
2 dK

p ≡ 4β

mod p for some β ∈ {−1, 1}. Since p ≡ 1 mod 4, we have (−1
p ) = 1, and thus

(
d/p
p ) = (

dK /p
p ) = (

f 2b2dK /p3

p ) = (
4β
p ) = 1, a contradiction.

CASE 2: There is some prime q such that q ≡ 1 mod 4, q | d f and (
p
q ) = −1.

Let I ∈ A(I∗
p(O)) be such that N (I ) = p3. First let p be odd. Then I = p3Z +

(p2k + εp2 + f
√
dK

2 )Z for some k ∈ [0, p − 1]. Assume that I is principal. Then

there are some a, b ∈ Z such that I = (p3a + p2bk + εp2 + f
√
dK

2 b)O. This implies

that p3 = N (I ) = |NK/Q(p3a + p2bk + εp2 + f
√
dK

2 b)| = 1
4 |p4(2pa + 2bk + εb)2

− f 2b2dK |, and thus �2 ≡ 4β p3 mod q for some � ∈ Z and β ∈ {−1, 1}. Since
q ≡ 1 mod 4, we have (−1

q ) = 1, and hence (
p
q )3 = (

4β p3

q ) = 1. Therefore, ( p
q ) =

1, a contradiction.
Now let p = 2. Then I = 8Z + (2k + f

√
d)Z for some k ∈ [0, 3]. Assume that

I is principal. Then there are some a, b ∈ Z such that I = (8a + 2bk + b f
√
d)O.

Consequently, 8 = N (I ) = |(8a + 2bk)2 − b2 f 2d|, and thus �2 ≡ 8β mod q for
some � ∈ Z andβ ∈ {−1, 1}. This implies that ( 2q )3 = (

8β
q ) = 1. Therefore, ( 2q ) = 1,

a contradiction. �

Proposition 4.19. Let d ∈ N≥2 be squarefree, let K = Q(
√
d), and let O be the

order in K with conductor fOK such that f is a nonempty squarefree product of rami-
fied primes times a squarefree product of inert primes and |Pic(O)| = |Pic(OK )| = 2.
If for every ramified prime divisor p of f , we have (p ≡ 1 mod 4 and (

d/p
p ) = −1)

or ((
p
q ) = −1 for some prime q with q ≡ 1 mod 4 and q | d f ), thenminΔ(O) = 2.

Proof. It follows by Lemma 4.18 that for every ramified prime divisor p of f and
every I ∈ A(I∗

p(O)) with N (I ) = p3, we have I is not principal. It follows by
the claim in the proof of Theorem 4.14 that I ∈ A(I∗

p(O)) is principal if and only
if N (I ) = p2. Now let p be an inert prime divisor of f and let J ∈ A(I∗

p(O)).
Since |Pic(O)| = |Pic(OK )|, it follows that the group epimorphism θ : Pic(O) →
Pic(OK ) defined by θ([L]) = [LOK ] for all L ∈ I∗(O) is a group isomorphism. Set
P = pOK . Then JOK is a P-primary ideal of OK , and hence JOK is a principal
ideal of OK . Since θ is an isomorphism, we infer that J is a principal ideal of O.
Now it follows by Theorem 4.14 that minΔ(O) = 2. �

Next we provide two counterexamples that show that the additional assumption
on the ramified prime divisors of f in Proposition 4.19 is important.
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Example 4.20. There is some real quadratic number field K and some order O
in K with conductor pOK for some ramified prime p such that p ≡ 1 mod 4,
|Pic(O)| = |Pic(OK )| = 2, and minΔ(O) = 1.

Proof. Let O = Z + 5
√
30Z be the order in the real quadratic number field K =

Q(
√
30)with conductor 5OK .Observe that 5 is ramified, 5 ≡ 1 mod 4, |Pic(OK )| =

2 andα = 11 + 2
√
30 is a fundamental unit ofOK . Sinceα /∈ O and (O×

K : O×) | 5,
we infer that (O×

K : O×) = 5, and hence |Pic(O)| = |Pic(OK )| 5
(O×

K :O×)
= 2. Let

I = 125Z + 5
√
30Z. Then I ∈ A(I∗

5 (O)) with N (I ) = 125. Since I = (12625 +
2305

√
30)O is principal, we infer by Theorem 4.14 that minΔ(O) = 1. �

Example 4.21. There is some real quadratic number field K = Q(
√
d)with d ∈ N≥2

squarefree and some orderO in K with conductor pOK for some odd ramified prime
p such that ( d/p

p ) = −1, |Pic(O)| = |Pic(OK )| = 2, and minΔ(O) = 1.

Proof. Let O = Z + 7
√
42Z be the order in the real quadratic number field K =

Q(
√
42) with conductor 7OK . Note that 7 is an odd ramified prime, (

42/7
7 ) = −1,

|Pic(OK )| = 2 and α = 13 + 2
√
42 is a fundamental unit of OK . We have α /∈

O and (O×
K : O×) | 7. Therefore, (O×

K : O×) = 7, and thus |Pic(O)| = |Pic(OK )|
7

(O×
K :O×)

= 2. Set I = 343Z + 7
√
42Z. Then I ∈ A(I∗

7 (O)),N (I ) = 343, and I =
(825601 + 127393

√
42)O is principal. Consequently, minΔ(O) = 1 by

Theorem 4.14. �

Finally, we provide the examples of orders O in quadratic number fields with
minΔ(O) = 2.

Example 4.22. Let K be a quadratic number field and O the order in K with
conductor fOK such that ( f, dK ) ∈ {(2, 60), (3, 60), (5, 60), (6, 60), (10, 60)}∪
{(15, 60), (30, 60), (10, 85), (35, 40), (195, 65), (30, 365)}.
1. If ( f, dK ) ∈ {(2, 60), (3, 60), (5, 60)}, then f is a ramified prime.
2. If ( f, dK ) ∈ {(6, 60), (10, 60), (15, 60)}, then f is the product of two distinct

ramified primes.
3. If ( f, dK ) = (30, 60), then f is the product of three distinct ramified primes.
4. If ( f, dK ) ∈ {(10, 85), (35, 40)}, then f is the product of an inert prime and a

ramified prime.
5. If ( f, dK ) = (195, 65), then f is the product of an inert prime and two distinct

ramified primes.
6. If ( f, dK ) = (30, 365), then f is the product of two distinct inert primes and a

ramified prime.
7. minΔ(O) = 2.

Proof. It is straightforward to prove the first six assertions.Weprove the last assertion
in the case that dK = 60 and f ∈ N≥2 is a divisor of 30. The remaining cases can
be proved in analogy by using Proposition 4.19. It is clear that 2, 3, and 5 are
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ramified primes. Note that |Pic(OK )| = 2 (e.g., [25, page 22]) and α = 4 + √
15 is

a fundamental unit of OK .
We have α2 = 31 + 8

√
15, α3 = 244 + 63

√
15, and α5 = 15124 + 3905

√
15.

Moreover, α6 = 119071 + 30744
√
15, α10 = 457470751 + 118118440

√
15, and

α15 = 13837575261124 + 3572846569215
√
15. Set k = (O×

K : O×). Then k is a
divisor of f by (4.1). Observe that α /∈ Z + 2

√
15Z, α /∈ Z + 3

√
15Z, α /∈ Z +

5
√
15Z, α2,α3 /∈ Z + 6

√
15Z, α2,α5 /∈ Z + 10

√
15Z, α3,α5 /∈ Z + 15

√
15Z, and

α6,α10,α15 /∈ Z + 30
√
15Z. This implies that k = f , and hence |Pic(O)| =

f
k |Pic(OK )| = |Pic(OK )| = 2 by (4.1). We have 5 ≡ 1 mod 4 and (

15/5
5 ) = ( 35 ) =

( 25 ) = −1. We infer by Proposition 4.19 that minΔ(O) = 2. �

5 Unions of Sets of Lengths

The goal of this section is to show that all unions of sets of lengths of the monoid of
(invertible) ideals in orders of quadratic number fields are intervals (Theorem 5.2).
To gather the background on unions of sets of lengths, let H be an atomic monoid
with H �= H× and k ∈ N0. Then

Uk(H) =
⋃

k∈L∈L(H)

L denotes the union of sets o f lengths containing k and

ρk(H) = supUk(H) is the kth elastici t y of H.

Then, for the elasticity ρ(H) of H , we have [12, Proposition 2.7],

ρ(H) = sup{ρ(L) | L ∈ L(H)} = lim
k→∞

ρk(H)

k
.

Clearly, U0(H) = {0}, U1(H) = {1} and Uk(H) is the set of all � ∈ N0 with the
following property:

There are atoms u1, . . . , uk, v1, . . . , v� in H such that u1 · . . . · uk = v1 · . . . · v�.

Let d ∈ N and M ∈ N0. A subset L ⊂ Z is called an AAP (with difference d and
bound M) if

L = y + (
L ′ ∪ L∗ ∪ L ′′) ⊂ y + dZ ,

where y ∈ Z, L∗ is a nonempty arithmetical progression with difference d and
min L∗ = 0, L ′ ⊂ [−M,−1], and L ′′ ⊂ sup L∗ + [1, M] (with the convention that
L ′′ = ∅ if L∗ is infinite). We say that H satisfies the Structure Theorem for Unions
if there are d ∈ N and M ∈ N0 such that Uk(H) is an AAP with difference d and
bound M for all sufficiently large k ∈ N. If Δ(H) is finite and the structure theorem
for unions holds for some parameter d ∈ N, then d = minΔ(H) [12, Lemma 2.12].

The structure theorem for unions holds for a wealth of monoids and domains (see
[2, 13, 34] for recent contributions and see [12, Theorem 4.2] for an example where it
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does not hold). Since it holds for C-monoids [14], it holds for themonoid of invertible
ideals of orders in number fields. In some special cases (including Krull monoids
having prime divisors in all classes) all unions of sets of lengths are intervals, in other
words the structure theorem for unions holds with d = 1 and M = 0 [15, Theorem
3.1.3], [18, Theorem 5.8], [33]. In Theorem 5.2 we show that the same is true for the
monoids of (invertible) ideals of orders in quadratic number fields.

Proposition 5.1. Let p be a prime divisor of f and let N = sup{vp(N (A)) | A ∈
A(I∗

p(O f ))}.
1. If p splits, then U�(Ip(O f )) = U�(I∗

p(O f )) = N≥2 for all � ∈ N≥2.

2. If p does not split, thenU�(Ip(O f )) ∩ N≥� = U�(I∗
p(O f )) ∩ N≥� = [�, � �N

2 �] for
all � ∈ N≥2.

Proof. We prove 1. and 2. simultaneously. By Proposition 3.3.3 we can assume
without restriction that f = pvp( f ). First we show that both assertions are true
for � = 2. It follows from Theorem 3.6 that [2, N ] = [2, 2vp( f )] ∪ {vp(N (A)) |
A ∈ A(I∗

p(O f ))}. It is obvious that U2(I∗
p(O f )) ⊂ U2(Ip(O f )). It follows from

Lemma 4.9 that U2(Ip(O f )) ⊂ [2, N ].
Let k ∈ [2, N ]. It remains to show that k ∈ U2(I∗

p(O f )). If k > 2vp( f ), then there
is some I ∈ A(I∗

p(O f )) such that N (I ) = pk . It follows by Proposition 3.2.5 that

I I = (pO f )
k , and hence k ∈ U2(I∗

p(O f )). Now let k ≤ 2vp( f ). By
Proposition 4.8.1 we can assume without restriction that vp( f ) ≥ 2 and k ≥ 4.

CASE 1: d �≡ 1 mod 4 or (d ≡ 1 mod 4, p = 2 and k ≤ 2(v2( f ) − 1)). We
set a = vp(NK/Q(pk−2 + τ )) and b = vp(NK/Q(pk−2(p − 1) + τ )). Observe that if
d �≡ 1 mod 4, then a, b ≥ min{2k − 4, 2vp( f )} ≥ k. Moreover, if d ≡ 1 mod 4,
p = 2 and k ≤ 2(v2( f ) − 1), then a, b ≥ min{2k − 4, 2(v2( f ) − 1)} ≥ k. Set I =
paZ + (pk−2 + τ )Z and J = pbZ + (pk−2(p − 1) + τ )Z. Then I, J ∈ A(I∗

p(O f )),
min{a, b, vp(pk−2 + pk−2(p − 1) + ε)} = k − 1, and a + b − 2(k − 1) > 0.
Therefore, there is some L ∈ A(I∗

p(O f )) such that I J = pk−1L , and hence k ∈
L(I J ) ⊂ U2(I∗

p(O f )).

CASE 2: d ≡ 1 mod 4 and p �= 2. We set a = vp(NK/Q(
pk−2 − 1

2 + τ )) and b =
vp(NK/Q(

pk−2(p2 + p− 1) − 1
2 + τ )). Note that a, b ≥ min{2k − 4, 2vp( f )} ≥ k. Set

I = paZ + (
pk−2 − 1

2 + τ )Z and J = pbZ + (
pk−2(p2 + p− 1) −1

2 + τ )Z. Then I, J ∈
A(I∗

p(O f )), min{a, b, vp(
pk−2 − 1

2 + pk−2(p2 + p− 1)− 1
2 + ε)} = k − 1, and a + b

− 2(k − 1) > 0. Consequently, there is some L ∈ A(I∗
p(O f )) such that I J =

pk−1L , and thus k ∈ L(I J ) ⊂ U2(I∗
p(O f )).

CASE 3: d ≡ 1 mod 8, p = 2 and k ∈ {2v2( f ) − 1, 2v2( f )}. Set h = v2( f ).
If h = 2, then k = 4, and hence k ∈ U2(I∗

2 (O f )) by Proposition 4.4. Now let h ≥
3. Note that 2 splits. By Theorem 3.6 there are some I, J, L ∈ A(I∗

2 (O f )) such
that N (I ) = 22h+1, N (J ) = 22h+2 and N (L) = 16. By Proposition 3.2.5 we have
LL = 16O f , I I = 22h+1O f = 22h−3LL and J J = 22h+2O f = 22h−2LL . We infer
that k ∈ {2h − 1, 2h} ⊂ U2(I∗

2 (O f )).
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CASE 4: d ≡ 5 mod 8, p = 2 and k ∈ {2v2( f ) − 1, 2v2( f )}. Set h = v2( f ).
If h = 2, then k = 4, and thus k ∈ U2(I∗

2 (O f )) by Proposition 4.4. Now let h ≥ 3.
Set A = 22hZ + (2h−1 + τ )Z, B = 22hZ + (22h−2 − 2h−1 + τ )Z, and C = 22hZ +
(22h−1 − 2h−1 + τ )Z. Then A, B,C ∈ A(I∗

2 (O f )), AB = 22h−2 I and AC = 22h−1 J
for some I, J ∈ A(I∗

2 (O f )). Therefore, k ∈ {2h − 1, 2h} ⊂ U2(I∗
2 (O f )).

So far we have proved that both assertions are true for � = 2. If p splits, then
we have N = ∞ by Theorem 3.6, and hence U2(Ip(O f )) = U2(I∗

p(O f )) = N≥2.
The first assertion now follows easily by induction on �. Now let p not split. Then
N < ∞. Next we show that 2. is true for � = 3.

Since [3, N + 1] = {1} + U2(I∗
p(O f )) ⊂ U3(I∗

p(O f )) ∩ N≥3 ⊂ U3(Ip(O f )) ∩
N≥3 ⊂ [3, � 3N

2 �] by Lemma 4.9 and N ∈ {2vp( f ), 2vp( f ) + 1}, it remains to show
that N + m ∈ U3(I∗

p(O f )) for all m ∈ [2, vp( f )]. Let m ∈ [2, vp( f )]. It is suffi-
cient to show that there are some I, J, L ∈ A(I∗

p(O f )) such that I J = pmL and

N (L) = pN , since then I J L = pN+mO f by Proposition 3.2.5, and thus N + m ∈
U3(I∗

p(O f )).

CASE 1: p is inert. Observe that N = 2vp( f ) by Theorem 3.6. Let m ∈
[2, vp( f )]. First let p �= 2. If d �≡ 1 mod 4, then set I = p2mZ + (pm + τ )Z and
J = p2vp( f )Z + (p2vp( f )−m + τ )Z. If d ≡ 1 mod 4, then set I = p2mZ + (

pm − 1
2 +

τ )Z and J = p2vp( f )Z + (
p2vp ( f )−m−1

2 + τ )Z. In any case we have I, J ∈ A(I∗
p(O f ))

and I J = pmL for some L ∈ A(I∗
p(O f )) with N (L) = pN .

Next let p = 2. Since 2 is inert, it follows that d ≡ 5 mod 8. If m < v2( f ) −
1, then set I = 22mZ + (2m + τ )Z. If m = v2( f ) − 1, then set I = 22mZ + τZ.
Finally, if m = v2( f ), then set I = 22mZ + (2m−1 + τ )Z. Set J = 22v2( f )Z +
(2v2( f )−1 + τ )Z. Observe that I, J ∈ A(I∗

2 (O f )) and I J = 2mL for some L ∈
A(I∗

2 (O f )) with N (L) = 2N .

CASE 2: p is ramified. It follows that N = 2vp( f ) + 1 by Theorem 3.6. Let
m ∈ [2, vp( f )]. First let p �= 2. Since p is ramified, we have p | d. If d �≡ 1 mod 4,
then set I = p2mZ + (pm + τ )Z and J = p2vp( f )+1

Z + (pvp( f )+1 + τ )Z. If d ≡ 1
mod 4, then set I = p2mZ + (

pm − 1
2 + τ )Z and J = p2vp( f )+1

Z + (
pvp ( f )+1 − 1

2 +
τ )Z. We infer that I, J ∈ A(I∗

p(O f )) and I J = pmL for some L ∈ A(I∗
p(O f ))

with N (L) = pN in any case.
Now let p = 2. Since 2 is ramified, we have d �≡ 1 mod 4. If d is even or m <

v2( f ), then set I = 22mZ + (2m + τ )Z. If d is odd and m = v2( f ), then set I =
22mZ + τZ. If d is even, then set J = 22v2( f )+1

Z + τZ. If d is odd, then set J =
22v2( f )+1

Z + (2v2( f ) + τ )Z. In any case we have I, J ∈ A(I∗
2 (O f )) and I J = 2mL

for some L ∈ A(I∗
2 (O f )) with N (L) = 2N .

Finally, we prove the second assertion by induction on �. Let � ∈ N≥2 and let
H ∈ {Ip(O f ), I∗

p(O f )}. Without restriction we can assume that � ≥ 4. We infer by

the induction hypothesis that (U�−2(H) ∩ N≥�−2) + U2(H) = [� − 2, � (�−2)N
2 �] +

[2, N ] = [�, � �N
2 �]. Observe that (U�−2(H) ∩ N≥�−2) + U2(H) ⊂ U�(H) ∩ N≥�. It

follows by Lemma 4.9 that U�(H) ∩ N≥� ⊂ [�, � �N
2 �], and thus U�(H) ∩ N≥� =

[�, � �N
2 �]. �
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Theorem 5.2. Let O be an order in a quadratic number field K with conductor
fOK for some f ∈ N≥2.

1. If f is divisible by a split prime, then Uk(I(O)) = Uk(I∗(O)) = N≥2 for all
k ∈ N≥2.

2. Suppose that f is not divisible by a split primeand set M = max{vp( f ) | p ∈ P}.
Then Uk(I(O)) = Uk(I∗(O)) is a finite interval for all k ∈ N≥2, and for their
maxima we have

(a) If vq( f ) = M for a ramified prime q, then ρk(I(O)) = ρk(I∗(O)) = kM +
� k
2� for all k ∈ N≥2 and ρ(I(O)) = ρ(I∗(O)) = M + 1

2 .
(b) If vq( f ) < M for all ramified primes q, then ρk(I(O)) = ρk(I∗(O)) = kM

for all k ∈ N≥2 and ρ(I(O)) = ρ(I∗(O)) = M.

Proof. 1. Let f be divisible by a split prime p and let k ∈ N≥2. Since I∗
p(O) is

a divisor-closed submonoid of I∗(O) and Ip(O) is a divisor-closed submonoid of
I(O), it follows from Proposition 5.1.1 that Uk(I(O)) = Uk(I∗(O)) = N≥2.

2. Let k ∈ N≥2 and � ∈ Uk(I(O)). There are Ii ∈ A(I(O)) for each i ∈ [1, k]
and Jj ∈ A(I(O)) for each j ∈ [1, �] such that

∏k
i=1 Ii = ∏�

j=1 Jj . Note that√
Ii ,

√
Jj ∈ X(O) for all i ∈ [1, k] and j ∈ [1, �]. For P ∈ X(O) set kP = |{i ∈

[1, k] | √
Ii = P}| and �P = |{ j ∈ [1, �] | √

Jj = P}|. If p is a prime divisor of
f , then set kp = kPf,p and �p = �Pf,p . Observe that k = ∑

P∈X(O) kP and � =
∑

P∈X(O) �P . Recall that the P-primary components of
∏k

i=1 Ii are uniquely deter-
mined, and thus �P ∈ UkP (IP(O)) for all P ∈ X(O). If P ∈ X(O) does not con-
tain the conductor, then IP(O) is factorial, and hence �P = kP . Also note that if
P ∈ X(O) and kP ≤ 1, then �P = kP . If p is an inert prime that divides f , then it
follows from Proposition 5.1.2 and Theorem 3.6 that ρr (Ip(O)) = ρr (I∗

p(O)) =
rvp( f ) for all r ∈ N≥2. We infer again by Proposition 5.1.2 and Theorem 3.6
that ρr (Ip(O)) = ρr (I∗

p(O)) = rvp( f ) + � r
2� for all ramified primes p that divide

f and all r ∈ N≥2.

CASE 1: vq( f ) = M for some ramified prime q. If P ∈ X(O), then �P ≤ kPM +
� kP

2 �.
Consequently, � = ∑

P∈X(O) �P ≤ (
∑

P∈X(O) kP)M + ∑
P∈X(O)� kP

2 � ≤ kM +
� k
2�. In particular, ρk(I(O)) ≤ kM + � k

2� = max{ρk(I∗
p(O)) | p ∈ P, p | f } ≤ ρk

(I∗(O)) ≤ ρk(I(O)). This implies thatρk(I(O)) = ρk(I∗(O)) = max{ρk(I∗
p(O)) |

p ∈ P, p | f } = kM + � k
2�.

CASE 2: vq( f ) < M for all ramified primes q. Note that �p ≤ kpvp( f ) + � kp
2 � ≤

kpM for all ramified primes p that divide f . Therefore, �P ≤ kPM for all P ∈
X(O). This implies that � = ∑

P∈X(O) �P ≤ (
∑

P∈X(O) kP)M = kM . We infer that
ρk(I(O)) ≤ kM = max{ρk(I∗

p(O)) | p ∈ P, p | f } ≤ ρk(I∗(O)) ≤ ρk(I(O)), and
thus ρk(I(O)) = ρk(I∗(O)) = max{ρk(I∗

p(O)) | p ∈ P, p | f } = kM .

By Proposition 5.1.2, we obtain that Uk(I(O)) ∩ N≥k = Uk(I∗(O)) ∩ N≥k is
a finite interval. Since the last assertion holds for every k ∈ N≥2, we infer that
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Uk(I(O)) = Uk(I∗(O)) is a finite interval for all k ∈ N≥2. If vq( f ) = M for some
ramified prime q, then

ρ(I(O)) = ρ(I∗(O)) = lim
k→∞

ρk(I(O))

k
= lim

k→∞ M + 1

k

⌊
k

2

⌋
= M + 1

2
.

Finally, let vq( f ) < M for all ramified primes q. Then

ρ(I(O)) = ρ(I∗(O)) = lim
k→∞

ρk(I(O))

k
= lim

k→∞
kM

k
= M. �

In a final remark we gather what is known on further arithmetical invariants of
monoids of ideals of orders in quadratic number fields.

Remark 5.3. LetO be an order in a quadratic number field K with conductor fOK

for some f ∈ N≥2.
1. Themonotone catenary degree ofI∗(O) is finite by [20,Corollary 5.14]. Precise

values for the monotone catenary degree are available so far only in the seminormal
case [18, Theorem 5.8].

2. The tame degree of I∗(O) is finite if and only if the elasticity is finite if and
only if f is not divisible by a split prime. This follows from Equations. 2.3 and 2.4,
Theorem 5.2, and from [16, Theorem 3.1.5]. Precise values for the tame degree are
not known so far.

3. For an atomic monoid H , the set {ρ(L) | L ∈ L(H)} ⊂ Q≥1 of all elasticities
was first studied by Chapman et al. and then it found further attention by several
authors (e.g., [4, 7], [22, Theorem 5.5], [23, 35]). We say that H is fully elastic if
for every rational number q with 1 < q < ρ(H) there is an L ∈ L(H) with ρ(L) =
q. Since I∗(O) is cancellative and has a prime element, it is fully elastic by [3,
Lemma 2.1]. Since I∗(O) ⊂ I(O) is divisor-closed and ρ(I(O)) = ρ(I∗(O)) by
Theorem 5.2, it follows that I(O) is fully elastic.

4. For an atomic monoid H , let

�
∗(H) = {min(L \ {2}) | 2 ∈ L ∈ L(H) with |L| > 1} ⊂ N≥3.

By definition, we have �
∗(H) ⊂ 2 + Δ(H) and in [11, 23] the invariant �∗(H) was

used as a tool to study Δ(H). Proposition 4.1.4 shows that, both for H = I(O) and
for H = I∗(O), we have max�

∗(H) = 2 + maxΔ(H).
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UMT-domains: A Survey

Gyu Whan Chang

Abstract Let D be an integral domain, X be an indeterminate over D, and D[X ]
be the polynomial ring over D. A nonzero prime ideal Q of D[X ] is called an upper
to zero in D[X ] if Q ∩ D = (0). We say that D is a UMT-domain if each upper
to zero in D[X ] is a maximal t-ideal of D[X ]. The notion of UMT-domains was
introduced by Houston and Zafrullah in 1989. In this paper, we survey the results on
UMT-domains with focus on uppers to zero, Nagata rings, graded integral domains,
and constructions of new UMT-domains.

Keywords t-operation · Upper to zero · UMT-domain · Nagata ring · Graded
integral domain

1 Introduction

A Prüfer domain is an integral domain whose nonzero finitely generated ideals are
invertible. It is well known that Dedekind domains are Prüfer domains, and Prüfer
domains are Dedekind domains if and only if it is Noetherian. Hence, the notion of
Prüfer domains is a natural generalization of Dedekind domains to non-Noetherian
integral domains. It is well known that an integral domain D is a Prüfer domain if and
only if DM is a valuation domain for all maximal ideals M of D. However, note that
D[X ], the polynomial ring over D, is a Prüfer domain if and only if D is a field.When
we study the ideal-theoretic properties of integral domains, the so-called t-operation
is very useful. For example, D is a Krull domain if and only if every nonzero ideal of
D is t-invertible; a Krull domain is a UFD if and only if it has a trivial divisor class
group; and a Krull domain is a Dedekind domain if and only if its Krull dimension
is one. A PvMD is an integral domain whose nonzero finitely generated ideals are
t-invertible; equivalently, DP is a valuation domain for all maximal t-ideals P of D
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[42, Theorem 5]. Hence, a Krull domain and a PvMD are the t-operation analogs of
Dedekind domains and Prüfer domains, respectively. Moreover, D is a Krull domain
(resp., PvMD) if and only if D[X ] is a Krull domain (resp., PvMD). Thus, the class of
PvMDs includesDedekind domains, Prüfer domains, Krull domains, and polynomial
rings over a PvMD.

A quasi-Prüfer domain is an integral domain whose integral closure is a Prüfer
domain [31, Corollary 6.5.14]; a UMT-domain D is an integral domain such that DP

has the Prüfer integral closure for all maximal t-ideals P of D; and D is a PvMD if
and only if D is an integrally closedUMT-domain. Hence, UMT-domains can be con-
sidered as the t-operation analog of quasi-Prüfer domains or non-integrally closed
PvMDs. The notion of UMT-domains was introduced by Houston and Zafrullah
[46] and studied carefully by Fontana, Gabelli, and Houston [30]. In this paper, we
survey several properties of UMT-domains. Precisely, this paper consists of five sec-
tions containing the introduction. In Section2, we review the definitions and basic
results on star operations (Section2.1), ∗-invertibility (Section2.2), t-class groups
(Section2.3), and PvMDs, Nagata rings, and Kronecker function rings (Section2.4).
In Section3, we give basic properties of uppers to zero, several characterizations
of UMT-domains (Section3.1) and Kaplansky type theorems for uppers to zero
(Section3.2) which lead to the study of a general theory of almost factoriality.
Section4 is devoted to the UMT-domain property of graded integral domains. In
Section4.1, we first introduce some definitions for graded integral domains. We then
study the UMT-domain property of graded integral domains in Section4.2 (general
case) and Section4.3 (when RH is a UFD). Finally, in Section5, we introduce the
technique of constructing new UMT-domains from old one via semigroup rings and
pullback.

2 Definitions Related to the t-operation

Throughout D denotes an integral domainwith quotient field K , X is an indeterminate
over D, D[X ] is the polynomial ring over D, and an overring of D means a subring
of K containing D.

2.1 Star Operations

Let F(D) (resp., f(D)) be the set of nonzero (resp., nonzero finitely generated)
fractional ideals of D. A star operation on D is a function ∗ from F(D) into F(D)

satisfying the following three properties for all 0 �= x ∈ K and I, J ∈ F(D):

1. (xD)∗ = xD, (x I )∗ = x I∗,
2. I ⊆ I∗, and I ⊆ J implies I∗ ⊆ J∗, and
3. (I∗)∗ = I∗.
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Given a star operation ∗ on D, we can construct two new star operations ∗ f and ∗w

on D as follows:

• I∗ f = ⋃{J∗ | J ∈ f(D) and J ⊆ I } and
• I∗w

= {x ∈ K | x J ⊆ I for some J ∈ f(D) with J∗ = D}.

Then (∗ f ) f = ∗ f and (∗w) f = (∗ f )w = ∗w. We say that ∗ is of finite character
if ∗ f = ∗; so ∗ f and ∗w are of finite character. For I ∈ F(D), let Id = I . Then d
is the identity function of F(D), and hence d is a star operation on D with d =
d f = dw. For another well-known examples of star operations, note that if we let
I−1 = {x ∈ K | x I ⊆ D} for I ∈ F(D), then I−1 ∈ F(D). Hence, the v-operation
given by Iv = (I−1)−1 for all I ∈ F(D) is a star operation. The t-and w-operations
are defined by t = v f and w = vw, respectively.

Lemma 2.1. Let D be an integral domain, I, J ∈ F(D), {Iα} be a nonempty subset
of F(D), and ∗ be a star operation on D.

1. I ⊆ I∗w
⊆ I∗ f ⊆ I∗.

2. Iv = ⋂{xD | x ∈ K and I ⊆ xD}.
3. I∗ ⊆ Iv , and hence I ⊆ I∗ f ⊆ It and I ⊆ I∗w

⊆ Iw.
4. (I J )∗ = (I J∗)∗ = (I∗ J∗)∗.
5. If

⋂
α Iα �= (0), then

⋂
α(Iα)∗ = (

⋂
α(Iα)∗)∗.

Proof. (1) Clear. (2) [39, Theorem 34.1]. (3) If x ∈ K with I ⊆ xD, then I∗ ⊆
(xD)∗ = xD. Thus, I∗ ⊆ Iv by (2). (4) and (5) [39, Proposition 32.2].

Let ∗ be a star operation on D. An I ∈ F(D) is called a ∗-ideal if I∗ = I . A
∗-ideal of D is said to be of finite type if I = J∗ for some J ∈ f(D); so a d-ideal of
finite type is just a nonzero finitely generated ideal. A ∗-ideal is a maximal ∗-ideal if
it is maximal among proper integral ∗-ideals. Let ∗-Max(D) be the set of maximal
∗-ideals of D. Hence, d-Max(D) := Max(D) is the set of maximal ideals of D. It
may happen that ∗-Max(D) = ∅ even though D is not a field as in the case of a
rank-one nondiscrete valuation domain D where v-Max(D) = ∅. However, we have
the following nice properties of star operations of finite character.

Lemma 2.2. Let D be an integral domain and ∗ be a star operation of finite char-
acter on D (e.g., ∗ = d, t or w).

1. ∗-Max(D) �= ∅ if D is not a field.
2. Each maximal ∗-ideal of D is a prime ideal.
3. Each proper ∗-ideal of D is contained in a maximal ∗-ideal.
4. Each prime ideal of D minimal over a ∗-ideal is a ∗-ideal; so each height-one

prime ideal is a ∗-ideal.
5. ∗-Max(D) = ∗w-Max(D).
6. D = ⋂

P∈∗-Max(D) DP.
7. I∗w

= ⋂
P∈∗-Max(D) I DP for all I ∈ F(D).
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Proof. (1), (2), and (3) This can be proved by an easy argument of Zorn’s lemma.
(4) Let I be a ∗-ideal of D and P be a minimal prime ideal of I . It suffices to show

that P∗ ⊆ P . Let 0 �= x ∈ P∗. Then there is a J ∈ f(D) such that J ⊆ P and x ∈ J∗.
Note that P is minimal over I and J is finitely generated. Hence, there are an integer
n ≥ 1 and s ∈ D \ P so that s J n ⊆ I , and thus s(J∗)n ⊆ (s J n)∗ ⊆ I∗ = I ⊆ P .
Thus, x ∈ J∗ ⊆ P .

(5) [5, Theorem 2.16]. (6) This is an easy exercise. (7) [5, Corollary 2.10].

Let A ⊆ B be an extension of integral domains. As in [29], we say that B is
t-linked over A if I−1 = A for I ∈ f(A) implies (I B)−1 = B. It is easy to see that
B is t-linked over A if and only if B = ⋂

P∈t-Max(A) BP [18, Lemma 3.2], if and only
if either Q ∩ A = (0) or Q ∩ A �= (0) and (Q ∩ A)t � A for all Q ∈ t-Max(B) [7,
Propositions 2.1].

Lemma 2.3. ([58] or [28, Lemma 2.3]) Let R be a t-linked overring of an integral
domain D. For each A ∈ F(D), let

AwD = {x ∈ K | x J ⊆ A for some J ∈ f(D) with Jv = D}.
Then wD is a star operation of finite character on D.

We mean by ∗-dim(D) = 1 that ∗-Max(D) �= ∅ and each prime ∗-ideal of D is
a maximal ∗-ideal of D. Clearly, if dim(D) = 1 (i.e., D is one-dimensional), then
t-dim(D) = 1 = w-dim(D). For more on basic properties of star operations, the
reader can refer to [39, Sections32 and 34].

2.2 ∗-Invertibility

Let ∗ be a star operation on D. We say that an I ∈ F(D) is ∗-invertible if (I I−1)∗ =
D. Clearly, if ∗ f = ∗, then I is ∗-invertible if and only if I I−1

� P for all P ∈
∗-Max(D). Hence, by Lemma 2.2(5), I is ∗ f -invertible if and only if I is ∗w-
invertible. Note that I = Id ⊆ Iw ⊆ It ⊆ Iv for all I ∈ F(D); so I is invertible ⇒ I
is w-invertible ⇔ I is t-invertible ⇒ I is v-invertible.

Lemma 2.4. [48, Proposition 2.6] Let ∗ be a star operation of finite character on
an integral domain D. Then I ∈ F(D) is ∗-invertible if and only if I∗ = J∗ for some
J ∈ f(D) and I DP is principal for all P ∈ ∗-Max(D).

Let ∗1 and ∗2 be star operations. Then I∗1 ⊆ I∗2 if and only if (I∗2)∗1 = (I∗1)∗2 =
I∗2 for all I ∈ F(D). Hence, every v-ideal is a ∗-ideal for any star operation ∗ on D.
The next result shows that a ∗-ideal is a v-ideal when it is ∗-invertible.
Proposition 2.5. (cf. [60, Theorem 1.1]) Let ∗1 and ∗2 be star operations on an
integral domain D such that I∗1 ⊆ I∗2 for all I ∈ F(D). Then a ∗1-invertible ∗1-ideal
of D is a ∗2-invertible v-ideal.
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Proof. Let I be a ∗1-invertible ∗1-ideal of D. Clearly, I is ∗2-invertible. Also, if
x ∈ Iv , then x I−1 ⊆ D, and hence x ∈ xD = x(I I−1)∗1 ⊆ I∗1 . Hence, Iv ⊆ I∗1 , and
thus Iv = I∗1 = I .

We say that D is a ∗-Dedekind domain if each nonzero ideal of D is ∗-invertible.
We also say that D is a Prüfer ∗-multiplication domain (P∗MD) if each nonzero
finitely generated ideal of D is ∗ f -invertible. An integral domain D is a v-domain if
each nonzero finitely generated ideal of D is v-invertible. Clearly,

• ∗-Dedekind domain ⇒ P∗MD, and

• Dedekind domain = d-Dedekind domain ⇒ Prüfer domain = PdMD ⇒ P∗MD =
P∗ fMD = P∗wMD ⇒ PvMD ⇒ v-domain.

Proposition 2.6. Let D be an integral domain.

1. D is a t-Dedekind domain if and only if D is a Krull domain.
2. D is a v-Dedekind domain if and only if D is completely integrally closed.

Proof. (1) [49, Theorem 3.6]. (2) [39, Theorem 34.3].

A Bézout domain (resp., GCD domain) D is an integral domain in which each
nonzero finitely generated ideal (resp., Iv for each I ∈ f(D)) is principal. Hence, by
Proposition 2.5,

• Bézout domain = GCD domain + Prüfer domain

and GCD domains are PvMDs.

2.3 t-Class Group and Picard Group

Let T (D) (resp., I nv(D), Prin(D)) be the group of t-invertible fractional t-ideals
(resp., invertible fractional ideals, nonzero principal fractional ideals) of D under the
t-multiplication I ∗ J = (I J )t . It is obvious that Prin(D) ⊆ I nv(D) ⊆ T (D). The
t-class group of D is the abelian group Cl(D) = T (D)/Prin(D) and the Picard
group of D is a subgroup Pic(D) = I nv(D)/Prin(D) of Cl(D). It is clear that if
D is a Krull domain, then Cl(D) is the divisor class group of D. Also, if D is a
Prüfer domain or one-dimensional integral domain, then Cl(D) = Pic(D).

Proposition 2.7. Let D be an integral domain.

1. If each maximal ideal of D is a t-ideal, then Cl(D) = Pic(D).
2. D is a GCD domain if and only if D is a PvMD with Cl(D) = {0}.
3. D is a UFD if and only if D is a Krull domain with Cl(D) = {0}.
Proof. (1) Clear. (2) [13, Proposition 2]. (3) [35, Proposition 6.1].
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It is well known that D is a GCD domain (resp., UFD) if and only if D[X ], the
polynomial ring over D, is a GCD domain (resp., UFD); so in this case,Cl(D[X ]) =
Cl(D). The next result shows thatCl(D) (resp., Pic(D)) is a subgroup ofCl(D[X ])
(resp., Pic(D[X ])).
Lemma 2.8. Let I be a nonzero fractional ideal of an integral domain D.

1. (I D[X ])−1 = I−1D[X ].
2. (I D[X ])v = IvD[X ].
3. (I D[X ])t = It D[X ].
4. I D[X ] ∩ K = I .

Hence, I is a (prime) t-ideal of D (resp., invertible, t-invertible) if and only if
I D[X ] is a (prime) t-ideal of D[X ] (resp., invertible, t-invertible). In particular,
Pic(D) ⊆ Pic(D[X ]) and Cl(D) ⊆ Cl(D[X ]).
Proof. (1), (2), and (3) [48, Proposition 2.2]. (4) Clear.

For a polynomial f ∈ K [X ], we denote by cD( f ) (simply, c( f )) the fractional
ideal of D generated by the coefficients of f . For convenience, we mean by c( f )∗ =
D that f �= 0 and c( f )∗ = D for any star operation ∗ on D. Dedekind–Mertens
lemma states that if f, g ∈ K [X ] are nonzero, then

c( f )m+1c(g) = c( f )mc( f g)

for m = deg(g) [39, Theorem 28.1]. In particular, if c( f ) is ∗-invertible, then
(c( f )c(g))∗ = c( f g)∗.

Proposition 2.9. Let D be an integral domain. Then the following statements are
equivalent.

1. D is integrally closed.
2. Cl(D) = Cl(D[X ]).
3. f K [X ] ∩ D[X ] = f c( f )−1[X ] for all 0 �= f ∈ D[X ].
4. c( f g)v = (c( f )c(g))v for all 0 �= f, g ∈ D[X ].
Proof. (1) ⇔ (2) [36, Theorem 3.6]. (1) ⇒ (4) [39, Proposition 34.8]. (4) ⇒ (3)
This is true by the proof of [39, Corollary 34.9]. (3) ⇒ (1) Let a, b ∈ D, b �= 0 such
that x = a

b is integral over D. So if f = bX − a, then Q f := f K [X ] ∩ D[X ] =
f (a, b)−1[X ] by assumption. Thus, x ∈ D [36, Lemma 3.5].

2.4 PvMDs, Nagata Rings, and Kronecker Function Rings

Let X be an indeterminate over an integral domain D and D[X ] be the polynomial
ring over D. For a star operation ∗ on D, let N∗ = { f ∈ D[X ] | c( f )∗ = D}; then
N∗ is a saturated multiplicative set of D[X ] by Dedekind–Mertens lemma and Nd ⊆
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N∗ ⊆ Nv .We call D(X) := D[X ]Nd (resp., D[X ]N∗) theNagata ring (resp., ∗-Nagata
ring) of D.

Proposition 2.10. 1. Max(D[X ]N∗) = {P[X ]N∗ | P ∈ ∗ f -Max(D)}.
2. Pic(D[X ]N∗) = {0}.
3. Each maximal ideal of D[X ]Nv

is a t-ideal, and hence

Cl(D[X ]Nv
) = Pic(D[X ]Nv

) = {0}.

Proof. These results appear in Proposition 2.1, Theorem 2.14, and Proposition 2.2
of [48], respectively.

A star operation ∗ on D is said to be endlich arithmetisch brauchbar (e.a.b.) if
(AB)∗ ⊆ (AC)∗ for all A, B,C ∈ f(D) implies B∗ ⊆ C∗. It is well known that if
D admits an e.a.b. star operation, then D is integrally closed [39, Corollary 32.8].
Conversely, if D is integrally closed, then the star operation b on D, defined by
Ib = ⋂{I V | V is a valuation overring of D}, is an e.a.b. star operation of finite
character and b-Max(D) = Max(D) [15, Lemma 3.1].

Theorem 2.11. ([39, Theorem 32.7]) Let D be an integral domain, ∗ be an e.a.b.
star operation on D, X be an indeterminate over D, and

Kr(D, ∗) =
{
f

g
| f, g ∈ D[X ], g �= 0, and c( f ) ⊆ c(g)∗

}

.

1. Kr(D, ∗) is a Bézout domain,
2. Kr(D, ∗) ∩ K = D, and
3. f Kr(D, ∗) = c( f )Kr(D, ∗) and f Kr(D, ∗) ∩ K = c( f )∗ for all 0 �= f ∈ D[X ].
In this case, Kr(D, ∗) is called the Kronecker function ring of D with respect to ∗.

Let ∗ be an e.a.b. star operation on D. It is clear that D[X ]N∗ ⊆ Kr(D, ∗), and
next in Corollary 2.13, we study when D[X ]N∗ = Kr(D, ∗).

Theorem 2.12. Let ∗ be a star operation on an integral domain D. Then the fol-
lowing statements are equivalent.

1. D is a P∗MD.
2. ∗w is an e.a.b. star operation.
3. D[X ]N∗ is a Prüfer domain.
4. Every ideal of D[X ]N∗ is extended from D.
5. c( f g)∗w

= (c( f )c(g))∗w
for all 0 �= f, g ∈ D[X ].

6. DP is a valuation domain for all P ∈ ∗ f -Max(D).
7. D is a PvMD and ∗ f = t on D.

Proof. (1) ⇔ (2) ⇔ (3) [32, Theorem 3.1]. (1) ⇔ (4) ⇔ (5) [15, Theorem 3.7]. (1)
⇔ (6) [45, Theorem 1.1]. (1) ⇔ (7) [32, Proposition 3.15].
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Arnold showed that if D is integrally closed, then D is a Prüfer domain if and only
if Kr(D, b) = D(X) [12, Theorem 4]. This was generalized to PvMDs by Gilmer as
follows: If D is a v-domain (equivalently, the v-operation on D is e.a.b.), then D is
a PvMD if and only if Kr(D, v) = D[X ]Nv

[38, Theorem 2.5].

Corollary 2.13. ([32, Theorem 3.1]) Let ∗ be an e.a.b star operation on an integral
domain D. Then D is a P∗MD if and only if D[X ]N∗ = Kr(D, ∗).

In [33], Fontana and Loper used an arbitrary star operation ∗ on an integral domain
D to define a Kronecker function ring Kr(D, ∗) as follows.

Lemma 2.14. ([33, Theorem 5.1, Proposition 4.5(2), and Corollary 3.5]) Let ∗ be a
star operation on an integral domain D, and let Kr(D, ∗) = { f

g
| f, g ∈ D[X ], g �=

0, and (c( f )c(h))∗ ⊆ (c(g)c(h))∗ for some 0 �= h ∈ D[X ]}. Then Kr(D, ∗) is a
Bézout domain with quotient field K (X).

For more on star operations, P∗MDs, Nagata rings, and Kronecker function rings,
the reader can refer to [15, 32, 34], [39, Sections32 and 33], [48, 60].

3 UMT-domains

Let D denote an integral domain with quotient field K , D̄ be the integral closure of
D in K , X be an indeterminate over D, D[X ] be the polynomial ring over D, and
Nv = { f ∈ D[X ] | c( f )v = D}. In this section, we study several characterizations
of UMT-domains (Section3.1) and Kaplansky type theorems for uppers to zero in
polynomial rings (Section3.2).

3.1 UMT-domains

Let Q be a nonzero prime ideal of D[X ]. We say that Q is an upper to zero in D[X ] if
Q ∩ D = (0). The next result gives some basic properties of uppers to zero in D[X ].
For more on uppers to zero in polynomial rings, the reader can refer to Houston’s
survey article [44].

Proposition 3.1. Let Q be an upper to zero in D[X ].
1. Q = f K [X ] ∩ D[X ] for some nonzero irreducible polynomial f ∈ K [X ].
2. htQ = 1, and hence Q is a prime t-ideal of D[X ].
3. The following statements are equivalent.
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(a) Q is a maximal t-ideal of D[X ].
(b) Q is t-invertible.
(c) Q contains a nonzero polynomial f ∈ D[X ] with c( f )v = D.

4. If D is integrally closed, then Q is a v-ideal.

Proof. (1) By definition, Q ∩ D = (0), and hence QD\{0} is a nonzero prime ideal of
K [X ]. Note that K [X ] is a PID; so QD\{0} = f K [X ] for some nonzero irreducible
polynomial f ∈ K [X ]. Thus, Q = QD\{0} ∩ K [X ] = f K [X ] ∩ D[X ].

(2) htQ = ht(QD\{0}) = ht( f K [X ]) = 1.
(3) [46, Theorem 1.4].
(4) By (1), Q = f K [X ] ∩ D[X ] for some 0 �= f ∈ D[X ], and since D is inte-

grally closed, Q = f c( f )−1[X ] by Proposition 2.9. Thus, by Lemma 2.8, Qv =
( f c( f )−1[X ])v = f (c( f )−1)v[X ] = f c( f )−1[X ] = Q.

The next corollary shows when an upper to zero in D[X ] is a maximal ideal,
which can be proved by Proposition 3.1(2) with some other results.

Corollary 3.2. ([19, Corollary 5]) Let f = a0 + a1X + · · · + an Xn ∈ D[X ] be
irreducible in K [X ] and Q = f K [X ] ∩ D[X ]. Then Q is a maximal ideal of D[X ]
if and only if ( a1a0

, . . . , an
a0

) ⊆ P for all nonzero prime ideals P of D̄. In this case,

f K [X ] ∩ D̄[X ] = 1
a0
f D̄[X ].

By Proposition 3.1, every upper to zero in D[X ] is a prime t-ideal. Following
[46], we say that D is a UMT-domain if each upper to zero in D[X ] is a maximal
t-ideal of D[X ]. (UMT stands for Upper to zero is a Maximal T -ideal.)

Theorem 3.3. ([46, Proposition 3.2]) An integrally closed domain D is a UMT-
domain if and only if D is a PvMD.

Hence, UMT-domains can be considered as non-integrally closed PvMDs. A
quasi-Prüfer domain is a UMT-domain in which every maximal ideal is a t-ideal;
equivalently, its integral closure is a Prüfer domain [31, Chapter VI].

Theorem 3.4. The following statements are equivalent for an integral domain D.

1. D is a UMT-domain.
2. D̄P is a Prüfer domain for all P ∈ t-Max(D).
3. D̄P is a Prüfer domain for all prime t-ideals P of D.
4. D̄P is a Bézout domain for all P ∈ t-Max(D).
5. D̄P is a Bézout domain for all prime t-ideals P of D.
6. Each t-linked overring of D is a UMT-domain.

Proof. (1) ⇔ (2) ⇔ (3) [30, Theorem 1.5]. (1) ⇔ (5) [16, Lemma 2.2]. (5) ⇒ (4)
⇒ (2) Clear. (1) ⇒ (6) [30, Proposition 1.2]. (6) ⇒ (1) Clear.

Corollary 3.5. ([30, Proposition 1.2]) Let D be a UMT-domain. Then DS is a UMT-
domain for every multiplicative set S of D.
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Proof. Let I be a nonzero finitely generated ideal of D. Then (I DS)
−1 = I−1DS

[39, Theorem 4.4]. Hence, DS is t-linked over D. Thus, by Theorem 3.4, DS is a
UMT-domain.

We next give some characterizations of UMT-domains via polynomial rings,
Nagata rings, and Kronecker function rings.

Theorem 3.6. The following statements are equivalent for an integral domain D.

1. D is a UMT-domain.
2. D[X ] is a UMT-domain.
3. Each prime ideal of D[X ]Nv

is extended from D.
4. D[X ]Nv

is a quasi-Prüfer domain.
5. D̄[X ]Nv

is a Prüfer domain.
6. Kr(D, w) = D̄[X ]Nv

, where Kr(D, w) is as in Lemma 2.14.
7. Every upper to zero in D[X ] is t-invertible.
8. Each upper to zero in D[X ] contains an 0 �= f ∈ D[X ] with c( f )v = D.

Proof. (1) ⇔ (2) [30, Theorem 2.4]. (1) ⇔ (3) [46, Theorem 3.1]. (1) ⇔ (4) ⇔ (5)
[23, Corollary 2.4 and Theorem 2.16]. (1) ⇔ (6) [17, Corollary 7]. (1) ⇔ (7) ⇔ (8)
Proposition 3.1(3).

Let D[w] = ⋂
P∈t-Max(D) D̄P . Then D[w] is an integrally closed t-linked overring of

D, D[w] = D̄[X ]Nv
∩ K and D[w][X ]Nv

= D̄[X ]Nv
[28, Theorem 1.3]. In particular,

the wD-operation on D[w] can be defined as in Lemma 2.3. It is easy to see that
AwD = AD̄[X ]Nv

∩ K for all A ∈ F(D[w]) [28, Lemma 2.3].

Theorem 3.7. Let D be an integral domain and wD be the star operation of finite
character on D[w] as in Lemma 2.3. Then the following statements are equivalent.

1. D is a UMT-domain.
2. D[w] is a PwDMD.
3. D[w] is a PvMD and t-Max(D[w]) = {Q ∈ Spec(D[w]) | Q ∩ D ∈ t-Max(D)}.
Proof. (1) ⇔ (2) [58, Theorem 4.2]. (1) ⇔ (3) [28, Theorem 2.6].

For another characterization ofUMT-domains, recall from [4] that amultiplicative
subset S of D is a t-splitting set if for each 0 �= d ∈ D, dD = (AB)t for some integral
ideals A and B of D, where At ∩ sD = s At (equivalently, (A, s)t = D) for all s ∈ S
and Bt ∩ S �= ∅. It is known that S is a t-splitting set of D if and only if dDS ∩ D is
t-invertible for all 0 �= d ∈ D [4, Corollary 2.3].

Theorem 3.8. ([22, Corollary 2.9]) An integral domain D is a UMT-domain if and
only if D \ {0} is a t-splitting set in D[X ].

A strong Mori domain (SM domain) is an integral domain which satisfies the
ascending chain condition on integralw-ideals. Clearly, Noetherian domains are SM
domains, while SM domains need not be Noetherian (e.g., Q[{Xα}] for an infinite
set {Xα} of indeterminates over the field Q of rational numbers).
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Theorem 3.9. ([28, Corollary 3.2]) Let D be an SM domain. Then D is a UMT-
domain if and only if t-dim(D) = 1.

If D is integrally closed, then each upper to zero in D[X ] is a v-ideal by Propo-
sition 3.1(4). In [47], Houston and Zafrullah called D a UMV-domain if each upper
to zero in D[X ] is a maximal v-ideal. It is clear that if D is a UMT-domain, then
each upper to zero in D[X ] is a maximal v-ideal. Hence, UMT-domains are UMV-
domains, while UMV-domains need not be UMT-domains (e.g., see [37, Example
3.1] for v-domains that are not PvMDs and [47, Example 3.5] for a non-integrally
closed UMV-domain that is not a UMT-domain).

Theorem 3.10. ([47, Theorem 3.3]) The following statements are equivalent for an
integral domain D.

1. D is a v-domain.
2. D is an integrally closed UMV-domain.
3. D is integrally closed and each upper to zero in D[X ] is v-invertible.

Recall that D is an S-domain if ht(PD[X ]) = 1 for every prime ideal P of D
with htP = 1 [50, p. 26]. It is easy to see that a UMT-domain is an S-domain; and
if t-dim(D) = 1 (e.g., dim(D) = 1), then D is an S-domain if and only if D is a
UMT-domain (cf. [55, Theorem8]).However, S-domains need not beUMT-domains.
For example, if D = R + (X,Y )C[[X,Y ]], where C[[X,Y ]] is the power series ring
over the field C of complex numbers and R is the field of real numbers, then D is
a 2-dimensional local Noetherian domain [14, Theorem 4 and Corollary 9] whose
maximal ideal is a t-ideal. Hence, D is an S-domain [50, Theorem 148] but not a
UMT-domain by Theorem 3.9. Moreover, it is clear that D[w] = D̄ = C[[X,Y ]], and
hence D[w] is a PvMD. Thus, in Theorem 3.7, D[w] being a PvMD does not imply
that D is a UMT-domain.

3.2 Kaplansky Type Theorems

It is well known that D is a UFD if and only if every nonzero prime ideal of D
contains a nonzero prime element [50, Theorem 5]. Also, by Theorem 3.6 (resp.,
[23, Theorem 1.1]), we have

Proposition 3.11. An integral domain D is a UMT-domain (resp., quasi-Prüfer
domain) if and only if every upper to zero in D[X ] contains a nonzero polynomial
f ∈ D[X ] with c( f )v = D (resp., c( f ) = D).

In this subsection, we study this kind of theorem, called Kaplansky type theorem,
for uppers to zero in D[X ]. Note that, nonzero principal ideal ⇒ invertible ideal ⇒
t-invertible ideal; and prime ideal ⇒ primary ideal.
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Lemma 3.12. Let 0 �= f ∈ K [X ] and Q = f K [X ] ∩ D[X ].
1. Q is principal if and only if c( f )v is principal. In this case, Q = f

a D[X ] for some
0 �= a ∈ D with c( f )v = aD.

2. [57, Theorem A] f is a prime element of D[X ] if and only if f is irreducible over
K and c( f )v = D.

Proof. (1) If Q = gD[X ] for some g ∈ D[X ], then f K [X ] = gK [X ], and hence
f = ag for some 0 �= a ∈ D and c(g)v = D [10, Lemma 2.1]. Thus, c( f )v = aD.
Conversely, if c( f )v = bD for some b ∈ D, then c( f

b )v = D, and thus Q = f
b D[X ]

by Dedekind–Mertens lemma.
(2) If f is a prime element, then f K [X ] is a prime ideal and f D[X ] = f K [X ] ∩

D[X ]. Hence, f is irreducible over K and c( f )v = D by (1). The reverse implication
follows directly from (1).

We next give a Kaplansky type characterization of GCD domains via uppers to
zero in polynomial rings.

Theorem 3.13. ([57, Theorem I] and [24, Theorem 2.2]) The following statements
are equivalent for an integral domain D.

1. D is a GCD domain.
2. Each upper to zero in D[X ] contains a nonzero prime element.
3. Each upper to zero in D[X ] is principal.
4. Every (aX + b)K [X ] ∩ D[X ] for 0 �= a, b ∈ D is principal.

Proof. (1) ⇒ (3) Let Q be an upper to zero in D[X ]. Then Q = f K [X ] ∩ D[X ] for
some 0 �= f ∈ D[X ], and since c( f )v is principal, Q is principal by Lemma 3.12.

(2) ⇔ (3) ⇒ (4) Clear.
(4) ⇒ (1) Let f = aX + b. Then f is irreducible in K [X ], and hence f K [X ] ∩

D[X ] is an upper to zero in D[X ]. Hence, f K [X ] ∩ D[X ] is principal by assumption,
and thus (a, b)v = c( f )v is principal by Lemma 3.12. Thus, D is a GCD domain.

Corollary 3.14. ([24, Corollary 2.3]) An integral domain D is a Bézout domain if
and only if each upper to zero in D[X ] contains a nonzero prime element f with
c( f )= D.

A primary element of an integral domain D is a nonzero nonunit a ∈ D such that
a|bc for b, c ∈ D implies either a|b or a|cn for some integer n ≥ 1; equivalently,
aD is a primary ideal. Clearly, a prime element is primary.

Theorem 3.15. ([10, Theorem 2.4]) Each upper to zero in D[X ] contains a primary
element if and only if D is a UMT-domain with Cl(D[X ]) torsion.
Corollary 3.16. ([24,Corollary 2.5])Each upper to zero in D[X ] contains a nonzero
primary element f with c( f ) = D if and only if D is a quasi-Prüfer domain with
Cl(D[X ]) torsion.
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Proof. (⇒) This follows directly from Proposition 3.11 and Theorem 3.15. (⇐)

Note that a quasi-Prüfer domain is a UMT-domain. Hence, each upper to zero in
D[X ] contains a primary element f by Theorem 3.15. Then c( f )v = D, and since
each maximal ideal of D is a t-ideal, c( f ) = D.

We say that D is an almost GCD domain (AGCD-domain) if, for each 0 �= a, b ∈
D, there is an integer n = n(a, b) ≥ 1 such that (an, bn)v is principal; equivalently,
anD ∩ bnD is principal. It is known that an integrally closed domain D is an AGCD-
domain if and only if D is a PvMD with Cl(D) torsion [59, Theorem 3.9].

Corollary 3.17. Let D be an integrally closed domain.

1. [10, Corollary 2.5] Each upper to zero in D[X ] contains a primary element if
and only if D is an AGCD-domain.

2. [24, Corollary 2.6] Each upper to zero in D[X ] contains a primary element f
with c( f ) = D if and only if D is a Prüfer domain with Cl(D) torsion.

An integral domain D is called a generalized GCD domain (GGCD domain) if
the intersection of two invertible ideals of D is invertible [1]; equivalently, every
v-ideal of finite type is invertible [1, Theorem 1]. Clearly, GGCD-domains are
PvMDs because PvMDs are integral domains whose v-ideals of finite type are t-
invertible and invertible ideals are t-invertible.

Theorem 3.18. ([6, Theorem 15]) An integral domain D is a GGCD-domain if and
only if each upper to zero in D[X ] is invertible.
Proof. This can be proved by the fact that if D is integrally closed, then f K [X ] ∩
D[X ] = f c( f )−1[X ] for all 0 �= f ∈ D[X ] by Proposition 2.9.

An integral domain D is an almost GGCD-domain (AGGCD-domain) if for 0 �=
a, b ∈ D, there is an integer n = n(a, b) ≥ 1 such that anD ∩ bnD (equivalently,
(an, bn)v) is invertible. It is known that D is an AGCD-domain if and only if D is an
AGGCD-domain with Cl(D) torsion [51, Theorem 5.1].

Theorem 3.19. ([24, Theorem 2.8]) Let D be an integrally closed domain.

1. Every upper to zero in D[X ] contains a t-invertible primary ideal if and only if
D is a PvMD.

2. Every upper to zero in D[X ] contains an invertible primary ideal if and only if
D is an AGGCD-domain.

For another example of UMT-domains, recall that D is called an almost PvMD
(APvMD) if, for each 0 �= a, b ∈ D, there exists an integer n = n(a, b) ≥ 1 such
that (an, bn) is t-invertible. Note that (an, bn)v is t-invertible if and only if (an, bn)
is t-invertible; so AGGCD domains are APvMDs.
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Theorem 3.20. Let D be an integral domain with integral closure D̄.

1. D is an APvMD if and only if D is a UMT-domain and D ⊆ D̄ is a root extension,
i.e., a ∈ D̄ implies an ∈ D for some integer n = n(a) ≥ 1.

2. D is an AGCD-domain if and only if D is an APvMD with Cl(D) torison.

Proof. These appear in Theorem 3.8 and Theorem 3.1 of [52], respectively.

In [56], Storch studied almost factorial domains which are Krull domains with
torsion divisor class groups [35, Proposition 6.8]. Then, in [59], Zafrullah began to
study a general theory of almost factoriality where he defined the notion of AGCD-
domains. As we noted in this subsection, we have AGCD-domain ⇒ AGGCD-
domain ⇒ APvMD ⇒ UMT-domain.

4 Graded Integral Domains Which Are UMT-domains

In this section, we study the UMT-domain property of graded integral domains. We
first review the definitions related with graded integral domains.

4.1 Definitions of Graded Integral Domains

Let Γ be a nonzero torsionless grading monoid, that is, Γ is a nonzero torsionless
commutative cancellative monoid (written additively), and 〈Γ 〉 = {a − b | a, b ∈
Γ } be the quotient group of Γ ; so 〈Γ 〉 is a torsionfree abelian group. It is well known
that a cancellative monoid Γ is torsionless if and only if Γ can be given a total order
compatible with the monoid operation [54, page 123]. By a (Γ -)graded integral
domain R = ⊕

α∈Γ Rα , we mean an integral domain graded by Γ . Hence, each
nonzero x ∈ Rα has degreeα, i.e., deg(x) = α, deg(0) = 0, and RαRβ ⊆ Rα+β for all
α, β ∈ Γ . Thus, each nonzero f ∈ R can bewritten uniquely as f = xα1 + · · · + xαn

with deg(xαi ) = αi and α1 < · · · < αn . A nonzero x ∈ Rα for every α ∈ Γ is said to
be homogeneous. Let H = ⋃

α∈Γ (Rα \ {0}); so H is the saturated multiplicative set
of nonzero homogeneous elements of R. Then RH , called the homogeneous quotient
field of R, is a 〈Γ 〉-graded integral domain whose nonzero homogeneous elements
are units. Hence, RH is a completely integrally closed GCD domain [3, Proposition
2.1]. For a fractional ideal A of R with A ⊆ RH , let Ah be the fractional ideal of R
generated by homogeneous elements in A; so Ah ⊆ A. The fractional ideal A is said
to be homogeneous if Ah = A. LetC( f ) denote the fractional ideal of R generated by
the homogeneous components of f ∈ RH and C(A) = ∑

f ∈A C( f ) for a fractional
ideal A of R with A ⊆ RH . Clearly, C( f ) and C(A) are homogeneous fractional
ideals of R. It is known that if f, g ∈ R, then C( f )m+1C(g) = C( f )mC( f g) for
some integer m ≥ 1 [54].
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Examples of torsionless grading monoids include the additive monoids Z
+ and

Q
+ of nonnegative integers and nonnegative rational numbers, respectively. Also,

〈Z+〉 = Z and 〈Q+〉 = Q are the additive groups of integers and rational numbers,
respectively. It is clear that the semigroup ring D[Γ ] of Γ over an integral domain D
is a Γ -graded integral domain with deg(aXα) = α for 0 �= a ∈ D and α ∈ Γ . Also,
the polynomial ring D[X ] and the Laurent polynomial ring D[X, X−1] are graded
integral domains graded by Z

+ and Z, respectively.
Throughout this section, Γ is always a nonzero torsionless grading monoid,

R = ⊕
α∈Γ Rα is a Γ -graded integral domain such that Rα �= (0) for all α ∈ Γ ,

R̄ is the integral closure of R, H is the saturated multiplicative set of nonzero homo-
geneous elements of R, and N (H) = { f ∈ R | f �= 0 and C( f )v = R}; so N (H)

is a saturated multiplicative set of R.

4.2 General Case

Our first result shows why we are mainly interested in homogeneous maximal
t-ideals when we study the divisibility properties (e.g., PvMDs and Krull domains)
of graded integral domains.

Lemma 4.1. Let Q be a maximal t-ideal of R = ⊕
α∈Γ Rα .

1. If Q ∩ H = ∅, then RQ is a valuation domain. In particular, if RH is a UFD,
then RQ is a rank-one DVR.

2. If Q ∩ H �= ∅, then Q is homogeneous.

Hence, {Q ∈ t-Max(D) | Q ∩ H �= ∅} = {Q ∈ t-Max(D) | Q is homogeneous}.
Proof. (1) [27, Theorem 2]. (2) [9, Lemma 1.2].

The next result is a graded integral domain analog of Theorem 3.4.

Theorem 4.2. ([27, Corollary 7] and [43, Theorem 3.2]) The following statements
are equivalent for a graded integral domain R = ⊕

α∈Γ Rα .

1. R is a UMT-domain.
2. R̄Q is a Prüfer domain for all homogeneous maximal t-ideals Q of R.
3. RQ is a quasi-Prüfer domain for all homogeneous maximal t-ideals Q of R.
4. RN (H) is a UMT-domain.
5. RH\Q is a UMT-domain and QH\Q is a t-ideal for all homogeneous maximal

t-ideals Q of R.

Proof. This result follows directly from Theorem 3.4, Lemma 4.1 and the fact that
QN (H) is a maximal t-ideal of RN (H) for all homogeneous maximal t-ideals Q of R
[11, Proposition 1.3].
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Corollary 4.3. ([25, Lemma 2.7] and [2, Theorem 6.4]) Let R = ⊕
α∈Γ Rα be a

graded integral domain. Then the following statements are equivalent.

1. R is a PvMD.
2. RQ is a valuation domain for all homogeneous maximal t-ideals Q of R.
3. Every nonzero finitely generated homogeneous ideal of R is t-invertible.

Proof. (1) ⇒ (3) Clear. (3) ⇒ (2) This follows because I RQ is principal for all
nonzero finitely generated homogeneous ideals I of R. (2)⇒ (1) This is an immediate
consequence of Theorem 2.12 and Lemma 4.1 (or Theorems 3.3 and 4.2).

As in [11], we say that R satisfies property (#) ifC(I )t=R implies I ∩ N (H) �= ∅
for all nonzero ideals I of R; equivalently, Max(RN (H)) = {QN (H) | Q ∈ t-Max(D)

with Q ∩ H �= ∅} [11, Proposition 1.4]. Examples of graded integral domains with
property (#) include (i) graded integral domains with a unit of nonzero degree, (ii)
D[Γ ], the monoid domain of Γ over an integral domain D, and (iii) D[{Xα}], the
polynomial ring over D, [11, Example 1.6].

Corollary 4.4. ([27, Corollary 8]) Let R = ⊕
α∈Γ Rα be a graded integral domain

with property (#). Then the following statements are equivalent.

1. R is a UMT-domain.
2. RN (H) is a quasi-Prüfer domain.
3. R̄N (H) is a Prüfer domain.

Let R = D[X, X−1] be the Laurent polynomial ring over an integral domain D.
Then R is a Z-graded integral domain and RN (H) = D[X ]Nv

. Hence, Corollary 4.4
is a natural generalization of Theorem 3.6 (1), (4), and (5).

4.3 When RH Is a UFD

In this subsection, we study the UMT-domain property of graded integral domains
R = ⊕

α∈Γ Rα such that RH is a UFD; so throughout this subsection, we always
assume that RH is a UFD. We first give some examples of graded integral domains
R with RH a UFD.

Example 4.5. Let R = ⊕
α∈Γ Rα be a graded integral domain. Then RH is a UFD

if one of the following conditions are satisfied:

1. [8, Proposition 3.5] 〈Γ 〉 satisfies the ascending chain condition on its cyclic
subgroups.

2. R = D[{Xα}] is the polynomial ring over an integral domain D.
3. [53, Section A.I.4.] 〈Γ 〉 = Z is the additive group of integers.
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Let R = D[X ] be the polynomial ring over D. Then Q is an upper to zero in
D[X ] if and only if either Q = XD[X ] or Q = f K [X, X−1] ∩ D[X ] for some
prime element 0 �= f ∈ K [X ]. Also, RH = K [X, X−1], and hence if Q is an upper
to zero in D[X ] with Q �= XD[X ], then Q = f RH ∩ R. Motivated by this fact,
Chang introduced the notion of graded UMT-domains. As we will see, the notions
of UMT-domains and graded UMT-domains are distinct in general.

Definition 4.6. [21, Definition 1.4] Let R = ⊕
α∈Γ Rα be a graded integral domain,

and assume that RH is a UFD.

1. A nonzero prime ideal Q of R is an upper to zero in R if f RH ∩ R for some
f ∈ RH . (In this case, f is a nonzero prime element of RH .)

2. R is a graded UMT-domain if every upper to zero in R is a maximal t-ideal.

Clearly, XD[X ] is a maximal t-ideal of D[X ]. Hence, D is a UMT-domain if and
only if D[X ] is a graded UMT-domain. However, if D = R + (y, z)C[[y, z]] (see the
remark after Theorem 3.10), then R = D + XK [X ] is a graded UMT-domain with
property (#) but not a UMT-domain ([20, Corollary 9] and [21, Proposition 4.2]).

Theorem 4.7. ([21, Proposition 1.7]) Let R = ⊕
α∈Γ Rα be a UMT-domain. Then

R is a graded UMT-domain.

The next result is a graded integral domain analog of Proposition 3.1(3) which is
very useful for the study of UMT-domain properties.

Proposition 4.8. [21, Proposition 1.8] Let Q be a prime t-ideal of R = ⊕
α∈Γ Rα

such that Q ∩ H = ∅. Then the following statements are equivalent.

1. C(Q)t = R.
2. Q is t-invertible.
3. Q is a maximal t-ideal.

In this case, htQ = 1, and hence Q is an upper to zero in R.

Let f ∈ D[X ] be a nonzero polynomial with c( f )v = D. If A is an ideal of D[X ]
with f ∈ A, then A is t-invertible [46, Proposition 4.1] and f D[X ] = (Qe1

1 · · · Qen
n )t

for some uppers to zero Qi in D[X ] and integers ei ≥ 1 [41, p. 144]. The next result
is an extension of these results to graded integral domains.

Corollary 4.9. (cf. [21, Proposition 1.12]) Let A be a nonzero ideal of R =⊕
α∈Γ Rα such that C(A)t = R. Then At = (Qe1

1 · · · Qen
n )t for some t-invertible

uppers to zero Qi in R and integers ei ≥ 1. In particular, A is t-invertible.

Proof. Let Q be a maximal t-ideal of R with A ⊆ Q. Then R = C(A)t ⊆ C(Q)t ⊆
R or C(Q)t = R. Hence, Q ∩ H = ∅ by Lemma 4.1, and thus Q is an upper to zero
in R that is t-invertible by Proposition 4.8. This also implies that each prime t-ideal
of R containing A is t-invertible. Thus, At = (Qe1

1 · · · Qen
n )t for some uppers to zero

Qi in R and integers ei ≥ 1 [41, Theorem 1.3] and A is t-invertible.
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Corollary 4.10. ([21, Corollary 1.13]) Let R = ⊕
α∈Γ Rα and 0 �= f ∈ R

with C( f )v = R. Then f R = (Qe1
1 · · · Qen

n )t for some uppers to zero Qi in R and
integers ei ≥ 1.

The next result gives a characterization of graded UMT-domains R = ⊕
α∈Γ Rα

with property (#). Note that if R = D[X, X−1], then R satisfies property (#) and
RN (H) = D[X ]Nv

; hence, the next result is an extension of Theorem 3.6 to graded
integral domains with property (#).

Theorem 4.11. Let R = ⊕
α∈Γ Rα be a graded integral domain with property (#).

Then the following statements are equivalent.

1. R is a graded UMT-domain.
2. Every upper to zero in R contains an f ∈ R with C( f )v = R.
3. Every prime ideal of RN (H) is extended from a homogeneous ideal of R.
4. Every upper to zero in R is t-invertible.

Proof. (1) ⇔ (2) ⇔ (3) [21, Theorem 2.2]. (2) ⇔ (4) Proposition 4.8.

We now give several characterizations of graded UMT-domains with a unit of
nonzero degree, and in this case, graded UMT-domains are UMT-domains.

Theorem 4.12. Let R = ⊕
α∈Γ Rα be a graded integral domain with a unit of

nonzero degree. Then the following statements are equivalent.

1. R is a graded UMT-domain.
2. Every upper to zero in R contains an f ∈ Q with C( f )v = R.
3. Every prime ideal of RN (H) is extended from a homogeneous ideal of R.
4. R is a UMT-domain.
5. R̄N (H) is a Prüfer domain.
6. RN (H) is a UMT-domain.
7. RN (H) is a quasi-Prüfer domain.
8. Every upper to zero in R is t-invertible.
9. Let Q be a nonzero prime ideal of R with C(Q)t � R. Then Q is a homogeneous

prime t-ideal.
10. Let Q be a nonzero prime ideal of R such that Q ⊆ M for some homogeneous

maximal t-ideal M of R. Then Q is a homogeneous prime t-ideal.

Proof. (1)−(7) [21, Theorem 3.5]. (1) ⇔ (8) Theorem 4.11 because graded integral
domains with a unit of nonzero degree satisfy property (#). (1) ⇔ (9) ⇔ (10) [21,
Corollary 3.10].

Corollary 4.13. ([26, Theorem 2.5]) Let R = ⊕
α∈Γ Rα be a graded integral

domain with a unit of nonzero degree. Then R is an integrally closed graded UMT-
domain if and only if R is a PvMD.

Let R = D[X ] be the polynomial ring over D. Then, as we note after Defini-
tion 4.6, if R is a graded UMT-domain, then R is a UMT-domain even though R
does not contain a unit of nonzero degree. The next result explains why this phe-
nominon happens.



UMT-domains: A Survey 73

Corollary 4.14. ([21, Corollary 3.13]) Let R = ⊕
α∈Γ Rα be a graded integral

domain with a nonzero homogeneous prime element p such that ht(pR) = 1 and
deg(p) �= 0. Then R is a graded UMT-domain if and only if R is a UMT-domain.

Proof. Let S = {pn | n ≥ 1}. Then it is easy to see that R is a (graded) UMT-domain
if and only if RS is a (graded) UMT-domain. Thus, the result is an immediate con-
sequence of Theorem 4.12.

5 Constructing New UMT-domains from Old Ones

In this section, we construct new UMT-domains from old UMT-domains via semi-
group rings (Section5.1) and pullbacks (Section5.2).

5.1 Semigroup Rings

Let D be an integral domain, Γ be a nonzero torsionless grading monoid, and D[Γ ]
be the semigroup ring of Γ over R. Then D[Γ ] is an integral domain [40, Theorem
8.1] graded by Γ with deg(aXα) = α for 0 �= a ∈ D and α ∈ Γ . We say that Γ is a
valuation monoid if either g ∈ Γ or −g ∈ Γ for every g ∈ 〈Γ 〉. Clearly, Z+ and Q

+
are valuation monoids.

Lemma 5.1. Let Γ be a torsionless grading monoid. Then the following statements
are equivalent.

1. Γ is a valuation monoid.
2. 〈Γ 〉 = Γ ∪ (−Γ ).
3. a + Γ ⊆ b + Γ or b + Γ ⊆ a + Γ for every a, b ∈ Γ .
4. Every finitely generated ideal of Γ is principal.

Proof. This is an easy exercise.

Let D̄ be the integral closure of D and Γ̄ be the integral closure ofΓ . Then D[Γ ] =
D̄[Γ̄ ] [40, Theorem 12.10] and Max(D[Γ ]N (H)) = {P[X ]N (H) | P ∈ t-Max(D)} ∪
{D[S]N (H) | S ∈ t-Max(Γ )} [11, Example 1.6].

Theorem 5.2. The following statements are equivalent for D[Γ ].
1. D[Γ ] is a UMT-domain.
2. D[Γ ]N (H) is a quasi-Prüfer domain.
3. D[Γ ]N (H) is a Prüfer domain.
4. D is a UMT-domain and Γ̄S is a valuation monoid for all maximal t-ideals S

of Γ .
5. D[Γ ]Q is a quasi-Prüfer domain for all maximal t-ideals Q of D[Γ ] with Q ∩

D �= (0) or Xα ∈ Q for some α ∈ Γ .
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Proof. (1) ⇔ (2) ⇔ (3) ⇔ (4) [27, Theorem 17]. (1) ⇔ (5) Note that Q is a
homogeneous maximal t-ideal of D[Γ ] if and only if either Q ∩ D �= (0) or Xα ∈ Q
for some α ∈ Γ . Thus, the result follows from Theorem 4.2.

Corollary 5.3. ([27, Corollary 18]) Let G be a torsionfree abelian group. Then
D[G] is a UMT-domain if and only if D is a UMT-domain.

Proof. Clearly, G has no maximal t-ideal. Thus, the result follows directly from
Theorem 5.2.

Corollary 5.4. ([27, Corollary 18]) Let Γ be a numerical semigroup. Then D[Γ ] is
a UMT-domain if and only if D is a UMT-domain.

Proof. Clearly, Γ̄ = Z
+ is a valuationmonoid. Thus, the result follows directly from

Theorem 5.2.

Corollary 5.5. ([30, Theorems 2.4 and 2.5] and [21, Corollary 3.14]) Let {Xα} be
a nonempty set of indeterminates over D and Nv = { f ∈ D[{Xα}] | c( f )v = D}.
Then the following statements are equivalent.

1. D is a UMT-domain.
2. D[{Xα}] is a UMT-domain.
3. D[{Xα, X−1

α }] is a UMT-domain.
4. D[{Xα}]Nv

is a UMT-domain.
5. D[{Xα}]Nv

is a quasi-Prüfer domain.

Proof. For each α, let Zα = Z be the additive group of integers; so if G = ⊕
α Zα ,

then G is a torsionfree abelian group and the group ring D[G] of G over D is
isomorphic to D[{Xα, X−1

α }]. Hence, the result follows from Theorem 5.2.

5.2 Pullbacks

Let T be an integral domain, M be a maximal ideal of T , k = T/M , D be a subring
of k, ϕ : T → k be the canonical homomorphism, and R = ϕ−1(D) be the pullback
of the following diagram:

R = ϕ−1(D) D

T
ϕ

k = T/M.

Then T is a t-linked overring of R [30, Proposition 3.1] and M is a prime t-ideal
of R. Hence, by Theorem 3.4, if R is a UMT-domain, then T is a UMT-domain. We
call R a pullback of type (�). For example, if T is a valuation domain with maximal
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ideal M such that T = k + M (e.g., T = k[[X ]] is the power series ring over k), then
R = D + M .

Theorem 5.6. ([30, Theorem 3.7]) Let R be a pullback of type (�). Then R is a
UMT-domain if and only if D and T are UMT-domains, M is a maximal t-ideal of
T , and k is algebraic over the quotient field of D.

Corollary 5.7. Let D be an integral domain with quotient field K , k be an algebraic
extension field of K , and X be an indeterminate over k. Then the following statements
are equivalent.

1. D is a UMT-domain.
2. D + Xnk[X ] is a UMT-domain for all integers n ≥ 1.
3. D + Xnk[[X ]] is a UMT-domain for all integers n ≥ 1.

Proof. (1)⇔ (2) Clearly, k[X ] is a UMT-domain, and hence k[S] for S = {0, n, n +
1, . . . } is a UMT-domain (by Corollary 5.4) and Xnk[X ] is a maximal t-ideal of k[S].
Thus, the results follow from Theorem 5.6.

(1)⇔ (3) Let T = k[[Xn, Xn+1, · · · ]]. Then T̄ = k[[X ]] is a rank-oneDVR.Hence,
T is a quasi-Prüfer domain and Xnk[[X ]] is amaximal t-ideal of T . Thus, by Theorem
5.6, D is a UMT-domain if and only if D + Xnk[[X ]] is a UMT-domain.

Corollary 5.8. Let D be an integral domain with quotient field K , k be an algebraic
extension field of K , k[Q+] be the semigroup ring of Q

+ over k, and M = {g ∈
k[Q+] | g(0) = 0}. Then D is aUMT-domain if and only if D + M is aUMT-domain.

Proof. Note that k[Q+] is a PvMD by Corollary 4.3 and M is a maximal t-ideal of
k[Q+] (cf. Lemma 4.1). Thus, the result follows directly from Theorem 5.6.
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The Apéry Set of a Good Semigroup

Marco D’Anna, Lorenzo Guerrieri, and Vincenzo Micale

Abstract We study the Apéry Set of good subsemigroups of N
2, a class of semi-

groups containing the value semigroups of curve singularities with two branches.
Even if this set in infinite, we show that, for the Apéry Set of such semigroups, we can
define a partition in “levels” that allows to generalize many properties of the Apéry
Set of numerical semigroups, i.e., value semigroups of one-branch singularities.

Keywords Value semigroups · Algebroid curves · Gorenstein rings · Symmetric
semigroups · Apéry Set

MSC 13A18 · 14H99 · 13H99 · 20M25

1 Introduction

The concept of good semigroup was formally defined in [1] in order to study
value semigroups of Noetherian analytically unramified one-dimensional semilo-
cal reduced rings, e.g., the local rings arising from curve singularities (and from their
blowups), possibly with more than one branch; the properties of these semigroups
were already considered in [3, 5, 6, 9, 13–15], but it was in [1] that their struc-
ture was systematically studied. Similarly to the one-branch case, when the value
semigroup is a numerical semigroup, the properties of the rings can be translated and
studied at semigroup level. For example, the celebrated result by Kunz (see [18]) that
a one-dimensional analytically irreducible local domain is Gorenstein if and only if
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its value semigroup is symmetric can be generalized to analytically unramified rings
(see [14] and also [6]); in the same way, the numerical characterization of the canon-
ical module in the analytically irreducible case (see [16]) can be given also in the
more general case (see [9]).

However good semigroups present some problems that make difficult their study;
first of all they are not finitely generated as monoid (even if they can be completely
determined by a finite set of elements (see [7, 10, 15])) and they are not closed under
finite intersections. Secondly, the behavior of the good ideals of good semigroups
(e.g., the ideals arising as values of ideals of the corresponding ring) is not good at
all, in the sense that the class of good ideals is not closed under sums and differences
(see, e.g., [1, 17]).

Hence, unlike what happens for numerical semigroups (in analogy to analytically
irreducible domains), it is not clear how to define the concept of complete intersection
good semigroups and also the concepts of embedding dimension and type for these
semigroups.

Moreover, in the same paper [1], it is shown that the class of good semigroups is
larger than the class of value semigroups and, at the moment, no characterization of
value good semigroups is known (while, for the numerical semigroup case, it is easily
seen that any such semigroup is the value semigroup of the ring of the corresponding
monomial curve). This means that to prove a property for good semigroups it is not
possible to take advantage of the nature of value semigroups and it is necessary to
work only at semigroup level.

Despite this bad facts, there is a concept quite natural to define that seems very
promising in order to study good semigroups and to translate at numerical level other
ring concepts: the Apéry Set. In general, given any monoid S and any element s ∈ S,
the Ap(S, s) is defined as the set {t ∈ S : t − s /∈ S} (where the − is taken in the
group generated by S). For studying numerical semigroups, this concept reveals to
be very useful and it is also a bridge between semigroup and ring properties, since
many important ring properties are stable under quotients with respect to principal
ideals generated by a nonzero divisor (x) and the values of the nonzero elements in
R/(x) are exactly the elements of Ap(S, v(x)). This strategy was used, e.g., in [4,
8, 11, 12] taking (x) to be a minimal reduction of the maximal ideal that, in this
situation, corresponds to an element of minimal nonzero value.

For good semigroups, the notion of Ap(S, s)was used in [2], in order to obtain an
algorithmic characterization of those good semigroups that are value semigroups of
a plane singularity with two branches. In that paper, using deeply the structure of the
rings associated to plane singularities, it is proved that Ap(S, e) (where e = (e1, e2)
is the minimal nonzero element in S ⊂ N

2) can be divided in e = e1 + e2 subsets,
where the integer e corresponds to the multiplicity of the ring.

In this paper we want to investigate the Apéry Set of a good semigroup. Again
the problem is that we have to deal with an infinite set; so, first of all, we want to
understand if there is a natural partition of it in e subsets, where e is the sum of the
components of the minimal nonzero element of S and, in case S is a value semigroup,
it represents also themultiplicity of the corresponding ring; to answer to this question
we decided to restrict to the good subsemigroups of N

2, otherwise the technicalities
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would increase too much. After finding a possible partition Ap(S) = ⋃e
i=1 Ai , we

prove that, if S is the value semigroup of a ring (R,m, k), it is possible to choose e
elements αi in the Apéry Set, one for each Ai , so that, taking any element fi ∈ R of
valuation v( fi ) = αi , the classes f̄i are a basis of the e-dimensional k-vector space
R/(x) (where x is a minimal reduction of m). This fact make us confident that the
definition of the partition is the one we where looking for.

At this point it is natural to investigate if it is possible to generalize the well-
known characterization of symmetric numerical semigroups given via their Apéry
Set. It turns out that also good symmetric semigroups have Ap(S, e) whose partition
satisfies a duality property similar to the duality that holds for the numerical case.

The structure of the paper is the following: after recalling in Section2 all the
preliminary definitions and results needed for the rest of the paper, in Section3 we
define the partition of the Apéry Set of S and we prove that this partition produces
exactly e1 + e2 levels (Theorem 3); successively we deepen the study of the structure
of Apéry Set (Theorem 5) and we prove that, in the case of value semigroups, the
partition allows to find a basis for R/(x) as explained above (Theorem 6).

In Section4 we study the properties of the Apéry Set of symmetric good semi-
groups with particular attention to duality properties of its elements (Proposition 7
and Theorem 8) and in Section5 we use these results to prove a duality for the levels,
characterizing the symmetric semigroups, in analogy to the duality of Apéry Set in
the numerical semigroup case (Theorem 9). Finally we deepen this duality showing
that we can find sequences of elements, one for each level, that have the same duality
properties of the Apéry Set of the numerical semigroups (Theorem 10).

2 Preliminaries

Let N be the set of nonnegative integers. As usual, ≤ stands for the natural partial
ordering inN

2: setα = (α1,α2),β = (β1,β2), thenα ≤ β ifα1 ≤ β1 andα2 ≤ β2.
Trough this paper, if not differently specified, when referring to minimal or maximal
elements of a subset of N

2, we refer to minimal or maximal elements with respect
to ≤. Given α,β ∈ N

2, the infimum of the set {α,β} (with respect to ≤) will be
denoted by α ∧ β. Hence

α ∧ β = (min(α1,β1),min(α2,β2)).

Let S be a submonoid of (N2,+). We say that S is a good semigroup if

(G1) for all α,β ∈ S, α ∧ β ∈ S;
(G2) if α,β ∈ S and αi = βi for some i ∈ {1, 2}, then there exists δ ∈ S such that

δi > αi = βi , δ j ≥ min{α j ,β j } for j ∈ {1, 2} \ {i} and δ j = min{α j ,β j } if
α j �= β j ;

(G3) there exists c ∈ S such that c+ N
2 ⊆ S.
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A good subsemigroup ofN
2 is said to be local if 0 = (0, 0) is its only element with

a zero component. In the following we will work only with local good semigroups
hence we will omit the word local.

Notice that, from condition (G1), if c and d fulfill (G3), then so does c∧ d. So
there exists a minimum c ∈ N

2 for which condition (G3) holds. Therefore we will
say that

c := min{α ∈ Z
2 | α + N

2 ⊆ S}

is the conductor of S. We denote γ := c− 1.
In light of [1, Proposition 2.1], value semigroups of Noetherian, analytically

unramified, residually rational, one-dimensional, reduced semilocal rings with two
minimal primes are good subsemigroups of N

2 and R is local if and only it its value
semigroup is local; in the rest of this paper, we will always assume these hypotheses
on the rings R unless differently stated.

Wegive the following technical definitions that are commonly used in the literature
about good semigroups:

(1) Δi (α) := {β ∈ Z
2 | αi = βi and α j < β j for j �= i},

(2) ΔS
i (α) := Δi (α) ∩ S,

(3) Δ(α) := Δ1(α) ∪ Δ2(α),
(4) ΔS(α) := Δ(α) ∩ S.

An elementα ∈ S is said to be absolute ifΔS(α) = ∅. By definition of conductor
we immediately get ΔS(γ) = ∅. Given α,β ∈ N

2, we say that β is above α if
β ∈ Δ1(α) and that β is on the right of α if β ∈ Δ2(α).

Remark 1. Let c = (c1, c2) be the conductor of S. By properties (G1) and (G2), we
have that if α = (α1, c2) ∈ S, then Δ1(α) = ΔS

1 (α) (that is, each point β ∈ N
2,

aboveα, is in S). Similarly, ifα = (c1,α2) ∈ S, thenΔ2(α) = ΔS
2 (α) (that is, each

point β ∈ N
2, on the right of α, is in S).

The Apéry Set of S with respect to β ∈ S is defined as the set

Ap(S,β) = {α ∈ S|α − β /∈ S} .

Property (G1) implies that for a local good semigroup there exists a smallest nonzero
element that we will denote by e = (e1, e2). We will usually consider the Apéry Set
of S with respect to e and, in this case, we will simply write Ap(S) (see Fig. 1).

Remark 2. By definitions of conductor of S and of Ap(S), we have

{α ∈ N
2 | α ≥ γ + e + 1} ∩ Ap(S) = ∅.

Let A be a subset of N
2 and let α,β ∈ A, we say that β is a consecutive point of

α in A if, for every μ ∈ N
2 with α < μ < β, we necessary have μ /∈ A.

Remark 3. Let α,β ∈ Ap(S). If β is a consecutive point of α in S, then β is a
consecutive point of α in Ap(S). The converse it is not true.
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Letα,β ∈ A. The chain of points in A, {α = α1 < · · · < αh < · · · < αn = β},
with αh+1 consecutive of αh , is called saturated of length n. In this case α and β
are called the initial point and the final point, respectively, of the chain.

A relative ideal of a good semigroup S is a subset ∅ �= E ⊆ Z
2 such that E + S ⊆

E andα + E ⊆ S for someα ∈ S. A relative ideal E contained in S is simply called
an ideal. If E satisfies (G1) and (G2), thenwe say that E is agood ideal of S (condition
(G3) follows from the definition of good relative ideal).

Proposition 1 ([9, 17]) All the saturated chains in a good ideal E of S with fixed
initial and final points have the same length.

Ifα,β ∈ E , we denote by dE (α,β) the common length of all the saturated chains
in the good ideal E with initial point α and final point β. Moreover, if E ⊇ F are
two good ideals, considering mE and mF the minimal elements, respectively, of E
and F and taking α ≥ cF where cF is the conductor of F , it is possible to define
the following distance function d(E \ F) = dE (mE ,α) − dF (mF ,α) (cf [9, 17] to
see that it is a well defined distance). This distance funtion allows to translate many
ring properties at semigroup level, since, if I ⊇ J are two fractional ideals of R, it
is proved, in the same papers, that the length λR(I/J ) equals dv(R)(v(I ) \ v(J )).

Remark 4. In the numerical semigroup case, that is S = v(R) with (R,m) a one-
dimensional, Noetherian, analitically irreducible, residually rational, local domain,
it is well known that, if we denote by x a minimal reduction ofm (i.e., an element of
minimal value e), then y �= 0 in R/(x) if and only if v(y) ∈ Ap(S) = {ω0, . . . ,ωe−1}.
Moreover, ifωi = v(yi ), then

{
y0, . . . ye−1

}
are linear independent in the R/m-vector

space R/(x) and so they form a basis for it.

The first part of this remark can be easily generalized as follows, while we will
be able to generalize the second part using all the results of the next section (see
Theorem 6).

Proposition 2 Let y ∈ R; then y �= 0 in R/(x) if and only if v(y) ∈ Ap(S).

Proof. By definition y �= 0 in R/(x) if and only if y /∈ (x) that is equivalent to say
that yx−1 /∈ R. Since v(yx−1) = v(y) − v(x), if v(y) ∈ Ap(S) we immediately get
that yx−1 /∈ R, i.e., y �= 0 in R/(x). Conversely, assume that v(y) /∈ Ap(S), i.e.,
v(yx−1) = v(y) − v(x) = v(r), for some r ∈ R. Since R and both its projections
on the two minimal primes are residually rational, it follows that there exists an
invertible u in R such that v(yx−1 − ur) > v(r); moreover, we can choose u in order
to increase thefirst or the second component, asweprefer.Hence, applying repeatedly
this argument we obtain, after a finite number of steps, that v(yx−1 − u′r ′) ≥ c, that
implies yx−1 − u′r ′ ∈ (R : R) ⊂ R; therefore y ∈ (x), a contradiction. �
Remark 5. When S is the value semigroup of a ring (R,m), it is not difficult to see
that an element x is a minimal reduction of m if and only if v(x) = e; hence, the
integer e = e1 + e2 coincideswith themultiplicity of R: in fact e(R) = λR(R/(x)) =
dimR/m(R/(x)) (where λR denotes the length of an R module); now, using the
computation of lengths explained above, it is not difficult to check that λR(R/(x)) =
d(S \ e + S) = e1 + e2.
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It is useful to remark, at this point, that S \ e + S = Ap(S). Hence, our first goal
is, starting form a good semigroup S ⊆ N

2, to get a partition Ap(S) in e1 + e2 = e
levels that should correspond to the e elements of the Apéry Set of a numerical
semigroup. After that we would like to find e elements α1, . . . ,αe of the Apéry set
of S, one in each class of the partition, with the property that, if S = v(R) and fi ∈ R
are such that v( fi ) = αi , then f 1, . . . , f e are linear independent in the R/m-vector
space R/(x) and so they form a basis for it.

We notice again that, given a good semigroups, it is not known a procedure to
see if it is a value semigroup of a ring or not; so we are forced to use semigroup
arguments without the possible help of ring techniques.

As in the numerical semigroup case, a symmetric good semigroup has a duality
property. Indeed in [14], a good semigroup S is said to be symmetric if

α ∈ S ⇔ ΔS(γ − α) = ∅.

Moreover, in the numerical semigroup case, the symmetry of the semigroup S
can be characterized by a symmetry of its the Apéry Set: if we order its elements
in increasing order Ap(S) = {w1, . . . we}, then S is symmetric if and only if wi +
we−i+1 = we for every i = 1, . . . , e.

In this paper we also look for an analogue property for Ap(S) when S is a sym-
metric good subsemigroup of N

2.

3 Apéry Set of Good Semigroups in N
2

In order to get the partition of the Apéry Set of S we are looking for, we need to
introduce a new relation onN

2 (as it is done in [1]): we say that (α1,α2) ≤≤ (β1,β2)

if an only if (α1,α2) = (β1,β2) or (α1,α2) �= (β1,β2) and (α1,α2) � (β1,β2),
where the last means α1 < β1 and α2 < β2.

We define the following subsets of Ap(S):

B(1) = {α ∈ Ap(S) : α is maximal with respect to ≤≤},
C(1) := {α ∈ B(1) : α = β1 ∧ β2 for some β1, β2 ∈ B(1) \ {α}} and D(1) = B(1) \ C(1).

Assume i > 1 and that D(1), . . . , D(i−1) have been defined; we set

B(i) = {α ∈ Ap(S) \ (
⋃

j<i

D( j)) : α is maximal with respect to ≤≤},

C(i) := {α ∈ B(i) : α = β1 ∧ β2 for some β1,β2 ∈ B(i) \ {α}} and D(i) = B(i) \ C(i).
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Clearly, for some N ∈ N+, we have Ap(S) = ⋃N
i=1 D(i) and D(i) ∩ D( j) = ∅, for

any i �= j . For simplicity we prefer to number the set of the partition in increasing
order, so we set Ai = D(N+1−i). Hence

Ap(S) =
N⋃

i=1

Ai

We want to prove that N = e1 + e2. We will call the sets Ai levels of the Apéry Set
(see Fig. 2).

Remark 6. It is straightforward to see that AN = Δ(γ + e) = ΔS(γ + e) and that
A1 = {0}. Moreover, if α,β ∈ Ap(S), α � β and α ∈ Ai , then β ∈ A j for some
j > i .

Lemma 1. The sets Ai satisfy the following properties:

(1) for any α ∈ Ai there exists β ∈ Ai+1 such that α � β or α = β1 ∧ β2 with
β1,β2 ∈ Ai+1 (both cases can happen at the same time);

(2) for every α ∈ Ai and β ∈ A j , with j ≥ i , β �� α;
(3) if α ∈ Ai , β ∈ Ap(S) and β ≥ α, then β ∈ Ai ∪ · · · ∪ AN ;
(4) if α = (α1,α2),β = (α1,β2) ∈ Ai , with α2 < β2, then for any δ = (δ1, δ2) ∈

Ap(S) such that δ1 > α1 and δ2 ≥ α2, we get δ ∈ Ai+1 ∪ · · · ∪ AN ; an analo-
gous statement holds switching the components;

(5) if α � β ∈ Ap(S) and they are consecutive in S, then there exists i > 0 such
that α ∈ Ai and β ∈ Ai+1; if α < β ∈ Ap(S), they share a component and
they are consecutive in S, then there exists i > 0 such that either α ∈ Ai and
β ∈ Ai+1 or α,β ∈ Ai ;

(6) let α ∈ Ai and let be β1, . . . ,β j all the elements of Ap(S), α < βr and con-
secutive to α in Ap(S). Then at least one of them belongs to Ai+1;

(7) α = (α1, γ2 + e2 + 1) ∈ Ai ⇔ (α1, n) ∈ Ai for some n ≥ γ2 + e2 + 1 ⇔
(α1, n) ∈ Ai for all n ≥ γ2 + e2 + 1; an analogous statement holds switching
the components;

(8) if α = (α1, γ2 + e2 + 1) ∈ Ai and β = (β1, γ2 + e2 + 1) ∈ Ap(S), with β1 <

α1 and such that for every a, β1 < a < α1, the point (a, γ2 + e2 + 1) /∈ Ap(S),
then β ∈ Ai−1; an analogous statement holds switching the components. (We
could state this property saying that, definitively, consecutive vertical lines
(respectively, horizontal lines) of the Apéry Set belong to consecutive levels.)

Proof. Properties (1), (2), and (3) follow immediately by definition.
(4) If δ2 > α2, then α � δ and the assertion follows by definition of levels. If
δ2 = α2, by property (3), δ ∈ Ai ∪ · · · ∪ AN ; if δ ∈ Ai we get a contradiction by the
definition of levels, since α = β ∧ δ.
(5) Let i be such that α ∈ Ai . If α = (α1,α2) � β = (β1,β2) and they are consec-
utive in S, then there are no elements (a, b) of S such that α1 ≤ a < β1 and α2 < b
or α1 < a and α2 ≤ b < β2, since (a, b) ∧ β would be a point of S between α and
β; in particular α cannot be obtained as infimum of points of S. Moreover β ∈ A j ,
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Fig. 1 The value semigroup of k[[X, Y, Z ]]/(X3 − Z2) ∩ (X3 − Y 4). The elements of the Apéry
Set are indicated with ◦

0 2 3 4 5 6

0

3

4

5

6

7

8

9

10

11

1

2

2

3

3

3

3 3 3 3 3

4 4 4 4

4

4

4

4

4

4

4

5

5

5

5 5

Fig. 2 The Apéry Set of the semigroup in Fig. 1. We mark the elements of the set Ai with the
number i.
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with j > i . By property (3) all the points of Ap(S) bigger than or equal to β belong
to Ah , with h ≥ j ; hence, α is maximal in Ap(S) \ (

⋃
h≥ j Ah) with respect to ≤≤

and, by definition of levels, this implies that j = i + 1.
Assume now thatα andβ share a component (e.g.,α = (α1,α2),β = (α1,β2)).

Since they are consecutive in S, there are no elements (a, b) of S such that α1 ≤ a
and α2 < b < β2. Let i be such that α ∈ Ai ; by property (3) β ∈ A j with j ≥ i
and all the points of Ap(S) bigger than or equal to β belong to Ah , with h ≥ j ; by
definition of levels, β is maximal in Ap(S) \ (

⋃
h> j Ah) with respect to ≤≤ and

therefore also α is maximal in the same set; hence either j = i or j = i + 1.
(6) Assume by way of contradiction that for all r , βr ∈ Ahr with hr > i + 1, set h =
min{hr : r = 1, . . . , j}. Hence α is maximal in Ap(S) \ (

⋃
s≥h As) with respect to

≤≤. In order to have α ∈ Ai , either h = i + 1 (that is the thesis) or h = i + 2 and
α is obtained as infimum of two elements δ1, δ2 ∈ Ai+1. But also in the second
case, both δi have to be consecutive to α (otherwise they would be bigger than
some elements βr , so they could not belong to Ai+1); hence, we get a contradiction
by the assumption that h = i + 2. If, on the other hand, there exists βr ∈ Ai , it
necessarily shares a component with α. Hence, by property (4) all the other βs

belong to Ai+1 ∪ · · · ∪ AN . Now, applying the same argument as above, one of them
has to be in Ai+1.
(7) Any element α = (α1,α2) with α2 > γ2 (respectively, α1 > γ1) belongs to S if
and only if (α1, γ2 + 1) ∈ S (respectively, ((γ1 + 1,α2) ∈ S). Hence it is clear that
α = (α1, γ2 + e2 + 1) ∈ Ap(S) if and only if (α1, n) ∈ Ap(S) for some n ≥ γ2 +
e2 + 1 if and only if (α1, n) ∈ Ap(S) for all (α1, n) (and the analogous statement
holds switching the components).

So we have only to prove that these elements belongs to the same level (we will
prove this fact for vertical lines and the corresponding statement for horizontal line
is analogous). If not, by property (5), there exist two elements α1 = (α1,α2) ∈
Ai and α2 = (α1,α2 + 1) ∈ Ai+1 consecutive in Ap(S). Now let β1 > α1 be the
smallest integer such that β = (β1,α2) ∈ Ap(S); since α1 = α2 ∧ β and there are
no elements (a,α2) of Ap(S), withα1 < a < β1, it is clear that eitherβ ∈ Ai orβ ∈
Ai+1; moreover α2 � (β1,α2 + 2), hence, the last belongs to A j with j > i + 1.
Hence, also in the vertical line corresponding to β1 there are elements on different
levels. Iterating the argument we get that the same happens for Δ1(γ + e) ⊆ AN ; a
contradiction.
(8) By property (6), alle the elements of S above α are in Ai . Hence β �
(α1, γ2 + e2 + 2) and therefore it belongs to A j with j < i . Moreover the hypothe-
sis implies that β is maximal in Ap(S) \ (

⋃
h≥i Ah) with respect to ≤≤ and cannot

be obtained as infimum of two other elements maximal in the same set. The thesis
follows immediately. �

Next lemma describes global properties of the elements of a good semigroup S
and of its Apéry Set.

Lemma 2. The following assertions hold:

(1) Let α ∈ N
2 and assume there is a finite positive number of elements in ΔS

1 (α) ∩
(e + S). Call δ the maximum of them. Hence ΔS(δ) ⊆ Ap(S);
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(2) Let α ∈ Ap(S). If there exists β ∈ (e + S) ∩ Δ1(α), then ΔS
2 (α) ⊆ Ap(S);

(3) Let α = (a1, a2) ∈ Ai and suppose there exists b2 < a2 such that δ = (a1, b2) ∈
S and ΔS

2 (δ) ⊆ Ap(S). Then the minimal element β = (b1, b2) of ΔS
2 (δ) is in A j

for some j ≤ i . In particular, if ΔS(δ) ⊆ Ap(S) and α is the minimal element
of ΔS

1 (δ), β ∈ Ai .

(4) Let α = (a1, a2) ∈ Ai and suppose there exists δ ∈ (e + S) ∩ Δ1(α). Then
ΔS

2 (α) ⊆ Ap(S) and the minimal element β=(b1, a2) of ΔS
2 (α) is also in Ai .

(5) Let α ∈ Ai and assume ΔS
1 (α) ⊆ Ap(S). Assume also that there exists β ∈

ΔS
1 (α) ∩ Ai+1. Then there exists θ ∈ (ΔS

1 (α) ∩ Ai ) ∪ {α} such that θ < β and
ΔS(θ) ⊆ Ap(S).
The analogous assertions hold switching the components.

Proof. (1) Since δ is the maximum of ΔS
1 (α) ∩ (e + S), we have ΔS

1 (δ) ⊆ Ap(S).
Now, since (e + S) is a good ideal of S, by property (G2), also ΔS

2 (δ) ⊆ Ap(S).
(2) Assume that there exists δ ∈ Δ2(α) ∩ (e + S). Then again, since (e + S) is a
good ideal, by property (G1), α = β ∧ δ ∈ (e + S) and this is a contradiction.
(3) First we notice that ΔS

2 (δ) is non-empty since also ΔS
1 (δ) is non-empty (by

axiom (G2)). Now, if i = N , the thesis easily follows by Remark 6. For i < N , we
use the following argument: by definition of Ap(S) we can always find an element
θ = (g1, g2) ∈ Ai+1 with g1 > a1 and g2 ≥ a2. Hence, the fact that β is the minimal
element of ΔS

2 (δ) implies that g1 ≥ b1 and this implies β ∈ A j for j ≤ i + 1.
If we assume by way of contradiction β ∈ Ai+1, we would have g1 = b1 and

hence, by axiom (G2), there exists an element ω = (h1, b2) with h1 > b1. Since
ΔS

2 (δ) ⊆ Ap(S), we have ω ∈ Ap(S) and we may assume ω minimal in ΔS
2 (β).

Thus, if ω ∈ Ai+1 we have β = θ ∧ ω ∈ Ai , otherwise we should have ω ∈ A j for
some j > i + 1. But nowwe are in the same situation of the hypothesis of the lemma
with θ,β,ω playing the role of α, δ,β. In this way, iterating the process, we can
create an infinite sequence of elementsωk ∈ Δ2(δ) ∩ Ai+k and this is a contradiction
because the levels of Ap(S) are in a finite number. The last sentence of the statement
follows since, having also ΔS

1 (δ) ⊆ Ap(S), we apply the same result and get the
level of α less or equal than the level of β.

(4) If i = N , the thesis is clear by Remark 6. For i < N , clearlyΔS
2 (α) is non-empty

and it is contained inAp(S) by (2). First assume that there exists θ = (g1, g2) ∈ Ai+1

such that θ � α. Since β is the minimal element of ΔS
2 (α), we have g1 ≥ b1.

But now, if g1 > b1, then θ � β and hence β ∈ Ai . Instead if g1 = b1 we can
find a minimal element ω ∈ Δ2(β) ∩ Ap(S) and β = θ ∧ ω. By (3), ω ∈ A j with
j ≤ i + 1 and thus β ∈ Ai .

Now assume that there is no element of Ai+1 dominating α. It follows that α =
θ ∧ β with θ,β ∈ Ai+1. We can assume by way of contradiction both of these
elements to beminimal, otherwise wewould have theminimalβ ∈ Ai . If θ ∈ Δ1(α)

is still such that θ < δ, we have ΔS
2 (θ) ⊆ Ap(S) and we can find in it a minimal

element ω ∈ ΔS
2 (θ) which has to be in Ai+2 by Lemma 1(5) (otherwise we would

have an element of Ai+1 dominating α).
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Suppose there existsω1 ∈ Ai+2 such thatω1 � θ. Clearly we cannot have neither
ω1 � ω norω1 ∈ Δ1(ω) because this would contradict (3). Hence there existsω1 ∧
ω ∈ ΔS

2 (θ) and this is a contradiction since ω is minimal in ΔS
2 (θ).

Hence, we can assume that there are not elements of Ai+2 dominating θ. This
means that θ is the minimum of two elements ω1,η2 ∈ Ai+2 and we can iterate
the process replacing the elements θ,α,β with ω1,θ,η2. If Δ1(α) is eventually
contained in e + S, after a finite number of iteration we will find an element ωk

which is maximal in Δ1(α) ∩ Ap(S) and it is dominated by some element of a
greater level of Ap(S) (notice that in this case the elements in Δ1(α) are dominated
by elements in AN ). This would lead to a contradiction like in the previous paragraph.
If Δ1(α) ∩ (e + S) has a maximum δ, then ΔS(δ) ⊆ Ap(S) by (1) and our iterative
process will end, by replacing the name of the elements and of the levels, in a
situation with α = θ ∧ β with θ,β ∈ Ai+1 and θ > δ > α. In this setting, we can
find a minimal elementω ∈ Δ2(δ) ∩ Ap(S). By (3),ω ∈ A j with j ≤ i + 1 and this
again contradicts the assumption since ω � α.

(5) Assume ΔS
2 (α) � Ap(S). Hence by (4), we have that the minimal element ω of

ΔS
1 (α) is also in Ai . Hence ω < β. If again ΔS

2 (ω) � Ap(S) we find an element
ω1 ∈ ΔS

1 (α) ∩ Ai and ω1 < β. Since there is a finite number of elements in ΔS
1 (α)

between α and β, the process must stop to an element θ ∈ ΔS
1 (α) ∩ Ai such that

θ < β and ΔS(θ) ⊆ Ap(S). �

Theorem 3. Let S ⊆ N
2 be a good semigroup and let e = (e1, e2) be its minimal

nonzero element. Let Ap(S) = ⋃N
i=1 Ai where the sets Ai are defined as above. Then

N = e1 + e2.

Proof. We have that Ap(S) = S \ (e + S). Moreover both S and e + S are good
ideals so we can compute the distance function d(S \ e + S) as dS(0,γ + e + 1) −
de+S(e,γ + e + 1); on the other hand we know that d(S \ e + S) = e1 + e2.

Hence, to prove that N ≥ e1 + e2 we show that there exists a saturated chain in S,
between 0 and γ + e + 1 that contains exactly one element of every level Ai : if we
do not consider the N elements of Ap(S) in this chain we get a chain (not necessarily
saturated) in e + S; hence, dS(0,γ + e + 1) − N ≤ de+S(e,γ + e + 1), that means

e1 + e2 = dS(0,γ + e + 1) − de+S(e,γ + e + 1) ≤ N .

To construct such a chain we start from 0 ∈ S ∩ Ap(S) and then we choose N ele-
ments, one for each level Ai using property (6) of Lemma 1: given αi ∈ Ai we
choose αi+1 ∈ Ai+1 consecutive to αi in Ap(S); so we get a chain of N elements in
Ap(S), each one consecutive to the previous in Ap(S). Hence when we saturate this
chain in S, we add only elements in S \ Ap(S) = e + S, and we obtain the desired
chain.

In order to prove that N ≤ e1 + e2 we want to construct a saturated chain in
e + S between e and γ + e + 1 such that, when we saturate it in S, as a chain
between 0 and γ + e + 1, we use at least one element for every level Ai (it
is clear that we can only add elements of Ap(S) = S \ (e + S): in fact, if we
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add n ≥ N elements in Ap(S), this would imply dS(0,γ + e + 1) = de+S(e,γ +
e + 1) + n ≥ de+S(e,γ + e + 1) + N , that is N ≤ dS(0,γ + e + 1) − de+S(e,γ +
e + 1) = e1 + e2.

To construct such a chain we start with 0 � e, that is a saturated chain in S; hence,
we can assume that we have constructed a saturated chain in S, say α0 = 0 < α1 <

· · · < αh , such that, αh ≤ γ + e + 1, if we delete the elements αi ∈ Ap(S) we get
a saturated chain in e + S and every level A1, . . . , A j has at least one representative
in it. To apply a recursive argument we need either to stretch the chain adding one or
more new elements, the first consecutive toαh in S and any of the others consecutive
to the previous one, or to produce a new chain with the same properties (replacing
the last elements of the constructed chain) for which all the levels A1, . . . , A j+1 have
at least one representative in it. The process will end, since the length of a saturated
chain is bounded by dS(0,γ + e + 1) (and at the last step we have to touch AN ) and
the number of levels is bounded by N . We explain now how to add a new element
to the chain in all the different possible cases. Before starting, we observe that if we
have γ + e + 1 ∈ ΔS(αh) we complete the chain adding all the elements between
αh and γ + e + 1 sharing a coordinate with them (they are all on the same horizontal
or on the same vertical line). By Lemma 1(7 and 8) this chain will touch exactly once
all the levels of Ap(S) between j + 1 and N .

Hence we consider now all the cases in which αh � γ + e + 1. We can start
from one of the following two cases: either (case A)αh ∈ e + S or (case B)αh ∈ A j

(notice that at the beginning of the chain we have 0 � e, so we start from case A).
In both cases if αh has only one consecutive element β in S, necessarily (by

axiom (G2)) we have αh � β and we should be forced to choose αh+1 = β. If
β ∈ e + S, the new chain obviously satisfies the requested properties; moreover
it has one element more and now we are in case A. On the other hand, assume
β ∈ Ap(S); the condition αh � β implies that αi � β, for all i = 0, . . . , h; in
particular, let αr ∈ A j be the last element of the Apéry Set in the chain. Hence, by
Remark 6we know thatβ ∈ A j+1 ∪ · · · ∪ AN ; if it is in A j+1, we simply addβ to the
chain and proceed in case B. Otherwise, if β it is not in A j+1, by Lemma 1(6) there
exists another element δ consecutive in Ap(S) to αr , such that δ ∈ A j+1 (notice
that, by Lemma 1(5), this situation can happen only in case A). Now δ has to share a
componentwith one of the elementsαr , . . . ,αh otherwise, taking infimums, itwould
create a new point that makes the original chain non-saturated; more precisely, if it
is above (respectively, on the right) of some αl for r ≤ l ≤ h, then αl+1 has to be
either above or on the right of αl . Now we change the chain substituting αm with
δ ∧ αm , for every m ≥ l + 1; successively we add to the chain δ ∧ β and all the
other elements of S on the vertical (respectively, horizontal) line until we reach δ
(notice that we may have δ ∧ αm = δ for some m and in that case we simply stop
to δ because we have reached it). We show an example of the preceding process in
the first picture of Figure3.

Hence we created a new chain with the requested properties, such that every level
A1, . . . , A j+1 has at least one representative in it and now we are in case B.

It remains to study what happens ifαh = β1 ∧ β2 (where bothβi are consecutive
to αh in S).
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Fig. 3 Explanation of parts of the proof

• Case A. In this case let αr ∈ A j be the last element of the Apéry Set in the chain.
The following situations can occur:

(A.1) both βi ∈ Ap(S): if at least one βi belongs to A j+1, we set αh+1 := βi and
we switch to case B. Otherwise, since αr � βi , for at least one i = 1, 2, we have,
for the same i , βi ∈ A j+2 ∪ · · · ∪ AN . By Lemma 1(6), there exists another element
δ consecutive in Ap(S) to αr , such that δ ∈ A j+1. Using the same argument as
above, i.e., replacing the last part of the chain with δ ∧ αm (for r < m ≤ h) and then
proceeding on a single line until reaching δ, we obtain the desired result and we
switch to case B;
(A.2) both βi ∈ e + S: we can move to any one of them indifferently and proceed
in case A;
(A.3) β1 ∈ Ap(S) and β2 ∈ e + S: if β1 ∈ A j (this can happen only if the last
element of the Apéry Set in the chain αr shares a component with both αh and
β1), we set αh+1 = β2 and we proceed in case A; if β1 ∈ A j+2, we take again δ
consecutive in Ap(S) to αr such that δ ∈ A j+1 and, replacing the last part of the
chain with δ ∧ αm (the elements αm are defined as in A.1), we obtain the desired
result and we switch to case B.

It remains the hardest situation, i.e., β1 ∈ A j+1; in this case, we have to show that
both β1 and β2 do not have the same element as unique consecutive in S; if this was
the case and if β1 was the only consecutive of αr in Ap(S) belonging to A j+1, it
would be impossible to proceed, because either we would skip the level A j+1 or we
would create a chain such that, if we delete the elements of Ap(S), we do not get
a saturated chain in e + S (for this situation, see the second picture of Figure3, in
which we denote by θ the unique consecutive element in S of both β1 and β2 and
we consider the two possible chains between αh and θ).

Let assume thatαh andβ2 share the first component (the other case is symmetric):
So αh = (a1, a2) and β2 = (a1, b2), with b2 > a2. They do not belong to Ap(S)

hence bothαh − e andβ2 − e belong to S. Hence, by Property (G2), theremust be an
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element (c1, a2 − e2) ∈ S and sowe have also another point of S,δ = (c1 + e1, a2) ∈
e + S, on the right ofαh . Sinceβ1 is also on the right ofαh and it is consecutive to it
in S, we have three points in the same horizontal line: αh < β1 < δ. Now, choosing
δ minimal, we are sure that it is consecutive to αh in e + S. Moreover, we are sure
that moving from β1 to δ on the horizontal line, if we meet points of Ap(S), by
Lemma 1(5) we do not skip any level and by Lemma 2(4) and Lemma 1(4) we do
not repeat twice the same level. Hence we can stretch the chain up to δ and proceed
in case A.

• Case B. We notice that, in this case, if βi ∈ Ap(S) it has to belong either to A j or
to A j+1, since they are consecutive in S to αh ∈ Ap(S) (again by Lemma 1(5)).

The following situations can occur:

(B.1) both βi ∈ A j+1: we can move to any one of them indifferently and proceed in
case B;
(B.2) both βi ∈ e + S: this cannot happen by Lemma 2(2);
(B.3) β1 ∈ A j and β2 ∈ A j+1: we move to β2 and proceed in case B;
(B.4) β1 ∈ A j and β2 ∈ e + S: we move to β2 and switch to case A;
(B.5)β1 ∈ A j+1 andβ2 ∈ e + S:we can assume thatβ1 is on the right ofαh andβ2 is
above it; in this case either there is another elementβ′ ∈ A j+1 such thatα = β1 ∧ β′

andα < β2 < β′ share the first component; we chooseβ′ minimalwith this property
and we move to β2 and then to β′ (considering all possible elements between them,
that have to belong to e + S) or there exists β′′ ∈ A j+1 above β1 and consecutive to
both βi ; so we move to β2 and then to β′′. In both cases we proceed in case B.

The proof is complete. �

From now on we are going to denote the number of levels of the Apéry Set by
e = e(S) = e1 + e2 that, as we noticed in the previous section, coincides with the
multiplicity of the ring R, in case S = v(R).

We derive from the proof of the preceding theorem, a sort of converse of property
(1) of Lemma 1. We are going to make use of this next result in the last section
of this article, while proving a duality property for the levels of the Apéry Set of a
symmetric good semigroup.

Proposition 4 Let S ⊆ N
2 be a good semigroup and let Ap(S) = ⋃e

i=1 Ai be its
Apéry Set. Let α ∈ Ai for i ≥ 2. Then, there exists β ∈ Ai−1 such that β ≤ α.

Proof. Since A1 = {0}, and α ≥ 0 for every α ∈ S, the thesis is true for i = 2 and
hence, by induction, we can assume it true for every j < i. Assume by way of
contradiction that there exists α ∈ Ai such that θ � α for every θ ∈ Ai−1. We can
further assume that also δ � α for every δ ∈ Ai , otherwise we can simply replace
α with some element δ ≤ α and minimal in Ai with respect to “≤”.

Take ω ∈ Ap(S) such that ω ≤ α and they are consecutive in Ap(S), hence,
ω ∈ A j with j < i − 1. We may assume j to be the maximal level of an element of
Ap(S) having α as a consecutive element in Ap(S). Assume there exists an element
ω′ ∈ A j such that ω ∈ ΔS(ω′). Hence, we can find a saturated chain in S between
ω′ and α that does not contain any other elements of Ap(S). Indeed, we can find
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β ∈ S such that ω′ ≤ β ≤ α, β ∈ ΔS(ω′) and it is incomparable with ω (i.e., either
β ∈ ΔS

2 (ω
′) and ω ∈ ΔS

1 (ω
′) or the converse). If β ∈ Ap(S), then it has to be in A j ,

but this is impossible since ω′ = ω ∧ β would be the minimum of two elements of
A j , and therefore not in A j .

It follows that we can choose an element ω̃ ≤ ω minimal with respect to the
property of being in A j (this element could be ω itself) and find a saturated chain
in S between ω̃ and α not containing any other elements of Ap(S). By inductive
hypothesis, ω̃ ≥ δ ∈ A j−1, and hence we can iterate the preceding process and con-
struct a saturated chain in S between 0 and α, containing only one element for every
level of Ap(S) between 1 and j and not containing any element in the levels strictly
between j and i . As in the first part of the proof of Theorem 3, we can extend this
chain adding a chain in S from α to γ − e + 1 including only one element for each
level of Ap(S) greater than i . The obtained chain going between 0 and γ + e + 1
contains h := e − (i − j) + 1 elements of Ap(S), thus, removing those elements,
we can find a chain in e + S between e and γ + e + 1 of length

dS(0,γ + e + 1) − h = de+S(e,γ + e + 1) + e − h.

Since j < i − 1, this length is strictly bigger than de+S(e,γ + e + 1) and this is a
contradiction. �

As we can observe in all the preceding examples of good semigroups, the first
levels of Ap(S) are finite while the others contain either one or two infinite lines of
elements.After formalizing the concept of infinite lines of elements in twodefinitions,
we describe precisely this behavior in the next theorem (Figure4).

Definition 1. Let S ⊆ S1 × S2 ⊆ N
2 be a good semigroup. Given an element s1 ∈

S1, we say that Δ1(s1, r) is an infinite line of S if there exists r ∈ S2 such that
Δ1(s1, r)⊆S. IfΔ1(s1, r) ⊆ Ap(S), we say thatΔ1(s1, r) is an infinite line ofAp(S).

Analogously, given an element s2 ∈ S2, Δ2(q, s2) is an infinite line of S (resp.
Ap(S)) if there exists q ∈ S1 such that Δ2(q, s2) ⊆ S (resp. Ap(S)). If an infinite
line of S is not an infinite line of Ap(S), then it is an infinite line of e + S.

Definition 2. Let S ⊆ S1 × S2 ⊆ N
2 be a good semigroup and letAp(S) = ⋃e

i=1 Ai

be its Apéry Set. For i = 1, . . . , e, we say that

1. Ai contains two infinite lines if there exist two elements s1 ∈ S1 and s2 ∈ S2, such
that, for some q ∈ S1, r ∈ S2, Δ1(s1, r), Δ2(q, s2) are infinite lines of Ap(S) and
they are contained in Ai .

2. Ai contains only one infinite line if only one of the previous conditions hold.
3. Ai is finite if it contains a finite number of elements.

Theorem 5. Let S ⊆ S1 × S2 ⊆ N
2 be a good semigroup, let e = (e1, e2) be its

minimal nonzero element. Let Ap(S) = ⋃e
i=1 Ai be the Apéry Set of S. Assume

e1 ≥ e2. Then,

(1) The levels Ae, Ae−1, . . . , Ae−e2+1 contain two infinite lines.
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Fig. 4 This is an example of a good semigroup that is not the value semigroup of any ring, see
[1, Example 2.16, p. 8]

(2) The levels Ae−e2 , . . . , Ae−e1+1 contain only one infinite line of the form Δ1(s1, r)

corresponding to some element s1 ∈ S1.
(3) The levels Ae−e1 , . . . , A2, A1 are finite.

If e1 ≤ e2 the correspondent analogous conditions hold.

Proof. First we show that in the projection S1 of S there are exactly e1 elements
s1, . . . , se1 such that Δ1(si , r) is an infinite line of Ap(S) (for some r ∈ S2). Let
c = (c1, c2) be the conductor of S. Following the preceding definitions, we have
that for every n ≥ c1 and sufficiently large r ∈ S2, Δ1(n, r) is an infinite line of S.
Moreover, Δ1(n, r) ⊆ e + S if and only if also Δ1(n − e1, r) is an infinite line of
S, and conversely Δ1(n, r) ⊆ Ap(S) if Δ1(n − e1, r) is not an infinite line of S for
any r ∈ S2. It follows that for every n there exists a unique m ≡ n mod e1 such that
Δ1(m, r) is an infinite line of Ap(S). With the same argument it can be shown that
the analogous situation happens on S2 and therefore there are e2 infinite lines of
Ap(S) of the form Δ2(q, ti ) corresponding to some elements t1, . . . , te2 ∈ S2. Now,
notice that, by Lemma 1(7), if an infinite line is contained in Ap(S), then its elements
must be contained eventually in a level Ai . Moreover, by Lemma 1(8), Ai cannot
contain more than two infinite lines and, if it contains two of them, they must be one
of the form Δ1(s1, r) and the other of the form Δ2(q, s2). Applying inductively the
definition of the levels Ai , it follows that the levels Ae, Ae−1, . . . , Ae−e j +1 contain
the e j infinite lines contained in Ap(S) and corresponding to the elements of Sj . �
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We conclude this section by proving a generalization ofRemark 4 holding for good
semigroups.We show that if (R,m, k) is an analytically unramified one-dimensional
local reduced ring, its quotient ring R/(x), where x is a nonzero element having
minimal value in the value semigroup S = v(R), can be generate as a k-vector space
by a set of e elements having values in all the different levels of the Apéry Set of S.

Theorem 6. Let (R,m, k) be an analytically unramified one-dimensional local
reduced ring, having value semigroup S = v(R) and let x ∈ R such that v(x) =
e = min(S \ {0}). Let Ap(S) = ⋃e

i=1 Ai be the Apéry Set of S. It is possible to con-
struct a chain

α1 < α2 < . . . < αe ∈ S

such that αi ∈ Ai and, for every collection of fi ∈ R having v( fi ) = αi ,

R

(x)
= 〈 f1, f2, . . . , fe〉k .

Proof. By Remark 5, the dimension over k of R/(x) is e, hence, we only need to
show that, for i = 1, . . . , e, we can find elements αi such that the correspondent fi

are linearly independent over k.

We set α1 = 0 and then we define the other elements αi using the following
procedure: in case αi � β for some β ∈ Ai+1, we may simply set αi+1 := β. Oth-
erwise, ifαi = β ∧ δ with β ∈ ΔS

1 (αi ) ∩ Ai+1 and δ ∈ ΔS
2 (αi ) ∩ Ai+1, by Lemma

2(2), we have ΔS
h (αi ) ⊆ Ap(S) and then we set αi+1 := β if h = 2 and αi+1 := δ

if h = 1 (if ΔS(αi ) ⊆ Ap(S) we can take indifferently one of them).
Now, taking fi ∈ R such that v( fi ) = αi ∈ Ap(S), we clearly get byProposition 2

that fi is nonzero in R/(x). Then we consider v(
∑e

i=1 λi fi ) for λi ∈ k. Let j be the
minimal index such that λ j �= 0. If α j � α j+1, we obtain

v(

e∑

i=1

λi fi ) = v(λ j f j ) = α j ∈ Ap(S)

and therefore
∑e

i=1 λi fi is nonzero in R/(x). Otherwise, we may assume α j+1 ∈
ΔS

1 (α j ), and hence, our procedure used to define the αi implies now that ΔS
2 (α j ) ⊆

Ap(S). It follows that

v(

e∑

i=1

λi fi ) ∈ ΔS
2 (α j ) ∪ {α j } ⊆ Ap(S)

and thus
∑e

i=1 λi fi is nonzero in R/(x). �
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4 Symmetric Good Semigroups

In this section we describe more properties of the Apéry Set of a good semigroup in
the symmetric case.

Definition 3. A good semigroup S is symmetric if, for every α ∈ N
2, α ∈ S if and

only if ΔS(γ − α) = ∅.

Symmetry is an interesting concept because, in the value semigroup case, it is
equivalent to the Gorensteiness of the associated ring. Indeed, an analytically unram-
ified one-dimensional local reduced ring is Gorenstein if and only if its value semi-
group is symmetric. But more in general, a symmetric good semigroup has other nice
properties, that we list in next proposition. Some of them have been already proved
in [2, Proposition 3.2]. An interesting fact that we are proving is that it is possible to
know the number of absolute elements of a symmetric good semigroup only looking
at one of its (numerical) projections (Figure5).

Remark 7. The projections of a symmetric good semigroupmay fail to be symmetric
numerical semigroups, as one can see for instance in Figure6.

Proposition 7 Let S ⊆ S1 × S2 ⊆ N
2 be a symmetric good semigroup, let e =

(e1, e2), γ = (γ1, γ2) and Ap(S) be defined as previously.
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Fig. 5 The symmetric value semigroup of k[[X, Y ]]/(Y 4 − 2X3Y 2 − 4X5Y + X6 − X7)(Y 2 −
X3), see [2, p. 8]. It is possible to observe that the number of absolute elements of this semigroup
is 13 = 21 − 8 = 14 − 1 as predicted by the formula in Proposition 7(2)
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Fig. 6 An example of a symmetric good semigroupwhose projections are not symmetric numerical
semigroups. It is a good example to check the duality property stated in Theorem 9

(1) If α ∈ S is a absolute element, then also γ − α ∈ S and it is a absolute element.
(2) The number of the absolute elements of S is n(S1) − b(S1) = n(S2) − b(S2),

where n(Si ) = |Si ∩ {0, 1, . . . , γi }| and b(Si ) = |N \ Si |.
(3) For α ∈ S, α ∈ Ap(S) if and only if ΔS(γ + e − α) �= ∅.

(4) If α ∈ Ap(S), then ΔS(γ + e − α) ⊆ Ap(S).
(5) Let α ∈ N

2. If ΔS(α) ⊆ Ap(S) (possibly it is empty), then γ + e − α ∈ S.
(6) Let α ∈ Ap(S). Then for i = 1, 2; ΔS

i (γ + e − α) = ∅ if and only if ΔS
i (α) �

Ap(S).

Proof. (1) Follows by the definitions of symmetric semigroup and absolute element.
(2) By definition of symmetric good semigroup, we have that n /∈ S1 if and only if
ΔS

1 (n, 0) = ∅, and if and only if (γ1 − n, γ2 + m) ∈ S for every m ≥ 0. It follows
that the number of elements s ∈ S1 such that Δ1(s1, r) is an infinite line of S (for
some r ∈ S2) is exactly b(S1). Call M the number of absolute elements of S. Hence,

γ1 = M + 2b(S1),

and, since γ1 = n(S1) + b(S1), we obtain M = n(S1) − b(S1). In the same way, we
can show M = n(S2) − b(S2).
(3) An element α ∈ S is in Ap(S) if and only if α − e /∈ S, and this happens by
Definition 3 if and only if ΔS(γ + e − α) �= ∅.

(4) Since α ∈ Ap(S), ΔS(γ − α) = ∅. It follows that ΔS(γ + e − α) ⊆ Ap(S).
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(5) If ΔS(α) ⊆ Ap(S), then by definition ΔS(α − e) = ∅. and therefore γ + e −
α ∈ S.
(6) We prove the result for i = 1. By (3) and (4), we have that ΔS(γ + e − α) is
not empty and contained in Ap(S). Assuming ΔS

1 (γ + e − α) = ∅, by axiom (G2)
we get γ + e − α /∈ S and ΔS

2 (γ + e − α) �= ∅. By (5), it follows that ΔS(α) �

Ap(S) and moreover, since there exists ω ∈ ΔS
2 (γ + e − α) ⊆ Ap(S), we get by

(4) ΔS
2 (α) ⊆ ΔS

2 (γ + e − ω) ⊆ Ap(S). Hence ΔS
1 (α) � Ap(S).

Conversely, if ΔS
1 (α) � Ap(S), there exists θ ∈ ΔS

1 (α) ∩ (e + S) and therefore,
again by (3) ΔS

1 (γ + e − α) ⊆ ΔS
1 (γ + e − θ) = ∅. �

Let S ⊆ S1 × S2 ⊆ N
2 be a good semigroup. We describe now, in the symmetric

case, the absolute elements and the infinite lines of Ap(S) and of e + S in terms of
the elements of a single projection, say S1. For n ∈ N, we consider the set

ΔS
1 (n, 0) = {(n, m) ∈ S | m ≥ 0}.

This set can be empty, finite or infinite. It is infinite if and only if ΔS
1 (n, r) is an

infinite line of S for some r ∈ S2; it is finite if and only if ΔS
1 (n, 0) contains a

absolute element of S; it is empty if and only if n /∈ S1. The analogous situation
holds for the other projection S2.

Lemma 3. The set ΔS
1 (n, 0) ⊆ Ap(S) if and only if n ∈ Ap(S1).

Proof. Wehave n ∈ Ap(S1) if and only if n − e1 /∈ S1 if and only ifΔS
1 (n − e1, 0)=∅.

The result now follows from the definition of Ap(S). �

Theorem 8. Let S ⊆ S1 × S2 ⊆ N
2 be a symmetric good semigroup, let e = (e1, e2)

be its minimal nonzero element. Let n ∈ N and define n′ = γ1 + e1 − n.

(1) ΔS
1 (n, 0) = ∅ if and only if ΔS

1 (n
′, 0) is infinite and eventually contained in

e + S.

(2) ΔS
1 (n, 0) is finite with maximal element in e + S if and only if ΔS

1 (n
′, 0) is finite

with maximal element in e + S.
(3) ΔS

1 (n, 0) � Ap(S) and it is finite with maximal element in Ap(S) if and only if
ΔS

1 (n
′, 0) � Ap(S) and it is finite with maximal element in Ap(S).

(4) ΔS
1 (n, 0) ⊆ Ap(S) and it is finite if and only if ΔS

1 (n
′, 0) is infinite and eventually

contained in Ap(S) but it contains some element of e + S.

(5) ΔS
1 (n, 0) ⊆ Ap(S) and it is infinite if and only if ΔS

1 (n
′, 0) ⊆ Ap(S) and it is

infinite.

All the correspondent statements hold replacing S1 with S2.

Proof. (1) Observe that ΔS
1 (n, 0) = ∅ if and only if ΔS(n,−m) = ∅ for all m ≥

0. This is equivalent by Definition 3 to say that (γ1 − n, γ2 + m) ∈ S. Hence
ΔS

1 (n, 0) = ∅ if and only if ΔS
1 (γ1 − n, 0) is infinite, which is equivalent to say

that ΔS
1 (γ1 + e1 − n, 0) = ΔS

1 (n
′, 0) is infinite and contained in e + S.

(2) Letα ∈ e + S be the maximal element of S belonging toΔS
1 (n, 0). Henceα is an

absolute element and, by Proposition 7(1) γ − α is also an absolute element of S. It
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follows that α′ = γ + e − α ∈ e + S. Moreover, since α ∈ e + S, ΔS(α′) = ∅ by
Proposition 7(3). Thus α′ is a absolute element and ΔS

1 (n
′, 0) is finite with maximal

element in e + S. The converse is tautological.
(3)LetΔS

1 (n, 0) � Ap(S) and it is finitewithmaximal elementα = (n, m) ∈ Ap(S).
As in (2), we have thatα′ = γ + e − α ∈ e + S. But, by exclusion, (1) and (2) imply
that ΔS

1 (n
′, 0) neither is infinite and eventually contained e + S nor has a maximal

in e + S. Hence there must exist β = (n′, r) ∈ Ap(S) with r > m ′ := γ2 + e2 − m.
We conclude saying that, since ΔS

1 (n, 0) � Ap(S), there must exist an element δ =
(n, d) ∈ e + S withd < m and henceΔS(δ′) = ∅. Thus there are onlyfinite elements
(n′, q) ∈ S with q > m ′ and they are all in Ap(S) by Proposition 7(4), since they are
elements of ΔS(α′). Since there exists at least one of such elements, namely β, the
thesis follows.
(4) Assume that ΔS

1 (n, 0) ⊆ Ap(S) and it is finite. Again by (1) and (2) we exclude
that ΔS

1 (n
′, 0) is infinite and eventually contained e + S or has a maximal in e + S.

Let α = (n, m) ∈ Ap(S) be the maximal element in ΔS
1 (n, 0). We proceed like in

the proof of (3) to say that α′ = γ + e − α ∈ e + S. If by way of contradiction
ΔS

1 (n
′, 0) contains a maximal element θ ∈ Ap(S), it would follow by Proposition

7(3 and 5) that θ′ ∈ ΔS
1 (n, 0) ∩ (e + S) and this is a contradiction.

Conversely, assume ΔS
1 (n

′, 0) is infinite and eventually contained in Ap(S) but it
contains some element θ ∈ e + S. SinceΔS(θ′) = ∅ (by Proposition 7(3)),ΔS

1 (n, 0)
must be finite. We conclude by exclusion, since we characterized in (2) and (3) the
other possible cases of a finite ΔS

1 (n, 0).
(5) It follows since we excluded all the other possible cases in (1),(2),(3),
and (4). �

Corollary 1. Assume the same notations of Theorem 8. Hence, n ∈ Ap(S1) if and
only if ΔS

1 (n
′, 0) is infinite and eventually contained in Ap(S).

5 Duality of the Apéry Set of Symmetric Good Semigroups

The symmetry of a numerical semigroup S can be characterized by the symmetry
of its Apéry Set with respect to its largest element: if we order the elements of
Ap(S) in increasing order Ap(S) = {w1, . . . , we}, then S is symmetric if and only
if wi + we−i+1 = we.

Hence, there is a duality relation associating to each element wi , the element
we−i+1. In the case of a symmetric good semigroup we do not have this relation by
choosing arbitrary elements, one from each level Ai of Ap(S); but we find a more
general duality relation associating the level Ai to the level Ae−i+1, and involving
both the elements of α ∈ Ai and the sets ΔS(γ + e − α). After two preparatory
lemmas, we define and prove this duality in Theorem 9.

In this Section, we denote as before α′ := γ + e − α.



100 M. D’Anna et al.

Lemma 4. Let S ⊆ S1 × S2 ⊆ N
2 be a symmetric good semigroup. Let Ap(S) =⋃e

i=1 Ai be the Apéry Set of S. If α ∈ Ae−i+1, then for every j < i ,

ΔS(α′) ∩ A j = ∅.

Proof. We use induction on i . For i = 1, the result is clear. Let α ∈ Ae−i+1. We
separate the proof in two cases:

Case 1: Assume α � θ for some θ ∈ Ae−i+2. By inductive hypothesis ΔS(θ′) ∩
A j = ∅ for every j < i − 1. Since α � θ, it follows that θ′ � α′ and hence for
every δ ∈ ΔS(α′) there exists β ∈ ΔS(θ′) such that either β � δ or there exists
ω = δ ∧ β ∈ ΔS(θ′) ⊆ Ap(S). In the first case the level of β in Ap(S) is smaller
than the level of δ. In the second case, as a consequence of Lemma 2(3), the element
ω is in a level of Ap(S) smaller than the level of δ. Hence we can find elements in
ΔS(θ′) in some level smaller than the level of any element of ΔS(α′). It follows that
ΔS(α′) ⊆ ⋃

j≥i A j and hence the thesis.

Case 2: Now assume α = θ ∧ δ with θ ∈ ΔS
1 (α) ∩ Ae−i+2 and δ ∈ ΔS

2 (α) ∩
Ae−i+2. Hence α′ ∈ Δ1(θ

′) ∩ Δ2(δ
′). Assuming ΔS

1 (α
′) �= ∅ and taking

ω ∈ ΔS
1 (α

′), we can find an element β ∈ ΔS(δ′) such that either β � ω or there
exists β1 = ω ∧ β ∈ ΔS(δ′) ⊆ Ap(S) (it is possible to have β1 = α′). Using the
same argument of Case 1, we show that one element among β and β1 is in a level
of Ap(S) smaller than the level of ω and therefore we get the same thesis of Case
1. In case ΔS

2 (α
′) �= ∅ we can use the same argument to find the needed elements in

ΔS(θ′). �

Lemma 5. Let S ⊆ S1 × S2 ⊆ N
2 be a symmetric good semigroup. Let Ap(S) =⋃e

i=1 Ai be the Apéry Set of S. If α ∈ Ai , then

ΔS(α′) ∩ Ae−i+1 �= ∅.

Proof. Again we use induction on i . For i = 1, the result follows since A1 = {0}
and ΔS(0′) = ΔS(γ + e) = Ae. Let α ∈ Ai . By Lemma 4, we have that ΔS(α′) ⊆⋃

j≥e−i+1 A j . By Proposition 4 we have that α ≥ θ for some θ ∈ Ai−1. We separate
the proof in two cases:

Case 1: Assume α � θ. By inductive hypothesis, we know that there exists β ∈
ΔS(θ′) ∩ Ae−i+2. Using the argument of the proof of Lemma 4 (Case 1) we can show
that there exists some element ω ∈ ΔS(α′) which is in a level of Ap(S) smaller than
Ae−i+2. Thus we must have ω ∈ Ae−i+1.

Case 2: Now assumeα ∈ ΔS(θ). Without loss of generality, we say thatα ∈ ΔS
1 (θ).

Now, if ΔS
1 (θ) � Ap(S), by Proposition 7(6) we have ΔS

1 (θ
′) = ∅ and therefore

ΔS
2 (θ

′) �= ∅. Otherwise, ifΔS
1 (θ) ⊆ Ap(S), applyingLemma2(5)wefind an element

ω ∈ (ΔS
1 (θ) ∩ Ai−1) ∪ {θ} such that ΔS

2 (ω) ⊆ Ap(S) and hence again by Proposi-
tion 7(6), ΔS

2 (ω
′) �= ∅. In both cases we have found an element ω ∈ Ai−1 such that

α ∈ ΔS
1 (ω) and ΔS

2 (ω
′) �= ∅. Proceeding like in Case 2 of Lemma 4 and using the
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inductive hypothesis, we find an element β ∈ ΔS(α′) which is in a level of Ap(S)

smaller than Ae−i+2. Thus we must have β ∈ Ae−i+1 as in Case 1. �

Theorem 9. Let S ⊆ S1 × S2 ⊆ N
2 be a good semigroup. Let Ap(S) = ⋃e

i=1 Ai be
the Apéry Set of S. Denote

A′
i =

⎛

⎝
⋃

ω∈Ai

ΔS(ω′)

⎞

⎠ \
⎛

⎝
⋃

ω∈A j , j<i

ΔS(ω′)

⎞

⎠ .

The following assertions are equivalent:

1. S is symmetric.
2. A′

i = Ae−i+1 for every i = 1, . . . , e.

Proof. (1) → (2): Assume S to be symmetric and notice that in this case by Proposi-
tion 7(4), A′

i ⊆ Ap(S). As a consequence of the definition of the levels, A′
e = A1 and

A′
1 = Ae, thuswe can assume by induction A′

j = Ae− j+1 for j < i and A j = A′
e− j+1

for j > e − i + 1.
We first show A′

i ⊆ Ae−i+1. Let δ ∈ A′
i , hence δ ∈ ΔS(ω′) for some ω ∈ Ai

and δ /∈ ⋃
θ∈A j , j<i ΔS(θ′). Since ω ∈ Ai , by Lemma 4, δ /∈ A j for j < e − i + 1.

By way of contradiction assume δ ∈ A j for some j > e − i + 1. Thus, by induc-
tive hypothesis A j = A′

e− j+1 and e − j + 1 < i . Hence δ ∈ ΔS(θ′) for some θ ∈
Ae− j+1, but this is a contradiction since δ ∈ A′

i and e − j + 1 < i .
Now we show the other containment Ae−i+1 ⊆ A′

i . Let ω ∈ Ae−i+1 and take
δ ∈ ΔS(ω′) ∩ Ai which does exist by Lemma 5. Hence ω ∈ ΔS(δ′). We need to
prove that ω /∈ ΔS(θ′) for every θ ∈ A j with j < i. If by way of contradiction, we
assume ω ∈ ΔS(θ′) for some θ ∈ A j with j < i, we can take a minimal j such that
this happens, and hence by definition of A′

j and by inductive hypothesis, we get
ω ∈ A′

j = Ae− j+1 = Ah with h > e − i + 1. But this is impossible since the levels
of Ap(S) are disjoint. With the same proof it is possible to show that Ai = A′

e−i+1
and continue with the induction to prove (2).
(2) → (1): We argue by way of contradiction. Assuming that S is not symmetric,
we can find α /∈ S such that ΔS(γ − α) = ∅. Since there exists a minimal k ∈ N

such that α + ke ∈ S and for every k, also ΔS(γ − α − ke) = ∅, we may assume,
replacing α by α + ke, that α + e ∈ Ap(S). Assuming α + e ∈ Ai , we show that
α + e /∈ A′

j for every j , and therefore Ai �= A′
e−i+1. Indeed,

∅ = ΔS(γ − α) = ΔS(γ + e − (α + e))

and, ifα + e ∈ ΔS(β′) for someβ ∈ Ap(S), we would haveβ ∈ ΔS(γ + e − (α +
e)) and this is a contradiction. �

Corollary 2. Let S ⊆ N
2 be a symmetric good semigroup and let α ∈ Ae−i+1. The

minimal elements of ΔS(α′) with respect to ≤ are in Ai .
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Proof. By Lemma 4, for every j < i , ΔS(α′) ∩ A j = ∅, while by Lemma 5,
ΔS(α′) ∩ Ai �= ∅. Hence there exists a minimal element β of ΔS(α′) in Ai . If θ
is another minimal element of ΔS(α′), we clearly have α′ = β ∧ θ ∈ S, and hence
θ ∈ Ai by Lemma 2(3). �

In the next theorem, we provide a specific sequence of elements of a good semi-
group S, taken one from each level Ai , behaving like the elements of the Apéry Set
of a numerical semigroup with respect to sums. Notice that this sequence may not
be the unique having the required property, but we give here a canonical way to
construct one.

Theorem 10. Let S ⊆ S1 × S2 ⊆ N
2 be a symmetric good semigroup and let

Ap(S) = ⋃e
i=1 Ai be the Apéry Set of S. Assume e1 ≥ e2.

1. If e is even, there exists a sequence of elements α1,α2, . . . ,αe such that

αi ∈ Ai

and
αi + αe−i+1 = αe.

2. If e is odd, set e = 2d − 1. Then, there exists a sequence of elements α1,

α2, . . . ,αe,β such that
αi ∈ Ai , β ∈ Ad

and
αi + αe−i+1 = αe

for i �= d, and moreover
αd + β = αe

Proof. Let Ap(S1) = {ω1 = 0,ω2, . . . ,ωe1} be the Apéry Set of S1 with elements
listed in increasing order. For i = 1, . . . , e1 set

αi := minΔS
1 (ωi , 0).

Weobserve that, defined in this way,αi ∈ Ai , since, by Corollary 1, the setΔS
1 (ω

′
i , 0)

is eventually contained in Ap(S) and in particular, by Theorem 5 it is eventually
contained in Ae−i+1. Hence, we get αi ∈ Ai by Corollary 2. Moreover, there exists
a minimal hi ≥ 0 such that γ + e − αi + (0, hi ) ∈ Ae−i+1.

Call H := max{hi } and define again for i = 1, . . . , e1,

αe−i+1 := γ + e − αi + (0, H).

It follows that αe−i+1 ∈ Ae−i+1 and that αi + αe−i+1 = γ + e + (0, H) = αe.

The second assertion is proved in the same way by defining β := γ + e − αd +
(0, H). �
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We conclude giving a quite surprising result about symmetric good semigroup
with large conductor.

Proposition 11 Let S ⊆ S1 × S2 ⊆ N
2 be a symmetric good semigroup and let

Ap(S) = ⋃e
i=1 Ai be the Apéry Set of S. Assume e1 ≥ e2 and

γ1 > 2 f (S1) + e1

where f (S1) denotes the Frobenius number of S1. Then, e1 = e2.

Proof. Set Ap(S1) = {ω1 = 0,ω2, . . . ,ωe1}with elements listed in increasing order.
In the proof of Theorem 10 is shown that αi = minΔS

1 (ωi , 0) ∈ Ai and moreover
by Theorem 9, any element θ = (γ1 + e1 − ωi , t2), with t2 ≥ γ2 + e2, is in Ae−i+1

that is an infinite level by Corollary 1. Since by assumption,

ωe1 = f (S1) + e1 < γ1 + e1 − ( f (S1) + e1) = ω′
e1 ,

we get αe1 � θ ∈ Ae−e1+1 and therefore e1 < e − e1 + 1 = e2 + 1, since by
Theorem 3, e = e1 + e2. It follows that e1 = e2. �
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On Syzygies for Rings of Invariants
of Abelian Groups

M. Domokos

Abstract It is well known that results on zero-sum sequences over a finitely gener-
ated abelian group can be translated to statements on generators of rings of invariants
of the dual group. Here the direction of the transfer of information between zero-sum
theory and invariant theory is reversed. First it is shown how a presentation by gen-
erators and relations of the ring of invariants of an abelian group acting linearly on
a finite-dimensional vector space can be obtained from a presentation of the ring of
invariants for the corresponding multiplicity free representation. This combined with
a known degree bound for syzygies of rings of invariants yields bounds on the pre-
sentation of a block monoid associated to a finite sequence of elements in an abelian
group. The results have an equivalent formulation in terms of binomial ideals, but
here the language of monoid congruences and the notion of catenary degree is used.

Keywords Affine monoid · Ring of invariants · Catenary degree · Syzygies ·
Toric variety

1 Introduction

LetG be an abelian group (writtenmultiplicatively) andG0 ⊆ G a finite subset. Con-
sider the additive monoid N

G0
0 (maps from G0 into the set of non-negative integers,

with pointwise addition). It contains the submonoid

B(G0) := {α ∈ N
G0
0 |

∏

g∈G0

gα(g) = 1 ∈ G} (1)
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called the block monoid of G0 or the monoid of product-one sequences over G0, see
[14, Definition 3.4.1]. It causes no loss of generality in the construction of B(G0) if
we assume that the group G is generated by G0. We note that in most of the related
literature the group is written additively, and therefore the terminology of zero-sum
sequences is used. B(G0) is a reduced affine monoid (see for example [14, Theorem
3.4.2.1]), write A(B(G0)) for the finite set of its atoms.

Our focus is on a similar but more general construction. Fix an m-tuple g =
(g1, . . . , gm) ∈ Gm of elements of the abelian group G, and set

B(g) = {α ∈ N
m
0 |

m∏

i=1

gαi
i = 1 ∈ G}. (2)

This is a finitely generated submonoid of the additive monoidNm
0 . Write supp(g) for

the subset {g1, . . . , gm} of G. In the special case when g1, . . . , gm are distinct, the
monoidB(g) can be identified withB(supp(g)). In general (i.e., when g1, . . . , gm are
not all distinct) the monoid B(g) is different from B(supp(g)). So the construction
(2) is indeed a generalization of (1) (however, see Remark 6 in Section4).

Interest in the monoids B(G0) and B(g) and their semigroup rings comes from
several mathematical topics: factorization theory in monoids, multiplicative ideal
theory, zero-sum theory, invariant theory, toric varieties, binomial or toric ideals.
For example, it has been long known that results on the atoms in monoids of the
form B(g) can be reformulated in terms of generators or degree bounds for rings of
invariants of abelian groups (see, e.g., [9] for some details and references).

In this paper we shall study presentations of reduced affine monoids, with a
particular attention on the monoids B(g). By a monoid we mean a commutative
cancellative semigroup with an identity element. A monoid is affine if it is a finitely
generated submonoid of a finitely generated free abelian group.We say that amonoid
is reduced if the identity element is its only unit (invertible element). Recall that by
Grillet’s theorem, reduced affinemonoids are exactly themonoids that are isomorphic
to a finitely generated submonoid of the additive monoid N

k
0 for some k (see for

example [3, Proposition 2.16]).
Let S be a reduced affine monoid (written multiplicatively) and A(S) the set of

atoms in S. Then A(S) is finite, and it is a minimal generating set of S, see for
example Proposition 1.1.7 in [14]. Denote byNA(S)

0 the additive monoid of functions
fromA(S) into the additivemonoidN0 of non-negative integers; this is a freemonoid
generated by |A(S)| elements. Take commuting indeterminates {xa | a ∈ A(S)}, and
let M denote the free monoid generated by them (written multiplicatively):

M = {xα =
∏

a∈A(S)

xα(a)
a | α ∈ N

A(S)
0 }

with multiplication xαxγ = xα+γ . Consider the unique semigroup homomorphism

π : M → S given by xa �→ a, a ∈ A(S)
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(called factorization homomorphism in [1]). Denote by ∼S the congruence on M
defined by

xα ∼S xγ ⇐⇒ π(xα) = π(xγ) ∈ S,

and call it the defining congruence of S (it is called the monoid of relations of S in
[1]). The semigroup homomorphism π factors through a monoid isomorphism

M/ ∼S
∼=−→ S.

Formally the congruence ∼S will be viewed as a subset of M × M . The congruence
∼S is finitely generated by [25]. By a presentation of S we mean a finite subset of
M × M generating the conguence ∼S (see for example [16, Section I.4] for basic
notions related to semigroup congruences).

Now let us summarize the content of the present paper. Our Theorem 1 tells in par-
ticular how a presentation of B(g) can be derived from a presentation of B(supp(g)).
It turns out that in most cases the catenary degree (cf. Definition 1) of B(g) coincides
with the catenary degree ofB(supp(g)) (seeCorollary 3). CombiningTheorem1with
a degree bound of Derksen [10] for the defining relations of the ring of invariants of
a linearly reductive group, we derive in Theorem 4 degree bounds for a presentation
of B(g). In order to formulate this result, we introduce the notion of graded catenary
degree of a graded monoid (see Definition 2), which is a refinement of (and an upper
bound for) the ordinary catenary degree. These results on presentations of monoids
have an equivalent formulation in terms of generators of (binomial) ideals of rela-
tions of semigroup rings of monoids, this is pointed out in Section2. A Gröbner
basis version of Theorem 1 is given in Theorem 2. Since the semigroup rings of the
form C[B(G)] are exactly the rings of invariants of abelian groups, the results have
relevance for toric varieties; this is expanded a bit in Section7, and some examples
of toric quiver varieties are reviewed. We point out finally that Theorem 2 provides
a source of Koszul algebras.

2 Ring Theoretic Characterization of the Catenary Degree

From now on S will be a reduced affine monoid. The catenary degree c(S) of the
monoid S is a basic arithmetical invariant studied in factorization theory, let us recall
its definition. For α ∈ N

A(S)
0 we set

|α| =
∑

a∈A(S)

|α(a)|

and
aα :=

∏

a∈A(S)

aα(a) ∈ S.
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For α, γ ∈ N
A(S)
0 we write gcd(α, γ) for the greatest common divisor of α, γ in the

additive monoid N
A(S)
0 (i.e., gcd(α, γ)(a) = min{α(a), γ(a)} for each a ∈ A(S)).

Definition 1. (see [14, Definition 1.6.1]) For α, γ ∈ N
A(S)
0 set

d(α, γ) := max{|α − gcd(α, γ)|, |γ − gcd(α, γ)|}.

Given the monoid S as above, we say that α and γ can be connected by a d-chain if
there exists a sequenceα(0) = α,α(1), . . . ,α(k) = γ ∈ N

A(S)
0 such that aα( j) = aα( j+1)

and d(α( j),α( j+1)) ≤ d for j = 0, 1, . . . , k − 1. The catenary degree c(S) is the
minimal non-negative integer d such that if aα = aγ , then α and γ can be connected
by a d-chain.

Remark 1. Note that c(S) = 0 if and only if S is a free (or factorial) monoid (i.e., S
is isomorphic to the additive monoid N

m
0 for some m), and c(S) is never equal to 1.

Characterizations of the catenary degree and its variants are given in [22, 23].
In particular, [22, Proposition 16] characterizes the catenary degree in terms of the
monoid of relations. Now extending an observation from [4] we formulate a char-
acterization of the catenary degree in terms of semigroup congruences. Denote by
c′(S) the minimal non-negative integer d such that there exists a generating set
Λ ⊂ M × M of the semigroup congruence ∼S , satisfying that for all (xα, xγ) ∈ Λ

we have |α| ≤ d and |γ| ≤ d. An explicit description of the semigroup congruence
generated by a subset of M × M can be found for example in [18, page 176].

Proposition 1. We have c(S) = c′(S).

Proof. Set

Λ := {(xα, xγ) | xα ∼S xγ and |α| ≤ c(S), |γ| ≤ c(S)}.

Weclaim thatΛ generates the semigroup congruence∼S . Indeed, take a pair (α, γ) ∈
N

A(S)
0 × N

A(S)
0 such that xα ∼S xγ . Then α and γ can be connected by a c(S)-chain

α(0) = α,α(1), . . . ,α(k) = γ. For i = 0, 1, . . . , k − 1 the pair (α(i),α(i+1)) is of
the form (β(i) + δ(i), ρ(i) + δ(i)), where δ(i),β(i), ρ(i) ∈ N

A(S)
0 , |β(i)| ≤ c(S), |ρ(i)| ≤

c(S).Moreover, since S is cancellative,aα(i) = aα(i+1)
, impliesaβ(i) = aρ(i)

, so xβ(i) ∼S

xρ(i)
. Thus (xβ(i)

, xρ(i)
) ∈ Λ. It follows that (xα(i)

, xα(i+1)
) = (xβ(i)

xδ(i)
, xρ(i)

xδ(i)
)

belongs to the congruence generated by Λ for i = 0, . . . , k − 1, implying in turn
that (xα, xγ) = (xα(0)

, xα(k)
) belongs to the congruence generated by Λ. This proves

the inequality c′(S) ≤ c(S).
The reverse inequality c(S) ≤ c′(S) is pointed out in [4, Proposition 3.1].

Fix a commutative ring R (having an identity element) and consider the semigroup
rings R[M] and R[S]. Note that R[M] = R[xa | a ∈ A(S)] is the polynomial ring
over R with indeterminates {xa | a ∈ A(S)}. The monoid homomorphism π : M →
S extends uniquely to an R-algebra homomorphism
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πR : R[M] → R[S], π(xα) = aα. (3)

The statement below is well known, see [18, Proposition 1.5] or [16, Chapter II.7.]:

Proposition 2. The following conditions are equivalent for a set of pairs B ⊂
N

A(S)
0 × N

A(S)
0 :

(1) The semigroup congruence ∼S is generated by {(xα, xγ) | (α, γ) ∈ B}.
(2) The ideal ker(πR) is generated by the binomials {xα − xγ | (α, γ) ∈ B}.
Remark 2. Condition (1) of Proposition 2 does not depend on the ring R; therefore, a
set of binomials generates the ideal ker(πR) for some ring R if and only if it generates
ker(πR) for any ring R.

Propositions 1 and 2 imply the following ring theoretic characterization of c(S):

Corollary 1. The catenary degree c(S) is the minimal positive integer d such that
the kernel of πR : R[M] → R[S] is generated (as an ideal) by binomials of degree
at most d for some (hence any) commutative ring R (where R[M] is graded in the
standard way, namely, the generators xa have degree 1 and the non-zero scalars in
R have degree 0).

3 Graded Monoids

Let S be a graded monoid; that is, S is partitioned into the disjoint union of subsets
Sd , d ∈ N0, such that Sd · Se ⊆ Sd+e. For s ∈ S write |s| = d if s ∈ Sd . The identity
element of S necessarily belongs to S0. We call a graded monoid connected graded
if S0 consists only of the identity element. It seems natural to modify Definition 1
for graded monoids as follows:

Definition 2. Given a connected graded reduced affine monoid S, for α, γ ∈ N
A(S)
0

set

|α|gr =
∑

a∈A(S)

α(a)|a|

and

dgr(α, γ) := max{|α − gcd(α, γ)|gr, |γ − gcd(α, γ)|gr}.

We say that α and γ can be connected by a chain of weight at most d if there
exists a sequence α(0) = α,α(1), . . . ,α(k) = γ ∈ N

A(S)
0 such that aα( j) = aα( j+1)

and
dgr(α( j),α( j+1) ≤ d for j = 0, 1, . . . , k − 1. The graded catenary degree cgr(S) is
the minimal d such that if aα = aγ , then α and γ can be connected by a chain of
weight at most d.
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As a straightforward modification of Proposition 1 we get the following.

Proposition 3. The graded catenary degree cgr(S) is the minimal non-negative inte-
ger d such that there exists a generating set Λ ⊂ M × M of the semigroup congru-
ence ∼S satisfying that for all (xα, xγ) ∈ Λ we have |α|gr ≤ d (note that xα ∼S xγ

implies |α|gr = |γ|gr).
The grading of S induces a grading on the semigroup ring R[S] = ⊕∞

d=0 R[S]d ,
where R[S]d is the R-submodule generated by Sd . Lift the grading to M and R[M]
by setting the degree of xa to be equal to the degree |a| of a ∈ A(S). Then the map
πR : R[M] → R[S] is a homomorphism of graded algebras, and so ker(πR) is a
homogeneous ideal. Our assumptions on the grading imply that all indeterminates
xa have positive degree. Moreover, xα ∼S xγ implies that aα and aγ belong to the
same homogeneous component of S, and therefore the binomials in ker(πR) are
homogeneous. For an ideal I in R[M] denote by μ(I ) the minimal non-negative
integer d such that I is generated by elements of degree at most d; this number is
finite for any binomial ideal I .

Corollary 2. For any connected graded reduced affine monoid we have the equality

cgr(S) = μ(ker(πR)),

where R[M] is endowed with the grading that makes πR a homomorphism of graded
algebras.

Proof. Recall that any homogeneous generating system of a homogeneous ideal I
contains a minimal (with respect to inclusion) homogeneous generating system, and
μ(I ) is the maximal degree of an element in any minimal homogeneous generat-
ing system (this follows from the graded Nakayama lemma). The ideal ker(πR) is
generated by homogeneous binomials. Take a minimal set of binomials generating
ker(πR). Then the maximal degree of an element in this set of binomials equals
μ(ker(πR)) on one hand, and it equals cgr(S) by Propositions 2 and 3, on the other
hand.

Remark 3. The notions introduced in this section apply for block monoids. Indeed,
N

m
0 is graded by setting the degree of α = (α1, . . . ,αm) ∈ N

m
0 to be α1 + · · · + αm ,

and the submonoid B(g) inherits this grading.

4 Repetition of Elements

A surjective monoid homomorphism θ : T → B between reduced affine monoids T
and B is called a transfer homomorphism if for any t ∈ T , b, c ∈ B with θ(t) = bc,
there exist elements u, v ∈ T such that t = uv and θ(u) = b, θ(v) = c (see [14,
Definition 3.2.1]).
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Now let g be an m-tuple of elements in an abelian group G and B(g), B(supp(g))

the monoids introduced in Section1. The map

N
m
0 → N

supp(g)

0 , α �→ (g �→
∑

gi=g

αi ) (4)

restricts to a transfer homomorphism B(g) → B(supp(g)). In factorization theory
transfer homomorphisms are used to reduce the computation of arithmetic invariants
of monoids to the corresponding invariants of other monoids (frequently of block
monoids). In particular, it is known that the catenary degrees of monoids connected
by a transfer homomorphism are linked as follows:

Lemma 1. [14, Theorem 3.2.5.5] Let θ : T → B be a transfer homomorphism,
where T and B are reduced affine monoids. Then we have the inequalities

c(B) ≤ c(T ) ≤ max{c(B), c(T, θ)}

(see [14, page 171] for the definition of c(T, θ)).

The aim of this section is to refine Lemma 1 for the transfer homomorphism
B(g) → B(supp(G)) given by (4). More precisely, it will be shown how one can
get a generating system of the defining congruence of B(g) from a given generating
system of the defining congruence ofB(supp(g)). This will be done in amore general
setup.

Assume that S is a (not necessarily connected) graded, reduced, affine monoid,
and denote by S̃ the monoid

S̃ = {s[i] | s ∈ S, 0 ≤ i ≤ |s|} with multiplication s[i] · t[ j] = (s · t)[i + j]. (5)

So S̃ is a submonoid of the direct product of S and the additivemonoidN0. Obviously
the map S̃ → S, s[i] �→ s is a transfer homomorphism, and

A(S̃) = {a[i] | a ∈ A(S), 0 ≤ i ≤ |a|}.

This transfer homomorphism S̃ → S induces a monoid homomorphism

κ : NA(S̃)
0 → N

A(S)
0 , λ �→

(
a �→

|a|∑

i=0

λ(a[i])
)

.

Set
δ : NA(S̃)

0 → N0, λ �→
∑

a[i]∈A(S̃)

iλ(a[i]).
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Note that for λ,μ ∈ N
A(S̃)
0 we have

xλ ∼S̃ xμ ⇐⇒ xκ(λ) ∼S xκ(μ) and δ(λ) = δ(μ). (6)

Also we have δ(λ) ≤ |aκ(λ)|.

Lemma 2. Assume that α,β ∈ N
A(S̃)
0 satisfy

κ(α) = κ(β) and δ(α) = δ(β).

Then xα ∼ xβ with respect to the semigroup congruence ∼ on the free monoid

M̃ = {xα | α ∈ N
A(S̃)
0 } generated by

{(xa[k]xb[l], xa[k+1]xb[l−1]) | a, b ∈ A(S), 0 ≤ k ≤ |a| − 1, 1 ≤ l ≤ |b|}.

Proof. Apply induction on
∑

a[ j]∈A(S̃)

α(a[ j]). If this number is 1, then clearly α = β,

and so the desired conclusion holds. Assume
∑

a[ j]∈A(S̃)

α(a[ j]) > 1.

Case I: xα and xβ involve a common variable xa[i]. Then xα = xa[i]xα′
, xβ =

xa[i]xβ′
, and the assumptions on the pair (α,β) in the statement of the lemma hold

for the pair (α′,β′). By the induction hypothesis we may conclude that xα′ ∼ xβ′
,

implying in turn that xα ∼ xβ .
Case II: xα and xβ are not divisible by a common variable. Take a variable xa[i]

dividing xα. Then κ(α) = κ(β) implies that xβ is divisible by xa[k] for some k = i .
By symmetry it is sufficient to deal with the case i > k. By the assumptions on α,β
there must exist an atom b ∈ A(S) and integers j < l such that xa[i]xb[ j] divides
xα and xa[k]xb[l] divides T β . We have xα = xa[i]xb[ j]xγ ∼ xa[i−1]xb[ j+1]xγ = xα′

.
The conditions of the lemma on the pair (α,β) hold also for the pair (α′,β). If
i − 1 = k, then xα′

and xβ are divisible by a common variable, and we are back in
Case I. Otherwise similarly to the above process we have xα′ ∼ xα′′

where xα′′
is

divisible by xa[i−2] and κ(α′′) = κ(β) and δ(α′′) = δ(β). After finitely many such
steps we get back to Case I.

Remark 4. Lemma 2 says that for the transfer homomorphism θ : S̃ → S, s[i] �→ s
we have c(S̃, θ) ≤ 2 in Lemma 1.

Theorem 1. Suppose that the congruence ∼S is generated by {(xλ, xμ) | (λ,μ) ∈
Λ} for some Λ ⊂ N

A(S)
0 × N

A(S)
0 . For each λ ∈ N

A(S)
0 such that (λ,μ) ∈ Λ or

(μ,λ) ∈ Λ for some μ, and for each 0 ≤ i ≤ |aλ| choose λ[i] ∈ N
A(S̃)
0 such that

κ(λ[i]) = λ and δ(λ[i]) = i (this is clearly possible). Then the congruence ∼S̃ is
generated by
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{(xλ[i], xμ[i]), (xa[k]xb[l], xa[k+1]xb[l−1]) | (λ,μ) ∈ Λ, 0 ≤ i ≤ |aλ|,
a, b ∈ A(S), 0 ≤ k ≤ |a| − 1, 1 ≤ l ≤ |b|}.

Proof. The pairs given in the statement do belong to the congruence ∼S̃ . Denote

by ∼ the semigroup congruence on M̃ = {xα | α ∈ N
A(S̃)
0 } generated by them. It is

sufficient to show that if xα ∼S̃ xβ for some α,β ∈ N
A(S̃)
0 , then xα ∼ xβ . By (6) we

have xκ(α) ∼S xκ(β) and δ(α) = δ(β). Therefore there exists a sequence (λ j ,μ j ) ∈
N

A(S)
0 × N

A(S)
0 and γ j ∈ N

A(S)
0 ( j = 1, . . . , s) such that (λ j ,μ j ) ∈ Λ or (μ j ,λ j ) ∈

Λ (implying in particular that |aλ j | = |aμ j |), λ1 + γ1 = κ(α), μs + γs = κ(β), and
μ j + γ j = λ j+1 + γ j+1 for j = 1, . . . , s − 1. Set d := δ(α) = δ(β). For each j =
1, . . . , s choose a non-negative integer k j with

d − |aγ j | ≤ k j ≤ |aλ j |.

This is possible, because

d ≤ |aκ(α)| = |aλ j+γ j | = |aλ j | + |aγ j |.

Taking into account Lemma 2 we get

xα ∼ xκ(α)[d] = x (λ1+γ1)[d] ∼ xλ1[k1]xγ1[d−k1] ∼ xμ1[k1]xγ1[d−k1] ∼
x (μ1+γ1)[d] = x (λ2+γ2)[d] ∼ xλ2[k2]xγ2[d−k2] ∼ xμ2[k2]xγ2[d−k2] ∼
x (μ2+γ2)[d] = x (λ3+γ3)[d] ∼ · · · ∼ x (μs+γs )[d] = xκ(β)[d] ∼ xβ .

Remark 5. Statements related to Theorem 1 are proved in [21], studying toric ide-
als associated to nested configurations (see also [26] for some generalization). The
construction of S̃ from S (see (5)) can be seen as a special case of the construction of
nested configurations. In particular,when S is a submonoidofNd

0 generatedbyfinitely
many elements α(1), . . . ,α(m) such that there exists a v ∈ R

d with
∑d

j=1 α(i)
j v j = 1

for all i = 1, . . . ,m (this implies that S can be graded in such a way that each gen-
erator has degree 1), the results of [21] apply to the binomial ideal associated to the
monoid S̃ and yield a system of generators similar to the one given by Theorem 1.

The monoid B(g) can be obtained from the monoid B(supp(g)) by a repeated
application of the construction (5), and therefore Theorem 1 can be applied to relate
the catenary degree of B(g) to the catenary degree of B(supp(g)). Indeed, start with
an m-tuple g = (g1, . . . , gm) ∈ Gm of not necessarily distinct elements in G, and
denote by g̃ the m + 1-tuple (g1, . . . , gm, gm) obtained from g by repeating the mth
component. Consider the grading on the monoid B(g) given by

B(g)d = {α ∈ B(g) ⊆ N
m
0 | αm = d}.
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Proposition 4. WehaveB(g̃) ∼= S̃, where S = B(g) is endowedwith the above grad-

ing and S̃ is defined as in (5).

Proof. A general element of S̃ is of the form α[i] where α = (α1, . . . ,αm) ∈ B(g)

and 0 ≤ i ≤ αm . The map S̃ → B(g̃) sending α[i] ∈ S̃ to (α1, . . . ,αm−1,αm − i, i)

is an isomorphism between the monoids S̃ and B(g̃).

Proposition 1, Theorem 1, and Proposition 4 imply the following:

Corollary 3. We have c(B(g)) = c(B(supp(g)), unlessB(supp(g)) is a free monoid
and the components g1, . . . , gm of g are not all distinct. In the latter case we have
c(B(supp(g))) = 0 whereas c(B(g)) = 2.

Remark 6. Being afinitely generated reducedKrullmonoid,B(g) ∼= B(H0) for some
finite subset H0 in an abelian group H (different fromG in general) by [14, Theorem
2.7.14] also when g1, . . . , gm are not all distinct. However, the representation of our
monoid in the form B(g) is fundamental for our discussions.

An easy direct proof of the isomorphism B(g) ∼= B(H0) can be derived from
the following observation. Take g ∈ Gm , and suppose that gm−1 = gm . Consider the
group H := G × Z, and the sequence

h := ((g1, 0), . . . , (gm−1, 0), (gm−1, 1), (0,−1)) ∈ Hm+1.

It is easy to see that we have a monoid isomorphism B(g) ∼= B(h). Now observe that
there are less component repetitions in the sequence h then the number of component
repetitions in g. Note that the “price” for this manipulation was that we had to extend
the group G.

5 Gröbner Bases

In this section we give a Gröbner basis variant of the results of Section4. As it was
explained in Sections2 and 3, the catenary degree of a monoid can be expressed
in terms of generators of a binomial ideal associated to the monoid. Since Gröbner
bases are special generating systems of ideals in a polynomial algebra that are at the
heart of many algorithms in computational commutative algebra (see for example
[7] for Gröbner basis theory), it is worthwhile to translate this notion to the language
of semigroup congruences.

Fix an admissible total order≺ on the finitely generated freemultiplicativemonoid
M ; that is, ≺ is a total order such that for x, y, z ∈ M with x ≺ y we have xz ≺ yz,
and 1 ≺ x for each x ∈ M \ {1}. The latter condition ensures that the order ≺ is
artinian (i.e., there is no infinite strictly descending chain with respect to ≺ in M),
so any non-empty subset of M contains a unique minimal element. Note also that
≺ is a term order of the polynomial ring F[M] (where F is a field) in the sense of
Gröbner basis theory.
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Definition 3. A finite set Λ ⊂ M × M is a Gröbner system of the semigroup con-
gruence ∼ on M if the following conditions hold:

(i) x ∼ y and y ≺ x for each (x, y) ∈ Λ;
(ii) z ∈ M is the minimal element in its congruence class with respect to ∼ if there

is no (x, y) ∈ Λ such that x divides z in M.

The name Gröbner system is justified by the relation to Gröbner bases given in
Proposition 5 (iii).

Proposition 5. (i) If Λ ⊂ M × M is a Gröbner system of the semigroup congru-
ence ∼ then Λ generates ∼.

(ii) Every semigroup congruence ∼ on M has a Gröbner system.
(iii) Λ ⊂ M × M is a Gröbner system of ∼ if and only if {x − y | (x, y) ∈ Λ} is

a Gröbner basis (satisfying y ≺ x for each of its elements x − y) of the ideal
ker(πF), whereF is a field and πF : F[M] → F[M/ ∼] is induced by the natural
surjection M → M/ ∼.

Proof. (i) Denote by ∼Λ the congruence generated by Λ. By assumption it is con-
tained in ∼, since for each (x, y) ∈ Λ we have x ∼ y. To see the reverse inclusion
it is sufficient to show that for any z ∈ M we have z ∼Λ u, where u is the minimal
element in the ∼-congruence class of z. If z = u, we are done. Otherwise u ≺ z,
hence, by assumption there exists a pair (x, y) ∈ Λ and v ∈ M such that z = xv.
Set z1 = yv. Then z1 = yv ≺ xv = z and z ∼Λ z1. If z1 = u, then we are done.
Otherwise repeat the same step for z1 instead of z (note that z1 ∼ z ∼ u). We obtain
z2 ∈ M with z2 ≺ z1 and z2 ∼Λ z1. If z2 = u we are done, otherwise repeat the above
step with z2 instead of z1. Since the order ≺ is artinian, in finitely many steps we
must end up with z ∼Λ zk = u.

(ii) It is well known that any binomial ideal has a Gröbner basis consisting of
binomials, see for example [28, Lemma 8.2.17]. Therefore the statement follows
from (iii).

(iii) Suppose {x − y | (x, y) ∈ Λ} is a Gröbner basis of the ideal ker(πF) (where
y ≺ x for each (x, y) ∈ Λ). It follows that the initial ideal of ker(πF) is generated
by L := {x | ∃y : (x, y) ∈ Λ}. Now take any z ∈ M which is not minimal in its
congruence class with respect to ∼. Then there is an u ≺ z such that z ∼ u, so
z − u ∈ ker(πF) has initial term z. Therefore there is an x ∈ L such that x divides
z, so condition (ii) of Definition 3 holds for Λ (it is obvious that condition (i) of
Definition 3 holds for Λ).

Conversely, assume that Λ is a Gröbner system of ∼, and consider the subset
L := {x − y | (x, y) ∈ Λ} in F[M]. Denote by J the ideal generated by the initial
terms of the elements in L . Clearly L ⊆ ker(πF), hence, J is contained in the ideal
K generated by the initial terms of the ideal ker(πF). By assumption the elements of
M \ J are all minimal in their congruence class with respect to ∼. In particular, they
are pairwise incongruent; hence, they are mapped by πF to elements in F[M/ ∼]
that are linearly independent over F. On the other hand, M \ J ⊇ M \ K , and the
latter is mapped by πF to an F-vector space basis of F[M/ ∼] (see for example [27,
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Proposition 1.1]). It follows that M \ J = M \ K , implying in turn that J = K . The
latter equality means that L is a Gröbner basis of ker(πF).

We keep the notation of Section4. In particular, S is a reduced, affine, graded
monoid, and S̃ is the monoid defined as in (5). Fix an admissible total order ≺
on M = {xα | α ∈ N

A(S)
0 }. Define an admissible total order (denoted also by ≺) on

the free monoid M̃ generated by {xa | a ∈ A(S̃)} as follows. Enumerate the atoms
in A(S) = {a1, . . . , an} such that xa1 ≺ xa2 ≺ · · · ≺ xan . Set di = |ai |. For λ,μ ∈
N

A(S̃)
0 we set xμ ≺ xλ ∈ M̃ if

1. xκ(μ) ≺ xκ(λ) in (M,≺); or
2. κ(μ) = κ(λ) and the sequence

(μ(a1[0]),μ(a1[1]), . . . ,μ(a1[d1]),μ(a2[0]), . . . ,μ(an[0]), . . . ,μ(an[dn]))

is lexicographically greater than

(λ(a1[0]),λ(a1[1]), . . . ,λ(a1[d1]),λ(a2[0]), . . . ,λ(an[0]), . . . ,λ(an[dn])).

Theorem 2. Suppose that {(xλ, xμ) | (λ,μ) ∈ Λ} is a Gröbner system of the semi-
group congruence ∼S. Then Γ1 ∪ Γ2 ∪ Γ3 is a Gröbner system of the defining con-
gruence ∼S̃ of S̃, where

Γ1 = {(xλ, xμ) | λ,μ ∈ N
A(S̃)
0 , (κ(λ),κ(μ)) ∈ Λ, δ(λ) = δ(μ)}

Γ2 = {(xa[i]xb[ j], xa[i−1]xb[ j+1]) | a, b ∈ A(S), xa ≺ xb, 0 < i ≤ |a|, 0 ≤ j < |b|}

Γ3 = {(xa[i]xa[ j], xa[i−1]xa[ j+1]) | a ∈ A(S), 0 < i ≤ j < |a|}.

Proof. Take (xλ, xμ) ∈ Γ1. Then (κ(λ),κ(μ)) ∈ Λ, hence, xκ(λ) ∼S xκ(μ) and
xκ(μ) ≺ xκ(λ) ∈ M . It follows that xμ ≺ xλ ∈ M̃ . Moreover, xκ(λ) ∼S xκ(μ) and
δ(λ) = δ(μ) imply xλ ∼S̃ xμ by (6). Therefore condition (i) of Definition 3 holds
for the elements of Γ1. It obviously holds for the elements of Γ2 and Γ3 by definition
of the ordering ≺ on M̃ .

It remains to check that condition (ii) of Definition 3 holds for Γ1 ∪ Γ2 ∪ Γ3. In

order to do so, take λ ∈ N
A(S̃)
0 such that xλ ∈ M̃ is not minimal in its congruence

class with respect to ∼S̃ .
Assume first that xκ(λ) ∈ M is not minimal in its congruence class with respect

to ∼S . Then by the assumption of the theorem on Λ, there exist (α,β) ∈ Λ

and γ ∈ N
A(S)
0 such that κ(λ) = α + γ. Clearly there exist α̃, γ̃ ∈ N

A(S̃)
0 with

λ = α̃ + γ̃, κ(α̃) = α, and κ(γ̃) = γ. Also xα ∼S xβ implies
∑

a∈A(S) α(a)|a| =
∑

a∈A(S) β(a)|a|. It is easy to infer from this equality the existence of β̃ ∈ N
A(S̃)
0 with

κ(β̃) = β and δ(β̃) = δ(α̃).Moreover, (α,β) ∈ Λ implies xβ ≺ xα, hence, x β̃ ≺ x α̃.
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So (x α̃, x β̃) ∈ Γ1 by definition of Γ1. Therefore Γ1 testifies the non-minimality of
xλ as it is required by (ii) of Definition 3.

Suppose next that xκ(λ) is minimal in its congruence class in M with respect to
∼s , and xλ ∈ M̃ is not minimal in its congruence class with respect to ∼S̃ . It is easy
to deduce from condition 2. of the definition of the ordering ≺ on M̃ that there must
exist (y, z) ∈ Γ2 ∪ Γ3 such that y divides xλ. Consequently, the non-minimality of
xλ is testified by Γ2 ∪ Γ3 as it is required by (ii) of Definition 3.

Remark 7. The papers [21, 26] mentioned in Remark 7 also give Gröbner bases of
the binomial ideals considered there.

We call a Gröbner system Λ quadratic if |λ| ≤ 2, |μ| ≤ 2 for all (λ,μ) ∈ Λ.

Corollary 4. If the semigroup congruence∼S has a quadratic Gröbner system, then
the semigroup congruence ∼S̃ also has a quadratic Gröbner system.

Koszul algebras form an interesting class of rings well studied in commutative
algebra, see for example [5]. In general it is a difficult task to decide whether a
quadratic algebra (a factor of the multivariate polynomial algebra modulo an ideal
generated by homogeneous quadratic elements) is Koszul or not. The significance
of Corollary 4 is that it can be used to produce examples of Koszul algebras. Indeed,
note that if S has a quadratic Göbner system, then by Proposition 5 (iii) the ideal of
relations among the generators of the semigroup algebraF[S] has a quadraticGröbner
basis, hence is Koszul (see [24] for background on Koszul algebras). Therefore an
iterated use of Corollary 4 yields the following:

Corollary 5. If B(supp(g)) has a quadratic Gröbner system, then B(g) also has a
quadratic Gröbner system, and hence, the semigroup algebra F[B(g)] is Koszul.
Example 1. Consider the additive group Z/6Z = {0, 1, 2, 3, 4, 5}, and the monoid
S := B((1, 2, 3)). The atoms in this monoid are

A(S) = {(1, 1, 1), (4, 1, 0), (3, 0, 1), (2, 2, 0), (0, 0, 2), (0, 3, 0), (6, 0, 0)}.

The commuting indeterminates corresponding to the atoms will be denoted by
x1, x2, x3, x4, x5, x6, x7, and π : M → S is the monoid homomorphism mapping the
generator xi of the free monoid M to the i th atom in the above list (i = 1, . . . , 7).
Denote by ≺ the graded reverse lexicographic order on M . That is, xα ≺ xβ if∑7

i=1 αi <
∑7

i=1 βi , or if
∑7

i=1 αi = ∑7
i=1 βi and for the largest j with α j = β j we

have α j > β j (in particular, x7 ≺ x6 ≺ · · · ≺ x1). We claim that the following is a
Gröbner system for S:

Λ := {(x21 , x4x5), (x22 , x4x7), (x23 , x5x7), (x24 , x2x6), (x1x2, x3x4),

(x1x3, x2x5), (x2x3, x1x7), (x1x4, x3x6), (x2x4, x6x7)}.



118 M. Domokos

Indeed, for each pair (x, y) ∈ Λ we have x ∼S y and y ≺ x . Moreover, it is easy to
see that the elements in M not divisible by any of the first components of the pairs
in Λ are the following:

{wxi5x
j
6 x

k
7 | i, j, k ∈ N0, w ∈ {1, x1, x2, x3, x4, x3x4}}.

Now the above elements are mapped by π to distinct elements in S. To see this note
that the modulo 6 residue of the first component of π(wxi5x

j
6 x

k
7 ) uniquely determines

w, and then i, j, k are determined by π(wxi5x
j
6 x

k
7 ). Thus S has a quadratic Gröbner

system, and consequently by Corollary 5 the algebra F[B(g)] is Koszul for any g
with supp(g) = {1, 2, 3} ⊂ Z/6Z.

6 Relation to Invariant Theory

We need to recall a result from invariant theory (see [11] for an introduction to
invariant theory). Let H be a linearly reductive subgroup of the group GL(V ) of
invertible linear transformations of a finite-dimensional vector space V over an
algebraically closed field F. The action of H on V induces an action via graded
F-algebra automorphism on the symmetric tensor algebra S(V ) of V (graded in the
standard way, namely, V ⊂ S(V ) is the degree 1 homogeneous component). Since
H is linearly reductive, the algebra S(V )H = { f ∈ S(V ) | h · f = f ∀h ∈ H} of
polynomial invariants is known to be finitely generated. Let f1, . . . , fn be a minimal
homogeneous generating systemof S(V )H , enumerated so that deg( f1) ≥ deg( f2) ≥
· · · ≥ deg( fn). Consider the F-algebra surjection

ϕ : F[x1, . . . , xn] → S(V )H with xi �→ fi (i = 1, . . . , n). (7)

Endow F[x1, . . . , xn] with the grading given by deg(xi ) = deg( fi ), so ϕ is a homo-
morphism of graded algebras. Recall that the factor of S(V ) modulo the ideal gen-
erated by f1, . . . , fn is called the algebra of coinvariants. It is a finite-dimensional
graded vector space when H is finite; in this case write b(H, V ) for its top degree
(equivalently, all homogeneous elements in S(V ) of degree greater than b(H, V )

belong to the Hilbert ideal S(V ) f1 + · · · + S(V ) fn , and there is a homogeneous
element in S(V ) of degree b(H, V ) not contained in the Hilbert ideal). Denote by s
the Krull dimension of S(V )H . Note that s ≤ n with equality only if ker(ϕ) = {0}.
Theorem 3. (Derksen [10, Theorems 1 and 2])

(i) We have the inequality μ(ker(ϕ)) ≤
min{n,s+1}∑

i=1

deg( fi ) − s,

(ii) When H is finite, we have the inequality μ(ker(ϕ)) ≤ 2b(G, V ) + 2.
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The Davenport constant of a finite subset G0 of an abelian group G is defined as

D(G0) = max{|α| : α ∈ A(B(G0))},

where |α| = ∑
g∈G0

α(g). When G0 generates a finite subgroup in G, the little Dav-
enport constant of G0 can be defined as

d(G0) = max{|α| : α ∈ N
G0
0 , ∀γ ∈ A(B(G0)) ∃g ∈ G0 with γ(g) > α(g)},

the maximal length of a sequence over G0 containing no product-one subsequence
(see [14, Proposition 5.1.3.2]).

Now let g = (g1, . . . , gm) be a sequence of elements from an arbitrary abelian
group G, and use the notation developed in Section4. Consider the following grad-
ing of the block monoid B(g): for α ∈ B(g) its degree is |α| = ∑m

i=1 αi . The
graded catenary degree cgr(B(g)) is defined in Definition 2 accordingly. Denote by
r(B(g)) the rank of the free abelian subgroup in Z

m generated by B(g). Obviously
|A(B(g))| ≥ r(B(g)) with equality if and only if B(g) is a free monoid. Set

A(B(supp(g))) := {a1, . . . , an} with |a1| ≥ |a2| ≥ · · · ≥ |an|.

Theorem 4. (i) We have the inequalities

cgr(B(g)) ≤ max{2|a1|, cgr(B(supp(g)))}, (8)

and

cgr(B(supp(g))) ≤
min{n,r+1}∑

i=1

|ai | − r, (9)

where r = r(B(supp(g))).
(ii) If g1, . . . , gm generate a finite subgroup of G, then

cgr(B(g)) ≤ 2d(supp(g)) + 2. (10)

Proof. We may assume that the components of g generate G. So G is a finitely
generated abelian group, whence it is isomorphic to G1 × Z

k , where G1 is a finite
abelian group, andZk is the free abelian group of rank k. Consider the linear algebraic
group H = G1 × T , where T is the torus (C×)k . For an abelian linear algebraic group
A denote by X (A) the group of homomorphisms A → C

× (as algebraic groups).
Then X (G1) ∼= G1 and X (T ) ∼= Z

k , whence X (H) ∼= G1 × Z
k ∼= G. From now on

we identify G with X (H). Let V be a C-vector space with basis x1, . . . , xm , and
define an action of H on V via linear transformations by setting h · xi = gi (h)xi
for i = 1, . . . ,m. The algebra S(V ) is the polynomial algebra C[x1, . . . , xm]. The
monomials span 1-dimensional invariant subspaces, and forα = (α1, . . . ,αm) ∈ N

m
0

and h ∈ H we have that
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h · xα =
(

m∏

i=1

gi (h)αi

)
xα.

It follows that the map N
m
0 → S(V ), α �→ xα induces an isomorphism of the semi-

group algebras

C[B(g)] ∼=−→ C[x1, . . . , xm]H . (11)

The isomorphism (11) is an isomorphism of graded algebras. We may select as
homogeneous generators of S(V )H the monomials {xα | α ∈ A(B(g))}. Then the
presentation (7) of S(V )H is identified via (11) with the presentation (3) of the
semigroup algebraC[B(g)]. So μ(ker(ϕ)) = μ(ker(πC)) (see (3) in Section2 for the
definition of πC : C[M] → C[B(g)]). By Corollary 2 we know that μ(ker(πC)) =
cgr(B(g)). Thus we have μ(ker(ϕ)) = cgr(B(g)). On the other hand applying Theo-
rem 3 (i) for μ(ker(ϕ)) in the special case when g1, . . . , gm are distinct (i.e., when
B(g) = B(supp(g))) we obtain the inequality (9) (by (11) the Krull dimension of
C[x1, . . . , xm]H equals the Krull dimension ofC[B(g)], and the latter coincides with
the rank of the free abelian subgroup of Zm generated by B(g)). Combining (9) with
Theorem 1 and Proposition 4 we get the inequality (8). The explanation of (11)
shows also b(G, V ) = d(supp(g)), so Theorem 3 (ii) yields (10).

Remark 8. When G ∼= Z
k , the group H in the above proof is an algebraic torus,

and the results in [29] give various bounds for |a1| in Theorem 4 (i). Moreover, [30]
characterizes the cases whenC[B(g)] ∼= S(V )H (for a torus H ) is a polynomial ring,
i.e., when cgr(B(g) = 0.

Corollary 6. For any subset G0 of a finite abelian group G we have the inequalities

cgr(B(G0)) ≤ 2d(G0) + 2 ≤ 2D(G) ≤ 2|G|.

Proof. The first inequality is a special case of Theorem 4 (ii). To see the second
inequality note the trivial inequality d(G0) ≤ d(G), and the well known equality
d(G) + 1 = D(G) (cf. [14, Proposition 5.1.3.2]).

It follows immediately from Definitions 1 and 2 that

c(S) ≤ 1

min{|a| : a ∈ A(S)}cgr(S). (12)

ThereforeTheorem4 implies bounds on the ordinary (not graded) catenary degree.
For example, an immediate consequence of Corollary 6 and (12) is the following:

Corollary 7. Let G0 be a subset in a finite abelian group G. Then

c(B(G0)) ≤ 2d(G0) + 2

min{|α| : α ∈ A(B(G0))} .
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As an application we recover the following known bound on c(B(G)):

Corollary 8. [14, Theorem 3.4.10.5] For any finite abelian group G we have the
inequality c(B(G)) ≤ D(G).

Proof. Themonoid isomorphismB(G) ∼= B(G \ {1G}) × B({1G}) ∼= B(G \ {1G})×
N0 implies that c(B(G)) = c(B(G \ {1G}). For a nontrivial group G the minimal
degree of an atom in B(G \ {1G}) is 2, hence, Corollary 7 gives c(B(G \ {1G}) ≤
2d(G)+2

2 = d(G) + 1 = D(G).

Example 2. It is known that the bound in Corollary 8 is sharp for G with |G| ≥ 3 if
and only if G is cyclic or G is an elementary 2-group by [14, Theorem 6.4.7] (see
also [15], where the finite groups with c(B(G)) = D(G) − 1 are characterized). The
inequality cgr(B(G0)) ≤ 2d(G0) + 2 in Corollary 6, the inequality in Corollary 7,
and the inequalities (8) and (10) in Theorem 4 are also sharp for these groups:

(i) Set G0 := {1,−1} ⊂ Z/nZ, S := B(G0). ThenA(S) = {(n, 0), (0, n), (1, 1)}.
The defining congruence ∼S of S is generated by (xn(1,1), x(n,0)x(0,n)) (a single
generator). We have d(G0) = n − 1 and cgr(S) = 2n, whereas min{|α| : α ∈
A(S)} = 2 and max{|α| : α ∈ A(S)} = n.

(ii) Let e1, . . . , en be a basis of the elementary 2-group of rank n ≥ 2, and G0 :=
{e1 + · · · + en, e1, . . . , en}, S := B(G0). Then A(S) = {a1 := (1, 1, . . . ,
1), a2 := (2, 0, . . . , 0), a3 := (0, 2, 0, . . . , 0), . . . , an+2 := (0, . . . , 0, 2)}. The
defining congruence of S is generated by (x2a1 , xa2 · · · xan+2). We have d(G0) =
n and cgr(S) = 2n + 2, whereas min{|α| : α ∈ A(S)} = 2 and max{|α| : α ∈
A(S)} = n + 1.

7 Relation to Toric Varieties

The quotient construction of toric varieties (cf. [6]) represents a toric variety as the
categorical quotient of a Zariski open subset in a vector space endowed with an
action of a diagonalizable group (see [8] for background on toric varieties). Rings
of invariants are at the basis of quotient constructions in algebraic geometry. In the
proof of Theorem 4, we recalled that the ring of invariants C[x1, . . . , xm]H of a
diagonalizable group action is isomorphic to a semigroup ring C[B(g)] of a block
monoid. Therefore the results in Sections4, 5, 6 have relevance for toric varieties.

In more details, the coordinate rings of affine toric varieties with no torus factors
are the semigroup rings (overC) of reduced, affine Krull monoids. This class of rings
(up to isomorphism) is the same as the class of rings of invariants C[x1, . . . , xm]H ,
where H is an abelian group, and each variable spans an H -invariant subspace (see
for example [3, Corollary 5.19]), which is the same as the class of rings of the form
C[B(g)].

Projective toric varieties can be constructed as the projective spectrum of semi-
group algebras of reduced affine Krull monoids, see for example [20, Chapter
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10], [8, Theorem 14.2.13]. Namely, take g = (g1, . . . , gm) ∈ Gm such that B(g) =
{0}, and fix an element h ∈ G. Endow the monoid B((g, h)) with the grading

given by B((g, h))d = {α ∈ B((g, h)) ⊆ N
m+1
0 | αm+1 = d}, d = 0, 1, 2, . . . . Then

C[B((g, h))] becomes a graded algebra, whose projective spectrum is a projective
toric variety.

Example 3. We reformulate a result on presentations of homogeneous coordinate
rings of projective toric quiver varieties from [12] in the terminology of the present
paper. Let Γ be an acyclic quiver (i.e., a finite directed graph having no oriented
cycles), with vertex set {1, . . . , k} and arrow set {e1, . . . , em}. For an arrow ei denote
by s(ei ) the starting vertex of ei , and denote by t (ei ) the terminating vertex of ei . In
the additive group Zk consider the elements gi = (gi1, . . . , gik), i = 1, . . . ,m given
by

gi j =

⎧
⎪⎨

⎪⎩

−1, if j = s(ei )

1 if j = t (ei )

0 otherwise.

Pick an element h ∈ Z
k whose additive inverse is contained in the subgroup of Zk

generated by g1, . . . , gm . Then [12, Theorem 9.3] asserts that the catenary degree
c(B((g, h))) of B((g, h)) is at most 3. Moreover, it is shown in [13] that if we
assume in addition that if r(B((g, h))) ≤ 5 (i.e., the corresponding toric variety has
dimension at most 4), then c(B((g, h))) ≤ 2 with essentially one exception. We
mention that presentations of the coordinate ring of affine toric quiver varieties are
studied in [19].

Well known open conjectures (of increasing strength) in combinatorial commu-
tative algebra are the following (called sometimes Bøgvad’s conjecture; see [27,
Conjecture 13.19] or [2]): Given a smooth, projectively normal projective toric vari-
ety, its

(i) vanishing ideal is generated by quadratic elements.
(ii) homogeneous coordinate ring is Koszul.
(iii) vanishing ideal has a quadratic Göbner basis.

For a finite subset G0 of G with B(G0) = {0} and an element h whose inverse
belongs to the subgroup generated by G0, the monoid B(G0 ∪ {h}) is endowed with
the grading such that the degree d component consists of the elements α in B(G0 ∪
{h}) with α(h) = d. Suppose that B(G0 ∪ {h}) has a quadratic Gröbner system.
According to the above conjecture this is expected to happen when B(G0 ∪ {h}) is
generated in degree 1 (so B(G0 ∪ {h}) is half-factorial in the sense of factorization
theory), and the projective spectrumofC[B(G0 ∪ {h})] is a smooth projective variety.
(For instance, in the setup of Example 3 this holds by [17] for almost all choices
of h when Γ is a bipartite directed graph with 3 source and 3 sink vertices.) Then
for any g with supp(g) = G0 we have by Corollary 5 that B((g, h)) has a quadratic
Gröbner basis, and hence the algebra C[B((g, h))] is Koszul (although its projective
spectrum typically fails to be a smooth projective variety).
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A Bazzoni-Type Theorem
for Multiplicative Lattices

Tiberiu Dumitrescu

Abstract We prove a Bazzoni-type theorem for multiplicative lattices thus unifying
several ring/monoid theoretic results of this type.
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1 Introduction

Let D be an integral domain. Consider the following two assertions:
(i) If I is an ideal of D whose localizations at the maximal ideals are finitely

generated, then I is finitely generated.
(ii) Every x ∈ D − {0} belongs to only finitely many maximal ideals of D.
While (i i) ⇒ (i) is well-known and easy to prove, Bazzoni [3, p. 630] conjectured

that the converse is true for Prüfer domains. Recall that D is a Prüfer domain if every
finitely generated ideal I of D is locally principal.

Holland et al. [10, Theorem 10] proved Bazzoni’s conjecture for Prüfer domains
using techniques from lattice-ordered groups theory and McGovern [14, Theorem
11] proved the same result using a direct ring theoretic approach. Halter-Koch [9,
Theorem 6.11] proved Bazzoni’s conjecture for r -Prüfer monoids (see Section4).
Zafrullah [16, Proposition 5] proved Bazzoni’s conjecture for Prüfer v-multiplication
domains. Finocchiaro and Tartarone [6, Theorem 4.5] proved Bazzoni’s conjecture
for almost Prüfer ring extensions (see Section3). Recently, Chang andHamdi [4, The-
orem 2.4] proved Bazzoni’s conjecture for almost Prüfer v-multiplication domains
(see Section4).

T. Dumitrescu (B)
Facultatea de Matematica si Informatica, University of Bucharest,
14 Academiei Street, 010014 Bucharest, RO, Romania
e-mail: tiberiu@fmi.unibuc.ro

© Springer Nature Switzerland AG 2020
A. Facchini et al. (eds.), Advances in Rings, Modules and Factorizations,
Springer Proceedings in Mathematics & Statistics 321,
https://doi.org/10.1007/978-3-030-43416-8_6

125

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43416-8_6&domain=pdf
mailto:tiberiu@fmi.unibuc.ro
https://doi.org/10.1007/978-3-030-43416-8_6


126 T. Dumitrescu

The purpose of this paper is to prove a Bazzoni-type theorem for multiplicative
lattices (see Section2), thus unifying the results mentioned above (see Sections3
and 4). Our standard references are [1, 7, 8].

2 Main Result

We use an abstract ideal theory approach, so we work with multiplicative lattices.

Definition 1. A multiplicative lattice is a complete lattice (L ,≤) (with bottom ele-
ment 0 and top element 1) which is also a multiplicative commutative monoid with
identity 1 (the top element) and satisfies a(

∨
bα) = ∨

abα for each a, bα ∈ L .

Let L be a multiplicative lattice. The elements in L − {1} are said to be proper.
Denote by Max(L) the set of maximal elements of L . For x, y ∈ L , set (y : x) =∨{a ∈ L; ax ≤ y}.

We recall some standard terminology.

Definition 2. Let L be a multiplicative lattice and let x, p ∈ L .
(1) p is prime if p �= 1 and for all a, b ∈ L , ab ≤ p implies a ≤ p or b ≤ p. It

follows easily that every maximal element is prime.
(2) x is compact if whenever x ≤ ∨

y∈S y with S ⊆ L , we have x ≤ ∨
y∈T y for

some finite subset T of S.
(3) L is a C-lattice if the set L∗ of compact elements of L is closed under multi-

plication, 1 ∈ L∗ and every element in L is a join of compact elements.
(4) x is meet-principal if y ∧ zx = ((y : x) ∧ z)x for all y, z ∈ L (in particular

(y : x)x = x ∧ y).
(5) x is join-principal if y ∨ (z : x) = ((yx ∨ z) : x) for all y, z ∈ L (in particular

(xy : x) = y ∨ (0 : x)).
(6) x is cancellative if for all y, z ∈ L , xy = xz implies y = z.
(7) x is CMP (ad hoc name) if x is cancellative and meet-principal.
(8) L is a lattice domain if (0 : a) = 0 for all a ∈ L − {0}.
In the sequel, we work with C-lattices and their localization theory. Let L be a

C-lattice. For p ∈ L a prime element and x ∈ L , we set

x p =
∨

{a ∈ L∗; ab ≤ x for some b ∈ L∗ with b � p}.

Then L p := {x p; x ∈ L} is again a lattice with multiplication (x p, yp) 
→ (xy)p =
(x p yp)p, join {(bα)p} 
→ (

∨
(bα)p)p = (

∨
bα)p and meet {(bα)p} 
→ (

∧
(bα)p)p.

The next lemma collects several basic properties.

Lemma 3. Let L be a C-lattice, let x, y ∈ L and let p ∈ L be a prime element.
(1) x p = 1 if and only if x � p.
(2) (x ∧ y)p = x p ∧ yp.
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(3) If x is compact, then (y : x)p = (yp : x p).
(4) x = y if and only if xm = ym for each m ∈ Max(L).
(5) A cancellative element x is CMP if and only if (y : x)x = x ∧ y for all y ∈ L.
(6) If x is compact, then x p is compact in L p. Conversely, if x p is compact in L p,

then x p = cp for some compact element c ≤ x.
(7) If x and y are CMP elements, then so is xy.
(8) If x is compact, y is CMP and x ≤ y, then (x : y) is compact.

Proof. For (1–4) see [11, pp. 201–202], for (5) see [15, Lemma 2.10], while (6–7)
follow easily from definitions. We prove (8). Note that (x : y)y = x ∧ y = x . Sup-
pose that (x : y) ≤ ∨

i∈A zi . Then x = (x : y)y ≤ ∨
i∈A zi y, so (x : y)y ≤ ∨

i∈B zi y
for some finite subset B of A. Cancel y to get (x : y) ≤ ∨

i∈B zi . �

Say that x and y ∈ L are comaximal if x ∨ y = 1. Clearly, x ∨ yz = 1 if and only
if x ∨ y = 1 and x ∨ z = 1. When t ≤ u we say that t is below u or that u is above t .

Lemma 4. Let L be a C-lattice and z ∈ L − {1} a compact element such that {m ∈
Max(L); z ≤ m} is infinite. There exists an infinite set {an; n ≥ 1} of pairwise
comaximal proper compact elements such that z ≤ an for each n.

Proof. We may clearly assume that z = 0 (just change L by {x ∈ L; x ≥ z}). Say
that a proper compact element h is big (ad hoc name) if h is below only one maximal
element M(h). We separate in two cases.

Case (1): Every proper compact element is below some big compact element. We
proceed by induction. Suppose that n ≥ 1 and we already have big compacts a1,...,an

such that M(a1),...,M(an) are distinct maximal elements (for n = 1 just pick an
arbitrary big compact a1). Let p be a maximal element other than M(a1),...,M(an).
There exists a compact element c ≤ p such that c � M(ai ) for 1 ≤ i ≤ n (take c =
c1 ∨ · · · ∨ cn where each ci ∈ L∗ satisfies ci ≤ p and ci � M(ai )). Then take a big
compact element an+1 ≥ c. This way we construct an infinite set {an; n ≥ 1} of big
compacts such that all M(an)’s are distinct. Hence the an’s are pairwise comaximal.

Case (2): There exists a proper compact element a0 which is not below any big
compact element. Clearly every proper compact above a0 inherits this property. Pick
two distinct maximal elements p and q above a0. As L is a C-lattice, there exist
two comaximal compacts a1 ≤ p and b1 ≤ q (note that p ∨ q = 1, express p and
q as joins of compact elements and use the fact that 1 is compact). Repeating this
argument for a1, there exist two comaximal proper compacts a2 ≥ a1 and b2 ≥ a1.
Note that b2 and b1 are comaximal. Thus we construct inductively an infinite set
{bn; n ≥ 1} of pairwise comaximal proper compact elements. �

In a C-lattice L , we say that an element x is locally compact if xm is compact in
Lm for each m ∈ Max(L). We state our main result which is a Bazzoni-type theorem
for C-lattices.
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Theorem 5. Let L be a C-lattice domain satisfying the following two conditions:
(a) every nonzero element is above some cancellative compact element, and
(b) every compact element x �= 1 has some power xn below some proper CMP

element.
Then the following conditions are equivalent:

(i) Every locally compact element of L is compact.
(i i) Every nonzero element is below at most finitely many maximal elements.

Proof. (i i) ⇒ (i).Although this part is well-known and easy, we include a proof for
the reader’s convenience. Let x be a nonzero locally compact element of L and let
a ≤ x be a nonzero compact element. By (i i), there are only finitely many maximal
elements above a, say m1,...,mk . For each i between 1 and k, pick a compact element
ci ≤ x such that xmi = (ci )mi . A local check shows that x = a ∨ c1 ∨ · · · ∨ ck , so x
is compact. Note that this part works for any C-lattice.

(i) ⇒ (i i). Deny, so suppose that somenonzero element c is below infinitelymany
maximal elements. By hypothesis (a), wemay assume that c is a cancellative compact
element. By Lemma 4 and hypothesis (b), there exist an infinite set {bn; n ≥ 1} of
proper pairwise comaximal CMP elements and integers kn ≥ 1 such that ckn ≤ bn for
n ≥ 1 (kn minimal with this property). Restricting to a subsequence, we may assume
that kn ≤ kn+1 for all n. We then have ckn ≤ b1 ∧ · · · ∧ bn = b1 · · · bn for all n.

Claim (∗) : The element a := ∨
n≥1(c

kn : b1 · · · bn) is locally compact.
Pick m ∈ Max(L). Since the bn’s are pairwise comaximal, m is above at most one
of them. Assume first that m ≥ bs . Since each product b1 · · · bn is compact, we get

am = (
∨

n≥1

((ckn )m : (b1 · · · bn)m))m = (ck1 ∨ (cks : bs))m

which is compact in Lm , cf. Lemma 3. Similarly, when m is above no bn , we get
am = (ck1)m , so am is compact in Lm , hence Claim (∗) is proved. By (i), a is compact.
So a = ∨q

n=1(c
kn : b1 · · · bn) for some q ≥ 1. We get

(ckq+1 : b1 · · · bq+1) ≤ (ck1 : b1 · · · bq)

so multiplying by b1 · · · bq+1 (which is a CMP element) and taking into account that
ckq+1 ≤ b1 · · · bq+1, we get

ckq+1 ≤ (ck1 : b1 · · · bq)b1 · · · bq+1 ≤ ck1bq+1.

Since kq+1 ≥ k1 and ck1 is cancellative, we get ckq+1−k1 ≤ bq+1, which is a contra-
diction since kq+1 was minimal with ckq+1 ≤ bq+1. �

Recall that aC-lattice domain is aPrüfer lattice if every compact element is princi-
pal (i.e.,meet-principal and join-principal). In aC-lattice domain, every nonzero join-
principal element x is cancellative (because (yx : x) = y ∨ (0 : x) = y for each y).
So in a Prüfer lattice domain every nonzero compact element is CMP.
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Corollary 6. Let L be a C-lattice domain in which every nonzero compact element
is CMP (e.g., a Prüfer lattice domain). Then conditions (i) and (i i) of Theorem 5
are equivalent.

Bazzoni’s conjecture for Prüfer domains [10, Theorem 10] (see Introduction)
follows from Corollary 6 since the ideal lattice of a Prüfer domain is clearly a Prüfer
lattice.

3 Almost Prüfer Extensions

Werecall several definitions from [6, 12]. Let A ⊆ B be a commutative ring extension
and I an ideal of A. Then I is called B-regular if I B = B and I is called B-invertible
if I J = A for some A-submodule J of B. Every B-invertible ideal is B-regular, since
A = I J ⊆ I B implies I B = B. We say that A ⊆ B is an almost Prüfer extension if
every finitely generated B-regular ideal of A is B-invertible.

Finocchiaro and Tartarone [6, Theorem 4.5] proved Bazzoni’s conjecture for
almost Prüfer ring extensions. We state their result and derive it from Corollary 6.

Theorem 7. (Finocchiaro and Tartarone) If A ⊆ B is an almost Prüfer extension,
the following are equivalent:

(i) Every B-regular locally principal ideal of A is B-invertible.
(i i) Every B-regular ideal of A is contained in only finitely many maximal ideals

of A.

Proof. It is well-known and easy to prove that (i i) implies (i), see [6, Corollary 3.5].
We prove the converse. Let L be the set of all B-regular ideals of A together with the
zero ideal and order L by inclusion. As shown in [15, Lemma 7.1], L is a C-lattice
domain under usual ideal multiplication, where the join is the ideal sum and the meet
is the ideal intersection except the case when we get a non-B-regular ideal when we
put

∧ = 0. By [15, Lemma 7.1], the set L∗ of compact elements in L is exactly the
set of (B-regular) finitely generated ideals of A together with the zero ideal. After
this preparation it becomes clear that [(i) ⇒ (i i)] follows from Corollary 6 provided
we prove the two claims below. Write x ∈ L as x̂ when considered as an ideal of A.

Claim 1: Every nonzero compact element of L is a CMP element.
Let c be a nonzero compact element of L . As A ⊆ B is almost Prüfer, ĉ is a B-
invertible ideal, so ĉ J = A for some A-submodule J of B. Then c is clearly can-
cellative. By Lemma 3, it suffices to show that (x : c)c = x ∧ c for each x ∈ L .
Changing x by x ∧ c, wemay assume that x ≤ c.We have x̂ = x̂ J ĉ, so x = ycwhere
y ∈ L is such that ŷ = x̂ J (note that x̂ J ⊆ A). From x = yc we get y ≤ (x : c), so
x = yc ≤ (x : c)c ≤ x , thus (x : c)c = x .

Claim 2: Every locally compact element of L is compact.
Suppose that c is a nonzero locally compact element of L . Letm be amaximal element
of L , that is, m̂ is a B-regular maximal ideal of A. So cm = ∨{y ∈ L∗; ys ≤ c for
some s ∈ L∗, s � m} is compact in the lattice Lm = {xm; x ∈ L}. Then cm = hm for
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some h ∈ L∗. Extending these ideals in Am̂ , we get ĉAm̂ = ĉm Am̂ = ĥm Am̂ = ĥ Am̂ .
Since A ⊆ B is almost Prüfer, ĥ is B-invertible. By [12, Proposition 2.3], ĥ Am̂ =
ĉAm̂ is a principal ideal of Am̂ . Thus ĉ is a locally principal ideal of A. By (i), ĉ is
B-invertible, so ĉ is finitely generated, cf. [12, Proposition 2.3]. Thus c is compact
in L . �

4 Ideal Systems on Monoids and Integral Domains

Let H be a commutativemultiplicativemonoid (with zero element 0 and unit element
1) such that every nonzero element of H is cancellative and letP(H) be the power set
of H . A map r : P(H) → P(H), X 
→ Xr , is an ideal system on H if the following
conditions hold for all X, Y ∈ P(H) and c ∈ H :

(1) cXr = (cX)r , (2) X ⊆ Xr , (3) X ⊆ Y implies Xr ⊆ Yr , (4) (Xr )r = Xr .

Then Xr is called the r-closure of X and a set of the form Xr is called an r -ideal.
An r -ideal I is r-finite if I = Yr for some finite subset Y of I . The ideal system r is
called finitary if Xr = ⋃{Yr ; Y ⊆ X finite}.

Assume that r is finitary. A proper r -ideal P is prime if, for x, y ∈ H , xy ∈ P
implies x ∈ P or y ∈ P . The localization of H at P is the fraction monoid
HP = {x/t; x ∈ H, t ∈ H − P} which comes together with the finitary ideal sys-
tem rP defined by {a1/s1, ..., an/sn}rP = ({a1, ..., an}r )P for all a1, ..., an ∈ H and
s1, ..., sn ∈ H − P . A maximal r-ideal is a maximal element of the set of proper r -
ideals of H . Any proper r -ideal is contained in a maximal one and a maximal r -ideal
is prime. A nonzero r -ideal I is r-invertible if I is r -finite and r-locally principal
(i.e., IM = {x/t; x ∈ I, t ∈ H − M} = y HM with y ∈ IM (depending on M) for all
maximal r -ideals M). Next H is an r-Prüfer monoid if every nonzero r -finite r -ideal
of H is r -invertible. For complete details we refer to [8].

Halter-Koch [9, Theorem6.11] provedBazzoni’s conjecture for r -Prüfermonoids.
We state his result and derive it from Corollary 6.

Theorem 8. (Halter-Koch) If H is an r-Prüfer monoid for some finitary ideal system
r on H, the following are equivalent.

(i) Every r-locally principal r-ideal of H is r-finite.
(i i) Every nonzero r-ideal of H is contained in only finitely many maximal r-

ideals.

Proof. It is well-known and easy to prove that (i i) implies (i).We prove the converse.
Let L be the set of all r -ideals of H ordered by inclusion. As shown in [8, Chapter 8],
L is a C-lattice domain under r -ideal multiplication (I, J ) 
→ (I J )r , join

∨{Jα} :=
(
⋃

Jα)r and meet
∧{Jα} := ⋂

Jα . By [15, Lemma 8.1], the set L∗ of compact
elements in L is exactly the set of r -finite r -ideals of H . After this preparation it
becomes clear that [(i) ⇒ (i i)] follows from Corollary 6 provided we prove the two
claims below. Write x ∈ L as x̂ when considered as an r -ideal of H .
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Claim 1: Every nonzero compact element of L is a CMP element.
Let c ∈ L be a nonzero compact, in other words ĉ is nonzero r -finite r -ideal. Since
H is r -Prüfer, ĉ is r -invertible. So c is a CMP element of L , cf. [15, Lemma 8.2].

Claim 2: Every locally compact element of L is compact.
Suppose that c is a locally compact element of L . Let m be a maximal element
of L , that is, m̂ is a maximal r -ideal of H . So cm = ∨{y ∈ L∗; ys ≤ c for some
s ∈ L∗, s � m} is compact in the lattice Lm = {xm; x ∈ L}. Then cm = hm for some
h ∈ L∗. Switching to H , we have (̂c)m̂ = (ĉm)m̂ = (ĥm)m̂ = ĥm̂ . Since H is an r -
Prüfer monoid, ĥm̂ is a principal rm̂-ideal of Hm̂ , cf. [8, Theorem 12.3]. Thus ĉ is an
r -locally principal r -ideal. By (i), ĉ is r -finite, thus c is compact in L . �

Next we present an application for integral domains. Let D be an integral domain.
The t ideal system on D is defined by Xt = ⋃{Yv; Y ⊆ X finite} for all X ⊆ D,
where Yv = ⋂{(aD :D b); a, b ∈ D, bY ⊆ aD}. Clearly t is finitary, so the set
Maxt (D) of maximal t-ideals is nonempty, see [8, Chapter 11].

The w ideal system on D is defined by Xw = ⋂{X DM ; M ∈ Maxt (D)} for all
X ⊆ D, where X DM is the ideal generated by X in DM . So a w-ideal is an ideal
of the ring D. For X ⊆ D, we have Xw = (X D)w and Xw DM = X DM for each
M ∈ Maxt (D). Moreover, w is finitary and the set of maximal w-ideals is exactly
Maxt (D). A w-finite ideal has the form ((a1, ..., an)D)w for some ai ’s in D. And a
nonzero w-ideal is w-invertible if it is w-finite and t-locally principal (i.e., I DM is
a principal ideal of DM for each M ∈ Maxt (D)). For details on the w ideal system
we refer to [2, 5].

According to [13], D is an almost Prüfer v-multiplication domain (in short
APVMD) if for every a1, ..., an ∈ D − {0}, the ideal ((ak

1, ..., ak
n)D)w isw-invertible

for some k ≥ 1. Say that a w-ideal I of D is t-locally finitely generated, if I DM is
a finitely generated ideal of DM for each M ∈ Maxt (D).

Chang and Hamdi [4, Theorem 2.4] proved Bazzoni’s conjecture for APVMDs.
We state their result and derive it from Theorem 5.

Theorem 9. (Chang and Hamdi) For an APVMD D, the following statements are
equivalent:

(i) Each nonzero t-locally finitely generated w-ideal of D is w-finite.
(i i) Every nonzero ideal of D is contained in only finitely many maximal t-ideals.

Proof. It is well-known and easy to prove that (i i) implies (i), see for instance the
proof of (3) ⇒ (1) in [4, Theorem2.4].We prove that (i) implies (i i). Let L be the set
of allw-ideals of D ordered by inclusion. As shown in [8, Chapter 8], L is aC-lattice
domain under w-ideal multiplication (I, J ) 
→ (I J )w, join

∨{Jα} := (
⋃

Jα)w and
meet

∧{Jα} := ⋂
Jα . By [15, Lemma 8.1], the set L∗ of compact elements in L is

exactly the set of w-finite ideals of D. Condition (a) of Theorem 5 holds clearly for
L (any nonzero ideal contains a nonzero principal ideal). After this preparation it
becomes clear that [(i) ⇒ (i i)] follows from Theorem 5 provided we prove the two
claims below. Write x ∈ L as x̂ when considered as a w-ideal of D.
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Claim 1: Every d ∈ L∗ − {1} has some power dn below some proper CMP
element.
Let d ∈ L∗ − {1}. Then d̂ = (a1, ..., ak)w for some elements ai ∈ d̂ . Since D is
an APVMD, (as

1, ..., as
k)w is w-invertible for some s ≥ 1. If (as

1, ..., as
k)w = f̂ with

f ∈ L , then f is a properCMPelement of L , cf. [15, Lemma8.2].Moreover dsk ≤ f ,
so Claim 1 is proved.

Claim 2: Every locally compact element of L is compact.
Suppose that c is a locally compact element of L . Let m be a maximal element
of L , that is, m̂ is a maximal w-ideal of D. So cm = ∨{y ∈ L∗; ys ≤ c for some
s ∈ L∗, s � m} is compact in the lattice Lm = {xm; x ∈ L}. Then cm = hm for some
h ∈ L∗. Hence ĥ = (b1, ..., bn)w for some elements bi ∈ ĥ. Switching to D, we have

ĉDm̂ = ĉm Dm̂ = (ĥm)Dm̂ = ĥ Dm̂ = (b1, ..., bn)w Dm̂ = (b1, ..., bn)Dm̂ .

Thus ĉ is a t-locally finitely generated ideal of D. By (i), ĉ is w-finite, thus c is
compact in L . �

Acknowledgements I thank the referee for the close reading of the manuscript and for the detailed
report which heavily improved the quality of this paper.

References

1. Anderson, D.D.: Abstract commutative ideal theory without chain conditions. Algebra Univ.
6, 131–145 (1976)

2. Anderson, D.D., Cook, S.J.: Two star-operations and their induced lattices. Comm. Algebra
28, 2461–2475 (2000)

3. Bazzoni, S.: Class semigroups of Prüfer domains. J. Algebra 184, 613–631 (1996)
4. Chang, G.W. Hamdi, H.: Bazzoni’s conjecture and almost Prüfer domains, to appear in Comm.

Algebra
5. Fanggui, W., McCasland, R.L.: On w-modules over strong Mori domains. Comm. Algebra 25,

1285–1306 (1997)
6. Finnochiaro, C., Tartarone, F.: Invertibility of ideals in Prüfer extensions. Comm. Algebra 45,

4521–4527 (2017)
7. Gilmer, R.: Multiplicative Ideal Theory. Marcel Dekker, New York (1972)
8. Halter-Koch, F.: Ideal System. An Introduction to Multiplicative Ideal Theory, Marcel Dekker,

New York (1998)
9. Halter-Koch, F.: Clifford semigroups of ideals in monoids and domains. Forum Math. 21,

1001–1020 (2009)
10. Holland,W.C., Martinez, J., McGovern, W.W., Tesemma,M.: Bazzoni’s conjecture. J. Algebra

320, 1764–1768 (2008)
11. Jayaram, C., Johnson, E.G.: S-prime elements in multiplicative lattices. Periodica Math. Hun-

garica 31, 201–208 (1995)
12. Knebusch, M., Zhang, D.: Manis Valuations and Prüfer Extensions I: A New Chapter in Com-

mutative Algebra. Springer, Berlin, Heidelberg (2002)
13. Lewin, R.L.: Generalizations of GCD-domains and related topics, Ph.D. Thesis, University of

Iowa (1991)



A Bazzoni-Type Theorem for Multiplicative Lattices 133

14. McGovern,W.W.: Prüfer domainswithClifford class semigroup. J. Comm.Algebra 3, 551–559
(2011)

15. Olberding, B., Reinhart, A.: Radical factorization in commutative rings, monoids and multi-
plicative lattices, Math. (2018). arXiv: 1811.00242v1, math.AC

16. Zafrullah, M.: t-invertibility and Bazzoni-like statements. J. Pure Appl. Algebra 214, 654–657
(2010)

http://arxiv.org/abs/1811.00242v1


What is the Spectral Category?

María José Arroyo Paniagua, Alberto Facchini, Marino Gran,
and George Janelidze

Abstract For a category C with finite limits and a class S of monomorphisms in
C that is pullback stable, contains all isomorphisms, is closed under composition,
and has the strong left cancellation property, we use pullback stable S-essential
monomorphisms in C to construct a spectral category Spec(C,S). We show that
it has finite limits and that the canonical functor C → Spec(C,S) preserves finite
limits. When C is a normal category, assuming for simplicity that S is the class of
all monomorphisms in C, we show that pullback stable S-essential monomorphisms
are the same as what we call subobject-essential monomorphisms.
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1 Introduction

The spectral category Spec(C) of a Grothendieck category C was introduced by
Gabriel and Oberst [11]. According to the Abstract of [11], Spec(C) is obtained
from C by formally inverting all essential monomorphisms. Although there is no
reference to Gabriel and Zisman [12], the definition given in Section1.2 of [11] is,
in fact, a construction based on the fact that the class of essential monomorphisms
in C admits the calculus of right fractions. Indeed, it presents the abelian groups
HomSpec(C)(A, B) (for all A, B ∈ Ob(C) = Ob(Spec(C))) as directed colimits

HomSpec(C)(A, B) = colim HomC(A′, B)

taken over all subobjects A′ of A. It is also easy to see that the spectral category
Spec(C) can equivalently be defined as the quotient category of the category of
injective objects in C modulo the ideal consisting of all morphisms in C whose
kernels are essential monomorphisms. Although this is not mentioned in [11], it is
said there that Spec(C) is a replacement of the spectrum of C, which is defined (when
C is the category of modules over a ring) as the collection of isomorphism classes of
indecomposable injective objects.

Introducing the spectral category of a Grothendieck category C can also be moti-
vated by non-functoriality of injective envelopes as follows. For each object C in
C, let us fix an injective envelope (=injective hull) ιC : C → E(C) of it. One might
expect E to become an endofunctor of C, and ι to become a natural transformation
1C → E . However, there are strong negative results against these expectations:

– According to Proposition 1.12 in [13], E cannot be made a functor even when C
is the category of abelian groups.

– Let R be a ring and C the category of R-modules. The ring R can be chosen in
such a way that not all R-modules are injective, but E can be made an endofunctor
of C (see [13, Exercise 24, p. 48] or [8]), but even in those cases ι will not become
a natural transformation 1C → E . This follows from a very general Theorem 3.2
of [2].

On the other hand, the canonical functor P : C → Spec(C), which the spectral cat-
egory Spec(C) comes equipped with, nicely plays the roles of both 1C and E , since
each object in Spec(C) is injective, as shown in [11].

In this paper, however, we are not interested in injective objects, and our main
aim is to construct Spec(C) in full generality, when C is supposed to be an arbitrary
category with finite limits. Apart from the Grothendieck category case above, this
was already done in the case of an arbitrary abelian category [13, p. 15], and for
some nonadditive categories [3].

In fact we begin by taking not just an arbitrary category C with finite limits, but
also any classS of itsmonomorphisms that contains all isomorphisms and is pullback
stable and closed under composition. We define the spectral category Spec(C,S) of
the pair (C,S) to be the category



What is the Spectral Category? 137

C[(St(MonoE (C,S)))−1]

of fractions of C for the class St(MonoE (C,S)) of pullback stable S-essential
monomorphisms of C. When S is the class of all monomorphisms in C, we write
Spec(C,S) = Spec(C) and call this category the spectral category of C.

We make various observations concerning the spans and fractions involved. The
most important one is that the class St(MonoE (C,S)) admits the calculus of right
fractions, just as the class of essential monomorphism in an abelian category does.

We point out that the spectral category Spec(C) has finite limits and that the canon-
ical functor P : C → Spec(C) preserves finite limits. When C is a normal category
[18], assuming for simplicity that S is the class of all monomorphisms in C, we
show that pullback stable S-essential monomorphisms are the same as what we call
subobject-essential monomorphisms. These are those monomorphismsm : M → A
in C such that, for any monomorphism n : N → A, one has that N = 0 whenever
M ×A N = 0. Finally, when C is normal, the monoid EndSpec(C)(P(A)) of endomor-
phisms of an object P(A) in the spectral category is a division monoid whenever A
is a uniform object (a notion extending the classical one of uniform module in the
additive context).

The theorywe develop is indeed an extension of what was done in [11] for the case
of Grothendieck categories and in [3] for the category of G-groups. Note that there
are several papers involving essential monomorphisms in non-abelian contexts (see
e.g. [4, 21] and the references therein), although it is not their purpose to introduce
spectral categories.

Throughout this paper, C denotes a category with finite limits.

2 Stabilization of Classes of Morphisms

Let M be a class of morphisms in C. Following [7], define the stabilization St(M)

of M as the class of morphisms m : M → A such that, for every pullback diagram
of the form

U
u

X

M m A,

u is in M. Let us recall that the symbol “St” was used in [15], while in [7] the
stabilization ofMwas simply denoted byM′. Similar constructions were also used
before, of course.
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Proposition 1. The stabilization St(M) of M has the following properties:

(a) The class St(M) is pullback stable.
(b) IfM contains all isomorphisms, then so does St(M).
(c) IfM is closed under composition, then so is St(M).
(d) IfM has the right cancellation property of the form

(mm ′ ∈ M & m ′ ∈ S) ⇒ m ∈ M

for some pullback stable class S of morphisms in C, then St(M) has the same
property with respect to the same class S.

(e) IfM has the weak right cancellation property

(mm ′ ∈ M & m ′ ∈ M) ⇒ m ∈ M,

then St(M) has the same property.
(f) St(M) has the left cancellation property of the form

(mm ′ ∈ St(M) & m ∈ Mono(C)) ⇒ m ′ ∈ St(M),

where Mono(C) denotes the class of all monomorphisms in C.
Proof. (a) and (b) are obvious.

To prove (c), (d), and (e), use a diagram of the form

U ′ U X

M ′
m ′ M m A,

where the squares are pullbacks and the unlabeled arrows are the suitable pullback
projections.

To prove (f), consider the diagram

M ′ ×M L L

l

1L
L

l

M ′

1M ′

m ′
M

1M

1M
M

m

M ′
m ′ M m A,

where l : L → M is an arbitrary morphism and the unlabeled arrows are the pullback
projections. Note that all its squares are pullbacks, except for the right-hand bottom
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square, although it is also a pullback if m is a monomorphism. Therefore, if mm ′ is
in St(M) and m is a monomorphism, the pullback projection M ′ ×M L → L is in
M. This proves the desired implication. �

Remark 1. Properties 1(a)–(c) are mentioned in [7] and 1(d) is ‘almost’ there, with
E instead ofM. Property 1(e) also holds in the main example there, but for the trivial
reason that (mm ′ ∈ St(E) & m ∈ Mono(C)) implies that m is an isomorphism.

3 Essential and Pullback Stable Essential Monomorphisms

Throughout this paper, we will consider a class S of monomorphisms in C that is
pullback stable, contains all isomorphisms, is closed under composition, and has the
strong left cancellation property

mm ′ ∈ S ⇒ m ′ ∈ S.

According to a well-known definition, a morphism m : M → A from S is said to
be anS-essential monomorphism, if amorphism f : A → B from C is inS whenever
so is f m. When S is the class of all monomorphisms in C, we will say “essential”
instead of “S-essential”. The class of allS-essential monomorphismswill be denoted
by MonoE (C,S). This class has many “good” properties well-known in the case of
an abelian C with S being the class of all monomorphisms in C (see, e.g., any of
the following: Section5 in Chapter II of [10], Section2 in Chapter III of [19], or
Section15.2 of [20]), and also known in the general case, as briefly mentioned in
Remark 9.23 of [1]. The known properties we will need are collected in:

Proposition 2. The class MonoE (C,S) of S-essential monomorphisms
(a) contains all isomorphisms;
(b) is closed under composition;
(c) has the right cancellation property of the form

(mm ′ ∈ MonoE (C,S) & m ∈ S) ⇒ m ∈ MonoE (C,S);

(d) has the weak right cancellation property

(mm ′ ∈ MonoE (C,S) & m ′ ∈ MonoE (C,S)) ⇒ m ∈ MonoE (C,S),

and, in particular, every split monomorphism that belongs to MonoE (C,S) is
an isomorphism. �

Remark 2. Note the difference between our Proposition 2(c) and Proposition 9.14(3)
of [1]: we have omitted the redundant assumption m ′ ∈ S.

From Propositions1 and 2, we immediately obtain:
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Theorem 1. The class St(MonoE (C,S)) of pullback stable S-essential monomor-
phisms in C
(a) is pullback stable;
(b) contains all isomorphisms;
(c) is closed under composition;
(d) has the right cancellation property of the form

(mm ′ ∈ St(MonoE (C,S)) & m ∈ S) ⇒ m ∈ St(MonoE (C,S));
(e) has the weak right cancellation property

(mm′ ∈ St(MonoE (C,S)) & m′ ∈ St(MonoE (C,S))) ⇒ m ∈ St(MonoE (C,S)),

and, in particular, every split monomorphism that belongs to St(MonoE (C,S))

is an isomorphism;
(f) has the left cancellation property of the form

(mm ′ ∈ St(MonoE (C,S)) & m ∈ Mono(C)) ⇒ m ′ ∈ St(MonoE (C,S)).

�

4 Spans and Fractions

Let C be a category with pullbacks. The bicategory Span(C) of spans in C, originally
introduced in [5] (motivated by the study of spans of additive categories in [22]) is
constructed as follows, omitting obvious coherent isomorphisms:

– The objects (=0-cells) of Span(C) are the same as the objects of C.
– A morphism (1-cell) A → B in Span(C) is a diagram in C of the form

A X
x f

B,

usually written either as the triple ( f, X, x) or as the pair ( f, x).
– The composite (g, Y, y)( f, X, x) = (gq, X ×B Y, xp) of ( f, X, x) : A → B and

(g,Y, y) : B → C is defined via the diagram



What is the Spectral Category? 141

X ×B Y
p q

X
x f

Y
y g

A B C

in which p : X ×B Y → X and q : X ×B Y → Y are the pullback projections.
– A 2-cell from ( f, X, x) : A → B to ( f ′, X ′, x ′) : A → B is a morphism s : X →

X ′ with x ′s = x and f ′s = f , and the 2-cells compose as in C.
More generally, given a pullback stable classM of morphisms in C that contains

all identity morphisms and is closed under composition—we can then form the
bicategory SpanM(C) as above but requiring itsmorphisms ( f, x) to have x inM. As
it was observed in a discussion with Janelidze andMac Lane [14] (andmost probably
known before, which is why the content of that discussion was never published), the
assignment (cls( f, x) : A → B) �→ ( f x−1 : A → B) (here cls is the abbreviation
for “class”) determines an isomorphism

�(SpanM(C)) ≈ C[M−1],

in which:

– �(SpanM(C)) is the Poincaré category of SpanM(C) (in the sense of [5]), that
is, it has the same objects as SpanM(C), and its hom sets are the sets of connected
components of hom categories of SpanM(C).

– C[M−1] is the category of fractions [12] of C forM.

We are assuming that the reader is familiar with the content of [5]. Repeating here
the necessary details from that influential paper would take too much space.

Under the isomorphism above, the functor C → �(SpanM(C)), corresponding
to the canonical functor

PM : C → C[M−1],

is defined by ( f : A → B) �→ (cls( f, 1A) : A → B).

Recall that a classM is focal [6] if it satisfies the following four conditions:

(F0) For each object X ∈ C there exists an s ∈ M with codomain X .

(F1) For all
s1 s0 with si ∈ M, there exists a morphism f in C such that

the composite s0s1 f is defined and is inM.
(F2) Each diagram

s

f
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with s ∈ M can be completed in a commutative square

s ′

f ′

s

f

where s ′ ∈ M.
(F3) If a pair ( f, g) of parallel morphisms is coequalized by some s ∈ M, it is also

equalized by some s ′ ∈ M.

Proposition 3. If M is a pullback stable class of morphisms in C that contains all
identity morphisms and is closed under composition, with M ⊆ Mono(C), then M
is focal and, moreover,M admits the calculus of right fractions in the sense of [12].

Proof. All we need to check is that M satisfies the condition dual to condition
2.2(d) in Chapter I of [12], i.e., that whenever two parallel morphisms f and g
admit a morphismm ∈ Mwithm f = mg, they also admit a morphism n ∈ Mwith
f n = gn. This condition holds trivially because M ⊆ Mono(C). �

Remark 3. Note the following levels of generality (in fact there are many more of
them, including those suggested by distinguishing sets of morphisms from proper
classes of morphisms), where we omitted all required conditions on M in the first
five items:

(a) For an arbitrary class M of morphisms of C, we can still form the category
C[M−1] of fractions of C for M.

(b) As shown in [6], the morphisms of C[M−1] can be presented in the form
PM( f )PM(x)−1 with x ∈ M if and only if M satisfies conditions (F0), (F1),
and (F2).

(c) In particular, this is the case whenM satisfies the conditions dual to conditions
2.2(a), 2.2(b), and 2.2(c) in Chapter I of [12].

(d) If the equivalent conditions in (b) hold, then the following conditions are equiva-
lent: (d1) M is focal; (d2) M satisfies condition (F3), which is the same as con-
dition 2.2(d) in Chapter I of [12]; (d3) not only can the morphisms of C[M−1] be
presented as in (b), but also PM( f )PM(x)−1 = PM( f ′)PM(x ′)−1 if and only
there exists a commutative diagram in C of the form

X
x f

A Y

u

v

B

X ′
x ′ f ′

with xu ∈ M.
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(e) In particular, the equivalent conditions (d1)–(d3) hold when the classM admits
the calculus of right fractions in the sense of [12].

(f) IfM contains all identity morphisms, is closed under composition, and is pull-
back stable, then not only are we in the situation (c), but we also have the
isomorphism between C[M−1] and �(SpanM(C)) mentioned above.

(g) The situation of Proposition 3. Note, in particular, that in this case the mor-
phisms u and v in the diamond diagram of (d) belong to M. This follows from
Proposition1(f) and the fact that St(M) = M here.

The levels of generality listed above are related as follows:

(a) (b) (c) ( f )

(d) (d)&( f )

(e) (e)&( f )

(g)

Remark 4. We recall from [12] that already in the situation (d), the equivalent con-
ditions mentioned there imply that the hom sets of C[M−1] can be constructed as
filtered colimits

homC[M−1](A, B) = colim(hom(M, B)),

where the colimit is taken over all m : M → A inM (see Page 13 in [12], where the
dual construction is described explicitly).

5 The Spectral Category

Let S be a class of monomorphisms in C satisfying the conditions required at the
beginning of Section3. Then, as follows from (a)–(c) and (f) of Theorem1, the class
M = St(MonoE (C,S)) satisfies the conditions required in Proposition3. We are
ready to give the following:

Definition 1. The spectral category Spec(C,S) of (C,S) is the category

C[(St(MonoE (C,S)))−1]
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of fractions of C for the class St(MonoE (C,S)) of pullback stable S-essential
monomorphisms of C. When S is the class of all monomorphisms in C, we shall
simply write MonoE (C,S) = MonoE (C) and Spec(C,S) = Spec(C), and say that
Spec(C) is the spectral category of C.

Thanks to the results of [12], specifically Proposition 3.1 and Corollary 3.2 of
Chapter I there, our Proposition 3 implies:

Theorem 2. The spectral categorySpec(C,S)has finite limits.Moreover, the canon-
ical functor

PC,S = PSt(MonoE (C,S)) : C → Spec(C,S),

defined by ( f : A → B) �→ (cls( f, 1A) : A → B), preserves finite limits. �

6 Subobject-Essential Monomorphisms

Assuming C to be pointed, we define:

Definition 2. A monomorphism m : M → A in C is said to be subobject-essential
if, for a monomorphism n : N → A, one has M ×A N = 0 ⇒ N = 0. The class of
all subobject-essential monomorphisms in C will be denoted by MonoSE (C).

Recall that a regular epimorphism in a category C is a morphism that is the
coequalizer of two morphisms in C.

A finitely complete category C is regular if any morphism f : A → B can be
factorized as the composite morphism of a regular epimorphism p : A → I and a
monomorphism m : I → B

A
f

p

B

I

m

and these factorizations are pullback stable. Following [18], we will call C normal if
it is pointed, regular, and any regular epimorphism is a normal epimorphism (i.e., a
cokernel of some arrow in C). In such a category, any regular epimorphism is then the
cokernel of its kernel and, as a consequence, a morphism in C is a monomorphism if
and only if its kernel is zero.

Remark 5. For a pointed variety V of universal algebras, being a normal category
is the same as being a 0-regular variety in the sense of [9] (see [17] for further
explanations and historical remarks about the relationship between the properties of
0-regularity and normality). The algebraic theory of a pointed 0-regular variety V is
characterized by the existence of a unique constant 0 and binary terms d1, ..., dn such
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that the identities di (x, x) = 0 (for i ∈ {1, . . . , n}) and the implication (d1(x, y) =
0& . . . & dn(x, y) = 0) ⇒ x = y hold. Intuitively, these operations di (x, y) can
then be thought of as a kind of “generalized subtraction”. This implies that the
varieties of groups, loops, rings, associative algebras, Lie algebras, crossed modules,
and G-groups (for a group G) are all normal. There are also plenty of examples of
normal categories that are not varieties, such as the categories of topological groups,
cocommutative K -Hopf algebras over a field K , and C∗-algebras, for instance. In
general, any semi-abelian category [16] is, in particular, a normal category.

For an object A in C, the smallest and the largest congruence (=effective equiva-
lence relation) on A will be denoted byΔA and∇A, respectively. Note that equalities
like E = ΔA should usually be understood as equalities of subobjects (of A × A in
this case).

When C is normal, it is natural to ask how different subobject-essential monomor-
phisms are from essential ones (recall that “essential” means S-essential for S =
Mono(C)). Most of this section is devoted to studying various ways to compare
them.

Let us begin with the following proposition, well-known in the case of an abelian
category C:
Proposition 4. If C is normal, then the following conditions on a monomorphism
m : M → A in C are equivalent:

(a) m is an essential monomorphism, that is, a morphism f : A → B is a monomor-
phism whenever so is f m.

(b) For any congruence E on A, one has (M × M) ×A×A E = ΔM ⇒ E = ΔA.
(c) For any normal monomorphism n : N → A, one has M ×A N = 0 ⇒ N = 0.
(d) For any morphism f : A → B, one has Ker( f m) = 0 ⇒ Ker( f ) = 0.

Proof. (a) ⇒ (b). Let (E, e1, e2) be a congruence on A, and f : A → C a morphism
such that E is the kernel pair of f :

E
e2

e1

A

f

A
f

C.

(1)

Consider the commutative diagram

M

(1M ,1M )

E

(e1,e2)

C

(1C ,1C )

M × M
m×m

A × A
f × f

C × C

where the right-hand square is a pullback by definition of kernel pair, and the left-
hand square is a pullback by the assumption (M × M) ×A×A E = ΔM . The fact
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that the rectangle is a pullback means that f m is a monomorphism. Since m is an
essential monomorphism, it follows that f is a monomorphism and E = ΔA.

(b) ⇒ (c) This follows from the fact that a congruence (E, e1, e2) as in (1)
is the discrete equivalence relation ΔA if and only if the normal monomorphism
ker( f ) : N → A corresponding to E is 0 → A.

(c) ⇒ (d) It suffices to apply the assumption to the pullback

0 = Ker( f m) Ker( f )

M m A.

(d) ⇒ (a) This is immediate since, in a normal category, monomorphisms are
characterized by the fact that their kernel is 0. �

From Proposition 4, we immediately obtain:

Corollary 1. Let C be a normal category. Then:

(a) Every subobject-essential monomorphism is essential.
(b) If A is an object in C for which every monomorphismwith codomain A is normal,

then a monomorphism m : M → A is subobject-essential if and only if it is
essential.

(c) In particular, if C is abelian, then a monomorphism in C is subobject-essential
if and only if it is essential.

Next, we have:

Proposition 5. The class MonoSE (C) of subobject-essential monomorphisms in C
(a) contains all isomorphisms;
(b) is closed under composition;
(c) has the right cancellation property of the form

(mm ′ ∈ MonoSE (C) & m ∈ Mono(C)) ⇒ m ∈ MonoSE (C).

(d) IfC is normal, then the classMonoSE (C) has theweak right cancellation property

(mm ′ ∈ MonoSE (C) & m ′ ∈ MonoSE (C)) ⇒ m ∈ MonoSE (C)

and, in particular, every splitmonomorphism that belongs to it is an isomorphism.
(e) It has the left cancellation property of the form

(mm ′ ∈ MonoSE (C) & m ∈ Mono(C)) ⇒ m ′ ∈ MonoSE (C).

(f) If C is normal, then the classMonoSE (C) is pullback stable.
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Proof. (a) is obvious.
(b) and (c): Given monomorphisms m : M → A, m ′ : M ′ → M and n : N → A,

consider the diagram

M ′ ×A N
m ′×1

M ×A N N

n

M ′
m ′ M m A,

where the unlabeled arrows are the suitable pullback projections. Since both squares
in this diagram are pullbacks, we can argue as follows:

– If m,m ′ ∈ M, then M ′ ×A N = 0 ⇒ M ×A N = 0 ⇒ N = 0.
– If mm ′ ∈ M, then M ×A N = 0 ⇒ M ′ ×A N = 0 ⇒ N = 0, where the first
implication holds because Ker(m ′) = 0.

(d): Suppose mm ′ and m are in MonoSE (C). Thanks to (c), we only need to prove
that m is a monomorphism. Therefore, since C is normal, it suffices to prove that m
has zero kernel. For, consider the diagram

0 Ker(m)

ker(m)

0

M ′
m ′ M m A

and observe that:

– Its left-hand square is a pullback because so is its right-hand square, and mm ′ is a
monomorphism because it is in MonoSE (C).

– Since m ′ is in MonoSE (C), we have that Ker(m) = 0.

(e): Suppose mm ′ is in MonoSE (C) and m is a monomorphism. First notice that,
since mm ′ is a monomorphism, so is m ′. After that, consider the diagram

M ′ ×M L L

l

1L
L

ml

M ′
m ′ M m A,

where the unlabeled arrows are the suitable pullback projections. Since both squares
in this diagram are pullbacks, we have

M ′ ×M L = 0 ⇒ M ′ ×A L = 0 ⇒ L = 0.
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(f):Givenm : M → A fromMonoSE (C), amorphism x : X → A, and amonomor-
phism u : U → X , consider the diagram

M ×A U

1×e

1×u

U

e

u

M ×A X X

x

M ×A N N

n

M m A,

in which M ×A U = (M ×A X) ×X U, xu = ne is a (regular epi, mono) factoriza-
tion of xu, and the unlabeled arrows are the suitable pullback projections. Assuming
M ×A U = 0, we have to prove that U = 0. Indeed:

– Since e is a regular epimorphism, so is 1 × e.
– Since 1 × e is an epimorphism and M ×A U = 0, we have M ×A N = 0.
– Since M ×A N = 0 and m is in MonoSE (C), we have that N = 0.
– Since N = 0, we have xe = ne = 0, and so u factors through the kernel of x .
– Since u factors through the kernel of x , it also factors through the pullback pro-
jection M ×A X → X .

– Since u factors through the pullback projection M ×A X → X , and the top part
of our diagram is a pullback, the pullback projection M ×A U → U is a split
epimorphism.

It follows that U = 0, as desired. �

Remark 6. For a composable pair (m,m ′) of monomorphisms, m ′ can be seen as a
pullback of mm ′ along m (this well-known fact was used in the proof of Proposi-
tion1(f) for the pair (m, l)). This implies that every pullback stable class ofmonomor-
phisms has the strong left cancellation property and, in particular, that, in the case of
normal C, Proposition 5(e) could be deduced from Proposition 5(f).

Remark 7. In contrast to Theorem 1(f) and Proposition 5(e), the class MonoE (C)

does not even have, in general, the weak left cancellation property m, mm ′ ∈
MonoE (C) ⇒ m ′ ∈ MonoE (C). One can easily construct counterexamples in many
non-abelian semi-abelian algebraic categories by suitably choosing m ′ : M ′ → M
to be a split monomorphism (that is not an isomorphism) and choosing m : M → A
with simple A. For example:
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(a) Let C be the category of groups, A any simple group that has an element a of
order pq with relatively prime p and q, M the subgroup of A generated by a,
M ′ the subgroup of A generated by a p, and m : M → A and m ′ : M ′ → M the
inclusion maps. Then m and mm ′ are in ME , but m ′ is not.

(b) Let C be the category of rings (commutative or not; we do not require them to
have identity element, to make C semi-abelian), M ′ = K be a field, M = K [x]
the polynomial ring in one variable x over K , A = K (x) the field of fractions of
M , and m : M → A and m ′ : M ′ → M the canonical monomorphisms. Then,
again, m and mm ′ are in ME , but m ′ is not.

Remark 8. Although the non-pullback-stability of MonoE (C) in the category of
groups follows from Remark 7(a), let us give what seems to be the simplest coun-
terexample. Consider the pullback

0 S2

A3 S3

of monomorphisms, where S2, S3, A3 are the symmetric/alternating groups. Its bot-
tom arrow is an essential monomorphism, while the top one is not. This also shows
that A3 → S3 is an example of an essential monomorphism that is not subobject-
essential.

Theorem 3. If C is normal, thenMonoSE (C) = St(MonoE (C)), that is, a morphism
in C is a subobject-essential monomorphism if and only if it is a pullback stable
essential monomorphism.

Proof. The inclusionMonoSE (C) ⊆ St(MonoE (C)) follows fromCorollary 1(a) and
Proposition 5(f). Conversely, letm : M → A be a pullback stable essentialmonomor-
phism in C and n : N → A a monomorphism in C with M ×A N = 0. Then 0 → N
is an essential monomorphism because it is a pullback of m. Hence, from the last
assertion of Proposition 2(d), 0 → N is an isomorphism, that is, N = 0. �

Since every abelian category is normal, we easily get:

Corollary 2. If C is abelian then Spec(C) is the same as the spectral category of C
in the usual sense (see [11] and [12]).

Proof. Having in mind Corollary 1(c), this follows from Theorem 3 and the descrip-
tion of the spectral category of an abelian category given in 2.5(e) of [12, Chapter I].�

7 Uniform Objects

Let us return to the general situation of Remark4(a), where M is an arbitrary class
of morphisms in C, but let us assume that C is pointed and that
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x ∈ M ⇒ Ker(x) = 0.

As already observed, in any normal category, this property simply says that M
is a class of monomorphisms.

Definition 3. An object A of C is said to be M-uniform if a morphism x : X → A
belongs toM whenever X �= 0 and Ker(x) = 0.

The term uniform comes frommodule theory, where a nonzeromoduleM is called
a uniform module if every nonzero submodule N of M is an essential submodule.
Note that this term was also used in [3] for an analogue notion in the category of
G-groups.

Proposition 6. Let A and B be M-uniform objects in C. Every nonzero morphism
A → B in C[M−1] of the form PM( f )PM(x)−1 with x inM is an isomorphism.

Proof. Consider the diagram

Ker( f )

ker( f )

A X
x f

B,

where X is the domain of x (the domain of f ).
SupposeKer( f ) �= 0. Since A isM-uniform and x and ker( f ) have zero kernels,

the composite Ker( f ) → X → A belongs to M. As x also belongs to M, this
implies that PM(ker( f )) is an isomorphism, and we can write

PM( f )PM(x)−1 = PM( f )PM(ker( f ))PM(ker( f ))−1PM(x)−1

= PM( f (ker( f ))PM(ker( f ))−1PM(x)−1

= PM(0)PM(ker( f ))−1PM(x)−1

= 0.

That is, we can suppose Ker( f ) = 0. If so, then, since B is M-uniform, f belongs
toM, which makes PM( f )PM(x)−1 an isomorphism. �

In order to state the next result, let us recall that a division monoid is a nontrivial
monoidM with the property that the submonoidU (M) of invertible elements is given
by U (M) = M \ {0}. We write EndSpec(C)(A) for the monoid of endomorphisms of
an object A in the spectral category Spec(C), where C is a normal category.

Corollary 3. Let C be a normal category, and A an M-uniform object in C for
M being the class of subobject-essential monomorphisms in C. Then the monoid
EndSpec(C)(A) of endomorphisms of A in Spec(C) is a division monoid.
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Proof. This immediately follows from Proposition 6, by taking into account the
fact that the class of subobject-essential monomorphisms coincides with the class
of pullback stable essential monomorphisms whenever C is a normal category (by
Theorem 3). �

This last result extends Lemma 5.4 in [3], where the base category C was the category
of G-groups, to the general context of a normal category C.
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1 Introduction

A well-known characterization of invertible ideals in integral domains states that “a
nonzero ideal is invertible if and only if it is finitely generated and locally principal”
[8, II §5, Theorem 4].

The condition that the ideal is finitely generated can be dropped down, for instance,
if the domain has the finite character on maximal ideals, i.e., each nonzero element is
contained in finitely many maximal ideals (see, for instance, the argument provided
in the proof of [3, Chapter 7, Exercise 9]. Here the fact that finite character allows to
characterize Noetherian domains among locally Noetherian domains is put in light).
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An interesting problem considered, for instance, by S. Glaz and W. Vasconcelos
in [22, 23], asks for conditions on a domain D in order to have that flat ideals of D
are invertible. This question can be specialized by asking when faithfully flat ideals
are invertible.

We recall that for ideals in a domain, projective is equivalent to invertible and
faithfully flat is equivalent to locally principal ([2]). Thus the condition “faithfully
flat ideals are projective” is exactly “locally principal ideals are invertible”.

In [22], the authors conjecture the equivalence between faithfully flat and projec-
tive ideals in H-domains (i.e., a domain in which t-maximal ideals are divisorial).
This conjecture has been disproved by G. Picozza and F. T. in [32, Example 1.10],
but the problem that S. Glaz and W. Vasconcelos posed has also been considered for
other classes of domains like the Prüfer ones (i.e., domains whose localization at a
prime ideal is a valuation domain).

Bazzoni [6] conjectured that:
In a Prüfer domain D “locally principal ideals are invertible” if and only if D

has the finite character on maximal ideals.
Bazzoni’s conjecture was proved at the same time by W.C. Holland, J. Martinez,

W.Wm.McGovern, M. Tesemma in [27] by using methods (of independent interest)
of the theory of lattice-ordered groups and by F. Halter-Koch using the theory of
r -Prüfer monoids [25], where r is an ideal system.

After the publication of these papers, a growing interest in this question (in more
general contexts) came up.

It was considered a kind of t-version of Bazzoni’s conjecture which replaces the
finite character with the t-finite character and the local invertibility with the t-local
invertibility. In this context, the original conjecture has been generalized to Prüfer
v-multiplication domains and to even larger classes of integral domains (cfr. [18,
25, 35]). Section3 of the paper is completely dedicated to a discussion of the t-local
invertibility.

Finally, in Section4, we present some recent results about the local invertibility
and its connections with the finite character on maximal ideals in commutative (not
necessarily integral) rings. As seen in Theorem 4.5, Bazzoni’s conjecture can be
extended to general rings with zero-divisors. In this context, the authors use the
concept of Manis valuations and Prüfer extensions in place of Prüfer domains (see
[28]).

2 The Prüfer Case

In this section, we will provide a deeper insight into the so-called Bazzoni’s conjec-
ture, which states that a Prüfer domain D has finite character if and only if every
locally principal of D is invertible (i.e., finitely generated). This conjecture, stated
in [4] and [6], was first solved by Holland, Martinez, Mc Govern and Tesemma in
[27] and their result was then generalized to several other classes of rings (see, for
instance, [18, 25, 35]). We are going to present the main steps of the first proof
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of Bazzoni’s conjecture. It is based on an argument involving some basic tools on
lattice-ordered abelian groups. Thus we will recall now some preliminaries for the
reader’s convenience.

As usual, for any ring R, Spec(R) denotes the set of all prime ideals of R and, if
S is any subset of R, we set

V (S) := {p ∈ Spec(R) : p ⊇ S}.

If (X,≤) is a partially ordered set and x1, . . ., xn ∈ X , then sup(x1, . . ., xn) (resp.,
inf(x1, . . . , xn)) will denote the supremum (resp., the infimum) of {x1, . . ., xn} in X ,
if it exists. Recall that a nonempty and proper subset F of a partially ordered set
(X,≤) is a filter (see [12, Definition 14.1]) if it satisfies the following properties:

• given x, y ∈ F , there exists inf(x, y) and sup(x, y) ∈ F ;
• if f ∈ F, x ∈ X and f ≤ x , then x ∈ F .

Let F(X) denote the set of all filters on X . If (X,≤) is a lattice, for any a ∈ X , the
set {x ∈ X : x ≥ a} is clearly a filter and it is called a principal filter.

Now, let (G, ·,≤) be a lattice-ordered abelian group (for short, a �-group). Recall
that an �-subgroup H ofG is convex if, given elements h, k ∈ H, g ∈ G such that h ≤
g ≤ k, then g ∈ H . Clearly, the intersection of any nonempty collection of convex
�-subgroups of G is still convex, and thus for any subset S of G there exists the
smallest convex �-subgroup Conv(S) of G containing S, and it is called the convex
envelop of S. If e is the identity element of G, let

G+ := {g ∈ G : g ≥ e}

be the positive cone of G. If S ⊆ G+, then, by [12, Proposition 7.11(b)],

Conv(S) = {g ∈ G : |g| ≤ s1 · · · sn, for some s1, . . . , sn ∈ S, n ∈ N
+},

where |g| := sup(g, e) · sup(g−1, e). A convex �-subgroup P of G is prime if, when-
ever g, h ∈ G and inf(g, h) = e, then either g ∈ P or h ∈ P . A straightforward
application of Zorn’s Lemma shows that G admits minimal prime subgroups (i.e.,
prime subgroups which are minimal under inclusion) and every prime subgroup of G
contains some minimal prime subgroup [12, Theorem 9.6]. LetP(G) (resp.,M(G))
denote the set of all prime (resp., minimal prime) subgroups of G. For every g ∈ G,
let U (g) := {P ∈ M(G) : g /∈ P}.

The bridge which links Bazzoni’s conjecture and the theory of �-groups is the
ideal structure of a Prüfer domain. Let D be an integral domain and let Inv(D) be the
multiplicative group consisting of all invertible fractional ideals of D, endowed with
partial order given by the opposite inclusion ⊇. Since D is the identity of Inv(D),
the positive cone Inv(D)+ of Inv(D) is just the set of all integral invertible ideals.



156 C. A. Finocchiaro and F. Tartarone

Theorem 2.1 ([9, Theorem 2]). If D is a Prüfer domain, then Inv(D) is an �-group.

More precisely, given two fractional ideals I, J ∈ Inv(D), then they are finitely
generated, in particular. Thus I + J is finitely generated too and, since D is Prüfer,
I + J ∈ Inv(D), proving that I + J = inf(I, J ). Moreover, D is a coherent domain
(meaning that the intersection of finitely many finitely generated fractional ideals
is finitely generated too), being it Prüfer, by [21, Proposition (25.4)(1)], and thus
I ∩ J ∈ Inv(D), proving that I ∩ J = sup(I, J ). Let I•(D) denote the set of all
nonzero (integral) ideals of D.

Lemma 2.2 (see [27, Lemma 1]). Let D be a Prüfer domain. The following prop-
erties hold.

(1) The map ϕ : I•(D) −→ F(Inv(D)+) defined by setting

ϕ(i) := {a ∈ Inv(D)+ : a ⊆ i}

is a bijection.
(2) For every i ∈ I•(D), ϕ(i) is a principal filter if and only if i is invertible (i.e.,

finitely generated).

Proof. (1). The fact that ϕ is well defined and injective is trivial. Now, let F be a
filter on Inv(D)+ and set i := ∑

a∈F a. Thus, by definition, F ⊆ ϕ(i). Conversely,
take an ideal b ∈ ϕ(i), i.e., b is invertible and b ⊆ i. Since b is, in particular, finitely
generated, there exist ideals a1, . . ., an ∈ F such that b ⊆ a1 + . . . + an , that is, b ≥
inf(a1, . . ., an). Keeping in in mind that F is a filter it follows inf(a1, . . ., an) ∈ F
and finally b ∈ F .

(2) is clear, for the definitions. �

Remark 2.3. Let D be a Prüfer domain and let Spec(D)• denote the set of all nonzero
prime ideals of D. For any ideal p ∈ Spec(D)•, set Xp := {a ∈ Inv(D)+ : a � p} and
p := Conv(Xp).

(1) p is a prime subgroup of Inv(D). Take invertible ideals a1, . . ., an of D such
that inf(a1, . . ., an) := a1 + . . . + an = D. It follows ai � p, for some i , i.e.,
ai ∈ Xp ⊆ p. Furthermore, by [12, Proposition 7.11(b)] and keeping in mind
that Xp is closed under multiplication, we infer

p = {I ∈ Inv(D) : |I | ⊇ a, for some a ∈ Xp}.

(2) Since |a| = a, for any a ∈ Inv(D)+, it follows that p ∩ Inv(D)+ = Xp.
(3) Consider G = Inv(D) and the mapψ : Spec(D)• −→ P(G) defined by setting,

ψ(p) := p, for every p ∈ Spec(D)•. Keeping in mind part (2) of the present
remark, it easily follows that, for every p, q ∈ Spec(D)•, p ⊆ q if and only if
q ⊆ p. In particular, ψ is injective and order reversing.

(4) ψ restricts to a bijection of Max(D) onto M(Inv(D)). As a matter of fact, let
P be a minimal prime subgroup of Inv(D). If, for every maximal ideal m of
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D, Xm � P , there is an invertible integral ideal am of D such that am � m and
am /∈ P . It follows

∑
m∈Max(D) am = D and thus (since every ringhas the identity

element) there are maximal idealsm1, . . .,mr of D such that am1 + . . . + amr =
D. Since P is a prime subgroup, there exists i ∈ {1, . . ., r} such that ami ∈ P , a
contradiction. It follows that there is a maximal idealm of D such that Xm ⊆ P
and, since P is a minimal prime subgroup (and, in particular, it is convex), we
deduce m := Conv(Xm) = P . Conversely, if m any maximal ideal of D and P
is a minimal prime subgroup of Inv(D) such that m ⊇ P , take a maximal ideal
n of D such that P = n (in view of what we have just proved). By part (3) it
follows m = n and thus m is minimal.

(5) By the previous parts, for every integral invertible ideal a of D, we have

ψ(Max(D) ∩ V (a)) = U (a).

The following result immediately follows from parts (4, 5) of the previous remark.

Lemma 2.4 ([27, Theorem 2]). A Prüfer domain D has a finite character if and
only if, for every integral invertible ideal a of D, the set U (a) is finite.

Thus the previous lemma provides the translation of the finite character of a Prüfer
domain into a statement in the language of �-groups. The next goal is to provide the
translation of the LPI property.

Definition 2.5 ([27, Definition 3]). Let G be an �-group and let F be a filter on
G+. Then F is said to be a cold filter provided that, for every P ∈ M(G), there
exists some element f ∈ F such that f + P ≤ g + P , for all g ∈ F (where ≤ is the
canonical total order induced by the order of G into the factor group G/P).

Lemma 2.6 ([27, Proposition 5]). Let D be a Prüfer domain. Then a nonzero ideal
i of D is locally principal if and only if the filter ϕ(i) (see Lemma 2.2) is a cold filter.

CombiningLemmas 2.2 and 2.6, it is clear that for a Prüfer domain D the following
conditions are equivalent.

(1) Every nonzero locally principal ideal of D is invertible.
(2) Every cold filter on Inv(D)+ is principal.

This provides the complete translation of Bazzoni’s conjecture into a conjecture
regarding �-groups. The key step to show it is to observe that, if G is an �-group such
that every cold filter on G+ is principal, then every element of G+ is greater than only
finitely many mutually disjoint elements ([27, Proposition 7]). Now several relevant
results of Conrad [11] are very helpful, together with the Finite Basis Theorem ([12,
Theorem 46.12]). These tools lead to the main result.

Theorem 2.7 ([27, Theorem 9]). Let G be an �-group such that every cold filter on
G+ is principal. Then, for every g ∈ G+, the set U (g) is finite.

Thus finally, keeping in mind the previous theorem and Lemmas 2.4, 2.6, the
desired conclusion follows.
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Corollary 2.8. A Prüfer domain D has finite character if and only if every nonzero
locally principal ideal of D is invertible.

3 Generalization to Non-Prüfer Domains

We start this section by recalling some basic facts about star operations.
Let D be an integral domain with quotient field K . The set F(D) denotes the

nonzero fractional ideals of D and f(D) the nonzero finitely generated fractional
ideals of D.

A map � : F(D) → F(D), I 	→ I � is called a star operation if the following
conditions hold for all x ∈ K \ {0} and I, J ∈ F(D):

(�1) (x D)� = x D;
(�2) I ⊆ J ⇒ I � ⊆ J �;
(�3) I ⊆ I � and I �� := (I �)� = I �.

Given a star operation �, a nonzero ideal I of D such that I = I � is called a
�–ideal.

Examples of star operations are the d-operation, the v-operation, and the
t-operation:

• The d-operation is the identity map I 	→ I .
• The v-operation is the map:

I 	→ I v := (D : (D : I )), where (D : I ) := I −1 = {x ∈ K | x I ⊆ D}.

• the t-operation is the map:

I 	→ I t :=
⋃

J∈f(D), J⊆I

J v.

A star operation � on D is of finite type if for all I ∈ F(D),

I � =
⋃

{J � : J ⊆ I, J ∈ f(D)}.

From the definition, it follows that the t-operation is of finite type.

Definition 3.1. Given a star operation � on a domain D and I ∈ F(D),
I is �-invertible if there exists J ∈ F(D) such that (I J )� = D (it is easy to see

that, in this case, J = I −1).
Thus, taking � = d, we find the usual definition of invertible ideal, that is

I I −1 = D.
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An ideal I is �-finite if there exists a finitely generated ideal J such that J � = I �.
If � is of finite type, J can always be taken inside I .

If � is a star operation of finite type, the set of �-ideals has (proper) maximal
elements called �-maximal ideals (this set is denoted by � − Max(D)). A �-maximal
ideal is a prime ideal and every integral �-ideal is contained in a �-maximal ideal.

A domain D has the �-finite character if each �-ideal (equivalently, each nonzero
element) of D is contained in finitely many �-maximal ideals.

It is well-known that a nonzero ideal of a domain D is invertible if and only if I
is finitely generated and locally principal (see [8, II Section 5, Theorem 4]).

A similar characterization holds for �-invertible ideals.
In fact, an ideal I is �-invertible if and only it is �-finite and �-locally principal

(that is, I DM is principal for each M ∈ � − Max(D)) ([26, page 137]).
In the characterization of invertible ideals given above, the hypothesis that I is

finitely generated can be dropped down in some classes of domains, called LPI
domains, introduced by D. D. Anderson and M. Zafrullah in [1].

A domain D is LPI if every nonzero locally principal ideal is invertible, or equiva-
lently, if every faithfully flat ideal is finitely generated. Thus, LPI domains are exactly
the domains in which faithfully flat ideals are projective.

Mori domains, and therefore Noetherian domains are LPI.
The finite character condition on a domain D is sufficient to have that D is LPI.

In fact, it is a straightforward exercise to prove that the finite character implies
that a locally principal ideal is finitely generated. Nevertheless, this condition is not
necessary for the LPI property of D.

For instance, Noetherian domains are LPI but they do not always have the finite
character (see Z[X ]).
Definition 3.2. Adomain D has the t-finite character if each nonzero element x ∈ D
is contained in only finitely many t-maximal ideals.

Noetherian domains have the t-finite character (see [5, Proposition 2.2(b)]) and
the t-finite character is a sufficient condition for a general domain D to be LPI ([32,
Lemma 1.12]).

Remark 3.3. In Prüfer domains the t-operation is the identity ([21, Theorem 22.1
(3)]), that is, each ideal is a t-ideal. Thus, for this class of domains, the t-finite
character coincides with the finite character, which is exactly the property required
for Prüfer domains to be LPI in the conjecture by S. Bazzoni.

The above remark brings to consider the t-version of Prüfer domain, the Prüfer
v-multiplication domains (PvMD).

We recall that a domain D is a PvMD if each t-finite ideal is t-invertible. Equiva-
lently, if and only if DP is a valuation domain for each t-prime (or t-maximal) ideal
P of D ([29, Theorem 4.3]).

Thus, by replacing the finite character with the t-finite character and the invert-
ibility property for ideals with the t-invertibility property it is possible to generalize
S. Bazzoni’s conjecture using the t-operation.

A first step in this direction is the definition of t-LPI domains.
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Definition 3.4. A domain D is t-LPI if each nonzero t-locally principal t-ideal is
t-invertible.

The t-version of Bazzoni’s conjecture is then:
“A PvMD is t-LPI if and only if it has the t-finite character.”
M. Zafrullah and F. Halter-Koch proved this result almost at the same time using

different techniques (see [35, Proposition 5] and [25]). F. Halter-Koch considered
the problem in a more general setting involving a general �-operation.

Now,we consider the t-version of Bazzoni’s conjecture outside the natural context
of PvMD and present contributions that prove the equivalence (�)

“t-finite character ⇔ each nonzero t-locally principal ideal is t-invertible”
for more general classes of domains.
We have seen that the t-finite character is a sufficient condition for a general

domain D in order to have that D is t-LPI ([32, Lemma 1.12]).
Conversely, by [18, Example 2.3], if D is not a PvMD, the t-finite character is

not a necessary condition to have that D is t-LPI.
Thus, a question that was investigated, for instance, by T. Dumitrescu and M.

Zafrullah in [13] and, independently, by C.A. F. - G. Picozza and F.T. in [18], con-
cerns the characterization of classes of domains strictly larger than PvMD verifying
condition (�) given above.

T. Dumitrescu and M. Zafrullah considered the case of t-Schreier domains, that
we define below.

Given a domain D, Invt (D) is the set of the t-invertible t-ideals of D.
A domain D is t-Schreier if Invt (D) is a Riesz group, that is: if every finite

intersection of nonzero principal ideals is a direct union of t-invertible t-ideals. For
instance, PvMD’s are t-Schreier (see [15, Lemma 1.8]). More precisely, an integral
domain is a PvMD if and only if it is t-Schreier and v-coherent, by [14, Corollary
6(a)].

Theorem 3.5. [14, Proposition 17] If D is t-Schreier, then D is t-LPI if and only if
D has the t-finite character.

Thus t-Schreier domains enlarge the class of domains verifying the t-version of
Bazzoni’s conjecture.

In this direction, we also find the results by C.A. F. - G. Picozza and F.T. about
v-coherent domains.

In their paper [18] the authors consider the more general case of a �-operation of
finite type, thus including the t-operation.

The general question is then to find a characterization of domains for which the
�-finite character is equivalent to �-LPI (that is, every �-locally principal �-ideal is
�-invertible).

We have seen asNoetherian domains suggest to use the t-finite character condition
in the study of (t)-local invertibility for ideals.

Again, Noetherian domains bring to consider another interesting condition involv-
ing (t)-comaximal ideals.
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In a Noetherian domain every nonzero nonunit element belongs to only a finite
number of mutually comaximal proper invertible ideals.

Definition 3.6. Two proper ideals I, J ⊂ D are t-comaximal if (I + J )t = D. In
particular, I, J are t-comaximal if (I + J )t = D, which means that I and J are not
contained in a common t-maximal ideal.

Theorem 3.7. [18, Proposition 1.6] Let D be an integral domain. Then the following
conditions are equivalent.

(i) D has the t−finite character.
(ii) Every family of mutually t-comaximal t-finite t-ideals of D with nonzero inter-

section is finite.

Thus, in order to prove that t-LPI is equivalent to the t-finite character, it would
be interesting to see whether the condition (ii) of the above Theorem has connections
with the t-LPI property.

Since in Prüfer domains the t-operation is the identity, we can restate Theorem
3.7 as follows:

Corollary 3.8. A Prüfer domain D has the finite character if and only if each invert-
ible integral ideal of D is contained in at most a finite number of mutually comaximal
invertible ideals.

Corollary 3.8 can be easily extended to PvMD’s by replacing comaximality with
t-comaximality.

Corollary 3.9. A PvMD has the t-finite character if and only if each integral t-
invertible t-ideal is contained in at most a finite number of mutually t-comaximal
t-invertible t-ideals.

Remark 3.10. Consider the following t-invertibility like conditions for ideals in a
domain D:

(1) t-locally t-finite (i.e. IM is t-finite for each M ∈ t−Max(D), with respect to the
t-operation of DM ) t-ideals are t-finite;

(2) t-locally principal (i.e., IM is principal for each M ∈ t−Max(D)) t-ideals are
t-invertible (t-LPI);

We observe that

(a) (1) ⇒ (2);
(b) conditions (1)–(2) are equivalent to LPI in the case of Prüfer domains and to

t-LPI for PvMD’s;
(c) the t-finite character implies conditions (1)–(2).
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We recall that a domain D is v-coherent if for any nonzero finitely generated ideal
I of D, I −1 is v-finite (see, for instance, [16, Proposition 3.6] and [30]).

Adomain D is t-locally v-coherent if DM isv-coherent, for each M ∈ t−Max(D).
Important classes of v-coherent domains are Noetherian domains, Mori domains,

Prüfer domains, PvMD’s, finite conductor domains (i.e., (x) ∩ (y) is finitely gen-
erated for each x, y ∈ A), coherent domains (i.e., the intersection of two finitely
generated ideals is finitely generated).

Using pullback constructions it is possible to give examples of t-locally v-coherent
domains which are not v-coherent (cfr. [20]).

Since both Prüfer domains and PvMD’s are t-locally v-coherent, a first step in
the direction of generalizing Bazzoni’s conjecture to any domain is the following
theorem.

Theorem 3.11. [18, Theorem 1.11] Let D be an integral domain which is t-locally
v-coherent. Then the following conditions are equivalent.

(i) D has the t-finite character;
(ii) every family of t-finite, t-comaximal, t-ideals over a nonzero element a ∈ D is

finite;
(iii) every nonzero t-locally t-finite t-ideal is t-finite.

Remark 3.12. (a) A t-locally v-coherent domain is not necessarily a PvMD. In fact
any Noetherian domain is t-locally v-coherent (and it is not always a PvMD).
Thus, the class of domains considered in Theorem 3.11 is larger than one of the
PvMD’s.

(b) Condition (iii) of Theorem 3.11 is exactly point (1) of Remark 3.10. Thus it
implies the t-LPI property (point (2) of the same Remark) and it is equivalent to
t-LPI in PvMD’s. In general, we don’t know whether these two conditions are
equivalent.
Anyway, Theorem 3.11 suggests that a natural statement to generalize to any
domain of the t-version of Bazzoni’s conjecture should claim the equivalence
between the t-finite character and condition (1) of Remark 3.10.

(c) In general, Theorem 3.11 cannot be extended to any finite type star operation.
For instance, it fails if we take the identity operation d. In fact, a Noetherian
domain does not need to have the finite character on maximal ideals, but each
locally finitely generated ideal is finitely generated.

So far, the t-operation seems to be the only star operation of finite type that has
an interesting role in the generalization of Bazzoni’s conjecture.

In fact there is not an analogue of Theorem 3.11 for a generic �-operation. Here
below we give two partial results in this direction.

Independently, the authors in [13, Corollary 3] and in [18, Proposition 1.6] put
in connection some families of mutually �-comaximal ideals of D with the �-finite
character of D.

The following theorem generalizes Theorem 3.7 to any star operation of finite
type.
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Theorem 3.13. Let D be an integral domain and � a finite type star operation on
D. Then the following conditions are equivalent.

(i) D has the �-finite character.
(ii) Every nonzero element a ∈ D is contained in at most finitely many proper �-

finite, mutually �-comaximal �-ideals of D.

There is not a proven connection between condition (ii) of the theorem above and
generalizations of �-LPI condition as it happens for the t-operation by Theorem 3.11.

The following result states that if things “work well” for the t-operation, then
there are positive cascade results for finite type star operations.

Proposition 3.14. [18, Proposition 2.2] Let D be a domain in which each t-locally
principal t-ideal is t-finite. Then, for any star operation of finite type, each �-locally
principal �-ideal is �-finite. In particular, a locally principal ideal is finitely generated
(and so, invertible).

In Proposition 3.14 the t-operation cannot be replaced by any finite type star
operation. For instance, [18, Example 2.3] shows that it does not hold when � = d.

Another interesting class of domains recently studied in this context are the finitely
stable domains.

Definition 3.15. An ideal I of a domain D is finitely stable if I is invertible (or
projective) in its endomorphism ring

End(I ) = (I : I ) = {x ∈ K | x I ⊆ I }.

A domain D is stable if each nonzero ideal is stable and D is finitely stable if
each finitely generated ideal is stable. Obviously, stable domains are finitely stable.

An important result proven by B. Olberding in [31] states that stable domains
have the finite character. Moreover, integrally closed stable domains are Prüfer, thus
they are LPI.

It is also well-known that integrally closed, finitely stable domains are exactly
Prüfer domains, hence they generalize the Prüfer ones.

Moreover, finitely stable domains are a distinct class from v-coherent domains.
In fact, D = K [[X2, X3]] (where K is any field) is Mori, hence v-coherent, but it is
not finitely stable because its maximal ideal is not stable (see [7, Example 1]).

On the other hand, if we take a PvMD that is not Prüfer (e.g., Z[X ]), then this is
not finitely stable but it is v-coherent.

S. Bazzoni in [7] before, and S. Xing and F. Wang in [34] after, study conditions
on finitely stable domains in order to verify the LPI property.

A domain has the local stability property if each nonzero ideal that is locally
stable is stable.

In [7, Theorem 4.5] a characterization of finitely stable domains with finite char-
acter is given.
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Theorem 3.16. Let D be a finitely stable domain. Then D has the finite character
if and only if it has the local stability property.

[7, Lemma 3.2] shows that if D is a finitely stable domain that has the local
stability property then it is LPI.

As we know, the question whether a finitely stable LPI domain has the local
stability property is still open ([7, Question 4.6]).

In view of Theorem 3.16, if the answer to this question is positive, then this would
imply that also for (non integrally closed) finitely stable domain the finite character
is equivalent to LPI, as it happens in the Prüfer case.

Other interesting results about the interplay between the finite character and the
LPI property for finitely stable domains are given in [34].

First of all, in this paper the authors show that LPI is not a local property. In fact
they give an example of a domain D that is LPI, but DS is not LPI for a suitable mul-
tiplicatively closed subset S ⊆ D ([34, Example 2.4]). This fact has no connections
with the finite character question, but it is interesting by itself.

Anyway, the main result of [34] gives a characterization of LPI finitely stable
involving the finite character.

The authors denote by T (D) the set of maximal ideals m of D for which there
exists a finitely generated ideal I such that m is the only maximal ideal containing
I . For each ideal I , �(I ) is the set of maximal ideals of D containing I . Thus, the
finite character is equivalent to ask that �(I ) is finite for each nonzero ideal I ⊆ D.

Then, the following results are proven:

Theorem 3.17. [34, Theorem 2.6] Let D be a finitely stable LPI domain. Then every
nonzero element of D is contained in, at most, finitely many ideals of T (D).

Thus we have that LPI on finitely stable domains implies the finite character on
the subset T (D) of Max(D).

From Theorem 3.17 it follows the next corollary:

Corollary 3.18. [34, Corollary 2.7] Let D be a finitely stable LPI domain. Then, the
following conditions are equivalent:

(i) D ha the finite character;
(ii) T (D) ∩ �(I ) �= ∅, for each nonzero, finitely generated ideal I of D.

We observe that Corollary 3.18 does not hold without the LPI hypothesis.
In fact, the following example shows that there exists a Prüfer domain D without

the finite character and such that T (D) = ∅. In this case D is finitely stable (since
it is Prüfer) and point (ii) of Corollary 3.18 trivially holds since T (D) = ∅, but the
domain has not the finite character.

Example 3.19. Consider the integer valued polynomial ring

Int(Z) = { f (X) ∈ Q[X ] | f (Z) ⊆ Z}.
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It is well-known that Int(Z) is a Prüfer domain ([10, Theorem VI.1.7]) and it has
not the finite character. In fact, each prime p ∈ Z is contained in infinitely many
maximal ideals of the type Mp,α described in [10, Theorem V.2.7].

We easily see that T (Int(Z)) = ∅. By [10, Theorem V.2.7], the maximal ideals
of Int(Z) are the Mp,α , p ∈ Z, α ∈ Ẑp (the p-adic completion of Z). Suppose that a
maximal ideal Mp,α belongs to T (Int(Z)) and let I be a finitely generated ideal such
that Mp,α is the only maximal ideal containing I . Since Int(Z) is a Prüfer domain, I
is invertible. But

I −1 ⊆
⋂

M∈Max(Int(Z)),I�M
Int(Z)M,

where second term is an overring of Int(Z) defined by Kaplansky and so-called the
Kaplansky transform of the ideal I [17, Theorem 3.2.2]. Using the same argument
of [33, Proposition 2.2] to see that P−1 = Int(D), we can show that I −1 = Int(Z)

against the hypothesis that I is a proper ideal.

4 Generalization to Rings with Zero-Divisors

In the present section we will present a generalization of Bazzoni’s conjecture to
(commutative) rings with zero-divisors. We start with recalling some terminology
and preliminaries and we will follow [28]. Let A ⊆ B be a ring extension and let X
be an A-submodule of B. We will say that X is B-regular if X B = B. Furthermore,
X is said to be B-invertible if XY = A, for some A-submodule Y of B. It is worth
noting that, in case B is the total ring of fractions T(A) of A, then X is B-regular if
and only if it is regular (i.e., it contains a regular element of A) and X is B-invertible if
and only if it is invertible in the sense of Griffin (see [24]). Several known facts about
fractional ideals of integral domains extend naturally in this setting: for instance, X
is B-invertible if and only if X is B-regular, finitely generated and locally principal
[28, Section 2, Proposition 2.3].

Definition 4.1. Let A ⊆ B be a ring extension. We say that A ⊆ B has finite char-
acter if every B-regular ideal of A is contained only in finitely many maximal ideals
of A.

Clearly, if B = T(A), then A ⊆ B has finite character if and only if every regular
ideal of A is contained only in finitely many maximal ideal. The following result
extends Theorem 3.13 (in case � = d) to every ring extension.

Proposition 4.2. [19, Corollary 3.3] For a ring extension A ⊆ B the following con-
ditions are equivalent.

(1) A ⊆ B has finite character.
(2) For any finitely generated and B-regular idealaof A, every collection of mutually

comaximal finitely generated (and B-regular) ideals of A containing a is finite.
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Finite character ring extensions allows to test relevant properties of ideals locally,
as the following result shows.

Proposition 4.3. ([19, Proposition 3.4 and Corollary 3.5]) Let A ⊆ B be a ring
extension with finite character and let a be a B-regular ideal of A. If a is locally
finitely generated, then a is finitely generated. In particular, a is B-invertible if and
only if it is locally principal.

According to [28, Chapter 2, Theorem 2.1], we say that a ring extension A ⊆ B
is a Prüfer extension if A ⊆ B is a flat epimorphism (in the category of rings) and
every finitely generated B-regular ideal of A is B-invertible. In case B = T(A), then
the previous definition extends the notion of Prüfer ring given by Griffin (i.e., every
regular finitely generated ideal is invertible). In what follows it will suffice to work
with the following weaker notion.

Definition 4.4. A ring extension A ⊆ B is said to be an almost Prüfer extension if
every finitely generated B-regular ideal of A is B-invertible.

Nowwe are in condition to state Bazzoni’s conjecture for rings with zero-divisors.

Theorem 4.5. [19, Theorem 4.5] For an almost Prüfer extension A ⊆ B the follow-
ing conditions are equivalent.

(1) A ⊆ B has finite character.
(2) Every B-regular locally principal ideal of A is B-invertible.

Keeping in mind the remarks made at the beginning of the present section, the
following corollary is now clear.

Corollary 4.6. [19, Corollary 4.6] Let A be a Prüfer ring. Then every regular locally
principal ideal of A is invertible if and only if every regular element of A is contained
in only finitely many maximal ideal.

Finally we list some problems and questions that can motivate further investigation
about this topic.

Question 1. Is there a class of integral domains, larger than that of t-locally
v-coherent domains, for which the equivalent conditions of Theorem 3.11 hold?

Question 2. Does the statement of Theorem 3.16 admit some generalization for
rings with zero-divisors?
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Idempotence and Divisoriality
in Prüfer-Like Domains

Marco Fontana, Evan Houston, and Mi Hee Park

Abstract Let D be a Prüfer �-multiplication domain, where � is a semistar operation
on D. We show that certain ideal-theoretic properties related to idempotence and
divisoriality hold in Prüfer domains, and we use the associated semistar Nagata ring
of D to show that the natural counterparts of these properties also hold in D.

Keywords Idempotent ideal · Semistar operation · Prüfer �-multiplication
domain · Nagata ring · Divisorial ideal

1 Introduction and Preliminaries

Throughout this work, D will denote an integral domain, and K will denote its
quotient field. Recall that Arnold [1] proved that D is a Prüfer domain if and only
if its associated Nagata ring D[X ]N , where N is the set of polynomials in D[X ]
whose coefficients generate the unit ideal, is a Prüfer domain. This was generalized
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to Prüfer v-multiplication domains (PvMDs) by Zafrullah [16] and Kang [14] and
to Prüfer �-multiplication domains (P�MDs) by Fontana, Jara, and Santos [8].

Our goal in this paper is to show that certain ideal-theoretic properties that hold
in Prüfer domains transfer in a natural way to P�MDs. For example, we show that
an ideal I of a Prüfer domain is idempotent if and only if it is a radical ideal each of
whoseminimal primes is idempotent (Theorem2.9), andweuse aNagata ring transfer
“machine” to transfer a natural counterpart of this characterization to P�MDs. For
another example, in Theorem 3.5 we show that an ideal in a Prüfer domain of finite
character is idempotent if and only if it is a product of idempotent prime ideals and,
perhapsmore interestingly,we characterize ideals that are simultaneously idempotent
and divisorial as (unique) products of incomparable divisorial idempotent primes;
and we then extend this to P�MDs.

Let us review the terminology and notation. Denote by F(D) the set of all nonzero
D–submodules of K , and by F(D) the set of all nonzero fractional ideals of D, i.e.,
E ∈ F(D) if E ∈ F(D) and there exists a nonzero d ∈ D with dE ⊆ D. Let f (D)

be the set of all nonzero finitely generated D–submodules of K . Then, obviously,
f (D) ⊆ F(D) ⊆ F(D).
Following Okabe-Matsuda [15], a semistar operation on D is a map � : F(D) →

F(D), E �→ E�, such that, for all x ∈ K , x �= 0, and for all E, F ∈ F(D), the
following properties hold:

(�1) (xE)� = xE�;
(�2) E ⊆ F implies E� ⊆ F�;
(�3) E ⊆ E� and E�� := (E�)� = E�.

Of course, semistar operations are natural generalizations of star operations–see
the discussion following Corollary 2.5 below.

The semistar operation � is said to have finite type if E� = ⋃{F� | F ∈ f (D),

F ⊆ E} for each E ∈ F(D). To any semistar operation � we can associate a finite-
type semistar operation �f given by

E�f :=
⋃

{F� | F ∈ f (D), F ⊆ E}.

We say that a nonzero ideal I of D is a quasi-�-ideal if I = I � ∩ D, a quasi-�-
prime ideal if it is a prime quasi-�-ideal, and a quasi-�-maximal ideal if it is maximal
in the set of all proper quasi-�-ideals. A quasi-�-maximal ideal is a prime ideal. We
will denote by QMax�(D) (QSpec�(D)) the set of all quasi-�-maximal ideals (quasi-
�-prime ideals) of D. While quasi-�-maximal ideals may not exist, quasi-�f -maximal
ideals are plentiful in the sense that each proper quasi-�f -ideal is contained in a quasi-
�f -maximal ideal. (See [9] for details.) Nowwe can associate to � yet another semistar
operation: for E ∈ F(D), set

E �̃ :=
⋂

{EDQ | Q ∈ QMax�f (D)}.
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Then �̃ is also a finite-type semistar operation, and we have E �̃ ⊆ E�f ⊆ E� for all
E ∈ F(D).

Let � be a semistar operation on D. Set N (�) = {g ∈ D[X ] | c(g)� = D�}, where
c(g) is the content of the polynomial g, i.e., the ideal of D generated by the coefficients
of g. Then N (�) is a saturated multiplicatively closed subset of D[X ], and we call
the ring Na(D, �) := D[X ]N (�) the semistar Nagata ring of D with respect to �.
The domain D is called a Prüfer �- multiplication domain (P�MD) if (FF−1)

�f =
D�f (= D�) for each F ∈ f (D) (i.e., each such F is �f -invertible). (Recall that
F−1 = (D : F) = {u ∈ K | uF ⊆ D}.)

In the following two lemmas, we assemble the facts we need about Nagata rings
and P�MDs. Most of the proofs can be found in [6, 9] or [5].

Lemma 1.1. Let � be a semistar operation on D. Then:

(1) D� = D�f .
(2) QMax�f (D) = QMax�̃(D).
(3) The map QMax�f (D) → Max(Na(D, �)), P �→ PNa(D, �), is a bijection with

inverse map M �→ M ∩ D.
(4) P �→ PNa(D, �) defines an injective map QSpec�̃(D) → Spec(Na(D, �)).
(5) N (�) = N (�f ) = N (̃�) and (hence) Na(D, �) = Na(D, �f ) = Na(D, �̃).
(6) For each E ∈ F(D), E �̃ = ENa(D, �) ∩ K, and E �̃Na(D, �) = ENa(D, �).
(7) A nonzero ideal I of D is a quasi-̃�-ideal if and only if I = INa(D, �) ∩ D.

Lemma 1.2. Let � be a semistar operation on D.

(1) The following statements are equivalent.

(a) D is a P�MD.
(b) Na(D, �) is a Prüfer domain.
(c) The ideals of Na(D, �) are extended from ideals of D.
(d) DP is a valuation domain for each P ∈ QMax�f (D).

(2) Assume that D is a P�MD. Then:

(a) �̃ = �f and (hence) D� = D�̃.
(b) The map QSpec�f (D) → Spec(Na(D, �)), P �→ PNa(D, �), is a bijection

with inverse map Q �→ Q ∩ D.
(c) Finitely generated ideals of Na(D, �) are extended from finitely generated

ideals of D.

2 Idempotence

We begin with our basic definition.

Definition 2.1. Let � be a semistar operation on D. An element E ∈ F(D) is said
to be �-idempotent if E� = (E2)�.
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Our primary interest will be in (nonzero) �-idempotent ideals of D. Let � be a
semistar operation on D, and let I be a nonzero ideal of D. It is well known that
I � ∩ D is a quasi-�-ideal of D. (This is easy to see: we have

(I � ∩ D)� ⊆ I �� = I � = (I ∩ D)� ⊆ (I � ∩ D)�,

and hence I � = (I � ∩ D)�; it follows that I � ∩ D = (I � ∩ D)� ∩ D.) It, therefore,
seems natural to call I � ∩ D the quasi-�-closure of I . If we also call I �-proper when
I � � D�, then it is easy to see that I is �-proper if and only if its quasi-�-closure is
a proper quasi-�-ideal. Now suppose that I is �-idempotent. Then

(I � ∩ D)� = I � = (I 2)� = ((I �)2)� = (((I � ∩ D)�)2)� = ((I � ∩ D)2)�,

whence I � ∩ D is a �-idempotent quasi-�-ideal of D. A similar argument gives the
converse. Thus a (�-proper) nonzero ideal is �-idempotent if and only if its quasi-�-
closure is a (proper) �-idempotent quasi-�-ideal.

Our study of idempotence in Prüfer domains and P�MDs involves the notions of
sharpness and branchedness. We recall some notation and terminology.

Given an integral domain D and a prime ideal P ∈ Spec(D), set

∇(P) := {M ∈ Max(D) | M � P} and
�(P) := ⋂{DM | M ∈ ∇(P)} .

We say that P is sharp if �(P) � DP (see [11, Lemma 1] and [3, Section1
and Proposition 2.2]). The domain D itself is sharp (doublesharp) if every maximal
(prime) ideal of D is sharp. (Note that a Prüfer domain D is doublesharp if and only
if each overring of D is sharp [7, Theorem 4.1.7].) Now let � be a semistar operation
on D. Given a prime ideal P ∈ QSpec�f (D), set

∇�f (P) := {M ∈ QMax�f (D) | M � P} and
�

�f (P) := ⋂{DM | M ∈ ∇�f (P)} .

Call P �f -sharp if �
�f (P) � DP . For example, if � = d is the identity, then

the �f -sharp property coincides with the sharp property. We then say that D is �f -
(double)sharp if each quasi-�f -maximal (quasi-�f -prime) ideal of D is �f -sharp. (For
more on sharpness, see [10, 11, 13], [7, page 62], [3], [4, Chapter 2, Section3] and
[5].)

Recall that a prime ideal P of a ring is said to be branched if there is a P-primary
ideal distinct from P . Also, recall that the domain D has finite character if each
nonzero ideal of D is contained in only finitely many maximal ideals of D.

We now prove a lemma that discusses the transfer of ideal-theoretic properties
between D (on which a semistar operation � has been defined) and its associated
Nagata ring.
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Lemma 2.2. Let � be a semistar operation on D.

(1) Let E ∈ F(D). Then E is �̃-idempotent if and only if ENa(D, �) is idempotent.
In particular, if D is a P�MD, then E is �f -idempotent if and only if ENa(D, �)

is idempotent.
(2) Let P be a quasi-̃�-prime of D and I a nonzero ideal of D. Then:

(a) I is P-primary in D if and only if I is a quasi-̃�-ideal of D and INa(D, �)

is PNa(D, �)-primary in Na(D, �).
(b) P is branched in D if and only if PNa(D, �) is branched in Na(D, �).

(3) D has �f -finite character (i.e., each nonzero element of D belongs to only finitely
many (possibly zero) M ∈ QMax�f (D)) if and only if Na(D, �) has finite char-
acter.

(4) Let I be a quasi-̃�-ideal of D. Then I is a radical ideal if and only if INa(D, �)

is a radical ideal of Na(D, �).
(5) Assume that D is a P�MD. Then:

(a) If P ∈ QSpec�f (D), then P is �f -sharp if and only if PNa(D, �) is sharp in
Na(D, �).

(b) D is �f -(double)sharp if and only if Na(D, �) is (double)sharp.

Proof. (1) We use Lemma 1.1(6). If ENa(D, �) is idempotent, then E �̃ =
ENa(D, �) ∩ K = E2Na(D, �) ∩ K = (E2)�̃. Conversely, if E is �̃-idempotent,
then (ENa(D, �))2 = E2Na(D, �) = (E2)�̃Na(D, �) = E �̃Na(D, �)=ENa(D, �).
The “in particular” statement follows because �f = �̃ in a P�MD (Lemma 1.2(2a)).

(2) (a) Suppose that I is P-primary. Then I D[X ] is PD[X ]-primary. Since P is
a quasi-̃�-prime of D, PNa(D, �) is a prime ideal of Na(D, �) (Lemma 1.1(4)), and
then, since Na(D, �) is a quotient ring of D[X ], INa(D, �) is PNa(D, �)-primary
in Na(D, �). Also, again using the fact that I D[X ] is PD[X ]-primary (along with
Lemma 1.1(6)), we have

I �̃ ∩ D = INa(D, �) ∩ D ⊆ I D[X ]PD[X ] ∩ D[X ] ∩ D = I D[X ] ∩ D = I,

whence I is a quasi-̃�-ideal of D. Conversely, assume that I is a quasi-̃�-ideal of
D and that INa(D, �) is PNa(D, �)-primary. Then for a ∈ P , there is a positive
integer n for which an ∈ INa(D, �) ∩ D = I �̃ ∩ D = I . Hence P = rad(I ). It now
follows easily that I is P-primary. (b) Suppose that P is branched in D. Then there is a
P-primary ideal I of D distinct from P , and INa(D, �) is PNa(D, �)-primary by (a).
Also by (a), I is a quasi-̃�-ideal, fromwhich it follows that INa(D, �) �= PNa(D, �).
Now suppose that PNa(D, �) is branched and that J is a PNa(D, �)-primary ideal
of Na(D, �) distinct from PNa(D, �). Then it is straightforward to show that J ∩ D
is distinct from P and is P-primary.

(3) Let ψ be a nonzero element of Na(D, �), and let N be a maximal ideal
with ψ ∈ N . Then ψNa(D, �) = fNa(D, �) for some f ∈ D[X ], and writing N =
MNa(D, �) for some M ∈ QMax�f (D) (Lemma 1.1(3)), wemust have f ∈ MD[X ]
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and hence c( f ) ⊆ M . Therefore, if D has finite �f -character, then Na(D, �) has finite
character. The converse is even more straightforward.

(4) Suppose that I is a radical ideal of D, and let ψn ∈ INa(D, �) for some
ψ ∈ Na(D, �) and positive integer n. Then there is an element g ∈ N (�) with (gψn

and hence) (gψ)n ∈ I D[X ]. Since I D[X ] is a radical ideal of D[X ], gψ ∈ I D[X ]
and we must have ψ ∈ INa(D, �). Therefore, INa(D, �) is a radical ideal of
Na(D, �). The converse follows easily from the fact that INa(D, �) ∩ D = I �̃ ∩ D =
I (Lemma 1.1(7)).

(5) (a) This is part of [5, Proposition 3.5], but we give here a proof more in the
spirit of this paper. Let P ∈ QSpec�f (D). If P is �f -sharp, then by [5, Proposition
3.1] P contains a finitely generated ideal I with I � M for all M ∈ ∇�f (P), and,
using the description of Max(Na(D, �)) given in Lemma 1.1(3), INa(D, �) is a
finitely generated ideal of Na(D, �) contained in PNa(D, �) but in no element of
∇(PNa(D, �)). Therefore, PNa(D, �) is sharp in the Prüfer domain Na(D, �). For
the converse, assume that PNa(D, �) is sharp inNa(D, �). Then PNa(D, �) contains
a finitely generated ideal J with J ⊆ PNa(D, �) but J � N for N ∈ ∇(PNa(D, �))

[13, Corollary 2]. Then J = INa(D, �) for some finitely generated ideal I of D
(necessarily) contained in P by Lemma 1.2(2c), and it is easy to see that I � M
for M ∈ ∇�f (D). Then by [5, Proposition 3.1], P is �f -sharp. Statement (b) follows
easily from (a) (using Lemma 1.2). �

Let D be an almost Dedekind domain with a non-finitely generated maximal ideal
M . Then M−1 = D, but M is not idempotent (since MDM is not idempotent in the
Noetherian valuation domain DM ). Our next result shows that this cannot happen in
a sharp Prüfer domain.

Theorem 2.3. Let D be a Prüfer domain. If D is (d-)sharp and I is a nonzero ideal
of D with I−1 = D, then I is idempotent.

Proof. Assume that D is sharp. Proceeding contrapositively, suppose that I is a
nonzero, non-idempotent ideal of D. Then, for some maximal ideal M of D, I DM is
not idempotent in DM . Since D is a sharp domain, wemay choose a finitely generated
ideal J of D with J ⊆ M but J � N for all maximal ideals N �= M . Since I DM

is a non-idempotent ideal in the valuation domain DM , there is an element a ∈ I
for which I 2DM � aDM . Let B := J + Da. Then I 2DM ⊆ BDM and, for N ∈
Max(D) \ {M}, I 2DN ⊆ DN = BDN . Hence I 2 ⊆ B. Since B is a proper finitely
generated ideal, we then have (I 2)−1 ⊇ B−1 � D. Hence (I 2)−1 �= D, from which
it follows that I−1 �= D, as desired. �

Kang [14, Proposition 2.2] proves that, for a nonzero ideal I of D, we always have
I−1Na(D, v) = (Na(D, v)) : I ). This cannot be extended to general semistarNagata
rings; for example, if D is an almost Dedekind domain with non-invertible maximal
ideal M and we define a semistar operation � by E� = EDM for E ∈ F(D), then
(D : M) = D and hence (D : M)Na(D, �) = Na(D, �) = D[X ]M[X ] = DM(X) �

(DM : MDM)DM(X) = (Na(D, �) : MNa(D, �)) (where the proper inclusion holds
because MDM is principal in DM ). At any rate, what we really require is the equality
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(D� : E)Na(D, �) = (Na(D, �) : E) for E ∈ F(D). In the next lemma, we show
that this holds in a P�MD but not in general. The proof of part (1) of the next lemma
is a relatively straightforward translation of the proof of [14, Proposition 2.2] to
the semistar setting. In carrying this out, however, we discovered a minor flaw in the
proof of [14, Proposition 2.2]. The flaw involves a reference to [12, Proposition 34.8],
but this result requires that the domain D be integrally closed. To ensure complete
transparency, we give the proof in full detail.

Lemma 2.4. Let � be a semistar operation on D. Then:

(1) (D� : E)Na(D, �) ⊇ (Na(D, �) : E) for each E ∈ F(D).
(2) The following statements are equivalent:

(a) (D� : E)Na(D, �) = (Na(D, �) : E) for each E ∈ F(D).
(b) D� = D�̃.
(c) D� ⊆ Na(D, �).

(3) (D�̃ : E)Na(D, �) = (Na(D, �) : E) for each E ∈ F(D).
(4) If D is a P�MD, then the equivalent conditions in (2) hold.

Proof. (1) Let E ∈ F(D), and let ψ ∈ (Na(D, �) : E). For a ∈ E , a �= 0, we may
find g ∈ N (�) such that ψag ∈ D[X ]. This yields ψg ∈ a−1D[X ] ⊆ K [X ], and
hence ψ = f/g for some f ∈ K [X ]. We claim that c( f ) ⊆ (D� : E). Granting
this, we have f ∈ (D� : E)D[X ], from which it follows that ψ = f/g ∈ (D� :
E)Na(D, �), as desired. Toprove the claim, takeb ∈ E , and note that f b ∈ Na(D, �).
Hence f bh ∈ D[X ] for some h ∈ N (�), and so c( f h)b ⊆ D. By the content formula
[12, Theorem 28.1], there is an integer m for which c( f )c(h)m+1 = c( f h)c(h)m .
Using the fact that c(h)� = D�, we obtain c( f )� = c( f h)� and hence that c( f )b ⊆
c( f h)�b ⊆ D�. Therefore, c( f ) ⊆ (D� : E), as claimed.

(2) Under the assumption in (c), D� ⊆ Na(D, �) ∩ K = D�̃ (Lemma 1.1(6)).
Hence (c) ⇒ (b). Now assume that D� = D�̃. Then for E ∈ F(D), we have (D� :
E)E ⊆ D� = D�̃ ⊆ Na(D, �); using (1), the implication (b)⇒ (a) follows. That (a)
⇒ (c) follows upon taking E = D in (a).

(3) This follows easily from (2), because Na(D, �) = Na(D, �̃) by Lemma 1.1(5).
(4) This follows from (2), since if D is a P�MD, then D� = D�̃ by

Lemma 1.2(2a). �

The conditions in Lemma 2.4(2) need not hold: Let F � k be fields, V = k[[x]]
the power series ring over V in one variable, and D = F + M , where M = xk[[x]].
Define a (finite-type) semistar operation � on D by A� = AV for A ∈ F(D). Then
D� = V � D = DM = D�̃.

We can now extend Theorem 2.3 to P�MDs.

Corollary 2.5. Let � be a semistar operation on D such that D is a �f -sharp P�MD,
and let I be a nonzero ideal of D with (D� : I ) = D�. Then I is �f -idempotent.
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Proof. By Lemma 2.4(3), we have

(Na(D, �) : INa(D, �)) = (D� : I )Na(D, �) = D�Na(D, �) = Na(D, �).

Hence INa(D, �) is idempotent in the Prüfer domain Na(D, �) by Theorem 2.3.
Lemma 2.2(1) then yields that I is �f -idempotent. �

Many semistar counterparts of ideal-theoretic properties in domains result in equa-
tions that are “external” to D, since for a semistar operation � on D and a nonzero
ideal I of D, it is possible that I � � D. Of course, �-idempotence is one such prop-
erty. Often, one can obtain a “cleaner” counterpart by specializing from P�MDs to
“ordinary” PvMDs. We recall some terminology. Semistar operations are general-
izations of star operations, first considered by Krull and repopularized by Gilmer
[12, Sections32, 34]. Roughly, a star operation is a semistar operation restricted
to the set F(D) of nonzero fractional ideals of D with the added requirement that
one has D� = D. The most important star operation (aside from the d-, or trivial,
star operation) is the v-operation: For E ∈ F(D), put E−1 = {x ∈ K | xE ⊆ D}
and Ev = (E−1)−1. Then vf (restricted to F(D)) is the t-operation and ṽ is the
w-operation. Thus a PvMD is a domain in which each nonzero finitely generated
ideal is t-invertible. Corollary 2.5 then has the following restricted interpretation
(which has the advantage of being internal to D).

Corollary 2.6. If D is a t-sharp PvMD and I is a nonzero ideal of D for which
I−1 = D, then I is t-idempotent.

Our next result is a partial converse to Theorem 2.3.

Proposition 2.7. Let D be a Prüfer domain such that I is idempotent whenever I
is a nonzero ideal of D with I−1 = D. Then, every branched maximal ideal of D is
sharp.

Proof. Let M be a branched maximal ideal of D. Then MDM = rad(aDM) for
some nonzero element a ∈ M [12, Theorem 17.3]. Let I := aDM ∩ D. Then I is
M-primary, and since I DM = aDM , (I DM and hence) I is not idempotent. By
hypothesis, we may choose u ∈ I−1 \ D. Since I u ⊆ D and I DN = DN for N ∈
Max(D) \ {M}, then u ∈ ⋂{DN | N ∈ Max(D), N �= M}. On the other hand, since
u /∈ D, u /∈ DM . It follows that M is sharp. �

Now we extend Proposition 2.7 to P�MDs.

Corollary 2.8. Let � be a semistar operation on D, and assume that D is a P�MD
such that I is �f -idempotent whenever I is a nonzero ideal of D with (D� : I ) = D�.
Then, each branched quasi-�f -maximal ideal of D is �f -sharp. (In particular if D is a
PvMD in which I is t-idempotent whenever I is a nonzero ideal of D with I−1 = D,
then each branched maximal t-ideal of D is t-sharp.)
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Proof. Let J be a a nonzero ideal of the Prüfer domain Na(D, �) with (Na(D, �) :
J ) = Na(D, �). By Lemma 1.2(1c), J = INa(D, �) for some ideal I of D. Applying
Lemma 2.4(3) and Lemma 1.1(6), we obtain (D� : I ) = D�. Hence, by hypothesis,
I is �f -idempotent, and this yields that J = INa(D, �) is idempotent in the Prüfer
domain Na(D, �) (Lemma 2.2(1)). Now, letM be a branched quasi-�f -maximal ideal
of D. Then, by Lemma 2.2(2), MNa(D, �) is a branched maximal ideal of Na(D, �).
We may now apply Proposition 2.7 to conclude that MNa(D, �) is sharp. Therefore,
M is �f -sharp in D by Lemma 2.2(5). �

If P is a prime ideal of a Prüfer domain D, then powers of P are P-primary by [12,
Theorem 23.3(b)]; it follows that P is idempotent if and only if PDP is idempotent.
We use this fact in the next result.

It is well known that a proper idempotent ideal of a valuation domain must be
prime [12, Theorem 17.1(3)]. In fact, according to [12, Exercise 3, p. 284], a proper
idempotent ideal in a Prüfer domainmust be a radical ideal.We (re-)prove and extend
this fact and add a converse.

Theorem 2.9. Let D be a Prüfer domain, and let I be an ideal of D. Then I is
idempotent if and only if I is a radical ideal each of whose minimal primes is
idempotent.

Proof. The result is trivial for I = (0) and vacuously true for I = D. Suppose that
I is a proper nonzero idempotent ideal of D, and let P be a prime minimal over I .
Then I DP is idempotent, and we must have I DP = PDP [12, Theorem 17.1(3)].
Hence PDP is idempotent, and therefore, by the comment above, so is P . Now let
M be a maximal ideal containing I . Then I DM is idempotent, hence prime (hence
radical). It follows (checking locally) that I is a radical ideal.

Conversely, let I be a radical ideal each of whose minimal primes is idempotent.
If M is a maximal ideal containing I and P is a minimal prime of I contained in
M , then I DM = PDM . Since P is idempotent, this yields I DM = I 2DM . It follows
that I is idempotent. �

We next extend Theorem 2.9 to P�MDs.

Corollary 2.10. Let D be a P�MD, where � is a semistar operation on D, and let I
be a quasi-�f -ideal of D. Then I is �f -idempotent if and only if I is a radical ideal
each of whose minimal primes is �f -idempotent. (In particular, if D is a PvMD and
I is a t-ideal of D, then I is t-idempotent if and only if I is a radical ideal each of
whose minimal primes is t-idempotent.)

Proof. Suppose that I is �f -idempotent. Then INa(D, �) is an idempotent ideal
in Na(D, �) by Lemma 2.2(1). By Theorem 2.9, INa(D, �) is a radical ideal of
Na(D, �), and hence, by Lemma 2.2(4), I is a radical ideal of D. Now let P be
a minimal prime of I in D. Then P is a quasi-�f -prime of D. By Lemma 1.2(2b)
PNa(D, �) is minimal over INa(D, �), whence PNa(D, �) is idempotent, again by
Theorem 2.9. The �f -idempotence of P now follows from Lemma 2.2(1).

The converse follows by similar applications of Theorem 2.9 and
Lemma 2.2. �
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Recall that a Prüfer domain is said to be strongly discrete (discrete) if it has no
nonzero (branched) idempotent prime ideals. Since unbranched primes in a Prüfer
domain must be idempotent [12, Theorem 23.3(b)], a Prüfer domain is strongly
discrete if and only if it is discrete and has no unbranched prime ideals. We have the
following straightforward application of Theorem 2.9.

Corollary 2.11. Let D be a Prüfer domain.

(1) If D is discrete, then an ideal I of D is idempotent if and only if I is a radical
ideal each of whose minimal primes is unbranched.

(2) If D is strongly discrete, then D has no proper nonzero idempotent ideals.

Let us call a P�MD �f - strongly discrete (�f - discrete) if it has no (branched)
�f -idempotent quasi-�f -prime ideals. From Lemma 2.2(1, 2), we have the usual con-
nection between a property of a P�MDand the corresponding property of its �-Nagata
ring.

Proposition 2.12. Let � be a semistar operation on D. Then D is �f -(strongly)
discrete P�MD if and only if Na(D, �) is a (strongly) discrete Prüfer domain.

Applying Corollary 2.10 and Lemma 2.2(1, 2), we have the following extension
of Corollary 2.11.

Corollary 2.13. Let D be a domain.

(1) Assume that D is a P�MD for some semistar operation � on D.

(a) If D is �f -discrete, then a nonzero quasi-�f -ideal I of D is �f -idempotent if
and only if I is a radical ideal each of whose minimal primes is unbranched.

(b) If D is �f -strongly discrete, then D has no �f -proper �f -idempotent ideals.

(2) Assume that D is a PvMD.

(a) If D is t-discrete, then a t-ideal I of D is t-idempotent if and only if I is a
radical ideal each of whose minimal primes is unbranched.

(b) If D is t-strongly discrete, then D has no t-proper t-idempotent ideals.

3 Divisoriality

According to [7, Corollary 4.1.14], if D is a doublesharp Prüfer domain and P is a
nonzero, nonmaximal ideal of D, then P is divisorial. The natural question arises: If
D is a �f -doublesharp P�MD and P ∈ QSpec�f (D) \ QMax�f (D), is P necessarily
divisorial? Since � is an arbitrary semistar operation and divisoriality specifically
involves the v-operation, one might expect the answer to be negative. Indeed, we
give a counterexample in Example 3.4 below. However, in Theorem 3.2 we prove a
general result, a corollary of which does yield divisoriality in the “ordinary” PvMD
case. First, we need a lemma, the first part of which may be regarded as an extension
of [14, Proposition 2.2(2)].
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Lemma 3.1. Let � be a semistar operation on D. Then

(1) (D�̃ : (D�̃ : E))Na(D, �) = (Na(D, �) : (Na(D, �) : E)) for each E ∈ F(D),
and

(2) if I is a nonzero ideal of D, then I �̃ is a divisorial ideal of D�̃ if and only if
INa(D, �) is a divisorial ideal of Na(D, �).

In particular, if D is a P�MD, then (D� : (D� : E))Na(D, �) = (Na(D, �) :
(Na(D, �) : E)) for each E ∈ F(D); and, for a nonzero ideal I of D, I �f is divisorial
in D� if and only if INa(D, �) is divisorial in Na(D, �).

Proof. Set N = Na(D, �). For (1), applying Lemma 2.4, we have

(D�̃ : (D�̃ : E))N = (N : (D�̃ : E)) = (N : (N : E)).

(2) Assume that I is a nonzero ideal of D. If I �̃ is divisorial in D�̃, then (using
(1))

(N : (N : IN )) = (D�̃ : (D�̃ : I �̃))N = I �̃N = IN .

Now suppose that IN is divisorial. Then

(D�̃ : (D�̃ : I �̃))N = (N : (N : I )) = IN ,

whence
(D�̃ : (D�̃ : I �̃)) ⊆ IN ∩ K = I �̃.

The “in particular” statement follows from standard considerations. �

Theorem 3.2. Let � be a semistar operation on D such that D is a �f -doublesharp
P�MD, and let P ∈ QSpec�f (D) \ QMax�f (D). Then P�f is a divisorial ideal of D�.

Proof. Since Na(D, �) is a doublesharp Prüfer domain (Lemma 2.2(5)), PNa(D, �)

is divisorial by [7, Corollary 4.1.14]. Hence P�f is divisorial in D� by
Lemma 3.1. �

Corollary 3.3. If D is a t-doublesharp PvMD, and P is a non-t-maximal t-prime
of D, then P is divisorial.

Proof. Take � = v in Theorem 3.2. (More precisely, take � to be any extension of
the star operation v on D to a semistar operation on D, so that �f (restricted to D) is
the t-operation on D.) Then P = Pt = P�f is divisorial by Theorem 3.2. �

Example 3.4. Let p be a prime integer and let D := Int(Z(p)). Then D is a two-
dimensional Prüfer domain by [2, Lemma VI.1.4 and Proposition V.1.8]. Choose a
height 2 maximal ideal M of D, and let P be a height 1 prime ideal of D contained
in M. Then P = qQ[X ] ∩ D for some irreducible polynomial q ∈ Q[X ] [2, Propo-
sition V.2.3]. By [2, Theorems VIII.5.3 and VIII.5.15], P is not a divisorial ideal of
D. Set E� = EDM for E ∈ F(D). Then � is a finite-type semistar operation on D.
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Clearly, M is the only quasi-�-maximal ideal of D, and, since DM is a valuation
domain, D is a P�MD by Lemma 1.2. Moreover, Na(D, �) = DM(X) is also a val-
uation domain and hence a doublesharp Prüfer domain, which yields that D is a
�f -doublesharp P�MD (Lemma 2.2). Finally, since P = PDM ∩ D = P� ∩ D, P is
a non-�f -maximal quasi-�f -prime of D. �

In the remainder of the paper, we impose on Prüfer domains (P�MDs) the finite
character (finite �f -character) condition. As we shall see, this allows improved ver-
sions of Theorem 2.9 and Corollary 2.10. It also allows a type of unique factorization
for (quasi-�f -)ideals that are simultaneously (�f -)idempotent and (�f -)divisorial.

Theorem 3.5. Let D be a Prüfer domain with finite character, and let I be a nonzero
ideal of D. Then:

(1) I is idempotent if and only if I is a product of idempotent prime ideals.
(2) The following statements are equivalent.

(a) I is idempotent and divisorial.
(b) I is a product of non-maximal idempotent prime ideals.
(c) I is a product of divisorial idempotent prime ideals.
(d) I has a unique representation as the product of incomparable divisorial

idempotent primes.

Proof. (1) Suppose that I is idempotent. By Theorem 2.9, I is the intersection of
its minimal primes, each of which is idempotent. Since D has finite character, I is
contained in only finitely many maximal ideals, and, since no two distinct minimal
primes of I can be contained in a single maximal ideal, I has only finitely many
minimal primes and they are comaximal. Hence I is the product of its minimal
primes (and each is idempotent). The converse is trivial.

(2) (a) ⇒ (b): Assume that I is idempotent and divisorial. By (1) and its proof,
I = P1 · · · Pn = P1 ∩ · · · ∩ Pn , where the Pi are the minimal primes of I . We claim
that each Pi is divisorial. To see this, observe that

(P1)
vP2 · · · Pn ⊆ (P1 · · · Pn)v = I v = I ⊆ P1.

Since the Pi are incomparable, this gives (P1)v ⊆ P1, that is, P1 is divisorial. By
symmetry each Pi is divisorial. It is well known that in a Prüfer domain, a maximal
ideal cannot be both idempotent and divisorial. Hence the Pi are non-maximal.

(b) ⇒ (c): Since D has finite character, it is a (d)-doublesharp Prüfer domain
[13, Theorem 5], whence nonmaximal primes are automatically divisorial by [7,
Corollary 4.1.14].

(c)⇒ (a): Write I = Q1 · · · Qm , where each Q j is a divisorial idempotent prime.
Since I is idempotent (by (1)), we may also write I = P1 · · · Pn , where the Pi are
the minimal primes of I . For each i , we have Q1 · · · Qm = I ⊆ Pi , from which it
follows that Q j ⊆ Pi for some j . By minimality, we must then have Q j = Pi . Thus
each Pi is divisorial, whence I = P1 ∩ · · · ∩ Pn is divisorial.
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Finally, we show that (d) follows from the other statements. We use the notation
in the proof of (c) ⇒ (a). In the expression I = P1 · · · Pn , the Pi are (divisorial,
idempotent, and) incomparable, and it is clear that no Pi can be omitted. To see that
this is the only such expression, consider a representation I = Q1 · · · Qm , where the
Qi are divisorial, idempotent, and incomparable. Fix a Qk . Then P1 · · · Pn = I ⊆
Qk , and we have Pi ⊆ Qk for some i . However, as above, Q j ⊆ Pi for some j ,
whence, by incomparability, Qk = Pi . The conclusion now follows easily. �

We note that incomparability is necessary for uniqueness above, for example, if D
is a valuation domain and P � Q are non-maximal (necessarily divisorial) primes,
then P = PQ.

We close by extending Theorem 3.5 to P�MDs and then to “ordinary” PvMDs.
We omit the (by now) straightforward proofs.

Corollary 3.6. Let � be a semistar operation on D such that D is a P�MD with
finite �f -character, and let I be a quasi-�f -ideal of D. Then:

(1) I is �f -idempotent if and only if I �f is a �f -product of �f -idempotent quasi-�f -
prime ideals in D, that is, I �f = (P1 · · · Pn)�f , where the Pi are �f -idempotent
quasi-�f -primes of D.

(2) The following statements are equivalent.

(a) I is �f -idempotent and �f -divisorial (I
�f is divisorial in D�).

(b) I is a �f -product of non-quasi-�f -maximal idempotent quasi-�f -prime ideals.
(c) I is a �f -product of �f -divisorial �f -idempotent prime ideals.
(d) I has a unique representation as a �f -product of incomparable �f -divisorial

�f -idempotent primes.

Corollary 3.7. Let D be a PvMD with finite t-character, and let I be a nonzero
t-ideal of D. Then:

(1) I is t-idempotent if and only if I is a t-product of t-idempotent t-prime ideals
in D.

(2) The following statements are equivalent.

(a) I is t-idempotent and divisorial.
(b) I is a t-product of non-t-maximal t-idempotent t-primes.
(c) I is a t-product of divisorial t-idempotent t-primes.
(d) I has a unique representation as a t-product of incomparable divisorial

t-idempotent t-primes.

References

1. Arnold, J.: On the ideal theory of the Kronecker function ring and the domain D(X). Can. J.
Math. 21, 558–563 (1969)

2. Cahen, P.-J., Chabert, J.-L.: Integer-Valued Polynomials, vol. 48. Providence (1997) (Amer.
Math. Soc. Surv. Monogr.)



182 M. Fontana et al.

3. Fontana, M., Houston, E., Lucas, T.: Toward a classification of prime ideals in Prüfer domains.
Forum Math. 22, 741–766 (2010)

4. Fontana, M., Houston, E., Lucas, T.: Factoring Ideals in Integral Domains. Lectures Notes of
U.M.I. Springer, Berlin (2013)

5. Fontana, M., Houston, E., Park, M.H.: Sharpness and semistar operations in Prüfer-like
domains. Commun. Algebra 47, 1478–1489 (2019)

6. Fontana, M., Huckaba, J.A.: Localizing systems and semistar operations. In: Chapman, S.T.,
Glaz, S. (eds.) Non-Noetherian Commutative Ring Theory. Kluwer Academic Publishers, pp.
169–198 (2000)

7. Fontana, M., Huckaba, J.A., Papick, I.J.: Prüfer Domains. Marcel Dekker Inc., New York
(1997)

8. Fontana, M., Jara, P., Santos, E.: Prüfer �-multiplication domains and semistar operations. J.
Algebra Appl. 2, 21–50 (2003)

9. Fontana, M., Loper, K.A.: Nagata rings, Kronecker function rings and related semistar opera-
tions. Commun. Algebra 31, 4775–4805 (2003)

10. Gilmer, R.: Integral domains which are almost Dedekind. Proc. Am. Math. Soc. 15, 813–818
(1964)

11. Gilmer, R.: Overrings of Prüfer domains. J. Algebra 4, 331–340 (1966)
12. Gilmer, R.: Multiplicative Ideal Theory. Marcel Dekker, New York (1972)
13. Gilmer, R., Heinzer, W.: Overrings of Prüfer domains, II. J. Algebra 7, 281–302 (1967)
14. Kang, B.G.: Prüfer v-multiplication domains and the ring R[X ]Nv . J. Algebra 123, 151–170

(1989)
15. Okabe, A., Matsuda, R.: Semistar operations on integral domains. Math. J. Toyama Univ. 17,

1–21 (1994)
16. Zafrullah, M.: Some polynomial characterizations of Prüfer v-multiplication domains. J. Pure

Appl. Algebra 32, 231–237 (1984)



Simultaneous Interpolation and P-adic
Approximation by Integer-Valued
Polynomials
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Abstract Let D be a Dedekind domain with finite residue fields andF a finite set of
maximal ideals of D. Let r0, . . ., rn be distinct elements of D, pairwise incongruent
modulo PkP for each P ∈ F , and s0, . . ., sn arbitrary elements of D. We show that
there is an interpolating PkP -congruence preserving integer-valued polynomial, that
is, f ∈ Int(D) = {g ∈ K [x] | g(D) ⊆ D} with f (ri ) = si for 0 ≤ i ≤ n, such that,
moreover, the function f : D → D is constant modulo PkP on each residue class of
PkP for all P ∈ F .
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1 Introduction

Let D be a Dedekind domain with finite residue fields, K its quotient field, and

Int(D) = { f ∈ K [x] | f (D) ⊆ D}

the ring of integer-valued polynomials on D.
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We will show that two different feats that can each be accomplished separately
by integer-valued polynomials, namely, interpolation of arbitrary functions on D,
and, representation of arbitrary functions on D/Pn , where Pn is a power of a
maximal ideal P , can actually be accomplished by one and the same polynomial,
simultaneously.

We recall some well-known facts. First, about interpolation by integer-valued
polynomials: Newton already used polynomials in Int(ZZ) to interpolate functions
on ZZ, cf. [1]. More generally, when D is a Dedekind domain with finite residue
fields, then, given r0, . . ., rn ∈ D (distinct) and arbitrary s0, . . ., sn ∈ D, we can find
f ∈ Int(D) with f (ri ) = si for 0 ≤ i ≤ n [3]. If this holds for a domain D, we say
that D has the interpolation property. The domains having the interpolation property
have been characterized among Noetherian domains and among Prüfer domains [2],
and include, as mentioned, all Dedekind domains with finite residue fields.

It turned out that the interpolation property is relevant to the question whether
Int(D) is a Prüfer domain. If D is Prüfer (a necessary condition for Int(D) to be
Prüfer) then Int(D) is Prüfer if and only if Int(D) has the interpolation property [2].

Second, about the representation of functions on D/I , where I is an ideal of D:
Let f ∈ Int(D). We say that f is I -congruence preserving, if, for all a, b ∈ D,

a ≡ b mod I =⇒ f (a) ≡ f (b) mod I.

In that case, f induces a well-defined function on D/I by f (a + I ) = f (a) + I .
Let D be a Dedekind domain with finite residue fields. If I is a power of a maximal
ideal of D (and only if I is a power of a maximal ideal), every function on D/I arises
from an I -congruence preserving polynomial in Int(D) in this way. This was shown
for D = ZZ by Skolem [7] (in the “if” direction) and Rédei and Szele [5, 6] (in the
“only if” direction), and later generalized to Dedekind domains [4].

If D is a Dedekind domain with finite residue fields, we will show that, given
r0, . . ., rn ∈ D (distinct) and arbitrary s0, . . ., sn ∈ D, and a finite set of powers PkP

of maximal ideals such that the ri are pairwise incongruent modulo each PkP , we
can find a polynomial f ∈ Int(D) with f (ri ) = si for 0 ≤ i ≤ n and such that

a ≡ b mod PkP =⇒ f (a) ≡ f (b) mod PkP .

for each PkP , cf. Theorem 1.
A note on terminology: if R is any ring and f ∈ R[x] a polynomial, f = ∑

k ck x
k

induces a function by substitution of elements of R for the variable: r �→ ∑
k ckr

k .
A function ϕ : R → R thus arising from a polynomial f ∈ R[x] is called a
polynomial function on R.

When R is an infinite domain, then the polynomial f inducing a polynomial
function is uniquely determined by its values on an infinite subset of R. Relying
on this one-to-one correspondence between polynomials and polynomial functions,
in the case where R = K is an infinite field, we will not be as pedantic about the
distinction between polynomials and polynomial functions as would be necessary if
we were dealing with finite rings or rings with zero-divisors.
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In what follows, when we talk about the function associated to an integer-valued
polynomial f ∈ Int(D), we always mean the function f : D → D (as opposed to
f : K → K ).

2 Notation and Definitions

We let IN denote the positive integers (natural numbers) and IN0 the non-negative
integers. We use “additive” terminology for Lipschitz functions:

Definition 1. Let R be a commutative ring, f : R → R a function, I an ideal of
R, and n ∈ IN0. We say that f is I -adically n-Lipschitz if, for all m ∈ IN and all
a, b ∈ R

a ≡ b mod I m+n =⇒ f (a) ≡ f (b) mod I m

When D is a domain, g ∈ Int(D), and I an ideal of D, we will say that g is
I -adically n-Lipschitz if the associated function g : D → D is I -adically n-Lipschitz.

We summarize some elementary consequences of this definition.

Remark 1. Let R be a commutative ring, f : R → R a function, and I an ideal of R.

1. I -adically n-Lipschitz implies I -adically N -Lipschitz for all N ≥ n.
2. If f : R → R is a function induced by a polynomial in R[x] by substitution of

the variable, then f is I -adically 0-Lipschitz for all ideals I of R.
3. For fixed I and n, the set of I -adically n-Lipschitz functions on R is closed under

addition, subtraction and multiplication and, therefore, forms a subring of the set
of all functions RR .

4. If D is a domain, I an ideal of D and n ∈ IN0, then the set of g ∈ Int(D) that are
I -adically n-Lipschitz is a subring of Int(D).

In what follows, D is always a Dedekind domain with quotient field K , and we
always assume D 
= K . For such a Dedekind domain, we denote by Spec1(D) the
set prime ideals of height one, which coincides with the set of maximal ideals of
D. For P ∈ Spec1(D), we use vP to denote the normalized discrete valuation on
K associated with P; that is, for d ∈ D \ {0}, vP(d) is the maximal exponent v
such that d ∈ Pv , and, for an element of K \ {0} expressed as a fraction a/b with
a, b ∈ D \ {0}, vP(a/b) = vP(a) − vP(b).

Remark 2. Let D a Dedekind domain, f ∈ Int(D), and P a maximal ideal of D.
If we express f as a fraction f = g/d with g ∈ D[x] and d ∈ D \ {0}, we see that
f is P-adically vP(d)-Lipschitz. In particular, if f ∈ DP [x], then f is P-adically
0-Lipschitz. More generally, if f ∈ Int(D) is expressed as a fraction f = g/d with
g ∈ DP [x] and d ∈ D \ {0}, then, also, f is P-adically vP(d)-Lipschitz.
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Note that vP(d), in the above remark, is not necessarily the minimal n for which
f is P-adically n-Lipschitz (not even if d is relatively prime to the content of g).
For instance, when f is a product f = f1 . . . fn with fi = gi/d, gi ∈ D[x], then
the denominator of f is dn , but f is P-adically vP(d)-Lipschitz, not just vP(dn)-
Lipschitz, by Remark 1 (3).

We use ||I || for the norm of an ideal I of D, that is ||I || = |D/I |.

3 P-adic Lipschitz Constants of Interpolating
Integer-Valued Polynomials

We recall a Lemma from an earlier paper that we will need for the proof of Lemma 2.

Lemma 1 ([3], [Lemma 6.1]). Let v be a discrete valuation on a field K and Rv its
valuation ring. Suppose g = ∑n

k=0 dkx
k in K [x] splits over K as

g(x) = dn(x − b1) . . . (x − bm)(x − c1) . . . (x − cl),

where v(bi ) < 0 and v(ci ) ≥ 0.
Letμ = min0≤k≤n v(dk) and set g+(x) = (x − c1) . . . (x − cl) then, for all r ∈ Rv ,

v
(
g(r)

) = μ + v
(
g+(r)

)
.

Definition 2. For q,m integers with q > 1 and m ≥ 0 define

L(q,m) := 1 − qm

1 − q

Lemma 2. Let D be a Dedekind domain with finite residue fields and a0, a1 distinct
elements of D. For P ∈ Spec1(D), let mP = vP(a1 − a0).

For any finite setF of maximal ideals of D there exists f ∈ Int(D)with f (a1) = 0
and f (a0) = 1, and such that f is P-adically L(||P|| ,mP)-Lipschitz for all P ∈ F .

Proof. By linear substitution we may assume, w.l.o.g., that a0 = 0. Also, we assume
w.l.o.g. that F contains the set

P = {P ∈ Spec1(D) | a1 ∈ P} = {P ∈ Spec1(D) | mP > 0}.

The case P = ∅ is trivial. Assume P 
= ∅. We set F0 = {P ∈ F | mP = 0}; such
that F is the disjoint union of P and F0.

We will construct a polynomial g ∈ K [x] with g(a1) = 0, such that for every
essential valuation v of D and every r ∈ D, v

(
g(r)

) ≥ v
(
g(0)

)
; and then set f (x) =

g(x)/g(0).
Let N = maxP∈P ||P||mP . Using the Chinese Remainder Theoremmodulo PmP+1

for P ∈ F , we produce a sequence (bi )Ni=1 in D with the properties:
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1. b1 = a1
2. For all P ∈ F , the bi with 1 ≤ i ≤ ||P||mP form a complete system of residues

modulo PmP .
3. For all P ∈ F , for all i > ||P||mP , bi ≡ 1 modulo PmP+1.

Note that no bi is in PmP+1 for any P ∈ F , and, in particular, that no bi is in P
for any P ∈ F0.

Let P ∈ P and 1 ≤ k ≤ mP . For any given r ∈ D, the number of bi with 1 ≤ i ≤
||P||mP in the residue class r + Pk is the same, namely,

γk(P) := ||P||mP−k .

Note that, therefore, for all P ∈ P and 1 ≤ k ≤ mP ,

∀r ∈ D
∣
∣{i | vP(r − bi ) ≥ k}∣∣ ≥ γk(P),

with equality holding for all r ∈ D \ (1 + P) (and, actually, for all r ∈ D in the case
where ||P||mP = N ).

LetQ = {Q ∈ Spec1(D) \ P | ∃i bi ∈ Q} and for Q ∈ Q let kQ = maxi vQ(bi ).
Note that Q ∩ F = ∅.

Let c ∈ D with vQ(c) = kQ + 1 for all Q ∈ Q, and c ≡ 1 mod PmP+1 for all
P ∈ F . Let Q′ = {Q ∈ Spec1(D) | vQ(c) > 0}. Then Q ⊆ Q′ and Q′ ∩ F = ∅.

Let c1 = a1 and for 1 < i ≤ N let ci = c−1bi . Then, for every P ∈ Spec1(D) \
Q′, and, in particular, for every P ∈ F , (ci )Ni=1 is a sequence in DP . Also, for every
maximal ideal Q of D that is neither in Q′ nor in P , vP(ci ) = 0 for all i .

We set

g(x) =
N∏

i=1

(x − ci ) = (x − a1)
N∏

i=2

(x − c−1bi )

and show that for all essential valuations v of D and all r ∈ D, v(g(r)) ≥ v(g(0)).
First, assume P ∈ P . The sequence (ci )Ni=1 enjoys the samepropertieswith respect

to PDP that the sequence (bi )Ni=1 enjoys with respect to P , namely, those ci with
1 ≤ i ≤ ||P||mP form a complete system of residues modulo (PDP)

mP and ci ≡ 1
modulo (PDP)

mP+1 for all i > ||P||mP . Also, no ci is in PmP+1.
Consequently, for all r ∈ D, and 1 ≤ k ≤ mP

∣
∣{i | vP(r − ci ) ≥ k}∣∣ = ∣

∣{i | vP(r − bi ) ≥ k}∣∣ ≥ γk(P).

Let γP := ∑mP
k=1 γk(P). Then

vP

(
g(r)

) =
N∑

i=1

vP(r − ci ) =
∞∑

k=1

∣
∣{i | vP(r − ci ) ≥ k}∣∣ ≥

≥
mP∑

k=1

∣
∣{i | vP(r − ci ) ≥ k}∣∣ =

mP∑

k=1

∣
∣{i | vP(r − bi ) ≥ k}∣∣ ≥ γP,
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while vP(g(0)) =

=
∞∑

k=1

∣
∣{i | vP(ci ) ≥ k}∣∣ =

mP∑

k=1

∣
∣{i | vP(ci ) ≥ k}∣∣ =

mP∑

k=1

∣
∣{i | vP(bi ) ≥ k}∣∣ = γP .

Now consider Q ∈ Q′. Here vQ(c1) = vQ(a1) = 0 and, for all i > 1, vQ(ci ) < 0. Let
dk be the coefficient of xk in g and μ = mink vQ(dk). Using Lemma 1, we see that
for all r ∈ D,

vQ

(
g(r)

) = μ + vQ(r − a1) ≥ μ = μ + vQ(a1) = vQ

(
g(0)

)
.

For the remaining essential valuations v of D, v(ci ) = 0 for all i , and, therefore, for
all r ∈ D, v

(
g(r)

) = ∑
i v(r − ci ) ≥ 0 = ∑

i v(ci ) = v
(
g(0)

)
.

Now let f (x) = g(x)/g(0). Then f (a1) = 0, and f (0) = 1. Also, f ∈ Int(D),
because for all r ∈ D and every essential valuation v of D, v

(
g(r)

) ≥ v
(
g(0)

)
and

therefore v
(
f (r)

) ≥ 0.
As for the Lipschitz properties: for those P ∈ Spec1(D) for which vP(c) = 0,

and, in particular, for all P ∈ F , g is in DP [x]. f is, therefore, P-adically vP(g(0))-
Lipschitz for all P ∈ F by Remark 2.

For P ∈ F0, vP(g(0)) = 0 and hence f is P-adically 0-Lipschitz for all P ∈ F0.
For P ∈ P ,

vP(g(0)) = γP =
mP∑

k=1

γk(P) =
mP∑

k=1

||P||mP−k =
mP−1∑

j=0

||P|| j = 1 − ||P||mP

1 − ||P|| .

f is, therefore, P-adically lP-Lipschitz for all P ∈ F , for the values of lP stated in
the Lemma. �

Corollary 1. Let D be a Dedekind domain with finite residue fields, F a finite
set of maximal ideals, and a0, . . . , an distinct elements of D. For each P ∈ F , let
mP ≥ max1≤i≤n vP(ai − a0).

Then there exists f ∈ Int(D) with f (ai ) = 0 for 1 ≤ i ≤ n, and f (a0) = 1, and
such that f is P-adically L(||P|| ,mP)-Lipschitz for all P ∈ F .

Proof. For each 1 ≤ i ≤ n and P ∈ F , let mP(i) = vP(ai − a0) and lP(i) =
L(||P|| ,mP(i)). Let fi ∈ Int(D) with fi (ai ) = 0 and fi (a0) = 1 and such that fi is
P-adically L(||P|| ,mP(i))-Lipschitz for each P ∈ F . Such an fi exists by Lemma 2,
and it is P-adically L(||P|| ,mP)-Lipschitz, because mP(i) ≤ mP , and L(q,m) is an
increasing function in m for fixed q, and l-Lipschitz implies l ′-Lipschitz for all for
all l ′ ≥ l. Now set f (x) = ∏n

i=1 fi (x). �
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4 Interpolation by Congruence-Preserving Integer-Valued
Polynomials

Lemma 3. Let D be a Dedekind domain with finite residue fields and r0, . . . , rn
distinct elements of D.

Let F be a finite set of maximal ideals of D. For each P ∈ F , let kP ∈ IN such
that the ri are pairwise incongruent modulo PkP and lP = L(||P|| , kP − 1) as in
Definition 2.

Then there exists f ∈ Int(D) such that

1. f (r0) = 1 and, for 1 ≤ i ≤ n, f (ri ) = 0;
2. for each P ∈ F , for every r ∈ D \ (r0 + PkP ), f (r) ≡ 0 mod PkP ;
3. for each P ∈ F , for every r ∈ r0 + PkP+lP , f (r) ≡ 1 mod PkP .

Proof. We will first construct a polynomial fP ∈ Int(D) for each P ∈ F , in several
steps. Fix P ∈ F .

Extend r0, . . . , rn to a complete set of residues r0, . . . , r||P||kP −1 modulo PkP , such
that for all i > n and all Q ∈ F \ {P}, ri ≡ r1 modulo QkQ+1.

Let C be a finite subset of
∏

Q∈F QkQ containing a complete system of residues
of the residue classes of PkP+lP contained in PkP , and with 0 ∈ C .

For each 1 ≤ i < ||P||kP , and c ∈ C , let fic a polynomial in Int(D)with fic(r0) =
1, fic(ri + c) = 0, and Q-adically lQ-Lipschitz for all Q ∈ F , such as we know
to exist by Lemma 2 and its Corollary. Set fi = ∏

c∈C fic. Then fi (ri ) = 0 and
fi (r0) = 1. Also, since

⋃
c∈C ri + c + PkP+lP = ri + PkP and fi (ri + c) = 0 for all

c ∈ C , the P-adic Lipschitz property implies that for all r ∈ ri + PkP , fi (r) ≡ 0
modulo PkP . Likewise, the Lipschitz properties of the polynomials fic imply for all
Q ∈ F that fi (r) ≡ 1 modulo QkQ for all r ∈ r0 + QkQ+lQ .

Let fP = ∏||P||kP −1
i=1 fi . Then fP satisfies

1. fP(r0) = 1 and fP(r j ) = 0 for 1 ≤ j ≤ n;
2. fP(r) ≡ 0 modulo PkP for r ∈ D \ (r0 + PkP );
3. for all Q ∈ F , for all r ∈ r0 + QkQ+lQ , fP(r) ≡ 1 modulo QkQ .

Having constructed fP for each P ∈ F , we set f = ∏
P∈F fP , and f has the

desired properties. �

Theorem 1. Let D be aDedekind domain with finite residue fields, r0, . . ., rn distinct
elements of D and s0, . . ., sn arbitrary elements of D.

Let F be a finite set of maximal ideals of D. For each P ∈ F let kP ∈ IN such
that the ri are pairwise incongruent modulo PkP .

Then there exists f ∈ Int(D) such that

1. for 0 ≤ i ≤ n,
f (ri ) = si



190 S. Frisch

2. for all P ∈ F , for all a, b ∈ D,

a ≡ b mod PkP =⇒ f (a) ≡ f (b) mod PkP .

3. for all P ∈ F , for all r ∈ D with (r + PkP ) ∩ {r0, . . . , rn} = ∅,

f (r) ≡ 0 mod PkP .

Proof. It suffices to show, for each index i , the existence of a polynomial hi ∈ Int(D)

such that

1. hi (ri ) = 1 and hi (r j ) = 0 for j 
= i ,
2. for all P ∈ F , for all r ∈ D \ (ri + PkP ), hi (r) ≡ 0 mod PkP , and
3. for all P ∈ F , for all r ∈ ri + PkP , hi (r) ≡ 1 mod PkP ,

because, then, the polynomial f = ∑n
i=0 si hi does the job.

W.l.o.g., assume i = 0. We construct h0 with the help of Lemma 3:
For each Q ∈ F , let lQ = L(||Q|| , kQ − 1).
Let C be a subset of

∏
Q∈F QkQ containing, for each Q ∈ F , a complete system

of residues of the residue classes of QkQ+lQ contained in QkQ , and with 0 ∈ C .
For each d ∈ C , r0 + d, r1, . . . , rn satisfy the premises of Lemma 3. Accordingly,

let fd ∈ Int(D) such that

1. fd(r0 + d) = 1 and, for 1 ≤ i ≤ n, fd(ri ) = 0;
2. for each P ∈ F , for every r ∈ D \ (r0 + d + PkP ), fd(r) ≡ 0 mod PkP ;
3. for each P ∈ F , for every r ∈ r0 + d + PkP+lP , fd(r) ≡ 1 mod PkP .

and set gd = 1 − fd .
Since r0 + d + PkP = r0 + PkP for all P ∈ F and d ∈ C , each gd satisfies

1. gd(r0 + d) = 0 and, for 1 ≤ i ≤ n, gd(ri ) = 1;
2. for each P ∈ F , for every r ∈ D \ (r0 + PkP ), gd(r) ≡ 1 mod PkP ;
3. for each P ∈ F , for every r ∈ r0 + d + PkP+lP , gd(r) ≡ 0 mod PkP .

Now, set g = ∏
d∈C gd .

Considering that, for all P ∈ F ,
⋃

d∈C r0 + d + PkP+lP = r0 + PkP , we see that
the polynomial g = ∏

d∈C gd satisfies

1. g(r0) = 0 and, for 1 ≤ i ≤ n, g(ri ) = 1;
2. for each P ∈ F , for every r ∈ D \ (r0 + PkP ), g(r) ≡ 1 mod PkP ;
3. for each P ∈ F , for every r ∈ r0 + PkP , g(r) ≡ 0 mod PkP .

Finally, we let h0 = 1 − g. �

Recall that a function f : D → D satisfying

a ≡ b mod I =⇒ f (a) ≡ f (b) mod I,
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where D is a commutative ring and I an ideal of D, is called I -congruence preserving.
In this case, f defines a function f̄ I : D/I → D/I by

f̄ I (a + I ) = f (a) + I.

We call f̄ I the function induced by f on D/I .
We can now sharpen Theorem 1 some more to obtain a completely general form

of simultaneous interpolation and P-adic approximation. Given arbitrary arguments
and values in D and, for finitely many maximal ideals, a function on the residue
class ring modulo a power of the ideal, we can find a polynomial in Int(D) that
interpolates, while simultaneously realizing the given functions on the residue class
rings, provided that the requirements are not obviously contradictory.

Theorem 2. Let D be aDedekind domain with finite residue fields, r0, . . ., rn distinct
elements of D and s0, . . ., sn arbitrary elements of D.

LetF be a finite set of maximal ideals of D. For each P ∈ F let kP ∈ IN a natural
number, and

ϕP : D/PkP → D/PkP

a function.
If, for all P ∈ F and for all 0 ≤ i ≤ n,

si ∈ ϕP(ri + PkP )

then there exists f ∈ Int(D) such that

1. for 0 ≤ i ≤ n,
f (ri ) = si

2. for all P ∈ F , for all a, b ∈ D,

a ≡ b mod PkP =⇒ f (a) ≡ f (b) mod PkP

and the function f̄ : D/PkP → D/PkP defined by f̄ (a + PkP ) = f (a) + PkP

equals ϕP .

Proof. We may, w.l.o.g., assume that for all P ∈ F the arguments ri are pairwise
incongruent modulo PkP . If they are not, we replace each kP by a possibly larger lP
such that the ri are incongruent modulo PlP , and replace each ϕP by a function

ψP : D/PlP → D/PlP

which preserves congruencesmodulo PkP + PlP , inducesϕP on D/PkP and satisfies
ψP(ri + PlP ) = si + PlP .

Nowassume that the ri are pairwise incongruentmodulo PkP .WeapplyTheorem1
to produce g ∈ Int(D) such that
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1. for 0 ≤ i ≤ n, g(ri ) = si
2. for all P ∈ F , g is PkP -congruence preserving
3. for all P ∈ F , for all r ∈ D such that (r + PkP ) contains no ri , we have g(r) ≡ 0

mod PkP .

LetF ′ be the subset ofF consisting of those P for which r0, . . . , rn do not form a
complete system of residues modulo PkP . For all P ∈ F \ F ′, g already induces ϕP

on D/PkP . We now modify g by adding a polynomial fQ ∈ Int(D) for each Q ∈ F ′
to the effect that ϕQ is induced on D/QkQ , without affecting the properties 1 and 2
of g and without changing the function induced on D/PkP for any P ∈ F \ {Q}.

Fix Q ∈ F ′. To construct fQ , first extend r0, . . . , rn to a complete system of
residues r0, . . . , rn, rn+1, . . . , rq−1 modulo QkQ .

Then, for each i with n < i < q, use Theorem 1 to find hi ∈ Int(D) which is
QkQ -congruence preserving and satisfies hi (ri ) = 1 and hi (r j ) = 0 for 0 ≤ j < q
with j 
= i .

Also, for n < i < q, let bi ∈ ϕQ(ri + QkQ ) such that bi ≡ 0 mod PkP for all
P ∈ F \ {Q}. Then, set

fQ =
q−1∑

i=n+1

bihi .

Having thus defined fQ for each Q ∈ F ′, finally, set

f = g +
∑

Q∈F ′
fQ .

�
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Abstract The first part of this paper ismostly devoted to survey results byNorthcott-
Reufel on length functions over commutative domains, specifically over valuation
domains and 1-dimensional Prüfer domains of finite character. In the second part we
present new results leading to the characterization of length functions over arbitrary
Prüfer domains of finite character.
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1 Introduction

An intriguing feature in mathematical research arises when papers dating from the
same time and dealing with completely different arguments are found, after many
years, to have a strict connection, when new researches provide a unifying point of
view or unforeseeable relationships. An example of this situation is offered by two
papers on different subjects that appeared in 1965.

The first paper by Northcott and Reufel [16], which is the source of the present
paper, dealt with suitable generalizations of the notion of the classical composition
length for modules over a commutative ring, called length functions. They were able
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to characterize all length functions over valuation domains and over 1-dimensional
Prüfer domains of finite character. The latter paper, by Adler, Konheim and McAn-
drew [1], introduced and investigated the notion of topological entropy and, at the
very end, gave a sketch definition of algebraic entropy for endomorphisms ofAbelian
groups. At that time it was impossible to realize, or even suspect, a connection
between the two papers [1, 16].

After almost half a century, the generalization of the algebraic entropy from
Abelian groups (in the meanwhile deeply investigated in [6] and elsewhere) to the
more general setting of modules over arbitrary rings presented in [18] used the notion
of sub-additive invariant as a crucial tool for the definition of entropy. Furthermore,
important theorems for this entropywere proved in [17] when the sub-additive invari-
ant is, indeed, a length function, thus establishing a strict connection between length
functions and algebraic entropy.

Length functions have been investigated in the late ‘60’s by Peter Vámos in
[20, 21], who obtained their complete classification over Noetherian commutative
rings. In recent years the renewed interest in length functions came as a sub-product
of the investigation of the algebraic entropy for endomorphisms of modules over
arbitrary rings (the second author is indebted to Peter Vámos for addressing him to
length functions as a privileged tool in this investigation). However, in the authors’
opinion, length functions are a subject which deserve independent interest, especially
for people working in commutative algebra.

This opinion motivates the present paper, whose goal is to investigate length
functions over Prüfer domains; we must restrict to domains of finite character, since
our actual knowledge is confined to this class of domains. Our starting point is
the following characterization, due to Northcott and Reufel [16, Theorem 14], of
length functions over 1-dimensional Prüfer domains of finite character; note that
these domains are, in particular, h-local, i.e., beside finite character, they have the
property that every non-zero prime ideal is contained in a unique maximal ideal.

Theorem 1.1. (Northcott-Reufel) Let R be a 1-dimensional Prüfer domain of finite
character and L : Mod(R) → R≥0 ∪ {∞} a length function such that L(R) = ∞.
Then there exists a unique family {L(P)}P∈Max(R) of local length functions for R such
that L(P)(RP) = ∞, with the property that L(M) = ∑

P∈Max(R) L(P)(MP) for every
R-module M. The length functions L(P) coincide with the localizations L P of L for
each P ∈ Max(R).

For the notions of local length function and of localization of a length function see
the following Section2, where we provide the general information, mostly borrowed
from [16], concerning length functions over commutative rings. The hypothesis that
L(R) = ∞ inTheorem1.1 is not restrictive, since length functions satisfying L(R) <

∞ are easily classifiable, as we will see in Section2.
In Section3 we survey the characterization obtained by Northcott and Reufel

in [16] for length functions over valuation domains; it is worth recalling that this
classification has been obtained using a different multiplicative approach by Zanardo
in [24]. In Section4 we collect some properties of Prüfer domains used in the sequel
of the paper and introduce the notion of their meet-spectrum.
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The extension of Theorem 1.1 from 1-dimensional to arbitrary Prüfer domains
of finite character, where the structure of the prime spectrum is more complicated,
presents problems for representing a length function as sum of its localizations at
maximal ideals, as well as for the uniqueness of its representation. These problems
are solved in Section5 where, after an example which makes evident the problems
mentioned above and revisiting unpublished notes by the first author [11], we present
the most relevant new results leading to the characterization of length functions over
semilocal Prüfer domains. These results are based on the ad hoc notions of compatible
families of local length functions and of their balanced sum.

Once this step is accomplished, its transfer to general Prüfer domains of finite
character follows easily in the final Section6, where we present the main theorem of
the paper (Theorem 6.2). Theorem 1.1, as well as its extension to arbitrary h-local
domains, are derived as simple corollaries of the main theorem.

For completeness of information on what is at our knowledge on length functions,
wemustmention that recentlyVirili [22] surveyedVámos’ results on length functions
over Noetherian commutative rings, retracing complete proofs different in many
parts from the original ones. The main goal of Virili’s survey was the description
of algebraic entropies induced by these length functions. A further investigation by
Virili [23] concerns length functions on Grothendieck categories.

Finally, very recently Spirito [19] studied decompositions of length functions over
integral domains as sums of length functions constructed from overrings. He found
standard representations when the integral domain admits a Jaffard family of flat
overrings, and when it is a Prüfer domain such that every ideal has only finitely
many minimal primes. His paper has some overlaps with the present paper.

2 Generalities on Length Functions

The starting point which originated the notion of length function is the classical
notion of composition length: given a commutative ring R and an R-module M , its
composition length l(M) is the maximum of the lengths of chains of submodules
0 < M1 < M2 < · · · < Mn = M such that each factor Mi+1/Mi (0 ≤ i ≤ n − 1) is
a simple module, if such amaximum exists, otherwise it is∞. It is clear that l(0) = 0
and that, given a short exact sequence of R-modules 0 → M ′ → M → M ′′ → 0,
l(M) = l(M ′) + l(M ′′); furthermore, it is easy to prove that, for each module M ,
l(M) is the supremumof the composition lengths of its finitely generated submodules.

The idea behind the notion of length function, introduced by Northcott and Reufel
[16] in order to generalize the composition length, is to measure the size of modules
by associating with each module a “quantity” consisting either of a non-negative real
number or ∞. They axiomatized this notion imposing the three conditions satisfied
by the composition length recalled above.

Let R be a commutative unitary ring and Mod(R) the category of R-modules.
We denote by R

∗ the totally ordered set of the non-negative real numbers with the
symbol ∞ adjoint, which is strictly bigger than any real number: R∗ = R≥0 ∪ {∞};
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obviously∞ + ∞ = ∞ + r = ∞ for each r ∈ R≥0.A length functionover Mod(R)

(or simply over R) is a map L : Mod(R) → R
∗ which satisfies the following three

conditions:
(i) L(0) = 0;
(ii) (additivity) L(M) = L(M ′) + L(M ′′) if 0 → M ′ → M → M ′′ → 0 is a

short exact sequence in Mod(R);
(iii) (upper continuity) for every M ∈ Mod(R), L(M) = supX L(X), where X

ranges over the set of the finitely generated submodules of M .
The first two properties imply that a length function is an invariant, i.e., it assigns

the same value to isomorphic modules. Immediate consequences of (ii) are that
M ′ ≤ M implies L(M) = L(M ′) + L(M/M ′) and that, if I ≤ J are ideals of R,
then L(R/J ) ≤ L(R/I ).

The set of length functions over R may be endowed with a partial order, by saying
the L ≤ L ′ if L(M) ≤ L ′(M) for every M ∈ Mod(R).

By a local length function for R we mean a length function over Mod(RP), for
some P ∈ Max(R), the maximal spectrum of R, where RP denotes, as usual, the
localization of R at P . A length function L over R is discrete if its finite values
form a discrete subset of R∗, necessarily order-isomorphic to N, and it is faithful if
L(M) = 0 implies M = 0.

Example 2.1. The most common examples of length functions are:
- the classical composition length of a module; it is discrete and faithful;
- if R is an integral domain, the rank of a module M , defined as rk(M) =

dimK (M ⊗R K ), where K is the field of fractions of R; it is discrete but not faithful,
unless R is a field;

- if R = Z, for every Abelian group G let L(G) = log|G| (obviously setting
L(G) = ∞ if G is infinite); this is a discrete and faithful length function;

- the trivial length functions L0 and L∞ always exist and are defined as follows:
L0(M) = 0 for all M ∈ Mod(R), and L∞(M) = ∞ for all 0 �= M ∈ Mod(R).

The next result says that every length function is completely determined by its
action on cyclic modules.

Proposition 2.2. ([16, Lemma 1]) Two length functions L , L ′ on a commutative
ring R coincide if and only L(R/I ) = L ′(R/I ) for every ideal I of R.

Proof. The necessity is trivial. The sufficiency depends on the fact that every finitely
generated module is the union of a finite chain of submodules with cyclic quotients
of two consecutive submodules, to which we can apply the additivity of L , and on
upper continuity. �

A relevant consequence of Proposition 2.2 is that completion properties of quo-
tients of R in the R-topology have no impact on length functions; for instance, a
maximal valuation domain and an incomplete non-almost maximal valuation domain
with the same value group admit exactly the same length functions, as will be clear
in the next section.
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The next result shows the relevance of prime ideals in connection with length
functions.

Proposition 2.3. Let P be a prime ideal of the commutative ring R and L a length
function over R such that L(R/P) < ∞. Then L(R/I ) = 0 for every ideal I strictly
containing P.

Proof. By additivity, L(R/P) = L(R/I ) + L(I/P), hence L(R/P) ≥ L(I/P).
Choosing x ∈ I \ P provides an embedding R/P → I/P through themultiplication
by x . This gives L(R/P) ≤ L(I/P), therefore L(R/P) = L(I/P) and consequently
L(R/I ) = 0. �

Since we will focus on modules over integral domains, the next consequence of
Proposition 2.3 is crucial. It tells us that a length function on a domain R taking
positive finite value on R coincides with the rank function, up to a positive real
multiple.

Corollary 2.4. ([16, Theorem 2]) Let L be a length function over an integral domain
R satisfying0 < L(R) < ∞. Then, for every module M ∈ Mod(R), L(M) = L(R) ·
rk(M).

Proof. As rk(R) = 1, the equality L(M) = L(R) · rk(M) holds for M = R. If 0 <

I < R, then rk(R/I ) = 0, so, in view of Proposition 2.2, it is enough to prove that
L(R/I ) = 0. But this immediately follows from Proposition 2.3, since 0 is a prime
ideal. �

If a length function L satisfies L(R) = 0, then obviously it coincides with the
trivial length function L0. So, by Corollary 2.4, the investigation of length functions
over an integral domain R may be confined to those L such that L(R) = ∞.

Localizations at multiplicatively closed subsets of the commutative ring R and
length functions have strict relationships. First, any length function L on R determines
a multiplicatively closed set SL , defined as

SL = {a ∈ R : L(R/a R) = 0}.

In fact, it is clear that 1 ∈ SL and, if a, b ∈ SL , then L(R/a R) = 0 = L(R/bR),
hence from the exact sequence

0 → a R/abR → R/abR → R/a R → 0

we deduce that L(R/abR) = L(a R/abR) + L(R/a R). But a R/abR is an epic
image of R/bR, hence L(a R/abR) = 0, consequently L(R/abR) = 0 and ab ∈ SL .

Recall that the SL -torsion submodule of an R-module M consists of those elements
x ∈ M such that ax = 0 for some a ∈ SL .

Lemma 2.5. ([16, Lemmas 3 and 4]) Let L be a length function over the commu-
tative ring R. Let M ∈ Mod(R) and T its SL-torsion submodule. Then L(M) =
L(M/T ) = L(MSL ).
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Proof. If R/I is a cyclic SL -torsion module, then I contains an element a ∈ SL , so
that L(R/I ) ≤ L(R/a R) = 0. It follows that L(T ) = 0 and, by additivity, L(M) =
L(M/T ). Since M/T embeds into MSL with SL -torsion cokernel, the additivity of
L also implies that L(M/T ) = L(MSL ). �

On the other hand, starting with a multiplicatively closed subset S of R, a length
function L over R is said to be localized at S if it satisfies L(M) = L(MS) for every
R-module M , that is, if the length of each R-module is the same as the length of
its localization at S, so that L can be viewed as a length function on Mod(RS). The
next result tells in particular that a length function L is always localized at SL .

Proposition 2.6. Let L be a length function over the commutative ring R, and S ⊆ T
two multiplicatively closed subsets of R. Then:

(1) if L is localized at T , then it is localized at S;
(2) L is localized at S if and only if S ⊆ SL .

Proof. (1) Since S ⊆ T , for every module M we have MT = (MS)T . Then L(MS) =
L((MS)T ), since L is localized at T , therefore L(MS) = L(MT ) = L(M).

(2) The same argument as in point (1) proves the sufficiency, once we have shown
that L is localized at SL ; this follows by Lemma 2.5. For the necessity, if S is
not contained in SL , there exists s ∈ S such that L(R/s R) > 0. On the other hand,
L(RS/s RS) = L(0) = 0, hence L cannot be localized at S. �

We describe some methods to obtain new length functions from pre-assigned
ones.We leave as an exercise for the reader to check the details of the straightforward
proofs. It is worthwhile to remark that the first example, with the two lemmas and
the proposition following it, provide a crucial tool in the development of the paper,
notably, in Definition 5.6 and in the proofs of the main Theorems 5.7 and 6.2.

Example 2.7. (Difference) Let L ≥ L ′ be two length functions over Mod(R) and
denote by FG(R) the class of finitely generated R-modules. The function L − L ′ :
FG(R) → R

∗ defined by setting

(L − L ′)(F) =
{

L(F) − L ′(F) if L(F) < ∞
∞ if L(F) = ∞

is additive on short exact sequences of finitely generated modules, as it is easy to
check. Extend this function to the whole category Mod(R) by setting, for every
R-module M :

(L − L ′)(M) = sup{(L − L ′)(F)|F ∈ FG(R), F ≤ M}.

Then L − L ′ : Mod(R) → R
∗ is upper continuous by definition, but in general it is

not a length function, since it is not additive.As a counter-example, take R = K (+)V ,
where K is a field,V an infinite dimensional K -vector space, and (+) the idealization.
Taking L = dimK it is easy to see that the function L − L as defined above is not
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additive on the exact sequence 0 → V → R → K → 0 (we thank the referee for
suggesting us such a counter-example).

We look for properties of L and L ′ ensuring that L − L ′ is additive, hence a length
function.

Lemma 2.8. Let L and L ′ be two length functions over Mod(R) satisfying the
inequality L ≥ L ′. If L(A) < ∞ for a module A, then (L − L ′)(A) = L(A) −
L ′(A).

Proof. All the involved quantities are finite, so we must equivalently prove that
(L − L ′)(A) + L ′(A) = L(A), that is, supF≤A(L − L ′)(F) + supF ′≤A L ′(F ′) =
supF ′′≤A L(F ′′), where F, F ′, F ′′ are finitely generated modules. If F ′′ ≤ A,
then L(F ′′) = (L − L ′)(F ′′) + L ′(F ′′), hence L(A) ≤ (L − L ′)(A) + L ′(A).
Conversely, (L − L ′)(F) + L ′(F ′) ≤ (L − L ′)(F + F ′) + L ′(F ′ + F) = L(F +
F ′), hence the converse inequality (L − L ′)(A) + L ′(A) ≤ L(A) also holds. �

Lemma 2.9. Let L and L ′ be two length functions over Mod(R) satisfying the
inequality L ≥ L ′. If 0 → A → B → C → 0 is an exact sequence such that B is
finitely generated and L(A) < ∞, then L − L ′ is exact on it.

Proof. If L(B) < ∞, then (L − L ′)(B) = L(B) − L ′(B) = L(A) + L(C) −
L ′(A) − L ′(C) = L(A) − L ′(A) + (L − L ′)(C). But (L − L ′)(A) = L(A) −
L ′(A), by Lemma 2.8, so the claim follows. If L(B) = ∞, then necessarily L(C) =
∞, hence (L − L ′)(B) = ∞ = (L − L ′)(C), thus additivity follows also in this
case. �

If in the preceding lemma we drop the hypothesis that L(A) < ∞, the claim
is no more true, as the counter-example above shows. The next result provides a
sufficient condition in order that the difference of two length functions is again a
length function.

Proposition 2.10. Let L and L ′ be two length functions over Mod(R) satisfying
the inequality L ≥ L ′. If for every submodule A of a finitely generated R-module
the equality L(A) = ∞ implies (L − L ′)(A) = ∞, then L − L ′ is a length function
over Mod(R)

Proof. Since L − L ′ is upper continuous by definition, it is enough to prove that it
is additive. It is immediate to check that L − L ′ is additive on short exact sequences
0 → A → B → C → 0, with A, B, C finitely generated. If it is additive on 0 →
A → B → C → 0when only B, and consequentlyC , are finitely generated, arguing
as in the proof of Lemma 3.14 in [22], one can show that L − L ′ is additive on
any type of short exact sequence. So we must check the additivity of L − L ′ on
0 → A → B → C → 0, assuming B finitely generated. If L(A) < ∞, then L − L ′
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is additive without any additional hypothesis by Lemma 2.8. If L(A) = ∞, then
the hypothesis ensures that (L − L ′)(A) = ∞. As L(B) = ∞ = (L − L ′)(B), the
additivity of L − L ′ holds also in this case. �

We continue with four more examples of length functions.

Example 2.11. (Sum) If {Lσ}σ∈� is a family of length functions over Mod(R), their
sum

∑
σ Lσ is the length function defined by setting, for each M ∈ Mod(R):

∑

σ∈�

Lσ(M) = sup{
∑

σ∈F

Lσ(M) : F finite subset of �}.

Example 2.12. (Scalar multiple) Let L be a length function over Mod(R) and λ
a positive real number. The scalar multiple λ · L , defined by setting (λ · L)(M) =
λL(M) for every R-module M , is a length function as well.

Example 2.13. (Contraction; see [16, Proposition 2]) Let S be a multiplicatively
closed subset of R and H : Mod(RS) → R

∗ a length function. Then
H c : Mod(R) → R

∗, defined by H c(M) = H(MS) for each M ∈ Mod(R), is a
length function on Mod(R). Thus H c is just the composition of H with the local-
ization map − ⊗R RS .

Example 2.14. (Localization; see [16, Proposition 3]) Let S be a multiplicatively
closed subset of R and L : Mod(R) → R

∗ a length function.Then L S : Mod(RS) →
R

∗ defined by L S(M) = L(M) for each M ∈ Mod(RS) is a length function as well.
Thus L S is just the restriction of L to RS-modules. When S is the complement set of
a prime ideal P , the localization of L at P is simply denoted by L P .

3 Length Functions over Valuation Domains

In this section we survey the classification obtained by Northcott and Reufel in [16]
for length functions over valuation domains. Recall that an integral domain R is a
valuation domain if its ideals are linearly ordered by the inclusion. For terminology,
notation and basic facts concerning these domains and their modules, we refer to
[9, 10]. In particular, we denote by v : Q(R) → � ∪ {∞} the valuation of R, where
Q(R) is the field of fractions of R, � is its value group, and R = {x ∈ Q(R) :
v(x) ≥ 0}.

Excluding the trivial length function on Mod(R) which sends all modules to 0,
characterized by the property that L(R) = 0, the length functions may be distin-
guished in three different types:

- 0/∞-type, (I) and (II)
- Rank-type
- Valuation-type.

These types depend on two subsets of R, which are associated with the length
function L:
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P∞ = {a ∈ R : L(R/a R) = ∞} ⊆ P+ = {a ∈ R : L(R/a R) > 0}.

Note that L(R) = ∞ ⇔ 0 ∈ P∞ ⇔ P∞ �= ∅, and L(R) > 0 ⇔ 0 ∈ P+ ⇔
P+ �= ∅.

It is easy to check that, if P∞ and P+ are non-empty, then they are prime ideals,
and that P+ is the complement of the multiplicatively closed set SL defined in the
previous section.

We have seen that we can exclude from our classification also length functions
satisfying 0 < L(R) < ∞, since, fromCorollary 2.4, we know this condition implies
that L = L(R) · rk. So the classification of length functions will concern only those
L such that L(R) = ∞, in which case P∞ ⊆ P+ are prime ideals. The next result
shows that idempotency of these prime ideals plays a role in a crucial way.

Lemma 3.1. If L(R) = ∞ and L(R/P∞) < ∞, then 0 < P2∞ = P∞ = P+.

Proof. Clearly 0 < P∞. Assume by way of contradiction that P2∞ < P∞. Take b ∈
P∞ \ P2∞ and consider bR/bP∞. Then

L(bR/P2
∞) ≤ L(bR/bP∞) = L(R/P∞) ⇒ L(P∞/P2

∞) = supb∈P∞\P2∞

L(bR/P2
∞) ≤ L(R/P∞) < ∞.

From the exact sequence:

0 → P∞/P2
∞ → R/P2

∞ → R/P∞ → 0

we deduce that L(R/P2∞) < ∞. But this is absurd, since P2∞ < a R < P∞ implies
that L(R/P2∞) ≥ L(R/a R) = ∞. Thus P2∞ = P∞. If a ∈ R \ P∞, then ak ∈ R \
P∞ for all positive integers k, hence

k · L(R/a R) = L(R/ak R) ≤ L(R/P∞) < ∞ ⇒ L(R/a R) = 0 ⇒ a ∈ R \ P+

that is, P∞ = P+. �

Wedescribe now the three different types of length functions and their relationship
with the prime ideals P∞ and P+. The first type, which is called “0/∞-t ype”, splits
in two sub-types, according as we start with an arbitrary or an idempotent prime ideal
P and we set L(R/P) = ∞ (first sub-type), or L(R/P) = 0 (second sub-type).

0/∞ − type (I)

Fixed a prime ideal P of R, for an ideal I of R and a module M ∈ Mod(R), we
set

L(R/I ) =
{
0 if P < I

∞ if I ≤ P
L(M) =

{
0 if P M = 0 and MP = 0

∞ otherwise
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If P = 0, L(M) = 0 for every torsion module M , and L(M) = ∞ for all other
modules.

If P is the maximal ideal, L(M) = ∞ for every module M �= 0. In each case
L(R) = ∞.

In this case P = P∞ = P+ and P can be idempotent or non-idempotent.

0/∞ − type (II)

Fixed an idempotent prime ideal P = P2 of R, for an ideal I of R and a module
M ∈ Mod(R), we set

L(R/I ) =
{
0 if P ≤ I

∞ if I < P
L(M) =

{
0 if P M = 0

∞ if P M �= 0

We must exclude P = 0 that gives the trivial function, so we have L(R) = ∞.
If P is the maximal ideal, then L(M) = 0 for M semisimple, otherwise

L(M) = ∞.
In this case P = P∞ = P2∞ = P+. The idempotency of P excludes the possi-

bility that P is maximal and principal (if P = pR is maximal, L(R/pR) = 0 and
L(R/p2R) = ∞, absurd).

Rank − type

Given an idempotent prime ideal P = P2 of R, and fixed a real number λ > 0, set:

L(R/I ) =

⎧
⎪⎨

⎪⎩

0 if P < I

λ if I = P

∞ if I < P

L(M) =
{

λ · rkR/P(M) if P M = 0

∞ if P M �= 0

If P = 0, then L(R) = λ, which implies, by Corollary 2.4, that L coincides with
the rank function up to the multiple λ. We have excluded this case from our classifi-
cation.

Thus in this case also we have L(R) = ∞; furthermore P = P∞ = P2∞ = P+.
The idempotency of P excludes the possibility that P is maximal and principal
(if P = pR is maximal, L(R/pR) = λ and L(R/p2R) = ∞, absurd). Note that a
rank-type length function is discrete.

Valuation − type

Given two adjacent prime ideals P ′ ⊂ P , the valuation domain S = RP/P ′ obtained
by localizing R at P and factorizing over P ′ is archimedean, with a valuation:

w : Q(S) → R ∪ {∞}

which is discrete if and only if S is a DVR.
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Fixed a real number λ > 0, we have the induced length function

Lw : Mod(S) → R
∗

defined by setting, for every ideal J of S:

Lw(S/J ) = λ · in fx∈J w(x).

Note that Lw(S) = ∞, and, if S is not a DVR, 0 < Lw(S/J ) < ∞ if and only if
0 < J < P RP/P ′.

From the length function Lw : Mod(S) → R
∗ we derive a length function L :

Mod(R) → R
∗ as follows: given an R-module M , set

L(M) =
{

Lw(MP RP /P ′) if P ′M = 0

∞ otherwise

Length functions of this type are the significant ones, since they are related to the
valuation of the domain R, and are the only non-discrete length functions provided
S = RP/P ′ is a non-discrete archimedean domain.

If P ′ = 0, then P is the maximal ideal of R and w = v is the valuation of the
archimedean valuation domain R. If furthermore λ = 1, L is denoted by Lv and is
called the valuation length. In this case, for every ideal I ≤ R we have:

Lv(R/I ) = in fa∈I v(a).

Lv is non-discrete if and only if P is not principal, equivalently, if P = P2.
To sum up, we have seen that if L is a non-trivial length function on Mod(R) and

L(R) < ∞, then L is essentially the rank function, while every non-discrete length
function L satisfying if L(R) = ∞ is essentially a valuation length on a non-discrete
archimedean factor of a suitable localization of R at a prime ideal. The composition
length is of rank-type if the maximal ideal is idempotent, of valuation type otherwise.

As an immediate application of the above results, we conclude this section with
the description of the length functions over two simple types of valuation domains,
namely, the archimedean ones (i.e., 1-dimensional), and the strongly discrete ones,
i.e., without non-zero idempotents prime ideals (see [10, II.8.3] for their characteri-
zation).

Corollary 3.2. Let R be valuation domain. Then
(1) if R is 1-dimensional, then the only non-trivial length functions on R are of

0/∞-type or, up to a positive real multiple: the composition length and the rank
function if R is discrete; the valuation length and the rank function if R is non-
discrete;

(2) if R is strongly discrete, then the only non-trivial length functions on R are of
0/∞-type (I) and of discrete valuation-type.
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4 Properties of Prüfer Domains and Their Meet-Spectrum

We fix the notation and start with some basic results holding for an arbitrary com-
mutative integral domain R. The (prime) spectrum of R is denoted by Spec(R), and
the maximal spectrum by Max(R).

If I is an ideal of R, we use the standard notation �(I ) to denote the set of the
maximal ideals containing I . If S is multiplicatively closed set of R, let I(S) = IS ∩ R
be the contraction of the localization of I at S; if S is the complement of a prime
ideal P , then we simply write I(P) = IP ∩ R.

If� is a family ofmaximal ideals of R, the localization of R at themultiplicatively
closed set ⋂

P∈�

(R \ P) = R \
⋃

P∈�

P

is denoted by R�; the corresponding localization of an ideal I is denoted by I�
and we set I(�) = I� ∩ R. If � consists of a single maximal ideal P , then we write
I(�) = I(P). If � = �(I ), then clearly I(�) = I .

Lemma 4.1. Let R be an integral domain and I be a non-zero ideal of R. If � =
�(I ), then

R/I ∼= R�/I�.

Proof. The composition map

R → R� → R�/I�

has kernel I(�) = I , thus R/I embeds into R�/I�. In order to show that this embed-
ding is also epic, we must prove that R� = I� + R. First we show that R = I + s R
for every s ∈ ⋂

P∈�(R \ P). Assume, by way of contradiction, that I + s R ≤ P ′
for some maximal ideal P ′. Then P ′ ∈ � since it contains I ; on the other hand,
P ′ /∈ � since it contains s, absurd. As a consequence we have that, if r/s ∈ R�,
since r = a + sb for some a ∈ I, b ∈ R, then r/s = a/s + b ∈ I� + R, as desired.

�

Lemma 4.2. Let R be an integral domain, � a finite family of maximal ideals of R
and I a non-zero ideal of R. The maximal ideals of R� are exactly the extensions of
the maximal ideals in �. Furthermore, I� = ⋂

P∈� IP and R� = ⋂
P∈� RP .

Proof. An ideal P ∈ � clearly survives as a maximal ideal in R�. Conversely, if Q
is a maximal ideal in R�, then its contraction P ′ = Q ∩ R is a prime ideal contained
in

⋃
P∈� P . By prime avoidance, P ′ is contained in some P ∈ � and equality must

hold, since, as we already noted, P extends to a maximal ideal of R�.
Since every P ∈ � survives in R�, clearly I� ≤ ⋂

P∈� IP . Conversely, let x ∈⋂
P∈� IP . Then, for each P ∈ �, (I :R x R) is not contained in P; therefore, since

the maximal ideals of R� are the extensions of the ideals in �, we obtain that
(I :R x R)� = R�. Moreover, (I :R x R)� = (I� :R�

x R�), whence x ∈ I�. �
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We restrict now our consideration to Prüfer domains, which may be defined in
several different ways; for our purposes, the right definition is that each localization
RP at a maximal (or non-zero prime) ideal P is a valuation domain. For general
notion on Prüfer domains and their modules we refer to the monographs [7, 10].
Since there is an ordered bijection between the prime ideals contained in a fixed
prime ideal P of R and the prime ideals of the localization RP , which form a totally
ordered set, Spec(R) is a rooted tree (the ideal 0 is its root) with the order given by
the inclusion, according to the following:

Definition 4.3. A tree is a partially ordered set T such that, for every element t ∈ T ,
the subset {t ′ ∈ T | t ′ ≤ t} is totally ordered.
Remark 4.4. Very often the definition of tree requires the stronger assumption that,
for every element t ∈ T , the set {t ′ ∈ T | t ′ ≤ t} is well-ordered. The results by Lewis
[15] on the characterization of partially ordered sets as spectra of Prüfer (or Bézout)
domains uses Definition 4.3 above.

As usual, we denote by J (R) the Jacobson radical of the integral domain R, i.e.,
the intersection of its maximal ideals. The next proposition provides an indispensable
tool for comparing the length of cyclic modules and of certain localizations of them.

Proposition 4.5. Let R be a Prüfer domain, P a non-zero prime ideal contained in
J (R), and L a length function over R. The following facts hold:

(1) every ideal I of R is comparable with P;
(2) if L(R/P) < ∞, then L is localized at P;
(3) if S is a multiplicatively closed set disjoint from P, and I ≤ P, then L(R/I ) =

L(RS/IS) = L(RP/IP).

Proof. (1) Suppose the ideal I is not contained in P . Then, for eachmaximal ideal Q,
IQ is not contained in PQ �= RQ , and since RQ is a valuation domain, PQ is strictly
contained in IQ , so that I = ⋂

Q∈Max(R) IQ contains P = ⋂
Q∈Max(R) PQ .

(2) If x ∈ R \ P , then point (1) implies that P < x R, so that L(R/x R) = 0, by
Proposition 2.3. Then x ∈ SL , whence SL contains R \ P , showing that L is localized
at P , by Proposition 2.6.

(3) If L is localized at P , then it is localized at S as well, by Proposition 2.6,
and the result is true for every R-module. On the other hand, if L is not localized at
P , then point (2) shows that ∞ = L(R/P) ≤ L(R/I ), and the conclusion follows
from the existence of canonical inclusions R/P ≤ RS/PS ≤ RP/PP , and the fact
that L(R/I ) ≥ L(R/P) for every I ≤ P . �

Given two different non-zero prime ideals P and P ′ of R, their intersection P ∩ P ′
is never a prime ideal and it contains the product P · P ′; the prime ideals contained
in P ∩ P ′ form a chain, hence their union is the biggest prime ideal contained in
P ∩ P ′, which is denoted by P ∧ P ′. The same holds for the intersection of finitely
many prime ideals. With this operation Spec(R) is a meet-semilattice.

The next lemma shows that the localization of R at P ∧ P ′ coincides with the
double localization with respect to P and P ′.
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Lemma 4.6. Let P �= P ′ be two maximal ideals of the Prüfer domain R. Then
(RP)P ′ = (RP ′)P = RP∧P ′ .

Proof. (RP)P ′ = RS , where S is the multiplicatively closed set generated by (R \
P) ∪ (R \ P ′) = R \ (P ∩ P ′). Since P ∧ P ′ ≤ P ∩ P ′, R \ (P ∩ P ′) contains S,
so P ∧ P ′ survives in RS . Moreover, every prime ideal not contained in P ∧ P ′
cannot be contained in P ∩ P ′, hence it must intersect R \ (P ∩ P ′), so that RS =⋂{RJ : J ∈ Spec(R), J RS < RS} = RP∧P ′ . �

From now on, R will always denote a Prüfer domain of finite character, i.e., every
non-zero element (or ideal) is contained only in finitely many maximal ideals. If R
is such a domain and the non-zero prime ideal P is contained in the maximal ideals
M1, · · · , Mn , let

P̄ = M1 ∧ · · · ∧ Mn

which is a prime ideal containing P .

Definition 4.7. Let R be a Prüfer domain of finite character. The meet-spectrum of
R, denoted by ∧Max(R), is the subset of Spec(R):

∧Max(R) = {P ∈ Spec(R) | 0 �= P = P̄}.

In other words, the meet-spectrum of R contains those non-zero prime ideals
which can be written as the meet of finitely many maximal ideals. Obviously the
following inclusions hold:

Max(R) \ {(0)} ⊆ ∧Max(R) ⊆ Spec(R).

The equality Max(R) = Spec(R) occurs if and only if R is 1-dimensional; further-
more, the equality Max(R) \ {(0)} = ∧Max(R) occurs if and only if every non-zero
prime ideal is contained in a unique maximal ideal, hence, under the hypothesis that
R has finite character, if R is h-local.

For Prüfer domains of finite character we have at disposal the following result,
due to Brandal [5], on the structure of torsion cyclic modules (see also [10, V.1.2]).

Theorem 4.8. (Brandal [5]) Let R be a Prüfer domain of finite character and I a
non-zero ideal of R. Then:

(1) the cyclic module R/I is a direct sum of indecomposable cyclic modules;
(2) the cyclic module R/I is indecomposable if and only if, for any partition

{�1,�2} of �(I ), there exists Mi ∈ �i (i = 1, 2) such that I ≤ M1 ∧ M2.

We will improve this result using the meet-spectrum of R in the next Theorem
4.10, for which we need the following

Lemma 4.9. Let I be a non-zero ideal of the Prüfer domain R. If P ∈ �(I ), then√
I(P) is the unique minimal prime ideal containing I(P), and

√
I(P) ≤ P.
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Proof. Since RP is a valuation domain, IP has exactly one minimal prime ideal in
RP , which coincides with

√
IP . Now we have:

√
I(P) = (

√
I )(P) = (

√
I )P ∩ R = √

IP ∩ R

so that
√

I(P) is a prime ideal contained in P , hence it is the only minimal prime
ideal of I(P). �

Given a non-zero ideal I ≤ R, the meet-spectrum ∧Max(R) induces a parti-
tion on the finite set �(I ) as follows. Consider the finite set of the prime ideals
of ∧Max(R) which contain I and are minimal with respect to this containment,
denoted by ∧Min(I ). Then clearly {�(P) | P ∈ ∧Min(I )} is a partition of �(I ),
called the partition induced by the meet-spectrum. The following result shows that
this partition gives rise to an indecomposable direct decomposition of R/I ; notice
that item (2) improves Lemma 4.1.

Theorem 4.10. Let R be a Prüfer domain of finite character and I a non-zero
ideal of R. If {�1, · · · ,�m} is the partition of �(I ) induced by the meet-spectrum
∧Max(R), then:

(1) R/I ∼= ⊕
1≤i≤m R/I(�i ) is a direct decomposition with indecomposable direct

summands, and
(2) for every i ≤ m we have the isomorphism R/I(�i )

∼= R�i /I�i .

Proof. (1) Consider the canonical map R → ⊕
1≤i≤m R/I(�i ), whose kernel is I =⋂

1≤i≤m I(�i ). This map provides an embedding ε : R/I → ⊕
1≤i≤m R/I(�i ). For

every index i , the equality �(
⋂

j �=i I(� j )) = ⋃
j �=i I(� j ) holds, which gives I(�i ) +⋂

j �=i I(� j ) = R. From this equality the surjectivity of the map ε follows. Finally,
each summand R/I(�i ) is indecomposable since it satisfies condition (2) of Theorem
4.8: if �i = �(P) with P ∈ ∧Min(I ) and P ≤ M1, M2 ∈ �(P), then I ≤ P ≤
M1 ∧ M2.

(2) The proof is similar to that of Lemma 4.1. Let us set �i = �. The composi-
tion map R → R� → R�/I� has kernel I(�), thus R/I(�) embeds into R�/I�. In
order to show that this embedding is also epic, we must prove that R� = I� + R.
First we show that R = I(�) + s R for every s ∈ ⋂

P∈�(R \ P). Assume, by way of
contradiction, that I(�) + s R ≤ P ′ for some maximal ideal P ′. Then P ′ /∈ � since
it contains s, but P ′ must contain I(P) for some P ∈ �. Thus both P and P ′ must
contain the single minimal prime of I(P). But then I ⊆ P ∧ P ′, which is impossible
by the current hypothesis. The conclusion is now as in the proof of Lemma 4.1. �

Fixed a prime ideal P ∈ ∧Max(R), the set

T (P) = {P ′ ∈ ∧Max(R) | P ⊆ P ′}

is a finite tree with root P , in which the meet of two elements is the same as the meet
in Spec(R).



208 G. Fusacchia and L. Salce

Definition 4.11. Let R be a Prüfer domain of finite character and let P ∈ ∧Max(R).
Then a child of P is a prime ideal P ′ ∈ T (P) different from P which is adjacent
to P .

Clearly, every element of the meet-spectrum is either a maximal ideal (with no
children), or it is the meet of at least two maximal ideals, hence it has at least two
children.

If the ring R is semilocal, so in particular of finite character, then the meet-
spectrum of R enjoys nice properties.

Lemma 4.12. Let R be a semilocal Prüfer domain, then:
(1) ∧Max(R) is a finite set;
(2) ∧Max(R) is a disjoint union of a finite number of rooted trees T (P), ranging

P over the set of the minimal elements of ∧Max(R);
(3) ∧Max(R) is a rooted tree if and only if the largest prime ideal contained in

the Jacobson radical is non-zero.

Proof. (1) and (2) are obvious.
(3) The largest prime ideal contained in the Jacobson radical is the meet of all

maximal ideals, so it is the unique minimal element of ∧Max(R) exactly if it is
non-zero. �

We prove now a technical result needed in the proof of the main Theorem 5.7,
concerning the meet-spectrum of a semilocal Prüfer domain R in case it is rooted,
relating the number of children of the non-maximal elements to the number of the
maximal ideals.

For this purpose, we introduce the following notation: let kP be the number of chil-
dren of a prime ideal P ∈ ∧Max(R), and denote by C the complement of Max(R)

in ∧Max(R):
C = ∧Max(R) \ Max(R).

We exclude the trivial case of R local, so that C �= ∅.
Proposition 4.13. Let R be a semilocal non-local Prüfer domain with maximal
ideals M1, · · · , Mn and suppose that the meet-spectrum ∧Max(R) is a rooted tree.
Then the following formula holds:

∑

Q∈C
(kQ − 1) = n − 1.

Proof. Since every element of ∧Max(R) is a child, except the root, the following
equality holds:

∑
Q∈C kQ = | ∧ Max(R)| − 1. Therefore we get:

∑

Q∈C
kQ = |C| + |Max(R)| − 1 ⇒

∑

Q∈C
kQ − |C| = |Max(R)| − 1

from which the equality
∑

Q∈C(kQ − 1) = n − 1 immediately follows. �
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5 Length Functions over Semilocal Prüfer Domains

A semilocal Prüfer domain is trivially of finite character; it is a classical result due
to Hinohara in 1962 that it is also a Bézout domain, that is, finitely generated ideals
are principal (see [10, III, 5.1]).

In this and in the next section, in order to simplify the notation, we set M =
Max(R) and ∧M = ∧Max(R). Recall that a local length function for R is a length
function on Mod(RP) for some P ∈ M. Since with the symbol L P we denote
the localization at P of a length function L : Mod(R) → R

∗, we will indicate an
arbitrary local length function for R with the symbol L(P).

A close inspection to the proof of Theorem 1.1 shows that it is based on the
following facts, holding for every ideal I �= 0 of a 1-dimensional Prüfer domain of
finite character R: if �(I ) = {P1, · · · , Pn}, then

R/I ∼= R/I(P1) ⊕ · · · ⊕ R/I(Pn)

is an indecomposable direct decomposition; and, if P ∈ �(I ), then R/I(P)
∼=

RP/IP .
These two facts imply that

L(R/I ) =
∑

1≤i≤n

L(RPi /IPi ) =
∑

1≤i≤n

L Pi (RPi /IPi );

furthermore, if P ∈ M and J is a non-zero proper ideal of RP , then J = (J ∩ R)P

(see [9, p. 6, (D)] and J ∩ R is
√

J ∩ R-primary, therefore RP/J ∼= R/(J ∩ R);
consequently L(P)(RP/J ) = L(R/(J ∩ R)), so that L(P) = L P for every P ∈ M.

When we try to extend Theorem 1.1 from 1-dimensional to arbitrary Prüfer
domains of finite character, the more complex structure of the meet-spectrum ∧M
creates problems in the decomposition of L as sum of its localizations at maximal
ideals and also in the uniqueness of its representation, due to the fact that the action
of local length functions can overlap, as the next example shows.

Example 5.1. Let V = Q[[X ]] be the 1-dimensional valuation domain of the ratio-
nal power series. If P = XQ[[X ]] denotes its maximal ideal, then the residue field
V/P is isomorphic to Q. Fixed a prime number p ∈ N, let Wp = Zp + XQ[[X ]]
be the subring of V consisting of the power series with constant term in Zp, the
localization at the prime ideal pZ of the ring of the integers Z. Wp is the pullback
of the canonical surjection V → Q and the inclusion Zp → Q. Clearly Wp is a 2-
dimensional strongly discrete valuation domain, with the same quotient field as V .
Its non-zero prime ideals are P and pWp = pZp + P; moreover, (Wp)P = V .

Let now q be a prime number different from p and consider the valuation domain
Wq obtained in a similar way as before. The ring R = Wp ∩ Wq is a Bézout domain
with exactly two maximal ideals (see [10, III, 5.1]). Its spectrum is given by the two
maximal ideals pR and q R, the prime ideal pR ∧ q R = P , and the null ideal. In
particular, RpR = Wp, Rq R = Wq and RP = (Wp)P = (Wq)P = V .
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In order to obtain a length function over Mod(R), in view of Example 2.11 one
can simply add together two local length functions L(pR) and L(q R) chosen over the
two localizations atmaximal ideals RpR = Wp and Rq R = Wq , respectively. Looking
at Section3 and taking care that we don’t have non-zero idempotent prime ideals,
we have, up to positive multiples, only three cases for a non-trivial length function
L(pR) : Wp → R

∗ such that L(pR)(Wp) = ∞.
Case 1. L(pR) is of 0/∞-type (I), so that L(pR)(Wp/I ) = 0 or ∞, according as

P < I or I ≤ P;
Case 2. L(pR) is of valuation-type associated with the pair of prime ideals (P <

pWp), so that L(pR)(Wp/I ) = k if I = pk Wp for some k ≥ 0, and L(pR)(Wp/I ) =
∞ otherwise;

Case 3. L(pR) is of valuation-type associatedwith the pair of prime ideals (0 < P),
so that L(pR)(Wp/I ) = 0 if P ≤ I , and L(pR)(Wp/I ) = k if I = Xk

Q[[X ]].
We have a similar situation for Wq . Now if we choose L(pR) as in Case 2 above,

and we add it to a local length function L(q R) as in Case 1 or Case 3, we always
have the same length function L = L(pR) + L(q R); in fact, in both cases we have
L(R/I ) = k + 0 = k, for a certain k ∈ N, if P < I , and L(R/I ) = ∞ otherwise.
So uniqueness is lost.

Let now L : Mod(R) → R
∗ be the length function which is the contraction of

the valuation length H : RP = V → R∗ (see Example 2.13). Then the localizations
L pR and Lq R both coincide with H , so the equality L = L pR + Lq R cannot hold. In
fact, L(R/P) = H(RP/P) = 1, while we get

L pR(R/P) + Lq R(R/P) = L(RpR/PpR) + L(Rq R/Pq R) = H(RP/P) + H(RP/P) = 1 + 1 = 2.

So also the decomposition of L as sum of its localizations at maximal ideals is lost.

If we want to express a length function L by means of a sum
∑

P∈M L(P) of local
length functions such that each L(P) coincides with the localization of L at P , we
must ask that the given family satisfies a certain compatibility condition, according
with the following

Definition 5.2. A family of local length functions {L(P)}P∈M is compatible if
L(P)(RP) = ∞ for all P ∈ M and, for each pair P, P ′ ∈ M, (L(P))P∧P ′ =
(L(P ′))P∧P ′ .

In fact, the family of the localizations L P (P ∈ M) of a length function L such
that L(R) = ∞ is compatible, since for each pair of maximal ideals P and P ′,
(L P)P∧P ′ = (L P ′)P∧P ′ , both being equal to L P∧P ′ . Note that for a 1-dimensional
Prüfer domain the compatibility condition is trivially satisfied.

Another problem ismade evident by the final part of Example 5.1, which indicates
that

∑
P∈M L P is strictly larger in general than L , so we must subtract something

from it. This problem arises since the meet-spectrum∧M is larger than the maximal
spectrum M. Recall that we denoted by C the complement of M in ∧M, that is,
C = ∧M \ M. If {L(P)}P∈M is a compatible family of local length functions, and
if Q ∈ C, we denote by L(Q) the common localization at Mod(RQ) of all L(P) such
that P ∈ �(Q). In order to state our main theorem, we introduce the following
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Definition 5.3. Given a compatible family L = {L(P)}P∈M of local length func-
tions, we call L ′

L and L ′′
L the maximal sum and the complement sum of L, respec-

tively, where
L ′
L =

∑

P∈M
L(P) , L ′′

L =
∑

Q∈C
(kQ − 1)L(Q).

Using this definition and the notation in it, we have the following

Lemma 5.4. If L = {L(P)}P∈M is a compatible family of local length functions,
then its maximal sum L ′

L and complement sum L ′′
L satisfy the inequality L ′

L ≥ L ′′
L.

Proof. It is enough to prove that, for every ideal I of R, L ′
L(R/I ) ≥ L ′′

L(R/I ). If
I = 0, then all the involved length functions assign value ∞ to R, so the above
inequality is verified. Assume that I �= 0 and let {Q1, · · · , Qm} = ∧Min(I ). The
sets�i = �(Qi ) formapartition of�(I ). Denote byQi the subset of∧M consisting
of the elements containing Qi ; thenQi is a rooted tree with root Qi , which is order-
isomorphic to the meet-spectrum of R�i , and the Qi are disjoint sets. Denoting by
ni the cardinality of �i , we have for each i :

∑

P∈�i

L(P)(RP/IP) = niαi

where αi = L(Qi )(RQi /IQi ), since L(P)(RP/IP) = L(Qi )(RQi /IQi ) for all P ∈ Qi .
Applying Proposition 4.13 to R�i we get:

∑

Q∈Qi \�i

(kQ − 1)L(Q)(RQ/IQ) =
∑

Q∈Qi \�i

(kQ − 1)αi = (ni − 1)αi .

We can now conclude that:

L ′
L(R/I ) =

∑

P∈M
L(P)(RP/IP) =

∑

P∈�(I )

L(P)(RP/IP) =
∑

i

niαi

≥
∑

i

(ni − 1)αi =
∑

Q∈C
(kQ − 1)L(Q)(RQ/IQ) = L ′′

L(R/I ).

�

We can now prove the following result.

Proposition 5.5. Let R be a semilocal Prüfer domain and L = {L(P)}P∈M a com-
patible family of local length functions over Mod(R). Let L ′

L, L ′′
L be the maximal

sum and the complement sum of L, respectively. Then the difference L ′
L − L ′′

L is a
length function.
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Proof. In view of Proposition 2.10, it is enough to prove that, if A is a submodule
of a finitely generated R-module satisfying L ′

L(A) = ∞, then (L ′
L − L ′′

L)(A) =
∞. If there exists a finitely generated submodule F of A such that L ′

L(F) = ∞,
then (L ′

L − L ′′
L)(F) = ∞, hence (L ′

L − L ′′
L)(A) = ∞. Suppose on the contrary that

all the finitely generated submodules F ≤ A satisfy L ′
L(F) < ∞. These finitely

generated modules F are unions of finite chains of submodules with cyclic sections
R/I which satisfy also L ′

L(R/I ) < ∞, since L ′
L(F) is the sum of the lengths of

these sections. Using the notation in the proof of Lemma 5.4 and denoting by N the
number of the maximal ideals of R, we have:

L ′
L(R/I ) =

∑

i

niαi ≤ N
∑

i

αi

hence
L ′
L(R/I ) − L ′′

L(R/I ) =
∑

i

αi ≥ N−1L ′
L(R/I ).

Therefore L ′
L(F) − L ′′

L(F)) ≥ N−1L ′
L(F) for all finitely generated modules F .

Since L ′
L(F) is unbounded, so is L ′

L(F) − L ′′
L(F)). �

In view of Proposition 5.5, we can give the following definition.

Definition 5.6. LetL = {L(P)}P∈M be a compatible family of local length functions
for R. The balanced sum of this family is the length function defined as the difference
LL = L ′

L − L ′′
L.

We can now state our main theorem, which says that the balanced sums of com-
patible families of length functions over a semilocal Prüfer domain R represent all
the length functions L such that L(R) = ∞, and that this representation is unique.
Keeping in mind that the involved local length functions are defined over valuation
domains, hence covered by the classification illustrated in Section3, we obtain an
unambiguous classification.

Theorem 5.7. Let R be a semilocal Prüfer domain. Given a length function L over
R such that L(R) = ∞, there exists a unique compatible family {L(P)}P∈M of local
length functions for R such that L equals their balanced sum, and L(P) coincides
with the localization L P for each P ∈ M.

Proof. First we prove that L coincides with the balanced sum of its localizations
at maximal ideals. So let L = {L P}P∈M and L ′ = L ′

L, L ′′ = L ′′
L. Let I be a non-

zero ideal of R, � = �(I ),∧Min(I ) = {Q1, · · · , Qm} and �i = �(Ii ) for i =
1, · · · , m. By Theorem 4.10 and Lemma 4.1 we get:

R/I ∼=
⊕

1≤i≤m

R�i /I�i .
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First suppose that L(R/I ) = ∞. Then, for some index k, ∞ = L(R�k /I�k ) =
L(RQk /IQk ) = αk , where the last equality follows from Proposition 4.5 applied to
Mod(R�k ). Using the notation in the proof of Lemma 5.4, we get:

L ′(R/I ) =
∑

1≤i≤m

niαi ≥ αk = ∞.

Therefore, by definition, (L ′ − L ′′)(R/I ) = ∞. Suppose now that L(R/I ) < ∞.
Then αi < ∞ for all i and, by additivity and by the proof of Lemma 5.4, we get:

L(R/I ) =
∑

1≤i≤m

L(R�l /I�i ) =
∑

1≤i≤m

αi

=
∑

1≤i≤m

niαi −
∑

1≤i≤m

(ni − 1)αi = (L ′ − L ′′)(R/I ).

The case I = 0 being trivial, since all the involved length functions assume infinite
value on the ground ring, we have proved that L coincides on cyclic modules with
the balanced sum L ′

L − L ′′
L of its localizations at maximal ideals, so they are equal.

In order to prove uniqueness, given a compatible family {L} = {L(P)}P∈M of
local length functions for R such that L = L ′

L − L ′′
L, we must prove that, for every

P ∈ M, L(P) = L P . Let 0 �= I be an ideal of R and let P ∈ �(I ). In order to simplify
notation, let W = RP/IP ; we may assume, without loss of generality, that I = I(P),
so that

√
I is the only minimal prime ideal containing it. Consider the prime ideal:

Q =
∧

P ′∈�(I )

P ′ =
∧

P ′∈�(
√

I )

P ′

which is the smallest element of C containing I . Therefore, if I ≤ N ∈ C and I ≤
P ′ ∈ M, we have:

L(P)(W ) = L(P ′)(WP ′) = L(P∧P ′)(WP∧P ′) = L(N )(WN ) = L(Q)(WQ) = α.

Then we get:

L ′
L(W ) =

∑

P ′∈M
L(P ′)(WP ′) =

∑

P ′∈�(I )

L(P ′)(WP ′) = |�(I )| · α.

On the other hand, we get:

L ′′
L(W ) =

∑

N∈C
(kN − 1)L(N )(WN ) =

∑

N∈C
(kN − 1)α = (|�(I )| − 1) · α
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where the last equality follows by Proposition 4.13 applied to the domain R�(I ). Now,
if L P(W ) = ∞, then∞ = LL(W ) = L ′

L(W ) = |�(I )| · α, so L(P)(W ) = α = ∞.
On the other hand, if L(P)(W ) = α < ∞, then L P(W ) = LL(W ) = L ′

L(W ) −
L ′′
L(W ) = α = L(P)(W ).
In conclusion, since L(P)(RP) = ∞ = L P(RP), the two length functions L P

and L(P) agree on all cyclic RP -modules, hence L P = L(P) is uniquely determined
by L . �

6 Length Functions over Prüfer Domains of Finite
Character

In this section we extend Theorem 5.7 to Prüfer domains of finite character. This
class of rings is of central importance among Prüfer domains; it includes Dedekind
domains (the Noetherian case) and semilocal Prüfer domains. An example of Prüfer
domain of finite character which is neither Dedekind nor semilocal can be found
in [12], while an example of Prüfer (actually, Bézout) domain which fails to be of
finite character is the ring of entire functions investigated by Helmer in [13]. For an
extensive treatment of these domains and their modules we refer to [10].

In order to underline the importance of these domains, it is worth recalling that
Bazzoni proved that their class semigroup is a Clifford semigroup, determining the
idempotents, the constituent groups and the bonding homomorphisms (see [2–4, 8]
and [10, Chapter III, Sections2, 3]). Furthermore, in [14] it was proved, solving a
conjecture posed by Bazzoni in [2], that a Prüfer domain with the property that every
locally finitely generated ideal is finitely generated is, in fact, of finite character.

We will need the following

Lemma 6.1. Let R be a Prüfer domain of finite character and {L(P)}P∈M a family
of compatible local length functions for R. If � ⊆ M, then {L(P)}P∈� is a family of
compatible local length functions for R�.

Proof. The proof follows immediately from the observation that every localization
RP at a maximal ideal P ∈ � coincides with (R�)P . �

Theorem 5.7 can now be extended verbatim to Prüfer domains of finite character,
but the proof of its extension requires some additional argument for the reduction to
the semilocal case.

Theorem 6.2. Let R be a Prüfer domain of finite character. Given a length function
L over R such that L(R) = ∞, there exists a unique compatible family {L(P)}P∈M
of local length functions for R such that L equals their balanced sum, and L(P)

coincides with the localization L P for each P ∈ M.

Proof. First we show that the balanced sum of a compatible family L = {L(P)}P∈M
of length functions over R is still a well defined length function. Write L ′ = L ′

L and
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L ′′ = L ′′
L. Let I be a non-zero ideal of R and set� = �(I ). The elements Q ∈ ∧M

containing I are in finite number, an this subset of ∧M is order-isomorphic to the
meet-spectrum of the semilocal Prüfer domain R�. Denote by E the cyclic module
R/I . Then by Lemma 4.1 we have:

L ′(E) = L ′(E�) =
∑

P∈M
L(P)(EP) =

∑

P∈�

L(P)(EP)

and similarly
L ′′(E) = L ′′(E�) =

∑

I⊆Q∈C
(kQ − 1)L(Q)(EQ).

Now, by Lemma 6.1, {L(P)}P∈� is a family of compatible length functions for R�,
hence we can apply Theorem 5.7 to this semilocal domain, ensuring that L ′(E) ≥
L ′′(E). The analogue for I = 0 is trivial.We can now extend the proof of Proposition
5.5 to the present situation, taking care that finitely generated torsion R-modules B
and their submodules aremodules over a suitable localization of R which is semilocal.
So we deduce that L ′ − L ′′ is a length function.

Now we deal with the existence part. We reduce to the semilocal case, by local-
izing at the finite set of maximal ideals � = �(I ). We have that L(E) = L(E�) =
L�(E�), and L� is a length function over R�, hence by Theorem 5.7 we have

L� =
∑

P∈�

(L�)P −
∑

I⊆Q∈C
(kQ − 1)(L�)Q .

Clearly, the summands (L�)P and (L�)Q in the above equation coincide, respec-
tively, with L P and L Q , so that:

L(E) = (
∑

P∈�

L P −
∑

I⊆Q∈C
(kQ − 1)L Q)(E�)

= (
∑

P∈�

L P −
∑

I⊆Q∈C
(kQ − 1)L Q)(E) = (

∑

P∈M
L P −

∑

Q∈C
(kQ − 1)L Q)(E).

Since {L P}P∈M is a compatible family, and being the case I = 0 trivial, this proves
that L = L {L P }.

The proof of the uniqueness is identical to the one given in Theorem 5.7 for the
semilocal case. �

As an easy consequence of Theorem 6.2, we obtain the characterization of length
functions over h-local Prüfer domains, which extends Theorem 1.1.

Corollary 6.3. Let R be a h-local Prüfer domain and L : Mod(R) → R
∗ a length

function such that L(R) = ∞. Then there exists a unique family {L(P)}P∈M of local
length functions for R such that L = ∑

P∈M L(P), and L(P) coincides with the local-
ization L P of L for each P ∈ M.
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Proof. It is enough to recall that for a h-local domain R, ∧M = M, hence the
balanced sum of {L(P)}P∈M coincides with the usual sum, and the compatibility
condition for a family of local length functions is always trivially satisfied. �

As a natural conclusion of this paper we pose the following:

Problem 6.4. Characterize length functions over arbitrary Prüfer domains.

Acknowledgements We would like to thank the referee for the numerous remarks that improved
the presentation of our paper.
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On Some Arithmetical Properties
of Noetherian Domains

Florian Kainrath

Abstract We give a characterization of those noetherian domains, such that for
all non zero a ∈ R there are only (up to associates) finitely many irreducibles, that
divide some power of a. In turns out, that a necessary condition for that, is that the
integral closure of R is a root extension of R. We also give a description of noetherian
domains with this property.

Keywords Quasi finitely · Generated monoid · Root extension · Associated prime

1 Introduction

Let R be a noetherian domain. For a non-zero non-unit a ∈ R let f (a) ∈ N ∪ {∞}
be the number of essentially different factorizations of a, and N (a) ∈ N ∪ {∞} the
number (up to associates) of irreducibles dividing some power of a. The behaviour
of f (an) as n → ∞ depends on the number N (a) in the following way:

f (an)

{
= Ans + O(ns−1) if N (a) < ∞
� nr for all integers r if N (a) = ∞,

for some A ∈ Q>0 and some s ∈ N (see [6] Theorems 1 and 2). We will give a
description of those R, such that N (a) < ∞ for all a. As we will see, a necessary
condition for that, is that the integral closure R̄ of R is a root extension of R, i.e. for all
x ∈ R̄ there exists somem ∈ N, such that xm ∈ R.Wewill also give a characterization
of noetherian domains having this property. This answers a question, that remained
open in the description of tamely inside factorial, noetherian domains, achieved in
[1] (Corollary 6).
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2 Quasi Finitely Generated Monoids

In this paper amonoid is commutative, cancellative monoid with unit 1.We let Q(H)

be the quotient group of a monoid H , and let H× be its group of units. H is called
reduced, if H× = {1}. The monoid Hred = H/H× is reduced.

Let D be amonoid and H ⊂ D a submonoid. H is called to be saturated in D, if for
all h1, h2 ∈ H we have h1 |H h2 ⇐⇒ h1 |D h2, or equivalently if Q(H) ∩ D = H .

For a subset A of H , let [A]H be the submonoid generated by A in H and let
[[A]]H be the divisor-closed submonoid of H generated by A, i.e. [[A]]H consists
of all h ∈ H dividing some a ∈ [A]H . H is called finitely generated, if H = [A]H
for some finite subset A ⊂ H . H is called quasi finitely generated, if Hred is finitely
generated. Note that this will be so, if and only if every element is a product of
irreducibles and H has (up to associates) only finitely many irreducibles. We call
H locally finitely generated, if for all a ∈ H the monoid [[a]]H := [[{a}]]H is quasi
finitely generated.

An extension H ⊂ D of monoids or rings is called a root extension, if for all
d ∈ D, there is some m ∈ N

+ such that dm ∈ H . The monoid H̃ = {x ∈ Q(H) |
xm ∈ H for some m ∈ N

+} is called the root closure of H . It is contained in the
complete integral closure Ĥ , which consists of all x ∈ Q(H), such that there exists
some c ∈ H with cxn ∈ H for all n ∈ N. If H = R\{0} for some noetherian domain
R, then Ĥ = R̄\{0}, where R̄ is the integral closure of R.

Finally, if R is a domain and a ∈ R\{0}, then let Ra be the ring of fractions {x/an |
x ∈ R and n ∈ N}. Note that [[a]]R (= [[a]]R\{0}) = R ∩ R×

a and Q([[a]]R) = R×
a .

Lemma 1. Let H be a monoid. Then H is quasi finitely generated if and only if Ĥ
is quasi finitely generated, H̃ = Ĥ and Ĥ×/H× is finite.

Proof. Wemay suppose that H is reduced. Suppose first that H is finitely generated.
From Proposition 2.7.11 and Lemma 2.7.12 in [4] we get that H̃ = Ĥ is finitely
generated. It remains to show that H̃× is finite. Clearly it is finitely generated, since
H̃ is so. From the definition of H̃ and H ∩ H̃× = H× = {1} (Lemma 5.4 in [3]) we
get that H̃× is a torsion group and hence is finite.

Conversely, assume that Ĥ = H̃ is quasi finitely generated and that H̃× = Ĥ× is
finite. Then clearly H̃ is finitely generated, which implies that H is finitely generated
by Proposition 6.1 in [3].

Lemma 2. Let R be a noetherian domain and a ∈ R, a �= 0. Then:

1. [̂[a]]R = R×
a ∩ R̄.

2. [̂[a]]R is a saturated submonoid of [[a]]R̄ .
3. [̂[a]]R is quasi finitely generated.

Proof. (1) and (2) follow from Lemma 3.6 in [5].
(3) follows now from (2) and Propositions 2.7.5.1 and 2.7.8.3 in [4].
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Theorem 1. Let R be a noetherian domain. Then the following are equivalent:

1. R\{0} is locally finitely generated.
2. R ⊂ R̄ is a root extension and for all a ∈ R\{0} the group (R×

a ∩ R̄×)/R× is
finite.

If R̄ is a finitely generated R-module, then the second condition in (2) is equivalent
to the finiteness of the group R̄×/R×.

Proof. We have
R̄\{0} =

⋃
a∈R\{0}

R×
a ∩ R̄ =

⋃
a∈R\{0}

[̂[a]]R .

Hence the extension R ⊂ R̄ is a root extension if and only if this holds for [[a]]R ⊂
[̂[a]]R for all a ∈ R\{0}. Now the equivalence of 1. and 2. follows from Lemma 1.

Suppose now that R̄ is a finitely generated R-module. For all a ∈ R\{0} we
have (R×

a ∩ R̄×)/R× ⊂ R̄×/R×. So the finiteness of R̄×/R× implies the finiteness
of (R×

a ∩ R̄×)/R× for all a ∈ R\{0}. Conversely, let us assume that all the groups
(R×

a ∩ R̄×)/R× (a ∈ R\{0}) are finite. Since R̄ is a finitely generated R-module,
there exists some a ∈ R\{0} such that a R̄ ⊂ R. Then we have R̄a = Ra and hence
R×
a ∩ R̄× = R̄×, so that R̄×/R× is finite.

3 Root Extensions of Noetherian Rings

Let R be a (commutative) ring. For a prime ideal p of R we let k(p) be its residue
field. If R ⊂ S is any extension ring of R and if there is only one prime ideal of
S lying over p, we denote this prime by pS . For any R-module M we denote by
AssR(M) the set of prime ideals associated to M . If p is any prime ideal of R we
denote by Rp the ring of fractions (R\p)−1R.

The aim of this section is to prove the following theorem:

Theorem 2. Let R be a noetherian ring and R ⊂ S an integral extension of R. Then
R ⊂ S is a root extension if and only if the following holds:

1. The induced map Spec(S) → Spec(R) is one to one (and hence bijective).
2. For any p ∈ AssR(S/R) we have either k(p) is an algebraic extension of a finite

field or char(k(p)) > 0 and k(pS) is purely inseparable over k(p).

For the proof of this theorem we need a series of lemmas.

Lemma 3. Let R ⊂ S be a root extension of rings. Then the inducedmapSpec(S) →
Spec(R) is one to one.

Proof. Let R ⊂ S be a root extension of rings and let p ∈ Spec(R). Choose any
q ∈ Spec(S) lying over p. Then q = {x ∈ S | xn ∈ p for some n ∈ N}, so that q is
uniquely determined.
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Lemma 4. Let R ⊂ S be a root extension of rings and let T ⊂ R be multiplicatively
closed and let I be an ideal of S. Then the extensions T−1R ⊂ T−1S and R/(I∩R) ⊂
S/I are root extension, too. In particular for any prime ideal p of R the extension
k(p) ⊂ k(pS) is a root extension.

Proof. This is obvious.

Lemma 5. Let k ⊂ k ′ be an algebraic extension of fields. Then it is a root extension
if and only if either k is an algebraic extension of a finite field or the extension is
purely inseparable.

Proof. This is well known. See for example Proposition 3.6 in [2].

In the next two Lemmas we consider an extension R ⊂ S such that R and S are
local and noetherian. We denote by m resp. mS the maximal ideal of R resp. S. We
assume further that S is a finitely generated R-module and that AssR(S/R) = {m}.
In particular R �= S. Note that S/R is an R-module of finite length, and hence is
annihilated by some power ofm. Therefore there is some integer n such thatmnS⊂R.
Further mS is the unique prime ideal of S containing mS. Hence

√
mS = mS . Since

S is noetherian, there is some integer k such that mk
S ⊂ mS. We choose k minimal

with this property. Putting these two inclusions together, we obtain mkn
S ⊂ R. Note

that 1 + m ⊂ R× and 1 + mS ⊂ 1 + mS ⊂ S× are subgroups and that we have two
exact sequences of abelian groups

1 −→ 1 + mS

1 + m
−→ S×/R× −→ k(mS)

×/k(m)× −→ 1 (1)

1 −→ 1 + mS

1 + m
−→ 1 + mS

1 + m
−→ 1 + mS

1 + mS
−→ 1 . (2)

Lemma 6. The group (1 + mS)/(1 + m) is a torsion group, if and only if m = mS

or char(k(m)) > 0.

Proof. To begin with let I ⊂ J ⊂ mS be two ideals of S such that J 2 ⊂ I . Then the
map x �→ 1 + x induces an isomorphismof abelian groups J/I → (1 + J )/(1 + I ).
Applying this toml+1

S ⊂ ml
S for l=1, . . . , k, we see that the group (1+mS)/(1+mk

S)

has a finite filtration, whose quotients are vector spaces over k(m). Hence (1 +
mS)/(1 + mk

S) is a torsion group if char(k(m)) > 0.
Next consider the group (1 + mS)/(1 + mS). Suppose that it is a non-trivial tor-

sion group. Then mS �= mS. Hence k ≥ 2. Then (1 + mk−1
S )/(1 + mk−1

S ∩ mS) ∼=
(1 + mk−1

S )(1 + mS)/(1 + mS) is a non-trivial subgroupof (1 + mS)/(1 + mS). But
aswe have seen above (1 + mk−1

S )/(1 + mk−1
S ∩ mS) is isomorphic tomk−1

S /(mk−1
S ∩

mS), which is a non-trivial vector space over k(m). Hence char(k(m)) > 0. Con-
versely suppose that char(k(m)) > 0.Thenwealreadyknow that (1 + mS)/(1 + mk

S)

is a torsion group. Sincemk
S ⊂ mS our group (1 + mS)/(1 + mS) is a homomorphic

image of (1 + mS)/(1 + mk
S). Hence it is a torsion group, too. Putting our observa-

tions together, we obtain, that (1 + mS)/(1 + mS) is a torsion group if and only if
either mS = mS or char(k(m)) > 0.
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For any integer l letUl be the image of 1 + ml+1S in (1 + mS)/(1 + m). Then the
Ul form a filtration of (1 + mS)/(1 + m), whose quotients are again vector spaces
over k(m) (see Lemma 2.3 in [7]). Since mnS ⊂ R this filtration is finite. So we
obtain that (1 + mS)/(1 + m) is a torsion group if and only if either m = mS or
char(k(m)) > 0.

The assertion of the Lemma follows now from the exact sequence (2).

Lemma 7. R ⊂ S is a root extension, if and only if either k(m) is an algebraic
extension of a finite field or char k(m) > 0 and the extension of fields k(m) ⊂ k(mS)

is purely inseparable.

Proof. Frommkn
S ⊂ R and S = mS ∪ S× we conclude that R ⊂ S is a root extension

if and only if S×/R× is a torsion group. Now the exact sequence (1) tells us, that this
will be so if and only if k(m) ⊂ k(mS) is a root extension and (1 + mS)/(1 + m) is
a torsion group. Since R �= S we have k(m) �= k(mS) if m = mS . Now the assertion
of the lemma follows from Lemmas 5 to 6.

Lemma 8. Let R ⊂ S be any non-trivial extension of rings and let T ⊂ R be the
set of all non-zero divisors of the R-module S/R. Then R ⊂ S is a root extension if
and only if T−1R ⊂ T−1S is a root extension.

Proof. By Lemma 4 we need only show that R ⊂ S is a root extension if T−1R ⊂
T−1S is one. So let us assume that T−1R ⊂ T−1S is a root extension and let s ∈ S.
Then there exists some r ∈ R, t ∈ T and an integer n ≥ 1 such that sn/1 = r/t ∈
T−1S. Hence t ′tsn ∈ R for some t ′ ∈ T . By definition of T this implies sn ∈ R.

We are now in the position to prove Theorem 2.

Proof. (Proof of Theorem 2) Let R ⊂ S be as in the statement of the Theorem. Let
Σ be the set of all R-subalgebras of S, which are finitely generated R-modules.
Then S is a root extension of R if and only if every member of Σ is so. Further
we have AssR(S/R) = ⋃

AssR(S′/R) where S′ ranges over Σ . We may therefore
assume that S is a finitely generated R-module. By Lemma 3 we may further assume
that Spec(S) → Spec(R) is one to one. This implies that Spec(S) → Spec(R′),
Spec(R′) → Spec(R) are one to one, too, for any intermediate ring R′ of R ⊂ S.

Suppose first that R ⊂ S is a root extension and let p ∈ AssR(S/R). From
Lemmas 4 to 5 we already know that either k(p) is an algebraic extension of
a finite field or k(p) ⊂ k(pS) is purely inseparable. So we are left to show that
char(k(p)) > 0. Let q be any minimal member of AssR(S/R) contained in p.
Then we have an epimorphism R/q → R/p. So if char(k(q)) = char(R/q) > 0
then char(k(p)) = char(R/p) > 0, too. Therefore we suppose that p is minimal in
AssR(S/R). Then we have AssRp (Sp/Rp) = {pRp}. After replacing R and S by Rp

and Sp we may assume that R and S are local and p is the maximal ideal of R. Now
we are in the situation of Lemma 7, which in particular tells us that char(k(p)) > 0.

Next assume that for all p ∈ AssR(S/R) either k(p) is an algebraic extension of
a finite field or k(p) ⊂ k(pS) is purely inseparable. Choose any minimal member
p of AssR(S/R) and let R′ = {x ∈ S | sx ∈ R for some s ∈ R\p} (= Rp ∩ S) be
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the p-primary component of R in S. Then R′ is a subring of S containing R, and
we have AssR(R′/R) = AssR(S/R)\{p} and AssR(S/R′) = {p}. By Proposition 9.
A in [8] we have {p} = AssR(S/R′) = {q ∩ R | q ∈ AssR′(S/R′)}. It follows, that
AssR′(S/R′) = {pR′ }. Hence using an induction on the cardinality of AssR(S/R),
we reduce to the case that AssR(S/R) = {p}.

Set T = R\p. Then T consists exactly of the non-zero divisors of S/R. By
Lemma 8 we may replace R ⊂ S by T−1R ⊂ T−1S. But now Lemma 7 shows
us that R ⊂ S is a root extension.
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Spectral Spaces Versus Distributive
Lattices: A Dictionary

Henri Lombardi

Abstract The category of distributive lattices is, in classical mathematics, anti-
equivalent to the category of spectral spaces. We give here some examples and a
short dictionary for this antiequivalence. We propose a translation of several abstract
theorems (in classical mathematics) into constructive ones, even in the case where
points of a spectral space have no clear constructive content.

Keywords Distributive lattice · Spectral space · Constructive mathematics · Krull
dimension · Zariski lattice · Zariski spectrum · Real spectrum · Valuative
spectrum · Lying over · Going up · Going down

Introduction

This paper is written in Bishop’s style of constructive mathematics [3, 4, 6, 17,
22]. We give a short dictionary between classical and constructive mathematics w.r.t.
properties of spectral spaces and of the associated dual distributive lattices. We give
several examples of how this works.

1 Distributive Lattices and Spectral Spaces: Some General
Facts
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1.1 The Seminal Paper by Stone

In classical mathematics, a prime ideal p of a distributive lattice T �= 1 is an ideal
whose complement f is a filter (a prime filter). The quotient lattice T/(p = 0, f = 1)
is isomorphic to 2. Giving a prime ideal of T is the same thing as giving a lattice
morphism T→ 2. We will write θp : T→ 2 the morphism corresponding to p.

If S is a system of generators for a distributive lattice T, a prime ideal p of T is
characterised by its trace p ∩ S (cf. [7]).

The (Zariski) spectrum of the distributive lattice T is the set SpecT whose ele-
ments are prime ideals of T, with the following topology: an open basis is provided

by the subsets DT(a)
def= { p ∈ SpecT | a /∈ p } = {

p | θp(a) = 1
}
. One has

DT(a ∧ b) = DT(a) ∩DT(b), DT(0) = ∅,
DT(a ∨ b) = DT(a) ∪DT(b), DT(1) = SpecT.

}
(1)

The complement ofDT(a) is a basic closed set denoted byVT(a). This notation

is extended to I ⊆ T: we let VT(I )
def= ⋂

x∈I VT(x). If I is the ideal generated by
I , one has VT(I ) = VT(I). The closed set VT(I ) is also called the subvariety of
Spec T defined by I .

The adherence of a point p ∈ Spec T is provided by all q ⊇ p. Maximal ideals
are the closed points of Spec T. The spectrum Spec T is empty iff 0 = T1.

The spectrum of a distributive lattice is the paradigmatic example of a spectral
space. Spectral spaces can be characterised as the topological spaces satisfying the
following properties:

• the space is quasi-compact,1

• every open set is a union of quasi-compact open sets,
• the intersection of two quasi-compact open sets is a quasi-compact open set,
• for two distinct points, there is an open set containing one of them but not the
other,

• every irreducible closed set is the adherence of a point.

The quasi-compact open sets then form a distributive lattice, the supremum and
the infimum being the union and the intersection, respectively. A continuous map
between spectral spaces is said to be spectral if the inverse image of every quasi-
compact open set is a quasi-compact open set.

Stone’s fundamental result [23] can be stated as follows. The category of distribu-
tive lattice is, in classical mathematics, antiequivalent to the category of spectral
spaces.

Here is how this works.

1. The quasi-compact open sets ofSpec T are exactly the DT(u)’s.
2. The map u �→ DT(u) is well-defined and it is an isomorphism of distributive

lattices.

1The nowadays standard terminology is quasi-compact, as in Bourbaki and Stacks, rather than
compact.
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In the other direction, if X is a spectral space we letOqc(X) be the distributive lattice
formed by its quasi-compact open sets. If ξ : X → Y is a spectral map, the map

Oqc(ξ) : Oqc(Y )→ Oqc(X), U �→ ξ−1(U )

is a morphism of distributive lattices. This defines Oqc as a contravariant functor.

Johnstone calls coherent spaces the spectral spaces [16]. Balbes and Dwinger [1]
give them the name Stone space. The name spectral space is given by Hochster in a
famous paper [15] where he proves that all spectral spaces can be obtained as Zariski
spectra of commutative rings.

In constructivemathematics, spectral spacesmay have no points. So it is necessary
to translate the classical stuff about spectral spaces into a constructive rewriting about
distributive lattices. It is remarkable that all useful spectral spaces in the literature
correspond to simple distributive lattices.

Two other natural spectral topologies can be defined on Spec T by changing the
definition of basic open sets. When one chooses the V(a)’s as basic open sets, one
gets the spectral space corresponding to T◦ (obtained by reversing the order). When
one chooses Boolean combinations of the D(a)’s as basic open sets one gets the
constructible topology (also called the patch topology). This spectral space can be
defined as the spectrum of Bo(T) (the Boolean algebra generated by T).

1.1.1 Spectral Subspaces Versus Quotient Lattices

Theorem 1. (Subspectral spaces) Let T′ be a quotient lattice of T and π : T→ T′
the quotient morphism. Let us write X ′ = SpecT′, X = SpecT and π� : X ′ → X
the dual map of π .

1. π� identifies X ′ with a topological subspace of X. Moreover Oqc(X ′) ={
U ∩ X ′ |U ∈ Oqc(X)

}
. We say that X ′ is a subspectral space of X.

2. A subset X ′ of X is a subspectral space of X if and only if
– the induced topology by X on X ′ is spectral and
– Oqc(X ′) = {

U ∩ X ′ |U ∈ Oqc(X)
}
.

3. A subset X ′ of X is a subspectral space if and only if it is closed for the patch
topology.

4. If Z is an arbitrary subset of X = SpecT, its adherence for the patch topology
is given by X ′ = SpecT′, where T′ is the quotient lattice of T defined by the
following preorder �:

a � b ⇐⇒ (DT(a) ∩ Z) ⊆ (DT(b) ∩ Z). (2)
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1.1.2 Gluing Distributive Lattices and Spectral Subspaces

Let (x1, . . . , xn) be a system of comaximal elements in a commutative ring A. Then
the canonical morphismA→∏

i∈�1..n� A[1/xi ] identifiesAwith a finite subproduct
of localisations of A.

Similarly a distributive lattice can be recovered from a finite number of good
quotient lattices.

Definition 1. Let T be a distributive lattice and (ai )i∈�1..n� (resp. (fi )i∈�1..n�) a finite
family of ideals (resp. of filters) ofT.We say that the idealsai cover T if

⋂
i ai = { 0 }.

Similarly we say that the filters fi cover T if
⋂

i fi = { 1 }.
Let b be an ideal of T; we write x ≡ y mod b as meaning x ≡ y mod (b = 0).

Let us recall that for s ∈ T the quotientT/(s = 0) is isomorphic to the principal filter
↑s (one sees this filter as a distributive lattice with s as 0 element).

Fact 1. Let T be a distributive lattice, (ai )i∈�1..n� a finite family of principal ideals
(ai = ↓si ) and a =⋂

i ai .

1. If (xi ) is a family in T s.t. for each i, j one has xi ≡ x j mod ai ∨ a j , then there
exists a unique x modulo a satisfying: x ≡ xi mod ai (i ∈ �1..n�).

2. Let us write Ti = T/(ai = 0), Ti j = T j i = T/(ai ∨ a j = 0), πi : T→ Ti and
πi j : Ti → Ti j the canonical maps. If the ideals ai cover T, the system
(T, (πi )i∈�1..n�) is the inverse limit of the diagram

((Ti )1≤i≤n, (Ti j )1≤i< j≤n; (πi j )1≤i �= j≤n).

3. The analogous result works with quotients by principal filters.

T
πk

π j
πi

Ti

πi j

πik T j
π j iπ jk

Tkπki

πk j

Ti j Tik T jk

We have also a gluing procedure described in the following proposition.2

Proposition 1. (Gluing distributive lattices) Let I be a finite set and a diagram of
distributive lattices

(
(Ti )i∈I , (Ti j )i< j∈I , (Ti jk)i< j<k∈I ; (πi j )i �= j , (πi jk)i< j, j �=k �=i

)

and a family of elements (si j )i �= j∈I ∈∏
i �= j∈I Ti satisfying the following properties:

2In commutative algebra, a similar procedure works for A-modules [17, XV-4.4]. But in order to
glue commutative rings, it is necessary to pass to the category of Grothendieck schemes.
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• the diagram is commutative,
• if i �= j , πi j is a quotient morphism w.r.t. the ideal ↓si j ,
• if i , j , k are distinct, πi j (sik) = π j i (s jk) and πi jk is a quotient morphism w.r.t. the
ideal ↓π i j (sik).

Ti

πi j

πik T j
π j iπ jk

Tkπki

πk j

Ti j

πi jk

Tik

πik j

T jk

π jki

Ti jk

Let
(
T ; (πi )i∈I

)
be the limit of the diagram. Then there exist si ’s in T such that the

principal ideals ↓si cover T and the diagram is isomorphic to the one in Fact 1.
More precisely each πi is a quotient morphism w.r.t. the ideal ↓si and πi (s j ) = si j
for all i �= j .
The analogous result works with quotients by principal filters.

Remark 1. The reader can translate the previous result in gluing of spectral spaces.

1.1.3 Heitmann Lattice and J-Spectrum

An ideal m of a distributive lattice T is maximal when T/(m = 0) � 2, i.e. if 1 /∈ m
and ∀x ∈ T (x ∈ m or ∃y ∈ m x ∨ y = 1).

In classical mathematics we have the following result.

Lemma 1. The intersection of all maximal ideals containing an ideal J is called the
Jacobson radical of J and is equal to

JT(J) = { a ∈ T | ∀x ∈ T (a ∨ x = 1⇒ ∃z ∈ J z ∨ x = 1) } . (3)

We write JT(b) for JT(↓b). The ideal JT(0) is the Jacobson radical of T.

In constructive mathematics, equality (3) is used as definition.
TheHeitmann lattice of T, denoted byHe(T), is the quotient of T corresponding

to the following preorder �He(T):

a �He(T) b
def⇐⇒ JT(a) ⊆ JT(b) ⇐⇒ a ∈ JT(b). (4)

Elements of He(T) can be identified with ideals JT(a), via the canonical map

T −→ He(T), a �−→ JT(a).

The next definition follows the remarkable paper by Heitmann [14].
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Definition 2. Let T be a distributive lattice.

1. The maximal spectrum of T, denoted by MaxT, is the topological subspace of
SpecT provided by the maximal ideals of T.

2. The j-spectrum of T, denoted by jspecT, is the topological subspace of SpecT
provided by the primes p s.t. JT(p) = p, i.e. the prime ideals p which are inter-
sections of maximal ideals.

3. The Heitmann J-spectrum of T, denoted by JspecT, is the adherence ofMaxT
in SpecT for the patch topology. It is a spectral subspace of SpecT.

4. The minimal spectrum of T, denoted by MinT, is the topological subspace of
SpecT provided by minimal primes of T.

In general, MaxT, jspecT and MinT are not spectral spaces.

Theorem 2. JspecT is a spectral subspace of SpecT canonically homeomorphic
to Spec (He(T)).

1.2 Distributive Lattices and Entailment Relations

A particularly important rule for distributive lattices, known as cut, is

(
x ∧ a � b

)
&

(
a � x ∨ b

) =⇒ a � b. (5)

For A ∈ Pfe(T) (finitely enumerated subsets of T) we write

∨
A :=∨

x∈A x and
∧

A :=∧
x∈A x .

We denote by A � B or A �T B the relation defined as follows over the set Pfe(T):

A � B
def⇐⇒

∧
A �

∨
B.

This relation satisfies the following axioms, in which we write x for {x} and A, B
for A ∪ B:

a � a (R)

A � B =⇒ A, A′ � B, B ′ (M)

(A, x � B) & (A � B, x) =⇒ A � B (T ).

We say that the relation is reflexive, monotone and transitive. The third rule (transi-
tivity) can be seen as a version of rule (5) and is also called the cut rule.

Definition 3. For an arbitrary set S, a relation over Pfe(S) which is reflexive, mono-
tone and transitive is called an entailment relation.
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The following theorem is fundamental. It says that the three properties of entail-
ment relations are exactly what is needed for the interpretation in the form of a
distributive lattice to be adequate.

Theorem 3. (Fundamental theorem of entailment relations) [7], [17, XI-5.3], [21,
Satz 7] Let S be a set with an entailment relation �S on Pfe(S). We consider the
distributive lattice T defined by generators and relations as follows: the generators
are the elements of S and the relations are

A �T B

each time that A �S B. Then, for all A, B in Pfe(S), we have

A �T B =⇒ A �S B.

2 Spectral Spaces in Algebra

The usual spectral spaces in algebra are (always?) understood as spectra of distribu-
tive lattices associated to coherent theories describing relevant algebraic structures.
We describe this general situation and give some examples.

2.1 Dynamical Algebraic Structures, Distributive Lattices
and Spectra

References: [13, 20]. The paper [13] introduces the general notion of “dynamical the-
ory” and of “dynamical proof”. See also the paper [2] which illustrates the usefulness
of these notions.

2.1.1 Dynamical Theories and Dynamical Algebraic Structures

Dynamical theories are a version “without logic, purely computational” of coherent
theories (we say theory for “first order formal theory”).

Dynamical theories use only dynamical rules, i.e. deduction rules of the form

� � ∃y1 �1 or · · · or ∃ym �m,

where � and the �i ’s are lists of atomic formulae in the language L of the theory
T = (L,A).
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The computational meaning of “∃y �” is “Introduce y such that �”. The
computational meaning of “U or V orW” is “open three branches of computations
…”.

Axioms (elements of A) are dynamical rules and theorems are valid dynamical
rules (validity is described in a simpleway and uses only a computationalmachinery).

A dynamical algebraic structure for a dynamical theory T is given through a
presentation (G, R) by generators and relations. Generators are the element of G
and they are added to the constants in the language. Relations are the elements of R.
They are dynamical rules without free variables and they are added to the axioms of
the theory.

A dynamical algebraic structure is intuitively thought of as an incompletely spec-
ified algebraic structure. The notion corresponds to lazy evaluation in Computer
Algebra.

Purely equational algebraic structures correspond to the case where the only pred-
icate is equality and the axioms are Horn rules.

Dynamical theories whose axioms contain neither or nor ∃ are called Horn
theories (algebraic theories in [13]). For example, theories of absolutely flat rings
and of pp-rings can be given as Horn theories.

A coherent theory is a first order geometric theory. In non-first order geometric
theories we accept dynamical rules that use infinite disjunctions at the right of �. In
this paper we speak only of first order geometric theories.

A fundamental result about dynamical theories says that adding the classical first
order logic to a dynamical theory does not change valid rules: first order classical
mathematic is conservative over dynamical theories [13, Theorem 1.1].

2.1.2 Distributive Lattices Associated to a Dynamical Algebraic
Structure

Let A = (
(G, R),T

)
be a dynamical algebraic structure for T = (L,A).

• First example. If P(x, y) belongs to L and if Clt is the set of closed terms of A,
we get the following entailment relation �A,P for Clt × Clt:

(a1, b1), . . . , (an, bn) �A,P (c1, d1), . . . , (cm, dm)
def⇐⇒

P(a1, b1), . . . , P(an, bn) �A P(c1, d1) or . . . or P(cm, dm).
(6)

Intuitively the distributive latticeTgenerated by this entailment relation represents
the “truth values” of P in the dynamical algebraic structure A. In fact to give an
element α : T→ 2 of SpecT amounts to giving the value � (resp. ⊥) to P(a, b)
when α(a, b) = 1 (resp. α(a, b) = 0).
• Second example, the Zariski lattice of a commutative ring. LetAl be a dynam-
ical theory of nontrivial local rings, e.g. with signature

( · = 0,U(·) ; · + ·, · × ·,− ·, 0, 1 ).
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This is an extension of the purely equational theory of commutative rings. The pred-
icate U(x) is defined as meaning the invertibility of x ,

• U(x) � ∃y xy = 1 • xy = 1 � U(x)

and the axioms of nontrivial local rings are written as

AL U(x + y) � U(x) or U(y) • U(0) � ⊥
The Zariski lattice ZarA of a commutative ring A is defined as the distributive

lattice generated by the entailment relation �ZarA for A defined as

a1, . . . , an �ZarA c1, . . . , cm
def⇐⇒

U(a1), . . . , U(an) �Al (A) U(c1) or . . . or U(cm).
(7)

Here Al (A) is the dynamical algebraic structure of type Al over A.
We get the following equivalence (we call it a formal Nullstellensatz):

a1, . . . , an �ZarA c1, . . . , cm ⇐⇒ ∃k > 0 (a1 · · · an)k ∈ 〈c1, . . . , cm〉 .

So, ZarA can be identified with the set of ideals DA(x) = A

√〈
x
〉
, with DA(j1) ∧

DA(j2) = DA(j1j2) and DA(j1) ∨ DA(j2) = DA(j1 + j2).
Now, the usual Zariski spectrum Spec A is canonically homeomorphic to

Spec (ZarA). Indeed, to give a point of Spec A (a prime ideal) amounts to giving
an epimorphism A→ B where B is a local ring, or also, that is the same thing, to
giving a minimal model of Al (A). This corresponds to the intuition of “forcing the
ring to be a local ring”.

•More generally.Let us consider a set S of closed atomic formulae of the dynamical
algebraic structure A = (

(G, R),T
)
. We define a corresponding entailment relation

(with the Ai ’s and Bj ’s in S):

A1, . . . , An �A,S B1, . . . , Bm
def⇐⇒

A1, . . . , An �A B1 or . . . or Bm .
(8)

We may denote by Zar(A, S) this distributive lattice.

•Points of a spectrum and models in classical mathematics.With agoodchoice of
predicates in the language, to give a point of the spectrum of the corresponding lat-
tice amounts often to giving a minimal model of the dynamical algebraic structure.
This is the case when all existence axioms in the theory imply unique existence.
The topology of the spectrum is in any case strongly dependent on the choice of
predicates.
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• The complete Zarisiki lattice of a dynamical algebraic structure A is defined
by choosing for S the set Clat(A) of all closed atomic formulas of A. When the
theory has no existential axioms, this lattice corresponds to the entailment relation
forClat(A) generated by the axioms of T , replacing the variables by arbitrary closed
terms of A.

2.2 A Very Simple Case

Let T be a Horn theory. Any dynamical algebraic structureA = ((G, R),T ) of type
T defines an ordinary algebraic structure B and there is no significant difference
between dynamical algebraic structures and ordinary algebraic structures.

Theminimalmodels ofA are (identifiedwith) the quotient structuresC = B/∼. If
we choose convenient predicates for defining a distributive lattice associated toB, the
points of the corresponding spectrum are (identified with) these quotient structures.

For example, in the case of the purely equational theory T =Mod A (the theory
of modules over a fixed ring A), and choosing the predicate x = 0 (or the predicate
x �= 0), we get the lattice generated by the following entailment relation for an A-
module M :

• x1 = 0, . . . , xn = 0 � y1 = 0 or . . . or ym = 0,

or by

• y1 �= 0, . . . , ym �= 0 � x1 �= 0 or . . . or xn �= 0,

which means “one y j is in the submodule 〈x1, . . . , xn〉” (formal Nullstellensatz for
linear algebra).

Here the points of the spectrum are (identified with) submodules of M and a basic
open (or a basic closed) set D(a) is the set of submodules containing a.

It might be that these kinds of lattices and spectra are too simple to lead to
interesting results in algebra.

2.3 The Real Spectrum of a Commutative Ring

The real spectrum SperA of a commutative ring corresponds to the intuition of
“forcing the ring A to be an ordered (discrete3)” field.

A point of SperA can be given as an epimorphism ϕ : A→ K, where (K,C)

is an ordered field.4 Moreover two such morphisms ϕ : A→ K and ϕ′ : A→ K′
define the same point of the spectrum if there exists an isomorphism of ordered
fields ψ : K→ K′ making the suitable diagram commutative.

3We ask the order relation to be decidable.
4C is the cone of nonnegative elements.
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We write “x ≥ 0” the predicate overA corresponding to “ϕ(x) ≥ 0 inK”. We get
the following axioms:

• � x2 ≥ 0
• x ≥ 0, y ≥ 0 � x + y ≥ 0
• x ≥ 0, y ≥ 0 � xy ≥ 0

• −1 ≥ 0 � ⊥
• −xy ≥ 0 � x ≥ 0 or y ≥ 0

This means that { x ∈ A | x ≥ 0 } is a prime cone: to give a model of this theory
is the same thing as to give a point of SperA.

In order to get the usual topology of SperA, it is necessary to use the opposite
predicate x < 0. For the sake of comfort, we take x > 0. This predicate satisfies the
dual axioms to those for −x ≥ 0:

• −x2 > 0 � ⊥
• x + y > 0 � x > 0 or y > 0
• xy > 0 � x > 0 or −y > 0

• � 1 > 0
• x > 0, y > 0 � xy > 0

So the real lattice of A, denoted by Real(A), is the distributive lattice generated
by the minimal entailment relation for A satisfying the following relations (we write
R(a) instead of a):

• R(−x2) �
• R(x + y) � R(x),R(y)
• R(xy) � R(x),R(−y)

• � R(1)
• R(x),R(y) � R(xy)

So Spec (RealA) is isomorphic to SperA, viewed as the set of prime cones of
A. The spectral topology admits the basis of open sets

R(a1, . . . , an) =
{
c ∈ SperA |&n

i=1 − ai /∈ c
}
.

This approach to the real spectrum was proposed in [7].
An important point is the following formal Positivstellensatz.

Theorem 4. (Formal Positivstellensatz for ordered fields) T.F.A.E.

1. We have R(x1), . . . ,R(xk) � R(a1), . . . ,R(an) in the lattice RealA.
2. We have x1 > 0, . . . , xk > 0 � a1 > 0 or . . . or an > 0 in the theory of

ordered fields over A.
3. We have x1 > 0, . . . , xk > 0, a1 ≤ 0, . . . , an ≤ 0 � ⊥ in the theory of ordered

fields over A.
4. We have an equality s + p = 0 in A, with s in the monoid generated by the xi ’s

and p in the cone generated by the xi ’s and the −a j ’s.
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2.4 Linear Spectrum of a Lattice-Group

The theory of lattice-groups, denoted by Lgr , is a purely equational theory over the
signature (· = 0; · + ·,−·, · ∨ ·, 0). The following rules express that∨ defines a join
semilattice and the compatibility of ∨ with +:
sdt1 � x ∨ x = x
sdt2 � x ∨ y = y ∨ x

sdt3 � (x ∨ y) ∨ z = x ∨ (y ∨ z)
grl � x + (y ∨ z) = (x + y) ∨ (x + z)

We get the theory Liog by adding to Lgr the axiom � x ≥ 0 or −x ≥ 0.
The linear spectrum of an �-group � corresponds to the intuition of “forcing

the group to be linearly ordered”. So a point of this spectrum can be given as a
minimal model of the dynamical algebraic structure Liog (�), or equivalently by a
linearly ordered group G quotient of �, or as the kernel H of the canonical mor-
phism π : � → G. This subgroup H is a prime solid subgroup of �.

The linear lattice of�, denoted byLiog(�), is generated by the entailment relation
for � defined in the following way:

a1, . . . , an �Liog� b1, . . . , bm
def⇐⇒

a1 ≥ 0, . . . , an ≥ 0 �Liog� b1 ≥ 0 or . . . or bm ≥ 0.

The spectral space previously defined is (isomorphic to) Spec (Liog�). We have a
formal Positivstellensatz for this entailment relation (m, n �= 0).

a1, . . . , an �Liog(�) b1, . . . , bm ⇐⇒ ∃k > 0 (b−1 ∧ . . . ∧ b−m) ≤ k(a−1 ∨ . . . ∨ a−n ).

2.5 Valuative Spectrum of a Commutative Ring

The valuative spectrum SpevA of a commutative ring corresponds to the intuition
of “forcing the ring to be a valued field”. A point of this spectrum is given by an
epimorphism ϕ : A→ K where (K,V) is a valued field.5 Moreover two such mor-
phisms ϕ : A→ K and ϕ′ : A→ K′ define the same point of the spectrum if there
exists an isomorphism of valued fields ψ : K→ K′ making the suitable diagram
commutative.

We denote by x | y the predicate over A× A corresponding to “ϕ(x) divides6

ϕ(y) in K”. We get the following axioms:

5V is a valuation ring of K.
6That is, ∃z ∈ V zϕ(x) = ϕ(y).
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• � 1 | 0
• � −1 | 1
• a | b � ac | bc
• � a | b or b | a

• 0 | 1 � ⊥
• a | b, b | c � a | c
• a | b, a | c � a | b + c
• ax | bx � a | b or 0 | x

Any predicate x | y overA× A satisfying these axioms defines a point inSpevA.
Sowedefine the valuative latticeofA, denotedbyVal(A) as generated by theminimal
entailment relation for A× A satisfying the following relations:

• � (1, 0)
• � (−1, 1)
• (a, b) � (ac, bc)
• � (a, b), (b, a)

• (0, 1) �
• (a, b), (b, c) � (a, c)
• (a, b), (a, c) � (a, b + c)
• (ax, bx) � (a, b), (0, x)

The two spectral spaces Spec (ValA) and SpevA can be identified. The spec-
tral topology of Spec (ValA) is generated by the basic open sets U

(
(a, b)) =

{ϕ ∈ SpevA |ϕ(a) |ϕ(b) } .
We have a formal Valuativstellensatz.

Theorem 5. (Formal Valuativstellensatz for valued fields) Let A be a commutative
ring, t.f.a.e.

1. One has (a1, b1), . . . , (an, bn) � (c1, d1), . . . , (cm, dm) in the lattice ValA.
2. Introducing indeterminates xi ’s (i ∈ �1..n�) and y j ’s ( j ∈ �1..m�) we have in the

ring A[x, y] an equality

d
(
1+

∑m

j=1 y j Pj (x, y)
) ∈ 〈

(xiai − bi )i∈�1..n�, (y jd j − c j ) j∈�1..m�

〉
,

where d is in the monoid generated by the d j ’s and the Pj (x1, . . . , xn, y1,
. . . , ym)’s are in Z[x, y].

2.6 Heitmann Lattice and J-Spectrum of a Commutative Ring

In a commutative ring the Jacobson radical of an ideal J denoted by JA(J) is defined
in classical mathematics as the intersection of the maximal ideals containing J. In
constructive mathematics we use the classically equivalent definition

JA(J)
def= { x ∈ A | ∀y ∈ A, 1+ xy is invertible modulo J } . (9)

We write JA(x1, . . . , xn) for JA(〈x1, . . . , xn〉). The ideal JA(0) is called the Jacobson
radical of A.
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The Heitmann lattice of A is He(ZarA), denoted by HeitA; it is a quotient of
ZarA. In fact HeitA can be identified with the set of ideals JA(x1, . . . , xn), with
JA(j1) ∧ JA(j2) = JA(j1j2) and JA(j1) ∨ JA(j2) = JA(j1 + j2).

We denote by Jspec(A) the spectral spaceSpec (HeitA). In classical mathemat-
ics it is the adherence (for the patch topology) of the maximal spectrum in Spec A.
We call it the (Heitmann) J-spectrum ofA. It is a subspectral space ofSpec A. When
A is Noetherian, Jspec(A) coincides with the subspace jspec(A) of Spec A made
of the prime ideals which are intersections of maximal ideals.

Remark. JA(x1, . . . , xn) is a radical ideal but not generally the nilradical of a finitely
generated ideal. �

3 A Short Dictionary

References: [1, Theorem IV-2.6], [7, 11].
In this section we consider the following context: f : T→ T′ is a morphism of

distributive lattices and Spec ( f ), denoted by f � : X ′ = SpecT′ → X = SpecT,
is the dual morphism.

3.1 Properties of Morphisms

Theorem 6. ([1, Theorem IV-2.6]) In classical mathematics we have the following
equivalences:

1. f � is onto ( f is lying over)⇐⇒ f is injective⇐⇒ f is a monomorphism⇐⇒
f � is an epimorphism.

2. f is an epimorphism⇐⇒ f � is a monomorphism⇐⇒ f � is injective.
3. f is onto7⇐⇒ f � is an isomorphism on its image, which is a subspectral space

of X.

There are bijective morphisms of spectral spaces that are not isomorphisms. For
example, the morphism Spec (Bo(T))→ SpecT is rarely an isomorphism and the
lattice morphism T→ Bo(T) is an injective epimorphism which is rarely onto.

Lemma 2. Let S be a system of generators for T. The morphism f is lying over if
and only if for all a1, . . . , an, b1, . . . , bm ∈ S we have

f (a1), . . . , f (an) �T′ f (b1), . . . , f (bm) ⇒ a1, . . . , an �T b1, . . . , bm .

Proposition 2. (Going up vs. lying over) In classical mathematics t.f.a.e. (see [11]):

1. For each prime ideal q of T′ and p = f −1(q), the morphism f ′ : T/(p = 0)→
T′/(q = 0) is lying over.

7In other words, f is a quotient morphism.
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2. For each ideal I of T′ and J := f −1(I ), the morphism fI : T/(J = 0)→
T′/(I = 0) is lying over.

3. For each y ∈ T′ and J = f −1(↓ y), themorphism fy : T/(J = 0)→ T′/(y = 0)
is lying over.

4. For each a, c ∈ T and y ∈ T′ we have

f (a) �T′ f (c), y =⇒ ∃x ∈ T a �T c, x and f ( j) ≤T′ x .

Theorem 7. In classical mathematics we have the following equivalences [11]:

1. f is going up⇐⇒ for each a, c ∈ T and y ∈ T′ we have

f (a) ≤ f (c) ∨ y ⇒ ∃x ∈ T (a ≤ c ∨ x and f (x) ≤ y).

2. f is going down⇐⇒ for each a, c ∈ T and y ∈ T′ we have

f (a) ≥ f (c) ∧ y ⇒ ∃x ∈ T (a ≥ c ∧ x and f (x) ≥ y).

3. f has the property of incomparability⇐⇒ f is zero-dimensional.8

Theorem 8. In classical mathematics t.f.a.e.

1. Spec ( f ) is an open map.
2. There exists a map f̃ : T′ → T with the following properties:

(a) For c ∈ T and b ∈ T′, one has b ≤ f (c)⇔ f̃ (b) ≤ c.
In particular, b ≤ f ( f̃ (b)) and f̃ (b1 ∨ b2) = f̃ (b1) ∨ f̃ (b2).

(b) For a, c ∈ T and b ∈ T′, one has f (a) ∧ b ≤ f (c)⇔ a ∧ f̃ (b) ≤ c.
(c) For a ∈ T and b ∈ T′, one has f̃ ( f (a) ∧ b) = a ∧ f̃ (b).
(d) For a ∈ T, one has f̃ ( f (a)) = f̃ (1) ∧ a.

3. There exists a map f̃ : T′ → T satisfying property 2b.
4. For b ∈ T the g.l.b.

∧

b≤ f (c)
c exists, and if we write it f̃ (b), the property 2b holds.

For this result in locales’ theory see [5, Section1.6]. We give now a proof for
spectral spaces. Implications concerning item 1 need classical mathematics. The
other equivalences are constructive.

Lemma 3. Let f : A→ A′ be a nondecreasing map between ordered sets (A,≤)

and (A′,≤′) and b ∈ A′. An element b1 ∈ A satisfies the equivalence

∀x ∈ A ( b ≤′ f (x) ⇐⇒ b1 ≤ x )

8See Theorem 10.
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if and only if

• on the one hand b ≤′ f (b1),
• and on the other hand b1 =∧

x :b≤′ f (x) x.

In particular, if b1 exists, it is uniquely determined.

Proof. If b1 satisfies the equivalence, one has b ≤′ f (b1) since b1 ≤ b1. If z ∈ A sat-
isfies the implication ∀x ∈ A (b ≤′ f (x)⇒ z ≤ x), we get z ≤ b1 since b ≤′ f (b1).
So when b1 satisfies the equivalence it is the maximum of Sb

def= ⋂
b≤′ f (x) ↓ x ⊆ A,

i.e. the g.l.b. of
{
x ∈ A | b ≤′ f (x) }

. Conversely, if such a g.l.b. b1 exists, it sat-
isfies the implication ∀x ∈ A (b ≤′ f (x)⇒ b1 ≤ x) since b1 ∈ Sb. Moreover, if
b ≤′ f (b1)wehave the converse implication∀x ∈ A (b1 ≤ x ⇒ b ≤′ f (x))because
if b1 ≤ x then b ≤′ f (b1) ≤′ f (x).
Proof of Theorem 8. 3⇒ 2. The property 2a is the particular case of 2b with a = 1.
The property 2d is the particular case of 2c with b = 1. It remains to see that 2b
implies 2c. Indeed

f̃ ( f (a) ∧ b) =
∧

c: f (a)∧b≤ f (c)
c (Lemma 3)

=
∧

c:a∧ f̃ (b)≤c c (item 2b)

= a ∧ f̃ (b)

1 ⇒ 3. We assume the map f � : SpecT′ → SpecT to be open. If b ∈ T′, the
quasi-compact open set DT′(b) = B has as image a quasi-compact open set of T,
written as f �(B) = DT(̃b) for a unique b̃ ∈ T. We write b̃ = f̃ (b) and we get a map
f̃ : T′ → T.
It remains to see that item 2b is satisfied. For a, c ∈ T let us write A = DT(a),

C = DT(c) and g = f �. We have to prove the equivalence 2b, written as

g−1(A) ∩B ⊆ g−1(C) ⇐⇒ A ∩ g(B) ⊆ C.

For the direct implication, we consider an x ∈ B such that g(x) ∈ A. We have to
show that g(x) ∈ C. But x ∈ g−1(A) ∩B, so x ∈ g−1(C), i.e. g(x) ∈ C.

For the converse implication, we transform the r.h.s. by g−1. This operation
respects inclusion and intersection. We get g−1(A) ∩ g−1(g(B)) ⊆ g−1(C) and we
conclude by noticing that B ⊆ g−1(g(B)).

2⇒ 1. We show that f �(DT′(b)) = DT( f̃ (b)).
First we show f �(DT′(b)) ⊆ DT( f̃ (b)). Let p′ ∈ SpecT′ with b /∈ p′ and let

p = f �(p′) = f −1(p′).

If one had f̃ (b) ∈ p one would have f ( f̃ (b)) ∈ f (p) ⊆ p′ and since b ≤ f ( f̃ (b)),
b ∈ p′. So we have p ∈ DT( f̃ (b)).



Spectral Spaces Versus Distributive Lattices: A Dictionary 239

For the reverse inclusion, let us consider a p ∈ DT( f̃ (b)). As f̃ is nondecreasing
and respects ∨, the inverse image q = f̃ −1(p) is an ideal.

We have b /∈ q because if b ∈ q we have f̃ (b) ∈ f̃ ( f̃ −1(p)) ⊆ p.
If y ∈ q then f̃ (y) = z ∈ p so y ≤ f (z) for a z ∈ p (item 2a). Conversely if y ≤ f (z)
for a z ∈ p, then f̃ (y) ≤ f̃ ( f (z)) ≤ z (item 2d), so f̃ (y) ∈ p. So we get

q = f̃ −1(p) = {
y ∈ T′ | ∃z ∈ p y ≤ f (z)

}
.

So f −1(q) = { x ∈ T | ∃z ∈ p f (x) ≤ f (z) }. But f (x) ≤ f (z) is equivalent to x ∧
f̃ (1) ≤ z (item2bwith b = 1).Moreover f̃ (1) /∈ p since f̃ (b) ≤ f̃ (1) and f̃ (b) /∈ p.
So

f −1(q) = {
x ∈ T

∣∣ ∃z ∈ p x ∧ f̃ (1) ≤ z
} = {

x ∈ T
∣∣ x ∧ f̃ (1) ∈ p

} = p.

Nevertheless it is possible that q be not a prime ideal. In this case let us consider an
ideal q′ which is maximal among those satisfying f −1(q′) = p and f̃ (b) /∈ q′. We
want to show that q′ is prime. Assumewe have y1 and y2 ∈ T′ \ q′ such that y = y1 ∧
y2 ∈ q′. By maximality there is an element zi ∈ T \ p such that f (zi ) is in the ideal
generated by q′ and yi (i = 1, 2), i.e. f (zi ) ≤ xi ∨ yi with xi ∈ q′. Taking z = z1 ∧ z2
(it is in T \ p) and x = x1 ∨ x2 we get f (zi ) ≤ x ∨ yi and f (z) = f (z1) ∧ f (z2) ≤
x ∨ yi , so f (z) ≤ x ∨ y ∈ q′, and finally z ∈ f −1(q′) = p: a contradiction.
4⇔ 3. Use Lemma 3 by noticing that 2b implies 2a.

3.2 Dimension Properties

Theorem 9. (Dimension of spaces, see [12, 18], [17, Chapter XIII]) In classical
mathematics t.f.a.e.

1. The spectral space Spec (T) is of Krull dimension ≤ n (with the meaning of
chains of primes).

2. For each sequence (x0, . . . , xn) in T there exists a complementary sequence
(y0, . . . , yn), which means

1 � yn, xn
yn, xn � yn−1, xn−1

...
...

...

y1, x1 � y0, x0
y0, x0 � 0

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(10)

For example, for the dimension n ≤ 2, the inequalities in (10) correspond to the
following diagram in T:
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1

x2 y2
•
•

x1 y1
•
•

x0 y0

0

A zero-dimensional distributive lattice is a Boolean algebra.

Theorem 10. (Dimension of morphisms, see [11], [17, Section XIII-7]) Let T ⊆ T′
and f be the inclusion morphism. In classical mathematics t.f.a.e.

1. The morphism Spec ( f ) : Spec (T′)→ Spec (T) has Krull dimension ≤ n.
2. For any sequence (x0, . . . , xn) in T′ there exists an integer k ≥ 0 and elements

a1, . . . , ak ∈ T such that for each partition (H, H ′) of {1, . . . , k}, there exist
y0, . . . , yn ∈ T′ such that

∧
j∈H ′ a j � yn, xn
yn, xn � yn−1, xn−1

...
...

...

y1, x1 � y0, x0
y0, x0 � ∨

j∈H a j

(11)

For example, for the relative dimension n ≤ 2, the inequalities in (11) correspond to
the following diagram in T, with u =∧

j∈H ′ a j and i =∨
j∈H a j :

•
u

x2 y2
•
•

x1 y1
•
•

x0 y0
i
•

Note that the dimension of the morphism T→ T′ is less than or equal to the
dimension of T′: take k = 0 in item 2.
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The Krull dimension of a ringA and of a morphism ϕ : A→ B are those of ZarA
and Zar ϕ.

A commutative ringA is zero-dimensional when for each a ∈ A there exist n ∈ N

and x ∈ A such that xn(1− xa) = 0. A reduced zero-dimensional ring9 is a ring in
which any element a has a quasi-inverse b = a•, i.e. such that aba = a and bab = b.

Let A• the reduced zero-dimensional ring generated by A. Then the Krull dimen-
sion of a morphism ρ : A→ B equals the Krull dimension of the ring A• ⊗A B.

3.3 Properties of Spaces

The spectral space Spec T is said to be normal if any prime ideal of T is contained
in a unique maximal ideal.

Theorem 11. We have the following equivalences:

1. The spectral space Spec (T) is normal⇐⇒
for each x ∨ y = 1 in T there exist a, b such that a ∨ x = b ∨ y = 1 and
a ∧ b = 0.

2. In the spectral space Spec (T) each quasi-compact open set is a finite union of
irreducible quasi-compact open sets⇐⇒
the distributive lattice T is constructed from a dynamical algebraic structure
where all axioms are Horn rules (e.g. this is the case for purely equational theo-
ries).

4 Some Examples

Wegive in this section constructive versions of classical theorems.Often, the theorem
has exactly the same wording as the classical one. But now, these theorems have a
clear computational content, which was impossible when using classical definitions.
Sometimes the new theorem is stronger than the previously known classical results
(e.g. Theorems 17 or 18 or 19).

4.1 Relative Dimension, Lying Over, Going Up, Going Down

See [11] and [17, Section XIII-9].

Theorem 12. Let ρ : A→ B be a morphism of commutative rings or distributive
lattices. If Kdim A ≤ m and Kdim ρ ≤ n, then Kdim B ≤ (m + 1)(n + 1)− 1.

9Such a ring is also called absolutely flat or von Neumann regular.
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Theorem 13. If a morphism α : A→ B of distributive lattices or of commutative
rings is lying over and going up (or lying over and going down) one has Kdim(A) ≤
Kdim(B).

Lemma 4. Let ρ : A→ B be amorphism of commutative rings. IfB is generated by
primitively algebraic elements10 overA, thenKdim ρ ≤ 0 and soKdimB ≤ KdimA.

Lemma 5. Let ϕ : A→ B be a morphism of commutative rings. The morphism ϕ

is lying over if and only if for each ideal a of A and each x ∈ A, one has ϕ(x) ∈
ϕ(a)B ⇒ x ∈ A

√
a.

Lemma 6. Let ϕ : A→ B be a morphism of commutative rings. T.F.A.E.

1. The morphism ϕ is going up (i.e. the morphism Zar ϕ is going up).
2. For any ideal b of B, with a = ϕ−1(b), the morphism ϕb : A/a→ B/b is lying

over.
3. The same thing with finitely generated ideals b.
4. (In classical mathematics) the same thing with prime ideals.

Lemma 7. Let A ⊆ B be a faithfully flat A-algebra. The morphism A→ B is lying
over and going up. So Kdim A ≤ Kdim B.

Lemma 8. (A classical going up) Let A ⊆ B be commutative rings with B inte-
gral over A. Then the morphism A→ B is lying over and going up. So Kdim A ≤
Kdim B.

Lemma 9. Let ϕ : A→ B be a morphism of commutative rings. T.F.A.E.

1. The morphism ϕ is going down.

2. For b, a1, …, aq ∈ A and y ∈ B such that ϕ(b)y ∈ B

√〈
ϕ(a1, . . . , aq)

〉
, there exist

x1, …, xp ∈ A such that

〈
bx1, . . . , bxp

〉 ⊆ A

√〈
a1, . . . , aq

〉
and y ∈ B

√〈
ϕ(x1), . . . , ϕ(xp)

〉
.

3. (In classical mathematics) for each prime ideal p of B with q = ϕ−1(p) the mor-
phism Aq → Bp is lying over.

Theorem 14. (Going down) Let A ⊆ B be commutative rings. The inclusion mor-
phism A→ B is going down in the following cases:

1. B is flat over A.
2. B is a domain integral over A, and A is integrally closed.

10An element of B is said to be primitively algebraic over A if it annihilates a polynomial in A[X ]
whose coefficients are comaximal.
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4.2 Kronecker, Forster–Swan, Serre and Bass Theorems

References: [8, 9] and [17, Chapter XIV].

Theorem 15. (Kronecker–Heitmann theorem, with Krull dimension, without
Noetherianity)

1. Let n ≥ 0. If KdimA < n and b1, …, bn ∈ A, there exist x1, …, xn such that for
all a ∈ A, DA(a, b1, . . . , bn) = DA(b1 + ax1, . . . , bn + axn).

2. Consequently in a ring with Krull dimension ≤ n, every finitely generated ideal
has the same nilradical as an ideal generated by at most n + 1 elements.

For a commutative ring A we define JdimA (J-dimension of A) as being
Kdim(HeitA). In classical mathematics it is the dimension of the Heitmann
J-spectrum Jspec(A).

Another dimension, called Heitmann dimension and denoted by Hdim(A), has
been introduced in [8, 9]. One has always Hdim(A) ≤ Jdim(A) ≤ Kdim(A). The
following results with Jdim hold also for Hdim.

Definition 4. A ring A is said to have stable range (of Bass) less than or equal
to n when unimodular vectors of length n + 1 may be shortened in the following
meaning:

1 ∈ 〈a, a1, . . . , an〉 =⇒ ∃ x1, . . . , xn, 1 ∈ 〈a1 + x1a, . . . , an + xna〉 .

Theorem 16. (Bass–Heitmann Theorem, without Noetherianity) Let n ≥ 0. If
JdimA < n, then A has stable range ≤ n. In particular each stably free A-module
of rank ≥ n is free.

A matrix is said to be of rank ≥ k when the minors of size k are comaximal.

Theorem 17. (Serre’s Splitting Off theorem, for Jdim)
Let k ≥ 1 and M be a projectiveA-module of rank≥ k, ormore generally isomorphic
to the image of a matrix of rank ≥ k.
Assume that JdimA < k. Then M � N ⊕ A for a suitable module N isomorphic to
the image of a matrix of rank ≥ k − 1.

Corollary 1. LetA be a ring such that JdimA ≤ h and M be anA-module isomor-
phic to the image of a matrix of rank ≥ h + s. Then M has a direct summand which
is a free submodule of rang s. Precisely, if M is the image of a matrix F ∈ An×m of
rank≥ h + s, one has M = N ⊕ L where L is a direct summand that is free of rank
s in An, and N the image of a matrix of rank ≥ h.

In the following theorem we use the notion of finitely generated module locally
generated by k elements. In classical mathematics this means that after localisa-
tion at any maximal ideal, M is generated by k elements. A classically equivalent
constructive definition is that the k-th Fitting ideal of M is equal to 〈1〉.
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Theorem 18. (Forster–Swan theorem for Jdim) If JdimA ≤ k and if theA-module
M = 〈y1, . . . , yk+r+s〉 is locally generated by r elements, then it is generated by
k + r elements: one can compute z1, . . . , zk+r in 〈yk+r+1, . . . , yk+r+s〉 such that M
is generated by (y1 + z1, . . . , yk+r + zk+r ).

Theorem 19. (Bass’ cancellation theorem, with Jdim)
Let M be a finitely generated projective A-module of rank ≥ k. If JdimA < k, then
M is cancellative for every finitely generated projective A-module. That is, if Q is
finitely generated projective and M ⊕ Q � N ⊕ Q, then M � N.

Theorems 17, 18 and 19 were conjectured by Heitmann in [14] (he proved these
theorems for the Krull dimension without Noetherianity assumption).

4.3 Other Results Concerning Krull Dimension

In [17] TheoremXII-6.2 gives the following important characterisation.An integrally
closed coherent ringA of Krull dimension at most 1 is a Prüfer domain.This explains
in a constructive way the nowadays classical definition of Dedekind domains as
Noetherian, integrally closed domains of Krull dimension 1, and the fact that, from
this definition, in classical mathematics, one is able to prove that finitely generated
nonzero ideals are invertible.

In [17, Chapter XVI] there is a constructive proof of the Lequain–Simis theorem.
This proof uses the Krull dimension.

In [24, Section2.6] we find the following new result, with a constructive proof.
If A is a ring of Krull dimension≤ d, then the stably free modules of rank > d over
A[X ] are free.
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Valuative Marot Rings

Thomas G. Lucas

Abstract For a commutative ring R with total quotient ring T (R), R is said to be
valuative if for each nonzero t ∈ T (R) at least one of the extensions R ⊆ R[t] and
R ⊆ R[(R : t)] has no proper intermediate rings. There areweak and strong versions:
R is weakly valuative if for each pair s, t ∈ T (R)\{0} such that st ∈ R, at least one
of R ⊆ R[t] and R ⊆ R[s] has no proper intermediate rings; R is strongly valuative
if for each nonzero t ∈ T (R) at least one of the extensions R ⊆ R[(R : (R : t))]
and R ⊆ R[(R : t)] has no proper intermediate rings. There are weakly valuative
rings that are not valuative, and valuative rings that are not strongly valuative. In the
special case that R is a Marot ring (each regular ideal can be generated by a set of
regular elements), R is weakly valuative if and only if it is strongly valuative. Also
a valuative Marot ring has at most three regular maximal ideals.

Keywords Marot ring · Minimal extension · Valuative domain · Valuative ring
Subject Classifications [2100] Primary 13B99 · 13A15; Secondary 13G05 ·
13B21

1 Introduction

Throughout this article, R denotes a commutative ring with nonzero identity. Also
we use Z(R) to denote the set of zero divisors of R, T (R) to denote the total quotient
ring of R, and R′ to denote the integral closure of R in T (R).We have T (R) = {a/b |
a, b ∈ R with b ∈ R\Z(R)}. The set Reg(R) = R\Z(R) denotes the set of regular
elements of R and an (fractional) ideal is regular if it contains a regular element of
R (of T (R)). Also, RMax(R) denotes the set of regular maximal ideals of R. We
will concentrate on those R that are Marot rings, meaning each regular ideal can
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be generated by a set of regular elements. A related (stronger) condition is that of
a weakly additively regular ring: R is weakly additively regular if for each pair of
elements f, g ∈ R with f regular, there are elements s, t ∈ R such that gs + f t is
regular and s R + f R = R.

An R-module J ⊆ T (R) is an R-fractional ideal if there is a regular element
r ∈ R such that r J ⊆ R. Also, we use the standard notation of (R : J ) to denote the
set {t ∈ T (R) | t J ⊆ R} and (R :R J ) = (R : J ) ∩ R (so the same as {r ∈ R | r J ⊆
R}). In the case R is aMarot ring and J is an R-fractional ideal that contains a regular
element, then J can be generated by regular elements (see Lemma 2.1 below).

As in [13], we say that R is a weakly valuative if for each pair of nonzero elements
x, y ∈ T (R) such that xy ∈ R, at least one of R ⊆ R[x] and R ⊆ R[y] has no proper
intermediate rings. Also R is valuative if for each nonzero x ∈ T (R) at least one
of R ⊆ R[x] and R ⊆ R[(R : x)] has no proper intermediate rings. Finally, R is
strongly valuative if for each nonzero x ∈ T (R) at least one of R ⊆ R[(R : (R :
x))] and R ⊆ R[(R : x)] has no proper intermediate rings. An alternate (equivalent)
definition for weakly valuative is that for each x ∈ T (R), either R ⊆ R[x] has no
proper intermediate rings or for each y ∈ (R : x), the extension R ⊆ R[y] has no
proper intermediate rings. See [3] for a more general notion between comparable
pairs of rings S ⊆ T .

Clearly a strongly valuative ring is valuative and a valuative ring is weakly valua-
tive, but there are valuative rings that are not strongly valuative and weakly valuative
rings that are not valuative [13, Examples 1.5–1.8]. However, if R is integrally closed
in T (R), then it is weakly valuative if and only if it is strongly valuative [3, Theorem
2.15]. More recently, it has been shown that if R is a weakly additively regular ring,
then it isweakly valuative if and only if it is strongly valuative (see [13, Theorem3.13]
for the case that R is not integrally closed).

A valuative domain has at most three maximal ideals [1, Theorem2.2] and at most
two when it is not integrally closed [1, Theorem6.2]. Similarly a weakly additively
regular weakly valuative ring has at most three regular maximal ideals and at most
two when it is not integrally closed [13, Theorem3.9], but in both cases it may
have infinitely many maximal ideals that are not regular. Also an integrally closed
valuative Marot ring has at most three regular maximal ideals [13, Theorem2.10].
Below we show that a weakly valuative Marot ring that is not integrally closed has
at most two regular maximal ideals (see Theorem 3.1).

Several results in [1] characterize when an integral domain is valuative. In particu-
lar, [1, Theorem3.7] covers the case that R is integrally closed, [1, Theorems5.2 and
5.10] is for when R has a unique maximal ideal and is not integrally closed and [1,
Theorem6.2] is for the case R has exactly two maximal ideals and is not integrally
closed. In [13], each of these results was extended to weakly additively regular rings,
specifically [13, Theorem3.5], [13, Theorem3.13], and [13, Theorem3.17], respec-
tively. Below we give the analogous results for Marot rings: Theorem 2.17 (the same
as [13, Theorem2.10] cited in the previous paragraph), Theorems 3.4 and 3.7.

If R � R[t] is a minimal extension for some t ∈ T \R (i.e., there are no proper
intermediate rings), then M = √

(R :R t) is a maximal ideal of R (see, for example,
[2]). Themaximal ideal M is referred to as the crucial maximal ideal of the extension
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(see, for example, [5, Page 804]).When dealingwith a specific ring extension R � T ,
if there is an element s ∈ T \R such that N = √

(R :R s) is a maximal ideal of R,
then, as in [3], we refer to N as a maximal T -radical ideal of R (no matter whether
the extension R � R[s] is minimal or not). It is known that if R is weakly valuative,
then there are at most three maximal T (R)-radical ideals in R [3, Theorem5.4]. The
ring R in [13, Example1.9] shows that even if a ring is strongly valuative, it can have
infinitely many regular maximal ideals.

For a prime ideal P of R, R[P] = {t ∈ T (R) | ts ∈ R for some s ∈ R\P} and
R(P) = {t ∈ T (R) | ts ∈ R for some s ∈ Reg(R)\P}. The latter is the same ring
as RH where H = Reg(R)\P . If P is not regular, then Reg(R) ∩ P = ∅ and so
R(P) = T (R) in this case. There are different types of extensions of ideals to a ring
of the type R[P]. For example, one may consider the simple extension I R[P] and the
potentially larger extension [I ]R[P] = {t ∈ T (R) | ts ∈ I for some s ∈ R\P} (for
example, [I ]R[P] = R[P] for each ideal I that is not contained in P , but I R[P] is
a proper ideal if I ⊆ Z(R)). In contrast, I R(P) = {t ∈ T (R) | ts ∈ I for some s ∈
Reg(R)\P}. If R is a Marot ring and P is regular, then R[P] = R(P)

[14, Proposition 6]. Also in this case, if J is a regular ideal, then J R[P] = [J ]R[P],
with J R[P] = R[P] if J is not contained in P .

Recall that a ring R together with a prime ideal P is a valuation pair of T (R) if for
each t ∈ T (R)\R, there is a p ∈ P such that tp ∈ R\P (see, for example, [9, Page
25]). Corresponding to a valuation pair (R, P) is a totally ordered additive Abelian
group G and a surjective map v : T (R) → G ∪ {∞} (with g < ∞ for all g ∈ G)
such that (i) v(ab) = v(a) + v(b), (ii) v(a + b) ≥ min{v(a), v(b)}, (iii) v(1) = 0
and v(0) = ∞, and (iv) R = {t ∈ T (R) | v(t) ≥ 0} and P = {t ∈ T (R) | v(t) > 0}.
A related weaker notion is that of a mock valuation ring meaning that R is such that
T (R)\R is multiplicatively closed [3]. While there are mock valuation rings that are
not valuation rings, if R is a Marot ring, it is a mock valuation ring if and only if it
has a unique regular maximal ideal M and M is such that (R, M) is a valuation pair
of T (R) (see [9, Theorem 7.7] and its proof). Also R is a Prüfer ring if each finitely
generated regular ideal is invertible. This is equivalent to having (R[M], [M]R[M]) a
valuation pair for each (regular) maximal ideal M [7, Theorem13].

2 Preliminary Results

Let P be a prime ideal of a ring R and let S be a proper overring of R. Then
we let S(P) = {t ∈ T (R) | bt ∈ S for some b ∈ Reg(R)\P} and S[P] = {t ∈ T (R) |
bt ∈ S for some b ∈ R\P}. As with R(P) and R[P], if P is not a regular ideal of R,
then S(P) = T (R) = S[P].

Lemma 2.1. Let R be a Marot ring.

1. Each regular R-fractional ideal can be generated by a set of regular elements.
2. If P is a regular prime ideal and I is a regular ideal, then I R[P] = [I ]R[P].
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Proof. Let J be a regular R-fractional ideal. Then there is a regular element r ∈ R
such that r J ⊆ R. Since R is Marot, there is a set of regular elements X in r J that
generates r J as an (integral) ideal of R. The set r−1X is a set of regular elements in
J that generate J as an R-fractional ideal.

Next suppose P is a regular prime ideal of R and let I be a regular ideal. If I is not
contained in P , then theMarot property guarantees the existence of a regular element
m ∈ I\P . Clearly m is a unit of R[P] and thus [I ]R[P] ⊆ R[P] = m R[P] ⊆ I R[P].
On the other hand if I is contained in P , we at least know that I R[P] ⊆ [I ]R[I ].
For the reverse containment let q ∈ [I ]R[P]. Then there is an element r ∈ R\P
such that rq ∈ I . We also have a regular element p ∈ R such that pq ∈ R and
a regular element b ∈ I . The ideal J = r R + pbR is a regular ideal contained in
(R :R q) but not in P . Since R is Marot, J is generated by its regular elements, so
there is a regular element x ∈ J\P . As xq ∈ I and x is a unit of R[P], q ∈ I R[P]
as desired. �

Lemma 2.2. Let M be a regular maximal ideal of a ring R and let S be a ring such
that R ⊆ S ⊆ T (R).

1. M R[M] is a maximal ideal of R[M], (R[M])[M R[M]] = R[M] and RM = (R[M])M R[M] .
2. (S[M])[M R[M]] = S[M] and SM = (S[M])M R[M] .
3. If R is a Marot ring, then S[M] = S(M).

Proof. Let q ∈ R[M]\M R[M]. Then there is an element r ∈ R\M such that qr ∈ R.
If qr /∈ M , then there are elements a ∈ R\M and n ∈ M such that qra + n = 1.
Clearly both qra and n are in q R[M] + M R[M]. Thus q R[M] + M R[M] = R[M]. In
contrast, if qr ∈ M for each such r ∈ R\M , then for a given r we have elements
c ∈ R\M and m ∈ M such that cr + m = 1 which puts q = crq + mq ∈ M R[M], a
contradiction. Hence M R[M] is a maximal ideal of R[M].

For (2) and the rest of (1), start with an element i ∈ (S[M])[M R[M]]. Then there is
an element j ∈ R[M]\M R[M] such that i j ∈ S[M]. We have elements k, m ∈ R\M
such that k j ∈ R\M and mji ∈ S. Also mk ji ∈ S with mk j ∈ R\M . Thus i ∈ S[M].
Hence (S[M])[M R[M]] = S[M] and (R[M])[M R[M]] = R[M].

To see that SM = (S[M])M R[M] , suppose c/d ∈ (S[M])M R[M] with c ∈ S and d ∈
R[M]\M R[M]. Then we have elements x, y ∈ R\M such that xc ∈ S and yd ∈ R.
We also have xy, xyd ∈ R\M and xyc ∈ S. Hence c/d = xyc/xyd ∈ SM . Thus
SM = (S[M])M R[M] and RM = (R[M])M R[M] .

For (3), assume R is Marot and let q ∈ S[M]. Then there is an element t ∈ R\M
such that qt ∈ S. We also have a regular element r ∈ R such that qr ∈ R. Thus the
(integral) ideal (S :R q) is a regular ideal of R that is not contained in M . Since R is
Marot, there is a regular element x ∈ (S :R q)\M . As qx ∈ S, q ∈ S(M). �

A more general version of the following lemma appears in [3].

Lemma 2.3. (cf. [3, Lemma 2.6]) Let R � S be a minimal extension with corre-
sponding crucial maximal ideal M ∈ RMax(R) and S ⊆ T (R). Then R[M] � S[M]
is also a minimal extension.
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For each M ∈ Max(R), R(M) is a regular ring of quotients of R (inside T (R)) and
thus R′

(M) is the integral closure, (R(M))
′, of R(M) in T (R).

Next we provide a pair of statements equivalent to saying that the integral closure
of R is a Prüfer ring. These (and the corollary that follows) will be used to show that
the integral closure of a weakly valuative Marot ring is a Prüfer ring.

Theorem 2.4. Let R be a ring with integral closure R′ � R. Then the following are
equivalent:

1. R′ is a Prüfer ring.
2. R′

(M) is a Prüfer ring for each M ∈ RMax(R).
3. For each M ∈ RMax(R), the integral closure of R(M) is a Prüfer ring.

Proof. If R′ is a Prüfer ring, then each ring between R′ and T (R) is also a Prüfer
ring. Hence R′

(M) is a Prüfer ring for each M ∈ RMax(R). Thus (1) implies (2).
The equivalence of (2) and (3) follows from the fact that R′

(M) is the integral
closure of R(M) for each M ∈ RMax(R).

To complete the proof we show (2) implies (1).
Let N ′ be a regular maximal ideal of R′. Then N = N ′ ∩ R is a regular maximal

ideal of R. The ideal Q = N ′ R′
(N ) is a regular maximal ideal of S = R′

(N ). A proof
similar to that used to establish statement (2) in Lemma 2.2 shows that S[Q] = R′

[N ′]
and [Q]S[Q] = [N ′]R′

[N ′].
Since R′

(P) is a Prüfer ring for each P ∈ RMax(R), (R′
[M ′], [M ′]R′

[M ′]]) is a valu-
ation pair for each M ′ ∈ RMax(R′). Therefore R′ is a Prüfer ring. �

As a corollary we have the following special case.

Corollary 2.5. Let R be a ring that is not integrally closed. If there is a unique
(regular) maximal ideal M such that the integral closure of R(M) is a Prüfer ring
and (R(N ), N R(N )) is a Prüfer valuation ring for all other N ∈ RMax(R) (if any),
then the integral closure of R is a Prüfer ring.

We will make use of the following lemma in the proofs of Theorems 2.7 and 3.7.

Lemma 2.6. Let R and S be rings with R � S ⊆ T (R). Then S = ⋂{S(M) | M ∈
RMax(R)} = ⋂{S[M] | M ∈ RMax(R)}.
Proof. The usual conductor argument shows that S = ⋂{S(N ) | N ∈ Max(R)} =⋂{S[N ] | N ∈ Max(R)}. Since S(N ) = S[N ] = T (R) for all N ∈ Max(R)\RMax(R),
we also have S = ⋂{S(M) | M ∈ RMax(R)} = ⋂{S[M] | M ∈ RMax(R)}. �

Theorem 2.7. Let R and S be rings with R � S ⊆ T (R).

1. The following are equivalent:

a. R � S is a minimal extension.
b. There is a regular maximal ideal M of R such that RM � SM is minimal and

RN = SN for all other regular maximal ideals N ∈ RMax(R)\{M} (if any).
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c. There is a regular maximal ideal M of R such that R[M] � S[M] is minimal
and R[N ] = S[N ] for all other regular maximal ideals N ∈ RMax(R)\{M} (if
any).

2. If R is a Marot ring, then R � S is a minimal extension if and only if there is a
regular maximal ideal M of R such that R(M) � S(M) is minimal and R(N ) = S(N )

for all other regular maximal ideals N ∈ RMax(R)\{M} (if any).

Proof. To start, if P is a prime ideal of R, then RP = SP if and only if R[P] = S[P]. To
see this first suppose RP = SP and letq ∈ S[P]. Then bydefinition, there is an element
r ∈ R\P such that qr ∈ S. From the equality RP = SP we then have an element
t ∈ R\P such that qrt ∈ R and it follows that q ∈ R[P]. Similarly, if R[P] = S[P]
and x/y ∈ SP with x ∈ S and y ∈ R\P , then there is an element z ∈ R\P such that
zx ∈ R and it follows that x/y = zx/zy ∈ RP .

To establish the equivalence of (a) and (b) in (1), we note that from [6, Lemme 1.2
and Théorème 2.2], RM � SM is minimal for some (necessarily regular) maximal
ideal M ∈ Max(R) and RP = SP for all other prime ideals P ∈ Spec(R) when R �

S is a minimal extension, so certainly RN = SN for all regular maximal ideals N ∈
RMax(R)\{M}.

An observation in [2, Pages 1092 and 1093] is that if there is a maximal ideal
N ∈ Max(R) such that RN � SN isminimal and RP = SP for all P ∈ Spec(R)\{N },
then R � S is a minimal extension. We will start with only assuming we have a
regular maximal ideal M of R such that RM � SM is minimal and RN = SN for
all N = RMax(R)\{M} (if any). From the observation in [2], it suffices to show
RP = SP for all P ∈ Spec(R)\{M}. First note that if P ∈ Spec(R) is not regular,
then RP = T (R)P = SP (as each regular element of R is a unit in RP ). For P regular
and not contained in M , it is contained in some maximal ideal N ∈ RMax(R). As
RN = SN , we also have RP = (RN )P = (SN )P = SP . Finally for P regular and
(properly) contained in M , the assumption that RM � SM is a minimal extension
yields that RP = (RM)P = (SM)P = SP (from [6, Théorème 2.2]). Hence (a) and
(b) are equivalent.

To see that (a) implies (c), we make use of the observation in the first sentence and
Lemma 2.6. Suppose R ⊆ S is minimal with corresponding crucial maximal ideal
M . Then by Lemma 2.6, R[M] � S[M] is minimal. We also have R[N ] = S[N ] for all
N ∈ RMax(R)\{M}.

To complete the proof of (1), we show that (c) implies (a). Suppose we have
a regular maximal ideal M of R such that R[M] � S[M] is minimal and R[N ] =
S[N ] for all N ∈ RMax(R)\{M} (if any). From the latter, we have RN = SN for
all N ∈ RMax(R)\{M}. Let W be a ring such that R � W ⊆ S. For each N ∈
RMax(R)\{M}, we get W[N ] = R[N ] as W[P] always lies between R[P] and S[P]
for a prime P of R. As M is the only other regular maximal ideal of R (and W
properly contains R), R[M] � W[M] since W = ⋂{W[Q] | Q ∈ RMax(R)}. We also
have W[M] ⊆ S[M] and so W[M] = S[M] (as R[M] � S[M] is minimal) and therefore
W = S. Hence R � S is minimal.



Valuative Marot Rings 253

Under the assumption that R isMarot, R[Q] = R(Q) and S[Q] = S(Q) for all regular
maximal ideals Q ∈ RMax(R) (Lemma 2.2). Thus the equivalence in (2) follows
from the equivalence of (a) and (c) in (1). �

The strongly valuative ring R in [13, Example 2.19] has infinitely many regu-
lar maximal ideals each of which contains the set of regular nonunits of R. Thus
R(Q) = R for each regular maximal ideal Q ∈ RMax(R). Also the integral closure
of R is a minimal extension of R. Hence the equivalence in statement (2) of the
previous theorem does not hold in general. However, we do have the following.

Corollary 2.8. Let R and S be rings such that R � S ⊆ T (R). If there is a regular
maximal ideal M of R such that R(M) � S(M) is a minimal extension and R(N ) = S(N )

for all other regular maximal ideals N (if any), then R � S is a minimal extension.

Proof. The result follows trivially if M is the only regular maximal ideal of R.
Suppose we have a ring W such that R � W ⊆ S. Then we have R(N ) ⊆ W(N ) ⊆
S(N ) = R(N ) for each N ∈ RMax(R)\{M}. Since W properly contains R, it must
be that W(M) properly contains R(M) (by way of Lemma 2.6). As R(M) � S(M) is
minimal and R(M) � W(M) ⊆ S(M) we have W(M) = S(M) and so by Lemma 2.6
W = S. Therefore R � S is a minimal extension. �

A useful concept when dealing with valuative rings is that of a pointwise minimal
extension: a pair of rings S ⊆ T is referred to as a pointwise minimal extension if for
each t ∈ T , the extension S ⊆ S[t] has no proper intermediate rings. For an integral
domain that is not integrally closed, a necessary condition for it to be valuative is
that its integral closure is a pointwise minimal extension [1, Proposition 4.1].

Corollary 2.9. Let R be a ring that is not integrally closed and let S be a proper
overring that is integral over R. If there is a regular maximal ideal M of R such
that R(M) � S(M) is a pointwise minimal extension and R(N ) = S(N ) for all regular
maximal ideals N ∈ RMax(R)\{M} (if any), then R � S is a pointwise minimal
extension.

Proof. Assume there is a regular maximal ideal M of R such that R(M) � S(M)

is a pointwise minimal extension and R(N ) = S(N ) for all regular maximal ideals
N ∈ RMax(R)\{M}. Then for t ∈ S\R, we have R(N ) = R(N )[t] = R[t](N ) for all
regular maximal ideals N other than M . Thus it must be that t ∈ S(M)\R(M). Hence
R(M) � R(M)[t] = R[t](M) is a minimal integral extension. It follows that R � R[t]
is minimal and therefore S is a pointwise minimal extension of R. �

We recall several basic results that will be useful in our study of valuative Marot
rings.

Lemma 2.10. [cf. [14, Proposition 5]] If R is a Marot ring and R ⊆ S ⊆ T (R),
then S is a Marot ring.

Lemma 2.11. [13, Lemma 2.2] Let S � T be a ring extension.
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1. If t ∈ T is such that S � S[r ] is a minimal extension for each r ∈ (S :T t)\S,
then there is a unique maximal ideal M of S such that M = √

(S :S r) for each
r ∈ (S :T t)\S.

2. If T is a pointwise minimal extension of S, then there is a unique maximal ideal
M of S such that M = √

(S :S x) for each x ∈ T \S.

Lemma 2.12. [13, Lemma 2.3] Let I be an invertible ideal of a ring R. If b ∈ R is
a nonunit of R such that bR + I = R, then I −1 = bI −1 + R.

Lemma 2.13. [13, Lemma 2.4] Let I and J be invertible comaximal ideals of a
ring R. If b ∈ I and c ∈ J are such that b + c = 1, then (R :R bJ−1) = J and
(R :R cI −1) = I .

Lemma 2.14. [13, Lemma 3.2] Let R be a ring with at least two regular maximal
ideals M and N. If R � (M : M) and b ∈ N\M and c ∈ M\N are regular elements,
then R � R[b/c] is not a minimal extension of R.

Theorem 2.15. [13, Theorem2.5]Let R be a weakly valuative ring. If I = bR + r R
and J = cR + r R are comaximal invertible proper ideals with b + c = 1, then at
least one of

√
I and

√
J is a maximal T (R)-radical ideal.

Corollary 2.16. [13, Corollary 2.6] Let R be a weakly valuative ring with exactly
three regular maximal ideals M1, M2, and M3. Also let r ∈ M1 ∩ M2 ∩ M3 be regular
and let b ∈ M1 and c ∈ M2 ∩ M3 be such that b + c = 1 with B = bR + r R and
C = cR + r R invertible. Then M1 = √

B and there is an element t ∈ B−1\R such
that M1 = √

(R :R t) and R � R[t] is a minimal extension.

The next result from [13] gives a characterization of integrally closed Marot rings
that are valuative.

Theorem 2.17. [13, Theorem 2.10] The following are equivalent for an integrally
closed Marot ring R:

1. R is strongly valuative.
2. R is valuative.
3. R is weakly valuative.
4. R is a Prüfer with at most three regular maximal ideals, the set of regular non-

maximal prime ideals is linearly ordered under set containment and at most one
regular maximal ideal fails to contain each regular nonmaximal prime.

5. R is a Prüfer ring with at most three regular maximal ideals and at most one
regular maximal ideal fails to contain each regular nonmaximal prime.

It is convenient to record the following corollary.

Corollary 2.18. Let R be an integrally closed Marot ring with a unique regular
maximal ideal. Then R is valuative if and only if it is a Prüfer valuation ring.
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Proof. A valuation ring is always valuative. For the converse we have that R is
a Marot Prüfer ring with a unique regular maximal ideal M . Since R is Marot,
R = R(M) = R[M], and thus (R, M) is a valuation pair of T (R) [7, Theorem 13].�

The ring R in [13, Example 3.4] (and [11, Example 2.4]) is an integrally closed
valuative Marot ring that is a Prüfer ring with exactly two regular maximal ideals
but is not weakly additively regular. However, it is rather easy to show that a Marot
(Prüfer) valuation ring is weakly additively regular.

With regard to the proof of the next result and Theorem 2.21, we define weakly
additively regular ordered pairs as follows: for f, g ∈ R with f regular, if there is
a pair s, t ∈ R such that gs + f t is regular and f R + s R = R, we say that (g, f )

is a weakly additively regular ordered pair. Note that if g ∈ f R, then we have f =
g + f (1 − p) where g = f p. Hence (g, f ) is a weakly additively regular ordered
pair whenever f divides g. In particular, (h, u) is a weakly additively ordered pair
for each unit u and element h ∈ R.

Theorem 2.19. Each Marot valuation ring is weakly additively regular.

Proof. Let V be aMarot ring that is also a valuation ring. Then V has a unique regular
maximal ideal M . Let v : T (V ) → G ∪ {∞} be a valuation map corresponding to
the valuation pair (V, M) where G is the corresponding value group. Since V is
a Marot ring, the regular nonunits of V map onto the positive elements of G [9,
Theorem 7.9]. Let f, g ∈ V with f regular. As noted above, if f divides g in V , then
(g, f ) is a weakly additively regular ordered pair.

To complete the proof, consider the case that f does not divide g. Then f is not a
unit. Since f is regular, g/ f ∈ T (V )with v(g/ f ) = v(g) − v( f ). As we are assum-
ing f does not divide g, it must be that 0 ≤ v(g) < v( f ). The ideal gV + f V is reg-
ular and thus is generated by regular elements. Moreover, there must be a regular ele-
menth ∈ gV + f V such that v(h) = v(g).Wehaveh = gb + f c for someb, c ∈ V .
With regard to v, we have v(h) = v(gb + f c) ≥ min{v(g) + v(b), v( f ) + v(c)}. As
v(h) = v(g) < v( f ), it must be that v(b) = 0. Since M is the only regular maximal
ideal and b /∈ M , we have bV + f V = V . Hence we again have that (g, f ) is a
weakly additively regular ordered pair. Therefore V is weakly additively regular. �
Lemma 2.20. Let R be a ring with a regular element f that is contained in each
regular maximal ideal. Then R is weakly additively regular if and only if (g, k) is a
weakly additively regular ordered pair for each g ∈ R and each k ∈ f R ∩ Reg(R).

Proof. Suppose (g, k) is a weakly additively regular ordered pair for each g ∈ R
and each k ∈ f R ∩ Reg(R). For each r ∈ Reg(R), r f ∈ f R ∩ Reg(R) and thus
there are elements m, n ∈ R (depending on g and r f ) such that gm + r f n is regular
withm R + r f R = R. Since f is contained in each regular maximal ideal, no regular
maximal ideal contains m and thus m R + r R = R. Hence R is weakly additively
regular. The converse is trivial. �
Theorem 2.21. Let R be a Marot ring with integral closure R′ � R. If R′ is a
valuation ring and (R : R′) is a regular ideal of R, then R is weakly additively
regular.
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Proof. Assume R′ is a valuation ring and (R : R′) is a regular ideal of R. Since R is
a Marot ring, so is R′. Hence R′ is also a Prüfer ring with unique regular maximal
ideal M ′. In addition, for the corresponding valuation map v and value group G,
M ′ = {r ∈ T (R) | v(r) > 0} and the regular elements of M ′ map onto the set of
positive elements of G. The ideal M = M ′ ∩ R is the unique regular maximal ideal
of R.

Let I = (R : R′). Then I is also a regular ideal of R′, necessarily proper and thus
contained in M ′. Let f ′ ∈ I and f ∈ f ′ R be regular. Also let k ∈ R′ be such that
v(k) ≥ v( f ). Since f is regular, k/ f ∈ T (R)with v(k/ f ) ≥ 0. Hence k/ f ∈ R′. As
I is an ideal of R′, k = f (k/ f ) ∈ I .

Next let g ∈ R. To see that (g, f ) is a weakly additively regular ordered pair,
first consider the case v(g) ≥ 2v( f ). Then v(g/ f ) ≥ v( f ) so that g/ f ∈ I . In this
case f divides g in R and thus (g, f ) is a weakly additively regular ordered pair.
Next suppose v(g) < 2v( f ). The ideal gR + f 2R is regular and so is generated
by regular elements f 2, d1, d2, . . . , dn . By properties of v, at least one di is such
that v(di ) = v(g). Without loss of generality we may assume v(d1) = v(g). We
also have d1 = gs + f 2t = gs + f ( f t) for some s, t ∈ R. Since v(g) < 2v( f ), it
must be that v(s) = 0 and thus s R′ + f R′ = R′. By integrality we also have s R +
f R = R. Hence (g, f ) is weakly additively regular ordered pair for each g ∈ R
and each regular element f ∈ f ′ R. Therefore R is weakly additively regular by
Lemma 2.20. �

3 Valuative Marot Rings

Thefirst result of this section extends several from [1] that dealwith valuative domains
that are not integrally closed and some from [13] that deal with weakly additively
regular rings that are not integrally closed.

Theorem 3.1. Let R be a Marot ring that is not integrally closed. If R is weakly
valuative, then

1. the set of regular nonmaximal primes is linearly ordered (under set containment),
2. there is a unique regular maximal ideal M such that R(M) is not a mock valuation

ring and for all other regular prime ideals P, R(P) is a Prüfer valuation ring,
3. the ideal M is a maximal T (R)-radical ideal with R � (M : M),
4. the ring R has at most two regular maximal ideals,
5. if R has (exactly) two regular maximal ideals, then both are maximal T (R)-

radical ideals, and
6. the ideal M contains each regular nonmaximal prime.

Proof. We establish the six conclusions in the order they appear. The proof that the
set of regular nonmaximal prime ideals is linearly ordered is only slightly different
than the one for valuative domains. By way of contradiction, suppose P and Q are
incomparable regular prime ideals with neither a maximal ideal. Since R is Marot,
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there is a regular element r ∈ P\Q and a regular element s ∈ Q\P . Then neither
r/s nor s/r is in R. Clearly, r/s ∈ (R : s/r) and s/r ∈ (R : r/s). Hence at least one
of R � R[r/s] and R � R[s/r ] is a minimal extension. But P ⊇ (R :R s/r) and
Q ⊇ (R :R r/s) are not maximal ideals. So we have a contradiction by way of [2,
Theorems 2.3 and 3.4].

For (2) and (3), [3, Theorem 5.10] yields that R has a unique regularmaximal ideal
M such that R(M) is not a mock valuation ring. In addition, R(P) is a mock valuation
ring for all other regular prime ideals P (if any). As R is Marot, each R(P) is a Prüfer
valuation ring with unique regular maximal ideal P R(P) [9, Theorem 7.7]. Hence
each R(P) contains R′. We also have an element t ∈ R′\R such that R � R[t] is a
minimal extension with M = (R :R t) and R[t] ⊆ (M : M). Thus M is a maximal
T (R)-radical ideal and R � (M : M).

To see that R has at most two regular maximal ideals, suppose that there are at
least two regular maximal ideals N1 and N2 other than M . Since R is a Marot ring,
there is a regular element r ∈ N1 ∩ N2 that is not in M . Also there is a regular element
s ∈ M that is not in N1. By Lemma 2.14, R � R[r/s] is not a minimal extension.
Thus since R is weakly valuative R � R[s/r ] is a minimal extension. But both N1

and N2 contain (R :R s/r) and so R � R[s/r ] cannot be minimum either. Hence R
has at most two regular maximal ideals.

For (5), suppose R has a regular maximal ideal N other than M . Since R is a
Marot ring there are regular elements r ∈ N\M and s ∈ M\N . As above, we again
have that R � R[r/s] is not minimal and thus R � R[s/r ] is minimal, necessarily
with N = √

(R :R s/r). Thus both N and M are maximal T (R)-radical ideals in this
case.

Finally, if M is the only regular maximal ideal, then it trivially contains all regular
nonmaximal primes. So suppose we have a second regular maximal ideal N and, by
way of contradiction, also suppose N contains a regular nonmaximal prime P that is
not contained in M . Since R is a Marot we can choose a regular element b ∈ P\M
and a regular element c ∈ M\P . We will also have b ∈ N and thus by Lemma 2.14,
R � R[b/c] is not minimal. As above we obtain a contradiction since P contains
(R :R c/b) but R � R[c/b] must be minimal since R is weakly valuative. Therefore
M contains each regular nonmaximal prime. �

Recall from above that for a pair of rings S � T , T is referred to as a pointwise
minimal extension of S if for each t ∈ T \S, the extension S � S[t] is minimal. We
will find this notion to be quite useful in characterizingMarot rings that are valuative.
Another useful concept is to extend the definition of the types of valuative rings to
individual elements: x ∈ T (R) is (i) valuative over R if at least one of R ⊆ R[x]
and R ⊆ R[(R : x)] has no proper intermediate rings, (ii) weakly valuative over R if
either R ⊆ R[x] has no proper intermediate rings or for each y ∈ (R : x), R ⊆ R[y]
has no proper intermediate rings, and (iii) strongly valuative over R is at least one
of R ⊆ R[(R : (R : x))] and R ⊆ R[(R : x)] has no proper intermediate rings.

Lemma 3.2. Let R be a Marot ring that is weakly valuative. If R is not integrally
closed, then there is a regular element t ∈ R′\R such that R � R[t] is a minimal
extension.
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Proof. If R is not integrally closed, there is an element b ∈ R′\R. The R-fractional
ideal bR + R is regular, so it contains a regular element t ∈ R′\R since R is a Marot
ring. Since t is integral over R (and regular), it is contained in R[t−1]. That R � R[t]
is minimal follows from the assumption that R is weakly valuative. �

Theorem 3.3. Let R be a Marot ring with integral closure R′ � R. If R is weakly
valuative, then R′ is a Prüfer ring and R and R′ have the same number of regular
maximal ideals (exactly one, or exactly two).

Proof. Assume R is weakly valuative. Then it has at most two regular maximal
ideals. In the case R has (exactly) two regular maximal ideals, one of these, say M
is such that R(M) is not integrally closed and for the other one N , R(N ) is a Prüfer
valuation ring with a unique regular maximal ideal N R(N ). By way of Corollary 2.5,
we may conclude that R′ is a Prüfer ring by showing the integral closure of R(M) is
a Prüfer valuation ring.

The ring R(M) is weakly valuative with unique regular maximal ideal M R(M).
Hence we may reduce to the case M which is the unique regular maximal ideal of R.

ByLemma3.2 there is a regular element t ∈ R′\R such that R � R[t] is aminimal
extension.As M is the unique regularmaximal ideal of R, we have M = (R :R t)with
t ∈ (M : M). Thus by [3, Lemma 3.7], there is no b ∈ T (R)\R such that R � R[b]
is a closed minimal extension. For units u, u−1 ∈ T (R)\R, at least one of R � R[u]
and R � R[u−1] is minimal and thus at least one of u and u−1 is in R′. Therefore,
since R′ is a Marot ring, it is also a Prüfer valuation ring, necessarily with a unique
(regular) maximal ideal that lies over M .

For the case that R has exactly two regular maximal ideals N and M as given
above, the fact that both R(N ) and R′

(M) are Prüfer valuation rings implies R′ is a
Prüfer ring with a unique regular maximal ideal N ′ that lies over N and a unique
regular maximal ideal M ′ that lies over M . These are the only regular maximal ideals
of R′ since each regular maximal ideal of R′ lies over a regular maximal ideal of R.�

Theorem 3.4. Let R be a Marot ring that is not integrally closed. If R has a unique
regular maximal ideal M, then the following are equivalent:

1. R is strongly valuative.
2. R is valuative.
3. R is weakly valuative.
4. The integral closure of R is a Prüfer valuation ring (with a unique regular maximal

ideal) and it is a pointwise minimal extension of R.

Proof. It is clear that (1) implies (2), and (2) implies (3). We next show that (4)
implies (3).

Assume R′ is a Prüfer valuation ring and apointwiseminimal extensionof R. Since
R′ is a Prüfer valuation ring, it has a unique regular maximal ideal M ′ [9, Theorem
6.5]. For each s ∈ R′\R, R � R[s] is a minimal integral extension necessarily with
M = (R :R s) and M R[s] = M . Thus M R′ = M . So each element of R′ is weakly
valuative over R.
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For t ∈ T (R)\R′, (R′ : t) ⊆ M ′. Thus if z ∈ (R : t), then z ∈ M ′ and so the exten-
sion R ⊆ R[z] has no proper intermediate rings. It follows that t is weakly valuative
over R and therefore R is weakly valuative.

To complete the proof we show that (3) implies both (1) and (4). By Theorem
3.3, R′ is a Prüfer valuation ring with a unique regular maximal ideal M ′ that lies
over M .

First note that since R is not integrally closed, there is an elementm ∈ Reg(R′)\R
such that R � R[m] is a minimal integral extension (Lemma 3.2). Since M is the
only regular maximal ideal, we have M = (R :R m) and (M : M) ⊇ R[m].

Let f ∈ M ∩ Reg(R) and let q ∈ R′\R. The R-fractional ideal q R + f R is
regular and thus is generated by regular elements. For such a generating set
{s1, s2, . . . , sn}, we have si M ⊆ M for each i . Hence q M ⊆ M and therefore M
is an ideal of R′.

By Theorem 2.21, R is weakly additively regular. Therefore from [13, Theorem
3.13], R is strongly valuative and R′ is a pointwise minimal extension of R. �

Corollary 3.5. Let R be a Marot ring with a unique regular maximal ideal M. If R
is (weakly, strongly) valuative and not integrally closed, then R is weakly additively
regular, R′ is a Prüfer valuation ring with a unique maximal ideal M ′ and either
M ′ = M or there is a regular element d ∈ R′ such that M ′ = d R′ and M = d2R′.

Proof. That R′ is a Prüfer valuation ring with a unique regular maximal ideal M ′ is
from the previous theorem. Also, from the proof of that theorem, M is an ideal of
R′. Hence R is weakly additively regular by Theorem 2.21. Thus by [13, Theorem
3.13] we have that either M = M ′ is the unique regular maximal ideal of both R and
R′, or there is a regular element d ∈ R′ such that M = d2R′ � M = d R′. �

Later we give an example of a Marot valuative ring with exactly two regular max-
imal ideals that are neither weakly additively regular nor integrally closed (Example
3.15).

Lemma 3.6. Let t ∈ T (R)\R. If R � R[t] is a closed minimal extension, then t is
strongly valuative over R and R[t] = R[(R : (R : t))].
Proof. If R � R[t] is a closed minimal extension, then (R :R t) is an invertible
M-primary ideal of R where M = √

(R :R t) is a regular maximal ideal of R [2,
Theorem 3.4]. Also, we have a pair of elements a, b ∈ (R :R t) such that a + bt = 1.
We claim that (R : (R : t)) ⊆ R[t]. Let u ∈ (R : (R : t)). Then ua, ub ∈ R and so
u = ua + (ub)t ∈ R[t]. Therefore R[(R : (R : t))] = R[t] and we have that t is
strongly valuative over R. �

For an ideal I of R, Ψ (I ) = ⋂{R[P] | I � P, P ∈ Spec(R)} (see, for example,
[2, Page 1083]).

Theorem 3.7. Let R be a Marot ring that is not integrally closed. If R has exactly
two regular maximal ideals, then the following are equivalent:
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1. R is strongly valuative.
2. R is valuative.
3. R is weakly valuative.
4. R′ is both a Prüfer ring and a pointwise minimal extension of R, R has a regular

maximal ideal N such that R(N ) is a Prüfer valuation ring, and for the other
regular maximal ideal M, (i) M is a maximal ideal of R′, (ii) M contains each
regular nonmaximal prime of R and R′, and (iii) R(M) is a (weakly) [strongly]
valuative ring such that M R(M) is also the maximal ideal of R′

(M).

Proof. In general, a strongly valuative ring is valuative and a valuative ring is weakly
valuative. Thus it suffices to show that (3) implies (4), and (4) implies (1).

We start by showing (3) implies (4). Assume R is weakly valuative. Since R has
two regular maximal ideals, both are maximal T (R)-radical ideals (Theorem 3.1)
and thus R′ is a pointwise minimal extension of R by [3, Corollary 5.14]. Also,
by Theorem 3.3, R′ is a Prüfer ring with exactly two regular maximal ideals. By
[3, Theorem 5.10] (and the Marot assumption), there is a unique regular maximal
ideal M of R such that R(M) is not a mock valuation ring and for the other regular
maximal ideal N , R[N ] = R(N ) is a Prüfer valuation ringwith unique regularmaximal
ideal N R(N ). We also have that R(M) is weakly valuative [3, Proposition 5.2]. As
R(M) is also a Marot ring, it is strongly valuative and its integral closure, R′

(M), is a
Prüfer valuation ring that is a pointwise minimal extension of R(M) (Theorem 3.4). In
addition, M = (R :R t) for each t ∈ R′\R (since R′ is a pointwiseminimal extension
of R). By Corollary 3.5, M R(M) is either the unique regular maximal ideal of R′

(M)

or M R(M) = d2R′
(M) ⊆ d R′

(M) = M ′ R′
(M) where M ′ is regular maximal ideal of R′

that lies over M . In the first case, M ′ R′
(M) = M R(M) and so M ′ = M , and in the

second M ′ R′
(M) � M R(M) and so M ′ � M . We will show that the second case does

not occur.
By Theorem 3.1, the set of regular nonmaximal primes is linearly ordered under

set containment and M contains each regular nonmaximal prime.
Since R(P) is a Prüfer valuation ring for each regular prime P other than M , the

contraction map from Spec(R′) to Spec(R) is an order preserving bijective corre-
spondence. It follows that M ′ contains each regular nonmaximal prime of R′.

Since R is a Marot ring and M and N are the only regular maximal ideals, there
is a regular element s ∈ N\M . As M contains each regular nonmaximal prime,
N = √

s R. We also have N ′ = √
s R′. Let Q be a nonmaximal prime ideal contained

in N and let m ∈ Q. Then the ideal I = s R + m R is such that I R(N ) = s R(N ) and
I R(M) = s R(M) = R(M). Hence s divides m. In fact sn divides m for each positive
integer n. It follows that

⋂
sn R ⊇ Q. Similarly

⋂
sn R′ ⊇ Q′ for each nonmaximal

prime ideal Q′ of R′ that is contained in N ′. Thus
⋂

sn R = P and
⋂

sn R′ = P ′ for
some nonmaximal primes P of R and P ′ of R′.

Consider the extension R � R[1/s]. We have N = √
(R :R 1/s). For a finitely

generated N -primary ideal J , J R(M) = R(M) and J R(N ) are both regular principal
ideals. Hence J is invertible. By [1, Corollary 3.7], R � R[1/s] = Ψ (N ) is a closed
minimal extension. Since M contains each regular nonmaximal prime, Ψ (N ) =
R(M). The extension R � R[1/s] is the unique closed minimal extension of R since
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N and M are the only regular maximal ideals (and M is the crucial maximal ideal
of a minimal integral extension).

Finally we will show that M is a common maximal ideal of R and R′. By way
of contradiction suppose there is a regular d ∈ R′ such that M ′ R′

(M) = d R′
(M) �

d2R′
(M) = M R′

(M). While sd R′
(M) = M ′ R′

(M) = d R′
(M) implies it is possible to have

s divide d in R′, we cannot have that each positive power of s divides d in R′ as
this would put d in P ′, making P ′ regular and thus properly contained in M ′ and
hence in M . Thus without loss of generality we may assume d/s is not in R′. Since
d ∈ M ′ and s ∈ R′\M ′, s/d is not in R′. Thus neither R � R[d/s] nor R � R[s/d]
is integral. For the extension R � R[d/s], it is clear that this is not R(M) = Ψ (N ) as
d /∈ R(M) (while s is a unit of R(M)). Hence R � R[d/s] is not a minimal extension.

For the extension R � R[s/d], the fact that d ∈ M ′ while s ∈ R′\M ′ implies s/d
is not in R′

(M) and so not in R(M). Thus R[s/d] �= Ψ (N ). As R � Ψ (N ) is the unique
closed minimal extension R, R � R[s/d] is not a minimal extension, contradicting
the assumption that R is weakly valuative. Hence it must be that M is a common
maximal ideal of R and R′. We also have that each regular nonmaximal prime of R′
is contained in M . Hence (3) implies (4).

To complete the proofwe show that (4) implies (1).We assume all of the following:
R′ is a pointwise minimal extension of R, R has a regular maximal ideal N such
that R(N ) is a Prüfer valuation ring, and for the other regular maximal ideal M , (i) M
is a maximal ideal of R′, (ii) M contains each regular nonmaximal prime of R and
R′, and (iii) R(M) is a weakly valuative ring such that M R(M) is also the maximal
ideal of R′

(M) which is a Prüfer valuation ring. By Theorem 3.4, R(M) is strongly
valuative. Since R is Marot and M contains each regular nonmaximal prime, there is
a regular element s ∈ N\M necessarilywith N = √

s R. Also, for a finitely generated
N -primary ideal I , I contains a power of s so I is regular. Since R(N ) is a Prüfer
valuation ring, I R(N ) is invertible. Also I R(M) = R(M). It follows that I is invertible.
By [2, Corollary 3.7], R � R[1/s] = Ψ (N ) is a closed minimal extension of R, and
since M contains each regular nonmaximal prime Ψ (N ) = R(M). By Lemma 3.6,
each element t ∈ R(M)\R is strongly valuative over R.

We let v be a valuation map corresponding to the valuation pair (R′
(M), M R′

(M))

and let w be a valuation map corresponding to the valuation pair (R(N ), N R(N )).
Since R is a Marot ring, both v and w map the units of T (R) onto the elements of
the corresponding value group [9, Theorem 7.9].

Let x ∈ T (R)\R(M). We consider three main cases, the third will have three sub-
cases.

Case 1: x is in neither R(N ) nor R′
(M).

In this case, (R(N ) : x) ⊆ N R(N ) and (R′
(M) : x) ⊆ M R′

(M) = M R(M). Thus if x is
in neither R(N ) nor R′

(M), then (R : x) ⊆ N R(N ) ∩ M R(M) = N ∩ M ⊆ R. Hence in
this case x is strongly valuative over R.

Case 2: x ∈ R(N )\R′
(M).

We have (R′
(M) : x) ⊆ M R(M) which implies (R : x) ⊆ M R(M). It follows that

R ⊆ R[(R : x)] has no proper intermediate rings as R � R(M) is a closed minimal
extension. Therefore x is strongly valuative in this case.
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Case 3: x ∈ R′
(M)\R(M).

We have (R :R x) ⊆ M so there is a regular element m ∈ M such that mx ∈ R.
Since R(M) is a strongly valuative Marot with a single regular maximal ideal, it is
weakly additively regular (Corollary 3.5). Thus there is a pair of elements f, g ∈ R(M)

such that z = f xm + gm2 is regular with f R(M) + m2R(M) = R(M). The element
y′ = f x + gm ∈ x R(M) + m R(M) is a unit of R′

(M) since f, x ∈ R′
(M)\M R(M). Also,

there are elements c, d ∈ R(M) such that c f + dm2 = 1. Thus x = x(c f + dm2) =
c(y′ − gm) + m(dxm) = cy′ + m(dxm − g) ∈ y′ R(M) + m R(M). We also have a
regular element q ∈ R\M such that y = qy′ ∈ R′. As q is a unit of R(M) and
m/y ∈ M R(M), x R(M) + m R(M) = y R(M) + m R(M) = y R(M). Hence x/y ∈ R(M).
With regard to colons, (R(M) : x) = (R(M) : y) = (1/y)R(M) and (R(M) : (R(M) :
x)) = (R(M) : R(M) : y)) = y R(M).

We have three subcases: (i) w(x) = ∞, (ii) w(x) < 0, and (iii) 0 ≤ w(x) < ∞.
If w(x) = ∞, (R(N ) : x) = T (R) and (R(N ) : (R(N ) : x)) � N R(N ). We also

have (1/y)R = (R : y) = (R(N ) : y) ∩ (R(M) : y) ⊆ T (R) ∩ (R(M) : x) = (R : x).
It follows that (R : (R : x)) ⊆ (R : (R : y)) = y R. As y ∈ R′\R, R � R[y] is a
minimal extension and thus R ⊆ R[(R : (R : x))] has no proper intermediate rings.

For the case w(x) < 0, we have (R(N ) : x) ⊆ N R(N ) and thus R(N )[(R : x)] =
R(N ). Also R(M) ⊆ R(M)[(R : x)] ⊆ R(M)[1/y] with R(M) � R(M)[1/y] minimal.
Hence R ⊆ R[(R : x)] has no proper intermediate rings (Corollary 2.8).

Finally we consider the case 0 ≤ w(x) < ∞. We have a regular element t ∈ R(N )

such that w(t) = w(x). Hence x/t ∈ R(N ). We also have x/y ∈ R(M). Thus there are
regular elements b ∈ R\N and c ∈ R\M such that bx/t, cx/y ∈ R. It follows that
(b/t)R + (c/y)R ⊆ (R : x). Since b is a unit of R(N ) and (R : x) ⊆ (R(N ) : x) =
(1/t)R(N ), (b/t)R(N ) + (c/y)(N ) ⊇ (R : x)(N ). Similarly (R : x) ⊆ (R(M) : x) =
(1/y)R(M), (b/t)R(M) + (c/y)(M) ⊇ (R : x)(M). Thus (R : x) = (b/t)R + (c/y)R.
Since (R : x) is a finitely generated fractional R-ideal, we have (R : (R : x))(N ) =
(R(N ) : (R(N ) : x)) ⊆ R(N ) and (R : (R : x))(M) = (R(M) : (R(M) : x)) = y R(M).
Another application of Corollary 2.8 yields that R ⊆ R[(R : (R : x))] has no proper
intermediate rings since R(M) � R[(R : (R : x))](M) = R(M)[y] is a minimal exten-
sion and R[(R : (R : x))](N ) = R(N ).

From all of the cases, we have that x is strongly valuative over R and therefore R
is strongly valuative. �

The next corollary provides alternate lists of conditions that are equivalent to those
given in (4) of the previous theorem.

Corollary 3.8. Let R be a Marot ring that has exactly two regular maximal ideals
and is not integrally closed. Then the following are equivalent:

1. R is (weakly) [strongly] valuative.
2. R has a regular maximal ideal N such that (R(N ), N R(N )) is a valuation pair and

for the other maximal ideal M: M is a maximal ideal of R′ that contains each
regular nonmaximal prime ideal of R′ and R(M) is valuative.
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3. R′ is a Prüfer ring and R has a regular maximal ideal M such that (i) M is a
maximal ideal of R′, (ii) M contains each regular nonmaximal prime of R and
R′, and (iii) R(M) is a (weakly) [strongly] valuative ring.

4. R′ is a pointwise minimal extension of R, R has a regular maximal ideal N such
that R(N ) is a Prüfer valuation ring, and for the other regular maximal ideal M,
(i) M is a maximal ideal of R′, (ii) M contains each regular nonmaximal prime of
R and R′, and (iii) R(M) is a (weakly) [strongly] valuative ring such that M R(M)

is also the maximal ideal of R′
(M).

Proof. It is clear that statement (4) of Theorem 3.7 implies statements (2), (3), and
(4) here. Also statement (4) in this result clearly implies (2), and taken together (2),
(3) and (4) in this result yields statement (4) of Theorem 3.7. For all three of (2), (3),
and (4), we have the regular maximal ideal M of R that is also a maximal ideal of
R′. Since R has a second regular maximal ideal N , there is a regular maximal ideal
N ′ of R′ such that N ′ ∩ R = N . Also R′

(M) is the integral closure of R(M).
By basic properties of pullbacks, the prime ideals of R that are not contained in M

are in one-to-one correspondence with the prime ideals of R′ that are not contained
in M . Specifically for a prime P ′ of R′ that is not contained in M , P = P ′ ∩ R is
the corresponding prime ideal of R and P ′ = (M :R′ P). Since M is a regular ideal
of R, M P ′ is a regular ideal of R whenever P ′ is a regular ideal of R′. Hence R′ has
exactly two regular maximal ideals, M and N ′. Since R is a Marot ring, there is a
regular element t ∈ M\N . So for each q ∈ R′\N ′ and b ∈ R′, tq ∈ R\N , tb ∈ R,
and b/q = tb/tq ∈ R(N ). It follows that R(N ) = R′

(N ) = R′
(N ′).

To see that (2) implies (3), all we need to show is that R′ is a Prüfer ring. Since R is
Marot and R(N ) is a valuation ring, (R(N ), N R(N )) = (R′

(N ′), N ′ R′
(N ′)) is a valuation

pair and M and N ′ are the only regular maximal ideals of R′. Next we consider R′
(M).

We have that M R(M) = M R′
(M) is the only regular maximal ideal of R(M), so we

simply apply Theorem 3.4 to see that R′
(M) is valuation ring (and R′

(M), M R′
(M) is a

valuation pair). Thus R′ is a Prüfer ring and so (2) implies (3).
Finally assume the restrictions in (3). From the arguments above, R(N ) is a valua-

tion ring. So to show (3) implies (4), all that remains is to show that R′ is a pointwise
minimal extension of R. Since R′

(M) is the integral closure of R(M), it is also a point-
wise minimal extension of R(M) by Theorem 3.4. That R′ is a pointwise minimal
extension of R now follows from Corollary 2.9 (and the fact that R(N ) = R′

(N )). �

Theorem 3.9. Let R be a ring whose integral closure, R′, is a valuation ring properly
contained in T (R). If R � R′ is a minimal extension, then R is strongly valuative.

Proof. Since R′ is a valuation ring, there is a prime ideal P of R′ such that for each
q ∈ T (R)\R′, there is an element p ∈ P such that pq ∈ R′\P . It is also the case
that if f ∈ R′\P , then (R′ : f ) = R′. Also note that for h ∈ R, 1 ∈ (R : h) implies
(R : (R : h)) ⊆ R. Thus h is strongly valuative over R.

Suppose R � R′ is a minimal extension and let t ∈ T (R)\R. We have two cases
to consider, t ∈ T (R)\R′ and t ∈ R′\R. For the former, (R : t) ⊆ (R′ : t) ⊆ R′.
Since R � R′ is a minimal extension and (R : t) ⊆ R′, R ⊆ R[(R : t)] has no proper
intermediate rings. Thus, in this case, t is strongly valuative over R.
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Next suppose t ∈ R′\R. We split the argument into two subcases: t ∈ R′\P and
t ∈ P . If t ∈ R′\P , then (R : t) ⊆ (R′ : t) = R′ in which case R[(R : t)] ⊆ R′, and
thus R ⊆ R[(R : t)] has no proper intermediate rings. Hence t is strongly valuative
over R in this case.

Finally suppose t ∈ P . We again have (R : t) ⊆ (R′ : t) but now (R′ : t) is not
contained in R′. If (R : t) ⊆ R′, then as above R ⊆ R[(R : t)] has no proper interme-
diate rings. On the other hand, if (R : t) is not contained in R′, then (R : (R : t)) ⊆ R′
and so R ⊆ R[(R : (R : t))] (⊆ R′) has no proper intermediate rings. Therefore each
element of T (R) is strongly valuative over R and so R is strongly valuative. �

Let D be an integral domain and let P = {Pα}α∈A be a nonempty set of prime
ideals of D. Next letI = A × N and for each i = (α, n) ∈ I , let Ki be the quotient
field of D/Pα . Form the D-algebra B = ∑

Ki and define a ring structure on D × B
by setting (r, b) + (s, c) = (r + s, b + c) and (r, b)(s, c) = (rs, rc + sb + bc). The
resulting ring is denoted D + B and is referred to as the ring of the form A + B
corresponding to D and P . For r ∈ D, b ∈ B and i = (α, n) ∈ I , ri denotes the
image of r in Ki and bi denotes the i th component of b.

A few of the basic properties of these rings are given in the following theorem.

Theorem 3.10. [10, Theorems 8.3 and 8.4] Let P = {Pα}α∈A be a nonempty set
of prime ideals of a domain D and let R = D + B be the A + B ring corresponding
to D and P .

1. An element (r, b) of R is a zero divisor if and only if there is an i = (α, n) ∈ I =
A × N such that ri + bi = 0. A necessary condition for (s, c) ∈ R to be regular
is that s ∈ D\⋃

Pα .
2. For each i ∈ I , the set Mi = {(r, b) ∈ R | ri = −bi } is both a maximal ideal and

a minimal prime ideal of R. All other prime ideals of R are of the form P + B
for some prime ideal P of D.

3. The total quotient ring of R can be identified with the ring DS + B where S =
D\⋃{Pα | Pα ∈ P}.

4. If I is an ideal of D such that I ∩ S �= ∅, then I R = I + B is a regular ideal
of R. Conversely, if J is a regular ideal of R, then J = I + B = I R for some I
of D such that I ∩ S �= ∅.

5. If I is an ideal of D, then I R is an invertible of R if and only if I is an invertible
ideal of D and I ∩ S �= ∅.

The following definitions were introduced in [12]. A nonempty set of prime ideals
P = {Pα}A of a domain D is said to be a weakly additively regular family if for
each g ∈ ⋃

Pα and f ∈ D\⋃
Pα , there is a pair of elements s, t ∈ D such that

gs + f t ∈ D\⋃
Pα and s D + f D = D. AlsoP is said to be a Marot family if for

each ideal I �
⋃

Pα , I can be generated by the set I\⋃
Pα .

The next theorem blends two results from [12] concerning special families of
prime ideals and rings of the form A + B.

Theorem 3.11. (cf. [12, Theorems 3.6 and 3.9]) Let R = D + B be the ring of the
form A + B corresponding to a domain D and a nonempty set of nonzero prime
ideals P = {Pα}α∈A of D corresponding to D and P .
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1. R is weakly additively regular if and only if P is a weakly additively regular
family.

2. R is Marot if and only if P is a Marot family.

Another result from [12] gives us the following (stated in a slightly different way).

Theorem 3.12. (cf. [12, Corollary 3.11]) Let D be a Bezout domain and let P =
{Pα}α∈A be a nonempty set of nonzero prime ideals of D and let R = D + B be the
ring of form A + B corresponding to D and P . Then each finitely generated regular
ideal of R is principal and thus R is a regular Bezout ring (and a Prüfer ring).

We will use these characterizations in the proof of the next example.

Example 3.13. Let D′ = Q[X ] and let D be the pullback of Q over the maximal
ideal M = (X2 + 1)D′. For P ′ = Max(D′)\{M}, let R = D + B be the ring of
form A + B corresponding to D and P ′ and let R′ = D′ + B be the ring of form
A + B corresponding to D′ and P ′.

1. For both R and R′, M R′ = M R is the only regular prime ideal.
2. R′ is both a weakly additively regular valuation ring and a regular Bezout ring.
3. R � R′ = R[X ] is a minimal integral extension and thus R is strongly valuative.
4. R is not a Marot ring.

Proof. The setP = Max(D)\{M} yields the same module B and thus the same R.
For both R′ and R, M R′ = M + B = M R is the only regular prime ideal. Since D′
is a PID, R′ is a regular Bezout ring with a unique regular prime ideal. Thus D′ is
valuation ring and so it is weakly additively regular (Theorem 2.19).

The extension D � D′ = D[X ] is a minimal integral extension (since the same
is true for D/M = Q � Q[√−1] = D′/M) and thus R � R′ = R[X ] is a mini-
mal integral extension. Hence R is strongly valuative by Theorem 3.9. We have
D′\⋃

Pα = {q(X2 + 1)n | n ≥ 0, q ∈ Q\{0}}. Also (p, 0) is a unit in R for each
nonzero p ∈ Q. It follows that the (proper) regular principal ideals of R have the form
(X2 + 1)m R for some m ≥ 1. Since X is not in D, X (X2 + 1)D and (X2 + 1)D are
incomparable.We also have X (X2 + 1)D ⊆ ⋃

Pα and M = X (X2 + 1)D + (X2 +
1)D � (X2 + 1)D since D′ = X D + D (and M = (X2 + 1)D′). It follows that M R
cannot be generated by regular elements of R. Thus R is a not a Marot ring. �

The last example is the one promised above of a valuative Marot ring with exactly
two regular maximal ideals that are neither weakly additively regular nor integrally
closed. The next result provides a basis for exhibiting such a ring. Note that the
restriction in (a) is used to show the ring R is Marot.

Theorem 3.14. Let D′ be a Dedekind domain with a pair of maximal ideals P and
Q where neither is principal, but all three of P2, Q2, and P ∩ Q are principal.
Assume D′ also satisfies these additional restrictions.

(a) For each nonunit w ∈ D′\P, there is an element d ∈ P such that w + d is a
unit of D′.
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(b) The residue field L = D′/P has a proper subfield K such that L = K + i K for
some i.

(c) There are elements a, b, c ∈ D such that P ∩ Q = aD′, P2 = bD′, and Q2 =
cD′ where D is the pullback of K over P.

Next we let P = {Pα} = Max(D′)\{P, Q} and S′ = ⋃
Pα . Also let Qo = D ∩ Q

and S = D ∩ S′. Finally, let R = D + B and R′ = D′ + B be the rings of the form
A + B corresponding to D and D′, respectively, and the set P .

1. Each P-primary ideal of D can be generated by elements in P\S′ and each
Qo-primary ideal of D can be generated by elements in Qo\S′.

2. R′ is the integral closure of R and it is not weakly additively regular. Also R′ is
a Prüfer ring with exactly two regular prime ideals.

3. R is a valuative Marot ring with exactly two regular maximal ideals and it is not
weakly additively regular.

Proof. Since L = K + i K is an algebraic extension of K , D′ is integral over D.
The fact that P is a common ideal of D′ and D and P2R′ = a R′ is a regular ideal
with a ∈ D guarantee’s that R′ is the integral closure of R. We also have that D′

P =
D′

D\P is a discrete rank one valuation domains with maximal ideal P D′
P also the

maximal ideal of DP . Hence DP is a pseudovaluation domain with integral closure
D′

P . Since L = K + i K , there is an element j ∈ D′\P such that j + P = i . If j is
not a unit of D′, then there is an element e ∈ P such that k = j + e is a unit with
k + P = j + P = i . We have D′ = D + k D and D′

P = DP + k DP .
Since the principal ideal Q2 is Q-primary, no other prime contains c. Similarly

no prime other than P contains b. By checking locally in D′ we have that Q =
aD′ + cD′ and P = aD′ + bD′. Also note that a, b, c ∈ S′ ∩ D. Thus checking
locally in D shows that Q0 = aD + cD. In addition, since Q0D(Q0) = Q D′

Q and
DQ0 = D′

Q , Q0 is locally principal as an ideal of D. Hence Q0 is an invertible
maximal ideal of D. It follows that each Q0-primary ideal is a power of Q0 and
generated by {a, c}n (the nth power of the set {a, c}) for some positive n.

With regard to P-primary ideals of D, we make use of [8, Theorem 3.5].
As noted above, D′ = D + k D and D′

P = DP + k DP for some unit k of D′.
Thus aD′

P = P D′
P = P DP = aDP + kaDP with a and ka in D ∩ S′. Suppose

x ∈ an D′
P\an+1D′

P for some positive integer n. We will show that x DP contains
Pn+1D′

P .
We have x = f an for some unit f ∈ D′

P . We may write f = g/h where g, h ∈
D′\P . Let q ∈ an+1D′

P = Pn+1D′
P . Then q = ran+1/s for some r ∈ D′ and s ∈

D′\P . Since f is a unit of D′
P , q = ran+1/s = x(r f −1a/s) with r f −1a/s ∈ P DP .

Thus x DP contains Pn+1D′
P .

Let J be a P-primary ideal of D. Then there is a positive integer m such that
bm ∈ J . By [8, Theorem 3.5], we either have J DP = Pn DP for some n, or J DP

is a principal ideal of DP . If J DP = Pn DP , then we J DP = an DP + kan DP . By
checking locally J = an D + kan D + bm D with an, kan, bm ∈ P\S′.

Next suppose J DP is a principal ideal of DP . Then there is a positive integer n and
a unit u ∈ D′

P such that J DP = uan DP . From above, J DP contains Pn+1DP . Since
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u is a unit of D′
P , there are elements y, z ∈ D′\P with z ∈ D such that u = y/z.

Since z is a unit of DP , we may assume y = u. Next let w ∈ P be such that u + w

is a unit of D′. Since wan ∈ Pn+1, uan DP = (u + w)an DP . Since u + w is a unit
of D′, (u + w)an ∈ P\S′. Checking locally shows that J = (u + w)an D + bm D
(with (u + w)an, bm ∈ P\S′). It follows that R is a Marot ring. Also since R′ has
exactly two regular maximal ideals with both invertible and neither principal, R′ is
not weakly additively regular [12, Corollary 3.2]. Thus R is not weakly additively
regular.

Finally, since both regular prime ideals of R′ are maximal and R′ is a Prüfer
ring, it is valuative [13, Theorem 2.10] (see Theorem 2.17 above). We also have
that D � D′ is a minimal integral extension and thus R � R′ is a minimal integral
extension. Hence R is valuative by Theorem 3.7. �

For a specific example satisfying the requirements in Theorem 3.14, we adapt the
construction used in the proof of [4, Theorem 7].

Example 3.15. Let E = Z[√10] and E ′ = E[Z1, Z2, Z3, . . . ]. For each pair f, g ∈
E ′ where no height one prime contains both, there is a smallest positive integer n
such that f, g ∈ E[Z1, Z2, . . . , Zn]. The polynomials f Zn+1 + g and f + gZn+1 are
primes of E ′ (see, for example, [15, Theorem 29, page 85]). Let S be the multi-
plicative set generated by these polynomials. Then D′ = E ′

S is a Dedekind domain,
P = 2D′ + √

10D′ and Q = 5D′ + √
10D′ are invertible maximal ideals such

that neither is principal, but P2 = 2D′, Q2 = 5D′, and P ∩ Q = √
10D′. We also

have D′/P = Z2(Z1, Z2, Z3, . . . ) = Z2(Z
2
1, Z2, Z3, . . . ) + Z1Z2(Z

2
1, Z2, Z3, . . . ) so the

pullback of Z2(Z
2
1, Z2, Z3, . . . ) over P is a domain D whose integral closure is

D′ = D + Z1D. Finally note that for r ∈ D′\P , there is an element s ∈ S and an
integer m such that r + 2Zm/s is a unit of D′. By Theorem 3.14, R is a valuative
Marot ring with exactly two regular maximal ideals that are neither integrally closed
nor weakly additively regular.
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Classifying Modules in Add of a Class
of Modules with Semilocal
Endomorphism Rings

Pavel Příhoda

Abstract We present a dimension theory for modules in Add(C), where C is a
class of modules with semilocal endomorphism rings satisfying certain smallness
conditions. For example, if C is the class of all finitely presented modules over a
semilocal ring R, then we get cardinal invariants which describe pure projective
R-modules up to isomorphism.

Keywords Factor categories · Semilocal endomorphism ring · Direct sum
decompositions of modules

Let C be a class of modules with semilocal endomorphism rings satisfying certain
smallness conditions which will be specified later. For example, C can be a class of
countably generated Artinian modules over any ring or a class of finitely presented
modules over a semilocal ring. In this notewe suggest a dimension theory formodules
in Add(C), that is, a class of functions assigning cardinal invariants to modules of
Add(C) such that two modules of Add(C) are isomorphic if and only if they have
the same invariants. Note that if R is a semilocal ring and C = {R}, then Add(C)

is the class of projective R-modules. In [10] we gave the dimension theory for
this case, so this paper can be considered as an extension of dimension theory for
projective modules over a semilocal ring R to the class of pure projective R-modules.
Another example studied so far is the class C of uniserial R-modules. In [6] the
dimension theory for the class of direct summands of serial modules was presented.
This theory appeared to be a useful tool for understanding pure projective modules
over serial rings. For example, it enabled to characterize chain domains possessing
a pure projective module which is not a direct sum of finitely presented modules as
those possessing a nontrivial idempotent one-generated ideal (see [11]).

A dimension theory for classes of modules with semilocal endomorphism ring
appeared in [4]. In this note we reconsider these dimensions using factor categories.
The application of factor categories in the study of direct-sum decompositions is due
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to Harada and Sai [8], who considered direct sums of modules with local endomor-
phism rings.

The paper is organized as follows. The first section is of expository character, we
followmostly [7], where a particular case ofmodules with finite typewas considered.
Let us point out that there is a more general treatment of the subject in [3]; however,
we decided to present the topic in a way sufficient to understand the dimension theory
for modules in Add(C) presented in the third section of the paper. The second section
collects relevant properties of I -small modules introduced in [6].

1 Overview of the Finite Case

Let R be a ring, let 0 �= M ∈ Mod-R and let I be an ideal of EndR(M). Any class of
right R-modules D is always considered as a full subcategory of Mod-R. The ideal
I ofD associated to I is the ideal consisting of all morphisms f : X → Y ∈ D such
that β f α ∈ I for any pair of homomorphisms α : M → X and β : Y → M . Observe
that if M is an object of D, then I = I ∩ EndR(M). Notice that the ideal I depends
on I andD, so the notation should be, for example, II,D butD and I will always be
specified or obvious from the context.

Let us recall the definition of the Jacobson radical of the category according to
Mitchell [9]. Let D be a full category of Mod-R and set J (D) := { f ∈ D(X,Y ) |
1X − g f is left invertible in EndD(X) for every g ∈ D(Y, X)}. The original definition
in [9] was for small preadditive categories and J was defined as the intersection of
all maximal right ideals ofD. However, we just need to know thatJ (D) is an ideal of
D andJ (N , N ) is J (EndR(N )) for every N ∈ D. The first statement is proved in [9,
Lemma 4.1, Lemma 4.2] and the second one follows directly from the definition of
J . Observe that f ∈ J (D) if and only if, for every N ∈ D, the ideal ofD associated
to J (EndR(N )) contains f . Note that ifM is amodule with semilocal endomorphism
ring and I is amaximal ideal of EndR(M), then the ideal ofD associated toI contains
J (D).

Most of the following results appeared in [3].

Lemma 1.1. Let M, N be nonzero modules with semilocal endomorphism rings,
let I be a maximal ideal of EndR(M), and let I be the ideal of D associated to I ,
whereD is a class of modules containing N. Then either I ∩ EndR(N ) = EndR(N )

or I ∩ EndR(N ) is a maximal ideal of EndR(N ).

Proof. The arguments from the proof of [7, Lemma 4.4] can be used to check
that J (EndR(N )) ⊆ J := I ∩ EndR(N ). The rest of the proof needs a slight mod-
ification: Suppose that J �= EndR(N ), so we have to prove that EndR(N )/J is a
simple Artinian ring. Let f, g ∈ EndR(N ) be such that f + J, g + J are nontriv-
ial orthogonal central idempotents of EndR(N )/J . There exist α,α′ : M → N and
β,β′ : N → M such that β f α /∈ I and β′gα′ /∈ I . Then (EndR(M)β f α + I )/I is
a nonzero left ideal and (β′gα′EndR(M) + I )/I is a nonzero right ideal of a sim-
ple Artinian ring EndR(M)/I , so β′gα′EndR(M)β f α + I � I . On the other hand
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gα′EndR(M)β f ⊆ J (use g + J, f + J are orthogonal and central), and β′ Jα ⊆ I ,
since J ⊆ I. This contradiction proves the lemma. �
Lemma 1.2. Let M, N be nonzero modules with semilocal endomorphism rings
contained in a class D ⊆ Mod-R, let I be a maximal ideal of EndR(M) and let I
be the ideal of D associated to I . Assume J := I ∩ EndR(N ) �= EndR(N ). Then I
is the ideal of D associated to J .

Proof. Let f : X → Y ∈ D be such that f is not in the ideal of D associated to
J . Then there are α : N → X and β : Y → N such that β f α /∈ J = I ∩ EndR(N ).
In particular, f /∈ I.

Conversely, assume that f : X → Y ∈ D is not in I, i.e., there are α : M →
X and β : Y → M such that g := β f α /∈ I . If g is in the ideal of D associated
to J , then HomR(M, N )(EndR(M)gEndR(M) + I )HomR(N , M) ⊆ J . It follows
that the whole EndR(M) is in the ideal of D associated to J . Fix ϕ : M → N ,
ψ : N → M such thatψϕ /∈ I . ThenψϕEndR(M)ψϕ � I . ButϕEndR(M)ψ ⊆ J ⊆
I, which is a contradiction. So g is not in the ideal ofD associated to J and there are
homomorphisms α′ : N → M and β′ : M → N such that β′β f αα′ /∈ J . Thus f is
not in the ideal of D associated to J . �

For a given class C of modules with semilocal endomorphism rings, let Spec(C)

be the class of ideals in the category C such that I ∈ Spec(C) if and only if I is
associated to a maximal ideal of EndR(M) for some nonzero object M of C. For
each M ∈ C, set V (M) := {I ∈ Spec(C) | 1M /∈ I}, so that V (M) is the finite set of
ideals associated to the maximal ideals of EndR(M).

Lemma 1.3. Let C be a class of modules with semilocal endomorphism rings and
let M, N , M ⊕ N ∈ C. Then V (M) ∪ V (N ) = V (M ⊕ N ).

Proof. If I ∈ V (M), then 1M⊕N /∈ I, otherwise 1M = πM1M⊕N ιM would imply
1M ∈ I. Then I ∈ V (M ⊕ N ). Similarly, I ∈ V (N ) implies I ∈ V (M ⊕ N ) and
V (M) ∪ V (N ) ⊆ V (M ⊕ N ) follows.

Conversely, if I ∈ V (M ⊕ N ), then 1M⊕N = ιM1MπM + ιN1NπN implies that
either 1M /∈ I or 1N /∈ I. Consequently, I ∈ V (M) or I ∈ V (N ) and V (M ⊕ N ) ⊆
V (M) ∪ V (N ). �

For eachI ∈ Spec(C)wewould like to define a ‘dimension function’ dimI assign-
ing a cardinal number to every object of C. These ‘functions’ should describe mod-
ules of C up to isomorphism, i.e., X,Y ∈ C should be isomorphic if and only if
dimI(X) = dimI(Y ) for every I ∈ Spec(C).

For any M, N ∈ C and I ∈ Spec(C) consider the group HomR(M, N )/I(M, N ).
It is zero if 1M ∈ I. Otherwise I := I(M, M) is a maximal ideal of EndR(M) and
EndR(M)/I is a simple Artinian ring. Therefore HomR(M, N )/I(M, N ) has a nat-
ural structure of a right module over EndR(M)/I so we would like to define the
I-dimension of N to be the length of this module. Of course, it is necessary to
check that the definition is independent of the choice of M . In fact, observe that
HomR(M, N )/I(M, N ) = 0 if 1N ∈ I. Otherwise we can check that the composi-
tion length of HomR(M, N )/I(M, N ) is just the dual Goldie dimension of the ring
EndR(N )/I(N , N ).
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Lemma 1.4. Let C be a class of modules with semilocal endomorphism rings,
M, N ∈ C and let I ∈ Spec(C). Then HomR(M, N )/I(M, N ) = 0 if 1M ∈ I or
1N ∈ I. If 1M /∈ I and 1N /∈ I, the length of HomR(M, N )/I(M, N ), considered
as a right EndR(M)/I(M, M)-module, is the same as the dual Goldie dimension of
EndR(N )/I(N , N ).

Proof. The first part of the statement is obvious. Suppose that 1M , 1N /∈ I.
Then it follows from Lemma 1.2 that the ideals of C associated to I(M, M)

and I(N , N ) are both equal to I. Put I := I(N , N ). Let e1, . . . , ek ∈ EndR(N )

be such that e1 + I, . . . , ek + I is a complete set of primitive orthogonal idem-
potents of EndR(N )/I . Then HomR(M, N )/I(M, N ) = ⊕k

i=1(eiHomR(M, N ) +
I(M, N ))/I(M, N ). Note that for any 1 ≤ i ≤ k the module eiHomR(M, N ) +
I(M, N )/I(M, N ) is not zero: Since ei /∈ I and I is the ideal of C associated to
I(M, M), eiHomR(M, N ) ⊆ I cannot hold.

It remains to prove that for every 1 ≤ i ≤ k the EndR(M)/I(M, M)-module
eiHomR(M, N ) + I(M, N )/I(M, N ) is simple. Take f : M → N such that ei f /∈
I. Then there exists h : N → M such that ei f h /∈ I since I is associated to I . Con-
sequently, ei f ht − ei ∈ I for some t ∈ EndR(N ). Then ei f (htg) − eig ∈ I(M, N )

for every g : M → N . �

Remark 1.5. The previous proof gives a way of finding a decomposition of the
EndR(M)/I(M, M)-module HomR(M, N )/I(M, N ) into a direct sum of sim-
ple modules: Fix some complete set of orthogonal primitive idempotents e1 +
I, . . . , ek + I of the ring EndR(N )/I , where I = I(N , N ). If f + I(M, N ) belongs
to HomR(M, N )/

I(M, N ), then (e1 f + I(M, N ), . . . , ek f + I(M, N )) is the decomposition of
f + I(M, N ) in the direct-sum decomposition HomR(M, N )/I(M, N ) = ⊕k

i=1
(eiHomR(M, N ) + I(M, N ))/I(M, N ). So f + I(M, N ) �→ ei f + I(M, N ) can
be considered as the canonical projection πi : HomR(M, N )/I(M, N ) → (eiHomR

(M, N ) + I(M, N ))/I(M, N )with respect to this decomposition ofHomR(M, N )/

I(M, N ). We will use this fact in the proof of Proposition 1.7.

It is also possible to consider HomR(M, N )/I(M, N ) as a left module over
EndR(N )/I(N , N ) and use its length to define the I-dimension of M . Similarly
one can show that the length of this left module is the dual Goldie dimension of
EndR(M)/I(M, M). So these two definitions coincide. Of course, it is not true that
the bimodule HomR(M, N )/I(M, N ) has same lengths on both sides. Indeed, take
a simple R-module S and set M := S, N := S ⊕ S, let I be the ideal of Mod-R
associated to the zero ideal of EndR(M), then I(M, M), I(M, N ), I(N , N ) are all
zero, HomR(M, N ) is of length two as a right EndR(M)-module but of length one
as a left EndR(N )-module.

If C is a class of modules with semilocal endomorphism rings, I ∈ Spec(C) and
N ∈ C, we define dimI(N ) to be the dualGoldie dimension of EndR(N )/I(N , N ) (if
I /∈ V (N ), then dimI(N ) = 0). As remarked above, there is another interpretation of
dimI . The factor category C/I has a fully faithful embedding to a category of finitely
generated modules over a division ring (see Proposition 1.7 below). Then dimI(N )
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is the length of the corresponding module. Let us make a remark on uniqueness of
such an embedding.

Remark 1.6. Let C be a class of modules with semilocal endomorphism rings, let
M be a nonzero module of C, I a maximal ideal of EndR(M), and let I be the
ideal of C associated to I . Suppose that F : C/I → mod-K and G : C/I → mod-K ′
are full and faithful functors into the categories of finitely generated modules over
division rings K , K ′. Then K � K ′, since K � eEndK (F(M))e for every primi-
tive idempotent e ∈ EndK (F(M)) and K ′ � e′EndK ′(G(M))e′ for every primitive
idempotent e′ ∈ EndK ′(G(M)). Moreover, for every N ∈ C dimensions (or lengths)
dimK (F(N )) and dimK ′(G(N )) both coincide with the dual Goldie dimension of
EndR(N )/I(N , N ). (Observe that EndK (F(N )) � EndC/I(N ). The dual Goldie
dimension of EndK (F(N )) is dimK (F(N )).)

Proposition 1.7. Let C be a class of modules with semilocal endomorphism rings
and let 0 �= M ∈ C. If I is the ideal of C associated to amaximal ideal I ofEndR(M),
then there exists a division ring K and a full and faithful functor C/I → mod-K .

Proof.Let F : C → C/I be the canonical functor and let S := EndR(M)/I . Con-
sider the functor G := HomC/I(F(M),−) : C/I → Mod-S. In the proof of Lemma
1.4 we have seen that G(F(N )) is a finitely generated module, so we have to show
that G is full and faithful.

Let f : X → Y ∈ C be such that F( f ) �= 0. Then β f α /∈ I for some α : M → X
and β : Y → M . In particular, f α /∈ I and G(F( f ))(F(α)) �= 0. So G is faithful.

In order to prove that G is full, consider N1, N2 ∈ C such that F(N1) �= 0 and
F(N2) �= 0.Let Ii := I(M, Ni ), i = 1, 2.Let e1, . . . , ek ∈ EndR(N1) and f1, . . . , fl
∈ EndR(N2) be such that F(e1), . . . , F(ek) is a complete set of orthogonal prim-
itive idempotents of EndC/I(F(N1)) and F( f1), . . . , F( fl) is a complete set of
orthogonal primitive idempotents of EndC/I(F(N2)). By Remark 1.5, GF(N1) =
⊕k

j=1(e jHomR(M, N1) + I1)/I1 and GF(N2) = ⊕l
j=1( f jHomR(M, N2) + I2)/I2.

For every i ∈ {1, . . . , k} there exists αi : N1 → M such that αi ei /∈ I and for
every j ∈ {1, . . . , l} there exists β j : M → N2 such that f jβ j /∈ I. Since S is simple
Artinian and the S-modules (eiHomR(M, N1) + I1)/I1, ( f jHomR(M, N2) + I2)/I2
are simple, HomS((eiHomR(M, N1) + I1)/I1, ( f jHomR(M, N2) + I2)/I2) = π2

j ◦
GF(β j ) ◦ EndS(S) ◦ GF(αi ) ◦ ι1i , where ι1i : (eiHomR(M, N1) + I1)/I1 →
GF(N1) is the canonical embedding and π2

j : GF(N2) → ( f jHomR(M, N2) +
I2)/I2 is the canonical projection. Observe that EndS(S) = G(EndC/IF(M)). Fur-
ther, let ι2i : ( fiHomR(M, N2) + I2)/I2 → GF(N2) be the canonical embedding and
π1
j : GF(N1) → (e jHomR(M, N1) + I1)/I1 be the canonical projection. As

remarked above, GF(ei ) = ι1i π
1
i and GF( f j ) = ι2jπ

2
j .

Let ϕ ∈ HomS(GF(N1),GF(N2)). Then ϕ = ∑k,l
i=1, j=1 G(F( f j ))ϕG(F(ei ))

and G(F( f j ))ϕG(F(ei )) = ι2jπ
2
jϕι1i π

1
i , π2

jϕι1i = π2
j GF(ψ j,i )ι

1
i for some ψ j,i :

N1 → N2. Therefore ϕ = GF(
∑k,l

i=1, j=1 f jψ j,i ei ).
To conclude the proof, observe that mod-S is equivalent to mod-K , where K is

the endomorphism ring of the unique simple S-module.
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Now let us reformulate several results from [7] to our setting. The next lemma
has the same proof as [7, Lemma 4.7, Lemma 4.8].

Lemma 1.8. Let C be a class of modules with semilocal endomorphism rings,
M1, . . . , Mn ∈ C and S = EndR(M1 ⊕ · · · ⊕ Mn). The following conditions are
equivalent for an endomorphism f ∈ S:

(i) f ∈ J (S).
(ii) π j f ιi ∈ I(Mi , Mj ) for every i, j = 1, . . . , n and every I ∈ ∪n

k=1V (Mk).
(iii) For every i, j = 1, . . . , n and for every P ∈ V (Mi ) ∩ V (Mj ) in the category C,

one has π j f ιi ∈ P .

Moreover, if A is a direct summand of ⊕n
k=1Mk, then g ∈ J (EndR(A)) if and only if

g is in every ideal of Mod-R which is associated to a maximal ideal of EndR(Mi )

for some i = 1, . . . , n.

The proof of [7, Theorem 4.10] can be also transferred to our setting.

Proposition 1.9. Let C be a class of modules with semilocal endomorphism rings,
let M, N be direct summands of a finite direct sum of modules in C. Then M � N if
and only if dimI(M) = dimI(N ) for every I ∈ Spec(add(C)).

Proof. Note that V (M) = V (N ) = {I1, . . . , Ik} is a finite set of ideals in
add(C). If k = 0, then M = N = 0. Assume k > 0. For every 1 ≤ i ≤ k let Ii =
Ii (M, M) and Ji = Ii (N , N ). By Lemma 1.1, I1, . . . , Ik are the maximal ide-
als of EndR(M) and J1, . . . , Jk are the maximal ideals of EndR(N ). Let ei ∈
EndR(M), fi ∈ EndR(N ) be such that ei , fi ∈ I j for every j �= i and 1M − ei , 1N −
fi ∈ Ii . By Proposition 1.7, for every 1 ≤ i ≤ k there are homomorphismsαi : M →
N and βi : N → M inducing mutually inverse isomorphisms of M and N in
Mod-R/Ii . Consider α := ∑k

j=1 αi ei : M → N and β := ∑k
i=1 βi fi . Then 1M −

βα ∈ I1 ∩ · · · ∩ Ik = J (EndR(M)) and 1N − αβ ∈ J1 ∩ · · · ∩ Jk = J (EndR(N )).
So βα and αβ are isomorphisms, therefore M � N . �

Remark 1.10. Note that, by Lemma 1.3, every ideal of Spec(add(C)) is in V (C)

for some C ∈ C. Therefore it is possible to extend dimension functions classifying
objects in C to get a dimension theory for add(C).

2 I-small Modules

Recall that a family fλ, λ ∈ Λ, of elements of HomR(X,Y ) is called summable if, for
any x ∈ X , fλ(x) = 0, for all but finitely many λ ∈ Λ. If fλ, λ ∈ Λ, is a summable
family in HomR(X,Y ), then we can define the homomorphism f := ∑

λ∈Λ fλ by
f (x) = ∑

λ∈Λ, fλ(x)�=0 fλ(x).
Let us recall the notion of I -small module: Let M be a module, I an ideal of

EndR(M). We say that M is I -small provided for every summable family fλ,λ ∈ Λ,
of endomorphisms in I the sum

∑
λ∈Λ fλ is in I . If A is a class of modules closed
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under arbitrary direct sums and I is an ideal of A closed under sums of summable
families of morphisms, then the canonical functor F : A → A/I preserves coprod-
ucts ([6, Lemma 2.5]). Thus, if we want to define the dimension function dimI
on objects of A in such a way that dimI is compatible with arbitrary direct sums
of objects in A, the condition of A being I-small introduced below seems to be
essential. Let us recall [6, Corollary 2.7].

Proposition 2.1. Let A be a full subcategory of Mod-R closed under arbitrary
direct sums. Suppose that U is a nonzero module and I is an ideal of EndR(U ) such
that U is I -small. If I is the ideal of A associated to I , then the canonical functor
F : A → A/I preserves coproducts.

Let A be a full subcategory of Mod-R and let I be an ideal of A. We say that A
is I-small if the sum of every summable family of morphisms of I is in I.
Lemma 2.2. Let A be a full subcategory ofMod-R containing modules M, N. Let
I be the ideal ofA associated to an ideal I of the ring EndR(M). Then the following
are equivalent:

(i) M is I -small.
(ii) A is I-small.
In particular, if M is I -small, then N is I(N , N )-small.

Proof. (i) follows immediately from (ii), let us prove the converse. Take modules
X,Y ∈ A and a summable family of homomorphisms fλ : X → Y,λ ∈ Λ. Suppose
that the sum f = ∑

λ∈Λ fλ is not in I, that is, there are g : M → X and h : Y → M
such that h f g /∈ I. Observe that h fλg,λ ∈ Λ is a summable family in I and that∑

λ∈Λ h fλg = h f g. So M cannot be I -small in this case.
Recall that an R-module M is small if for every family Nλ,λ ∈ Λ, of R-modules

the canonical homomorphism α : ⊕λ∈Λ HomR(M, Nλ) → HomR(M,⊕λ∈ΛNλ) is
an isomorphism. Lemma 2.3 explains how to understand the relation between being
small and being I -small in our particular case.

Lemma 2.3. Let A be a full subcategory of Mod-R, let M, Nλ,λ ∈ Λ be modules
of A such that EndR(M) is semilocal and ⊕λ∈ΛNλ is in A. Let I be the ideal of A
associated to a maximal ideal I of EndR(M). If M is I -small, then for any f : M →
⊕λ∈ΛNλ there is a finite set Λ0 ⊆ Λ such that πλ f ∈ I for every λ ∈ Λ \ Λ0.

Proof. Let e1, . . . , en ∈ EndR(M) be such that e1 + I, . . . , en + I is a complete
set of primitive orthogonal idempotents of EndR(M)/I . Suppose that the statement
is not true for f : M → ⊕λ∈ΛNλ. Then there exists i ∈ {1, . . . , n} and pairwise dif-
ferent elements λ1,λ2, · · · ∈ Λ such that πλ j f ei /∈ I for every j ∈ N. For simplicity
suppose that i = 1. Then there are h j : Nλ j → M such that t ′j := e1h jπλ j f e1 /∈ I for
every j ∈ N. Since (e1 + I )EndR(M)/I (e1 + I ) is a division ring, we can suppose
that t j := e1 − e1h jπλ j f e1 ∈ I for every j = 1, 2, . . . . Consider a countable family
t1, t2 − t1, t3 − t2, . . . . This is a summable family of homomorphisms in I but the
sum of this family is e1 /∈ I , which is impossible if M is I -small. �
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Corollary 2.4. LetA be a full subcategory ofMod-R closed under (arbitrary) direct
sums. Let M be amodule ofA such thatEndR(M) is semilocal and let I be amaximal
ideal of EndR(M). If M is I -small, then the functor

HomR(M,−)/I(M,−) : A → Mod-EndR(M)/I

commutes with direct sums.

Lemma 2.5. Let M be a nonzero module with semilocal endomorphism ring. Then
M is J (EndR(M))-small if and only if M is I -small for every maximal ideal I of
EndR(M).

Proof. Suppose that M is I -small for every maximal ideal I ⊆ EndR(M). Take
any summable family fλ,λ ∈ Λ in J (EndR(M)). Then f := ∑

λ∈Λ fλ ∈ I for every
maximal ideal I ⊆ EndR(M). Therefore also f ∈ J (EndR(M)).

Conversely, suppose M is J (EndR(M))-small and there is a maximal ideal
I ′ ⊆ EndR(M) such that M is not I ′-small. Then there exists a summable fam-
ily fλ,λ ∈ Λ in I ′ such that f := ∑

λ∈Λ fλ is not in I ′. Let g ∈ EndR(M) be
such that g ∈ I for every maximal ideal I ′ �= I ⊆ EndR(M) and 1M − g ∈ I ′. Then
g fλ,λ ∈ Λ is a summable family in J (EndR(M)) with the sum g

∑
λ∈Λ fλ /∈ I ′.

This is a contradiction. �

Example 2.6. (i) If M is a finitely generated module, then M is I -small for every
ideal I ⊆ EndR(M). This is obvious since every summable family in EndR(M) has
only finitely many nonzero members. In particular, a Noetherian module of finite
dual Goldie dimension has semilocal endomorphism ring (cf. [5, Theorem 4.3(b)])
and is I -small for every maximal ideal I ⊆ EndR(M). Similarly, if M is a finitely
presented module over a semilocal ring R, then, by [2, Theorem 3.3], EndR(M) is
semilocal and M is I -small for every maximal ideal I of EndR(M).
(ii) Let M be an R-module such that EndR(M) is local. Then M is J (EndR(M))-
small by [6, beginning of Section6].
(iii) Let M be an Artinian R-module with socle S. It is not true in general that
EndR(M) is local if M is indecomposable (see [5, Example 8.19]). However, by
[1, Corollary 6], EndR(M) is semilocal. Note that J0 := { f ∈ EndR(M) | f (S) =
0} ⊆ J (EndR(M)). Any summable family of EndR(M) has almost all its members
in J0. In particular, M is J (EndR(M))-small. By Lemma 2.5, M is I -small for every
maximal ideal I ⊆ EndR(M).

In the next section, we give a dimension theory for modules in Add(C), where C
is either a class of Noetherian modules of finite dual Goldie dimension or a class of
(unfortunately) countably generated Artinian modules or a class of finitely presented
modules if the ring is semilocal.
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3 The Infinite Case

We would like to extend Proposition 1.9 to infinite direct sums of modules with
semilocal endomorphism rings. Of course, it is necessary to extend the definition
of dimI to infinite direct sums. There is an obvious way: Let M be a module with
semilocal endomorphism ring, I a maximal ideal of EndR(M), and let I be the ideal
of the categoryMod-R associated to I . ThenHomR(M, N )/I(M, N ) has a canonical
structure of a module over a simple Artinian ring EndR(M)/I . Let S be the simple
right EndR(M)/I -module. For N ∈ Mod-R we would like to define dimI(N ) = κ,
if HomR(M, N )/I(M, N ) � S(κ). Of course, it is necessary to check that such a
definition is independent of the choice of M and I .

Proposition 3.1. Let C be a class of modules with semilocal endomorphism rings,
M, N ∈ C and I ′ ∈ V (M) ∩ V (N ). Let I be the ideal of Mod-R associated to
I ′(M, M). Then for an arbitrary module X, the length of EndR(M)/I(M, M)-
module HomR(M, X)/I(M, X) is the same as the length of EndR(N )/I(N , N )-
module HomR(N , X)/I(N , X) (since there are no assumptions on X these lengths
can be infinite).

Proof. Let I := I(M, M), J := I(N , N ), S := EndR(M)/I and T :=
EndR(N )/J . Assume that M and N are isomorphic in Mod-R/I. Let ϕ : M →
N ,ψ : N → M be homomorphisms such that 1M − ψϕ, 1N − ϕψ ∈ I and let us
denote ϕ,ψ the corresponding morphisms in Mod-R/I. In this case S and T are iso-
morphic via θ : S → T , θ(s) = ϕsψ. Observe that the homomorphismHomR(ψ, X)

induces a group isomorphism � : HomR(M, X)/I(M, X) → HomR(N , X)/

I(N , X) given by �( f + I(M, X)) := f ψ + I(N , X). Moreover, �(( f +
I(M, X))s) = �(( f + I(M, X))θ(s) for every s ∈ S, hence a decomposition of
HomR(M, X)/I(M, X) into a direct sum of simple S-modules is mapped by �

to a direct-sum decomposition of HomR(N , X)/I(N , X) into simple T -modules.
Therefore the lengths of these modules are the same.

In general Mcodim(T ) � N codim(S) in Mod-R/I by Lemma 1.4 and Proposi-
tion 1.7, therefore we can restrict to the case N = Mm for some m ∈ N. Let
ιi : M → N , πi : N → M , i = 1, . . . ,m be the canonical embeddings and projec-
tions and let ιi ,πi , i = 1, . . . ,m be the corresponding morphisms in Mod-R/I.
Consider a homomorphism τ : S → T given by τ (s) := ∑m

i=1 ιi sπi . Then any right
T -module can be considered as an S-module via τ . Let S0 be a minimal right
ideal of S, then it is possible to verify that T0 = {∑m

j=1 ι1s jπ j | s1, . . . , sm ∈ S0}
is a minimal right ideal of T and T0 � Sm0 as S-modules. Further, it is easy to
verify that �( f + I(N , X)) := ( f ι1 + I(M, X), . . . , f ιm + I(M, X)) gives an
S-module isomorphism � : HomR(N , X)/I(N , X) → HomR(M, X)/I(M, X)m .
Therefore m times the length of the S-module HomR(M, X)/I(M, X) is the same
as m times the length of the T -module HomR(N , X)/I(N , X). �

The previous proposition allows us to define the I-dimension for an arbitrary
module. LetD be a class of modules, let M ∈ D be a nonzero module with semilocal
endomorphism ring and let I be the ideal ofD associated to a maximal ideal of I ⊆
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EndR(M). For every X ∈ D, we define dimI(X) to be the length of the EndR(M)/I -
module HomR(M, X)/I(M, X).

Let us recall [6,Remark 2.9],which provides a useful criterion to establishwhether
a morphism between two direct sums belongs to an ideal.

Remark 3.2. LetI be an ideal of a categoryC ⊆ Mod-R such thatC isI-small and let
Mi , i ∈ I , N j , j ∈ J be two families ofmodules fromC such that⊕i∈I Mi ,⊕ j∈J N j ∈
C. Then f ∈ HomR(⊕i∈I Mi ,⊕ j∈J N j )belongs toI if and only ifπ j f ιi ∈ I for every
i ∈ I, j ∈ J , where ιi : Mi → ⊕k∈I Mk is the canonical embedding and π j : ⊕k∈J

Nk → N j is the canonical projection.

Proposition 3.3. Let C be a class of modules with semilocal endomorphism rings,
and M ∈ C be nonzero. Let I be a maximal ideal of EndR(M) and I be the ideal of
Add(C) associated to I . If M is I -small, then the functor HomR(M,−) induces a
full and faithful functor G : Add(C)/I → Mod-EndR(M)/I .

Proof. Let F : Add(C) → Add(C)/I be the canonical functor and let G :=
HomAdd(C)/I(M,−). As remarked above F and GF preserve direct sums. Let D
be the full subcategory of Add(C) whose objects are arbitrary direct sums of mod-
ules of C. First let us check that the restriction GF toD is a full functor onD. Recall
that by Proposition 1.7, the functor GF gives an onto map ϕC1,C2 : D(C1,C2) →
HomEndR(M)/I (GF(C1),GF(C2)) for every C1,C2 ∈ C. Consider D1 := ⊕ j∈J1C j ,

D2 := ⊕ j∈J2C
′
j ∈ D and let ι j1 : C j1 → D1, j1 ∈ J1, π j2 : D2 → C ′

j2
, j2 ∈ J2 be

the corresponding embeddings and projections. Let f ∈ HomEndR(M)/I (GF(D1),

GF(D2)). For j1 ∈ J1, j2 ∈ J2 let f j2, j1 be such that f j2, j1 ∈ ϕ−1
C j1 ,C

′
j2
(GF(π j2) ◦

f ◦ GF(ι j1)). Moreover, put f j2, j1 = 0 if GF(π j2) ◦ f ◦ GF(ι j1) = 0. By Lemma
1.4, GF(C j1) is finitely generated, therefore for any j1 ∈ J1 there are only finitely
many j2 ∈ J2 such that f j2, j1 �= 0. Therefore there exists f ′ : D1 → D2 such that
π j2 f

′ι j1 = f j2, j1 . Then it is easily seen that GF( f ′) = f .
Now we can prove that GF is full on Add(C). Let A1, A2 ∈ Add(C). Then

there are D1, D2 ∈ D such that Ai is a direct summand of Di , i = 1, 2. Let
πi : Di → Ai , ιi : Ai → Di , i = 1, 2 be the corresponding projections and embed-
dings. Let f : GF(A1) → GF(A2). From the previous part of the proof there exists
f ′ : D1 → D2 such that GF( f ′) = GF(ι2) f GF(π1). Then f ′′ := π2 f ′ι1 satisfies
GF( f ′′) = f .

We have proved that G is full. It remains to prove that G is faithful. Let
A1, A2 ∈ Add(C) and f : A1 → A2 be such that GF( f ) = 0. We have to prove
that f ∈ I. Suppose the contrary. Then there are α : M → A1 and β : A2 → M
such that β f α /∈ I , hence HomAdd(C)/I(M, f )(α) �= 0 which is not possible as
HomAdd(C)/I(M, f ) = 0. �

Any module over a simple Artinian ring is determined up to isomorphism by its
length. Therefore
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Corollary 3.4. Let C be a class of modules with semilocal endomorphism rings, let
M ∈ C be nonzero, and let I be a maximal ideal of EndR(M) such that M is I -small.
If I is an ideal of Add(C) associated to I and X,Y ∈ Add(C), then dimI(X) =
dimI(Y ) if and only if X and Y are isomorphic in Add(C)/I.
Lemma 3.5. Let C be a class of modules with semilocal endomorphism rings. Con-
sider a nonzero module M ∈ C, a maximal ideal I ⊆ EndR(M) such that M is
I -small and an ideal I of Add(C) associated to I . Moreover let Mi , i ∈ N, be a
countable family of modules in C. If A, B are direct summands of ⊕i∈NMi such that
dimI(A) = dimI(B), then there are f, g ∈ EndR(⊕i∈NMi ) satisfying the following
conditions:

(i) For any i, j ∈ C π j f ιi �= 0 or π jgιi �= 0 implies I ∩ C ∈ V (Mi ) ∩ V (Mj ).
(ii) 1A − πAgιBπB f ιA, 1B − πB f ιAπAgιB ∈ I.
(iii) If I ∩ C �= L ∈ Spec(C) such that C isL-small, then π j f ιi ,π jgιi ∈ L for every

i, j ∈ N.

Proof. Let F : Add(C) → Add(C)/I be the canonical functor. By Corollary 3.4,
F(A) � F(B). We can proceed as in [6, Lemma 3.3]: Suppose that M = ⊕i∈NMi =
A ⊕ A′ = B ⊕ B ′ and let ιA : A → M , ιB : B → M , πA : M → A, πB : M → B be
the canonical embeddings and projections. Let f0 : F(A) → F(B) and g0 : F(B) →
F(A) bemutually inverse isomorphisms and let f ′

0, g
′
0 ∈ EndAdd(C)/I(F(M)) be such

that F(πB) f ′
0F(ιA) = f0, F(πA)g

′
0F(ιB) = g0. Let f ′, g′ ∈ EndR(M) be such that

F( f ′) = f ′
0, F(g′) = g′

0. Because of Remark 3.2, we may choose f ′, g′ satisfying
π j f ′ιi = 0,π jg

′ιi = 0 for every i, j ∈ N such that I ′ := I ∩ C /∈ V (Mi ) ∩ V (Mj ).
Observe that for every i ∈ N there exists hi ∈ EndR(Mi ) such that 1Mi − hi ∈ I ′

and hi ∈ L for everyI ′ �= L ∈ Spec(C). Indeed, fix i ∈ N. IfI ′ /∈ V (Mi ), put hi = 0.
If V (Mi ) = {I ′,L1, . . . ,Ln}, then I(Mi , Mi ),L1(Mi , Mi ), . . . ,Ln(Mi , Mi ) are the
maximal ideals of EndR(Mi ). Hence, the Chinese Reminder Theorem gives hi ∈
EndR(Mi ) such that 1Mi − hi ∈ I ′ and hi ∈ ∩n

i=1Li . Of course, hi ∈ L for every
L /∈ V (Mi ).

Let h := ⊕i∈Nhi ∈ EndR(M), f := h f ′, g := hg′. Notice F( f ) = F( f ′),
F(g) = F(g′), therefore (ii) holds. The choice of f ′, g′ guarantees that (i) is sat-
isfied too. Finally, if L �= I ′ is an ideal of Spec(C), then every hi is in L which
implies (iii). �

Let C be a full subcategory of Mod-R and let I be an ideal of C. We say that the
ideal J of Add(C) is associated to I if J is the largest ideal of Add(C) such that
C ∩ J = I. Observe that if M ∈ C, I is an ideal of EndR(M), I is the ideal of C
associated to I , and J is the ideal of Add(C) associated to I, then J is the ideal of
Add(C) associated to I .

We have already recalled that a module M is small if for every family of modules
Nλ,λ ∈ Λ, and every homomorphism f : M → ⊕λ∈ΛNλ there exists a finite set
Λ0 ⊆ Λ such that f (M) ⊆ ⊕λ∈Λ0Nλ. A module is said to be σ-small if it is a
countable union of small modules (observe that every countably generated module
is σ-small).
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Proposition 3.6. Let C be a class ofmodules with semilocal endomorphism rings, let
Mi , i ∈ N be a countable family of objects in C such that for every i ∈ N the module
Mi is σ-small and J (EndR(Mi ))-small. If A, B are direct summands of ⊕i∈NMi

such that dimI(A) = dimI(B) for every ideal I of Add(C) associated to an ideal
of Spec(C), then A � B.

Proof. Let A ⊕ A1 = M = B ⊕ B1. Using the standard Eilenberg’s trick (cf.
the proof of [6, Lemma 7.2]) we can suppose A1 � B1. Let us denote ιA : A →
M , ιB : B → M , πA : M → A, and πB : M → B the canonical embeddings and
projections. Let S be the set of ideals in Add(C) such that I ∈ S if and only if I is
associated to an ideal from ∪i∈NV (Mi ).

Step 1: There are f, g ∈ EndR(M) such that 1A − πAgιBπB f ιA, 1B − πB f ιAπA

gιB ∈ I for every I ∈ S: For every I ∈ S take fI, gI satisfying the conditions (i)–
(iii) of Lemma 3.5. Observe that fI, I ∈ S and gI, I ∈ S are summable families of
homomorphisms (in fact, condition (i) of Lemma 3.5 says that fI(Mi ) �= 0 only if I
is associated to an ideal from V (Mi ) and similarly for gI). Put f := ∑

I∈S fI , g :=∑
I∈S gI . It is easy to verify f − fI ∈ I, g − gI ∈ I for every I ∈ S: Note that f −

fI = ∑
I �=L∈S fL, every fL on the right hand side is in I. By Lemma 2.2, Add(C)

is I-small, hence also f − fI ∈ I. Lemma 3.5(ii) gives 1A − πAgιBπB f ιA ∈ I and
1B − πB f ιAπAgιB ∈ I for every I ∈ S.

Step 2: Assume f : A → B and g : B → A satisfy 1A − g f, 1B − f g ∈ I for
every I ∈ S. For a small module A′ contained in A there exists g′ : B → A such
that 1A − g′ f, 1B − f g′ ∈ I for every I ∈ S and g′ f (a) = a for any a ∈ A′. Sim-
ilarly, for a small module B ′ contained in B there exists f ′ : A → B such that
1A − g f ′, 1B − f ′g ∈ I for every I ∈ S and f ′g(b) = b for any b ∈ B ′.

We prove the first statement only. Let f1 : A1 → B1, g1 : B1 → A1 be mutually
inverse isomorphisms and let f0 := f ⊕ f1, g0 := g ⊕ g1. Observe that 1M − g0 f0 ∈
I for every I ∈ S. Take n ∈ N such that A′ and g0 f0(A′) are both submodules of
⊕n

i=1Mi (such an n exists since A′ is small). Let ι : ⊕n
i=1 Mi → M be the canoni-

cal embedding and let π : M → ⊕n
i=1Mi be the canonical projection. By Proposi-

tion 1.9,π(1M − g0 f0)ι ∈ J (EndR(⊕n
i=1Mi )), thereforeπg0 f0ι is invertible. Let h ∈

EndR(⊕n
i=1Mi ) be its inverse and define h0 := h ⊕ 1⊕i≥n+1Mi ∈ EndR(M). Observe

that 1M − h0 ∈ I for every I ∈ S. Put g′ := πAh0ιAg. Since 1M − h0 ∈ I for every
I ∈ S, g − g′ ∈ I and hence 1A − g′ f, 1B − f g′ ∈ I for every I ∈ S. Let a ∈
A′. Then g′ f (a) = πAh0ιAg f (a) = πA(h0ι)πg0 f0ιπ(a) = πA(ιh)(πg0 f0ι)π(a) =
πAιπ(a) = a.

Step 3: Since Mi ’s are σ-small modules there are small modules A′
i , i ∈ N con-

tained in A and small modules B ′
i , i ∈ N contained in B such that A = ∑

i∈N A′
i

and B = ∑
i∈N B ′

i . Now we define inductively small modules Ai , i ∈ N contained
in A, small modules Bi , i ∈ N contained in B, homomorphisms fi : A → B, i ∈ N,
gi : B → A such that

(i) gi fi (a) = a for every a ∈ Ai ,
(ii) fi+1gi (b) = b for every b ∈ Bi ,
(iii) fi (Ai ) ⊆ Bi , gi (Bi ) ⊆ Ai+1,
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(iv) 1A − gi fi , 1B − figi , 1A − gi fi+1, 1B − fi+1gi ∈ I for every I ∈ S and every
i ∈ N, and

(v)
∑

i∈N Ai = A,
∑

i∈N Bi = B.

Put A1 := A′
1, and let f1 : A → B, g1 : B → A be such that g1 f1(a) = a, for

every a ∈ A1 and 1A − g1 f1, 1B − f1g1 ∈ I for every I ∈ S. The previous steps of
the proof imply the existence of these homomorphisms.

Suppose that f1, . . . , fn , g1, . . . , gn , A1, . . . , An , B1, . . . , Bn−1 have been found.
Define Bn := B ′

n + fn(An), then define fn+1 : A → B such that 1A − gn fn+1, 1B −
fn+1gn ∈ I for every I ∈ S and fn+1gn(b) = b for every b ∈ Bn . Put An+1 :=
A′
n+1 + gn(Bn) and another application of Step 2 gives gn+1 : B → A such that

gn+1 fn+1(a) = a for every a ∈ An+1 and 1A − gn+1 fn+1, 1B − fn+1gn+1 ∈ I for
every I ∈ S.

It is easily seen that fn|An = fn+1|An , gn|Bn = gn+1|Bn . Therefore we can define
f : A → B and g : B → A by f (a) = fn(a) if a ∈ An and g(b) = gn(b) if b ∈ Bn .
Then f and g are mutually inverse isomorphisms. �

Theorem 3.7. Let C be a class of σ-small modules with semilocal endomorphism
rings such that every module M ∈ C is J (EndR(M))-small. Two modules A, B ∈
Add(C) are isomorphic if and only if dimI(A) = dimI(B) for every ideal ofAdd(C)

associated an element of I ∈ Spec(C).

Proof.We proceed as in [6, Theorem 7.4]. Apply [5, Theorem 2.47] to the class
of σ-small modules to deduce that A has a decomposition A = ⊕x∈X Ax , such that,
for every x ∈ X , the module Ax is isomorphic to a direct summand of a countable
direct sum of modules from C. Similarly let B = ⊕y∈Y By be a decomposition of B
into direct summands of countable direct sums of modules from C. The additivity of
dimI gives

∑
x∈X dimI(Ax ) = ∑

y∈Y dimI(By) for every I ⊆ Add(C) associated
to an ideal of Spec(C), where the sums indicate the cardinalities of disjoint unions
of dimI(Ax ), x ∈ X , and dimI(By), y ∈ Y . Observe that there is a set C ′ ⊆ C such
that A, B ∈ Add(C ′), let S be the set of ideals associated to ideals from ∪M∈C′V (M)

and notice that dimI(A) = dimI(B) = 0 if I /∈ S. For any I ∈ S let EI be a fixed
set of cardinality dimI(A) (hence EI is empty if dimI(A) = 0) and let pI : EI →
X, qI : EI → Y be such that |p−1

I (x)| = dimI(Ax ) for every x ∈ X and |q−1
I (y)| =

dimI(By) for every y ∈ Y . Let us consider the unoriented bipartite graphG on the set
X ∪̇Y with multiple edges whose set of edges is {{pI(e), qI(e)} | e ∈ EI, I ∈ S}.

We claim that degree of any vertex in the graph G is at most countable: Fix
x ∈ X . The module Ax is isomorphic to a direct summand of ⊕i∈NMi for some
Mi ∈ C. Therefore dimI(Ax ) = 0 whenever I /∈ S ′, where S ′ is the set of ideals of
Add(C) associated to the ideals from ∪i∈NV (Mi ). Since V (Mi ) are finite subsets of
Spec(C), S ′ is countable. Moreover dimI(Ax ) ≤ dimI(⊕i∈NMi ) ≤ ℵ0. Therefore
the set of edges incident to x is T = {{x, q(e)} | e ∈ p−1

I (x), I ∈ S ′}. Obviously
|T | ≤ ℵ0 which proves the claim (the number of edges incident to y ∈ Y can be
expressed similarly).

Letκbe anordinal of cardinality at least |X |. As in the proof of [6, Theorem7.4]we
construct families of sets Xλ ⊆ X,λ ∈ κ, Yλ ⊆ Y,λ ∈ κ such that {Xλ+1 \ Xλ | λ <
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κ} is a partition of X , {Yλ+1 \ Yλ | λ < κ} is a partition of Y . Moreover, for every λ <

κ the sets Xλ+1 \ Xλ andYλ+1 \ Yλ are atmost countable and dimI(⊕x∈Xλ+1\Xλ
Ax ) =

dimI(⊕y∈Yλ+1\Yλ
By) for every I ∈ S. The construction is literally the same, so we

do not repeat it here. Then we conclude by Proposition 3.6. �
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The Multiplicative Ideal Theory
of Leavitt Path Algebras of Directed
Graphs—A Survey

Kulumani M. Rangaswamy

Abstract Let L be the Leavitt path algebra of an arbitrary directed graph E over a
field K . This survey article describes how this highly non-commutative ring L shares
a number of the characterizing properties of a Dedekind domain or a Prüfer domain
expressed in terms of their ideal lattices. Special types of ideals such as the prime,
the primary, the irreducible, and the radical ideals of L are described in terms of the
graphical properties of E . The existence and the uniqueness of the factorization of
a non-zero ideal of L as an irredundant product of prime or primary or irreducible
ideals are established. Such factorization always exists for every ideal in L if the
graph E is finite or if L is two-sided Artinian or two-sided Noetherian. In all these
factorizations, the graded ideals of L seem to play an important role. Necessary and
sufficient conditions are given under which L is a generalized ZPI ring, that is, when
every ideal of L is a product of prime ideals. Intersections of various special types
of ideals are investigated and an analogue of Krull’s theorem on the intersection of
powers of an ideal in L is established.

Keywords Leavitt path algebras · Multiplicative ideal theory · Factorization
of ideals

1 Introduction

Leavitt path algebras of directed graphs are algebraic analogues of graphC*-algebras
and, ever since they were introduced in 2004, have become an active area of research
[1]. Every Leavitt path algebra L := LK (E) of a directed graph E over a field K is
equippedwith threemutually compatible structures: L is an associative K -algebra, L
is a Z-graded algebra, and L is an algebra with an involution ∗. Further, L possesses
a large supply of idempotents, but it is highly non-commutative. Indeed, in most
of the cases, the center of this K -algebra is trivial, being just the field K . In spite
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of this, it is somewhat intriguing and certainly interesting that the ideals of such a
non-commutative algebra L exhibit the behavior of the ideals of a Prüfer domain
and sometimes that of a Dedekind domain, thus making the multiplicative ideal
theory of these algebras L worth investigating. The purpose of this survey is to give
a detailed account of some of these properties of L and the resulting factorizations
of its ideals. To start with, the ideal multiplication in L is commutative: AB = BA
for any two ideals A, B of L . As we shall see, the Prüfer-domain-like properties of
L lead to satisfactory factorizations of ideals of L as products of prime, primary,
or irreducible ideals. The graded ideals of L seem to possess interesting properties
such as coinciding with their own radical, being realizable as Leavitt path algebras
of suitable graphs, possessing local units and many others. They play an important
role in the factorization of non-graded ideals of L . As noted in ([1], Theorem 2.8.10
and in [19]), the two-sided ideal structure of L can be described completely in terms
of the hereditary saturated subsets and breaking vertices and cycles without exits in
the graph E and irreducible polynomials in K [x, x−1], and the association preserves
the lattice structures. This fact facilitates the description of various factorization
properties of the two-sided ideals in L .

This paper is organized as follows. After the preliminaries, Section3 describes the
various properties of the graded ideals of L which are foundational to the study of
non-graded ideals and in the factorization of ideals in L . In Section4, L is shown to be
an arithmetical ring, that is, its ideal lattice is distributive and, as a consequence, the
ChineseRemainderTheoremholds in L . In addition, L is shown to be amultiplication
ring. The ideal version of the number-theoretic theorem gcd(m, n) · lcm(m, n) =
mn for positive integers m, n holds in L , namely, for any two ideals M, N in L ,
(M ∩ N )(M + N ) = MN , again a characterizing property of Prüfer domains. In
the next section, the prime, the primary, the irreducible, and the radical ideals of
L are described in terms of the graph properties of E . It is interesting to note that
for a graded ideal I of L the first three of these properties coincide and that I is
always a radical ideal. In Section6, we consider the existence and the uniqueness
of factorizations of a non-zero ideal I as a product of prime, primary, or irreducible
ideals of L . It is shown that if E is a finite graph or more generally, if L is two-sided
Noetherian or Artinian, then every ideal of L is a product of prime ideals. This leads
to a complete characterization of L as a generalized ZPI ring, that is, a ring in which
every ideal of L is a product of prime ideals. Finally, an analogue of the Krull’s
theorem on powers of an ideal is proved for Leavitt path algebras. The results of this
paper indicate the potential for successful utilization of the ideas and results from the
ideal theory of commutative rings in the deeper study of the ideal theory of Leavitt
path algebras (of course using different techniques, as L is non-commutative, and
using the graphical properties of E and the nature of the graded ideals of L).
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2 Preliminaries

For the general notation, terminology and results in Leavitt path algebras, we refer
to [1, 18, 22] and for those in graded rings, we refer to [14, 17]. We refer to [8–13,
16] for results in commutative rings. Below we give an outline of some of the needed
basic concepts and results.

A (directed) graph E = (E0, E1, r, s) consists of two sets E0 and E1 together
with maps r, s : E1 → E0. The elements of E0 are called vertices and the elements
of E1 edges. For each e ∈ E1, say,

•s(e) e−→ •r(e)

s(e) is called the source of e and r(e) the range of e. If
u• e−→ v• is an edge, then

u• e∗←− v• denotes the ghost edge e∗ with s(e∗) = v and r(e∗) = u.
A vertex v is called a sink if it emits no edges and a vertex v is called a regular

vertex if it emits a non-empty finite set of edges. An infinite emitter is a vertex
which emits infinitely many edges.

A path μ of length n is a sequences of edges μ = e1 . . . en where r(ei ) = s(ei+1)

for all i = 1, · · ·, n − 1. |μ| denotes the length of μ. The path μ = e1 . . . en in E is
closed if r(en) = s(e1), in which case μ is said to be based at the vertex s(e1). A
closed path μ as above is called simple provided it does not pass through its base
more than once, i.e., s(ei ) �= s(e1) for all i = 2, . . . , n. The closed path μ is called a
cycle if it does not pass through any of its vertices twice, that is, if s(ei ) �= s(e j ) for
every i �= j .

An exit for a path μ = e1 . . . en is an edge e such that s(e) = s(ei ) for some i and
e �= ei .

If there is a path from vertex u to a vertex v, we write u ≥ v. A subset D of
vertices is said to be downward directed if for any u, v ∈ D, there exists a w ∈ D
such that u ≥ w and v ≥ w. A subset H of E0 is called hereditary if, whenever
v ∈ H and w ∈ E0 satisfy v ≥ w, then w ∈ H . A hereditary set is saturated if, for
any regular vertex v, r(s−1(v)) ⊆ H implies v ∈ H .

Definition 1. Given an arbitrary graph E and a field K , the Leavitt path algebra
LK (E) is defined to be the K -algebra generated by a set {v : v ∈ E0} of pair-wise
orthogonal idempotents, togetherwith a set of variables {e, e∗ : e ∈ E1}which satisfy
the following conditions:

(1) s(e)e = e = er(e) for all e ∈ E1.
(2) r(e)e∗ = e∗ = e∗s(e) for all e ∈ E1.
(3) (The “CK-1 relations”) For all e, f ∈ E1, e∗e = r(e) and e∗ f = 0 if e �= f .
(4) (The “CK-2 relations”) For every regular vertex v ∈ E0,

v =
∑

e∈E1,s(e)=v

ee∗.
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Note that L need not have an identity. Indeed, L will have the identity 1 exactly
when the vertex set E0 is finite and in that case 1 =

∑

v∈E0

v. However, L possesses local

units, namely, given any finite set of elements a1, . . . , an ∈ L , there is an idempotent
u such that uai = ai = aiu for all i = 1, . . . , n. Every element a ∈ L := LK (E)

can be written as a =
n∑

i=1

kiαiβ
∗
i where αi ,βi are paths and ki ∈ K . Here r(αi ) =

s(β∗
i ) = r(βi ). From this, it is easy to see that L =

⊕

u∈E0

Lu.

Many well-known examples of rings occur as Leavitt path algebras.

Example 1. The Leavitt path algebra of the straight line graph E :

•v1

e1−→ •v2

e2−→ · · · en−1−→ •vn

is isomorphic to the matrix ring Mn(K ).

(Indeed, if p1 = e1 · · · en−1, p2 = e2 . . . en−1, . . ., pn−1 = en−1, pn = vn , then
{εi j = pi p∗

j : 1 ≤ i, j ≤ n} is a set of matrix units, that is, ε2i i = εi i and εi jε jk = εik .
Then εi j �−→ Ei j induces the isomorphism, where Ei j is the n × n matrix with 1 at
(i, j) position and 0 everywhere else.)

Example 2. If E is the graph with a single vertex and a single loop

•vx

then LK (E) ∼= K [x, x−1], the Laurent polynomial ring, induced by the map v �→ 1,
x �→ x , x∗ �→ x−1.

The defining relations of a Leavitt path algebra LK (E) show that it is a non-

commutative ring. Indeed if e is an edge in E , say,
u• e−→ v• where u �= v, then by

defining relation (1), ue = e, but eu = evu = e(vu) = 0. The following proposition
describes when LK (E) becomes a commutative ring.

Proposition 1. Let E be a connected graph. Then the Leavitt path algebra LK (E)

is commutative if and only if either E consists of just a single vertex {•} or E is the
graph with a single vertex and a single loop as in Example 2. In this case LK (E)
∼= K or K [x, x−1].

Every Leavitt path algebra LK (E) is a Z -graded algebra, namely, LK (E) =⊕

n∈Z
Ln induced by defining, for all v ∈ E0 and e ∈ E1, deg(v) = 0, deg(e) = 1,

deg(e∗) = −1. Here the Ln , called homogeneous components, are abelian sub-
groups satisfying LmLn ⊆ Lm+n for all m, n ∈ Z. Further, for each n ∈ Z, the
subgroup Ln is given by
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Ln = {∑kiαiβ
∗
i ∈ L : |αi | − |βi | = n}.

An ideal I of LK (E) is said to be a graded ideal if I =
⊕

n∈Z
(I ∩ Ln). If I is a

non-graded ideal, then
⊕

n∈Z
(I ∩ Ln) is the largest graded ideal contained in I and is

called the graded part of I , denoted by gr(A).
We will also be using the fact that the Jacobson radical (and in particular, the

prime/Baer radical) of LK (E) is always zero (see [1]).
Let Λ be an arbitrary non-empty (possibly, infinite) index set. For any ring R, we

denote by MΛ(R) the ring of matrices over R whose entries are indexed by Λ × Λ

and whose entries, except for possibly a finite number, are all zero. It follows from
the works in [4] that MΛ(R) is Morita equivalent to R.

Throughout this paper L will denote the Leavitt path algebra LK (E) of an
arbitrary directed graph E over a field K .

3 Graded Ideals of a Leavitt Path Algebra

In this section, we shall describe some of the salient properties of the graded ideals
of a Leavitt path algebra L . As we shall see in a later section, these properties impact
the factorization of ideals of L . Every ideal of L , whether graded or not, is shown
to possess an orthogonal set of generators. As a consequence, we get the interesting
property that every finitely generated ideal of L is a principal ideal. It is interesting
to note that if I is a graded ideal of L , then both I and L/I can be realized as Leavitt
path algebras of suitable graphs.

Suppose H is a hereditary saturated subset of vertices. A breaking vertex of H is
an infinite emitter w ∈ E0\H with the property that 0 < |s−1(w) ∩ r−1(E0\H)| <

∞. The set of all breaking vertices of H is denoted by BH . For any v ∈ BH , vH

denotes the element v − ∑
s(e)=v,r(e)/∈H ee∗. The following theorem of Tomforde

describes graded ideals of L by means of their generators.

Theorem 1. ([22]) Suppose H is a hereditary saturated set of vertices and S is a
subset of BH . Then the ideal I (H, S) generated by the set of idempotents H ∪ {vH :
v ∈ S} is a graded ideal of L, and conversely every graded ideal I of L is of the form
I (H, S) where H = I ∩ E0 and S = {u ∈ BH : uH ∈ I }.

Given a pair (H, S) where H is a hereditary saturated set of vertices in the
graph E and S is a subset of BH , one could construct the Quotient graph
E\(H, S) given by (E\(H, S))0 = E0\H ∪ {u′ : u ∈ BH\S}, (E\(H, S))1 = {e ∈
E1 : r(e) /∈ H} ∪ {e′ : e ∈ E1 with r(e) ∈ BH\S} and r, s are extended to
(E\(H, S))0 by setting s(e′) = s(e) and r(e′) = r(e)′.

The next theorem describes a generating set Y for a not necessarily graded non-
zero ideal of L . This set Y is actually an orthogonal set of generators.
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Theorem 2. ([19]) Let E be an arbitrary graph and let I be an arbitrary non-
zero ideal of L = LK (E) with H = I ∩ E0 and S = {u ∈ BH : uH ∈ I }. Then I is
generated by the set

Y = H ∪ {vH : v ∈ S} ∪ { ft (ct ) : t ∈ T },

where T is some index set (which may be empty), for each t ∈ T , ct is a cycle without
exits in E\(H, S), no v in S is on any cycle ct , and ft (x) ∈ K [x] is a polynomial
with a non-zero constant term and is of the smallest degree such that ft (ct ) ∈ I . Any
two elements x �= y in Y are orthogonal, that is, xy = 0 = yx.

If I is a finitely generated ideal, then the orthogonal set Y of generators mentioned
in the above theorem can be shown to be finite and, in that case, the single element
a =

∑

y∈Y
y will be a generator for the ideal I . Consequently, we obtain the following

interesting result.

Theorem 3. ([19]) Every finitely generated ideal in a Leavitt path algebra is a
principal ideal, i.e., of the form LaL for some a ∈ L.

Remark 1. In [3], the above theoremhas been extended by showing that everyfinitely
generated one-sided ideal of L is a principal ideal, that is, L is a Bêzout ring.

An important property of graded ideals is the following.

Theorem 4. ([21]) Every graded ideal I (H, S) of L can be realized as a Leavitt
path algebra LK (F) of some graph F and further the corresponding quotient ring
L/I (H, S) is also a Leavitt path algebra, being isomorphic to the Leavitt path
algebra LK (E\(H, S)) of the quotient graph E\(H, S).

Since Leavitt path algebras possess local units, we conclude that the graded ideals
I of L possess local units. Using this, we obtain some interesting properties of graded
ideals.

Proposition 2. ([20]) (i) Let A be a graded ideal of L. Then
(a) for any ideal B of L, AB = A ∩ B, BA = B ∩ A and, in particular, A2 = A;
(b) AB = BA for all ideals B;

(c) If A = A1 · · · Am is a product of ideals, then A =
m⋂

i=1

gr(Ai ) =
m∏

i=1

gr(Ai ).

Similarly, if A = A1 ∩ · · · ∩ Am is an intersectionof ideals Ai , then A =
m⋂

i=1

gr(Ai ) =
m∏

i=1

gr(Ai ).

(ii) If A1, . . . , Am are graded ideals of L, then
m∏

i=1

Ai =
m⋂

i=1

Ai .
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Proof. We shall point out the easy proof of (i)(a). We need only to prove A ∩ B �
AB. Let x ∈ A ∩ B. Since the graded ideal A has local units, there is an idempo-
tent u ∈ A such that ua = a = au. Clearly then a = ua ∈ AB. So A ∩ B = AB.
Similarly, B ∩ A = BA. Hence AB = BA. In particular, A2 = A ∩ A = A.

A natural question is when every ideal of L will be a graded ideal. This can happen
when E satisfies the following graph property.

Definition 2. A graph E satisfies Condition (K) if whenever a vertex v lies on a
simple closed path α, v also lies on another simple closed path β distinct from α.

Here is a simple graph satisfying Condition (K), where every vertex satisfies the
required property.

• ←− • ←− •
↘ ↗

•
↗ ↘

• ←− • ←− •

Theorem 5. ([18, 22]) The following conditions are equivalent for L := LK (E):
(a) Every ideal of L is graded;
(b) Every prime ideal of L is graded;
(c) The graph E satisfies Condition (K).

4 The Lattice of Ideals of a Leavitt Path Algebra

This section describes how the ideals of aLeavitt path algebra L share lattice-theoretic
properties and module-theoretic properties of the ideals of a Dedekind domain or
a Prüfer domain. We start with noting that, in this non-commutative ring L , the
multiplication of ideals is commutative. Moreover, L is left/right hereditary, that is,
every left/right or two-sided ideal of L is projective as a left or a right ideal. The
ideal lattice of L is distributive and multiplicative. It is also shown how many of the
characterizing properties of a Prüfer domain stated in terms of its ideals hold in L .

Using a deep theoremofGeorgeBergman,Ara andGoodearl proved the following
result that every Leavitt path algebra is a left/right hereditary ring, a property shared
by Dedekind domains.

Theorem 6. (Theorem 3.7, [5]) Every ideal (including any one-sided ideal) of a
Leavitt path algebra L is projective as a left/right L-module.

In Section3, we noted that if A is a graded ideal of L , then AB = BA for any
ideal B of L . What happens if A is not a graded ideal? With an analysis of the “non-
graded parts” of A and B, it was shown in [1, 20] that even though L is, in general,
non-commutative, the multiplication of its ideals is commutative as noted next.
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Theorem 7. ([1, 20]) For any two arbitrary ideals A, B of a Leavitt path algebra
L, AB = BA.

The next result shows that every Leavitt path algebra L is an arithmetical ring, that
is, the ideal lattice of L is distributive, a property that characterizes Prüfer domains.

Theorem 8. ([20]) For any three ideals A, B,C of the Leavitt path algebra L, we
have

A ∩ (B + C) = (A ∩ B) + (A ∩ C).

Remark 2. A well-known result in commutative rings (see, e.g., Theorem 18,
Chapter V, [23]) states that if the ideal lattice of a commutative ring R is distribu-
tive (such as when R is a Dedekind domain), then the Chinese Remainder Theo-
rem holds in R: This means that the simultaneous congruences x ≡ xi (mod Ai )

(i = 1, · · ·, n) where the Ai are ideals and the elements xi ∈ R, admits a solution for
x in R provided the compatibility condition xi + x j ≡ 0 (mod Ai + A j ) holds for
all i �= j . The proof of this theorem does not require R to be commutative and nor
does it require the existence of a multiplicative identity in R. So, as a consequence of
Theorem 8, one can show that the Chinese Remainder Theorem holds in Leavitt path
algebras. (Thus Leavitt path algebras satisfy another property of Dedekind domains.)

We next use Theorem 8 to show that every Leavitt path algebra is a multiplication
ring, a useful property in the multiplicative ideal theory of Leavitt path algebras.

Theorem 9. ([20]) The Leavitt path algebra L = LK (E) of an arbitrary graph E
is a multiplication ring, that is, for any two ideals A, B of L with A ⊆ B, there is
an ideal C of L, such that A = BC = CB. Moreover, if A is a prime ideal, then
AB = A = BA.

A well-known property of a Dedekind domain R is that if there are only finitely
many prime ideals in R, then R is a principal ideal domain (see Theorem 16, Chapter
V in [23]). Interestingly, as the next theorem shows, a Leavitt path algebra possesses
this property.

Theorem 10. ([6]) Let L := LK (E) be the Leavitt path algebra of an arbitrary
graph E. If L has only a finite number of prime ideals, then every ideal of L is a
principal ideal, i.e., of the form LaL for some a ∈ L.

Recently, it was shown (see [7]) that the ideals of a Leavitt path algebra satisfy
two more characterizing properties of Prüfer domains.

Theorem 11. ([7]) Let A, B,C be any three ideals of a Leavitt path algebra L. Then
(i) A(B ∩ C) = AB ∩ AC;
(ii) (A ∩ B)(A + B) = AB.

Note that the statement (ii) in the preceding theorem is the ideal version of a
well-known theorem in elementary number theory that, for any two positive integers
a, b, gcd(a, b) · lcm(a, b) = ab.
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However not all characterizing properties of a Prüfer domain hold in a Leavitt
path algebra. For instance, a domain R is a Prüfer domain if and only if finitely
generated ideals of R are cancellative, that is, if A is a non-zero finitely generated
ideal, then for any two ideals B,C of R, AB = AC implies B = C . This property
may not hold in a Leavitt path algebra as the next example shows.

Example 3. Consider the graph E

•uc •v •w •z

Here H = {v} is a hereditary saturated subset. Let A = 〈H〉, the ideal generated
by H . Clearly the cycle c has no exits in E\H . Let B be the non-graded ideal
A + 〈p(c)〉, where p(x) = 1 + x ∈ K [x]. Clearly gr(B) = A. Since A is a graded
ideal, we apply Proposition 2 (a), to conclude that AB = A ∩ B = A = A2 = AA.
But A �= B.

5 Prime, Radical, Primary, and Irreducible Ideals
of a Leavitt Path Algebra

In this section, we describe special types of ideals in L such as the prime, the irre-
ducible, the primary, and the radical (= semiprime) ideals using graphical properties.
While these concepts are independent for ideals in a commutative ring, we show
that the first three properties of ideals coincide for graded ideals in the Leavitt path
algebra L . We also show that a non-graded ideal I of L is irreducible if and only if I
is a primary ideal if and only if I = Pn , a power of a prime ideal P . This is useful in
the factorization of ideals in the next section. We also characterize the radical ideals
of L . It may be some interest to note that every graded ideal of L is a radical ideal.

The following description of prime ideals of L was given in [18].

Theorem 12. (Theorem 3.2, [18]) An ideal P of L := LK (E) with P ∩ E0 = H
is a prime ideal if and only if P satisfies one of the following properties:

(i) P = I (H, BH ) and E0\H is downward directed;
(ii) P = I (H, BH\{u}), v ≥ u for all v ∈ E0\H and the vertex u′ that corre-

sponds to u in E\(H, BH\{u}) is a sink;
(iii) P is a non-graded ideal of the form P = I (H, BH ) + 〈p(c)〉, where c is a

cycle without exits based at a vertex u in E\(H, BH ), v ≥ u for all v ∈ E0\H and
p(x) is an irreducible polynomial in K [x, x−1] such that p(c) ∈ P.

Recall, an ideal I of a ring R is called an irreducible ideal if, for ideals A, B of R,
I = A ∩ B implies that either I = A or I = B. Given an ideal I , the radical of the
ideal I , denoted by Rad(I ) or

√
I , is the intersection of all prime ideals containing I .

A useful property is that if a ∈ Rad(I ), then an ∈ I for some integer n ≥ 0. (The
proof of this property is given in Theorem 10.7 of [15] for non-commutative rings
with identity, but the proof also works for rings without identity but with local units.)
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If Rad(I ) = I for an ideal I , then I is called a radical ideal or a semiprime ideal.
An ideal I of R is said to be a primary ideal if, for any two ideals A, B, if AB ⊆ I
and A � I , then B ⊆ Rad(I ).

Remark 3. We note in passing that for any graded ideal I of L , say I = I (H, S),
Rad(I ) = I . Because, Rad(I )/I is a nil ideal in L/I and L/I , being isomorphic to
the Leavitt path algebra LK (E\(H, S)), has no non-zero nil ideals.

We now point out an interesting property of graded ideals of L .

Theorem 13. ([20]) Suppose I is a graded ideal of L. Then the following are equiv-
alent:

(i) I is a primary ideal;
(ii) I is a prime ideal;
(iii) I is an irreducible ideal.

The next theorem extends the above result to arbitrary ideals of L .

Theorem 14. ([20]) Suppose I is a non-graded ideal of L. Then the following are
equivalent:

(i) I is a primary ideal;
(ii) I = Pn, a power of a prime ideal P for some n ≥ 1;
(iii) I is an irreducible ideal.

The final result of this section describes the radical (also known as semiprime)
ideals of L .

Theorem 15. ([2]) Let A be an arbitrary ideal of L with A ∩ E0 = H and S =
{v ∈ BH : vH ∈ A}. Then the following properties are equivalent:

(i) A is a radical ideal of L;
(ii) A = I (H, S) +

∑

i∈Y
〈 fi (ci )〉, where Y is an index set which may be empty, for

each i ∈ Y , ci is a cycle without exits based at a vertex vi in E\(H, S) and fi (x) is a
polynomial with its constant term non-zero which is a product of distinct irreducible
polynomials in K [x, x−1].

6 Factorization of Ideals in L

As noted in the introduction, ideals in an arithmetical ring admit interesting repre-
sentations as products of special types of ideals ([10–12]). In this section, we explore
the existence and the uniqueness of factorizations of an arbitrary ideal in a Leavitt
path algebra L as a product of prime ideals and as a product of irreducible/primary
ideals. The prime factorization of graded ideals of L seems to influence that of the
non-graded ideals in L . Indeed, an ideal I is a product of prime ideals in L if and
only its graded part gr(I ) has the same property and, moreover, I/gr(I ) is finitely
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generated with a generating set of cardinality no more than the number of distinct
prime ideals in an irredundant factorization of gr(I ). It is interesting to note that if
I is a graded ideal and if I = P1 · · · Pn is an irredundant product of prime ideals,
then necessarily each of the ideals Pj must be graded. We also show that I is an
intersection of irreducible ideals if and only if I is an intersection of prime ideals.
If L is the Leavitt path algebra of a finite graph or, more generally, if L is two-sided
Noetherian or two-sided Artinian, then every ideal of L is shown to be a product
of prime ideals. We also give necessary and sufficient conditions under which every
non-zero ideal of L is a product of prime ideals, that is, when L is a generalized ZPI
ring. We end this section by proving for L an analogue of the Krull’s theorem on the
intersection of powers of an ideal.

We begin with the following useful proposition.

Proposition 3. ([20]) Suppose I is a non-graded ideal of L. If gr(I ) is a prime
ideal, then I is a product of prime ideals.

Using this, we obtain the following main factorization theorem.

Theorem 16. ([20]) Let E be an arbitrary graph. For a non-graded ideal I of
L := LK (E), the following are equivalent:

(i) I is a product of prime ideals;
(ii) I is a product of primary ideals;
(iii) I is a product of irreducible ideals;
(iv) gr(I ) is a product of (graded) prime ideals;
(v) gr(I ) = P1 ∩ · · · ∩ Pm is an irredundant intersection ofm graded prime ideals

Pj and I/gr(I ) is generated by at most m elements and is of the form I/gr(I ) =
k⊕

r=1

〈 fr (cr )〉 where k ≤ m and, for each r = 1 · · · k, cr is a cycle without exits in

E0\I and fr (x) ∈ K [x] is a polynomial with non-zero constant term of smallest
degree such that fr (cr ) ∈ I .

As a consequence of Theorem 16, we obtain a number of corollaries.

Corollary 1. ([20]) Let E be a finite graph, or more generally, let E0 be finite. Then
every non-zero ideal of L = LK (E) is a product of prime ideals.

Using a minimal or maximal argument, the above corollary can be extended to
the case when the ideals of L satisfy the DCC or ACC as noted below.

Corollary 2. ([20]) Suppose L is two-sided Artinian or two-sided Noetherian. Then
every non-zero ideal of L is a product of prime ideals.

Wenowgive the necessary and sufficient conditions underwhich L is a generalized
ZPI ring, that is, when every ideal of L is a product of prime ideals.

Theorem 17. ([20]) Let E be an arbitrary graph and let L := LK (E). Then every
proper ideal of L is a product of prime ideals if and only if every homomorphic image
of L is either a prime ring or contains only finitely many minimal prime ideals.
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The next theorem states that an irredundant factorization of an ideal A as a product
of prime ideals in L is unique up to a permutation of the factors. It also points out
the interesting fact that if A is a graded ideal, then every factor in this irredundant
factorization must also be a graded ideal.

Recall that A = P1 · · · Pn is an irredundant product of the ideals Pi , if A is not
the product of a proper subset of the set {P1, . . . , Pn}.
Theorem 18. ([6]) (a) Suppose A is an arbitrary ideal of L and A = P1 · · · Pm =
Q1 · · · Qn are two representations of A as irredundant products of prime ideals
Piand Q j . Then m = n and {P1, . . . , Pm} = {Q1, . . . , Qn};

(b) If A is a graded ideal of L and if A = P1 · · · Pm is an irredundant product of
prime ideals Pj , then the ideals are all graded and A = P1 ∩ · · · ∩ Pm.

From Proposition 2(c) and the equivalence of conditions (i) and (iv) of
Theorem 16, we derive following proposition.

Proposition 4. If an ideal I of L is an intersection of finitely many prime ideals,
then I is a product of (finitely many) prime ideals.

But a product of prime ideals in L need not be an intersection of prime ideals as
the next example shows.

Example 4. If E is the graph with a single vertex and a single loop

•vx

then LK (E) ∼= K [x, x−1], the Laurent polynomial ring, induced by the map v �→ 1,
x �→ x , x∗ �→ x−1. So it is enough to find a ideal A in K [x, x−1] with the desired
property. Consider the prime ideal A = 〈p(x)〉 in K [x, x−1], where p(x) is an irre-
ducible polynomial. We claim that B = A2 is not an intersection of prime ideals in
K [x, x−1]. Suppose, on the contrary, B =

⋂

λ∈Λ

Mλ where Λ is some (finite or infi-

nite) index set and each Mλ is a (non-zero) prime ideal of K [x, x−1] and hence a
maximal ideal of the principal ideal domain K [x, x−1]. Now there is a homomor-
phismφ : R −→

∏

λ∈Λ

R/Mλ givenby r �→ (. . . , r + Mλ, . . .)with ker(φ) = B. Then

Ā = φ(A) ∼= A/B �= 0 satisfies ( Ā)2 = 0 and this is impossible since
∏

λ∈Λ

R/Mλ,

being a direct product of fields, does not contain any non-zero nilpotent ideals.

The next proposition is new and gives necessary and sufficient conditions under
which a product of prime ideals in a Leavitt path algebra is also an intersection of
prime ideals. This happens exactly when every ideal of L is a radical ideal.
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Proposition 5. Let E be an arbitrary graph and let L := LK (E). Then the following
properties are equivalent:

(i) Every product of prime ideals in L is an intersection of prime ideals;
(ii) The graph E satisfies Condition (K);
(iii) Every ideal of L is a radical ideal;
(iv) Every ideal of L is a graded ideal.

Proof. Assume (i). Assume, by way of contradiction, that the graph E does not
satisfy Condition (K). Then, for some admissible pair (H, S), the quotient graph
E\(H, S) does not satisfy Condition (L) (see [1]) and thus there is a cycle c without
exits in E\(H, S). By [1, Lemma 2.7.1], the ideal M of LK (E\(H, S)) generated
by {c0} is isomorphic to the matrix ring MΛ(K [x, x−1]) where Λ is some index set.
Then [7, Proposition 1] and Example 4 imply that, for any prime ideal P of M , P2

is not an intersection of prime ideals of M . Since the graded ideal M is a ring with
local units ([1, Corollary 2.5.23]), every ideal (prime ideal) of M is an ideal (prime
ideal) of LK (E\(H, S)) and, for any prime ideal Q of LK (E\(H, S)), M ∩ Q is
a prime ideal of M . Consequently, P2 cannot be an intersection of prime ideals of
LK (E\(H, S)). This is a contradiction, since LK (E\(H, S)), being isomorphic to
the quotient ring L/I (H, S), satisfies (i). Consequently, the graph E must satisfy
Condition (K), thus proving (ii).

Assume (ii). By [1, Proposition 2.9.9], every ideal of L is graded. On the other
hand if I = I (H, S) is a graded ideal, then L/I is isomorphic to the Leavitt path
algebra LK (E\(H, S) and since the prime radical (the intersection of all prime ideals
of LK (E\(H, S)) is zero, I is the intersection of all the prime ideals containing I
and hence is a radical ideal. This proves (iii).

Assume (iii). We claim that every ideal of L must be a graded ideal. Suppose,
by way of contradiction, there is a non-graded ideal I in L , say, I = I (H, S) +∑

i∈Y
〈 fi (ci )〉, where Y is an index set and, for each i ∈ Y , fi (x) ∈ K [x] and ci is a

cycle without exits in E\(H, S). Now for a fixed i ∈ Y and an irreducible polynomial
p(x) ∈ K [x, x−1], P = I (H, S) + 〈p(ci )〉 is a prime ideal and P̄ = P/I (H, S) =
〈p(ci )〉 � M = 〈{c0i }〉. As noted in the proof of (i) =⇒ (ii), P̄2 is not a radical ideal
of L/I (H, S) and hence P2 is not a radical ideal in L , a contradiction. Hence every
ideal of L is a graded ideal. This proves (iv).

Now (iv) =⇒ (i), by Proposition 2(c).

We end this section by considering the powers of an ideal in L . FromProposition 2,
it is clear that if A is a graded ideal of L , then A = A2 and so A = An for all n ≥ 1.
What happens if A is a non-graded ideal? The next proposition implies that, for such
an A, A �= An for any n > 1.

Proposition 6. ([6]) If A is a non-graded ideal in L, then
∞⋂

n=1

An is a graded ideal,

being equal to gr(A).

As a corollary, we obtain
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Corollary 3. An ideal A of L is a graded ideal if and only if A = An for all n ≥ 1.

W. Krull showed that if A is an ideal of a commutative Noetherian ring with

identity 1, then
∞⋂

n=1

An = 0 if and only if 1 − x is not a zero divisor for all x ∈ A

(see Theorem 12, Section7 in [23]). As a consequence of Proposition 6, we obtain
an analogue of Krull’s theorem for Leavitt path algebras.

Corollary 4. ([6]) Let A be an arbitrary ideal of L. Then
∞⋂

n=1

An = 0 if and only if

A contains no vertices of the graph E.
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When Two Principal Star Operations
Are the Same

Dario Spirito

Abstract We study when two fractional ideals of the same integral domain generate
the same star operation.

Keywords Star operations · Principal star operations · m-canonical ideals

2010 Mathematics Subject Classification 13G05 · 13A15

1 Introduction

Throughout the paper, R will denote an integral domain with quotient field K and
F(R) will be the set of fractional ideals of R, that is, the set of R-submodules I of
K such that x I ⊆ R for some x ∈ K \ {0}.

A star operation on R is a map � : F(R) −→ F(R) such that, for every I, J ∈
F(R) and every x ∈ K :

• I ⊆ I �;
• if I ⊆ J , then I � ⊆ J �;
• (I �)� = I �;
• (x I )� = x · I �;
• R� = R.

The usual examples of star operations are the identity (usually denoted by d),
the v-operation (or divisorial closure) J �→ J v := (R : (R : J )), the t- and the
w-operation (which are defined from v) and the star operations I �→ ⋂

T∈� I T ,
where � is a set of overrings of R intersecting to R. While these examples are the
easiest to work with, they usually cover only a rather small part of the set of star
operations.
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A much more general construction is given in [9, Proposition 3.2]: if (I : I ) = R,
then the map J �→ (I : (I : J )) is a star operation. This construction is much more
flexible than themore “classical” ones, and allows to construct amuch higher number
of star operations (see, e.g., [10, Proposition 2.1(1)] or [11, Theorem 2.1] for its use
to construct an infinite family of star operations, or [14, 15] for constructions in the
case of numerical semigroups). In this paper, we slightly generalize this construction
(removing the condition (I : I ) = R), associating to each ideal I a star operation v(I )
(which we call the star operation generated by I ); we study under which conditions
two ideals I and J generate the same star operation and, in particular,we are interested
in understanding when this happens only for isomorphic ideals.

The structure of the paper is as follows: in Section3 we give some general proper-
ties of principal star operations; in Section4, we generalize some results of [9] from
m-canonical ideals to general ideals; in Section5 we study the effect of localizations
on principal star operations; in Section6 we study operations generated by ideals
whose v-closure is R (and, in particular, what happens when R is a unique factoriza-
tion domain); in Section7 we study the Noetherian case, reaching a necessary and
sufficient condition for v(I ) = v(J ) under the assumption (I : I ) = (J : J ) = R.

2 Background

By an ideal of R we shall always mean a fractional ideal of R, reserving the term
integral ideal for those contained in R.

Let � be a star operation on R. An ideal I of R is �-closed if I = I �; the set
of �-closed ideals is denoted by F �(R). When � = v is the divisorial closure, the
elements of Fv(R) are called divisorial ideals.

Let Star(R) be the set of star operations on R. Then, Star(R) has a natural order
structure, where �1 ≤ �2 if and only if I �1 ⊆ I �2 for every I ∈ F(R), or equivalently
ifF �1(R) ⊇ F �2(R). Under this order, Star(R) is a complete lattice whose minimum
is the identity and whose maximum is the v-operation.

A star operation is said to be of finite type if it is determined by its action on
finitely generated ideals, or equivalently if

I � =
⋃

{J � | J ⊆ I is finitely generated}

for every I ∈ F(R). A star operation is spectral if there is a subset � ⊆ Spec(D)

such that
I � =

⋂
{I RP | P ∈ �}

for every I ∈ F(R).
If � is a star operation of R, a prime ideal P is a �-prime if it is �-closed; the

set of the �-primes, denoted by Spec�(R), is called the �-spectrum. A �-maximal
ideal of R is an ideal maximal among the set of proper ideals of R that are �-closed;
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their set is denoted byMax�(R). Any �-maximal ideal is prime; however, �-maximal
ideals need not exist. If � is a star operation of finite type, then every �-closed proper
integral ideal is contained in some �-maximal ideal; furthermore, for every �-closed
ideal I we have I = ⋂{I RP | P ∈ Spec�(R)}.

3 Principal Star Operations

Definition 3.1. Let R be an integral domain. For every I ∈ F(R), the star operation
generated by I , denoted by v(I ), is the supremum of all the star operations � on R
such that I is �-closed. If � = v(I ) for some ideal I , we say that � is a principal star
operation. We denote by Princ(R) the set of principal star operations of R.

We can give a more explicit representation of v(I ).

Proposition 3.2. For every fractional ideal J , we have

J v(I ) = J v ∩ (I : (I : J )) = J v ∩
⋂

α∈(I :J )\{0}
α−1 I. (1)

Furthermore, if (I : I ) = R then J v(I ) = (I : (I : J )).

Proof. The fact that the two maps J �→ J v ∩ (I : (I : J )) and J �→ J v ∩⋂
α∈(I :J )\{0} α−1 I give star operations and coincide follows in the same way as [9,

Lemma 3.1 and Proposition 3.2]. The second representation clearly implies that they
close I ; furthermore, if I is closed then J v and each α−1 I are closed, and thus the
two representations of (1) give exactly v(I ).

The “furthermore” statement follows again from [9, Lemma 3.1 and Proposi-
tion 3.2]. �

In the paper [9] that introduced the map J �→ (I : (I : J )) when (I : I ) = R, an
ideal I was said to be m-canonical if J = (I : (I : J )) for every ideal J . This is
equivalent to saying that (I : I ) = R and that v(I ) is the identity.

The definition of v(I ) can be extended to semistar operations, as in [13, Example
1.8(2)]; such construction was called the divisorial closure with respect to I in [4].
The terminology “generated” is justified by the following Proposition 3.3.

Proposition 3.3. Let � be a star operation on R. Then, � = inf{v(I ) | I ∈ F�(R)}.
Proof. Let � := inf{v(I ) | I ∈ F �(R)}. Bydefinition,� ≤ v(I ) for every I ∈ F �(R),
and thus � ≤ �. Conversely, let J be a �-ideal; then, � ≤ v(J ) and thus J is �-closed.
It follows that � ≥ �, and thus � = �. �

Our main interest in this paper is to understand when two ideals generate the same
star operation. The first cases are quite easy.
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Lemma 3.4. Let I be a fractional ideal of R. Then, the following hold.

(a) v(I ) = v if and only if I is divisorial.
(b) If (I : I ) = R, then v(I ) = d if and only if I is m-canonical.
(c) For every a ∈ K, a 
= 0, we have v(I ) = v(aI ).
(d) If L is an invertible ideal of R, then v(I ) = v(I L).

Proof. The only non-trivial part is the last point. If L is invertible, then

I v(I L)L ⊆ (I v(I L)L)v(I L) = (I L)v(I L) = I L

and thus I v(I L) ⊆ I L(R : L) = I , i.e., I is v(I L)-closed; it follows that v(I ) ≥
v(I L). Symmetrically, we have v(I L) ≥ v(I L(R : L)) = v(I ), and thus v(I ) =
v(I L). �

We note that if J = I L for some invertible ideal L , then I and J are locally
isomorphic. However, the latter condition is neither necessary nor sufficient for I and
J to generate the same star operation, even excluding divisorial ideals. For example,
if R is an almost Dedekind domain that is not Dedekind, then all ideals are locally
isomorphic but not all are divisorial, and two nondivisorial maximal ideals generate
different star operations (if M 
= N are two such ideals, then (M : N ) = M and
so N v(M) = N v ∩ (M : (M : N )) = R). For an example of non-locally isomorphic
ideals generating the same star operation see Example 7.10.

The following necessary condition has been proved in [14, Lemma 3.7] when I
and J are fractional ideals of a numerical semigroup; the proof of the integral domain
case (which was also stated later in the same paper) can be obtained in exactly the
same way.

Proposition 3.5. Let R be an integral domain and I, J be nondivisorial ideals of
R. If v(I ) = v(J ) then

I = I v ∩
⋂

γ∈(I :J )(J :I )\{0}
(γ−1 I ).

4 Local Rings

As the construction of the principal star operation v(I ) generalizes the definition of
m-canonical ideal, we expect that I is in some way “m-canonical for v(I )”. Pursuing
this strategy, we obtain the following generalization of [9, Lemma 2.2(e)].

Lemma 4.1. Let I be an ideal of a domain R such that (I : I ) = R. Let {Jα | α ∈ A}
be v(I )-ideals such that

⋂
α∈A Jα 
= (0). Then,

(

I :
⋂

α∈A

Jα

)

=
(

∑

α∈A

(I : Jα)

)v(I )

.
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Proof. Let J := ∑
α∈A(I : Jα). Since (I : I ) = R, we have Lv(I ) = (I : (I : L)) for

every ideal L; therefore,

(I : J ) =
(

I :
∑

α∈A

(I : Jα)

)

=
⋂

α∈A

(I : (I : Jα)) =
⋂

α∈A

J v(I )
α =

⋂

α∈A

Jα

and thus

J v(I ) = (I : (I : J )) =
(

I :
⋂

α∈A

Jα

)

,

as claimed. �

The following definition abstracts a property proved, for m-canonical ideals of
local domains, in [9, Lemma 4.1].

Definition 4.2. Let � be a star operation on R. We say that an ideal I of R is strongly
�-irreducible if I = I � 
= ⋂{J ∈ F �(R) | I � J }.
Lemma 4.3. Let R be a domain and I be a nondivisorial ideal of R. If I is strongly
v(I )-irreducible and v(I ) = v(J ), then I = u J for some u ∈ K.

Proof. Suppose v(I ) = v(J ). Then

I = I v(J ) = I v ∩
⋂

α∈(J :I )\{0}
α−1 J.

Both I v and each α−1 J are v(I )-ideals; hence, either I = I v (which is impossible
since I is not divisorial) or I = α−1 J for some α ∈ K . �

Lemma 4.4. Suppose (R, M) is a local ring and R = (I : I ). If M is v(I )-closed,
then I is strongly v(I )-irreducible.

Proof. Let {Jα} be a family of v(I )-ideals such that I = ⋂
Jα. Then,

R = (I : I ) =
(

I :
⋂

α

Jα

)

=
(

∑

α

(I : Jα)

)v(I )

by Lemma 4.1.
Hence (I : Jα) ⊆ R for every α; suppose I � Jα for all α. Then, 1 /∈ (I : Jα)

and thus (I : Jα) ⊆ M ; therefore,
∑

(I : Jα) ⊆ M and, since M is v(I )-closed, also
(∑

α(I : Jα)
)v(I ) ⊆ M , a contradiction. Therefore, we must have Jα = I for some

α, and I is strongly v(I )-irreducible. �

As a consequence of the previous two lemmas, we have a very general result for
local rings.
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Proposition 4.5. Let (R, M) be a local domain and I a nondivisorial ideal of R such
that (I : I ) = R. If M = Mv(I ) (in particular, if M is divisorial), then v(I ) = v(J )

for some ideal J if and only if I = u J for some u ∈ K.

Proof. By Lemma 4.4, I is strongly v(I )-irreducible; by Lemma 4.3 it follows that
I = u J . �

Corollary 4.6. Let (R, M) be a local domain, and I and J two nondivisorial ideals
of R. If R is completely integrally closed and M is divisorial, then v(I ) = v(J ) if
and only if I = u J for some u ∈ K.

Proof. Since R is completely integrally closed, (L : L) = R for all ideals L; fur-
thermore, since M is divisorial Mv(L) = M for every L . The claim follows from
Proposition 4.5. �

One problemof the previous results is the hypothesis (I : I ) = R. In the following
proposition we eliminate it at the price of forcing more properties on R.

Proposition 4.7. Let (R, M) be a local ring, and let T := (M : M). Let I, J be
ideals of R, properly contained between R and T , such that v(I ) = v(J ).

(a) If (I : I ), (J : J ) ⊆ T , then (I : I ) = (J : J ).
(b) Suppose also that (I : I ) =: A is local with divisorial maximal ideal, and that

I and J are not divisorial over A. Then, there is a u ∈ K such that I = u J .

Proof. If M is principal, T = R and the statement is vacuous. Suppose thus M is
not principal: then, we also have T = (R : M). We first claim that Lv = T for every
ideal L properly contained between R and T . Indeed, the containment R � L implies
that (R : L) � R and thus, since R is local, (R : L) ⊆ M and Lv ⊇ T � L; hence,
Lv = T .

(a) Let T1 := (I : I ) and T2 := (J : J ), and define �i as the star operation L�i :=
Lv ∩ LTi . Since T contains T1 and T2, it is both a T1- and a T2-ideal. We claim that
L 
= R is �i -closed if and only if it is a Ti -ideal: the “if” part is obvious, while if
L = Lv ∩ LTi then Lv = T is a Ti -ideal and thus L is intersection of two Ti -ideals.

If v(I ) = v(J ), then I is �-closed if and only if J is �-closed; therefore, since
I is �1-closed and J is �2-closed, both I and J are T1- and T2-ideals. But (I : I )
(respectively, (J : J )) is the maximal overring of R in which I (respectively, J ) is
an ideal; thus (I : I ) = (J : J ).

(b) Consider the star operation generated by I on A, i.e., vA(I ) : L �→ (A : (A :
L)) ∩ (I : (I : L)) for every L ∈ F(A). By the first paragraph of the proof, applied
on the A-ideals, we have (A : (A : L)) = T for all ideals L of A properly contained
between A and T ; in particular, this happens for J (since R ⊂ J implies A = AR ⊆
AJ = J , and A 
= J since J is not divisorial), and thus J vA(I ) = J v(I ) = J . Sym-
metrically, I vA(J ) = I ; hence, vA(I ) = vA(J ). By Proposition 4.5, applied to A, we
have I = u J for some u ∈ K , as claimed. �

Recall that a pseudo-valuation domain (PVD) is a local domain (R, M) such that
M is the maximal ideal of a valuation overring of R (called the valuation domain
associated to R) [8].
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Corollary 4.8. Let (R, M) be a pseudo-valuation domain with associated valuation
ring V , and suppose that the field extension R/M ⊆ V/M is algebraic. Let I, J be
nondivisorial ideals of R. Then, v(I ) = v(J ) if and only if I = u J for some u ∈ K.

Proof. By [12, Proposition 2.2(5)], there are a, b ∈ K such that a−1 I and b−1 J are
properly contained between R and V = (M : M). Furthermore, since R/M ⊆ V/M
is algebraic, every ring between R and V is the pullback of some intermediate field,
and in particular it is itself a PVD with maximal ideal M . The claim follows from
Proposition 4.7. �

5 Localizations

Let � be a star operation on R and T a flat overring of R. Then, � is said to be
extendable to T if the map

�T : F(T ) −→ F(T )

I T �−→ I �T

is well-defined; when this happens, �T is called the extension of � to T and is a star
operation on T [16, Definition 3.1]. In general, not all star operations are extendable,
although finite-type operations are (see [10, Proposition 2.4] and [16, Proposition
3.3(d)]).

We would like to have an equality v(I )T = v(I T ), where the latter is considered
as a star operation on T . In general, this is false, both because v(I ) may not be
extendable and because the extension v(I )T may not be equal to v(I T ).

For example, let V be a valuation domain and suppose that its maximal ideal
M is principal. Let P be a prime ideal of V . Then, the only star operation on V is
the identity, and thus v(I ) = d for all ideals I ; in particular, v(I ) is extendable to
VP and the extension v(I )VP is the identity on VP . Suppose now that P = PVP is
not principal as an ideal of VP . Then, VP has two star operations (the identity and
the v-operation) and if a ∈ K \ {0} then aVP generates the v-operation. Hence, the
extension of v(aV ) ∈ Star(V ) to VP is different from v(aVP) ∈ Star(VP).

In the Noetherian case, however, everything works.

Proposition 5.1. If R is Noetherian, then v(I )T = v(I T ) for every flat overring T
of R.

Proof. By definition, J v(I ) = (R : (R : J )) ∩ (I : (I : J )); multiplication by a flat
overring commutes with finite intersections, and since every ideal is finitely gener-
ated, the colon localizes, and thus
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J v(I )T = (R : (R : J ))T ∩ (I : (I : J ))T =
= (T : (T : JT )) ∩ (I T : (I T : JT )) =
= (JT )vT ∩ (I T : (I T : JT )) = (JT )v(I T ),

i.e., v(I )T = v(I T ). �

Another case where localization works well is for Jaffard families. If R is an
integral domain with quotient field K , a Jaffard family of R is a set� of flat overrings
of R such that [6, Section6.3.1]:

• � is locally finite;
• I = ∏{I T ∩ R | T ∈ �, I T 
= T } for every integral ideal I ;
• (I T1 ∩ R) + (I T2 ∩ R) = R for every integral ideal I and every T1 
= T2 in �.

Jaffard families can be used to factorize the set of star operations of a domain R
into a direct product of sets of star operations.

Theorem 5.2. Let R be an integral domain and let� be a Jaffard family on R. Then,
every star operation on R is extendable to every T ∈ �, and the map

λ� : Star(R) −→
∏

T∈�

Star(T )

� �−→ (�T )T∈�

is an order-preserving order-isomorphism.

Proof. It is a part of [16, Theorem 5.4]. �

For principal star operations, the previous result must be modified using, instead
of the direct product, a “direct sum”-like construction. Given a family� of overrings,
we set

⊕

T∈�

Princ(T ) :=
{

(�(T )) ∈
∏

T∈�

Princ(T ) | �(T ) 
= v(T ) for only finitely many T

}

.

Using this terminology, we have the following.

Proposition 5.3. Let R be an integral domain and � be a Jaffard family on R. For
every ideal I of R and every T ∈ �, we have v(I )T = v(I T ); furthermore, the map

ϒ : Princ(R) −→
⊕

T∈�

Princ(T )

v(I ) �−→ (v(I T ))T∈�

is a well-defined order-isomorphism.
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Proof. By Theorem 5.2 v(I ) is extendable to any T ∈ �; furthermore, by [16,
Lemma 5.3], we have (J : L)T = (JT : LT ) for every pair of fractional ideals J, L
of R. Using the same calculation of Proposition 5.1 we get v(I )T = v(I T ).

In particular, it follows that the map ϒ is just the restriction of the localization
map λ� to Princ(R); since λ� is an isomorphism (by Theorem 5.2), we have only to
show that the image of ϒ is the direct sum

⊕
T∈� Princ(T ).

Since I T = T for all but a finite number of T (by definition of a Jaffard family),
we have v(I T ) = v(T ) = v(T ) for all but a finite number of T . In particular, the
image of ϒ lies inside the direct sum.

Suppose, conversely, that (v(JT ))T∈� ∈ ⊕
T∈� Princ(T ). We can suppose that

JT ⊆ T for every T , and that JT = T if v(JT ) = v(T ). Define thus I := ⋂
T∈� JT :

then, I is nonzero (since JT 
= T for only a finite number of T ) and I T = JT for
every T [16, Lemma 5.2]. Therefore, v(I )T = v(I T ) = v(JT ), and the image of ϒ

is exactly
⊕

T∈� Princ(T ). �

Proposition 5.3 can be interpreted as a way to factorize principal star operations.

Corollary 5.4. Let R be an integral domain and � be a Jaffard family on R. Let I
be an integral ideal of R. Then, there are T1, . . . , Tn ∈ � such that v(I ) = v(I T1 ∩
R) ∧ · · · ∧ v(I Tn ∩ R).

Proof. Since I ⊆ R, we have I T = T for all but finitely many T ∈ �; let T1, . . . , Tn
be the exceptions. The claim follows from Proposition 5.3. �

Recall that an integral domain is said to be h-local if every ideal is contained in
a finite number of maximal ideals and every prime ideal is contained in only one
maximal ideal.

Corollary 5.5. Let R be an h-local Prüfer domain, and let M be the set of non-
divisorial maximal ideals of R. Then, there is a bijective correspondence between
Princ(R) and the set Pfin(M) of finite subsets ofM. Furthermore,M is finite if and
only if every star operation is principal.

Proof. Since R is h-local, {RM | M ∈ Max(R)} is a Jaffard family of R, and thus
by Proposition 5.3 there is a bijective correspondence ϒ between Princ(R) and⊕

M∈Max(R) Princ(RM). If M /∈ M, then MRM is principal and thus Star(RM) =
Princ(RM) = {d = v}; hence, ϒ restricts to a bijection ϒ ′ between Princ(R) and⊕

M∈M Princ(RM). Since RM is a valuation domain, each Princ(RM) is composed
by two elements (the identity and the v-operation). Thus, we can construct a bijec-
tion ϒ1 from the direct sum to Pfin(M) by associating to � := (�(M)) the finite
set ϒ1(�) := {M ∈ M | �(M) 
= v}. The composition ϒ1 ◦ ϒ ′ is a bijection from
Princ(R) to Pfin(M).

The last claim follows immediately. �

A factorization property similar to Corollary 5.4 can be proved for ideals having
a primary decomposition with no embedded primes.
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Proposition 5.6. Let Q1, . . . , Qn be primary ideals, let Pi := rad(Qi ) for all i and
let I := Q1 ∩ · · · ∩ Qn. If the Pi are pairwise incomparable, then v(I ) = v(Q1) ∧
· · · ∧ v(Qn).

Proof. For every i , the ideal Qi is v(Qi )-closed, and thus I is (v(Q1) ∧ · · · ∧
v(Qn))-closed; hence, v(I ) ≥ v(Q1) ∧ · · · ∧ v(Qn). To prove the converse, we need
to show that each Qi is v(I )-closed.

Without loss of generality, let i = 1, and define Q̂ := Q2 ∩ · · · ∩ Qn; we claim
thatQ1 = (I :R Q̂). SinceQ1 Q̂ ⊆ Q1 ∩ Q̂ = I , clearlyQ1 ⊆ (I :R Q̂). Conversely,
let x ∈ (I :R Q̂). Since the radicals of the Qi are pairwise incomparable, Qi � P1
for every i > 1, and so Q̂ � P1; therefore, there is a q ∈ Q̂ \ P1. Then, xq ∈ I , and
in particular xq ∈ Q1. If x /∈ Q1, then since Q1 is primary we would have qt ∈ Q1

for some t ∈ N; however, this would imply q ∈ rad(Q1) = P1, against the choice
of q. Thus, Q1 ⊆ (I :R Q̂) and so Q1 = (I :R Q̂).

By definition, I is v(I )-closed; hence, also (I :R Q̂) is v(I )-closed. It follows that
Q1 is v(I )-closed, and thus that each Qi is v(I )-closed, i.e., v(I ) ≤ v(Q1) ∧ · · · ∧
v(Qn). The claim is proved. �

6 v-Trivial Ideals

In this section, we analyze principal operations generated by v-trivial ideals.

Definition 6.1. An ideal I of a domain R is v-trivial if I v = R.

Lemma 6.2. If I is v-trivial, then (I : I ) = R.

Proof. If I v = R, then (R : I ) = R, and thus (I : I ) ⊆ (R : I ) = R. �

Definition 6.3. A star operation � is semifinite (or quasi-spectral) if every �-closed
ideal I � R is contained in a �-prime ideal.

All finite type and all spectral operations are semifinite; on the other hand, if V is a
valuation domain with maximal ideal that is branched but not finitely generated, the
v-operation on V is not semifinite. The class of semifinite operations is closed by
taking infima, but not by taking suprema (see [5, Example 4.5]).

Lemma 6.4. Let R be an integral domain, and let I, J be v-trivial ideals of R.

(a) If J � I , then J v(I ) = I , and in particular v(I ) 
= v(J ).

Suppose v is semifinite on R.

(b) I ∩ J is v-trivial.
(c) I ⊆ J v(I ).
(d) If I 
= J , then v(I ) 
= v(J ).
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Proof. (a) Since I is v-trivial, byLemma6.2 andProposition 3.2wehave J v(I ) = (I :
(I : J )).
However, R ⊆ (I : J ) ⊆ (R : J ) = R (using the v-triviality of J ) and thus J v(I ) =
(I : R) = I , as claimed. In particular, J = J v(J ) 
= J v(I ) and so v(I ) 
= v(J ).

(b) If (I ∩ J )v 
= R, then by semifiniteness there is a prime ideal P such that
I ∩ J ⊆ P = Pv . However, this would imply I ⊆ P or J ⊆ P , against the hypoth-
esis that I and J are v-trivial.

(c) Since J ⊆ J v(I ), it follows that J v(I ) is v-trivial, and by the previous point so
is J v(I ) ∩ I . If I � J v(I ), it would follow that J v(I ) ∩ I � I , but J v(I ) ∩ I is v(I )-
closed, against (a). Hence I ⊆ J v(I ).

(d) If both I and J are v(I )-closed, then so is I ∩ J ; by (b), (I ∩ J )v = R. The
claim follows applying (a) to I ∩ J and I (or J ). �

Corollary 6.5. Let R be a domain such that v is semifinite. Let I, J be ideals of R
such that I v and J v are invertible; then, v(I ) = v(J ) if and only if I = L J for some
invertible ideal L.

Proof. By invertibility, we have

R = I v(R : I v) = (I v(R : I v))v = (I (R : I v))v;

since I ⊆ I (R : I v) ⊆ R, the ideal I (R : I v) is v-trivial. Analogously, R = (J (R :
J v))v and J (R : J v) is v-trivial. Hence, by Lemma 6.4(d) I (R : I v) = J (R : J v);
thus, I = I v(R : J v)J , and L := I v(R : J v) is invertible. �

We denote by h(I ) the height of the integral ideal I .

Corollary 6.6. Let R be a unique factorization domain. Then,

(a) for every principal star operation � 
= v there is a proper ideal I such that
h(I ) > 1 and � = v(I );

(b) if I, J are fractional ideals of R, v(I ) = v(J ) if and only if I = u J for some
u ∈ K.

Proof. Let � = v(I ) for some ideal I . By [7, Corollary 44.5], every v-closed ideal
of R is principal; hence, let I v = pR. Then, (p−1 I )v = R, i.e., p−1 I is v-trivial. In
particular, � = v(I ) = v(p−1 I ), and p−1 I is a proper ideal of R with h(p−1 I ) > 1
(since all prime ideals of height 1 are v-closed).

Suppose that we also have � = v(J ). With the same reasoning of the pre-
vious paragraph, q−1 J is v-trivial for some q; thus v(p−1 I ) = v(I ) = v(J ) =
v(q−1 J ). Applying Lemma 6.4 (d) to p−1 I and q−1 J we get p−1 I = q−1 J , i.e.,
I = (pq−1)J . �



310 D. Spirito

For star operations generated by v-trivial prime ideals, we can also determine the
set of closed ideals.

Proposition 6.7. Let R be a domain such that v is semifinite and such that I v is
invertible for every ideal I , and let P ∈ Spec(R). ThenFv(P)(R) = Fv(R) ∪ {LP |
L is an invertible ideal}. In particular, v(P) is a maximal element of Princ(R) \ {v}.
Proof. Let I be a nondivisorial ideal; multiplying by an invertible ideal L , we can
suppose I v = R. If I ⊆ P , by Lemma 6.4 (a) I v(P) = P , and thus I 
= I v(P) unless
I = P; suppose I � P . Then (P : I ) = P: we have (P : I ) ⊆ (R : I ) = R, and
thus if x I ⊆ P then x ∈ P . Therefore, I v(P) = I v ∩ (P : (P : I )) = R ∩ (P : P) =
R 
= I .

For the “in particular” claim, note that ifv(I ) ≥ v(P) then I should be �-closed; by
the previous part of the proof, this means that either I is divisorial (and so v(I ) = v)
or I = LP for some invertible L (and thus v(I ) = v(P) by Lemma 3.4(d)). �

Corollary 6.8. Let R be a unique factorization domain, and let P ∈ Spec(R). Then,
Fv(P)(R) = Fv(R) ∪ {aP | a ∈ K }.

We have seen in Proposition 3.3 that all star operations can be “generated” by
principal star operations; we can use v-trivial ideals to show that in many cases we
need infinitely many of them.

Proposition 6.9. Let R be a domain such that v is semifinite, and let I1, . . . , In
be v-trivial ideals; let � := v(I1) ∧ · · · ∧ v(In). Then, the ideal I1 ∩ · · · ∩ In is the
minimal v-trivial ideal that is �-closed.

Proof. Let J := I1 ∩ · · · ∩ In . ByLemma6.4 (b), J is v-trivial. Clearly J is �-closed.
Suppose L is v-trivial; then, applying Lemma 6.4(c),

L� = Lv(I1)∧···∧v(In) ⊇ I1 ∩ · · · ∩ In = J.

Therefore, J is the minimum among v-trivial �-closed ideals. �

Corollary 6.10. Let R be a unique factorization domain, and let � ∈ Star(R) be
such that � 
= v. If

⋂{J ∈ F �(R) | J v = R} = (0), then � is not the infimum of a
finite family of principal star operations.

Proof. Since R is a UFD, the v-operation is semifinite, and every principal star
operation can be generated by a v-trivial ideal. If � were to be finitely generated,
say � = v(I1) ∧ · · · ∧ v(In), then J := I1 ∩ · · · ∩ In would be the minimal v-trivial
�-closed ideal; however, by hypothesis, there must be a v-trivial �-closed ideal J ′
not containing J , and thus � cannot be finitely generated. �
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Proposition 6.11. Let R be a domain, and let � be a set of overrings whose inter-
section is R. Let � be the star operation I �→ ⋂{I T | T ∈ �}. Suppose that
(1) v is semifinite;
(2) every v-trivial ideal contains a finitely generated v-trivial ideal;
(3) there is a v-trivial �-closed ideal.

Then, � is not the infimum of a finite family of principal star operations.

Proof. By substituting anoverring T ∈ �with {TM | M ∈ Max(T )}, we can suppose
without loss of generality that each member of � is local.

If � were finitely generated, by Proposition 6.9 there would be a minimal v-trivial
�-closed ideal, say J . By hypothesis, there is finitely generated v-trivial ideal I ⊆ J ;
since I � = J , by [1, Theorem 2], we have I T = JT for every T ∈ �.

Since I � 
= R, there must be an S ∈ � such that I S 
= S; by Nakayama’s lemma,
I 2S = (I S)2 � I S, and so (I 2)� ⊆ I 2S ∩ R � I . In particular, (I 2)� is a v-trivial
�-closed ideal, against the definition of I . Thus, � is not finitely generated. �

The first two hypothesis hold, for example, for unique factorization domains of
dimension d > 1; the third one holds, for example, in the following cases:

• � is a spectral star operation of finite type different from the w-operation (see [2,
17]);

• if R is integrally closed and (at least) one maximal ideal is not divisorial, and � is
the b-operation/integral closure;

• if R is a UFD, all star operations coming from overrings, except the v-operation.

7 Noetherian Domains

In this section, we study in more detail the case of Noetherian domains; in particular,
we shall give in Theorem 7.8 a necessary and sufficient condition on when v(I ) =
v(J ), under the assumption that (I : I ) = R = (J : J ). We first state a case that is
already settled, even without this hypothesis.

Proposition 7.1. [14, Proposition 5.4] Let (R, M) be a local Noetherian integral
domain of dimension 1 such that its integral closure V is a discrete valuation domain
that is finite over R; suppose also that the induced map of residue fields R/M ⊆
V/MV is an isomorphism. Then, v(I ) = v(J ) if and only if I = u J for some u ∈ K,
u 
= 0.

We denote by Ass(I ) the set of associated primes of I .

Proposition 7.2. Let R be a domain and I an ideal of R. Then, Specv(I )(R) ⊇
Specv(R) ∪ Ass(I ), and if R is Noetherian the two sets are equal.
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Proof. If P ∈ Ass(I ), then P = (I :R x) = x−1 I ∩ R for some x ∈ R, and thus it
is v(I )-closed; if P ∈ Specv(R) then P = Pv and thus P = Pv(I ).

Conversely, suppose R is Noetherian and P = Pv(I ). Then P = Pv ∩ (I : (I :
P)) = Pv ∩ (I : J ), where J = (I : P); let J = j1R + · · · + jn R. We have

P = Pv ∩ (I : J ) = Pv ∩ R ∩ (I : J ) = Pv ∩ (I :R J ) =
= Pv ∩ (I :R j1R + · · · + jn R) = Pv ∩ ⋂n

i=1(I :R ji R),

and, since P is prime, this implies that Pv = P or (I :R ji R) = P for some i . In
the latter case, since ji ∈ K , ji = a/b for some a, b ∈ R; hence (I :R ji R) = (I :
ab−1R) ∩ R = (bI :R aR), and thus P is associated tobI . There is an exact sequence

0 −→ bR

bI
−→ R

bI
−→ R

bR
−→ 0

and, since R is a domain, bR/bI � R/I and thus Ass(bI ) ⊆ Ass(I ) ∪ Ass(bR) [3,
Chapter IV, Proposition 3]; therefore, P is associated to I or it is divisorial (since an
associated prime of a divisorial ideal—in this case, bR—is divisorial). �

Remark 7.3. Note that, if Pv = R, then (I : P) ⊆ (R : P) = R, and thus ji ∈ R;
in this case, b = 1 and the last part of the proof can be greatly simplified.

The following is a slight improvement of Proposition 6.7. We denote by X1(R)

the set of height-1 prime ideals of R.

Corollary 7.4. Let R be an integrally closed Noetherian domain. Then, the maximal
elements of Princ(R) \ {v} are the v(P), as P ranges in Spec(R) \ X1(R).

Proof. Since R is integrally closed, the divisorial prime ideals of R are the height 1
primes. In particular, if P is a prime ideal of height > 1, then v(P) is maximal by
Proposition 6.7.

Conversely, suppose v(I ) is maximal in Princ(R) \ {v}. If all associated primes
of I have height 1, then I = ⋂

P∈X1(R) I RP , and so I is divisorial, against v(I ) 
= v.
Hence, there is a P ∈ Ass(I ) \ X1(R); by Proposition 7.2, P ∈ Specv(I )(R), and
thus v(I ) ≤ v(P). As v(I ) is maximal, it follows that v(I ) = v(P). The claim is
proved. �

Corollary 7.5. Let R be a Noetherian unique factorization domain. Then, v(I ) is
a maximal element of Princ(R) \ {v} if and only if I = uP for some prime ideal
P ∈ Spec(R) \ X1(R) and some u ∈ K.

Proof. It is enough to join Corollary 7.4 (the maximal elements are the v(P)) with
Corollary 6.6 (v(I ) = v(P) if and only if I = uP). �

Proposition 7.2 allows to determine, in the Noetherian case, all the spectra of the
principal star operations. We need a lemma.

Lemma 7.6. Let�1, . . . , �n ∈ Star(R), and let� := �1 ∧ · · · ∧ �n. Then,Spec�(R) =⋃
i Spec

�i (R).
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Proof. If P = P�i for some i then P� ⊆ P�i = P and thus P = P�. Conversely, if
P = P� then P = P�1 ∩ · · · ∩ P�n ; since P is prime, it follows that P = P�i for
some i . The claim is proved. �

Proposition 7.7. Let R be a Noetherian domain, and let � ⊆ Spec(R). Then, the
following are equivalent:

(i) � = Specv(I )(R) for some ideal I ;
(ii) � = Spec�(R) for some � = v(I1) ∧ · · · ∧ v(In);
(iii) � = Specv(R) ∪ �′, for some finite set �′.

Proof. (i) =⇒ (ii) is obvious, while (ii) =⇒ (iii) follows from Lemma 7.6.

If (iii) holds, then by [18, Chapter 4, Theorem 21] there is an ideal I whose set
of associated primes is �′. By Proposition 7.2, Specv(I )(R) = Specv(R) ∪ �′ = �,
and so (i) holds. �

We now characterize when two nondivisorial ideals with (I : I ) = (J : J ) = R
generate the same star operation.

Theorem 7.8. Let R be a Noetherian domain, and let I, J be nondivisorial ide-
als such that (I : I ) = (J : J ) = R. Then, v(I ) = v(J ) if and only if Ass(I ) ∪
Specv(R) = Ass(J ) ∪ Specv(R) and, for every P ∈ Ass(I ) ∪ Specv(R), there is an
aP ∈ K such that I RP = aP J RP.

Proof. Suppose the two conditions hold. By Proposition 7.2, Ass(I ) ∪ Specv(R) =
Specv(I )(R), and thus Specv(I )(R) = Specv(J )(R) =: �. For every ideal L , using
Proposition 5.1 we have

Lv(I ) =
⋂

P∈�

Lv(I )RP =
⋂

P∈�

(LRP)v(I )RP =
⋂

P∈�

(LRP)v(I RP ).

Since I RP and J RP are isomorphic, (LRP)v(I RP ) = (LRP)v(J RP ); it follows that
v(I ) = v(J ).

Conversely, suppose v(I ) = v(J ) =: �. Then, Spec�(R) is equal to both Ass(I ) ∪
Specv(R) and Ass(J ) ∪ Specv(R), which thus are equal. Note also that (I : I ) = R
implies that RP = (I : I )RP = (I RP : I RP) for every prime ideal P .

Let now P ∈ Spec�(R). Since v(I ) = v(J ), clearly v(I )RP = v(J )RP , which by
Proposition 5.1 implies that v(I RP) = v(J RP). However, PRP is v(I RP)-closed
because P is v(I )-closed; it follows, by Proposition 4.5, that I RP = aP J RP for
some aP ∈ K , as claimed. �

Corollary 7.9. Let R be an integrally closed Noetherian domain, and let I, J be
nondivisorial ideals. Then, v(I ) = v(J ) if and only if Ass(I ) ∪ X1(R) = Ass(J ) ∪
X1(R) and for every P ∈ Ass(I ) there is an aP ∈ RP such that I RP = aP J RP.
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Proof. Since R is integrally closed and Noetherian, we have (I : I ) = R for every
ideal I ; furthermore, the divisorial primes are the height 1 primes, and for any such
P the localizations I RP and J RP are isomorphic since RP is a DVR. The claim now
follows from Theorem 7.8. �

Example 7.10. Let R be a Noetherian integrally closed domain, and suppose that
RM is not a UFD for some maximal ideal M . Let P be an height 1 prime contained
in M such that PRM is not principal, and let Q be a prime ideal of height bigger
than 1 such that P + Q = R (in particular, Q � M). We claim that v(PQ) = v(Q)

but PQ and Q are not locally isomorphic.
In fact, since they are coprime, PQ = P ∩ Q, and thusAss(PQ) = {P, Q}while

Ass(Q) = {Q}; moreover, P � Q and thus PQRQ = QPRQ = QRQ . Since P ∈
X1(R), by Corollary 7.9 it follows that v(PQ) = v(Q). However, QRM = RM is
principal, while PQRM = PRM , by hypothesis, is not; therefore, Q and PQ are
not locally isomorphic. In particular, there cannot be an invertible ideal L such that
Q = LPQ, because LRM would be principal and thus Q and PQ would be locally
isomorphic.
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Tilting Modules and Tilting Torsion Pairs

Filtrations Induced by Tilting Modules

Francesco Mattiello, Sergio Pavon and Alberto Tonolo

Abstract Tilting modules, generalising the notion of progenerator, furnish equiv-
alences between pieces of module categories. This paper is dedicated to study how
much these pieces say about the whole category. We will survey the existing results
in the literature, introducing also some new insights.

Keywords Tilting modules · Torsion pairs · t-structures · t-tree

1 Introduction

In 1958, Morita characterised equivalences between the entire categories of left (or
right) modules over two rings. Let A be an arbitrary associative ring with 1 �= 0.
A left A-module AP is a progenerator if it is projective, finitely generated and
generates the category A-Mod of left A-modules. Set B := End(AP), the covariant
functor HomA(P, ?) gives an equivalence between A-Mod and B-Mod; moreover,
any equivalence between modules categories is of this type.

The notion of tilting module has been axiomatised in 1979 by Brenner and Butler
[BB], generalising that of progenerator for modules of projective dimension 1. The
various forms of generalisations to higher projective dimensions considered until
today continue to follow their approach.
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A tilting module T of projective dimension n naturally gives rise to n + 1 cor-
responding classes of modules in A-Mod and B-Mod, the Miyashita classes, with
n + 1 equivalences between them. These classes are

KEe(T ) = {M ∈ A-Mod : ExtiA(T, M) = 0 ∀i �= e}

KTe(T ) = {N ∈ B-Mod : TorBi (T, M) = 0 ∀i �= e}, e = 0, 1, ..., n

and the n + 1 equivalences are

K Ee(T )
ExteA(T,?)

KT e(T )
TorBe (T,?)

, e = 0, 1, ..., n.

In the n = 0 case (progenerator), there is only one class on each side, and so
every module is subject to the equivalence of categories (that of Morita); for n = 1,
on each side, the two Miyashita classes form torsion pairs, so every module in both
A-Mod and B-Mod can be decomposed in terms ofmodules in theMiyashita classes:
precisely every module admits a composition series of length 2 with composition
factors in the Miyashita classes.

For n > 1, the Miyashita classes fail to decompose every module; the way to
recover a similar decomposition is the subject of this paper.

In Section2, we define classical n-tiltingmodules andMiyashita classes; we show
that they give a torsion pair for n = 1, and hence they can be used to decompose
every module; we give an example showing that a similar decomposition does not
exist for n > 1, and characterise those modules which can be decomposed.

In Section3, we present some previous attempts to recover the decomposition for
n > 1 as well, by extending the Miyashita classes, due to Jensen, Madsen, Su [11]
and to Lo [13]. A useful tool in our analysis will be a characterisation of modules
in ∩i>e Ker ExtiA(T, ?), 0 ≤ e ≤ n (see Lemma 1), which generalises the character-
isation of modules in ∩i>0 Ker ExtiA(T, ?) given by Bazzoni [3, Lemma 3.2]. These
extensions deform in an irreversible way theMiyashita classes, weakening their role.

In Section4, we recall some introductory notions about the derived category of
an abelian category and about t-structures.

In Section5, we drop the finiteness assumptions on the tilting modules, recalling
the definition of non classical n-tilting modules [2]. In this setting, we recall the
definition of the t-structure associated to such a module; we then study its interaction
with the natural t-structure of the derived category.

In Section6, we exploit the results of Section5 to construct in the derived category
the t-tree of a module with respect to a tilting module. This procedure, discovered in
the classical tilting case by Fiorot, the first and the third author in [8], solves satisfac-
torily the decomposition problem for n > 1: the classes used for the decomposition
intersect the module category exactly in the Miyashita classes. As a result of the
work of the previous section, we prove that this construction can be reproduced also
in the non classical case.
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Throughout the paper, the concrete case considered in Example 1 introduced in
Section2 will be used to illustrate the various attempts to solve the decomposition
problem (see Examples 2, 3).

2 Classical n-tilting Modules

In 1986, Miyashita [14] and Cline, Parshall and Scott [7] gave similar definitions of
a tilting module of projective dimension n.

Definition 1 (Miyashita [14]) A left A-module T is a classical n-tilting module, for
some integer n ≥ 0, if

pn) T has a finitely generated projective resolution of length n, i.e. a projective
resolution

0 Pn · · · P0 T 0

with the Pi finitely generated;
en) T is rigid, i.e. ExtiA(T, T ) = 0 for every 0 < i ≤ n;
gn) the ring A admits a coresolution of length n

0 A T0 · · · Tn 0

with the Ti finitely generated direct summands of arbitrary coproducts of copies
of T .

In the case when n = 0, p0) says that the module is a finitely generated projective,
e0) is empty and g0) says that it is a generator: this is then the definition of a progener-
ator module. As such, a classical 0-tilting module T induces a Morita equivalence of
categories of modules, as follows. Let B = EndA(T ) be its ring of endomorphisms,
which acts on the right on T , and consider the category B-Mod of left B-modules.
There are functors

HomA(T, ?) : A-Mod → B-Mod

T⊗B? : B-Mod → A-Mod

which are category equivalences, with the unit and counit morphisms being those of
the adjunction. This is the motivating example for the definition of tilting modules,
along with the next case.

In the case when n = 1, we find what was originally (see Brenner and Butler [6])
defined as a tilting module; we will give a brief and incomplete overview of what is
known about them.
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Let T be a classical 1-tilting left A-module, and let as before B = EndA(T ) be its
ring of endomorphisms. In this case, the pair (HomA(T, ?), T⊗B?) does not induce
an equivalence of A-Mod and B-Mod anymore; however, a little less can be proved,
as follows.

Define the following pairs of full subcategories of A-Mod and B-Mod, respec-
tively,

K E0(T ) = {
X ∈ A-Mod : Ext1A(T, X) = 0

}

K E1(T ) = {X ∈ A-Mod : HomA(T, X) = 0}
KT 0(T ) = {

Y ∈ B-Mod : TorB1 (T,Y ) = 0
}

KT 1(T ) = {Y ∈ B-Mod : T ⊗B Y = 0} .

Then we have the following results.

Theorem 1 (Brenner and Butler [6]) Let A be a ring, T a classical 1-tilting left
A-module, B = EndA(T ).

i) The pairs (K E0(T ), K E1(T )) and (KT 1(T ), KT 0(T )) defined above are
torsion pairs, respectively, in A-Mod and B-Mod.

ii) There are equivalences of (sub)categories

K E0(T )
HomA(T,?)

KT 0(T )
T⊗B?

K E1(T )
Ext1A(T,?)

KT 1(T )
TorB1 (T,?)

.

This theorem shows that the 1-tilting case is slightly more complex than the 0-
tilting one. Instead of having an equivalence of the whole categories A-Mod and
B-Mod, we have two pairs of equivalent subcategories, giving a functorial decom-
position of every module in its torsion and torsion free parts.

For an arbitrary n ≥ 0, following Miyashita, we find that every classical n-tilting
module T gives rise to two sets of n + 1 full subcategories of A-Mod and B-Mod,
respectively, defined as follows for e = 0, . . . , n:

K Ee(T ) = {
X ∈ A-Mod : ExtiA(T, X) = 0 for every i �= e

} ⊂ A-Mod

KT e(T ) = {
Y ∈ B-Mod : TorBi (T,Y ) = 0 for every i �= e

} ⊂ B-Mod

where conventionally Ext0A(T, X) = HomA(T, X) and TorB0 (T,Y ) = T ⊗B Y . As a
generalisation of point (i i) of Theorem1, we may state the following result.
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Theorem 2 (Miyashita [14, Theorem 1.16]) In the setting above, there are equiva-
lences of (sub)categories, for every e = 0, . . . , n:

K Ee(T )
ExteA(T,?)

KT e(T )
TorBe (T,?)

.

For n ≥ 2, however, theMiyashita classes do not provide a decomposition of every
module, as it used to happen for n = 1. This is proved by the existence of simple
modules (which can have only a trivial decomposition in the module category) not
belonging to any class.

Example 1 ([20, Example 2.1]) Let k be an algebraically closed field. Let A be the

k-algebra associated to the quiver 1
a

2
b

3 with the relation b ◦ a = 0. The
indecomposable projectives are 1

2 , 2
3 , 3 , while the indecomposable injectives are

1 , 1
2 , 2

3 . It follows that the module T = 2
3 ⊕ 1

2 ⊕ 1 is a classical 2-tilting module:
a p2) resolution is

P• → T → 0 : 0 0 ⊕ 0 ⊕ 3 0 ⊕ 0 ⊕ 2
3

2
3 ⊕ 1

2 ⊕ 1
2

2
3 ⊕ 1

2 ⊕ 1 0 ;

T is a direct sum of injectives, so it is rigid; lastly, A = 3 ⊕ 2
3 ⊕ 1

2 and so a g2)
co-resolution can be easily found. We shall show that the simple module 2 does not
belong to any of the Miyashita classes.

In order to compute the ExtiA(T, 2 ), we apply the contravariant functor
HomA(?, 2 ) to the resolution P•, obtaining

0 HomA(
2
3 ⊕ 1

2 ⊕ 1
2 , 2 ) HomA(0 ⊕ 0 ⊕ 2

3 , 2 ) HomA(0 ⊕ 0 ⊕ 3 , 2 ) 0

which is isomorphic to

0 HomA(
2
3 , 2 )

0 HomA(
2
3 , 2 )

0 0 0 .

Hence, HomA(T, 2 )  Ext1A(T, 2 )  HomA(
2
3 , 2 ) �= 0 as abelian groups.

Indeed, thosemodules forwhich the K Ei (T ) (resp. the KT i (T )) provide a decom-
position can be characterised in the following way.

Definition 2 A left A-module M (resp. a left B-module N ) is sequentially static
(resp. costatic) if for every i �= j ≥ 0,

TorBi (T,Ext jA(T, M)) = 0 (resp. ExtiB(T,TorAj (T, N )) = 0).

Notice that for an A-module M (resp. a B-module N ) to be sequentially static (resp.
costatic) means that for every e = 0, . . . , n, we have that ExteA(T, M) belongs to
KT e (resp. TorBe (T, N ) belongs to K Ee).
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Proposition 1 ([20, Theorem 2.3]) A left A-module M is sequentially static if and
only if there exists a filtration

M = Mn ≥ Mn−1 ≥ Mn−2 ≥ · · · ≥ M0 ≥ M−1 = 0

such that for every i = 0, . . . , n, the quotient Mi/Mi−1 belongs to K Ei (T ). In this
case, for every such i , we have that Mi/Mi−1  TorBi (T,ExtiA(T, M)).

Dually, a left B-module M is sequentially costatic if and only if there exists a
filtration

N = N−1 ≥ N0 ≥ N1 ≥ · · · ≥ Nn−1 ≥ Nn = 0

such that for every i = 0, . . . , n, the quotient Ni−1/Ni belongs to KT i (T ). In this
case, for every such i , we have that Ni−1/Ni  ExtiA(T,TorBi (T, N )).

Remark 1 In Example 1, the module 2 was not sequentially static. Let us check that

TorB2 (T,HomA(T, 2 )) �= 0.

The ring B = EndA(T ) (with multiplication the composition left to right) is the

k-algebra associated to the quiver 4
c

5
d

6 with the relation d ◦ c = 0. In
detail, the idempotents are the endomorphisms of T induced by the identities of its
direct summands, e4 of 1 , e5 of 1

2 and e6 of 2
3 , respectively; and c and d are the

endomorphisms of T induced by the morphisms 1
2 → 1 and 2

3 → 1
2 , respectively.

In order to compute the right B-module structure of T , we notice first that as a
k-vector space T is generated by five elements: x ∈ 2

3 \ 3 and y = bx ∈ 3 , v ∈ 1
2 \ 2

andw = av ∈ 2 , and z ∈ 1 . If we look at how B acts on the right on these elements,
we see that T as a right B-module is isomorphic to 5

4 ⊕ 6
5 ⊕ 6 = v

z ⊕ x
w ⊕ y .

To compute Ext1A(T, 2 ), we consider the injective coresolution of 2 in A-Mod

0 2 1
2 1 0

and compute coker
[
HomA(T, 1

2 ) → HomA(T, 1 )
]
as left B-modules.

The left B-module HomA
(
T, 1

2

)
is generated as a k-vector space by (the mor-

phisms induced on T by) two morphisms 2
3 → 1

2 and 1
2 → 1

2 . When we look at how
B acts on the left on these elements, we see that the module is isomorphic to B

(
5
6

)
.

Similarly, it can be seen that HomA(T, 1 ) as a left B-module is isomorphic to 4
5 ,

hence the cokernel we are interested in is the simple 4 . To compute TorB2 (T, 4 ), we
now consider the presentation

0 5 4
5 4 0
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where 4
5 is a projective left B-module. It can be easily seen that TorB2 (T, 4 ) 

TorB1 (T, 5 ). Take the injective coresolution of B 5

0 6 5
6 5 0 ;

similarly to what we did to compute Ext1A(T, 2 ), we can compute TorB1 (T, 5 ) as the
kernel of T ⊗B 6 → T ⊗B

5
6 as a morphism of left A-modules.

If we call t a generator of 6 , with the previous notation for the generators of TB ,
as a k-vector space T ⊗B 6 is generated by v ⊗ t, z ⊗ t, x ⊗ t, w ⊗ t, y ⊗ t . Since
however e6t = t , the only generators of these which are not zero are x ⊗ t = xe6 ⊗ t
and y ⊗ t = ye6 ⊗ t . If we look at the action of A on the left of these elements, we
deduce that T ⊗B 6 is isomorphic to 2

3 as a left A-module. Similarly, T ⊗B
5
6 turns

out to be isomorphic to 2 , so in the end

TorB2 (T,HomA(T, 2 ))  3 �= 0.

3 First Attempts to Recover the Decomposition

In order to recover a decomposition of every module induced by a classical n-tilting
module, different strategies have been proposed.

In [11], Jensen, Madsen and Su suggested a solution for the n = 2 case by enlarg-
ing the subcategories K E0, K E1, K E2 in the following way. Let K0 be the full
subcategory of cokernels of monomorphisms from objects in K E2 to objects in
K E0; letK1 be K E1; letK2 be the full subcategory of kernels of epimorphisms from
objects in K E2 to objects in K E0:

K0 =
{
coker f : X2

f
↪→ X0, X2 ∈ K E2, X0 ∈ K E0

}

K1 = K E1

K2 =
{
ker g : X2

g
� X0, X2 ∈ K E2, X0 ∈ K E0

}
.

Byconsidering themorphisms f : 0 ↪→ X0 and g : X2 � 0,we can see that K Ei ⊂
Ki for every i = 0, 1, 2, so this is indeed an enlargement.

Now, for i = 0, 1, 2, let Ei be the extension closure of Ki , i.e. the smallest sub-
category containing Ki and closed under extensions.

Proposition 2 ([11, Corollary 15, Theorem 19, Lemma 24]) For any left A-module
X, there exists a unique filtration

0 = X0 ⊆ X1 ⊆ X2 ⊆ X3 = X
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with the quotients Xi+1/Xi ∈ Ei for every i = 0, 1, 2. Moreover, such a filtration is
functorial.

Example 2 Let us apply this construction to find a decomposition of the simple
module 2 considered in the Example 1. In a way similar to that used to study the
ExtiA(T, 2 ), i = 0, 1, 2, wemay prove that 2

3 belongs to K E0 and 3 belongs to K E2.
Then, 2 belongs to K0 ⊆ E0, being the cokernel of the monomorphism 3 → 2

3 .
Therefore, the trivial filtration 0 ≤ 2 has its only filtration factor in the new class E0.

In [13], Lo generalised this filtration to the n > 2 case as well. After giving a
different proof of Proposition 2, he introduced the following subcategories. For a
class of objects S, denote by [S] the extension closure of the full subcategory of
quotients of objects of S:

[S] = 〈{X : ∃(S � X) for some S ∈ S}〉ext.

This subcategory is closed under quotients ([13, Lemma 5.1]). Then set, for i =
0, . . . , n:

Ti = [
Ker ExtiA(T, ?) ∩ · · · ∩ Ker ExtnA(T, ?)

]

Fi = Ker HomA(Ti , ?) = {X : HomA(Ti , X) = 0}

with our usual convention that Ext0A = HomA. Define also Tn+1 = A-Mod and
Fn+1 = 0.

This provides pairs (Ti ,Fi ) of full subcategories, which are torsion pairs since the
Ti ’s are closed under extensions and quotients (see Polishchuk [16]). The following
easy proposition can then be applied to these torsion pairs.

Proposition 3 ([13, Theorem 5.3]) Let (Ti ,Fi ) be torsion pairs in A-Mod, for
i = 0, . . . , n + 1, such that

0 = T0 ⊆ T1 ⊆ · · · ⊆ Tn+1 = A-Mod.

Then for every left A-module X, there exists a functorial filtration

0 = X0 ⊆ X1 ⊆ · · · ⊆ Xn+1 = X

such that Xi ∈ Ti for i = 0, . . . , n + 1 and Xi/Xi−1∈Ti ∩ Fi−1 for i=1, . . . , n + 1.
Moreover, the Ti ∩ Fi−1 have pairwise trivial intersection.

We now prove that the subcategories Ti ∩ Fi−1 introduced by Lo are indeed
enlargements of the Miyashita classes using the following generalisation of [3,
Lemma 3.2], which we find of independent interest.
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Lemma 1 Let X be a module belonging to∩i>e Ker ExtiA(T, X) for some 0 ≤ e≤n.
Then, there exists a sequence of direct summands of coproducts of copies of T ,

· · · T−1
d−1

T0
d0 · · · Te 0

which is exactly everywhere except for degree 0, and having ker d0/ im d−1  X.
In particular, for e = n, ∩i>n Ker ExtiA(T, X) = A-Mod and hence X may be any
module.

Proof Set T⊥∞ := ∩i>0 Ker Exti (T, ?) and, for a family of modules S, ⊥S :=
Ker Ext1(?,S). It is well known (see [9], after Definition 5.1.1) that the pair of sub-
categories (⊥(T⊥∞), T⊥∞) is a complete hereditary cotorsion pair. This means (see
[9, Lemma 2.2.6]) that X (as any other module) admits a special ⊥(T⊥∞)-precover

0 J K X 0 .

In particular, J belongs to (⊥(T⊥∞))⊥, which equals T⊥∞ by definition of cotorsion
pair. Now we can apply [3, Lemma 3.2] to J and [9, Proposition 5.1.9] to K in order
to construct a sequence of direct summands of coproducts of copies of T

· · · T−2 T−1
d−1

T0
d0 · · · Tn 0 (∗)

J K
π

X

By construction, the first row is a sequence which is exact everywhere except for
degree 0, where ker d0/ im d−1  K/J  X .

This concludes the proof for the case where e = n. Otherwise, it can be easily
proved that since by hypothesis ExtiA(T, X) = 0 for i > e, then for these indices
Ti = 0: let us show it for i = n, then the other cases follow similarly. First, notice
that since Ext jA(T, J ) = 0, one gets Ext jA(T, K ) = Ext jA(T, X) for every j > 0.
Then, if we call K j = ker d j for j ≥ 0, we have

Ext1A(T, Kn−1) ∼= ExtnA(T, K0) = ExtnA(T, X) = 0;

applying the functor HomA(T, ?) to the short exact sequence

0 → Kn−1 → Tn−1 → Kn = Tn → 0

we get that HomA(T, Tn−1) → HomA(T, Tn) is an epimorphism and hence all mor-
phisms T → Tn factorise through Tn−1. Using the universal property of the coprod-
uct of which Tn is a direct summand, it is easy to prove that this implies that
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0 → Kn−1 → Tn−1 → Tn → 0 splits. Thus Kn−1 is a direct summand of a coproduct
of copies of T . Therefore, we may truncate the sequence (∗) as

· · · Tn−3 Tn−2 Kn−1 0 .

Notice that this lemma generalises [3, Lemma 3.2], which is the case where e = 0.

Remark 2 We shall prove that K Ee ⊆ Te+1 ∩ Fe for every e = 0, . . . , n. Indeed, it
is obvious that K Ee ⊆ Te+1. To see that any M ∈ K Ee belongs to Fe as well, we
will proceed in subsequent steps.

First, we prove that for every X ∈ ∩i>e−1 Ker ExtiA(T, ?) ⊆ Te, there are no non
zero morphisms X → M . Indeed, if e = 0, then X = 0; if e > 0, consider the
sequence

T • := · · · T−1
d−1

T0
d0 · · · Te−1 0

given by Lemma 1 applied to X . Set K j = ker d j for j ≥ 0 (and so K0 = K ), apply-
ing the functor Hom(−, M) to the epimorphism K0 → X , one gets

HomA(X, M) ↪→ HomA(K0, M) ∼= Ext1A(K1, M) ∼= · · ·

· · · ∼= Exte−1
A (Ke−1, M) = Exte−1

A (Te−1, M) = 0,

and hence HomA(X, M) = 0.
Now, if X ′ is the epimorphic image of some X ∈ ∩i>e−1 Ker ExtiA(T, ?), we have

HomA(X ′, M) ↪→ HomA(X, M) = 0 so HomA(X ′, M) = 0 as well. Lastly, if X ′′ is
an extension of such epimorphic images, we still find that HomA(X ′′, M) = 0.

This proves the claim that M has no non zero morphisms from objects of Te, and
therefore it belongs to Fe.

The last result of [13] is the proof that for n = 2, the filtration procedure of
Proposition 3 reduces to that provided by Jensen, Madsen, and Su.

It should benoted that these results,while providing away togeneralise the decom-
position of every module found in the n = 1 case, do so by introducing enlargements
of the Miyashita classes K Ei which are not very natural, at the point that the con-
nection to the tilting object they originate from seems a bit weak.

The rest of the article is devoted to the description of an alternative approach to
this enlarging strategy, introduced in [8], which takes place in the derived category
D(A) of A-Mod. In the following section, we recall some basic facts about derived
categories and t-structures.
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4 Introducing Derived Categories and t-structures

Given an abelian categoryA, one may construct its derived category D(A) defining
objects and morphisms in the following way. As objects, one takes the cochain
complexes with terms in A:

· · · Xn
dn
X

Xn+1
dn+1
X

Xn+2 · · ·

In order to define morphisms, one first takes the quotient of morphisms of complexes
modulo those satisfying the nullohomotopy condition; the category having these
equivalence classes as morphisms is called the homotopy category. The step from
this to the derived category is performed by an argument of localisation; in this way,
morphisms of complexes which induce isomorphisms on the cohomologies get an
inverse in the derived category.

The category D(A) so obtained is not abelian anymore, but it is a triangulated
category. This means that it is equipped with the following structure. First, there
is an autoequivalence, whose action on the complex X• is denoted as X•[1] and is
defined as follows:

(X•[1])n = Xn+1 dn
X [1] = −dn+1

X .

This functor is called the suspension functor; its natural definition on chain mor-
phisms induces a good definition on morphisms inD(A). We will sometimes denote
this functor also as �; its inverse as �−1 or ?[−1]; their powers as �i or ?[i] for
i ∈ Z.

Given this autoequivalence, one calls triangles the diagrams of the form

X• u
Y • v

Z• w
X [1]

such that v ◦ u = 0 = w ◦ v; in D(A), a particular role is played by the triangles
isomorphic (as diagrams) to those of the form

X• f
Y • Cone f X [1]

where Cone f is defined as the complex having terms (Cone f )i = Xi+1 ⊕ Y i and

differentials di
Cone f =

[ −di+1
X 0

f i+1 diY

]
. These triangles are called distinguished triangles

and are the analogous of short exact sequences in abelian categories.
In a triangulated category, hence also inD(A), products and coproducts of distin-

guished triangles, when they exist, are distinguished (see [15, Proposition 1.2.1, and
its dual]). In particular, ifA has arbitrary products or coproducts,D(A) has them as
well: they are constructed degree-wise using those of A.

Once we have set our context, we now define the main object which we will work
with.
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Definition 3 Let S = (S≤0,S≥0) be a pair of full, strict (i.e. closed under isomor-
phisms) subcategories ofD(A), and denote S≤i = S≤0[−i] and S≥i = S≥0[−i], for
every i ∈ Z.

The pair S is a t-structure if it satisfies the following properties:

T1) S≤0 ⊆ S≤1 and S≥0 ⊇ S≥1;
T2) HomD(A)(S≤0,S≥1) = 0;
T3) For any complex X• in D(A), there exist complexes A• ∈ S≤0 and B• ∈ S≥1

and morphisms such that

A• X• B• A•[1]

is a distinguished triangle in D(A). This is called an approximating triangle
of X•.

In this case, S≤0 is called an aisle, S≥0 a coaisle. The t-structure S is called non
degenerate if

⋂
i∈Z S≤i = 0 (or equivalently

⋂
i∈Z S≥i = 0). The full subcategory

HS = S≤0 ∩ S≥0 is called the heart of S.
This definition immediately resembles that of a torsion pair in an abelian category.

As it holds for torsion pairs, the approximating triangle of a complex with respect to
a t-structure is functorial, as we are going to state.

Given a t-structure S in D(A), it can be proved that the embeddings of subcate-
gories S≤0 ⊆ D(A) and S≥0 ⊆ D(A) have a right adjoint σ≤0 : D(A) → S≤0 and
a left adjoint σ≥0 : D(A) → S≥0, respectively.

For i ∈ Z, let us write σ≤i = �−i ◦ σ≤0 ◦ �i : D(A) → S≤i and similarly
σ≥i = �−i ◦ σ≥0 ◦ �i : D(A) → S≥i ; σ≤i and σ≥i will be called, respectively,
the left and the right truncation functors at i with respect to S, for i ∈ Z.

It can be proved that for every X• in D(A), the approximation triangle for X•
provided by the definition of the t-structure S is precisely (isomorphic to):

σ≤0(X•) X• σ≥1(X•) (σ≤0(X•))[1] .

The truncation functors of S can be used to define the i-th cohomology with
respect to S. It can be proved that for every i, j ∈ Z, there is a canonical natural iso-
morphism σ≤iσ≥ j  σ≥ jσ≤i . Then, for every i ∈ Z, the functor Hi

S = �iσ≤iσ≥i 
�iσ≥iσ≤i : D(A) → HS is called the i-th cohomology functor with respect to the
t-structure S (or simply S-cohomology).

We introduce now the first t-structure in D(A) we are going to use.

Definition 4 The natural t-structure D of D(A) has aisle and coaisle:

D≤0 = {
X• ∈ D(A) : Hi (X•) = 0 for every i > 0

}

D≥0 = {
X• ∈ D(A) : Hi (X•) = 0 for every i < 0

}
.
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Notice that by construction, the i th D-cohomology of X• is a complex having zero
cohomology everywhere except for degree 0, where it has Hi (X•), the usual i-th
cohomology of X•: i.e., Hi

D(X•) = Hi (X•)[0].
The original proof that this is indeed a t-structure can be found in [5].
We now state the following fundamental theorem about t-structures. One may

read it with our example D in mind.

Theorem 3 Let S be a non degenerate t-structure in D(A). Then

1. The heart HS is an abelian category; moreover, a short sequence

0 X• Y • Z• 0

in HS is exact if and only if there exists a morphism Z → X [1] in D(A) such
that the triangle

X• Y • Z• X•[1]

is distinguished.
2. Given any distinguished triangle

X• Y • Z• X•[1]

in D(A), there is a long exact sequence inHS

· · · Hi−1
S Z• Hi

SX
• Hi

SY
• Hi

S Z
• Hi+1

S · · ·

Ascanbe easily seen, the heartHD of the natural t-structure ofD(A) is (equivalent
to) A itself via the embedding A → D(A) defined by

X �→ X [0] = ( · · · 0 X 0 · · ·)

whose quasi-inverse is H 0, the usual 0th-cohomology functor.
As it happens for torsion pairs, the aisle or the coaisle of a t-structure is sufficient

to characterise the whole t-structure. Indeed, we give the following lemma by Keller
and Vossieck [12].

Lemma 2 Let R = (R≤0,R≥0) be a t-structure in D(A). Then

R≤0 = {
X• ∈ D(A) : HomD(A)(X

•,Y •) = 0 for all Y • ∈ R≥1
}

R≥0 = {
Y • ∈ D(A) : HomD(A)(X

•,Y •) = 0 for all X• ∈ R≤−1
}
.

Wenow give the following proposition, which gives a very useful way to construct
t-structures in the derived category of a Grothendieck category G.
Proposition 4 ([1, Lemma 3.1, Theorem 3.4]) Let G be a Grothendieck category.
Given any complex E in D(G), let U be the smallest cocomplete pre-aisle contain-
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ing E, that is, the smallest full, strict subcategory ofD(G) closed under positive shifts,
extensions and coproducts. Then, U is an aisle and the corresponding coaisle is

U⊥ = {
Y • ∈ D(G) : HomD(G)(X

•,Y •) = 0 for every X• ∈ U[1]}

= {
Y • ∈ D(G) : HomD(G)(E,Y •[i]) = 0 for every i < 0

}
.

Remark 3 As a first application of this proposition, it is easy to see that if G has a
projective generator E , then the natural t-structure of D(G) will be that generated
by E (in the sense of the proposition). This will be the case when we will consider
G = A-Mod, with E = A.

Remark 4 In the case where the object E is in fact a module, that is, a complex
concentrated in degree zero, we shall give a characterisation of the aisle U generated
by E .

First, U contains E ; and it is closed under positive shifts, hence it contains E[i]
for every i > 0. U is closed under arbitrary coproducts; let then J = ∪i>0 Ji be a
set of indices, and let E j = E[i] for every j ∈ Ji . Then the coproduct

∐
j∈J E j =

∐
i>0 E

(Ji )[i] belongs to U as well. If V is the full subcategory of all objects iso-
morphic to these coproducts, this means that V ⊆ U . Since U is also closed under
extensions, if we call V ′ the extension closure of V , we have V ′ ⊆ U as well. More-
over, since coproducts of distinguished triangles are distinguished, from the fact that
V is closed under arbitrary coproducts follows easily that V ′ is as well. Hence, V ′ is
a cocomplete pre-aisle, and by definition U ⊆ V ′.

In conclusion, objects of U are isomorphic to complexes having zero terms in
positive degrees and coproducts of E in nonpositive degrees.

5 n-Tilting Objects and Associated t-structures

In the following, we are going to work with a generalisation of classical n-tilting
modules, introduced by Angeleri Hügel and Coelho [2]; the equivalent definition we
give is more oriented towards the derived category D(A) of A-Mod, which will be
our setting.

Definition 5 A left A-module T is (non necessarily classical) n-tilting if it satisfies
the following properties:

Pn) T has projective dimensions at most n, i.e. there exists an exact sequence

0 Pn · · · P1 P0 T 0

in A-Mod with the Pi projectives;
En) T is rigid, i.e. ExtiA(T, T (�)) = 0 for every index 0 < i ≤ n and set �;
Gn) T is a generator in D(A), meaning that if for a complex X• we have

HomD(A)(T, X [i]) = 0 for every i ∈ Z, then X• = 0 in D(A).
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Notice that a classical n-tiltingmodule is indeedn-tilting: in particular, pn) implies
Pn), pn) and en) imply En) (see the Stacks Project [19, Proposition 15.72.3] and gn)
implies Gn) (see Positselski and Stovicek [17, Corollary 2.6]).

The discussion about t-structures in the previous section is justified by the
following construction. Let T be a n-tilting left A-module and consider the pair
T = (T ≤0, T ≥0) of subcategories of D(A)

T ≤0 = {
X• ∈ D(A) : HomD(A)(T, X•[i]) = 0 for every i > 0

}

T ≥0 = {
X• ∈ D(A) : HomD(A)(T, X•[i]) = 0 for every i < 0

}
.

Remark 5 This is the t-structure generated by T in the sense of Proposition 4, as
proved in [4, Lemma 3.4], which in turn follows [18, Lemma 4.4]. We provide here
another proof.

Let G = (G≤0,G≥0) be the generated t-structure. We have T ≥0 = G≥0. For the
aisle, notice that T ≤0 contains T by (En); and it is clearly closed under positive
shifts, hence it contains any T [i] for i > 0. Now, we show that it is closed under
arbitrary coproducts of such complexes T [i]. Let J = ∪i>0 Ji be a set, let Tj = T [i]
for every j ∈ Ji , and consider the coproduct

∐
j∈J Tj = ∐

i>0 T
(Ji )[i]. Notice that

since by (Pn) T has projective dimension n, we have

HomD(A)

⎛

⎝T,
∐

j∈J

Tj

⎞

⎠ = HomD(A)

(

T,
∐

i>0

T (Ji )[i]
)

= HomD(A)

⎛

⎝T,
∐

1≤i≤n

T (Ji )[i]
⎞

⎠ .

Now, since D(A) is an additive category, this is itself isomorphic to

HomD(A)

(

T,
∏

1≤i≤n

T (Ji )[i]
)


∏

1≤i≤n

HomD(A)

(
T, T (Ji )[i]) = 0

which is zero by property (En). Lastly, T ≤0 is clearly closed under extensions, and
so by Remark4, it contains G≤0.

For the inclusion T ≤0 ⊆ G≤0, take an object X• ∈ T ≤0 and consider its approxi-
mation triangle with respect to G,

A• X• B• +1
.

We have A• ∈ G≤0 ⊆ T ≤0; and since T ≤0 is clearly closed under cones, B• ∈ T ≤0

as well. So in the end B• ∈ T ≤0 ∩ G≥1 = T ≤0 ∩ T ≥1 which is 0 by G3).

As a side note, observe that if T is classical n-tilting, it induces a triangulated
equivalence RHomA(T, ?) : D(A) → D(B) (see [7]); then, by the fact that

HomD(A)(T, X•[i]) = Hi RHomA(T, X•)
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we may recognise in T := (T ≤0, T ≥0) the “pullback” of the natural t-structure of
D(B) along RHomA(T, ?).

Remark 6 Without further study, the t-structureT can be immediately used to review
some previous results.

First, we can greatly simplify the proof of Remark2. In the notation used there, to
prove that there are no non zero morphisms X → M , for X in∩i>e−1 Ker ExtiA(T, ?)
and M in K Ee, we may just recognise that we have X = X [0] ∈ T ≤e−1 and M ∈
T ≥e, and use axiom (T2) of t-structures.

Second, we may read our Lemma 1 under a different light: given the characteri-
sation of objects in T ≤0 as in Remark4, the lemma can be seen to be the equality

∩i>e Ker Ext
i
A(T, ?) = A-Mod ∩ T ≤e.

In the following, T will be a n-tilting module; T will be the associated t-structure,
as defined above. The solution thatwe are going to give to our decomposition problem
originates from the interaction of the t-structure T with the natural t-structure D of
D(A) (see Definition 4). First, we make an easy observation.

Proposition 5 The following inclusions of aisles and coaisles hold:

D≤−n ⊆ T ≤0 ⊆ D≤0 and D≥0 ⊆ T ≥0 ⊆ D≥−n.

Proof Some of the inclusions are easy to prove: if X• ∈ D≤−n , then for every i > 0
wewill have X•[i] ∈ D≤−n−i ⊆ D≤−n−1, henceHomD(A)(T, X•[i]) = 0 since T has
projective dimension n. On the other hand, if X• ∈ D≥0, then for every i < 0 we will
have X•[i] ∈ D≥0−i ⊆ D≥1, hence again HomD(A)(T, X•[i]) = 0 since T ∈ D≤0.
The other two inclusions can be easily proved from these using Lemma 2.

Remark 7 With Proposition 5, we are ready to notice an important fact, which will
be key later. Take a module X in K Ee, for some e = 0, . . . , n; in particular, being
a module, it belongs to A-Mod  HD ⊆ D≥0 ⊆ T ≥0. Moreover, by definition, for
every i = 0, . . . , e − 1, we have 0 = ExtiA(T, X)  HomD(A)(T, X [i]), hence X
belongs in fact to T ≥e. Lastly, again by definition, for every i > e, we have 0 =
ExtiA(T, X)  HomD(A)(T, X [i]), hence X belongs to T ≤e as well.

This proves that, after identifying A-Mod  HD, for every e = 0, . . . , n the e-th
Miyashita class is

K Ee = A-Mod ∩ HT [−e].

Let us now look at Proposition 5 in the n = 1 case. Its proof suggests that we may
focus on the inclusions between the aisles (those between the coaisles being their
“dual” in the sense of Lemma 2). If T is a 1-tilting module, we will then have

D≤−1 ⊆ T ≤0 ⊆ D≤0. (∗)

In other words, complexes in T ≤0 are allowed to have any cohomology (with respect
to D, which means the usual complex cohomology Hi ) in degrees ≤ −1 and some
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kind of cohomology in degree 0, while they must have 0 cohomology in higher
degrees.

Remark 8 In this situation, with T a 1-tilting module, we may try to characterise
H 0(X•) for X• ∈ T ≤0. Notice that X• sits in the approximation triangle with respect
to D

δ≤−1(X•) X• H 0(X•)[0] +1

where
H 0(X•)[0] = H 0

D(X•) = δ≥0δ≤0(X•)  δ≥0(X•) since X• ∈ D≤0. If we apply
the homological functor HomD(A)(T, ?) to it, we get the long exact sequence of
abelian groups

· · · HomD(A)(T, X•[1]) HomD(A)(T, H 0(X•)[1]) HomD(A)(T, δ≤−1(X•)[2]) · · ·

The last term is 0 because δ≤−1(X•) ∈ D≤−1 ⊆ T ≤0; similarly, the first is 0 because
X• ∈ T ≤0. This means that

Ext1A(T, H 0(X•))  HomD(A)(T, H 0(X•)[1]) = 0

as well, i.e. that H 0(X•) ∈ K E0. �

The inclusions (∗) are precisely the hypothesis of the following proposition by
Polishchuk.

Proposition 6 ([16, Lemma 1.1.2]) Let R,S be two t-structures in a triangulated
category C such that

R≤−1 ⊆ S≤0 ⊆ R≤0 (or equivalently R≥0 ⊆ S≥0 ⊆ R≥−1).

Then the classes:

X = HR ∩ S≤0 = R≥0 ∩ S≤0, Y = HR ∩ S≥1 = R≤0 ∩ S≥1

form a torsion pair (X ,Y) inHR. S can be reconstructed from R and (X ,Y) as

S≤0 = {
X• ∈ R≤0 : H 0

R(X•) ∈ X }

S≥0 = {
X• ∈ R≥−1 : H−1

R (X•) ∈ Y}
.

This procedure to recover S is called tilting of the t-structure R with respect to
the torsion pair (X ,Y) in HR. It was introduced by Happel et al. [10], and it is a
central tool in the construction we are going to present.

Remark 9 It can be proved without too much effort that in our case the torsion pair
(X ,Y) in HD  A-Mod so identified is exactly the pair (K E0, K E1) induced by
the 1-tilting module T ; this confirms Remark8.
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We would like to use a procedure analogous to the Happel-Reiten-Smalø tilting
of Proposition 6 in order to link D and T in the n > 1 case. Notice that if we repeat
this tilting operation n times, the first and last of the produced t-structures will be
related by the inclusions of Proposition 5. Indeed, let R0, . . . ,Rn be t-structures
such thatRi is obtained by tiltingRi−1 with respect to some torsion pair onHRi−1 ,
for every i = 1, . . . , n. Then, we have by construction

R≤−1
0 ⊆ R≤0

1 ⊆ R≤0
0 and R≤−1

1 ⊆ R≤0
2 ⊆ R≤0

1

which combined give
R≤−2

0 ⊆ R≤0
2 ⊆ R≤0

0 .

One can then clearly prove by induction that

R≤−n
0 ⊆ R≤0

n ⊆ R≤0
0 .

If T is an n-tilting A-module, we shall show that the associated t-structure T in
D(A) can indeed be constructed from the natural t-structureD with this iterated pro-
cedure. To do so, we are going to construct the “intermediate” t-structures produced
after each tilting.

For i = 0, . . . , n, consider the strict full subcategoriesD≥
i = D≥−i ∩ T ≥0 (notice

that we are working with the coaisles). We have as wanted that

D≥0 = D≥
0 ⊆ D≥

1 ⊆ · · · ⊆ D≥
n = T ≥0

andD≥
i−1 ⊆ D≥

i ⊆ D≥
i−1[1] for i = 1, . . . , n. The only thing needed to proceed with

an iterated application of Proposition 6 is to prove that these D≥
i are indeed the

coaisles of some t-structures, for i = 1, . . . , n − 1.

Lemma 3 The D≥
i = D≥−i ∩ T ≥0 are coaisles of t-structures.

Proof As we noticed before (see Remark3 and the definition of T ), we have

D≥−i = {
Y • ∈ D(A) : HomD(A)(A[i],Y •[ j]) = 0 for every j < 0

}

T ≥0 = {
Y • ∈ D(A) : HomD(A)(T, Y •[ j]) = 0 for every j < 0

}
.

Hence, we have

D≥−i ∩ T ≥0 = {
Y • ∈ D(A) : HomD(A)(T ⊕ A[i]),Y •[ j]) = 0 for every j < 0

}

which is the coaisle of the t-structure generated by T ⊕ A[i] in the sense of Propo-
sition 4.

This concludes our previous discussion, making sure that T can be constructed
from D with (at most) n applications of the procedure of tilting a t-structure with
respect to a torsion pair on its heart.
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6 The t-tree

We are now going to exploit this fact to solve our decomposition problem.
First, we characterise the torsion pairs involved. According to Proposition 6, at

the i-th step, the t-structure Di (having coaisle D≥0
i = D≥

i = D≥−i ∩ T ≥0) is tilted
with respect to the torsion pair (Xi ,Yi ) = (D≥0

i ∩ D≤0
i+1,D≤0

i ∩ D≥1
i+1) in the heart

Hi of Di , i = 0, . . . , n − 1, thus producing the t-structure Di+1.

Theorem 4 Let T be a n-tilting left A-module. We can associate to each left
A-module X a tree (we call it the t-tree of X with respect to the t-structure induced
by the tilting module T )

X

X0 X1

· · · · · · · · · · · ·

X0···00 X0···01 · · · X1···10 X1···11

with n + 1 rows, where

Xb1...bi

Xb1...bi0 Xb1...bi1

is the short exact sequence obtained decomposing Xb1...bi with respect to the torsion
pair (Xi [−(b1 + · · · + bi )],Yi [−(b1 + · · · + bi )]) inHi [−(b1 + · · · + bi )].
Proof We may regard the left A-module X as a complex concentrated in degree 0,
X [0] in the heart HD = H0. The first torsion pair (X0,Y0) provides then a decom-
position

X0 X X1 inH0

with X0 ∈ X0, X1 ∈ Y0. Notice that by construction X0 ⊆ H1 and Y0 ⊆ H1[−1]
(see Proposition 6); this means that we can use (X1,Y1) and (X1[−1],Y1[−1]) to
further decompose X0 and X1, respectively, obtaining

X

X0 X1

X00 X01 X10 X11
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with the exact sequences in the respective abelian categories:

X

X0 X1

inH0

X0

X00 X01

inH1

X1

X10 X11

inH1[−1]

Now, notice again that since X1 ⊆ H2 and Y1 ⊆ H2[−1], we have that X00 ∈ H2,
X01, X10 ∈ H2[−(0 + 1)] = H2[−(1 + 0)] and X11 ∈ H2[−(1 + 1)].

Inductively, by decomposing each Xb1...bi with respect to the torsion pair
(Xi [−(b1 + · · · + bi )],Yi [−(b1 + · · · + bi )]) in Hi [−(b1 + · · · + bi )] we obtain
objects Xb1...bi0 ∈ Hi+1[−(b1 + · · · + bi )] and Xb1...bi1 ∈ Hi+1[−(b1 + · · · +
bi + 1)].

After n steps, we obtain the complete diagram.

We claim that Theorem 4 solves our decomposition problem. Indeed, by con-
struction each object Xb1···bn in the last row (called a t-leaf ) belongs to Hn[−(b1 +
· · · + bn)] = HT [−(b1 + · · · + bn)]: as noted in Remark7, these shifted hearts
are extensions of the Miyashita classes: K Eb1+···+bn = A-Mod ∩ HT [−(b1 + · · · +
bn)]. Moreover, these shifted hearts are obtained by adding only non-module objects
(i.e., objects of D(A) outside of HD) to the corresponding Miyashita class; for this
reason, they are less artificial than other enlargments, and instead shed a new light
on the Miyashita classes. The latter can indeed be regarded as the piece of the shifted
hearts of T visible in the category of modules.

Example 3 We recall one last time the situation considered in Example 1 to show
an application of the construction of the t-tree; we will do it for the simple module 2

again.
First, a computation shows that the indecomposable complexes in D(A) are

(shifts of) {
1 , 2 , 3 , 1

2 , 2
3 , 2

3 → 1
2

}
.

Since we know that D≥0 ⊆ T ≥0, any bounded below complex will belong to T ≥0,
up to shifiting it enough to the right.Wecan then check for eachof the indecomposable
complexes what is their leftmost shift which still belongs to T ≥0; with an easy
computation, the following is the result:

T ≥0 =
〈
1 , 2 , 3 [2], 1

2 , 2
3 , 2

3 →
•
1
2

〉

where the dot over a complex indicates its degree 0. The angle brackets will be used
to denote the closure under direct sums and negative shifts.
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Following the construction, we can compute the intermediate coaisles:

D≥0
0 =

〈
1 , 2 , 3 , 1

2 , 2
3 ,

•
2
3 → 1

2

〉
= D≥0

D≥0
1 =

〈
1 , 2 , 3 [1], 1

2 , 2
3 , 2

3 →
•
1
2

〉

D≥0
2 =

〈
1 , 2 , 3 [2], 1

2 , 2
3 , 2

3 →
•
1
2

〉
= T ≥0.

Nowwe compute the hearts of the respective t-structures: to do this, we use Lemma 2.
An object X of D≥0

i will belong to Hi if and only if HomD(A)(X,Y ) = 0 for every
Y ∈ D≥1

i = D≥0
i [−1]. In particular, it is easy to see that we must look for objects of

the heart only among the “leftmost shifts” we have listed. The resulting computation
gives (only indecomposable objects are listed)

H0 = {
1 , 2 , 3 , 1

2 , 2
3

} = HD = A-Mod

H1 =
{

1 , 2 , 3 [1], 1
2 , 2

3 , 2
3 →

•
1
2

}

H2 =
{

1 , 3 [2], 1
2 , 2

3 , 2
3 →

•
1
2

}
= HT .

Notice that neither 2 nor its shifts belong to HT , which means exactly that it does
not belong to any Miyashita class.

Lastly, we can compute the torsion pairs (Xi ,Yi ) inHi , for i = 0, 1. We have

X0 = H0 ∩ H1 = {
1 , 2 , 1

2 , 2
3

}
, Y0 = H0 ∩ H1[−1] = { 3 }

X1 = H1 ∩ H2 =
{

1 , 1
2 , 2

3 , 2
3 →

•
1
2

}
, Y1 = H1 ∩ H2[−1] = { 3 [1]} .

The t-tree for the module 2 is then

2

2 0

2
3 3 [1] 0 0

where the bottom left exact sequence is that associated to the distinguished triangle

2
3 2 3 [1] +1

.
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Notice that this triangle can be shifted to become 3 2
3 2

+1
, which

can be read as a short exact sequence of modules. This says that 2 is realised as the
cokernel of the monomorphism 3 → 2

3 , which is what was found following Jensen
et al. in Example 2.

We conclude with a remark about the construction presented above, giving a
possible direction for future developments.

Remark 10 Notice that while our motivation comes from an n-tilting A-module,
the construction of the t-tree only relies on the existence of some t-structures Di ,
for i = 0, . . . , n, having the property that D≥0

i ⊆ D≥0
i+1 ⊆ D≥−1

i . Therefore, it can
be replicated in an arbitrary triangulated category C, given such t-structures: to any
object in the heartH0 ofD0, it is possible to associate a tree-like diagram with n + 1
rows having leaves in the shifts Hn[−e] of the heart Hn of Dn , for e = 0, . . . , n. It
is of natural interest to investigate other situations in which such t-structures may
appear.
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