
Computation in Network Reliability

Shin-Guang Chen

Abstract This chapter presents the primitive steps in computation of network reli-
ability, and some of the popular examples by applying network reliability. Network
reliability is one of the most interesting topics in network theory. It has been applied
tomany real-world applications such as traffic planning, computer network planning,
power transmission planning, etc. The planners usually want to know how reliable
the systems they planned. Network reliability helps them to get the answer of such
questions. Due to its NP-hard nature, many approaches have been developed to tackle
the efficiency problems in computations. One of the most promising methods is the
three-stage approach, which divides the problem into three smaller problems and
conquers them, making the resolution process more efficient than others. Several
examples are presented in the chapter for illustrative purposes.

1 Introduction

Network reliability is one of the most interesting topics in network theory. It has been
applied to many real-world applications such as traffic planning, computer network
planning, power transmission planning, etc. The planners usually want to know how
reliable the systems they planned. Network reliability helps them to get the answer of
such questions. Since 1954, the maximal flow problems have gained much attention
in the world [23]. They are also extended to many other fields for applications [14].
Aggarwal et al. firstly discussed the reliability problem without flow in a binary-
state network [3]. Lee [17] extended it to cover the flow cases. Aggarwal et al. [2]
presented the minimal path (MP) method to solve the network reliability in a binary-
state flow network. Xue [26] began to discuss the reliability analysis in a multistate
network (MSN), which is also referred to the stochastic-flow network (SFN). A SFN
is a network whose flow has stochastic states. Lin et al. [18] illustrated the reliability
calculation of a SFN in terms of MPs or minimal cuts (MC)s [15]. They also setup
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the three-stages in these calculations: a. Searching for all MPs [10, 12, 24]/MCs [1,
7, 16, 30]; b. Searching for all d−MPs [20, 27]/d−MCs [28] from these MPs/MCs;
c. Calculating union probability from these d−MPs [5, 6, 32]/d−MCs [12, 19]. Lin
[20] greatly simplified the three-stages method (TSM) and developed more simple
and efficient algorithm for the reliability evaluation of a general SFN.

Doulliez and Jamoulle [13] also proposed a novel method to evaluate network
reliability, namely state space decomposition (SSD). However, their algorithm has
some flaw, and cannot obtain the correct value. Aven [4] presented the correct one
for state space decomposition approach, and till now still keeps excellent efficiency
in SSD-based approach. The complexity of the worst cases for SSD is O(Nd), where
N is the number of arces, and d is the demand. TSM divided the reliability evaluation
process into three stages. The first stage—findingMPs has the complexity O(W + S)

[10], where W is the number of MPs, and S is the number of cycles. The second
stage—searching for d-MPs has the complexity O(

∏u
k=1 rk + |B| (z+d

d−1

)
) [21], where

rk is the kth segment of u flow constraints, |B| is the number of nodes, z is the number
of MPs, and d is the demand. The third stage—calculating the union probability of
d-MPs has the complexity O(2Q) [5, 6], where Q is the number of d-MPs. Therefore,
when N is large, the evaluation efficiency of TSM is undoubtedly superior to SSD.

The remainder of the chapter is organized as follows. The mathematical prelimi-
naries for the network reliability are presented in Sect. 2. The network representation
method [9] is given in Sect. 3. The MP searching method [10] is given in Sect. 4. The
d-MP searching method [21] is given in Sect. 5. The union probability calculation
method [5] is given in Sect. 6. Finally, Sect. 7 draws the conclusion of this chapter.

2 Preliminaries

Let (A, B) be a SFN, where A = {ai |1 ≤ i ≤ N } is the set of edges, B is the set
of nodes. Let M = (m1,m2, . . . ,mN ) be a vector with mi (an integer) being the
maximal capacity of ai . The network is assumed to satisfy the following assumptions.

1. Flow in the network satisfies the flow-conservation law [14].
2. The nodes are perfect.
3. The capacity of ai is an integer-valued random variable which takes values from

the set {0, 1, 2, . . . ,mi } according to a given distribution μi .
4. The states in edges are statistically independent from each other.

2.1 Modeling of Networks

Assume that ρ1, ρ2, …, ρz are totally the MPs from the source to the sink. Thus,
the network is modeled by two vectors: the state vector X = (x1, x2, . . . , xN ) and
the flow vector Y = (y1, y2, . . . , yz), where xi denotes the current state of ai and y j
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denotes the current flow on ρ j . Then, Y is feasible if and only if

z∑

j=1

{y j |ai ∈ ρ j } ≤ mi , for i = 1, 2, . . . , N . (1)

This constraint describes that the total flow through ai can not exceed themaximal
capacity of ai .Then, the set of Y denoted κM ≡ {Y |Y is feasible under M}.

Similarly, Y is feasible under X = (x1, x2, . . . , xN ) if and only if

z∑

j=1

{y j |ai ∈ ρ j } ≤ xi , for i = 1, 2, . . . , N . (2)

For clarity, let κX = {Y |Y is feasible under X}. The maximal flow under X is
defined as �X ≡ max{∑z

j=1 y j |Y ∈ κX}.
Then, the flow vector Y ∈ κM could be found such that the total flow of Y equals

d. It is defined in the following constraint,

z∑

j=1

y j = d. (3)

Let Y={Y |Y ∈ κM and satisfies Eq. (3)}. We have the following lemmas [20].

Lemma 1 If X is a d-MP for d, then there is an Y ∈ Y such that

xi =
z∑

j=1

{y j |ai ∈ ρ j }, for each i = 1, 2, . . . , N . (4)

Given Y ∈ Y, a state vector XY = (x1, x2, . . . , xN ) can be built by Eq. (4). The
set� = {XY |Y ∈ Y} is created. Let�min = {X |X is a lower boundary vector in�}.
Then,

Lemma 2 �min is the set of d-MPs for d.

2.2 Evaluation of Network Reliability

Given a demand d, the reliability denoted by ωd is the probability at sink node that
the maximal flow in the network is no less than d, i.e., ωd ≡ Pr{X |�X ≥ d}. To
calculate ωd , find the lower boundary vectors directly in the set {X |�X ≥ d}. A
lower boundary vector X is said to be a d-MP for d if and only if (i) �X ≥ d and
(ii) �W < d for any other vector W such that W < X , in which W ≤ X if and only
if wj ≤ x j for each j = 1, 2, . . . , n and W < X if and only if W ≤ X and wj < x j
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for at least one j . Suppose there are totally q d-MPs for d: X1, X2, . . . , Xq . The
reliability is equal to

ωd = Pr

{
q⋃

k=1

{X |X ≥ Xk}
}

, (5)

which can be calculated by reduced recursive inclusion-exclusion principle
(RRIEP) [5].

3 Network Representation

In investigating network problems, the method for expressing network structure is
important. Usually, the adjacency matrix [25] (AM) is employed. An adjacency
matrix is a square matrix used to represent a finite graph. The elements of the matrix
indicatewhether pairs of vertices (arcs) are adjacent or not in the graph. Figure1 gives
an example of node-oriented AM expression, where the entry in the matrix indicates
the number of links between ‘from’ node and ‘to’ node. Such entry implicitly indi-
cates the direction of the links between two nodes. Thus, multiple same direction
links between two nodes are allowed in such AM expression. Figure2 gives another
arc-oriented AM expression. However, only 1 or 0 are allowed in this expression.
Since both nodes-oriented and arc-oriented AM are equivalent in nature, we will take
node-oriented AM in the following discussion.

A network is a graph except that the network has source nodes and sink nodes.
Therefore, using AM to solve network problems normally faces difficulties in han-
dling source nodes and sink nodes. Furthermore, in the view points of computer
science, AM is not the best choice for program implementation. Specially, in solv-
ing network reliability, the linked path structure (LPS) [10] is now more and more
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Fig. 1 A graph and its node-oriented adjacency matrix expression
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Fig. 2 A graph and its arc-oriented adjacency matrix expression
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Fig. 3 A network and its linked path structure

popular in the literature. A LPS is a hybrid form of node-oriented and arc-oriented
representation of a network. In LPS, entry 0 indicates the source nodes, and the neg-
ative entry values denote the sink nodes. The other entry values in LPS are vectors
representing nodes with outbound arcs as their values in the vector. The index of
LPS is the arc no. pointing the node (i.e. the entry value). Therefore, a LPS gives
all the necessary information for networks in the applications. Figure3 shows a LPS
example. This LPS has a source node {1,2} with outbound arc 1 and 2. Arc 1 is
connected with node {3,5} with outbound arc 3 and 5. Arc 2 is connected with node
{4,6} with outbound arc 4 and 6. Arc 3 is connected with node {4,6} with outbound
arc 4 and 6. Arc 4 is connected with node {3,5} with outbound arc 3 and 5. Arc 5
is connected with sink node {−1}. Arc 6 is connected with sink node {−1}. Thus, a
tool for transforming AM to LPS is required.

An AM is a N × N square matrix V , where vi j represents the number of arcs
from node i to node j . We have the following lemas hold.
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Lemma 3 ∃i , ∑N
j=1 vi j = 0, then, node i is a sink node.

Lemma 4 ∃ j , ∑N
i=1 vi j = 0, then, node j is a source node.

Lemma 5 ∃i, j and i �= j , vi j = v ji , then, node i and j have undirected links.

By above lemas, we can derive the following novel approaches for transforming
AM to LPS.

3.1 The Proposed Approach

Let L be a LPS for the network. Then, we have the following properties.

Property 1 ∃lk ∈ L , then, l0 is the set of source nodes.

Property 2 ∃lk ∈ L and k > 0, then, lk is a vector of arcs outbound from the node
connected by arc k.

Property 3 ∃lk ∈ L and k > 0, if lk is a vector of one negative integer, then, arc k
connected with a sink node.

3.2 Algorithm of Transformation from AM to LPS

This algorithm will create two outputs: the LPS L , and a list of arc-node pairs K for
verification purposes.

Algorithm 1

1. Input N × N . // the AM for the underlined network.
2. k = 1 and R = φ // k the index for LPS and R the set of outbound arcs for the

nodes.
3. For i ∈ {1, . . . , N } do // column handling.
4. For j ∈ {1, . . . , N } do // row handling.
5. if vi j − 1 < 0 then continue,
6. elseW = W ∪ {k, {i, j}}, Ri = Ri ∪ {k}, k = k + 1, and vi j = vi j − 1, goto

step 5.
endfor
endfor

7. k = 0
8. For i ∈ {1, . . . , N } do // search for sink nodes.
9. if Ri = φ, then, k = k − 1 and Ri = {k}.

endfor
10. k = 0
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11. For j ∈ {1, . . . , N } do // search for source nodes.
12. if

∑n
i=1 vi j = 0, then, L0 = L0 ∪ R j .

endfor
13. For k ∈ {1, . . . , z} do // search for LPS.
14. Lk = RWk (3). // Wk(3) means the third value in Wk .

endfor
15. Return.

The complexity analysis for this algorithm is as follows. For the AM transforma-
tion, it requires O(N 2) to do step 3. Therefore, the total complexity is O(N 2).

3.3 Illustrative Examples

Figure4 gives five examples for this illustration, where Fig. 4 (a) is a 9× 12
(nodes× arcs) network, (b) is a 16× 20 network, (c) is a 25× 36 network, (d) is
a 32× 48 network, and (e) is a 32× 48 network. The transformed LPS are listed in
Table 1.

Table1 shows the LPS transformed correspondingly. All the cases are running on
a PC with intel CPU of Core i5 6200U 2.30 GHz 2.40GHz and 8 GB RAM.

4 Searching for MPs

Firstly, we transform the undirected edge to its directed form of arcs, and to search
for all MPs in that transformed network. Then, the directed MPs are transformed
back to the original form of the MPs. The following gives the details.

4.1 The General Form of a Network Transforming to Its
Directed One

The difference between the general form of a network and its directed one is that
there is only one way of flow for an arc in the directed form, but its general form
may have both directions of flow for an edge. The following properties describe the
details.

Property 4 An edge from a source node in a general flow network only has outgoing
flow.

Property 5 An edge to a sink node in a general flow network only has ingoing flow.
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Fig. 4 Five examples for AM transformation

Property 6 A pair of reverse arcs is equivalent to a single undirected edge.

Property 7 The transformed network has an arc number greater than the total number
of edges in the original network.

Thus, the edges from the source nodes or to the sink nodes have only one way of
flows. The undirected edges on the other part of the network can be transformed to two
reverse arcs. Figure5 illustrates the transformation. Note that the additional reverse
arcs are required for modeling the reverse flows. The backward transformation of the
directed MP is to replace the added arc number in the MP back to its counterpart.

The following property shows that a cycle of length two for the undirected or
hybrid edges is a parallel. Figure6 illustrates the situation.
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Table 1 The results derived by the algorithm for the five examples

Examples LPS

(9× 12) {{(1, 2)}, (3, 4), (7, 8), (5, 6), (9, 10, 11, 12), (3, 4), (13, 14, 15), (9, 10, 11,
12), (16, 17), (3, 4), (7, 8), (13, 14, 15), (18, 19, 20), (5, 6), (9, 10, 11, 12), (−1),

(7, 8), (18, 19, 20), (9, 10, 11, 12), (16, 17), (−1)}
(16× 20) {{(1, 2)}, (3, 4), (9, 10), (5, 6), (11, 12, 13, 14), (3, 4), (7, 8), (5, 6), (17, 18),

(11, 12, 13, 14), (19, 20), (3, 4), (9, 10), (15, 16), (21, 22), (11, 12, 13, 14), (23, 24,

25, 26), (7, 8), (27, 28, 29), (9, 10), (30, 31), (11, 12, 13, 14), (23, 24, 25, 26), (15,

16), (21, 22), (27, 28, 29), (34, 35, 36), (17, 18), (23, 24, 25, 26), (−1), (19, 20), (32,

33), (30, 31), (34, 35, 36), (23, 24, 25, 26), (32, 33), (−1)}
(25× 36) {{(4, 5, 6), (27, 28, 29, 30)}, (3), (54, 55), (1, 2), (3), (7), (8, 9), (14, 15),

(10, 11), (12, 13), (8, 9), (50, 51, 52, 53), (8, 9), (18, 19, 20, 21), (7), (16, 17),

(14, 15), (38, 39), (12, 13), (16, 17), (25, 26), (36, 37), (8, 9), (25, 26), (31, 32),

(18, 19, 20, 21), (33, 34, 35), (22, 23, 24), (25, 26), (31, 32), (33, 34, 35), (33, 34,

35), (50, 51, 52, 53), (25, 26), (31, 32), (42, 43), (18, 19, 20, 21), (42, 43), (16,

17), (40, 41), (38, 39), (−1), (33, 34, 35), (−1), (−1), (46, 47), (44, 45), (54, 55),

(42, 43), (50, 51, 52, 53), (10, 11), (31, 32), (48, 49), (54, 55), (1, 2), (46, 47)}
(32× 48) {{(13, 14), (23, 24, 25, 26)}, (3, 4), (27, 28), (1, 2), (5, 6, 7), (3, 4), (8, 9, 10),

(21, 22), (5, 6, 7), (11, 12), (19, 20), (8, 9, 10), (16, 17, 18), (11, 12), (15), (68,

69), (11, 12), (15), (66, 67), (8, 9, 10), (16, 17, 18), (5, 6, 7), (19, 20), (3, 4), (21,

22), (27, 28), (44, 45), (1, 2), (29, 30), (27, 28), (44, 45), (29, 30), (34, 35, 36),

(42, 43), (31, 32, 33), (−1), (39, 40, 41), (−1), (48, 49), (34, 35, 36), (37, 38), (46,

47), (31, 32, 33), (39, 40, 41), (29, 30), (42, 43), (48, 49), (52, 53), (37, 38), (50,

51), (48, 49), (56, 57), (50, 51), (54, 55), (56, 57), (60, 61), (50, 51), (58, 59), (56,

57), (60, 61), (58, 59), (62, 63), (60, 61), (68, 69), (54, 55), (62, 63), (64, 65), (68,

69), (15), (62, 63)}
(32× 48) {{(20, 21, 22), (68, 69, 70)}, (40, 41), (4, 5), (29, 30, 31), (2, 3), (6, 7), (4, 5),

(17, 18, 19), (9, 10), (8), (57, 58), (9, 10), (15, 16), (25, 26), (66, 67), (11, 12, 13,

14), (17, 18, 19), (6, 7), (8), (15, 16), (4, 5), (23, 24), (27, 28), (17, 18, 19), (25, 26),

(11, 12, 13, 14), (64, 65), (29, 30, 31), (38, 39), (1), (2, 3), (32, 33), (29, 30, 31), (34,

35, 36, 37), (32, 33), (38, 39), (40, 41), (42, 43), (34, 35, 36, 37), (44, 45), (1), (49,

50), (34, 35, 36, 37), (46, 47, 48), (46, 47, 48), (−1), (42, 43), (49, 50), (51, 52), (40,

41), (−2), (46, 47, 48), (53, 54, 55, 56), (51, 52), (−1), (−2), (57, 58), (53, 54, 55, 56),

(61, 62, 63), (9, 10), (−2), (57, 58), (59, 60), (66, 67), (−1), (61, 62, 63), (11, 12, 13,

14), (61, 62, 63), (1), (4, 5), (8)}
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Fig. 5 The transformation between undirected and directed networks

Fig. 6 The parallel and
cycle for an undirected
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Parallel Cycle

Property 8 A cycle of length two for the undirected or hybrid edges is a parallel.

So, the minimal cycle length in a general flow network is 3 as we define it. This
means that the minimal cycle length in its corresponding directed form should be set
to no less than 3.

From the above notations, we have the following lemmas.

Lemma 6 (Cycle detection) ρ j ∪ v constructs a cycle iff ∃vk ∈ ρ j such that vk = v.

From Lemma 6, we can search for all cycles in the network. Because a loop is
a special case of a cycle, Lemma 6 lets such networks be applicable. Let S and T
denote the source nodes and sink ones.

Lemma 7 (Minimal Path detection) ρ is a MP iff ρ has no cycles, and the cor-
responding w = s ∪ v1 ∪ v2 ∪ · · · ∪ vk ∪ t , where vk ∈ B − (S ∪ T ), s ∈ S, and
t ∈ T .

4.2 Algorithm for Searching MPs

Given the reverse arc information for all undirected links, the algorithm is given in
the form in which backtracking is indicated at the line of activation.
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Algorithm 2 Searching for all MP.

1. Input L . // Input the direct form of network configuration.
2. For v ∈ L(0) = S, and v �= φ, do the following steps.// Select a candidate.
3. R = v ∪ L − S. // Construct the working list R with starting index 0.
4. Let j = 0, ρ = w = φ. // Initialize the starting point, the current path, node

path.
5. If j < 0, then ρ = ∪2≤l{ρ(l)}, transform back to undirected form if necessary,

output the MP, and backtrack. // Got an MP.
6. Else, begin v = R( j). // Go to the node pointed by j .
7. If w(k) = v is true, then backtrack.
8. Else, if j ∈ v, and { j} �= φ, then ρ = { j} ∪ ρ, w = {v} ∪ w, and call Step 5

and its following. // Recursive call.
9. Else, backtrack. // Exhaust the outgoing branches of the node.

End.
end For. // Searching finished.

4.3 Illustrative Examples

Figure7 shows the illustrative network in the literature [31]. The results are given
in Table2. Besides, all cycles were found too. No initial network is required for the
proposed approach, and the CPU time for this case was only 0.03 s.

Fig. 7 The ARPA network
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Table 2 The MPs searched The proposed approach

MPs {2, 3, 4, 8} {2, 3, 4, 7, 9}
{1, 4, 5, 6, 9} {2, 6, 7, 8}
{1, 3, 6, 7, 8} {1, 3, 5, 7, 9}
{1, 3, 5, 8} {1, 3, 6, 9} {1, 4, 7, 9}
{1, 4, 8} {2, 5, 7, 9} {2, 5, 8}
{2, 6, 9}

Cycles {4, 5, 3} {4, 7, 6, 3} {6, 7, 5}
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5 Searching for d-MPs

Let X = {x1, x2, . . ., xN } be the states of the network. The following property and
lemmas hold.

Property 9 (Path existence) If ai has a path, then, xi ≥ 0.

Lemma 8 (Cycle existence) ρ j ∪ v is a cycle iff ∃vk ∈ ρ j with vk = v.

By Property 9 and Lemma 8, all cycles or loops in the network can be found. Yeh
[29] proposed the following lemma.

Lemma 9 (d-MP existence) X is a d-MP iff no cycle exists in X.

5.1 Flow Enumerations

Based on the Chen’s work [8], Y can be fast enumerated by optimal re-arrangement
of the formulas in �Y and Eq. (3). Next, we build XY by Y ∈ Y with Eq. (4). Then,
� = {XY |Y ∈ Y} is created for all XY . Finally, �min = {X |X is a d-MP in �} is
created. Let 	�Y be the optimal fast enumeration form (OFE-form) of formulas in
�Y [8]. The fast enumeration of flows are created from these formulas.

5.2 Algorithm for Searching d-MPs

Let p j = min{xi |ai ∈ ρ j } and L be the linked path structure for the network [10].
Based on the above subsection discussion, The following algorithm is proposed.

Algorithm 3 Searching for all d-MPs for the network.

1. Enumerate Y = (y1, y2, . . ., yz) under OFE-form.

a. fast enumerate 0 ≤ y j ≤ p j under 	�Y do
b. if y j satisfies

∑z
j=1 y j = d,

then Y = Y ∪ {Y }.
end enumerate.

2. Generate �min via Y.

a. for Y in Y do
b. xi = ∑z

j=1{y j |ai ∈ ρ j } for i = 1, 2, . . ., N .
c. for 1 ≤ i ≤ N do
d. if xi ≥ 0, then I = I ∪ {i}. //Non-zero columns.

end for.
e. Let ρ = φ.
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f. for i ∈ I and i > 0 do
g. if not(Li ∩ I �= φ or Li ∈ ρ), then recursive call Step f by replacing I

with Li and ρ = ρ ∪ Li .
h. else goto Step a.

end for.
i. �min = �min ∪ {X}.

endfor. // Searching finished.
j. Return �min .

Step 1 requires O(
∏u

k=1 rk) to generate all feasible X , since OFE-form is by
re-arranging the original �X into u groups of alternative orders, and rk is the total
number of enumerations in the kth group [11]. Step 2 performs d-MPs searching.
It’s computation complexity is O(|B| (z+d

d−1

)
).

5.3 Illustrative Examples

Figure8 gives several complicated examples for exploration. Figure8 shows (a)
25× 32 (Vertices×Arcs) network, (b) 25× 36 network, (c) 32× 48 network, and
(d) 32× 48 network. Table3 lists the results derived by the proposed algorithm.
There are 26, 28, 28 and 26 6-MPs for Fig. 8a–d respectively, and 49,907, 34,784,
344,624 and 76,713 6-MPs derived from them, respectively. The total CPU seconds
for them are 40, 388.002, 45, 900.912, 70, 988.449 and 144, 412.762 s, respectively.
The results denotes the efficiency for applying the proposed algorithm.

6 Calculating the Union Probability for d-MPs

The network reliability is also the union probability for d-MPs. The most popular
method to calculate the probability of union events is the inclusion-exclusion prin-
ciple (IEP), which originates from the idea of Abraham de Moivre (1718) [22]. For
example, Fig. 9 illustrates the principle of IEP for three events, and Eq. (6) explains
how to calculate the probability of {A ∪ B ∪ C}.

Pr{A ∪ B ∪ C} = Pr{A} + Pr{B} + Pr{C}
− Pr{A ∩ B} − Pr{B ∩ C}
− Pr{A ∩ C} + Pr{A ∩ B ∩ C}

(6)

According to IEP, it equals to the sum of the probability of all individual events,
minus the probability of the intersection of every compound events, and plus the
probability of the intersection of all events. In other words, IEP is equivalent to do
the power set expansion. So, it is a general principle, and can be applied to any kind
of events. However, the power set expansion makes the computation complexity
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(a) (b)

Source

Sink

Source

Sink

(d)(c)

Source

Sink

Source

Sink

Fig. 8 Several complicated examples

Table 3 The CPU seconds for the complicated examples

(Vertices×Arcs) # of MPs # of 6-MPs CPU (s)

(25× 32) 26 49,907 40,388.002

(25× 36) 28 34,784 45,900.912

(32× 48) 28 344,624 70,988.449

(32× 48) 26 76,713 144,412.762
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Fig. 9 An union of 3 events

A

B C

of IEP equals exactly to O(2Q) no matter what the events are. A much efficient
method namely Recursive Inclusion-Exclusion Principle (RIEP) was constructed by
rearranging Eq. (6) to its recursive form as Eq. (7). The computation complexity is
also O(2Q) in the worse cases, but it usually has 10 times efficiency than IEP in the
normal cases.

Pr{A ∪ B ∪ C} = Pr{A}
+ Pr{B} − Pr{A ∩ B}
+ Pr{C} − Pr{B ∩ C}
− Pr{A ∩ C} + Pr{A ∩ B ∩ C}

= Pr{A}
+ Pr{B} − Pr{A ∩ B}
+ Pr{C} − Pr{B ∩ C ∪ A ∩ C}

(7)

This chapter presents an innovated reduction method for the recursive inclusion-
exclusion principle (RRIEP) to calculate the probability of union events such that
the calculation terms can be mostly eliminated, especially in the cases of events with
monotonic property like network reliability applications. The network reliability
is the probability of a live connection between source nodes and sink nodes. Such
reliability can be calculated bymeans ofminimal paths (MPs) [10, 12, 24] orminimal
cuts (MCs) [1, 16, 30]. When the network is live, there are several minimum path
vectors with respect to system state d, called d-MP, can be found. Then, the network
reliability is the union probability of all these d-MPs.

6.1 Inclusion-Exclusion Principle

Let {A1, A2, …, An} be n events. Then, the probability of union events in terms of
IEP is as follows.

Pr{
n⋃

i=1

Ai } =
n∑

k=1

⎛

⎜
⎝(−1)k−1

∑

I⊂{1,...,n}
|I |=k

Pr{
⋂

i∈I
Ai }

⎞

⎟
⎠ . (8)
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6.2 Recursive Inclusion-Exclusion Principle

Figure10 presents the concept of recursive inclusion-exclusion principle. Let
π(X1, X2, . . . , Xn) ≡ Pr{X1 ∪ X2 ∪ · · · ∪ Xn} be the function of probability of
union events. According to the equivalent rearrangement, we have the following
definition of recursive inclusion-exclusion principle.

π(A1) = Pr{A1}, for n = 1,

π(A1, A2, . . . , An) =
n∑

i=1

(Pr{Ai }

−π(A1 ∩ Ai , A2 ∩ Ai , . . . , Ai−1 ∩ Ai )),

for n > 1,

(9)

where π(•) is a recursive function.

B

A C

B
A

C

A

B

C

Fig. 10 An illustration of rearrangement
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6.3 Reduced Recursive Inclusion-Exclusion Principle

One term is defined first.

Definition 1 (Reduction) {X1, X2, . . . , Xm} is a reduction of {Y1,Y2, . . . ,Yn}, if
for any m, n ∈ N and m < n such that {X1 ∪ X2 ∪ . . . ∪ Xm} = {Y1 ∪ Y2 ∪ . . . ∪
Yn}.

We have the following lemmas.

Lemma 10 {X1, X2, …, Xm} is a reduction of {Y1, Y2, …, Yn}, then π(X1, X2, . . . ,

Xm) = π(Y1,Y2, . . . ,Yn).

Lemma 11 Along with Lemma 10, the computation complexity of π(X1, X2, . . . ,

Xm) is less than that of π(Y1,Y2, . . . ,Yn).

Let {B1, B2, . . . , Bmi } be a reduction of {A1 ∩ Ai , A2 ∩ Ai , . . . , Ai−1 ∩ Ai }.
From Lemma 10, Eq. (9) can be rewritten as:

π(A1) = Pr{A1}, for n = 1,

π(A1, A2, . . . , An) =
N∑

i=1

(Pr{Ai }

−π(A1 ∩ Ai , A2 ∩ Ai , . . . , Ai−1 ∩ Ai )),

=
n∑

i=1

Pr{Ai }

−π(B1, B2, . . . , Bmi )), for n > 1,

(10)

By Lemma 11, RRIEP is much efficient than RIEP.
In network reliability applications, it is easier to implement the reduction of union

events. At first, we have the following property.

Property 10 (Monotonicity) Let Q̄ = (q1, q2, . . . , qh) and W̄ = (w1,w2, . . . ,wh)

be two capacity vectors in a network. Then, Q̄ and W̄ satisfy the following Mono-
tonicity properties:

1. Q̄ ≤ W̄ iff q j ≤ wj for each j = 1, 2, . . . , h.
2. Q̄ < W̄ iff Q̄ ≤ W̄ and q j < wj for at least one j .

6.4 Network Reliability Calculation

Given a demand d, the network reliability denoted by ωd is the probability that the
maximal flow is no less than d, i.e., ωd = Pr{X |�X ≥ d}. To calculate ωd , it is
advantageously to find the minimal vector (namely, d-MP) in the set {X |�X ≥ d}.
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Suppose there are totally h d-MPs for d: X1, X2, . . . , Xh , the network reliability is
equal to

ωd = Pr

{
h⋃

k=1

{X |X ≥ Xk}
}

, (11)

Let Q̄ ⊕ W̄ ≡ {gi |gi = max(qi ,wi ), qi ∈ Q̄,wi ∈ W̄ , ∀i}. The following RRIEP
algorithm can be used to calculate ωd .

Algorithm 4 RRIEP for network reliability calculation.

1. dMP = {X1, X2,…,Xh}.
2. ω = 0.
3. If h = 0, then return ω,
4. For 1 ≤ i ≤ |dMP| do
5. ω2 = Pr{X ≥ Xi }.
6. For 1 ≤ j < i do
7. X j,i = X j ⊕ Xi .

End for.
8. Let E = {X j,i |1 ≤ j < i} and Wl,Wk ∈ E .
9. For k /∈ J and 1 ≤ k ≤ ||E || do // Reduction process.
10. For l /∈ J and k < l ≤ ||E || do
11. If Wl ≤ Wk , then J = J ∪ {k} and go to Step 9.

Else, if Wl > Wk , then J = J ∪ {l}.
End for.

12. dMP∗ = dMP∗ ∪ {Wk}.
End for.

13. Recursive call Step 1 with the new dMP∗ and get the value ω3.
14. ω = ω + ω2 − ω3.

End for.
15. return ω.

The reduction implementation is started at Step 6.4, which greatly improves the
efficiency of RRIEP algorithm. Since RRIEP can reduce the computation efforts in
most of the time, the computation complexity in the worst cases still need O(2Q) in
which no reduction can be performed at all.

6.5 Illustrative Examples

We randomly generate d-MP vectors of length 20, and compare IEP, RIEP, and
RRIEP with efficiency. Table4 gives the results. All benchmarks were implemented
with PROLOG on a personal computer with the CPU of Intel Core i7-2600 CPU@
3.40 GHz, 3.40 GHz and with 16 GB RAM.
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Table 4 The comparison of CPU time (s) for benchmarks

# of d-MPs IEP RIEP RRIEP

15 1.765 0.390 0.0003

18 19.891 1.891 0.0005

20 75.953 2.953 0.016

25 9256.750 9.359 0.016

30 NA∗ 43.343 0.015

35 NA 106.141 0.031

40 NA 416.579 0.063

45 NA 1112.687 0.078

50 NA 2144.000 0.093

55 NA 5924.610 0.110

59 NA 8362.469 0.109
∗Not stopped over 1 day

7 Conclusion

This chapter presents the primitive steps in computation of network reliability, and
some of the popular examples of network reliability. Although we present the most
efficientmethod for all stages in the literature, they are subjected to change due to new
method emerging. This chapter also give several numerical examples for exploration
of their calculations, which help one to follow the algorithms to go through these
examples.
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