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Abstract Textile products with faded effect are increasingly popular nowadays.
Ozonation is a promising finishing process treatment for obtaining such effect in
the textile industry. The interdependent effect of the factors in this process on the
products’ quality is not clearly known and barely studied. To address this issue,
the attempt of modeling this textile finishing process by the application of several
artificial intelligent techniques is conducted. The complex factors and effects of
color fading ozonation on dyed textile are investigated in this study through process
modeling the inputs of pH, temperature, water pick-up, time (of process) and original
color (of textile) with the outputs of color performance (K/S,L∗, a∗, b∗ values) of
treated samples. Artificial Intelligence techniques included ELM, SVR and RF were
used respectively. The results revealed that RF and SVR perform better than ELM in
stably predicting a certain single output. Although both RF and SVR showed their
potential applicability, SVR is more recommended in this study due to its balancer
predicting performance and less training time cost.
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Abbreviations

ELM Extreme Learning Machine
SVR Support Vector Regression
SVM Support vector Machine
RF Random Forest

ANN Artificial Neural Network
SLFNs Single-Layer-Feedforward-Neural-Networks
RB-RN Reactive blue FL-RN
RR-2BL Reactive red FL-2BL
RY-2RN Reactive yellow FL-2RN

MAE Mean absolute error
RMSE Root mean square error

R Correlation coefficient
MRAE Mean relative absolute error
LOO Leave one out
MRF Multivariate Random Forest

W Input weight matrix
β Output weights
ε Threshold
ξi Slack variables, upper constraints on the outputs of the system
ξ ∗
i Slack variables, lower constraints on the outputs of the system
L Lagrangian

ηi, η
∗
i , α

∗
i , α

∗
i Lagrange multipliers

γ, λ Positive regularized parameters controlling the bias-variance trade-off
in SVM

p Parameter of RBF that sets the spread of the kernel
ntree The number of trees in the forest

minleaf Minimum number of samples in the leaf node
mtry Randomly selected features considered for a split in each regression

tree node

1 Introduction

1.1 Color Fading Ozonation: A Textile Finishing Process

In recent years, textile products with faded effect, worn look and vintage style,
are attracting a growing number of young customers’ attention and have gained a
considerable share of the fashion market [1]. However, the faded effect of these
products is achieved by a textile finishing process consisted by a large number of
chemical treatments (e.g. bleaching using hydrogen peroxide or chlorine, washing
using stone/permanganate). The traditional use of these chemical treatments is not
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only highly water- and power-consuming, but also release a wide range of toxic
substances to the environment. Over the past few decades, the rising concern of
people on the environment issues has leaded to the rapid development of alternative
sustainable approaches, where ozonation is the most important one of its in textile
finishing.

Ozone is an excellent gaseous oxidantwith an environmentally friendly nature that
can be rapidly decomposed into O2 after its application without emitting additional
pollution. It is able to react with a large number of organic and inorganic substances
in water due to a series of intermediates or by-products such as hydroxyl radicals
(which reacts with no selectivity) may be generated in the reaction between ozone
and water [2]. More significantly, ozone could be applied directly in the form of gas
without awater bath that react with the targets (with certainwater content directly and
consequently dramatically decrease the water consumption in the sector. Meanwhile,
approximate performance of conventional treatments on color fading effect can be
obtained in the ozonation with less damage and other negative influence on target
product materials [3]. Therefore, it is regarded as a perfect alternative to traditional
oxidizing agents and bleaching agents and has been applied to a wide range of
textile related domains such as wastewater treatment, dyeing, paper-making, fiber
modification. The studies regarding color fading dyed textile using ozone, instead of
the conventional processes, have been increasingly reported in these years by taking
advantage of the application of ozone [4].

The decolorization of dyes in ozonation, in short, could be attributed to the simul-
taneous oxidation of direct ozone and (but more of) indirect free radicals (which
is generated from the decomposition of ozone) with the unsaturated organic com-
pounds, chromophoric organic system, e.g. the chromophore groups of azo.However,
the real situation of the actions in the application of ozonation for color fading dyed
textile is very complicated that can hardly be concluded in couples of sentences.
Color fading ozonation of textiles is affected by many interdependent different fac-
tors ranging from the properties of textile material to the setting of color fading
process [5]. How these factors affect the color fading process separately is known,
while to understand their overall impacts simultaneously, the complex and nonlinear
relationship between the factors ofmaterial properties aswell as technical parameters
of ozonation and color fading effects must be taken into consideration. In previous
literatures, the simultaneous effects of multiple factors on color fading ozonation
of textiles have been barely systematically investigated. This is because the factors
have an extreme nonlinear and hardly-understood relation as well as unclear effects
on the target product properties, analytical or mathematical expression in terms of
models relied on chemical or physical laws with certain simplified assumptions for
understanding the mechanism is limited in this regard. To address this large number
input and output parameter issue, using artificial intelligent techniques that can learn
from data would be more effective and applicable.
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1.2 Artificial Intelligent Techniques for Modeling Textile
Process

As the computing power has increasingly promoted in these years, the related intel-
ligent modeling techniques are well developed, while as the correlation between
wanted inputs and outputs in textile manufacturing process are hardly to be char-
acterized, the applicable techniques mostly were concentrated in multiple linear or
nonlinear regression models, ANN etc. ANN is a widely used artificial intelligence
approach in the textile sector. It is a method inspired by the bionic simulation of
human brain that interconnected numerous neurons in different hidden layers to
process the complex information of specific input-output relation [6]. In particular,
ELM is a novel algorithm for SLFNs, which randomly chooses W and analytically
determines β of SLFNs. ELM tends to acquire a good generalization performance
at extremely fast learning speed [7]. Sun et al. have successfully applied ELM to
forecast sales behavior in the fashion retailing, and the experimental results in their
study demonstrated that this ELM model performed better than backpropagation
neural networks based methods [8].

SVM is also a popular machine learning tool based on artificial intelligence for
classification and regression based on statistic learning theory, first identified by
VladimirVapnik and his colleagues in 1992 [9]. SVR is themost common application
form of SVM and a typical feature of it is that SVR minimizes the generalized error
bound instead of minimizing the observed training error so as to achieve generalized
performance. And it only relies on a subset of the training data due to the cost
function for building the model neglects any training data that is close (within ε)
to the model prediction [10]. The excellent use of SVR in textile industry has been
issued for predicting yarn properties [11, 12], PU-coated cotton fabrics qualities [13]
and wool knitwear pilling propensity [14], which have shown the potential of SVR
in the application of textile process modeling.

RF is another famous artificial intelligence based model technique that composed
of a weighted combination of multiple regression trees. It constructs each tree using
a different bootstrap sample of the data, and different from the decision tree splitting
each node using the best split among all variables, RF using the best among a subset
of predictors randomly chosen at that node [15]. In general, combining multiple
regression trees increases predictive performance. It accurately predicts by taking
advantage of the interaction of variables and the evaluation of the significance of
each variable [16]. Kwon et al. [17] developed a surface defect detection method
based on RF to inspect the fabric surface. Venkatraman and Alsberg [18] predicted
the important photovoltaic properties of phenothiazine dyes using RF which paves
the way for rapid screening of new potential dyes and computer-aided materials
design.
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1.3 Modeling Color Fading Ozonation of Reactive-Dyed
Cotton

Cotton is the most vital material in textile industry, and reactive dyes take the domi-
nant position in cotton dyeing as it is easy to achieve optimum dyeing performance
on cotton with environmentally-friendly advantages without high cost and compli-
cated processes. These have benefited the reactive-dyed cotton to be one of the most
important textile products in the fashionmarket. Color is themost important property
of a textile product which finally determined by the finishing process. According to
Kubelka-Munk theory [19], it is known that K/S value can indicate the color depth
of textile products. While L∗, a∗, b∗ values (or CIELab), an international standard
widely used for color measurements, is capable of illustrating the color variation of
textile samples. Among these colorimetric values, L∗ (ranges from 0 to 100) is the
lightness component, whereas a∗ and b∗ are chromatic components and demonstrate
the color variation from green (�a∗ < 0) to red (�a∗ > 0) and blue (�b∗ < 0) to
yellow (�b∗ > 0) respectively by a series of numbers from −120 to 120. Normally,
the color of the final textile product agreeing with specific K/S and L∗, a∗, b∗ values
is in the acceptable tolerance of the consumer. Therefore, theK/S and L∗a∗b∗ values
could be used to characterize the color variation of the color fading ozonation on
reactive-dyed cottons.

An attempt is made for modeling color fading ozonation, a textile finishing pro-
cess, in order to predict the color properties of ozone faded reactive-dyed cotton
using different artificial intelligent techniques. ELM, SVR and RF model were con-
structed with corresponding optimization process to comparatively find the potential
applicability of them in predicting the color performance of the reactive-dyed cotton
in a textile finishing process named color fading ozonation. Part of this work can
also be found in Ref. [20].

2 Experimental

2.1 Material

Desized grey cotton fabrics (3/1 twill; 325.7g/m2; supplied by Shunfu, Hubei, China)
were dyed by three bifunctional fluorotriazine azo reactive dyes of RB-RN, RR-2BL
and RY-2RN (provided by Color Root, Hubei, China; commercial quality, purity of
dyes: 92%) respectively. Chemical material such as sodium hydroxide, hydrogen
chloride, sodiummetasilicate nonahydrate, 30% hydrogen peroxide, sodium sulfate,
sodium carbonate (analytical grade, supplied by Sinopharm Limited, China) and
OP-20 (polyoxyethylene octylphenol ether, a nonionic surfactant, chemical pure,
supplied by Tianjin Guangfu, China) were used in this study.
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Fig. 1 The reactor setup of
ozonation

2.2 Apparatus

Ozone employed in this work was generated by a corona discharge ozone generator,
CF-G50 (Guolin, China), that fed by pure and compressed dry oxygen (≥99.9%,
1Mpa, 12L/min) from oxygen cylinder. Ozone was flow to the reactor (made of
glass, the structure is exhibited in Fig. 1), and in each single color fading ozonation
experiment, samples would be distributed evenly on the sample desk (made of air-
permeable steel net). Ozone was imported with a gas flow of 2 L/min and a dosage
of 137 ± 3mg/Lmin (tested by UV meter NS-xmd614, Naishi, China) throughout
the treatment. The exhaust from reactor would be collected and decomposed by a
heater (≥230 ◦C) before evacuating to the atmosphere.

2.3 Methods

2.3.1 Pretreatment and Dyeing of Cotton Fabrics

The cotton fabric was scoured with 8 g/L sodium hydroxide, 3 g/L OP-20 and 5 g/L
sodium metasilicate nonahydrate at 100 ◦C for 15min at a liquor ratio of 20:1 and
then was bleached with 8 g/L hydrogen peroxide, 3 g/L OP-20 and 5 g/L sodium
metasilicate nonahydrate at 90 ◦C for 15 min at a liquor ratio of 20:1. Afterward,
rinsing the fabrics thoroughly before it was dyeing with 3% o.w.f (on weight of
fabric) dyestuff (RB-RN, RR-2BL and RY-RN respectively), 70 g/L sodium sulfate,
20 g/L sodium carbonate and 2 g/l OP-20 at a liquor ratio of 20:1 based on the profile
displayed in Fig. 2.
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Fig. 2 Dyeing profile of the
reactive dyes

2.3.2 Ozonation Process

Three dyed cottons in different colors were treated respectively by the color fading
ozonation following the steps: wetting the fabrics by deionized water (pH = 7, or
using sodium hydroxide and hydrogen chloride respectively when specific pH is
required) to obtain certain pick-up water content. After ozone treating, samples were
rinsed by deionized water before naturally drying up.

Ozonation at different pH (1, 4, 7, 10, 13), temperature (0, 20, 40, 60, 80 ◦C) with
variable pick-ups (water content of sample, 0, 75%, 150%)) for different treating
time (0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 min) were investigated on the
three dyed cotton fabrics (blue, red, yellow, 612 fabrics samples in total) respectively.
Besides of pH which was set up depending on the method mentioned above (using
sodium hydroxide and hydrogen chloride respectively in the water pick-up step), the
temperature of ozonationwas controlled by awater bath around the reactor (including
the inlet tubes), and the pick-up of sample was calculated by the Eq. (1).

Pickup (%) = Ws − W0

W0
× 100%, (1)

where Ws and W0 are the weights of the wet pickup sample and corresponding non-
wetting original sample respectively.

2.3.3 Analytical

Colorimetric values of K/S and L∗, a∗, b∗ were tested by Datacolor 110 spectropho-
tometer (Datacolor, USA) from taking the average of four measurements located on
different parts of two sides of each sample, within a relative error of 0.3. All of the
samples were conditioned at 21 ± 1 ◦C with moisture of 65 ± 2% over 24 h before
each ozonation process and the test experiment.
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3 Algorithms of Intelligent Techniques and Structure for
Modeling

3.1 Extreme Learning Machine

ELM is an algorithm of SLFNs randomly chooses W and analytically determines
β. Taking K hidden nodes SLFNs as an example, using activation function f (x) =
(f1(x), f2(x), ..., fk(x)) to learnN samples (Xi,Yi), whereXi = [xi1, xi2, ..., xin]T ∈ Rn

and Yi = [yi1, yi2, ..., yin]T ∈ Rm. The ideal approximation of the SLFNs to these
samples is zero error, which turns out that

N∑

j=1

‖Ŷj − Yj‖ = 0 (2)

where Ŷ is the actual output value of SLFNs. Taking the weights W , β and bias b
into consideration, we have

K∑

i=1

β · fi(Wi · Xj + bi) = Yj, j = 1, ...,N (3)

where Wi = [wi1,wi2, ...,wim]T and βi = [βi1, βi2, ..., βim]T , i = 1, ...K are the
weight vector for inputs and activated nodes respectively. bi is the threshold of ith
hidden node. The compact expression of Eq. (3) terms of vectorization could be

Hβ = Y (4)

where H(W1, ...,Wj, bj, ..., bj,X1, ...,Xi) = f (Wj · Xi + bj) (i = 1, ...,N and
j = 1, ...,K) is the hidden layer output matrix of the neural network, the jth col-
umn of it is the jth hidden node output in regard to the inputs of X1, ...,Xi. While
β = [β1, β2, ..., βK ]T and Y = [Y1,Y2, ...,YN ]T are the matrix of output weights
and targets respectively. As the input weightsW are randomly chosen, as well as the
biases b in the ELM algorithm, the output weights β which connect the hidden layer
and output layer could be simply determined by finding the least-square solution to
the given linear system. According to [21], the smallest norm least-squares solution
of the linear system (4) among all the solutions is

β̂ = H †Y (5)

whereH † is theMoore-Penrose generalized inverse of thematrixH [22]. In this study,
A multi-output ELM regression function developed by Huang’s group was used in
this study with an optimal trial of the varied activation functions (i.e. Sigmoid, Sine,
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and Hardlim) given in Eqs. (6)–(8) and the number of hidden nodes (from 1 to 200)
in the use of ELM.

Sigmoid(x) = 1

1 + e−x
(6)

Sine(x) = sin(x) (7)

Hardlim(x) =
{
1 x ≥ 0,

0 x < 0
(8)

3.2 Support Vector Machine

Compared with neural networks, SVR assures more generalization on the foundation
of structural risk minimization, and generally performs better with less training sam-
ples. When we have training data (xl, yl), ..., (xl, yl) ⊂ R

n × R for the SVR model,
the targeted function g(x) should be as plat as possible and has ε deviation in maxi-
mum from the actual targets yi for all the training data in the form of:

g(x) = <w, x> + b; w ∈ R
n, b ∈ R (9)

where x is the n-dimensional input vectors, w is the weight vector and b is the bias
term. Flatness in (9)means smallw, and theway achieving it is recommended tomin-
imize the Euclidean norm, i.e. 1

2‖w‖2 [23], which turns out to a convex optimization
problem:

minimize
1

2
‖w‖2 (10)

subject to

{
yi − <w, xi> − b ≤ ε

<w, xi> + b − yi ≤ ε
(11)

This is a feasible optimization problem when the function g(x) actually exists and
approximates all pairs (xi, yi) with ε precision, and ξi, ξ

∗
i were introduced to deal

with the otherwise infeasible constraints of it [9],

minimize
1

2
‖w‖2 + C

l∑

i=1

(ξi + ξ ∗
i ) (12)

subject to

⎧
⎪⎨

⎪⎩

yi− < w, xi > −b ≤ ε + ξi

< w, xi > +b − yi ≤ ε + ξ ∗
i

ξi, ξ
∗
i ≥ 0

(13)
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where C is a constant greater than 0, determines the trade-offs of 1
2‖w‖2 and the

sum of permitted errors. It is found that dual formulation makes it easily to solve
this optimization problem [24], a standard dualization method utilizing Lagrange
multipliers has been proposed:

L = 1

2
‖w‖2 + C

l∑

i=1

(ξi + ξ ∗
i ) −

l∑

i=1

αi(ε + ξi − <w, xi> + b)

−
l∑

i=1

α∗
i (ε + ξ ∗

i + yi − <w, xi> − b) −
l∑

i=1

(ηiξi + η∗
i ξ

∗
i )

(14)

where ηi, η
∗
i , α

∗
i , α

∗
i have to satisfy positivity constraints of ≥0. The partial deriva-

tives of L with respect to the variables (w, b, ξi, ξ ∗
i ) have to vanish for optimality.

∂bL =
l∑

1=1

(α∗
i − αi) = 0 (15)

∂wL = w −
l∑

i=1

(αi − α∗
i )xi = 0 (16)

∂
ξ

(∗)
i
L = C − α

(∗)
i − η

(∗)
i = 0 (17)

here ξ
(∗)
i , α(∗)

i and η
(∗)
I refers to ξi and ξ ∗

i , αi and α∗
i , ηi and η∗

i , respectively. Substi-
tuting (15)–(17) into (14), the dual optimization problem is given by

maximize

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−1

2

l∑

i,j=1

(αi − α∗
i )(αj − α∗

j )<xi, xj>

−ε

l∑

i=1

(αi + α∗
i ) +

l∑

i=1

yi(αi − α∗
i )

(18)

subject to
l∑

i=1

(αi − α∗
i ) = 0 and αi, α

∗
i ∈ [0,C] (19)

As the dual variables ηi, η
∗
i can be reformulated on the basis of (18), (19) as η

(∗)
i =

C − α
(∗)
i , (16) turns to

w =
l∑

i=1

(αi − α∗
i )xi, thus g(x) =

l∑

i=1

(αi − α∗
i )<xi, x> + b (20)

This is a so-called Support V ector expansion. In SVM training algorithm, the next
necessary step is to make it nonlinearly, which was suggested to be achieved by a
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mapping φ(x) from R
n to a higher dimensional feature space using kernel function

K(x, xi) = <φ(xi), φ(x)>, therefore (20) becomes

w =
l∑

i=1
(αi − α∗

i )φ(xi), (21)

g(x) =
l∑

i=1
(αi − α∗

i )k(xi, x) + b (22)

It is different from the linear case as w means the flatness is no longer explicitly
given. In this nonlinear case, the optimization problem refers to finding the flattest
function in feature space, rather than in input space. The standard SVR is

g(x) =
N∑

i=1

(αi − α∗
i )k(xi, x) + b (23)

where N (should be less than the total number of input-output pairs) is the number
of input data having nonzero values of α

(∗)
i . The kernel function k(xi, x) corresponds

to a linear dot product of the nonlinear mapping. As we are disposing of a case of
the process modeling containing multiple outputs, we applied a multi-output least-
squares support vector regression (MLS-SVR) toolbox developed by Xu et al. [25].
Particularly in this study with an optimal trail on kernel functions of:

Linear: K(x, xi) = xT xi + C (24)

Sigmoid: K(x, xi) = tanh(αxT xi + C) (25)

Polynomial: K(x, xi) = <x, xi>
p (26)

Radial basis function: K(x, xi) = e− ‖x−xi‖2
2σ2 (27)

Exponential radial basis function: K(x, xi) = e− ‖x−xi‖
2σ2 (28)

There is also an optimization process (LOO) of the parameters of γ, λ and p in
the toolbox from where γ ∈ {2−5, 2−3, ..., 215}, γ ∈ {2−10, 2−8, ..., 210} and p ∈
{2−15, 2−13, ..., 2...3} (= 1

2σ 2 ) [25].

3.3 Random Forest

RF is an ensemble-learning algorithm depending on the bagging method that com-
bines multiple independently-constructed decision tree predictors to classify or pre-
dict certain variables [16]. In RF, successive trees do not rely on earlier trees; they
are independently using a bootstrap sample of the dataset, and therefore a simple
unweighted average over the collection of grown trees h(x,�k) would be taken for
prediction in the end.
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h̄(X ) + 1

K

K∑

k=1

h(X ,�k) (29)

where k = 1, ...,K is the number of trees, x represents the observed input vector, �
is an independent identically distributed random vector that the tree predictor takes
on numerical values. RF algorithm starts from randomly drawing ntree bootstrap
samples from the original datawith replacement.And then grow the certain number of
regression trees in accordance with the bootstrap samples. In each node of regression
tree, a number of the best split (mtry) randomly selected from all variables are
considered for binary partitioning. The selection of the feature for node splitting
from a random set of features decreases the correlation between different trees and
thus the average prediction of multiple regression trees is expected to have lower
variance than individual regression trees [26]. Regression tree hierarchically gives
specific restriction or condition and it grows from the root node to the leaf node by
splitting the data into partitions or branches according to the lowest Gini index:

IG(tX (Xi)) = 1 −
M∑

J=1

f (tX (Xi), j)
2 (30)

where f (tX (Xi), j) is the proportion of samples with the value xi belonging to leaf j
as node t [27]. In present study, MRF developed by Raziur Rahman et al. [5] was
employed with an optimal topology of three parameters in terms of ntree, minleaf
and mtry.

3.4 Modeling Structure

In this work, constructedmodel is expected to be capable of predicting (or outputting)
the color qualities of ozone treated samples in terms of K/S and L∗, a∗, b∗ values by
giving 5 variables including not only the specific color of treated fabric but also the
process parameters of pH, temperature, pick-up and treating time. In other words,
the anticipated model of color fading ozonation on reactive-dyed cotton realizes
the complex and unclear relationship of color fading ozonation parameters and its
effectiveness on reactive-dyed cotton fabric in certain respects.

Particularly, taking the real samples used in the ozonation at pH7, 20 ◦Cwith 150%
pick-up over different time from 0 to 60min which can be observed in Fig. 3 as an
example, its corresponding K/S,L∗, a∗, b∗ values are listed in Table1. It is clearly
noted that each treated sample has an obvious difference from others in regard to
color properties as treated by various ozonation processes, which on the other hand
apparently indicated how complex the process parameters influence the color of dyed
cotton fabric in ozonation. Table2 exhibites the variation of theminimum,maximum,
average and standard deviation of the dataset we used in the process modeling.



Application of Artificial Intelligence in Modeling … 73

Fig. 3 The demonstration of the a front side and b back side of real ozone treated cotton samples

A total number of 612 sets of data collected in the experimentwere divided into two
groups, namely training data and testing data, where 75% of it was used for training
and the remaining 25% was used for testing according to the general use of data
division in the machine learning sector. As a result, 459 datasets (75%) were learnt
by the models while the rest 153 datasets (25%) were distributed to test the model.
The correlation of these factors (pH, Temperature, Pick-up and Time only as original
color of fabric is not a continuous variable) to K/S,L∗, a∗, b∗ values was estimated
by Spearman rank correlation coefficients (based on (31)) and listed in Table3. It
is found that pH and treating time are slightly more relevant than temperature and
pick-up in the ozonation that play a more important role.

ρ = 1 − 6
∑

d2
i

n(n2 − 1)
(31)

where n is the number of observation, di is the difference between the ranks of
corresponding variables. K-fold cross-validation (k = 10) was used in the modeling
section. It is a popular statistical approach for estimating predictive models. Taking
k = 10 as an example as it was the one we used in the modeling study, in which
case 459 training sets of data would be divided randomly and equally into 10 disjoint
folds, 9 folds of it would be split into training subset while the rest 1-fold would be
used as validating subset. This procedure would be repeated 10 times with varied
training and testing dataset at each time to validate the trained models. In order to
evaluate the performance of models in validation, Mean Square Error (MSE) would
be used based on:
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Table 2 The maximum, minimum, average and standard deviation of ozonation parameters

Parameters Minimum Maximum Average Std. dev.

Colora 0 (Blue) 1 (Yellow) − −
pH 1 13 7 3.463

Temperature (◦C) 0 80 40 24.91

Pickup (%) 0 150 75 58.78

Time (min) 0 60 30 20.77

K/S 0.1 22.82 7.18 7.94

L∗ 0.99 65.27 33.52 17.61

a∗ −58.99 53.68 −1.81 32.75

b∗ −90.53 88.04 3.88 42.34
aAs color of fabric is not a continuous variable, it was represented in the bipolar form as 0 (blue),
0.5 (red) and 1 (yellow)

Table 3 The maximum, minimum, average and standard deviation of ozonation parameters

pH Temperature Pickup Time

K/S 0.0383 0.0648 −0.4862 −0.7913

L∗ −0.0579 0.1146 −0.1557 −0.3137

a∗ 0.0248 0.1490 −0.4500 −0.7430

b∗ −0.0302 −0.0155 −0.0184 −0.0461

MSE = 1

n

n∑

i=1

(ei − pi)
2 (32)

where ei is the real experimental results, whereas pi is the predicted output of the
specific model. Additionally, four statistical performance criteria, including MAE,
RMSE, R andMRAE are used in this study for indicating the predictive performance
of the obtained models.

MAE = 1
n

n∑
i=1

|ei − pi| (33)

RMSE =
√

1
n

∑n
i=1(ei − pi)2 (34)

R(e, p) =
∑n

i=1(ei−ē)(pi−p̄)√∑n
i=1(ei−ē)2·∑n

i=1(pi−p̄)2
(35)

MRAE = 1
n

n∑
i=1

|ei−pi |
ei

(36)

Themodels’ development and constructingwere carried out usingMATLABR2015b
for multi-output ELM andMLS-SVR, but R studio for MRF respectively on a laptop
(Core i7-4710, 2.5GHz, 16GB RAM). All of the original data was regularized to
the range of [0, 1] before using.
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4 Results and Discussion

4.1 Modeling Training

4.1.1 ELM Models

ELM models with hidden nodes from 1 to 200 activated by Sigmoid, Sine and
Hardlim functions are investigated respectively (the corresponding validation MSE
is illustrated in Fig. 4 with a detailed demonstration of the trained ELM models
possessing nodes from 1 to 140 in detail). The overfitting situation of ELM activated
bySigmoid andSine is easy to be observed that starts from the oneswith nodes around
100. More specifically, it is noted that Sigmoid trained ELM models performed
similarly to the ones trained by Sine since MSE of these models both dropped as
well as minimized at the ones with around 50 nodes (MSE ≈ 0.052) following by
a dramatic enhancement. By contrast, validation MSE of Hardlim activated models
performed generally stable with the growing number of nodes in the ELM model,
but strictly a minimum of MSE ≈ 0.069 (lager than Sigmoid and Sine) at the one
with 97 nodes still can be discovered in Fig. 4. Similar comparative results of the use
of these activation functions in ELM can be found as well in the work of Singh and
Balasundaram [28].

The use of activation functions in an artificial neural network is to convert an input
signal of the node to an output signal by mapping non-linear properties. It is very
important for an ELM model to learn and achieve the complicated mapping of input
and output data by activating the nodes with a certain activation function. The graph
of the activation functions we used is given in Fig. 5. It is noted that Sigmoid and Sine
havemuch in commonwith their S-shaped curve and both are infinitely differentiable
functions whichmake them easy to be understood and applied. However, on the other

Fig. 4 Validation MSE of
ELM models activated by
different functions
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Fig. 5 Activation functions of ELM

hand, itmay also result in their similar proximity anddisadvantage in theELMmodels
as we can see their similar performance variation and the overfitting situation with
the increasing nodes in Fig. 4. Hardlim performed least compared with Sigmoid and
Sin in terms of their activated ELM models in this issue probably is owing to its
oversaturation.

4.1.2 SVR Models

Multi-output SVR models with kernel functions of Linear, Sigmoid, Polynomial,
RBF and ERBF were trained and developed using MLS-SVR toolbox. The cor-
responding results of minimum validation MSE are 0.05678, 0.00932, 0.08613,
0.00493 and 0.0092 respectively (as demonstrated in Fig. 6). It is worth noting that
models trained with Linear kernel and Polynomial kernel are found that performed
far poorly than the others. Performance of the ones with Sigmoid kernel and ERBF
kernel are very close in a quite low level though the validation MSE of them is
nearly two times than the SVR model with RBF kernel (which performed utmost
in the comparison in this issue when its parameters are optimized to γ = 32,768,
λ = 9.7656e−4 and p = 0.125. For more information regarding the LOO optimiza-
tion process used in the toolbox for these kernel parameters see [25]).

The kernel function is to transform the data as input into the required form to
facilitate a non-linear decision surface to be a linear equation in higher dimensions
where the computational power of the learning machine is heightened. The type of
kernel function used would influence many of the characteristics of the SVR model.
A wide range of kernels exist and it is hard to explain their individual characteristics,
but it is well known that RBF kernel is recommended to be tried first in an SVRmodel
due to the fact that it not only possesses certain similar parameters and behaviors of
Linear and Sigmoid but also has fewer hyper parameters than Polynomial to complex
the model. RBF is assumed as having computational advantages over other kernels
depending on its easier and faster to compute the kernel values [29]. The lowest
MSE it achieved in this case validates its preferential suitability to be employed in
this study, and it should be attributed to that we have not too many features in the
model but with comparatively large numbers of observations.
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Fig. 6 Validation MSE of SVM models with varied kernel functions

RFmodelswith differentmtry (from1 to 5),minleaf (from1 to 10) and ntree (from
1 to 100) are trained and developed respectively, and the validation MSE of these
models are given in Fig. 7 with a detailed demonstration of the ones mtry = 1 and
ntree ranging from 1 to 100 excluding thosewhich validationMSE higher than 0.026.
In Fig. 7, the number of mtry in each regression tree node is found that plays a very
significant role in affecting the models’ prediction accuracy of the color properties
of ozone treated cotton fabrics.

The falling curves of MSE with growing number of mtry may reveal that the five
inputs we used to construct these RF modes, i.e. (1) color of dyed cotton, (2) pH, (3)
temperature, (4) pick-up, (5) treating time of ozonation process, have a very clear
independent relation with each other. As a result, RF models with five randomly
selected features generally lead the low validation MSE in this comparison. It is
also found that ntree played another significant role in RF models as MSE of these
models decreased dramatically when the number of trees increased in the forest
from 1 to 30. In general, these models perform steadily when there are more than
30 regression trees in the forest construction no matter what are the mtry or minleaf
employed, but in order to save time and cost less in the model training process, 10
trees forest is sufficient andmay bemore recommended to be used in the color fading
ozonation of dyed textile predicting model for further experiments. However, unlike
themtry and ntree, minimum number of samples in the leaf node, i.e.minleaf seems
to be preferable to be less though it is relatively uninfluential. Depending on the
observation of the detailed-depicted MSE plots of 1 − mtry RF models in Fig. 7, we
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Fig. 7 MSE of RF models with varied number of features, leaves and trees

can see that the average MSE of achieved RF models generally enhanced when the
number of leaves increased from 1 to 10.

4.2 Prediction Performance

The quality of a model is not only determined by its ability to learn from the data
but also its ability to predict unseen data. Which two are so called learning capacity
and generalization ability of a model. Models are seldom good in both of these two
capacities. According to the training results obtained above, we can find out that Sine
and Sigmoid trained ELMmodels have very similar performance that both optimized
at 50 nodes, while SVR with RBF kernel function and RF as mtry = 5, ntree = 10,
minleaf = 2, by contrast, clearly precede to all the others in their training process
respectively. In order to further comparatively investigate the potential application of
these three techniques without losing significant observations, the two ELM models
were taken into account togetherwith theRBF-SVRand the optimizedRF (mtry = 5,
ntree = 10, minleaf = 2) in this section.

To estimate and compare these optimized models, the prediction test using the
testing dataset (which has not been used in the training and validation processes) is
carried out. Table4 presents a comparison of the prediction performance of ELM,
SVR and RF models. It is found that, in general, ELM models using activation
functions of Sigmoid (MSE = 0.0172) and Sine (MSE = 0.0173) do not make any
big difference in regard to their prediction performance, but both of it are slightly
poorer comparing with SVR and RF models. However, ELM models are the fastest-
trained ones in the comparison, which means ELMmodel is still worth to be applied
in certain resource-limited cases especially while limited training time is concerned.
The most accurately-predicted model we can see, according to the finding in Table3,
is RF as it leads to the least testing error with higher R (0.9847) and less MSE
(0.0036), MAE (0.0295), RMSE (0.0601) and MRAE (0.0062). However, it is also
noted that training RF model requires a much longer time than the others (21s). As
a result, it is worth taking the SVR models into account as it achieved the second
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Table 4 Prediction performance of optimized models

Parameters ELM-Sigmoid ELM-Sine SVR RF

Training time (s) 0.0312 0.0936 0.9360 21

Average error (%) 0.1527 0.1549 0.1530 1.149

Maximum error
(%)

0.3752 0.3700 0.3503 0.302

Minimum error
(%)

0.0300 0.0029 0.0304 0.038

MSE 0.0172 0.0173 0.0043 0.0036

MAE 0.0894 0.0921 0.0429 0.0295

RMSE 0.1311 0.1315 0.0656 0.0601

R 0.9052 0.9063 0.9777 0.9847

MRAE 0.0197 0.0168 0.0109 0.0062

lowest error (R = 0.9777, MSE = 0.0043, MAE = 0.0429, RMSE = 0.656, MRAE =
0.0109) with a more acceptable shorter training time (0.9360s).

Table4demonstrates the overall performanceof the constructedmodels in termsof
certain estimation evaluation indexes, but the detail of these predictions is neglected.
As known that the constructed models possess four outputs, i.e. K/S,L∗, a∗, b∗
values of reactive-dyed cotton fabrics treated in the color fading ozonation. How
these predictive models work in detail with them is unclear. In order to reflect the
real prediction performance (using testing data) of each trained model on predicting
each single output separately, the predicted results range from output1 (k/s value)
to output4 (b∗) versing real experimental data (target 1–4) is illustrated in Fig. 8a, b,
c, d respectively.

In Fig. 8, the predicted values of models generally agree with the actual values,
though the predictive errors varied in different levels for different models. As we can
see that the gap of models’ prediction performance is not that significant in Table5
(takingMSE as an example, Sigmoid activated ELM= 0.0172, Sine activated ELM=
0.0173, SVR = 0.0043, RF = 0.0036), while the distribution of errors in terms of each
single output prediction is observed that has a larger gap in the real application. In
Fig. 8a, c, certain predicted data ofELMmodels can be clearly seen that is far different
from the real target data in certain range, which situationwould result in a bigmistake
in certain prediction application where good overall performance of the average
of multiple outputs may hinder the discovery of a wrong prediction on specific
single output. According to the linear fitting correlation coefficients of predicting data
versing real experimental data (demonstrated in Fig. 6) listed in Table5, the testing
result obtained reveals that SVR (R2 = 0.9505) model and RF model (R2 = 0.9555)
are actually more stable and suitable than ELM models (R2 = 0.8025 and 0.8007
for Sigmoid and Sine activated respectively) in modeling color fading ozonation
of dyed textile, in terms of overall prediction performance, and more importantly
predicting multiple outputs without deviation on certain single output. This may
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Fig. 8 Predicted data outputted by ELM (trained by Sigmoid and Sine respectively), SVR and RF
versus experimental data

Table 5 Correlation coefficience of data in Fig. 8

R2 ELM-Sigmoid ELM-Sine SVR RF

Target 1-K/S 0.8474 0.8596 0.9683 0.9954

Target 2-L∗ 0.7944 0.7517 0.9442 0.8816

Target 3-a∗ 0.7903 0.8048 0.9380 0.9719

Target 4-b∗ 0.7778 0.7868 0.9513 0.9731

Average 0.8025 0.8007 0.9505 0.9555

attribute to the features of data we used concerning color fading ozonation of dyed
textile. While on the other hand, it could also attribute to a disadvantage of ELM
that it completely relies on increasing the number of nodes to promote the predicting
performance, which makes it risky to be applied in a complicated issue such as
present investigation. The results also reveal that both SVR and RF can well deal
with the interaction of variables and are comparatively more stable in multi-variable
nonlinear modeling.
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5 Conclusion and Prospective

In this chapter, three artificial technique modeling techniques i.e. ELM, SVR and
RF were used to model the ozonation process for predicting the color properties of
ozonated reactive-dyed cottons. The potential applicability of these models in the
use of this textile finishing process modeling was estimated.

Color fading of dyed textile is a very vital process in the textile industry to obtain
certain stylish effects on the product, which process has been increasingly used in last
decades. Ozonation is a novel technology developed in recent years to be employed
to achieve the color fading effect of textile with high performance not only in the
respect of efficiency and quality but also in regards to the environmental sustainabil-
ity. For the purpose of getting better understanding and application of color fading
ozonation of textile in industrial scale, the complexity and nonlinearity of the fac-
tors and impacts of color fading ozonation on reactive-dyed cotton were investigated
by process modeling. The effects of ozonation in terms of pH, temperature, water
pick-up, treating time of process and dyed colors of fabrics on the color fading per-
formance in terms of K/S,L∗, a∗, b∗ values of reactive-dyed cotton were modeled
using ELM, SVR and RF respectively. The finding results denoted that both of SVR
and RF are potential applicable candidates for modeling the color fading ozonation
process of dyed textile, as the predicted results of it on the ozonation process had a
good agreement with the actual data entirely as well as individually. But taking the
training time and cost as a consideration, SVR model would be more recommended
than RF to be applied in real use. By contrast ELM models performed poorer in the
prediction and were very unstable in terms of predicting certain individual output in
multi-variable process modeling.

References

1. Kan CW, Cheung HF, Chan Q (2016) A study of plasma-induced ozone treatment on the colour
fading of dyed cotton. J Clean Prod 112:3514–3524

2. Hoigné J (1988) The chemistry of ozone in water. In: Process technologies for water treatment.
Springer, pp 121–141

3. He Z, Li M, Zuo D, Yi C (2019) Color fading of reactive-dyed cotton using UV-assisted
ozonation. Ozone Sci Eng 41(1):60–68

4. He Z, Li M, Zuo D, Yi C (2018) The effect of denim color fading ozonation on yarns. Ozone
Sci Eng 40(5)

5. He Z, Li M, Zuo D, Xu J, Yi C (2019) Effects of color fading ozonation on the color yield of
reactive-dyed cotton. Dye Pigment 164

6. SuzukiK (ed) (2011)Artificial neural networks—industrial and control engineering application
7. WuY, ZhangY, LiuX, Cai Z, CaiY (2018)Amultiobjective optimization-based sparse extreme

learning machine algorithm. Neurocomputing 317:88–100
8. Sun Z, Choi T, Au K, Yu Y (2008) Sales forecasting using extreme learning machine with

applications in fashion retailing. Decis Support Syst 46(1):413–421
9. Vapnik V (2013) The nature of statistical learning theory. Springer Science and BusinessMedia
10. Basak D, Pal S, Patranabis DC (2007) Support vector regression. Neural Inf Process Rev

11(10):203–224



Application of Artificial Intelligence in Modeling … 83

11. GhoshA,Chatterjee P (2010) Prediction of cotton yarn properties using support vectormachine.
Fibers Polym 11(1):84–88

12. Nurwaha D, Wang X (2011) Prediction of rotor spun yarn strength using support vector
machines method. Fibers Polym 12(4):546–549
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