
Computational Intelligence Approaches
for Software Quality Improvement

Grigore Albeanu, Henrik Madsen, and Florin Popent,iu-Vlădicescu

Abstract Obtaining reliable, secure and efficient software under optimal resource
allocation is an important objective of software engineering science. This work inves-
tigates the usage of classical and recent development paradigms of computational
intelligence (CI) to fulfill this objective. The main software engineering steps asking
for CI tools are: product requirements analysis and precise software specification
development, short time development by evolving automatic programming and pat-
tern test generation, increasing dependability by specific design,minimizing software
cost by predictive techniques, and optimal maintenance plans. The tasks solved by CI
are related to classification, searching, optimization, and prediction. The following
CI paradigms were found useful to help software engineers: fuzzy and intuition-
istic fuzzy thinking over sets and numbers, nature inspired techniques for search-
ing and optimization, bio inspired strategies for generating scenarios according to
genetic algorithms, genetic programming, and immune algorithms. Neutrosophic
computational models can help software management when working with imprecise
data.

Keywords Computational intelligence · Immune algorithms · Software quality ·
Software reliability · Neutrosophic computational models

G. Albeanu
“Spiru Haret” University, Bucharest, Romania
e-mail: g.albeanu.mi@spiruharet.ro

H. Madsen
Danish Technical University, Lyngby, Denmark
e-mail: hmad@dtu.dk

F. Popent,iu-Vlădicescu (B)
University Politehnica of Bucharest & Academy of Romanian Scientists, Bucharest, Romania
e-mail: Fl.Popentiu@city.ac.uk

© Springer Nature Switzerland AG 2020
H. Pham (ed.), Reliability and Statistical Computing, Springer Series
in Reliability Engineering, https://doi.org/10.1007/978-3-030-43412-0_18

305

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43412-0_18&domain=pdf
mailto:g.albeanu.mi@spiruharet.ro
mailto:hmad@dtu.dk
mailto:Fl.Popentiu@city.ac.uk
https://doi.org/10.1007/978-3-030-43412-0_18

306 G. Albeanu et al.

1 Introduction

Improving quality of software is an important objective of any software developer.
According to Jones [12], “software needs a careful analysis of economic factors and
much better quality control than is normally accomplished”.

The mentioned author has realized a deep analysis on software measurement and
found out seven key metrics to be explored in order to estimate software economics
and software quality with high precision [12]: the total number of function points,
hours per function point for the project, software defect potential computed using
function points, defect removal efficiency, delivered defects per function point; high-
severity defects per function point; and security flaws per function point. For instance,
the software defect potential is given by pow (number of function points, 1.25) [13],
while the number of test cases can be estimated by pow (number of function points,
1.20), where pow (x, α) is xα.

Many scientists, including Fenton and Pfleeger [9], Aguilar-Ruiz et al. [1], and
Wójcicki and Dabrowski [38], have investigated software quality measurement using
various metrics, statistical inference, and soft-computing methods.

Based on work [8] and the new developments in using artificial intelligence in
software engineering [6, 22, 30, 33], this work considers classic and recent methods
of Computational Intelligence (CI) applied in Software Engineering (SE) in order
to identify improvements for solving the following tasks: software requirements
analysis and precise software specification development; software development time
reducing by evolving automatic programming and pattern test generation; depend-
ability increasing by specific software design; and software cost/effort minimization
by predictive techniques and optimal maintenance plans.

From the large variety of software quality definitions, in the following, the defini-
tion proposed by Jones [12] is used: “software quality is the absence of defects which
would either cause the application to stop working, or cause it to produce incorrect
results”. As, software engineers proceed to develop a project, the main phases of the
software life cycle are covered in this chapter.

The aim of this material, as an extension of [29], is to propose an extended
approach based on fuzzy, intuitionistic fuzzy, and neutrosophic models for software
requirement multi-expert evaluation (the third section), to update the usage of arti-
ficial immune algorithms for software testing (the fourth section), and to evaluate
software reliability in neutrosophic frameworks (the fifth section).

2 Overview on Computational Intelligence Paradigms

According to IEEE Computational Intelligence Society [42], the main fields of
Artificial Intelligence (AI) considered as special topics for CI are: Artificial Neu-
ral Networks (ANN), Fuzzy Systems (FS), Evolutionary Computation (EC), Cog-
nitive and Developmental Systems (CDS), and Adaptive Dynamic Programming

Computational Intelligence Approaches … 307

and Reinforcement Learning (ADP&RL). Coverage of the main paradigms can be
found in [16], while innovative CI algorithms are presented in [39]. The impact of
computational intelligence on software engineering developments was revealed in
[26].

Inspired by the biological network of neurons, Artificial Neural Networks are used
as nonlinear models to classify data or to solve input-output relations [16]. Based on
a weighted directed graph, having three types of vertices (neurons)—input, hidden
and output, the ANN makes use of three functions for every vertex: network input
f in, neuron activation f act , and output f out . If the associated graph is acyclic then
ANN is a feed forward network, otherwise is a recurrent network. The weights of
the network are obtained by a training process.

One kind of learning task, called fixed, uses a set of pairs—training patterns—
(x, y), where x is an input vector, and y is the output vector produced by ANN
when received as input the vector x. Both x and y can be multivariate with different
dimensions. The learning process is evaluated by some metric, like square root of
deviations of actual results from desired output.

Another kind of learning task, called free, use only input vectors, the objective of
ANN addressing a clustering/classification requirement. Here, a similarity measure
is necessary to identify the prototypes. The power of ANN depends on the activation
model of neurons, and the number of hidden layers. It is well known the results [16]:
“any Riemann-integrable function can be approximated with arbitrary accuracy by a
multilayer perceptron”. Both practical and theoretical results on using different types
of ANN have increased the confidence in using ANN as computational intelligence
models.

For software engineering, the following references used ANN to optimize the
software development process: Dawson [7] and Madsen et al. [18].

When the inputs are fuzzy [40, 41], intuitionistic fuzzy [3, 17], or of neutrosophic
type [31], the activation process is based on defuzzification/deneutrofication proce-
dures. Fuzzy systems make use of fuzzy sets, fuzzy numbers, and fuzzy logic. An
intelligent FS is a knowledge based system used to answer to questions/queries for-
mulated by a user according to a linguistic variables language. The natural language
processing based interface is responsible on fuzzification/neutrofication procedure.
Neutrosophic thinking for engineering applications is based on three indicators: one
for truth/membership degree (T), one for the degree of indeterminacy (I), and one for
false/non-membership degree (F). If F+ T= 1, and I= 0, then the fuzzy framework
[40] is considered. If F + T < 1, and I = 1 − (F + T), then the intuitionistic-
fuzzy theory of Atanassov is obtained [3]. The neutrosophic framework considers
0 ≤ T + T + F ≤ 3, with 0 ≤ T, I, F ≤ 1. Defuzzification can be obtained easy
by the centroid method. However, many other methods were proposed and used in
various contexts. Converting an intuitionistic-fuzzy entity, or a neutrosophic entity
to a crisp value is not so easy. Firstly, an indicator function estimating the holistic
degree of truth/membership should be computed (as in fuzzy representation), and
this function will be used to compute a crisp value. The indicator function, denoted
by H, is computed by

308 G. Albeanu et al.

H = αT + β(1 − F) + γ I/2 + δ(1 − I/2),

for every item from universe of discourse. The parameters α, β, γ, δ are positive
numbers, in decreasing order, with their sum being 1. The method was proposed by
Wang et al. [36], and the parameters should be found by the researcher based on the
available information about the problem under treatment.

Other neutrosophic computational models are presented and used in the fifth
section.

FS systems use tolerance for imprecision, uncertainty and partial truth to achieve
tractability, robustness, low solution cost, and better rapport with reality, as Zadeh
[42] recommended when he has coined the soft computing term.

Evolutionary computation is an area of research covering genetic algo-
rithms, evolutionary strategies, and genetic programming. The techniques are
based on a population of individuals and the following operations: reproduction
(crossover/recombination), random variation (mutation, hypermutation), competi-
tion, and selection. The objective of any evolutionary algorithm is to optimize the
searching process in a robust and intelligent manner, as inspired by biological repro-
duction schemes. Relevant results in software engineering were obtained, to men-
tion some contributions, by Aguilar-Ruiz et al. [1], Arcuri and Yao [2], Berndt et al.
[5], McGraw et al. [21], Michael et al. [23], Patton et al. [25], and Wappler and
Lammermann [37].

Cognitive and Developmental Systems have specific targets in artificial life mod-
elling and computational neuroscience: agent based modelling, special architectures
of artificial neural networks, computational algorithms based on evolutionary strate-
gies borrowed from real bio life. For software engineering, agent based modelling
is one of CDS applications. The orientation on symbolic processing (as results of
neural computing, concept transformation, and linguistic description) is the main
reason to study CDS for software engineering. Also, the usage of machine learning
for solving software engineering optimization problems motivates the application of
CDS, as proposed by Wójcicki and Dabrowski [38] and Venkataiah et al. [35].

Adaptive Dynamic Programming and Reinforcement Learning are used to solve
problems related to optimal control through efficient learning strategies. ADP&RL
has to provide optimal decisions throughknowledgebased systemsby active learning.

ADP&RL can be used in software engineering for optimal decision making along
the software lifecycle, as described by Sultanov and Hayes [34].

3 Computational Intelligence for Software Requirements
Engineering

The advancement in CI oriented technologies proved value in various SE specific
applications: (1) automatic transformation of Natural Language Requirements into
Software Specification; (2) software architecture design; (3) software coding and
testing; (4) software reliability optimization; (5) software project management.

Computational Intelligence Approaches … 309

When consider Natural Language Requirements, the software engineer has to
deal with ambiguity of requirements, incomplete, vague or imprecise descriptions,
or the interpretation of the requirements. Requirements Ambiguity Reviews should
be implemented at early phases of software development to obtain the following
advantages [43]: requirements improvement and software defects reduction; 100%
test coverage in order to identify software bugs; learn to differentiate between poor
and testable requirements.

As Kamsties identified in [14], the requirements ambiguity reviewer should dif-
ferentiate between linguistic ambiguity (context independent, lexical, syntactic) and
software engineering ambiguity (context dependent, domain knowledge). If a sen-
tence has more than one syntax tree (syntactic ambiguity), or it can be translated into
more than one logic expression (semantic ambiguity) then an ambiguous requirement
is found. When an anaphora or a pronoun has more than one antecedent, then a ref-
erential ambiguity should be processed. The analysts have also to do with pragmatic
ambiguity generated by the relationship between the meaning of a sentence and its
appearance place.

Special interest concerns thewords like: all, for each, each, every, any,many, both,
few, some, which are related to a whole set, or individuals in an unsized universe.
Translating into logic expressions of sentences based on connectives like and, or, if
and only if, if then, unless, but should address the truth membership degree and (intu-
itionistic) fuzzy norms, co-norms and implications. When detecting words like after,
only, with, pronouns (this, that, those, it, which, he, she), usually, often, generally,
typically, normally, and also, additional care is necessary when eliminates ambi-
guity. Other triggers announcing possibly ambiguity are given by under-specified
terms (category, data, knowledge, area, thing, people etc.), vague terms (appropriate,
as soon as possible, flexible, minimal, user-friendly, to the maximum extent, highly
versatile etc.), and domain-specific terms (intelligence, security, level, input, source
etc.). Osman and Zaharin described, in [24], an automated approach based on text
classification to deal with ambiguous requirements.

However, automated disambiguation is impossible because human understanding
is required to establish the requirements validity. In this case, amulti-expert approach
is necessary to evaluate the requirements against ambiguity. The analysis proceeds
in similar way for all fuzzy, intuitionistic-fuzzy, and neutrosophic approaches. A
feasible strategy follows the steps:

1. Input one requirement as sentence in Natural Language or an Informal Lan-
guage. Identify the requirement class (exact classification): Functional Require-
ments (FR), Nonfunctional Requirements (NFR), Performance/Reliability (PR),
Interfaces (IO), Design constraints (DC).

2. After all requirements are considered, build the ambiguity degrees for every
requirements class MFR[i], MNFR[i], MPR[i], MIO[i], and MDC[i] by every
linguistic expert i, i = 1, 2, …, m. The size of each matrix is given by the
number of requirements identified for specified class. Consider a defuzzifica-
tion/deneutrofication indicator, and for every requirement establish the tuple (rk,

310 G. Albeanu et al.

typek, e1,k, e2,k,…, em,k), where ei,k denotes the truth indicator function associated
by expert i to requirement k.

3. Every requirement rk, having ei,k ≥0.5 for at least one expertwill be considered by
software requirements engineer for lexical, syntactical, and semantical analysis
in order to obtain a set of interpretations Sk. Contextualize every interpretation
by a clear description.

4. Start the re-elicitation procedure against customer/client team, in order to
establish the true software requirements.

One recent initiative inSRE isNaPIRE [10]which identifies the best practices used
over the world. However, addressing the agile development paradigm, the practice
already reported is not suited to other software development paradigms. The above
proposal can be a setup for any paradigm, including the waterfall classic approach.

4 Computational Intelligence for Software Testing

There are a large variety of software testing methods and techniques which are
different from the point of view of the paradigm type, effectiveness, ease of use,
cost, and the need for automated tool support.

Evolutionary techniques can be applied to code development and for generating
test cases, or unit testing. Also, evolutionary strategies apply when someone wants
to estimate software development projects, as Aguilar-Ruiz et al. presented in [1].

The lifecycle of any evolutionary algorithm for software testing starts with a
number of suitable test cases, as initial population. The evaluation metric is always
based on a fitness function. Let be n the total number of domain regions/testing paths,
k be the number of regions/paths covered by a test, hence the test case associated
fitness/performance is k/n. The recombination and mutation operators applied to test
case work as usual procedures applied to sequences/strings and are influenced only
by the test case structure (representation).

Recently,Arcuri andYao [2] use co-evolutionary algorithms for software develop-
ment. In co-evolutionary algorithms, two or more populations co-evolve influencing
each other, in a cooperative co-evolution manner (the populations work together to
accomplish the same task), or in a competitive co-evolution approach (as predators
and preys in nature).

Given a software specification S, the goal of software developer is to evolve a
program P along some iterations in order to satisfy P. If genetic programming is
used, the fitness of each program in a generation is evaluated on a finite set T of unit
tests that depends on the specification S; the fitness value of a program being the
maximum number of unit tests passed by the program. A better approach consists of
using different sets Ti of unit tests for each new generation i.

The generation of new sets of unit tests can use the negative selection approach
described in Popentiu and Albeanu [28]. If Gi is the set of genetic programs at step

Computational Intelligence Approaches … 311

i, and Ti is the set of unit tests for the i-th generation, the next generation is obtained
according to the following method.

Let g(t) be the output of the program g having input t. Let c(t, g(t)) the fitness of
the output of g related to the true output, when the precondition is valid, otherwise
c = 0. If N(g) is the number of vertices of the program g (as flowchart), and Ei(g) is
the number of errors generated by g on t in Ti, the fitness degree of g is [2]:

f(g) = N(g)/(N(g) + 1) + Ei(g)/(Ei(g) + 1) + �{c(t, g(t)); t in Ti}, g in Gi.

Clonal selection can be used to test generation (a large collection of test cases can
be obtained by mutation operator). The size of collection, considered like detectors,
can be reduced by simulating a negative selection to eliminate those detectors which
are not able to detect faults. The remaining detectors will be cloned and mutated,
evaluated and used to create a new population of detectors.

The framework proposed by Arcuri and Yao can benefit from new algorithms for
test case generation based both on genetic [5, 21, 23, 25] and immune [28] algorithms.

According to [20], for software testing and debugging, other models can be used:

1. Let K be the number of fault classes established by an expert, D be the program
input domain, partitioned in n (n > 1) regions D1, D2, …, Dn, and Q be the
probability distribution giving the operational profile: �{Q(x): x ∈ D} = 1. If
φk(x) is the membership degree of x to the kth fault domain, and P(fk) is the
probability to experience a kth type fault, then every software run will succeed
with the degree R given by

R = 1 −
n∑

i=1

∫
Di

(max
j=1,...,K

P
(
f j

)
φ j (x))Q(x)dx

When the membership degrees ϕk are obtained by probability conversion, then R
is the software reliability obtained in the probabilistic framework, according to
Bastani and Pasquini [4]. Otherwise, R can be viewed as the membership degree
when the universe of discourse contains all software items and the fuzzy set of
the reliable items are considered.

2. Both thedegreeof detectability and thedegreeof risk canbe estimatedusing fuzzy
systems [20]. According to [11], the detectability of a test T is the probability
that T is able to detect a bug in a selected software unit, if this software contains
a bug. The degree of detectability of a testing approach T can be obtained by
mutation testing. Also, the detectability can be given by a linguistic variable (low,
about low, average, about high, high) with modifiers (hedges) like: very, slightly,
more-or-less etc. In this way a situation like “the method T suspects a bug, more
investigation are necessary” can be modelled and considered for a fuzzy rule
database of an expert system for software testing.

3. Mutation is also a valuable operation used in the case of fuzz testing, or fuzzing
[15]. According to [27], “fuzzing has long been established as a way to automate
negative testing of software components”. Mainly, fuzz testing is a technique for

312 G. Albeanu et al.

software testing that generates random data to the inputs of a software unit in
order to identify the existence of defects when the program fails.

5 A Neutrosophic Approach to Software Quality
Evaluation

Neural networks and genetic algorithms can be used to provide an optimal reliability
allocation in the case of modular design under fault tolerant constraints. These tech-
niques were used by Madsen et al. [18, 19] in various contexts. In this section we
use the neutrosophic numbers of Smarandache to evaluate the reliability/availability
of software under a fault-tolerance design.

For our considerations, a neutrosophic number is an object of form a + bI,
where a and b are real numbers, I is an operation such as I2 = I, I − I = 0, I +
I = 2I, 0I = 0, with 1/I and I/I are not defined [31]. If x = a + bI and y = c + dI are
neutrosophic numbers, then [32]:

(a) x + y = (a + c) + (b + d)I;
(b) x − y = (a − c) + (b − d)I;
(c) xy = (ac) + (ad + bc + bd)I;
(d) λx = (λa) + (λb)I;
(e) x/y = u + vI (when ever is possible), with u = a/c, and v = (bc − ad)/(c2 +
cd).

In order to obtain u and v in (e), the following identification chain should be
followed, according to the rules (a) and (c):

(u + vI) (c + dI) = (a + bI),

uc + (ud + cv + vd)I = (a + bI),

uc = a, u = a/c, ad/c + cv + vd = b, ad + c2v + vcd = bc,

v
(
c2 + cd

) = bc − ad

The reliability of parallel structures is given by R(A, B)= 1− (1−A)(1−B)=X+
IY,withA, andBgiven by neutrosophic numbers, and 1=1+0I. Therefore,when the
reliability is appreciated by human experts as indeterminate, the new calculus permits
the computation of the reliability, and the result may be interpreted asminimum value
X, the median X + Y/2, the first quartile X + Y/4, or the third quartile X + 3Y/4
depending on the deneutrofication procedure.

The reliability of serial connectedmodules is given byR(A,B)=AB (according to
the rule c from above). This methodology can be used to evaluate the reliability of the
bottom-up structures, and to transform reliability allocation/optimization problems
formulated in neutrosophic manner. The solving strategy follows similar steps as
describing by Madsen [17], and Madsen [19].

Computational Intelligence Approaches … 313

Neutrosophic numbers can be used for a neutrosophic estimation of the mainte-
nance effort, based on a neutrosophic variant of the model of Belady and Lehman
(cited by [9]):

M = p1 + K(1 + d1 − f1) + I
(
p2 + K(1 + d2 − f2)

]
,

where p1 + Ip2 is the productive effort that involve analysis, design, coding, testing,
and evaluation, d1 + Id2 is a complexity measure associated with poor design, f1 +
If2 is the maintenance team unfamiliarity with the software, and K is an empirical
constant. For instance, if the development effort was 480 + 20I persons per month,
the project complexity was 7 + 2I, the degree of familiarity is 0.7 + 0.1I, with K =
0.25, then M = 481.825 + 24.75I which after deneutrofication by median can give
the total effort expended in maintenance as 494.2 persons per month.

If a software will be reused after some code is rewritten, but the percentage
of modified design (MD), the percentage of modified code (MC), the percentage
of external code to be integrated (EI), amount of software understanding required
(SU, computed taking into account the degree of unfamiliarity with software), the
assessment and assimilation effort (AA) and the number of source lines of code to
be adapted (ASLOC) are imprecisely known, and given by neutrosophic numbers,
then applying the post-architecture model [43], it follows:

ESLOC = ASLOC (AA + SU + 0.4MD + 0.3MC + 0.3CI)/100.

Hence, the equivalent number of lines of new code (ESLOC) is obtained as a neutro-
sophic number. After deneutrofication, the crisp value can be obtained by min value
or quartile—based scheme.

If ASLOC = 3200, AA = 2 + 2I, SU = 15 + 3I, DM = 15 + 5I, CM = 20 +
10I, CI = 50 + 20I, then ESLOC = 1408 + 512I.

In a similar way, other COCOMO equations [44] can be considered and used to
derive various economical and quality indicators.

If the function points are used along the entire life cycle of software [13], and
the number of function points between released versions are imprecisely known and
modeled by neutrosophic numbers, the power of neutrosophic numbers is required.

Let be z = a + bI one neutrosophic number. To compute z1.25, the following
method can be used.

Since 1.25 = 5/4 it follows that (a + bI)5/4 = (u + vI) and (a + bI)5 = (u + vI)4

for some u and v to be obtained.
Hence a5 + (5a4b + 10a32b + 10a2b3 + 5ab4 + b5)I = u4 + (4u3v + 6u2v2 +

4uv3 + v4)I, with u = a5/4, and (a + b)5 − a5 = (u + v)4 − u4. Therefore (a + b)5

= (u + v)4, with v = (a + b)5/4 − a5/4.
In a similar way, we obtain (a + bI)0.4 = a0.4 + ((a + b)0.4− a0.4) I, a formula

useful to derive the approximate development schedule in calendar months.
For a software having 2000+ 3000I function points, using the rules of Jones [13],

it follows a development team of size 13.33 + 20I (about 23.33 full time personnel,
using the median deneutrofication), while the size of maintenance team is 1.33 + 2I

314 G. Albeanu et al.

(about 2.33 persons). The approximate development schedule in calendar months is
90.21 + 9.26I, about 25.54 months by median deneutrofication. Also, the software
defect potential is given by (2000 + 3000I)1.125 = 5172 + 9327I, with a median
deneutroficated value of about 9835.55.

Other rules formulated by Jones in [13], can be used in neutrosophic context.

6 Conclusions

This paper investigates the usage of classical and recent paradigms of computational
intelligence to address some topics in software engineering: software requirements
engineering, software design and software testing, software reliability allocation and
optimization. Finally, neutrosophic computational schemes are proposed to evaluate
various economic and quality indicators based on COCOMOmodel and Jones rules.

The proposed approach can be used with min deneutrofication operator and the
resultswill be identicalwith those obtained by the classical approach (as an optimistic
and theoretical view). However, using a quartile deneutrofication, the results can be
closed to the values in practical software management.

References

1. Aguilar-Ruiz JS, Ramos I, Riquelme JC, ToroM (2001)An evolutionary approach to estimating
software development projects. Inf Softw Technol 43(14):875–882

2. Arcuri A, Yao X (2014) Coevolutionary automatic programming for software development.
Inf Sci 259:412–432

3. Atanassov KT (2016) Review and new results on intuitionistic fuzzy sets. Mathematical foun-
dations of artificial intelligence seminar, Sofia, 1988, Preprint IM-MFAIS-1–88. Reprinted: Int
J Bioautomation 20(S1):S7–S16

4. Bastani F, Pasquini A (1994) Assessment of a sampling method for measuring safety-critical
software reliability. In: Proceedings of the 5th international symposium on software reliability
engineering, 6–9 Nov, Monterey. IEEE Computer Society Press

5. Berndt D, Fisher J, Johnson L, Pinglikar J, Watkins A (2003) Breeding software test cases
with genetic algorithms. In: Proceedings of the 36th annual Hawaii international conference
on system sciences. https://doi.org/10.1109/HICSS.2003.1174917

6. BisiM,GoyalNK (2015) Early prediction of software fault-pronemodule using artificial neural
network. Int J Perform Eng 11(1):43–52

7. Dawson CW (1998) An artificial neural network approach to software testing effort estimation.
Trans Inf Commun Technol 20. WIT Press

8. Feldt R, de Oliveira Neto FG, Torkar R (2018) Ways of applying artificial intelligence in
software engineering. In: Proceedings of RAISE’18, Gothenburg, Sweden, ACM. https://doi.
org/10.1145/3194104.3194109

9. Fenton NE, Pfleeger SL (1996) Software metrics: a rigorous and practical approach. Thomson
10. Fernandez DM (2018) Supporting requirements-engineering research that industry needs: the

NaPiRE initiative. IEEE Softw 35(1):112–116
11. Howden WE, Huang Y (1994) Software trustability. In: Proceedings of the fifth International

symposium on soft-ware reliability engineering, Monterey, California, pp 143–151. IEEE
Computer Society Press

https://doi.org/10.1109/HICSS.2003.1174917
https://doi.org/10.1145/3194104.3194109

Computational Intelligence Approaches … 315

12. Jones TC (2017) The mess of software metrics. http://www.namcook.com/articles.html.
Version 9.0

13. Jones TC (1998) Estimating software costs. McGraw-Hill
14. KamstiesE (2005)Understanding ambiguity in requirements engineering. In:AurumA,Wohlin

C (eds) Engineering and managing software requirements. Springer, Berlin, Heidelberg
15. Klees G, Ruef A, Cooper B, Wei S, Hicks M (2018) Evaluating fuzz testing. In: Proceedings

of the ACM conference on computer and communications security, pp 2123–2138
16. Kruse R, Borgelt C, Braune C, Mostaghim S, Steinbrecher M (2016) Computational

intelligence. A methodological introduction, 2nd edn. Springer
17. Madsen H, Albeanu G, Popenţiu Vlǎdicescu F (2012) An intuitionistic fuzzy methodology for

component-based software reliability optimization. Int J Perform Eng 8(1):67–76
18. Madsen H, Thyregod P, Burtschy B, Albeanu G, Popentiu-Vladicescu F (2007) On using

chained neural networks for software reliability prediction. In: Proceedings of the European
safety and reliability conference 2007, ESREL 2007—risk, reliability and societal safety, vol
1, pp 411–417

19. Madsen H, Thyregod P, Burtschy B, Popentiu-Vladicescu F, Albeanu G (2006) On using soft
computing techniques in software reliability engineering. Int JReliabQual SafEng13(1):61–72

20. Madsen H, Thyregod P, Burtschy B, Albeanu G, Popentiu F (2006) A fuzzy logic approach
to software testing and debugging. In: Guedes Soares C, Zio E (eds) Safety and reliability for
managing risk, pp 1435–1442

21. McGraw G, Michael C, Schatz M (2001) Generating software test data by evolution. IEEE
Trans Software Eng 27(12):1085–1110

22. Meziane F, Vadera S (2010) Artificial intelligence in software engineering—current develop-
ments and future prospects. In: Meziane F, Vadera S (eds) Artificial intelligence applications
for improved software engineering development: new prospects, information science reference,
pp 278–299. https://doi.org/10.4018/978-1-60566-758-4.ch014

23. Michael CC, McGraw GE, Schatz MA, Walton CC (1997) Genetic algorithms for dynamic
test data generation. In: Proceedings 12th IEEE international conference automated software
engineering. https://doi.org/10.1109/ASE.1997.632858

24. Osman MH, Zaharin MF (2018) Ambiguous software requirement specification detection:
an automated approach, RET2018, June 2018, Gothenburg, Sweden http://ret.cs.lth.se/18/
downloads/RET_2018_paper_9.pdf

25. PattonRM,WuAS,WaltonGH (2003)A genetic algorithm approach to focused software usage
testing. In: Khoshgoftaar TM (ed) Software engineering with computational intelligence, vol
731. The Springer international series in engineering and computer science. Springer, Boston,
MA, pp 259–286

26. Pedrycz W (2002) Computational intelligence as an emerging paradigm of software engineer-
ing. In: ACM proceedings of SEKE’02, pp 7–14

27. Petrică L, Vasilescu L, Ion A, Radu O (2015) IxFIZZ: integrated functional and fuzz testing
framework based on Sulley and SPIN. Rom J Inf Sci Technol 18(1):54–68

28. Popentiu-Vladicescu F, Albeanu G (2017) Recent advances in artificial immune systems: mod-
els, algorithms, and applications. In: Patnaik S (ed) Recent developments in intelligent nature-
inspired computing. IGI Global, Hershey, PA, pp 92–114. https://doi.org/10.4018/978-1-5225-
2322-2.ch004

29. Popentiu-Vladicescu F, Albeanu G,Madsen H (2019) Improving software quality by new com-
putational intelligence approaches. In: Pham H (ed) Proceedings of 25th ISSAT international
conference “Reliability & Quality in Design”, pp 152–156

30. Rech J, Althoff K-D (2004) Artificial intelligence and software engineering: status and future
trends. Spec Issue Artif Intell Softw Eng 3:5–11

31. Smarandache F (2007) A unifying field in logics: neutrosophic logic. Neutrosophy, neutro-
sophic set, neutrosophic probability and statistics, 6th edn. ProQuest information & learning,
Ann Arbor (2007)

32. Smarandache F (2016) Subtraction and Division of neutrosophic numbers. Crit Rev XIII:103–
110

http://www.namcook.com/articles.html
https://doi.org/10.4018/978-1-60566-758-4.ch014
https://doi.org/10.1109/ASE.1997.632858
http://ret.cs.lth.se/18/downloads/RET_2018_paper_9.pdf
https://doi.org/10.4018/978-1-5225-2322-2.ch004

316 G. Albeanu et al.

33. Sorte BW, Joshi PP, Jagtap V (2015) Use of artificial intelligence in software development life
cycle—a state of the art review. IJAEGT 3(3):398–403

34. Sultanov H, Hayes JH (2013) Application of reinforcement learning to requirements engineer-
ing: requirements tracing. RE 2013, Rio de Janeiro, Brazil, Research Track. http://selab.netlab.
uky.edu/homepage/publications/RE-hakim.pdf

35. Venkataiah V, Ramakanta M, Nagaratna M (2017) Review on intelligent and soft computing
techniques to predict software cost estimation. IJAER 12(22):12665–12681

36. Wang H, Smarandache F, Zhang Y-Q, Sunderraman R (2005) Interval neutrosophic sets and
logic: theory and applications in computing, Hexis

37. Wappler S, Lammermann F (2005) Using evolutionary algorithms for the unit testing of object-
oriented software. In: GECCO ‘05 proceedings of the 7th annual conference on genetic and
evolutionary computation. ACM https://doi.org/10.1145/1068009.1068187

38. Wójcicki B, Dabrowski R (2018) Applying machine learning to software fault prediction.
e-Inform Softw Eng J 12(1):199–216. https://doi.org/10.5277/e-inf180108

39. Xing B, Gao W-J (2014) Innovative computational intelligence: a rough guide to 134 clever
algorithms. Springer

40. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353
41. Zadeh LA (1994) Fuzzy logic, neural networks, and soft computing. Commun ACM 37(3):77–

84
42. Computational intelligence society page. https://cis.ieee.org/
43. How-harmful-can-be-ambiguous-software-requirements. Cigniti’s requirement testing frame-

work (RTF). https://www.cigniti.com/
44. COCOMO manual. https://sunset.usc.edu/research/COCOMOII/Docs/modelman.pdf

Grigore Albeanu received his Ph.D. in Mathematics in 1996 from University of Bucharest,
Romania. During the interval 2004–2007 he was the head of the UNESCO IT Chair at Univer-
sity of Oradea, and participated as principal investigator in a NATO project. Grigore Albeanu has
authored or co-authored over 120 papers and 10 educational textbooks in applied mathematics and
computer science. Since 2007, he is professor of computer science at “Spiru Haret” University in
Bucharest. His current research interests include different aspects of scientific computing, includ-
ing soft computing, modelling and simulation, software reliability, virtual reality techniques and
E-Learning.

Henrik Madsen received a Ph.D. in Statistics at the Technical University of Denmark in 1986.
He was appointed Ass. Prof. in Statistics (1986), Assoc. Prof. (1989), and Professor in Mathe-
matical Statistics with a special focus on Stochastic Dynamical Systems in 1999. In 2017 he was
appointed Professor II at NTNU in Trondheim. His main research interest is related to analysis and
modelling of stochastic dynamics systems. This includes signal processing, time series analysis,
identification, estimation, grey-box modelling, prediction, optimization and control. The applica-
tions are mostly related to Energy Systems, Informatics, Environmental Systems, Bioinformatics,
Biostatistics, Process Modelling and Finance. He has got several awards. Lately, in June 2016,
he has been appointed Knight of the Order of Dannebrog by Her Majesty the Queen of Denmark,
and he was appointed Doctor HC at Lund University in June 2017. He has authored or co-authored
approximately 500 papers and 12 books. The most recent books are Time Series Analysis (2008);
General and Generalized Linear Models (2011); Integrating Renewables in Electricity Markets
(2013), and Statistics for Finance (2015).

Florin Popenţiu-Vlădicescu was born on 17 September 1950, graduated in Electronics and
Telecommunications from University POLITEHNICA of Bucharest in 1974, holds a Ph.D. in
Reliability since 1981. Also, he is Associated Professor to University “Politehnica” of Bucharest,
Faculty of Automatic Control and Computer Science. He is the founder of the first “UNESCO

http://selab.netlab.uky.edu/homepage/publications/RE-hakim.pdf
https://doi.org/10.1145/1068009.1068187
https://doi.org/10.5277/e-inf180108
https://cis.ieee.org/
https://www.cigniti.com/
https://sunset.usc.edu/research/COCOMOII/Docs/modelman.pdf

Computational Intelligence Approaches … 317

Chair of Information Engineering”, in UK, established at City University London, in 1998. He
published over 150 papers in international journals and conference proceedings. Also he is author
of one book, and co-author of 4 books. He has worked for many years on problems associated with
software reliability and has been Co-Director of two NATO Research Projects, in collaboration
with Telecom ParisTech and Danish Technical University (DTU). He is an independent expert to
the European Commission—H2020 programme, for Net Services—Software and Services, Cloud.
He is currently Visiting Professor at renowned European and South Asian universities. He was
elected Fellow of the Academy of Romanian Scientists in 2008.

	 Computational Intelligence Approaches for Software Quality Improvement
	1 Introduction
	2 Overview on Computational Intelligence Paradigms
	3 Computational Intelligence for Software Requirements Engineering
	4 Computational Intelligence for Software Testing
	5 A Neutrosophic Approach to Software Quality Evaluation
	6 Conclusions
	References

