Average Failure Rate and Its Applications of Preventive Replacement Policies

Xufeng Zhao, Jiajia Cai, Satoshi Mizutani and Toshio Nakagawa

Abstract When a mission arrives at a random time and lasts for an interval, it becomes an important constraint to plan preventive replacement policies, as the unit should provide reliability and no maintenance can be done during the mission interval. From this viewpoint, this chapter firstly gives a definition of an average failure rate, which is based on the conditional failure probability and the mean time to failure, given that the unit is still survival at the mission arrival time. Next, age replacement models are discussed analytically to show that how the average failure rate function appears in the models. In addition, periodic replacement models with minimal repairs are discussed in similar ways. Numerical examples are given when the mission arrival time follows a gamma distribution and the failure time of the unit has a Weibull distribution.

Keywords Age replacement · Minimal repair · Failure rate · Mission interval · Reliability

1 Introduction

Preventive replacement policies have been studied extensively in literatures $[1-7]$ $[1-7]$. Barlow and Proschan [\[1\]](#page-14-0) have firstly given an age replacement model for a finite operating time span, where the unit operates from installation to a fixed interval caused by external factors, and it is replaced at the end of the interval even if no

X. Zhao (B) · J. Cai College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China e-mail: reliab@outlook.com

S. Mizutani · T. Nakagawa Department of Business Administration, Aichi Institute of Technology, Toyota 470-0392, Japan

The chapter submitted to H. Pham (Ed), Reliability and Statistical Computing, Springer.

failure has occurred. When the finite time span becomes a random interval with working cycles, during which, it is impossible to perform maintenance policies, optimal replacement policies with random works have been discussed [\[3](#page-14-2), [6](#page-14-3), [8,](#page-14-4) [9](#page-14-5)].

When the working cycles are taken into account for planning replacement polices, Zhao and Nakagawa [\[10\]](#page-14-6) proposed the policies of replacement first and replacement last, that would become alternatives in points of cost rate, reliability and maintainability. Replacement first means the unit is replaced preventively at events such as operating time, number of repairs, or mission numbers, etc, whichever takes place first, while replacement last means the unit is replaced preventively at the above events, whichever takes place last. It has been shown that replacement last could let the unit operate working cycles as longer as possible while replacement first are more easier to save total maintenance cost [\[10](#page-14-6)]. More recent models of replacement first and replacement last can be found in [\[11](#page-14-7)[–15](#page-14-8)].

In this chapter, the above working cycle is reconsidered as mission interval, and we suppose that the arrival time of a mission is a random variable rather than it begins from installation and lasts for an interval, during which, the unit should provide reliability and no maintenance can be done. The typical example is maintaining a hot spare for a key unit in a working system, in which, the spare unit should be active at the time when the key unit fails and provide system reliability for an interval when the key unit is unavailable. From this viewpoint, this chapter discusses preventive replacement policies for random arrival of missions. For this, an average failure rate is firstly given based on the conditional failure probability and the mean time to failure, given that the unit is still survival at time *t*. We next formulate and optimize the models of age replacement policies and the periodic policies with minimal repairs in analytical ways. Numerical examples are given when the mission arrival time follows a gamma distribution and the failure time of the unit has a Weibull distribution.

2 Average Failure Rate

It is assumed that a unit has a general failure distribution $F(t) \equiv Pr\{X \le t\}$ with a density function $f(t) \equiv dF(t)/dt$ and a finite mean $\mu \equiv \int_0^\infty \overline{F}(t)dt$. The conditional failure probability is given by [\[2](#page-14-9)]:

$$
\lambda(t; x) \equiv \frac{F(t+x) - F(t)}{\overline{F}(t)} \quad (0 < x < \infty),\tag{1}
$$

which represents the probability that the unit fails in interval $[t, t + x]$, given that it is still survival at time *t*. Note that $0 \le \lambda(t; x) \le 1$. When $x \to 0$, $\lambda(t; x)/x$ becomes an instant failure rate:

$$
h(t) \equiv \frac{f(t)}{\overline{F}(t)} = -\frac{1}{\overline{F}(t)} \frac{dF(t)}{dt}.
$$
 (2)

We usually suppose, in modeling maintenance policies, that $h(t)$ increases with t from $h(0) = 0$ to $h(\infty) \equiv \lim_{t \to \infty} h(t)$ that might be infinity, i.e., $\lambda(t; x)$ increases with t from $F(x)$ to 1.

We next define:

$$
F(t; x) = \frac{\int_{t}^{t+x} \overline{F}(u) du}{\overline{F}(t)},
$$
\n(3)

which means the mean time to failure, given that the unit is still survival at time *t*. Obviously, when $t \to 0$, $F(t; x)$ becomes $\int_0^x \overline{F}(u) du$, that represents the mean time to replacement when the unit is replaced preventively at time *x* or correctively at failure, whichever takes place first. When $t \to \infty$,

$$
\lim_{t \to \infty} \frac{\int_{t}^{t+x} \overline{F}(u) du}{\overline{F}(t)} = \lim_{t \to \infty} \frac{F(t+x) - F(t)}{f(t)} = \lim_{t \to \infty} \frac{\lambda(t;x)}{h(t)} = \frac{1}{h(\infty)}.
$$

Differentiating $\int_{t}^{t+x} \overline{F}(u) du / \overline{F}(t)$ with *t*, and noting that

$$
h(t)\int_{t}^{t+x} \overline{F}(t)dt - [F(t+x) - F(t)]
$$

\n
$$
\leq h(t)\int_{t}^{t+x} \left[\frac{f(u)}{h(t)}\right]du - [F(t+x) - F(t)] = 0.
$$

which shows that $F(t; x)$ decreases with *t* from $\int_0^x \overline{F}(u) du$ to $1/h(\infty)$.

Using $\lambda(t; x)$ and $F(t; x)$, we define:

$$
\Lambda(t; x) \equiv \frac{F(t+x) - F(t)}{\int_{t}^{t+x} \overline{F(u) du}} \quad (0 < x < \infty), \tag{4}
$$

which means the average failure rate, given that the unit is still survival at time *t*. It can be easily proved that $\Lambda(t; x)$ increases with *t* from $F(x)/\int_0^x \overline{F}(u)du$ to $h(\infty)$, and $h(t) \leq \Lambda(t; x) \leq h(t + x)$.

3 Age Replacement

In this section, we apply the above average failure rate into age replacement policies with random arrival of missions. That is, the unit begins to operate after installation, and its failure time *X* (0 < *X* < ∞) has a general distribution $F(t) \equiv Pr{X \le t}$ with finite mean $\mu \equiv \int_0^\infty \overline{F}(t) dt$. In addition, the unit should be active at time T_o (0 < $T_o < \infty$) for an interval $[T_o, T_o + t_x]$ ($0 \le t_x < \infty$) to provide reliability. In this case, t_x can be considered as a mission interval during which the unit provides reliability in [\[2](#page-14-9)].

3.1 Constant To

We plan the unit is replaced preventively at time $T_0 + t_x$ ($0 \le t_x \le \infty$) when it is still survival at time T_o ($0 \leq T_o < \infty$), or it is replaced correctively at failure time *X* during $(0, T_0 + t_x)$, whichever takes place first.

The probability that the unit is replaced at $T_0 + t_x$ is

$$
\Pr\{X > T_o + t_x\} = \overline{F}(T_o + t_x),\tag{5}
$$

and the probability that it is replaced at failure is

$$
\Pr\{X \le T_o + t_x\} = F(T_o + t_x). \tag{6}
$$

The mean time from installation to replacement is

$$
(T_o + t_x)\overline{F}(T_o + t_x) + \int_0^{T_o + t_x} t \mathrm{d}F(t) = \int_0^{T_o + t_x} \overline{F}(t) \mathrm{d}t \tag{7}
$$

Thus, the expected replacement cost rate is

$$
C_{s}(t_{x}; T_{o}) = \frac{c_{p} + (c_{f} - c_{p})F(T_{o} + t_{x})}{\int_{0}^{T_{o} + t_{x}} \overline{F}(t)dt},
$$
\n(8)

where c_f and c_p ($c_p < c_f$) are the costs of replacement policies done at failure and at $T_o + t_x$, respectively.

We find optimum t_x^* to minimize $C_s(t_x; T_o)$ in [\(8\)](#page-3-0). Differentiating $C_s(t_x; T_o)$ with respect to t_x and setting it equal to zero,

$$
h(T_o + t_x) \int_0^{T_o + t_x} \overline{F}(t) dt - F(T_o + t_x) = \frac{c_p}{c_f - c_p},
$$
\n(9)

whose left-hand side increases with t_x from

$$
h(T_o)\int_0^{T_o}\overline{F}(t)\mathrm{d}t-F(T_o)
$$

to $h(\infty)/\mu - 1$. Thus, if $h(t)$ increases strictly with *t* to $h(\infty) = \infty$, then there exists a finite and unique t_x^* ($0 \le t_x^* < \infty$) which satisfies [\(9\)](#page-3-1), and the resulting cost rate is

$$
C_s(t_x^*; T_o) = (c_f - c_p)h(T_o + t_x^*).
$$
 (10)

Average Failure Rate and Its Applications … 233

Noting that the left-hand side of (9) increases with T_o , t_x^* decreases with T_o from T^* to 0, where T^* is an optimum age replacement time that satisfies

$$
h(T)\int_0^T \overline{F}(t)dt - F(T) = \frac{c_p}{c_f - c_p}.
$$
 (11)

3.2 Random To

When T_0 is a random variable and has a general distribution $Y(t) \equiv Pr{T_0 \le t}$ with a density function $y(t) \equiv dY(t)/dt$ and a finite mean $\gamma = \int_0^\infty \overline{Y}(t)dt$, we plan that the unit is replaced preventively at time $T_o + t_x$ ($0 \le t_x \le \infty$) when it is still survival at a random time T_o ($0 \leq T_o < \infty$), or it is replaced correctively at failure time *X* during $(0, T_0 + t_x]$, whichever takes place first.

The probability that the unit is replaced at $T_0 + t_x$ is

$$
\Pr\{X > T_o + t_x\} = \int_0^\infty \overline{F}(t + t_x) dY(t),\tag{12}
$$

and the probability that it is replaced at failure is

$$
\Pr\{X \le T_o + t_x\} = \int_0^\infty F(t + t_x) dY(t). \tag{13}
$$

The mean time from installation to replacement is

$$
\int_0^\infty (t+t_x)\overline{F}(t+t_x) dY(t) + \int_0^\infty \left[\int_0^{t+t_x} u dF(u) \right] dY(t)
$$

=
$$
\int_0^\infty \left[\int_0^{t+t_x} \overline{F}(u) du \right] dY(t).
$$
 (14)

Thus, the expected replacement cost rate is

$$
C_{s}(t_{x}; Y) = \frac{c_{p} + (c_{f} - c_{p}) \int_{0}^{\infty} F(t + t_{x}) dY(t)}{\int_{0}^{\infty} [\int_{0}^{t + t_{x}} \overline{F}(u) du] dY(t)},
$$
\n(15)

where c_f and c_p ($c_p < c_f$) are the costs of replacement policies done at failure and at $T_0 + t_x$, respectively.

Clearly,

$$
\lim_{t_x\to\infty}C_s(t_x;Y)=\frac{c_f}{\mu},
$$

$$
\lim_{t_x \to 0} C_s(t_x; Y) = \frac{c_p + (c_f - c_p) \int_0^\infty F(t) dY(t)}{\int_0^\infty \overline{F}(t) \overline{Y}(t) dt},
$$

which agrees with random replacement model in [\[3\]](#page-14-2).

We find optimum t^*_x to minimize $C_s(t_x; Y)$ in [\(15\)](#page-4-0). Differentiating $C_s(t_x; Y)$ with respect to t_x and setting it equal to zero,

$$
h_s(t_x)\int_0^\infty \left[\int_0^{t+t_x} \overline{F}(u)du\right] dY(t) - \int_0^\infty F(t+t_x) dY(t) = \frac{c_p}{c_f - c_p},\qquad(16)
$$

where

$$
h_s(t_x) \equiv \frac{\int_0^\infty f(t+t_x) dY(t)}{\int_0^\infty \overline{F}(t+t_x) dY(t)}.
$$

When $Y(t) = 1 - e^{-\theta t}$,

$$
h_s(t_x) \equiv \lim_{T \to \infty} h_f(T; t_x) \equiv \lim_{T \to \infty} \frac{\int_0^T f(t + t_x) dY(t)}{\int_0^T \overline{F}(t + t_x) dY(t)},
$$

and it increases with t_x from $h_s(0) = \int_0^\infty f(t)e^{-\theta t} dt / \int_0^\infty \overline{F}(t)e^{-\theta t} dt$ to $h(\infty)$. Then, the left-hand side of [\(16\)](#page-5-0) increases with t_x to ∞ as $h(\infty) \to \infty$. In this case, there exists a finite and unique t_x^* ($0 \le t_x^* < \infty$) which satisfies [\(16\)](#page-5-0), and the resulting cost rate is

$$
C_s(t_x^*; Y) = (c_f - c_p)h_s(t_x^*).
$$
 (17)

When T_o has a gamma distribution with a density function $y(t) = \theta^k t^{k-1}$ $e^{-\theta t}/(k-1)!$ ($k = 1, 2, ...$), and the failure time *X* has a Weibull distribution $F(t) = 1 - e^{-(\alpha t)^{\beta}}$ $F(t) = 1 - e^{-(\alpha t)^{\beta}}$ $F(t) = 1 - e^{-(\alpha t)^{\beta}}$ ($\alpha > 0, \beta > 1$), Table 1 presents optimum t_x^* and its cost rate *C_s*(t_x^* ; *Y*) for *k* and c_p when $\theta = 1.0$ $\theta = 1.0$ $\theta = 1.0$, $\alpha = 0.1$, $\beta = 2.0$, and $c_f = 100.0$. Table 1 shows that optimum interval $[T_o, T_o + t_x^*]$ decreases with *k* and increases with c_p . This means that if *k* becomes large, then the failure rate increases with T_o and t_x^* becomes small. On the other hand, if c_p ($\lt c_f$) becomes large, then it is unnecessary to replace the unit at a early time and t^* becomes large.

Average Failure Rate and Its Applications … 235

			in the second contract of the c			
c_p	$k=1$		$k=2$		$k=5$	
	t_x^*	$C_s(t^*_x; Y)$	t_x^*	$C_s(t^*_x; Y)$	t_x^*	$C_s(t^*_r; Y)$
10.0	2.564	6.269	1.756	6.466	$t_r^* \rightarrow 0$	7.048
15.0	3.446	7.397	2.625	7.537	0.147	7.911
20.0	4.282	8.279	3.457	8.385	0.968	8.662
25.0	5.114	8.989	4.286	9.067	1.797	9.276
30.0	5.966	9.565	5.141	9.624	2.659	9.780
35.0	6.863	10.031	6.043	10.076	3.575	10.191
40.0	7.832	10.406	7.018	10.439	4.569	10.521
45.0	8.901	10.700	8.096	10.723	5.671	10.779
50.0	10.111	10.921	9.316	10.937	6.924	10.974

Table 1 Optimum t_x^* and its cost rate $C_s(t_x^*; Y)$ when $\theta = 1.0$, $\alpha = 0.1$, $\beta = 2.0$, and $c_f = 100.0$

3.3 Replace at T and $T_0 + t_x$

In order to prevent early or late arrivals of time T_o , we plan that the unit is replaced preventively at time T ($0 < T \le \infty$) or at time $T_0 + t_x$ ($0 \le t_x \le \infty$), whichever takes place first. However, no replacement can be done preventively during the interval $[T_o, T_o + t_x]$. In this policy, t_x is constantly given and T_o is a random variable with a general distribution *Y* (*t*).

The probability that the unit is replaced at *T* is

$$
\Pr\{X > T, T_o > T\} = \overline{F}(T)\overline{Y}(T),\tag{18}
$$

the probability that it is replaced at $T_0 + t_x$ is

$$
\Pr\{X > T_o + t_x, T_o \le T\} = \int_0^T \overline{F}(t + t_x) dY(t),
$$
\n(19)

and the probability that it is replaced at failure is

$$
\Pr\{X \le T \text{ and } T_0 \ge T, X \le T_0 + t_X \text{ and } T_0 < T\} = F(T)\overline{Y}(T) + \int_0^T F(t + t_X) \mathrm{d}Y(t),\tag{20}
$$

where note that $(18)+(19)+(20) = 1$ $(18)+(19)+(20) = 1$ $(18)+(19)+(20) = 1$ $(18)+(19)+(20) = 1$ $(18)+(19)+(20) = 1$ $(18)+(19)+(20) = 1$.

The mean time from installation to replacement is

$$
T\overline{F}(T)\overline{Y}(T) + \int_0^T (t+t_x)\overline{F}(t+t_x) dY(t) + \overline{Y}(T) \int_0^T t dF(t)
$$

+
$$
\int_0^T \left[\int_0^{t+t_x} u dF(u) \right] dY(t)
$$

=
$$
\overline{Y}(T) \int_0^T \overline{F}(t) dt + \int_0^T \left[\int_0^{t+t_x} \overline{F}(u) du \right] dY(t).
$$
 (21)

Thus, the expected replacement cost rate is

$$
C_f(T; t_x) = \frac{c_p + (c_f - c_p)[F(T)\overline{Y}(T) + \int_0^T F(t + t_x) dY(t)]}{\overline{Y}(T) \int_0^T \overline{F}(t) dt + \int_0^T [\int_0^{t + t_x} \overline{F}(u) du] dY(t)},
$$
(22)

Note that when $t_x \to \infty$, $\lim_{t_x \to \infty} C_f(T; t_x)$ becomes age replacement model in [\[2\]](#page-14-9), when $t_x \to 0$, $\lim_{t_x \to 0} C_f(T; t_x)$ becomes random replacement model in [\[3\]](#page-14-2), when $T \to \infty$, $\lim_{T \to \infty} C_f(T; t_x) = C_s(t_x; Y)$ in [\(15\)](#page-4-0), and when $T \to 0$, $\lim_{T\to 0} C_f(T; t_x) = \infty$.

We find optimum T_f^* and t_{xf}^* to minimize $C_f(T; t_x)$ in [\(22\)](#page-7-0) for given t_x . Differentiating $C_f(T; t_x)$ with respect to *T* and setting it equal to zero,

$$
q_f(T; t_x) \left\{ \overline{Y}(T) \int_0^T \overline{F}(t) dt + \int_0^T \left[\int_0^{t+t_x} \overline{F}(u) du \right] dY(t) \right\}
$$

$$
- \left[F(T) \overline{Y}(T) + \int_0^T F(t + t_x) dY(t) \right] = \frac{c_p}{c_f - c_p},
$$
(23)

where

$$
q_f(T; t_x) \equiv \frac{r(T)\lambda(T; t_x) + h(T)}{r(T)\frac{\lambda(T; t_x)}{\Lambda(T; t_x)} + 1} \text{ and } r(T) \equiv \frac{y(T)}{\overline{Y}(T)},
$$

and the instant failure rate $h(T)$, the conditional failure probability $\lambda(T; t_x)$ and the average failure rate $\Lambda(T; t_x)$ are included in $q_f(T; t_x)$.

When $Y(t) = 1 - e^{-\theta t}$, $r(T) = \theta$ and

$$
q_f(T; t_x) = \frac{\theta[F(T+t_x) - F(T)] + f(T)}{\theta \int_T^{T+t_x} \overline{F}(t) dt + \overline{F}(T)}.
$$

Note that

$$
h(T) < \frac{F(T+t_x)-F(T)}{\int_T^{T+t_x} \overline{F}(t) \mathrm{d}t} < h(T+t_x),
$$

then $q_f(T; t_x)$ increases strictly with *T* to ∞ as $h(\infty) \to \infty$, and also increases strictly with t_x to $q_f(T; \infty)$. Thus, the left-hand side of [\(23\)](#page-7-1) increases with *T* from 0 to ∞ as $h(\infty) \to \infty$. In this case, there exists a finite and unique T_f^* ($0 < T_f^* < \infty$) which satisfies (23) , and the resulting cost rate is

$$
C_f(T_f^*; t_x) = (c_f - c_p)q_f(T_f^*; t_x).
$$
\n(24)

In addition, the left-hand side of [\(23\)](#page-7-1) increases with t_x , then T_f^* decreases with t_x from T^* which satisfies the following random replacement model [\[3\]](#page-14-2),

$$
h(T)\int_0^T e^{-\theta t} \overline{F}(t)dt - \int_0^T e^{-\theta t} dF(t) = \frac{c_p}{c_f - c_p}.
$$

Nest, we find optimum t_{xf}^* for given *T*. Differentiating $C_f(T; t_x)$ with respect to t_x for given *T* and setting it equal to zero,

$$
h_f(T; t_x) \left\{ \overline{Y}(T) \int_0^T \overline{F}(t) dt + \int_0^T \left[\int_0^{t+t_x} \overline{F}(u) du \right] dY(t) \right\}
$$

$$
- \left[F(T) \overline{Y}(T) + \int_0^T F(t+t_x) dY(t) \right] = \frac{c_p}{c_f - c_p},
$$
(25)

where

$$
h_f(T; t_x) \equiv \frac{\int_0^T f(t+t_x) dY(t)}{\int_0^T \overline{F}(t+t_x) dY(t)} < h(T+t_x).
$$

When $Y(t) = 1 - e^{-\theta t}$, $h_f(T; t_x)$ increases with t_x to $h(\infty)$. Then, the left-hand side of [\(25\)](#page-8-0) increases strictly with t_x from 0 to ∞ as $h(\infty) \to \infty$. In this case, there exists a finite and unique t_{xf}^* ($0 < t_{xf}^* < \infty$) which satisfies [\(25\)](#page-8-0), and the resulting cost rate is

$$
C_f(T; t_{xf}^*) = (c_f - c_p)h_f(T; t_{xf}^*).
$$
 (26)

Note that t_{xf}^* decreases with *T* to t_x^* given in [\(16\)](#page-5-0), as the left-hand side of [\(22\)](#page-7-0) increases with T to that of (16) .

When $y(t) = \theta^k t^{k-1} e^{-\theta t} / (k-1)!$ ($k = 1, 2, ...$) and $F(t) = 1 - e^{-(\alpha t)^{\beta}}$, ($\alpha >$ $(0, \beta \ge 1)$, Table [2](#page-9-0) presents optimum T_f^* and its cost rate $C_f(T_f^*; t_x)$ for t_x and c_p when $\theta = 1.0, k = 2, \alpha = 0.1, \beta = 2.0, \text{and } c_f = 100.0, \text{and Table 3 presents optimum } t_{xy}^*$ $\theta = 1.0, k = 2, \alpha = 0.1, \beta = 2.0, \text{and } c_f = 100.0, \text{and Table 3 presents optimum } t_{xy}^*$ $\theta = 1.0, k = 2, \alpha = 0.1, \beta = 2.0, \text{and } c_f = 100.0, \text{and Table 3 presents optimum } t_{xy}^*$ and its cost rate $C_f(T; t_{xf}^*)$ for *T* and c_p when $\theta = 1.0, k = 2, \alpha = 0.1, \beta = 2.0$, and $c_f = 100.0$. Table [3](#page-9-1) shows that T_f^* increases with c_p and decreases with t_x and t_{xy}^* increases with c_p and decreases with T , as shown in the above analytical discussions.

c_p	$t_r = 1.0$			$t_r = 2.0$		$t_r = 5.0$	
	T_f^*	$C_f(T_f^*; t_x)$	T_f^*	$C_f(T_f^*; t_x)$	T_f^*	$C_f(T_f^*; t_x)$	
10.0	3.368	6.442	2.864	6.174	2.167	6.977	
15.0	4.577	8.148	3.834	7.493	2.871	7.786	
20.0	5.888	9.769	4.864	8.702	3.587	8.453	
25.0	7.354	11.360	6.001	9.861	4.357	9.048	
30.0	9.027	12.943	7.291	11.002	5.212	9.602	
35.0	10.961	14.524	8.776	12.136	6.185	10.135	
40.0	13.260	16.105	10.513	13.268	7.315	10.659	
45.0	16.050	17.686	12.612	14.400	8.650	11.179	
50.0	19.265	19.266	15.380	15.532	10.257	11.698	

Table 2 Optimum T_f^* and its cost rate $C_f(T_f^*; t_x)$ when $\theta = 1.0, k = 2, \alpha = 0.1, \beta = 2.0$, and $c_f = 100.0$

Table 3 Optimum t_{xf}^* and its cost rate $C_f(T; t_{xf}^*)$ when $\theta = 1.0, k = 2, \alpha = 0.1, \beta = 2.0$, and $c_f = 100.0$

c_p	$T = 1.0$		$T = 2.0$		$T = 5.0$	
	t_{xf}^*	$C_f(T; t_{xf}^*)$	t_{xf}^*	$C_f(T; t_{xf}^*)$	t_{xf}^*	$C_f(T; t_{xf}^*)$
10.0	3.918	8.137	2.446	6.330	1.800	6.350
15.0	5.541	10.440	3.512	7.781	2.673	7.447
20.0	7.135	12.374	4.543	8.964	3.510	8.317
25.0	8.776	14.058	5.581	9.953	4.345	9.022
30.0	10.523	15.564	6.659	10.791	5.206	9.598
35.0	12.442	16.943	7.811	11.510	6.116	10.070
40.0	14.606	18.234	9.069	12.126	7.101	10.452
45.0	17.113	19.468	10.479	12.659	8.190	10.754
50.0	20.088	20.670	12.101	13.122	9.424	10.985

4 Minimal Repair

It is assumed that the unit undergoes minimal repairs at failures and begins to operate again after repairs, where the time for repairs are negligible and the failure rate remains undisturbed by repairs. In this case, we define

$$
\Lambda(t; x) = \frac{1}{x} \int_{t}^{t+x} h(u) \mathrm{d}u,\tag{27}
$$

which means the average failure rate for an interval $[t, t + x]$. It is obviously to show that $\Lambda(t; x)$ increases with *t* from $H(x)/x$ to $h(\infty)$ and increases with *x* from $h(0)$ to $h(\infty)$, and $h(t) \leq \Lambda(t; x) \leq h(t + x)$.

4.1 Constant To

In order to prevent an increasing repair cost, we plan that the unit is replaced at time $T_o + t_x$ ($0 < T_o \le \infty$, $0 \le t_x < \infty$). Noting that the expected number of failures during $(0, T_0 + t_x)$ is $H(T_0 + t_x)$, the expected cost rate is

$$
C_{s}(t_{x}; T_{o}) = \frac{c_{m}H(T_{o} + t_{x}) + c_{p}}{T_{o} + t_{x}},
$$
\n(28)

where c_m is minimal repair cost at failure, and c_p is given in [\(8\)](#page-3-0).

We find optimum t_x^* to minimize $C_s(t_x; T_o)$ for given T_o . Differentiating $C_s(t_x; T_o)$ with respect to t_x and setting it equal to zero,

$$
h(T_o + t_x)(T_o + t_x) - H(T_o + t_x) = \frac{c_p}{c_m},
$$
\n(29)

whose left-hand side increases with t_x from $h(T_o)T_o - H(T_o)$ to $\int_0^\infty [h(\infty)$ *h*(*t*)]d*t*. Thus, if the failure rate *h*(*t*) increases strictly with *t* to *h*(∞) = ∞, then there exists a finite and unique t_x^* ($0 \le t_x^* < \infty$) which satisfies [\(29\)](#page-10-0), and the resulting cost rate is

$$
C_s(t_x^*; T_o) = c_m h(T_o + t_x^*),
$$
\n(30)

Noting that the left-hand side of (29) increases with T_o , t_x^* decreases with T_o from T^* to 0, where T^* is an optimum periodic replacement time that satisfies

$$
h(T)T - H(T) = \frac{c_p}{c_m}.\tag{31}
$$

4.2 Random To

We plan that the unit is replaced at time $T_0 + t_x$ ($0 \le t_x < \infty$), where T_0 is a random variable with distribution $Y(t)$. Then, the expected cost rate is

$$
C_{s}(t_{x}; Y) = \frac{c_{m} \int_{0}^{\infty} H(t + t_{x}) dY(t) + c_{p}}{\int_{0}^{\infty} (t + t_{x}) dY(t)},
$$
\n(32)

where c_m is minimal repair cost at failure, and c_p is given in [\(15\)](#page-4-0).

Clearly, $\lim_{t_x \to \infty} C_s(t_x; Y) \to \infty$ and

$$
\lim_{t_x \to 0} C_s(t_x; Y) = \frac{c_m \int_0^\infty H(t) dY(t) + c_p}{\int_0^\infty t dY(t)},
$$

which agrees with random replacement model [\[3](#page-14-2)].

If there exists an optimum t_x^* to minimize $C_s(t_x; Y)$ in [\(32\)](#page-10-1), it satisfies

$$
\int_0^\infty (t+t_x) dY(t) \int_0^\infty h(t+t_x) dY(t) - \int_0^\infty H(t+t_x) dY(t) = \frac{c_p}{c_m},\qquad(33)
$$

whose left-hand side increases with t_x to ∞ as $h(\infty) \to \infty$. In this case, the resulting cost rate is

$$
C_{s}(t_{x}^{*}; Y) = c_{m} \int_{0}^{\infty} h(t + t_{x}^{*}) dY(t).
$$
 (34)

When $y(t) = \frac{\theta^k t^{k-1} e^{-\theta t}}{\Gamma(k)}$ and $F(t) = 1 - e^{-(\alpha t)^{\beta}}$, Table [4](#page-11-0) presents optimum t_x^* and its cost rate $C_s(t_x^*; Y)$ for *k* and c_m when $\theta = 1.0$, $\alpha = 1.0$, $\beta = 2.0$, and $c_p = 100.0$. Table [4](#page-11-0) shows that optimum interval $[T_o, T_o + t_x^*]$ decreases when c_m increases and T_o arrives at a late time due to the total increasing repair cost. Note that when $k = 5$, $t_x^* \rightarrow 0$ for all of c_m .

4.3 Replace at T and $T_0 + t_r$

We plan that the unit is replaced at time *T* (0 < *T* $\leq \infty$) or at time $T_0 + t_x$ (0 $\leq t_x \leq$ ∞), whichever takes place first; however, only minimal repairs can be done during the interval $[T_o, T_o + t_x]$. Then, the expected number of repairs between replacement policies is

$$
H(T)\overline{Y}(T) + \int_0^T H(t+t_x)dY(t),
$$
\n(35)

c_m	$k=1$		$k=2$		$k=5$	
	t_x^*	$C_s(t^*_r; Y)$	t_x^*	$C_s(t^*_x; Y)$	t_x^*	$C_s(t^*_r; Y)$
10.0	2.317	66.324	1.465	69.178	$t_r^* \rightarrow 0$	77.383
15.0	1.769	83.324	0.944	88.133	$t_r^* \rightarrow 0$	105.355
20.0	1.449	97.953	0.644	105.529	$t^* \rightarrow 0$	133.327
25.0	1.236	111.782	0.447	122.048	$t_r^* \rightarrow 0$	161.300
30.0	1.081	124.855	0.307	138.057	$t_r^* \rightarrow 0$	189.272
35.0	0.963	137.392	0.201	153.651	$t_r^* \rightarrow 0$	217.244
40.0	0.871	149.613	0.118	168.977	$t_r^* \rightarrow 0$	245.217
45.0	0.794	161.407	0.051	184.072	$t_r^* \rightarrow 0$	273.189
50.0	0.732	173.128	$t_r^* \rightarrow 0$	199.001	t^* \rightarrow 0	301.161

Table 4 Optimum t_x^* and its cost rate $C_s(t_x^*; Y)$ when $\theta = 1.0$, $\alpha = 1.0$, $\beta = 2.0$, and $c_p = 100.0$

and the mean time from installation to replacement is

$$
T\overline{Y}(T) + \int_0^T (t + t_x) dY(t) = t_x Y(T) + \int_0^T \overline{Y}(t) dt.
$$
 (36)

Thus, the expected replacement cost rate is

$$
C_f(T; t_x) = \frac{c_m[H(T)\overline{Y}(T) + \int_0^T H(t + t_x) dY(t)] + c_p}{t_x Y(T) + \int_0^T \overline{Y}(t) dt}.
$$
 (37)

Differentiating $C_f(T; t_x)$ with respect to *T* and setting it equal to zero,

$$
q_f(T; t_x)\left[t_xY(T) + \int_0^T \overline{Y}(t)dt\right] - \left[H(T)\overline{Y}(T) + \int_0^T H(t + t_x)dY(t)\right] = \frac{c_p}{c_m},\tag{38}
$$

where

$$
q_f(T; t_x) \equiv \frac{r(T)\Lambda(T; t_x) + h(T)/t_x}{r(T) + 1/t_x}.
$$
 (39)

When $Y(t) = 1 - e^{-\theta t}$, $q_f(T; t_x)$ increases with *T* to $h(\infty)/(\theta t_x + 1)$. Then, the left-hand side of [\(38\)](#page-12-0) increases with *T* from 0 to ∞ as $h(\infty) \to \infty$. Therefore, there exits a finite and unique T_f^* $(0 < T_f^* < \infty)$ which satisfies [\(38\)](#page-12-0), and the resulting cost rate is

$$
C_f(T_f^*; t_x) = c_m \frac{\theta \Lambda(T_f^*; t_x) + h(T_f^*)/t_x}{\theta + 1/t_x}.
$$
\n(40)

Next, differentiating $C_f(T; t_x)$ with respect to t_x and setting it equal to zero,

$$
\frac{\int_0^T h(t+t_x) dY(t)}{Y(T)} \left[t_x Y(T) + \int_0^T \overline{Y}(t) dt \right] - \left[H(T) \overline{Y}(T) + \int_0^T H(t+t_x) dY(t) \right] = \frac{c_p}{c_m},
$$
\n(41)

whose left-hand side increases with t_x to ∞ as $h(\infty) \to \infty$. Therefore, there exists a finite and unique t_{xf}^* ($0 \le t_{xf}^* < \infty$) which satisfies [\(40\)](#page-12-1), and the resulting cost rate is

$$
C_f(T; t_{xf}^*) = c_m \frac{\int_0^T h(t + t_{xf}^*) \mathrm{d}Y(t)}{Y(T)}.
$$
\n(42)

c_m	$k=1$			$k=2$		$k=3$	
	T_f^*	$C_f(T_f^*; t_x)$	T_f^*	$C_f(T_f^*; t_x)$	T_f^*	$C_f(T_f^*; t_x)$	
10.0	3.467	74.336	3.115	66.613	3.057	64.619	
15.0	2.588	85.137	2.451	79.764	2.451	78.299	
20.0	2.139	95.547	2.080	91.265	2.119	90.667	
25.0	1.846	104.785	1.846	102.121	1.885	101.321	
30.0	1.631	112.852	1.670	111.739	1.709	110.321	
35.0	1.494	122.090	1.533	120.521	1.592	120.077	
40.0	1.377	130.156	1.416	128.062	1.475	127.323	
45.0	1.279	137.637	1.338	136.789	1.396	135.778	
50.0	1.201	145.117	1.260	143.873	1.318	142.548	

Table 5 Optimum T_f^* and its cost rate $C_f(T_f^*; t_x)$ when $\theta = 1.0$, $\alpha = 1.0$, $\beta = 2.0$, $t_x = 1.0$, and $c_p = 100.0$

Table 6 Optimum t_{xf}^* and its cost rate $C_f(T; t_{xf}^*)$ when $\theta = 1.0$, $\alpha = 1.0$, $\beta = 2.0$, $T = 1.0$ and $c_p = 100.0$

c_m	$k=1$		$k=2$		$k=3$	
	t_{xf}^*	$C_f(T; t_{xf}^*)$	t_{xf}^*	$C_f(T; t_{xf}^*)$	t_{xf}^*	$C_f(T; t_{xf}^*)$
10.0	3.096	70.275	3.564	83.445	4.189	97.977
15.0	2.393	84.318	2.588	95.870	2.861	107.121
20.0	1.982	96.018	2.041	105.952	2.158	114.704
25.0	1.709	106.350	1.689	114.862	1.709	120.919
30.0	1.514	115.902	1.436	122.600	1.416	127.524
35.0	1.357	124.281	1.240	129.362	1.182	132.372
40.0	1.221	131.098	1.084	135.342	1.025	138.782
45.0	1.123	138.696	0.967	141.713	0.889	143.825
50.0	1.045	146.294	0.869	147.693	0.791	150.040

When $y(t) = \theta^k t^{k-1} e^{-\theta t} / \Gamma(k)$ and $F(t) = 1 - e^{-(\alpha t)^{\beta}}$, Table [5](#page-13-0) presents optimum *T*^{*}_{*f*} and its cost rate $C_f(T_f^*; t_x)$ for t_x and c_m when $\theta = 1.0$, $\alpha = 1.0$, $\beta = 2.0$, $t_x =$ 1.0, and $c_p = 100.0$, and Table [6](#page-13-1) presents optimum t_{xf}^* and its cost rate $C_f(T; t_{xf}^*)$ for *k* and c_m when $\theta = 1.0$, $\alpha = 1.0$, $\beta = 2.0$, $T = 1.0$, and $c_p = 100.0$.

5 Conclusions

We have firstly obtained a definition of average failure rate, i.e., $\Lambda(t; x)$, that is based on the conditional failure probability and the mean time to failure given that the unit is still survival at time *t*. The mathematical monotonicity of $\Lambda(t; x)$ has been proved analytically. Next, the average failure rate has been applied into preventive replacement policies when the arrival time of a mission is a random variable and lasts for an interval, during which, the unit provides reliability and no maintenance can be done. Optimum replacement time and mission interval have been discussed respectively for the models of age replacement and periodic replacement. Numerical examples have been illustrated when the mission arrival time follows a gamma distribution and the failure time of the unit has a Weibull distribution.

Acknowledgements This work is supported by National Natural Science Foundation of China (NO. 71801126), Natural Science Foundation of Jiangsu Province (NO. BK20180412), Aeronautical Science Foundation of China (NO. 2018ZG52080), Fundamental Research Funds for the Central Universities (NO. NR2018003), and Japan Society for the Promotion of Science KAKENHI (NO. 18K01713).

References

- 1. Barlow RE, Proschan F (1965) Mathematical theory of reliability. Wiley
- 2. Nakagawa T (2005) Mathematical theory of reliability. Springer
- 3. Nakagawa T (2014) Random maintenance policies. Springer
- 4. Park M, Pham H (2016) Cost models for age replacement policies and block replacement policies under warranty. Appl Math Model 40:5689–5702
- 5. Zhao X, Nakagawa T (2018) Advanced maintenance policies for shock and damage models. Springer
- 6. Sheu SH, Liu TH, Zhang ZG, Tsai HN (2018) The generalized age maintenance policies with random working times. Reliab Eng Syst Saf 169:503–514
- 7. Chang CC, Chen YL (2019) Optimization of continuous and discrete scheduled times for a cumulative damage system with age-dependent maintenance. Commun Stat Theory Methods 48:4261–4277
- 8. Nakagawa T, Zhao X (2015) Maintenance overtime policies in reliability theory. Springer
- 9. Chen M, Zhao X, Nakagawa T (2019) Replacement policies with general models. Ann Oper Res 277:47–61
- 10. Zhao X, Nakagawa T (2012) Optimization problems of replacement first or last in reliability theory. Eur J Oper Res 223:141–149
- 11. Hamidi M, Szidarovszky F, Szidarovszky M (2016) New one cycle criteria for optimizing preventive replacement policies. Reliab Eng Syst Saf 154:42–48
- 12. Okamura H, Dohi T (2017) Moment-based approach for some age-based replacement problems. J Ind Prod Eng 34:558–567
- 13. Zhao X, Al-Khalifa KN, Hamouda AMS, Nakagawa T (2017) Age replacement models: a summary with new perspectives and methods. Reliab Eng Syst Saf 161:95–105
- 14. Mannai N, Gasmi S (2018) Optimal design of *k*-out-of-*n* system under first and last replacement in reliability theory. Oper Res. <https://doi.org/10.1007/s12351-018-0375-4>
- 15. Sheu SH, Liu TH, Zhang ZG (2019) Extended optimal preventive replacement policies with random working cycle. Reliab Eng Syst Saf 188:398–415

Xufeng Zhao is a Professor at Nanjing University of Aeronautics and Astronautics, China. He received his bachelor's degree in information management and information system in 2006, and master's degree in system engineering in 2009, both from Nanjing Tech University, China; and his doctoral degree in business administration and computer science in 2013 from Aichi Institute of Technology, Japan. Dr. Zhao has worked as Postdoctoral Researcher from 2013 to 2017 at Aichi Institute of Technology and Qatar University, respectively. Dr. Zhao is interested in probability theory, stochastic process, reliability and maintenance theory, and applications in computer and industrial systems. He has published two books in maintenance theory from Springer and more than fifty research papers in peer reviewed journals; and he is the author or coauthor of twelve book chapters from Springer and Wiley, and etc. He has gotten one best paper award from IEEE Reliability Society Japan Chapter and five best paper awards from International conferences in reliability, maintainability and Quality.

Jiajia Cai is a Ph.D. candidate in quality and reliability management at Nanjing University of Aeronautics and Astronautics, China. She received her bachelor's degree in industrial engineering in 2017, and master's degree in management science and engineering in 2020, both from Nanjing University of Aeronautics and Astronautics, China. Jiajia Cai is interested in reliability theory and its applications in industrial systems.

Satoshi Mizutani received Ph.D. degree from Aichi Institute of Technology in 2004, Japan. He was a visiting researcher at Kinjo Gakuin University in Nagoya City, from 2004 to 2007, Japan. He worked as Assistant Professor from 2007 to 2013, and as Associate Professor from 2013 to 2018 at Aichi University of Technology, Japan. He is now Associate Professor at Aichi Institute of Technology, Japan. His research interests are optimization problems of inspection policies for computer systems in reliability theory. Dr. Mizutani has received Outstanding Young Scientist Award, best paper awards from IEEE Reliability Society Japan Chapter and the 18th Asia Pacific Conference on Industrial Engineering and Management Systems.

Toshio Nakagawa received B.S.E. and M.S. degrees from Nagoya Institute of Technology in 1965 and 1967, Japan, respectively; and a Ph.D. degree from Kyoto University in 1977, Japan. He worked as a Research Associate at Syracuse University for two years from 1972 to 1973. He is now a Honorary Professor with Aichi Institute of Technology, Japan. He has published 5 books from Springer, and about 200 journal papers. His research interests are optimization problems in operations research and management science, and analysis for stochastic and computer systems in reliability and maintenance theory.