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Abstract When a mission arrives at a random time and lasts for an interval, it
becomes an important constraint to plan preventive replacement policies, as the
unit should provide reliability and no maintenance can be done during the mission
interval. From this viewpoint, this chapter firstly gives a definition of an average
failure rate, which is based on the conditional failure probability and the mean time
to failure, given that the unit is still survival at the mission arrival time. Next, age
replacement models are discussed analytically to show that how the average failure
rate function appears in the models. In addition, periodic replacement models with
minimal repairs are discussed in similar ways. Numerical examples are given when
the mission arrival time follows a gamma distribution and the failure time of the unit
has a Weibull distribution.

Keywords Age replacement · Minimal repair · Failure rate · Mission interval ·
Reliability

1 Introduction

Preventive replacement policies have been studied extensively in literatures [1–7].
Barlow and Proschan [1] have firstly given an age replacement model for a finite
operating time span, where the unit operates from installation to a fixed interval
caused by external factors, and it is replaced at the end of the interval even if no

The chapter submitted to H. Pham (Ed), Reliability and Statistical Computing, Springer.

X. Zhao (B) · J. Cai
College of Economics and Management, Nanjing University of Aeronautics and Astronautics,
Nanjing 211106, China
e-mail: reliab@outlook.com

S. Mizutani · T. Nakagawa
Department of Business Administration, Aichi Institute of Technology,
Toyota 470-0392, Japan

© Springer Nature Switzerland AG 2020
H. Pham (ed.), Reliability and Statistical Computing, Springer Series
in Reliability Engineering, https://doi.org/10.1007/978-3-030-43412-0_14

229

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43412-0_14&domain=pdf
mailto:reliab@outlook.com
https://doi.org/10.1007/978-3-030-43412-0_14


230 X. Zhao et al.

failure has occurred. When the finite time span becomes a random interval with
working cycles, during which, it is impossible to perform maintenance policies,
optimal replacement policies with random works have been discussed [3, 6, 8, 9].

When the working cycles are taken into account for planning replacement polices,
Zhao and Nakagawa [10] proposed the policies of replacement first and replacement
last, that would become alternatives in points of cost rate, reliability and maintain-
ability. Replacement first means the unit is replaced preventively at events such as
operating time, number of repairs, or mission numbers, etc, whichever takes place
first, while replacement last means the unit is replaced preventively at the above
events, whichever takes place last. It has been shown that replacement last could
let the unit operate working cycles as longer as possible while replacement first are
more easier to save total maintenance cost [10]. More recent models of replacement
first and replacement last can be found in [11–15].

In this chapter, the aboveworking cycle is reconsidered asmission interval, andwe
suppose that the arrival time of a mission is a random variable rather than it begins
from installation and lasts for an interval, during which, the unit should provide
reliability and no maintenance can be done. The typical example is maintaining a hot
spare for a key unit in a working system, in which, the spare unit should be active at
the time when the key unit fails and provide system reliability for an interval when
the key unit is unavailable. From this viewpoint, this chapter discusses preventive
replacement policies for randomarrival ofmissions. For this, an average failure rate is
firstly given based on the conditional failure probability and the mean time to failure,
given that the unit is still survival at time t . We next formulate and optimize the
models of age replacement policies and the periodic policies with minimal repairs in
analytical ways. Numerical examples are givenwhen themission arrival time follows
a gamma distribution and the failure time of the unit has a Weibull distribution.

2 Average Failure Rate

It is assumed that a unit has a general failure distribution F(t) ≡ Pr{X ≤ t} with a
density function f (t) ≡ dF(t)/dt and a finitemeanμ ≡ ∫ ∞

0 F(t)dt . The conditional
failure probability is given by [2]:

λ(t; x) ≡ F(t + x) − F(t)

F(t)
(0 < x < ∞), (1)

which represents the probability that the unit fails in interval [t, t + x], given that it is
still survival at time t . Note that 0 ≤ λ(t; x) ≤ 1. When x → 0, λ(t; x)/x becomes
an instant failure rate:

h(t) ≡ f (t)

F(t)
= − 1

F(t)

dF(t)

dt
. (2)



Average Failure Rate and Its Applications … 231

We usually suppose, in modeling maintenance policies, that h(t) increases with t
from h(0) = 0 to h(∞) ≡ limt→∞ h(t) that might be infinity, i.e., λ(t; x) increases
with t from F(x) to 1.

We next define:

F(t; x) =
∫ t+x
t F(u)du

F(t)
, (3)

which means the mean time to failure, given that the unit is still survival at time t .
Obviously, when t → 0, F(t; x) becomes

∫ x
0 F(u)du, that represents the mean time

to replacement when the unit is replaced preventively at time x or correctively at
failure, whichever takes place first. When t → ∞,

lim
t→∞

∫ t+x
t F(u)du

F(t)
= lim

t→∞
F(t + x) − F(t)

f (t)
= lim

t→∞
λ(t; x)
h(t)

= 1

h(∞)
.

Differentiating
∫ t+x
t F(u)du/F(t) with t , and noting that

h(t)
∫ t+x

t
F(t)dt − [F(t + x) − F(t)]

≤ h(t)
∫ t+x

t

[
f (u)

h(t)

]

du − [F(t + x) − F(t)] = 0.

which shows that F(t; x) decreases with t from ∫ x
0 F(u)du to 1/h(∞).

Using λ(t; x) and F(t; x), we define:

�(t; x) ≡ F(t + x) − F(t)
∫ t+x
t F(u)du

(0 < x < ∞), (4)

which means the average failure rate, given that the unit is still survival at time t . It
can be easily proved that �(t; x) increases with t from F(x)/

∫ x
0 F(u)du to h(∞),

and h(t) ≤ �(t; x) ≤ h(t + x).

3 Age Replacement

In this section, we apply the above average failure rate into age replacement policies
with random arrival of missions. That is, the unit begins to operate after installation,
and its failure time X (0 < X < ∞)has a general distribution F(t) ≡ Pr{X ≤ t}with
finite mean μ ≡ ∫ ∞

0 F(t)dt . In addition, the unit should be active at time To (0 <

To < ∞) for an interval [To, To + tx ] (0 ≤ tx < ∞) to provide reliability. In this case,
tx can be considered as a mission interval during which the unit provides reliability
in [2].
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3.1 Constant To

We plan the unit is replaced preventively at time To + tx (0 ≤ tx ≤ ∞) when it is
still survival at time To (0 ≤ To < ∞), or it is replaced correctively at failure time
X during (0, To + tx ], whichever takes place first.

The probability that the unit is replaced at To + tx is

Pr{X > To + tx } = F(To + tx ), (5)

and the probability that it is replaced at failure is

Pr{X ≤ To + tx } = F(To + tx ). (6)

The mean time from installation to replacement is

(To + tx )F(To + tx ) +
∫ To+tx

0
tdF(t) =

∫ To+tx

0
F(t)dt (7)

Thus, the expected replacement cost rate is

Cs(tx ; To) = cp + (c f − cp)F(To + tx )
∫ To+tx
0 F(t)dt

, (8)

where c f and cp (cp < c f ) are the costs of replacement policies done at failure and
at To + tx , respectively.

We find optimum t∗x to minimize Cs(tx ; To) in (8). Differentiating Cs(tx ; To) with
respect to tx and setting it equal to zero,

h(To + tx )
∫ To+tx

0
F(t)dt − F(To + tx ) = cp

c f − cp
, (9)

whose left-hand side increases with tx from

h(To)
∫ To

0
F(t)dt − F(To)

to h(∞)/μ − 1. Thus, if h(t) increases strictly with t to h(∞) = ∞, then there exists
a finite and unique t∗x (0 ≤ t∗x < ∞) which satisfies (9), and the resulting cost rate is

Cs(t
∗
x ; To) = (c f − cp)h(To + t∗x ). (10)
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Noting that the left-hand side of (9) increases with To, t∗x decreases with To from
T ∗ to 0, where T ∗ is an optimum age replacement time that satisfies

h(T )

∫ T

0
F(t)dt − F(T ) = cp

c f − cp
. (11)

3.2 Random To

When To is a random variable and has a general distribution Y (t) ≡ Pr{To ≤ t} with
a density function y(t) ≡ dY (t)/dt and a finite mean γ = ∫ ∞

0 Y (t)dt , we plan that
the unit is replaced preventively at time To + tx (0 ≤ tx ≤ ∞)when it is still survival
at a random time To (0 ≤ To < ∞), or it is replaced correctively at failure time X
during (0, To + tx ], whichever takes place first.

The probability that the unit is replaced at To + tx is

Pr{X > To + tx } =
∫ ∞

0
F(t + tx )dY (t), (12)

and the probability that it is replaced at failure is

Pr{X ≤ To + tx } =
∫ ∞

0
F(t + tx )dY (t). (13)

The mean time from installation to replacement is

∫ ∞

0
(t + tx )F(t + tx )dY (t) +

∫ ∞

0

[∫ t+tx

0
udF(u)

]

dY (t)

=
∫ ∞

0

[∫ t+tx

0
F(u)du

]

dY (t). (14)

Thus, the expected replacement cost rate is

Cs(tx ; Y ) = cp + (c f − cp)
∫ ∞
0 F(t + tx )dY (t)

∫ ∞
0 [∫ t+tx

0 F(u)du]dY (t)
, (15)

where c f and cp (cp < c f ) are the costs of replacement policies done at failure and
at To + tx , respectively.
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Clearly,

lim
tx→∞Cs(tx ; Y ) = c f

μ
,

lim
tx→0

Cs(tx ; Y ) = cp + (c f − cp)
∫ ∞
0 F(t)dY (t)

∫ ∞
0 F(t)Y (t)dt

,

which agrees with random replacement model in [3].
We find optimum t∗x to minimize Cs(tx ; Y ) in (15). Differentiating Cs(tx ; Y ) with

respect to tx and setting it equal to zero,

hs(tx )
∫ ∞

0

[∫ t+tx

0
F(u)du

]

dY (t) −
∫ ∞

0
F(t + tx )dY (t) = cp

c f − cp
, (16)

where

hs(tx ) ≡
∫ ∞
0 f (t + tx )dY (t)

∫ ∞
0 F(t + tx )dY (t)

.

When Y (t) = 1 − e−θt ,

hs(tx ) ≡ lim
T→∞ h f (T ; tx ) ≡ lim

T→∞

∫ T
0 f (t + tx )dY (t)

∫ T
0 F(t + tx )dY (t)

,

and it increaseswith tx from hs(0) = ∫ ∞
0 f (t)e−θtdt/

∫ ∞
0 F(t)e−θtdt to h(∞). Then,

the left-hand side of (16) increases with tx to ∞ as h(∞) → ∞. In this case, there
exists a finite and unique t∗x (0 ≤ t∗x < ∞)which satisfies (16), and the resulting cost
rate is

Cs(t
∗
x ; Y ) = (c f − cp)hs(t

∗
x ). (17)

When To has a gamma distribution with a density function y(t) = θk tk−1

e−θt/(k − 1)! (k = 1, 2, . . .), and the failure time X has a Weibull distribution
F(t) = 1 − e−(αt)β (α > 0,β > 1), Table1 presents optimum t∗x and its cost rate
Cs(t∗x ; Y ) for k and cp when θ = 1.0, α = 0.1, β = 2.0, and c f = 100.0. Table1
shows that optimum interval [To, To + t∗x ] decreases with k and increases with cp.
This means that if k becomes large, then the failure rate increases with To and t∗x
becomes small. On the other hand, if cp (<c f ) becomes large, then it is unnecessary
to replace the unit at a early time and t∗o becomes large.
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Table 1 Optimum t∗x and its cost rate Cs(t∗x ; Y ) when θ = 1.0, α = 0.1, β = 2.0, and c f = 100.0

cp k = 1 k = 2 k = 5

t∗x Cs(t∗x ; Y ) t∗x Cs(t∗x ; Y ) t∗x Cs(t∗x ; Y )

10.0 2.564 6.269 1.756 6.466 t∗x → 0 7.048

15.0 3.446 7.397 2.625 7.537 0.147 7.911

20.0 4.282 8.279 3.457 8.385 0.968 8.662

25.0 5.114 8.989 4.286 9.067 1.797 9.276

30.0 5.966 9.565 5.141 9.624 2.659 9.780

35.0 6.863 10.031 6.043 10.076 3.575 10.191

40.0 7.832 10.406 7.018 10.439 4.569 10.521

45.0 8.901 10.700 8.096 10.723 5.671 10.779

50.0 10.111 10.921 9.316 10.937 6.924 10.974

3.3 Replace at T and To + tx

In order to prevent early or late arrivals of time To, we plan that the unit is replaced
preventively at time T (0 < T ≤ ∞) or at time To + tx (0 ≤ tx ≤ ∞), whichever
takes place first. However, no replacement can be done preventively during the inter-
val [To, To + tx ]. In this policy, tx is constantly given and To is a random variable
with a general distribution Y (t).

The probability that the unit is replaced at T is

Pr{X > T, To > T } = F(T )Y (T ), (18)

the probability that it is replaced at To + tx is

Pr{X > To + tx , To ≤ T } =
∫ T

0
F(t + tx )dY (t), (19)

and the probability that it is replaced at failure is

Pr{X ≤ T and To ≥ T, X ≤ To + tx and To < T } = F(T )Y (T ) +
∫ T

0
F(t + tx )dY (t),

(20)

where note that (18) + (19) + (20) = 1.
The mean time from installation to replacement is
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T F(T )Y (T ) +
∫ T

0
(t + tx )F(t + tx )dY (t) + Y (T )

∫ T

0
tdF(t)

+
∫ T

0

[∫ t+tx

0
udF(u)

]

dY (t)

= Y (T )

∫ T

0
F(t)dt +

∫ T

0

[∫ t+tx

0
F(u)du

]

dY (t). (21)

Thus, the expected replacement cost rate is

C f (T ; tx ) = cp + (c f − cp)[F(T )Y (T ) + ∫ T
0 F(t + tx )dY (t)]

Y (T )
∫ T
0 F(t)dt + ∫ T

0 [∫ t+tx
0 F(u)du]dY (t)

, (22)

Note that when tx → ∞, limtx→∞ C f (T ; tx ) becomes age replacement model
in [2], when tx → 0, limtx→0 C f (T ; tx ) becomes random replacement model in
[3], when T → ∞, limT→∞ C f (T ; tx ) = Cs(tx ; Y ) in (15), and when T → 0,
limT→0 C f (T ; tx ) = ∞.

We find optimum T ∗
f and t∗x f to minimize C f (T ; tx ) in (22) for given tx . Differ-

entiating C f (T ; tx ) with respect to T and setting it equal to zero,

q f (T ; tx )
{

Y (T )

∫ T

0
F(t)dt +

∫ T

0

[∫ t+tx

0
F(u)du

]

dY (t)

}

−
[

F(T )Y (T ) +
∫ T

0
F(t + tx )dY (t)

]

= cp
c f − cp

, (23)

where

q f (T ; tx ) ≡ r(T )λ(T ; tx ) + h(T )

r(T )
λ(T ; tx )
�(T ; tx ) + 1

and r(T ) ≡ y(T )

Y (T )
,

and the instant failure rate h(T ), the conditional failure probability λ(T ; tx ) and the
average failure rate �(T ; tx ) are included in q f (T ; tx ).

When Y (t) = 1 − e−θt , r(T ) = θ and

q f (T ; tx ) = θ[F(T + tx ) − F(T )] + f (T )

θ
∫ T+tx
T F(t)dt + F(T )

.

Note that

h(T ) <
F(T + tx ) − F(T )

∫ T+tx
T F(t)dt

< h(T + tx ),
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then q f (T ; tx ) increases strictly with T to ∞ as h(∞) → ∞, and also increases
strictly with tx to q f (T ;∞). Thus, the left-hand side of (23) increases with T from 0
to ∞ as h(∞) → ∞. In this case, there exists a finite and unique T ∗

f (0 < T ∗
f < ∞)

which satisfies (23), and the resulting cost rate is

C f (T
∗
f ; tx ) = (c f − cp)q f (T

∗
f ; tx ). (24)

In addition, the left-hand side of (23) increases with tx , then T ∗
f decreases with tx

from T ∗ which satisfies the following random replacement model [3],

h(T )

∫ T

0
e−θt F(t)dt −

∫ T

0
e−θtdF(t) = cp

c f − cp
.

Nest, we find optimum t∗x f for given T . Differentiating C f (T ; tx ) with respect to
tx for given T and setting it equal to zero,

h f (T ; tx )
{

Y (T )

∫ T

0
F(t)dt +

∫ T

0

[∫ t+tx

0
F(u)du

]

dY (t)

}

−
[

F(T )Y (T ) +
∫ T

0
F(t + tx )dY (t)

]

= cp
c f − cp

, (25)

where

h f (T ; tx ) ≡
∫ T
0 f (t + tx )dY (t)

∫ T
0 F(t + tx )dY (t)

< h(T + tx ).

When Y (t) = 1 − e−θt , h f (T ; tx ) increases with tx to h(∞). Then, the left-hand
side of (25) increases strictly with tx from 0 to ∞ as h(∞) → ∞. In this case, there
exists a finite and unique t∗x f (0 < t∗x f < ∞) which satisfies (25), and the resulting
cost rate is

C f (T ; t∗x f ) = (c f − cp)h f (T ; t∗x f ). (26)

Note that t∗x f decreases with T to t∗x given in (16), as the left-hand side of (22)
increases with T to that of (16).

When y(t) = θk tk−1e−θt/(k − 1)! (k = 1, 2, . . .) and F(t) = 1 − e−(αt)β , (α >

0,β ≥ 1), Table2 presents optimum T ∗
f and its cost rateC f (T ∗

f ; tx ) for tx and cp when
θ = 1.0, k = 2,α = 0.1, β = 2.0, and c f = 100.0, and Table3 presents optimum t∗x f
and its cost rateC f (T ; t∗x f ) for T and cp when θ = 1.0, k = 2,α = 0.1, β = 2.0, and
c f = 100.0. Table3 shows that T ∗

f increases with cp and decreases with tx and t∗x f
increases with cp and decreases with T , as shown in the above analytical discussions.
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Table 2 Optimum T ∗
f and its cost rate C f (T ∗

f ; tx ) when θ = 1.0, k = 2, α = 0.1, β = 2.0, and
c f = 100.0

cp tx = 1.0 tx = 2.0 tx = 5.0

T ∗
f C f (T ∗

f ; tx ) T ∗
f C f (T ∗

f ; tx ) T ∗
f C f (T ∗

f ; tx )
10.0 3.368 6.442 2.864 6.174 2.167 6.977

15.0 4.577 8.148 3.834 7.493 2.871 7.786

20.0 5.888 9.769 4.864 8.702 3.587 8.453

25.0 7.354 11.360 6.001 9.861 4.357 9.048

30.0 9.027 12.943 7.291 11.002 5.212 9.602

35.0 10.961 14.524 8.776 12.136 6.185 10.135

40.0 13.260 16.105 10.513 13.268 7.315 10.659

45.0 16.050 17.686 12.612 14.400 8.650 11.179

50.0 19.265 19.266 15.380 15.532 10.257 11.698

Table 3 Optimum t∗x f and its cost rate C f (T ; t∗x f ) when θ = 1.0, k = 2, α = 0.1, β = 2.0, and
c f = 100.0

cp T = 1.0 T = 2.0 T = 5.0

t∗x f C f (T ; t∗x f ) t∗x f C f (T ; t∗x f ) t∗x f C f (T ; t∗x f )
10.0 3.918 8.137 2.446 6.330 1.800 6.350

15.0 5.541 10.440 3.512 7.781 2.673 7.447

20.0 7.135 12.374 4.543 8.964 3.510 8.317

25.0 8.776 14.058 5.581 9.953 4.345 9.022

30.0 10.523 15.564 6.659 10.791 5.206 9.598

35.0 12.442 16.943 7.811 11.510 6.116 10.070

40.0 14.606 18.234 9.069 12.126 7.101 10.452

45.0 17.113 19.468 10.479 12.659 8.190 10.754

50.0 20.088 20.670 12.101 13.122 9.424 10.985

4 Minimal Repair

It is assumed that the unit undergoes minimal repairs at failures and begins to operate
again after repairs, where the time for repairs are negligible and the failure rate
remains undisturbed by repairs. In this case, we define

�(t; x) = 1

x

∫ t+x

t
h(u)du, (27)

which means the average failure rate for an interval [t, t + x]. It is obviously to show
that �(t; x) increases with t from H(x)/x to h(∞) and increases with x from h(0)
to h(∞), and h(t) ≤ �(t; x) ≤ h(t + x).
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4.1 Constant To

In order to prevent an increasing repair cost, we plan that the unit is replaced at time
To + tx (0 < To ≤ ∞, 0 ≤ tx < ∞). Noting that the expected number of failures
during (0, To + tx ] is H(To + tx ), the expected cost rate is

Cs(tx ; To) = cmH(To + tx ) + cp
To + tx

, (28)

where cm is minimal repair cost at failure, and cp is given in (8).
We find optimum t∗x tominimizeCs(tx ; To) for given To. DifferentiatingCs(tx ; To)

with respect to tx and setting it equal to zero,

h(To + tx )(To + tx ) − H(To + tx ) = cp
cm

, (29)

whose left-hand side increases with tx from h(To)To − H(To) to
∫ ∞
0 [h(∞) −

h(t)]dt . Thus, if the failure rate h(t) increases strictly with t to h(∞) = ∞, then
there exists a finite and unique t∗x (0 ≤ t∗x < ∞)which satisfies (29), and the resulting
cost rate is

Cs(t
∗
x ; To) = cmh(To + t∗x ), (30)

Noting that the left-hand side of (29) increases with To, t∗x decreases with To from
T ∗ to 0, where T ∗ is an optimum periodic replacement time that satisfies

h(T )T − H(T ) = cp
cm

. (31)

4.2 Random To

We plan that the unit is replaced at time To + tx (0 ≤ tx < ∞), where To is a random
variable with distribution Y (t). Then, the expected cost rate is

Cs(tx ; Y ) = cm
∫ ∞
0 H(t + tx )dY (t) + cp
∫ ∞
0 (t + tx )dY (t)

, (32)

where cm is minimal repair cost at failure, and cp is given in (15).
Clearly, limtx→∞ Cs(tx ; Y ) → ∞ and

lim
tx→0

Cs(tx ; Y ) = cm
∫ ∞
0 H(t)dY (t) + cp

∫ ∞
0 tdY (t)

,

which agrees with random replacement model [3].
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If there exists an optimum t∗x to minimize Cs(tx ; Y ) in (32), it satisfies

∫ ∞

0
(t + tx )dY (t)

∫ ∞

0
h(t + tx )dY (t) −

∫ ∞

0
H(t + tx )dY (t) = cp

cm
, (33)

whose left-hand side increases with tx to∞ as h(∞) → ∞. In this case, the resulting
cost rate is

Cs(t
∗
x ; Y ) = cm

∫ ∞

0
h(t + t∗x )dY (t). (34)

When y(t) = θk tk−1e−θt/�(k) and F(t) = 1 − e−(αt)β , Table4 presents optimum
t∗x and its cost rate Cs(t∗x ; Y ) for k and cm when θ = 1.0, α = 1.0, β = 2.0, and
cp = 100.0. Table4 shows that optimum interval [To, To + t∗x ] decreases when cm
increases and To arrives at a late time due to the total increasing repair cost. Note
that when k = 5, t∗x → 0 for all of cm .

4.3 Replace at T and To + tx

We plan that the unit is replaced at time T (0 < T ≤ ∞) or at time To + tx (0 ≤ tx ≤
∞), whichever takes place first; however, only minimal repairs can be done during
the interval [To, To + tx ]. Then, the expected number of repairs between replacement
policies is

H(T )Y (T ) +
∫ T

0
H(t + tx )dY (t), (35)

Table 4 Optimum t∗x and its cost rate Cs(t∗x ; Y ) when θ = 1.0, α = 1.0, β = 2.0, and cp = 100.0

cm k = 1 k = 2 k = 5

t∗x Cs(t∗x ; Y ) t∗x Cs(t∗x ; Y ) t∗x Cs(t∗x ; Y )

10.0 2.317 66.324 1.465 69.178 t∗x → 0 77.383

15.0 1.769 83.324 0.944 88.133 t∗x → 0 105.355

20.0 1.449 97.953 0.644 105.529 t∗x → 0 133.327

25.0 1.236 111.782 0.447 122.048 t∗x → 0 161.300

30.0 1.081 124.855 0.307 138.057 t∗x → 0 189.272

35.0 0.963 137.392 0.201 153.651 t∗x → 0 217.244

40.0 0.871 149.613 0.118 168.977 t∗x → 0 245.217

45.0 0.794 161.407 0.051 184.072 t∗x → 0 273.189

50.0 0.732 173.128 t∗x → 0 199.001 t∗x → 0 301.161
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and the mean time from installation to replacement is

TY (T ) +
∫ T

0
(t + tx )dY (t) = txY (T ) +

∫ T

0
Y (t)dt. (36)

Thus, the expected replacement cost rate is

C f (T ; tx ) = cm[H(T )Y (T ) + ∫ T
0 H(t + tx )dY (t)] + cp

txY (T ) + ∫ T
0 Y (t)dt

. (37)

Differentiating C f (T ; tx ) with respect to T and setting it equal to zero,

q f (T ; tx )
[

txY (T ) +
∫ T

0
Y (t)dt

]

−
[

H(T )Y (T ) +
∫ T

0
H(t + tx )dY (t)

]

= cp
cm

,

(38)

where

q f (T ; tx ) ≡ r(T )�(T ; tx ) + h(T )/tx
r(T ) + 1/tx

. (39)

When Y (t) = 1 − e−θt , q f (T ; tx ) increases with T to h(∞)/(θtx + 1). Then, the
left-hand side of (38) increases with T from 0 to∞ as h(∞) → ∞. Therefore, there
exits a finite and unique T ∗

f (0 < T ∗
f < ∞) which satisfies (38), and the resulting

cost rate is

C f (T
∗
f ; tx ) = cm

θ�(T ∗
f ; tx ) + h(T ∗

f )/tx

θ + 1/tx
. (40)

Next, differentiating C f (T ; tx ) with respect to tx and setting it equal to zero,

∫ T
0 h(t + tx )dY (t)

Y (T )

[

txY (T ) +
∫ T

0
Y (t)dt

]

−
[

H(T )Y (T ) +
∫ T

0
H(t + tx )dY (t)

]

= cp
cm

, (41)

whose left-hand side increases with tx to ∞ as h(∞) → ∞. Therefore, there exists
a finite and unique t∗x f (0 ≤ t∗x f < ∞)which satisfies (40), and the resulting cost rate
is

C f (T ; t∗x f ) = cm

∫ T
0 h(t + t∗x f )dY (t)

Y (T )
. (42)
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Table 5 Optimum T ∗
f and its cost rate C f (T ∗

f ; tx ) when θ = 1.0, α = 1.0, β = 2.0, tx = 1.0, and
cp = 100.0

cm k = 1 k = 2 k = 3

T ∗
f C f (T ∗

f ; tx ) T ∗
f C f (T ∗

f ; tx ) T ∗
f C f (T ∗

f ; tx )
10.0 3.467 74.336 3.115 66.613 3.057 64.619

15.0 2.588 85.137 2.451 79.764 2.451 78.299

20.0 2.139 95.547 2.080 91.265 2.119 90.667

25.0 1.846 104.785 1.846 102.121 1.885 101.321

30.0 1.631 112.852 1.670 111.739 1.709 110.321

35.0 1.494 122.090 1.533 120.521 1.592 120.077

40.0 1.377 130.156 1.416 128.062 1.475 127.323

45.0 1.279 137.637 1.338 136.789 1.396 135.778

50.0 1.201 145.117 1.260 143.873 1.318 142.548

Table 6 Optimum t∗x f and its cost rate C f (T ; t∗x f ) when θ = 1.0, α = 1.0, β = 2.0, T = 1.0 and
cp = 100.0

cm k = 1 k = 2 k = 3

t∗x f C f (T ; t∗x f ) t∗x f C f (T ; t∗x f ) t∗x f C f (T ; t∗x f )
10.0 3.096 70.275 3.564 83.445 4.189 97.977

15.0 2.393 84.318 2.588 95.870 2.861 107.121

20.0 1.982 96.018 2.041 105.952 2.158 114.704

25.0 1.709 106.350 1.689 114.862 1.709 120.919

30.0 1.514 115.902 1.436 122.600 1.416 127.524

35.0 1.357 124.281 1.240 129.362 1.182 132.372

40.0 1.221 131.098 1.084 135.342 1.025 138.782

45.0 1.123 138.696 0.967 141.713 0.889 143.825

50.0 1.045 146.294 0.869 147.693 0.791 150.040

When y(t) = θk tk−1e−θt/�(k) and F(t) = 1 − e−(αt)β , Table5 presents optimum
T ∗
f and its cost rate C f (T ∗

f ; tx ) for tx and cm when θ = 1.0, α = 1.0, β = 2.0, tx =
1.0, and cp = 100.0, and Table6 presents optimum t∗x f and its cost rate C f (T ; t∗x f )
for k and cm when θ = 1.0, α = 1.0, β = 2.0, T = 1.0, and cp = 100.0.

5 Conclusions

We have firstly obtained a definition of average failure rate, i.e.,�(t; x), that is based
on the conditional failure probability and the mean time to failure given that the unit
is still survival at time t . The mathematical monotonicity of �(t; x) has been proved
analytically. Next, the average failure rate has been applied into preventive replace-
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ment policies when the arrival time of a mission is a random variable and lasts for an
interval, during which, the unit provides reliability and no maintenance can be done.
Optimum replacement time and mission interval have been discussed respectively
for the models of age replacement and periodic replacement. Numerical examples
have been illustrated when the mission arrival time follows a gamma distribution and
the failure time of the unit has a Weibull distribution.
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