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Abstract Modeling fatigue life is complex whether it is applied to structures or
experimental programs. Through the years several empirical approaches have been
utilized. Each approach has positive aspects; however, none have been acceptable for
every circumstance. On many occasions the primary shortcoming for an empirical
method is the lack of a sufficiently robust database for statistical modeling. Themod-
eling is exacerbated for loading near typical operating conditions because the scatter
in the fatigue lives is quite large. The scatter may be attributed to microstructure,
manufacturing, or experimental inconsistencies, or a combination thereof. Empirical
modeling is more challenging for extreme life estimation because those events are
rare. The primary purpose herein is to propose an empirically based methodology
for estimating the cumulative distribution functions for fatigue life, given the applied
load. The methodology incorporates available fatigue life data for various stresses or
strains using a statistical transformation to merge all the life data so that distribution
estimation is more accurate than traditional approaches. Subsequently, the distribu-
tion for the transformed and merged data is converted using change-of-variables to
estimate the distribution for each applied load. To assess the validity of the proposed
methodology percentile bounds are estimated for the life data. The development of
themethodology and its subsequent validation is illustrated using three sets of fatigue
life data which are readily available in the open literature.

Keywords Cycle dependent parameters · Data fusion · Fatigue life
transformation · Weibull distribution
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AD Anderson–Darling goodness of fit test
cdf cumulative distribution function
cv coefficient of variation
�ε strain range
�σ stress range
FLT Fatigue Life Transformation
F(•) cdf
KS Kolmogorov–Smirnov goodness of fit test
MLE maximum likelihood estimation
NA arbitrary normalization constant
Nf cycles to failure
n sample size
m number of different values of applied stress
p percentile
s sample standard deviation
sA arbitrary normalization constant
S–N stress–number of cycles
t time, cycles
W(α, β, γ) three parameter Weibull cdf
y1/2 median
ȳ sample average

1 Introduction

A difficulty with fatigue life data is the characterization of its variability, which can
be several orders of magnitude [1], especially for loading near operating conditions.
The variability is attributable to experimental error, as well as material microstruc-
ture or processing. Thus, estimation and prediction of fatigue life is challenging. A
key concern is the characterization of the cumulative distribution function (cdf) for
fatigue life, given an applied load, which may be either the stress range �σ or the
strain range�ε. The lower tail portion of the cdfwhich depicts high reliability is espe-
cially critical; however, that is where scatter is more pronounced, and sample sizes
are smaller. Empirically modeling fatigue life has been considered numerous times.
A simple internet search for statistical fatigue life modeling yields in excess of 10
million citations. A relatively recent work is [2], in which the authors incorporate sta-
tistical analysis with traditional stress-life, strain-life, or crack propagation models.
While empiricism is used, the thrust is to incorporate as much physically motivated
modeling as possible. More frequently, investigators attempt to fit a stress-life (S-N)
curve through the data, especially the medians for given �σ or �ε. A nice review
of such practices is [3]. Another example of statistical modeling of fatigue data is
contained in [4] in which over two chapters are devoted statistical methodologies.
Other examples of statistical stress-life analysis may be found in [5, 6]. While there
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are many more papers, books, and conferences publications on statistical fatigue
modeling, these are representative. In spite of all these references, statistical fatigue
analysis is still an open area of investigation.

Herein, an empirically based approach for accurately estimating the fatigue life
cdf, given �σ or �ε is proposed. The methodology merges fatigue life data using a
statistical transformation for the estimation. The statistical technique increases the
sample size bymerging fatigue data for more precise assessment. This is necessitated
because there is often large variability in S-N data, and the sample sizes are small.
Validation of the modeling is essential, especially for prediction of life outside of the
range of experimental observations. The validity of the methodology is evaluated by
considering percentile bounds estimated for the S-N data. The development of the
methodology and its subsequent validation is illustrated using three different fatigue
life datasets.

A fundamental issue in fatigue life estimation is the choice of an underlying
cdf. The cdf used in the ensuing analyses is a three-parameter Weibull cdf. A fairly
recent example of a traditional statistical S-Nmethodology using the three-parameter
Weibull cdf is [7] where fatigue of structural and rolling contact problems are con-
sidered. There seems to be a need for more experimental data to enhance modeling
in almost all fatigue analyses. This is addressed in [8] by using normalization for the
fatigue life data so that all the data are merged. The normalized data are thenmodeled
with a three-parameter Weibull cdf. Even though the intention in [8] is similar to the
emphasis herein, the methodology is somewhat different.

2 Fatigue Life Data

Fatigue life data are most often presented on an S-N plot which shows the fatigue
data for a given load. The load is typically stress or strain. Thus S-N can represent
stress-life or strain-life. An additional way in which the fatigue data are presented is
on a probability plot. Both of these representations will be used subsequently. Three
different sets of fatigue life data are considered for the proposed method.

The first set considered is one of the special cases taken from [9]. Fatigue testing
was conducted on 2024-T4 aluminum alloy specimens. The fatigue tests were per-
formed on rectangular specimens with dimensions of 110mm long, 52mmwide, and
1 mm thick, and with a center cut circular hole of radius 5 mm. Holes were cut using
standard procedures with a lathe, and burrs were removed by polishing techniques.
Testing was conducted in laboratory environment where temperatures of 295–297 K
(approximately 22–24 °C) and relative humidities of 50–56% were observed. Con-
stant amplitude tests were performed at a frequency of 30 Hz on a single machine
with a single operator in order to minimize experimental error. Because of the exten-
siveness of this data, they have been used in a variety of analyses; e.g., [10–12].
These data are summarized in Table 1. A total of 222 specimens were tested using
eight different values for �σ. The specimens were tested to fracture. The sample
coefficients of variation (cv) are nearly the same, approximately 9%, for the larger
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Table 1 Statistical summary of fatigue life data for 2024-T4 specimens [9]

Load, �σ (MPa) Size (m) Average (x̄) Standard deviation (s) cv (%)

255 21 18,200 1760 9.6

235 30 28,700 2500 8.7

206 30 59,400 4230 7.1

177 30 146,000 12,600 8.6

157 30 264,000 22,600 8.6

137 30 519,000 96,200 18.5

127 30 1,710,000 1,090,000 63.8

123 21 4,530,000 2,660,000 58.7

values of �σ. When �σ is 137 MPa, the cv is about double, and for the two smaller
values of �σ the scatter increases significantly. The fatigue life data are plotted on
an S-N graph in Fig. 1 in the traditional linear versus logarithm S-N format. As �σ

is reduced, the increase in the scatter in life is apparent. Modeling the increasing
variability for decreasing �σis the challenge for accurate fatigue life prediction.

The second set of fatigue data to be considered is data collected at room temper-
ature for ASTM A969 hot dipped galvanized sheet steel with a gauge thickness of
1.78 mm [13]. ASTM A969 is a cold-rolled, low carbon, extra deep drawing steel.
This steel is very ductile and soft, and it is age resistant. The automotive industry uses
it in applications where severe forming is required, e.g., inner door components, dash
panels, body side components, and floor pans with spare tire tubs. Fatigue tests for
the ASTM A969 specimens were conducted using a triangular waveform at 25 Hz.
The fatigue tests were terminated, i.e., designated as a failure, when the tensile load
dropped by 50% of themaximum load. A total of 69 specimens were tested to failure.
The data are summarized in Table 2. The cv given �ε is more scattered than those
for the 2024-T4 data. The smallest value of �ε has the largest scatter, but the second

Fig. 1 Fatigue life data for
2024-T4 specimens [9]
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Table 2 Statistical summary of fatigue life data for ASTM A969 specimens [13]

Load, �ε (mm/mm) Size (m) Average (x̄) Standard deviation (s) cv (%)

0.0080 3 4,100 815 19.8

0.0060 12 14,000 3,800 27.2

0.0050 6 34,600 7,030 20.3

0.0040 12 56,500 8,860 15.7

0.0030 12 107,000 12,900 12.1

0.0024 6 199,000 29,800 15.0

0.0020 11 499,000 68,300 13.7

0.0018 7 1,030,000 391,000 37.8

largest�ε is rather large as well. This behavior is seen graphically on the S-N plot in
Fig. 2. Consequently, these data are not as statistically well behaved as the 2024-T4
data. These data have been used to investigate other types of fatigue modeling [14,
15].

The third set to assess is 9Cr-1Mosteelwhichwere collated froma round-robin test
program and were reported in [16]. This steel is creep strengthen, and it is frequently
used in thermal power plants to improve the energy efficiency of the power plant
by increasing operating temperatures and pressures. Specifically, 9Cr-1Mo is often
used for steam generator components of both fossil fired and nuclear power plants.
The material from which the data were generated was a single cast, rolled plate
with a nominal tensile strength of 623 MPa [16]. A total of 130 specimens were
tested to failure. The data are summarized in Table 3. The cv given �ε is even more
scattered than the above datasets. In fact, there does not seem to be any discernible
pattern. The data are shown on Fig. 3. The reason for the unusual statistical behavior
would require more in depth analysis than is provided in [16]. Usually round-robin
testing has considerably more variability in results because testing conditions and

Fig. 2 Fatigue life data for
ASTM A969 specimens [13]
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Table 3 Statistical summary of fatigue life data for 9Cr-1Mo specimens [16]

Load, �ε (mm/mm) Size (m) Average (x̄) Standard deviation (s) cv (%)

0.021 5 472 88 18.8

0.020 32 542 189 34.9

0.019 8 572 345 60.2

0.012 34 1,260 357 28.4

0.011 6 1,290 475 36.9

0.006 37 4,820 2,000 41.6

0.005 8 12,700 7,700 60.8

Fig. 3 Fatigue life data for
9Cr-1Mo specimens [16]
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methodologies are not consistent. Nevertheless, the data will serve as an excellent
case for the proposed modeling approach.

3 Data Fusion for Fatigue Life Analysis

The following is a purely empiricalmethod to improve fatigue lifemodeling. Because
fatigue data are usually limited in number for relatively few different loading con-
ditions, modeling is crude. A methodology that has been developed to account for
uncertainty for static properties [17] is adapted for fatigue life data. The basis of
the approach is a linear transformation of a collection of experimental observations
{y j : 1 ≤ j ≤ n} into another set of values {z j : 1 ≤ j ≤ n} so that both sets have
the same average and sample standard deviation. Let

z j = ay j + b. (1)
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The choices of a and b in Eq. (1) are easily determined by simple algebra to be
the following:

a = sA
sy

and b = NA − sA
sy

ȳ, (2)

where ȳ is the average and sy is the sample standard deviation for {y j : 1 ≤ j ≤ n},
and NA and sA are arbitrary values chosen for normalization.

For fatigue data the life times are distributed over several orders of magnitude
that the procedure in Eqs. (1) and (2) is applied to the natural logarithm of the
life times. Let m be the number of different values of applied stress or strain, i.e.,
{�σk : 1 ≤ k ≤ m} or {�εk : 1 ≤ k ≤ m}. Given �σk or �εk the associated life
times are {Nk, j : 1 ≤ j ≤ nk} where nk is its sample size. Let

yk, j = ln(Nk, j ) (3)

be the transformed life times. Substituting Eq. (2) into Eq. (1) leads to the following:

zk, j = sA
sy,k

(yk. j − ȳk) + NA. (4)

Thus, the averages and sample standard deviations of {yk, j : 1 ≤ j ≤ nk} and
{zk, j : 1 ≤ j ≤ nk} are equal to each other. The next step is to merge all the
transformed zk,j values from Eq. (4) for 1 ≤ j ≤ nk and 1 ≤ k ≤ m. The purpose
in using the merged values is to have a more extensive dataset for estimation of the
cdf. This is especially critical for estimating the extremes of the cdf more accurately.
Subsequently, an appropriate cdf FZ (z) is found that characterizes the merged data.
It is assumed that this cdf also characterizes the subsets {zk, j : 1 ≤ j ≤ nk} of the
merged set. With this assumption and the linear transformation in Eq. (4), the cdfs
for {yk, j : 1 ≤ j ≤ nk} Fy,k(y) can be derived from FZ (z) as follows:

Fy,k(y) = FZ (
sA
sy,k

(y − ȳk) + NA). (5)

The approach is designated as the Fatigue Life Transformation (FLT). Recall that
the abovemethodology is applied to natural logarithms. In order tomake observations
on the actual fatigue lives, the values must be changed back to actual cycles.

4 Flt Analysis for 2024-T4 Fatigue Life Data

To evaluate the effectiveness of the proposed FLT methodology, the fatigue life data
summarized in Table 1 and shown on Fig. 1 is considered. Recall that the FLT is
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applied to the natural logarithm of the fatigue data; see Eq. (3). The arbitrarily cho-
sen values for NA and sA are 26 and 1, respectively. The rather large value for NA

was chosen to assure that zk,j in Eq. (4) is positive. The 222 FLT data are shown
on Fig. 4, where the axes are labeled to be easily read. Each set of data for a given
�σk are transformed using FLT. These transformed data are well grouped so that it
is reasonable to merge them. Figure 5 shows the entire 222 FLT values merged into
a common sample space. The FLT merged data contain approximately 7–10 times
more data than those for each given �σk . Thus, estimation for the cdf is necessar-
ily more accurate which results in a better characterization of its lower tail. Also,
notice that the cycles are transformed using the FLT procedure; they are not actual
cycles to failure, i.e., they are not equivalent to the data shown on Fig. 1. The solid
line is the maximum likelihood estimation (MLE) for a three–parameter Weibull cdf
W(α, β, γ), where α is the shape parameter, β is the scale parameter, and γ is the
location parameter. The form of W(α, β, γ) is

F(x) = 1 − exp{−[(x − γ )/β]α}, x ≥ γ. (6)

Fig. 4 FLT fatigue life data
for 2024-T4 specimens given
�σ [9]
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Fig. 5 Merged FLT fatigue
life data for 2024-T4
specimens [9]; Weibull MLE
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Graphically, the fit is excellent. The Kolmogorov-Smirnov (KS) and Anderson-
Darling (AD) goodness of fit test statistics are 0.043 and 0.292, respectively. Both of
which indicate that the MLE is acceptable for any significance level αs less than 0.3.
Consequently, the MLE W(α, β, γ) cdf is an excellent representation of the merged
FLT data. The MLE estimated parameters are α̂ = 2.894; β̂ = 2.986; and γ̂ =
23.327.

The three–parameter Weibull cdf W(α, β, γ) shown in Eq. 6 was selected for
consideration because it has become a very popular cdf to represent fatigue data
since its namesake used it for that purpose [18]. Two popular resources for the
Weibull cdf, which advocate its use and contain examples of its applications, are [19,
20]. The primary reason for its choice, however, is because there is a minimum value
represented by γ. Typically, any collection of fatigue life data is spread over two or
three orders of magnitude. Consequently, a nonzero minimum value is required to
appropriately represent the fatigue data.

Now, it is assumed that the MLE estimated parameters for the FLT merged data
are acceptable for each of its subsets {zk, j : 1 ≤ j ≤ nk}. The cdf Fy,k(y) for each
given �σk can be determined using Eq. (5) as follows:

Fy,k(y) = 1 − exp{−[( sA
sy,k

(y − ȳk) + NA − γ̂ )/β̂]α̂}. (7)

Recall that the arbitrary constants NA and sA are 26 and 1, respectively. Equa-
tion (7) can be rewritten to put it into the standard Weibull cdf form W(α, β,
γ);

Fy,k(y) = 1 − exp{−[(y − [ȳk + (γ̂ − NA)(
sy,k
sA

)])/β̂(
sy,k
sA

)]α̂}, (8)

where the shape parameter α̂ is the same for each individual cdf, but the scale
parameter β̂k and location parameter γ̂k are

β̂k = β̂(
sy,k
sA

); and γ̂k = ȳk + (γ̂ − NA)(
sy,k
sA

), (9)

which are explicitly dependent on the sample parameters for the fatigue life data
given �σk and the arbitrary constants NAand sA. Recall that the FLT is for ln(Nf );
consequently, the range of values is considerably smaller than that for Nf . Table 4
contains the FLT cdf W(α, βk , γk) parameters for each given �σk . Figure 6 shows
the fatigue life data plotted on two parameter Weibull probability paper with the
corresponding FLT cdfs W(α, βk , γk). Graphically, these cdfs appear to fit the data
well. Indeed, the KS goodness of fit test indicates that all these cdfs are acceptable
for any αs less than 0.25. The AD test, which focuses on the quality of the fit in
the tails, is more discriminating. The cdfs when �σk equals 127, 177, 206, 235, or
255MPa are acceptable for any αs less than 0.25. When�σk equals 123 or 157MPa,
however, the cdfs are acceptable for any αs less than 0.05. When�σk equals 137, the
AD test implies that the cdf is not acceptable. Although it is not obvious on Fig. 6
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Table 4 FLT Weibull
parameters for natural
logarithm of fatigue life data
for 2024-T4 specimens [9]

Load, �σ (MPa) α̂ β̂k γ̂k

255 2.894 0.280 9.556

235 2.894 0.258 10.032

206 2.894 0.214 10.799

177 2.894 0.261 11.657

157 2.894 0.247 12.259

137 2.894 0.491 12.705

127 2.894 1.678 12.690

123 2.894 1.972 13.375

Fig. 6 FLT Weibull cdfs for
fatigue life data for 2024-T4
specimens [9]
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because the cycles scale is so large, both the upper and lower tail of the FLT cdf are
sufficiently different from the life data. Even so, the overall deduction is that the FLT
transformation is acceptable for these fatigue life data. Again, the KS test supports
that conclusion, and there is only one value for�σk , 137 MPa, for which the AD test
indicates otherwise.

Another way to assess the quality of the proposed FLTmethodology is to consider
percentiles p of the estimated cdfs. The percentiles are given by

yp = γ̂k + β̂k[− ln(1 − p)]1/α̂, (10)

which are computed from Eqs. (8) and (9). One of the most common percentiles that
is considered is the median y1/2, i.e., p is 0.5. Figure 7 is an S-N graph, identical
to Fig. 1, where the solid line is the FLT estimated median, and the dashed lines
are the FLT estimated 99% percentile bounds. The 99% bounds are very tight while
encapsulating the entire set of data for each �σk . They also follow the trend in the
S–N data in that they are very narrow when the life data have very little variability,
but they are broader when the life data have larger variability. This lends credence
to the FLT approach for the 2024-T4 fatigue data.
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Fig. 7 Fatigue life data for
2024-T4 specimens [9] with
FLT percentile bounds
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5 FLT Analysis for ASTM A969 Fatigue Life Data

The second applications of the FLT method is for the ASTM A969 fatigue data.
Again, the arbitrarily chosen values forNA and sA are 26 and 1, respectively. Figure 8
shows the entire 69 FLT values merged into a common sample space. The solid line
is the MLE W(α, β, γ), Eq. (6). The KS and AD goodness of fit test statistics are
0.047 and 0.524, respectively. The MLE is acceptable according to the KS test for
any significance level αs less than 0.3. For the AD test, however, it is acceptable only
for αs less than 0.2 because there is some deviation between the data and the MLE
in the lower tail. Even so, the FLT data are well represented by the MLE W(α, β, γ)
cdf. The MLE estimated parameters are α̂ = 3.057; β̂ = 2.964; and γ̂ = 23.289.

Using Eqs. (7)–(9), Fig. 9 has the ASTM A969 data with the FLT cdfs W(α, βk ,
γk). Graphically, the FLT cdfs appear to characterize the data well. In fact, the KS
test indicates that all these cdfs are acceptable for any αs less than 0.3. The AD test,
however, implies that the FLT cdfs are marginal, at best. Clearly, the FLT cdfs are

Fig. 8 Merged FLT fatigue
life data for ASTM A969
specimens [13]; Weibull
MLE
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Fig. 9 FLT Weibull cdfs for
fatigue life data for ASTM
A969 specimens [13]
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Fig. 10 Fatigue life data for
ASTM A969 specimens [13]
with FLT percentile bounds

cycles to failure, Nf

103 104 105 106 107

st
ra

in
 ra

ng
e,

 
, (

m
m

/m
m

)

2e-3

3e-3

5e-3

7e-3

2e-2

1e-3

1e-2

total strain range 
FLT median
FLT 99% bounds

not as accurate in the tails. No doubt, larger samples for each �εk would help with
characterization of the extremes. Using Eq. (10), Fig. 10 is an S-N graph, identical
to Fig. 2, with the addition of the FLT estimated median, and the FLT estimated 99%
percentile bounds. The 99% bounds are very tight, and the all the data are within the
bounds for each �εk . They are somewhat jagged because they follow the pattern of
the S-N data. The analysis is not as crisp as that for the 2024-T4 data; however, there
seems to be merit in using the FLT approach for the ASTM A969 fatigue data.

6 FLT Analysis for 9Cr-1Mo Fatigue Life Data

The third application of the FLT method for the 9Cr-1Mo fatigue data does not
perform very well. Figure 3 shows unusually large scatter for the higher values of
�εk which is a good test for the FLT methodology. The arbitrary scaling factors
are the same; NA and sA are 26 and 1, respectively. Figure 11 shows the 130 FLT
merged values with theMLEW(α, β, γ). TheKS andADgoodness of fit test statistics
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Fig. 11 Merged FLT fatigue
life data for 9Cr-1Mo
specimens [16]; Weibull
MLE
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are 0.028 and 0.300, respectively. The MLE is acceptable according to the KS and
AD tests for any significance level αs less than 0.3. The merged data are very well
characterized by this cdf. The corresponding MLE estimated parameters are α̂ =
2.497; β̂ = 2.475; and γ̂ = 23.769.

The FLT cdfs W(α, βk , γk), Eqs. (7)–(9), for 9Cr-1Mo are shown on Fig. 12.
Graphically, the FLT cdfs appear to be acceptable, at least for the cases with more
data. Clearly, when �εk is 0.019, the fit is borderline. The KS test indicates that all
these cdfs are acceptable for any αs less than 0.3. On the other hand, the AD test
indicates that none of the FLT cdfs are acceptable. The compressed graphical scale
for the cycles to failure masks the poor fit of the FLT cdfs to the tails of the data.
Figure 13 is the S-N graph, Fig. 3, with the FLT estimated median, and the FLT
estimated 99% percentile bounds. Because the FLT cdfs are not very representative
of the fatigue data, the 99% bounds are erratic. All the data are within the bounds
for each �εk . That is somewhat positive. They are quite jagged because they follow
the S-N data pattern. One of the difficulties in modeling these data are that there are
three values for�εk that have several replicates, but the other values have only a few.
Also the scatter in the data when �εk is 0.020 appears to be larger than expected.

Fig. 12 FLT Weibull cdfs
for fatigue life data for
9Cr-1Mo specimens [16]
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Fig. 13 Fatigue life data for
9Cr-1Mo specimens [16]
with FLT percentile bounds
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Since there is no explanation for this in [16], the reason would purely speculation.
The analysis is marginal for the 9Cr-1Mo data. There may be merit in using the FLT
approach for some insight, but conclusions would need to be made very cautiously.

7 Observations and Conclusions

Three sets of fatigue life data were considered for the proposed FLT method. These
datasets were selected because of they have replicate data for several applied stress
or strain ranges, �σk or �εk , respectively. The primary reason for the proposed FLT
method is to accurately model the statistical nature of fatigue life data. Specifically,
the estimation of underlying cdfs is crucial. It is well known that fatigue life data have
rather large amounts of variability particularly for applied loads similar to typical
operating conditions. Modeling these data is very challenging. Associated with this
is that many fatigue life data sets have relatively few choices for �σk or �εk , and
each choice has limited observations.

The FLT introduced in this paper attempts to help improve fatigue life modeling
by using a statistically based transformation to merge data, thereby increasing the
effective sample size. The FLT approach transforms the fatigue life data for each
given �σk or �εk so that the averages and standard deviations are the same. Subse-
quently, the data are merged, and a suitable cdf is statistically estimated for the entire
collection. The cdf for each given �σk or �εk is obtained by standard change-of-
variables methods using the cdf that characterizes the entire transformed and merged
data.

Using the 2024-T4 fatigue life in [9], the FLT is very promising partly because
there are eight different values for �σk and a total of 222 data being considered. A
three–parameter Weibull cdf W(α, β, γ) is an excellent representation of the merged
FLT data, and aW(α, β, γ) is also appropriate characterization for the underlying cdfs
given�σk . Consequently, there is assurance that the lower tail behavior is adequately
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modeled because of the methodology. Additionally, the validation for the approach is
the computed FLT percentiles for the S-N data. The computed FLT 99% percentiles
fully encompass all the S-N data, but more importantly, the bounds are quite tight.
The conclusion from this analysis is that the FLT methodology is warranted.

To corroborate this conclusion, two other sets of fatigue life data were considered;
ASTM A969 [13] and 9Cr-1Mo [16]. In both cases, the merged FLT data are well
characterized by aW(α, β, γ). The KS test indicates that the transformedW(α, β, γ) is
also suitable for the underlying cdfs given�εk , but theAD test ismore discriminating.
The tail behavior of the underlying cdfs given �εk are marginally acceptable at best,
if at all. The 99% percentiles for the ASTM A969 S-N data are quite good. They
are encompass the data, and they are tight. For the 9Cr-1Mo S-N data, however, the
percentile lines are not very regular. They do encompass the data, but the data have
so much variability that little is gained by the analysis.

Based on these three examples, the FLT approach should be employed for fatigue
life data analysis when an empirical method is desired. The FLTmethod excellent for
one of the cases, 2024-T4, acceptable for another case, ASTM A969, and marginal
for the other case, 9Cr-1Mo. As with all empirical analyses, caution must be exer-
cised when it is implemented. Limited applied loads with limited replicate data for
each load hinders accurate modeling for any method including the FLT. As with
all empirical methods, the more data there is, the better the accuracy will be. The
example which was the worst, 9Cr-1Mo, seems to be poor because there is overly
large scatter in the data for the higher loading conditions coupled with applied loads
with only a few replicates. Again, the FLTmethodology should be implemented with
care.

Many sets of experimental fatigue life data contain censoring. This will be inves-
tigated in the future. In this case the cdf estimation is more advanced, especially for
a three-parameter cdf. In principle the FLT methodology should be similar except
for the adjustment for censoring. All things considered, the proposed FLT approach
has sufficient promise that further investigation and analysis is certainly warranted.
The overarching observation is that the FLT approach is useful if the fatigue data are
reasonably well behaved.
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