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Abstract Persistent homology, a central tool of topological data analysis, provides
invariants of data called barcodes (also known as persistence diagrams). A barcode
is simply a multiset of intervals on the real line. Recent work of Edelsbrunner,
Jablonski, and Mrozek suggests an equivalent description of barcodes as functors
R → Mch, where R is the poset category of real numbers and Mch is the category
whose objects are sets and whose morphisms are matchings (i.e., partial injective
functions). Such functors form a category MchR whose morphisms are the natural
transformations. Thus, this interpretation of barcodes gives us a hitherto unstudied
categorical structure on barcodes. We show that this categorical structure leads
to surprisingly simple reformulations of both the well-known stability theorem
for persistent homology and a recent generalization called the induced matching
theorem. These reformulations make clear for the first time that both of these results
can be understood as the preservation of certain categorical structure. We also show
that this perspective leads to a more systematic variant of the proof of the induced
matching theorem.

1 Introduction

The stability theorem for persistent homology is one of the main results of
topological data analysis (TDA). It plays a key role in the statistical foundations of
TDA [13], and is used to formulate theoretical guarantees for efficient algorithms to
approximately compute persistent homology [6, 18]. The theorem is originally due
to Cohen-Steiner et al., who presented a version of the theorem for the persistent
homology of R-valued functions [9]. Since then, the theorem has been revisited
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a number of times, leading to simpler proofs and more general formulations [1–
5, 7, 8, 15]. In particular, Chazal et al. introduced the algebraic stability theorem
[8], a useful and elegant algebraic generalization, and it was later observed that the
(easy) converse to this result also holds [15]. Bubenik and Scott were the first to
explore the category-theoretic aspects of the stability theorem, rephrasing some of
the key definitions in terms of functors and natural transformations [4].

Letting vect denote the category of finite dimensional vector spaces over a
fixed field K , a pointwise finite dimensional (p.f.d.) persistence module is an
object of the functor category vectR. The structure theorem for p.f.d. persistence
modules [10] tells us that the isomorphism type of a p.f.d. persistence module M is
completely described by a unique collection of intervals called the barcode B(M).
This barcode specifies how M decomposes into indecomposable summands; such a
decomposition is essentially unique. The algebraic stability theorem, together with
its converse, tells us that two persistence modules are algebraically similar (in a
sense made precise by the language of interleavings) if and only if they have similar
barcodes.

In [1], the authors of the present paper introduced the induced matching
theorem, an extension of the algebraic stability theorem to a general result about
morphisms of persistence modules, with a new, more direct proof. The present
paper is intended as a follow-up to [1]. The induced matching theorem can be
viewed as a categorification of the stability theorem, and while this viewpoint was
already present in [1], it was not fully developed. Our goal here is to complete
the development of the categorical viewpoint on induced matchings and algebraic
stability. In order to make this paper self-contained, we revisit some of the same
territory as [1] along the way, leveraging the categorical perspective to streamline
the presentation.

To formulate and prove the induced matching theorem, in [1] we considered the
category whose objects are barcodes and whose morphisms are arbitrary matchings
(i.e., partial injective functions). In the present paper, we introduce a different
category of barcodes, denoted by Barc, for which the morphisms are only those
matchings satisfying a certain simple condition on how the matched intervals
overlap. We observe that there exists an equivalence of categories E : Barc →
MchR extending the correspondence between barcodes and functors R → Mch
given by Edelsbrunner et al. [12]. We use the category Barc to further develop the
categorical viewpoint on stability.

Thanks to the equivalence E, it turns out that all of the categorical structure of
vectR relevant to algebraic stability (as treated in [1]) has an analogue in Barc.
This allows us to present simple reformulations of both the induced matching and
algebraic stability theorems, which make clear for the first time that both results
can be understood as the preservation of certain categorical structure upon passing
from persistence modules to barcodes. Moreover, we show that this viewpoint leads
naturally to a more systematic variant of the proof of the induced matching theorem
(albeit one closely related to the proof given in [1]).
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1.1 Reformulation of the Induced Matching Theorem

To state the induced matching theorem, we need to first define a morphism of
barcodes in Barc

X(f ) : B(M) → B(N)

induced by a morphism f : M → N of p.f.d. persistence modules. This is called
the induced matching of f . To define X(f ), one first gives the definition in the case
that f is a monomorphism or epimorphism; see Sect. 3.2 for the details.

For any category C, let C↪→ denote the subcategory with the same objects and
morphisms the monomorphisms. Similarly, let C� denote the subcategory with the
same objects and morphisms the epimorphisms. The following result is equivalent
to [1, Proposition 4.2]; we provide two different proofs, in Sects. 3.2 and 5.

Theorem 1 (Induced Matchings for Monos and Epis)

(i) The matchings induced by monomorphisms define a functor

X : (vectR)↪→ → Barc↪→.

(ii) Dually, the matchings induced by epimorphisms define a functor

X : (vectR)� → Barc�.

To extend the definition of the induced matchings X(f ) to arbitrary morphisms
f : M → N of p.f.d. persistence modules, we take X(f ) = X(i) ◦ X(q), where

M
q
� im f

i
↪→ N

is the epi-mono factorization of f . Note that when f is a monomorphism or
epimorphism, this definition of X(f ) coincides with the one given by Theorem 1
above.

Remark 1 The map f �→ X(f ) is not functorial on all of vectR [1, Example 5.6],
though it is functorial on both the subcategory of monos and the subcategory of epis.
Indeed, it is impossible to extend the map M �→ B(M) to a functor from vect to
Barc [1, Proposition 5.10].

A morphism f in vectR is a monomorphism (epimorphism) if and only if f has
a trivial kernel (respectively, cokernel), and it can be checked that the same is true as
well for a morphism f in Barc. Thus, Theorem 1 tells us that the matchings induced
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by morphisms with trivial (co)kernels also have trivial (co)kernels. As formulated
in this paper, the induced matching theorem is a generalization of this statement to
small (but not necessarily trivial) (co)kernels.

To make this precise, we need the following definition:

Definition 1 (δ-triviality) For A a pointed category (i.e., a category with a zero
object) and δ ≥ 0, we say that a diagram M : R → A is δ-trivial if for all t ∈ R, the
internal morphism Mt,t+δ : Mt → Mt+δ is a zero morphism, i.e., it factors through
the zero object. The empty set is the zero object in Mch; we say a barcode C is
δ-trivial if E(C) is δ-trivial.

Note that M = 0 if and only if M is 0-trivial. Using the definition of the equivalence
E given below in Sect. 2.4, it is straightforward to check that a barcode C is δ-trivial
if and only if each interval of C is contained in some half-open interval of length δ.
Moreover, a persistence module M is δ-trivial if and only if B(M) is δ-trivial.

Theorem 2 (Categorical Formulation of the Induced Matching Theorem) For
any morphism f : M → N of p.f.d. persistence modules, the induced matching
X(f ) : B(M) → B(N) is a morphism in Barc such that

(i) if f has δ-trivial kernel, then so does X(f ), and
(ii) if f has δ-trivial cokernel, then so does X(f ).

Note that taking δ = 0 in Theorem 2, we recover Theorem 1. In Sect. 3, we give
a concrete formulation of the induced matching theorem (Theorem 5), similar to the
version appearing in [1], and explain why the two formulations are equivalent.

Remark 2 In both the proof of the induced matching theorem given in [1] and the
proof given in the present paper, the first step is to prove Theorem 1. In this paper,
we show that the proof of Theorem 2 follows readily from Theorem 1 and a simple
characterization of the δ-triviality condition for functors R → A taking values in a
Puppe-exact category A; see Definition 2 and Lemma 1.

Remark 3 Theorem 2 has a simple converse, which we give in Proposition 4.

1.2 Reformulation of the Algebraic Stability Theorem

We next turn to our reformulation of the algebraic stability theorem. The theorem is
typically formulated using the interleaving distance dI on persistence modules and
the bottleneck distance dB on barcodes; see Sect. 4.2 for the definition. Here, we use
the categorical structure on barcodes to state the algebraic theorem purely in terms
of interleavings of R-indexed diagrams, without explicitly introducing dB .

Interleavings and the interleaving distance dI can be defined on R-indexed
diagrams taking values in an arbitrary category; see Definition 6. By way of the
equivalence E, we thus obtain definitions of interleavings and dI on Barc; see
Sect. 4.1.1. Our Proposition 6 establishes that the distances dI and dB on barcodes
are equal; in fact, we give a slightly sharper statement. From Proposition 6 it follows
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that the forward and converse algebraic stability theorems, as stated in [1], can be
rephrased as follows:

Theorem 3 (Categorical Formulation of Algebraic Stability) Two p.f.d. persis-
tence modules M and N are δ-interleaved if and only if their barcodes B(M) and
B(N) are δ-interleaved. In particular,

dI (M,N) = dI (B(M),B(N)).

As we show in Sect. 4.2, this formulation of algebraic stability follows easily
from Theorem 2.

1.3 Directly Constructing Barcodes as Matching Diagrams

In view of the equivalence E : Barc → MchR, one may wonder whether one
can give simple constructions of barcodes of persistence modules and induced
matchings directly in the category MchR. In the final part of this paper, we explore
this question. Given a persistence module M , we give a direct construction of a
matching diagram D�(M) which is equivalent to the usual barcode of M . D�(M)

is defined only in terms of the ranks of the linear maps in M; the definition does not
depend on the structure theorem for persistence modules. D�(M) has the appealing
property that the sets D�(M)r at each index r are defined in an especially simple
way, namely

D�(M)r = {1, 2, . . . , dim Mr}.

We observe that, given an epimorphism of persistence modules f : M � N , the
matching induced by f has a simple description as a natural transformation

D�(f ) : D�(M) � D�(N),

and this leads to an alternate proof of Theorem 1 (ii). There seems to be no
comparably simple, direct description of the matching induced by a monomorphism
f : M ↪→ N as a natural transformation D�(M) → D�(N). But we observe
that the matching diagram D�(M) has a dual D↪→(M), also equivalent to the usual
barcode, such that the matching induced by a monomorphism f : M ↪→ N has a
simple description as a natural transformation

D↪→(f ) : D↪→(M) ↪→ D↪→(N),

leading (dually) to an alternate proof of Theorem 1 (i).



72 U. Bauer and M. Lesnick

1.4 Organization of the Paper

We begin Sect. 2 by examining the properties of the category MchR. We then give
the precise definitions of our category of barcodes Barc and of the equivalence E :
Barc → MchR. As applications of this equivalence, we give a concrete description
of (co)kernels and images in Barc, and we describe how the δ-triviality of the
(co)kernel of a morphism f : C → D in Barc controls the similarity between C and
D. In Sect. 3, we use these descriptions to show that our categorical formulation of
the induced matching theorem (Theorem 2) is equivalent to a concrete formulation
similar to that appearing in [1]. We then complete the definition of induced
matchings and give our proof of the induced matching theorem. In Sect. 4, we give
the details of our reformulation of the algebraic stability theorem, and we prove
that this follows easily from the induced matching theorem. Section 5 discusses the
construction of barcodes and induced matchings directly in MchR.

2 Barcodes as Diagrams

2.1 Properties of Mch and MchR

First, we review some basic properties of the category Mch having sets as objects
and matchings (partial injective functions) as morphisms. Mch is a subcategory
of the category with sets as objects and relations as morphisms. The composition
τ ◦ σ : S → U of two matchings σ : S → T and τ : T → U is thus defined as

τ ◦ σ = {(s, u) | (s, t) ∈ σ, (t, u) ∈ τ for some t ∈ T }.

The monomorphisms in Mch are the injections, while the epimorphisms are the
coinjections, i.e., matchings which match each element of the target. The kernel and
cokernel of a morphism in Mch consist of the unmatched elements of the source and
target, respectively, together with the canonical (co)injections. Similarly, the image
and coimage consist of the matched elements (See Fig. 1 for an illustration).

coim f

ker f

im f

coker f

Fig. 1 Examples illustrating matchings as a category. Left: the composition of two matchings.
Right: kernel, coimage, image, and cokernel of a matching f
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2.1.1 Mch and MchR as Puppe-Exact Categories

The category Mch is not Abelian: it does not have all binary (co)products, and is not
even pre-additive. Nevertheless, Mch does share some structural similarities with an
Abelian category. In specific, Mch is a Puppe-exact category:

Definition 2 A Puppe-exact category [14, 16, 17] is a category with the following
properties:

• it has a zero object,
• it has all kernels and cokernels,
• every monomorphism is a kernel, and every epimorphism is a cokernel,
• every morphism f has an epi-mono factorization.

Every Abelian category is Puppe-exact, and it has been shown in [14] that
significant portions of homological algebra can be developed for Puppe-exact
categories.

It follows from the definition that a Puppe-exact category also has all (co)images.
Just like in Abelian categories, we have that

im f = ker coker f, coim f = coker ker f,

and the coimage is canonically isomorphic to the image. Moreover, the epi-mono
factorization of a morphism f is through im f , and is essentially unique.

For any category C and Puppe-exact category A, the category of functors C → A
is also Puppe-exact. Thus, MchR is Puppe-exact. In particular, it has all kernels,
cokernels, and images, and these are given pointwise.

2.2 Barcodes

Definition 3 (Multiset Representations) We say a multiset representation is a
subset T ⊆ S × X of sets S and X, called the base set and the indexing set
respectively. For s ∈ S, the multiplicity of s in T is the cardinality of the local
indexing set Xs = {x ∈ X | (s, x) ∈ T }. In [1], we considered a more restrictive
definition of a multiset representation, where the indexing set X is N = {1, 2, 3, . . .}
and each local indexing set Xs is required to be a prefix of N; we refer to this as a
natural multiset representation. (Using the more general definition here allows us to
establish the link between barcodes and matching diagrams without imposing any
cardinality conditions on the matching diagrams.)

Let T and T ′ be multiset representations with the same indexing set S and
respective base sets X and X′. We say T ′ reindexes T , and write T ∼= T ′, if there
exists a bijection f : T → T ′ such that for all (s, x) ∈ T , f (s, x) = (s, x′) for
some x′ ∈ X′. Note that ∼= is an equivalence relation on multiset representations.
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Definition 4 (Barcode) An interval in R is a non-empty set I ⊂ R such that if
a, c ∈ I and a < b < c, then b ∈ I . A barcode is a multiset representation whose
base set consists of intervals in R. If the barcode is a natural multiset representation,
we call it a natural barcode.

In working with barcodes, we often abuse notation slightly by suppressing the
indexing set, and write an element (s, x) of a barcode simply as s.

2.2.1 Barcodes of Persistence Modules

For I an interval, define the interval module KI to be the persistence module such
that

KI
r =

{
K if r ∈ I,

0 otherwise.
KI

r,s =
{

IdK if r, s ∈ I,

0 otherwise.

The following well-known theorem tells us that natural barcodes arise as
complete isomorphism invariants of p.f.d. persistence modules.

Theorem 4 (Structure of p.f.d. Persistence Modules [10]) For any p.f.d. persis-
tence module M , there exists a unique natural barcode B(M) such that

M ∼=
⊕

I∈B(M)

KI .

Following [7], we call this barcode B(M) the decomposition barcode of M , or
simply the barcode of M .

2.3 The Category of Barcodes

For intervals I, J ⊆ R, we say that I bounds J above if for all s ∈ J there exists
t ∈ I with s ≤ t . If additionally J bounds I above, we say that I and J coincide
above. Symmetrically, we say that J bounds I below if for all t ∈ I there exists
s ∈ J with s ≤ t , and that I and J coincide below if additionally I bounds J below.
We say that I overlaps J above (and symmetrically, J overlaps I below) if each of
the following three conditions hold:

• I ∩ J = ∅,
• I bounds J above, and
• J bounds I below.

For example, [1, 3) overlaps [0, 2) above, but neither [0, 4) nor [0, 2) overlap [1, 3)

above.
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I

J

K

I

J

K

Fig. 2 Illustration of overlap matchings and their composition. Both the left and right examples
depict overlap matchings σ : B → C and τ : C → D between single-interval barcodes B = {I },
C = {J }, D = {K}, with σ = {(I, J )}, τ = {(J,K)}. We have (I,K) ∈ τ • σ if and only if
I ∩ K = ∅, so τ • σ = {(I,K)} for the left example, but τ • σ = ∅ for the right example

Definition 5 (The Category of Barcodes) We define an overlap matching between
barcodes C and D to be a matching σ : C → D such that if σ(I) = J , then I

overlaps J above. Note that if σ : B → C and τ : C → D are both overlap
matchings, then the composition τ◦σ in Mch is not necessarily an overlap matching;
for intervals I, J,K such that I overlaps J above, and J overlaps K above, it may
be that I ∩ K = ∅, so that I does not overlap K above.

We thus define the overlap composition τ • σ of overlap matchings σ and τ as
the matching

τ • σ = {(I,K) ∈ τ ◦ σ | I overlaps K above}.

See Fig. 2 for an illustration. It is easy to check that with this new definition of
composition, the barcodes and overlap matchings form a category, which we denote
as Barc.

Note that two barcodes are isomorphic in Barc if and only if one reindexes the other.
Note also that the empty barcode is the zero object in Barc.

2.4 Barcodes as Diagrams

2.4.1 A Functor from Barcodes to Diagrams

We now define the equivalence E : Barc → MchR. For D a barcode and t ∈ R, we
let

E(D)t := {I ∈ D | t ∈ I },

and for each s ≤ t we define the internal matching E(D)s,t : E(D)s → E(D)t to
be the restriction of the diagonal of D × D to E(D)s ∩ E(D)t , i.e.,

E(D)s,t := {(I, I ) | I ∈ D, s, t ∈ I }.

See Fig. 3 for an illustration.
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E (C)t E (C)s E (C)t

Fig. 3 Examples illustrating the matching diagram representation E(C) of a barcode C. Left: The
intervals of Et (C) are shown in blue (left). Right: The intervals of coim E(C)s,t = im E(C)s,t are
shown in red

We define the action of E on morphisms in Barc in the obvious way: for σ :
C → D an overlap matching and t ∈ R, we let E(σ)t : E(C)t → E(D)t be the
restriction of σ to pairs of intervals both containing t , i.e.,

E(σ)t := {(I, J ) ∈ σ | t ∈ I ∩ J }.
It is straightforward to check that E is indeed a functor.

2.4.2 A Functor from Diagrams to Barcodes

To see that E is an equivalence, we next define a functor F : MchR → Barc such
that E and F are inverses (up to natural isomorphism).

For D : R → Mch, let

F(D) :=
(⋃

t∈R
{t} × Dt

) /
∼

where (t, x) ∼ (u, y) if and only if (x, y) ∈ Dt,u or (y, x) ∈ Du,t . The functoriality
of D implies that the projection onto the first coordinate (t, x) �→ t necessarily maps
each equivalence class Q ∈ F(D) to an interval supp(Q) = {t | (t, x) ∈ Q} ⊆ R.
We thus may define the barcode F(D) by

F(D) := {(supp(Q),Q) | Q ∈ F(D)},
where we interpret the above expression as a multiset representation by taking the
index of each interval supp(Q) to be the equivalence class Q. We take the action
of F on morphisms to be the obvious one: for diagrams C,D : R → Mch and
η : C → D a natural transformation (consisting of a family of matchings ηt : Ct →
Dt ), we take F(η) : F(C) → F(D) to be the overlap matching given by

F(η) := {
((supp(Q),Q), (supp(R), R)) | Q ∈ F(C), R ∈ F(D),

∃ t ∈ R, (x, y) ∈ ηt : (t, x) ∈ Q, (t, y) ∈ R
}
.
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It is easy to check that F is a functor and that E and F are indeed inverses up to
natural isomorphism.

2.5 Kernels, Cokernels, and Images of Barcodes

In the induced matching approach to algebraic stability, (co)kernels and δ-triviality
of persistence modules both play an essential role. We have seen above that the
definitions of these extend to functor categories AR for any Puppe-exact category
A; in particular, they extend to MchR. Thus, since Mch is equivalent to Barc, these
definitions also carry over to Barc.

We next give concrete descriptions of kernels, cokernels, and images in Barc. We
then use these to obtain a simple description of how the δ-triviality of the (co)kernel
of a morphism f : C → D in Barc controls the similarity between C and D.

For σ : C → D an overlap matching of barcodes and I ∈ C, define

ker(σ, I ) =
{

I if σ does not match I,

I \ J if σ(I) = J.

Hence, ker(σ, I ) is either empty or an interval in R. In the latter case, I and ker(σ, I )

coincide above. Dually, for J ∈ D, we define

coker(σ, J ) =
{

J if σ does not match J,

J \ I if σ(I) = J.

Proposition 1 For any morphism (i.e., overlap matching) σ : C → D in Barc, the
categorical kernel, cokernel, and image of σ exist and are given by

ker σ = {ker(σ, I ) = ∅ | I ∈ C},
coker σ = {coker(σ, J ) = ∅ | J ∈ D},

im σ = {I ∩ J | (I, J ) ∈ σ }.

Proof Given σ : C → D in Barc, applying the equivalence E yields a morphism
of matching diagrams E(σ) such that

(ker E(σ))t = {I ∈ C | t ∈ I, I not matched by σ to J ∈ D with t ∈ J }.

It is then clear that

F(ker E(σ)) = {ker(σ, I ) = ∅ | I ∈ C}.
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Since

ker σ ∼= F ◦ E(ker σ) ∼= F(ker(E(σ))),

the result for kernels holds. Similar arguments give the results for cokernels and for
images. ��

Using this concrete description of (co)kernels in Barc, we now give an explicit
description of the notion of δ-triviality for (co)kernels of overlap matchings. Given
an interval I ⊂ R and δ ≥ 0, let

I (δ) := {t | t + δ ∈ I } (1)

be the interval obtained by shifting I downward by δ.

Proposition 2 Let η : C → D an overlap matching of barcodes. Then

(i) ker η is δ-trivial if and only if

(a) for each (I, J ) ∈ η, J bounds I (δ) above, and
(b) any interval of C that is not matched by η is contained in a half-open interval

of length δ.

(ii) coker η is δ-trivial if and only if

(a) for each (I, J ) ∈ η, I (δ) bounds J below, and
(b) any interval of D that is not matched by η is contained in a half-open interval

of length δ.

Proof As noted in Sect. 1.1, a barcode C is δ-trivial if and only if each interval
in C is contained in a half-open interval of length δ. Given this, the result follows
immediately from Proposition 1. ��

Recall that a morphism has 0-trivial (co)kernel if and only if it is a monomor-
phism (epimorphism). We thus have the following corollary of Proposition 2, which
gives a concrete interpretation of Theorem 1:

Corollary 1 Let η : C → D an overlap matching of barcodes. Then

(i) η is a monomorphism if and only if

(a) for each (I, J ) ∈ η, I and J coincide above, and
(b) every interval of C is matched (i.e., η is an injection).

(ii) η is an epimorphism if and only if

(a) for each (I, J ) ∈ η, I and J coincide below, and
(b) every interval of D is matched (i.e., η is a coinjection).
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3 The Induced Matching Theorem

In this section, we observe that the categorical formulation of the induced matching
theorem (Theorem 2) is equivalent to a more concrete statement, similar to the for-
mulation appearing in [1]. We then define the matchings induced by epimorphisms
and monomorphisms of persistence modules, thereby completing the definition of
induced matchings given in Sect. 1.1. To finish the section, we prove the induced
matching theorem, working directly with the categorical formulation of the theorem.

3.1 Concrete Formulation of the Induced Matching Theorem

It follows from Propositions 1 and 2 that our categorical reformulation of the
induced matching theorem (Theorem 2) is equivalent to the following. See Fig. 4
for an illustration.

Theorem 5 (Induced Matching Theorem [1]) Let f : M → N be a morphism of
p.f.d. persistence modules.

(i) The induced matching X(f ) : B(M) → B(N) is an overlap matching.
(ii) If ker f is δ-trivial, then

(a) for each (I, J ) ∈ X(f ), J bounds I (δ) above, and
(b) any interval of B(M) not matched by X(f ) is contained in a half-open

interval of length δ.

(iii) If coker f is δ-trivial, then

(a) for each (I, J ) ∈ X(f ), I (δ) bounds J below, and
(b) any interval of B(N) not matched by X(f ) is contained in a half-open

interval of length δ.

Fig. 4 Illustration for part (ii) of the induced matching theorem: the right endpoint of the interval
J ∈ B(N) coincides with that of an interval in B(im f ) and lies between the right endpoint of the
interval I ∈ B(M) and that of the shifted interval I (δ) ∈ B(M(δ))
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3.2 Matchings Induced by Monos and Epis of Persistence
Modules

We now define the matching X(f ) induced by a monomorphism or epimorphism
f of persistence modules. The way we will present the definition will depend on
a structural result, Proposition 3 below, which also leads almost immediately to a
proof of Theorem 1.

Let I denote the set of intervals in R. For I, J ∈ I, write I ∼a J if I and J

coincide above. ∼a is an equivalence relation on I. For B a barcode, ∼a induces
an equivalence relation on B, which we also denote as ∼a . For each equivalence
class e ∈ I/∼a , let Be denote the corresponding equivalence class of B/∼a if B
contains any intervals in e. Otherwise let Be = ∅. If B is the barcode of a p.f.d.
module, then each Be is finite or countable. In addition, if Be is non-empty then
it contains a maximal interval under inclusion. We endow Be with a total order by
taking (I, n) < (J, n′) if I strictly contains J or I = J and n < n′. Be is then a
countable, well-ordered set, hence isomorphic to a prefix of N.

Proposition 3 (Induced Matchings for Monos) If f : M → N is a monomor-
phism of persistence modules, then

(i) for each e ∈ I/∼a ,

|B(M)e| ≤ |B(N)e|.

Thus, we have a well defined injection X(f ) : B(M) ↪→ B(N), which sends
the ith element of B(M)e to the ith element of B(N)e.

(ii) X(f ) is in fact a monomorphism in Barc.

A simple proof of Proposition 3 is given in [1, Section 4]. Here, we present a
variant of that argument.

Proof of Proposition 3 For any interval I ⊂ R, we define a functor FI : vectR →
vect such that

1. for all p.f.d. persistence modules M , dim FI (M) is the number of intervals in
B(M) which contain I and coincide with I above, and

2. FI maps monomorphisms to monomorphisms.

To define FI , we choose t ∈ I and let

ker+ =
⋂

u∈I :t<u

ker Mt,u, ker− =
⋃

u∈I :t≤u

ker Mt,u, im+ =
⋂

s∈I :s≤t

im Ms,t .

We take

FI (M) = (ker+ ∩ im+)/(ker− ∩ im+).
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The map M �→ FI (M) is easily checked to be functorial. From the structure theo-
rem 4, it is clear that dim FI (M) has the desired property, and it is straightforward
to check that F preserves monomorphisms.

The proposition follows easily from the existence of the functors FI : Let I be
the j th interval in B(M)e. We have

j ≤ dim FI (M) ≤ dim FI (N) ≤ |B(N)e|.

If B(M)e is finite, then taking j = |B(M)e| gives that |B(M)e| ≤ |B(N)e|. If
B(M)e is countably infinite, then we have that j ≤ |B(N)e| for all j ≥ 0, hence
|B(N)e| is infinite as well. This proves (i).

To prove (ii), note that for each I ∈ B(M), I and X(f )(I ) coincide above
by construction of X(f ), so in view of Corollary 1, it suffices to show that
I ⊂ X(f )(I ). Suppose that I is the j th interval in B(M)e. Since dim FI (M) ≤
dim FI (N), B(N)e has at least j intervals containing I . X(f )(I ) is by definition
the j th interval of B(N)e, so we have I ⊂ X(f )(I ), as desired. ��

To define X(f ) for an epimorphism f , we simply dualize the above construction,
taking two intervals to be equivalent if and only if they coincide below. The dual
argument shows that X(f ) is an epimorphism in Barc.

Proof of Theorem 1 (Induced Matchings for Monos and Epis) It is easy to see
that the map f �→ X(f ) of the Proposition 3 is in fact functorial, so this defines
a functor X from monomorphisms of persistence modules to monomorphisms in
Barc, proving Theorem 1 (i). The dual observation yields Theorem 1 (ii). ��
Example 1 Interestingly, the map f �→ X(f ) may strictly decrease the triviality
of (co)kernels: we give an example of a monomorphism f : M ↪→ N such that
coker f is not 2-trivial but cokerX(f ) is 2-trivial. Let

M = K [2,4), N = K [0,4) ⊕ K [1,3), and f =
(

1
1

)
.

Then B(coker f ) = {[0, 3), [1, 2)} but cokerX(f ) = {[0, 2), [1, 3)}. In contrast,
note that for any morphism f , we have by construction that imX(f ) = B(im f ).

3.3 A Characterization of Morphisms with δ-Trivial (Co)kernel

We now turn our attention to the proof of the induced matching theorem. First, we
introduce some notation.



82 U. Bauer and M. Lesnick

3.3.1 Shifts of R-Indexed Diagrams and Barcodes

Consider the translation t �→ t + δ of the real line by δ ∈ R as an endofunctor Sδ :
R → R. For any category A and diagram M : R → A, we write M(δ) := M ◦ Sδ .
Thus, M(δ) is the diagram obtained by shifting each vector space and linear map
in M downward by δ. Given M,N : R → A, a morphism f : M → N induces a
morphism f (δ) : M(δ) → N(δ).

For δ ≥ 0, the internal morphisms {Mt,t+δ}t∈R assemble into a natural transfor-
mation M → M(δ), which we denote by SM,δ . Note that since (M(−δ))(δ) = M ,
we have a natural transformation SM(−δ),δ : M(−δ) → M .

For C a barcode, let

C(δ) := {I (δ) | I ∈ C},

where I (δ) is as defined in Eq. 1, and let SC,δ : C → C(δ) be the overlap matching
given by

SC,δ := {(I, I (δ)) | I is not δ-trivial}.

Note that for E : Barc → MchR the equivalence of Sect. 2.4, E(SC,δ) = SE(C),δ .
The following proposition is one of the key ingredients in our proof of the

induced matching theorem:

Lemma 1 Given diagrams M,N : R → A with A Puppe-exact, and a morphism
f : M → N with epi-mono factorization

M
q
� im f

i
↪→ N,

the following are equivalent:

(i) ker f is δ-trivial;
(ii) the image epimorphism r : M � im SM,δ factors as

M im SM,δ

im f

r

q
p

for some epimorphism p : im f � im SM,δ .
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Dually, the following are equivalent:

(i) coker f is δ-trivial;
(ii) the image monomorphism h : im(SN(−δ),δ) ↪→ N factors as

im SN(−δ),δ N

imf

h

j
i

for some monomorphism j : im SN(−δ),δ ↪→ im f .

Proof We give the proof for ker f , the dual case of coker f being analogous. Let

κ : ker f ↪→ M and μ : ker SM,δ ↪→ M

denote the kernel monomorphisms, and let

q : M � im f and r : M � im SM,δ

denote the image epimorphisms.
To show that (i) implies (ii), assume that ker f is δ-trivial, i.e.,

Sker f,δ : ker f → ker f (δ)

is the zero morphism. Then we also have

SM,δ ◦ κ = κ(δ) ◦ Sker f,δ = 0.

The universal property of the kernel monomorphism μ thus provides a unique
morphism v : ker f → ker SM,δ such that κ = μ ◦ v.

ker f 0 ker f (δ)

ker SM,δ M im SM,δ M(δ)

im f

∃!v
κ κ(δ)

μ r

q ∃!p

Since κ is a monomorphism, v must be a monomorphism too. We have r ◦ μ = 0,
so

r ◦ κ = r ◦ μ ◦ v = 0
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as well. Now by the universal property of q as the cokernel epimorphism of κ , there
is a unique epimorphism p : im f → im SM,δ such that r = p ◦ q.

To show that (ii) implies (i), assume that there is an epimorphism p factoring
r = p ◦ q. We have q ◦ κ = 0, so

r ◦ κ = p ◦ q ◦ κ = 0

as well. Thus

SM,δ ◦ κ = κ(δ) ◦ Sker f,δ = 0,

and since κ(δ) is a monomorphism, this implies that Sker f,δ = 0. ��

3.4 Proof of the Induced Matching Theorem

To prove the induced matching theorem (Theorem 2) we will need the following
lemma, which follows easily from the definition of induced matchings and the
structure theorem for persistence modules (Theorem 4).

Lemma 2 For any p.f.d. persistence module M , we have SB(M),δ = X(SM,δ).

Proof of Theorem 2 (Induced Matching Theorem) We prove (i); the proof dual-
izes to a proof of (ii). Write s = SM,δ , and let f = i ◦ q and s = j ◦ r be the
epi-mono factorizations. By Lemma 1, we obtain an epimorphism p : im f � im s

such that the following diagram commutes:

M im s M(δ)

im f

N

r

s

f

q

j

i

p
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By Theorem 1 and the way we construct induced matchings, we have epi-mono
factorizations X(f ) = X(i) ◦ X(q) and X(s) = X(j) ◦ X(r). Moreover, X is
functorial on epimorphisms by Theorem 1, so the following diagram also commutes:

B(M) B(im s) B(M(δ))

B(im f )

B(N)

X(r)

X(s)

X(f )

X(q)

X(j)

X(i)

X(p)

By Lemma 2, we have SB(M),δ = X(s). Thus, since epi-mono factorizations are
unique (up to unique isomorphism), we have im SB(M),δ = B(im s), and X(r) is the
image epimorphism B(M) � im SB(M),δ . Since X(r) = X(q) ◦ X(p), Lemma 1
now gives that kerX(f ) is δ-trivial, as desired. ��

3.5 Converse to the Induced Matching Theorem

Letting Vect denote the category of (not necessarily finite dimensional) vector
spaces over the field K . We have a functor Fr : Mch → Vect, which takes a set
S to the vector space with basis S. Let ζ : Barc → Vect denote the functor which
sends a barcode C to Fr ◦ E(C).

It is easy to prove the following converse to the induced matching theorem:

Proposition 4

(i) ζ(B(M)) ∼= M for any p.f.d. persistence module M .
(ii) If f : C → D is a morphism in Barc with δ-trivial (co)kernel, then ζ(f ) has

δ-trivial (co)kernel as well.

4 Interleavings of Barcodes and the Bottleneck Distance

In this section, we consider interleavings and the bottleneck distance on barcodes.
We observe that the bottleneck distance can be interpreted as an interleaving
distance, and we prove the algebraic stability theorem.
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4.1 Interleavings

4.1.1 Interleavings of R-Indexed Diagrams

The definition of interleavings of R-indexed diagrams was introduced in [8],
building on ideas in [9], and was first stated in categorical language in [4]. Though
interleavings over more general indexing categories can be defined and are also of
interest in TDA [5, 11, 15, 19], we focus here on the R-indexed case. We use the
definitions and notation introduced in Sect. 3.3.

Definition 6 (Interleavings and Interleaving Distance) A δ-interleaving between
two diagrams M,N : R → A is a pair of natural transformations

f : M → N(δ), g : N → M(δ)

such that g(δ) ◦ f = SM,2δ and f (δ) ◦ g = SN,2δ . We call f and g δ-interleaving
morphisms.

The interleaving distance on objects of AR is then given by

dI (M,N) := inf {δ ≥ 0 | M and N are δ -interleaved}.

4.1.2 Interleavings in Barc

Note that as for natural transformations of R-indexed diagrams, an overlap matching
f : C → D induces an overlap matching f (δ) : C(δ) → D(δ). We define a
δ-interleaving between barcodes C and D to be a pair of overlap matchings

f : C → D(δ), g : D → C(δ)

such that g(δ) • f = SC,2δ , and f (δ) • g = SD,2δ . This definition is equivalent to
the definition of interleavings in MchR in the sense that a pair of overlap matchings
f, g is a δ-interleaving if and only if the pair E(f ), E(g) is a δ-interleaving in
MchR.

4.1.3 Interleavings and Smallness of Kernels

It is easily checked that for A a Puppe-exact category, a δ-interleaving morphism
f : M → N(δ) has 2δ-trivial kernel and cokernel. The converse is not true in
general; one can easily construct a counterexample in the case that A is the category
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of persistence modules. However, the converse holds in the two cases studied in this
paper:

Proposition 5 In both the categories vectR and Barc, two objects M,N are δ-
interleaved if and only if there exists a morphism f : M → N(δ) with 2δ-trivial
kernel and cokernel.

The statement of Proposition 5 for vectR first appeared as [1, Corollary 6.6].

Proof The result for Barc follows easily from Proposition 2. To prove the result
for vectR, we apply both the induced matching and converse algebraic stability
theorems: If f : M → N(δ) is a morphism with 2δ-trivial kernel and cokernel,
then by Theorem 2, X(f ) has the same property. Hence X(f ) is a δ-interleaving
morphism. The converse direction of Theorem 3 (whose easy proof we give below)
then tells us that M and N are δ-interleaved. ��

4.2 Algebraic Stability

4.2.1 Bottleneck Distance

For I ⊂ R an interval and δ ≥ 0, let the interval Uδ(I) be given by

Uδ(I) := {t ∈ R | ∃ s ∈ I with |s − t | ≤ δ}.

We define a δ-matching between barcodes C and D to be a (not necessarily overlap)
matching σ : C → D with the following two properties:

• σ matches each interval in C ∪ D that is not 2δ-trivial,
• if σ(I) = J , then I ⊂ Uδ(J ) and J ⊂ Uδ(I).

We define the bottleneck distance dB by taking

dB(C,D) := inf {δ ≥ 0 | ∃ a δ-matching between C and D}.

4.2.2 Interleaving Distance Equals Bottleneck Distance on Barcodes

For D any barcode, let rδ : D(δ) → D be the obvious bijection.

Proposition 6 An overlap matching of barcodes f : C → D(δ) is a δ-interleaving
morphism if and only if rδ ◦f is a δ-matching. In particular, for any barcodes C and
D,

dI (C,D) = dB(C,D).
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Fig. 5 Illustration of the proof of algebraic stability via induced matchings. For a δ-interleaving
morphism of persistence modules f : M → N , the barcodes of M , im f , N(δ), and N are shown
as persistence diagrams, which are multisets of points in the plane whose coordinates correspond
to the left and right endpoints of the intervals. The dotted lines in the figure depict the induced
matching B(M) → B(im f ) → B(N(δ)) → B(N). The shaded box around each point p ∈
B(M) ∪ B(N) indicates the set of points to which p can match in a δ-matching

Proof According to Proposition 5, an overlap matching f : C → D(δ) is a
δ-interleaving morphism if and only if f has 2δ-trivial kernel and cokernel. In
addition, it is easy to check that an overlap matching f : C → D(δ) has 2δ-trivial
kernel and cokernel if and only if rδ ◦ f is a δ-matching. ��

We are now deduce the algebraic stability theorem as a corollary of the
induced matching theorem. Figure 5 illustrates the barcode matching underlying
the argument.

Proof of Theorem 3 (Algebraic Stability) The forward direction follows almost
immediately from the induced matching theorem: If there exists a δ-interleaving
morphism f : M → N(δ), then f has 2δ-trivial kernel and cokernel. By Theorem 2,
the same is true for X(f ) : B(M) → B(N(δ)). Since B(N(δ)) = B(N)(δ),
Proposition 5 tells us that B(M) and B(N) are δ-interleaved in Barc.

The proof of converse algebraic stability is nearly trivial: Given a δ-interleaving

f : B(M) → B(N)(δ), g : B(N) → B(M)(δ),

ζ(f ) and ζ(g) form a δ-interleaving in vectR; here ζ is the functor defined in
Sect. 3.5. By Proposition 4 (i) then, M and N are δ-interleaved. ��
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5 Constructing Barcodes and Induced Matchings in MchR

In this section, we consider the construction of barcodes of persistence modules
and induced matchings directly in the category of matching diagrams MchR. Our
barcode constructions come in two dual (canonically isomorphic) variants, which
are readily extended to functors on epis and monos, respectively. These functors are
equivalent to the induced matchings for epis and monos described in Sect. 3.2 and
lead naturally to an alternate proof of Theorem 1.

Let M be a p.f.d. persistence module. We now construct a matching diagram
D�(M) equivalent to B(M) in a way that depends only on the ranks of the internal
maps of M . While our construction does not require an interval decomposition of
M , the intuition is best conveyed by assuming initially that we have this.

Order the intervals in R lexicographically, first by increasing lower bound, then
(for intervals with the same lower bound) by decreasing upper bound, as shown in
Fig. 6. For example, with respect to this order, we have

[0, 3] < [1, 2] < (1, 3] < (1, 2].

Now at each index t , enumerate the intervals of B(M) containing t in that order.
This defines a canonical bijection gt : E(B(M))t → D�(M)t between the set
E(B(M))t , consisting of the intervals in B(M) containing t , and the set

D�(M)t := {1, 2, . . . , dim Mt }.

For any two indices t ≤ u, let

D�(M)t,u := g−1
u ◦ E(B(M))t,u ◦ gt .

t u

1

2

3

4

5

1

2

3

4

Fig. 6 Example illustrating the matching diagram D�(M) on top of the barcode B(M), with
intervals ordered lexicographically by increasing lower bound and deceasing upper bound. Each set
D�(M)t ⊂ N is identified by an order-preserving bijection with the intervals of B(M) containing
t . The example shows a matching of cardinality 3, corresponding to rk Mt,u = 3
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t

1

2

3

4

5

1

2

3

Fig. 7 Example illustrating the induced epimorphism of matching diagrams D�(f ) : D�(M)

� D�(N) and the corresponding overlap matching of barcodes B(M) � B(N)

Thus, D�(M)t,u is the matching between the sets D�(M)t and D�(M)u such that
under the bijections gt and gu, matched pairs correspond to intervals of B(M) con-
taining both t and u; see Fig. 6. By construction, the matchings (D�(M)t,u)t≤u∈R
form a functor D�(M) : R → Mch, and the bijections (gt )t∈R form a natural
isomorphism of matching diagrams g : E(B(M)) → D�(M). A dual construction,
denoted by D↪→, is obtained by ordering the intervals in R lexicographically by
decreasing upper bound, then by increasing lower bound. We summarize:

Proposition 7 The matching diagrams D�(M) and D↪→(M) are naturally iso-
morphic to E(B(M)).

In a similar spirit, we can also map the induced matchings for epimorphisms
and monomorphisms to equivalent morphisms of matching diagrams. Consider an
epimorphism f : M � N and D�(M),D�(N) as above. Now, for any t ∈ R,
let gt : E(B(M))t → D�(M)t and ht : E(B(N))t → D�(N)t be the canonical
bijections described above. Using the induced matching X(f ) : B(M) → B(N)

from Sect. 3.2, define

D�(f )t := h−1
u ◦ E(X(f ))t ◦ gt .

See Fig. 7 for an example. For a monomorphism f , we define D↪→(f )t in an
analogous way. Similarly to the above, we obtain:

Proposition 8 For an epimorphism f : M � N , the morphism D�(f ) is
naturally isomorphic to E(X(f )). Similarly, for a monomorphism f , the morphism
D↪→(f ) is naturally isomorphic to E(X(f )).

Next, we describe the matching D�(M)t,u directly in terms of the internal maps
of M , avoiding the explicit use of the barcode B(M).
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Proposition 9 For M : R → Vect be a p.f.d. persistence module and t ≤ u ∈ R,
we have

D�(M)t,u = {
(i, j) ∈ N

2 | j ≤ rk Mt,u,

i = j + max {rk Ms,t − rk Ms,u | s < t, rk Ms,u < j}},
D↪→(M)t,u = {

(i, j) ∈ N
2 | i ≤ rk Mt,u,

j = i + max {rk Mu,v − rk Mt,v | v > u, rk Mt,v < i}},
(where the maximum over an empty set is taken to be 0).

Proof We first observe that the image of D�(M)t,u is precisely the set {j |
j ≤ rk Mt,u}. To see this, note that rk Mt,u equals the cardinality of the matching
E(B(M))t,u, i.e., the number of intervals in B(M) containing both t and u. In the
lexicographic order on E(B(M))t ⊆ B(M), those intervals precede the intervals
containing u but not t . Thus, coim E(B(M))t,u is a prefix of E(B(M))t , which is
mapped by the order-preserving bijection

gt : E(B(M))t → D�(M)t = {1, 2, . . . , dim Mt }

to the prefix D�(M)t,u = {j | j ≤ rk Mt,u}.
Next, in order to determine for a given matched number j ∈ im D�(M)t,u the

corresponding number i ∈ D�(M)t to which is it matched, we further observe that
the difference i − j is precisely the number of intervals of B(M) that

• are born before the j th interval of B(M) (in the lexicographic order) containing
u.

• die after t and before u.

Letting I be the j th interval of B(M) containing u, the set of lower bounds of I in
R (i.e., the set of values s ∈ R satisfying s < r for all r ∈ I ) is

{s < u | rk Ms,u < j}.

Since j ∈ im D�(M)t,u, we have t ∈ I , so all of the above lower bounds s also
satisfy s < t . For any lower bound s, the number of intervals of B(M) containing
both s and t but not u is

dim(im Ms,t ∩ ker Mt,u) = rk Ms,t − rk Ms,u.

Hence, the number of intervals that are born before I and die after t and before u is

max
s

{rk Ms,t − rk Ms,u | s < t, rk Ms,u < j}.

The result follows. ��
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In an analogous way, we also obtain formulas for D�(f )t and D↪→(f )t in terms
of the morphism f and the internal maps, which can be proven in a similar way.

Proposition 10

(i) Let f : M � N be an epimorphism of p.f.d. persistence modules. For t ∈ R,
we have

D�(f )t = {
(i, j) ∈ N

2 | j ≤ dim Nt,

i = j + max {rk Ms,t − rk Ns,t | s < t, rk Ns,t < j}}.
(ii) Let f : M � N be a monomorphism of p.f.d. persistence modules. For t ∈ R,

we have

D↪→(f )t = {
(i, j) ∈ N

2 | i ≤ dim Mt,

j = i + max {rk Ns,t − rk Ms,t | s < t, rk Ms,t < i}}.
Note that these formulas rely only on the existence of an epimorphism or

monomorphism; the right hand sides depend only on the ranks of the internal maps
of M and N , not on the morphism f .

The formulas of Proposition 9 describe the functors D�(M),D↪→(M) : R →
Mch in terms of ranks, and it is clear from Proposition 7 that each of these functors
encodes rk Mu,t for all u ≤ t ∈ R. In the sprit of constructing and studying
D�(M) and D↪→(M) in a way that is independent of the structure theorem, we
next give elementary proofs of these facts, proceeding directly from the description
of D�(M) and D↪→(M) in terms of ranks.

Proposition 11 Let M : R → Vect be a p.f.d. persistence module.

(i) For all t ≤ u ∈ R, the relations D�(M)t,u and D↪→(M)t,u of Proposition 9
are both order-preserving matchings. In particular, for t < u,

card D�(M)t,u = card D↪→(M)t,u = rk Mt,u.

(ii) The sets and matchings of Proposition 9 are functorial, i.e., they define functors

D�(M),D↪→(M) : R → Mch.

Proof We prove the results for D�(M) only, the proof for D↪→(M) being
completely analogous. Let (i, j), (m, n) ∈ D�(M)t,u. Clearly j = n implies
i = m. Moreover, if j < n, then from

i = j + max {rk Ms,t − rk Ms,u | s < t, rk Ms,u < j},
m = n + max {rk Ms,t − rk Ms,u | s < t, rk Ms,u < n}.

we obtain i < m. Thus D�(M)t,u is an order-preserving matching.
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In order to show functoriality of D�(M), we first establish that for all s < t ≤ u,
we have rk Ms,t < i if and only if rk Ms,u < j . To see this, note that for all s < u

with rk Ms,u < j , we have s < t and

i ≥ j + (rk Ms,t − rk Ms,u) > rk Ms,t .

Conversely, for all r < u with rk Mr,u ≥ j , we have s < r for all s < t with
rk Ms,u < j , which in turn by elementary linear algebra yields

rk Ms,t − rk Ms,u = dim(im Ms,t ∩ ker Mt,u) ≤ dim(im Mr,t ∩ ker Mt,u)

= rk Mr,t − rk Mr,u

and thus

i = j +max{rk Ms,t −rk Ms,u | s < t, rk Ms,u < j} ≤ j +(rk Mr,t −rk Mr,u) ≤ rk Mr,t .

We conclude that rk Ms,t < i if and only if rk Ms,u < j .
It remains to show that (i, k) ∈ D�(M)t,v if and only if (i, j) ∈ D�(M)t,u

and (j, k) ∈ D�(M)u,v for some j ∈ D�(M)u. First let (i, j) ∈ D�(M)t,u and
(j, k) ∈ D�(M)u,v . By the above we have rk Ms,u < j if and only if rk Ms,v < k,
and so substituting

j = k + max {rk Ms,u − rk Ms,v | s < t, rk Ms,v < k}

gives

i = k + max {rk Ms,u − rk Ms,v | s < t, rk Ms,v < k}
+ max {rk Ms,t − rk Ms,u | s < t, rk Ms,u < j}

= k + max {rk Ms,t − rk Ms,v | s < t, rk Ms,v < k},

which is equivalent to (i, k) ∈ D�(M)t,v . Conversely, given (i, k) ∈ D�(M)t,v ,
the above equation for j yields (i, j) ∈ D�(M)t,u and (j, k) ∈ D�(M)u,v . We
conclude that D�(M) is a functor R → Mch. ��

Similarly, we can also show directly from the description of Proposition 10
that D�(f ) and D↪→(f ) are natural transformations, turning D� and D↪→
into functors. We omit the proof, which is essentially the same as the proof of
Proposition 11.
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Proposition 12

(i) Let f : M � N be an epimorphism. Then, for all t , D�(f )t is an order-
preserving epimorphism in Mch. Moreover, these matchings are natural, so
they define an epimorphism

D�(f ) : D�(M) � D�(N)

in a functorial way, i.e., D�(g◦f ) = D�(g)◦D�(f ) for any epi g : N � O.
(ii) Let f : M ↪→ N be a monomorphism. Then, for all t , D↪→(f )t is an order-

preserving monomorphism in Mch. Moreover, these matchings are natural, so
they define a monomorphism

D↪→(f ) : D↪→(M) ↪→ D↪→(N).

in a functorial way, i.e., D↪→(g ◦ f ) = D↪→(g) ◦ D↪→(f ) for any mono g :
N ↪→ O.

Remark 4 As an aside, we note that the formulas of Propositions 10 and 11 extend
to any q-tame persistence module M (i.e., one for which rk(Ms,t ) < ∞ whenever
s < t), even though the usual structure theorem for p.f.d. persistence modules does
not extend to the q-tame setting [7]. However, since in this setting Proposition 7
does not apply, it is not guaranteed that the resulting matching diagrams D�(M)

and D↪→(M) are isomorphic.

Remark 5 (Matchings Induced by Arbitrary Morphisms) While D�(M) and
D↪→(M) are typically not equal, we have seen above that there is a distinguished
isomorphism from each of these matching diagrams to E(B(M)). This in turn gives
us a distinguished isomorphism

ζM : D�(M) → D↪→(M).

Using this, we can define the matching D�(M) → D�(N) induced by a morphism
f : M → N of p.f.d. persistence modules as the composition of matching diagrams

D (M) D (im f ) D→(im f ) D→(N) D (N),
D (q) ζim f D →(i) ζ−1

N

where f = i ◦ q is the epi-mono factorization of f . By construction, this is
equivalent to the induced matching X(f ) in Barc. A definition of the matching
D↪→(M) → D↪→(N) induced by f can be given in a similar way.

Because ζim f and ζN are defined in terms of barcodes, our definition of the
matching D�(M) → D�(N) induced by f is defined in terms of barcodes
as well. This is at odds with the goal of giving a barcode-free construction of
induced matchings directly in MchR, as we have done when restricting attention
to monos or epis f . However, we do not see a simple way to define the matching
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D�(M) → D�(N) induced by an arbitrary morphism f without appealing to the
connection with barcodes. This suggests to us that to define matchings induced by
arbitrary morphisms, it is more natural to work in the category Barc, as we have
done elsewhere in this paper, than to work in MchR.

6 Discussion

In this paper, we have established some basic facts about the category Barc ∼= MchR

of barcodes and used these observations to give simple new formulations of the
induced matching and algebraic stability theorems. We have seen that the new
formulations lead to variant of the proof of the induced matching theorem which
emphasizes the preservation of categorical structure.

In fact, our definition of the category Barc extends to barcodes indexed over
arbitrary posets, as defined in [3], and many of the ideas presented here extend either
to arbitrary posets or to Rn-indexed barcodes for any n. In particular, Proposition 6
extends to Rn-indexed barcodes, and this provides alternative language for express-
ing generalized algebraic stability results appearing in [2, 3]. While it remains to
be seen what role the categorical viewpoint on barcodes might play in the further
development of TDA theory, we hope that it might offer some perspective on how
algebraic stability ought to generalize to other settings.

As already mentioned, our new formulations of the algebraic stability and
induced matching theorems make clear that both results can be interpreted as the
preservation of some categorical structure as we pass from vectR to Barc. Can more
of interest be said about how the passage from persistence modules to barcodes
preserves categorical structure? We wonder whether our results can be understood
as part of a larger story about how homological algebra in the Abelian category
vectR relates to homological algebra in Barc.
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12. Edelsbrunner, H., Jabłoński, G., Mrozek, M.: The persistent homology of a self-map.
Foundations of Computational Mathematics 15(5), 1213–1244 (2015). https://doi.org/10.1007/
s10208-014-9223-y

13. Fasy, B.T., Lecci, F., Rinaldo, A., Wasserman, L., Balakrishnan, S., Singh, A.: Confidence sets
for persistence diagrams. The Annals of Statistics 42(6), 2301–2339 (2014). https://doi.org/10.
1214/14-AOS1252

14. Grandis, M.: Homological Algebra: The interplay of homology with distributive lattices and
orthodox semigroups. World scientific (2012)

15. Lesnick, M.: The theory of the interleaving distance on multidimensional persistence modules.
Foundations of Computational Mathematics 15(3), 613–650 (2015). https://doi.org/10.1007/
s10208-015-9255-y

16. Mitchell, B.: Theory of categories. Academic Press (1965)
17. Puppe, D.: Korrespondenzen in abelschen Kategorien. Mathematische Annalen 148(1), 1–30

(1962). https://doi.org/10.1007/BF01438388
18. Sheehy, D.R.: Linear-Size approximations to the Vietoris–Rips filtration. Discrete & Compu-

tational Geometry 49(4), 778–796 (2013). https://doi.org/10.1007/s00454-013-9513-1
19. de Silva, V., Munch, E., Patel, A.: Categorified Reeb graphs. Discrete & Computational

Geometry 55(4), 854–906 (2016). https://doi.org/10.1007/s00454-016-9763-9

https://doi.org/10.1007/s00454-014-9573-x
https://doi.org/10.1007/s10208-014-9229-5
https://doi.org/10.1007/s10208-014-9229-5
http://arxiv.org/abs/1506.03797
https://doi.org/10.1007/978-3-319-42545-0
https://doi.org/10.1007/978-3-319-42545-0
https://doi.org/10.1145/1542362.1542407
https://doi.org/10.1145/1542362.1542407
https://doi.org/10.1007/s00454-006-1276-5
https://doi.org/10.1142/S0219498815500668
https://doi.org/10.1142/S0219498815500668
http://arxiv.org/abs/1303.3255
https://doi.org/10.1007/s10208-014-9223-y
https://doi.org/10.1007/s10208-014-9223-y
https://doi.org/10.1214/14-AOS1252
https://doi.org/10.1214/14-AOS1252
https://doi.org/10.1007/s10208-015-9255-y
https://doi.org/10.1007/s10208-015-9255-y
https://doi.org/10.1007/BF01438388
https://doi.org/10.1007/s00454-013-9513-1
https://doi.org/10.1007/s00454-016-9763-9

	Persistence Diagrams as Diagrams: A Categorification of the Stability Theorem
	1 Introduction
	1.1 Reformulation of the Induced Matching Theorem
	1.2 Reformulation of the Algebraic Stability Theorem
	1.3 Directly Constructing Barcodes as Matching Diagrams
	1.4 Organization of the Paper

	2 Barcodes as Diagrams
	2.1 Properties of Mch and MchR
	2.1.1 Mch and MchR as Puppe-Exact Categories

	2.2 Barcodes
	2.2.1 Barcodes of Persistence Modules

	2.3 The Category of Barcodes
	2.4 Barcodes as Diagrams
	2.4.1 A Functor from Barcodes to Diagrams
	2.4.2 A Functor from Diagrams to Barcodes

	2.5 Kernels, Cokernels, and Images of Barcodes

	3 The Induced Matching Theorem
	3.1 Concrete Formulation of the Induced Matching Theorem
	3.2 Matchings Induced by Monos and Epis of Persistence Modules
	3.3 A Characterization of Morphisms with δ-Trivial (Co)kernel
	3.3.1 Shifts of R-Indexed Diagrams and Barcodes

	3.4 Proof of the Induced Matching Theorem
	3.5 Converse to the Induced Matching Theorem

	4 Interleavings of Barcodes and the Bottleneck Distance
	4.1 Interleavings
	4.1.1 Interleavings of R-Indexed Diagrams
	4.1.2 Interleavings in Barc
	4.1.3 Interleavings and Smallness of Kernels

	4.2 Algebraic Stability
	4.2.1 Bottleneck Distance
	4.2.2 Interleaving Distance Equals Bottleneck Distance on Barcodes


	5 Constructing Barcodes and Induced Matchings in MchR
	6 Discussion
	References


