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Abstract We present in this paper an application of the theory of principal
bundles to the problem of nonlinear dimensionality reduction in data analysis. More
explicitly, we derive, from a 1-dimensional persistent cohomology computation,
explicit formulas for circle-valued functions on data with nontrivial underlying
topology. We show that the language of principal bundles leads to coordinates
defined on an open neighborhood of the data, but computed using only a smaller
subset of landmarks. It is in this sense that the coordinates are sparse. Several data
examples are presented, as well as theoretical results underlying the construction.

1 Introduction

The curse of dimensionality refers to a host of phenomena inherent to the increase
in the number of features describing the elements of a data set. For instance,
in statistical learning, the number of training data points needs to grow roughly
exponentially in the number of features, in order for learning algorithms to
generalize correctly in the absence of other priors. A deeper manifestation of the
curse of dimensionality is the deterioration of the concept of “nearest neighbors”
in high-dimensional Euclidean space; for as the dimension increases, the distance
between any two points is roughly the same [18]. One of the most popular priors
in data science is the “low intrinsic dimensionality” hypothesis. It contends that
while the apparent number of features describing each data point (e.g., the number
of pixels in an image) might be large, the effective number of degrees of freedom
(i.e., the intrinsic dimensionality) is often much lower. Indeed, images generated at
random will hardly depict a cat or a natural scene.
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Many dimensionality reduction schemes have been proposed in the literature
to leverage the “low intrinsic dimensionality” hypothesis, each making explicit or
implicit use of likely characteristics of the data. For instance, Principal Component
Analysis [10] and other linear dimensionality reduction methods, rely on the
existence of a low-dimensional linear representation accounting for most of the
variability in the data. Methods such as Locally Linear Embeddings [19] and
Laplacian EingenMaps [2], on the other hand, presuppose the existence of a
manifold-like object parametrizing the underlying data space. Other algorithms,
like Multidimensional Scaling [11] and Isomap [22], attempt to preserve distances
between data points while providing low-dimensional reconstructions.

Recently, several new methods for nonlinear dimensionality reduction have
emerged from the field of computational topology [6, 17, 21]. The idea being that
if the underlying space from which the data has been sampled has a particular
shape, then this information can be used to generate appropriate low-dimensional
representations. The circular coordinates of de Silva, Morozov, and Vejdemo-
Johansson [6] pioneered the use of persistent cohomology as a way to measure
the shape of a data set, and then produce circle-valued coordinates reflecting the
underlying nontrivial topology. Their algorithm goes as follows. Given a finite
metric space (X, d)—the data—and a scale α > 0 so that the Rips complex

Rα(X) := {σ ⊂ X : σ �= ∅ and diam(σ ) < α}

has a nontrivial integer cohomology class [η] ∈ H 1(Rα(X);Z) — this is determined
from the persistent cohomology of the Rips filtration R(X) = {Rε(X)}ε≥0—a linear
least squares optimization (of size the number of vertices by the number of edges
of Rα(X)) is solved, in order to construct a function fη : X −→ S1 ⊂ C which,
roughly, puts one of the generators of H 1(S1;Z) ∼= Z in correspondence with [η] ∈
H 1(Rα(X);Z).

1.1 Our Contribution

Two drawbacks of the perspective presented in [6] are: (1) the method requires a
persistent cohomology calculation, as well as a least squares optimization, on the
Rips filtration of the entire data set X. This is computationally expensive and may
limit applicability to small-to-medium-sized data. (2) once the function fη has been
computed, it is only defined on the data points from X used for its construction. Here
we show that these drawbacks can be addressed effectively with ideas from principal
Z-bundles. In particular, we show that it is possible to construct circular coordinates
on X from the Rips filtration on a subset of landmarks L ⊂ X, Proposition 4, with
similar classifying properties as in [6], Theorem 3, and that said coordinates will
be defined on an open neighborhood of L containing X. We call these functions
“sparse circular coordinates”.
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1.2 The Sparse Circular Coordinates Algorithm

Let us describe next the steps needed to construct said coordinates. The rest of the
paper is devoted to the theory behind these choices:

1. Let (X, d) be the input data set; i.e. a finite metric space. Select a set of landmarks
L = {�1 . . . , �N } ⊂ X, e.g. at random or via maxmin sampling, and let

rL := max
x∈X

min
�∈L

d(x, �)

be the radius of coverage. In particular, rL is the Hausdorff distance between L

and X.
2. Choose a prime q > 2 at random and compute the 1-dimensional persistent

cohomology PH 1(R(L);Z/q) with coefficients in Z/q, for the Rips filtration
on the landmark set L. Let dgm(L) be the resulting persistence diagram.

3. If there exists (a, b) ∈ dgm(L) so that max{a, rL} < b
2 , then let

α = t · max{a, rL} + (1 − t)
b

2
, for some 0 < t < 1

Let η′ ∈ Z1(R2α(L);Z/q) be a cocyle representative for the persistent cohomol-
ogy class corresponding to (a, b) ∈ dgm(L). If t is closer to 1, then the circular
coordinates are defined on a larger domain; however, this makes step (5) below
more computationally intensive.

4. Lift η′ : C1(R2α(L);Z) −→ Z/q = {0, . . . , q − 1} to an integer cocycle
η ∈ Z1(R2α(L);Z). That is, one for which η′ − (η mod q) is a coboundary
in C1(R2α(L);Z/q). An explicit choice (that works in practice for a prime q

chosen at random) is the integer cochain:

η(σ ) =
⎧
⎨

⎩

η′(σ ) if η′(σ ) ≤ q−1
2

η′(σ ) − q if η′(σ ) >
q−1

2

5. Choose positive weights for the vertices and edges of R2α(L)—e.g. all equal
to one—and let d+

2α : C1(R2α(L);R) −→ C0(R2α(L);R) be the (weighted)
Moore-Penrose pseudoinverse (solving weighted linear least squares problems)
for the coboundary map

d2α : C0(R2α(L);R) −→ C1(R2α(L);R)

If ι : Z ↪→ R is the inclusion, let

τ = −d+
2α

(
ι ◦ η

)
and θ = (ι ◦ η) + d2α (τ )
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6. Denote by τj ∈ R the value of τ on the vertex �j ∈ L, and by θjk ∈ R the value
of θ on the oriented edge [�j , �k] ∈ R2α(L). If we let

ϕj (b) = |α − d(�j , b)|+
N∑

k=1
|α − d(�k, b)|+

where |r|+ = max{r, 0}, r ∈ R

and Bα(�k) denotes the open ball of radius α > 0 centered at �k ∈ L, then the
sparse circular coordinates are defined by the formula:

hθ,τ :
N⋃

k=1
Bα(�k) −→ S1 ⊂ C

Bα(�j ) � b → exp

{

2πi

(

τj +
N∑

k=1
ϕk(b)θjk

)} (1)

If X is a subspace of an ambient metric space M, then the Bα(�k)’s can be taken
to be ambient metric balls. This is why we call the circular coordinates sparse;
hθ,τ is computed using only L, but its domain of definition is an open subset of
M which, by construction, contains all of X.

1.3 Organization

We start in Sect. 2 with a few preliminaries on principal bundles, highlighting
the main theorems needed in later parts of the paper. We assume familiarity
with persistent cohomology (if not, see [16]), as well as the definition of Čech
cohomology with coefficients in a presheaf (see for instance [14]). Section 3 is
devoted to deriving the formulas—e.g. (1) above—which turn a 1-dimensional
integer cohomology class into a circle-valued function. In Sect. 4 we describe how
to make all this theory applicable to real data sets. We present several experiments in
Sect. 5 with both real and synthetic data, and end in Sect. 6 with a few final remarks.

2 Preliminaries

2.1 Principal Bundles

We present here a terse introduction to principal bundles, with the main results
we will need later in the paper. In particular, the connection between principal
bundles and Čech chomology, which allows for explicit computations, and their
classification theory via homotopy classes of maps to classifying spaces. The latter
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description will be used to generate our sparse circular coordinates. We refer the
interested reader to [9] for a more thorough presentation.

Let B be a connected and paracompact1 topological space with basepoint b0 ∈ B.

Definition 1 A pair (p,E), with E a topological space and p : E −→ B a
continuous map, is said to be a fiber bundle over B with fiber F = p−1(b0), if:

1. p is surjective
2. Every point b ∈ B has an open neighborhood U ⊂ B and a homeomorphism

ρU : U × F −→ p−1(U), called a local trivialization around b, so that p ◦
ρU(b′, e) = b′ for every (b′, e) ∈ U × F .

The spaces E and B are called, respectively, the total and base space of the
bundle, and p is called the projection map.

Definition 2 Let G be an abelian topological group whose operation we write
additively. A fiber bundle p : E −→ B is said to be a principal G-bundle if:

1. The total space E comes equipped with a fiberwise free right G-action. That is,
a continuous map

· : E × G −→ E

satisfying the right-action axioms, with p(e · g) = p(e) for every pair (e, g) ∈
E × G, and for which e · g = e only if g is the identity of G.

2. The induced fiberwise G-action p−1(b) × G −→ p−1(b) is transitive for every
b ∈ B in the base space.

3. The local trivializations ρU : U × F −→ p−1(U) can be chosen to be G-
equivariant: that is, so that ρU(b, e · g) = ρU(b, e) · g, for every (b, e, g) ∈
U × F × G.

Two principal G-bundles pj : Ej −→ B, j = 1, 2, are said to be isomorphic, if
there exists a G-equivariant homeomorphism Φ : E1 −→ E2 so that p2 ◦ Φ = p1.
This defines an equivalence relation on principal G-bundles over B, and the set of
isomorphism classes is denoted PrinG(B).

Given a principal G-bundle p : E −→ B and a system of (G-equivariant) local
trivializations

{
ρj : Uj × F −→ p−1(Uj )

}

j∈J
, we have that

ρ−1
k ◦ ρj : (Uj ∩ Uk) × F −→ (Uj ∩ Uk) × F

is a G-equivariant homeomorphism whenever Uj ∩ Uk �= ∅. Since the G-action on
E is fiberwise free and fiberwise transitive, then ρ−1

k ◦ ρj induces a well-defined
continuous map

ρjk : Uj ∩ Uk −→ G j, k ∈ J (2)

1So that partitions of unity always exist.
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defined by the equation

ρ−1
k ◦ ρj (b, e) = (b, e · ρjk(b)) , for all (b, e) ∈ (Uj ∩ Uk) × F. (3)

The ρjk’s are called the transition functions for the G-bundle (p,E) correspond-
ing to the system of local trivializations {ρj }j∈J . In fact, these transition functions
define an element in the Čech cohomology of B. Indeed, for each open set U ⊂ B

let Maps(U,G) denote the set of continuous maps from U to G. Since G is an
abelian group, then so is Maps(U,G), and if V ⊂ U is another open set, then
precomposing with the inclusion V ↪→ U yields a restriction map

ιU,V : Maps(U,G) −→ Maps(V ,G)

This defines a sheaf CG of abelian groups over B, with CG(U) := Maps(U,G),
called the sheaf of G-valued continuous functions on B. It follows that the transition
functions (2) define an element ρ = {ρjk} ∈ Č1(U;CG) in the Čech 1-cochains of
the cover U = {Uj }j∈J with coefficients in the sheaf CG. Moreover,

Proposition 1 The transition functions ρjk satisfy the cocycle condition

ρj�(b) = (ρjk + ρk�)(b) for all b ∈ Uj ∩ Uk ∩ U� (4)

In other words, ρ = {ρjk} ∈ Ž1(U;CG) is a Čech cocycle.

If {νr : Vr × F −→ p−1(Vr)}r∈R is another system of local trivializations with
induced Čech cocycle ν = {νrs} ∈ Ž1(V;CG), and

W = {Uj ∩ Vr }(j,r)∈J×R

then one can check that the difference ρ − ν is a coboundary in Č1(W;CG). Since
W is a refinement for both V and U, it follows that the G-bundle p : E −→
B yields a well-defined element pE ∈ Ȟ 1(B;CG). Moreover, after passing to
isomorphism classes of principal G-bundles we get that

Lemma 1 The function

PrinG(B) −→ Ȟ 1(B;CG)

[(p,E)] → pE

is well-defined and injective.

This is in fact a bijection. To check surjectivity, fix an open cover U = {Uj }j∈J

for B, and a Čech cocyle

η = {ηjk} ∈ Ž1(U;CG)
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Then one can construct a principal G-bundle over B with total space

Eη =
⎛

⎝
⋃

j∈J

Uj × {j} × G

⎞

⎠
/

(b, j, g) ∼ (
b, k, g + ηjk(b)

)
, b ∈ Uj ∩ Uk

(5)

and projection

pη : Eη −→ B

taking the class of (b, j, g) ∈ Uj × {j} × G in the quotient Eη, to the point b ∈ B.
Notice that if ηj : Uj × G −→ Eη sends (b, g) to the class of (b, j, g) in Eη, then
{ηj } defines a system of local trivializations for (pη,Eη), and that η = {ηjk} is the
associated system of transition functions. Therefore,

Theorem 1 The function

Ȟ 1(B;CG) −→ PrinG(B)

[η] → [Eη]

is a natural bijection.

In addition to this characterization of principal G-bundles over B as Čech coho-
mology classes, there is another interpretation in terms of classifying maps. We
will combine these two views in order to produce coordinates for data in the next
sections.

Indeed, to each topological group G one can associate a space EG that is
both weakly contractible, i.e. all its homotopy groups are trivial, and which comes
equipped with a free right G-action

EG × G −→ EG

The quotient BG := EG/G is a topological space (endowed with the quotient
topology), called the classifying space of G, and the quotient map

j : EG −→ BG = EG/G

defines a principal G-bundle over BG, called the universal bundle. It is important
to note that there are several constructions of EG, and thus of BG, but they all have
the same homotopy type. One model for EG is the Milnor construction [13]

EG := G ∗ G ∗ G ∗ · · · (6)

with G acting diagonally by right multiplication on each term of the infinite join.
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The next Theorem explains the universality of j : EG −→ BG. Given a
continuous map f : B −→ BG, the pullback f ∗EG is the principal G-bundle
over B with total space {(b, e) ∈ B × EG : f (b) = j (e)}, and projection map
(b, e) → b. Moreover,

Theorem 2 Let [B,BG] denote the set of homotopy class of maps from B to the
classifying space BG. Then, the function

[B,BG] −→ PrinG(B)

[f ] → [f ∗EG]

is a bijection.

Proof See [9, Chapter 4: Theorems 12.2 and 12.4]. ��
Theorem 2 implies that given a principal G-bundle p : E −→ B, there exists a
continuous map f : B −→ BG so that f ∗EG is isomorphic to (p,E), and that the
choice of f is unique up to homotopy. Any such choice is called a classifying map
for p : E −→ B.

3 From Integer Simplicial Cohomology to Circular
Coordinates

For an arbitrary topological group G, the Milnor construction (6) produces an
explicit universal G-bundle j : EG −→ BG, but the spaces EG and BG tend
to be rather large. Indeed, they are often infinite-dimensional CW-complexes. For
the case G = Z we have the more economical models EZ � R and BZ � S1 ⊂ C,
with Z acting on R by right translation: R × Z � (r,m) → r + m, and projection

p : R −→ S1

r → exp(2πir)

Since Z is discrete, then Z-valued continuous functions on B are in fact locally
constant, and hence CZ is exactly the sheaf of locally constant functions with values
in Z, denoted Z. Combining the definition of the Čech cohomology group Ȟ 1(B;Z)

with Theorems 1 and 2, yields a bijection

lim←−U
H 1(N(U);Z) ∼=

[
B, S1

]
(7)

where the limit is taken over all locally finite covers U of B, ordered by refinement,
and the groups are the 1-dimensional simplicial cohomology with Z coefficients of
the associated nerve complexes N(U). The goal now is to produce an explicit family
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of compatible functions H 1(N(U);Z) −→ [B, S1] realizing the isomorphism from
(7). This is done in Theorem 3, and an explicit formula is given by (11).

To begin, let {ϕj }j∈J be a partition of unity on B dominated2 by U = {Uj }j∈J ,
fix a 1-cocycle η = {ηjk} ∈ Z1(N(U);Z), and define for each j ∈ J the map

fj : Uj × {j} × Z −→ R

(b, j, n) → n + ∑

�

ϕ�(b)ηj�
(8)

Since U is locally finite, then all but finitely many terms in this sum are zero. Note
that Z acts on Uj × {j} ×Z by right translation

(
(b, j, n),m

) → (b, j, n + m), and
that fj is equivariant with respect to this action: fj (b, j, n + m) = fj (b, j, n) + m.
If b ∈ Uj ∩ Uk , then we have that

fk(b, k, n + ηjk) = n +
∑

�∈J

ϕ�(b)(ηk� + ηjk)

= n +
∑

�∈J

ϕ�(b)ηj�

= fj (b, j, n)

and hence the fj ’s can be assembled to induce a continuous map f̃η : Eη −→ R on
the quotient space defined by (5); here η = {ηjk} ∈ Z1(N(U);Z) is regarded as a
collection of constant functions ηjk : Uj ∩Uk −→ Z. To be more explicit, f̃η sends
the class of (b, j, n) in Eη to fj (b, j, n) ∈ R. Since each fj is Z-equivariant, then
so is f̃η, and hence it descends to a well defined map fη at the level of base spaces

fη : B −→ S1 ⊂ C

Uj � b → exp

(

2πi
∑

k

ϕk(b)ηjk

)
(9)

Lemma 2 The map fη classifies the principal Z-bundle pη : Eη −→ B.

Proof Let us see explicitly that the map fη is well defined; in other words, that the
value fη(b) ∈ S1 is independent of the open set containing b. Indeed, let j, � ∈ J

be so that b ∈ Uj ∩ U�. We contend that ϕk(b)ηjk = ϕk(b)(ηj� + η�k) for every
k ∈ J . If b /∈ Uk , then the equality is trivial since ϕk(b) = 0; if b ∈ Uk , then
Uj ∩ Uk ∩ U� �= ∅ and ηjk = ηj� + η�k since η is a cocycle. Therefore

∑

k

ϕk(b)ηjk = ηj� +
∑

k

ϕk(b)η�k

2That is, so that support(ϕj ) ⊂ closure(Uj ) for all j ∈ J .
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and given that ηj� ∈ Z, then exp

(

2πi
∑

k

ϕk(b)ηjk

)

= exp

(

2πi
∑

k

ϕk(b)η�k

)

.

Finally, let us check that taking the pullback f ∗
η R of the universal Z-bundle

exp(2πi ·) : R −→ S1 yields a principal Z-bundle isomorphic to pη : Eη −→
B. Indeed, since fη ◦ pη = exp

(
2πif̃η

)
, then

(
f̃η, fη

) : (pη,Eη, B) −→
(
exp(2πi ·),R, S1

)
is a morphism of principal Z-bundles, and the result follows

from [9, Chapter 4: Theorem 4.2]. ��
Theorem 3 Let ι : Z ↪→ R be the inclusion and

ι∗ : H 1(N(U);Z) −→ H 1(N(U);R) (10)

the induced homomorphism. Given η ∈ Z1(N(U);Z) and τ ∈ C0(N(U);R), let
θ = ι#(η) + δ0τ . Denote by τj ∈ R the value of τ on the vertex j ∈ N(U),
and by θjk ∈ R the value of θ on the oriented edge [j, k] ∈ N(U); in particular
θjk = −θkj , and θjk = 0 whenever {j, k} /∈ N(U). If

hθ,τ : B −→ S1 ⊂ C

Uj � b → exp

{

2πi

(

τj + ∑

k

ϕk(b)θjk

)}
(11)

then hθ,τ is a classifying map for the principal Z-bundle pη : Eη −→ B.

Proof Since fη is a classifying map for Eη, by Lemma 2, then it is enough to check
that fη and hθ,τ are homotopic (see Theorem 2). For b ∈ Uj we have that

fη(b) = exp

(

2πi
∑

k

ϕk(b)ηjk

)

= exp

(

2πi
∑

k

ϕk(b)(θjk + τj − τk)

)

= exp

(

2πi

(

τj +
∑

k

ϕk(b)(θjk − τk)

))

= ντ (b) · hθ,τ (b)

where ντ (b) = exp

(

−2πi
∑

k

ϕk(b)τk

)

. Since ντ factors through R:

ντ : B −→ R −→ S1 ⊂ C

b → ∑

k

ϕk(b)τk → exp

(

−2πi
∑

k

ϕk(b)τk

)
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then ντ is null-homotopic, hence fη is homotopic to hθ,τ , and the result follows. ��
Remark 1 We note that the relation θ = ι#(η) + δ0τ from Theorem 3 implies
that the cochain τ ∈ C0(N(U);R) encodes the degrees of freedom in choosing
a cocycle representative for the class ι∗([η]) ∈ H 1(N(U);R), and thus defining the
classifying map hθ,τ : B −→ S1. This choice will be addressed in the discussion
about Harmonic Smoothing in Sect. 4.6.

4 Persistent Cohomology and Sparse Circular Coordinates
for Data

In this section we show how the theory we have developed thus far can be applied
to real data sets. In particular, we explain and justify the choices made in the
construction outlined in the Introduction (Sect. 1.2). Let us begin by fixing an
ambient metric space (M, d), let L ⊂ M be finite, and let

Bα(�) = {b ∈ M : d(b, �) < α} , α ≥ 0, � ∈ L

Bα = {Bα(�)}�∈L

L(α) =
⋃

Bα

The formulas derived in the previous section, specially (9), imply that each cocycle
η ∈ Z1(N(Bα);Z) yields a map h : L(α) −→ S1. The thing to notice is that h is
defined on every b ∈ L(α); thus, given a large but finite set X ⊂ M—the data—
sampled around a continuous space X ⊂ M, one can select a much smaller set of
landmarks L ⊂ X and α > 0 for which X ⊂ L(α). The resulting circular coordinates
h : L(α) −→ S1 will thus be defined on all points of X, though only the landmark
set is used in its construction. As we alluded to in the introduction, this is what we
mean when we say that the coordinates are sparse.

4.1 Landmark Selection

In practice we select the landmarks L ⊂ X either at random, or through maxmin
sampling: Given N ≤ |X| and �1 ∈ X chosen arbitrarily, assume that �1, . . . , �j ∈
X have been selected, 1 ≤ j < N , and let

�j+1 = argmax
x∈X

min
{
d(x, �1), . . . , d(x, �j )

}
(12)

Following this inductive procedure defines a landmark set L = {�1, . . . , �N } ⊂ X

that is in practice well-separated and well-distributed throughout the data. However,
it is important to keep in mind that this process is prone to choosing outliers.
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4.2 The Subordinated Partition of Unity

As for the choice of partition of unity {ϕ�}�∈L dominated by Bα , we can use that the
cover is via metric balls, and let

ϕ�(b) = |α − d(�, b)|+
∑

�′∈L

|α − d(�′, b)|+ where |r|+ = max{r, 0}, r ∈ R (13)

See [17, 3.3 and Fig 6.] for other typical choices of partition of unity in the case of
metric spaces, and coverings via metric balls.

4.3 The Need for Persistence

Even if the landmark set L correctly approximates the underlying topology of X,
the choice of scale α > 0 and cocycle η ∈ Z1(N(Bα);Z) might reflect sampling
artifacts instead of robust geometric features of the underlying space X. This is why
we need persistent cohomology. Indeed, a class [η] ∈ H 1(N(Bα);Z) which is not
in the kernel of the homomorphism

H 1(N(Bα);Z) −→ H 1(N(Bα′);Z) , 0 < α′ < α

induced by the inclusion N(Bα′) ⊂ N(Bα), is less likely to correspond to spurious
features as the difference α − α′ increases. Note, however, that the efficient
computation of persistent cohomology classes relies on using field coefficients. We
proceed, following [6] and [17], by choosing a prime q > 2 and a scale α > 0
so that (1) H 1(N(Bα);Z/q) contains a class with large persistence, and (2) so that
the homomorphism H 1(N(Bα);Z) −→ H 1(N(Bα);Z/q), induced by the quotient
map Z −→ Z/q, is surjective.

4.4 Lifting Persistence to Integer Coefficients

As stated in [6], one has that:

Proposition 2 Let K be a finite simplicial complex, and suppose that q ∈ N does
not divide the order of the torsion subgroup of H 2(K;Z). Then the homomorphism

ι∗q : H 1(K;Z) −→ H 1(K;Z/q)

induced by the quotient map ιq : Z −→ Z/q, is surjective.
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Proof This follows directly from the Bockstein long exact sequence in cohomology,

corresponding to the short exact sequence 0 Z Z Z/q 0.
×q ιq

��
More generally, let {Kα}α≥0 be a filtered simplicial complex with

⋃

α≥0
Kα finite.

Since each complex Kα is finite, and the cohomology groups H 2(Kα;Z) change
only at finitely many values of α, then there exists Q ∈ N so that the hypotheses of
Proposition 2 will be satisfied for each q ≥ Q, and all α ≥ 0. In practice we choose
a prime q at random, with the intuition that for scientific data only a few primes are
torsion contributors.

Let Z/q = {0, 1, . . . , q − 1} and for η′ ∈ Z1(Kα;Z/q) let η ∈ C1(Kα;Z) be
defined on each 1-simplex σ ∈ Kα as:

η(σ ) =
⎧
⎨

⎩

η′(σ ) if η′(σ ) ≤ q−1
2

η′(σ ) − q if η′(σ ) >
q−1

2

(14)

Thus, η takes values in
{
− q−1

2 , . . . , 0, . . . ,
q−1

2

}
⊂ Z and it satisfies (η mod q) =

η′. For the examples we have observed, the cochain defined by (14) produces an
integer cocycle. One of the reviewers of an earlier version of this paper remarked
that this is not always the case; the outlined procedure tends to fail (in real
world-examples) when the cohomology computation involves division by 2. As
highlighted in [6, 2.4], solving a Diophantine linear system can be used to fix the
problem.

4.5 Use Rips, Not Nerves

Constructing the filtered complex {N(Bα)}α≥0 can be rather expensive for a general
ambient metric space (M, d). Indeed, the inclusion of an n-simplex into the nerve
complex is predicated on checking if the intersection of n+1 ambient metric balls is
nonempty. This is nontrivial on curved spaces. On the other hand, the Rips complex

Rα(L) = {σ ⊂ L : diam(σ ) < α} , α ≥ 0

provides a straightforward alternative, since we can use that

Rα(L) ⊂ N(Bα) ⊂ R2α(L)

for every α ≥ 0. Here is how. Let q > 2 be a prime so that

ι∗q : H 1(Rα(L);Z) −→ H 1(Rα(L);Z/q)
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is surjective for all α ≥ 0, and let

j : H 1(R2α(L);Z/q) −→ H 1(Rα(L);Z/q)

be the homomorphism induced by the inclusion Rα(L) ⊂ R2α(L). Moreover, let
η′ ∈ Z1(R2α(L);Z/q) be so that [η′] /∈ Ker(j), and fix an integer lift

η ∈ Z1(R2α(L);Z)

That is, one for which η′ − (η mod q) ∈ Z1(R2α(L);Z/q) is a coboundary, e.g.
(14).

The diagram below summarizes the spaces and homomorphisms used thus far:

η ∈ H 1(R2α(L);Z/q) H 1(R2α(L);Z) [η]

H 1(N(Bα);Z/q) H 1(N(Bα);Z) [η]

H 1(Rα(L);Z/q)

j

ι∗q

ι∗
Z

ι∗q

Since the diagram commutes, then [η] is not in the kernel of ι∗
Z

, and hence we obtain
a nonzero element ι∗

Z
([η]) = [̃η] ∈ H 1(N(Bα);Z). This is the class we would use

as input for Theorem 3.

4.6 Harmonic Smoothing

The final step is selecting an appropriate cocycle representative (refer to Fig. 1 to
see why this matters)

θ̃ ∈ Z1(N(Bα);R)

for the class ι∗([̃η]) ∈ H 1(N(Bα);R), see (10). Again, since one would
hope to never compute the nerve complex, the strategy is to solve the
problem in Z1(R2α(L);R) for ι#(η), and then transfer the solution using
ι#
R

: C1(R2α(L);R) → C1(N(Bα);R).
Inspecting (11) reveals that the choice of θ̃ which promotes the smallest total

variation in hθ̃ ,̃τ , is the one for which the value of θ̃ on each 1-simplex of N(Bα) is
as small as possible. Consequently, we will look for the cocycle representative

θ ∈ Z1(R2α(L);R)
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of ι∗([η]), which in average has the smallest squared value3 on each 1-simplex of
R2α(L). That said, not all edges in the rips complex Rε(L) are created equal. Some
might have just entered the filtration, i.e. d(�j , �k) ≈ ε, which would make them
unstable if L is corrupted with noise, or perhaps X ∩ (

Bε/2(�j ) ∪ Bε/2(�k)
)

is a
rather small portion of the data, which could happen if �j and �k are outliers selected
during maxmin sampling.

These observations can be encoded by choosing weights on vertices and edges:

ωε : L × L −→ [0,∞) , ε ≥ 0 (15)

where ωε is symmetric for all ε > 0, it satisfies

ωε′(�, �′) ≤ ωε(�, �
′) , for ε′ ≤ ε

and ωε(�, �
′) = 0 only when 0 < ε ≤ d(�, �′). Here ωε(�, �) is the weight of �, and

ωε(�, �
′) is the weight of the edge {�, �′}. For instance, one can take

ωε(�, �
′) = |ε − d(�, �′)|+

but we note that we have not yet systematically investigated the effects of this
choice. See [20, Apendix D] for a different heuristic.

It follows that ωε defines inner products 〈·, ·〉ε on C0(Rε(L);R) and
C1(Rε(L);R), by letting the indicator functions 1σ on k-simplices (k = 0, 1)
σ ∈ Rε(L) be orthogonal, and setting

〈1σ , 1σ 〉ε = ωε(σ ) (16)

Using 〈·, ·〉ε , for ε = 2α, we let β ∈ B1(R2α(L);R) be the orthogonal projection
of ι#(η) onto the space of 1-coboundaries, and define

θ = ι#(η) − β (17)

A bit of linear algebra shows that,

Proposition 3 The 1-cocycle θ defined by (17) is a minimizer for the weighted least
squares problem

min
φ∼ι#(η)

∑

σ

ω2α(σ ) · φ(σ)2 (18)

Here the sum runs over all 1-simplices σ ∈ R2α(L), and the minimization is over
all 1-cocycles φ ∈ Z1(R2α(L);R) which are cohomologous to ι#(η).

3That is, we use the harmonic cocycle representative for appropriate inner products on cochains.
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Similarly, and if

d2α : C0(R2α(L);R) −→ C1(R2α(L);R)

denotes the coboundary map, then we let

τ ∈ Ker(d2α)⊥ ⊂ C0(R2α(L);R)

in the orthogonal complement of the kernel of d2α , be so that d2α(τ ) = −β. Hence
τ is the 0-chain with the smallest norm mapping to −β via d2α . Consequently, if

d+
2α : C1(R2α(L);R) −→ C0(R2α(L);R)

is the weighted Moore-Penrose pseudoinverse of d2α (see [3, III.3.4]), then

τ = −d+
2α(ι#(η)) and θ = ι#(η) + d2α (τ ) (19)

This is how we compute τ and θ in our implementation. Now, let

τ̃ = ι#
R
(τ ) ∈ C0(N(Bα);R)

θ̃ = ι#
R
(θ) ∈ Z1(N(Bα);R)

If we were to be completely rigourous, then τ̃ and θ̃ would be the cochains going
into (11); this would require the 1-skeleton of the nerve complex. However, as the
following proposition shows, this is unnecessary:

Proposition 4 For all b ∈ Bα(�j ), and every j = 1, . . . , N , we have that

exp

{

2πi

(

τ̃j +
N∑

k=1

ϕk(b)θ̃jk

)}

= exp

{

2πi

(

τj +
N∑

k=1

ϕk(b)θjk

)}

That is, we can compute sparse circular coordinates using only the Rips filtration
on the landmark set.

Proof Since N(Bα) and R2α(L) have the same vertex set, namely L, then τ̃ = τ as
real-valued functions on L. Moreover, for all k = 1, . . . , N we have that

ϕk(b)θ̃jk = ϕk(b)θjk

for if b /∈ Bα(�k), then both sides are zero, and if b ∈ Bα(�j ) ∩ Bα(�k), then the
edge {�j , �k} is in both R2α(L) and N(Bα), which shows that θ̃jk = θjk . ��



Sparse Circular Coordinates 451

5 Experiments

In all experiments below, persistent cohomology is computed using a MATLAB
wrapper for Ripser [1] kindly provided by Chris Tralie (http://www.ctralie.com/).
The Moore-Penrose pseudoinverse was computed via MATLAB’s pinv. In all
cases we run the algorithm from the Introduction in Sect. 1.2 using the indicated
persistence classes, or linear combinations thereof as made explicit in each example.

5.1 Synthetic Data

5.1.1 A Noisy Circle

We select 1000 points from a noisy circle in R
2; the noise is Gaussian in the

direction normal to the unit circle. Fifty landmarks were selected via maxmin
sampling (5% of the data), and circular coordinates were computed for the two most
persistent classes η1 and η2, using (19) as input to (11)—this is the harmonic cocycle
column—or (9) with either η1 or η2 directly—the integer cocycle column. We show
the results in Fig. 1 below. Computing persistent cohomology took 0.079423 s (the
Rips filtration is constructed from zero to the diameter of the landmark set); in
each case computing the harmonic cocycle takes about 0.037294 s. This example
highlights the inadequacy of the integer cocycle and of choosing cohomology
classes associated to sampling artifacts (i.e., with low persistence). From now on,
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Fig. 1 A noisy circle. Left: persistence diagrams in dimension 0 (blue) and 1 (red) for the Rips
filtration on the landmarks. Right: Circular coordinates from the two most persistent classes η1
(top row) and η2 (bottom row). The columns indicate if the harmonic or integral cocycle was
used. The dark rings are the landmarks. The colors are: the domain of definition for the circular
coordinate (gray), and its value on each point (dark blue, −π , through dark red, π ). Please refer to
an electronic version for colors

http://www.ctralie.com/
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we only present circular coordinates computed with the relevant harmonic cocycle
representative.

5.1.2 The 2-Dimensional Torus

For this experiment we sample 1000 points uniformly at random from the
square [0, 2π) × [0, 2π), and for each selected pair (φ1, φ2) we generate a point(
eiφ1 , eiφ2

) ∈ S1 × S1 on the surface of the torus embedded in C
2. The resulting

finite set is endowed with the ambient distance from C
2, and 100 landmarks

(i.e., 10% of the data) are selected through maxmin sampling. We show the
results in Fig. 2 below, for the circular coordinates computed with the two most
persistent classes, η1 and η2, and the maps (11) associated to the harmonic cocycle
representatives (19). Computing persistent cohomology for the Rips filtration on the
Landmarks (from zero to the diameter of the set) takes 0.398252 s, and computing
the harmonic cocycles takes 0.030832 s.

5.1.3 The Klein Bottle

We model the Klein bottle as the quotient space

K = S1 × S1/(z,w) ∼ (−z,w)

and endow it with the quotient metric. Just like in the case of the 2-torus, we sample
1000 points uniformly at random on (the fundamental domain [0, π)×[0, 2π) of) K ,
and select 100 landmarks via maxmin sampling and the quotient metric. Below in
Fig. 3 we show the results of computing the persistent cohomology, with coefficients
in Z/13, of the Rips filtration on the landmark set (left), along with the circular
coordinates corresponding to the most persistent class (right).
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Fig. 2 The torus. Left: Persistence in dimensions 0 and 1 for the Rips filtration on the landmark
set. Center and Right: the landmark set is depicted with dark rings, and the colors correspond to
the circular coordinates computed with (the harmonic representatives from) the two most persistent
classes η1 (center) and η2 (right). Please refer to an electronic version for colors
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Fig. 3 Circular coordinates on the Klein bottle. Left: Persistence with coefficients in Z/13 for
the Rips filtration on the landmark set. Right: Circular coordinates computed from the harmonic
representative from the class η with largest persistence. Dark rings indicate landmarks, and the
colors (dark blue through dark red) are the angular values of the circular coordinate on each data
point. Please refer to an electronic version for colors

5.2 Real Data

5.2.1 COIL 20

The Columbia University Image Library (COIL-20) is a collection of 448 × 416-
pixel gray scale images from 20 objects, each of which is photographed at 72
different rotation angles [15]. The database has two versions: a processed version,
where the images have been cropped to show only the rotated object, and an
unprocessed version with the 72 raw images from 5 objects. We will analyze the
unprocessed database, of which a few examples are shown in Fig. 4 below.

Regarding each image as a vector of pixel intensities in R
448×416 yields a set

X with 360 points; this set becomes a finite metric space when endowed with the
ambient Euclidean distance. Below in Fig. 5 (left) we show the result of computing
persistence (this time visualized as barcodes) for the Rips complex on the entire
data set (0.293412 s). Each one of the six most persistent classes η1, . . . , η6 yields
a circle-valued map on the data hj : X −→ S1, j = 1, . . . , 6. Multiplying these
maps together, using the group structure from S1 ⊂ C, yields a map h : X −→ S1.
We do this at the level of maps, as opposed to adding up the cocycle representatives,
because there is no scale α at which all these classes are alive. We also show in Fig. 5
(right) an Isomap [22] projection of the data onto R

2, and we color each projected
data point with its h value.

As we show in Fig. 6 below, a better system of coordinates for the data (i.e. one
without crossings) is given by the computed circular coordinate of each data point,
and the cluster (computed using single linkage) to which it belongs to.
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Fig. 4 Some examples from the unprocessed COIL20 image database
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Fig. 5 COIL-20 unprocessed. Left: persistence of the Rips filtration. Right: Isomap projection
colored by circular coordinate

5.2.2 The Mumford Data

This data set was first introduced in [12], with an initial exploration of its underlying
topological structure done in [5], and then a more thorough investigation in [4].
The data set in question is a collection of roughly four million 3 × 3-pixel gray-
scale images with high-contrast, selected from monochrome photos in a database of
4000 natural scenes [8]. The 3 × 3-pixel image patches are preprocessed, intensity-
centered and contrast-normalized, and a linear change of coordinates is performed
yielding a point-cloud M ⊂ S7 ⊂ R

8. The Euclidean distance in R
8 endows M

with the structure of a finite metric space. Following [4], we select 50,000 points at
random from M and then let X be the top 30% densest points as measured by the
distance to their 15th nearest neighbor. This results in a data set with 15,000 points,
which we analyze below.

We select 700 landmarks from X via maxmin sampling, i.e. 4.7% of X, and
compute persistence for the associated Rips filtration. This takes about 2.2799 s and
the result is shown in Fig. 7.

Each bar in the barcode yields a class ηj , which we order from largest (η1)
to smallest (η5) persistence. Below in Fig. 8 we show the circular coordinates
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Fig. 6 COIL-20 unprocessed: clusters vs circular coordinates
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´3

Fig. 7 Barcodes from persistence on the Rips filtration of the landmark set L ⊂ X

associated to the classes η2, η1 + η5 and η3 + η4, respectively. Each of the three
panels shows a scatter plot of X ⊂ R

8 with respect to the first two coordinates,
dark rings are the selected landmarks, and the colors (dark blue through dark
red) are the circular coordinates corresponding to the indicated persistence classes.
The computation of each cocycle representative takes about 7.1434 s, so the entire
analysis is less than 25 s.

These three circular coordinates allow us to map the data set X into the 3-
dimensional torus T 3 = S1 × S1 × S1, which we model as the 3-dimensional cube
[−π, π ] × [−π, π ] × [−π, π ] with opposite faces identified. We show in Fig. 9
below the result of mapping the data into T 3.

As we can see from the scatter plot, these three coordinates provide a faithful
realization of the data in the three circle model proposed in [4]. Below in Fig. 10 we
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Fig. 8 Circular coordinates for the points in X ⊂ R
8, plotted according to their first two

coordinates, and colored by the circular coordinates associated to each one of the classes η2 (left),
η1 + η5 (center) and η3 + η4 (right)

Fig. 9 Scatter plot in the 3-torus (left) for X, along with two 2-d projections (center, left). The
horizontal line on the xy plane is a circle (the primary circle), and each one of the four V -shaped
curves in T 3 is a hemisphere of a (secondary) circle

show some of these image patches in their T 3-coordinate to better illustrate what
the actual circles are.

6 Discussion

We have presented in this paper an application of the theory of principal bundles to
the problem of finding topologically and geometrically meaningful coordinates for
scientific data. Specifically, we leverage the 1-dimensional persistent cohomology
of the Rips filtration on a subset of the data (the landmarks), in order to produce S1-
valued coordinates on the entire data set. The coordinates are designed to capture
1-dimensional topological features of a continuous underlying space, and the theory
on which the coordinates are built, indicates that they classify Z-principal bundles
on the continuum.

The use of bundle theory allows for the circular coordinates to be sparse, which
is fundamental for analyzing geometric data of realistic size. We hope that these
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Fig. 10 Image patches from
X, plotted at their location in
the 3-torus, according to the
computed circular
coordinates

0z

y

0

x

0

coordinates will be useful in problems such as the analysis of recurrent dynamics
in time series data (as in [23, 24] or [7]), and nonlinear dimensionality reduction as
indicated in the Experiments Sect. 5.

An interesting direction from this work is the question of stability and Lipschitz
continuity of sparse circular coordinates. The main theoretical challenge is to
determine how the edge and vertex weights on the Rips complex can be used to
stabilize the harmonic cocycle representative with respect to an appropriate notion
of (hopefully Hausdorff) noise on the landmark set. We hope to address this question
in upcoming work.
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