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Series Foreword

The Norwegian government established the Abel Prize in mathematics in 2002, and
the first prize was awarded in 2003. In addition to honoring the great Norwegian
mathematician Niels Henrik Abel by awarding an international prize for outstanding
scientific work in the field of mathematics, the prize shall contribute toward raising
the status of mathematics in society and stimulate the interest for science among
school children and students. In keeping with this objective, the Niels Henrik Abel
Board has decided to finance annual Abel Symposia. The topic of the symposia
may be selected broadly in the area of pure and applied mathematics. The symposia
should be at the highest international level and serve to build bridges between
the national and international research communities. The Norwegian Mathematical
Society is responsible for the events. It has also been decided that the contributions
from these symposia should be presented in a series of proceedings, and Springer
Verlag has enthusiastically agreed to publish the series. The Niels Henrik Abel
Board is confident that the series will be a valuable contribution to the mathematical
literature.

Chair of the Niels Henrik Abel Board John Grue



Preface

The demands of science and industry for methods for understanding and utilizing
large and complex data sets have been growing very rapidly, driven in part by our
ability to collect ever more data about many different subjects. A key requirement is
to construct useful models of data sets that allow us to see more clearly and rapidly
what the data tells us. Mathematical modeling is usually thought of as the discipline
of constructing algebraic or analytic models, where the output of the model is an
equation, a system of equations, or perhaps a system of differential equations. This
method has been very effective in the past, when many of the data sets to be studied
involved only a small number of features and where there are simple relations among
the variables that govern the data being modeled. The work of Galileo, Kepler, and
Newton are prime examples of the successes of this kind of modeling. However,
these methods run into difficulties when confronted with some of the very complex
data currently arising in applications. For example, consider data sets where the
goal is to identify potential instances of fraud, or to discover drugs, where the
complex structure of molecules means that identification of effective medications
is a very complex task. For this reason, it is incumbent on the mathematical and
statistical communities to develop new methods of modeling. To understand what
these methods might be, we ask ourselves what do mathematical models buy us?
Here are some answers to that question.

* A mathematical model should provide some kind of compression of the data
into a tractable form. When we model data by using a simple one variable
linear regression, the result compresses the data from thousand or hundreds of
thousands of data points into two numbers, the slope and the y-intercept. If the
approximation is good, we have achieved a massive compression.

* A mathematical model should provide understanding of the data. The usual
mathematical modeling of the flight of a cannonball gives a great deal of
understanding about its behavior.

* In many cases, we would like a model to allow us to predict outcomes. In the
cannonball problem, we need only know the muzzle velocity and the angle of
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viii Preface

the cannon barrel in order to predict where the cannonball will land, or what the
highest altitude it will reach is.

Nothing about these answers requires that the model be algebraic. Consider, for
example, cluster analysis. Its output is no longer an equation or a set of equations,
but rather a partition of the data set into a collection of groups. Such a partition
provides all three of the capabilities described above. Cluster analysis clearly
provides compression, since the number of clusters is typically a much smaller
number than the number of data points. It also provides understanding, since the
cluster decomposition is effectively a taxonomy of the data points. Finally, it can
also be used to provide predictions, via classifying new data points into the different
clusters using methods like logistic regression or decision trees. These observations
suggest that we view cluster analysis as a modeling mechanism which is discrete
in the sense that it produces zero-dimensional outputs, with no information about
continuous phenomena such as progressions. They also suggest that we look
for other modeling mechanisms where the output can consist of more complex
mathematical structures. Topological data analysis (TDA) is a modeling method in
which the outputs are graphs and simplicial complexes. Work on TDA began with
the study of persistent homology (see [16, 26, 32]), but over time the direct study of
low-dimensional simplicial complex models (see [4, 30]) has also become important
in applications. Here are some of the advantages of TDA.

» TDA is able to give insight into continuous and discrete properties of a data set in
one output. Cluster analysis provides a discrete analysis, and algebraic modeling
often reflects continuous information.

» Itis able to represent the properties of complex data more flexibly and therefore
more accurately than other machine learning methods.

* There is a great deal of “functionality” in the representation of data sets, since
simplicial complexes and graphs are more complex mathematical structures than
partitions or simple regression models. For example, if one is studying a function
on a data set, one is often able to create a corresponding function on the nodes
of the model, and the behavior of the corresponding function often clarifies the
behavior of the function. Persistent homology can also be viewed as functionality,
since it provides a way to measure (in an appropriate sense) the shape of the
model.

* An interesting direction is the study of topological models of the set of features in
a data set rather than the set of data points. This point of view has been advocated
in [27] and [11], and referred to in [27] as “topological signal processing”.

» Although persistent homology can be used to study the overall structure of data
sets, it is also used to generate features of data sets of complex or unstructured
objects. For example, in [31], data bases of molecules are treated as data sets
whose points are finite metric spaces.

TDA has been applied in a number of interesting domains, notably neuroscience
[18,20, 25, 29, 28], materials science [19, 22], cancer biology [21, 23], and immune
responses [24].
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There are numerous very active mathematical research directions within TDA.

* Vectorization of barcodes: Most machine learning methods are defined for data
which is in the form of vectors in a high dimensional vector space. There are
numerous situations where the data points themselves are more complex objects,
which support a metric. For example, molecule structures or images fall into this
category. In such situations, one has assignments of barcodes to individual data
points instead of the whole data set. In order to enable machine learning, one
must therefore create functions on the set of barcodes. There are a number of
strategies to provide such “vectorizations”. See [1, 2, 8] for examples.

* Probabilistic analysis of spaces of barcodes: Statistical and probabilistic
analyses clearly play a key role in any data analytic problem. If we are building
simplicial complex models or creating features based on persistent homology, it
is clear that it is important to understand the behavior of distributions on the set
(it can be made into a metric space in numerous ways) of persistence barcodes or
equivalently persistence diagrams. There is a great deal of work in this direction.
See [3, 5-7, 15] for interesting examples.

¢ Methods for assessing the faithfulness of topological models: If we build
topological models of data, it is critical to devise methods for assessing how
faithful to the data the model is. Of course, even the problem of defining measures
of this kind of consistency is an important one. The paper [12] is an example of
this kind of work.

* Multidimensional and generalized persistence: Since the development of
persistent homology, a number of generalizations of it have been developed.
In particular, the idea that one might have families of complexes depending
on more than one real parameter is referred to as multidimensional persistence
[9]. Additionally, zig-zag persistence [10] studies the behavior of parametrized
families of complexes where one is permitted to delete as well as add simplices.
Further generalizations have been made, and a key direction of research is to
attach invariants to generalized persistence objects so that one can interpret them
and make use of them in data analysis. Other interesting work in this direction is
given in [13, 17].

* New domains of application: TDA has already seen application in numerous
areas, which were mentioned above. Finding new ways to apply it is high priority
research.

This volume presents a number of interesting papers in numerous different
research directions. It provides a partial snapshot of the current state of the field, and
we hope that it will be useful to practitioners as well as those considering entering
the field.

The papers are written by participants (and their collaborators) of the Abel
Symposium 2018 which took place from June 4 to June 8, 2018 in Geiranger,
Norway. The symposium was organized by an external committee consisting of
Gunnar E.Carlsson (Stanford University), Herbert Edelsbrunner (IST Austria),
Kathryn Hess (EPF Lausanne), and Raul Rabadan (Columbia University) and a
local committee from NTNU Trondheim consisting of Nils A. Baas, Gereon Quick,
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Markus Szymik and Marius Thaule. The webpage of the symposium can be found
at https://folk.ntnu.no/mariusth/Abel/.

We gratefully acknowledge the generous support of the Board for the Niels
Henrik Abel Memorial Fund, the Norwegian Mathematical Society, the Department
of Mathematical Sciences and the Faculty of Information Technology and Electrical
Engineering at NTNU. We also thank Ruth Allewelt, Leonie Kunz and Springer-
Verlag for encouragement and support during the editing of these proceedings.

Trondheim, Norway Nils A. Baas
Stanford, California, CA, USA Gunnar E. Carlsson
Trondheim, Norway Gereon Quick
Trondheim, Norway Markus Szymik
Trondheim, Norway Marius Thaule
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A Fractal Dimension for Measures via m)
Persistent Homology e

Henry Adams, Manuchehr Aminian, Elin Farnell, Michael Kirby,
Joshua Mirth, Rachel Neville, Chris Peterson, and Clayton Shonkwiler

Abstract We use persistent homology in order to define a family of fractal
dimensions, denoted diméH (w) for each homological dimension i > 0, assigned to
a probability measure p on a metric space. The case of zero-dimensional homology
(i = 0) relates to work by Steele (Ann Probab 16(4): 1767-1787, 1988) studying
the total length of a minimal spanning tree on a random sampling of points. Indeed,
if w is supported on a compact subset of Euclidean space R™ for m > 2, then
Steele’s work implies that dimgH (n) = m if the absolutely continuous part of u
has positive mass, and otherwise dimgH(u) < m. Experiments suggest that similar
results may be true for higher-dimensional homology 0 < i < m, though this is
an open question. Our fractal dimension is defined by considering a limit, as the
number of points n goes to infinity, of the total sum of the i-dimensional persistent
homology interval lengths for n random points selected from p in an i.i.d. fashion.
To some measures i, we are able to assign a finer invariant, a curve measuring
the limiting distribution of persistent homology interval lengths as the number of
points goes to infinity. We prove this limiting curve exists in the case of zero-
dimensional homology when p is the uniform distribution over the unit interval, and

This work was completed while Elin Farnell was a research scientist in the Department of
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conjecture that it exists when p is the rescaled probability measure for a compact
set in Euclidean space with positive Lebesgue measure.

1 Introduction

Let X be a metric space equipped with a probability measure w. While fractal
dimensions are most classically defined for a space, there are a variety of fractal
dimension definitions for a measure, including the Hausdorff or packing dimension
of a measure [24, 30, 54]. In this paper we use persistent homology to define a fractal
dimension dim"PH (un) associated to a measure p for each homological dimension
i > 0. Roughly speaking, dimi,H(,u) is determined by how the lengths of the
persistent homology intervals for a random sample, X, of n points from X vary
as n tends to infinity.

Our definition should be thought of as a generalization, to higher homological
dimensions, of fractal dimensions related to minimal spanning trees, as studied, for
example, in [63]. Indeed, the lengths of the zero-dimensional (reduced) persistent
homology intervals corresponding to the Vietoris—Rips complex of a sample X, are
equal to the lengths of the edges in a minimal spanning tree with X,, as the set of
vertices. In particular, if X is a subset of Euclidean space R™ with m > 2, then [63,
Theorem 1] by Steele implies that dimgH(u) < m, with equality when the absolutely
continuous part of i has positive mass (Proposition 1). Independent generalizations
of Steele’s work to higher homological dimensions are considered in [26, 61, 62].

To some metric spaces X equipped with a measure i we are able to assign a finer
invariant that contains more information than just the fractal dimension. Consider
the set of the lengths of all intervals in the i-dimensional persistent homology for
X,. Experiments suggest that when probability measure p is absolutely continuous
with respect to the Lebesgue measure on X < R™, the scaled set of interval
lengths in each homological dimension i converges distribution-wise to some fixed
probability distribution (depending on w and 7). This is easy to prove in the simple
case of zero-dimensional homology when p is the uniform distribution over the unit
interval, in which case we can also derive a formula for the limiting distribution.
Experiments suggest that when p is the rescaled probability measure corresponding
to a compact set X € R™ of positive Lebesgue measure, then a limiting rescaled
distribution exists that depends only on m, i, and the volume of i (see Conjecture 2).
We would be interested to know the formulas for the limiting distributions with
higher Euclidean and homological dimensions.

Whereas Steele in [63] studies minimal spanning trees on random subsets of a
space, Kozma et al. in [42] study minimal spanning trees built on extremal subsets.
Indeed, they define a fractal dimension for a metric space X as the infimum, over
all powers d, such that for any minimal spanning tree 7 on a finite number of
points in X, the sum of the edge lengths in 7 each raised to the power d is
bounded. They relate this extremal minimal spanning tree dimension to the box
counting dimension. Their work is generalized to higher homological dimensions by
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Schweinhart [60]. By contrast, we instead generalize Steele’s work [63] on measures
to higher homological dimensions. Three differences between [42, 60] and our work
are the following.

* The former references define a fractal dimension for metric spaces, whereas we
define a fractal dimension for measures.

* The fractal dimension in [42, 60] is defined using extremal subsets, whereas we
define our fractal dimension using random subsets.

* We can estimate our fractal dimension computationally using log-log plots as in
Sect. 5, whereas we do not know a computational technique for estimating the
fractal dimensions in [42, 60].

After describing related work in Sect.2, we give preliminaries on fractal
dimensions and on persistent homology in Sect.3. We present the definition of
our fractal dimension and prove some basic properties in Sect. 4. We demonstrate
example experimental computations in Sect.5; our code is publicly available
at https://github.com/CSU-PHdimension/PHdimension. Section 6 describes how
limiting distributions, when they exist, form a finer invariant. Sects. 7 and 8 discuss
the computational details involved in sampling from certain fractals and estimating
asymptotic behavior, respectively. Finally we present our conclusion in Sect. 9. One
of the main goals of this paper is to pose questions and conjectures, which are shared
throughout.

2 Related Work

2.1 Minimal Spanning Trees

The paper [63] studies the total length of a minimal spanning tree for random subsets
of Euclidean space. Let X, be a random sample of points from a compact subset of
R? according to some probability distribution. Let M, be the sum of all the edge
lengths of a minimal spanning tree on vertex set X,,. Then for d > 2, Theorem 1
of [63] says that

M, ~ Cn'@=D/d a5 pn - oo, (1.1

where the relation ~ denotes asymptotic convergence, with the ratio of the terms
approaching one in the specified limit. Here, C is a fixed constant depending on d
and on the volume of the absolutely continuous part of the probability distribution.'
There has been a wide variety of related work, including for example [5-7, 38, 64—
67]. See [41] for a version of the central limit theorem in this context. The
papers [51, 52] study the length of the longest edge in the minimal spanning tree

UIf the compact subset has Hausdorff dimension less than d, then [63] implies C = 0.
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for points sampled uniformly at random from the unit square, or from a torus of
dimension at least two. By contrast, [42] studies Euclidean minimal spanning trees
built on extremal finite subsets, as opposed to random subsets.

2.2 Umbrella Theorems for Euclidean Functionals

As Yukich explains in his book [72], there are a wide variety of Euclidean
functionals, such as the length of the minimal spanning tree, the length of the
traveling salesperson tour, and the length of the minimal matching, which all have
scaling asymptotics analogous to (1.1). To prove such results, one needs to show that
the Euclidean functional of interest satisfies translation invariance, subadditivity,
superadditivity, and continuity, as in [21, Page 4]. Superadditivity does not always
hold, for example it does not hold for the minimal spanning tree length functional,
but there is a related “boundary minimal spanning tree functional” that does satisfy
superadditivity. Furthermore, the boundary functional has the same asymptotics as
the original functional, which is enough to prove scaling results. It is intriguing to
ask if these techniques will work for functionals defined using higher-dimensional
homology.

2.3 Random Geometric Graphs

In this paper we consider simplicial complexes (say Vietoris—Rips or Cech) with
randomly sampled points as the vertex set. The 1-skeleta of these simplicial
complexes are random geometric graphs. We recommend the book [50] by Penrose
as an introduction to random geometric graphs; related families of random graphs
are also considered in [53]. Random geometric graphs are often studied when the
scale parameter r(n) is a function of the number of vertices n, with r(n) tending to
zero as n goes to infinity. Instead, in this paper we are more interested in the behavior
over all scale parameters simultaneously. From a slightly different perspective,
the paper [40] studies the expected Euler characteristic of the union of randomly
sampled balls (potentially of varying radii) in the plane.

2.4 Persistent Homology

Vanessa Robins’ thesis [58] contains many related ideas; we describe one such
example here. Given a set X € R™ and a scale parameter ¢ > 0, let

X, = {y € R™ | there exists some x € X withd(y, x) < ¢}
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denote the e-offset of X. The e-offset of X is equivalently the union of all closed
¢ balls centered at points in X. Furthermore, let C(X,) € N denote the number
of connected components of X,. In Chapter 5, Robins shows that for a generalized
Cantor set X in R with Lebesgue measure 0, the box-counting dimension of X is
equal to the limit

log(C (X))
im
e—0 log(l/e)

Here Robins considers the entire Cantor set, whereas we study random subsets
thereof.

The paper [46], which heavily influenced our work, introduces a fractal dimen-
sion defined using persistent homology. This fractal dimension depends on thick-
enings of the entire metric space X, as opposed to random or extremal subsets
thereof. As a consequence, the computed dimension of some fractal shapes (such
as the Cantor set cross the interval) disagrees significantly with the Hausdorff or
box-counting dimension.

Schweinhart’s paper [60] takes a slightly different approach from ours, consider-
ing extremal (as opposed to random) subsets. After fixing a homological dimension
i, Schweinhart assigns a fractal dimension to each metric space X equal to the
infimum over all powers d such that for any finite subset X’ C X, the sum of the
i-dimensional persistent homology bar lengths for X’, each raised to the power d, is
bounded. For low-dimensional metric spaces Schweinhart relates this dimension to
the box counting dimension.

More recently, Divol and Polonik [26] obtain generalizations of [63, 72] to higher
homological dimensions in the case when X is a cube. Related results are obtained
in [62] when X is a ball or sphere, and afterwards in [61] when points are sampled
according to an Ahlfors regular measure.

There is a growing literature on the topology of random geometric simplicial
complexes, including in particular the homology of Vietoris—Rips and Cech com-
plexes built on top of random points in Euclidean space [3, 13, 39]. The paper [14]
shows that for n points sampled from the unit cube [0, 1]‘1 with d > 2, the
maximally persistent cycle in dimension 1 < k < d — 1 has persistence of order
O(( Olgoﬁjn ) 17Ky, where the asymptotic notation big Theta means both big O and big
Omega. %he homology of Gaussian random fields is studied in [4], which gives the
expected k-dimensional Betti numbers in the limit as the number of points increases
to infinity, and also in [12]. The paper [29] studies the number of simplices and
critical simplices in the alpha and Delaunay complexes of Euclidean point sets
sampled according to a Poisson process. An open problem about the birth and death
times of the points in a persistence diagram coming from sublevelsets of a Gaussian
random field is stated in Problem 1 of [28]. The paper [18] shows that the expected
persistence diagram,from a wide class of random point clouds, has a density with
respect to the Lebesgue measure
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The paper [15] explores what attributes of an algebraic variety can be estimated
from a random sample, such as the variety’s dimension, degree, number of irre-
ducible components, and defining polynomials; one of their estimates of dimension
is inspired by our work.

In an experiment in [1], persistence diagrams are produced from random
subsets of a variety of synthetic metric space classes. Machine learning tools, with
these persistence diagrams as input, are then used to classify the metric spaces
corresponding to each random subset. The authors obtain high classification rates
between the different metric spaces. It is likely that the discriminating power is
based not only on the underlying homotopy types of the shape classes, but also on
the shapes’ dimensions as detected by persistent homology.

3 Preliminaries

This section contains background material and notation on fractal dimensions and
persistent homology.

3.1 Fractal Dimensions

The concept of fractal dimension was introduced by Hausdorff to describe spaces
like the Cantor set, and it later found extensive application in the study of dynamical
systems. The attracting sets of simple a dynamical system is often a submanifold,
with an obvious dimension, but in non-linear and chaotic dynamical systems the
attracting set may not be a manifold. The Cantor set, defined by removing the middle
third from the interval [0, 1], and then recursing on the remaining pieces, is a typical
example. It has the same cardinality as R, but it is nowhere-dense, meaning it at no
point resembles a line. The typical fractal dimension of the Cantor set is logz(2).
Intuitively, the Cantor set has “too many” points to have dimension zero, but also
should not have dimension one.

We speak of fractal dimensions in the plural because there are many different
definitions. In particular, fractal dimensions can be divided into two classes, which
have been called “metric” and “probabilistic” [31]. The former describe only the
geometry of a metric space. Two widely-known definitions of this type, which often
agree on well-behaved fractals, but are not in general equal, are the box-counting
and Hausdorff dimensions. For an inviting introduction to fractal dimensions
see [30]. Dimensions of the latter type take into account both the geometry of a
given set and a probability distribution supported on that set—originally the “natural
measure” of the attractor given by the associated dynamical system, but in principle
any probability distribution can be used. The information dimension is the best
known example of this type. For detailed comparisons, see [32]. Our persistent
homology fractal dimension, Definition 6, is of the latter type.
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For completeness, we exhibit some of the common definitions of fractal dimen-
sion. The primary definition for sets is given by the Hausdorff dimension [33].

Definition 1 Let S be a subset of a metric space X, letd € [0, c0), and let § > 0.
The Hausdorff measure of S is

o o0
H,(S) = inf | inf diam(B))? | S € | | B; and diam(B;) <68} |,
1(S) 1r51 in X;Mm( D _LJI ; and diam(B;) <

Jj= j=

where the inner infimum is over all coverings of S by balls B; of diameter at most
8. The Hausdorff dimension of S is

dimp(S) = inf(Hy(S) = 0.}

The Hausdorff dimension of the Cantor set, for example, is log;(2).

In practice it is difficult to compute the Hausdorff dimension of an arbitrary
set, which has led to a number of alternative fractal dimension definitions in the
literature. These dimensions tend to agree on well-behaved fractals, such as the
Cantor set, but they need not coincide in general. Two worth mentioning are the
box-counting dimension, which is relatively simple to define, and the correlation
dimension.

Definition 2 Let S € X a metric space, and let N denote the infimum of the
number of closed balls of radius € required to cover S. Then the box-counting
dimension of S is

]
dimp(S) = lim [°80e)
e—0log(1/¢)

provided this limit exists. Replacing the limit with a lim sup gives the upper box-
counting dimension, and a lim inf gives the Jower box-counting dimension.

The box-counting definition is unchanged if N¢ is instead defined by taking the
number of open balls of radius ¢, or the number of sets of diameter at most ¢, or (for
S a subset of R") the number of cubes of side-length ¢ [70, Definition 7.8], [30,
Equivalent Definitions 2.1]. It can be shown that dimp(S) > dimg(S). This
inequality can be strict; for example if S = Q N [0, 1] is the set of all rational
numbers between zero and one, then dimg (S) = 0 < 1 = dimp(S) [30, Chapter 3].

In Sect. 4 we introduce a fractal dimension based on persistent homology which
shares key similarities with the Hausdorff and box-counting dimensions. It can also
be easily estimated via log-log plots, and it is defined for arbitrary metric spaces
(though our examples will tend to be subsets of Euclidean space). A key difference,
however, will be that ours is a fractal dimension for measures, rather than for
subsets.
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There are a variety of classical notions of a fractal dimension for a measure,
including the Hausdorff, packing, and correlation dimensions of a measure [24, 30,
54]. We give the definitions of two of these.

Definition 3 ((13.16) of [30]) The Hausdor{f dimension of a measure u with total
mass one is defined as

dimg (u) = inf{dimg (S) | S is a Borel subset with @ (S§) > 0}.

We have dimy (1) < dimpg (supp(u)), and it is possible for this inequality to be
strict [30, Exercise 3.10].> We also give the example of the correlation dimension of
a measure.

Definition 4 Let X be a subset of R” equipped with a measure u, and let X, be
a random sample of n points from X. Let 8: R — R denote the Heaviside step
function, meaning 6(x) = 0 for x < 0 and 6(x) = 1 for x > 0. The correlation
integral of p is defined (for example in [35, 69]) to be

1
Cr) = lim Yo —llx—x).
x,x'eX,

x#x’

It can be shown that C(r) o r", and the exponent v is defined to be the correlation
dimension of .

In [35, 36] it is shown that the correlation dimension gives a lower bound on
the Hausdorff dimension of a measure. The correlation dimension can be easily
estimated from a log-log plot, similar to the methods we use in Sect. 5. A different
definition of the correlation definition is given and studied in [23, 47]. The
correlation dimension is a particular example of the family of Renyi dimensions,
which also includes the information dimension as a particular case [56, 57]. A
collection of possible axioms that one might like to have such a fractal dimension
satisfy is given in [47].

3.2 Persistent Homology

The field of applied and computational topology has grown rapidly in recent years,
with the topic of persistent homology gaining particular prominence. Persistent
homology has enjoyed a wealth of meaningful applications to areas such as image
analysis, chemistry, natural language processing, and neuroscience, to name just a

2See also [31] for an example of a measure whose information dimension is less than the Hausdorff
dimension of its support.
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few examples [2, 10, 20, 25, 44, 45, 71, 73]. The strength of persistent homology
lies in its ability to characterize important features in data across multiple scales.
Roughly speaking, homology provides the ability to count the number of indepen-
dent k-dimensional holes in a space, and persistent homology provides a means
of tracking such features as the scale increases. We provide a brief introduction
to persistent homology in this preliminaries section, but we point the interested
reader to [8, 27, 37] for thorough introductions to homology, and to [16, 22, 34]
for excellent expository articles on persistent homology.

Geometric complexes, which are at the heart of the work in this paper, associate
to a set of data points a simplicial complex—a combinatorial space that serves as a
model for an underlying topological space from which the data has been sampled.
The building blocks of simplicial complexes are called simplices, which include
vertices as O-simplices, edges as 1-simplices, triangles as 2-simplices, tetrahedra as
3-simplices, and their higher-dimensional analogues as k-simplices for larger values
of k. An important example of a simplicial complex is the Vietoris—Rips complex.

Definition 5 Let X be a set of points in a metric space and let r > 0 be a scale
parameter. We define the Vietoris—Rips simplicial complex VR(X; ) to have as its
k-simplices those collections of k + 1 points in X that have diameter at most r.

In constructing the Vietoris—Rips simplicial complex we translate our collection of
points in X into a higher-dimensional complex that models topological features of
the data. See Fig. 1 for an example of a Vietoris—Rips complex constructed from a
set of data points, and see [27] for an extended discussion.

It is readily observed that for various data sets, there is not necessarily an ideal
choice of the scale parameter so that the associated Vietoris—Rips complex captures
the desired features in the data. The perspective behind persistence is to instead
allow the scale parameter to increase and to observe the corresponding appearance
and disappearance of topological features. To be more precise, each hole appears
at a certain scale and disappears at a larger scale. Those holes that persist across a
wide range of scales often reflect topological features in the shape underlying the
data, whereas the holes that do not persist for long are often considered to be noise.

Fig. 1 An example of a set of data points in R” with an associated Vietoris—Rips complex at a
fixed scale
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However, in the context of this paper (estimating fractal dimensions), the holes that
do not persist are perhaps better described as measuring the local geometry present
in a random finite sample.

For a fixed set of points, we note that as scale increases, simplices can only be
added and cannot be removed. Thus, for g < r; < r» < ---, we obtain a filtration
of Vietoris—Rips complexes

VR(X;7r9) €S VR(X;7r1) S VR(X;7r2) S --- .

The associated inclusion maps induce linear maps between the corresponding
homology groups Hy (VR (X r;)), which are algebraic structures whose ranks count
the number of independent k-dimensional holes in the Vietoris—Rips complex. A
technical remark is that homology depends on the choice of a group of coefficients;
it is simplest to use field coefficients (for example R, Q, or Z/pZ for p prime), in
which case the homology groups are furthermore vector spaces. The corresponding
collection of vector spaces and linear maps is called a persistent homology module.

A useful tool for visualizing and extracting meaning from persistent homology
is a barcode. The basic idea is that each generator of persistent homology can be
represented by an interval, whose start and end times are the birth and death scales
of a homological feature in the data. These intervals can be arranged as a barcode
graph in which the x-axis corresponds to the scale parameter. See Fig.2 for an
example. If Y is a finite metric space, then we let PH (Y) denote the corresponding
collection of i-dimensional persistent homology intervals.

HEaEe @) b _

1 P
]
@
-]
1
-
A
"
2
s
2
o
@
5
g
- |

{ 2 |
s
e
)
3
-

—
e = :
200 300 400

o
5

Fig. 2 An example of Vietoris—Rips complexes at increasing scales, along with associated
persistent homology intervals. The zero-dimensional persistent homology intervals shows how 21
connected components merge into a single connected component as the scale increases. The one-
dimensional persistent homology intervals show two one-dimensional holes, one short-lived and
the other long-lived



A Fractal Dimension for Measures via Persistent Homology 11

Zero-dimensional barcodes always produce one infinite interval, as in Fig.2,
which are problematic for our purposes. Therefore, in the remainder of this paper
we will always use reduced homology, which has the effect of simply eliminating
the infinite interval from the zero-dimensional barcode while leaving everything
else unchanged. As a consequence, there will never be any infinite intervals in the
persistent homology of a Vietoris—Rips simplicial complex, even in homological
dimension zero.

Remark 1 1t is well-known (see for example [58]) and easy to verify that for any
finite metric space X, the lengths of the zero-dimensional (reduced) persistent
homology intervals of the Vietoris—Rips complex of X correspond exactly to the
lengths of the edges in a minimal spanning tree with vertex set X.

4 Definition of the Persistent Homology Fractal Dimension
for Measures

Let X be a metric space equipped with a probability measure px, and let X,, € X
be a random sample of n points from X distributed independently and identically
according to u. Build a filtered simplicial complex K on top of vertex set X,
for example a Vietoris—Rips complex VR(X; r) (Definition 5), an intrinsic Cech
complex é(X, X; r), or an ambient Cech complex é(X, R™; r) if X is a subset of
R™ [17]. Denote the i-dimensional persistent homology of this filtered simplicial
complex by PH(X,,). This persistent homology barcode decomposes as a direct
sum of interval summands; we let L' (X,,) be the sum of the lengths of the intervals
in PH! (X7). In the case of homological dimension zero, the sum LO(X,) is simply
the sum of all the edge lengths in a minimal spanning tree with X, as its vertex set
(since we are using reduced homology).

Definition 6 (Persistent Homology Fractal Dimension) Let X be a metric space
equipped with a probability measure w, let X, € X be a random sample of n
points from X distributed according to s, and let L (X,,) be the sum of the lengths
of the intervals in the i-dimensional persistent homology for X,,. We define the i-
dimensional persistent homology fractal dimension of | to be

dimby (1) = ;ng ’d ‘ 3 constant C (i, u, d) such that L’ (X,,) < Cn4=D/4
>
with probability one as n — oo}.

The constant C can depend on i, u, and d. Here “Li(Xn) < Cn=-D/d with
probability one as n — 00" means that we have lim,,_, oo P[LI(X,) < Cnl@d-b/dy =
1. This dimension may depend on the choices of filtered simplicial complex (say
Vietoris—Rips or Cech), and on the choice of field coefficients for homology
computations; for now those choices are suppressed from the definition.
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Proposition 1 Let i be a measure on X C R™ with m > 2. Then dimgH(u) <m,
with equality if the absolutely continuous part of | has positive mass.

Proof By Theorem 2 of [63], we have that lim,_, n’(’”’l)/mLO(Xn) =
¢ fgm F)M=D/M dx where ¢ is a constant depending on m, and where f is
the absolutely continuous part of 1. To see that dimgl_l (n) < m, note that

LX) = <C/R fE) DM dx 4 s) p(m=1/m

with probability one as n — oo for any ¢ > 0. O

We conjecture that the i-dimensional persistent homology of compact subsets of
R™ have the same scaling properties as the functionals in [63, 72].

Conjecture 1 Let p be a probability measure on a compactset X € R” withm > 2,
and let i be absolutely continuous with respect to the Lebesgue measure. Then for
all 0 < i < m, there is a constant C > 0 (depending on p, m, and i) such that
L (X,) = Cn"=D/™ with probability one as n — oo.

Let u be a probability measure with compact support that is absolutely contin-
uous with respect to Lebesgue measure in R” for m > 2. Note that Conjecture 1
would imply that the persistent homology fractal dimension of w is equal to m.
The tools of subadditivity and superadditivity behind the umbrella theorems for
Euclidean functionals, as described in [72] and Sect. 2.2, may be helpful towards
proving this conjecture. In some limited cases, for example when X is a cube or ball,
or when p is Ahlfors regular, then Conjecture 1 is closely related to [26, 61, 62].

One could alternatively define birth-time or death-time fractal dimensions by
replacing L!(X,) with the sum of the birth times, or alternatively the sum of the
death times, in the persistent homology barcodes PH! (X,,).

5 Experiments

A feature of Definition 6 is that we can use it to estimate the persistent homology
fractal dimension of a measure p. Indeed, suppose we can sample from X according
to the probability distribution . We can therefore sample collections of points X,
of size n, compute the statistic L' (X,,), and then plot the results in a log-log fashion
as n increases. In the limit as n goes to infinity, we expect the plotted points to
be well-modeled by a line of slope d;l , where d is the i-dimensional persistent
homology fractal dimension of 1. In many of the experiments in this section, the
measures u are simple enough (or self-similar enough) that we would expect the
persistent homology fractal dimension of u to be equal to the Hausdorff dimension
of .
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In our computational experiments, we have used the persistent homology
software packages Ripser [9], Javaplex [68], and code from Duke (see the acknowl-
edgements). For the case of zero-dimensional homology, we can alternatively use
well-known algorithms for computing minimal spanning trees, such as Kruskal’s
algorithm or Prim’s algorithm [43, 55]. We estimate the slope of our log-log plots (of
L (X,) as a function of n) using both a line of best fit, and alternatively a technique
designed to approximate the asymptotic scaling described in Sect. 8. Our code is
publicly available at https://github.com/CSU-PHdimension/PHdimension.

5.1 Estimates of Persistent Homology Fractal Dimensions

We display several experimental results, for shapes of both integral and non-integral
fractal dimension. In Fig. 3, we show the log-log plots of L' (X,,) as a function of 7,
where X, is sampled uniformly at random from a disk, a square, and an equilateral
triangle, each of unit area in the plane R2. Each of these spaces constitutes a
manifold of dimension two, and we thus expect these shapes to have persistent
homology fractal dimension d = 2 as well. Experimentally, this appears to be the
case, both for homological dimensions i = 0 and i = 1. Indeed, our asymptotically
estimated slopes lie in the range 0.49-0.54, which is fairly close to the expected
slope of dzl = é

In Fig. 4 we perform a similar experiment for the cube in R? of unit volume. We
expect the cube to have persistent homology fractal dimension d = 3, corresponding
to a slope in the log-log plot of ‘1;1 = 2. This appears to be the case for homological
dimension i = 0, where the slope is approximately 0.65. However, for i = 1 and
i = 2, our estimated slope is far from %, perhaps because our computational limits
do not allow us to take n, the number of randomly chosen points, to be sufficiently

large.
In Fig.5 we use log-log plots to estimate some persistent homology fractal
dimensions of the Cantor set cross the interval (expected dimension d = 1 +

log;(2)), of the Sierpifiski triangle (expected dimension d = log,(3)), of Cantor
dust in R2 (expected dimension d = logs(4)), and of Cantor dust in R3 (expected
dimension d = log;(8)). As noted in Sect. 3, various notions of fractal dimension
tend to agree for well-behaved fractals. Thus, in each case above, we provide the
Hausdorff dimension d in order to define an expected persistent homology fractal
dimension. The Hausdorff dimension is well-known for the Sierpifiski triangle,
Cantor dust in R?, and Cantor dust in R3. The Hausdorff dimension for the Cantor
set cross the interval can be shown to be 1 + log;(2), which follows from [30,
Theorem 9.3] or [48, Theorem III]). In Sect. 5.2 we define these fractal shapes in
detail, and we also explain our computational technique for sampling points from
them at random.

Summarizing the experimental results for self-similar fractals, we find reason-
ably good estimates of fractal dimension for homological dimension i = 0. More
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Fig. 3 Log scale plots and slope estimates of the number n of sampled points versus L%(X,)
(left) or LY(X,,) (right). Subsets X, are drawn uniformly at random from (top) the unit disc in RZ,
(middle) the unit square, and (bottom) the unit triangle. All cases have slope estimates close to 1/2,
which is consistent with the expected dimension. The asymptotic scaling estimates of the slope are
computed as described in Sect. 8
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Fig. 4 Log scale plots of the number n of sampled points from the cube versus L0(X,) (left),
LY(X,) (right), and L2%(X,,) (bottom). The dimension estimate from zero-dimensional persistent
homology is reasonably good, while the one- and two-dimensional cases are less accurate, likely
due to computational limitations

specifically, for the Cantor set cross the interval, we expect dtjl ~ (0.3869, and we
find slope estimates from a linear fit of all data and an asymptotic fit to be 0.3799
and 0.36488, respectively. In the case of the Sierpifiski triangle, the estimate is
quite good: we expect dtjl ~ 0.3691, and the slope estimates from both a linear
fit and an asymptotic fit are approximately 0.37. Similarly, the estimates for Cantor
dust in R? and R3 are close to the expected values: (1) For Cantor dust in R2,

we expect dtjl ~ (.2075 and estimate dtjl ~ (.25. (2) For Cantor dust in R3,
we expect dgl ~ 0.4717 and estimate dzl ~ 0.49. For i > 0 many of these
estimates of the persistent homology fractal dimension are not close to the expected
(Hausdorff) dimensions, perhaps because the number of points 7 is not large enough.
The experiments in R? are related to [61, Corollary 1], although our experiments are
with the Vietoris—Rips complex instead of the Cech complex.

It is worth commenting on the Cantor set, which is a self-similar fractal in R.
Even though the Hausdorff dimension of the Cantor set is logs(2), it is not hard to



16 H. Adams et al.

PH, for points from C x [0,1] PH, for points from C x [0,1]
2
05 /
15 ~ L,
< - x 0 P
= o o -
B e
g g 0.5
05
I 5
data lata
0 —— linear fit =0.3799 ——linear fit =0.43391
asymptotic estimate =0.36488 15 asymptotic estimate =0.46707
1 15 2 25 3 35 4 1 15 2 25 3 35 4
log ,(n) log4(n)
PH, for points from Sierpinski Triangle PH, for points from Sierpinski Triangle
2
4
15 -~
/ 05 /
= = -
z ¥ e
< o < o o
% 7 > _
13 ) =
g =
<08 = 05 —
0 Gata g data
— linear fit=0.3712 -1 — linear fit=0.47645
asymptotic estimate=0.37853 asymptotic estimate=0.43541
1 15 2 25 3 35 4 1 15 2 25 35 4
log ,(n) log ()
PH, for points from Cantor Dust in R? PH, for points from Cantor Dust in R?
2 1
15 05
x e < =
L1 = 0 D
) > e
o =)
< o5 < 05
data data
Y ——linear fit =0.26506 -1 —— linear fit =0.34733
asymptotic estimate =0.24543 asymptotic estimate =0.28639
1 15 2 25 3 35 4 115 2 25 3 35 4
log14(n) log;4(n)
PH_ for points from Cantor Dust in R® PH_ for points from Cantor Dust in R® PH, for points from Cantor Dust in R
05
25 s )
0
= ? / = 1 / -
x = 3 P %
S e _ & os
15 = > -
% % 05 = %
£ g £
1 o -
data L data data
0.5 —— linear fit =0.49075 — linear fit =0.56443 1517 —— linear fit =0.62552
asymptotic estimate =0.48565 05 asymptotic estimate =0.49887 asymptotic estimate =0.5559
1 15 2 25 3 35 4 115 2 25 3 35 4 115 2 25 3 35 4
log ;4(n) log ,,(n) log 1(n)

Fig. 5 (Top) Cantor set cross the unit interval for i = 0, 1. (Second row) Sierpiniski triangle in
RZ fori = 0, 1. (Third row) Cantor dust in R? for i = 0, 1. (Bottom) Cantor dust in R> for
i = 0, 1,2. In each case, the zero-dimensional estimate is close to the expected dimension. The
higher-dimensional estimates are not as accurate; we speculate that this is due to computational
limitations

see that the zero-dimensional persistent homology fractal dimension of the Cantor
set is 1. This is because as n — oo a random sample of points from the Cantor set
will contain points in R arbitrarily close to 0 and to 1, and hence Lo(X,) — 1 as
n — oo. This is not surprising—we do not necessarily expect to be able to detect a
fractional dimension less than one by using minimal spanning trees (which are one-
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Fig. 6 Log scale plot of the number n of sampled points from the Cantor set versus L°(X,,). Note
that L9(X,,) approaches one, as expected

dimensional graphs). For this reason, if a measure u is defined on a subset of R™,
we sometimes restrict attention to the case m > 2. See Fig. 6 for our experimental
computations on the Cantor set.

Finally, we include one example with data drawn from a two-dimensional
manifold in R®. We sample points from a torus with major radius 5 and minor
radius 3. We expect the persistent homology fractal dimensions to be 2, and this
is supported in the experimental evidence for zero-dimensional homology shown in
Fig.7.

5.2 Randomly Sampling from Self-Similar Fractals

The Cantor set C = ﬂ[’iOCZ is a countable intersection of nested sets Co 2 C; 2
Cy D ---, where the set C; at level  is a union of 2 closed intervals, each of
length 311. More precisely, Cop = [0, 1] is the closed unit interval, and C; is defined
recursively via

Ci— 2 Ci—
c = llU( -1

for > 1.
3 3+3) ort=

In our experiment for the Cantor set (Fig.6), we do not sample from the Cantor
distribution on the entire Cantor set C, but instead from the left endpoints of level
C; of the Cantor set, where / is chosen to be very large (we use [ = 100,000). More
precisely, in order to sample points, we choose a binary sequence {a; }5:1 uniformly
at random, meaning that each term q; is equal to either 0 or 1 with probability é,
and furthermore the value a; is independent from the value of a; for i # j. The
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PH, for points from Torus
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Fig. 7 Log scale plot of the number n of sampled points from a torus with major radius 5 and
minor radius 3 versus L° (X,). Estimated lines of best fit from L0 (X,,) have slope approximately
equal to é, suggesting a dimension estimate of d = 2. We restrict to zero-dimensional homology
in this setting due to computational limitations

corresponding random point in the Cantor set is Zi:l 2;’ . Note that this point is in

C and furthermore is the left endpoint of some interval in C;. So we are selecting
left endpoints of intervals in C; uniformly at random, but since / is large this is a
good approximation to sampling from the entire Cantor set according to the Cantor
distribution.

We use a similar procedure to sample at random for our experiments on the
Cantor set cross the interval, on Cantor dust in RZ, on Cantor dust in R3, and on the
Sierpinski triangle (Fig.5). The Cantor set cross the interval is C x [0, 1] € R2,
equipped with the Euclidean metric. We computationally sample by choosing a
point from C; as described in the paragraph above for / = 100,000, and by also
sampling a point from the unit interval [0, 1] uniformly at random. Cantor dust
is the subset C x C of R?, which we sample by choosing two points from C; as
described previously. The same procedure is done for the Cantor dust C x C x C in
IR3. The Sierpiriski triangle S C R? is defined in a similar way to the Cantor set, with
S = ﬁj’iOSl a countable intersection of nested sets Sop 2 S; 2 S2 2 - - -. Here each
S; is a union of 3! triangles. We choose / = 100,000 to be large, and then sample
points uniformly at random from the bottom left endpoints of the triangles in ;.
More precisely, we choose a ternary sequence {a; }le uniformly at random, meaning

that each term ¢; is equal to either 0, 1, or 2 with probability ; The corresponding
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[ 1

random point in the Sierpinski triangle is ) ", _; 5 Vi € RR?, where vector v; is given

by

0,07  ifa; =0
vi=11,07  ifg =1
AT ifa =2.

Note this point is in S and furthermore is the bottom left endpoint of some triangle
in Sj.

6 Limiting Distributions

To some metric measure spaces, (X, i), we are able to assign a finer invariant
that contains more information than just the persistent homology fractal dimension.
Consider the set of the lengths of all intervals in PH (X,,), for each homological
dimension i. Experiments suggest that for some X C R™, the scaled set of interval
lengths in each homological dimension converges distribution-wise to some fixed
probability distribution which depends on @ and on i.

More precisely, for a fixed probability measure u, let F,l(i) be the cumulative
distribution function of the i-dimensional persistent homology interval lengths in
PH!(X,), where X,, is a sample of n points from X drawn in an i.i.d. fashion
according to w. If i is absolutely continuous with respect to the Lebesgue measure
on some compact set, then the function F,g') (t) converges pointwise to the Heaviside
step function as n — oo, since the fraction of interval lengths less than any fixed
& > 0 is converging to one as n — oo. More interestingly, for u a sufficiently nice
measure on X C R™, the rescaled cumulative distribution function F,fi)(n’l/ ")
may converge to a non-constant curve. A back-of-the-envelope motivation for
this rescaling is that if L!(X,) = Cn™~D/™ with probability one as n — oo
(Conjecture 1), then the average length of a persistent homology interval length is

Ll(Xn) Cn(mfl)/m
#intervals  # intervals ’

which is proportional to 7~/ if the number of intervals is proportional to . We

make this precise in the following conjectures.

Conjecture 2 Let u be a probability measure on a compact set X € R™, and let
be absolutely continuous with respect to the Lebesgue measure. Then the limiting
distribution F® (¢) = limy— o F,,(l) (n=Y/mt), which depends on p and i, exists.

In Sect. 6.1 we show that Conjecture 2 holds when p is the uniform distribution
on an interval, and in Sect. 6.2 we perform experiments in higher dimensions.
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? Question 1

Assuming Conjecture 2 is true, what is the limiting rescaled distribution when
i is the uniform distribution on an m-dimensional ball, or alternatively an m-
dimensional cube?

Conjecture 3 Let the compact set X € R™ have positive Lebesgue measure, and let
1 be the corresponding probability measure (i.e., u is the restriction of the Lebesgue
measure to X, rescaled to have mass one). Then the limiting distribution F O@) =

lim,, s oo F,l(i)(n’l/ ") exists and depends only on m, i, and the volume of X.

? Question 2

Assuming Conjecture 3 is true, what is the limiting rescaled distribution when X
has unit volume?

Remark 2 Conjecture 3 is false if p is not a uniform measure (i.e. a rescaled
Lebesgue measure). Indeed, the uniform measure on a square (experimentally) has
a different limiting rescaled distribution than a (nonconstant) beta distribution on
the same unit square, as seen in Fig. 8.

6.1 The Uniform Distribution on the Interval

In the case where u is the uniform distribution on the unit interval [0, 1], then
Conjecture 2 is known to be true, and furthermore a formula for the limiting rescaled
distribution is known. If X,, is a subset of [0, 1] drawn uniformly at random, then
(with probability one) the points in X, divide [0, 1] into n + 1 pieces. The joint
probability distribution function for the lengths of these pieces is given by the flat
Dirichlet distribution, which can be thought of as the uniform distribution on the n-
simplex (the set of all (¢, ..., t,) with #; > O for all i, such that Z?:o t; = 1). Note
that the intervals in PHO(Xn) have lengths 1, ..., #,—1, omitting fo and #, which
correspond to the two subintervals on the boundary of the interval.

The probability distribution function of each #;, and therefore of each interval
length in PH’(X,,), is the marginal of the Dirichlet distribution, which is given by
the Beta distribution B(1,n) [11]. After simplifying, the cumulative distribution
function of B(1, n) is given by [59]

B(t; 1,n) _ [fos°(1 —s)"""ds

= ()T (n)
B(1,n) I'(n+1)

FO®@) = =1—-0-=0".
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Fig. 8 Empirical CDF’s for the Hy and H; interval lengths computed from 10,000 points sampled
from the unit square according to the uniform distribution and beta distribution with shape and size
parameter both set to 2. The limiting distributions appear to be different

As n goes to infinity, F,fo) () converges pointwise to the constant function 1.
However, after rescaling, F,fo) (n~'t) converges to a more interesting distribution
independent of n. Indeed, we have F,fo) ( r’l ) =1—-(1— r’l )", and the limitas n — o0
is
: O (ty_1_ ,—t
Jim FD () =1—e".
This is the cumulative distribution function of the exponential distribution with rate

parameter one. Therefore, the rescaled interval lengths in the limit as n — oo are
distributed according to the exponential distribution Exp(1).

6.2 Experimental Evidence for Conjecture 2 in the Plane

We now move to the case where u is the uniform distribution on the unit square in
RR2. It is known that the sum of the edge lengths of the minimal spanning tree, given
by L°(X,,) where X,, is a random sample of n points from the unit square, converges
as n — oo to Cnl/2, for a constant C [63]. However, to our knowledge the limiting
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Fig. 9 Empirical CDF’s for Hy interval lengths, H; birth times, H; death times, and H; interval
lengths computed from an increasing number of n points drawn uniformly from the two-
dimensional unit square, and rescaled by n'/2

distribution of all (rescaled) edge lengths is not known. We instead analyze this
example empirically. The experiments in Fig.9 suggest that as n increases, it is
plausible that both Fn(o)(n_l/ 24) and Fn(l)(n_l/ 24) converge in distribution to a
limiting probability distribution.

6.3 Examples where a Limiting Distribution Does Not Exist

In this section we give experimental evidence that the assumption of being a rescaled
Lebesgue measure in Conjecture 2 is necessary. Our example computation is done
on a separated Sierpinski triangle.

For a given separation value § > 0, the separated Sierpiriski triangle can be

. . 2 00 1 )
defined as the set of all points in R~ of the form ) ;= @rsyi Vis where each vector

v; € R? is either (0,0), (1, 0), or (;, *23). The Hausdorff dimension of this self-
similar fractal shape is log, , 5(3) ([30, Theorem 9.3] or [48, Theorem III]), and note
that when § = 0, we recover the standard (non-separated) Sierpiriski triangle. See
Fig. 10 for a picture when § = 2. Computationally, when we samyle a point from the
separated Sierpiriski triangle, we sample a point of the form ! Vi, where
in our experiments we use / = 100,000.

i=1 (24)i
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Fig. 10 Plot of 20,000 points sampled at random from the Sierpifiski triangle of separation § = 2

In the following experiment we sample random points from the separated
Sierpifiski triangle with § = 2. As the number of random points n goes to
infinity, it appears that the rescaled® CDF of Hy interval lengths are not con-
verging to a fixed probability distribution, but instead to a periodic family of
distributions, in the following sense. If you fix k € N then the distributions on
n = k,3k, 9%,27k, ..., 3k, ... points appear to converge as j — oo to a fixed
distribution. Indeed, see Fig. 11 for the limiting distribution on 3/ points, and for
the limiting distribution on 3/ - 2 points. However, the limiting distribution for 3/ k
points and the limiting distribution for 3/k points appear to be the same if and only
if k and k' differ by a power of 3. See Fig. 12, which shows four snapshots from one
full periodic orbit.

Here is an intuitively plausible explanation for why the rescaled CDFs for the
separated Sierpinski triangle converge to a periodic family of distributions, rather
than a fixed distribution: Imagine focusing a camera at the origin of the Sierpifiski
triangle and zooming in. Once you get to (2 + §) x magnification, you see the same
image again. This is one full period. However, for magnifications between 1x and
(2 + §)x you see a different image. In our experiments sampling random points,
zooming in by a factor of (24-8) x is the same thing as sampling three times as many
points (indeed, the Hausdorff dimension is log, , 5(3)). When zooming in you see the
same image only when the magnification is at a multiple of 2 4 §, and analogously
when sampling random points perhaps we should expect to see the same probability

3Since the separated Sierpiiski triangle has Hausdorff dimension log, +5(3), the rescaled distribu-
tions we plot are F,fo) (n=Vmp) withm = log, 5(3).
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Fig. 11 This figure shows the empirical rescaled CDFs of Hy interval lengths for n = 3/ points
(left) and for n = 3/ - 2 points (right) sampled from the separated Sierpinski triangle with § = 2.
Each figure appears to converge to a fixed limiting distribution as j — oo, but the two limiting
distributions are not equal

1 —
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TP IF1F]
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Fig. 12 Empirical rescaled CDF’s for Hy interval lengths, and H; interval lengths computed from
an increasing number of n = k - 3% points from the separated Sierpiriski triangle with § = 2,
moving left to right. Note that as k increases between adjacent powers of three, the “bumps" in the
distribution shift to the right, until the starting distribution reappears

distribution of interval lengths only when the number of points is multiplied by a
power of 3.

7 Another Way to Randomly Sample from the Sierpinski
Triangle

An alternate approach to constructing a sequence of measures converging to the
Sierpifiski triangle is using a particular Lindenmayer system, which generates
a sequence of instructions in a recursive fashion [49, Figure 7.16]. Halting the
recursion at any particular level [ will give a (non-fractal) approximation to the
Sierpiniski triangle as a piecewise linear curve with a finite number of segments; see
Fig. 13.
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Fig. 13 The Sierpiniski triangle as the limit of a sequence of curves. We can uniformly randomly
sample from the curve at level / to generate a sequence of measures j; converging to the Sierpinski
triangle measure as [ — oo
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Fig. 14 Scaling behaviors for various “depths” of the Sierpinski arrowhead curves visualized in
Fig. 13

Let u; be the uniform measure on the piecewise linear curve at level [. In Fig. 14
we sample n points from p; and compute L'(X,), displayed in a log-log plot.
Since each y; for [ fixed is non-fractal (and one-dimensional) in nature, the ultimate
asymptotic behavior will be d = 1 once the number of points n is sufficiently large
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(depending on the level /). However, for level / sufficiently large (depending on the
number of points n) we see that there is an intermediate regime in the log-log plots
which scale with the expected fractal dimension near log,(3). We expect a similar
relationship between the number of points n and the level / to hold for many of types
of self-similar fractals.

8 Asymptotic Approximation of the Scaling Exponent

From Definition 6 we consider how to estimate the exponent (d — 1)/d numerically
for a given metric measure space (X, u). For a fixed number of points n, a pair of
values (n, £,) is produced, where ¢, = Li(Xn) for a sampling X, from (X, u) of
cardinality n. If the scaling holds asymptotically for n sampled past a sufficiently
large point, then we can approximate the exponent by sampling for a range of n
values and observing the rate of growth of £,,. A common technique used to estimate
power law behavior (see for example [19]) is to fit a linear function to the log-
transformed data. The reason for doing this is a hypothesized asymptotic scaling
y ~ eCx% as x — 0o becomes a linear function after taking the logarithm: log(y) ~
C + alog(x).

However, the expected power law in the data only holds asymptotically for n —
oo. We observe in practice that the trend for small z is subdominant to its asymptotic
scaling. Intuitively we would like to throw out the non-asymptotic portion of the
sequence, but deciding where to threshold depends on the sequence. We propose
the following approach to address this issue.

Suppose in general we have a countable set of measurements (n, ¢,), with n
ranging over some subset of the positive integers. Create a sequence in monotone
increasing order of n so that we have a (ny, Enk),fozl with ny > n; for k > j. For
any pairs of integers p, ¢ with 1 < p < g, we denote the log-transformed data of
the corresponding terms in the sequence as

Spq = {(log(ni). log(€n)) | p <k < q} C R

Each finite collection of points S, has an associated pair of linear least-squares
coefficients (Cpq, otpq), Where the line of best fit to the set Spq is given by y =
Cpg + apgx. For our purposes we are more interested in the slope a4 than the
intercept Cp,. We expect that we can obtain the fractal dimension by considering
the joint limits in p and q: if we define « as

= lim «
pg—oo PT

then we can recover the dimension by solving o = ‘1;1 . A possibly overly restrictive
assumption is that the asymptotic behavior of £,,, is monotone. If this is the case, we
may expect any valid joint limit p, g — oo will be defined and produce the same
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value. For example, setting ¢ = p + r we expect the following to hold:

a= lim lim app.
p—>00 T r—00

In general, the joint limit may exist under a wider variety of ways in which one
allows g to grow relative to p.

Now define a function A : R? — R, which takes on values A([lj, ;) = tpy, and
define A(0, 0) so that A is continuous at the origin. Assuming «,, — « as above,
then any sequence (xx, yx)x — (0, 0) will produce the same limiting value A (0, 0)
and the limit lim(y y)— 0,0y A(x, y) is well-defined. This suggests an algorithm for
finite data:

1. Obtain a collection of estimates o, for various values of p, ¢, and then
2. use the data {( 1 , 1 , A(}lj, ;))} to extrapolate an estimate for A(0, 0) = «, from
which we can solve for the fractal dimension d.

For simplicity, we currently fix ¢ = nmax and collect estimates varying only p;
i.e., we only collect estimates of the form ap .. In practice it is safest to use a
low-order estimator to limit the risks of extrapolation. We use linear fit for the two-
dimensional data A(Ilj , ;) to produce a linear approximation A(E, n) =a+b&+cn,

giving an approximation @ = A(0, 0) ~ A(O, 0) =a.
Shown in Fig. 15 is an example applied to the function

1
f(x) =100x + 10x2 + 0.1e(x) (1.2)
with ¢ = dW(x), with W(x) standard Brownian noise. The theoretical asymptotic
is @ = 2 and should be attainable for sufficiently large x and enough sample points
to overcome noise. Note that there is a balance needed to both keep a sufficient
number of points to have a robust estimation (we want ¢ — p to be large) and to
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Fig. 15 Left panel: approximations o, for selections of (p, ¢) in an artificial function 100x +
1/10x2 (1 4 &(x)). Center panel: log-absolute-error of the coefficients. Note that the approximation
is generally poor for |p — ¢| small, due to a small number of sample points. Right panel: same
values, with the coordinates mapped as € = 1/p, n = 1/q. The value to be extrapolated is at
(¢.m) =1(0.0)
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avoid including data in the pre-asymptotic regime (thus p must be relatively large).
Visually, this is seen near the top side of the triangular region, where the error
drops to roughly the order of 1073. The challenge for an arbitrary function is not
knowing precisely where this balance is; see [19, Sections 1, 3.3-3.4] in the context
of estimating xpi, (in their language) for the tails of probability density functions.

9 Conclusion

When points are sampled at random from a subset of Euclidean space, there
are a wide variety of Euclidean functionals (such as the minimal spanning tree,
the traveling salesperson tour, the optimal matching) which scale according to
the dimension of Euclidean space [72]. In this paper we explore whether similar
properties are true for persistent homology, and how one might use these scalings in
order to define a persistent homology fractal dimension for measures. We provide
experimental evidence for some of our conjectures, though that evidence is limited
by the sample sizes on which we are able to compute. Our hope is that our
experiments are only a first step toward inspiring researchers to further develop the
theory underlying the scaling properties of persistent homology.
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Hirokazu Anai, Frédéric Chazal, Marc Glisse, Yuichi Ike, Hiroya Inakoshi,
Raphaél Tinarrage, and Yuhei Umeda

Abstract Despite strong stability properties, the persistent homology of filtrations
classically used in Topological Data Analysis, such as, e.g. the Cech or Vietoris—
Rips filtrations, are very sensitive to the presence of outliers in the data from which
they are computed. In this paper, we introduce and study a new family of filtrations,
the DTM-filtrations, built on top of point clouds in the Euclidean space which are
more robust to noise and outliers. The approach adopted in this work relies on the
notion of distance-to-measure functions, and extends some previous work on the
approximation of such functions.

1 Introduction

The inference of relevant topological properties of data represented as point clouds
in Euclidean spaces is a central challenge in Topological Data Analysis (TDA).

Given a (finite) set of points X in R?, persistent homology provides a now
classical and powerful tool to construct persistence diagrams whose points can
be interpreted as homological features of X at different scales. These persistence
diagrams are obtained from filtrations, i.e. nested families of subspaces or simplicial
complexes, built on top of X. Among the many filtrations available to the user,
unions of growing balls U,cx B(x, t) (sublevel sets of distance functions), € RT,
and their nerves, the Cech complex filtration, or its usually easier to compute varia-
tion, the Vietoris—Rips filtration, are widely used. The main theoretical advantage of
these filtrations is that they have been shown to produce persistence diagrams that
are stable with respect to perturbations of X in the Hausdorff metric [6].
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Unfortunately, the Hausdorff distance turns out to be very sensitive to noise
and outliers, preventing the direct use of distance functions and classical Cech
or Vietoris—Rips filtrations to infer relevant topological properties from real noisy
data. Several attempts have been made in the recent years to overcome this issue.
Among them, the filtration defined by the sublevel sets of the distance-to-measure
(DTM) function introduced in [4], and some of its variants [10], have been proven
to provide relevant information about the geometric structure underlying the data.
Unfortunately, from a practical perspective, the exact computation of the sublevel
sets filtration of the DTM, that boils down to the computation of a k-th order
Voronoi diagram, and its persistent homology turn out to be far too expensive in
most cases. To address this problem, [8] introduces a variant of the DTM function,
the witnessed k-distance, whose persistence is easier to compute and proves that
the witnessed k-distance approximates the DTM persistence up to a fixed additive
constant. In [2, 3], a weighted version of the Vietoris—Rips complex filtration is
introduced to approximate the persistence of the DTM function, and several stability
and approximation results, comparable to the ones of [8], are established. Another
kind of weighted Vietoris—Rips complex is presented in [1].

Contributions In this paper, we introduce and study a new family of filtrations
based on the notion of DTM. Our contributions are the following:

o Givenaset X C R? a weight function f defined on X and p € [1, +o0],
we introduce the weighted Cech and Rips filtrations that extend the notion of
sublevel set filtration of power distances of [3]. Using classical results, we show
that these filtrations are stable with respect to perturbations of X in the Hausdorff
metric and perturbations of f with respect to the sup norm (Propositions 2 and 3).

« For a general function f, the stability results of the weighted Cech and Rips
filtrations are not suited to deal with noisy data or data containing outliers. We
consider the case where f is the empirical DTM-function associated to the input
point cloud. In this case, we show an outliers-robust stability result: given two
point clouds X, Y < Rd, the closeness between the persistence diagrams of the
resulting filtrations relies on the existence of a subset of X which is both close to
X and Y in the Wasserstein metric (Theorems 1 and 2).

Practical Motivations Even though this aspect is not considered in this paper, it is
interesting to mention that the DTM filtration was first experimented in the setting
of an industrial research project whose goal was to address an anomaly detection
problem from inertial sensor data in bridge and building monitoring [9]. In this
problem, the input data comes as time series measuring the acceleration of devices
attached to the monitored bridge/building. Using sliding windows and time-delay
embedding, these times series are converted into a series of fixed size point clouds
in R¥. Filtrations are then built on top of these point clouds and their persistence is
computed, giving rise to a time-dependent sequence of persistence diagrams that
are then used to detect anomalies or specific features occurring along the time
[11, 13]. In this practical setting it turned out that the DTM filtrations reveal to
be not only more resilient to noise but also able to better highlight topological
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Time series without rapid shift | Time series with rapid shift |

Time series
and time delay
embedding

i
WJf-l’i'liuW

Conventional
filtration .

DTM- . "

filtration /
1 1

Fig. 1 A synthetic example comparing Vietoris—Rips filtration to DTM filtration. The
first row represents two time series with very different behavior and their embed-
ding into R?® (here a series (x1,X2,...,%,) is converted in the 3D point cloud
{(x1, x2, x3), (x2, X3, X4), ..., (Xn—2, Xn—1, X»)}). The second row shows the persistence diagrams
of the Vietoris—Rips filtration built on top of the two point clouds (red and green points represent
respectively the zero-dimensional one-dimensional diagrams); one observes that the diagrams do
not clearly ‘detect’ the different behavior of the time series. The third row shows the persistence
diagrams of the DTM filtration built on top of the two point clouds; a red point clearly appears away
from the diagonal in the second diagram that highlights the rapid shift occurring in the second time
series

features in the data than the standard Vietoris—Rips filtrations, as illustrated on
a basic synthetic example on Fig. 1. One of the goals of the present work is to
provide theoretical foundations to these promising experimental results by studying
the stability properties of the DTM filtrations.

Organisation of the Paper Preliminary definitions, notations, and basic notions on
filtrations and persistence modules are recalled in Sect. 2. The weighted Cech and
Vietoris—Rips filtrations are introduced in Sect. 3, where their stability properties
are established. The DTM-filtrations are introduced in Sect. 4. Their main stability
properties are established in Theorems 1 and 2, and their relation with the sublevel
set filtration of the DTM-functions is established in Proposition 11. For the clarity
of the paper, the proofs of several lemmas have been postponed to Sects. 6 and 7.

The various illustrations and experiments of this paper have been computed with
the GUDHI library on Python [14].
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2 Filtrations and Interleaving Distance

In the sequel, we consider interleavings of filtrations, interleavings of persistence
modules and their associated pseudo-distances. Their definitions, restricted to the
setting of the paper, are briefly recalled in this section.

Let 7 = R and E = R? endowed with the standard Euclidean norm.

Filtrations of Sets and Simplicial Complexes A family of subsets (V'),cr of
E = R? is a filtration if it is non-decreasing for the inclusion, i.e. for any s, € T,
if s <t then V¥ C V. Given € > 0, two filtrations (V*);cr and (W!),e7 of E are
e-interleaved if, for every t € T, V! € W'*€ and W! C V'*€. The interleaving
pseudo-distance between (V');cr and (W), is defined as the infimum of such e:

di(VDier, WHer) = infle : (V') and (W) are e-interleaved).

Filtrations of simplicial complexes and their interleaving distance are similarly
defined: given a set X and an abstract simplex S with vertex set X, a filtration of S
is a non-decreasing family (S”);c7 of subcomplexes of S. The interleaving pseudo-
distance between two filtrations (Si),eT and (Sé)ter of § is the infimum of the
€ > 0 such that they are e-interleaved, i.e. forany ¢t € T, Si - Sé"’e and Sé - Si+é.

Notice that the interleaving distance is only a pseudo-distance, as two distinct
filtrations may have zero interleaving distance.

Persistence Modules Let k be a field. A persistence module V over T = R is a
pair V. = ((V')er, (W))s<ter) Where (V),er is a family of k-vector spaces, and
(V! 1V — V')s<ser a family of linear maps such that:

o foreveryt € T,v! : V! — V' is the identity map,
o foreveryr,s,t € T suchthatr <s <t¢,viovi = vl

Given € > 0, an e-morphism between two persistence modules V and W is a family
of linear maps (¢; : V! — W!T€),cr such that the following diagrams commute for
everys <tefT:

Vs vlf ) Vt

b
1+€

Wys+e wa) Wyt te

If ¢ = 0 and each ¢; is an isomorphism, the family (¢;);er is said to be an
isomorphism of persistence modules.

An e-interleaving between two persistence modules V and W is a pair of e-
morphisms (¢; : V! — WT€),cr and (¢, : W' — V)7 such that the
following diagrams commute for every t € T':
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The interleaving pseudo-distance between V and W is defined as
di(V,W) = inf{e > 0,V and W are e-interleaved}.

In some cases, the proximity between persistence modules is expressed with a
function. Let n : T — T be a non-decreasing function such that for any t € T,
n(t) > t. A n-interleaving between two persistence modules V and W is a pair of
families of linear maps (¢; : V! — W7®), 7 and (¢, : W — V7®), .7 such that
the following diagrams commute for every ¢t € T:

NICIO)
\ ! AICUIO) v
& llfV yl wy
L11®)
wn ) W d s Wn @)

When n is t +— t + ¢ for some ¢ > 0, it is called an additive c-interleaving and
corresponds with the previous definition. When n is t +— ct for some ¢ > 1, it is
called a multiplicative c-interleaving.

A persistence module V is said to be g-tame if for every s, t € T such thats < ¢,
the map v/ is of finite rank. The g-tameness of a persistence module ensures that we
can define a notion of persistence diagram—see [5]. Moreover, given two g-tame
persistence modules V, W with persistence diagrams D(V), D(W), the so-called
isometry theorem states that dp(D(V), D(W)) = d;(V, W) ([5, Theorem 4.11])
where dp, (-, -) denotes the bottleneck distance between diagrams.

Relation Between Filtrations and Persistence Modules Applying the homology
functor to a filtration gives rise to a persistence module where the linear maps
between homology groups are induced by the inclusion maps between sets (or sim-
plicial complexes). As a consequence, if two filtrations are e-interleaved then their
associated homology persistence modules are also e-interleaved, the interleaving
homomorphisms being induced by the interleaving inclusion maps. Moreover, if the
modules are g-tame, then the bottleneck distance between their persistence diagrams
is upperbounded by €.

The filtrations considered in this paper are obtained as union of growing balls.
Their associated persistence module is the same as the persistence module of a
filtered simplicial complex via the persistent nerve lemma ([7], Lemma 3.4). Indeed,
consider a filtration (V'),cr of E and assume that there exists a family of points
(xi)ies € ET and a family of non-decreasing functions r; : T — RYU{—o0},i € I,
such that, for every t € T, V' is equal to the union of closed balls | J; B (x;, r; (1)),
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with the convention B(x;, —oo) = . For every t € T, let V' denote the cover
{B(xi,ri(t)),i € I} of V', and S’ be its nerve. Let V be the persistence module
associated with the filtration (V');c7, and V  the one associated with the simplicial
filtration (S);c7. Then V and V  are isomorphic persistence modules. In particular,
if V is g-tame, V and V 5 have the same persistence diagrams.

3  Weighted Cech Filtrations

In order to define the DTM-filtrations, we go through an intermediate and more
general construction, namely the weighted Cech filtrations. It generalizes the usual
notion of Cech filtration of a subset of R?, and shares comparable regularity
properties.

3.1 Definition

In the sequel of the paper, the Euclidean space E = R, the index set T = R* and
areal number p > 1 are fixed. Consider X € E and f : X — R™. For everyx € X
andr € T, we define

= :—oo ifr < £(x),

1
(t” — f(x)”)l’ otherwise.

We denote by By(x,t) = B(x,r¢(t)) the closed Euclidean ball of center x and
radius r, (¢). By convention, a Euclidean ball of radius —oo is the empty set. For
p = 0o, we also define

= {—oo ifr < £(x),

t otherwise,

and the balls B (x, t) = B(x, r.(t)). Some of these radius functions are represented
in Fig. 2.

Definition1 Let X € E and f : X — R™T. For every t € T, we define the
following set:

VX, f1= ] Br@x. 0.

xeX
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Fig. 2 Graph of ¢ > ry(t) for f(x) = 1 and several values of p

The family V[X, f1 = (V'[X, f1>o0 is a filtration of E. It is called the weighted
Cech filtration with parameters (X, f, p). We denote by V[X, f] its persistence
(singular) homology module.

Note that V[X, f] and V[X, f] depend on fixed parameter p, that is not made
explicit in the notation.

Introduce V'[X, f] = {By(x,t)}rex. It is a cover of VI[X, f] by closed
Euclidean balls. Let N(V'[X, f]) be the nerve of the cover V'[X, f]. Itis a simpli-
cial complex over the vertex set X. The family N(V[X, f1) = IN(V'[X, fD)i>0
is a filtered simplicial complex. We denote by V[ X, f] its persistence (simplicial)
homology module. As a consequence of the persistent nerve theorem [7, Lemma
3.4], V[X, f]and VA[X, f] are isomorphic persistence modules.

When f = 0, V[X, f] does not depend on p > 1, and it is the filtration of E
by the sublevel sets of the distance function to X. In the sequel, we denote it by
VI[X, 0]. The corresponding filtered simplicial complex, N(V[X, 0]), is known as
the usual Cech complex of X.

When p = 2, the filtration value of y € E, i.e. the infimum of the 7 such that
y € VI[X, f1,is called the power distance of y associated to the weighted set (X, f)
in [3, Definition 4.1]. The filtration V[X, f] is called the weighted Cech filtration
([3, Definition 5.1]).

Example Consider the point cloud X drawn on the right (black). It is a 200-sample
of the uniform distribution on [—1, 1]*> € RZ. We choose f to be the distance
function to the lemniscate of Bernoulli (magenta). Let t = 0.2. Figure 3 represents
the sets V/[X, f] for several values of p. The balls are colored differently according
to their radius.
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p=1 p=2 p=3

Fig. 3 The sets V/[X, f] for t = 0.2 and several values of p

The following proposition states the regularity of the persistence module
VIX, f1.
Proposition 1 [f X C E is finite and f is any function, then V[ X, f]is a pointwise
finite-dimensional persistence module.

More generally, if X is a bounded subset of E and f is any function, then V[ X, f]
is g-tame.

Proof First, suppose that X is finite. Then N(V[X, f]) is a filtration of a finite
simplicial complex, and thus Vo[X, f] is pointwise finite-dimensional. It is also
the case for V[ X, f] since it is isomorphic to V[ X, f].

Secondly, suppose that X is bounded. Consider the “filtration value’ function:

tx : E — RT
y — inf{r e R*,3x € X,y € Bs(x, 1)}

For every y € E, x € X and ¢ > O the assertion y € B(x,?) is equivalent to

1
(Ilx = ylI” + f(x)P)? < 1. Therefore the function rx can be written as follows:

tx(y) = inf{(lx — Y17 + f@)P) 7. x € X).

It is 1-Lipschitz as it is the infimum of the set of the 1-Lipschitz functions y +—
1
(Ilx = ylI” + f(x)P) 7. Itis also proper as X is bounded.
Let V be the filtration of E defined for all 1 > 0 by V! = 1y (] — 00, ]). Let

V be its persistent homology module. The last two properties of 7x (continuous and
proper) imply that V is g-tame ([5], Corollary 3.34).
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Notice that, since X may not be compact, V'[X, f] may not be equal to %8
However, it follows from the definition of 7x that V[X, f] and V are e-interleaved
for every € > 0. Therefore, V[ X, f] also is g-tame. O

3.2 Stability

We still consider a subset X € E and a function f : X — R™. Using the fact that
two e-interleaved filtrations induce e-interleaved persistence modules, the stability
results for the filtration V[X, f] of this subsection immediately translate as stability
results for the persistence module V[ X, f].

The following proposition relates the stability of the filtration V[X, f] with
respect to f.

Proposition 2 Ler g : X — R be a function such that sup, .y | f(x) — g(x)| < €.
Then the filtrations V[ X, f] and V[X, g] are e-interleaved.

Proof By symmetry, it suffices to show that, for every r > 0, V[X, f] C
VtJrE[X’ g].

Lets > 0.Choose y € V[X, f],andx € X suchthaty € By(x,1),1ie. (||x—y||p+
1 1
f(x)”)l’ <t.Letusprovethaty € Bg(x,t+¢€),i.e. (||x—y||” —l—g(x)”)” <t+e.

1 1
From g(x) < f(x)+e, we obtain (x—y[|P+g(x)?)? < (Ix=y[IP+(f(x)+€)?)".
1
Now, consider the function n (||x -y 4+ (fx) + n)p)l’. Its derivative
p—1
is n — Feo+n . ) LIt
)’

(Ix=y17+(f ) +m?
Lipschitz property implies that

s consequently 1-Lipschitz on RT. The

—

(lx = yI7 + () +P)7 < (lx = yI? + F@)P) 7 +e.

Hence (Jlx — y|I” + g(x)p)’l’ < (Ix = ylI” + (f(x) + G)p); < (lx = ylI” +
1
f)P)r +e <t+e. O

The following proposition states the stability of V[X, f] with respect to X. It
generalizes [3, Proposition 4.3] (case p = 2).

Proposition 3 Let Y C E and suppose that f : XUY — R7 is c-Lipschitz, ¢ > 0.
Suppose that X and Y are compact and that the Hausdorff distance dg(X,Y) < €.

1
Then the filtrations VX, f] and VY, f] are k-interleaved with k = €(1 4+ c?)».

Proof 1t suffices to show that for every r > 0, V/[X, f]1 C V[, f].

Lett > 0. Choose z € V/[X, f], and x € X such that z € Byr(x,0),ie [lx —zll <
7y (t). From the hypothesis dy (X, Y) < €, there exists y € Y such that ||y —x|| <.
Letus provethatz € By (y,t +k),ie. ||z =yl <ry(t +k).
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By triangle inequality, ||z — y|l < |lz — x|l + lx — y|l < rx(¥) + €. It is enough
to show that 7 () + € < ry(t + k), i.e.

1 1
@+ = fP)r = (" = f()F)7 = €.
@) )

The left-hand side of this expression is decreasing in f(y). Moreover, since f is
c-Lipschitz, f(y) is at most f(x) + ce. Therefore:

((t + k)P — F()P)r - —f(x)")f
> (4K = (f() +cP)r — (1P — f(x)P).

It is now enough to prove that this last expression is not less than €, which is the
content of Lemma 2. o

Notice that the bounds in Proposition 2 and 3 are tight. In the first case, consider
for example E = R, the set X = {0}, and the functions f = 0 and g = €. For
every t < €, we have V'[Y, f] = @, while V'[X, f] # @. Regarding the second
proposition, consider E = R, f : x — cx, X = {0} and Y = {€}. We have, for
everyt > 0, VI[X, f]1 = B(0,1) and V'[Y, ] = B(e, (t? — (ce)P);). For every
t<e(l+ cp)ll’, we have (17 — (ce)p)ll’ < €, hence 0 ¢ V'[Y, f]. In comparison,
vt >0,0e V'[X, f].

When considering data with outliers, the observed set X may be very distant
from the underlying signal Y in Hausdorff distance. Therefore, the tight bound in
Proposition 3 may be unsatisfactory. Moreover, a usual choice of f would be dx, the
distance function to X. But the bound in Proposition 2 then becomes ||dx —dy ||co =
dp (X, Y). We address this issue in Sect. 4 by considering an outliers-robust function
f, the so-called distance-to-measure function (DTM).

3.3 Weighted Vietoris—Rips Filtrations

Rather than computing the persistence of the Cech filtration of a point cloud X C E,
one sometimes consider the corresponding Vietoris—Rips filtration, which is usually
easier to compute.

If G is a graph with vertex set X, its corresponding clique complex is the
simplicial complex over X consisting of the sets of vertices of cliques of G. If §
is a simplicial complex, its corresponding flag complex is the clique complex of its
1-skeleton.

Recall that N(V'[X, f]) denotes the nerve of V'[X, f], where V'[X, f] is the
cover {B f(x, t)}rex of VI[X, f1.
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Definition 2 We denote by Rips(V'[X, f]) the flag complex of N(V'[X, f]), and
by Rips(V[X, f]) the corresponding filtered simplicial complex. It is called the
weighted Rips complex with parameters (X, f, p).

The following proposition states that the filtered simplicial complexes
N(VI[X, f]) and Rips(V[X, f]) are 2-interleaved multiplicatively, generalizing
the classical case of the Cech and Vietoris—Rips filtrations (case f = 0).

Proposition 4 For everyt > 0,
N(V'[X, f1) C Rips(V'[X, f1) € N(VH[X, f])

Proof Let t > 0. The first inclusion follows from that Rips(‘V'[X, f])) is the
clique complex of N(V'[X, f1). To prove the second one, choose a simplex
o € Rips(V'[X, f1)). It means that for every x, y € @, By(x,1) N Bf(y, 1) # ¥,
ie. B(x,ry(t)) N B(y, ry(t)) # . We have to prove that w € NEVHX, fD,ie.
Myew Blx, re(20)) # 9.

For every x € w, one has ry(2t) > 2r,(¢). Indeed,

@0 = (@07 — f(x)P)

—2(r = (/)
2
> 2017 — F)P)7 = 21, (1)

Using the fact that doubling the radius of pairwise intersecting balls is enough to
make them intersect globally, we obtain that w € N((VZ’ [X, fD.

Using Theorem 3.1 of [1], the multiplicative interleaving Rips(V'[X, f])
N(V#[X, f1) can be improved to Rips(‘V'[X, f1) € N(V[X, f1), where ¢

\/ dzfl and d is the dimension of the ambient space E = RY.

N g

Note that weighted Rips filtration shares the same stability properties as the
weighted Cech filtration. Indeed, the proofs of Proposition 2 and 3 immediately
extend to this case.

In order to compute the flag complex Rips(V/[X, f1), it is enough to know the
filtration values of its 0- and 1-simplices. The following proposition describes these
values.

Proposition 5 Let p < +4o00. The filtration value of a vertex x € X is given by

ix({x}) = f(x).
The filtration value of an edge {x, y} C E is given by

(. y)) = | MU L i llx = ¥l = 1£ P = fG)P1,
t

otherwise,
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where t is the only positive root of
1 1
lx =yl =@" = f)P)r + @ = fMP)»r (1)

1
When ||x —y|| = | f(x)? — f(y)?]|r, the positive root of Eq. (1) does not always
admit a closed form. We give some particular cases for which it can be computed.

« For p = 1, the root s tx ({x, y}) = / W/ Q=1

T e
o for p = 2.itis iy (ir. y]) = V(@ rm+ix-y )7((”f(x> FON2x— )u)

e for p = oo, the condition reads ||x — y| > max{f(x) f(»)}, and the root is
tx(x, yp =5 y” . In either case, tx ({x, y}) = max{f(x), f(y), " yH ).

Proof The filtration value of a vertex x € X is, by definition of the nerve, rx ({x}) =
inf{s € T, By(x,s) # @}. Itis equal to f(x).

Also by definition, the filtration value of an edge {x, y}, withx, y € X and x # y,
is given by

tx({x,y}) =inf{s e R, B¢ (x,s) N By(y,s) # 0}

Two cases may occur: the balls B (x, t({x, y})) and Bs(x,({x, y})) have both
positive radius, or one of these is a singleton. In the last case, r({x,y}) =
max{ f(x), f(y)}. In the first case, we have [|x — y|| = rx(#) +7y(?),1e. [x —y| =

1 1
@ — f(x)P)r + (#? — f(y)P)r. Notice that Eq. (1) admits only one solution
1 1

since the function r — (t? — f(x)?)» 4+ (t? — f(y)P)r is strictly increasing on

[max{f(x), f()}, +00). o

We close this subsection by discussing the influence of p on the weighted Cech
and Rips filtrations. Let Do(N(V[X, f, p])) be the persistence diagram of the
Oth-homology of N(V[X, f, p]). We say that a point (b, d) of Do(V[X, f, pl)
is non-trivial if b # d. Let Do(Rips(V[X, f, p])) be the persistence diagram
of the Oth-homology of Rips(V[X, f, p]). Note that Do(N(VI[X, f, p])) =
Do(Rips(V[X, f, p])) since the corresponding filtrations share the same 1-skeleton.

Proposition 6 The number of non-trivial points in Do(Rips(V[X, f, p])) is non-
increasing with respect to p € [1, +00). The same holds for Do(N(V[X, f, p])).

Proof The number of points in Do(Rips(V[X, f, p])) is equal to the cardinal of
X. Any p > 1 being fixed, we can pair every x € X with some edge {y, z} €
Rips(V[X, f, p]) such that the points of Do(Rips(V[X, f, p])) are of the form
(tx({x)). ix ({y. 2D).

Notice that the filtration values of the points in X do not depend on p: for
all p > 1 and x € X, tx({x}) = f(x). Moreover, the filtration values of the
edges in Rips(V[X, f, p]) are non-increasing with respect to p. Indeed, for all
{y,z} € Rips(V[X, f, p]) with y # z, according to Proposition 5, the filtration

value rx ({y, z}) is either max{ f (x), f ()} if x — y|| < If(X)”—f(y)”lll’,OriS the
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only positive root of Eq. (1) otherwise. Note that the positive root of Eq. (1) is greater
1

than max{ f (x), f(y)} and decreasing in p. Besides, the term | f(x)? — f(y)”|» is
non-decreasing in p.

These two facts ensure that for every x € X, the point of Do(Rips(‘V[X, f, p]))
created by x has an ordinate which is non-increasing with respect to p. In particular,
the number of non-trivial points in Do(Rips(‘V[X, f, p])) is non-increasing with
respect to p. O

Figure 8 in Sect. 4.4 illustrates the previous proposition in the case of the DTM-
filtrations. Greater values of p lead to sparser Oth-homology diagrams.

Now, consider k > 0, and let Dy (N(V[X, f, p])) be the persistence diagram
of the kth-homology of N(V[X, f, p]). In this case, one can easily build examples
showing that the number of non-trivial points of Dy (N(V[X, f, p])) does not have
to be non-increasing with respect to p. The same holds for Dy (Rips(‘V[X, f, p])).

4 DTM-Filtrations

The results of previous section suggest that in order to construct a weighted Cech
filtration V[X, f] that is robust to outliers, it is necessary to choose a function f
that depends on X and that is itself robust to outliers. The so-called distance-to-
measure function (DTM) satisfies such properties, motivating the introduction of
the DTM-filtrations in this section.

4.1 The Distance to Measure (DTM)

Let u be a probability measure over E = R¢, and m € [0, 1) a parameter. For
every x € Rd, let 8,,,, be the function defined on E by §, ,,(x) = inf{r >
0, w(B(x,r)) > mj.

Definition 3 Letm € [0, 1[. The DTM pu of parameter m is the function:

dym: E— R
1 rm o2
X —> \/m fo 85, (x)dt
When m is fixed—which is the case in the following subsections—and when there
is no risk of confusion, we write d,, instead of d, ;.

Notice that when m = 0, d, ;, is the distance function to supp(u), the support of
W

Proposition 7 ([4], Corollary 3.7) For every probability measure (1 and m &
[0, 1), dyy m is I-Lipschitz.
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A fundamental property of the DTM is its stability with respect to the probability
measure 1 in the Wasserstein metric. Recall that given two probability measures p
and v over E, a transport plan between p and v is a probability measure 7 over
E x E whose marginals are i and v. The Wasserstein distance with quadratic cost

1
between u and v is defined as Wa(u, v) = (infﬂ fExE Ilx —y||2drr(x, y)) : , where

the infimum is taken over all the transport plans 7. When u© = wy and v = uy are
the empirical measures of the finite point clouds X and Y, i.e the normalized sums
of the Dirac measures on the points of X and Y respectively, we write W(X, Y)
instead of Wo(ux, iy).

Proposition 8 ([4], Theorem 3.5) Let w, v be two probability measures, and m €
(0, 1). Then

1
”du,m - dv,m”oo <m 2Wa(u,v).

Notice that for every x € E, d,(x) is not lower than the distance from x to
supp(u), the support of w. This remark, along with the Propositions 7 and 8, are the
only properties of the DTM that will be used to prove the results in the sequel of the
paper.

In practice, the DTM can be computed. If X is a finite subset of E of cardinal n,
we denote by px its empirical measure. Assume that m = I;O, with ko an integer. In
this case, d ., reformulates as follows: for every x € E,

ko
1
2 _ 2
Buxm@) = k§=lj Ix — pr )%,

where p1(x), ..., pk,(x) are a choice of ko-nearest neighbors of x in X.

4.2 DTM-Filtrations

In the following, the two parameters p € [1, +oo] and m € (0, 1) are fixed.

Definition4 Let X C E be a finite point cloud, py the empirical measure of
X, and d,,, the corresponding DTM of parameter m. The weighted Cech filtration
VIX,d,y], as defined in Definition 1, is called the DTM-filtration associated with
the parameters (X, m, p). It is denoted by W[X]. The corresponding persistence
module is denoted by W[X].

Let W[X] = V'[X, d,,, ] denote the cover of W'[X] as defined in Sect. 3, and
let N(W'[X]) be its nerve. The family N(W[X])) = (N(W'[X]))>0 is a filtered
simplicial complex, and its persistent (simplicial) homology module is denoted by
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VT, 0] VI[X.0] WwiX]

Fig. 4 The sets V![I", 0], V/[X,0] and W/[X]for p=1,m =0.1andt = 0.3

W[ X]. By the persistent nerve lemma, the persistence modules W[ X] and W[ X]
are isomorphic.

As in Definition 2, Rips(‘W'[X]) denotes the flag complex of N(‘W'[X]), and
Rips(‘W[X]) the corresponding filtered simplicial complex.

Example I Consider the point cloud X drawn on the right. It is the union of X and
I', where Xisa 50-sample of the uniform distribution on [—1, 1]2 - Rz, andI"is a
300-sample of the uniform distribution on the unit circle. We consider the weighted
Cech filtrations VI, 0] and V[X, 0], and the DTM-filtration W[X], for p = 1 and
m = 0.1. They are represented in Fig. 4 for the value ¢t = 0.3.

Because of the outliers X , the value of ¢ from which the sets V/[X, 0] are
contractible is small. On the other hand, we observe that the set W/[X] does not
suffer too much from the presence of outliers.

We plot in Fig. 5 the persistence diagrams of the persistence modules associated
to Rips(VI[T, 0]), Rips(V[X, 0]) and Rips(W[X]) (p = 1,m = 0.1).

Observe that the diagrams D(Rips(V[T, 0])) and D(Rips(‘W[X])) appear to be
close to each other, while D(Rips(V[X, 0])) does not.

Applying the results of Sect. 3, we immediately obtain the following proposition.

Proposition 9 Consider two measures (., v on E with compact supports X and Y.
Then

di(V[X,d,], V[Y,d\)) < m™ Wa (e, v) +2’1’dH(X, Y).
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0.5 0.5

Q 0.5 1 1] 05 1 0 0.5 1
D (Rips(VI[I',0])) D (Rips(V[X,0])) D (Rips(‘W[X]))

Fig. 5 Persistence diagrams of some simplicial filtrations. Points in red (resp. green) represent the
persistent homology in dimension O (resp. 1)

In particular, if X and Y are finite subsets of E, using u = pux and v = vy, we
obtain

1
di(WIX1, WIYT) < m™2Wa(X, ¥) +27dp (X, Y).
Proof We use the triangle inequality for the interleaving distance:

di(V[X,du), V[Y,dy]) =di(V[X,d,], VIY.du]) +di(V[Y,d,], VY, d)]).

(6] ©)

Term (1) From Proposition 3, we have d4;(V[X,d,],V[Y,d,]) < 1 +
1
cP)rdy (X, Y), where c is the Lipschitz constant of d;,. According to Proposition 7,
1
¢ =1.Weobtaind;(V[X,d,], V[Y,d,]) <2rdy(X,Y).

Term (2) From Proposition 2, we have d;(V[Y,d,], V[Y,dy]) < |ldy — dylco-
According to Proposition 8, ||d,, — dy|lec < m=2 Wa (e, v).

The second point follows from the definition of the DTM-filtrations: W[X] =
VIX.,dyJand W[Y] = V[Y,d,,] O

Note that this stability result is worse than the stability of the usual Cech
filtrations, which only involves the Hausdorff distance. However, the term W5 (X, Y)
is inevitable, as shown in the following example.

Let E=R,ande € (0, 1). Define u = €dp+ (1 —€)81,and v = (1 —€)dp+€0d1.
We have X = supp(u) = supp(v) =Y. If e <m < 1 — ¢, thend,(0) = 0, while

d,(0) = \/1 — €. We deduce that d;(V[X, dy], VIY,dy]) = du(0) — dy(0) =

\/ |- €.
m
In comparison, the usual Cech filtrations V[X, 0] and V[Y, 0] are equal and does

not depend on u and v. In this case, it would be more robust to consider these usual
Cech filtrations. Now, in the case where the Hausdorff distance dy (X, Y) is large,
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the usual Cech filtrations may be very distant. However, the DTM-filtrations may
still be close, as we discuss in the next subsection.

4.3 Stability when p =1

We first consider the case p = 1, for which the proofs are simpler and results are
stronger.

We fix m € (0, 1). If u is a probability measure on E with compact support
supp(u), we define

c(u,m)=sup (du,m)-
supp(w)

If u = ur is the empirical measure of a finite set I' € E, we denote it ¢(I", m).

Proposition 10 Let pu be a probability measure on E with compact support I'. Let
dy be the corresponding DTM. Consider a set X C E such that ' C X. The
weighted éechﬁltrations VI, d,land VX, d,] are c(u, m)-interleaved.
Moreover, if Y C E is another set such thatI' C Y, V[X,d,] and V[Y,d,] are
c(u, m)-interleaved.
In particular, if ' is a finite set and ;n = ur its empirical measure, W[I'] and
VIX,dy.] are c(I', m)-interleaved.

Proof Let ¢ = c(u, m). Since I' C X, we have V[T, d,] C V'[X,d,] for every
t>0.

Let us show that, for every r > 0, V/[X,d,] € V'*[I",d,]. Let x € X, and
choose y € I' a projection of x on the compact set I', i.e. one of the closest points
to x in I'. By definition of the DTM, we have that d,,(x) > ||x — y||. Together with
dy(y) < c, we obtain

t+e—duy) =zt =1 —du(x)+x —vyl,

which means that Bdu(x,t) C Bdﬂ(y,t + ¢). The inclusion VI[X, d,] <
V[T, d, ] follows.

If Y is another set containing I, we obtain V/[X,d,] € V'*[,d,] <
vitery, d, ] for every 1 > 0. O

Theorem 1 Consider two measures i, v on E with supports X and Y. Let p/, v'
be two measures with compact supports I and 2 such thatT" C X and Q C Y. We
have

di(VIX,d,, VIV, d)]) < m™ 2 Wal, 1) +m™2 Wa(', v') + m™2 Wa(v', v)

+c(',m)+c(v', m).
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In particular, if X and Y are finite, we have

di(WIXT, WIYD) < m™2 Wa(X, D)tm™ 2 Wa(T, Q)+m ™2 Wa(Q, ¥)+e(T, m)+e(R, m).
Moreover, with Q2 = Y, we obtain

di(WIXT, WD) < m™ 2 Wa(X, T) +m~ 2 Wa(T, Q) + c(T', m) + (2, m).

Proof Letdx =d,,dy = d,, dr = d, and do = d,/. We prove the first assertion
by introducing the following filtrations between V[X, dx] and V[Y, dy]:

VIX,dx] < V[X,dr] < V[T UQ,dr] < VI UQ,dq] < V[Y,dg] < V[Y,dy].

We have:
o d;i(V[X,dx], VIX,dr]) < m=2 Wa(u, 1) (Propositions 2 and 8),
od;(V[X,dr], VIT UK, dr]) <c(u',m) (Proposition 10),

e d;(VIT UL, dr], VI U, dq]) < m=2 Wo(u',v')  (Propositions 2 and 8),
o d;(VIT UQ,dgql, VIY, dal) < c(V', m) (Proposition 10),

o di(V[Y,dql, V[Y,dy]) < m7é Wh(V', v) (Propositions 2 and 8).

The inequality with X and Y finite follows from defining w, v, 4’ and v’ to be
the empirical measures on X, Y, I' and €2, and by recalling that the DTM filtrations
W[X] and W[Y] are equal to the weighted Cech filtration V[X, d,] and V[Y, d,].0

The last inequality of Theorem 1 can be seen as an approximation result. Indeed,
suppose that Q2 is some underlying set of interest, and X is a sample of it with,
possibly, noise or outliers. If one can find a subset I' of X such that X and I" are
close to each other—in the Wasserstein metric—and such that I' and 2 are also
close, then the filtrations W[X] and W[£2] are close. Their closeness depends on the
constants ¢(I", m) and c(£2, m). More generally, if X is finite and u’ is a measure
with compact support 2 C X not necessarily finite, note that the first inequality
gives

di(WIX], VIQ,dy]) < mT2Wy(X, T) +m ™2 Walur, ') + c(Tm) + (', m).

For any probability measure p of support I' € E, the constant c(u, m) might
be seen as a bias term, expressing the behaviour of the DTM over T'. It relates
to the concentration of w on its support. Recall that a measure p with support
I' is said to be (a, b)-standard, with a,b > 0, if for all x € T and r > 0,
w(B(x,r)) > min{ar?, 1}. For example, the Hausdorff measure associated to a
compact b-dimensional submanifold of E is (a, b)-standard for some a > 0. In this
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case, a simple computation shows that there exists a constant C, depending only on

a and b, such that forallx e I', d;; ;n (x) < lel; . Therefore, c(u, m) < Cm b .
Regarding the second inequality of Theorem 1, suppose for the sake of simplicity
that one can choose I' = 2. The bound of Theorem 1 then reads

d;(WIX], WIYT) < m™2Wa(X, T) +m~2 Wa(T, Y) + 2¢(T, m).

Therefore, the DTM-filtrations W[X] and W[Y] are close to each other if wy and
iy are both close to a common measure pr. This would be the case if X and Y are
noisy samples of I". This bound, expressed in terms of Wasserstein distance rather
than Hausdorff distance, shows the robustness of the DTM-filtration to outliers.
Notice that, in practice, for finite data sets X,Y and for given I' and €,
the constants c(I', m) and c(€2, m) can be explicitly computed, as it amounts to
evaluating the DTM on I' and 2. This remark holds for the bounds of Theorem 1.

Example 2 Consider the set X = X UT as defined in the example page 47. Figure 6
displays the sets W/[X], V'[X, d,,.] and W'[I'] for the values p = 1, m = 0.1 and
t = 0.4 and the persistence diagrams of the corresponding weighted Rips filtrations,
illustrating the stability properties of Proposition 10 and Theorem 1.

The following proposition relates the DTM-filtration to the filtration of E by the
sublevels sets of the DTM.

0.5

00

VX, dy ]

05
D(Rips(W[X]))

i

0.5

0¥
0

D (Rips(V[X, dy. 1))

05

i

wr(r]

05 1
D(Rips(W/[I']))

Fig. 6 Filtrations for ¢+ = 0.4, and their corresponding persistence diagrams
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Proposition 11 Let i be a probability measure on E with compact support K. Let
m € [0, 1) and denote by V the sublevel sets filtration of d,,.. Consider a finite set
X C E. Then

d;(V, WIX]) < m™2Wa(u, px) + 2€ + (., m),

withe = dy(K U X, X).

Proof First, notice that V = V[E, d,]. Indeed, for every t > 0, we have V!
VI[E, d,,] by definition of the weighted Cech filtration. To prove that V'[E, dyl
V', letx € VI[E,d,],and y € E such that x € By, (y,?). We have ||x — y| <
t — f(y). Ford, is 1-Lipschitz, we deduce f(x) < f(y) +llx =yl < f(y) + 1t —
f(y) <t.Hencex € V',

Then we compute:

<
<

di(V, WIX]) = di(VIE,dy], VX, dpuy])
<di(VIE,d,],VIXUK,d,]) +di(VIXUK,dyl, VX, dyu])
+dl(V[X7 d/l.]a V[X’ d,LLX])

1
<c(u,m)+2e+m 2Wr(u, px),

using Proposition 8 for the first term, Proposition 3 for the second one, and
Propositions 2 and 10 for the third one. O

As a consequence, one can use the DTM-filtration to approximate the persistent
homology of the sublevel sets filtration of the DTM, which is expensive to compute
in practice.

We close this subsection by noting that a natural strengthening of Theorem 1
does not hold: let m € (0, 1) and E = R” with n > 1. There is no constant C such
that, for every probability measure w, v on E with supports X and Y, we have:

di(VIX,duml, VIY, dym]) = CWa (i, v).
The same goes for the weaker statement
di(V[X,dpm], VIV, dym]) = CW2 (1, v).
We shall prove the statement for E = R. Letg € (0, 1) suchthatg <m < 1—gq,
ande € [0, g). Letx € (—1, 0) to be determined later. Define u = g5_1+ (1 —¢)é1,

and v¢ = (¢ — €)d_1 + (1 — g)81 + €5, with § denoting the Dirac mass. Let
X={-1,1}CcEand Y = {—1,x, 1}.
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It is clear that Wh(u, v€) = (x + 1)e < €. Using the triangle inequality, we have:

di (V[Xv du,m]v V[Ys dvf,m]) > di (V[Xs d,u.,m]v V[Ys d,u,,m])
—di(V[Y, dve m], VIY, dy m])

> di (VIX, dyum), VIV, dy]) — m™2e

Thus it is enough to show that d; (V[ X, dy 1, V[Y, dy m]) is positive.

Since 1 — g > m, we have d;, ,,(1) = 0. Using Proposition 5, we deduce that the
persistence barcode of the Oth homology of V[X, d,] consists of the bars [0, +o00[
and [dyum (1), } (@ (—1) + dyu (1) +2)].

Similarly, the persistence barcode of the Oth homology of V[Y,d,] consists
of the bars [0, +oo[, [dyum(—1), é(du,m(—l) + dym(x) + (1 + x))] and
[dym (), 3 (dym (X) + (1 = x))].

Notice that, since ¢ > 0 and x < 0, by definition of the DTM, we have
dy m(x) < 1—x.Hence the last bar is not a singleton. Moreover, if x is close enough
to 0, we have dy ,u(—1) < dy m(x)+1—x.Indeed, withx = 0,d,, n(x)+1—x =2,

and we have dy ,(—1) = 2\/qu < 2. Hence the second bar is not a singleton as
well.

As a consequence, if x is close enough to 0, the interleaving distance between
these two barcodes is positive.

4.4 Stability when p > 1

Now assume that p > 1,m € (0, 1) being still fixed. In this case, stability properties
turn out to be more difficult to establish. For small values of #, Lemma 1 gives a tight
non-additive interleaving between the filtrations. However, for large values of ¢, the
filtrations are poorly interleaved. To overcome this issue we consider stability at
the homological level, i.e. between the persistence modules associated to the DTM
filtrations.

Let us show first why one cannot expect a similar result as Proposition 10.
Consider the ambient space £ = R? and the sets ' = {0} and X = " U {1}.
We have d,,-(1) = 1 and, for all #+ > 1, W/[I'] = B(0,¢) and V'[X,d,.] =

B0, 1)U B(l, @ -1 Il’ ) The sets V[ X, dy ] are represented in Fig. 7 fort = 1.5,
t = 5 and several values of p.

For p = 1, the ball B(1, (7 — 1)117) is contained in B(0, t). Whereas for p > 1,
the radius (+P — 1); is asymptotically equal to 7 + 0/ 400, pl,l). Therefore, an
€ > 0 for which the ball B(1, (7 — 1)117) would be included in B(0, t + ¢) for all

t > 0 should not be lower than 1 = dy (', X). Therefore, d;(W[I'], V[X, d,.]) =
1=dy T, X).
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Fig. 7 Some sets V'[X, dyr] for t = 1.5 (first row) and t = 5 (second row)

p=1

p=c

Even though the filtrations W[I'] and V[X, d,,.] are distant, the set VX, dur]
is contractible for all # > 0, and therefore the interleaving distance between the
persistence modules W[I'] and V[X, d,,.]is 0.

In general, and in the same spirit as Proposition 10, we can obtain a bound on the
interleaving distance between the persistence modules W[I'] and V[X, d,.] which
does not depend on X—see Proposition 12.

If 1 is a probability measure on E with compact support I, we define

c(u,m, p) = Slrlp(du,m) + 1 (p)tp (),

1
I
N(VIT, d,]), the (simplicial) weighted Cech filtration. Equivalently, #,,(I") is the
value ¢ from which all the balls Bdu (y,t), y € I', share a common point.
If © = pur is the empirical measure of a finite set ' € E, we denote it ¢(I", m, p).
Note that we have the inequality %diam(l") < t,(I') < 2diam(I"), where
diam(I") denotes the diameter of I'. This follows from writing 7, (I') = inf{r >
0.Nyer By, (v.1) # ¥} and using that Vy € I, dy,(y) < diam(I").

where «(p) = 1 — and 7, (I") is the filtration value of the simplex I' in

Proposition 12 Let (1 be a measure on E with compact support T, and d,, be the
corresponding DTM of parameter m. Consider a set X C E such thatT" C X. The
persistence modules V[I', d, 1 and V[ X, d, ] are c(ju, m, p)-interleaved.

Moreover, if Y C E is another set such thatI' C Y, V[X,d,] and V[Y,d, ] are
c(u, m, p)-interleaved.
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In particular, if T is a finite set and u = ur its empirical measure, W[I'] and
VIX, d,]are c(I', m, p)-interleaved.

The proof involves the two following ingredients, whose proofs are postponed to
Sect.4.5. The first lemma gives a (non-additive) interleaving between the filtrations
WII'] and V[X, d,], relevant for low values of 7, while the second proposition
gives a result for large values of 7.

1
Lemma 1 Let nu, " and X be as defined in Proposition 12. Let ¢ : t +— 27 4
supr dy,. Then for every t > 0,

V[T, d,] C V'[X,d,] C V*DIT,d,].

In the remainder of the paper, we say that a homology group Hy(-) is trivial if it is
of rank O whenn > 0, orif it is of rank 1 when n = 0. We say that a homomorphism
between homology groups H,, () — Hj(-) is trivial if the homomorphism is of rank
Owhenn > 0, orifitisof rank 1 whenn = 0.

Proposition 13 Let 1, " and X be as defined in Proposition 12. Consider the
map v, : V'[X,d,] — V'*[X,d,] induced in homology by the inclusion
v VX, d,] — VITUX, dy) Ift > 1,(T), then V' is trivial.

Proof of Proposition 12 Denote ¢ = c¢(u, m, p). For every t > 0, denote by v’ :
VIX,du] — VIHX, dy], w' 2 VI, d,] — VD, d,]and j' : VT, d,] —
V'[X, d,] the inclusion maps, and v’, wi, and j the induced maps in homology.

1
Notice that, fort < 7,,(I"), the term 217 rt +supr d;, which appears in Lemma 1
can be bounded as follows:

1 1
24 supd,, =1t + Q" — D+ supd,
r r
1
<1+@Q77 = Dip(D) + supdyy
r

1
<t+ {1 — )ty +supdy,
p r

=t+c

where, for the second line, we used 21_117 —-1<1- [1) (Lemma 3). Consequently,
for every t < 1,(T), we have V[X,d,] € V'*°[T, d,]. Thus, for t > 0, we can
define a map ' : V'[X,d,] — V™[I, d,] as follows: 7' is the map induced by
the inclusion if ¢ < 7, (I"), and the zero map if # > 1, (I").

The families (7');>0 and (jL);>0 clearly are c-morphisms of persistence mod-
ules. Let us show that the pair ((7r");>0,(j1)i>0) defines a c-interleaving between
VIT',dy] and V[X, d,,].
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Let # > 0. We shall show that the following diagrams commute:

t
VX, dy] —— VI*[X, dy] VX, dy]
t
! *
Vt-i—C[I*’ dpb] V[[F, dﬂ] —>wt VZ+C[F,du]

Ift < 1,(T), these diagrams can be obtained by applying the homology functor to
the inclusions

VI, d,] € VX, d,] € VT, dy] € VITLX, dyl.

If t > 1,,(T"), the homology group V’[I", d,,] is trivial. Therefore the commutativity
of the second diagram is obvious, and the commutativity of the first one follows
from Proposition 13. This shows that V[I", d,,] and V[X, d, ] are c-interleaved.

If Y is another set containing I', define, for all ¢ > 0, the inclusions u’
VIY,d,] — V'Y, d,] and k' : V[T, d,] — V'*°[Y, d,]. We can also define a
map 6" : V'[Y,d,] — V™[I, d,] as we did for =" : VI[X,d,,] — V'T[T", d,].

We can compose the previous diagrams to obtain the following:

t t+c
VX, d,] L> VIH[X, dy] —— VIH2[X d),]

VT, dy, ] —> V’+2C[r dyl

kH—C
9!+c

V1+C[Y d

Since all the triangles commute, so does the following:

vt+2c’

VX, dy] . > VITE(X, d,]
k;m 49[+c
vty dy)

We can obtain the same interchanging X and Y. Therefore, by definition, the per-
sistence modules V[X, d,.] and V[Y, d,,.] are c-interleaved, with the interleaving
(kL") 20, (JET90")120)- O
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Theorem 2 Consider two measures i, v on E with supports X and Y. Let p/, v'
be two measures with compact supports I and 2 such thatT" C X and Q C Y. We
have

di (VIX, ] VIV, dy]) < m™2 W, ')+ m ™2 Wa ')+ m ™2 Wa(v, v)

+e',m, p)+c(',m, p).
In particular, if X and Y are finite, we have

d;(W[X], WY]) < m™2Wa(X.T) +m™ 2 Wa(T', Q) + m™2 Wa(R, ¥)
+c(T',m, p) +c(, m, p).

Moreover, with Q2 =Y, we obtain

di(WIX], WT']) < m™2 Wy (X, T) + m~2 Wa (T, ) + c(T, m, p) + (2, m, p).

Proof The proof is the same as Theorem 1, using Proposition 12 instead of
Proposition 10. O

Notice that when p = 1, the constant c(I", m, p) is equal to the constant c(I", m)
defined in Sect. 4.3, and we recover Theorem 1 in homology.

As an illustration of these results, we represent in Fig. 8 the persistence diagrams
associated to the filtration Rips(‘W/[X]) for several values of p. The point cloud X
is the one defined in the example page 47. Observe that, as stated in Proposition 6,
the number of red points (homology in dimension 0) is non-increasing with respect
to p.

0.5

0.5

0.5

0.5 1

p=1

0.5

p=2

0.5 1

p=co

Fig. 8 Persistence diagrams of the simplicial filtrations Rips(‘W/[X]) for several values of p
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4.5 Proof of Lemma 1 and Proposition 13

We first prove the lemma stated in the previous subsection.

Proof of Lemma 1 Denote f = d,. Let x € X, and y a projection of x on I'". Let
us show that for every t > 0,

Br(x.t) S Br(y. 2" rt + F(y)),

and the lemma will follow.
Defined = f(y). Letu € E. Remind that

we Bt <= 1= (lu=ylP+ f0)?)".
1
ue Bf(x,l) — > (”u_x”P_i_f(x)P)p.

We shall only use

ueBs(y.t) <= t1=|lu—yl+d,
1
ueBrx,t) = 1= (llu—x|I”+lx—y|?)r.

1
Letu € By(x,t). Letus prove thatu € Bf(y,2171’t+d).1f||u—y|| <lly—=xl,

thent > ||lu — y||, and we deduce u € B¢(y,t +d) C Byr(y, 21_1171‘ +d).

Else, we have |[u—y|| > ||y —x||. Consider the line segment [y, u] and the sphere
S(y, |ly —x||) of center y and radius ||y —x||. The intersection S(y, ||y —x|)N[y, u]
is a singleton. Call its element x’. The situation is represented in Fig. 9.

We have ||u — x'|| < |lu — x| and ||y — x’|| = ||y — x||. Therefore

1 1
(= x"WP + l1x" =y I1P) 7 < (lu = x 1P + llx = y1I7) 7.

Fig. 9 Definition of the point x’
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1
We also have ||y — ul| = lly —x'| + " — ull and (Jlu — x||? + |x — y[I?) 7 <.
Thus it follows from the last inequality that

1
(lu =17 + (lu =yl = u = D?) 7 <.

1
The left-hand term of this inequality is not lower than 2 » - |lu—y||. Indeed, consider
1
the function s — (sp +(lu—yll — s)P)P defined for s € [0 ||u — ¥11]. One shows

dlrectly, bP, computing its derivative, that its minimum is 2P ||u — y ||, attained at
5 =
We deduce that 2P71||u —yl < t,and |lu — y|| < 2171’t. Thus u €
!
Bf(y/,21 rt4d). O

Notice that the previous lemma gives a tight bound, as we can see with the
following example. ConsidersetI' = {0} C R, L > 0,and X = I'U{x} withx = é

1
Letm < é, and f = d, which is the function distance to I". For all # > 21’71L,
1 1 1
we have L € B(x,1). Indeed, ro(27'L) = (22 'L)? — (5)P)r = L. In

comparison, for every ¢ < ¢(211’71L) =L,L¢Byg,1).
Following this example, we can find a lower bound on the interleaving distance
between the persistence modules WITI'] and V[X, d,.]. Consider L > 0, the set
= {0,2L} € R, x = ,andX = TU{x,2L — x}. Let m < ,and
f = dy. The persistence d1agram of the Oth-homology of W[I'] consists of two
points, (0, +00) and (0, L). Regarding V[X, f ] the point of finite ordmate in the

persistence diagram of its Oth-homology is (0, 21’ L) Indeed, fort = 21’ L we
have L € By(x,t) and L € By(L — x, t), hence the set VX, dy] is connected.

1_ .
We deduce that these persistence modules are at least (1 — 27 l)L-1nte1r1eaved.
In comparison, the upper bound we prove in Proposition 12 is (1 — }))L.
We now prove the proposition stated in the previous subsection.

Proof of Proposition 13 Denote f = d,. Lett > t,(I"). By definition of #,(I"),
there exists a point Op € ﬂyer By(y, tu(I)).

In order to show that v% : V[ X, dy] — Viterx, d,] is trivial, we introduce an
intermediate set between V[ X, d,.] and V' T°[X, d. ]:

VX, dy] =Urex\r B . ) UU, er By (v. 1),
V! = UxeX\F Bf(xat)UUyel" Bf(]/,l‘~|—C),
VX, dur ]l =Uexir Bt +0)UU, er By, 1 +0).

Since t > 1,(T"), we have Or € V. Let us show that V' is star-shaped around Or-.
Let x € X and consider y a projection of x on I'. We first prove that B s (x, 1) U
By(y,t + c) is star-shaped around Or. Let y € By(x,t). We have to show that
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q(y)
E__r(x,r) UE_;-()/,.") Ef (x,.r)UE_f (y.t+c)

Fig. 10 Construction of an intermediate set v

the line segment [y, Or]is a subset of B ¢(x, 1) U B ¢(y,t +¢). Let D be the affine
line going through y and Or, and denote by g the orthogonal projection on D.
We have [y, Or] € [y,q(x)] U [g(x), Or]. The first line segment [y, g(x)] is a
subset of B ¢(x, t). Regarding the second 