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Series Foreword

The Norwegian government established the Abel Prize in mathematics in 2002, and
the first prize was awarded in 2003. In addition to honoring the great Norwegian
mathematician Niels Henrik Abel by awarding an international prize for outstanding
scientific work in the field of mathematics, the prize shall contribute toward raising
the status of mathematics in society and stimulate the interest for science among
school children and students. In keeping with this objective, the Niels Henrik Abel
Board has decided to finance annual Abel Symposia. The topic of the symposia
may be selected broadly in the area of pure and applied mathematics. The symposia
should be at the highest international level and serve to build bridges between
the national and international research communities. The Norwegian Mathematical
Society is responsible for the events. It has also been decided that the contributions
from these symposia should be presented in a series of proceedings, and Springer
Verlag has enthusiastically agreed to publish the series. The Niels Henrik Abel
Board is confident that the series will be a valuable contribution to the mathematical
literature.

Chair of the Niels Henrik Abel Board John Grue
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Preface

The demands of science and industry for methods for understanding and utilizing
large and complex data sets have been growing very rapidly, driven in part by our
ability to collect ever more data about many different subjects. A key requirement is
to construct useful models of data sets that allow us to see more clearly and rapidly
what the data tells us. Mathematical modeling is usually thought of as the discipline
of constructing algebraic or analytic models, where the output of the model is an
equation, a system of equations, or perhaps a system of differential equations. This
method has been very effective in the past, when many of the data sets to be studied
involved only a small number of features and where there are simple relations among
the variables that govern the data being modeled. The work of Galileo, Kepler, and
Newton are prime examples of the successes of this kind of modeling. However,
these methods run into difficulties when confronted with some of the very complex
data currently arising in applications. For example, consider data sets where the
goal is to identify potential instances of fraud, or to discover drugs, where the
complex structure of molecules means that identification of effective medications
is a very complex task. For this reason, it is incumbent on the mathematical and
statistical communities to develop new methods of modeling. To understand what
these methods might be, we ask ourselves what do mathematical models buy us?
Here are some answers to that question.

• A mathematical model should provide some kind of compression of the data
into a tractable form. When we model data by using a simple one variable
linear regression, the result compresses the data from thousand or hundreds of
thousands of data points into two numbers, the slope and the y-intercept. If the
approximation is good, we have achieved a massive compression.

• A mathematical model should provide understanding of the data. The usual
mathematical modeling of the flight of a cannonball gives a great deal of
understanding about its behavior.

• In many cases, we would like a model to allow us to predict outcomes. In the
cannonball problem, we need only know the muzzle velocity and the angle of
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viii Preface

the cannon barrel in order to predict where the cannonball will land, or what the
highest altitude it will reach is.

Nothing about these answers requires that the model be algebraic. Consider, for
example, cluster analysis. Its output is no longer an equation or a set of equations,
but rather a partition of the data set into a collection of groups. Such a partition
provides all three of the capabilities described above. Cluster analysis clearly
provides compression, since the number of clusters is typically a much smaller
number than the number of data points. It also provides understanding, since the
cluster decomposition is effectively a taxonomy of the data points. Finally, it can
also be used to provide predictions, via classifying new data points into the different
clusters using methods like logistic regression or decision trees. These observations
suggest that we view cluster analysis as a modeling mechanism which is discrete
in the sense that it produces zero-dimensional outputs, with no information about
continuous phenomena such as progressions. They also suggest that we look
for other modeling mechanisms where the output can consist of more complex
mathematical structures. Topological data analysis (TDA) is a modeling method in
which the outputs are graphs and simplicial complexes. Work on TDA began with
the study of persistent homology (see [16, 26, 32]), but over time the direct study of
low-dimensional simplicial complex models (see [4, 30]) has also become important
in applications. Here are some of the advantages of TDA.

• TDA is able to give insight into continuous and discrete properties of a data set in
one output. Cluster analysis provides a discrete analysis, and algebraic modeling
often reflects continuous information.

• It is able to represent the properties of complex data more flexibly and therefore
more accurately than other machine learning methods.

• There is a great deal of “functionality” in the representation of data sets, since
simplicial complexes and graphs are more complex mathematical structures than
partitions or simple regression models. For example, if one is studying a function
on a data set, one is often able to create a corresponding function on the nodes
of the model, and the behavior of the corresponding function often clarifies the
behavior of the function. Persistent homology can also be viewed as functionality,
since it provides a way to measure (in an appropriate sense) the shape of the
model.

• An interesting direction is the study of topological models of the set of features in
a data set rather than the set of data points. This point of view has been advocated
in [27] and [11], and referred to in [27] as “topological signal processing”.

• Although persistent homology can be used to study the overall structure of data
sets, it is also used to generate features of data sets of complex or unstructured
objects. For example, in [31], data bases of molecules are treated as data sets
whose points are finite metric spaces.

TDA has been applied in a number of interesting domains, notably neuroscience
[18, 20, 25, 29, 28], materials science [19, 22], cancer biology [21, 23], and immune
responses [24].
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There are numerous very active mathematical research directions within TDA.

• Vectorization of barcodes: Most machine learning methods are defined for data
which is in the form of vectors in a high dimensional vector space. There are
numerous situations where the data points themselves are more complex objects,
which support a metric. For example, molecule structures or images fall into this
category. In such situations, one has assignments of barcodes to individual data
points instead of the whole data set. In order to enable machine learning, one
must therefore create functions on the set of barcodes. There are a number of
strategies to provide such “vectorizations”. See [1, 2, 8] for examples.

• Probabilistic analysis of spaces of barcodes: Statistical and probabilistic
analyses clearly play a key role in any data analytic problem. If we are building
simplicial complex models or creating features based on persistent homology, it
is clear that it is important to understand the behavior of distributions on the set
(it can be made into a metric space in numerous ways) of persistence barcodes or
equivalently persistence diagrams. There is a great deal of work in this direction.
See [3, 5–7, 15] for interesting examples.

• Methods for assessing the faithfulness of topological models: If we build
topological models of data, it is critical to devise methods for assessing how
faithful to the data the model is. Of course, even the problem of defining measures
of this kind of consistency is an important one. The paper [12] is an example of
this kind of work.

• Multidimensional and generalized persistence: Since the development of
persistent homology, a number of generalizations of it have been developed.
In particular, the idea that one might have families of complexes depending
on more than one real parameter is referred to as multidimensional persistence
[9]. Additionally, zig-zag persistence [10] studies the behavior of parametrized
families of complexes where one is permitted to delete as well as add simplices.
Further generalizations have been made, and a key direction of research is to
attach invariants to generalized persistence objects so that one can interpret them
and make use of them in data analysis. Other interesting work in this direction is
given in [13, 17].

• New domains of application: TDA has already seen application in numerous
areas, which were mentioned above. Finding new ways to apply it is high priority
research.

This volume presents a number of interesting papers in numerous different
research directions. It provides a partial snapshot of the current state of the field, and
we hope that it will be useful to practitioners as well as those considering entering
the field.

The papers are written by participants (and their collaborators) of the Abel
Symposium 2018 which took place from June 4 to June 8, 2018 in Geiranger,
Norway. The symposium was organized by an external committee consisting of
Gunnar E. Carlsson (Stanford University), Herbert Edelsbrunner (IST Austria),
Kathryn Hess (EPF Lausanne), and Raul Rabadan (Columbia University) and a
local committee from NTNU Trondheim consisting of Nils A. Baas, Gereon Quick,
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Markus Szymik and Marius Thaule. The webpage of the symposium can be found
at https://folk.ntnu.no/mariusth/Abel/.

We gratefully acknowledge the generous support of the Board for the Niels
Henrik Abel Memorial Fund, the Norwegian Mathematical Society, the Department
of Mathematical Sciences and the Faculty of Information Technology and Electrical
Engineering at NTNU. We also thank Ruth Allewelt, Leonie Kunz and Springer-
Verlag for encouragement and support during the editing of these proceedings.
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A Fractal Dimension for Measures via
Persistent Homology

Henry Adams, Manuchehr Aminian, Elin Farnell, Michael Kirby,
Joshua Mirth, Rachel Neville, Chris Peterson, and Clayton Shonkwiler

Abstract We use persistent homology in order to define a family of fractal
dimensions, denoted dimi

PH(μ) for each homological dimension i ≥ 0, assigned to
a probability measure μ on a metric space. The case of zero-dimensional homology
(i = 0) relates to work by Steele (Ann Probab 16(4): 1767–1787, 1988) studying
the total length of a minimal spanning tree on a random sampling of points. Indeed,
if μ is supported on a compact subset of Euclidean space R

m for m ≥ 2, then
Steele’s work implies that dim0

PH(μ) = m if the absolutely continuous part of μ
has positive mass, and otherwise dim0

PH(μ) < m. Experiments suggest that similar
results may be true for higher-dimensional homology 0 < i < m, though this is
an open question. Our fractal dimension is defined by considering a limit, as the
number of points n goes to infinity, of the total sum of the i-dimensional persistent
homology interval lengths for n random points selected from μ in an i.i.d. fashion.
To some measures μ, we are able to assign a finer invariant, a curve measuring
the limiting distribution of persistent homology interval lengths as the number of
points goes to infinity. We prove this limiting curve exists in the case of zero-
dimensional homology whenμ is the uniform distribution over the unit interval, and
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conjecture that it exists when μ is the rescaled probability measure for a compact
set in Euclidean space with positive Lebesgue measure.

1 Introduction

Let X be a metric space equipped with a probability measure μ. While fractal
dimensions are most classically defined for a space, there are a variety of fractal
dimension definitions for a measure, including the Hausdorff or packing dimension
of a measure [24, 30, 54]. In this paper we use persistent homology to define a fractal
dimension dimi

PH(μ) associated to a measure μ for each homological dimension
i ≥ 0. Roughly speaking, dimi

PH(μ) is determined by how the lengths of the
persistent homology intervals for a random sample, Xn, of n points from X vary
as n tends to infinity.

Our definition should be thought of as a generalization, to higher homological
dimensions, of fractal dimensions related to minimal spanning trees, as studied, for
example, in [63]. Indeed, the lengths of the zero-dimensional (reduced) persistent
homology intervals corresponding to the Vietoris–Rips complex of a sample Xn are
equal to the lengths of the edges in a minimal spanning tree with Xn as the set of
vertices. In particular, if X is a subset of Euclidean space Rm with m ≥ 2, then [63,
Theorem 1] by Steele implies that dim0

PH(μ) ≤ m, with equality when the absolutely
continuous part of μ has positive mass (Proposition 1). Independent generalizations
of Steele’s work to higher homological dimensions are considered in [26, 61, 62].

To some metric spacesX equipped with a measure μ we are able to assign a finer
invariant that contains more information than just the fractal dimension. Consider
the set of the lengths of all intervals in the i-dimensional persistent homology for
Xn. Experiments suggest that when probability measure μ is absolutely continuous
with respect to the Lebesgue measure on X ⊆ R

m, the scaled set of interval
lengths in each homological dimension i converges distribution-wise to some fixed
probability distribution (depending on μ and i). This is easy to prove in the simple
case of zero-dimensional homology when μ is the uniform distribution over the unit
interval, in which case we can also derive a formula for the limiting distribution.
Experiments suggest that when μ is the rescaled probability measure corresponding
to a compact set X ⊆ R

m of positive Lebesgue measure, then a limiting rescaled
distribution exists that depends only onm, i, and the volume ofμ (see Conjecture 2).
We would be interested to know the formulas for the limiting distributions with
higher Euclidean and homological dimensions.

Whereas Steele in [63] studies minimal spanning trees on random subsets of a
space, Kozma et al. in [42] study minimal spanning trees built on extremal subsets.
Indeed, they define a fractal dimension for a metric space X as the infimum, over
all powers d , such that for any minimal spanning tree T on a finite number of
points in X, the sum of the edge lengths in T each raised to the power d is
bounded. They relate this extremal minimal spanning tree dimension to the box
counting dimension. Their work is generalized to higher homological dimensions by
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Schweinhart [60]. By contrast, we instead generalize Steele’s work [63] on measures
to higher homological dimensions. Three differences between [42, 60] and our work
are the following.

• The former references define a fractal dimension for metric spaces, whereas we
define a fractal dimension for measures.

• The fractal dimension in [42, 60] is defined using extremal subsets, whereas we
define our fractal dimension using random subsets.

• We can estimate our fractal dimension computationally using log-log plots as in
Sect. 5, whereas we do not know a computational technique for estimating the
fractal dimensions in [42, 60].

After describing related work in Sect. 2, we give preliminaries on fractal
dimensions and on persistent homology in Sect. 3. We present the definition of
our fractal dimension and prove some basic properties in Sect. 4. We demonstrate
example experimental computations in Sect. 5; our code is publicly available
at https://github.com/CSU-PHdimension/PHdimension. Section 6 describes how
limiting distributions, when they exist, form a finer invariant. Sects. 7 and 8 discuss
the computational details involved in sampling from certain fractals and estimating
asymptotic behavior, respectively. Finally we present our conclusion in Sect. 9. One
of the main goals of this paper is to pose questions and conjectures, which are shared
throughout.

2 Related Work

2.1 Minimal Spanning Trees

The paper [63] studies the total length of a minimal spanning tree for random subsets
of Euclidean space. Let Xn be a random sample of points from a compact subset of
R
d according to some probability distribution. Let Mn be the sum of all the edge

lengths of a minimal spanning tree on vertex set Xn. Then for d ≥ 2, Theorem 1
of [63] says that

Mn ∼ Cn(d−1)/d as n→∞, (1.1)

where the relation ∼ denotes asymptotic convergence, with the ratio of the terms
approaching one in the specified limit. Here, C is a fixed constant depending on d
and on the volume of the absolutely continuous part of the probability distribution.1

There has been a wide variety of related work, including for example [5–7, 38, 64–
67]. See [41] for a version of the central limit theorem in this context. The
papers [51, 52] study the length of the longest edge in the minimal spanning tree

1If the compact subset has Hausdorff dimension less than d, then [63] implies C = 0.

https://github.com/CSU-PHdimension/PHdimension
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for points sampled uniformly at random from the unit square, or from a torus of
dimension at least two. By contrast, [42] studies Euclidean minimal spanning trees
built on extremal finite subsets, as opposed to random subsets.

2.2 Umbrella Theorems for Euclidean Functionals

As Yukich explains in his book [72], there are a wide variety of Euclidean
functionals, such as the length of the minimal spanning tree, the length of the
traveling salesperson tour, and the length of the minimal matching, which all have
scaling asymptotics analogous to (1.1). To prove such results, one needs to show that
the Euclidean functional of interest satisfies translation invariance, subadditivity,
superadditivity, and continuity, as in [21, Page 4]. Superadditivity does not always
hold, for example it does not hold for the minimal spanning tree length functional,
but there is a related “boundary minimal spanning tree functional" that does satisfy
superadditivity. Furthermore, the boundary functional has the same asymptotics as
the original functional, which is enough to prove scaling results. It is intriguing to
ask if these techniques will work for functionals defined using higher-dimensional
homology.

2.3 Random Geometric Graphs

In this paper we consider simplicial complexes (say Vietoris–Rips or Čech) with
randomly sampled points as the vertex set. The 1-skeleta of these simplicial
complexes are random geometric graphs. We recommend the book [50] by Penrose
as an introduction to random geometric graphs; related families of random graphs
are also considered in [53]. Random geometric graphs are often studied when the
scale parameter r(n) is a function of the number of vertices n, with r(n) tending to
zero as n goes to infinity. Instead, in this paper we are more interested in the behavior
over all scale parameters simultaneously. From a slightly different perspective,
the paper [40] studies the expected Euler characteristic of the union of randomly
sampled balls (potentially of varying radii) in the plane.

2.4 Persistent Homology

Vanessa Robins’ thesis [58] contains many related ideas; we describe one such
example here. Given a set X ⊆ R

m and a scale parameter ε ≥ 0, let

Xε = {y ∈ R
m | there exists some x ∈ X with d(y, x) ≤ ε}
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denote the ε-offset of X. The ε-offset of X is equivalently the union of all closed
ε balls centered at points in X. Furthermore, let C(Xε) ∈ N denote the number
of connected components of Xε . In Chapter 5, Robins shows that for a generalized
Cantor set X in R with Lebesgue measure 0, the box-counting dimension of X is
equal to the limit

lim
ε→0

log(C(Xε))

log(1/ε)
.

Here Robins considers the entire Cantor set, whereas we study random subsets
thereof.

The paper [46], which heavily influenced our work, introduces a fractal dimen-
sion defined using persistent homology. This fractal dimension depends on thick-
enings of the entire metric space X, as opposed to random or extremal subsets
thereof. As a consequence, the computed dimension of some fractal shapes (such
as the Cantor set cross the interval) disagrees significantly with the Hausdorff or
box-counting dimension.

Schweinhart’s paper [60] takes a slightly different approach from ours, consider-
ing extremal (as opposed to random) subsets. After fixing a homological dimension
i, Schweinhart assigns a fractal dimension to each metric space X equal to the
infimum over all powers d such that for any finite subset X′ ⊆ X, the sum of the
i-dimensional persistent homology bar lengths for X′, each raised to the power d , is
bounded. For low-dimensional metric spaces Schweinhart relates this dimension to
the box counting dimension.

More recently, Divol and Polonik [26] obtain generalizations of [63, 72] to higher
homological dimensions in the case when X is a cube. Related results are obtained
in [62] when X is a ball or sphere, and afterwards in [61] when points are sampled
according to an Ahlfors regular measure.

There is a growing literature on the topology of random geometric simplicial
complexes, including in particular the homology of Vietoris–Rips and Čech com-
plexes built on top of random points in Euclidean space [3, 13, 39]. The paper [14]
shows that for n points sampled from the unit cube [0, 1]d with d ≥ 2, the
maximally persistent cycle in dimension 1 ≤ k ≤ d − 1 has persistence of order
�((

logn
log logn)

1/k), where the asymptotic notation big Theta means both big O and big
Omega. The homology of Gaussian random fields is studied in [4], which gives the
expected k-dimensional Betti numbers in the limit as the number of points increases
to infinity, and also in [12]. The paper [29] studies the number of simplices and
critical simplices in the alpha and Delaunay complexes of Euclidean point sets
sampled according to a Poisson process. An open problem about the birth and death
times of the points in a persistence diagram coming from sublevelsets of a Gaussian
random field is stated in Problem 1 of [28]. The paper [18] shows that the expected
persistence diagram,from a wide class of random point clouds, has a density with
respect to the Lebesgue measure
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The paper [15] explores what attributes of an algebraic variety can be estimated
from a random sample, such as the variety’s dimension, degree, number of irre-
ducible components, and defining polynomials; one of their estimates of dimension
is inspired by our work.

In an experiment in [1], persistence diagrams are produced from random
subsets of a variety of synthetic metric space classes. Machine learning tools, with
these persistence diagrams as input, are then used to classify the metric spaces
corresponding to each random subset. The authors obtain high classification rates
between the different metric spaces. It is likely that the discriminating power is
based not only on the underlying homotopy types of the shape classes, but also on
the shapes’ dimensions as detected by persistent homology.

3 Preliminaries

This section contains background material and notation on fractal dimensions and
persistent homology.

3.1 Fractal Dimensions

The concept of fractal dimension was introduced by Hausdorff to describe spaces
like the Cantor set, and it later found extensive application in the study of dynamical
systems. The attracting sets of simple a dynamical system is often a submanifold,
with an obvious dimension, but in non-linear and chaotic dynamical systems the
attracting set may not be a manifold. The Cantor set, defined by removing the middle
third from the interval [0, 1], and then recursing on the remaining pieces, is a typical
example. It has the same cardinality as R, but it is nowhere-dense, meaning it at no
point resembles a line. The typical fractal dimension of the Cantor set is log3(2).
Intuitively, the Cantor set has “too many” points to have dimension zero, but also
should not have dimension one.

We speak of fractal dimensions in the plural because there are many different
definitions. In particular, fractal dimensions can be divided into two classes, which
have been called “metric” and “probabilistic” [31]. The former describe only the
geometry of a metric space. Two widely-known definitions of this type, which often
agree on well-behaved fractals, but are not in general equal, are the box-counting
and Hausdorff dimensions. For an inviting introduction to fractal dimensions
see [30]. Dimensions of the latter type take into account both the geometry of a
given set and a probability distribution supported on that set—originally the “natural
measure” of the attractor given by the associated dynamical system, but in principle
any probability distribution can be used. The information dimension is the best
known example of this type. For detailed comparisons, see [32]. Our persistent
homology fractal dimension, Definition 6, is of the latter type.
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For completeness, we exhibit some of the common definitions of fractal dimen-
sion. The primary definition for sets is given by the Hausdorff dimension [33].

Definition 1 Let S be a subset of a metric space X, let d ∈ [0,∞), and let δ > 0.
The Hausdorff measure of S is

Hd(S) = inf
δ

⎛
⎝inf

⎧⎨
⎩
∞∑
j=1

diam(Bj )d | S ⊆
∞⋃
j=1

Bj and diam(Bj ) ≤ δ

⎫⎬
⎭

⎞
⎠ ,

where the inner infimum is over all coverings of S by balls Bj of diameter at most
δ. The Hausdorff dimension of S is

dimH(S) = inf
d
{Hd(S) = 0.}

The Hausdorff dimension of the Cantor set, for example, is log3(2).
In practice it is difficult to compute the Hausdorff dimension of an arbitrary

set, which has led to a number of alternative fractal dimension definitions in the
literature. These dimensions tend to agree on well-behaved fractals, such as the
Cantor set, but they need not coincide in general. Two worth mentioning are the
box-counting dimension, which is relatively simple to define, and the correlation
dimension.

Definition 2 Let S ⊆ X a metric space, and let Nε denote the infimum of the
number of closed balls of radius ε required to cover S. Then the box-counting
dimension of S is

dimB(S) = lim
ε→0

log(Nε)

log(1/ε)
,

provided this limit exists. Replacing the limit with a lim sup gives the upper box-
counting dimension, and a lim inf gives the lower box-counting dimension.

The box-counting definition is unchanged if Nε is instead defined by taking the
number of open balls of radius ε, or the number of sets of diameter at most ε, or (for
S a subset of Rn) the number of cubes of side-length ε [70, Definition 7.8], [30,
Equivalent Definitions 2.1]. It can be shown that dimB(S) ≥ dimH (S). This
inequality can be strict; for example if S = Q ∩ [0, 1] is the set of all rational
numbers between zero and one, then dimH (S) = 0 < 1 = dimB(S) [30, Chapter 3].

In Sect. 4 we introduce a fractal dimension based on persistent homology which
shares key similarities with the Hausdorff and box-counting dimensions. It can also
be easily estimated via log-log plots, and it is defined for arbitrary metric spaces
(though our examples will tend to be subsets of Euclidean space). A key difference,
however, will be that ours is a fractal dimension for measures, rather than for
subsets.
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There are a variety of classical notions of a fractal dimension for a measure,
including the Hausdorff, packing, and correlation dimensions of a measure [24, 30,
54]. We give the definitions of two of these.

Definition 3 ((13.16) of [30]) The Hausdorff dimension of a measure μ with total
mass one is defined as

dimH (μ) = inf{dimH(S) | S is a Borel subset with μ(S) > 0}.

We have dimH (μ) ≤ dimH(supp(μ)), and it is possible for this inequality to be
strict [30, Exercise 3.10].2 We also give the example of the correlation dimension of
a measure.

Definition 4 Let X be a subset of Rm equipped with a measure μ, and let Xn be
a random sample of n points from X. Let θ : R → R denote the Heaviside step
function, meaning θ(x) = 0 for x < 0 and θ(x) = 1 for x ≥ 0. The correlation
integral of μ is defined (for example in [35, 69]) to be

C(r) = lim
n→∞

1

n2

∑

x,x ′∈Xn

x �=x ′

θ
(
r − ‖x − x ′‖) .

It can be shown that C(r) ∝ rν , and the exponent ν is defined to be the correlation
dimension of μ.

In [35, 36] it is shown that the correlation dimension gives a lower bound on
the Hausdorff dimension of a measure. The correlation dimension can be easily
estimated from a log-log plot, similar to the methods we use in Sect. 5. A different
definition of the correlation definition is given and studied in [23, 47]. The
correlation dimension is a particular example of the family of Rènyi dimensions,
which also includes the information dimension as a particular case [56, 57]. A
collection of possible axioms that one might like to have such a fractal dimension
satisfy is given in [47].

3.2 Persistent Homology

The field of applied and computational topology has grown rapidly in recent years,
with the topic of persistent homology gaining particular prominence. Persistent
homology has enjoyed a wealth of meaningful applications to areas such as image
analysis, chemistry, natural language processing, and neuroscience, to name just a

2See also [31] for an example of a measure whose information dimension is less than the Hausdorff
dimension of its support.
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few examples [2, 10, 20, 25, 44, 45, 71, 73]. The strength of persistent homology
lies in its ability to characterize important features in data across multiple scales.
Roughly speaking, homology provides the ability to count the number of indepen-
dent k-dimensional holes in a space, and persistent homology provides a means
of tracking such features as the scale increases. We provide a brief introduction
to persistent homology in this preliminaries section, but we point the interested
reader to [8, 27, 37] for thorough introductions to homology, and to [16, 22, 34]
for excellent expository articles on persistent homology.

Geometric complexes, which are at the heart of the work in this paper, associate
to a set of data points a simplicial complex—a combinatorial space that serves as a
model for an underlying topological space from which the data has been sampled.
The building blocks of simplicial complexes are called simplices, which include
vertices as 0-simplices, edges as 1-simplices, triangles as 2-simplices, tetrahedra as
3-simplices, and their higher-dimensional analogues as k-simplices for larger values
of k. An important example of a simplicial complex is the Vietoris–Rips complex.

Definition 5 Let X be a set of points in a metric space and let r ≥ 0 be a scale
parameter. We define the Vietoris–Rips simplicial complex VR(X; r) to have as its
k-simplices those collections of k + 1 points in X that have diameter at most r .

In constructing the Vietoris–Rips simplicial complex we translate our collection of
points in X into a higher-dimensional complex that models topological features of
the data. See Fig. 1 for an example of a Vietoris–Rips complex constructed from a
set of data points, and see [27] for an extended discussion.

It is readily observed that for various data sets, there is not necessarily an ideal
choice of the scale parameter so that the associated Vietoris–Rips complex captures
the desired features in the data. The perspective behind persistence is to instead
allow the scale parameter to increase and to observe the corresponding appearance
and disappearance of topological features. To be more precise, each hole appears
at a certain scale and disappears at a larger scale. Those holes that persist across a
wide range of scales often reflect topological features in the shape underlying the
data, whereas the holes that do not persist for long are often considered to be noise.

Fig. 1 An example of a set of data points in R
m with an associated Vietoris–Rips complex at a

fixed scale
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However, in the context of this paper (estimating fractal dimensions), the holes that
do not persist are perhaps better described as measuring the local geometry present
in a random finite sample.

For a fixed set of points, we note that as scale increases, simplices can only be
added and cannot be removed. Thus, for r0 < r1 < r2 < · · · , we obtain a filtration
of Vietoris–Rips complexes

VR(X; r0) ⊆ VR(X; r1) ⊆ VR(X; r2) ⊆ · · · .

The associated inclusion maps induce linear maps between the corresponding
homology groupsHk(VR(X; ri)), which are algebraic structures whose ranks count
the number of independent k-dimensional holes in the Vietoris–Rips complex. A
technical remark is that homology depends on the choice of a group of coefficients;
it is simplest to use field coefficients (for example R, Q, or Z/pZ for p prime), in
which case the homology groups are furthermore vector spaces. The corresponding
collection of vector spaces and linear maps is called a persistent homology module.

A useful tool for visualizing and extracting meaning from persistent homology
is a barcode. The basic idea is that each generator of persistent homology can be
represented by an interval, whose start and end times are the birth and death scales
of a homological feature in the data. These intervals can be arranged as a barcode
graph in which the x-axis corresponds to the scale parameter. See Fig. 2 for an
example. If Y is a finite metric space, then we let PHi (Y ) denote the corresponding
collection of i-dimensional persistent homology intervals.

Fig. 2 An example of Vietoris–Rips complexes at increasing scales, along with associated
persistent homology intervals. The zero-dimensional persistent homology intervals shows how 21
connected components merge into a single connected component as the scale increases. The one-
dimensional persistent homology intervals show two one-dimensional holes, one short-lived and
the other long-lived
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Zero-dimensional barcodes always produce one infinite interval, as in Fig. 2,
which are problematic for our purposes. Therefore, in the remainder of this paper
we will always use reduced homology, which has the effect of simply eliminating
the infinite interval from the zero-dimensional barcode while leaving everything
else unchanged. As a consequence, there will never be any infinite intervals in the
persistent homology of a Vietoris–Rips simplicial complex, even in homological
dimension zero.

Remark 1 It is well-known (see for example [58]) and easy to verify that for any
finite metric space X, the lengths of the zero-dimensional (reduced) persistent
homology intervals of the Vietoris–Rips complex of X correspond exactly to the
lengths of the edges in a minimal spanning tree with vertex set X.

4 Definition of the Persistent Homology Fractal Dimension
for Measures

Let X be a metric space equipped with a probability measure μ, and let Xn ⊆ X

be a random sample of n points from X distributed independently and identically
according to μ. Build a filtered simplicial complex K on top of vertex set Xn,
for example a Vietoris–Rips complex VR(X; r) (Definition 5), an intrinsic Čech
complex Č(X,X; r), or an ambient Čech complex Č(X,Rm; r) if X is a subset of
R
m [17]. Denote the i-dimensional persistent homology of this filtered simplicial

complex by PHi (Xn). This persistent homology barcode decomposes as a direct
sum of interval summands; we let Li(Xn) be the sum of the lengths of the intervals
in PHi (Xn). In the case of homological dimension zero, the sum L0(Xn) is simply
the sum of all the edge lengths in a minimal spanning tree with Xn as its vertex set
(since we are using reduced homology).

Definition 6 (Persistent Homology Fractal Dimension) Let X be a metric space
equipped with a probability measure μ, let Xn ⊆ X be a random sample of n
points from X distributed according to μ, and let Li(Xn) be the sum of the lengths
of the intervals in the i-dimensional persistent homology for Xn. We define the i-
dimensional persistent homology fractal dimension of μ to be

dimi
PH(μ) = inf

d>0

{
d

∣∣∣ ∃ constant C(i, μ, d) such that Li(Xn) ≤ Cn(d−1)/d

with probability one as n→∞
}
.

The constant C can depend on i, μ, and d . Here “Li(Xn) ≤ Cn(d−1)/d with
probability one as n→∞" means that we have limn→∞ P[Li(Xn) ≤ Cn(d−1)/d] =
1. This dimension may depend on the choices of filtered simplicial complex (say
Vietoris–Rips or Čech), and on the choice of field coefficients for homology
computations; for now those choices are suppressed from the definition.
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Proposition 1 Let μ be a measure on X ⊆ R
m with m ≥ 2. Then dim0

PH(μ) ≤ m,
with equality if the absolutely continuous part of μ has positive mass.

Proof By Theorem 2 of [63], we have that limn→∞ n−(m−1)/mL0(Xn) =
c
∫
Rm f (x)

(m−1)/m dx, where c is a constant depending on m, and where f is
the absolutely continuous part of μ. To see that dim0

PH(μ) ≤ m, note that

L0(Xn) ≤
(
c

∫
Rm

f (x)(m−1)/m dx + ε

)
n(m−1)/m

with probability one as n→∞ for any ε > 0. ��
We conjecture that the i-dimensional persistent homology of compact subsets of

R
m have the same scaling properties as the functionals in [63, 72].

Conjecture 1 Letμ be a probability measure on a compact setX ⊆ R
m withm ≥ 2,

and let μ be absolutely continuous with respect to the Lebesgue measure. Then for
all 0 ≤ i < m, there is a constant C ≥ 0 (depending on μ, m, and i) such that
Li(Xn) = Cn(m−1)/m with probability one as n→∞.

Let μ be a probability measure with compact support that is absolutely contin-
uous with respect to Lebesgue measure in R

m for m ≥ 2. Note that Conjecture 1
would imply that the persistent homology fractal dimension of μ is equal to m.
The tools of subadditivity and superadditivity behind the umbrella theorems for
Euclidean functionals, as described in [72] and Sect. 2.2, may be helpful towards
proving this conjecture. In some limited cases, for example whenX is a cube or ball,
or when μ is Ahlfors regular, then Conjecture 1 is closely related to [26, 61, 62].

One could alternatively define birth-time or death-time fractal dimensions by
replacing Li(Xn) with the sum of the birth times, or alternatively the sum of the
death times, in the persistent homology barcodes PHi (Xn).

5 Experiments

A feature of Definition 6 is that we can use it to estimate the persistent homology
fractal dimension of a measureμ. Indeed, suppose we can sample fromX according
to the probability distribution μ. We can therefore sample collections of points Xn

of size n, compute the statistic Li(Xn), and then plot the results in a log-log fashion
as n increases. In the limit as n goes to infinity, we expect the plotted points to
be well-modeled by a line of slope d−1

d
, where d is the i-dimensional persistent

homology fractal dimension of μ. In many of the experiments in this section, the
measures μ are simple enough (or self-similar enough) that we would expect the
persistent homology fractal dimension of μ to be equal to the Hausdorff dimension
of μ.
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In our computational experiments, we have used the persistent homology
software packages Ripser [9], Javaplex [68], and code from Duke (see the acknowl-
edgements). For the case of zero-dimensional homology, we can alternatively use
well-known algorithms for computing minimal spanning trees, such as Kruskal’s
algorithm or Prim’s algorithm [43, 55]. We estimate the slope of our log-log plots (of
Li(Xn) as a function of n) using both a line of best fit, and alternatively a technique
designed to approximate the asymptotic scaling described in Sect. 8. Our code is
publicly available at https://github.com/CSU-PHdimension/PHdimension.

5.1 Estimates of Persistent Homology Fractal Dimensions

We display several experimental results, for shapes of both integral and non-integral
fractal dimension. In Fig. 3, we show the log-log plots of Li(Xn) as a function of n,
where Xn is sampled uniformly at random from a disk, a square, and an equilateral
triangle, each of unit area in the plane R

2. Each of these spaces constitutes a
manifold of dimension two, and we thus expect these shapes to have persistent
homology fractal dimension d = 2 as well. Experimentally, this appears to be the
case, both for homological dimensions i = 0 and i = 1. Indeed, our asymptotically
estimated slopes lie in the range 0.49–0.54, which is fairly close to the expected
slope of d−1

d
= 1

2 .
In Fig. 4 we perform a similar experiment for the cube in R

3 of unit volume. We
expect the cube to have persistent homology fractal dimension d = 3, corresponding
to a slope in the log-log plot of d−1

d
= 2

3 . This appears to be the case for homological
dimension i = 0, where the slope is approximately 0.65. However, for i = 1 and
i = 2, our estimated slope is far from 2

3 , perhaps because our computational limits
do not allow us to take n, the number of randomly chosen points, to be sufficiently
large.

In Fig. 5 we use log-log plots to estimate some persistent homology fractal
dimensions of the Cantor set cross the interval (expected dimension d = 1 +
log3(2)), of the Sierpiński triangle (expected dimension d = log2(3)), of Cantor
dust in R

2 (expected dimension d = log3(4)), and of Cantor dust in R
3 (expected

dimension d = log3(8)). As noted in Sect. 3, various notions of fractal dimension
tend to agree for well-behaved fractals. Thus, in each case above, we provide the
Hausdorff dimension d in order to define an expected persistent homology fractal
dimension. The Hausdorff dimension is well-known for the Sierpiński triangle,
Cantor dust in R

2, and Cantor dust in R
3. The Hausdorff dimension for the Cantor

set cross the interval can be shown to be 1 + log3(2), which follows from [30,
Theorem 9.3] or [48, Theorem III]). In Sect. 5.2 we define these fractal shapes in
detail, and we also explain our computational technique for sampling points from
them at random.

Summarizing the experimental results for self-similar fractals, we find reason-
ably good estimates of fractal dimension for homological dimension i = 0. More

https://github.com/CSU-PHdimension/PHdimension
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Fig. 3 Log scale plots and slope estimates of the number n of sampled points versus L0(Xn)

(left) or L1(Xn) (right). Subsets Xn are drawn uniformly at random from (top) the unit disc in R
2,

(middle) the unit square, and (bottom) the unit triangle. All cases have slope estimates close to 1/2,
which is consistent with the expected dimension. The asymptotic scaling estimates of the slope are
computed as described in Sect. 8
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Fig. 4 Log scale plots of the number n of sampled points from the cube versus L0(Xn) (left),
L1(Xn) (right), and L2(Xn) (bottom). The dimension estimate from zero-dimensional persistent
homology is reasonably good, while the one- and two-dimensional cases are less accurate, likely
due to computational limitations

specifically, for the Cantor set cross the interval, we expect d−1
d
≈ 0.3869, and we

find slope estimates from a linear fit of all data and an asymptotic fit to be 0.3799
and 0.36488, respectively. In the case of the Sierpiński triangle, the estimate is
quite good: we expect d−1

d
≈ 0.3691, and the slope estimates from both a linear

fit and an asymptotic fit are approximately 0.37. Similarly, the estimates for Cantor
dust in R

2 and R
3 are close to the expected values: (1) For Cantor dust in R

2,

we expect d−1
d
≈ 0.2075 and estimate d−1

d
≈ 0.25. (2) For Cantor dust in R

3,

we expect d−1
d

≈ 0.4717 and estimate d−1
d

≈ 0.49. For i > 0 many of these
estimates of the persistent homology fractal dimension are not close to the expected
(Hausdorff) dimensions, perhaps because the number of points n is not large enough.
The experiments in R

2 are related to [61, Corollary 1], although our experiments are
with the Vietoris–Rips complex instead of the Čech complex.

It is worth commenting on the Cantor set, which is a self-similar fractal in R.
Even though the Hausdorff dimension of the Cantor set is log3(2), it is not hard to
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Fig. 5 (Top) Cantor set cross the unit interval for i = 0, 1. (Second row) Sierpiński triangle in
R

2 for i = 0, 1. (Third row) Cantor dust in R
2 for i = 0, 1. (Bottom) Cantor dust in R

3 for
i = 0, 1, 2. In each case, the zero-dimensional estimate is close to the expected dimension. The
higher-dimensional estimates are not as accurate; we speculate that this is due to computational
limitations

see that the zero-dimensional persistent homology fractal dimension of the Cantor
set is 1. This is because as n→ ∞ a random sample of points from the Cantor set
will contain points in R arbitrarily close to 0 and to 1, and hence L0(Xn) → 1 as
n→∞. This is not surprising—we do not necessarily expect to be able to detect a
fractional dimension less than one by using minimal spanning trees (which are one-



A Fractal Dimension for Measures via Persistent Homology 17

Fig. 6 Log scale plot of the number n of sampled points from the Cantor set versus L0(Xn). Note
that L0(Xn) approaches one, as expected

dimensional graphs). For this reason, if a measure μ is defined on a subset of Rm,
we sometimes restrict attention to the case m ≥ 2. See Fig. 6 for our experimental
computations on the Cantor set.

Finally, we include one example with data drawn from a two-dimensional
manifold in R

3. We sample points from a torus with major radius 5 and minor
radius 3. We expect the persistent homology fractal dimensions to be 2, and this
is supported in the experimental evidence for zero-dimensional homology shown in
Fig. 7.

5.2 Randomly Sampling from Self-Similar Fractals

The Cantor set C = ∩∞l=0Cl is a countable intersection of nested sets C0 ⊇ C1 ⊇
C2 ⊇ · · · , where the set Cl at level l is a union of 2l closed intervals, each of
length 1

3l
. More precisely, C0 = [0, 1] is the closed unit interval, and Cl is defined

recursively via

Cl = Cl−1

3
∪
(

2

3
+ Cl−1

3

)
for l ≥ 1.

In our experiment for the Cantor set (Fig. 6), we do not sample from the Cantor
distribution on the entire Cantor set C, but instead from the left endpoints of level
Cl of the Cantor set, where l is chosen to be very large (we use l = 100,000). More
precisely, in order to sample points, we choose a binary sequence {ai}li=1 uniformly
at random, meaning that each term ai is equal to either 0 or 1 with probability 1

2 ,
and furthermore the value ai is independent from the value of aj for i �= j . The
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Fig. 7 Log scale plot of the number n of sampled points from a torus with major radius 5 and
minor radius 3 versus L0(Xn). Estimated lines of best fit from L0(Xn) have slope approximately
equal to 1

2 , suggesting a dimension estimate of d = 2. We restrict to zero-dimensional homology
in this setting due to computational limitations

corresponding random point in the Cantor set is
∑l

i=1
2ai
3i

. Note that this point is in
C and furthermore is the left endpoint of some interval in Cl . So we are selecting
left endpoints of intervals in Cl uniformly at random, but since l is large this is a
good approximation to sampling from the entire Cantor set according to the Cantor
distribution.

We use a similar procedure to sample at random for our experiments on the
Cantor set cross the interval, on Cantor dust in R

2, on Cantor dust in R
3, and on the

Sierpiński triangle (Fig. 5). The Cantor set cross the interval is C × [0, 1] ⊆ R
2,

equipped with the Euclidean metric. We computationally sample by choosing a
point from Cl as described in the paragraph above for l = 100,000, and by also
sampling a point from the unit interval [0, 1] uniformly at random. Cantor dust
is the subset C × C of R2, which we sample by choosing two points from Cl as
described previously. The same procedure is done for the Cantor dust C×C×C in
R

3. The Sierpiński triangle S ⊆ R
2 is defined in a similar way to the Cantor set, with

S = ∩∞l=0Sl a countable intersection of nested sets S0 ⊇ S1 ⊇ S2 ⊇ · · · . Here each
Sl is a union of 3l triangles. We choose l = 100,000 to be large, and then sample
points uniformly at random from the bottom left endpoints of the triangles in Sl .
More precisely, we choose a ternary sequence {ai}li=1 uniformly at random, meaning
that each term ai is equal to either 0, 1, or 2 with probability 1

3 . The corresponding



A Fractal Dimension for Measures via Persistent Homology 19

random point in the Sierpiński triangle is
∑l

i=1
1
2i

vi ∈ R
2, where vector vi is given

by

vi =

⎧⎪⎪⎨
⎪⎪⎩

(0, 0)T if ai = 0

(1, 0)T if ai = 1

( 1
2 ,
√

3
2 )T if ai = 2.

Note this point is in S and furthermore is the bottom left endpoint of some triangle
in Sl .

6 Limiting Distributions

To some metric measure spaces, (X,μ), we are able to assign a finer invariant
that contains more information than just the persistent homology fractal dimension.
Consider the set of the lengths of all intervals in PHi (Xn), for each homological
dimension i. Experiments suggest that for some X ⊆ R

m, the scaled set of interval
lengths in each homological dimension converges distribution-wise to some fixed
probability distribution which depends on μ and on i.

More precisely, for a fixed probability measure μ, let F (i)
n be the cumulative

distribution function of the i-dimensional persistent homology interval lengths in
PHi (Xn), where Xn is a sample of n points from X drawn in an i.i.d. fashion
according to μ. If μ is absolutely continuous with respect to the Lebesgue measure
on some compact set, then the function F (i)

n (t) converges pointwise to the Heaviside
step function as n → ∞, since the fraction of interval lengths less than any fixed
ε > 0 is converging to one as n→∞. More interestingly, for μ a sufficiently nice
measure on X ⊆ R

m, the rescaled cumulative distribution function F
(i)
n (n−1/mt)

may converge to a non-constant curve. A back-of-the-envelope motivation for
this rescaling is that if Li(Xn) = Cn(m−1)/m with probability one as n → ∞
(Conjecture 1), then the average length of a persistent homology interval length is

Li(Xn)

# intervals
= Cn(m−1)/m

# intervals
,

which is proportional to n−1/m if the number of intervals is proportional to n. We
make this precise in the following conjectures.

Conjecture 2 Let μ be a probability measure on a compact set X ⊆ R
m, and let μ

be absolutely continuous with respect to the Lebesgue measure. Then the limiting
distribution F (i)(t) = limn→∞ F

(i)
n (n−1/mt), which depends on μ and i, exists.

In Sect. 6.1 we show that Conjecture 2 holds when μ is the uniform distribution
on an interval, and in Sect. 6.2 we perform experiments in higher dimensions.
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•? Question 1

Assuming Conjecture 2 is true, what is the limiting rescaled distribution when
μ is the uniform distribution on an m-dimensional ball, or alternatively an m-
dimensional cube?

Conjecture 3 Let the compact set X ⊆ R
m have positive Lebesgue measure, and let

μ be the corresponding probability measure (i.e.,μ is the restriction of the Lebesgue
measure to X, rescaled to have mass one). Then the limiting distribution F (i)(t) =
limn→∞ F

(i)
n (n−1/mt) exists and depends only on m, i, and the volume of X.

•? Question 2

Assuming Conjecture 3 is true, what is the limiting rescaled distribution when X

has unit volume?

Remark 2 Conjecture 3 is false if μ is not a uniform measure (i.e. a rescaled
Lebesgue measure). Indeed, the uniform measure on a square (experimentally) has
a different limiting rescaled distribution than a (nonconstant) beta distribution on
the same unit square, as seen in Fig. 8.

6.1 The Uniform Distribution on the Interval

In the case where μ is the uniform distribution on the unit interval [0, 1], then
Conjecture 2 is known to be true, and furthermore a formula for the limiting rescaled
distribution is known. If Xn is a subset of [0, 1] drawn uniformly at random, then
(with probability one) the points in Xn divide [0, 1] into n + 1 pieces. The joint
probability distribution function for the lengths of these pieces is given by the flat
Dirichlet distribution, which can be thought of as the uniform distribution on the n-
simplex (the set of all (t0, . . . , tn) with ti ≥ 0 for all i, such that

∑n
i=0 ti = 1). Note

that the intervals in PH0(Xn) have lengths t1, . . . , tn−1, omitting t0 and tn which
correspond to the two subintervals on the boundary of the interval.

The probability distribution function of each ti , and therefore of each interval
length in PH0(Xn), is the marginal of the Dirichlet distribution, which is given by
the Beta distribution B(1, n) [11]. After simplifying, the cumulative distribution
function of B(1, n) is given by [59]

F (0)
n (t) = B(t; 1, n)

B(1, n)
=

∫ t
0 s

0(1− s)n−1ds

�(1)�(n)
�(n+1)

= 1− (1− t)n.
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Fig. 8 Empirical CDF’s for the H0 and H1 interval lengths computed from 10,000 points sampled
from the unit square according to the uniform distribution and beta distribution with shape and size
parameter both set to 2. The limiting distributions appear to be different

As n goes to infinity, F (0)
n (t) converges pointwise to the constant function 1.

However, after rescaling, F (0)
n (n−1t) converges to a more interesting distribution

independent of n. Indeed, we have F (0)
n

(
t
n

) = 1−(1− t
n
)n, and the limit as n→∞

is

lim
n→∞F (0)

n

(
t
n

) = 1− e−t .

This is the cumulative distribution function of the exponential distribution with rate
parameter one. Therefore, the rescaled interval lengths in the limit as n → ∞ are
distributed according to the exponential distribution Exp(1).

6.2 Experimental Evidence for Conjecture 2 in the Plane

We now move to the case where μ is the uniform distribution on the unit square in
R

2. It is known that the sum of the edge lengths of the minimal spanning tree, given
byL0(Xn)whereXn is a random sample of n points from the unit square, converges
as n→∞ to Cn1/2, for a constant C [63]. However, to our knowledge the limiting
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Fig. 9 Empirical CDF’s for H0 interval lengths, H1 birth times, H1 death times, and H1 interval
lengths computed from an increasing number of n points drawn uniformly from the two-
dimensional unit square, and rescaled by n1/2

distribution of all (rescaled) edge lengths is not known. We instead analyze this
example empirically. The experiments in Fig. 9 suggest that as n increases, it is
plausible that both F

(0)
n (n−1/2t) and F

(1)
n (n−1/2t) converge in distribution to a

limiting probability distribution.

6.3 Examples where a Limiting Distribution Does Not Exist

In this section we give experimental evidence that the assumption of being a rescaled
Lebesgue measure in Conjecture 2 is necessary. Our example computation is done
on a separated Sierpiński triangle.

For a given separation value δ ≥ 0, the separated Sierpiński triangle can be
defined as the set of all points in R

2 of the form
∑∞

i=1
1

(2+δ)i vi , where each vector

vi ∈ R
2 is either (0, 0), (1, 0), or ( 1

2 ,
√

3
2 ). The Hausdorff dimension of this self-

similar fractal shape is log2+δ(3) ([30, Theorem 9.3] or [48, Theorem III]), and note
that when δ = 0, we recover the standard (non-separated) Sierpiński triangle. See
Fig. 10 for a picture when δ = 2. Computationally, when we sample a point from the
separated Sierpiński triangle, we sample a point of the form

∑l
i=1

1
(2+δ)i vi , where

in our experiments we use l = 100,000.
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Fig. 10 Plot of 20,000 points sampled at random from the Sierpiński triangle of separation δ = 2

In the following experiment we sample random points from the separated
Sierpiński triangle with δ = 2. As the number of random points n goes to
infinity, it appears that the rescaled3 CDF of H0 interval lengths are not con-
verging to a fixed probability distribution, but instead to a periodic family of
distributions, in the following sense. If you fix k ∈ N then the distributions on
n = k, 3k, 9k, 27k, . . . , 3j k, . . . points appear to converge as j → ∞ to a fixed
distribution. Indeed, see Fig. 11 for the limiting distribution on 3j points, and for
the limiting distribution on 3j · 2 points. However, the limiting distribution for 3j k
points and the limiting distribution for 3j k′ points appear to be the same if and only
if k and k′ differ by a power of 3. See Fig. 12, which shows four snapshots from one
full periodic orbit.

Here is an intuitively plausible explanation for why the rescaled CDFs for the
separated Sierpiński triangle converge to a periodic family of distributions, rather
than a fixed distribution: Imagine focusing a camera at the origin of the Sierpiński
triangle and zooming in. Once you get to (2+ δ)× magnification, you see the same
image again. This is one full period. However, for magnifications between 1× and
(2 + δ)× you see a different image. In our experiments sampling random points,
zooming in by a factor of (2+δ)× is the same thing as sampling three times as many
points (indeed, the Hausdorff dimension is log2+δ(3)). When zooming in you see the
same image only when the magnification is at a multiple of 2 + δ, and analogously
when sampling random points perhaps we should expect to see the same probability

3Since the separated Sierpiński triangle has Hausdorff dimension log2+δ(3), the rescaled distribu-

tions we plot are F (0)
n (n−1/mt) with m = log2+δ(3).
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Fig. 11 This figure shows the empirical rescaled CDFs of H0 interval lengths for n = 3j points
(left) and for n = 3j · 2 points (right) sampled from the separated Sierpiński triangle with δ = 2.
Each figure appears to converge to a fixed limiting distribution as j → ∞, but the two limiting
distributions are not equal
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Fig. 12 Empirical rescaled CDF’s for H0 interval lengths, and H1 interval lengths computed from
an increasing number of n = k · 36 points from the separated Sierpiński triangle with δ = 2,
moving left to right. Note that as k increases between adjacent powers of three, the “bumps" in the
distribution shift to the right, until the starting distribution reappears

distribution of interval lengths only when the number of points is multiplied by a
power of 3.

7 Another Way to Randomly Sample from the Sierpiński
Triangle

An alternate approach to constructing a sequence of measures converging to the
Sierpiński triangle is using a particular Lindenmayer system, which generates
a sequence of instructions in a recursive fashion [49, Figure 7.16]. Halting the
recursion at any particular level l will give a (non-fractal) approximation to the
Sierpiński triangle as a piecewise linear curve with a finite number of segments; see
Fig. 13.
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Fig. 13 The Sierpiński triangle as the limit of a sequence of curves. We can uniformly randomly
sample from the curve at level l to generate a sequence of measures μl converging to the Sierpinski
triangle measure as l →∞

Fig. 14 Scaling behaviors for various “depths” of the Sierpinski arrowhead curves visualized in
Fig. 13

Let μl be the uniform measure on the piecewise linear curve at level l. In Fig. 14
we sample n points from μl and compute Li(Xn), displayed in a log-log plot.
Since each μl for l fixed is non-fractal (and one-dimensional) in nature, the ultimate
asymptotic behavior will be d = 1 once the number of points n is sufficiently large
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(depending on the level l). However, for level l sufficiently large (depending on the
number of points n) we see that there is an intermediate regime in the log-log plots
which scale with the expected fractal dimension near log2(3). We expect a similar
relationship between the number of points n and the level l to hold for many of types
of self-similar fractals.

8 Asymptotic Approximation of the Scaling Exponent

From Definition 6 we consider how to estimate the exponent (d − 1)/d numerically
for a given metric measure space (X,μ). For a fixed number of points n, a pair of
values (n, 	n) is produced, where 	n = Li(Xn) for a sampling Xn from (X,μ) of
cardinality n. If the scaling holds asymptotically for n sampled past a sufficiently
large point, then we can approximate the exponent by sampling for a range of n
values and observing the rate of growth of 	n. A common technique used to estimate
power law behavior (see for example [19]) is to fit a linear function to the log-
transformed data. The reason for doing this is a hypothesized asymptotic scaling
y ∼ eCxα as x →∞ becomes a linear function after taking the logarithm: log(y) ∼
C + α log(x).

However, the expected power law in the data only holds asymptotically for n→
∞. We observe in practice that the trend for small n is subdominant to its asymptotic
scaling. Intuitively we would like to throw out the non-asymptotic portion of the
sequence, but deciding where to threshold depends on the sequence. We propose
the following approach to address this issue.

Suppose in general we have a countable set of measurements (n, 	n), with n

ranging over some subset of the positive integers. Create a sequence in monotone
increasing order of n so that we have a (nk, 	nk )

∞
k=1 with nk > nj for k > j . For

any pairs of integers p, q with 1 ≤ p < q , we denote the log-transformed data of
the corresponding terms in the sequence as

Spq =
{(

log(nk), log(	nk )
) | p ≤ k ≤ q

} ⊆ R
2.

Each finite collection of points Spq has an associated pair of linear least-squares
coefficients (Cpq, αpq), where the line of best fit to the set Spq is given by y =
Cpq + αpqx. For our purposes we are more interested in the slope αpq than the
intercept Cpq . We expect that we can obtain the fractal dimension by considering
the joint limits in p and q: if we define α as

α = lim
p,q→∞ αpq,

then we can recover the dimension by solving α = d−1
d

. A possibly overly restrictive
assumption is that the asymptotic behavior of 	nk is monotone. If this is the case, we
may expect any valid joint limit p, q → ∞ will be defined and produce the same
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value. For example, setting q = p + r we expect the following to hold:

α = lim
p→∞ lim

r→∞ αp,p+r .

In general, the joint limit may exist under a wider variety of ways in which one
allows q to grow relative to p.

Now define a function A : R2 → R, which takes on values A( 1
p
, 1
q
) = αpq , and

define A(0, 0) so that A is continuous at the origin. Assuming αpq → α as above,
then any sequence (xk, yk)k → (0, 0) will produce the same limiting value A(0, 0)
and the limit lim(x,y)→(0,0) A(x, y) is well-defined. This suggests an algorithm for
finite data:

1. Obtain a collection of estimates αpq for various values of p, q , and then
2. use the data {( 1

p
, 1
q
,A( 1

p
, 1
q
))} to extrapolate an estimate for A(0, 0) = α, from

which we can solve for the fractal dimension d .

For simplicity, we currently fix q = nmax and collect estimates varying only p;
i.e., we only collect estimates of the form αp nmax . In practice it is safest to use a
low-order estimator to limit the risks of extrapolation. We use linear fit for the two-
dimensional dataA( 1

p
, 1
q
) to produce a linear approximation Â(ξ, η) = a+bξ+cη,

giving an approximation α = A(0, 0) ≈ Â(0, 0) = a.
Shown in Fig. 15 is an example applied to the function

f (x) = 100x + 1

10
x2 + 0.1ε(x) (1.2)

with ε = dW(x), with W(x) standard Brownian noise. The theoretical asymptotic
is α = 2 and should be attainable for sufficiently large x and enough sample points
to overcome noise. Note that there is a balance needed to both keep a sufficient
number of points to have a robust estimation (we want q − p to be large) and to

Fig. 15 Left panel: approximations αpq for selections of (p, q) in an artificial function 100x +
1/10x2(1+ε(x)). Center panel: log-absolute-error of the coefficients. Note that the approximation
is generally poor for |p − q| small, due to a small number of sample points. Right panel: same
values, with the coordinates mapped as ξ = 1/p, η = 1/q. The value to be extrapolated is at
(ξ, η) = (0, 0)
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avoid including data in the pre-asymptotic regime (thus p must be relatively large).
Visually, this is seen near the top side of the triangular region, where the error
drops to roughly the order of 10−3. The challenge for an arbitrary function is not
knowing precisely where this balance is; see [19, Sections 1, 3.3–3.4] in the context
of estimating xmin (in their language) for the tails of probability density functions.

9 Conclusion

When points are sampled at random from a subset of Euclidean space, there
are a wide variety of Euclidean functionals (such as the minimal spanning tree,
the traveling salesperson tour, the optimal matching) which scale according to
the dimension of Euclidean space [72]. In this paper we explore whether similar
properties are true for persistent homology, and how one might use these scalings in
order to define a persistent homology fractal dimension for measures. We provide
experimental evidence for some of our conjectures, though that evidence is limited
by the sample sizes on which we are able to compute. Our hope is that our
experiments are only a first step toward inspiring researchers to further develop the
theory underlying the scaling properties of persistent homology.
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DTM-Based Filtrations

Hirokazu Anai, Frédéric Chazal, Marc Glisse, Yuichi Ike, Hiroya Inakoshi,
Raphaël Tinarrage, and Yuhei Umeda

Abstract Despite strong stability properties, the persistent homology of filtrations
classically used in Topological Data Analysis, such as, e.g. the Čech or Vietoris–
Rips filtrations, are very sensitive to the presence of outliers in the data from which
they are computed. In this paper, we introduce and study a new family of filtrations,
the DTM-filtrations, built on top of point clouds in the Euclidean space which are
more robust to noise and outliers. The approach adopted in this work relies on the
notion of distance-to-measure functions, and extends some previous work on the
approximation of such functions.

1 Introduction

The inference of relevant topological properties of data represented as point clouds
in Euclidean spaces is a central challenge in Topological Data Analysis (TDA).

Given a (finite) set of points X in R
d , persistent homology provides a now

classical and powerful tool to construct persistence diagrams whose points can
be interpreted as homological features of X at different scales. These persistence
diagrams are obtained from filtrations, i.e. nested families of subspaces or simplicial
complexes, built on top of X. Among the many filtrations available to the user,
unions of growing balls ∪x∈XB(x, t) (sublevel sets of distance functions), t ∈ R

+,
and their nerves, the Čech complex filtration, or its usually easier to compute varia-
tion, the Vietoris–Rips filtration, are widely used. The main theoretical advantage of
these filtrations is that they have been shown to produce persistence diagrams that
are stable with respect to perturbations of X in the Hausdorff metric [6].
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Unfortunately, the Hausdorff distance turns out to be very sensitive to noise
and outliers, preventing the direct use of distance functions and classical Čech
or Vietoris–Rips filtrations to infer relevant topological properties from real noisy
data. Several attempts have been made in the recent years to overcome this issue.
Among them, the filtration defined by the sublevel sets of the distance-to-measure
(DTM) function introduced in [4], and some of its variants [10], have been proven
to provide relevant information about the geometric structure underlying the data.
Unfortunately, from a practical perspective, the exact computation of the sublevel
sets filtration of the DTM, that boils down to the computation of a k-th order
Voronoï diagram, and its persistent homology turn out to be far too expensive in
most cases. To address this problem, [8] introduces a variant of the DTM function,
the witnessed k-distance, whose persistence is easier to compute and proves that
the witnessed k-distance approximates the DTM persistence up to a fixed additive
constant. In [2, 3], a weighted version of the Vietoris–Rips complex filtration is
introduced to approximate the persistence of the DTM function, and several stability
and approximation results, comparable to the ones of [8], are established. Another
kind of weighted Vietoris–Rips complex is presented in [1].

Contributions In this paper, we introduce and study a new family of filtrations
based on the notion of DTM. Our contributions are the following:

• Given a set X ⊂ R
d , a weight function f defined on X and p ∈ [1,+∞],

we introduce the weighted Čech and Rips filtrations that extend the notion of
sublevel set filtration of power distances of [3]. Using classical results, we show
that these filtrations are stable with respect to perturbations of X in the Hausdorff
metric and perturbations of f with respect to the sup norm (Propositions 2 and 3).

• For a general function f , the stability results of the weighted Čech and Rips
filtrations are not suited to deal with noisy data or data containing outliers. We
consider the case where f is the empirical DTM-function associated to the input
point cloud. In this case, we show an outliers-robust stability result: given two
point clouds X,Y ⊆ R

d , the closeness between the persistence diagrams of the
resulting filtrations relies on the existence of a subset of X which is both close to
X and Y in the Wasserstein metric (Theorems 1 and 2).

Practical Motivations Even though this aspect is not considered in this paper, it is
interesting to mention that the DTM filtration was first experimented in the setting
of an industrial research project whose goal was to address an anomaly detection
problem from inertial sensor data in bridge and building monitoring [9]. In this
problem, the input data comes as time series measuring the acceleration of devices
attached to the monitored bridge/building. Using sliding windows and time-delay
embedding, these times series are converted into a series of fixed size point clouds
in R

d . Filtrations are then built on top of these point clouds and their persistence is
computed, giving rise to a time-dependent sequence of persistence diagrams that
are then used to detect anomalies or specific features occurring along the time
[11, 13]. In this practical setting it turned out that the DTM filtrations reveal to
be not only more resilient to noise but also able to better highlight topological
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Fig. 1 A synthetic example comparing Vietoris–Rips filtration to DTM filtration. The
first row represents two time series with very different behavior and their embed-
ding into R

3 (here a series (x1, x2, . . . , xn) is converted in the 3D point cloud
{(x1, x2, x3), (x2, x3, x4), . . . , (xn−2, xn−1, xn)}). The second row shows the persistence diagrams
of the Vietoris–Rips filtration built on top of the two point clouds (red and green points represent
respectively the zero-dimensional one-dimensional diagrams); one observes that the diagrams do
not clearly ‘detect’ the different behavior of the time series. The third row shows the persistence
diagrams of the DTM filtration built on top of the two point clouds; a red point clearly appears away
from the diagonal in the second diagram that highlights the rapid shift occurring in the second time
series

features in the data than the standard Vietoris–Rips filtrations, as illustrated on
a basic synthetic example on Fig. 1. One of the goals of the present work is to
provide theoretical foundations to these promising experimental results by studying
the stability properties of the DTM filtrations.

Organisation of the Paper Preliminary definitions, notations, and basic notions on
filtrations and persistence modules are recalled in Sect. 2. The weighted Čech and
Vietoris–Rips filtrations are introduced in Sect. 3, where their stability properties
are established. The DTM-filtrations are introduced in Sect. 4. Their main stability
properties are established in Theorems 1 and 2, and their relation with the sublevel
set filtration of the DTM-functions is established in Proposition 11. For the clarity
of the paper, the proofs of several lemmas have been postponed to Sects. 6 and 7.

The various illustrations and experiments of this paper have been computed with
the GUDHI library on Python [14].
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2 Filtrations and Interleaving Distance

In the sequel, we consider interleavings of filtrations, interleavings of persistence
modules and their associated pseudo-distances. Their definitions, restricted to the
setting of the paper, are briefly recalled in this section.

Let T = R
+ and E = R

d endowed with the standard Euclidean norm.

Filtrations of Sets and Simplicial Complexes A family of subsets (V t )t∈T of
E = R

d is a filtration if it is non-decreasing for the inclusion, i.e. for any s, t ∈ T ,
if s ≤ t then V s ⊆ V t . Given ε ≥ 0, two filtrations (V t )t∈T and (Wt )t∈T of E are
ε-interleaved if, for every t ∈ T , V t ⊆ Wt+ε and Wt ⊆ V t+ε . The interleaving
pseudo-distance between (V t )t∈T and (Wt )t∈T is defined as the infimum of such ε:

di((V
t )t∈T , (Wt )t∈T ) = inf{ε : (V t ) and (Wt ) are ε-interleaved}.

Filtrations of simplicial complexes and their interleaving distance are similarly
defined: given a set X and an abstract simplex S with vertex set X, a filtration of S
is a non-decreasing family (St )t∈T of subcomplexes of S. The interleaving pseudo-
distance between two filtrations (St1)t∈T and (St2)t∈T of S is the infimum of the
ε ≥ 0 such that they are ε-interleaved, i.e. for any t ∈ T , St1 ⊆ St+ε2 and St2 ⊆ St+ε1 .

Notice that the interleaving distance is only a pseudo-distance, as two distinct
filtrations may have zero interleaving distance.

Persistence Modules Let k be a field. A persistence module V over T = R
+ is a

pair V = ((Vt )t∈T , (vts)s≤t∈T ) where (Vt )t∈T is a family of k-vector spaces, and
(vts : Vs → V

t )s≤t∈T a family of linear maps such that:

• for every t ∈ T , vtt : V t → V t is the identity map,
• for every r, s, t ∈ T such that r ≤ s ≤ t , vts ◦ vsr = vtr .

Given ε ≥ 0, an ε-morphism between two persistence modules V and W is a family
of linear maps (φt : Vt →W

t+ε)t∈T such that the following diagrams commute for
every s ≤ t ∈ T :

V
s

V
t

W
s+

W
t+

φs

vt
s

φt

wt+
s+

If ε = 0 and each φt is an isomorphism, the family (φt )t∈T is said to be an
isomorphism of persistence modules.

An ε-interleaving between two persistence modules V and W is a pair of ε-
morphisms (φt : V

t → W
t+ε)t∈T and (ψt : W

t → V
t+ε)t∈T such that the

following diagrams commute for every t ∈ T :
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V
t

V
t+2

W
t+

φt

vt+2
t

ψt+
V

t+

W
t

W
t+2

φt+ψt

wt+2
t

The interleaving pseudo-distance between V and W is defined as

di(V,W) = inf{ε ≥ 0,V and W are ε-interleaved}.

In some cases, the proximity between persistence modules is expressed with a
function. Let η : T → T be a non-decreasing function such that for any t ∈ T ,
η(t) ≥ t . A η-interleaving between two persistence modules V and W is a pair of
families of linear maps (φt : Vt →W

η(t))t∈T and (ψt : Wt → V
η(t))t∈T such that

the following diagrams commute for every t ∈ T :

V
t

V
η(η(t))

W
η(t)

φt

v
η(η(t))
t

ψη(t)

V
η(t)

W
t

W
η(η(t))

φη(t)ψt

v
η(η(t))
t

When η is t �→ t + c for some c ≥ 0, it is called an additive c-interleaving and
corresponds with the previous definition. When η is t �→ ct for some c ≥ 1, it is
called a multiplicative c-interleaving.

A persistence module V is said to be q-tame if for every s, t ∈ T such that s < t ,
the map vts is of finite rank. The q-tameness of a persistence module ensures that we
can define a notion of persistence diagram—see [5]. Moreover, given two q-tame
persistence modules V,W with persistence diagrams D(V),D(W), the so-called
isometry theorem states that db(D(V),D(W)) = di(V,W) ([5, Theorem 4.11])
where db(·, ·) denotes the bottleneck distance between diagrams.

Relation Between Filtrations and Persistence Modules Applying the homology
functor to a filtration gives rise to a persistence module where the linear maps
between homology groups are induced by the inclusion maps between sets (or sim-
plicial complexes). As a consequence, if two filtrations are ε-interleaved then their
associated homology persistence modules are also ε-interleaved, the interleaving
homomorphisms being induced by the interleaving inclusion maps. Moreover, if the
modules are q-tame, then the bottleneck distance between their persistence diagrams
is upperbounded by ε.

The filtrations considered in this paper are obtained as union of growing balls.
Their associated persistence module is the same as the persistence module of a
filtered simplicial complex via the persistent nerve lemma ([7], Lemma 3.4). Indeed,
consider a filtration (V t )t∈T of E and assume that there exists a family of points
(xi)i∈I ∈ EI and a family of non-decreasing functions ri : T → R

+∪{−∞}, i ∈ I ,
such that, for every t ∈ T , V t is equal to the union of closed balls

⋃
I B(xi, ri (t)),
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with the convention B(xi,−∞) = ∅. For every t ∈ T , let Vt denote the cover
{B(xi, ri (t)), i ∈ I } of V t , and St be its nerve. Let V be the persistence module
associated with the filtration (V t )t∈T , and VN the one associated with the simplicial
filtration (St )t∈T . ThenV and VN are isomorphic persistence modules. In particular,
if V is q-tame, V and VN have the same persistence diagrams.

3 Weighted Čech Filtrations

In order to define the DTM-filtrations, we go through an intermediate and more
general construction, namely the weighted Čech filtrations. It generalizes the usual
notion of Čech filtration of a subset of R

d , and shares comparable regularity
properties.

3.1 Definition

In the sequel of the paper, the Euclidean space E = R
d , the index set T = R

+ and
a real number p ≥ 1 are fixed. Consider X ⊆ E and f : X→ R

+. For every x ∈ X
and t ∈ T , we define

rx(t) =
{
−∞ if t < f (x),(
tp − f (x)p

) 1
p otherwise.

We denote by Bf (x, t) = B(x, rx(t)) the closed Euclidean ball of center x and
radius rx(t). By convention, a Euclidean ball of radius −∞ is the empty set. For
p =∞, we also define

rx(t) =
{
−∞ if t < f (x),

t otherwise,

and the ballsBf (x, t) = B(x, rx(t)). Some of these radius functions are represented
in Fig. 2.

Definition 1 Let X ⊆ E and f : X → R
+. For every t ∈ T , we define the

following set:

V t [X, f ] =
⋃
x∈X

Bf (x, t).
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Fig. 2 Graph of t �→ rx(t) for f (x) = 1 and several values of p

The family V [X, f ] = (V t [X, f ])t≥0 is a filtration of E. It is called the weighted
Čech filtration with parameters (X, f, p). We denote by V[X, f ] its persistence
(singular) homology module.

Note that V [X, f ] and V[X, f ] depend on fixed parameter p, that is not made
explicit in the notation.

Introduce Vt [X, f ] = {Bf (x, t)}x∈X. It is a cover of V t [X, f ] by closed
Euclidean balls. Let N(Vt [X, f ]) be the nerve of the cover Vt [X, f ]. It is a simpli-
cial complex over the vertex set X. The family N(V[X, f ]) = (N(Vt [X, f ]))t≥0
is a filtered simplicial complex. We denote by VN[X, f ] its persistence (simplicial)
homology module. As a consequence of the persistent nerve theorem [7, Lemma
3.4], V[X, f ] and VN[X, f ] are isomorphic persistence modules.

When f = 0, V [X, f ] does not depend on p ≥ 1, and it is the filtration of E
by the sublevel sets of the distance function to X. In the sequel, we denote it by
V [X, 0]. The corresponding filtered simplicial complex, N(V[X, 0]), is known as
the usual Čech complex of X.

When p = 2, the filtration value of y ∈ E, i.e. the infimum of the t such that
y ∈ V t [X, f ], is called the power distance of y associated to the weighted set (X, f )
in [3, Definition 4.1]. The filtration V [X, f ] is called the weighted Čech filtration
([3, Definition 5.1]).

Example Consider the point cloud X drawn on the right (black). It is a 200-sample
of the uniform distribution on [−1, 1]2 ⊆ R

2. We choose f to be the distance
function to the lemniscate of Bernoulli (magenta). Let t = 0.2. Figure 3 represents
the sets V t [X, f ] for several values of p. The balls are colored differently according
to their radius.
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Fig. 3 The sets V t [X, f ] for t = 0.2 and several values of p

The following proposition states the regularity of the persistence module
V[X, f ].
Proposition 1 If X ⊆ E is finite and f is any function, then V[X, f ] is a pointwise
finite-dimensional persistence module.

More generally, ifX is a bounded subset ofE and f is any function, thenV[X, f ]
is q-tame.

Proof First, suppose that X is finite. Then N(V[X, f ]) is a filtration of a finite
simplicial complex, and thus VN[X, f ] is pointwise finite-dimensional. It is also
the case for V[X, f ] since it is isomorphic to VN[X, f ].

Secondly, suppose that X is bounded. Consider the ‘filtration value’ function:

tX : E −→ R
+

y �−→ inf
{
t ∈ R

+, ∃x ∈ X, y ∈ Bf (x, t)
}

For every y ∈ E, x ∈ X and t ≥ 0 the assertion y ∈ Bf (x, t) is equivalent to(‖x − y‖p + f (x)p
) 1
p ≤ t . Therefore the function tX can be written as follows:

tX(y) = inf{(‖x − y‖p + f (x)p
) 1
p , x ∈ X}.

It is 1-Lipschitz as it is the infimum of the set of the 1-Lipschitz functions y �→(‖x − y‖p + f (x)p
) 1
p . It is also proper as X is bounded.

Let Ṽ be the filtration of E defined for all t ≥ 0 by Ṽ t = t−1
X (] − ∞, t]). Let

Ṽ be its persistent homology module. The last two properties of tX (continuous and
proper) imply that Ṽ is q-tame ([5], Corollary 3.34).
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Notice that, since X may not be compact, V t [X, f ] may not be equal to Ṽ t .
However, it follows from the definition of tX that V [X, f ] and Ṽ are ε-interleaved
for every ε > 0. Therefore, V[X, f ] also is q-tame. ��

3.2 Stability

We still consider a subset X ⊆ E and a function f : X → R
+. Using the fact that

two ε-interleaved filtrations induce ε-interleaved persistence modules, the stability
results for the filtration V [X, f ] of this subsection immediately translate as stability
results for the persistence module V[X, f ].

The following proposition relates the stability of the filtration V [X, f ] with
respect to f .

Proposition 2 Let g : X→ R
+ be a function such that supx∈X |f (x)− g(x)| ≤ ε.

Then the filtrations V [X, f ] and V [X, g] are ε-interleaved.

Proof By symmetry, it suffices to show that, for every t ≥ 0, V t [X, f ] ⊆
V t+ε[X, g].
Let t ≥ 0. Choose y ∈ V t [X, f ], and x ∈ X such that y ∈ Bf (x, t), i.e.

(‖x−y‖p+
f (x)p

) 1
p ≤ t . Let us prove that y ∈ Bg(x, t+ε), i.e.

(‖x−y‖p+g(x)p) 1
p ≤ t+ε.

From g(x) ≤ f (x)+ε, we obtain
(‖x−y‖p+g(x)p) 1

p ≤ (‖x−y‖p+(f (x)+ε)p) 1
p .

Now, consider the function η �→ (‖x − y‖p + (f (x) + η)p
) 1
p . Its derivative

is η �→
(

f (x)+η(
‖x−y‖p+(f (x)+η)p

) 1
p

)p−1
. It is consequently 1-Lipschitz on R

+. The

Lipschitz property implies that

(‖x − y‖p + (
f (x)+ ε)p

) 1
p ≤ (‖x − y‖p + f (x)p

) 1
p + ε.

Hence
(‖x − y‖p + g(x)p

) 1
p ≤ (‖x − y‖p + (f (x) + ε)p

) 1
p ≤ (‖x − y‖p +

f (x)p
) 1
p + ε ≤ t + ε. ��

The following proposition states the stability of V [X, f ] with respect to X. It
generalizes [3, Proposition 4.3] (case p = 2).

Proposition 3 Let Y ⊆ E and suppose that f : X∪Y → R
+ is c-Lipschitz, c ≥ 0.

Suppose that X and Y are compact and that the Hausdorff distance dH (X, Y ) ≤ ε.

Then the filtrations V [X, f ] and V [Y, f ] are k-interleaved with k = ε(1+ cp)
1
p .

Proof It suffices to show that for every t ≥ 0, V t [X, f ] ⊆ V t+k[Y, f ].
Let t ≥ 0. Choose z ∈ V t [X, f ], and x ∈ X such that z ∈ Bf (x, t), i.e. ‖x − z‖ ≤
rx(t). From the hypothesis dH (X, Y ) ≤ ε, there exists y ∈ Y such that ‖y−x‖ ≤ ε.
Let us prove that z ∈ Bf (y, t + k), i.e. ‖z − y‖ ≤ ry(t + k).
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By triangle inequality, ‖z − y‖ ≤ ‖z − x‖ + ‖x − y‖ ≤ rx(t) + ε. It is enough
to show that rx(t)+ ε ≤ ry(t + k), i.e.

(
(t + k)p − f (y)p

) 1
p

︸ ︷︷ ︸
ry(t+k)

− (
tp − f (x)p

) 1
p

︸ ︷︷ ︸
rx(t)

≥ ε.

The left-hand side of this expression is decreasing in f (y). Moreover, since f is
c-Lipschitz, f (y) is at most f (x)+ cε. Therefore:

((t + k)p − f (y)p)
1
p − (tp − f (x)p)

1
p

≥ ((t + k)p − (f (x)+ cε)p)
1
p − (tp − f (x)p)

1
p .

It is now enough to prove that this last expression is not less than ε, which is the
content of Lemma 2. ��

Notice that the bounds in Proposition 2 and 3 are tight. In the first case, consider
for example E = R, the set X = {0}, and the functions f = 0 and g = ε. For
every t < ε, we have V t [Y, f ] = ∅, while V t [X, f ] �= ∅. Regarding the second
proposition, consider E = R, f : x �→ cx, X = {0} and Y = {ε}. We have, for

every t ≥ 0, V t [X, f ] = B(0, t) and V t [Y, f ] = B(ε, (tp − (cε)p)
1
p ). For every

t < ε(1 + cp)
1
p , we have (tp − (cε)p)

1
p < ε, hence 0 /∈ V t [Y, f ]. In comparison,

∀t ≥ 0, 0 ∈ V t [X, f ].
When considering data with outliers, the observed set X may be very distant

from the underlying signal Y in Hausdorff distance. Therefore, the tight bound in
Proposition 3 may be unsatisfactory. Moreover, a usual choice of f would be dX, the
distance function to X. But the bound in Proposition 2 then becomes ‖dX−dY‖∞ =
dH (X, Y ). We address this issue in Sect. 4 by considering an outliers-robust function
f , the so-called distance-to-measure function (DTM).

3.3 Weighted Vietoris–Rips Filtrations

Rather than computing the persistence of the Čech filtration of a point cloudX ⊆ E,
one sometimes consider the corresponding Vietoris–Rips filtration, which is usually
easier to compute.

If G is a graph with vertex set X, its corresponding clique complex is the
simplicial complex over X consisting of the sets of vertices of cliques of G. If S
is a simplicial complex, its corresponding flag complex is the clique complex of its
1-skeleton.

Recall that N(Vt [X, f ]) denotes the nerve of Vt [X, f ], where Vt [X, f ] is the
cover {Bf (x, t)}x∈X of V t [X, f ].
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Definition 2 We denote by Rips(Vt [X, f ]) the flag complex of N(Vt [X, f ]), and
by Rips(V[X, f ]) the corresponding filtered simplicial complex. It is called the
weighted Rips complex with parameters (X, f, p).

The following proposition states that the filtered simplicial complexes
N(V[X, f ]) and Rips(V[X, f ]) are 2-interleaved multiplicatively, generalizing
the classical case of the Čech and Vietoris–Rips filtrations (case f = 0).

Proposition 4 For every t ≥ 0,

N(Vt [X, f ]) ⊆ Rips(Vt [X, f ]) ⊆ N(V2t [X, f ])

Proof Let t ≥ 0. The first inclusion follows from that Rips(Vt [X, f ])) is the
clique complex of N(Vt [X, f ]). To prove the second one, choose a simplex
ω ∈ Rips(Vt [X, f ])). It means that for every x, y ∈ ω, Bf (x, t) ∩ Bf (y, t) �= ∅,
i.e. B(x, rx(t)) ∩ B(y, ry(t)) �= ∅. We have to prove that ω ∈ N(V2t [X, f ]), i.e.⋂

x∈ω B(x, rx(2t)) �= ∅.
For every x ∈ ω, one has rx(2t) ≥ 2rx(t). Indeed,

rx(2t) =
(
(2t)p − f (x)p

) 1
p

= 2
(
tp − (

f (x)

2
)p

) 1
p

≥ 2
(
tp − f (x)p

) 1
p = 2rx(t)

Using the fact that doubling the radius of pairwise intersecting balls is enough to
make them intersect globally, we obtain that ω ∈ N(V2t [X, f ]). ��

Using Theorem 3.1 of [1], the multiplicative interleaving Rips(Vt [X, f ]) ⊆
N(V2t [X, f ]) can be improved to Rips(Vt [X, f ]) ⊆ N(Vct [X, f ]), where c =√

2d
d+1 and d is the dimension of the ambient space E = R

d .
Note that weighted Rips filtration shares the same stability properties as the

weighted Čech filtration. Indeed, the proofs of Proposition 2 and 3 immediately
extend to this case.

In order to compute the flag complex Rips(Vt [X, f ]), it is enough to know the
filtration values of its 0- and 1-simplices. The following proposition describes these
values.

Proposition 5 Let p < +∞. The filtration value of a vertex x ∈ X is given by
tX({x}) = f (x).
The filtration value of an edge {x, y} ⊆ E is given by

tX({x, y}) =
{

max{f (x), f (y)} if ‖x − y‖ ≤ |f (x)p − f (y)p| 1
p ,

t otherwise,
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where t is the only positive root of

‖x − y‖ = (tp − f (x)p)
1
p + (tp − f (y)p)

1
p (1)

When ‖x− y‖ ≥ |f (x)p− f (y)p| 1
p , the positive root of Eq. (1) does not always

admit a closed form. We give some particular cases for which it can be computed.

• For p = 1, the root is tX({x, y}) = f (x)+f (y)+‖x−y‖
2 ,

• for p = 2, it is tX({x, y}) =
√(

(f (x)+f (y))2+‖x−y‖2
)(
(f (x)−f (y))2+‖x−y‖2

)
2‖x−y‖ ,

• for p = ∞, the condition reads ‖x − y‖ ≥ max{f (x), f (y)}, and the root is
tX({x, y}) = ‖x−y‖

2 . In either case, tX({x, y}) = max{f (x), f (y), ‖x−y‖2 }.
Proof The filtration value of a vertex x ∈ X is, by definition of the nerve, tX({x}) =
inf{s ∈ T ,Bf (x, s) �= ∅}. It is equal to f (x).

Also by definition, the filtration value of an edge {x, y}, with x, y ∈ X and x �= y,
is given by

tX({x, y}) = inf{s ∈ R, Bf (x, s) ∩ Bf (y, s) �= ∅}

Two cases may occur: the balls Bf (x, t ({x, y})) and Bf (x, t ({x, y})) have both
positive radius, or one of these is a singleton. In the last case, t ({x, y}) =
max{f (x), f (y)}. In the first case, we have ‖x− y‖ = rx(t)+ ry(t), i.e. ‖x− y‖ =
(tp − f (x)p)

1
p + (tp − f (y)p)

1
p . Notice that Eq. (1) admits only one solution

since the function t �→ (tp − f (x)p)
1
p + (tp − f (y)p)

1
p is strictly increasing on

[max{f (x), f (y)},+∞). ��
We close this subsection by discussing the influence of p on the weighted Čech

and Rips filtrations. Let D0(N(V[X, f, p])) be the persistence diagram of the
0th-homology of N(V[X, f, p]). We say that a point (b, d) of D0(V[X, f, p])
is non-trivial if b �= d . Let D0(Rips(V[X, f, p])) be the persistence diagram
of the 0th-homology of Rips(V[X, f, p]). Note that D0(N(V[X, f, p])) =
D0(Rips(V[X, f, p])) since the corresponding filtrations share the same 1-skeleton.

Proposition 6 The number of non-trivial points in D0(Rips(V[X, f, p])) is non-
increasing with respect to p ∈ [1,+∞). The same holds for D0(N(V[X, f, p])).
Proof The number of points in D0(Rips(V[X, f, p])) is equal to the cardinal of
X. Any p ≥ 1 being fixed, we can pair every x ∈ X with some edge {y, z} ∈
Rips(V[X, f, p]) such that the points of D0(Rips(V[X, f, p])) are of the form(
tX({x}), tX({y, z})

)
.

Notice that the filtration values of the points in X do not depend on p: for
all p ≥ 1 and x ∈ X, tX({x}) = f (x). Moreover, the filtration values of the
edges in Rips(V[X, f, p]) are non-increasing with respect to p. Indeed, for all
{y, z} ∈ Rips(V[X, f, p]) with y �= z, according to Proposition 5, the filtration

value tX({y, z}) is either max{f (x), f (y)} if ‖x−y‖ ≤ |f (x)p−f (y)p| 1
p , or is the
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only positive root of Eq. (1) otherwise. Note that the positive root of Eq. (1) is greater

than max{f (x), f (y)} and decreasing in p. Besides, the term |f (x)p − f (y)p| 1
p is

non-decreasing in p.
These two facts ensure that for every x ∈ X, the point of D0(Rips(V[X, f, p]))

created by x has an ordinate which is non-increasing with respect to p. In particular,
the number of non-trivial points in D0(Rips(V[X, f, p])) is non-increasing with
respect to p. ��

Figure 8 in Sect. 4.4 illustrates the previous proposition in the case of the DTM-
filtrations. Greater values of p lead to sparser 0th-homology diagrams.

Now, consider k > 0, and let Dk(N(V[X, f, p])) be the persistence diagram
of the kth-homology of N(V[X, f, p]). In this case, one can easily build examples
showing that the number of non-trivial points of Dk(N(V[X, f, p])) does not have
to be non-increasing with respect to p. The same holds for Dk(Rips(V[X, f, p])).

4 DTM-Filtrations

The results of previous section suggest that in order to construct a weighted Čech
filtration V [X, f ] that is robust to outliers, it is necessary to choose a function f

that depends on X and that is itself robust to outliers. The so-called distance-to-
measure function (DTM) satisfies such properties, motivating the introduction of
the DTM-filtrations in this section.

4.1 The Distance to Measure (DTM)

Let μ be a probability measure over E = R
d , and m ∈ [0, 1) a parameter. For

every x ∈ R
d , let δμ,m be the function defined on E by δμ,m(x) = inf{r ≥

0, μ(B(x, r)) > m}.
Definition 3 Let m ∈ [0, 1[. The DTM μ of parameter m is the function:

dμ,m : E −→ R

x �−→
√

1
m

∫ m
0 δ2

μ,t (x)dt

When m is fixed—which is the case in the following subsections—and when there
is no risk of confusion, we write dμ instead of dμ,m.

Notice that when m = 0, dμ,m is the distance function to supp(μ), the support of
μ.

Proposition 7 ([4], Corollary 3.7) For every probability measure μ and m ∈
[0, 1), dμ,m is 1-Lipschitz.
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A fundamental property of the DTM is its stability with respect to the probability
measure μ in the Wasserstein metric. Recall that given two probability measures μ
and ν over E, a transport plan between μ and ν is a probability measure π over
E ×E whose marginals are μ and ν. The Wasserstein distance with quadratic cost

between μ and ν is defined as W2(μ, ν) =
(

infπ
∫
E×E ‖x−y‖2dπ(x, y)

) 1
2
, where

the infimum is taken over all the transport plans π . When μ = μX and ν = μY are
the empirical measures of the finite point clouds X and Y , i.e the normalized sums
of the Dirac measures on the points of X and Y respectively, we write W2(X, Y )

instead of W2(μX,μY ).

Proposition 8 ([4], Theorem 3.5) Let μ, ν be two probability measures, and m ∈
(0, 1). Then

‖dμ,m − dν,m‖∞ ≤ m−
1
2W2(μ, ν).

Notice that for every x ∈ E, dμ(x) is not lower than the distance from x to
supp(μ), the support of μ. This remark, along with the Propositions 7 and 8, are the
only properties of the DTM that will be used to prove the results in the sequel of the
paper.

In practice, the DTM can be computed. If X is a finite subset of E of cardinal n,
we denote by μX its empirical measure. Assume that m = k0

n
, with k0 an integer. In

this case, dμX,m reformulates as follows: for every x ∈ E,

d2
μX,m

(x) = 1

k0

k0∑
k=1

‖x − pk(x)‖2,

where p1(x), . . . , pk0(x) are a choice of k0-nearest neighbors of x in X.

4.2 DTM-Filtrations

In the following, the two parameters p ∈ [1,+∞] and m ∈ (0, 1) are fixed.

Definition 4 Let X ⊆ E be a finite point cloud, μX the empirical measure of
X, and dμX the corresponding DTM of parameter m. The weighted Čech filtration
V [X, dμX ], as defined in Definition 1, is called the DTM-filtration associated with
the parameters (X,m,p). It is denoted by W [X]. The corresponding persistence
module is denoted by W[X].

Let Wt [X] = Vt [X, dμX ] denote the cover of Wt [X] as defined in Sect. 3, and
let N(Wt [X]) be its nerve. The family N(W[X])) = (N(Wt [X]))t≥0 is a filtered
simplicial complex, and its persistent (simplicial) homology module is denoted by
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Fig. 4 The sets V t [�, 0], V t [X, 0] and Wt [X] for p = 1, m = 0.1 and t = 0.3

WN[X]. By the persistent nerve lemma, the persistence modulesW[X] and WN[X]
are isomorphic.

As in Definition 2, Rips(Wt [X]) denotes the flag complex of N(Wt [X]), and
Rips(W[X]) the corresponding filtered simplicial complex.

Example 1 Consider the point cloud X drawn on the right. It is the union of X̃ and
�, where X̃ is a 50-sample of the uniform distribution on [−1, 1]2 ⊆ R

2, and � is a
300-sample of the uniform distribution on the unit circle. We consider the weighted
Čech filtrations V [�, 0] and V [X, 0], and the DTM-filtration W [X], for p = 1 and
m = 0.1. They are represented in Fig. 4 for the value t = 0.3.

Because of the outliers X̃, the value of t from which the sets V t [X, 0] are
contractible is small. On the other hand, we observe that the set Wt [X] does not
suffer too much from the presence of outliers.

We plot in Fig. 5 the persistence diagrams of the persistence modules associated
to Rips(V[�, 0]), Rips(V[X, 0]) and Rips(W[X]) (p = 1, m = 0.1).

Observe that the diagrams D(Rips(V[�, 0])) and D(Rips(W[X])) appear to be
close to each other, while D(Rips(V[X, 0])) does not.

Applying the results of Sect. 3, we immediately obtain the following proposition.

Proposition 9 Consider two measures μ, ν on E with compact supports X and Y .
Then

di(V [X, dμ], V [Y, dν]) ≤ m−
1
2W2(μ, ν)+ 2

1
p dH (X, Y ).
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Fig. 5 Persistence diagrams of some simplicial filtrations. Points in red (resp. green) represent the
persistent homology in dimension 0 (resp. 1)

In particular, if X and Y are finite subsets of E, using μ = μX and ν = νY , we
obtain

di(W [X],W [Y ]) ≤ m−
1
2W2(X, Y )+ 2

1
p dH (X, Y ).

Proof We use the triangle inequality for the interleaving distance:

di(V [X, dμ], V [Y, dν]) ≤ di(V [X, dμ], V [Y, dμ])︸ ︷︷ ︸
(1)

+ di(V [Y, dμ], V [Y, dν])︸ ︷︷ ︸
(2)

.

Term (1) From Proposition 3, we have di(V [X, dμ], V [Y, dμ]) ≤ (1 +
cp)

1
p dH (X, Y ), where c is the Lipschitz constant of dμ. According to Proposition 7,

c = 1. We obtain di(V [X, dμ], V [Y, dμ]) ≤ 2
1
p dH (X, Y ).

Term (2) From Proposition 2, we have di(V [Y, dμ], V [Y, dν]) ≤ ‖dμ − dν‖∞.

According to Proposition 8, ‖dμ − dν‖∞ ≤ m− 1
2W2(μ, ν).

The second point follows from the definition of the DTM-filtrations: W [X] =
V [X, dμX ] and W [Y ] = V [Y, dμY ] ��

Note that this stability result is worse than the stability of the usual Čech
filtrations, which only involves the Hausdorff distance. However, the termW2(X, Y )

is inevitable, as shown in the following example.
Let E = R, and ε ∈ (0, 1). Define μ = εδ0+ (1−ε)δ1, and ν = (1−ε)δ0+εδ1.

We have X = supp(μ) = supp(ν) = Y . If ε ≤ m ≤ 1 − ε, then dν(0) = 0, while

dμ(0) =
√

1− ε
m

. We deduce that di(V [X, dμ], V [Y, dν]) ≥ dμ(0) − dν(0) =√
1− ε

m
.

In comparison, the usual Čech filtrations V [X, 0] and V [Y, 0] are equal and does
not depend on μ and ν. In this case, it would be more robust to consider these usual
Čech filtrations. Now, in the case where the Hausdorff distance dH(X, Y ) is large,
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the usual Čech filtrations may be very distant. However, the DTM-filtrations may
still be close, as we discuss in the next subsection.

4.3 Stability when p = 1

We first consider the case p = 1, for which the proofs are simpler and results are
stronger.

We fix m ∈ (0, 1). If μ is a probability measure on E with compact support
supp(μ), we define

c(μ,m) = sup
supp(μ)

(dμ,m).

If μ = μ� is the empirical measure of a finite set � ⊆ E, we denote it c(�,m).

Proposition 10 Let μ be a probability measure on E with compact support �. Let
dμ be the corresponding DTM. Consider a set X ⊆ E such that � ⊆ X. The
weighted Čech filtrations V [�, dμ] and V [X, dμ] are c(μ,m)-interleaved.

Moreover, if Y ⊆ E is another set such that � ⊆ Y , V [X, dμ] and V [Y, dμ] are
c(μ,m)-interleaved.

In particular, if � is a finite set and μ = μ� its empirical measure, W [�] and
V [X, dμ� ] are c(�,m)-interleaved.

Proof Let c = c(μ,m). Since � ⊆ X, we have V t [�, dμ] ⊆ V t [X, dμ] for every
t ≥ 0.

Let us show that, for every t ≥ 0, V t [X, dμ] ⊆ V t+c[�, dμ]. Let x ∈ X, and
choose γ ∈ � a projection of x on the compact set �, i.e. one of the closest points
to x in �. By definition of the DTM, we have that dμ(x) ≥ ‖x − γ ‖. Together with
dμ(γ ) ≤ c, we obtain

t + c − dμ(γ ) ≥ t ≥ t − dμ(x)+ ‖x − γ ‖,

which means that Bdμ(x, t) ⊆ Bdμ(γ, t + c). The inclusion V t [X, dμ] ⊆
V t+c[�, dμ] follows.

If Y is another set containing �, we obtain V t [X, dμ] ⊆ V t+c[�, dμ] ⊆
V t+c[Y, dμ] for every t ≥ 0. ��
Theorem 1 Consider two measures μ, ν on E with supports X and Y . Let μ′, ν′
be two measures with compact supports � and � such that � ⊆ X and � ⊆ Y . We
have

di(V [X, dμ], V [Y, dν]) ≤ m−
1
2W2(μ, μ

′)+m−
1
2W2(μ

′, ν ′)+m−
1
2W2(ν

′, ν)

+ c(μ′,m)+ c(ν ′,m).
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In particular, if X and Y are finite, we have

di(W [X],W [Y ]) ≤ m−
1
2 W2(X,�)+m− 1

2W2(�,�)+m− 1
2W2(�, Y )+c(�,m)+c(�,m).

Moreover, with � = Y , we obtain

di(W [X],W [�]) ≤ m−
1
2W2(X,�)+m−

1
2W2(�,�)+ c(�,m)+ c(�,m).

Proof Let dX = dμ, dY = dν , d� = dμ′ and d� = dν ′ . We prove the first assertion
by introducing the following filtrations between V [X, dX] and V [Y, dY ]:

V [X, dX] ↔ V [X, d�] ↔ V [� ∪�, d� ] ↔ V [� ∪�, d�] ↔ V [Y, d�] ↔ V [Y, dY ].

We have:

• di(V [X, dX], V [X, d�]) ≤ m−
1
2W2(μ,μ

′) (Propositions 2 and 8),

• di(V [X, d�], V [� ∪�, d�]) ≤ c(μ′,m) (Proposition 10),

• di(V [� ∪�, d�], V [� ∪�, d�]) ≤ m−
1
2W2(μ

′, ν′) (Propositions 2 and 8),

• di(V [� ∪�, d�], V [Y, d�]) ≤ c(ν′,m) (Proposition 10),

• di(V [Y, d�], V [Y, dY ]) ≤ m−
1
2W2(ν

′, ν) (Propositions 2 and 8).

The inequality with X and Y finite follows from defining μ, ν,μ′ and ν′ to be
the empirical measures on X,Y, � and �, and by recalling that the DTM filtrations
W [X] and W [Y ] are equal to the weighted Čech filtration V [X, dμ] and V [Y, dν].��

The last inequality of Theorem 1 can be seen as an approximation result. Indeed,
suppose that � is some underlying set of interest, and X is a sample of it with,
possibly, noise or outliers. If one can find a subset � of X such that X and � are
close to each other—in the Wasserstein metric—and such that � and � are also
close, then the filtrations W [X] and W [�] are close. Their closeness depends on the
constants c(�,m) and c(�,m). More generally, if X is finite and μ′ is a measure
with compact support � ⊂ X not necessarily finite, note that the first inequality
gives

di(W [X], V [�, dμ′ ]) ≤ m−
1
2W2(X,�)+m−

1
2W2(μ�,μ

′)+ c(�,m)+ c(μ′,m).

For any probability measure μ of support � ⊆ E, the constant c(μ,m) might
be seen as a bias term, expressing the behaviour of the DTM over �. It relates
to the concentration of μ on its support. Recall that a measure μ with support
� is said to be (a, b)-standard, with a, b ≥ 0, if for all x ∈ � and r ≥ 0,
μ(B(x, r)) ≥ min{arb, 1}. For example, the Hausdorff measure associated to a
compact b-dimensional submanifold of E is (a, b)-standard for some a > 0. In this
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case, a simple computation shows that there exists a constant C, depending only on

a and b, such that for all x ∈ �, dμ,m(x) ≤ Cm
1
b . Therefore, c(μ,m) ≤ Cm

1
b .

Regarding the second inequality of Theorem 1, suppose for the sake of simplicity
that one can choose � = �. The bound of Theorem 1 then reads

di(W [X],W [Y ]) ≤ m−
1
2W2(X,�)+m−

1
2W2(�, Y )+ 2c(�,m).

Therefore, the DTM-filtrations W [X] and W [Y ] are close to each other if μX and
μY are both close to a common measure μ� . This would be the case if X and Y are
noisy samples of �. This bound, expressed in terms of Wasserstein distance rather
than Hausdorff distance, shows the robustness of the DTM-filtration to outliers.

Notice that, in practice, for finite data sets X,Y and for given � and �,
the constants c(�,m) and c(�,m) can be explicitly computed, as it amounts to
evaluating the DTM on � and �. This remark holds for the bounds of Theorem 1.

Example 2 Consider the set X = X̃∪� as defined in the example page 47. Figure 6
displays the sets Wt [X], V t [X, dμ� ] and Wt [�] for the values p = 1, m = 0.1 and
t = 0.4 and the persistence diagrams of the corresponding weighted Rips filtrations,
illustrating the stability properties of Proposition 10 and Theorem 1.

The following proposition relates the DTM-filtration to the filtration of E by the
sublevels sets of the DTM.

Fig. 6 Filtrations for t = 0.4, and their corresponding persistence diagrams
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Proposition 11 Let μ be a probability measure on E with compact support K . Let
m ∈ [0, 1) and denote by V the sublevel sets filtration of dμ. Consider a finite set
X ⊆ E. Then

di(V ,W [X]) ≤ m−
1
2W2(μ,μX)+ 2ε + c(μ,m),

with ε = dH (K ∪X,X).
Proof First, notice that V = V [E, dμ]. Indeed, for every t ≥ 0, we have V t ⊆
V t [E, dμ] by definition of the weighted Čech filtration. To prove that V t [E, dμ] ⊆
V t , let x ∈ V t [E, dμ], and y ∈ E such that x ∈ Bdμ(y, t). We have ‖x − y‖ ≤
t − f (y). For dμ is 1-Lipschitz, we deduce f (x) ≤ f (y)+ ‖x − y‖ ≤ f (y)+ t −
f (y) ≤ t . Hence x ∈ V t .

Then we compute:

di(V ,W [X]) = di(V [E, dμ], V [X, dμX ])
≤ di(V [E, dμ], V [X ∪K, dμ])+ di(V [X ∪K, dμ], V [X, dμ])

+ di(V [X, dμ], V [X, dμX ])
≤ c(μ,m)+ 2ε +m−

1
2W2(μ,μX),

using Proposition 8 for the first term, Proposition 3 for the second one, and
Propositions 2 and 10 for the third one. ��

As a consequence, one can use the DTM-filtration to approximate the persistent
homology of the sublevel sets filtration of the DTM, which is expensive to compute
in practice.

We close this subsection by noting that a natural strengthening of Theorem 1
does not hold: let m ∈ (0, 1) and E = R

n with n ≥ 1. There is no constant C such
that, for every probability measure μ, ν on E with supports X and Y , we have:

di(V [X, dμ,m], V [Y, dν,m]) ≤ CW2(μ, ν).

The same goes for the weaker statement

di(V[X, dμ,m],V[Y, dν,m]) ≤ CW2(μ, ν).

We shall prove the statement forE = R. Let q ∈ (0, 1) such that q < m < 1−q ,
and ε ∈ [0, q). Let x ∈ (−1, 0) to be determined later. Defineμ = qδ−1+(1−q)δ1,
and νε = (q − ε)δ−1 + (1 − q)δ1 + εδx , with δ denoting the Dirac mass. Let
X = {−1, 1} ⊂ E and Y = {−1, x, 1}.
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It is clear that W2(μ, ν
ε) = (x+1)ε < ε. Using the triangle inequality, we have:

di(V[X, dμ,m],V[Y, dνε,m]) ≥ di(V[X, dμ,m],V[Y, dμ,m])
− di(V[Y, dνε,m],V[Y, dμ,m])

≥ di(V[X, dμ,m],V[Y, dμ,m])−m−
1
2 ε

Thus it is enough to show that di(V[X, dμ,m],V[Y, dμ,m]) is positive.
Since 1− q > m, we have dμ,m(1) = 0. Using Proposition 5, we deduce that the

persistence barcode of the 0th homology of V [X, dμ] consists of the bars [0,+∞[
and [dμ,m(−1), 1

2 (dμ,m(−1)+ dμ,m(1)+ 2)].
Similarly, the persistence barcode of the 0th homology of V [Y, dμ] consists

of the bars [0,+∞[, [dμ,m(−1), 1
2 (dμ,m(−1) + dμ,m(x) + (1 + x))] and

[dμ,m(x), 1
2 (dμ,m(x)+ (1− x))].

Notice that, since q > 0 and x < 0, by definition of the DTM, we have
dμ,m(x) < 1−x. Hence the last bar is not a singleton. Moreover, if x is close enough
to 0, we have dμ,m(−1) < dμ,m(x)+1−x. Indeed, with x = 0, dμ,m(x)+1−x = 2,

and we have dμ,m(−1) = 2
√

m−q
m

< 2. Hence the second bar is not a singleton as
well.

As a consequence, if x is close enough to 0, the interleaving distance between
these two barcodes is positive.

4.4 Stability when p > 1

Now assume that p > 1,m ∈ (0, 1) being still fixed. In this case, stability properties
turn out to be more difficult to establish. For small values of t , Lemma 1 gives a tight
non-additive interleaving between the filtrations. However, for large values of t , the
filtrations are poorly interleaved. To overcome this issue we consider stability at
the homological level, i.e. between the persistence modules associated to the DTM
filtrations.

Let us show first why one cannot expect a similar result as Proposition 10.
Consider the ambient space E = R

2 and the sets � = {0} and X = � ∪ {1}.
We have dμ�(1) = 1 and, for all t ≥ 1, Wt [�] = B(0, t) and V t [X, dμ� ] =
B(0, t)∪B(

1, (tp−1)
1
p
)
. The sets V t [X, dμ� ] are represented in Fig. 7 for t = 1.5,

t = 5 and several values of p.

For p = 1, the ball B
(
1, (tp − 1)

1
p
)

is contained in B(0, t). Whereas for p > 1,

the radius (tp − 1)
1
p is asymptotically equal to t + ot→+∞( 1

tp−1 ). Therefore, an

ε ≥ 0 for which the ball B
(
1, (tp − 1)

1
p
)

would be included in B(0, t + ε) for all
t ≥ 0 should not be lower than 1 = dH (�,X). Therefore, di(W [�], V [X, dμ� ]) =
1 = dH (�,X).
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Fig. 7 Some sets V t [X, dμ� ] for t = 1.5 (first row) and t = 5 (second row)

Even though the filtrations W [�] and V [X, dμ� ] are distant, the set V t [X, dμ� ]
is contractible for all t ≥ 0, and therefore the interleaving distance between the
persistence modules W[�] and V[X, dμ� ] is 0.

In general, and in the same spirit as Proposition 10, we can obtain a bound on the
interleaving distance between the persistence modules W[�] and V[X, dμ� ] which
does not depend on X—see Proposition 12.

If μ is a probability measure on E with compact support �, we define

c(μ,m,p) = sup
�

(dμ,m)+ κ(p)tμ(�),

where κ(p) = 1 − 1
p

, and tμ(�) is the filtration value of the simplex � in

N(V[�, dμ]), the (simplicial) weighted Čech filtration. Equivalently, tμ(�) is the
value t from which all the balls Bdμ(γ, t), γ ∈ �, share a common point.
If μ = μ� is the empirical measure of a finite set � ⊆ E, we denote it c(�,m, p).

Note that we have the inequality 1
2 diam(�) ≤ tμ(�) ≤ 2diam(�), where

diam(�) denotes the diameter of �. This follows from writing tμ(�) = inf{t ≥
0,∩γ∈�Bdμ(γ, t) �= ∅} and using that ∀γ ∈ �, dμ(γ ) ≤ diam(�).

Proposition 12 Let μ be a measure on E with compact support �, and dμ be the
corresponding DTM of parameter m. Consider a set X ⊆ E such that � ⊆ X. The
persistence modules V[�, dμ] and V[X, dμ] are c(μ,m,p)-interleaved.

Moreover, if Y ⊆ E is another set such that � ⊆ Y , V[X, dμ] and V[Y, dμ] are
c(μ,m,p)-interleaved.
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In particular, if � is a finite set and μ = μ� its empirical measure, W[�] and
V[X, dμ� ] are c(�,m, p)-interleaved.

The proof involves the two following ingredients, whose proofs are postponed to
Sect. 4.5. The first lemma gives a (non-additive) interleaving between the filtrations
W [�] and V [X, dμ� ], relevant for low values of t , while the second proposition
gives a result for large values of t .

Lemma 1 Let μ,� and X be as defined in Proposition 12. Let φ : t �→ 21− 1
p t +

sup� dμ. Then for every t ≥ 0,

V t [�, dμ] ⊆ V t [X, dμ] ⊆ V φ(t)[�, dμ].

In the remainder of the paper, we say that a homology groupHn(·) is trivial if it is
of rank 0 when n > 0, or if it is of rank 1 when n = 0. We say that a homomorphism
between homology groupsHn(·)→ Hn(·) is trivial if the homomorphism is of rank
0 when n > 0, or if it is of rank 1 when n = 0.

Proposition 13 Let μ,� and X be as defined in Proposition 12. Consider the
map vt∗ : V

t [X, dμ] → V
t+c[X, dμ] induced in homology by the inclusion

vt : V t [X, dμ] → V t+c[X, dμ]. If t ≥ tμ(�), then vt is trivial.

Proof of Proposition 12 Denote c = c(μ,m,p). For every t ≥ 0, denote by vt :
V t [X, dμ] → V t+c[X, dμ], wt : V t [�, dμ] → V t+c[�, dμ] and j t : V t [�, dμ] →
V t [X, dμ] the inclusion maps, and vt∗, wt∗, and j t∗ the induced maps in homology.

Notice that, for t ≤ tμ(�), the term 21− 1
p t + sup� dμ which appears in Lemma 1

can be bounded as follows:

21− 1
p t + sup

�

dμ = t + (21− 1
p − 1)t + sup

�

dμ

≤ t + (21− 1
p − 1)tμ(�)+ sup

�

dμ�

≤ t + (1− 1

p
)tμ(�)+ sup

�

dμ�

= t + c

where, for the second line, we used 21− 1
p − 1 ≤ 1 − 1

p
(Lemma 3). Consequently,

for every t ≤ tμ(�), we have V t [X, dμ] ⊆ V t+c[�, dμ]. Thus, for t ≥ 0, we can
define a map πt : Vt [X, dμ] → V

t+c[�, dμ] as follows: πt is the map induced by
the inclusion if t ≤ tμ(�), and the zero map if t ≥ tμ(�).

The families (πt )t≥0 and (j t∗)t≥0 clearly are c-morphisms of persistence mod-
ules. Let us show that the pair ((πt )t≥0,(j t∗)t≥0) defines a c-interleaving between
V[�, dμ] and V[X, dμ].
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Let t ≥ 0. We shall show that the following diagrams commute:

V
t [X, dμ] V

t+c[X, dμ]

V
t+c[ μ]

πt

vt∗

j t+c∗

V
t [X, dμ]

V
t [ μ] V

t+c[ μ]

πt

j t∗

wt∗

If t ≤ tμ(�), these diagrams can be obtained by applying the homology functor to
the inclusions

V t [�, dμ] ⊆ V t [X, dμ] ⊆ V t+c[�, dμ] ⊆ V t+c[X, dμ].

If t ≥ tμ(�), the homology group V
t [�, dμ] is trivial. Therefore the commutativity

of the second diagram is obvious, and the commutativity of the first one follows
from Proposition 13. This shows that V[�, dμ] and V[X, dμ] are c-interleaved.

If Y is another set containing �, define, for all t ≥ 0, the inclusions ut :
V t [Y, dμ] → V t+c[Y, dμ] and kt : V t [�, dμ] → V t+c[Y, dμ]. We can also define a
map θ t : Vt [Y, dμ] → V

t+c[�, dμ] as we did for πt : Vt [X, dμ] → V
t+c[�, dμ].

We can compose the previous diagrams to obtain the following:

V
t [X, dμ] V

t+c[X, dμ] V
t+2c[X, dμ]

V
t+c[ μ] V

t+2c[ μ]

V
t+c[Y, dμ]

πt

vt∗

πt+c

vt+c∗

j t+c∗

kt+c∗
wt+c∗

j t+2c∗

θt+c

Since all the triangles commute, so does the following:

V
t [X, dμ] V

t+2c[X, dμ]

V
t+c[Y, dμ]

kt+c∗ πt

vt+2c∗

j t+2c∗ θt+c

We can obtain the same interchanging X and Y . Therefore, by definition, the per-
sistence modules V[X, dμ� ] and V[Y, dμ� ] are c-interleaved, with the interleaving
((kt+c∗ πt )t≥0, (j

t+c∗ θ t )t≥0). ��
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Theorem 2 Consider two measures μ, ν on E with supports X and Y . Let μ′, ν′
be two measures with compact supports � and � such that � ⊆ X and � ⊆ Y . We
have

di(V[X, dμ],V[Y, dν ]) ≤ m−
1
2W2(μ, μ

′)+m−
1
2 W2(μ

′, ν ′)+m−
1
2 W2(ν

′, ν)

+ c(μ′, m, p)+ c(ν ′, m, p).

In particular, if X and Y are finite, we have

di(W[X],W[Y ]) ≤ m−
1
2W2(X, �)+m−

1
2W2(�,�)+m−

1
2W2(�, Y )

+ c(�,m, p)+ c(�,m,p).

Moreover, with � = Y , we obtain

di(W[X],W[�]) ≤ m−
1
2W2(X,�)+m−

1
2W2(�,�)+ c(�,m, p)+ c(�,m,p).

Proof The proof is the same as Theorem 1, using Proposition 12 instead of
Proposition 10. ��

Notice that when p = 1, the constant c(�,m, p) is equal to the constant c(�,m)
defined in Sect. 4.3, and we recover Theorem 1 in homology.

As an illustration of these results, we represent in Fig. 8 the persistence diagrams
associated to the filtration Rips(W[X]) for several values of p. The point cloud X
is the one defined in the example page 47. Observe that, as stated in Proposition 6,
the number of red points (homology in dimension 0) is non-increasing with respect
to p.

Fig. 8 Persistence diagrams of the simplicial filtrations Rips(W[X]) for several values of p
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4.5 Proof of Lemma 1 and Proposition 13

We first prove the lemma stated in the previous subsection.

Proof of Lemma 1 Denote f = dμ. Let x ∈ X, and γ a projection of x on �. Let
us show that for every t ≥ 0,

Bf (x, t) ⊆ Bf (γ, 21− 1
p t + f (γ )),

and the lemma will follow.
Define d = f (γ ). Let u ∈ E. Remind that

⎧⎨
⎩
u ∈ Bf (γ, t) ⇐⇒ t ≥ (‖u− γ ‖p + f (γ )p

) 1
p ,

u ∈ Bf (x, t) ⇐⇒ t ≥ (‖u− x‖p + f (x)p
) 1
p .

We shall only use

{
u ∈ Bf (γ, t) ⇐ t ≥ ‖u− γ ‖ + d,

u ∈ Bf (x, t)  ⇒ t ≥ (‖u− x‖p + ‖x − γ ‖p) 1
p .

Let u ∈ Bf (x, t). Let us prove that u ∈ Bf (γ, 21− 1
p t+d). If ‖u−γ ‖ ≤ ‖γ−x‖,

then t ≥ ‖u− γ ‖, and we deduce u ∈ Bf (γ, t + d) ⊆ Bf (γ, 21− 1
p t + d).

Else, we have ‖u−γ ‖ ≥ ‖γ−x‖. Consider the line segment [γ, u] and the sphere
S(γ, ‖γ−x‖) of center γ and radius ‖γ−x‖. The intersection S(γ, ‖γ−x‖)∩[γ, u]
is a singleton. Call its element x ′. The situation is represented in Fig. 9.

We have ‖u− x ′‖ ≤ ‖u− x‖ and ‖γ − x ′‖ = ‖γ − x‖. Therefore

(‖u− x ′‖p + ‖x ′ − γ ‖p) 1
p ≤ (‖u− x‖p + ‖x − γ ‖p) 1

p .

Fig. 9 Definition of the point x′
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We also have ‖γ − u‖ = ‖γ − x ′‖ + ‖x ′ − u‖ and
(‖u− x‖p + ‖x − γ ‖p) 1

p ≤ t .
Thus it follows from the last inequality that

(‖u− x ′‖p + (‖u− γ ‖ − ‖u− x ′‖)p) 1
p ≤ t .

The left-hand term of this inequality is not lower than 2
1
p−1‖u−γ ‖. Indeed, consider

the function s �→ (
sp + (‖u− γ ‖− s)p

) 1
p defined for s ∈ [0, ‖u− γ ‖]. One shows

directly, by computing its derivative, that its minimum is 2
1
p−1‖u − γ ‖, attained at

s = ‖u−γ ‖
2 .

We deduce that 2
1
p−1‖u − γ ‖ ≤ t , and ‖u − γ ‖ ≤ 21− 1

p t . Thus u ∈
Bf (γ, 21− 1

p t + d). ��
Notice that the previous lemma gives a tight bound, as we can see with the

following example. Consider set � = {0} ⊂ R,L > 0, andX = �∪{x}with x = L
2 .

Let m < 1
2 , and f = dμ� , which is the function distance to �. For all t ≥ 2

1
p
−1
L,

we have L ∈ Bf (x, t). Indeed, rx(2
1
p
−1
L) = (

(2
1
p
−1
L)p − (L2 )

p
) 1
p = L

2 . In

comparison, for every t < φ(2
1
p
−1
L) = L, L /∈ Bf (0, t).

Following this example, we can find a lower bound on the interleaving distance
between the persistence modules W[�] and V[X, dμ� ]. Consider L > 0, the set
� = {0, 2L} ⊂ R, x = L

2 , and X = � ∪ {x, 2L − x}. Let m < 1
2 , and

f = dμ� . The persistence diagram of the 0th-homology of W [�] consists of two
points, (0,+∞) and (0, L). Regarding V [X, f ], the point of finite ordinate in the

persistence diagram of its 0th-homology is (0, 2
1
p−1

L). Indeed, for t = 2
1
p−1

L, we
have L ∈ Bf (x, t) and L ∈ Bf (L − x, t), hence the set V t [X, dμ� ] is connected.

We deduce that these persistence modules are at least (1− 2
1
p
−1
)L-interleaved.

In comparison, the upper bound we prove in Proposition 12 is (1− 1
p
)L.

We now prove the proposition stated in the previous subsection.

Proof of Proposition 13 Denote f = dμ. Let t ≥ tμ(�). By definition of tμ(�),
there exists a point O� ∈ ⋂

γ∈� Bf (γ, tμ(�)).
In order to show that vt∗ : Vt [X, dμ] → V

t+c[X, dμ] is trivial, we introduce an
intermediate set between V t [X, dμ� ] and V t+c[X, dμ� ]:

⎧⎪⎪⎨
⎪⎪⎩

V t [X, dμ� ] =⋃
x∈X\� Bf (x, t) ∪⋃

γ∈� Bf (γ, t),

Ṽ t :=⋃
x∈X\� Bf (x, t) ∪⋃

γ∈� Bf (γ, t + c),

V t+c[X, dμ� ] =⋃
x∈X\� Bf (x, t + c) ∪⋃

γ∈� Bf (γ, t + c).

Since t ≥ tμ(�), we have O� ∈ Ṽ t . Let us show that Ṽ t is star-shaped around O�.
Let x ∈ X and consider γ a projection of x on �. We first prove that Bf (x, t) ∪

Bf (γ, t + c) is star-shaped around O� . Let y ∈ Bf (x, t). We have to show that
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Fig. 10 Construction of an intermediate set Ṽ t

the line segment [y,O�] is a subset of Bf (x, t)∪Bf (γ, t + c). Let D be the affine
line going through y and O� , and denote by q the orthogonal projection on D.
We have [y,O�] ⊆ [y, q(x)] ∪ [q(x),O�]. The first line segment [y, q(x)] is a
subset of Bf (x, t). Regarding the second line segment [q(x),O�], let us show that
q(x) ∈ Bf (γ, t + c), and [q(x),O�] ⊆ Bf (γ, t + c) will follow. The situation is
pictured in Fig. 10.

According to Lemma 4,

‖γ − q(x)‖2 ≤ ‖x − γ ‖2 + ‖x − q(x)‖(2‖γ − q(γ )‖ − ‖x − q(x)‖).

Let d = ‖x−q(x)‖. Since d = ‖x−q(x)‖ ≤ (
tp−dμ(x)p

) 1
p ≤ (

tp−‖x−γ ‖p) 1
p ,

we have ‖x− γ ‖ ≤ (tp − dp)
1
p . Moreover, ‖γ − q(γ )‖ ≤ ‖γ −O�‖ ≤ tμ(�). The

last inequality then gives

‖γ − q(x)‖2 ≤ (tp − dp)
2
p + d(2tμ(�)− d).

According to Lemma 5, we obtain that ‖γ −q(x)‖ is not greater than t+κ(p)tμ(�).
Therefore, we have the inequality

(
(t + κ(p)tμ(�)+ f (γ ))p − f (γ )p

) 1
p ≥ (

t + κ(p)tμ(�)+ f (γ )
)− f (γ ) ≥ ‖γ − q(x)‖,

and we deduce q(x) ∈ Bf

(
γ, t + κ(p)tμ(�)+ f (γ )

) ⊂ Bf (γ, t + c).
In conclusion, [y,O�] ⊂ Bf (x, t) ∪ Bf (γ, t + c). This being true for every

y ∈ Bf (x, t), and obviously true for y ∈ Bf (γ, t + c), we deduce that Bf (x, t) ∪
Bf (γ, t + c) is star-shaped around O� . Finally, since O� ∈ ⋂

γ∈� Bf (γ, tX(�)),

we have that Ṽ t is star-shaped around O� .
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To conclude, notice that the map vt∗ factorizes through H∗(Ṽ t ). Indeed, consider
the diagram of inclusions:

V t [X, dμ ] V t V t+c[X, dμ ].
vt

Applying the singular homology functor, we obtain

V
t [X, dμ ] H∗(V t ) V

t+c[X, dμ ].

vt∗

Since Ṽ t is star-shaped, H∗(Ṽ t ) is trivial, and so is vt∗. ��

5 Conclusion

In this paper we have introduced the DTM-filtrations that depend on a parameter
p ≥ 1. This new family of filtrations extends the filtration introduced in [3] that
corresponds to the case p = 2.

The established stability properties are, as far as we know, of a new type:
the closeness of two DTM-filtrations associated to two data sets relies on the
existence of a well-sampled underlying object that approximates both data sets in
the Wasserstein metric. This makes the DTM filtrations robust to outliers. Even
though large values of p lead to persistence diagrams with less points in the 0th
homology, the choice of p = 1 gives the strongest stability results. When p > 1, the
interleaving bound is less significant since it involves the diameter of the underlying
object, but the obtained bound is consistent with the case p = 1 as it converges to
the bound for p = 1 as p goes to 1.

It is interesting to notice that the proofs rely on only a few properties of the DTM.
As a consequence, the results should extend to other weight functions, such that the
DTM with an exponent parameter different from 2, or kernel density estimators.
Some variants concerning the radius functions in the weighted Čech filtration, are
also worth considering. The analysis shows that one should choose radius functions
whose asymptotic behaviour look like the one of the case p = 1. In the same spirit
as in [3, 12] where sparse-weighted Rips filtrations were considered, it would also
be interesting to consider sparse versions of the DTM-filtrations and to study their
stability properties.

Last, the obtained stability results, depending on the choice of underlying sets,
open the way to the statistical analysis of the persistence diagrams of the DTM-
filtrations, a problem that will be addressed in a further work.
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6 Supplementary Results for Sect. 3

Lemma 2 Let c, ε and x be non-negative real numbers, and t ≥ a. Define α =
(1+ cp)

1
p and k = εα. Then t + k ≥ a + cε, and

(
(t + k)p − (x + cε)p

) 1
p − (tp − xp)

1
p ≥ ε

Proof Let D = {(t, x), t ≥ x ≥ 0} ⊆ R
2. Let us find the minimum of

� : D −→ R

(t, x) �−→ (
(t + αε)p − (x + cε)p

) 1
p − (tp − xp)

1
p

An x > 0 being fixed, we study φ : t �→ �(t, x) on the interval (x,+∞). Its
derivative is

φ′(t) = (t + αε)p−1

(
(t + αε)p − (x + cε)p

)1− 1
p

− tp−1

(tp − xp)
1− 1

p

We solve:

φ′(t) = 0 ⇐⇒ (t + αε)p−1(tp − xp)
1− 1

p = tp−1((t + αε)p − (x + cε)p)
1− 1

p

⇐⇒ (t + αε)p(tp −xp) = tp((t + αε)p −(x + cε)p)

⇐⇒ (t + αε)pxp = tp(x + cε)p

⇐⇒ t + αε

t
= x + cε

x

⇐⇒ t = α

c
x

We obtain the second line by raising the equality to the power of p
p−1 . Hence the

derivative of φ vanishes only at t = α
c
x. Together with lim+∞ φ = +∞, we deduce

that φ attains its minimum at t = x or t = α
c
x.

Let us show that φ(α
c
x) = ε.

φ(α
c
x) = �(α

c
x, x) = (

(α
c
x + αε)p − (x + cε)p

) 1
p − (

(α
c
x)p − xp

) 1
p

= (
(α
c
)p(x + cε)p − (x + cε)p

) 1
p − x

(
(α
c
)p − 1

) 1
p

= (x + cε)
(
(α
c
)p − 1

) 1
p − x

(
(α
c
)p − 1

) 1
p

= cε
(
(α
c
)p − 1

) 1
p

Using α = (1+ cp)
1
p , one obtains that c

(
(α
c
)p − 1

) 1
p = 1. Therefore, φ(α

c
x) = ε.
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Secondly, consider � on the interval {(x, x), x ≥ 0}.
The function t �→ �(x, x) = ((x+ αε)p − (x + cε)p)

1
p is increasing. Its minimum

is �(0, 0) = ((αε)p − (cε)p)
1
p = ε(αp − cp)

1
p = ε.

In conclusion, on every interval (x,+∞)× {x} ⊆ D, � admits ε as a minimum.
Therefore, ε is the minimum of � on D. ��

7 Supplementary Results for Sect. 4

Lemma 3 For all p ≥ 1, 21− 1
p − 1 ≤ 1− 1

p
.

Proof The convexity property of the function x �→ 2x gives, for all x ∈ [0, 1],
2x ≤ x + 1. Hence 21− 1

p − 1 ≤ 1− 1
p

. ��
Lemma 4 Let γ, x ∈ E, D an affine line, and q(γ ), q(x) the projections of γ and
x on D. Then

‖γ − q(x)‖2 ≤ ‖x − γ ‖2 + ‖x − q(x)‖(2‖γ − q(γ )‖ − ‖x − q(x)‖).

Proof We first study the case where γ, x andD lie in the same affine plane. If γ and
x are on opposite sides of D, the result is obvious. Otherwise, the points γ, x, q(γ )
and q(x) form a right trapezoid (see Fig. 11).

Using the Pythagorean theorem on the orthogonal vectors γ − q(γ ) and q(γ )−
q(x), and on (γ − q(γ ))− (x − q(x)) and q(γ )− q(x), we obtain

{
‖γ − q(γ )‖2 + ‖q(γ )− q(x)‖2 = ‖γ − q(x)‖2,

‖(γ − q(γ ))− (x − q(x))‖2 + ‖q(γ )− q(x)‖2 = ‖γ − x‖2.

Fig. 11 The points γ, x, q(γ ) and q(x) form a right trapezoid
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Using that ‖(γ − q(γ ))− (x − q(x))‖ =| ‖γ − q(γ )‖ − ‖x − q(x)‖ |, the second
equality rephrases as ‖q(γ )− q(x)‖2 = ‖γ − x‖2 − (‖γ − q(γ )‖− ‖x − q(x)‖)2.
Combining these two equalities gives

‖γ − q(x)‖2 = ‖γ − q(γ )‖2 + ‖q(γ )− q(x)‖2

= ‖γ − q(γ )‖2 + ‖γ − x‖2 − (‖γ − q(γ )‖ − ‖x − q(x)‖)2

= ‖γ − x‖2 + ‖x − q(x)‖(2‖γ − q(γ )‖ − ‖x − q(x)‖).

Now, if γ, x and D do not lie in the same affine plane, denote by P the affine
plane containingD and x. Let γ̃ the point of P such that ‖γ −q(γ )‖ = ‖γ̃ −q(γ )‖
and ‖γ − q(x)‖ = ‖γ̃ − q(x)‖. Using the previous result on γ̃ and the inequality
‖γ − x‖ ≥ ‖γ̃ − x‖, we obtain the result. ��

Lemma 5 Let a, b, d ≥ 0 such that b ≤ a and d ≤ a. Then

(ap − dp)
2
p + d(2b − d) ≤ (a + κb)2,

with κ = 1− 1
p

.

Proof The equation being homogeneous with respect to a, it is enough to show that

(1− dp)
2
p + d(2b− d) ≤ (1+ κb)2

with b ≤ 1 and d ≤ 1. We shall actually show that (1−dp) 2
p +d(2b−d) ≤ 1+2κb.

Note that this is true when d ≤ κ . Indeed, (1− dp)
2
p + d(2b− d) ≤ 1+ 2db ≤

1+ 2κb. Now, notice that it is enough to show the inequality for b = 1. Indeed, it is

equivalent to (1− dp)
2
p − 1− d2 ≤ 2κb− 2db = 2b(κ − d). For every d ≥ κ , the

right-hand side of this inequality is nonpositive, hence the worst case happens when
b = 1. What is left to show is the following: ∀d ∈ [κ, 1],

(1− dp)
2
p + d(2− d) ≤ 1+ 2κ.

The function x �→ (1−x) 1
p being concave on [0, 1], we have (1−x) 1

p ≤ 1− 1
p
x

for all x ∈ [0, 1]. Therefore, (1− dp)
1
p ≤ 1− 1

p
dp. Consider the function

φ : d �→ (1− 1

p
dp)2 + d(2− d).

Let us show that ∀d ∈ [0, 1], φ(d) ≤ 1+ 2κ .
This inequality is obvious for d = 0. It is also the case for d = 1, since we

obtain (1− 1
p
dp)2 + d(2− d) = (1− 1

p
)2 + 1 = κ2 + 1. On the interval [0, 1], the
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derivative of φ is φ′(d) = 2
p
d2p−1−2dp−1−2d+2. Let d∗ be such that φ′(d∗) = 0.

Multiplying φ′(d∗) by d∗
2 gives the relation 1

p
d

2p∗ − d
p∗ − d2∗ + d∗ = 0. Subtracting

this equality in φ(d∗) gives φ(d∗) = 1− ( 1
p
− 1

p2 )d
2p∗ + (1− 2

p
)d

p∗ + d∗. We shall
show that the following function ψ , defined for all d ∈ [0, 1], is not greater than
1+ 2κ :

ψ : d �−→ 1− 1

p
(1− 1

p
)d2p + (1− 2

p
)dp + d.

We consider the cases p ≥ 2 and p ≤ 2 separately. In each case, 1 − 1
p
≥ 0.

Assume that p ≥ 2. Then dp ≤ 1 and 1 − 2
p
≥ 0. Therefore (1 − 2

p
)dp ≤ 1 − 2

p
,

and we obtain

ψ(d) ≤ 1+ (1− 2

p
)dp + d

≤ 1+ (1− 2

p
)d + d

= 1+ 2(1− 1

p
)

Now assume that p ≤ 2. We have the following inequality: d − dp ≤ p − 1.
Indeed, by considering its derivative, one shows that the application d �→ d − dp is

maximum for d = p
− 1

p−1 , for which

d − dp = d(1− dp−1) = p
− 1

p−1 (1− p−1)

= p
− 1

p−1−1
(p − 1)

= p
− p

p−1 (p − 1) ≤ p − 1.

Using ( 2
p
− 1) ≥ 0 and dp ≥ d− (p− 1), we obtain ( 2

p
− 1)dp ≥ ( 2

p
− 1)d− ( 2

p
−

1)(p − 1). Going back to ψ(d), we have

ψ(d) = 1− 1

p
(1− 1

p
)d2p − (

2

p
− 1)dp + d

≤ 1− 1

p
(1− 1

p
)d2p − (

2

p
− 1)d + (

2

p
− 1)(p − 1)+ d

= 1− 1

p
(1− 1

p
)d2p + (2− 2

p
)d + (

2

p
− 1)(p − 1).
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Let us verify that d �→ 1− 1
p
(1− 1

p
)d2p+2(1− 1

p
)d+( 2

p
−1)(p−1) is increasing.

Its derivative is

−2p
1

p
(1− 1

p
)d2p−1 + 2(1− 1

p
) ≥ −2p

1

p
(1− 1

p
)+ 2(1− 1

p
)

= 0

We deduce that ψ(d) ≤ ψ(1) for all d ∈ [0, 1]. The value ψ(1) is 1 − 1
p
(1 −

1
p
)+ 2(1− 1

p
)+ ( 2

p
− 1)(p − 1). Moreover, we have − 1

p
(1 − 1

p
)+ ( 2

p
− 1)(p −

1) ≤ 0. Indeed, − 1
p
(1 − 1

p
) + ( 2

p
− 1)(p − 1) = − (p−1)3

p2 . Therefore ψ(1) ≤ 1

+ 2(1− 1
p
). ��
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Persistence Diagrams as Diagrams:
A Categorification of the Stability
Theorem

Ulrich Bauer and Michael Lesnick

Abstract Persistent homology, a central tool of topological data analysis, provides
invariants of data called barcodes (also known as persistence diagrams). A barcode
is simply a multiset of intervals on the real line. Recent work of Edelsbrunner,
Jablonski, and Mrozek suggests an equivalent description of barcodes as functors
R → Mch, where R is the poset category of real numbers and Mch is the category
whose objects are sets and whose morphisms are matchings (i.e., partial injective
functions). Such functors form a category MchR whose morphisms are the natural
transformations. Thus, this interpretation of barcodes gives us a hitherto unstudied
categorical structure on barcodes. We show that this categorical structure leads
to surprisingly simple reformulations of both the well-known stability theorem
for persistent homology and a recent generalization called the induced matching
theorem. These reformulations make clear for the first time that both of these results
can be understood as the preservation of certain categorical structure. We also show
that this perspective leads to a more systematic variant of the proof of the induced
matching theorem.

1 Introduction

The stability theorem for persistent homology is one of the main results of
topological data analysis (TDA). It plays a key role in the statistical foundations of
TDA [13], and is used to formulate theoretical guarantees for efficient algorithms to
approximately compute persistent homology [6, 18]. The theorem is originally due
to Cohen-Steiner et al., who presented a version of the theorem for the persistent
homology of R-valued functions [9]. Since then, the theorem has been revisited
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a number of times, leading to simpler proofs and more general formulations [1–
5, 7, 8, 15]. In particular, Chazal et al. introduced the algebraic stability theorem
[8], a useful and elegant algebraic generalization, and it was later observed that the
(easy) converse to this result also holds [15]. Bubenik and Scott were the first to
explore the category-theoretic aspects of the stability theorem, rephrasing some of
the key definitions in terms of functors and natural transformations [4].

Letting vect denote the category of finite dimensional vector spaces over a
fixed field K , a pointwise finite dimensional (p.f.d.) persistence module is an
object of the functor category vectR. The structure theorem for p.f.d. persistence
modules [10] tells us that the isomorphism type of a p.f.d. persistence module M is
completely described by a unique collection of intervals called the barcode B(M).
This barcode specifies how M decomposes into indecomposable summands; such a
decomposition is essentially unique. The algebraic stability theorem, together with
its converse, tells us that two persistence modules are algebraically similar (in a
sense made precise by the language of interleavings) if and only if they have similar
barcodes.

In [1], the authors of the present paper introduced the induced matching
theorem, an extension of the algebraic stability theorem to a general result about
morphisms of persistence modules, with a new, more direct proof. The present
paper is intended as a follow-up to [1]. The induced matching theorem can be
viewed as a categorification of the stability theorem, and while this viewpoint was
already present in [1], it was not fully developed. Our goal here is to complete
the development of the categorical viewpoint on induced matchings and algebraic
stability. In order to make this paper self-contained, we revisit some of the same
territory as [1] along the way, leveraging the categorical perspective to streamline
the presentation.

To formulate and prove the induced matching theorem, in [1] we considered the
category whose objects are barcodes and whose morphisms are arbitrary matchings
(i.e., partial injective functions). In the present paper, we introduce a different
category of barcodes, denoted by Barc, for which the morphisms are only those
matchings satisfying a certain simple condition on how the matched intervals
overlap. We observe that there exists an equivalence of categories E : Barc →
MchR extending the correspondence between barcodes and functors R → Mch
given by Edelsbrunner et al. [12]. We use the category Barc to further develop the
categorical viewpoint on stability.

Thanks to the equivalence E, it turns out that all of the categorical structure of
vectR relevant to algebraic stability (as treated in [1]) has an analogue in Barc.
This allows us to present simple reformulations of both the induced matching and
algebraic stability theorems, which make clear for the first time that both results
can be understood as the preservation of certain categorical structure upon passing
from persistence modules to barcodes. Moreover, we show that this viewpoint leads
naturally to a more systematic variant of the proof of the induced matching theorem
(albeit one closely related to the proof given in [1]).
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1.1 Reformulation of the Induced Matching Theorem

To state the induced matching theorem, we need to first define a morphism of
barcodes in Barc

X(f ) : B(M)→ B(N)

induced by a morphism f : M → N of p.f.d. persistence modules. This is called
the induced matching of f . To define X(f ), one first gives the definition in the case
that f is a monomorphism or epimorphism; see Sect. 3.2 for the details.

For any category C, let C↪→ denote the subcategory with the same objects and
morphisms the monomorphisms. Similarly, let C� denote the subcategory with the
same objects and morphisms the epimorphisms. The following result is equivalent
to [1, Proposition 4.2]; we provide two different proofs, in Sects. 3.2 and 5.

Theorem 1 (Induced Matchings for Monos and Epis)

(i) The matchings induced by monomorphisms define a functor

X : (vectR)↪→ → Barc↪→.

(ii) Dually, the matchings induced by epimorphisms define a functor

X : (vectR)� → Barc�.

To extend the definition of the induced matchings X(f ) to arbitrary morphisms
f : M → N of p.f.d. persistence modules, we take X(f ) = X(i) ◦ X(q), where

M
q
� im f

i
↪→ N

is the epi-mono factorization of f . Note that when f is a monomorphism or
epimorphism, this definition of X(f ) coincides with the one given by Theorem 1
above.

Remark 1 The map f �→ X(f ) is not functorial on all of vectR [1, Example 5.6],
though it is functorial on both the subcategory of monos and the subcategory of epis.
Indeed, it is impossible to extend the map M �→ B(M) to a functor from vect to
Barc [1, Proposition 5.10].

A morphism f in vectR is a monomorphism (epimorphism) if and only if f has
a trivial kernel (respectively, cokernel), and it can be checked that the same is true as
well for a morphism f in Barc. Thus, Theorem 1 tells us that the matchings induced
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by morphisms with trivial (co)kernels also have trivial (co)kernels. As formulated
in this paper, the induced matching theorem is a generalization of this statement to
small (but not necessarily trivial) (co)kernels.

To make this precise, we need the following definition:

Definition 1 (δ-triviality) For A a pointed category (i.e., a category with a zero
object) and δ ≥ 0, we say that a diagram M : R → A is δ-trivial if for all t ∈ R, the
internal morphism Mt,t+δ : Mt → Mt+δ is a zero morphism, i.e., it factors through
the zero object. The empty set is the zero object in Mch; we say a barcode C is
δ-trivial if E(C) is δ-trivial.

Note that M = 0 if and only if M is 0-trivial. Using the definition of the equivalence
E given below in Sect. 2.4, it is straightforward to check that a barcode C is δ-trivial
if and only if each interval of C is contained in some half-open interval of length δ.
Moreover, a persistence module M is δ-trivial if and only if B(M) is δ-trivial.

Theorem 2 (Categorical Formulation of the Induced Matching Theorem) For
any morphism f : M → N of p.f.d. persistence modules, the induced matching
X(f ) : B(M)→ B(N) is a morphism in Barc such that

(i) if f has δ-trivial kernel, then so does X(f ), and
(ii) if f has δ-trivial cokernel, then so does X(f ).

Note that taking δ = 0 in Theorem 2, we recover Theorem 1. In Sect. 3, we give
a concrete formulation of the induced matching theorem (Theorem 5), similar to the
version appearing in [1], and explain why the two formulations are equivalent.

Remark 2 In both the proof of the induced matching theorem given in [1] and the
proof given in the present paper, the first step is to prove Theorem 1. In this paper,
we show that the proof of Theorem 2 follows readily from Theorem 1 and a simple
characterization of the δ-triviality condition for functors R → A taking values in a
Puppe-exact category A; see Definition 2 and Lemma 1.

Remark 3 Theorem 2 has a simple converse, which we give in Proposition 4.

1.2 Reformulation of the Algebraic Stability Theorem

We next turn to our reformulation of the algebraic stability theorem. The theorem is
typically formulated using the interleaving distance dI on persistence modules and
the bottleneck distance dB on barcodes; see Sect. 4.2 for the definition. Here, we use
the categorical structure on barcodes to state the algebraic theorem purely in terms
of interleavings of R-indexed diagrams, without explicitly introducing dB .

Interleavings and the interleaving distance dI can be defined on R-indexed
diagrams taking values in an arbitrary category; see Definition 6. By way of the
equivalence E, we thus obtain definitions of interleavings and dI on Barc; see
Sect. 4.1.1. Our Proposition 6 establishes that the distances dI and dB on barcodes
are equal; in fact, we give a slightly sharper statement. From Proposition 6 it follows
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that the forward and converse algebraic stability theorems, as stated in [1], can be
rephrased as follows:

Theorem 3 (Categorical Formulation of Algebraic Stability) Two p.f.d. persis-
tence modules M and N are δ-interleaved if and only if their barcodes B(M) and
B(N) are δ-interleaved. In particular,

dI (M,N) = dI (B(M),B(N)).

As we show in Sect. 4.2, this formulation of algebraic stability follows easily
from Theorem 2.

1.3 Directly Constructing Barcodes as Matching Diagrams

In view of the equivalence E : Barc → MchR, one may wonder whether one
can give simple constructions of barcodes of persistence modules and induced
matchings directly in the category MchR. In the final part of this paper, we explore
this question. Given a persistence module M , we give a direct construction of a
matching diagramD�(M) which is equivalent to the usual barcode of M . D�(M)

is defined only in terms of the ranks of the linear maps in M; the definition does not
depend on the structure theorem for persistence modules.D�(M) has the appealing
property that the sets D�(M)r at each index r are defined in an especially simple
way, namely

D�(M)r = {1, 2, . . . , dimMr }.

We observe that, given an epimorphism of persistence modules f : M � N , the
matching induced by f has a simple description as a natural transformation

D�(f ) : D�(M) � D�(N),

and this leads to an alternate proof of Theorem 1 (ii). There seems to be no
comparably simple, direct description of the matching induced by a monomorphism
f : M ↪→ N as a natural transformation D�(M) → D�(N). But we observe
that the matching diagramD�(M) has a dualD↪→(M), also equivalent to the usual
barcode, such that the matching induced by a monomorphism f : M ↪→ N has a
simple description as a natural transformation

D↪→(f ) : D↪→(M) ↪→ D↪→(N),

leading (dually) to an alternate proof of Theorem 1 (i).
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1.4 Organization of the Paper

We begin Sect. 2 by examining the properties of the category MchR. We then give
the precise definitions of our category of barcodes Barc and of the equivalence E :
Barc → MchR. As applications of this equivalence, we give a concrete description
of (co)kernels and images in Barc, and we describe how the δ-triviality of the
(co)kernel of a morphism f : C→ D in Barc controls the similarity between C and
D. In Sect. 3, we use these descriptions to show that our categorical formulation of
the induced matching theorem (Theorem 2) is equivalent to a concrete formulation
similar to that appearing in [1]. We then complete the definition of induced
matchings and give our proof of the induced matching theorem. In Sect. 4, we give
the details of our reformulation of the algebraic stability theorem, and we prove
that this follows easily from the induced matching theorem. Section 5 discusses the
construction of barcodes and induced matchings directly in MchR.

2 Barcodes as Diagrams

2.1 Properties of Mch and MchR

First, we review some basic properties of the category Mch having sets as objects
and matchings (partial injective functions) as morphisms. Mch is a subcategory
of the category with sets as objects and relations as morphisms. The composition
τ ◦ σ : S → U of two matchings σ : S → T and τ : T → U is thus defined as

τ ◦ σ = {(s, u) | (s, t) ∈ σ, (t, u) ∈ τ for some t ∈ T }.

The monomorphisms in Mch are the injections, while the epimorphisms are the
coinjections, i.e., matchings which match each element of the target. The kernel and
cokernel of a morphism in Mch consist of the unmatched elements of the source and
target, respectively, together with the canonical (co)injections. Similarly, the image
and coimage consist of the matched elements (See Fig. 1 for an illustration).

coim f

ker f

im f

coker f

Fig. 1 Examples illustrating matchings as a category. Left: the composition of two matchings.
Right: kernel, coimage, image, and cokernel of a matching f
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2.1.1 Mch and MchR as Puppe-Exact Categories

The category Mch is not Abelian: it does not have all binary (co)products, and is not
even pre-additive. Nevertheless, Mch does share some structural similarities with an
Abelian category. In specific, Mch is a Puppe-exact category:

Definition 2 A Puppe-exact category [14, 16, 17] is a category with the following
properties:

• it has a zero object,
• it has all kernels and cokernels,
• every monomorphism is a kernel, and every epimorphism is a cokernel,
• every morphism f has an epi-mono factorization.

Every Abelian category is Puppe-exact, and it has been shown in [14] that
significant portions of homological algebra can be developed for Puppe-exact
categories.

It follows from the definition that a Puppe-exact category also has all (co)images.
Just like in Abelian categories, we have that

im f = ker cokerf, coim f = coker ker f,

and the coimage is canonically isomorphic to the image. Moreover, the epi-mono
factorization of a morphism f is through im f , and is essentially unique.

For any category C and Puppe-exact category A, the category of functors C → A
is also Puppe-exact. Thus, MchR is Puppe-exact. In particular, it has all kernels,
cokernels, and images, and these are given pointwise.

2.2 Barcodes

Definition 3 (Multiset Representations) We say a multiset representation is a
subset T ⊆ S × X of sets S and X, called the base set and the indexing set
respectively. For s ∈ S, the multiplicity of s in T is the cardinality of the local
indexing set Xs = {x ∈ X | (s, x) ∈ T }. In [1], we considered a more restrictive
definition of a multiset representation, where the indexing set X is N = {1, 2, 3, . . .}
and each local indexing set Xs is required to be a prefix of N; we refer to this as a
natural multiset representation. (Using the more general definition here allows us to
establish the link between barcodes and matching diagrams without imposing any
cardinality conditions on the matching diagrams.)

Let T and T ′ be multiset representations with the same indexing set S and
respective base sets X and X′. We say T ′ reindexes T , and write T ∼= T ′, if there
exists a bijection f : T → T ′ such that for all (s, x) ∈ T , f (s, x) = (s, x ′) for
some x ′ ∈ X′. Note that ∼= is an equivalence relation on multiset representations.
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Definition 4 (Barcode) An interval in R is a non-empty set I ⊂ R such that if
a, c ∈ I and a < b < c, then b ∈ I . A barcode is a multiset representation whose
base set consists of intervals in R. If the barcode is a natural multiset representation,
we call it a natural barcode.

In working with barcodes, we often abuse notation slightly by suppressing the
indexing set, and write an element (s, x) of a barcode simply as s.

2.2.1 Barcodes of Persistence Modules

For I an interval, define the interval module KI to be the persistence module such
that

KI
r =

{
K if r ∈ I,
0 otherwise.

KI
r,s =

{
IdK if r, s ∈ I,
0 otherwise.

The following well-known theorem tells us that natural barcodes arise as
complete isomorphism invariants of p.f.d. persistence modules.

Theorem 4 (Structure of p.f.d. Persistence Modules [10]) For any p.f.d. persis-
tence module M , there exists a unique natural barcode B(M) such that

M ∼=
⊕

I∈B(M)

KI .

Following [7], we call this barcode B(M) the decomposition barcode of M , or
simply the barcode of M .

2.3 The Category of Barcodes

For intervals I, J ⊆ R, we say that I bounds J above if for all s ∈ J there exists
t ∈ I with s ≤ t . If additionally J bounds I above, we say that I and J coincide
above. Symmetrically, we say that J bounds I below if for all t ∈ I there exists
s ∈ J with s ≤ t , and that I and J coincide below if additionally I bounds J below.
We say that I overlaps J above (and symmetrically, J overlaps I below) if each of
the following three conditions hold:

• I ∩ J �= ∅,
• I bounds J above, and
• J bounds I below.

For example, [1, 3) overlaps [0, 2) above, but neither [0, 4) nor [0, 2) overlap [1, 3)
above.
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I

J

K

I

J

K

Fig. 2 Illustration of overlap matchings and their composition. Both the left and right examples
depict overlap matchings σ : B→ C and τ : C→ D between single-interval barcodes B = {I},
C = {J }, D = {K}, with σ = {(I, J )}, τ = {(J,K)}. We have (I,K) ∈ τ • σ if and only if
I ∩K �= ∅, so τ • σ = {(I,K)} for the left example, but τ • σ = ∅ for the right example

Definition 5 (The Category of Barcodes) We define an overlap matching between
barcodes C and D to be a matching σ : C → D such that if σ(I) = J , then I

overlaps J above. Note that if σ : B → C and τ : C → D are both overlap
matchings, then the composition τ◦σ in Mch is not necessarily an overlap matching;
for intervals I, J,K such that I overlaps J above, and J overlaps K above, it may
be that I ∩K = ∅, so that I does not overlap K above.

We thus define the overlap composition τ • σ of overlap matchings σ and τ as
the matching

τ • σ = {(I,K) ∈ τ ◦ σ | I overlaps K above}.

See Fig. 2 for an illustration. It is easy to check that with this new definition of
composition, the barcodes and overlap matchings form a category, which we denote
as Barc.

Note that two barcodes are isomorphic in Barc if and only if one reindexes the other.
Note also that the empty barcode is the zero object in Barc.

2.4 Barcodes as Diagrams

2.4.1 A Functor from Barcodes to Diagrams

We now define the equivalenceE : Barc → MchR. For D a barcode and t ∈ R, we
let

E(D)t := {I ∈ D | t ∈ I },

and for each s ≤ t we define the internal matching E(D)s,t : E(D)s → E(D)t to
be the restriction of the diagonal of D×D to E(D)s ∩ E(D)t , i.e.,

E(D)s,t := {(I, I ) | I ∈ D, s, t ∈ I }.

See Fig. 3 for an illustration.
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E (C)t E (C)s E (C)t

Fig. 3 Examples illustrating the matching diagram representation E(C) of a barcode C. Left: The
intervals of Et (C) are shown in blue (left). Right: The intervals of coimE(C)s,t = imE(C)s,t are
shown in red

We define the action of E on morphisms in Barc in the obvious way: for σ :
C → D an overlap matching and t ∈ R, we let E(σ)t : E(C)t → E(D)t be the
restriction of σ to pairs of intervals both containing t , i.e.,

E(σ)t := {(I, J ) ∈ σ | t ∈ I ∩ J }.
It is straightforward to check that E is indeed a functor.

2.4.2 A Functor from Diagrams to Barcodes

To see that E is an equivalence, we next define a functor F : MchR → Barc such
that E and F are inverses (up to natural isomorphism).

For D : R → Mch, let

F(D) :=
(⋃
t∈R
{t} ×Dt

)/
∼

where (t, x) ∼ (u, y) if and only if (x, y) ∈ Dt,u or (y, x) ∈ Du,t . The functoriality
ofD implies that the projection onto the first coordinate (t, x) �→ t necessarily maps
each equivalence class Q ∈ F(D) to an interval supp(Q) = {t | (t, x) ∈ Q} ⊆ R.
We thus may define the barcode F(D) by

F(D) := {(supp(Q),Q) | Q ∈ F(D)},
where we interpret the above expression as a multiset representation by taking the
index of each interval supp(Q) to be the equivalence class Q. We take the action
of F on morphisms to be the obvious one: for diagrams C,D : R → Mch and
η : C → D a natural transformation (consisting of a family of matchings ηt : Ct →
Dt ), we take F(η) : F(C)→ F(D) to be the overlap matching given by

F(η) := {
((supp(Q),Q), (supp(R),R)) | Q ∈ F(C), R ∈ F(D),

∃ t ∈ R, (x, y) ∈ ηt : (t, x) ∈ Q, (t, y) ∈ R
}
.



Persistence Diagrams as Diagrams 77

It is easy to check that F is a functor and that E and F are indeed inverses up to
natural isomorphism.

2.5 Kernels, Cokernels, and Images of Barcodes

In the induced matching approach to algebraic stability, (co)kernels and δ-triviality
of persistence modules both play an essential role. We have seen above that the
definitions of these extend to functor categories AR for any Puppe-exact category
A; in particular, they extend to MchR. Thus, since Mch is equivalent to Barc, these
definitions also carry over to Barc.

We next give concrete descriptions of kernels, cokernels, and images in Barc. We
then use these to obtain a simple description of how the δ-triviality of the (co)kernel
of a morphism f : C→ D in Barc controls the similarity between C and D.

For σ : C→ D an overlap matching of barcodes and I ∈ C, define

ker(σ, I) =
{
I if σ does not match I,

I \ J if σ(I) = J.

Hence, ker(σ, I) is either empty or an interval in R. In the latter case, I and ker(σ, I)
coincide above. Dually, for J ∈ D, we define

coker(σ, J ) =
{
J if σ does not match J,

J \ I if σ(I) = J.

Proposition 1 For any morphism (i.e., overlap matching) σ : C→ D in Barc, the
categorical kernel, cokernel, and image of σ exist and are given by

ker σ = {ker(σ, I) �= ∅ | I ∈ C},
cokerσ = {coker(σ, J ) �= ∅ | J ∈ D},

im σ = {I ∩ J | (I, J ) ∈ σ }.

Proof Given σ : C → D in Barc, applying the equivalence E yields a morphism
of matching diagrams E(σ) such that

(kerE(σ))t = {I ∈ C | t ∈ I, I not matched by σ to J ∈ D with t ∈ J }.

It is then clear that

F(kerE(σ)) = {ker(σ, I) �= ∅ | I ∈ C}.
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Since

ker σ ∼= F ◦ E(ker σ) ∼= F(ker(E(σ))),

the result for kernels holds. Similar arguments give the results for cokernels and for
images. ��

Using this concrete description of (co)kernels in Barc, we now give an explicit
description of the notion of δ-triviality for (co)kernels of overlap matchings. Given
an interval I ⊂ R and δ ≥ 0, let

I (δ) := {t | t + δ ∈ I } (1)

be the interval obtained by shifting I downward by δ.

Proposition 2 Let η : C→ D an overlap matching of barcodes. Then

(i) ker η is δ-trivial if and only if

(a) for each (I, J ) ∈ η, J bounds I (δ) above, and
(b) any interval of C that is not matched by η is contained in a half-open interval

of length δ.

(ii) cokerη is δ-trivial if and only if

(a) for each (I, J ) ∈ η, I (δ) bounds J below, and
(b) any interval of D that is not matched by η is contained in a half-open interval

of length δ.

Proof As noted in Sect. 1.1, a barcode C is δ-trivial if and only if each interval
in C is contained in a half-open interval of length δ. Given this, the result follows
immediately from Proposition 1. ��

Recall that a morphism has 0-trivial (co)kernel if and only if it is a monomor-
phism (epimorphism). We thus have the following corollary of Proposition 2, which
gives a concrete interpretation of Theorem 1:

Corollary 1 Let η : C→ D an overlap matching of barcodes. Then

(i) η is a monomorphism if and only if

(a) for each (I, J ) ∈ η, I and J coincide above, and
(b) every interval of C is matched (i.e., η is an injection).

(ii) η is an epimorphism if and only if

(a) for each (I, J ) ∈ η, I and J coincide below, and
(b) every interval of D is matched (i.e., η is a coinjection).
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3 The Induced Matching Theorem

In this section, we observe that the categorical formulation of the induced matching
theorem (Theorem 2) is equivalent to a more concrete statement, similar to the for-
mulation appearing in [1]. We then define the matchings induced by epimorphisms
and monomorphisms of persistence modules, thereby completing the definition of
induced matchings given in Sect. 1.1. To finish the section, we prove the induced
matching theorem, working directly with the categorical formulation of the theorem.

3.1 Concrete Formulation of the Induced Matching Theorem

It follows from Propositions 1 and 2 that our categorical reformulation of the
induced matching theorem (Theorem 2) is equivalent to the following. See Fig. 4
for an illustration.

Theorem 5 (Induced Matching Theorem [1]) Let f : M → N be a morphism of
p.f.d. persistence modules.

(i) The induced matching X(f ) : B(M)→ B(N) is an overlap matching.
(ii) If ker f is δ-trivial, then

(a) for each (I, J ) ∈ X(f ), J bounds I (δ) above, and
(b) any interval of B(M) not matched by X(f ) is contained in a half-open

interval of length δ.

(iii) If cokerf is δ-trivial, then

(a) for each (I, J ) ∈ X(f ), I (δ) bounds J below, and
(b) any interval of B(N) not matched by X(f ) is contained in a half-open

interval of length δ.

Fig. 4 Illustration for part (ii) of the induced matching theorem: the right endpoint of the interval
J ∈ B(N) coincides with that of an interval in B(im f ) and lies between the right endpoint of the
interval I ∈ B(M) and that of the shifted interval I (δ) ∈ B(M(δ))
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3.2 Matchings Induced by Monos and Epis of Persistence
Modules

We now define the matching X(f ) induced by a monomorphism or epimorphism
f of persistence modules. The way we will present the definition will depend on
a structural result, Proposition 3 below, which also leads almost immediately to a
proof of Theorem 1.

Let I denote the set of intervals in R. For I, J ∈ I, write I ∼a J if I and J

coincide above. ∼a is an equivalence relation on I. For B a barcode, ∼a induces
an equivalence relation on B, which we also denote as ∼a . For each equivalence
class e ∈ I/∼a , let Be denote the corresponding equivalence class of B/∼a if B
contains any intervals in e. Otherwise let Be = ∅. If B is the barcode of a p.f.d.
module, then each Be is finite or countable. In addition, if Be is non-empty then
it contains a maximal interval under inclusion. We endow Be with a total order by
taking (I, n) < (J, n′) if I strictly contains J or I = J and n < n′. Be is then a
countable, well-ordered set, hence isomorphic to a prefix of N.

Proposition 3 (Induced Matchings for Monos) If f : M → N is a monomor-
phism of persistence modules, then

(i) for each e ∈ I/∼a ,

|B(M)e| ≤ |B(N)e|.

Thus, we have a well defined injection X(f ) : B(M) ↪→ B(N), which sends
the ith element of B(M)e to the ith element of B(N)e.

(ii) X(f ) is in fact a monomorphism in Barc.

A simple proof of Proposition 3 is given in [1, Section 4]. Here, we present a
variant of that argument.

Proof of Proposition 3 For any interval I ⊂ R, we define a functor FI : vectR →
vect such that

1. for all p.f.d. persistence modules M , dimFI (M) is the number of intervals in
B(M) which contain I and coincide with I above, and

2. FI maps monomorphisms to monomorphisms.

To define FI , we choose t ∈ I and let

ker+ =
⋂

u �∈I :t<u
kerMt,u, ker− =

⋃
u∈I :t≤u

kerMt,u, im+ =
⋂

s∈I :s≤t
imMs,t .

We take

FI (M) = (ker+ ∩ im+)/(ker− ∩ im+).



Persistence Diagrams as Diagrams 81

The map M �→ FI (M) is easily checked to be functorial. From the structure theo-
rem 4, it is clear that dimFI (M) has the desired property, and it is straightforward
to check that F preserves monomorphisms.

The proposition follows easily from the existence of the functors FI : Let I be
the j th interval in B(M)e. We have

j ≤ dimFI (M) ≤ dimFI (N) ≤ |B(N)e|.

If B(M)e is finite, then taking j = |B(M)e| gives that |B(M)e| ≤ |B(N)e|. If
B(M)e is countably infinite, then we have that j ≤ |B(N)e| for all j ≥ 0, hence
|B(N)e| is infinite as well. This proves (i).

To prove (ii), note that for each I ∈ B(M), I and X(f )(I) coincide above
by construction of X(f ), so in view of Corollary 1, it suffices to show that
I ⊂ X(f )(I). Suppose that I is the j th interval in B(M)e. Since dimFI (M) ≤
dimFI (N), B(N)e has at least j intervals containing I . X(f )(I) is by definition
the j th interval of B(N)e, so we have I ⊂ X(f )(I), as desired. ��

To define X(f ) for an epimorphism f , we simply dualize the above construction,
taking two intervals to be equivalent if and only if they coincide below. The dual
argument shows that X(f ) is an epimorphism in Barc.

Proof of Theorem 1 (Induced Matchings for Monos and Epis) It is easy to see
that the map f �→ X(f ) of the Proposition 3 is in fact functorial, so this defines
a functor X from monomorphisms of persistence modules to monomorphisms in
Barc, proving Theorem 1 (i). The dual observation yields Theorem 1 (ii). ��
Example 1 Interestingly, the map f �→ X(f ) may strictly decrease the triviality
of (co)kernels: we give an example of a monomorphism f : M ↪→ N such that
cokerf is not 2-trivial but cokerX(f ) is 2-trivial. Let

M = K [2,4), N = K [0,4) ⊕K [1,3), and f =
(

1
1

)
.

Then B(cokerf ) = {[0, 3), [1, 2)} but cokerX(f ) = {[0, 2), [1, 3)}. In contrast,
note that for any morphism f , we have by construction that imX(f ) = B(im f ).

3.3 A Characterization of Morphisms with δ-Trivial (Co)kernel

We now turn our attention to the proof of the induced matching theorem. First, we
introduce some notation.
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3.3.1 Shifts of R-Indexed Diagrams and Barcodes

Consider the translation t �→ t + δ of the real line by δ ∈ R as an endofunctor Sδ :
R → R. For any category A and diagram M : R → A, we write M(δ) := M ◦ Sδ .
Thus, M(δ) is the diagram obtained by shifting each vector space and linear map
in M downward by δ. Given M,N : R → A, a morphism f : M → N induces a
morphism f (δ) : M(δ)→ N(δ).

For δ ≥ 0, the internal morphisms {Mt,t+δ}t∈R assemble into a natural transfor-
mation M → M(δ), which we denote by SM,δ . Note that since (M(−δ))(δ) = M ,
we have a natural transformation SM(−δ),δ : M(−δ)→ M .

For C a barcode, let

C(δ) := {I (δ) | I ∈ C},

where I (δ) is as defined in Eq. 1, and let SC,δ : C→ C(δ) be the overlap matching
given by

SC,δ := {(I, I (δ)) | I is not δ-trivial}.

Note that for E : Barc → MchR the equivalence of Sect. 2.4, E(SC,δ) = SE(C),δ .
The following proposition is one of the key ingredients in our proof of the

induced matching theorem:

Lemma 1 Given diagrams M,N : R → A with A Puppe-exact, and a morphism
f : M → N with epi-mono factorization

M
q
� im f

i
↪→ N,

the following are equivalent:

(i) ker f is δ-trivial;
(ii) the image epimorphism r : M � im SM,δ factors as

M im SM,δ

im f

r

q
p

for some epimorphism p : im f � im SM,δ .
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Dually, the following are equivalent:

(i) cokerf is δ-trivial;
(ii) the image monomorphism h : im(SN(−δ),δ) ↪→ N factors as

im SN(−δ),δ N

im f

h

j
i

for some monomorphism j : im SN(−δ),δ ↪→ im f .

Proof We give the proof for ker f , the dual case of cokerf being analogous. Let

κ : kerf ↪→ M and μ : kerSM,δ ↪→ M

denote the kernel monomorphisms, and let

q :M � im f and r : M � im SM,δ

denote the image epimorphisms.
To show that (i) implies (ii), assume that ker f is δ-trivial, i.e.,

Sker f,δ : kerf → kerf (δ)

is the zero morphism. Then we also have

SM,δ ◦ κ = κ(δ) ◦ Sker f,δ = 0.

The universal property of the kernel monomorphism μ thus provides a unique
morphism v : kerf → kerSM,δ such that κ = μ ◦ v.

ker f 0 ker f (δ)

ker SM,δ M im SM,δ M(δ)

im f

∃!v
κ κ(δ)

μ r

q ∃!p

Since κ is a monomorphism, v must be a monomorphism too. We have r ◦ μ = 0,
so

r ◦ κ = r ◦ μ ◦ v = 0
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as well. Now by the universal property of q as the cokernel epimorphism of κ , there
is a unique epimorphism p : im f → im SM,δ such that r = p ◦ q .

To show that (ii) implies (i), assume that there is an epimorphism p factoring
r = p ◦ q . We have q ◦ κ = 0, so

r ◦ κ = p ◦ q ◦ κ = 0

as well. Thus

SM,δ ◦ κ = κ(δ) ◦ Sker f,δ = 0,

and since κ(δ) is a monomorphism, this implies that Sker f,δ = 0. ��

3.4 Proof of the Induced Matching Theorem

To prove the induced matching theorem (Theorem 2) we will need the following
lemma, which follows easily from the definition of induced matchings and the
structure theorem for persistence modules (Theorem 4).

Lemma 2 For any p.f.d. persistence module M , we have SB(M),δ = X(SM,δ).

Proof of Theorem 2 (Induced Matching Theorem) We prove (i); the proof dual-
izes to a proof of (ii). Write s = SM,δ , and let f = i ◦ q and s = j ◦ r be the
epi-mono factorizations. By Lemma 1, we obtain an epimorphism p : im f � im s

such that the following diagram commutes:

M im s M(δ)

im f

N

r

s

f

q

j

i

p
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By Theorem 1 and the way we construct induced matchings, we have epi-mono
factorizations X(f ) = X(i) ◦ X(q) and X(s) = X(j) ◦ X(r). Moreover, X is
functorial on epimorphisms by Theorem 1, so the following diagram also commutes:

B(M) B(im s) B(M(δ))

B(im f )

B(N)

X(r)

X(s)

X(f )

X(q)

X(j)

X(i)

X(p)

By Lemma 2, we have SB(M),δ = X(s). Thus, since epi-mono factorizations are
unique (up to unique isomorphism), we have im SB(M),δ = B(im s), and X(r) is the
image epimorphism B(M) � im SB(M),δ. Since X(r) = X(q) ◦ X(p), Lemma 1
now gives that kerX(f ) is δ-trivial, as desired. ��

3.5 Converse to the Induced Matching Theorem

Letting Vect denote the category of (not necessarily finite dimensional) vector
spaces over the field K . We have a functor Fr : Mch → Vect, which takes a set
S to the vector space with basis S. Let ζ : Barc → Vect denote the functor which
sends a barcode C to Fr ◦ E(C).

It is easy to prove the following converse to the induced matching theorem:

Proposition 4

(i) ζ(B(M)) ∼= M for any p.f.d. persistence module M .
(ii) If f : C → D is a morphism in Barc with δ-trivial (co)kernel, then ζ(f ) has

δ-trivial (co)kernel as well.

4 Interleavings of Barcodes and the Bottleneck Distance

In this section, we consider interleavings and the bottleneck distance on barcodes.
We observe that the bottleneck distance can be interpreted as an interleaving
distance, and we prove the algebraic stability theorem.
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4.1 Interleavings

4.1.1 Interleavings of R-Indexed Diagrams

The definition of interleavings of R-indexed diagrams was introduced in [8],
building on ideas in [9], and was first stated in categorical language in [4]. Though
interleavings over more general indexing categories can be defined and are also of
interest in TDA [5, 11, 15, 19], we focus here on the R-indexed case. We use the
definitions and notation introduced in Sect. 3.3.

Definition 6 (Interleavings and Interleaving Distance) A δ-interleaving between
two diagrams M,N : R → A is a pair of natural transformations

f : M → N(δ), g : N → M(δ)

such that g(δ) ◦ f = SM,2δ and f (δ) ◦ g = SN,2δ . We call f and g δ-interleaving
morphisms.

The interleaving distance on objects of AR is then given by

dI (M,N) := inf {δ ≥ 0 | M and N are δ -interleaved}.

4.1.2 Interleavings in Barc

Note that as for natural transformations of R-indexed diagrams, an overlap matching
f : C → D induces an overlap matching f (δ) : C(δ) → D(δ). We define a
δ-interleaving between barcodes C and D to be a pair of overlap matchings

f : C→ D(δ), g : D→ C(δ)

such that g(δ) • f = SC,2δ, and f (δ) • g = SD,2δ. This definition is equivalent to
the definition of interleavings in MchR in the sense that a pair of overlap matchings
f, g is a δ-interleaving if and only if the pair E(f ), E(g) is a δ-interleaving in
MchR.

4.1.3 Interleavings and Smallness of Kernels

It is easily checked that for A a Puppe-exact category, a δ-interleaving morphism
f : M → N(δ) has 2δ-trivial kernel and cokernel. The converse is not true in
general; one can easily construct a counterexample in the case that A is the category
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of persistence modules. However, the converse holds in the two cases studied in this
paper:

Proposition 5 In both the categories vectR and Barc, two objects M,N are δ-
interleaved if and only if there exists a morphism f : M → N(δ) with 2δ-trivial
kernel and cokernel.

The statement of Proposition 5 for vectR first appeared as [1, Corollary 6.6].

Proof The result for Barc follows easily from Proposition 2. To prove the result
for vectR, we apply both the induced matching and converse algebraic stability
theorems: If f : M → N(δ) is a morphism with 2δ-trivial kernel and cokernel,
then by Theorem 2, X(f ) has the same property. Hence X(f ) is a δ-interleaving
morphism. The converse direction of Theorem 3 (whose easy proof we give below)
then tells us that M and N are δ-interleaved. ��

4.2 Algebraic Stability

4.2.1 Bottleneck Distance

For I ⊂ R an interval and δ ≥ 0, let the interval Uδ(I) be given by

Uδ(I) := {t ∈ R | ∃ s ∈ I with |s − t| ≤ δ}.

We define a δ-matching between barcodes C and D to be a (not necessarily overlap)
matching σ : C→ D with the following two properties:

• σ matches each interval in C ∪D that is not 2δ-trivial,
• if σ(I) = J , then I ⊂ Uδ(J ) and J ⊂ Uδ(I).

We define the bottleneck distance dB by taking

dB(C,D) := inf {δ ≥ 0 | ∃ a δ-matching between C and D}.

4.2.2 Interleaving Distance Equals Bottleneck Distance on Barcodes

For D any barcode, let rδ : D(δ)→ D be the obvious bijection.

Proposition 6 An overlap matching of barcodes f : C→ D(δ) is a δ-interleaving
morphism if and only if rδ ◦f is a δ-matching. In particular, for any barcodes C and
D,

dI (C,D) = dB(C,D).
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Fig. 5 Illustration of the proof of algebraic stability via induced matchings. For a δ-interleaving
morphism of persistence modules f : M → N , the barcodes of M , imf , N(δ), and N are shown
as persistence diagrams, which are multisets of points in the plane whose coordinates correspond
to the left and right endpoints of the intervals. The dotted lines in the figure depict the induced
matching B(M) → B(imf ) → B(N(δ)) → B(N). The shaded box around each point p ∈
B(M) ∪ B(N) indicates the set of points to which p can match in a δ-matching

Proof According to Proposition 5, an overlap matching f : C → D(δ) is a
δ-interleaving morphism if and only if f has 2δ-trivial kernel and cokernel. In
addition, it is easy to check that an overlap matching f : C → D(δ) has 2δ-trivial
kernel and cokernel if and only if rδ ◦ f is a δ-matching. ��

We are now deduce the algebraic stability theorem as a corollary of the
induced matching theorem. Figure 5 illustrates the barcode matching underlying
the argument.

Proof of Theorem 3 (Algebraic Stability) The forward direction follows almost
immediately from the induced matching theorem: If there exists a δ-interleaving
morphism f :M → N(δ), then f has 2δ-trivial kernel and cokernel. By Theorem 2,
the same is true for X(f ) : B(M) → B(N(δ)). Since B(N(δ)) = B(N)(δ),
Proposition 5 tells us that B(M) and B(N) are δ-interleaved in Barc.

The proof of converse algebraic stability is nearly trivial: Given a δ-interleaving

f : B(M)→ B(N)(δ), g : B(N)→ B(M)(δ),

ζ(f ) and ζ(g) form a δ-interleaving in vectR; here ζ is the functor defined in
Sect. 3.5. By Proposition 4 (i) then, M and N are δ-interleaved. ��
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5 Constructing Barcodes and Induced Matchings in MchR

In this section, we consider the construction of barcodes of persistence modules
and induced matchings directly in the category of matching diagrams MchR. Our
barcode constructions come in two dual (canonically isomorphic) variants, which
are readily extended to functors on epis and monos, respectively. These functors are
equivalent to the induced matchings for epis and monos described in Sect. 3.2 and
lead naturally to an alternate proof of Theorem 1.

Let M be a p.f.d. persistence module. We now construct a matching diagram
D�(M) equivalent to B(M) in a way that depends only on the ranks of the internal
maps of M . While our construction does not require an interval decomposition of
M , the intuition is best conveyed by assuming initially that we have this.

Order the intervals in R lexicographically, first by increasing lower bound, then
(for intervals with the same lower bound) by decreasing upper bound, as shown in
Fig. 6. For example, with respect to this order, we have

[0, 3] < [1, 2] < (1, 3] < (1, 2].

Now at each index t , enumerate the intervals of B(M) containing t in that order.
This defines a canonical bijection gt : E(B(M))t → D�(M)t between the set
E(B(M))t , consisting of the intervals in B(M) containing t , and the set

D�(M)t := {1, 2, . . . , dimMt }.

For any two indices t ≤ u, let

D�(M)t,u := g−1
u ◦ E(B(M))t,u ◦ gt .

t u

1

2

3

4

5

1

2

3

4

Fig. 6 Example illustrating the matching diagram D�(M) on top of the barcode B(M), with
intervals ordered lexicographically by increasing lower bound and deceasing upper bound. Each set
D�(M)t ⊂ N is identified by an order-preserving bijection with the intervals of B(M) containing
t . The example shows a matching of cardinality 3, corresponding to rkMt,u = 3
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t

1

2

3

4

5

1

2

3

Fig. 7 Example illustrating the induced epimorphism of matching diagrams D�(f ) : D�(M)

� D�(N) and the corresponding overlap matching of barcodes B(M)� B(N)

Thus,D�(M)t,u is the matching between the setsD�(M)t andD�(M)u such that
under the bijections gt and gu, matched pairs correspond to intervals of B(M) con-
taining both t and u; see Fig. 6. By construction, the matchings (D�(M)t,u)t≤u∈R
form a functor D�(M) : R → Mch, and the bijections (gt )t∈R form a natural
isomorphism of matching diagrams g : E(B(M))→ D�(M). A dual construction,
denoted by D↪→, is obtained by ordering the intervals in R lexicographically by
decreasing upper bound, then by increasing lower bound. We summarize:

Proposition 7 The matching diagrams D�(M) and D↪→(M) are naturally iso-
morphic to E(B(M)).

In a similar spirit, we can also map the induced matchings for epimorphisms
and monomorphisms to equivalent morphisms of matching diagrams. Consider an
epimorphism f : M � N and D�(M),D�(N) as above. Now, for any t ∈ R,
let gt : E(B(M))t → D�(M)t and ht : E(B(N))t → D�(N)t be the canonical
bijections described above. Using the induced matching X(f ) : B(M) → B(N)
from Sect. 3.2, define

D�(f )t := h−1
u ◦ E(X(f ))t ◦ gt .

See Fig. 7 for an example. For a monomorphism f , we define D↪→(f )t in an
analogous way. Similarly to the above, we obtain:

Proposition 8 For an epimorphism f : M � N , the morphism D�(f ) is
naturally isomorphic to E(X(f )). Similarly, for a monomorphism f , the morphism
D↪→(f ) is naturally isomorphic to E(X(f )).

Next, we describe the matchingD�(M)t,u directly in terms of the internal maps
of M , avoiding the explicit use of the barcode B(M).
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Proposition 9 For M : R → Vect be a p.f.d. persistence module and t ≤ u ∈ R,
we have

D�(M)t,u =
{
(i, j ) ∈ N

2 | j ≤ rkMt,u,

i = j +max {rkMs,t − rkMs,u | s < t, rkMs,u < j }},
D↪→(M)t,u =

{
(i, j ) ∈ N

2 | i ≤ rkMt,u,

j = i +max {rkMu,v − rkMt,v | v > u, rkMt,v < i}},

(where the maximum over an empty set is taken to be 0).

Proof We first observe that the image of D�(M)t,u is precisely the set {j |
j ≤ rkMt,u}. To see this, note that rkMt,u equals the cardinality of the matching
E(B(M))t,u, i.e., the number of intervals in B(M) containing both t and u. In the
lexicographic order on E(B(M))t ⊆ B(M), those intervals precede the intervals
containing u but not t . Thus, coimE(B(M))t,u is a prefix of E(B(M))t , which is
mapped by the order-preserving bijection

gt : E(B(M))t → D�(M)t = {1, 2, . . . , dimMt }

to the prefix D�(M)t,u = {j | j ≤ rkMt,u}.
Next, in order to determine for a given matched number j ∈ imD�(M)t,u the

corresponding number i ∈ D�(M)t to which is it matched, we further observe that
the difference i − j is precisely the number of intervals of B(M) that

• are born before the j th interval of B(M) (in the lexicographic order) containing
u.

• die after t and before u.

Letting I be the j th interval of B(M) containing u, the set of lower bounds of I in
R (i.e., the set of values s ∈ R satisfying s < r for all r ∈ I ) is

{s < u | rkMs,u < j }.

Since j ∈ imD�(M)t,u, we have t ∈ I , so all of the above lower bounds s also
satisfy s < t . For any lower bound s, the number of intervals of B(M) containing
both s and t but not u is

dim(imMs,t ∩ kerMt,u) = rkMs,t − rkMs,u.

Hence, the number of intervals that are born before I and die after t and before u is

max
s
{rkMs,t − rkMs,u | s < t, rkMs,u < j }.

The result follows. ��
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In an analogous way, we also obtain formulas forD�(f )t and D↪→(f )t in terms
of the morphism f and the internal maps, which can be proven in a similar way.

Proposition 10

(i) Let f : M � N be an epimorphism of p.f.d. persistence modules. For t ∈ R,
we have

D�(f )t =
{
(i, j ) ∈ N

2 | j ≤ dimNt ,

i = j +max {rkMs,t − rkNs,t | s < t, rkNs,t < j }}.

(ii) Let f : M � N be a monomorphism of p.f.d. persistence modules. For t ∈ R,
we have

D↪→(f )t =
{
(i, j ) ∈ N

2 | i ≤ dimMt,

j = i +max {rkNs,t − rkMs,t | s < t, rkMs,t < i}}.

Note that these formulas rely only on the existence of an epimorphism or
monomorphism; the right hand sides depend only on the ranks of the internal maps
of M and N , not on the morphism f .

The formulas of Proposition 9 describe the functors D�(M),D↪→(M) : R →
Mch in terms of ranks, and it is clear from Proposition 7 that each of these functors
encodes rkMu,t for all u ≤ t ∈ R. In the sprit of constructing and studying
D�(M) and D↪→(M) in a way that is independent of the structure theorem, we
next give elementary proofs of these facts, proceeding directly from the description
of D�(M) and D↪→(M) in terms of ranks.

Proposition 11 Let M : R → Vect be a p.f.d. persistence module.

(i) For all t ≤ u ∈ R, the relations D�(M)t,u and D↪→(M)t,u of Proposition 9
are both order-preserving matchings. In particular, for t < u,

cardD�(M)t,u = cardD↪→(M)t,u = rkMt,u.

(ii) The sets and matchings of Proposition 9 are functorial, i.e., they define functors

D�(M),D↪→(M) : R → Mch.

Proof We prove the results for D�(M) only, the proof for D↪→(M) being
completely analogous. Let (i, j), (m, n) ∈ D�(M)t,u. Clearly j = n implies
i = m. Moreover, if j < n, then from

i = j +max {rkMs,t − rkMs,u | s < t, rkMs,u < j },
m = n+max {rkMs,t − rkMs,u | s < t, rkMs,u < n}.

we obtain i < m. Thus D�(M)t,u is an order-preserving matching.
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In order to show functoriality ofD�(M), we first establish that for all s < t ≤ u,
we have rkMs,t < i if and only if rkMs,u < j . To see this, note that for all s < u

with rkMs,u < j , we have s < t and

i ≥ j + (rkMs,t − rkMs,u) > rkMs,t .

Conversely, for all r < u with rkMr,u ≥ j , we have s < r for all s < t with
rkMs,u < j , which in turn by elementary linear algebra yields

rkMs,t − rkMs,u = dim(imMs,t ∩ kerMt,u) ≤ dim(imMr,t ∩ kerMt,u)

= rkMr,t − rkMr,u

and thus

i = j+max{rkMs,t−rkMs,u | s < t, rkMs,u < j } ≤ j+(rkMr,t−rkMr,u) ≤ rkMr,t .

We conclude that rkMs,t < i if and only if rkMs,u < j .
It remains to show that (i, k) ∈ D�(M)t,v if and only if (i, j) ∈ D�(M)t,u

and (j, k) ∈ D�(M)u,v for some j ∈ D�(M)u. First let (i, j) ∈ D�(M)t,u and
(j, k) ∈ D�(M)u,v . By the above we have rkMs,u < j if and only if rkMs,v < k,
and so substituting

j = k +max {rkMs,u − rkMs,v | s < t, rkMs,v < k}

gives

i = k +max {rkMs,u − rkMs,v | s < t, rkMs,v < k}
+max {rkMs,t − rkMs,u | s < t, rkMs,u < j }

= k +max {rkMs,t − rkMs,v | s < t, rkMs,v < k},

which is equivalent to (i, k) ∈ D�(M)t,v . Conversely, given (i, k) ∈ D�(M)t,v ,
the above equation for j yields (i, j) ∈ D�(M)t,u and (j, k) ∈ D�(M)u,v . We
conclude that D�(M) is a functor R → Mch. ��

Similarly, we can also show directly from the description of Proposition 10
that D�(f ) and D↪→(f ) are natural transformations, turning D� and D↪→
into functors. We omit the proof, which is essentially the same as the proof of
Proposition 11.



94 U. Bauer and M. Lesnick

Proposition 12

(i) Let f : M � N be an epimorphism. Then, for all t , D�(f )t is an order-
preserving epimorphism in Mch. Moreover, these matchings are natural, so
they define an epimorphism

D�(f ) : D�(M) � D�(N)

in a functorial way, i.e.,D�(g◦f ) = D�(g)◦D�(f ) for any epi g : N � O .
(ii) Let f : M ↪→ N be a monomorphism. Then, for all t , D↪→(f )t is an order-

preserving monomorphism in Mch. Moreover, these matchings are natural, so
they define a monomorphism

D↪→(f ) : D↪→(M) ↪→ D↪→(N).

in a functorial way, i.e., D↪→(g ◦ f ) = D↪→(g) ◦ D↪→(f ) for any mono g :
N ↪→ O .

Remark 4 As an aside, we note that the formulas of Propositions 10 and 11 extend
to any q-tame persistence module M (i.e., one for which rk(Ms,t ) < ∞ whenever
s < t), even though the usual structure theorem for p.f.d. persistence modules does
not extend to the q-tame setting [7]. However, since in this setting Proposition 7
does not apply, it is not guaranteed that the resulting matching diagrams D�(M)

and D↪→(M) are isomorphic.

Remark 5 (Matchings Induced by Arbitrary Morphisms) While D�(M) and
D↪→(M) are typically not equal, we have seen above that there is a distinguished
isomorphism from each of these matching diagrams to E(B(M)). This in turn gives
us a distinguished isomorphism

ζM : D�(M)→ D↪→(M).

Using this, we can define the matchingD�(M)→ D�(N) induced by a morphism
f : M → N of p.f.d. persistence modules as the composition of matching diagrams

D (M) D (im f ) D→(im f ) D→(N) D (N),
D (q) ζim f D →(i) ζ−1

N

where f = i ◦ q is the epi-mono factorization of f . By construction, this is
equivalent to the induced matching X(f ) in Barc. A definition of the matching
D↪→(M)→ D↪→(N) induced by f can be given in a similar way.

Because ζimf and ζN are defined in terms of barcodes, our definition of the
matching D�(M) → D�(N) induced by f is defined in terms of barcodes
as well. This is at odds with the goal of giving a barcode-free construction of
induced matchings directly in MchR, as we have done when restricting attention
to monos or epis f . However, we do not see a simple way to define the matching
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D�(M)→ D�(N) induced by an arbitrary morphism f without appealing to the
connection with barcodes. This suggests to us that to define matchings induced by
arbitrary morphisms, it is more natural to work in the category Barc, as we have
done elsewhere in this paper, than to work in MchR.

6 Discussion

In this paper, we have established some basic facts about the category Barc ∼= MchR

of barcodes and used these observations to give simple new formulations of the
induced matching and algebraic stability theorems. We have seen that the new
formulations lead to variant of the proof of the induced matching theorem which
emphasizes the preservation of categorical structure.

In fact, our definition of the category Barc extends to barcodes indexed over
arbitrary posets, as defined in [3], and many of the ideas presented here extend either
to arbitrary posets or to Rn-indexed barcodes for any n. In particular, Proposition 6
extends to Rn-indexed barcodes, and this provides alternative language for express-
ing generalized algebraic stability results appearing in [2, 3]. While it remains to
be seen what role the categorical viewpoint on barcodes might play in the further
development of TDA theory, we hope that it might offer some perspective on how
algebraic stability ought to generalize to other settings.

As already mentioned, our new formulations of the algebraic stability and
induced matching theorems make clear that both results can be interpreted as the
preservation of some categorical structure as we pass from vectR to Barc. Can more
of interest be said about how the passage from persistence modules to barcodes
preserves categorical structure? We wonder whether our results can be understood
as part of a larger story about how homological algebra in the Abelian category
vectR relates to homological algebra in Barc.
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The Persistence Landscape and Some
of Its Properties

Peter Bubenik

Abstract Persistence landscapes map persistence diagrams into a function space,
which may often be taken to be a Banach space or even a Hilbert space. In the latter
case, it is a feature map and there is an associated kernel. The main advantage of this
summary is that it allows one to apply tools from statistics and machine learning.
Furthermore, the mapping from persistence diagrams to persistence landscapes is
stable and invertible. We introduce a weighted version of the persistence landscape
and define a one-parameter family of Poisson-weighted persistence landscape
kernels that may be useful for learning. We also demonstrate some additional
properties of the persistence landscape. First, the persistence landscape may be
viewed as a tropical rational function. Second, in many cases it is possible to exactly
reconstruct all of the component persistence diagrams from an average persistence
landscape. It follows that the persistence landscape kernel is characteristic for
certain generic empirical measures. Finally, the persistence landscape distance may
be arbitrarily small compared to the interleaving distance.

1 Introduction

A central tool in topological data analysis is persistent homology [36, 65] which
summarizes geometric and topological information in data using a persistence
diagram (or equivalently, a bar code).

For topological data analysis, one wants to subsequently perform statistics and
machine learning. There are some approaches to doing so directly with persistence
diagrams [10, 15, 17, 51, 59]. However, using the standard metrics for persistence
diagrams (bottleneck distance and Wasserstein distance) it is difficult to even
perform such a basic statistical operation as averaging [52, 61].
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The modern approach to alleviating these difficulties and to permit the easy
application of statistical and machine learning methods is to map persistence
diagrams to a Hilbert space. One way to do so is the persistence landscape [14].
It has the advantages of being invertible, so it does not lose any information, having
stability properties, and being parameter-free and nonlinear (see Sect. 2.2).

The persistence landscape may be efficiently computed either exactly or using
a discrete approximation [16]. Since it loses no information (or little information
in the case of the discrete approximation) it can be a large representation of
the persistence diagram. Nevertheless, subsequent statistical and machine learn-
ing computations are fast, which has allowed a wide variety of applications.
These include the study of: electroencephalographic signals [63, 64], protein bind-
ing [43], microstructure analysis [34], phase transitions [35], swarm behavior [31],
nanoporous materials [46, 47], fMRI data [7, 60], coupled oscillators [60], brain
geometry [39, 40], detecting financial crashes [41], shape analysis [53], histology
images [28], music audio signals [49], and the microbiome [54].

In this paper we introduce a weighted version of the persistence landscape
(Sect. 3). In some applications it has been observed that it is not the longest bars
that are the most relevant, but those of intermediate length [6, 53]. The addition of
a weighting allows one to tune the persistence landscape to emphasize the feature
scales of greatest interest. Since arbitrary weights allow perhaps too much flexibility,
we introduce the Poisson-weighted persistence landscape kernel which has one
degree of freedom.

Next we show that persistence landscapes are highly compatible with Kalisnik’s
tropical rational function approach to summarizing persistent homology [42]. In
fact, we show that persistence landscapes are tropical rational functions (Sect. 4).

In the most technical part of the paper (Sect. 5), we prove that for certain finite
sets of persistence diagrams, it is possible to recover these persistence diagrams
exactly from their average persistence landscape (Theorem 14). Furthermore, we
show that this situation is in some sense generic (Theorem 20). This implies that the
persistence landscape kernel is characteristic for certain generic empirical measures
(Theorem 15).

It is known that the L∞ distance between the two persistence landscapes
associated to two persistence diagrams is upper bounded by the corresponding
bottleneck distance [14, Theorem 13]. In the other direction, we show that this
L∞ distance is not lower bounded by some fixed positive scalar multiple of the
corresponding bottleneck distance (Sect. 6).

1.1 Related Work

There are also many other ways to map persistence diagrams to a vector space or
Hilbert space. These include the Euler characteristic curve [62], the persistence
scale-space map [56], complex vectors [33], pairwise distances [21], silhou-
ettes [25], the longest bars [6], the rank function [58], the affine coordinate ring [2],
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the persistence weighted Gaussian kernel [44], topological pooling [12], the Hilbert
sphere [5], persistence images [1], replicating statistical topology [3], tropical ratio-
nal functions [42], death vectors [53], persistence intensity functions [26], kernel
density estimates [50, 55], the sliced Wasserstein kernel [20], the smooth Euler char-
acteristic transform [32], the accumulated persistence function [9], the persistence
Fisher kernel [45], persistence paths [27], and persistence countours [57]. Perhaps
since the persistence diagram is such a rich invariant, it seems that any reasonable
way of encoding it in a vector works fairly well.

1.2 Outline of the Paper

In Sect. 2 we recall necessary background information. The next three sections
contain our main results. In Sect. 3 we define the weighted persistence landscape
and the Poisson-weighted persistence landscape kernel. In Sect. 4 we show that
the persistence landscape may be viewed as a tropical rational function. In Sect. 5
we show that in a certain generic situation we are able to reconstruct a family of
persistence diagrams from their average persistence landscape. From this it follows
that the persistence landscape kernel is characteristic for certain generic empirical
measures. Finally in Sect. 6 we show that the L∞ landscape distance is not lower
bounded by a fixed positive scalar multiple of the bottleneck distance.

2 Background

2.1 Persistence Modules, Persistence Diagrams, and Bar Codes

A persistence module [18] M consists of a vector space M(a) for each real number
a, and for each a ≤ b a linear map M(a ≤ b) : M(a) → M(b) such that for
a ≤ b ≤ c, M(b ≤ c) ◦ M(a ≤ b) = M(a ≤ c). Persistence modules arise
in topological data analysis from homology (with coefficients in some field) of a
filtered simplicial complex (or a filtered topological space).

In many cases, a persistence module can be completely represented by a
collection of intervals called a bar code [30]. Another representation of the bar code
is the persistence diagram [29] consisting of pairs {(aj , bj )}j∈J which are the end
points of the intervals in the bar code.

In computational settings there are always only finitely many points in the
persistence diagram and it is usually best to truncate intervals in the bar code that
persist until the maximum filtration value at that value. Thus we make the following
assumption.

Throughout this paper, we will assume that persistence diagrams consist of
finitely many points (b, d) with −∞ < b < d <∞.
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One way of measuring distance between persistence modules is the interleaving
distance [22]. Similarly, one can measure distance between persistence diagrams
is the bottleneck distance [29]. The two distances are related by the isometry
theorem [18, 22, 48]. These distances induce a topology on the space of persistence
modules and the space of persistence diagrams [19].

Sometimes we will consider sequences of persistence diagrams D1, . . . ,Dn for
fixed n. When we do so, we will consider this sequence to be a point (D1, . . . ,Dn)

in the product space of n persistence diagrams with the product metric. That is,

d
(
(D1, . . . ,Dn), (D

′
1, . . . ,D

′
n)
) = max

{
dB(D1,D

′
1), . . . , dB(Dn,D

′
n)
}
. (1)

This metric induces the product topology.

2.2 Persistence Landscapes and Average Persistence
Landscapes

We give three equivalent definitions of the persistence landscape [14].
Given a persistence module, M , we may define the persistence landscape as the

function λ : N× R→ R given by

λ(k, t) = sup(h ≥ 0 | rankM(t − h ≤ t + h) ≥ k).

More concretely, for a bar code, B = {Ij }, we can define the persistence landscape
by

λ(k, t) = sup(h ≥ 0 | [t − h, t + h] ⊂ Ij for at least k distinct j).

For a persistence diagram D = {(ai, bi)}i∈I , we can define the persistence
landscape as follows. First, for a < b, define

f(a,b)(t) = max(0,min(a + t, b − t)).

Then

λ(k, t) = kmax {f(ai,bi)(t)}i∈I ,

where kmax denotes the kth largest element.
The persistence landscape may also be considered to be a sequence of functions

λ1, λ2, . . . : R → R, where λk is called the kth persistence landscape function.
The function λk is piecewise linear with slope either 0, 1, or −1. The critical
points of λk are those values of t at which the slope changes. The set of critical
points of the persistence landscape λ is the union of the sets of critical points of the
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functions λk . A persistence landscape may be computed by finding its critical points
and also encoded by the sequences of critical points of the persistence landscape
functions [16].

The average persistence landscape [14, 25] of the persistence landscapes
λ(1), . . . , λ(N) is given by

λ̄(k, t) = 1

N

N∑
j=1

λ(j)(k, t).

We can also consider λ̄ to be given by a sequence of functions λ̄k = 1
N

∑N
j=1 λ

(j)

k (t).

2.3 Feature Maps and Kernels

Let S be a set. A function F : S→ H where H is a Hilbert space is called a feature
map. A kernel on S is a symmetric map K : S× S→ R such that for every n and
all x1, . . . , xn ∈ S and a1, . . . , an ∈ R,

∑n
i,j=1 aiajK(xi, xj ) ≥ 0. A reproducing

kernel Hilbert space (RKHS) on a set S is a Hilbert space of real-valued functions
on S such that the pointwise evaluation functional is continuous.

Given a feature map there is an associated kernel given by

K(x, y) = 〈(F (x), F (y)〉H.

Given a kernel, K , there is an associated reproducing kernel Hilbert space (RKHS),
HK , which is the completion of the span of the functions Kx : S → R given
by Kx(y) = K(x, y), for all x ∈ S, with respect to the inner product given by
〈Kx,Ky〉 = K(x, y).

Now assume that we have a σ -algebra A on S. One can map measures on (S,A)

to HK via the map �K : μ �→ ∫
SK(·, x) dμ(x) (when this is well defined).

This map is called the kernel mean embedding. Let M be a set of measures on
S. The kernel K is said to be characteristic over M if the kernel mean embedding
is injective on M.

2.4 Properties of the Persistence Landscape

We recall some established properties of the persistence landscape.

2.4.1 Invertibility

The following is given informally in [14, Section 2.3]. It is proved more formally
and precisely in [8] where it is shown that the critical points of the persistence
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landscapes are obtained from a graded version of the rank function via Möbius
inversion.

Theorem 1 The mapping from persistence diagrams to persistence landscapes is
invertible.

2.4.2 Stability

The persistence landscape is stable in the following sense.

Theorem 2 ([14, Theorem 13]) Let D and D′ be two persistence diagrams and let
λ and λ′ be their persistence landscapes. Then for all k and all t ,

|λk(t)− λ′k(t)| ≤ dB(D,D
′),

where dB denotes the bottleneck distance.

More generally, we have the following.

Theorem 3 ([14, Theorem 17]) Let M and M ′ be two persistence modules and let
λ and λ′ be their persistence landscapes. Then for all k and all t ,

|λk(t)− λ′k(t)| ≤ di(M,M ′),

where di denotes the interleaving distance.

As a special case of Theorem 2, we have the following.

Corollary 4 Given persistence diagrams D = {(a1, b1), . . . , (an, bn)} and D′ =
{(a′1, b′1), . . . , (a′n, b′n)}, let λ and λ′ be the associated persistence landscapes. Then

∥∥λ− λ′
∥∥∞ ≤

∥∥(a1, b1, . . . , an, bn)− (a′1, b′1, . . . , a′n, b′n)
∥∥∞ .

In [23] it is shown that the average persistence landscape is stable.

2.4.3 The Persistence Landscape Kernel

Since the persistence landscape is a feature map from the set of persistence diagrams
to L2(N × R) there is an associated kernel we call the persistence landscape
kernel [56], given by

K(D(1),D(2)) = 〈λ(1), λ(2)〉 =
∑
k

∫
λ
(1)
k λ

(2)
k =

∞∑
k=1

∫ ∞

−∞
λ
(1)
k (t)λ

(2)
k (t) dt.

(2)
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2.4.4 The Persistence Landscapes and Parameters

One advantage of the persistence landscape is that its definition involves no
parameters. So there is no need for tuning and no risk of overfitting.

2.4.5 Nonlinearity of Persistence Landscapes

Another important advantage of the persistence landscape for statistics and machine
learning is its nonlinearity. Call a summary S of persistence diagrams in a vector
space linear if for two persistence diagrams D1 and D2, S(D1 % D2) = S(D1) +
S(D2). The persistence landscape is highly non-linear.

2.4.6 Computability of the Persistence Landscape

There are fast algorithms and software for computing the persistence landscape [16].
In practice, computing the persistence diagram seems to always be slower than
computing the associated persistence landscape. The methods are also available in
an R package [13].

2.4.7 Convergence Results for the Persistence Landscape

From the point of view of statistics, we assume that data has been obtained by
sampling from a random variable. Applying our persistent homology constructions,
we obtain a random persistence landscape.

This is a Banach space valued random variable. Assume that its norm has
finite expectation and variance. If we take an (infinite) sequence of samples from
this random variable then the average landscapes converge (almost surely) to the
expected value of the random variable [14, Theorem 9]. This is known as a (strong)
law of large numbers.

Now if we consider the difference between the average landscapes and the
expectation (suitably normalized), it converges pointwise to a Gaussian random
variable [14, Theorem 10]. This result was extended in [25] to prove uniform
convergence. These are central limit theorems.

2.4.8 Confidence Bands for the Persistence Landscape

The bootstrap can be used to compute confidence bands [24] and adaptive con-
fidence bands [25] for the persistence landscape. There is an R package that has
implemented these computations [37].
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2.4.9 Subsampling and the Average Persistence Landscape

A useful and powerful method in large data settings is to subsample many times
and compute the average persistence landscape [23, 53]. In [23] it is shown that this
average persistence landscape is stable and that it converges.

2.5 Tropical Rational Functions

The max-plus algebra is the semiring over R ∪ {−∞} with the binary operations
given by

x ⊕ y = max(x, y),

x & y = x + y.

If x1, . . . , xn are variables representing elements in the max-plus algebra, then a
product of these variables (with repetition allowed) is a max-plus monomial.

x
a1
1 x

a2
2 · · · xann = x

a1
1 & x

a2
2 & · · · & xann

A max-plus polynomial is a finite linear combination of max-plus monomials.

p(x1, . . . , xn) = a1&xa
1
1

1 x
a1

2
2 · · · xa1

n
n ⊕a2&xa

2
1

2 x
a2

2
2 · · · xa2

n
n ⊕· · ·⊕am&xa

m
1

1 x
am2
2 · · · xamnn

We also call this a tropical polynomial. A tropical rational function [42] is a quotient
p & q−1 where p and q are tropical polynomials. Note that if r and s are tropical
rational functions, then so is r & s−1.

3 Weighted Persistence Landscapes

In this section we introduce a class of norms and kernels for persistence landscapes.
As a special case we define a one-parameter family of norms and kernels for
persistence landscapes which may be useful for learning algorithms.

Recall that for real-valued functions on N×R we have a p-norm for 1 ≤ p ≤ ∞.
For persistence landscapes, we have for 1 ≤ p <∞,

‖λ‖p =
∞∑
k=1

[∫ ∞

−∞
λk(t)

p dt

] 1
p

,
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and for p = ∞,

‖λ‖∞ = sup
k,t

λk(t).

We also have the persistence landscape kernel, introduced in (2), given by the inner
product on N× R,

K(D(1),D(2)) = 〈λ(1), λ(2)〉 =
∑
k

∫
λ
(1)
k λ

(2)
k =

∞∑
k=1

∫ ∞

−∞
λ
(1)
k (t)λ

(2)
k (t) dt.

We observe that one may use weighted versions of these norms and inner
products. That is, given any nonnegative function w : N× R→ R, we have

‖λ‖p,w = ‖wλ‖p ,

and

Kw(D
(1),D(2)) = 〈w 1

2 λ(1), w
1
2 λ(2)〉.

For example, consider the following one-parameter family of kernels,

Kν(D
(1),D(2)) =

∞∑
k=1

Pν(k − 1)
∫ ∞

−∞
λ
(1)
k (t)λ

(2)
k (t) dt,

where Pν(k) = νke−ν
k! is the Poisson distribution with parameter ν > 0. Call this

the Poisson-weighted persistence landscape kernel. This additional parameter may
be useful for training classifiers using persistence landscapes. It has an associated
one-parameter family of norms given by,

‖λ‖ν =
∞∑
k=1

Pν(k − 1) ‖λk‖2 .

Note that the distribution Pν(k − 1) is unimodal with maximum at k = (ν) and
k = *ν, + 1. So by varying ν one increases the weighting of a particular range of
persistence landscape functions.

We may consider the kernel Kν to be associated to the feature map D �→ λ(D)

which maps to the Hilbert space with inner product 〈f, g〉ν =∑
k Pν(k− 1)

∫
fkgk

or the feature map D �→ ∑
k (Pν(k − 1))

1
2 λk(D) which maps to the usual Hilbert

space L2(N× R).
The Poisson distrubution was chosen because it provides a one-parameter

family of unimodal weights whose modes include all natural numbers. Other
one-parameter, few-parameter, or more general weighting schemes may be useful
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depending on the application and the machine learning methods that are used. For
related work, consider countour learning [57].

4 Persistence Landscapes as Tropical Rational Functions

In this section we will show that the persistence landscape is a tropical rational
function.

Let D = {(ai, bi)}ni=1 be a persistence diagram. Recall (Sect. 2.1) that by
assumption −∞ < ai < bi < ∞. Recall (Sect. 2.2) that the kth persistence
landscape function is given by λk(t) = kmax1≤i≤n f(ai ,bi)(t), where f(a,b)(t) =
max(0,min(a + t, b − t)).

First rewrite f(a,b) as a tropical rational expression in one variable, t , as follows.

f(a,b)(t) = max(0,min(a + t, b − t))

= max(0,−max(−(a + t), t − b))

= max(0,−max((a & t)−1, t & b−1))

= max(0, [(a & t)−1 ⊕ (t & b−1)]−1)

= 0⊕
[
(a & t)−1 ⊕ (t & b−1)

]−1

We may simplify the right hand term by using the usual rules for adding fractions. 1

So

f(a,b)(t) = 0⊕ (a + b)& t & (b⊕ a & t2)−1.

Next consider max-plus polynomials in n variables, x1, . . . , xn. The elementary
symmetric max-plus polynomials, σ1, . . . , σn, are given by

σk(x1, . . . , xn) = ⊕π∈Snxπ(1) & · · · & xπ(k),

where the sum is taken over elements π of the symmetric group Sn. So σk is the sum
of the kth largest elements of x1, . . . , xn. Therefore,

kmax
1≤i≤n xi = σk(x1, . . . , xn)− σk−1(x1, . . . , xn).

1That is,
(

1
at
+ t

b

)−1 = bat

b+at2 .
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Thus,

λk(t) = σk(fi(t))& σk−1(fi(t))
−1,

where we have written σk(xi) for σk(x1, . . . , xn) and fi(t) for f(ai,bi)(t). Hence,
for a fixed persistence diagram D, we have λk as a tropical rational function in one
variable t .

However, we really want to consider t as fixed and the persistence diagram as the
variable. Let us change to this perspective. To start, consider

ft (a, b) = 0⊕ t & a & b& (b ⊕ 2t & a)−1,

a tropical rational function in the variables a and b. Next,

σk(ft (a1, b1), . . . , ft (an, bn)) = ⊕π∈Snft (aπ(1), bπ(1))& · · · & ft (aπ(k), bπ(k))

is a 2-symmetric max-plus tropical rational function in the variables a1, b1, . . . , an,

bn. Finally,

λk,t (a1, b1, . . . , an, bn) = σk(ft (a1, b1), . . . , ft (an, bn))& σk−1(ft (a1, b1), . . . , ft (an, bn))
−1

is also a 2-symmetric tropical rational function in the variables a1, b1, . . . , an, bn.
By the stability theorem for persistence landscapes (Sect. 2.4), these tropical

rational functions are 1-Lipschitz function from R
2n with the sup-norm to R.

Since the mapping from persistence diagrams to persistence landscapes is
invertible [14], the persistence landscape gives us a collections of tropical rational
functions λk,t from which we can reconstruct the persistence diagrams.

In practice, we do not need to use all of the λk,t . If the values of ai and bi are
only known up to some ε or if they lie on a grid of step size 2ε, then it suffices to use
k = 1, . . . ,K and t = a, a+ε, a+2ε, a+2mε, whereK is the maximal dimension
of the persistence module (i.e. the maximum number of overlapping intervals in the
bar code), and the interval [a, a + 2mε] contains all of the ai and bi .

5 Reconstruction of Diagrams from an Average Persistence
Landscape

In this section we will show that for certain generic finite sets of persistence
diagrams, it is possible to reconstruct these sets of persistence diagrams exactly from
their average persistence landscapes. This implies that the persistence landscape
kernel is characteristic for certain generic empirical measures.

Let D1, . . . ,Dn be a sequence of persistence diagrams (Sect. 2.1). Recall that we
assume that our persistence diagrams consist of finitely many points (b, d) where
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∞ < b < d < ∞ (Sect. 2.1). Let λ(D1), . . . , λ(Dn) denote their corresponding
persistence landscapes (Sect. 2.2) and let λ̄ := 1

n

∑n
k=1 λ(Dk) denote their average

landscape. We can summarize this construction as a mapping

(D1, . . . ,Dn) �→ λ̄ = λ̄(D1, . . . ,Dn) (3)

We will show that in many cases, this map is invertible.

5.1 Noninvertibility and Connected Persistence Diagrams

We start with a simple example where the map in (3) is not one-to-one and hence
not invertible.

Consider D1 = {(0, 2)}, D2 = {(4, 6)}, D′1 = {(0, 2), (4, 6)}, and D′2 = ∅. Then
λ(D1)+ λ(D2) = λ(D′1) = λ(D′1)+ λ(D′2). So the average landscape of {D1,D2}
equals the average landscape of {D′1,D′2}.

The map (3) fails to be invertible because the union of the intervals in the bar code
(Sect. 2.1) corresponding to the persistence diagram D′1 is disconnected. However,
in many applications we claim that this behavior is atypical. To make this claim
precise we need the following definition.

Definition 5 Let B be a bar code consisting of intervals {Ij }j∈J . Define the graph
of B to be the graph whose vertices are the intervals Ij and whose edges {Ij , Ik}
consists of pairs of intervals with nonempty intersection, Ij ∩ Ik �= ∅.

For many geometric processes [4, Figure 2.2] and in applications [38, Figure
5], as the number of intervals in the bar code increases, the corresponding graphs
seem to have a giant component [11, Chapter 6]. Note that any gaps in the union
of intervals in the bar code only occur where the corresponding Betti number is
zero. So there will be no gaps in a range of parameter values where all of the
corresponding Betti numbers are nonzero.

5.2 Bipartite Graph of a Persistence Diagram

Let D = {(aj , bj )}j∈J be a persistence diagram.

Definition 6 Say that the persistence diagram D is generic if for each j �= k ∈ J ,
the four numbers aj , bj , ak, bk are distinct.

Definition 7 Let D be a generic persistence diagram. Let B(D) be the bipartite
graph of D consisting of the disjoint vertex sets U = {aj }j∈J and V = {bj }j∈J
and edges consisting of (aj , bj ) for each j ∈ J and (ak, bj ) for each pair j, k ∈ J

satisfying aj < ak < bj < bk.
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Proposition 8 We can reconstruct a generic persistence diagram D from its
bipartite graph.

Proof Let D be a generic persistence diagram. Let B(D) be its bipartite graph. Let
U and V be the disjoint vertex sets of B(D). By definition, U consists of the set of
first coordinates of the points in D, and V consists of the set of second coordinates
of the points in D. By assumption, these coordinates are unique. Let a ∈ U . By
the definition of B(D), there exists b ∈ V such that {a, b} is an edge in B(D) and
(a, b) ∈ D. Also by definition, for all c ∈ V such at {a, c} is an edge in B(D),
c ≤ b. Thus, for all a ∈ U , let b = b(a) be the maximum element of V such that
{a, b} is an edge in B(D). The resulting pairs (a, b) are exactly D. ��
Definition 9 Say that a persistence diagram is connected if the graph (Definition 5)
of its barcode is connected.

Lemma 10 A generic persistence diagram is connected if and only if its bipartite
graph is connected.

Proof Let D be a generic persistence diagram. If we set a ∼ b in (a, b) ∈ D,
the B(D)/ ∼ is isomorphic to the graph of the bar code corresponding to D. By
definition, B(D) is connected, if and only if B(D)/ ∼ is connected. ��

5.3 Critical Points of Persistence Landscapes

We observe that it is easy to list the critical points of a persistence landscape from
its corresponding persistence diagram.

Lemma 11 Let D = {(aj , bj )} be a persistence diagram. Consider the intervals
[aj , bj ) in the corresponding bar code. The critical points in the corresponding
persistence landscape consist of

1. the left end points aj of the intervals;
2. the right end points bj of the intervals;

3. the midpoints
aj+bj

2 of the intervals; and

4. the midpoints
ak+bj

2 of intersections of pairs of intervals where aj < ak < bj <

bk .

Let C(D) denote this set.

Proof Recall that the critical points of the persistence landscape of D =
{(aj , bj )}j∈J consist of the critical points of the functions f(aj ,bj ) and the points t
for which there exist j and k such that f(aj ,bj )(t) = f(ak,bk)(t), f

′
(aj ,bj )

(t) = −1

and f ′(ak,bk)(t) = 1. The former are exactly the points in (1), (2), and (3). The latter
are exactly the points in (4). ��
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In the set C(D) we have the following three-term arithmetic progressions,

aj ,
aj+bj

2 , bj and ak,
ak+bj

2 , bj ,

which we call interval triples and intersection triples, respectively. Note that we
have one interval triple for each point in the persistence diagram and one intersection
triple for each pair of points in the persistence diagram that satisfies aj < ak < bj
< bk.

5.4 Arithmetically Independent Sets of Persistence Diagrams

In this section we introduce assumptions for a set {D1, . . . ,Dn} of persistence
diagrams.

Definition 12 Let {D1, . . . ,Dn} be a set of persistence diagrams. We call this set
arithmetically independent if it satisfies the following assumptions.

1. Each Di is generic.
2. The sets C(Di) are pairwise disjoint.
3. Let C be the set of all critical points in λ̄(D1, . . . ,Dn). All of the three-term

arithmetic progressions in C are either interval triples or intersection triples of
some Di .

Example 13 The set {D}, where D = {(0, 1), (1, 2)}, is not arithmetically indepen-
dent since one appears twice as an endpoint of an interval in D. The set {D1,D2},
where D1 = {(0, 2)} and D2 = {(1, 5)}, is not arithmetically independent since
1 is a midpoint of an interval in D1 and an endpoint of an interval in D2. The set
{D1,D2}, where D1 = {(0, 1)} and D2 = {(2, 4)} is not arithmetically independent
because of the three-term arithmetic progression (0, 1, 2). The set {D1,D2}, where
D1 = {(0, 8)} and D2 = {(11, 13)} is not arithmetically independent because of the
three-term arithmetic progression (4, 8, 12). However, if we add 0, 0.1, 0.01, and
0.001 to the four respective numbers in each of these examples, then they become
arithmetically independent.

5.5 Reconstruction of Persistence Diagrams from an Average
Landscape

We are now in a position to state and prove our reconstruction result.

Theorem 14 Let λ̄ be the average landscape of the persistence diagrams
D1, . . . ,Dn. If D1, . . . ,Dn are connected and arithmetically independent then
one can reconstruct {D1, . . . ,Dn} from λ̄.
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Proof LetC be the set of all critical points in the average landscape λ̄(D1, . . . ,Dn).
Let U ⊂ C be the subset of critical points that are the first term in a three-term
arithmetic progression in C. Let V ⊂ C be the subset of critical points that are the
third term in a three-term arithmetic progression in C.

By assumption U and V are disjoint. Let B be the bipartite graph whose set of
vertices is the disjoint union of U and V and whose edges consist of {a, b} where a
and b are the first and third term of a three-term arithmetic progression in C.

By the assumption of arithmetic independence, vertices in B are only connected
by an edge if they are critical points of the same persistence diagram. By the
assumption of connectedness, all of the critical points of a persistence landscape
of one of the persistence diagrams are connected in B. Thus, the connected
components of B are exactly the bipartite graphs B(D1), . . . , B(Dn).

Using Proposition 8, we can reconstruct each persistence diagram from the
corresponding bipartite graph. ��

5.6 Persistence Landscapes are Characteristic for Empirical
Measures

We can restate Theorem 14 using the language of characteristic kernels (Sect. 2.3).

Theorem 15 The persistence landscape kernel is characteristic for empirical
measures on connected and arithmetically independent persistence diagrams.

5.7 Genericity of Arithmetically Independent Persistence
Diagrams

We end this section by showing that connected and arithmetically independent
persistence diagrams are generic in a particular sense.

Lemma 16 Let D = {(aj , bj )}nj=1 be a persistence diagram. Let ε > 0. Then there
exists a connected persistence diagram D′ with dB(D,D′) < ε.

Proof Let a = min{aj } and b = max{bj }. Choose N such that b−a
N

< ε
2 . Let D′′ =

{(a+ (k− 1) b−a
N
, a+ (k+ 1) b−a

N
)}Nk=0. Then D′′ is connected and dB(D′′,∅) < ε.

Thus D %D′′ is connected and dB(D,D %D′′) < ε. ��
Lemma 17 Let D = {(aj , bj )}nj=1. Let ε > 0. Then there is a generic persistence
diagram D′ = {(a′j , b′j )}nj=1 with dB(D,D′) < ε. Furthermore, if D is connected
then so is D′.

Proof The proof is by induction on n. If n = 0 then the statement
is trivial. Assume that {(a′j , b′j )}n−1

j=1 is a generic persistence diagram and
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dB({(aj , bj )}n−1
j=1, {(a′j , b′j )}n−1

j=1) < ε. Since there are only finitely many numbers
to avoid, we can choose a′n ∈ [an − ε

2 , an] and b′n ∈ [bn, bn + ε
2 ] such that

D′ := {(a′j , b′j )}nj=1 is a generic persistence diagram. Note that dB(D,D′) < ε.
Since a′n ≤ an < bn ≤ b′n, if D is connected then so is D′. ��
Proposition 18 Let D be a generic persistence diagram. Then there is an ε > 0
such that for allD′ with |D′| = |D| and dB(D,D′) < ε,D′ is generic andB(D′) ∼=
B(D).

Proof Let E(D) be the set of all coordinates of points in D. Let δ = min{|x −
y| | x �= y ∈ E(D)}. Let ε < δ

4 . Let D′ be a persistence diagram with |D′| =
|D| and dB(D,D

′) < ε. Then for all (a, b) ∈ D there is a (a′, b′) ∈ D′ with∥∥(a, b)− (a′, b′)
∥∥∞ < ε. So |a′−a| < ε and |b′−b| < ε. By the triangle inequality,

the coordinates of points in D′ are distinct.
By the construction of D′, there is a canonical bijection of the intervals in

the barcodes of D and D′. Note that by the definition of δ, this implies that the
nonempty intersections of pairs of intervals in the bar code of D have length at least
δ. Since ε < δ

4 , a pair of intervals in the bar code of D′ intersect if and only if the
corresponding pair of intervals in D intersect. ��
Corollary 19 Let D be a generic and connected persistence diagram. Then there
is an ε > 0 such that for all persistence diagrams D′ with |D′| = |D| and
dB(D,D

′) < ε, D′ is generic and connected.

Now consider a sequence of persistence diagrams D1, . . . ,Dn. Recall that we
consider this to be a point in the product space of n persistence diagrams (Sect. 2.1)
with associated product metric (1) and product topology.

Theorem 20 Connected and arithmetically independent persistence diagrams are
generic in the following sense.

1. They are dense. That is, given persistence diagrams D1, . . . ,Dn and an ε >

0 there exist connected and arithmetically independent persistence diagrams
D′1, . . . ,D′n with dB(Di,D

′
i ) < ε for all i.

2. If we restrict to persistence diagrams with the same cardinality then they
are open. That is, given connected and arithmetically independent persistence
diagrams D1, . . . ,Dn, there is some ε > 0 such that any persistence diagrams
D′1, . . . ,D′n with |D′i | = |Di | and dB(Di,D

′
i ) < ε for all i, are connected and

arithmetically independent.

Proof

(1) The proof is by induction on n. If n = 0 then the statement is trivially true.
Assume that we have connected and arithmetically independent persistence
diagrams D′1, . . . ,D′n−1 with dB(Dj ,D

′
j ) < ε for 1 ≤ j ≤ n − 1. By

Lemmas 16 and 17 there exists a generic and connected persistence diagram
D′n = {(ak, bk)}mk=1 with dB(Dn,D

′
n) <

ε
2 . We finish the proof by induction

on m. If m = 0 then we are done. Assume that D′1, . . . ,D′n−1, {(a′k, b′k)}m−1
k=1
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is arithmetically independent. By Corollary 19, there exists an ε′ > 0 such
that for all persistence diagrams D′′ with |D′′| = m and dB(D

′′,D′n) < ε′,
D′′ is generic and connected. Let δ = min( ε4 ,

ε′
2 ). Since there are only finitely

many numbers to avoid, we can choose a′m ∈ [am − δ] and b′m ∈ [bm, bm + δ]
such that D′1, . . . ,D′n−1,D

′′
n := {(ak, bk)}m−1

k=1 ∪ {(a′m, b′m)} is connected and
arithmetically independent. Note that dB(Dn,D

′′
n) < ε.

(2) Let D1, . . . ,Dn be connected persistence diagrams that are arithmetically
independent. Denote this sequence of persistence diagrams by D. Using
Corollary 19 we can choose an ε′ > 0 such that for any persistence diagrams
D′1, . . . ,D′n with |D′i | = |Di | and dB(Di,D

′
i ) < ε′ for all i, each D′i is

connected.
LetC(D) be the set of all critical points of the average landscape of D. There

are only finitely many points a ∈ R \ C(D) such that a is part of a three term
arithmetic progression in C(D)∪{a}. Let C′(D) be the set of all such numbers.

Let δ = min{|x − y| | x �= y ∈ C(D) % C′(D)}. Let ε′′ = δ
4 . Consider

persistence diagrams D′1, . . . ,D′n with |D′i | = |Di | and dB(Di,D
′
i ) < ε′′ for

all i. Let D′ denote this sequence of persistence diagrams.
The assumptions imply that for each point (a, b) in one of the persistence

diagrams in D there is a corresponding point (a′, b′) in the corresponding
persistence diagram in D′, and

∥∥(a, b)− (a′, b′)
∥∥∞ < ε′′. That is, |a−a′| < ε′′

and |b − b′| < ε′′. Thus we have the induced bijection between C(D) and
C(D′) with corresponding points x and x ′ satisfying |x − x ′| < ε′′. Notice
that since Di is generic, so is D′i . Also, since the sets S(Di) are disjoint, so are
the sets S(D′i ). Furthermore, the assumptions imply that we have an induced
correspondence between C′(D) and C′(D′) with corresponding points y and
y ′ satisfying |y − y ′| < 2ε′′. By the triangle inequality for x ′ ∈ C(D′),
y ′ ∈ C′(D′), |x ′ − y ′| > δ − 3ε′′ > ε′′. It follows that D is arithmetically
independent. Let ε = min(ε′, ε′′). ��

6 Metric Comparison of Persistence Landscapes and
Persistence Diagrams

In this section we show that the L∞ landscape distance can be much smaller than
the corresponding bottleneck distance.

Given a persistence diagram D, let λ(D) denote the corresponding persistence
landscape. In [14, Theorem 12] it was shown that

∥∥λ(D) − λ(D′)
∥∥∞ ≤ dB(D,D

′).
Here we will show the following.

Proposition 21 Let K > 0. Then there is a pair of persistence diagrams such that∥∥λ(D) − λ(D′)
∥∥∞ ≤ KdB(D,D

′).
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-20 -15 -10 -5 0 5 10 15 20

Fig. 1 Two persistence diagrams, D1 and D2 (with filled circles and open circles, respectively)
whose persistence landscape distance is much smaller than their bottleneck distance. Each point
(b, d) in the persistence diagram is plotted with coordinates (m, h), where m = b+d

2 and h = d−b
2 .

The corresponding persistence landscapes, λ(D1) and λ(D2) are given by solid and dashed lines
respectively. Observe that ‖λ(D1)− λ(D2)‖∞ = 1 but dB(D1,D2) = 9

Proof Consider

D1 = {±(−3n− 1+ 2i, 3n− 1+ 2i))}ni=1, and

D2 = {±(−3n+ 2i, 3n+ 2i)}n−1
i=1 ∩ {(−3n, 3n), (−n, n)}

See Fig. 1 where n = 4. Then ‖λ(D1)− λ(D2)‖∞ = 1, but dB(D1,D2)

= 2n+ 1. ��
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Topological Approaches to Deep
Learning

Gunnar Carlsson and Rickard Brüel Gabrielsson

Abstract In this work we introduce an algebraic formalism to describe and
construct deep learning architectures as well as actions on them. We show how
our algebraic formalism in conjunction with topological data analysis enables the
construction of neural network architectures from a priori geometries, geometries
obtained from data analysis, and purely data driven geometries. We also demonstrate
how these techniques can improve the transparency and performance of deep neural
networks.

1 Introduction

Deep neural networks [5, 12] are a powerful and fascinating methodology for
solving problems with large and complex data sets. They use directed graphs as a
template for very large computations, and have demonstrated a great deal of success
in the study of various kinds of data, including images, text, time series, and many
others. One issue that restricts their applicability, however, is the fact that it is not
understood in any kind of detail how they work. A related problem is that there
is often a certain kind of overfitting to particular data sets, which results in the
possibility of so-called adversarial behavior (see [5, 6]), where they can be made
to fail by making very small changes to image data that is almost imperceptible
to a human. For these reasons, it is very desirable to develop methods for gaining
understanding of the internal states of the neural networks. Because of the very
large number of nodes (or neurons), and because of the stochastic nature of the
optimization algorithms used to train the networks, this is a problem in data analysis,
specifically for unsupervised data analysis. The initial goal of the work in this paper
was to perform topological data analysis (TDA) on the internal states of the neural
nets being trained on image data to demonstrate that TDA can provide this kind of
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insight, as well as to understand to what extent the neural net recapitulates known
properties of the mammalian visual pathway (see [18]). We have carried out this
analysis, and the results are reported in Sect. 4. We show that our findings are quite
consistent with the data analytic results on image patches in natural images obtained
in [2]. In addition, we are able to study the learning process in one example, and
also to study a very deep pre-trained neural network, with interesting results which
clarify the roles played by the different layers in the network.

Having performed these experiments, we became interested in the question
of how to apply the knowledge obtained from our study to deep learning more
generally. In particular, we asked how one might generalize the convolutional
neural net (CNN) construction [5] to other data sets, so as to obtain methods for
constructing efficient nets that are well adapted to other large classes of data sets, or
individual data sets. We found that the key idea from the image CNN construction
is the fact that the set of features (pixels) is endowed with a geometry, which can be
encoded in a metric, coming from the grid in which the pixels are usually arranged.
However, in most data sets, one has one or more natural notions of distance between
features, and generalizations based on such metrics appeared to be a potentially very
powerful source of methods for constructing neural nets with restrictions on the
connections based on such a metric. The idea of studying geometric properties of
features has been foreseen by M. Robinson in [13] under the heading of topological
signal processing. The second goal for us in this paper, then, is to introduce a
mathematical formalism for constructing neural network structures from metric and
graph based information on the feature space of a data set. The formalism provides
several key benefits.

• It provides a succinct way to describe various neural networks that take metric
information about the feature space into account.

• It allows one to incorporate scientific knowledge about a problem into the
computational architecture in a systematic way.

• It gives an automatic way to build neural networks for a particular data matrix.
• Because the networks have been built so that the set of neurons in each layer is

represented as a graphical model, models produced this way are by their very
nature explainable. For example, the topological models of the sets of neurons
can be colored by activations by data points or collections of data points.

We also find that this formalism simplifies and makes precise the specification of
neural networks even while using standard methods. In Sect. 5.2 we evaluate the
improvements possible from the very simplest application of this idea. The nature
of the improvements come in two directions. The first is in speeding up the learning
process. The training of neural nets can be quite a time consuming process, and
it is therefore desirable to lower the cost (in time) of training. We found that the
methods were more effective on more complex data sets, which is encouraging. A
second kind of improvement is in the direction of generalization. When training on
image data sets, it is standard procedure to select two subsets of the data set, one the
training set and the other the test set. The network is trained on the training set, and
accuracy is evaluated on the test set. This procedure is designed to guard against
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overfitting, and the accuracy often achieves very impressive numbers. However, one
can consider the problem of training on one data set of images and evaluating on an
entirely different data set. For example, there are two familiar data sets consisting of
images of digits, one MNIST [9] and the other SVHN [19]. The first is a relatively
“clean” data set, The second is actually obtained from images of numbers for the
addresses of houses. One could attempt to train on MNIST and evaluate accuracy
not on a different subset of MNIST, but rather SVHN. Due to overfitting to MNIST,
this process yields abysmal results, with an accuracy very close to that achieved by
random selection of classifications. We demonstrate that by the use of the methods
we have discussed one can improve the accuracy significantly, although still not to
an acceptable level. It suggests that further application of the methods could give us
much improved generalization.

We identify three separate scenarios giving rise to geometric information about
the feature space. The first is where by its very construction, a set of features is
equipped with a geometric structure. Typical examples of this situation are images
or time series, where, for example, the pixels (features of images) are designed with
a rectangular geometry in mind. The second is where a geometry is obtained from
studies such as that performed in [2]. Finally, there is a situation where one is given
a more or less general data matrix with numerical entries, and imposes a metric
on it via standard choices of metric such as Euclidean, Hamming, etc. Once this
has been done, it is important to be able to compress this geometric information
into a smaller representation, something which can be achieved by the Mapper
construction [1, 14].

We believe that the study of the geometry of the feature space attached to various
kinds of data sets will be a very powerful tool that can inform the construction
and improve the performance of neural networks. Additionally, because we have
incorporated geometric methods in the constructions, we also believe that our
formalism opens the door to more sophisticated, detailed, and nuanced mathematical
analysis of neural networks.

2 Neural Nets

This section will introduce our approach to the construction of neural networks.
Since it is motivated by the example of convolutional neural networks (CNN’s), we
give a brief informal description of CNN’s. A good reference for these constructions
is [5]. A CNN consists of a collection of layers, each of which is a family of identical
square arrays of nodes. Each square array will be referred to as a grid. If we think of
the layers as ordered from left to right, the size of the grids in the layers is typically
non-increasing as we move from left to right.

The CNN is described by drawing a family of directed edges from the nodes of a
grid in a layer to the nodes of grids in the layer immediately to its right. These edges
are specified in very specific ways. For example, in the situation where the grids in
a layer L1 and its neighbor to the right L2 are identical, a node in L1 is connected
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to a node in L2 if and only if the nodes are equal to or adjacent to each other. This
situation is shown in Fig. 2, where each node is thought of as identified with a box
with a pixel as center.

In this situation,L2 is referred to as a convolutional layer. In a situation whereL2
is smaller than L1, the connections are often specified by a different method which
in a sense has the effect of lowering resolution. The picture in this situation is as in
Fig. 3. In this case, the nodes, which correspond to the boxes in the square arrays,
are connected to nodes in the smaller grid by the requirement that a node of L1 be
connected to a node of L2 if and only if they have the same color.

In this case, L2 is referred to as a pooling layer.
It is clear that convolutional neural networks use in an essential way the geometry

of the grids in their construction. We will develop a framework that can be used
to make constructions that depend on other geometries on spaces of features. We
will want to model the “feed forward” nature of the structure shown in Fig. 1,
as well as the “locality” of the connections defined in Figs. 2 and 3. Moreover,
the convolutional neural network construction is typically applied using a certain
homogeneity condition, which gives rise to the name. We will also discuss how
generalized forms of that condition can be defined and used.

Definition 1 By a feed-forward system of depth r we will mean a directed acyclic
graph � with vertex set V (�) with the following properties.

Fig. 1 Convolutional neural network

Fig. 2 Convolutional layer
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Fig. 3 Pooling layer

1. V (�) is decomposed as a disjoint union

V (�) = V0(�) � V1(�) � · · · � Vr(�)

2. If v ∈ Vi(�), then every edge of the form (v,w) of � has w ∈ Vi+1(�).
3. The nodes in V0(�) (respectively Vr(�)) are called initial nodes (respectively

terminal nodes).
4. We assume that for every non-initial node w ∈ Vi(�), there is at least one v ∈

Vi−1(�) so that (v,w) is an edge in �.
5. For each vertex v of �, we denote by �(v) (respectively �−1(v)) the set of all

vertices w of � so that (v,w) (respectively (w, v)) is an edge of �.

The sets Vi(�) are referred to as the layers of the feed-forward system. We say
that a layer Vi(�) is locally finite if the sets �−1(v) are finite for all v ∈ Vi(�).
By a sub-feed-forward system of a feed-forward system � of depth r , we mean a
directed subgraph �0 ⊆ � so that the graph �0 and the families of vertices V0(�) ∩
�0, . . . , Vr (�) ∩ �0 themselves form a feed-forward system. In particular, it must
be the case that for each v ∈ �0, the set �−1(v) ∩ �0 must be non-empty.

Remark 1 Note that we do not assume that � is finite. It is sometimes useful to use
infinite feed forward systems as idealized constructions with useful finite systems
contained in it.

Remark 2 We have described only the simplest kinds of structures used in neural
nets. There are many others, which can also be described using the methodology we
are introducing, but we leave them to future work.

It is also useful to have a slightly different point of view on feed-forward systems.
Recall that a correspondence from a setX to a set Y is a subset C ⊆ X×Y . It is clear
that one can compose correspondences, and for any correspondenceC : X→ Y we
will write C(x) = {y ∈ Y |(x, y) ∈ C} and C−1(y) = {x ∈ X|(x, y) ∈ C}. We
also say that a correspondence C : X → Y is surjective if C−1(y) �= ∅ for all
y ∈ Y . These notions are familiar, but we give some particular examples that will
be relevant for the construction of convolutional neural networks.

Example 1 Given any two sets X and Y , we have the complete correspondence
Cc(X, Y ) : X→ Y , defined b y Cc(X, Y ) = X × Y .
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Example 2 Given any map of sets f : X → Y , we have the functional correspon-
dence Cf : X→ Y attached to f , defined to consist of the points in the graph of f ,
defined to be {(x, f (x))|x ∈ X}.
Example 3 Let C : X → U and D : Y → W , we define the product correspon-
dence

C×D : X × Y → U ×W

by the requirement that ((x, y)(u,w)) ∈ C × D if and only if (x, u) ∈ C and
(y,w) ∈ D.

Example 4 Let X be a metric space, with distance function d . Suppose further that
we are given a non-negative threshold r . Then we define Cd(r) : X→ X, the metric
correspondence with threshold r from X to itself, by Cd(r)(x) = {x ′|d(x, x ′) ≤ r}.
It will occasionally be useful to permit the definition of metric spaces to include the
possibility of infinite values. The three axioms of metric spaces extend in a natural
way to this generality.

Example 5 Let � be a graph, with vertex set V = V (�). Then the graphical
correspondence C� : V → V is defined by (v, v

′
) ∈ C� if and only if (v, v

′
) is

an edge in �.

We now give the definition of a kind of object that is completely equivalent to a
feedforward system.

Definition 2 Let Ir denote the totally ordered set {0, 1, . . . , r} regarded as a
category. By a generator for an r-layer feed-forward system, we will mean a functor
F from the category Ir to the category Cor of finite sets and correspondences. The
associated feed-forward system has as its vertex set

∐
F(i), and where there is a

connection from v ∈ F(i) to w ∈ F(j) if and only if (1) j = i + 1 and (2)
(v,w) ∈ F(i → i + 1).

Example 6 Let μn denote the set of n-th roots of unity, with the metric obtained
from restricting the Euclidean metric on C. The set μn is usefully thought of as the
vertices of a regular n-gon. Let ρ denote the smallest non-zero distance between
element of μn. Letting r = 1, we have the generator

μn
Cd (ρ)−→ μn

The case n = 6 is pictured in Fig. 4.

Of course, the pattern of connections for each of the points in μn is obtained by
“rotating” the pattern in the figure. These connections are to be thought of as the
analogue to the connections into a convolutional layer in a CNN, where the grid
geometry is replaced by a circle.
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Fig. 4 Feed-forward system

associated with μn
Cd (ρ)−→ μn

Fig. 5 Feed-forward system

associated with μkn
Cϕ−→ μn

Example 7 We consider the two metric spaces μkn and μn. There is a function
ϕ : μkn → μn given by the requirement

ϕ(e
2πis
kn ) = e

2πi* s
k
,

n

and we may consider the generator μkn
Cϕ−→ μn. It gives rise to a length 1 feed-

forward system, which is pictured in Fig. 5 for the case n = 3, k = 2.
This is the analogue for the circular geometry case of the pooling construction.

Feed-forward systems are used to describe and specify certain computations. The
nodes are considered variables, so will be assigned numerical values which we call
rv . The nodes in the 0-th or initial layer are regarded as input variables, so they are
in one to one correspondence with variables that are attached to a data set.

Definition 3 By an activator, we will mean a triple (μ, S, f ), where μ is a
commutative semigroup structure on R, S is a subsemigroup of the multiplicative
semigroup of R, and f : R → R is a function, which we call the cutoff function.
Given a feedforward structure �, an activation system for � is a choice of an
activator (μv, Sv, fv) for each non-initial vertex of �. A coefficient system for a
feed-forward system � and activation system (μv, Sv, fv) is a choice of element
λ(u,v) ∈ Sv for each edge (u, v) of �.

Remark 3 Typically we use only a small number of distinct activators, and also
assign all the nodes in a given layer the same activator. For purposes of this paper,
the only semigroup structures on R we use are the additive structure and the
commutative operation (x, y) → max(x, y). Also, for the purposes of this paper,
the only choices for S will be either all of R or {1}, but in other contexts there might
be other choices. The cutoff function may be chosen to be the identity, but in general
is a continuous function that is a continuous version of a function that is zero below
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a threshold and 1 above it. The ring R can be replaced by other rings, such as the
field with two elements, which can be useful in Boolean calculations.

We refer to a feed-forward system equipped with activation system as a neural
net.

Definition 4 Consider a locally finite feed-forward system �, possibly infinite,
equipped with an activation system A. Let �0 ⊆ � be a sub-feed-forward system.
If A is an activation system on �, then it is clear that its restriction A|�0 to �0 is
an activation system for �0 and that similarly, a coefficient system � on � restricts
to an coefficient system �|�0 on �0. We will call the neural net (�0,A|�0) the
restriction of the neural net (�,A) to �0.

We now wish to use this data to construct functions on the input data. We assume
we are given a locally finite feed-forward structure �, equipped with an activation
system A = (μv, Sv, fv) and a coefficient system � = {λ(u,v)}. For each i, with
1 ≤ i ≤ r , we set Wi equal to the real vector space of functions from Vi(�) to R.
We now define a function ϕi = ϕi(− : A,�) : Wi−1 → Wi , for 0 ≤ i ≤ r , on a
function g : Vi−1 → R by

ϕi(g)(v) = fv(
∑

(u,v)∈�
λ(u,v)g(u))

Note that the sum is computed using the monoid structure μv , and is taken over all
edges of � with terminal vertex v. This set is finite by the local finiteness hypothesis.
We have now constructed functions ϕi : Wi−1 → Wi for all 1 ≤ i ≤ r , and therefore
can construct the composite

� = �(−;A,�) = ϕr ◦ϕr−1 ◦ · · · ◦ϕ1

from W0 to Wr , i.e. a function from the input set to the output set.
The final requirement is the choice of a loss function. Given a set of points D ⊆

W0, and a functionF : D→ Wr , the goal of deep learning methods is to construct a
function ϕ as above that best approximates the functionF in a sense which has yet to
be defined. If the function is viewed as a continuous function to the vector spaceWr ,
then the finding the best L2 approximation is quite reasonable, and the L2 distance
from the approximating function to F will be defined to be the loss function. If,
however, the output function is categorical, i.e. has a finite list of values, then it is
often the case that the possible outputs are identified with the vertices in the standard
(n− 1)-simplex

{(x1, . . . , xn)|xi ≥ 0 for all i and x1 + · · · + xn = 1}

in R
n, and other loss functions are more appropriate. The output function still takes

continuous values, and the goal becomes to fit a continuous function to the discrete
one. One could of course do this directly, but it has been found that fitting certain
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transformations of the continuous function perform better. One very common choice
is the following. Suppose that from the construction of the neural net, it is known
that the values of the neurons in the terminal layer are always positive real numbers.
Define σn : Rn+ → R

n+ by

σn(x1, . . . , xn) = 1

x1 + · · · + xn
(x1, . . . , xn) (1)

The function σn takes its values in the standard (n − 1) simplex. The softmax
function is the composite σ ◦exp, where exp denotes the function (x1, . . . , xn) →
(ex1, . . . , exn) from R

n to R
n. A standard procedure for optimization problem for

fitting a continuous function F with discrete values {α1, α2, . . . αn} is to minimize
the L2 error of the transformed function

σn ◦exp ◦ϕ

where n is the number of neurons in the output layer. This notion of loss or error is
referred to as the softmax loss function.

Deep learning proceeds to minimize the chosen loss function of the difference
between �(−;A,�) and a given function g over the possible choices of the
coefficients λ(v,w) using a stochastic variant of the gradient descent method.
Note that F is typically empirically observed, it is not given as a formula. The
optimization process often is time consuming, and occasionally becomes stuck in
local optima.

There is an additional kind of structure on a feed-forward system that is
particularly useful for data sets of images, as well as other types of data.

Definition 5 By a convolutional structure on a layer Vi(�) in a feed-forward
system � we mean a pair (-, ψ), where - is an equivalence relation on the set
of vertices of Vi(�), and where ψ is an assignment of a bijection

ψ(v,w) : �−1(v)→ �−1(w)

for any pair (v,w) in -, satisfying the requirement that ψ(v,w) = ψ−1
(w,v) and

ψ(w,v) = ψ(w,u) ◦ψ(u,v) when defined. An activation system for � is said to be
adapted to the convolutional structure on a layer Vi(�) if whenever v - w, it is
the case that (μv, Sv, fv) = (μw, Sw, fw). A coefficient system {λ(v,w)} for the
neural net (�,A) is adapted to a convolutional structure {-, ψ(v,w)} if it satisfies
the compatibility requirement that whenever v - w, then we have

λ(u,v) = λ(ψ(v,w)(u),w)

for all u ∈ �−1(v).

Example 8 Suppose that a layer Vi(�) and the layer Vi−1(�) are acted on by a
group G, and suppose further that for any v ∈ Vi−1(�) and w ∈ Vi(�), (v,w)
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is an edge in � if and only if (gv, gw) is an edge for all g ∈ G. Suppose further
that the actions on both Vi−1(�) and Vi(�) are free, so that the only element of
G that fixes a node is the identity element. We define an equivalence relation -
on Vi(�) by declaring that v - w if and only if there is an element g ∈ G so
that gv = w. Because of the freeness of the action, v and w determine g uniquely.
We define the bijection ψ(v,w) : �−1(v) → �−1(w) to be multiplication by g.
Because the group preserves the directed graph structure in �, g does carry �−1(v)

to �−1(w). The application of this idea to data sets of images uses the group Z
2,

whose points correspond to an infinite pixel grid. We call structures defined this way
Cayley structures.

The description of a convolutional layer in Example 8 is useful in many situations
where the group, and therefore the feed-forward system, are infinite. Nevertheless,
it is useful to adapt the networks to finite regions in the grid, such as N × N grids
within an infinite pixel grid. This fact motivates the following definition.

Definition 6 We suppose that we have a feed-forward structure �, a layer Vi(�)
equipped with a convolutional structure {-, ψ(v,w)}, and a sub-feed-forward struc-
ture �0 ⊂ �. The restriction of the equivalence relation to Vi(�0) does give an
equivalence relation on Vi(�0), but it does not necessarily have the property that the
restriction of the bijections ψ(v,w) to �−1(v) ∩ Vi−1(�0) remains a bijection. We
will define an equivalence relation -0 on Vi(�0) by declaring that v -0 w if and
only if (a) v - w as vertices in Vi(�) and (b) ψ(v,w) restricts to a bijection from
�−1(v) ∩ Vi−1(�0) to �−1(w) ∩ Vi−1(�0). This clearly produces a convolutional
structure on the layer Vi(�0) in the feed-forward structure �0, which we refer to as
the restriction of the convolutional structure {-, ψ(v,w)} on Vi(�) to �0.

3 Natural Images and Convolutional Neural Nets

Data sets of images are of a great deal of interest for many problems. For example,
the task of recognizing hand drawn digits or letters from images taken of them is
a very interesting problem, and an important test case. Neural net technology has
been successfully applied to this situation, but in many ways the success is not
well understood, and it is believed that it is often due to overfitting. Our goal is to
understand the operation of this methodology better, and to use that understanding
to improve performance in terms of speed, and of the ability to generalize from one
data set to another. In this section we will discuss image data sets, the feed-forward
systems that have been designed specifically for them, the extent to which the neural
networks act similarly to learning in humans and primates, and how such insights
can be used to speed up and improve generalization from one image data set to
another.

By an image, we will mean an assignment of numbers (gray scale values) to each
pixel of a pixel array, typically arranged in a square. The image can be regarded
as a P -vector, where P denotes the number of pixels in an array. However, the
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grid structure of the pixels tells us that there is additional information, namely a
geometric structure on the set of coordinates in the vector. It turns out to be useful
to build neural nets with a specific structure, reflecting this fact. For simplicity
of discussion, it turns out to be useful to build infinite but locally finite models
first, and then realize the actual computations on a finite subobject of these infinite
constructions, by restricting the support of the activation systems we consider in the
optimization. We will be specifying our neural networks by generators. First, we
let Z denote the integers. By Z

2 = Z × Z we will mean the metric space whose
elements consist of ordered pairs of integers, and where the distance function is the
restriction of the L∞ distance on R

2. We of course have the metric correspondences
from mathbbZ2 to itself. We will define another family of correspondences called
pooling correspondences. For any pair of integers m ≤ n, let [m,n] denote the
intersection of the interval [m,n] in the real line with the integers. Let N denote a
positive integer, and define a correspondence π(m, n,N) to be α−1 where α : Z→
Z is defined by α(x) = [Nx + m,Nx + n]. We have two parameters that are of
interest for these correspondences, the stride, which is the integer N , and the width,
which is the integer n−m+1. To give a sense of the nature of these correspondences,
consider the situation with stride and width both equal to 2, and with m = 0. In this
case, it is easy to check that the correspondence π(0, 1, 2) is given by x → * x2 ,. In
general, if the stride is equal to the width, the correspondenceπ(m, n,N) is actually
functional, and the corresponding function is N to 1. We’ll write πs(m, n,N) for
the s-fold product of π(m, n,N) as a correspondence from Z

s to itself.
It will be useful to have a language to describe the layers in a feed-forward system

in terms of the generators.

Definition 7 Let � denote a feed-forward system, with generator F : Ir → Cor .
For any i ∈ Ir , we consider the i-th layer F(i) as well as the correspondence
θi = F(i − 1 < i) : F(i − 1)→ F(i).

1. We say the layer F(i) is fully connected if θi is the complete correspondence
Cc(F (i − 1), F (i)), as defined in Example 1.

2. We say F(i) is grid convolutional if there are sets X and Y , so that θi is of the
form

Cc(X, Y )× Cd (r) : X × Z
2 → Y × Z

2

where Cd(r) is a metric correspondence as defined in Example 4.
3. We say F(i) is pooling if θi is of the form

Cc(X, Y )× π2(m, n,N) : X × Z
2 → Y × Z

2

Remark 4 The reason for taking the product of convolutional or pooling corre-
spondences with complete correspondences is in order to accommodate the idea
of including numerous copies of a grid within a layer, but with the understanding
that the graph connections between any copy of a grid in F(i − 1) and any copy in
F(i) are identical. This is exactly what the product correspondence achieves.
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We are now in a position to build some convolutional neural networks. We will
do so by constructing a generator. The generator is a functor that can be specified
by a diagram like the following, where writing X(n) denotes a set of cardinality n.

X(1)× Z
2 Cc × Cd (1)−−−−−−−−−→ X(64)× Z

2 Cc × π2(0, 1, 2)−−−−−−−−−−−→ X(64)× Z
2 Cc−−→ X(10)

(2)

To further simplify the description, we note that there is product decomposition
of the functor F . For an two functors F,G : C → Cor , we can form the product
functor F ×G, which is defined to be the point wise product on object, and which
also forms the product correspondences. It is clear from the description above that
the functor we have described decomposes as the functor F0×F1, where F0 is given
by

X(1)
Cc−→ X(64)

Cc−→ X(64)
Cc−→ X(1)

and F1 by

Z
2 Cd (1)−−−−−→ Z

2 π2(0, 1, 2)−−−−−−−−−→ Z
2 Cc−−→ X(10)

This kind of decomposition is ubiquitous for neural networks, where there is
one functor F consisting entirely of complete correspondences. We will say a
generator F is complete if each of the correspondences F(i < i + 1) is a complete
correspondence, and describe generatorsF as F = Fc×Fs , where Fc is a complete
correspondence, and Fs will be referred to as the structural generator. We note that
a complete correspondence F is completely determined by the cardinalities of the
sets F(i), and so we specify F by its list of cardinalities. We say that the type of a
complete generator F : Ir → Cor is the list of integers

[#F(0), #F(1), . . . , #F(r)]

and note that the type determines the structure of F .

4 Findings

Because of the stochastic nature of the optimization algorithms used in convolu-
tional neural nets, the problem of understanding how they function is a problem in
data analysis. What we mean by this is that it is a computational situation where
there are outliers which are not meaningful, and a useful analysis must proceed by
understanding what the most common (or dense) phenomena are, in a way that
permits one to ignore the outliers, which will be sparse. Before diving into the



Topological Approaches to Deep Learning 131

methodology and results of our study, we will talk about earlier work [2] on the
statistics of natural images which is quite relevant to our results on convolutional
neural nets.

The work in [2] was a study of a data set constructed by Mumford et al in [10]
based on a database of images collected by van Hateren and van der Schaaf [15]. The
images were taken in Groningen in the Netherlands, and Mumford et al collected a
data set consisting of 3×3 patches, thresholded from below by variance of the patch.
Each patch consists of nine gray scale values, one for each pixel. The data was then
mean centered, and the contrast (a weighted version of variance) was normalized to
have value one. This means that the data can be viewed as residing on the sphere S7,
a subspace of R8. Finally, the data was filtered by codensity, a function on the data
set defined at a point x to be the distance from x to its k-th nearest neighborhood.
The integer k is a parameter, much as variance is a parameter in kernel density
estimators, and the codensity varies inversely with density.

What was done in [2] was to select a threshold value ρ (a percentage) for the
codensity computed for a value k, and consider only points whose codensity was
less than ρ. For example, one might study the set of data points which are among
the lowest 25% in codensity, computed for the parameter value k = 300. This was
carried out in [2] for a 30% threshold value, and for the parameter values k = 300
and k = 15.

These diagrams were obtained by examining the data following persistent
homology computations which showed β1 = 1 in the case of Fig. 6 and β1 = 5
in the case of Fig. 7 (note that in the case of Fig. 7 the model is not actually three
disjoint circles, instead each of the secondary circles intersects the primary circle
in two data points. The work in [2] went further and found more relaxed thresholds
that yielded a Klein bottle instead of just a one skeleton, indicating that more is
going on. It meant that the data set actually included arbitrary rotations of the two
secondary circles in Fig. 7. The original motivation for the work in [15] and [10]
was to understand if analysis of the spaces of patches in natural images is reflected
in the “tuning” of individual neurons in the primary visual cortex. We set out to

Fig. 6 k = 300, ρ = 30%
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Fig. 7 k = 15, ρ = 30%

determine if the statistical analysis of [2] has a counterpart in convolutional neural
networks for the study of images. The following are insights we have obtained.

• The role of thresholding by density or proxies for density is crucial in any kind
analysis of this kind. Without that a very small number of outliers can drastically
alter the topological model from something giving insight to something essen-
tially useless.

• The development of neural networks was based on the the idea that neural
networks are analogous to networks of neurons in the brains of mammals. There
is an understanding [7] that the primary visual cortex acts as a detector for edges
and lines, and also that higher level components of the visual pathway detect
more complex shapes. We perform an analysis analogous to the one in [2], and
show that it gives results consistent with the density analysis performed there.

• We demonstrate that our observations can be used to improve the ability of a
convolutional neural network to generalize from one data set to another.

• We demonstrate that the results can be used to speed up the learning process on
a data set of images

We next describe the way that the data analysis was performed. We suppose that
we have fixed an architecture for a convolutional neural network analysis of a data
set of images, using grid layers as described in Sect. 3. We used an architecture in
which the correspondences Cd(1) described the connections into a convolutional
layer, where d is the L∞ metric on the grids. This means that any node in a grid
layer is connected to the nodes which belong to a 3 × 3 patch in the previous layer
surrounding it. The weights therefore constitute a vector in R

9, which corresponds
exactly to raw data used in [10]. The data points will be referred to as weight vectors.

Remark 5 One could imagine instead studying the activation vectors for individual
neurons, and treat that construction in each layer as a data set. That is indeed an
interesting data analytic problem, which can be carried out for various data sets.
We are instead studying the relationship between two adjacent layers, and regarding
it as a formula or collection of formulae to be understood. The weights are the
coefficients in that formula.
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In [4], we performed analyses on data sets constructed this way using a methodology
identical to that carried out in [10] and [2]. The rest of this section will describe
the results of this study. We begin by investigating the neural net features learned
on two data sets. The first is MNIST [9], which is a data set of images of hand
drawn digits. The images are given as 28 × 28 gray scale images. For this data
set, we used an architecture described as follows. The depth is 6, and the generator
F is a product of two generators, Fc and Fs . The complete factor Fc is of type
[1, 64, 64, 32, 32, 64, 1], and the structural factor has the form

G28
Cd (1)−−−→ G28

π2(0, 1, 2)−−−−−−→ G14
Cd (1)−−−−→ G14

π2(0, 1, 2)−−−−−−→ G7
Cc−−→ X(1)

Cc−−→ X(10) (3)

where Gi ⊆ Z
2 denotes an i × i grid, X(i) denotes a set of cardinality i, and the

output layer X(10) is identified with the ten digits 0, 1, . . . , 9. This feed-forward
structure embeds as a sub-feed-forward structure of the structure Fs∞ obtained
by replacing all the finite grids Gi with copies of Z

2, into which they embed.
Therefore, the layers Fs(1) = G28 and Fs(3) = G14 inherit a convolutional
structure from the Cayley convolutional structure (defined in Definition 8) on Fs∞,
which is the convolutional structure we use. The activation systems are defined using
three different activation functions f . The first is the rectifier, which denotes the
function f (x) = max(0, x), and which is often also denoted by ReLU. The second
is the identity function and the third is the exponential function exp(x) = ex . The
activation system is given on the layers F(1) and F(3) by (+,R, ReLU), on the
layers F(2) and F(4) by (max, {1}, id), on the layer F(5) by (+,R, ReLU), and
on the layer F(6) by (+,R, exp). The loss function (defined on the layer F(6)) is
the function σn defined in (1) above.

Remark 6 We use the implementation of Mapper found in the Ayasdi software [20].
We use two PCA lenses, which means that the point cloud is projected onto its two
principal components before choosing overlapping coverings. For the clustering step
in the Mapper method we use the Variance Normalized Euclidean metric. In Ayasdi,
resolution specifies the number of bins and gain determines the overlap as follows:
percent overlap = 1−(1/gain). We use resolution = 30 and gain = 3 throughout,
except for bottom row of Fig. 14 where we use resolution = 70 and gain = 2.
In addition, the color of the nodes is determined by the number of points that the
corresponding cluster contains, with red being the largest and blue the lowest. This
number is a rough proxy for density.

We now look at results for the neural net trained on MNIST. Figure 8 shows a
Mapper analysis of the data set of weight vectors in the first convolutional layer
in the neural net described above. The neural net was trained 100 separate times,
and each training consisted of 40,000 iterations of the gradient descent procedure.
In each node, one can form the average (in R

9) of the vectors in that node. The
patches surrounding the Mapper model are such averages taken in representative
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Fig. 8 MNIST layer 1

Fig. 9 Barcode for layer 1 Dimension 0

0 0.2 0.4 0.6

Dimension 1

0 0.2 0.4 0.6

nodes of the model near the given position. We see that the Mapper model is in
rough agreement with the circular model in Fig. 6.

In Fig. 9, we see persistence barcodes computed for the layer 1 weight vectors.
The computation confirms the presence of connectedness of the data set as well as
the presence of a significant loop, which is a strong indication that the Mapper model
is accurately reflecting the structure of the data set. Figure 10 shows a Mapper model
of the second convolutional layer. One observes that there appear to be patches
which are roughly like those in the primary circle, but the structure is generally more
diffuse that what appeared in the first layer. Persistence barcodes did not confirm a
loop in this case.

The second data set is CIFAR-10 [8], which is a data set of 32× 32 color images
objects divided into 10 classes, namely airplane, automobile, bird, cat, deer, dog,
frog, horse, ship, and truck. The color is encoded using the RGB system, so that
each pixel is actually equipped with three coordinates, one for each of the three
colors red, green, and blue. There are different options about how to analyze color
image data, and we examined three of them.
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Fig. 10 MNIST layer 2

1. Reduce the colors to a single gray scale value by taking a linear combination of
the three color values, and then analyze the data set as a collection of gray scale
images. We used the combination 0.2989·R+0.5870·G+0.1140·B. This choice
is one standard choice made for this kind of problem. See https://en.wikipedia.
org/wiki/Luma_%28video%29 for a discussion.

2. Study the individual color channels separately, producing three separate gray
scale data sets, one each for red, green and blue.

3. Consider all three color channels together, and build a neural network to
accommodate that. This means in particular that the input layer will need to
include three copies of the 32× 32 grid.

For options (1) and (2), we constructed a neural net very similar to the one used
for MNIST. Its complete factor Fc is of type [1, 64, 64, 32, 32, 64, 1], identical to
the one used for MNIST. The structural factor Fs has the form

G32
Cd (1)−−−→ G32

π2(0, 2, 2)−−−−−−→ G16
Cd (1)−−−−→ G16

π2(0, 1, 2)−−−−−−→ G8
Cc−−→ X(1)

Cc−−→ X(10) (4)

The generator is identical to the one for MNIST except for the substitution of
G32,G16, and G8 for G28,G14, and G7, respectively, and for the substitution of
a pooling layer of width three as the correspondence between Fs(1) and Fs(2).
The activation systems are identical to those in the MNIST case, as is the loss
function. For option (3), it is necessary to form an additional complete factor G
of type [3, 1, 1, 1, 1, 1, 1], and form the product Fc × Fs × G as the generator.
Of course, the 3’s correspond to the set {R,G,B}. The activation systems and loss
functions are identical in all three cases.

We first performed an analysis in the case of option (1). The results were not
as clear as in the MNIST analysis, but did give some indications of interesting
structure. In particular, the second layer had the Mapper model shown in Fig. 11.
Notice that the primary circle is included, together with a kind of “bullseye” patch
which does not appear even in the Klein bottle model given in [2]. We also analyzed

https://en.wikipedia.org/wiki/Luma_{%}28video{%}29
https://en.wikipedia.org/wiki/Luma_{%}28video{%}29
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Fig. 11 CIFAR-10 layer 2,
gray scale

Fig. 12 First layer,
CIFAR-10, separate colors

Fig. 13 Persistence barcode,
Fig. 12

Dimension 0

0 0.06 0.12 0.18 0.24 0.30
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0 0.06 0.12 0.18 0.24 0.30

option (3) above. In this case, the result was quite striking. A Mapper model of the
first layer appears in Fig. 12, which we see recovers the three circle model of [2],
and where a persistence barcode for this space appears in Fig. 13. We also analyzed
option 2 above, and found strong primary circles in that case. The findings confirm
that generally, the convolutional neural network well reflects the density analysis
in [2], as well as the results on the primary visual cortex given in [7]. Moreover,
the detection of the bullseye shown in Fig. 11 demonstrates that the higher levels
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Fig. 14 CIFAR-10 learning

of the neural network find more complex patches, not accounted for by the low
level analysis encoded in the Klein bottle of [2]. This is also consistent with our
understanding of the visual pathway, in which there are higher level units above the
primary visual cortex that capture more “abstract” shapes [18].

We also examined the learning process for CIFAR-10. We did this by performing
the analysis in the case of option (1) above at various stages of the optimization
algorithm. Figure 14 shows the results for both first and second layers. The numbers
below the models show the number of iterations corresponding to the models above
them. Most of the models shown are “carpets”, which simply reflects the choice
of two filter functions for the model. This means that they are not topologically
interesting by themselves. However, each node in the a Mapper model consists of
a collection of data points, and the cardinality of that set becomes a function on
the set of vertices of the model. Sub- or superlevel sets of that function can then
give interesting information, loosely correlated with density. The models in Fig. 14
illustrate this, particularly strongly in the first layer. We note that the first layer,
beginning with something near random after 100 iterations, organizes itself into
a recognizable primary circle after 200 iterations, remains at that structure until
roughly 900 iterations, when the circle begins to “degrade”, and instead forms a
structure which is capturing patches more like those of the secondary circles. The
second layer, on the other hand, is not demonstrating any strong structure until it
has undergone 1000 or 2000 iterations, when one begins to see the primary circle
appearing. One could interpret this as a kind of compensation for the changes
occurring in the first layer.

Finally, we examined a well known pretrained neural network, VGG16, trained
on Imagenet, a large image data base [3, 17]. This neural net has 13 convolutional
layers, and so permits us to study seriously the “responsibilities” of the various
layers. Mapper models of the sets of weight vectors for layers 2–13 are shown
in Fig. 15. In this case, the neural net has sufficiently many grids in each layer
to construct a useful data set from this network alone. Observe that the first two
layers give exactly a primary circle, and that after that more complex things appear.
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Fig. 15 VGG16

Secondary circle patches occur in layer 4, and in higher layers we see different
phenomena occurring, including the bullseye we saw in CIFAR-10, as well as
crossings of lines. One interesting line of research would be to assemble all of these
different phenomena into a single space, including the Klein bottle. The advantage
of doing this is that it will permit feature generation in terms of functions on the
space, such as was done in [16], or improved compression algorithms as in [11]. For
now, the outcome demonstrates with precision how the higher layers encode higher
layers of abstraction in images, as occurs in the mammalian visual pathway.

5 Feature Geometries and Architectures

5.1 Generalities

Since CNN’s have demonstrated a great deal of success on data sets of images, the
idea of trying to generalize it suggests itself. To perform the generalization, one
must identify what properties of image data sets are being used, and how. There are
two key properties.

• Locality: The features in image data set (i.e.pixels) are equipped with a
geometry, i.e. that of a rectangular grid. That grid is critical in restricting the
connections in the corresponding feed-forward structure, and that restriction can
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be formulated very simply in terms of the L∞ distance function on the grid, as
we have seen in our constructions of CNN’s in Sect. 4. This observation suggests
that one can use other metric spaces to restrict the connections in architectures
based on these metric spaces. We note that the grid geometry can be regarded as
a discretization of the geometry of the plane, or of a square in the plane.

• Homogeneity: The convolutional neural net is equipped not only with a connec-
tion structure, but a choice of convolutional structure (as in Definition 5), which
creates its own restrictions on the features created in the neural net. Because it
requires that weight vectors associated with one point in the grid be identical with
those constructed at other points, the convolutional property should be interpreted
as a kind of homogeneity. In addition to putting drastic limitations on the features
being created in the neural net, this restriction encodes a property of image
data sets that we regards as desirable, namely that the same object occurring
in different parts of an image should be detected in an identical fashion.

What we would like to do is to describe how the two properties above can be used
to construct neural nets in an analogous fashion, to improve performance on image
data sets and to generalize the ideas to more general data sets. In order to have a
notion of locality, we will need to understand data sets in terms of the geometry of
their sets of features. We identify at least three methods in which feature sets can
obtain a geometry.

1. A priori geometries: The prime example here is the image situation, where
the grid geometry is explicitly constructed in the construction of the data. The
continuous version of this geometry is that of the plane. Other examples would
include time series, where the a priori continuous geometry is the line, or periodic
time series, where the geometry is that of the circle. The geometries for the
building of the neural net would be discretizations of these geometries, obtained
by selecting discrete subsets, often in a regular way.

2. Geometries obtained from data analysis: The data analysis performed in [2]
or [4] reveals that the frequently occurring local patches in images concentrate
around a primary circle, and that these patches are well modeled by particular
functions which can be algebraically defined. We will show below that this fact
permits the construction of a set of features for images which admit a circular
geometry. One could also construct a Klein bottle based set of features and a
corresponding Klein bottle based geometry on that set.

3. Purely data driven geometries: In many situations one does not want to perform
a detailed modeling procedure for the set of features, but nevertheless wants to
use feature geometries to restrict connections in neural nets which are designed
to learn a function based on the features. In this case, one can use the Mapper
methodology [14] to obtain discretized versions of geometries on the feature
space, well suited to the construction of neural nets.

Section 3 can be regarded as a discussion of one case where an a priori geometry
is available, so we will not discuss it further. Instead, we will give examples of data
analytically obtained geometries and purely data driven constructions.
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5.2 Data-analytically Defined Geometries

We first consider the data analytic work that was done in [2] and [4]. We find that the
frequently occurring patches are approximable by discretizations of linear intensity
functions onto a 3× 3 grid. To be specific, we regard the pixels in a 3× 3 patch to
be embedded in the square I 2 = [−1, 1] × [−1, 1], as the subset L = {−1, 0, 1} ×
{−1, 0, 1}. The discretization operation can be considered as the restriction of a
function on I 2 to L. We consider the set of linear functions in two variables given
by the formulae

fθ (x, y) = x cos(θ)+ y sin(θ)

The set of functions is parametrized by the circle valued parameter θ . For each fθ ,
we can construct a function on an image as follows. Given an image p in a data set
D and a pixel location (m, n) ∈ Z

2, let p(m, n) denote the gray scale value of p at
(m, n). Given an angle θ , we now define a function qm,n,θ (p) on D by the formula

qm,n,θ (p) =
∑

(i,j)∈L
p(m+ i, n+ j) · fθ (i, j)

In this case the continuous geometry associated to the feature space for these images
is R2 × S1. The discretization will be choosing a rectangular lattice L for R2 in the
usual way, and by choosing the set μn of n-th roots of unity for the circular factor.
So the discretized form is Z2 × μn. This set is a metric space in its own right, and
we can use the metric correspondences defined in Example 4 to construct generators
and neural nets based on this geometry.

Remark 7 There are similar synthetic models with a Klein bottle K replacing S1.
There are natural choices for discretizations of K as well.

We have demonstrated that there are methods of imposing locality on new
features that have been constructed based on the data analysis of image patches
and of weight vectors in convolutional neural nets. For this construction, there are
also convolutional structures as defined in Definition 5. In fact, they are Cayley
structures in the sense of Example 8, as we can readily see from the observation
that the metric space Z

2 × μn is equipped with a free and transitive action by
the group Z

2 × Z/nZ, and this group action determines a Cayley convolutional
structure. This gives a number of possibilities for the construction of new feed-
forward systems with feature geometries taken into account. To see how these might
look, let’s consider the feed-forward system F described in (2) above. F is broken
into a product F = Fs × Fc, where Fc is a complete generator, and the structural
factor Fs is given by

Z
2 Cd (1)−−−−−−→ Z

2 π2(0, 1, 2)−−−−−−−−−→ Z
2 Cc−−−−→ X(10)
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The idea will be to construct new structural factors by taking products with
generators involving only μn for various n’s. We’ll call these generators angular
factors. The simplest one is of the form

μn
Cc−−→ X(1)

Cc−−→ X(1)
Cc−−→ X(1)

Here X(1) denotes a one element set. The corresponding structural factor including
the grids would then be

Z
2 × μn

Cd (1)× Cc−−−−−−−−−→ Z
2 ×X(1) - Z

2

π2(0, 1, 2)−−−−−−−−−→ Z
2 Cc−−−−→ X(10)×X(1) - X(10)

The effect of this modification is simply to use the newly constructed features
directly in the computation. It permits the algorithm to use them directly rather than
having to “learn” them. Another angular factor is

μn
Cc−−→ μn

Cc−−→ X(1)
Cc−−→ X(1)

Forming the product of this angular factor with Fs and ultimately Fc as well
produces a feed-forward structure which creates new angular factors in layer 1. The
corresponding neural networks would be able to learn angle dependent functions
from earlier angular functions. Yet another angular factor would be the following.

μn
Cd (ξ)−−→ μn

Cc−−→ X(1)
Cc−−→ X(1)

where ξ is the distance from (1, 0) to the primitive root of unity ζn =
(cos( 2π

n
), sin( 2π

n
)). Adding this angular factor to Fs creates new angular features

in layer 1, allows these angular features to learn from angular and raw features,
and further restricts that learning so that a given angular feature would only depend
on raw values and angular features in the input that are near to the given feature
in the metric on μn. This is the angular analogue to the idea that a convolutional
neural net permits a feature in a convolutional layer to depend only on features in
the preceding layer that are spatially close to the given feature, in this case in the a
priori geometry on pixel space.

There is also an analogue for μn to the pooling correspondences π(m, n,N)
defined in Sect. 3. They are correspondences from πm,n : μmn −→ μn, and they are
defined by

πm,n(ζ
x
mn) = ζ

* x
m
,

n
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It is easy to verify that this is well-defined. We have only created analogues to the
correspondencesπ(0, n−1, n) from Sect. 3, but analogues for other values of m,n,
and N exist as well. We could now construct a new angular factor

μmn
Cd (ξ)−−−−→ μmn

πm,n−−−−→ μn
Cc−−→ X(1)

which would incorporate pooling in the angular directions as well. Each of these
constructions have analogues for the case of the Klein bottle geometries.

We have some preliminary experiments involving the simplest versions of these
geometries. We have used them to study MNIST, as well as the SVHN data set [19].
SVHN is another data set of images of digits, collected by taking photographs of
house numbers on mailboxes and on houses. For these studies, we have simply
modified the feed-forward systems by constructing the product of the existing
structural factors described in (3) and (4) with an additional structural factor of the
form

(μ16)+
Cc−−→ X(1)

Cc−−→ X(1)
Cc−−→ X(1)

Cc−−→ X(1)
Cc−−→ X(1)

Cc−−→ X(1)
(5)

where (μ16)+ plus denotes μ16 with a disjoint point added. This additional point is
there so that we include the original “raw” pixel features. This amounts to including
the “angular” coordinates described above as part of the input data, and using it to
inform the higher level computations. We have two results, one in the direction of
speeding up the learning process and the other concerning the generalization from a
network trained on MNIST to SVHN.

• We found substantial improvement in the training time for both MNIST and
SVHN when using the additional angular features. A factor of two speed up was
realized for MNIST, and a factor of 3.5 for SVHN. MNIST is a much cleaner
and therefore easier data set, and we suspect that the speed up will in general be
larger for more complex data sets.

• We also examined the degree to which a network trained on one data set (MNIST)
can achieve good results on another data set (SVHN). Using the standard
convolutional network for images, we found that a model trained on MNIST
applied to SVHN achieved roughly 10% accuracy. Since there are 10 distinct
outcomes, this is essentially the same as selecting a classification at random.
However, when we built the corresponding model using the additional factor (5)
above, we found that the accuracy improved to 22%. Of course, one wants much
higher accuracy, but what this finding demonstrates is that this generalization
problem can be substantially improved using these methods.



Topological Approaches to Deep Learning 143

In these examples, we have only used the simplest versions of the constructions
we have discussed in Sect. 2. The possibilities that we envision going forward
include taking products with structural factors of the form

(μ4n)+
Cd (ξ4n)+−−−−→ (μ4n)+

(π4n,2n)+−−−−→ (μ2n)+
Cd (ξ2n)+−−−→ (μ2n)+

(π2n,n)+−−−−→ (μn)+
Cc−−→ X(1)

Cc−−→ X(1) (6)

The correspondences Cd(ξ2i n)+ and (π2in,2i−1n)+ for i = 0, 1, 2 in this feed-
forward system are straightforward generalizations of Cd (ξ2in) and π2in,2i−1n to the
situation where the disjoint base point + has been added. (Cd(ξn))+ is obtained by
constructing a metric on (μn)+ for which the distance from the point + to each of
the elements of μn, as well as all the distances between adjacent roots of unity, are
all equal to ξn. It is not hard to see that this can be done. (π2n,n)+ is the functional
correspondence which is equal to π2n,n on μn and which carries the point + to +.
The effect of this construction is that it would include angular features at the higher
layers, and that it would restrict the angular features that are constructed to include
only those which involve nearby angular features in the preceding layers.

5.3 Purely Data Driven Geometries

Suppose that we are given a data set defined by a data matrix D, with the rows
corresponding to the data points and the columns corresponding to the features, but
that we have no theory for the features analogous to the one described in [2]. What
we generally have, though, are metrics on the set of features. If the matrix entries
are continuous, one can use Euclidean distance of the features viewed as column
vectors. There are variants, such as mean centered and/or variance normalized
versions, correlation distance, angle distance, etc. If the entries of the matrix are
binary, then Hamming distance is an option. In general, it is most often possible to
define, in natural ways, metrics on the set of columns. This means that the feature
set is a metric space, and therefore that we already have the possibility of carrying
out part of the process used on image data sets, namely the construction of the
correspondences Cd (r) : X → X, where X denotes the feature set. We refer to the
column space equipped with a metric as the feature space. These can be used to
create a counterpart for the initial convolutional layers in the feed-forward system,
but it does not give a counterpart to the pooling correspondences. The pooling
correspondences are important because they allow one to study features that are
more broadly distributed in the geometry of the feature space. To construct deeper
networks, one may also need an analogue for higher level convolutional layers.
There is an approach using the Mapper methodology introduced in [14] that will
directly construct a counterpart to pooling methodology.
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We recall that the output of Mapper, applied to a finite metric space X, is a graph
�, with an assignment to each vertex v of � a subset Xv of X, having the following
two properties:

1. Every point x ∈ X is contained in Xv for some vertex v of �.
2. Two vertices v and w of � are connected by an edge if and only if Xv ∩Xw �= ∅.

We observe that this means that if we have two Mapper models (�, {Xv}v∈V (�))
and (�

′
, {X′

w}w∈V (�′)) on the same metric space X, then there is a well-defined
correspondence

C(�, �
′
) : V (�)→ V (�

′
)

defined by the property that for (v,w) ∈ V (�) × V (�
′
), (v,w) ∈ C(�, �′) :

V (�)→ V (�
′
) if and only if Xv ∩X′

w �= ∅.
These properties allows us to construct two specific correspondences. Given a

metric space X and a Mapper model (�, {Xv}v∈V (�)) for the feature space of a
data matrix, we have the augmentation correspondence ε : X → V (�), defined
by (x, v) ∈ X × V (�) if and only if x ∈ Xv . We also have the correspondence
C(�, �) : V (�)→ V (�).

Remark 8 The correspondence C(�, �) is simply the graph correspondence C�
defined in Example 5.

To define analogues to pooling correspondences, we need a bit more detail on the
Mapper construction. It begins with one or more projections f : X→ R, which we
call filters. Typically there are only a small number of f ’s, perhaps 1,2, or 3, and we
denote the collection of filters by {fα}α∈A, where it is understood that #A is small.
We now construct a family of open coverings of the real line.

Definition 8 Given a pair (l, s) of real numbers with l > s, we define the covering
U(l, s) to consist of all intervals of the form (ks− l

2 , ks+ l
2 ), k ∈ Z. The condition

l > s guarantees that the family is a covering. Given a pair (l, s), we defined the
double of (l, s) to be the pair (2l, 2s). U(2l, 2s) covers R with intervals of double
the length of the intervals comprising U(l, s). We refer to l as the length and s as
the stride.

Let n denote the cardinality of A, and equip A with a total ordering, so A =
{α1, . . . , αn}. Let F : X → R

n denote the product fα1 × · · · × fαn . For each filter
fα , we choose a pair (lα, sα). For each α ∈ A, we let Uα = U(lα, sα), and let
Uα = {Iαβα }βα∈Bα , where Bα is an indexing set for the intervals in Uα . We now
construct the product covering Uα1 ×Uα2 × · · · ×Uαn of Rn, which consists of
sets of the form I

α1
βα1
× · · · × I

αn
βαn

, for all choices of n-tuples (βα1, . . . , βαn) in

Bα1 ×· · ·×Bαn . We denote this covering by V = {Vj }j∈J , where J is the indexing
set. We now create overlapping subsets (bins) of the form F−1(Vj ). These sets form
a covering of X. The algorithm defined in [14] next proceeds by clustering (using
a predefined clustering algorithm) each of the bins, creating a partition of each bin.
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The vertex set of the Mapper model � of X consists of one element for each block
of each partition of each bin, and we declare that two vertices are connected by
an edge if and only if the corresponding blocks overlap. Note that the blocks can
overlap because the bins overlap. It is clear from the construction that every x ∈ X

is contained in Xv for some v, and that two vertices v and w are connected by an
edge if and only if Xv ∩ Xw �= ∅, as mentioned above. Note that the construction
depends only on the choices (lα, sα). The result of applying the above construction
to the choices (2lα, 2sα) will be referred to as the double of �, and we will denote
it by �(1), where it is understood that � = �(0). We can iterate this process to
obtain a sequence of Mapper models �(0), �(1), . . . , �(r), where �(i + 1) should
be viewed as a “coarsening” of �(i) or “lower resolution model” than �(i). Just as
we use pooling correspondences to pass from a higher resolution image to a lower
resolution image, so we can now use the correspondences C(�(i), �(i + 1)) as
methods from passing to high resolution to lower resolution versions of the feature
space for an arbitrary data matrix.

We show how this will work by constructing an analogue of the depth six
generator constructed for MNIST in (3) above. We suppose that we have selected
a metric on the column space of our data matrix, and further that we have built a
Mapper model � = �(0), together with the doublings �(1) and �(2). Further, we
suppose we are trying to solve an N-outcome classification problem, where N was
10 in the actual MNIST case. As in the MNIST case, the generator will decompose
as a product of a complete generatorFc and a structural generatorFs . The complete
generator can be chosen arbitrarily. The analogue to the structural generator in (3)
is given by the following.

X
ε−−→ �(0)

C(�(0), �(1))−−−−−−−−−→ �(1)
C(�(1), �(1))−−−−−−−−−→ �(1)

C(�(1), �(2))−−−−−−−−−→ �(2)
Cc−→ X(1)

Cc−→ X(N)

Unlike the data analytically driven neural nets, this construction has not yet been
done but is in development.

Finally, we point out that one need not adhere rigidly to the doubling strategy
described above. Choosing any families of coverings that are increasing, in the sense
that l and s are both increasing, also can give families of correspondences that can
act as replacements for pooling correspondences.
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Topological Data Analysis of Single-Cell
Hi-C Contact Maps

Mathieu Carrière and Raúl Rabadán

Abstract Due to recent breakthroughs in high-throughput sequencing, it is now
possible to use chromosome conformation capture (CCC) to understand the three
dimensional conformation of DNA at the whole genome level, and to characterize it
with the so-called contact maps. This is very useful since many biological processes
are correlated with DNA folding, such as DNA transcription. However, the methods
for the analysis of such conformations are still lacking mathematical guarantees
and statistical power. To handle this issue, we propose to use the Mapper, which is
a standard tool of Topological Data Analysis (TDA) that allows one to efficiently
encode the inherent continuity and topology of underlying biological processes in
data, in the form of a graph with various features such as branches and loops. In this
article, we show how recent statistical techniques developed in TDA for the Mapper
algorithm can be extended and leveraged to formally define and statistically quantify
the presence of topological structures coming from biological phenomena, such as
the cell cyle, in datasets of CCC contact maps.

1 Introduction

The three dimensional structure of chromosomes varies across cell types, cell
states, and the cell cycle. Recent technological developments allow us to answer
fundamental questions about this three dimensional structure and its relationship
to other biological processes. For instance, how chromatin folds at different
scales, how chromatin states change during dynamical biological processes such
as differentiation and the cell cycle (it is known that chromosomes tend to fold
up tightly in preparation for mitosis and rapidly unfold once mitosis is finished in
order to enable several functions such as DNA transcription and replication), how
to compare chromatin states between healthy and diseased cells, and how chromatin
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states relate to other biological processes. Studying and mathematically quantifying
the evolution of chromosomal spatial organization would thus allow for a better
understanding of the epigenetic dynamics of the cell. A common way to study
the spatial conformation of DNA is through chromosome conformation capture
(CCC) [11, 12], which is a set of techniques tracking the regions of the genome that
are in close spatial proximity. Although the first methods that were chronologically
developed in CCC, such as 4C or 5C methods [10, 22], were limited in the number
of genomic regions that one can observe, recent technological breakthroughs in
high-throughput sequencing have enabled to retrieve the spatial proximities between
genomic regions at the scale of the whole genome [14]. This genome-wide CCC
technique is usually denominated by Hi-C, and encodes these proximities in a
contact map, which is a symmetric matrix whose rows and columns represent
bins of the genome at a specific genomic resolution. Since these technological
breakthroughs have lead to the generation of large datasets of such matrices, the
question of an efficient analysis method has become of primary importance. A few
methods and similarity functions have been proposed within the last few years, but
general methods with high statistical power and guarantees are still missing in the
CCC literature. Topological Data Analysis (TDA) [3] has been emerging over the
last decade as one possible answer to this problem. Indeed, it is a very general
and mathematically-grounded set of data analysis methods building on topology,
which enjoy several useful guarantees, such as robustness and invariance to solid
deformations of data [7].

Contributions In this article, we present a formal way to efficiently encode and
statistically assess the presence of structure in a dataset of CCC contact maps using
TDA. We then apply this method to a Hi-C contact map dataset, and show that we
are able to successfully retrieve, encode and quantify the biological information that
was empirically observed in this data.

2 CCC and Hi-C Contact Maps

2.1 Background

The 3D spatial organization of chromosomes is measured with a set of methods
belonging to chromosome conformation capture (CCC or 3C) [12]. This family of
protocols detects genomic loci that are spatially close and interacting in the nucleus
of the cell but may be separated by many nucleotides in the linear genome. A
common example of such interactions is given by promoter-enhancer interactions,
for which transcription factors bind to different genomic loci and fold DNA so
that gene transcription is facilitated (or blocked). There exists several different
methods, each of which captures a different level of chromosomal interactions: the
original 3C experiments [11] quantify the interaction between a given pair of loci
of the genome, 4C experiments [22] allow one to measure the interaction between



Topological Data Analysis of Single-Cell Hi-C Contact Maps 149

Cross-linking Fragmentation Ligation Reverse cross-linkingInitial state

Fig. 1 Scheme of the four steps of the CCC procedure

a given locus and all others loci and 5C experiments [10] measure the interactions
between all pairs of loci in a specific region. More recently, the development of high-
throughput sequencing technologies has enabled the use of Hi-C experiments [14],
where interactions between all pairs of loci are quantified genome-wide. Moreover,
the use of Hi-C experiments at single-cell resolution has just begun and is one of the
most exciting research topics in genomics.

Even though these methods usually differ in their final steps, they all begin
with the same first four steps. First, pairs of loci that are spatially close are cross-
linked with formaldehyde, so as to create a robust bond between the loci. Then,
the chromatin is cut and fragmented with a restriction enzyme, the fragment length
specifying the resolution of the experiment. In the third step, the fragment pairs are
ligated through the action of an enzyme, thus forming loops, that are eventually
broken by reverse cross-linking. At the end of this fourth step, the data is comprised
of a large set of isolated fragment pairs. See Fig. 1 for an illustration.

In practice, these fragment pairs have to be amplified to be detectable, and
sequenced to a reference genome in order to retrieve the loci to which they belong to.
This is generally where the previous methods differ, using protocols ranging from
simple polymerase chain reaction (PCR) amplification, in which a DNA polymerase
enzyme is used to increase the fragment concentration, to more refined additional
ligation and enrichment cycles of the fragment before sequencing.

For all these methods, the final information is encoded in a so-called contact
map, which is a symmetric matrix, whose rows and columns represent small loci, or
bins, of the genome. The entry in position (i, j) of this matrix is an integer equal to
the number of pairs whose fragments belong to bin i and bin j . These matrices are
usually very large, their sizes depending directly on the bin resolutions, and sparse,
with larger positive values on the diagonal. See Fig. 2 for an example of such a
matrix.

2.2 Preprocessing and Comparison Procedures

It is now known that the previous methods suffer from various biases, and that these
matrices require significant preprocessing in order to be analyzed. There is a large
literature on possible preprocessing methods. See [2] for a comprehensive review.
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Fig. 2 Example of contact map on a single chromosome with 500 kb bins

However, it has been shown recently that the so-called stratum-adjusted correlation
coefficient SCC is an efficient and powerful quantity for comparing Hi-C matrices.

This coefficient is inspired from the generalized Cochran-Mantel-Haenszel
statistic [1, 16], which is used to understand the correlation between two variables
that are both stratified by a third one. Roughly, the SCC is computed by grouping the
entries of the Hi-C matrices with respect to the distance between the corresponding
loci of each entry, and to compute a weighted average of the corresponding Pearson
correlations.

Definition (Stratum-Adjusted Correlation Coefficient [24]) Let X,Y be two Hi-
C matrices with n bins. For each 1 ≤ k ≤ n, let Nk = {(i, j) : 1 ≤ i, j ≤
n and k−1 < |j− i| ≤ k} be the set of indices which represent fragments separated
by k bins, and let Xk = {Xi,j : (i, j) ∈ Nk} and Yk = {Yi,j : (i, j) ∈ Nk}. Then,
the stratum-adjusted correlation coefficient SCC is defined as:

SCC(X, Y ) =
∑

k card(Nk)Cov(Xk, Yk)∑
k card(Nk)

√
Var(Xk)Var(Yk)

(1)

Note that, since genomic loci with similar coordinates tend to be spatially close
within the nucleus, resulting in large positive values close to the main diagonal of the
contact map, changes in chromatin structure across cells is reflected as changes to
the values close to the main diagonal of the contact map. By calculating correlation
between X and Y as the covariance along bands of X and Y parallel to the main
diagonal, and assigning larger weighs for those bands that are close to the main
diagonal, the SCC effectively quantifies differences between contact maps X and
Y , and consequently, the chromatin structure of the cells they represent. As noted
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by the authors in [15], using the SCC in conjunction with classical dimensionality
reduction techniques, such as PCA or MDS, on the recent single-cell Hi-C dataset
of [19], allowed them to successfully group cells according to the phase of the cell
cycle they belonged to. However, there is still a lack of formalization when it comes
to the analysis. Indeed, the authors in [15] note that the MDS embedding obtained
with SCC has a circular shape which roughly reflects the cell cycle, but there is no
mathematical formalization or statistical guarantee of this observation. On the other
hand, in this work, we use the SCC to build a topological representation of the Hi-C
data that formally demonstrates the existence of an intrinsic circular shape in the
data with high confidence, and which efficiently encodes the biological information
corresponding to this pattern.

3 Topological Data Analysis and Mapper

3.1 Background

Topological Data Analysis (TDA) is a growing method in the field of data science,
whose main goal is to extract and encode the topological information contained in
geometric data. It has been shown in many cases that this kind of information can
be particularly relevant to data analysis, and often improves results when combined
with other traditional statistical descriptors. TDA has now found its way into many
applications, and has encountered significant success in genomics when applied to
single-cell RNA sequencing data [4, 21].

TDA is usually carried through the computation of descriptors coming from the
analysis of simplicial complexes built on datasets. One of such descriptors is the
so-called Mapper simplicial complex, whose topology can be shown to capture the
underlying topology of the data. This complex requires a filter function, sometimes
called lens, defined on the data. Roughly, the Mapper is computed by first covering
the image of the filter with overlapping hypercubes, and then taking the nerve of the
connected components of each preimage of these hypercubes.

Definition (Mapper [23]) Let X ⊂ R
d , and f : X→ R

p be a function defined on
X. Let U = {Ui} be a cover of im(f ), i.e. a family of sets such that im(f ) ⊆ ∪iUi ,
let V = f−1(U) = {f−1(Ui)} be the cover obtained by taking the preimage of U
under f , and let Ṽ = π0(V), i.e. the cover obtained by separating each element of
V into its connected components. Then, the Mapper Mf (X,U) is defined as:

Mf (X,U) = N(Ṽ), (2)

where N denotes the nerve operation.

In practice, the input spaceX is given as a point cloud, the connected components
are derived with a clustering algorithm, and the pairwise intersections of elements
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of Ṽ, which are necessary to compute the nerve, are retrieved by detecting points
shared by multiple elements of the cover. It is also very common to use covers with
fixed-size hypercubes, i.e. eachUi is defined as a product of intervals [a1, b1]×· · ·×
[ap, bp], and to use the same interval length, or resolution, and overlap percentage,
or gain, for each of the p dimensions of the filter. Using r and g to denote these
fixed resolution and gain respectively, this means that each of the p dimensions of
the filter is covered with a specific family of intervals {Ii} such that length(Ii) = r

and length(Ii ∩ Ii+1) = gr for each i. We also emphasize that, even though the
Mapper is defined on point clouds, the mere distance matrix between the points
might be enough to compute it, as long as the clustering algorithm only requires the
pairwise distances, which is the case for i.e. single-linkage clustering [17].

It has been shown in [6] that the Mapper, when computed on a point cloud
X sampled from an underlying object X such as a manifold, is actually an
approximation of a limiting object, called the Reeb space Rf (X), defined as the
quotient space of X with the relation ∼f :

Rf (X) = X/ ∼f , (3)

where∼f identifies points x, y that satisfy f (x) = f (y) and that belong to the same
connected component of f−1(f (x)) = f−1(f (y)). Hence, the natural question
to ask is how close a Mapper is to its limiting Reeb space. There exists several
theoretical guarantees on this topic in the literature [6, 9, 18], showing different types
and quantifications of convergence of the Mapper depending on the assumptions that
are made on the computation of this complex. For instance, the authors in [18] use
a specific metric between Mappers to prove a very general type of convergence to
the limiting Reeb space. However, computation algorithms and interpretation of this
metric are still lacking in the literature. On the other hand, the authors in [6] chose
to focus on Mappers computed with scalar-valued filters f : X → R and single-
linkage clustering with fixed threshold δ > 0. In this simpler setting, comparing
Mappers with their so-called extended persistence diagrams allowed them to derive
precise bounds and information about the topology given by the Mapper.

3.2 Statistics on 1-dimensional Mappers

In this section, we briefly present how extended persistence diagrams [8] are used to
compute statistics on 1-dimensional Mappers. We refer the interested reader to [5]
for further details. We start by defining the Mapper that is computed in practice.

Definition Let X ⊂ R
d be a point cloud, and f : X→ R be a function defined on

X. Let I = {Ii} be a cover of im(f ), i.e. a family of intervals such that im(f ) ⊆
∪i Ii , let V = f−1(I) = {f−1(Ii)} be the cover obtained by taking the preimage of
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I under f . Let Ṽ = SLδ(V) be the cover obtained with single-linkage clustering
with parameter δ on each element of V. Then, the Mapper Mf,δ(X,I) is defined
as:

Mf,δ(X,I) = N(Ṽ), (4)

where N denotes the nerve, and where intersection is determined by the presence of
common points.

Parameter Selection In practice, if Xn ⊂ R
d is a point cloud with n points

randomly sampled from a compact submanifold X of Rd , techniques from statistical
support estimation can be used to choose δn > 0 so as to make the δn-neighborhood
graph Gδn(Xn) a good estimate of X. The authors of [5] suggest using δn =
dH(Xn,Xs(n)), where dH denotes the Hausdorff distance and Xs(n) is a subsampling
of Xn of cardinality

s(n) = n

log(n)1+β
, (5)

with β > 0. However, due to the approximation induced by the heuristic used to
assess intersections of cover elements, it may happen that discretization artifacts
lead to major differences with the target Mapper Mf (Gδn(Xn),I), even if Gδn(Xn)

correctly approximates the underlying supportX. To handle this issue, the following
result provides parameter candidates to avoid such artifacts:

Theorem ([6]) Let Xn ⊂ R
d be a point cloud, and let f : Xn → R be a function

defined on Xn. Let δn = dH(Xn,Xs(n)), and let In be a cover of im(f ) with gain

g ∈
(

1
3 ,

1
2

)
and resolution r = max{|f (x) − f (y)| : ‖x − y‖ ≤ δ}/g. Then

Mf,δn(Xn,I) and Mf (Gδn(Xn),I) are isomorphic.

Bootstrapping Even if the previous theorem gives a nice heuristic to compute
parameters, it does not provide confidence regions for the Mapper. A general way to
obtain such confidence regions is with bootstrapping. However, bootstrapping tech-
niques require at least an easily computable metric between the considered statistics.
This is why comparing Mappers with their extended persistence diagrams [8], for
which we have such a computable metric, is a reasonable approach.

We do not go into detail about extended persistent homology in this work, and
we refer the interested reader to [13, 20] for a thorough treatment of persistence
theory. We only recall that an extended persistence diagram requires a simplicial
complex and a scalar-valued function f defined on its nodes to be computed, and
that it takes the form of a set of points in the plane R

2, such that each point
represents a topological feature of the simplicial complex seen through the function
f . Moreover, each point has a type specifying the topological feature it represents
(connected component, cycle, cavity. . . ), and the distance of a point to the diagonal
� = {(x, x) : x ∈ R} ⊂ R

2 actually provides the size of the corresponding feature:
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Fig. 3 Example of graph topology formalization with an extended persistence diagram. Each
topological feature of the graph is mapped to a point in the diagram, whose distance to the diagonal
� characterizes the feature size

the farther away from the diagonal a point is, the bigger, or more significant, the
corresponding topological feature. Finally, note that contrary to ordinary persistence
diagrams, points in extended persistence diagrams may also be located below the
diagonal, due to the fact that extended persistence is computed with both sub- and
superlevel sets of the function f . See Fig. 3 for an illustration.

What makes the use of (extended) persistence diagrams interesting is that they
come equipped with a metric, the bottleneck distance, which is easily computable:

Definition Given two extended persistence diagrams D,D′, a partial matching
between D and D′ is a subset � of D × D′ such that: ∀p ∈ D, there is at most
one p′ ∈ D′ such that (p, p′) ∈ �, and ∀p′ ∈ D′, there is at most one p ∈ D such
that (p, p′) ∈ �. The cost of � is:

cost(�) = max

{
max
p∈D δD(p), max

p′∈D′
δD′(p

′)
}
,

where δD(p) = ‖p − p′‖∞ if ∃p′ ∈ D′ such that (p, p′) ∈ �, otherwise δD(p) =
infq∈� ‖p − q‖∞, and δD′(p′) = ‖p − p′‖∞ if ∃p ∈ D such that (p, p′) ∈ �,
otherwise δD′(p′) = infq∈� ‖p′ − q‖∞. The bottleneck distance between D and D′
is then defined as:

db(D,D
′) = inf

�
cost(�),

where � ranges over all partial matchings between D and D′.

This distance can be used to compute confidence intervals on the Mapper since
one can bootstrap the point cloud in order to generate a distribution of bottleneck
distances. This distribution can then be used to assess confidence and compute p-
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values for each point of the diagram, and thus on the corresponding features in the
Mapper as well. A typical scheme is the following one:

• Draw X1
n, · · · ,XN

n from Xn with replacement
• Compute all di = db(Mf,δn (Xn,In),Mf,δn (X

i
n,In))

• Estimate P(db(Mf,δn(Xn,In),Rf (X)) ≤ α) by 1
N

card({i : di ≤ α})
Hence, given a size α > 0, the previous procedure provides a way to compute the

confidence level at which all features of size at least α are actually also present in the
limiting Reeb space Rf (X) defined in Eq. (3), and reciprocally, given a confidence
c ∈ [0, 1], it also provides a way to visualize the features on which we have
confidence at least c. Indeed, for each confidence c, the procedure outputs a value of
the bottleneck distance dc such that P(db(Mf,δn(Xn,In),Rf (X)) ≤ dc) ≥ c. This
distance can then be interpreted directly on the persistence diagrams by drawing
boxes of radius dc around each point. If the box of a point intersects the diagonal,
it means that we cannot guarantee that the corresponding feature will not have size
0, i.e. will disappear, in the target Rf (X). On the other hand, an empty intersection
with the diagonal ensures that the feature is meaningful at level c.

3.3 Extension to Multivariate Mappers

In this section, we extend the previous results to the case where the Mappers are
computed with multivariate functions f : X → R

p. Let us first define the Mapper
computed in practice with a multivariate filter.

Definition Let X ⊂ R
d be a point cloud, and f : X → R

p be a multivariate
function defined on X. Let U = {Ui} be a hypercube cover of im(f ), i.e. a family
of hypercubes such that im(f ) ⊆ ∪iUi , let V = f−1(U) = {f−1(Ui)} be the
cover obtained by taking the preimage of I under f . Let Ṽ = SLδ(V) be the cover
obtained with single-linkage clustering with parameter δ on each element of V.
Then, the Mapper Mf,δ(X,U) is defined as:

Mf,δ(X,U) = N(Ṽ), (6)

where N denotes the nerve operation.

Note that the choice of δn is independent from the filters, so we can safely use
the same δn as in the previous section, at least for the study of 0- and 1-dimensional
homology. The following result is a straightforward extension of Theorem 3.2.

Theorem Let Xn ⊂ R
d be a point cloud, and let f : Xn → R

p be a function
defined on Xn. Let δn = dH(Xn,Xs(n)), where s(n) is defined as in Eq. (5). Let
Un be a hypercube cover of im(f ) such that, for all 1 ≤ s ≤ p, the s-sides

of all hypercubes have gain gs ∈
(

1
3 ,

1
2

)
and resolution rs = max{|fs(x) −

fs(y)| : ‖x − y‖ ≤ δn}/gs , where fs denotes the s-th coordinate of f and the
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s-side of the hypercube I1 × · · · × Ip is the interval Is . Then Mf,δn(Xn,Un) and
Mf (Gδn(Xn),Un) are isomorphic.

Finally, we also extend the bottleneck distance to multivariate Mappers by simply
aggregating distances in all dimensions:

Definition Let M,M′ be two multivariate Mappers. Then, the multivariate bottle-
neck distance is defined as:

db(M,M′) = max{dsb(M,M′) : 1 ≤ s ≤ p}, (7)

where dsb denotes the bottleneck distance between the extended persistence diagrams
of the Mappers computed with the s-th coordinate of their filters.

Using bootstrapping with this metric allows us, as in the previous section, to
derive the confidence level at which all topological features of a certain size in the
multivariate Mapper are preserved, or to visualize the features that are guaranteed
at a given confidence level. Moreover, we expect this extended distance to also
satisfy stability and convergence properties in 0- and 1-dimensional homology, since
the proofs of these properties in the case where the filter is scalar-valued that are
presented in [6] and [5] should extend almost straightforwardly. We are now ready
to apply the Mapper on Hi-C datasets.

4 Application to Single-Cell Hi-C Contact Maps

In this section, we study the dataset of [19]. In this article, the authors generated
thousands of fragment pairs from the 21 chromosomes of each of 1171 F1 hybrid
129 × Castaneus mouse embryonic stem cells, and showed that several features
of this distribution of pairs, such as the ratio between long and short contacts,
were directly correlated with the cell cycle phases. Moreover, this dataset was also
studied in [15], in which the authors demonstrated how the SCC could be used to
embed cells in a lower-dimensional space in which the cell cycle phases are clearly
separated along a circular shape. In this section, we demonstrate how the biological
factors correlated with the cell cycle phases described in [19] can be validated on the
Mapper, and we show how the Mapper can be used to formally recover this circular
shape and to compute confidence levels on it.

4.1 Method

We first turned the fragment pairs into contact maps using 500 kb resolution bins. We
smoothed the matrices with a moving average window of size one, as recommended
in [15], and then computed all pairwise SCC values between contact maps to
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generate a 1171 × 1171 similarity matrix. A corresponding distance matrix was
derived from the similarities by using the relation:

dSCC(X, Y ) =
√

SCC(X,X)+ SCC(Y, Y )− 2SCC(X, Y ),

and we finally computed the Mapper from this distance matrix. The Mapper filters
used were the first two eigenfunctions given by a principal component analysis
of the dataset, and the Mapper parameters were computed automatically as in
Theorem 3.3. Moreover, we restricted to 0- and 1-dimensional topology to ease
visualization and interpretation. This means in particular that we only observed the
1-skeleton of the Mapper and did not consider the higher-dimensional simplices.
The obtained Mapper, colored by the first two eigenvalues, is displayed in Fig. 4.

Fig. 4 Mapper graph colored with the first (left column) and second (right column) eigenfunc-
tions. We also show the corresponding persistence diagrams used to characterize the topology
of the graphs. Red points correspond to topological features in dimension 0 such as connected
components, while green points correspond to topological features in dimension 1, such as loops
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4.2 Biological Interpretation

As one can see on the graphs, a cycle is clearly visible, which probably represents
the cell cycle. A useful property of the Mapper is its ability to encode and
visualize correlations among multiple variables. For this dataset, the authors in [19]
demonstrated that several biological quantities were associated with the cell cycle
progression. In particular, they showed that the so-called repli-score, which is
roughly the ratio between the copy-number of genomic regions associated with
early-replicating phases of the cell cycle and the total number of reads (see the exact
definition of this score in [19]) was highly correlated with cell cycle progression,
which is clearly visible on the Mapper as well: if we color the Mapper nodes with
the repli score values (see upper left corner of Fig. 5), one can easily see that the
values gradually increase and decrease along the cycle. The authors also noticed that
the mean insulation of topologically associated domain borders was another marker
which was highly correlated with the cell cycle, which, again, can be retrieved from
the Mapper colored by this insulation (see upper right corner of Fig. 5).

Another interesting observation in [19] was that the percentage of long-range
distances (between 2 and 12 Mb, “mitotic band”) and the one of short-range
distances (less than 2 Mb, “near band”) of the contact maps were characteristic of
specific phases of the cell cycle. In particular, due to the highly condensed structure
of the chromosomes during mitosis, cells belonging to this phase tended to have
more long-range distances, while the opposite was observed for cells exiting mitosis,
since chromosomes decondense in preparation for DNA transcription. Plotting
either the short-range percentage (lower-left corner of Fig. 5) or the long-range
one (lower-right corner of Fig. 5) allows us to validate this observation, since it
is clearly visible from the graphs that the cycle can be divided into regions with
distinct distribution values that correspond to the cell cycle phases.

4.3 Formal Encoding and Statistical Significance

We recall that we showed in Sect. 3.2 that extended persistence diagrams can be used
to formally assess the topological features of Mappers. In this dataset, the presence
of the cell cycle can be noted from the extended persistence diagrams of the first two
eigenfunctions, since there is a green point which clearly stands out from the others.
In order to statistically validate the presence of this loop, we apply our method
defined in Sect. 3.3, and we used 100-fold bootstrapping to generate a distance
distribution. We show the corresponding 90% confidence region on the diagrams of
the two first eigenvalues in Fig. 6. In both diagrams, the two points corresponding
to the connected component and the loop of the graph have confidence boxes that
do not intersect the diagonal, which means their confidence is at least 90%. In fact,
the confidence level computed for the point corresponding to the loop was around
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Fig. 5 Mapper graphs colored with the biological factors correlated with the cell cycle phases
as observed in [19]. For each biological marker, the distribution of values is consistent with the
empirical observations made by the authors
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Fig. 6 Confidence region at level 90% retrieved from bootstrapping the Mapper through its set
of extended persistence diagrams. Confidence boxes are drawn around each point, and colored
according to whether they intersect the diagonal (red) or not (green)

93%, meaning that there is a strong confidence that the cell cycle that we retrieved
on the data is relevant and not due to noise or artifacts.

5 Conclusion

In this article, we provided a mathematical way to process datasets of contact
maps with statistical guarantees by making use of Topological Data Analysis. We
demonstrated that combining the statistical power and theoretical formalization of
the Mapper algorithm with the stratum-adjusted correlation coefficient enabled the
validation of biological factors responsible for the topological structure, and the
quantification of the confidence one can have for it. As for future directions, we
plan to theoretically study the statistical guarantees and properties of our bootstrap
extension to multivariate Mapper and to further investigate the generalizability
of the application of TDA to contact maps by studying more datasets from the
literature, and seeing if the underlying biological processes can also be retrieved
in the corresponding Mapper.
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Neural Ring Homomorphisms and Maps
Between Neural Codes

Carina Pamela Curto and Nora Youngs

Abstract Neural codes are binary codes that are used for information processing
and representation in the brain. In previous work, we have shown how an algebraic
structure, called the neural ring, can be used to efficiently encode geometric and
combinatorial properties of a neural code (Curto et al., Bull Math Biol 75(9), 2013).
In this work, we consider maps between neural codes and the associated homomor-
phisms of their neural rings. In order to ensure that these maps are meaningful and
preserve relevant structure, we find that we need additional constraints on the ring
homomorphisms. This motivates us to define neural ring homomorphisms. Our main
results characterize all code maps corresponding to neural ring homomorphisms as
compositions of five elementary code maps. As an application, we find that neural
ring homomorphisms behave nicely with respect to convexity. In particular, if C
and D are convex codes, the existence of a surjective code map C → D with
a corresponding neural ring homomorphism implies that the minimal embedding
dimensions satisfy d(D) ≤ d(C).

1 Introduction

A major challenge of mathematical neuroscience is to determine how the brain
processes and stores information. By recording the spiking from a population of
neurons, we obtain insights into their coding properties. A neural code on n neurons
is a subset C ⊂ {0, 1}n, with each binary vector in C representing an on-off pattern of
neural activity. This type of neural code is referred to in the neuroscience literature
as a combinatorial neural code [15, 16] as it contains only the combinatorial
information of which neurons fire together, ignoring precise spike times and firing
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Fig. 1 An arrangement of five receptive fields U1, . . . , U5 in a stimulus space. Here,
Ui represents the receptive field of neuron i. The full code for the arrangement is:
C = {00000, 10000, 01000, 00100, 00010, 00001, 11000, 10100, 10010, 01100, 00110, 10110}

rates. These codes can be analyzed to determine important features of the neural
data, using tools from coding theory [7] and topology [3, 6].

A particularly interesting kind of neural code arises when neurons have receptive
fields. These neurons are selective to a particular type of stimulus; for example, place
cells respond to the animal’s spatial location [14], and orientation-tuned neurons in
visual cortex respond to the orientation of an object in the visual field [11]. The
neuron’s receptive field is the specific subset of the stimulus space to which that
neuron is particularly sensitive, and within which the neuron exhibits a high firing
rate. If all receptive fields for a set of neurons are known, one can infer the expected
neural code by considering the overlap regions formed by the receptive fields.
Figure 1 shows an arrangement of receptive fields, and gives the corresponding
neural code.

An arrangement of receptive fields whose regions correspond precisely to the
neural code C is called a realization of C. If the receptive fields can be chosen to
be convex, then C is a convex neural code. Many neural codes are observed to be
convex [3, 17]. In this case, we can leverage results from the extensive literature
on arrangements of convex sets, such as Helly’s theorem [9], to give bounds on the
dimension of the space of stimuli (see [8] for some examples). Note that the code in
Fig. 1 is convex, even though the realization depicted there is not; we leave it as an
exercise for the reader to draw a convex realization of this code.

In previous work [8], we introduced the neural ideal and the corresponding neural
ring, algebraic objects associated to a neural code that capture its combinatorial
properties. Thus far, work involving the neural ring has been primarily concerned
with using the algebraic framework to extract structural information about the code
[5, 8] and to determine which codes have convex realizations [4]. However, a neural
code C is not an isolated object, but rather a member of a family of codes. We
define a code map from a code C to another code D to be any well-defined function
q : C → D. A code map may preserve important structural properties of a
code, or it may completely ignore them and just send codewords to codewords
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in an arbitrary manner. We are interested in a set of ‘nice’ code maps that reflect
meaningful relationships between the corresponding neural codes. Our primary
motivating examples of ‘nice’ maps are those which leave the structure of a code
essentially intact:

1. Permutation: If C and D are identical codes up to a re-ordering of the neurons,
then the permutation map q : C → D is ‘nice,’ as it perfectly preserves the
combinatorial structure.

2. Adding or removing trivial neurons: A code C can be trivially changed by
appending an extra neuron that has uniform behavior in all codewords – i.e.,
always silent or always firing. Similarly, a code that has a neuron which is always
“on” or always “off” is structurally equivalent to the code obtained by removing
this trivial neuron, and the corresponding maps are ‘nice.’

One way to obtain a code with trivial neurons is via localization. For
example, consider the code in Fig. 1, restricted to the codewords whose
regions are all contained inside U1. This code has five codewords: C′ =
{10000, 11000, 10100, 10010, 10110}. There is a natural map q : C′ →
D that drops neurons 1 and 5, which are both trivial, to obtain D =
{000, 100, 010, 001, 011}, which is structurally equivalent to C′. Not all code
maps respect the structure of the corresponding codes, however. For example, there
is no guarantee that an arbitrary code map C′ → D will reflect the fact that these
codes are structurally equivalent.

In this article, we consider how maps between neural codes relate to neural rings,
as first defined in [8]. Our main questions are, simply:

Questions What types of maps between neural rings should be considered ‘nice’?
How should we define neural ring homomorphisms? What other code maps
correspond to nice maps between the associated neural rings?

These questions are analogous to studying the relationship between maps on
algebraic varieties and their associated rings [1]. However, as we will see in the next
section, the standard notions of ring homomorphism and isomorphism are much
too weak to capture any meaningful structure in the related codes. Recent work
[12] considered which ring homomorphisms preserve neural ideals as a set, and
described corresponding transformations to codes through that lens. In this article,
we will define a special class of maps, called neural ring homomorphisms, that
capture the structure of the nice code maps described above, and also guide us
to discover additional code maps which should be considered ‘nice.’ Our main
result, Theorem 3.4, characterizes all code maps that correspond to neural ring
homomorphisms and isomorphisms as compositions of five elementary code maps
(including the two ‘nice’ types above). As an application, Theorem 4.3 shows that
any surjective code map with a corresponding neural ring homomorphism preserves
convexity and can only lower the minimal embedding dimension.

The organization of this paper is as follows. In Sect. 2, we review the neural ring
of a code and describe the relevant pullback map, which gives a correspondence
between code maps and ring homomorphisms. This allows us to see why the usual
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ring homomorphisms between neural rings are insufficiently restrictive. In Sect. 3
we define neural ring homomorphisms, a special class of maps that preserve code
structure, and state Theorem 3.4. In Sect. 3.1 we take a closer look at the new
elementary code maps that emerged in Theorem 3.4, and we prove the theorem.
Finally, in Sect. 4, we state and prove Theorem 4.3, showing that surjective code
maps corresponding to neural ring homomorphisms are particularly well-behaved
with respect to convexity.

2 Neural Rings and the Pullback Map

First, we briefly review the definition of a neural code and its associated neural ring,
as previously defined in [8]. We then present the pullback map, which naturally
relates maps between codes to homomorphisms of neural rings.

Definition 2.1 A neural code on n neurons is a set of binary firing patterns of length
n. Given neural codes C ⊂ {0, 1}n and D ⊂ {0, 1}m, on n and m neurons, a code
map is any function q : C→ D.

For any neural code C ⊂ {0, 1}n, we define the associated ideal IC ⊂
F2[x1, . . . , xn] as follows:

IC
def= {f ∈ F2[x1, . . . , xn] | f (c) = 0 for all c ∈ C}.

The neural ring RC is then defined to be RC = F2[x1, . . . , xn]/IC.

Note that the neural ring RC is precisely the ring of functions C → {0, 1},
denoted F

C
2 . Since the ideal IC consists of polynomials that vanish on C, we can

make use of the ideal-variety correspondence to obtain an immediate relationship
between code maps and ring homomorphisms by using the pullback map. Given a
code map q : C → D, each f ∈ RD is a function f : D → {0, 1}, and therefore
we may “pull back” f by q to a function f ◦ q : C→ {0, 1}, which is an element of
RC. Hence, for any q : C → D, we may define the pullback map q∗ : RD → RC,
where q∗(f ) = f ◦ q , as illustrated below:

C

q∗f =f ◦q

q D
f

{0, 1}

It is easy to check that for any code map q : C→ D, the pullback q∗ : RD → RC
is a ring homomorphism. In fact, the pullback provides a bijection between code
maps and ring homomorphisms, as the following proposition states.
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Proposition 2.2 There is a 1–1 correspondence between code maps q : C → D
and ring homomorphisms φ : RD → RC, given by the pullback map. That is, given
a code map q : C → D, its pullback q∗ : RD → RC is a ring homomorphism;
conversely, given a ring homomorphism φ : RD → RC, there is a unique code map
qφ : C→ D such that q∗φ = φ.

Proposition 2.2 is a special case of [1, Proposition 8, p. 234]. Note that both this
proposition and the next can be easily understood from a category-theoretic perspec-
tive. Specifically, the pullback map construction provides a natural contravariant
functor from the category of binary codes (with code maps as morphisms) to the
category of rings and ring homomorphisms. This functor sends each code C to the
corresponding neural ring RC, and each code map q to the corresponding pullback
q∗. However, to illustrate precisely how all the objects interact, and for the benefit of
readers unfamiliar with category theory language, we include our own elementary
proof of this proposition in Sect. 2.1. In particular, we show how to go backwards
from ring homomorphisms to code maps, so that the reader can see explicitly how
to construct qφ from φ.

Unfortunately, Proposition 2.2 makes it clear that ring homomorphisms RD →
RC need not preserve the structure of the associated codes, as any code map has
a corresponding ring homomorphism. The next proposition tells us that even ring
isomorphisms are quite weak: any pair of codes with the same number of codewords
admits an isomorphism between the corresponding neural rings.

Proposition 2.3 A ring homomorphism φ : RD → RC is an isomorphism if and
only if the corresponding code map qφ : C→ D is a bijection.

Propositions 2.2 and 2.3 highlight the main difficulty with using ring homomor-
phism and isomorphism alone: the neural rings are rings of functions from C to
{0, 1}, and the abstract structure of such a ring depends solely on the number of
codewords, |C|. Considering such rings abstractly, independent of their presentation,
reflects no additional structure—not even the code length (the number of neurons, n)
matters. In particular, we cannot track the behavior of the variables xi that represent
individual neurons. This raises the question: what algebraic constraints can be put on
homomorphisms between neural rings in order to capture a meaningfully restricted
class of code maps?

2.1 The Pullback Correspondence: A Closer Look

Before moving on to defining a more restricted class of homomorphisms, we
introduce some notation to take a closer look at neural rings, and how the
correspondence between code maps and homomorphisms occurs. Using this, we
provide concrete and elementary proofs of Propositions 2.2 and 2.3.

Elements of neural rings may be denoted in different ways. First, they can be
written as polynomials, where it is understood that the polynomial is a representative
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of its equivalence class mod IC. Alternatively, using the vector space structure, an
element of RC can be written as a function C → {0, 1} defined completely by the
codewords that support it. We will make use of the latter idea frequently, so it is
helpful to identify a canonical basis of characteristic functions {ρc | c ∈ C}, where

ρc(v) =
{

1 if v = c,

0 otherwise.

In polynomial notation,

ρc =
∏
ci=1

xi
∏
cj=0

(1− xj ),

where ci represents the ith component of codeword c. The characteristic functions
ρc form a basis for RC as an F2-vector space, and they have several useful
properties:

• Each element f of RC can be represented as the formal sum of basis elements
for the codewords in its support: f =

∑
{c∈C|f (c)=1}

ρc.

• In particular, we can write xi =
∑

{c∈C | ci=1}
ρc. So, if ci = cj for all c ∈ C, then

xi = xj . Likewise, if ci = 1 for all c ∈ C, we have xi = 1.
• The product of two basis elements is 0 unless they are identical:

ρcρd =
{
ρc if c = d,

0 otherwise
.

• If 1C is the identity of RC, then 1C =
∑
c∈C

ρc.

Once we have a homomorphism φ : RD → RC, we necessarily have a map
which sends basis elements of RD to sums of basis elements in RC. We will now
show how this illustrates the corresponding code map. First, a technical lemma.

Lemma 2.4 For any ring homomorphism φ : RD → RC, and any element c ∈ C,
there is a unique d ∈ D such that φ(ρd)(c) = 1.

Proof To prove existence, note that
∑

c∈C ρc = 1C = φ(1D) = φ(
∑

d∈D ρd) =∑
d∈D φ(ρd). For each c ∈ C, 1 = ρc(c) =

(∑
c′∈C ρc′

)
(c) = (∑

d∈D φ(ρd)
)
(c),

and thus φ(ρd)(c) = 1 for at least one d ∈ D. To prove uniqueness, suppose
there exist distinct d, d ′ ∈ D such that φ(ρd)(c) = φ(ρd ′)(c) = 1. Then as φ is
a ring homomorphism, we would have 1 = (φ(ρd)φ(ρd ′))(c) = φ(ρdρd ′)(c) =
φ(0)(c) = 0, but this is a contradiction. Thus such a d must be unique. ��

This result allows us to describe the unique code map corresponding to any ring
homomorphism.
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Definition 2.5 Given a ring homomorphism φ : RD → RC, we define the
associated code map qφ : C→ D as follows:

qφ(c) = dc

where dc is the unique element of D such that φ(ρdc )(c) = 1, guaranteed by
Lemma 2.4.

Using this definition, we are able to prove Proposition 2.2.

Proof (Proposition 2.2) It is easy to check that the pullback q∗ is a ring homomor-
phism; we now prove that any homomorphism can be obtained as the pullback of
a code map. Given a ring homomorphism φ : RD → RC, define qφ as above. We
must show that the q∗φ = φ, and moreover that qφ is the only code map with this
property.

The fact that q∗φ = φ holds essentially by construction: let f ∈ RD, so f =∑
f (d)=1 ρd . Then, for any c ∈ C,

q∗φ(f )(c) = f (qφ(c)) =
∑

f (d)=1

ρd(qφ(c)) =
∑

f (d)=1

ρd(dc) =
{

1 if f (dc) = 1
0 if f (dc) = 0

whereas, remembering from above that there is exactly one d ∈ D such that
φ(ρd)(c) = 1 and that this d may or may not be in the support of f , we have

φ(f )(c) =
∑

f (d)=1

φ(ρd)(c) =
{

1 if dc ∈ f−1(1)
0 if dc /∈ f−1(1)

=
{

1 if f (dc) = 1
0 if f (dc) = 0

.

Thus, φ = q∗φ .
Finally, to see that qφ is the only code map with this property, suppose we have a

different map q �= qφ . Then there is some c ∈ C with q(c) �= qφ(c); let dc = qφ(c),
so q(c) �= dc. Then φ(ρdc)(c) = 1 by definition, but q∗(ρdc)(c) = ρdc(q(c)) = 0 as
q(c) �= dc. So q∗ does not agree with φ and hence φ is not the pullback of q , so qφ
is the unique code map with pullback φ. ��

The following example illustrates the connection between a homomorphism φ

and the corresponding code map qφ .

Example 2.6 Let C = {110, 111, 010, 001} and D = {00, 10, 11}. Let φ : RD →
RC be defined by φ(ρ11) = ρ110+ρ111+ρ010, φ(ρ00) = ρ001, and φ(ρ10) = 0. Then
the corresponding code map qφ will have qφ(110) = qφ(111) = qφ(010) = 11, and
qφ(001) = 00. Note that there is no element c ∈ C with qφ(c) = 10 so qφ is not
surjective.

Finally, we provide a proof of Proposition 2.3.
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Proof (Proposition 2.3) Note that RC ∼= F
|C|
2 and RD ∼= F

|D|
2 , and F

|C|
2
∼= F

|D|
2 if

and only if |C| = |D|. Suppose φ is an isomorphism; then we must have |C| = |D|.
If qφ is not injective, then there is some d ∈ D such that φ(ρd)(c) = 0 for all
c ∈ C. But then φ(ρd) = 0, which is a contradiction since φ is an isomorphism
so φ−1(0) = {0}. Thus qφ is injective, and since |C| = |D|, this means qφ is a
bijection.

On the other hand, suppose qφ : C → D is a bijection. Then |C| = |D|, so
RC ∼= RD, and as both are finite, |RC| = |RD|. Consider an arbitrary element
f ∈ RC. For each c ∈ f−1(1), there is a unique d ∈ D so φ(ρd) = c; furthermore
as qφ is a bijection, all these d are distinct. Then

φ
( ∑
d=qφ(c),
c∈f−1(1)

ρd
) =

∑
d=qφ(c)
c∈f−1(1)

φ(ρd) =
∑

c∈f−1(1)

ρc = f.

Hence φ is surjective, and since |RC| = |RD|, φ is also bijective and hence an
isomorphism. ��

3 Neural Ring Homomorphisms

In order to define a restricted class of ring homomorphisms that preserve certain
structural similarities of codes, we consider how our motivating maps (permutation
and adding or removing trivial neurons) preserve structure. In each case, note that
the code maps act by preserving the activity of each neuron: we do not combine
the activity of neurons to make new ones, or create new neurons that differ in a
nontrivial way from those we already have. Following this idea, we restrict to a class
of maps that respect the elements of the neural ring corresponding to individual
neurons: the variables xi . Here we use the standard notation [n] to denote the set
{1, . . . , n}.
Definition 3.1 Let C ⊂ {0, 1}n and D ⊂ {0, 1}m be neural codes, and let RC =
F2[y1, . . . , yn]/IC andRD = F2[x1, . . . , xm]/ID be the corresponding neural rings.
A ring homomorphism φ : RD → RC is a neural ring homomorphism if φ(xj ) ∈
{yi | i ∈ [n]} ∪ {0, 1} for all j ∈ [m]. We say that a neural ring homomorphism φ is
a neural ring isomorphism if it is a ring isomorphism and its inverse is also a neural
ring homomorphism.

It is important to remember that when we refer to the ‘variables’ of RD,
we actually mean the equivalence class of the variables under the quotient ring
structure. Thus, it is possible in some cases to have xi = xj , or xi = 0, depending
on whether these variables give the same function on all codewords. We now provide
some examples to illustrate neural ring homomorphisms.
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Example 3.2 Here we consider three different code maps: one that corresponds to a
neural ring isomorphism, one that corresponds to a neural ring homomorphism but
not to a neural ring isomorphism, and one that does not correspond to a neural ring
homomorphism at all.

1. Let D = {0000, 1000, 0001, 1001, 0010, 1010, 0011}, and let
C = {0000, 0001, 0010, 0011, 0100, 0101, 0110}.

Define φ : RD → RC as follows:

φ(ρ0000) = ρ0000, φ(ρ1000) = ρ0001

φ(ρ0001) = ρ0010, φ(ρ1001) = ρ0011

φ(ρ0010) = ρ0100, φ(ρ1010) = ρ0101

φ(ρ0011) = ρ0110,

Note that φ(x1) = φ(ρ1000 + ρ1010) = ρ0001 + ρ0101 = y4, and φ(x2) =
φ(0) = 0 = y1. By similar calculations, we have φ(x3) = y2, and φ(x4) = y3.
Thus, φ is a neural ring homomorphism; in fact, since φ is a ring isomorphism
and its inverse is a neural ring homomorphism sending φ−1(y1) = 0 = x2,
φ−1(y2) = x3, φ−1(y3) = x4, and φ−1(y4) = x1, φ is a neural ring isomorphism.

2. Let D = {000, 110} and C = {00, 01, 10}. Define φ : RD → RC by φ(ρ000) =
ρ00 + ρ10 ad φ(ρ110) = ρ01. In RD, x1 = x2 = ρ110, and x3 = 0. In RC, we
have y1 = ρ10 and y2 = ρ01. Under this map, we find φ(x1) = φ(x2) = y1 and
φ(x3) = 0, so φ is a neural ring homomorphism. However, it is not a neural ring
isomorphism, as it is not a ring isomorphism.

3. Let D = {00, 10} and C = {00, 10, 01}. Define the ring homomorphism φ :
RD → RC as follows: φ(ρ00) = ρ00, φ(ρ10) = ρ10 + ρ01. In RD, x1 = ρ10.
However, φ(x1) = ρ10 + ρ01, which is not equal to either y1 = ρ10, y2 = ρ01,
1 = ρ00 + ρ10 + ρ01, or 0. Thus, φ is not a neural ring homomorphism.

It is straightforward to see that the composition of neural ring homomorphisms
is again a neural ring homomorphism.

Lemma 3.3 If φ : RD → RC and ψ : RE → RD are neural ring homomorphisms,
then their composition φ ◦ ψ is also a neural ring homomorphism. If φ and ψ are
both neural ring isomorphisms, then their composition φ ◦ ψ is also a neural ring
isomorphism.

As we have seen in Example 3.2, both permutations and appending a trivial
neuron correspond to neural ring isomorphisms. The following theorem introduces
three other types of elementary code maps, which also yield neural ring homomor-
phisms. All of these code maps are meaningful in a neural context, and preserve
the behavior of individual neurons. And, as seen in Theorem 3.4, it turns out that
all neural ring homomorphisms correspond to code maps that are compositions of
these five elementary types of maps. The proof is given in Sect. 3.1.
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Theorem 3.4 A map φ : RD → RC is a neural ring homomorphism if and only if
qφ is a composition of the following elementary code maps:

1. Permutation
2. Adding a trivial neuron (or deleting a trivial neuron)
3. Duplication of a neuron (or deleting a neuron that is a duplicate of another)
4. Neuron projection (deleting a not necessarily trivial neuron)
5. Inclusion (of one code into another)

Moreover, φ is a neural ring isomorphism if and only if qφ is a composition of maps
(1)–(3).

The ability to decompose any ‘nice’ code map into a composition of these five
elementary maps has immediate consequences for answering questions about neural
codes. For example, one of the questions that motivated the definition of the neural
ring and neural ideal was that of determining which neural codes are convex. In
Sect. 4, we look at how each of these maps affect convexity.

The following example provides a sense of what these different operations mean.

Example 3.5 In Fig. 2 we show a code C, and the resulting codes C1, . . . ,C5 after
applying the following elementary code maps:

1. the cyclic permutation (1234) (C1),
2. adding a trivial always-on neuron (C2),
3. duplication of neuron 4 (C3),
4. deleting neuron 4 (projecting onto neurons 1–3) (C4)
5. an inclusion map into a larger code (C5).

The effects of these code maps on a realization of C are shown on in Fig. 2. The
succeeding columns in the table below give the image of C under each of the five
code maps.

3.1 Proof of Theorem 3.4

To prove Theorem 3.4, we will first focus on the structure of neural ring homo-
morphisms. As neural ring homomorphisms strictly control the possible images of
variables, they can be described succinctly by an index ‘key’ vector that captures the
information necessary to determine the map. Since the index for the first variable
will use the symbol ‘1’, we will where necessary denote the multiplicative identity
1 of the ring with the symbol u to distinguish the two. Throughout, we will use the
notation ci to indicate the ith component of a codeword c.
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Fig. 2 A code C and its image under five elementary code maps. (Top) The effect of each
codeword on a realization of C. (Bottom) A table showing how each codeword of C is transformed
by each map. In each case, the code map sends a codeword c ∈ C to the codeword in its row

Definition 3.6 Let φ : RD → RC be a neural ring homomorphism, where C and
D are codes on n and m neurons, respectively. The key vector of φ is the vector
V ∈ {1, . . . , n, 0, u}m such that

Vj =
⎧⎨
⎩
i if φ(xj ) = yi

0 if φ(xj ) = 0
u if φ(xj ) = 1

.

This key vector completely describes a neural ring homomorphism, since once
the image of each variable is determined the rest of the homomorphism is given by
the usual properties of homomorphism. In cases where we have yi = yk for some
i, k, then only one representative of the equivalence class need appear in V .
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Because of the close correspondence of code maps and ring homomorphisms,
the key vector also completely determines the associated code map. The following
lemma gives the explicit relationship.

Lemma 3.7 Let φ : RD → RC be a neural ring homomorphism with key vector V .
Then the corresponding code map qφ : C→ D is given by qφ(c) = d , where

dj =
⎧⎨
⎩
ci if Vj = i

0 if Vj = 0
1 if Vj = u

.

Furthermore, any code map that aligns with a key vector must be associated to a
neural ring homomorphism.

Lemma 3.8 Let C and D be codes on n and m neurons, respectively. Suppose q :
C → D is a code map and V ∈ {1, . . . , n, 0, u}m such that q is described by V ;

that is, for all c ∈ C, q(c) = d where dj =
⎧⎨
⎩
ci if Vj = i

0 if Vj = 0
1 if Vj = u

. Then the associated

ring homomorphism φq is a neural ring homomorphism with key vector V .

Proof Let q be as described above, and φq the associated ring homomorphism. We

will show that for j ∈ [m], we have φq(xj ) =
⎧⎨
⎩
xi if Vj = i

0 if Vj = 0
1 if Vj = 1

and thus that φq is

a neural ring homomorphism with key vector V . We will examine the three options
for Vj separately.

First, suppose Vj = i ∈ [n]. Then for all c ∈ C, we have q(c)j = ci , and
thus that xj (q(c)) = ci . Hence, xj ◦ q = yi , since both functions act the same on
all codewords c ∈ C. But by definition of the pullback map, φ(xj ) = xj ◦ q , so
φ(xj ) = yi . Next, suppose Vj = 0. Then for all c ∈ C we have q(c)j = 0 and
thus that xj (q(c)) = 0. Hence, xj ◦ q = 0, since both functions act the same on
all codewords c ∈ C. But by definition of the pullback map, φ(xj ) = xj ◦ q , so
φ(xj ) = 0 in this case.

Finally, suppose Vj = u. Then for all c ∈ C we have q(c)j = 1 and thus that
xj (q(c)) = 1. Hence, xj ◦q = 1, since both functions act the same on all codewords
c ∈ C. But by definition of the pullback map, φ(xj ) = xj ◦ q , so φ(xj ) = 1 in this
case. ��
Remark 3.9 It is important to note here that the key vector for a particular code
map may not be unique. In Example 3.2 (1), we saw an example of a permutation
code map that could be described by key vector (4, 1, 2, 3). However, as φ(x2) =
y1 = 0, we could replace this key vector with (4, 0, 2, 3) and describe the same
homomorphism. In cases like these, either choice is valid. However, this does not
mean that the corresponding homomorphism is not unique.
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Now that we have shown that neural ring homomorphisms (and their correspond-
ing code maps) are precisely those determined by key vectors, we need only show
the following:

• All five code maps listed have key vectors.
• Any code map with a key vector can be written as a composition of these five

maps.
• The first three code maps correspond precisely to neural ring isomorphisms.

To see that all five elementary code maps in Theorem 3.4 have key vectors, we
simply exhibit the key vector for each. In the process, we will show that the first
three maps correspond to neural ring isomorphisms. To describe these code maps,
we will consider an arbitrary word c ∈ C, written as c = c1c2 · · · cn, and describe
the image q(c) ∈ D. Throughout, C is a code on n neurons and D is a code on m
neurons.

1. Permutation maps: If the code map q : C → D is a permutation map, then
n = m, q(C) = D, and each codeword is permuted by the same permutation σ .
That is, for each c ∈ C, we know q(c) = cσ(1)cσ(2) · · · cσ(n). In this case, the key
vector is given by Vj = σ(j). As permutation yields a bijection on codewords,
and the inverse permutation also has a key vector, permutation maps correspond
to neural ring isomorphisms.

2. Adding a trivial neuron to the end of each codeword: in this case, m = n+ 1 and
q(C) = D. Consider first the case of adding a trivial neuron that is never firing to
the end of each codeword, so that q : C→ D is described by q(c) = c1c2 · · · cn0,
and q(C) = D. The key vector is given by Vj = j for j ∈ [n] and Vn+1 = 0.
Similarly, if we add a neuron that is always firing, so q(c) = c1 · · · cn1, then
Vj = j for j ∈ [n] and Vn+1 = u. Such a map will be a bijection; moreover, the
reverse map (where we delete the trivial neuron at the end of each word) also has
a key vector: Wi = i for all i ∈ [n]. Thus, this map (and its inverse) correspond
to neural ring isomorphisms.

3. Adding a duplicate neuron to the end of each codeword: in this case, m = n+ 1
and q(C) = D. If the new neuron n + 1 duplicates neuron i, then the code map
is given by q(c) = c1 · · · cnci , and the key vector is given by Vj = j for j ∈ [n]
and Vn+1 = i. Such a map will be a bijection on codewords, and moreover, the
inverse code map corresponds to the key vector where Wi = i for all i ∈ [n], and
so its inverse corresponds to a neural ring homomorphism. Thus, this map and
its inverse correspond to neural ring isomorphisms.

4. Projection (deleting the last neuron): in this case, m = n− 1 and q(C) = D. The
code map is given by q(c) = c1 · · · cn−1 and we have the key vector Vj = j for
j ∈ [n− 1].
This map corresponds to a neural ring isomorphism precisely when the deleted
neuron is either trivial, or a duplicate of another neuron. If neither of these hold,
then there are two possibilities: either the code map is not a bijection, in which
case the corresponding ring homomorphism is not an isomorphism, or the code
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map is a bijection, but the inverse will not be a neural ring homomorphism, as
φ−1(yn+1) /∈ {x1, . . . , xm, 0, 1}.

5. Inclusion: in this case, m = n, and we have q(c) = c for all c ∈ C. However, we
do not demand q(C) = D. Since in this case each codeword maps to itself, we
can use the key vector Vj = j for j ∈ [n].
Finally, we prove the main substance of Theorem 3.4, which is that any code map

corresponding to a neural ring homomorphism can be written as a composition of
the five listed maps, and furthermore that any isomorphism requires only the first
three.

Proof (Theorem 3.4) Let C and D be codes on n and m neurons, respectively, and
let φ : RD → RC be a neural ring homomorphism with corresponding code map q .
Our overall steps will be as follows:

1. Append the image q(c) to the end of each codeword c using a series of maps that
duplicate neurons or add trivial neurons, as necessary.

2. Use a permutation map to move the image codeword q(c) to the beginning, and
the original codeword c to the end.

3. Use a series of projection maps to delete the codeword c from the end, resulting
in only q(c).

4. Use an inclusion map to include q(C) into D if q(C) � D.

First we define some intermediate codes: let C0 = C. For j = 1, . . . ,m, let

Cj = {(c1, . . . , cn, d1, . . . , dj ) | c ∈ C, d = q(c)} ⊂ {0, 1}n+j .

For i = 1, . . . , n, let

Cm+i = {(d1, . . . , dm, c1, . . . , cn−i+1) | c ∈ C, d = q(c)} ⊂ {0, 1}m+n−i+1.

Finally, define Cm+n+1 = q(C) ⊂ D.
Now, for j = 1, . . . ,m, let the code map qj : Cj−1 → Cj be defined for v =

(c1, . . . , cn, d1, . . . , dj−1) ∈ Cj−1 by qj (v) = (c1, . . . , cn, d1, . . . , dj ) ∈ Cj . Since
φ is a neural ring homomorphism, the associated code map q has a corresponding
key vector V ; note that qj is described by the key vector Wj = (1, . . . , n + j −
1, Vj ), so qj is either repeating a neuron, or adding a trivial neuron, depending on
whether Vj = i, or one of u, 0.

Next, take the permutation map given by σ = (n + 1, . . . , n + m, 1, . . . , n),
so all the newly added neurons are at the beginning and all the original neurons
are at the end. That is, define qσ : Cm → Cm+1 so if v = (v1, . . . , vn+m), then
qσ (v) = (vn+1, . . . , vn+m, v1, . . . , vn).

We then delete the neurons m + 1 through n + m one by one in n code
maps. That is, for i = 1, . . . , n define qm+i : Cm+i → Cm+i+1 by qm+i (v) =
(v1, . . . , vm+n−i ).

Lastly, if q(C) � D, then add one last inclusion code map qa : q(C) ↪→ D to
add the remaining codewords of D.
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Thus, given c = (c1, . . . , cn) with q(c) = d = (d1, . . . , dm), the first m steps
give us qm ◦ · · · ◦ q1(c) = (c1, . . . , cn, d1, . . . , dm) = x. The permutation then
gives us qσ (x) = (d1, . . . , dm, c1, . . . , cn) = y, and then we compose qm+n ◦ · · · ◦
qm+1(y) = (d1, . . . , dn) = d = q(c). Finally, if q(C) � D, we do our inclusion
map, but as qa(d) = d , the overall composition is a map C → D taking c to
qφ(c) = d as desired. At each step, the map we use is from our approved list.

Finally, to show that code maps corresponding to neural ring isomorphisms only
use maps (1)–(3), note that in the case that φ is a neural ring isomorphism, it is in
particular an isomorphism, so the corresponding code map qφ is a bijection and thus
qφ(C) = D; no inclusion map is necessary in the last step of the process described
above. We have also noted above that projection maps correspond to neural ring
isomorphisms only when the deleted neuron is either trivial or a duplicate of another.
Thus, only maps (1)–(3) are necessary to describe all neural ring isomorphisms. ��

4 Neural Ring Homomorphisms and Convexity

One of the questions which has motivated a deeper understanding of the neural ring
is that of determining which neural codes are convex.

Definition 4.1 A neural code C on n neurons is convex in dimension d if there is
a collection U = {U1, . . . , Un} of convex open sets in R

d such that C = {c ∈
{0, 1}n |

(⋂
ci=1 Ui

)
\
(⋃

cj=0 Uj

)
�= ∅}. If additionally no such collection exists

in R
d−1, then d is known as the minimal embedding dimension of the code, denoted

d(C). If there is no dimension d where C is convex, then C is a non-convex code; in
this case we use the convention d(C) = ∞.

Example 4.2 In Example 3.5 (illustrated in Fig. 2), we showed the results of
applying five elementary code maps to the code C. In that case, code C and its
imagesC1−C3 are convex codes of dimension 2 and codeC4 is convex of dimension
1. On the other hand, C5 cannot be realized with convex sets in any dimension, as
U1 ∩ U2 and U1 ∩ U3 necessarily form a disconnection of U1.

In general, determining whether or not a code has a convex realization is a
difficult question. Some partial results exist that give guarantees of convexity
or of non-convexity, or that bound the embedding dimension (see for example
[2, 4, 5, 8, 10, 13]). One way to extend such results is to show that once a code is
known to have certain properties related to convexity, we can generate other codes
from it via code maps that would preserve these properties. The following theorem
shows that if a surjective code map is ‘nice’ (i.e., has a corresponding neural ring
homomorphism), then it preserves convexity and the embedding dimension can only
decrease.

Theorem 4.3 Let C be a code containing the all-zeros codeword and q : C → D
a surjective code map corresponding to a neural ring homomorphism. Then if C is
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convex, D is also convex with d(D) ≤ d(C); it follows that if D is not convex, then
C is not convex.

Corollary 4.4 Let C be a code containing the all zeros codeword, and q : C→ D
a code map corresponding to a neural ring isomorphism. Then C and D are either
both convex, with d(C) = d(D), or both not convex.

The proof of this theorem and its corollary relies on Theorem 3.4, and in
particular uses the decomposition of these code maps to reduce the convexity
question to code maps of just the five elementary types. As Theorem 4.3 addresses
all neural ring homomorphisms that correspond to surjective code maps, it covers
any such maps that are composed of permutation, duplication, deletion, or adding
on trivial neurons.

Note that the theorem would not necessarily hold for arbitrary surjective code
maps that do not correspond to a neural ring homomorphism. It would be a simple
matter to create a bijection between a non-convex and a convex code with the same
number of codewords, which would correspond to a ring isomorphism, but would
not preserve convexity.

The only non-surjective elementary code map corresponding to a neural ring
homomorphism is inclusion, and this theorem cannot generally be extended to
inclusion maps. Because the inclusion map can be used to include codes into
arbitrary larger ones of the same length, it is possible to change convexity and
dimension in arbitrary ways. The following examples show how to include convex
codes in non-convex codes and vice versa, as well as ways to change the realization
dimension by an arbitrary amount.

Example 4.5 Note that in Examples (1) and (3) below, we rely on results and
constructions detailed in other work, especially [4].

1. Non-convex codes can be included into convex codes. If C is any non-convex
code, then we can include C into the larger code �(C), the simplicial complex of
C, which is necessarily convex. For more details, see for example [4, 10].

2. Convex codes (of arbitrary dimension) can also be included into non-convex
codes. Let C1 be a convex code on n neurons, and C2 a non-convex code on
m neurons. Define the code C to be the code C1 with m always-zero neurons
appended to the end of each codeword; note that C is still convex, by the
arguments above. Similarly, define the code C′ to be the code C2 with n always-
zero neurons appended to the beginning of each codeword. The code C′ is still
not convex, again by the previous theorem. Define the code D to be the code
C ∪ C′, and note that as the first n neurons never interact with the last m, this
code is not convex, but we can include C into D.

3. Even when we include one convex code into another convex code, examples
exist that change the dimension arbitrarily far in either direction. Let n > 2 be
arbitrarily large. Then, C = {0, 1}n\{11 . . .1} (the code on n neurons with the
all-ones codeword removed) is convex of dimension n−1. We can include C into
the code D = {0, 1}n, which is convex of dimension 2, reducing the dimension
by n − 3. We can also increase the dimension as far as we wish, for example
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by including the simple one-dimensional code {00 . . .0, 10 . . .0} into the code
C = {0, 1}n\{11 . . .1}, which was convex of dimension n − 1, increasing the
dimension by n − 2. For a further discussion of the dimension and convexity of
these codes, see [4].

We now give the proof of Theorem 4.3 and Corollary 4.4.

Proof (Theorem 4.3) If C is a surjective code map corresponding to a neural ring
homomorphism, then it can be written as a composition of just the first four maps
described by Theorem 3.4, following the process outlined in the proof. Thus, to
prove both theorem and corollary, it suffices to show that if a code C′ is obtained
fromC via a projection map, then d(C′) ≤ d(C), and that if C′ is obtained fromC via
one of the first three maps, then d(C′) = d(C). In general, if a convex realization of
C can be transformed, in the same dimension, into a convex realization for C′, then
we have shown both that C′ is convex whenever C is, and also that d(C′) ≤ d(C).

Permutation Maps If C′ is obtained from C via a permutation map, then any
convex realization U of C is also a realization of C′ by permuting the labels on
the sets accordingly. Likewise, any realization U′ of C′ is a realization of C, by
permuting the labels inversely. Thus, C is convex if and only if C′ is also convex,
and in addition d(C′) = d(C).

Adding/Deleting a Trivial Neuron If C′ is obtained from C by adding a trivial
always-zero neuron n + 1, then a realization U of C can be transformed into a
realization of C′ by adding a set Un+1 = ∅. Likewise, a convex realization U′ of
C′ can be transformed into a convex realization of C by removing the set Un+1,
which is necessarily empty as neuron n+ 1 never fires. For the second case, if C′ is
obtained from C by adding a trivial always-one neuron n+1, then we can transform
a realization U of C into a realization of C′ by adding the set Un+1 that is made
up of the entire ambient space X in which the realization is set. This ambient space
may be assumed to be convex, as C contains the all-zeros codeword. Likewise, a
realization of C′ can be transformed to that for C by removing the set Un+1. Thus,
for such maps,C is convex if and only if C′ is convex and, in addition, d(C) = d(C′).

Adding/Deleting a Duplicate Neuron If C′ is obtained from C by duplicating
neuron i to a new neuron n + 1, then any convex realization U of C can be
transformed into a convex realization of C′ by adding a set Un+1 that is identical
to the set Ui . Likewise, any convex realization U′ of C′ can also realize C, by
removing the set Un+1 that must be identical to Ui . Since C is obtained from C′
by deleting a duplicate neuron, this argument also works for deleting a duplicate
neuron. Hence, under such maps, C is convex if and only if C′ is convex, and in
addition, d(C) = d(C′).

Projection (Deletion) Maps If C′ is obtained from C by deleting neuron n, then a
convex realization U of C can be transformed into a realization of C′ by removing
the set Un from the realization. Thus, if C is convex, then C′ must also be convex,
and in particular, d(C′) ≤ d(C). ��
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Radius Functions on Poisson–Delaunay
Mosaics and Related Complexes
Experimentally

Herbert Edelsbrunner, Anton Nikitenko, Katharina Ölsböck,
and Peter Synak

Abstract Discrete Morse theory has recently lead to new developments in the
theory of random geometric complexes. This article surveys the methods and results
obtained with this new approach, and discusses some of its shortcomings. It uses
simulations to illustrate the results and to form conjectures, getting numerical
estimates for combinatorial, topological, and geometric properties of weighted and
unweighted Delaunay mosaics, their dual Voronoi tessellations, and the Alpha and
Wrap complexes contained in the mosaics.

1 Introduction

Natural phenomena are often characterized by spatial decompositions reflecting
local proximity. Indeed, such phenomena arise in different disciplines of science
and beyond, so that a variety of names were established all referring to the same
geometric model: Voronoi diagrams, Dirichlet tessellations, Wigner–Seitz cells,
Thiessen polygons, Brillouin zones etc.; see [3]. The basic version is defined for
a locally finite set, X ⊆ R

n, and assigns to each x ∈ X the region of points that
are at least as close to x as to any other point in X. We refer to the collection of
such regions as the Voronoi tessellation of X. Assuming the points are in general
position, the nerve of the Voronoi tessellation is a simplicial complex in R

n, which
we refer to as the Delaunay mosaic of X. Beyond the basic version, we limit
ourselves to the weighted case, in which the squared Euclidean distance is replaced
by the power distance to a point. The resulting decomposition is often referred to
as power diagram or Laguerre tessellation but we will call it a weighted Voronoi
tessellation. To introduce randomness, we use a stationary Poisson point process
in Euclidean space, and we refer to the resulting random geometric structures as
Poisson–Voronoi tessellations and their dual Poisson–Delaunay mosaics. While the
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former have more interesting geometry, the latter are more convenient to work with
when combinatorial and topological aspects are in the focus. We will be interested
in such aspects of the Alpha and Wrap complexes of Delaunay mosaics.

Prior Work and Contributions The systematic investigation of random Voronoi
tessellations and Delaunay mosaics was initiated by Miles’ extensive study of the
two-dimensional case [40], but some results were already known to Meijering [39].
While Miles settled a wide variety of stochastic questions in R

2, few theoretical
results beyond two dimensions were known prior to [26]. An exception is the
expected number of Voronoi vertices or, equivalently the top-dimensional simplices
in the Delaunay mosaic, although many integral expressions and relations for
geometric characteristics like intrinsic volumes and numbers of simplices were
available; see [11, 12, 43], and [49, Chapter 10] for a general survey. In this context,
we also mention [6], where general Gamma-type results for distributions of various
associated quantities were obtained. Parallel to the purely mathematical interest,
the study of random tessellations in R

3 is motivated by questions in material
science, and a wealth of primarily experimental findings on three-dimensional
Poisson–Voronoi tessellations can be found in [36, 38]. Random weighted Voronoi
tessellations were studied in [34, 35], with the weights following their own distribu-
tion, such as uniform or normal. Alternatively, we may construct a weighted Voronoi
tessellation as a slice of a higher-dimensional unweighted Voronoi tessellation, and
this construction was briefly considered in [43].

In this paper we continue the study of the questions pioneered in the already
mentioned works of Miles [40, 41], and we consider them from the viewpoint
of discrete topology. When we construct a Delaunay mosaic incrementally, then
each simplex acquires topological significance. To formalize this idea, we may
consider the (generalized) discrete Morse function that encodes the family of Alpha
complexes contained in the mosaic [5]. We are motivated to shift to this view by
the widespread use of persistence diagrams in topological data analysis [13, 19]. A
first step in this analysis turns the data into a filtration of complexes, and the most
common types are the Čech, Vietoris–Rips, and Alpha complexes. The stochastic
properties of the first two applied to a Poisson point process have been investigated
by Kahle [31, 32], by Bobrowski and coauthors [7, 9], by Decreusefond et al. [15],
and recently by us [44]. The stochastic properties of Alpha complexes have come
into focus recently [23–26], and some of these findings will be surveyed in this
paper. In addition, we will present experimental data to illustrate the theoretical
results but also to motivate further studies aimed at shedding light on observed
but mathematically not yet understood stochastic phenomena. In this context,
we mention that there are already several experimental works on the subject. In
particular, [48] computes the Betti numbers experimentally (compare with Fig. 3),
and gives the asymptotic expansions for small radii. [51] obtains the persistent
diagrams experimentally for the two-dimensional Poisson point process. In contrast
to the previous research, we tackle the problem with the tools from discrete Morse
theory.



Poisson–Delaunay Mosaics 183

Approach There is a subtle but important difference between the conventional
approach to stochastic geometry and the approach taken in this paper. To explain the
difference, consider the problem of counting the simplices in a Poisson–Delaunay
mosaic in R

n, possibly differentiating between simplices of different dimensions.
To get started, we map each simplex, Q, to a representative point, center(Q) ∈ R

n,
and we study the resulting point process with tools from integral geometry. In the
conventional approach, center(Q) is chosen in an isometry-equivariant manner,
for example as the center of mass. In contrast, in this paper we map Q to the
center of the smallest sphere that passes through the vertices of the simplex and
does not enclose any points of X. This definition is not isometry-equivariant as
center(Q) depends on more than just the simplex, so we call this the context-
sensitive approach. Note that this mapping is generally not injective—not even if
we assume that the points of X are in general position—but there is topological
meaning in the incidences. Indeed, all simplices that map to the same point form
an interval in the face poset, and if this interval contains two or more simplices,
then adding them to the last Alpha complex does not change the homotopy type. In
addition to studying the resulting point process, we need to understand the intervals
of simplices that share the same representative point. In other words, we study
the discrete Morse function of the Delaunay mosaic and get topologically refined
stochastic information on its simplices. The idea of the context-sensitive approach
thus originates in discrete Morse theory, which was introduced by Forman in [28],
later generalized to intervals by Freij in [29], and recently applied to Delaunay
complexes in [5].

Outline In this survey, we summarize the results obtained with the context-
sensitive approach, particularly focusing on the remaining open questions and on
numerical simulations. In Sect. 2, we study unweighted Delaunay mosaics, and
in addition to counting all simplices, we count those with circumscribed spheres
of radius at most r , which amounts to studying Alpha complexes. In Sect. 3, we
extend the study to Wrap complexes, which exploit the flow defined by discrete
Morse theory of the Delaunay mosaic to reconstruct shapes from data. In Sect. 4,
we turn to the weighted Poisson–Delaunay mosaics generated from slices of higher-
dimensional unweighted Voronoi tessellations. In Sect. 5, we address questions
about the sphericity regions in weighted and unweighted Voronoi tessellations.
In Sect. 6, we conclude the main part of this paper. We collect background
material that may be helpful to the non-specialist in three appendices, discussing
tessellations, mosaics, and complexes in Appendix 1, introducing discrete Morse
theory and homology groups in Appendix 2, and explaining probabilistic concepts
in Appendix 3.
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2 Poisson–Delaunay Mosaics

In this section, we present fundamental probabilistic results on random Delaunay
mosaics and the Alpha complexes, which are their subcomplexes. As it turns out,
it can be easier to study the Alpha complexes first and to combine the obtained
insights to gain an understanding of random Delaunay mosaics. We begin with a
brief introduction of the main geometric and topological concepts and follow up
with probabilistic results from the literature and with numerical data collected from
extensive computational experiments. More detailed introductions to the geometric,
topological, and probabilistic background can be found in the appendices.

Geometric and Topological Concepts We write R
n for the n-dimensional

Euclidean space and let X ⊆ R
n be a locally finite set. The Voronoi tessellation ofX

covers Rn with closed convex domains, one for each point in X. Assuming general
position, the Delaunay mosaic of X, denoted Del(X), is the nerve of the Voronoi
tessellation, geometrically realized by mapping each domain to the corresponding
point in X. By construction, Del(X) is a simplicial complex with simplices of
dimension 0 to n. Each p-simplex is the convex hull of p + 1 points, and we find
it convenient to identify the simplex with its set of vertices, Q ⊆ X. It is not
difficult to see that for each simplex Q ∈ Del(X), there is an (n − 1)-dimensional
sphere such that all points of Q lie on the sphere, and no point of X lies inside the
sphere. There is a unique smallest such sphere, which we refer to as the Delaunay
sphere of Q. Letting R(Q) be the radius of the Delaunay sphere, we get a function
R : Del(X) → R, which we call the (Delaunay) radius function of X. For each
r ∈ R, the Alpha complex of X for r is the corresponding sublevel set of the radius
function: Alphar (X) = R−1[0, r].

The Delaunay mosaic can be partitioned into intervals, which consist of sim-
plices with common Delaunay sphere. The simplices inside an interval share the
radius, hence every Alpha complex either contains all simplices in an interval or
none of them. Writing 	 for the minimum dimension and m for the maximum
dimension of any simplex in an interval, we say the interval has type (	,m). If
	 = m, we call the interval singular and its only simplex a critical simplex of R.
The critical simplices determine the topology of the Alpha complexes as measured
by their homology groups; see Appendix 2 for details. Indeed, if we construct the
Delaunay mosaic incrementally, in the order of non-decreasing radius, we preserve
the Betti numbers whenever we add a non-singular interval, and we change exactly
one Betti number whenever we add a critical p-simplex, namely we increase the
p-th Betti number by 1 if the simplex gives birth of a p-cycle, and we decrease the
(p − 1)-st Betti number by 1 if the simplex gives death of a (p − 1)-cycle.

Probabilistic Background As proved in [26], the radius of the typical interval of a
given type is Gamma-distributed. To state this more formally, consider a stationary
Poisson point process X with intensity ρ > 0 in R

n, and write cn	,m(r) for the
expected number of intervals of type (	,m) in the Alpha complex Alphar (X) that
lie inside a Borel region � ⊆ R

n of measure ‖�‖. Write �(m) for the Gamma
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function, γ (m; t) = ∫ t
x=0 x

m−1e−xdx for its lower incomplete version, and call
γ̃ (m; t) = γ (m; t)/�(m) the regularized lower incomplete Gamma function. Then
there exist constants Cn

	,m such that

cn	,m(r) = γ̃
(
m; ρνnrn

) · Cn
	,m · ρ‖�‖ (1)

for every 	 > 0 and every r ≥ 0, in which νn = π
n
2 /�

(
n
2 + 1

)
is the volume of the

unit ball in R
n. Using (7) in Appendix 2, we can transform this into a statement about

the number of simplices. Writing dnj (r) for the expected number of j -simplices in
Alphar (X) in �, we have

dnj (r) =
j∑

	=0

n∑
m=j

(
m− 	

m− j

)
γ̃
(
m; ρνnrn

) · Cn
	,m · ρ‖�‖ (2)

for j > 0 and every r ≥ 0. For convenience, we also define the expected number
of simplices per unit volume, Dn

j , using the formula dnj (∞) = Dn
j ρ‖�‖. The proof

of (2) can be found in [26], where the constants Cn
	,m are computed explicitly for

n ≤ 4. By saying “in �” we mean that the center of the Delaunay sphere lies in �.
An intuitively clear but technical fact [26, Appendix A] is that this condition can
be replaced by “lying inside �” or “intersecting �”, at the cost of weakening (1)
and (2) by adding o(‖�‖) on their right-hand sides. We use this to estimate the
distribution numerically.

Computational Experiments We present experimental results in two and three
dimensions. Figure 1 shows a two-dimensional Poisson–Delaunay mosaic restricted
to a square window. For the computation, we chose the square window of size
300× 300 in R

2 or the cube window of size 60× 60× 60 in R
3. To avoid boundary

effects, we impose periodic boundary conditions in our simulations. An instance
of the Poisson point process with intensity ρ = 1 is sampled and the geometric
software library CGAL [58] is used to compute Voronoi tessellations and Delaunay
mosaics. We count the intervals and simplices and compare the experimentally
observed constants Cn

	,m and Dn
j with their mathematically derived values. In R

2,

the Euler characteristic implies D2
0 = 1, D2

1 = 3, D2
2 = 2. For a Poisson point

process, we expect that half the triangles are acute and the other half are obtuse
[40], which implies C2

1,1 = 2, C2
1,2 = 1, C2

2,2 = 1. Averaging the experimentally
observed numbers over 1 000 runs, we match these predictions with an accuracy
of at least two positions after the decimal point. In R

3, we average the observed
numbers over 100 runs; see Table 1 for a comparison of the results.

Intervals and Simplices Besides the total densities of intervals and simplices,
we are interested in their dependence on the radius. Analytic formulas for these
dependencies can be found in [26], but no such formulas are known for the
variances. As shown in [40], the standard deviations are small if compared to the
expected values, but exact values are not available. Figure 2 gives the experimentally
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Fig. 1 Poisson–Delaunay mosaic. The color distinguishes between an Alpha subcomplex and the
simplices whose Delaunay spheres have radii exceeding the threshold

Table 1 Mathematically
derived [26] and
experimentally estimated
values for Cn

	,m and Dn
j in

n = 3 dimensions

n = 3 Theoretical Exp.

C3
0,0 1 = 1.00 1.00

C3
1,1 4 = 4.00 4.00

C3
1,2

9
16π

2 − 3 ≈ 2.55 2.55

C3
2,2

3
16π

2 + 3 ≈ 4.85 4.85

C3
1,3

69
560π

2 ≈ 1.22 1.22

C3
2,3

3
8π

2 ≈ 3.70 3.70

C3
3,3

3
16π

2 ≈ 1.85 1.85

D3
0 1 = 1.00 1.00

D3
1

24
35π

2 + 1 ≈ 7.77 7.77

D3
2

48
35π

2 ≈ 13.54 13.53

D3
3

24
35π

2 ≈ 6.77 6.77

The numbers in the right column are
averaged over 100 mosaics in R

3 with
6,277,766 simplices on average
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observed densities in R
2 and in R

3. Looking at the graphs in the left panels, we get
the number of intervals of any specific type with radius between r1 and r2 per unit
volume as the area below the corresponding curve and above the segment [r1, r2].
These graphs are computed by normalizing the corresponding histograms that bin
the intervals with radii between i/100 and (i + 1)/100 for i ranging from 0 to
250, averaging over the same number of runs as before. We fit regularized lower
incomplete Gamma functions to these graphs, using the curve_fit-function of
Python 2.7’s scipy-module, which is based on least squares optimization. As
stated in (2), the densities of the simplices are linear combinations of the densities of
the intervals, so we fit linear combinations of Gamma functions; see Sect. 3 for their
discussion. Since these distributions are known theoretically, it is not surprising that
we get an excellent fit, but the precise quantification of the error is still useful as
it calibrates the error we get for some of the theoretically unknown densities we
discuss later. We have made no attempts to fit analytic curves to the graphs for the
variances, shown in the right panels of Fig. 2, which are computed with a window
of size 100× 100 in R

2 and of size 15× 15× 15 in R
3, averaged over 10,000 runs

and normalized by the window size, which is also the expected number of points.
Trying different window sizes (result not shown), we get almost the same graphs,
which implies that the variances are proportional to the number of points.

Observe that the expected number of obtuse triangles (or intervals of type (1, 2))
in R

2 is the same as the expected number of acute triangles (or intervals of type
(2, 2)), for every r ≥ 0. In contrast, the variance for obtuse triangles is consistently
smaller than that for acute triangles.

Critical Simplices and Betti Numbers Turning our attention to the topology
of the Alpha complexes, we consider the critical simplices that give birth and
that give death, the Betti numbers, and the variances of the Betti numbers as
functions of the radius threshold; see Appendix 2 for a detailed introduction of
these concepts. No analytic expressions are known for these densities, so Fig. 3 just
shows the experimental results. Note that the Euler characteristic, which is the linear
combination of the Betti numbers, appears to be a simpler quantity, with explicit
expression given in [46]. The graphs of birth- and death-giving critical simplices
are visually similar to those we get for the intervals, but our attempt to fit Gamma-
functions gives fitting errors of order 10−3 or worse, which suggests that unlike
the critical simplices, their two types do not follow Gamma-distributions. We get
the p-th Betti number as the difference between the number of birth-giving p-
simplices and the number of death-giving (p + 1)-simplices. Since the latter are
not Gamma-distributed, neither are the former, with the exception of the n-th Betti
number, which equals the number of critical n-simplices.
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Fig. 2 The observed densities of the intervals as functions of the radius on the left, and the
corresponding variances normalized by the expected number of points on the right, showing the
experimental results in R

2 on the top and in R
3 in the middle. The table below the panels compares

the experimentally fit distributions in R
3 with the mathematically derived formulas. The constants

in the table are rounded to two digits after the decimal point. We quantify the error by taking
the square root of the average squared deviation of the sampled points from the fitted curve, which
estimates the L2-difference between the fitted and sampled density functions. (a) Observed interval
densities in R

2. (b) Observed cumulative variances in R
2. (c) Observed interval densities in R

3.
(d) Observed cumulative variances in R

3
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Fig. 3 Top row: experimentally observed densities of birth- and death-giving critical simplices
in R

2 on the left and in R
3 on the right. Except for the top-dimensional simplices, which all

give death, they do not seem to follow Gamma-distributions. The numbers and types of critical
simplices determine the Betti numbers. Middle and bottom rows: the observed Betti numbers of
the sublevel sets and the corresponding variances, again in R

2 on the left and in R
3 on the right.

(a) Birth (◦) and death (•) in R
2. (b) Birth (◦) and death (•) in R

3. (c) Observed Betti numbers
in R

2. (d) Observed Betti numbers in R
3. (e) Corresponding variances in R

2. (f) Corresponding
variances in R

3
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3 Poisson–Wrap Complexes

In this section, we study the Wrap complexes of Poisson point processes. As
described in detail in Appendix 2, each Wrap complex is contained in and homotopy
equivalent to the Alpha complex for the same radius.

Definitions of Wrap Complex LetX ⊆ R
n be locally finite and in general position

so that Del(X) is a simplicial complex and R : Del(X) → R induces a well-
defined partition of the Delaunay mosaic into intervals. For every r ≥ 0, the Wrap
complex of X for r , denoted Wrapr (X), is the smallest subcomplex of Del(X) that
contains all critical simplices with radiusR(Q) ≤ r and has only complete intervals.
Clearly Wrapr (X) ⊆ Alphar (X), and since both complexes contain the same
critical simplices, the two have the same homotopy type and therefore isomorphic
homology groups and equal Betti numbers. It follows that the experimental results
shown in Fig. 3 apply without change to Wrap complexes as well.

It will be useful to unpack this definition, which we do by introducing a partial
order on the simplices in the Delaunay mosaic. Inside an interval, the order climbs
down the Hasse diagram, and between intervals, it climbs up the Hasse diagram. For
each critical simplex Q of R, we define the lower set, denoted ↓Q, as the simplices
that precede Q in this order. The Wrap complex of X for r is then the union of the
lower sets of all critical simplices in Alphar (X).

This definition suggests we introduce the Wrap radius function, RW : Del(X)→
R, which maps each simplex, P , to the minimum radius of a critical simplex, Q,
that satisfies P ∈ ↓Q. By construction, RW agrees with R on the critical simplices,
and we have R(P ) ≤ RW(P) for all P ∈ Del(X). With this definition, we have
Wrapr (X) = R−1

W [0, r]. Since Wrapr (X) ⊆ Alphar (X), the number of intervals of
any type contained in the Wrap complex is less than or equal to those contained in
the Alpha complex for the same radius. It follows that the corresponding densities
for the Wrap complexes lean to the right when compared to the densities for the
Alpha complexes. This can indeed be seen by comparing the graphs in the upper left
panels of Figs. 4 and 5 with the graphs in the left two panels of Fig. 2. Similarly, the
densities of the simplices in the Wrap complexes lean to the right when compared to
the densities of the simplices in the Alpha complexes. To facilitate this comparison,
we draw all graphs in the upper right panels of Figs. 4 and 5: the solid graphs for the
Wrap complexes together with the dashed graphs for the Alpha complexes.

Lower Sets We measure the lower set of a critical simplex in two ways: with
its cardinality and with its diameter. The motivation for the two measures is their
relevance in computing the Wrap complexes. When we increase the radius threshold
and thus add a critical simplex to the Wrap complex, the change can be as large as
the cardinality of its lower set. When we study the Wrap complex for data within
a window, we need to worry about boundary effects if the lower set of a critical
simplex lies only partially within the window. For example, if the diameter of a
typical lower set scales linearly with the window side, than we can expect noticeable
disturbances of the results due to boundary effects. Fortunately, the diameters are
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interval experimental fit fitting error

(1, 1) 2.00 · 1.00; 3.14 2 1.37 × 10−5

(1, 2) 0.62 · 3.01; 3.41 2 + 0.38 · 4.07; 3.29 2 2.41 × 10−5

(2, 2) 1.00 · 2.00; 3.14 2 1.51 × 10−5

Fig. 4 Experimentally observed densities of intervals and simplices in the Wrap complexes of a
Poisson point process inR2 and the corresponding variances, which are normalized by the expected
number of points. The table below the panels shows that for the interval densities there are linear
combinations of Gamma functions with surprisingly tight fit. (a) Intervals in Wrap complex. (b)
Simplices in Wrap and Alpha complexes. (c) Cumulative variances for intervals. (d) Cumulative
variances for simplices
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interval experimental fit fitting error

(1, 1) 4.00 · 1.00; 4.19 3 6.96 × 10−5

(1, 2) 1.78 · 2.99; 5.28 3 + 0.77 · 4.48; 3.95 2 7.52 × 10−5

(2, 2) 4.85 · 2.00; 4.19 3 6.68 × 10−5

(1, 3) 0.90 · 4.10; 3.96 3 + 0.31 · 6.15; 4.40 2 6.89 × 10−5

(2, 3) 0.56 · 4.11; 6.19 3 + 2.94 · 4.98; 4.23 2 + 0.20 · 6.34; 7.31 2 8.28 × 10−5

(3, 3) 1.85 · 3.00; 4.19 3 3.13 × 10−5

Fig. 5 Experimentally observed densities of intervals and simplices in the Wrap complexes of a
Poisson point process inR3 and the corresponding variances, which are normalized by the expected
number of points. The table on the bottom shows that for the interval densities there are linear
combinations of Gamma functions with surprisingly tight fit. (a) Intervals in Wrap complex. (b)
Simplices in Wrap and Alpha complexes. (c) Cumulative variances for intervals. (d) Cumulative
variances for simplices
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Table 2 Each double-column shows the maximum cardinality (left) and the maximum diameter
(right) of the lower sets within the given percentile

p-value n = 2 n = 3

j = 1 j = 2 j = 1 j = 2 j = 3

0.00 1 5.13 93 5.17 1 3.37 479 3.37 835 3.56

0.05 1 1.95 16 2.39 1 1.79 19 2.03 94 2.20

0.10 1 1.71 13 2.17 1 1.64 13 1.89 69 2.08

0.25 1 1.33 7 1.80 1 1.38 7 1.67 42 1.88

0.50 1 0.94 4 1.42 1 1.10 4 1.43 25 1.65

0.75 1 0.61 4 1.07 1 0.82 4 1.18 16 1.42

The average total number of simplices in the simulation is 540,034 in R
2 and 6,277,766 in R

3.
As before, we average over 1000 experiments in a window of size 300× 300 in R

2, and over 100
experiments in a window of size 60× 60× 60 in R

3

typically small, which we confirmed in several computational experiments. We are,
however, lacking any theoretical justification of the findings, which are quantified
in Table 2. We chose p-values to represent the results. To explain them, consider the
second row of the table, for p-value 0.05. The first two entries in the row say that
the lower sets of 95% = 1−0.05 of the critical edges in R

2 have cardinality at most
1 and the lower sets of a possibly different 95% of the critical edges have diameter
at most 1.95. The next two entries give the maximum cardinality and maximum
diameter for the 95-percentile of critical triangles in R

2, and the rest of the row
gives the numbers for simplices in R

3. Accordingly, the first row, for p-value 0.00,
gives the maximum cardinalities and the maximum diameters we observe in the
experiment. In the unweighted case, all points are critical, so we choose to count
only edges, triangles, and tetrahedra toward the cardinalities of the level sets.

We close this section with an experimental observation that is not reflected in
the figures and the table. Recall that for 1 ≤ p ≤ n − 1, there are two kinds of
p-simplices in the Delaunay mosaic: those that give birth and the others that give
death. The data in R

2 and R
3 suggest that the lower sets of the death-giving p-

simplices tend to be smaller than those of the birth-giving p-simplices. This makes
intuitive sense because the death-giving simplices tend to precede the birth-giving
simplices and therefore have smaller radii. There seems to be a positive correlation
between radius and size of a lower set, which supports the conjecture.

4 Weighted Poisson–Delaunay Mosaics

In this section, we study random weighted Delaunay mosaics and their weighted
Alpha complexes. We sidestep the need for selecting the weights separately from
the points by using a Poisson point process in a dimension that is higher than the
dimension of the mosaic.
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Geometric Concepts We recall that the Laguerre or weighted Voronoi tessellation
generalizes the unweighted concept by substituting the power distance for the
squared Euclidean distance [2, 34]; see Appendix 1 for details. We make use of
the fact that every k-dimensional plane in R

n intersects the Voronoi tessellation
of a locally finite set X ⊆ R

n in a k-dimensional weighted Voronoi tessellation
[50]. In the following, we write R

k for the k-plane, and Y ⊆ R
k × R for the

weighted points, each of which is the orthogonal projection of an x ∈ X to R
k , with

the negative squared distance to R
k as the weight. Assuming general position, the

weighted Delaunay mosaic of Y is the nerve of the weighted Voronoi tessellation,
geometrically realized by mapping each domain to the location of the corresponding
weighted point in R

k . We denote this mosaic by Del(Y ), deliberately using identical
notation to blur the difference between the weighted and the unweighted concepts.

Similar to the unweighted case, we have a weighted Delaunay radius function,
R : Del(Y )→ R. To define it, let P ⊆ Y be a simplex in Del(Y ), write Q ⊆ X for
its preimage, which is a simplex in Del(X), and call a sphere in R

n anchored if its
center lies in R

k. The radius function maps P ∈ Del(Y ) to the radius of the smallest
anchored (n − 1)-sphere such that all points of Q lie on the sphere and no point of
X lies inside the sphere. It is not difficult to see that a simplex in Del(X) projects to
a simplex in Del(Y ) iff such an anchored sphere exists; see Fig. 6. The sublevel sets
of the weighted Delaunay radius function are the weighted Alpha complexes of Y ,
Alphar (Y ) = R−1[0, r].

A related concept is the Boolean model of stochastic geometry. Given r ≥ 0, it
is the union of the balls with center y ∈ R

k and squared radius r2 + wy , in which
(y,wy) ∈ Y and we ignore the balls with r2 + wy < 0. It is not difficult to see that
the Boolean model for r ≥ 0 has the homotopy type of Alphar (Y ). It is equivalent
to intersecting the union of equal balls of radius r centered at points of X with R

k .

Fig. 6 A one-dimensional weighted Voronoi tessellation as a slice of a two-dimensional
unweighted Voronoi tessellation. The weighted Delaunay mosaic in R

1 is the projection of a chain
of edges in the two-dimensional unweighted Delaunay mosaic
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Table 3 The percentile of points sampled in R
n that are further from R

k than the given distance
but are nevertheless non-redundant

p-value n = 2 3 4 5 6 7 8 9 10

k = 1

0.00 2.30 1.60 1.40 1.24 1.22 1.20 1.19 1.20 1.20

0.05 0.88 0.88 0.88 0.90 0.92 0.95 0.97 1.00 1.03

0.25 0.54 0.66 0.72 0.77 0.81 0.85 0.89 0.92 0.95

0.50 0.33 0.50 0.60 0.66 0.72 0.77 0.81 0.85 0.89

k = 2

0.00 1.55 1.34 1.25 1.22 1.20 1.20 1.21 1.22

0.05 0.82 0.87 0.90 0.93 0.95 0.98 1.01 1.03

0.25 0.57 0.69 0.76 0.81 0.85 0.89 0.93 0.96

0.50 0.37 0.55 0.64 0.71 0.77 0.81 0.86 0.89

For every dimension n, the points in R
n, both redundant and non-redundant, that are closer to R

k

than the furthest non-redundant point, comprise less than 10% of all generated points

Sampling Weighted Points Some points in X may be redundant in the sense that
their domains do not intersect Rk , so that removing them from X does not affect
the weighted Delaunay mosaic. Indeed, the further a point is from R

k , the higher
its chance to be redundant. Since sampling in R

n is costly, we restrict our attention
to a tube neighborhood, Rk × r · Bn−k ⊆ R

n. Sampling the points with density
ρ = 1 inside the tube, we aim at choosing the radius to maximize the fraction of
non-redundant points while minimizing the risk of missing a non-redundant point.
To study this question, we sample points in R

n and record the distances of the non-
redundant points from R

k . Table 3 presents the results for k = 1, 2 and k + 1 ≤
n ≤ 10. The respective top rows give the maximum distance of a non-redundant
point from R

1 and from R
2. Reading these rows from left to right, we see that

they first decrease and then increase. This effect is caused by the interaction of the
average distance, which increases with n, and the variance, which decreases with n.
Indeed, for increasing ambient dimension, the distances of non-redundant points get
progressively more concentrated around the radius of the ball with unit volume.

Filtering Points In order to minimize the risk of missing a non-redundant point
in the experiments, the vast majority of the generated points have to be redundant.
However, the high number of redundant points makes the computation prohibitively
expensive, despite these points having no influence on the weighted Delaunay
mosaic. It is therefore necessary to eliminate the majority of redundant points for
which we can guarantee their redundancy prior to computing the weighted Delaunay
mosaic. Nevertheless, it is possible to guarantee that all non-redundant points are
present, namely by determining the closest generated point for every location in
�. If the tube radius exceeds the maximum of these distances, the points outside
the tube cannot influence the mosaic. It is however tempting to follow a suggestion
implicit in Table 3, which shows that we can reduce the volume of the tube—and
hence the number of sampled points—by a factor up to seven, and miss only 5%
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of the non-redundant points. The computational resources available to us allowed
us to ignore this suggestion and sample from a tube neighborhood of radius larger
than the furthest of the points in the table. While we did not have to sacrifice the 5%
of non-redundant points, we did not make sure that no non-redundant point went
missing.

We use the following observation to eliminate some of the redundant points
before generating the Voronoi diagram. Let k = 1, p be a point of the process
in R

n, and p̄ its projection to R
1. Note that p determines a unique hyperplane, P ,

in R
n that is orthogonal to R

1 and contains p. It is straightforward to see, that if
there are two points s and t of the process in different half-spaces determined by
P , such that both s and t are closer to p̄ than p, then every point in R

1 is closer
to either s or t than to p, meaning the Voronoi cell of p does not intersect R1. We
can therefore eliminate p from further computations. Similarly, for k = 2, there
exist two orthogonal hyperplanes, P1 and P2, in R

n that contain p and are both
orthogonal to R

2 (we can pick any such pair of orthogonal hyperplanes). Note that
P1 and P2 divide R

n into four quadrants. If there are points of the process in all
four quadrants that are closer to p̄ ∈ R

2 than p to p̄, then we can eliminate p from
further computations as well.

In practice, we keep a test subset of already generated points against which we
test the redundancy of all other points as described. The points that are marked for
elimination are guaranteed to be redundant in the weighted Delaunay mosaic, and
we therefore disregard them for the purposes of computation. However, typically
not all redundant points are eliminated in this way, the exact proportion depending
on the amount and spatial distribution of points in the test set. We were typically
able to eliminate more than 95% of the generated points, which allows for a feasible
computation time.

Probabilistic Background Recall formulas (1) and (2), which give the expected
numbers of intervals and simplices in an unweighted Poisson–Delaunay mosaic with
radius at most r inside a Borel region �. The generalizations of these formulas to
the weighted case can be found in [25]. They assert the existence of constants Ck,n

	,m

such that the expected numbers of intervals and simplices satisfy

c
k,n
	,m(r) = γ̃

(
m+ 1− k

n
; ρνnrn

) · Ck,n
	,m · ρ

k
n ‖�‖, (3)

d
k,n
	 (r) =

n∑
m=j

γ̃
(
m+ 1− k

n
; ρνnrn

) j∑
	=1

(
m− 	

m− j

)
C
k,n
	,m · ρ

k
n ‖�‖, (4)

d
k,n
j (∞) = D

k,n
j · ρ k

n ‖�‖, (5)

with D
k,n
j = ∑n

m=j
∑j

	=1 C
k,n
	,m, in which γ̄ is the regularized lower incomplete

Gamma function, and� is a Borel region in R
k . We set ρ = 1 in all our experiments.

Table 4 gives the constants for k = 1, 2 and for a few values of n ≥ k + 1, each
rounded to the nearest two digits after the decimal point. It compares these values
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Table 4 Each double-column shows the theoretically derived values for Ck,n
	,m and Dk,n

j on the left
and the corresponding experimentally computed values on the right

n = 2 n = 3 n = 5 n = 8 n = 10

th exp th exp th exp th exp th exp

k = 1

C
1,n
0,0 1.00 1.00 1.09 1.09 1.22 1.22 1.32 1.32 1.37 1.37

C
1,n
0,1 0.27 0.27 0.36 0.36 0.45 0.45 0.51 0.51 0.54 0.54

C
1,n
1,1 1.00 1.00 1.09 1.09 1.22 1.22 1.32 1.32 1.37 1.37

D
1,n
0 1.27 1.27 1.46 1.45 1.67 1.67 1.84 1.84 1.91 1.91

D
1,n
1 1.27 1.27 1.46 1.45 1.67 1.67 1.84 1.84 1.91 1.91

k = 2

C
2,n
0,0 1.11 1.11 1.38 1.38 1.66 1.66 1.79 1.79

C
2,n
0,1 0.26 0.26 0.54 0.54 0.77 0.77 0.86 0.87

C
2,n
1,1 2.47 2.48 3.30 3.30 4.09 4.09 4.44 4.44

C
2,n
0,2 0.09 0.09 0.21 0.21 0.31 0.31 0.35 0.35

C
2,n
1,2 1.46 1.46 2.13 2.13 2.74 2.74 3.01 3.01

C
2,n
2,2 1.37 1.37 1.92 1.92 2.43 2.43 2.66 2.66

D
2,n
0 1.46 1.46 2.13 2.13 2.74 2.74 3.01 3.01

D
2,n
1 4.37 4.37 6.38 6.38 8.22 8.22 9.03 9.03

D
2,n
2 2.92 2.92 4.25 4.25 5.48 5.48 6.02 6.02

In k = 1 dimension, we use an interval of length 300 and compute the constants by averaging over
10,000 mosaics. In k = 2 dimensions, we use a square of size 60 × 60 and compute the constants
by averaging over 1000 mosaics

with the experimentally estimated values, which are averaged over 10,000 runs,
using a segment of length 300 in R

1 and 1000 runs, using a square of size 60× 60
in R

2. We see only small discrepancies between the rounded and the experimentally
estimated values, which gives us confidence that the formulas in (3) to (5) are
correct.

Intervals, Simplices, and Betti Numbers Following Sect. 2, we count the intervals
and simplices in weighted Alpha complexes of Poisson point processes and compare
the obtained graphs with the theoretical predictions stated in (3) and (4); see Figs. 7
and 8.

Recall that a Boolean model has the same homotopy type as the corresponding
weighted Alpha complex. In k = 1 dimension, this implies that in the finite case
the two have equally many components. In our setting, we consider a Poisson point
process in R

n, with n ≥ 2, we center a ball of radius r at each point, we intersect the
union of balls with a straight line, and we ask for the expected density of components
(segments) in this intersection. This is also the density of the 0-th Betti number of
the one-dimensional weighted Alpha complex defined by the same process, the same
line, and the same radius. In contrast to the unweighted case, not every vertex of the
weighted Delaunay mosaic is critical. To count, we observe that every critical vertex
gives birth to a component, every critical edge gives death to a component, and every
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Fig. 7 Experimentally observed densities of intervals and corresponding variances of weighted
Delaunay mosaics in R

1. The mosaic is constructed from an n-dimensional unweighted Delaunay
mosaic, with n = 2 on the top and n = 10 on the bottom. The graphs are scaled by the expected
total number of points in the window. Note that we use the volume of the ball of radius r as
the parameter, which also stands for the expected number of points in a ball of this size. With
this notation, it is easier to compare the graphs for different ambient dimensions. (a) Densities of
intervals for k = 1 and n = 2. (b) Corresponding cumulative variances. (c) Densities of intervals
for k = 1 and n = 10. (d) Corresponding cumulative variances

vertex-edge pair extends a component thus preserving their number. The 0-th Betti
number for radius r is therefore the number of critical vertices of radius at most r
minus the number of critical edges of radius at most r; compare the left two panels
of Fig. 9 for the cases k = 1 and n = 2, 10. Since the densities of critical vertices
and of critical edges are known analytically [25], an expression for the 0-th Betti
number follows. The situation in k ≥ 2 dimensions is more complicated and no
analytic results are available; see the right two panels of Fig. 9 for the cases k = 2
and n = 3, 10.
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Fig. 8 Experimentally observed densities of intervals and corresponding variances of weighted
Delaunay mosaics in R

2. The mosaic is constructed from an n-dimensional unweighted Delaunay
mosaic, with n = 3 on the top and n = 10 on the bottom. We use the same scaling as in Fig. 7. (a)
Densities of intervals for k = 2 and n = 3. (b) Corresponding cumulative variances. (c) Densities
of intervals for k = 2 and n = 10. (d) Corresponding cumulative variances
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Fig. 9 Experimentally observed densities of birth- and death-giving critical simplices (top row)
and Betti numbers (bottom row) in the k-dimensional weighted Alpha complexes constructed from
a Poisson point process in R

n. Note that the radii are normalized, so that for ambient dimension
n, a simplex with radius r is represented as the volume of a ball with radius r in dimension n.
Specifically, given a simplex with radius r , the values on the horizontal axis are πr2 for n = 2,
4
3πr

3 for n = 3, and 1
120π

5r10 for n = 10. (a) Critical simplices in R
1. (b) Critical simplices in

R
2. (c) Betti numbers in R

1. (d) Betti numbers in R
2

5 Weighted Poisson–Voronoi Tessellations

The motivation for the material collected in this section is the observation that
the vertices of a weighted Delaunay mosaic are not distributed as a Poisson point
process. Indeed, there is a repulsive force implied by the slice construction that tends
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Fig. 10 Two weighted Poisson–Voronoi tessellations in the plane, with ambient dimension n = 3
on the left and n = 10 on the right. In contrast to the graphs in Figs. 11 and 12, the processes in R

n

are scaled to achieve an equal density of points in R
2. Note that many vertices are located outside

the domain they generate

to distribute the points in a more regular fashion, and progressively so with growing
dimension n; see Fig. 10. We provide statistics to quantify this observation.

Distance to Neighbors As before, we write Y ⊆ R
k × R for a locally finite set

of weighted points, which we assume is obtained from a stationary Poisson point
process X ⊆ R

n. We recall that the density of edges in the weighted Delaunay
mosaic is given in (5). To start, we focus on the distance between adjacent vertices.
In k = 1 dimension, we measure the distance between contiguous vertices along
the real line, drawing the observed distribution for n = 2, 3, 5, 8, 13, 21, 34 in the
left panel of Fig. 11. Extending this to k = 2 dimensions, we plot the lengths of the
edges in the weighted Delaunay mosaic in the right panel. Both for k = 1 and for
k = 2, the distributions get progressively sharper with increasing n. We quantify
this phenomenon by listing the corresponding variances in Table 5.

Geometric Size Rather than measuring the length of edges, we may quantify the
vertex distribution by measuring the volume of Voronoi domains. More sensitive
to the shape of these domains is a direct comparison of the volume and surface
area with that of the round ball. Traditionally, this is formulated as a dimensionless
quantity between 0 and 1: the sphericity of a body, A, of dimension m ≥ 2, is

Sph(A) = mν
1/m
m

Volm(A)(m−1)/m

Volm−1(bdA)
; (6)

see [55]. Note that for the m-dimensional unit ball, we have Volm(A) = νm,
Volm−1(bdA) = σm, and σm/νm = m, so Sph(A) = 1. Observe also that one
over the sphericity is the surface area of A over the surface area of the ball that has
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Fig. 11 The densities of distances between adjacent vertices in weighted Delaunay mosaics: the
length of intervals along the line on the left and the length of edges of the mosaic in the plane on
the right. The weighted tessellations are constructed as slices of unweighted Voronoi tessellations
in n = 2, 3, 5, 8, 13, 21, 34 dimensions. (a) Distances along a line. (b) Distances in the plane

Table 5 The variances of the distances between adjacent vertices in one- and two-dimensional
weighted Voronoi tessellations in the two top rows, and the variances of the area and the edge
length in two-dimensional weighted Voronoi tessellations in the two bottom rows

Variance n = 2 3 5 8 13 21 34

Distance in R
1 0.23 0.14 0.09 0.07 0.07 0.06 0.06

Distance in R
2 0.17 0.10 0.08 0.07 0.06 0.06

Area in R
2 0.23 0.18 0.15 0.13 0.11 0.10

Length in R
2 0.13 0.09 0.07 0.06 0.06 0.05

The density of the generating Poisson point process is set to 1 for all n

the same volume as A, which is the reason that Sph(A) is sometimes referred to
as the isoperimetric quotient [38]. Extending the geometric results on the Poisson–
Voronoi mosaics from [11, 12, 40] with experimental means, we obtain the graphs
in Fig. 12. The two top panels show the distributions of the area of a typical polygon
and the length of a typical edge in a two-dimensional weighted Voronoi tessellation;
see Table 5 for the corresponding variances, which decrease with increasing n. The
two bottom panels show the distributions of the sphericity and the area-weighted
sphericity of a typical weighted Voronoi polygon. For the latter measure, the value
of the graph at 0 ≤ s ≤ 1 is the fraction of the total area covered by polygons with
sphericity s. There is no clear trend for the distributions of the sphericity, which,
if anything, decrease with increasing n. In contrast, the area-weighted sphericity
clearly increases with increasing n. To quantify these trends, we show the average
sphericities and the weighted average sphericities in Table 6.

Combinatorial Size Geometric shape information can also be gleaned from the
combinatorics of the boundary of a Voronoi domain. In R

2, the average number
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Fig. 12 Left and right in the top row: the densities of the area of a typical polygon and of the
length of a typical edge in the weighted Voronoi tessellation. Left and right in the bottom row: the
densities of the sphericity and the area-weighted sphericity of a typical polygon in the weighted
Voronoi tessellation. The tessellations are constructed as slices of unweighted Voronoi tessellations
in n = 2, 3, 5, 8, 13, 21, 34 dimensions. (a) Area in the plane. (b) Lengths of edges in the plane.
(c) Sphericity in the plane. (d) Area-weighted sphericity in the plane

Table 6 The average and area-weighted average sphericity of a typical polygon in a two-
dimensional weighted Voronoi tessellation

Average n = 3 5 8 13 21 34

Sphericity 0.835 0.823 0.817 0.814 0.812 0.811

Weighted sphericity 0.879 0.889 0.893 0.896 0.898 0.899

of edges per domain or, equivalently, the average degree of a vertex in the dual
mosaic, is 6. It is interesting to observe how the distribution evolves as the ambient
dimension, n, increases; see Fig. 13. We observe that for n ≥ 5, the most common
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Fig. 13 The normalized distribution of face degrees in weighted Voronoi tessellations in k = 2
dimensions. For example in n = 3 dimensions, the proportion of triangular faces is 6.23%, the
proportion of quadrangular faces is 13.60% and so on. The tessellations are constructed as slices
of unweighted Voronoi tessellations in n = 3, 5, 8, 13, 21, 34 dimensions

degree is 5, which is only possible if sufficiently many high-degree vertices bring
the average up to almost 6; see Fig. 10.

6 Discussion

This work adds an experimental flavor to the mathematical analysis of Poisson–
Delaunay mosaics started in [26]. The extension of the initial work on Poisson–
Delaunay mosaics to weighted mosaics [25] and to order-k mosaics [23] illustrates
the power of a simple idea: to count simplices through intrinsically defined
representative points and to group them as dictated by discrete Morse theory. While
this idea has been applied to geometric structures beyond those discussed in this
paper, it has not yet reached its full potential, which includes the formation of
bridges between different areas of stochastic study. For example, the work on
random inscribed polytopes in [24] connects Euclidean with Fisher geometry, and
the duality between Alpha complexes and Boolean models suggests unexplored
connections to percolation theory. We conclude this paper with a list of questions
aimed at expanding the scope of the idea and shed light on its limitations.
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1. Variance. Theoretically it is clear that in many settings considered in this paper
the variance is negligible compared to the expectation. Nevertheless, the variance
distinguishes between the uniform distribution and the Poisson point process on
the sphere [52]. Can our experimental results on the variance be complemented
with analytic formulas?

2. Random Wrap complexes. Figure 4 gives experimental evidence that the inter-
vals and simplices in a random Wrap complex follow simple linear combinations
of Gamma distributions. Can this be proved or disproved analytically?

3. Lower sets. When we sort the critical simplices in the order of non-decreasing
radius, the death-giving simplices tend to precede the birth-giving simplices of
the same dimension. This suggests that the lower sets of the former type of
simplices tend to be smaller than the lower sets of the latter type. Can this be
proven analytically?

4. Constants in weighted Delaunay mosaics. We have the constants Ck,n
	,m for k =

1, 2 and all corresponding combinations of 	, m, and n [25] and also for k = n =
3 and all corresponding combinations of 	 and m [26]. Can the methods in these
two papers be extended to compute all constants for k = 3?

5. Probabilistic relations. Our experiments suggest that for a stationary Poisson
point process in R

n, we have C2,n
2,2 = C

2,n
0,0 + C

2,n
0,1 for all n ≥ 2; see Table 4.

Equivalently, we have C
2,n
1,2 = C

2,n
0,0 + C

2,n
0,1 + C

2,n
0,2 . While these relations do

not hold in general, they hold for Poisson–Delaunay mosaics [27]. We pose as a
challenge to describe the complete set of such probabilistic linear relations.

6. Neighborhood size. Given a typical vertex of degree j in a Poisson–Delaunay
mosaic in R

3, Aboav [1] and Weaire [56] study the expected degree of a neighbor.
It is plausible that this function decreases with increasing j , but [36] provide
experimental evidence that it increases for small j , reaches its maximum for j =
12, and then decreases. How does the function behave for weighted Delaunay
mosaics and for dimensions k beyond 3?

7. Slice construction. Fixing k and letting n go to infinity, does the weighted
Voronoi tessellation obtained by taking a k-dimensional slice of the unweighted
Voronoi tessellation of a Poisson point process in R

n approach a limiting
distribution of domains? If yes, in what sense?

8. Basic loops. The first homology in R
2 counts the holes in the union of balls.

What is the distribution of the diameters of those holes? How many edges belong
to their boundaries? What are the analogous distributions in higher dimensions?
These questions are motivated by the asymptotic analysis in [48], which suggests
that their resolution extends our understanding of the stochastic behavior of Betti
numbers.

A common framework for many of the above questions is provided by the
persistence diagram of the radius function [19, 21]. Each point in this diagram is
determined by two critical simplices, so the density of the latter is twice the density
of the points in the diagram. Experiments suggest that for Poisson point processes
the persistence diagrams have characteristic shapes. An interesting quantity is the
difference in radii between two matched critical simplices, whose maximum was
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studied in [8]. The points in this diagram carry topological and therefore global
meaning about the data. This makes questions about the distribution of the points
difficult to approach with tools from probability theory, and it is not surprising that
most of the interesting questions are yet untouched.

Appendix 1: Voronoi Tessellations and Delaunay Mosaics

In this appendix, we present the definitions and basic properties of Voronoi
tessellations, Delaunay mosaics, Alpha complexes, and their weighted variants.

The Unweighted Case Let X be a locally finite set in R
n. The Voronoi domain

of x ∈ X consists of all points for which x minimizes the Euclidean distance:
dom(x) = {a ∈ R

n | ‖a − x‖ ≤ ‖a − y‖ for all y ∈ X}. Every Voronoi domain
is a closed, possibly unbounded, full-dimensional, convex polyhedron. The Voronoi
tessellation of X is the collection of Voronoi domains of points in X [53, 54]. As
illustrated in Fig. 14, the domains in the tessellation have disjoint interiors, they
possibly overlap along shared faces, and they cover the entire R

n. We refer to [45]
for a discussion of this concept and of its many variants. The Delaunay mosaic is
the dual of the Voronoi tessellation [16], and it may be viewed geometrically, as a
collection of cells, or combinatorially, as a collection of subsets of X. We prefer the
latter view and define Del(X) as the collection of maximal subsets Q ⊆ X such
that the Voronoi domain of the points in Q have a given non-empty intersection:
dom(Q) = ⋂

x∈Q dom(x) �= ∅ and dom(Q) �= dom(R) for every proper superset

R of Q. For example, if X is the set of 4 vertices of a square in R
2, then Del(X)

consists of four singletons, four pairs, and one quadruplet. On the other hand, if
X is in general position—which in the plane includes that no 4 points lie on a
common circle—then Del(X) is a simplicial complex, which in the combinatorial
setting means that Q ∈ Del(X) implies that every subset of Q belongs to Del(X).
More specifically, in this case Del(X) is isomorphic to the nerve of the Voronoi
tessellation and obtained by mapping every Voronoi domain to its generating point.
The Delaunay mosaic has a natural geometric realization in R

n, which we obtain by
mapping every Q ∈ Del(X) to the convex hull of Q. This is the geometric view of
the Delaunay mosaic.

Now fix r > 0, write Br(x) for the closed ball with center x and radius r , and
let Xr = ⋃

x∈X Br (x) be the union of these balls. Clipping each ball to within
the corresponding Voronoi domain gives us a convex decomposition of the union:
Xr =⋃

x∈X[Br(x)∩ dom(x)]; see Fig. 14. The Alpha complex of X and r , denoted
Alphar (X), consists of all cells in the Delaunay mosaic whose clipped Voronoi
domains have a non-empty common intersection [20, 22]; see again Fig. 14. By
the Nerve Theorem of algebraic topology [37], Xr and Alphar (X) have the same
homotopy type; see also [19, 30]. Similarly, Xr has the same homotopy type as the
Čech complex ofX and r , which by definition is the nerve of the balls Br(x). This is
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Fig. 14 The Voronoi tessellation decomposes the plane as well as the union of disks into
convex regions. The edges and vertices of the Delaunay mosaic are superimposed, and the Alpha
subcomplex is shown by thickening its edges and shading its triangles

the justification why in topological data analysis the two complexes are often used
as proxies for the union of balls [13, 22].

The Delaunay mosaic can also be defined directly, without the introduction of
Voronoi tessellations. Call an (n − 1)-sphere S in R

n empty if all points of X lie
either on or outside S. Then Q ⊆ X belongs to Del(X) iff there is an empty sphere
S with Q = X ∩ S. Indeed, every such sphere has its center in the interior of
dom(Q), and every point in the interior of dom(Q) is the center of such a sphere.
Furthermore, every point in dom(Q) is the center of an empty sphere that passes
through all points of Q and possibly through some additional points of X. This
slightly larger set contains a unique smallest sphere, which we call the Delaunay
sphere of Q. The Delaunay radius function, R : Del(X) → R, maps every Q

to the radius of its Delaunay sphere. Its sublevel sets are the Alpha complexes:
Alphar (X) = R−1[0, r]. Observe that R is non-decreasing, by which we mean that
P,Q ∈ Del(X) and P ⊆ Q implies R(P ) ≤ R(Q). Hence, Q ∈ Alphar (X)
implies that all faces of Q also belong to Alphar (X). This shows that Alphar (X) is
indeed a subcomplex of Del(X) and not just a subset. We refer to Appendix 2 for
the topological significance of R.

The Weighted Case In the weighted setting, we use real weights to control the
influence a point has on its surrounding. The extra degree of freedom permits better
approximations of observed space decompositions, such as cell cultures in plants
[47] and microstructures of materials [10], to name just two. For ease of distinction
from the unweighted case, we write k for the dimension of the space, we write
Y ⊆ R

k×R for a locally finite set, and for each (y,wy) ∈ Y we call y the point and
wy the weight. We will however frequently abuse notation and write y ∈ Y instead.
Let πy : Rk → R be defined by πy(a) = ‖a − y‖2 − wy and call πy(a) the power
distance of a from y. For wy = 0, the power distance equals the squared Euclidean
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distance from y. For positive weight, the weighted point is conveniently visualized
by drawing the zero-set of πy , which is the sphere with center y and radius

√
wy .

The weighted Voronoi domain of y consists of all points for which y minimizes
the power distance: dom(y) = {a ∈ R

k | πy(a) ≤ πz(a) for all z ∈ Y }. Similar to
the unweighted case, dom(y) is a closed, possibly unbounded, convex polyhedron,
but it is not necessarily full-dimensional. Indeed, if y is the only point with non-zero
weight in Y , then its domain is larger than in the unweighted case if wy > 0 and
smaller if wy < 0. The latter case includes the possibility that dom(y) is empty. The
weighted Voronoi tessellation of Y is the collection of weighted Voronoi domains;
see Fig. 15. The weighted Delaunay mosaic of Y , denoted Del(Y ), is the dual of
the weighted Voronoi tessellation, which we define as the maximal subsets Q ⊆ Y

such that the weighted Voronoi domains of the points in Q have a given non-empty
intersection: dom(Q) = ⋂

y∈Q dom(y) �= ∅ and dom(Q) �= dom(R) for every
proper superset R of Q. Since weighted Voronoi domains can be empty, the vertex
set of Del(Y ) is a subset and not necessarily the entire set Y . Assuming the weighted
points are in general position—for an appropriate definition of this notion—the
weighted Delaunay mosaic is again isomorphic to the nerve of the weighted Voronoi
tessellation, and it can be geometrically realized by mapping each domain to the
generating point; see Fig. 15.

Now fix r ∈ R, write Br(y) for the set of points that satisfy πy(a) ≤ r2, and
let Yr = ⋃

y∈Y Br(y) be the union of these balls. Clipping the balls, we get again
a convex decomposition: Yr = ⋃

y∈Y [Br(y) ∩ dom(y)]; see Fig. 15. The weighted
Alpha complex of Y and r , denoted Alphar (Y ), is again the dual of these clipped
domains. The Nerve Theorem still applies, so Yr , Alphar (Y ), and the nerve of
the Br(y) all have the same homotopy type. Observe that the weighted Voronoi
tessellation and the weighted Delaunay mosaic do not change if we add the same

Fig. 15 The weighted Voronoi tessellation decomposes the plane as well as the union of disks into
convex regions. The edges and vertices of the weighted Delaunay mosaic are superimposed, and
the weighted Alpha subcomplex is shown by thickening its edges and shading its triangles
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constant value to the weight of every point in Y . In contrast, this operation generally
changes the weighted Alpha complex as well as the nerve of the balls.

We now present an alternative description of the weighted concepts that has the
advantage that the points and their weights can be selected in a single process. Let
k < n and write R

k for the space spanned by the first k coordinate vectors of Rn.
For a point y ∈ R

k with weight wy ≤ 0, let x = x(y) be a point in R
n whose

orthogonal projection to R
k is y and whose distance from R

k is ‖x − y‖ = √−wy .
Then πy(a) = ‖a − x‖2 for every point a ∈ R

k . In other words, if every point y in
Y ⊆ R

k × R has non-positive weight, we can find a set of unweighted points, X ⊆
R
n, such that the weighted Voronoi tessellation of Y is the intersection of Rk with

the (unweighted) Voronoi tessellation of X; see [4, 50]. Similarly, we can construct
Del(Y ) from Del(X), which we explain by calling an (n−1)-sphere in R

n anchored
if its center lies in R

k . Recall that Q ⊆ X belongs to Del(X) iff there is an empty
sphere S with Q = X ∩ S. By adding the requirement that S be anchored, we get
exactly the cells Q ∈ Del(X) whose projections to R

k belong to Del(Y ). Similarly,
we call the smallest empty anchored sphere that passes through all points of Q
the anchored Delaunay sphere of Q. Accordingly, the weighted Delaunay radius
function, R : Del(Y ) → R, maps every cell that is the projection of Q ∈ Del(X)
to the radius of the anchored Delaunay sphere of Q. Finally, the weighted Alpha
complex of Y and r is the sublevel set of this function: Alphar (Y ) = R−1[0, r]; see
again Fig. 15. We note that the above construction is predicated on the assumption
that all weights are non-positive, but this is not a limitation of generality since we
can add a constant value to all weights without changing the tessellation and the
mosaic.

The Crofton Connection There is a direct connection between the density of
top-dimensional simplices in a k-dimensional weighted Delaunay mosaic and
the density of the (n − k)-dimensional skeleton of the n-dimensional Voronoi
tessellation from which the mosaic is obtained. This connection is the classic
Crofton’s formula of integral geometry [14, 49], as we now explain. Observe that
for a stationary Poisson point process in R

n, the statistics of the k-dimensional
weighted Delaunay mosaic does not depend on the specific k-plane we use. We
can therefore integrate over all k-planes. Counting the top-dimensional simplices in
the k-dimensional weighted Delaunay mosaics is the same as counting the vertices
in the k-dimensional weighted Voronoi tessellations. By Crofton’s Formula, this
number integrates to a constant times the volume of the (n − k)-skeleton of the
unweighted n-dimensional tessellation.

As it turns out, it is relatively easy to compute the expected density of the (n−k)-
skeleton, so we use Crofton’s Formula backward, deriving the expected density of
top-dimensional simplices in a weighted Poisson–Delaunay mosaic. This density
implies the expected density of (k − 1)-simplices, and for k = 2, the expected
density of vertices in the weighted mosaic. To get similar results for the intervals,
we need traditional integral geometric methods, as described in [25].
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Appendix 2: Discrete Morse Theory and Homology

In the generic case, the radius function on a weighted or unweighted Delaunay
mosaic satisfies the axioms of a generalized discrete Morse function. This motivates
us to define these functions and discuss their basic properties in this second
appendix. In addition, we introduce homology groups and Betti numbers, which
we use to state the discrete counterparts of the classic Morse inequalities.

Generalized Discrete Morse Theory The inspiration stems from classical Morse
theory [42], which studies manifolds through the behavior of generic smooth
functions on them. There are several ways to transport the smooth theory to the
piecewise linear setting, and we follow the more radical proposal by Forman [28]
that formulates the discrete theory in combinatorial terms entirely. More precisely,
we present a slightly generalized version of the original theory [29].

Let K be a simplicial complex, and recall that the face lattice of K is the partial
order on its simplices, in which P ≤ Q if P is a face of Q. The Hasse diagram is
the reduced graph representation of the face lattice, in which we draw an edge from
P to Q if P ≤ Q and dimP = dimQ − 1. An interval is a maximal collection of
simplices that have a common lower bound and a common upper bound: [P,R] =
{Q ∈ K | P ≤ Q ≤ R}. We call a function f : K → R non-decreasing if P ≤ Q

implies f (P ) ≤ f (Q). A level set, f−1(r), is a subset of K , and a step of f is a
maximal subset of f−1(r) that induces a connected subgraph of the Hasse diagram.
Finally, a non-decreasing f is a generalized discrete Morse function if every step
is an interval. Its generalized discrete gradient is the corresponding partition of
K into intervals. We remark that it is often possible to assume that each level set
is an interval, but sometimes such an assumption seems unnatural, which is our
motivation to introduce the notion of a step.

The intervals are combinatorially simple. Indeed, if 	 = dimP and m = dimR,
then [P,R] contains 2m−	 simplices, namely

(
m−	
m−j

)
simplices of dimension j , for

	 ≤ j ≤ m. We call (	,m) the type of the interval. Knowing the number of intervals,
of each type, it is therefore easy to compute the number of simplices in the complex.
Writing c	,m for the number of intervals of type (	,m), the number of j -simplices
in K is

sj =
j∑

	=0

∞∑
m=j

(
m− 	

m− j

)
c	,m. (7)

The difference between the original discrete Morse theory of Forman [28] and the
generalization proposed in [29] is that the former limits its steps to intervals of
size 1 and 2, while the latter permits intervals of all possible sizes. The intervals
of size 1 play a special role, so we call such an interval singular, the simplex it
contains critical, and the function value of this simplex a critical value of f . Their
special role is best appreciated by considering the construction of K by adding the
simplices in increasing order of function values. When we add the simplices of a
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non-singular interval, then the inverse operation can be realized as a deformation
retraction, which implies that that complex has the same homotopy type before the
operation as after the operation; see [19, 30] for background on these concepts.
Writing Ki and Ki+1 = Ki ∪ [P,R] for the two complexes, we say Ki+1 collapses
to Ki , denoted Ki+1 ↘ Ki , and we call the addition of [P,R] an anticollapse. The
following lemma is analogous to the classical theorem about the retractability of
sublevel sets in smooth Morse theory. Write Kr = f−1(−∞, r] for the subcomplex
that consists of all simplices which value at most r .

Lemma 1 (Collapsibility [28, 29]) Let f : K → R be a generalized discrete
Morse function on a simplicial complex. If the half-open interval (r, s] ⊆ R contains
no critical value of f , then Ks ↘ Kr .

As mentioned earlier, Ks ↘ Kr implies that the two complexes have the same
homotopy type. Indeed, a stronger statement is implied: there is a CW-complex
whose cells are in bijection with the critical simplices of f such that the subcomplex
of cells whose critical simplices have function value at most r has the same
homotopy type as Kr , for every r ∈ R. This CW-complex is called the Morse
complex of f .

Homology and Morse Inequalities We use the language of homology to talk about
how a space or a complex is connected. The comprehensive introduction of this
formalism is beyond the scope of this paper, and we refer to [19, 30] for further
background. However, if we limit ourselves to Z/2Z coefficients—which amounts
to using modulo-2 arithmetic—then homology groups can be explained in purely
combinatorial terms, as we now do. A p-chain is a collection of p-simplices in K ,
and the sum of two p-chains is the symmetric difference of the two collections. The
boundary of a p-simplex is the collection of its (p − 1)-faces, and the boundary of
a p-chain is the sum of the boundaries of its simplices. Writing Cp for the group
of p-chains and ∂p : Cp → Cp−1 for the p-th boundary operator, we get the chain
complex, . . .→ Cp → Cp−1 → . . .. A p-cycle is a p-chain with empty boundary,
z ∈ ker ∂p, and a p-boundary is the boundary of a (p + 1)-chain, b ∈ img ∂p+1.
The boundaries and cycles form subgroups of each other and of the chain group:
img ∂p+1 ⊆ ker ∂p ⊆ Cp. We finally get the p-th homology group by calling cycles
that differ by a boundary equivalent: Hp = ker ∂p/img ∂p+1. Its rank is the p-th
Betti number, which for Z/2Z coefficients is the binary logarithm of the order:
βp = log2 |Hp|.

While we define Betti numbers in terms of the simplices in K , they are in fact
independent of how we triangulate a space. More generally even, Betti numbers can
be defined without triangulation, and two spaces or complexes that have the same
homotopy type also have the same Betti numbers. For example, if K is a complex
in R

2, then β0(K) is the number of components and β1(K) is the number of holes.
Similarly, ifK is a complex in R

3, then β0(K), β1(K), and β2(K) are its numbers of
components, tunnels, and voids. Indeed, these are the only possibly non-zero Betti
numbers of complexes in R

2 and R
3.
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As mentioned earlier, non-singular intervals of a generalized discrete Morse
function preserve the homotopy type and therefore the Betti numbers. Therefore,
there must be a connection between the Betti numbers and the critical simplices,
as we now explain. To get started, let sp be the number of p-simplices in K , and
define the Euler characteristic as the alternating sum of simplex numbers: χ =∑

p(−1)psp. If we construct K one interval at a time, every non-singular interval

preserves χ simply because
∑m

p=	(−1)p−	
(
m−	
m−p

) = (1 − 1)m−	 = 0. On the other
hand, if we add a critical p-simplex, the Euler characteristic changes by (−1)p.
Writing cp for the number of critical p-simplices, we thus get χ = ∑

p(−1)pcp.
We extend this relation to Betti numbers by observing that sp = s◦p + s•p, in which
s◦p counts the critical simplices that give birth to p-cycles, and s•p counts the critical
simplices that give death to (p − 1)-cycles. In other words, when we add a critical
simplex to the complex, either βp increases by 1, or βp−1 decreases by 1. Either
way, χ changes by (−1)p, which implies the discrete Euler–Poincaré formula:
χ = ∑

p(−1)pβp. The implied relation between the alternating sum of critical
simplex numbers and of Betti numbers is traditionally stated as a strengthening of
the last in a sequence of (strong) discrete Morse inequalities:

q∑
p=0

(−1)q−pβp ≤
q∑

p=0

(−1)q−pcp, (8)

for all q ≥ 0. For example, the first inequality asserts β0 ≤ c0, while the second
inequality asserts β1 − β0 ≤ c1 − c0, which implies β1 ≤ c1. Indeed, we get
βq ≤ cq , for all q ≥ 0, which are sometimes referred to as the weak discrete Morse
inequalities.

The Delaunay Setting The prime example of generalized discrete Morse functions
in this paper are the radius functions of weighted and unweighted Delaunay mosaics
[5]. We recall that in the unweighted case, R(Q) is the radius of the smallest empty
sphere that passes through all points of Q, and in the weighted case, it is the radius
of the smallest empty anchored sphere that passes through the preimages of all
weighted points in Q. We consider first the unweighted case and let X ⊆ R

n be
locally finite and in general position. Let R ∈ Del(X) and recall that dom(R)
is the intersection of the Voronoi domains of the points in R. The center of the
smallest empty circumsphere of R is the point a ∈ dom(R) that is closest to
the affine hull of R. If a ∈ affR, then R is the upper bound of an interval, and
otherwise it is not. Assuming R is an upper bound, we now describe how to find
the corresponding lower bound and thus the entire interval. We call Q ⊆ R a
facet if dimQ = dimR − 1, and we say Q is visible from a if affQ separates
a from the unique point in R \Q within affR. By assumption of general position,
affQ contains neither a nor the point in R \Q, so there is no ambiguity. The lower
bound of the interval with upper bound R is the subset P ⊆ R of points that belong
to all visible facets. This completely describes the generalized discrete gradient of
the Delaunay radius function in the unweighted case. Figure 16 illustrates the two
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a a a

Fig. 16 From left to right: the triangle has 0, 1, 2 visible edges. Only the first two cases can occur
in an unweighted Delaunay mosaic in R

2

possible configurations for a triangle in R
2: either P = R, in which case R is

critical, or P is an edge of the triangle. It is not possible that R has two visible
edges, because this contradicts that the three points lie on a circle centered at a.
More generally, an m-simplex R cannot have more than m− 1 visible facets.

We consider second the weighted case, letting X ⊆ R
n be locally finite and in

general position, letting R
k be spanned by the first k < n coordinate axes of Rn,

and writing Y ⊆ R
k ×R for the weighted points obtained by orthogonal projection.

The situation is similar to the unweighted case, except that we restrict ourselves to
anchored spheres, which we recall are spheres in R

n whose centers lie in R
k . For

a simplex R ⊆ Y , the relevant sphere is the smallest empty anchored sphere that
passes through the preimages of the weighted points in R. If such a sphere does
not exist, then R �∈ Del(Y ). Otherwise, we let a ∈ dom(R) be the point closest
to the affine hull of R, which is an affine subspace of Rk . If a ∈ affR, then R is
the upper bound of an interval of R : Del(Y ) → R. As in the unweighted case, the
corresponding lower bound is the subset P ⊆ R of points that belong to all facets
of R visible from a.

The main difference to the unweighted case is that vertices of Del(Y ) are no
longer necessarily critical. Indeed, an m-simplex R ∈ Del(Y ) may have as many
as m visible facets. If it has m visible facets, then their intersection is a single
point, which implies that the corresponding lower bound is a vertex of the weighted
Delaunay mosaic.

The Wrap Complex An application of discrete Morse theory is the Wrap complex
studied in Sect. 3; see [18] for the original paper on the subject and [17] for a
discussion of alternative methods. To construct the Wrap complex of X ⊆ R

n and
r ∈ R, denoted Wrapr (X), we start with Alphar (X) ⊆ Del(X) and then collapse
all intervals of the radius function that can be collapsed; see Fig. 17. Specifically, if
[P,R] is a non-singular interval whose simplices all belong to the current complex,
and P is not face of any simplex outside of [P,R], then we remove all simplices in
this interval from the complex and repeat. The final result is the Wrap complex, and
it does not depend on the sequence in which we collapse the intervals. Equivalently,
we can grow Wrapr (X) from the critical simplices of radius at most r . To do this,
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Fig. 17 The colors
distinguish the Wrap complex
for r = ∞ (green) from the
Alpha complex for the same
radius (green and blue),
which for r =∞ is the entire
Delaunay mosaic

we add all faces to get a complex, we complete the partially added intervals, and
we repeat. Again, it does not matter in which sequence the simplices are added and
the intervals are completed. A more formal definition of the Wrap complex can be
found in Sect. 3.

Appendix 3: Randomness and Expectation

In this appendix, we present the probabilistic background used throughout this
paper. Our preferred model is a Poisson point process in Euclidean space, which
we introduce first. Besides such point processes, we also consider points uniformly
sampled on spheres.

Poisson Point Process This is a natural extension of uniformly sampled points
from compact to possibly unbounded domains. A homogeneous or stationary
Poisson point process,X, with density ρ > 0 in R

n is characterized by the following
two properties:

1. the number of points sampled within a Borel set of measure ‖�‖ is Poisson
distributed; that is: P[|X ∩�| = k] = ρk‖�‖ke−ρ‖�‖/k!,

2. the numbers of points in any finite collection of pairwise disjoint Borel sets are
independent;

see [33] for a good introduction to the topic. We construct Voronoi tessellations and
Delaunay mosaics, so it is important that X be locally finite. This is indeed the case
with probability 1. Furthermore,X is in general position with probability 1. We use
the following four notions of general position:

A. No (n− 1)-sphere in R
n passes through more than n+ 1 points of X.
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B. For any P ⊆ Q ⊆ X with p = dimP , q = dimQ, and p < q ≤ n, the center of
the (p−1)-sphere defined by P is different from the center of the (q−1)-sphere
defined by Q.

C. Fixing a linear subspace R
k ⊆ R

n, no (n − 1)-plane orthogonal to R
k passes

through more than k points of X.
D. For any R

k as in C and P ⊆ Q as in B, the center of the anchored p-sphere
orthogonal to R

k defined by P is different from the center of the anchored q-
sphere orthogonal to R

k defined by Q.

We need A to get Delaunay mosaics that are simplicial, and we need A and B to get
Delaunay radius functions that are generalized discrete Morse. We need A and C to
get weighted Delaunay mosaics that are simplicial, and we need A, C, and D to get
weighted Delaunay radius functions that are generalized discrete Morse.

Random Mosaics Our main focus is on counting the simplices and on determining
the radius distribution of a typical simplex of a random mosaic. As explained
in Sect. 1, we adjust the conventional notion of representative point and Palm
distribution to carry topological meaning. For example, for the Poisson–Delaunay
mosaic, we define the representative point of a simplex Q ∈ Del(X) as the center
of the smallest empty sphere that passes through all points of Q. We call this the
Delaunay sphere ofQ, we refer to its center as the center ofQ, and we call its radius
the radius of Q. The typical Delaunay simplex of dimension j is therefore defined
as a random j -simplex uniformly chosen from all j -simplices of the Poisson–
Delaunay mosaic with center in some open bounded Borel set � ⊆ R

n, conditioned
on the existence of such simplices. With this definition, the properties of the typical
j -simplex can depend on the choice of �, but this is not the case for the properties
we are interested in; compare the results surveyed in this paper with [43, 49].

The centers of the simplices form yet another point process in R
n, and we count

simplices by studying its intensity. Notice however that this point process is not
necessarily simple, even for X in general position; that is: even in the generic case
representative points of different simplices can be the same. We make it generically
simple by mapping the intervals of the radius function rather than the individual
simplices to R

n. This motivates the probabilistic analysis of intervals, which we
will address shortly. The new point process is however homogeneous—both for
the intervals but also for the simplices—which can either be seen directly from the
homogeneity of the underlying Poisson point process, or from the results described
in [25, 26].

Random Inscribed Simplices The difference between the point process for
intervals and for simplices motivates the following probabilistic question: Letting
Q be a set of m+1 points chosen uniformly and independently on the unit sphere in
R
m, what is the probability that 	 facets of convQ are visible from the origin?

Following Wendel [57], we consider the 2m+1 m-simplices obtained by either
retaining or centrally reflecting each point in Q; see Fig. 18. Assuming 0 ∈ convQ,
we can decompose the m-simplex into the m + 1 cones of 0 over the facets. The
m-dimensional volume of convQ is thus the sum of the volumes of these cones.
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Fig. 18 Left: the inscribed triangle, UVW , and the three triangles obtained by reflecting one of
the vertices through the origin. Right: the three triangles obtained from UVW by reflecting two of
the vertices, and the triangle obtained by reflecting all three triangles

Importantly, the volume of each of the 2m+1 m-simplices is a sum of the same cone-
volumes, except that each cone either appears with the coefficient +1 or −1 in this
sum. More specifically, the sign pattern is either the same as for the vertices, or it
is the opposite. For example, in R

2, this implies that 2 of the 8 triangles contain the
origin and 6 triangles have one visible edge each. This implies that the probability
of the triangle to be acute is 1

4 and the probability of the triangle to be obtuse is
3
4 . This should be compared with the fact that an expected half of the triangles
in a Poisson–Delaunay mosaic in R

2 are acute and the other half are obtuse. The
difference is explained by the re-parametrization necessary to transform one setting
to the other. Things get more complicated in higher dimensions, and we refer to [26]
for a complete analysis in dimension m ≤ 4. The approach of Wendel extends to
the weighted case, in which the points of Q are no longer required to lie on the unit
sphere, and a complete analysis in dimension m ≤ 2 can be found in [25].
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Iterated Integrals and Population Time
Series Analysis

Chad Giusti and Darrick Lee

Abstract One of the core advantages topological methods for data analysis provide
is that the language of (co)chains can be mapped onto the semantics of the data,
providing a natural avenue for human understanding of the results. Here, we
describe such a semantic structure on Chen’s classical iterated integral cochain
model for paths in Euclidean space. Specifically, in the context of population time
series data, we observe that iterated integrals provide a model-free measure of
pairwise influence that can be used for causality inference. Along the way, we survey
recent results and applications, review the current standard methods for causality
inference, and briefly provide our outlook on generalizations to go beyond time
series data.

The growing availability of population time series data drawn from observations of
complex systems is driving a concomitant demand for analytic tools. Of particular
interest are methods for extracting features of the time series which provide human-
understandable links between the observed function and the unknown structure or
organizing principles of the system.

Over the last decade, substantial work has been done using persistent homology
for time series analysis, including [15, 31, 34]. However, there are still substantial
mathematical and conceptual barriers to direct interpretation of persistence dia-
grams in terms of the underlying data; most successes have come from statistical
analyses of families of diagrams, which provide some measure of discriminatory
power between systems. Thus, it is common to rely on persistence for classification.
However, the success of such a program must be measured against the capabilities
of modern machine learning tools, which appear capable of being tuned to out-
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perform topological methods. Using the results of topological computations as a
pre-processing step for machine learning tools has been successful, providing a
rich-but-low-dimensional feature set which retains strong discriminatory power, but
human interpretation of the results suffers from the same difficulties as before.

It is the authors’ opinion that one of applied topology’s greatest potential
advantages is the ability to ask specific, fundamentally qualitative questions of data
sets and compute answers in a context and language that humans can interpret. The
machinery of (co)homology provides a blueprint for asking and answering such
questions, in the form of (co)chain models. However, rather than encoding data and
then searching for meaning in the (co)homology, the authors propose selecting or
designing the encoding topological space explicitly for the purpose of leveraging a
(co)chain model which naturally encodes questions and answers of interest.

This is a nuanced undertaking, perhaps best undertaken in the context of a
collaboration between mathematicians and scientific domain experts. However,
in the case of certain general data types, we can rely on the substantial extant
literature on cochain models in algebraic topology for inspiration. For example,
in the case of our motivating question about families of time series, we can make
use of the iterated integral model for cochains on PRN , originally developed by
K. T. Chen [8–11], more recently adapted to the study of stochastic differential
equations [18, 27], and finally picked up by the machine learning community in the
guise of path signatures as a feature set for paths. In this paper, we will survey path
signatures, the 0-cochains in Chen’s iterated integral model, and their fundamental
properties, discuss how they have been applied to characterize cyclic structure in
observed time series, and offer a new interpretation of lower-order iterated integrals
as a measure of causality among simultaneously observed time series. Finally, we
briefly provide our outlook on how higher cochains, and cochain models of more
general mapping spaces may be leveraged for data analysis beyond time series.

1 Path Signatures as Iterated Integrals

Consider a collection of N simultaneous real-valued time series, γi : [0, 1] →
R, i = 1, . . . , N , thought of as coordinate functions for a path � ∈ PRN :=
C([0, 1],RN). Foundational work by K.T. Chen used iterated integrals to produce
a rational cochain model for this space.

Definition 1 Suppose dx1, . . . , dxN are the standard 1-forms for R
N . For t ∈

[0, 1], let �t = �|[0,t ]. For i ∈ [N], define a path

Si(�)(t) =
∫
�t

dxi =
∫ t

0
�∗dxi(s) =

∫ t

0
dγi(s).
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Let I = (i1, . . . , ik), where il ∈ [N]. Higher order paths are inductively defined as

SI (�)(t) =
∫ t

0
S(i1,...,ik−1)(�)(s)dγik (s).

The iterated integral of � with respect to I is defined to be SI (�) := SI (�)(1).

We can also define the iterated integral in a non-inductive way. Let �k be the
simplex

�k = {(t1, . . . , tk) | 0 ≤ t1 ≤ . . . ≤ tk ≤ 1} .

By direct computation, we have �∗dxi = γ ′i (t)dt . Then, the iterated integral of �
with respect to I is equivalently defined as

SI (�) =
∫
�k

γ ′i1(t1)γ
′
i2
(t2) . . . γ

′
ik
(tk) dt1dt2 . . . dtk. (1)

These iterated integrals with respect to a fixed I can be viewed as functions
SI : PRN → R on PRN . Chen generalized this concept of iterated integration to
produce forms onPRN , which fit together to generate a cochain model ofPRN . The
iterated integrals defined here are the 0-cochains of this cochain model. A summary
of this construction is included in Appendix 3, and a brief discussion of higher
cochains is in Sect. 3.

In this section, we discuss various properties and characterizations of these
iterated integrals, in preparation for their application to time series analysis in the
following section. A wide class of paths in which these theorems hold is the class of
bounded variation. For the remainder of the paper, we consider RN equipped with
the standard Euclidean norm, denoted ‖ · ‖.
Definition 2 Let � ∈ PRN . The 1-variation of � on [0, 1] is defined as

|�|1−var := sup
(ti)∈P([0,1])

∑
i

‖�(ti )− �(ti−1)‖, (2)

where P([0, 1]) is the set of all finite partitions of [0, 1]. Paths in the class

BV (RN) =
{
� ∈ PRN | |�|1−var <∞

}

are the paths of bounded variation on [0, 1]. Note that the 1-variation is a norm on
BV (RN).

The collection of iterated integrals of � with respect to all multi-indices I is
called the path signature of �, denoted S(�). The path signature can be represented
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as an element of the formal power series algebra of tensors, or also viewed as non-
commutative indeterminates X = {X1, . . . , XN }, denoted T (RN),

S(�) = 1+
∞∑
k=1

∑
I=(i1,...,ik )

SI (�)Xi1 ⊗ . . .⊗Xik .

Several of the basic properties of these path signatures provide evidence that they
are potentially useful for time series analysis.

Proposition 1 Suppose � ∈ BV (RN), φ : [0, 1] → [0, 1] a strictly increasing
continuous function, a ∈ R

N , and λ ∈ R.The path signature is invariant under
translation,

S(� + a) = S(�),

and reparametrization,

S(� ◦ φ) = S(�).

Additionally, under scaling, we have

S(λ�) = 1+
∞∑
k=1

∑
I=(i1,...,ik )

λkSI (�)Xi1 ⊗ . . .⊗Xik .

Proof All three properties are straightforward to show using the definition of path
signatures. Translation invariance is due to the translation invariance of the standard
1-forms on R

N . reparametrization invariance of the first level is given by

Si(� ◦ φ) =
∫ 1

0
(γi(φ(t))

′dt =
∫ 1

0
γ ′i (φ(t))φ′(t)dt =

∫ 1

0
γ ′i (τ )dτ = Si(�).

Invariance for higher level signatures is shown by induction. Finally, the scaling
property is clear from the definition of Eq. (1). ��

Note that signatures can be defined for paths with an arbitrary closed interval
[a, b] ⊂ R as a domain. However, without loss of generality due to reparametriza-
tion invariance, we only consider paths defined on [0, 1].

These path signatures characterize classes of paths in R
N up to a tree-like

equivalence, originally defined in [24]. In order to define the relation, we first
consider concatenation of paths. Suppose �1, �2 ∈ BV (RN), then define the
concatenation of the two paths, �1 ∗ �2 ∈ BV (RN) by

�1 ∗ �2(t) =
{

�1(2t) : t ∈ [0, 1
2 )

(�1(1)− �2(0))+ �2(2t − 1) : t ∈ [ 1
2 , 1] (3)
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The inverse of a path � is defined to be the same path but running in the opposite
direction, namely

�−1(t) = �(1− t).

Definition 3 ([24]) A path � ∈ BV (RN) is a tree-like path in R
N if there exists

some positive real-valued continuous function h defined on [0, 1] such that h(0) =
h(1) = 0 and such that

‖�(t) − �(s)‖ ≤ h(s)+ h(t)− 2 inf
u∈[s,t ]h(u), (4)

where ‖ · ‖ is the Euclidean norm on R
N . The function h is called a height function

for � and if h is of bounded variation, then � is a Lipschitz tree-like path.

Definition 4 Two paths �1, �2 ∈ BV (RN) are tree-like equivalent, �1 ∼ �2, if
�1 ∗ �−1

2 is a Lipschitz tree-like path.

It is shown in [24] that tree-like equivalence is an equivalence relation in
BV (RN) and that concatenation of paths respects ∼. By defining the inverse of
a path � by �−1(t) = �(1 − t), the equivalence classes ! = BV (RN)/ ∼ form a
group under concatenation.

The more abstract notion of a tree-like path is required when working with
general bounded variation paths, but if we restrict ourselves to piecewise regular
paths, we can use a much more intuitive characterization based on reductions.
Specifically, a path � is called reducible if there exist paths α, β, and γ such that
� = α ∗ γ ∗ γ−1 ∗ β up to reparametrization, and called irreducible otherwise.
Furthermore, α ∗ β is called a reduction of �.

A path � ∈ PRN is regular if �′(t) is continuous and nonvanishing for all [0, 1].
Chen [10] showed that for any piecewise regular path �, we can obtain a unique
(up to reparametrization) irreducible path by applying a finite number of reductions.
Then, we can prove this simplified characterization.

Lemma 1 Suppose � ∈ PRN is a piecewise regular path. Then � is a Lipschitz
tree-like path if and only if its irreducible reduction is the constant path.

Proof First, suppose � can be reduced to a point. Thus, � can be constructed
iteratively with a finite set of paths γ1, . . . , γk as follows. Begin with �1 = γ1∗γ−1

1 ,
then �2 = α1 ∗ γ2 ∗ γ−1

2 ∗ β1, where �1 = α1 ∗ β1. Continue in this manner until
� = �k = αk−1 ∗ γk ∗ γ−1

k ∗ βk−1. For example, consider the following point
reducible path � which can be built with two paths.
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Note that � will traverse each of γ1, γ
−1
1 , . . . , γk, γ

−1
k exactly once. Now, define

�t to be the image of �|[0,t ], and treat each of the γi as the images. Then, define the
height function to be

h(t) =
k∑
i=1

	(γi ∩ �t )−
k∑
i=1

	(γ−1
i ∩ �t ),

where 	(·) represents the length of the given segment. Intuitively, h(t) is the length
of the curve up to �(t), where we subtract off any segment that has been retraced.
In our example, suppose that the red arrow represents the point �(t0), which has
begun to traverse along γ−1

1 . The corresponding height function at the point is the
difference of path lengths

At the end of the curve, all paths and inverse paths will have been traced so
h(1) = 0. Note that h(t1)+h(t2)−2 infu∈[t1,t2] h(u) represents the length of a curve
from �(t1) to �(t2) which must be larger than ‖�(t2) − �(t1)‖ since this is the
straight line path. Lastly, the derivative of �(t) is bounded over the closed interval,
the arc length function and thus the height function is Lipschitz. Thus, � is Lipschitz
tree-like.

Next, suppose � is Lipschitz tree-like, and suppose to the contrary that � cannot
be reduced to a point. Let �r be the irreducible reduction of �. Then, � ∗ �−1

r is
point reducible, and thus Lipschitz tree-like by the first part of the proof. Thus, �
and �r are tree-like equivalent, so by the equivalence relation, if �r is not tree-like,
then � is also not tree-like. Thus, we assume � is reduced so that it is irreducible.

The height function h(t) is Lipschitz continuous, so there exists some local
maximum at t = tm. Next, choose t1 < tm and t2 > tm such that the following
hold:

• h(t1) = h(t2) = h(tm)− ε for some ε > 0,
• infu∈[t1,t2] h(u) = h(tm)− ε, and
• �(t1) �= �(t2).
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The first two conditions are possible because h(t) is continuous, and the last
condition is possible because � is irreducible. Therefore, we have

‖�(t2)− �(t1)‖ ≤ h(t2)+ h(t1)− 2 inf
u∈[t1,t2]

h(u) = 0,

a contradiction. ��
Now we state the characterization theorem, which was proved by Chen [10] for

irreducible piecewise regular continuous paths, and generalized in [24] to bounded
variation paths BV (RN) ⊂ PRN .

Theorem 1 ([24]) Suppose �1, �2 ∈ BV (RN). Then S(�1) = S(�2) if and only if
they are tree-like equivalent.

In fact, this statement is even stronger when we consider the algebraic structure
of the group of equivalence classes ! and the group-like elements in formal power
series. An element P ∈ T (RN) has a multiplicative inverse if and only if it has
a nonzero constant term. Therefore, the restriction T̃ (RN) to formal power series
with constant term one is a group under multiplication. Note that S(�) ∈ T̃ (RN)

by definition. One of Chen’s original results [8] showed that the path signature map
respects the multiplicative structure of paths and the formal power series. Namely,
given �1, �2 ∈ PRN , we have

S(�1 ∗ �2) = S(�1)⊗ S(�2).

Thus, the above theorem can be succinctly restated.

Theorem 2 ([24]) The signature map S : ! → T̃ (RN) is an injective group
homomorphism.

That is, the path signature provides a complete set of invariants for paths up
to tree-like equivalence, meaning any reparametrization-invariant property of such
equivalence classes can be derived using the signature terms. Thus, any property
of time series that does not rely on the parameterization can be extracted from the
signature.

This point of view is further emphasized in recent results by Chevyrev and Ober-
hauser [14], which state that a normalized variant of the signature map S̃ is universal
to the class Cb(!,R) of continuous bounded functions on !, with respect to the
strict topology and is characteristic to the space of finite regular Borel measures on
!. Loosely speaking, universal to Cb(!,R) means that any continuous, bounded
function φ : ! → R can be approximated by a linear functional φ ≈ 〈	, S̃(·)〉,
where 	 ∈ T̃ (RN)∗. Namely, in the context of classification tasks, any decision
boundary defined by a function in Cb(!,R) can be represented as a linear decision
boundary in T̃ (RN) under the signature map. This provides theoretical justification
for the classification tasks discussed in the next section. Characteristic means that
finite, regular Borel measures on ! are characterized by their expected normalized
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signatures (in the same way that probability measures with compact support on R
N

are characterized by their moments).
In addition to the multiplicative property of the signature, there exist a host of

other properties, stemming from another early result of Chen that

log(S(�)) :=
∑
j≥1

(−1)j−1

j
(S(�) − 1)j .

is a Lie series for any path � [9]. This fact is equivalent to a shuffle product
identity [37], providing an internal multiplicative structure for the path signature.

Definition 5 Let k and l be non-negative integers. A (k, l)-shuffle is a permutation
of σ of the set {1, 2, . . . , k + l} such that

σ−1(1) < σ−1(2) < . . . < σ−1(k)

and

σ−1(k + 1) < σ−1(k + 2) < . . . < σ−1(k + 1).

We denote by Sh(k, l) the set of (k, l)-shuffles.
Given two finite ordered multi-indices I = (i1, . . . , ik) and J = (j1, . . . , jl),

let R = (r1, . . . , rk, rk+1, . . . rk+1) = (i1, . . . , ik, j1, . . . , jl) be the concatenated
multi-index. The shuffle product of I and J is defined to be the multiset

I � J = {(
rσ(1), . . . rσ (k+l)

) | σ ∈ Sh(k, l)} .

As an example, suppose I = (1, 2) and J = (2, 3). Then

I � J = {(1, 2, 2, 3), (1, 2, 2, 3), (2, 1, 2, 3), (1, 2, 3, 2), (2, 1, 3, 2), (2, 3, 1, 2)} .

Theorem 3 ([37]) Let I and J be multi-indices in [N]. Then

SI (�)SJ (�) =
∑

K∈I�J

SK(�).

Proof Let R = (r1, . . . , rk, rk+1, . . . rk+1) = (i1, . . . , ik, j1, . . . , jl). Writing out
the signature on the left side of the equation using Eq. (1), we get

∫
�k×�l

γ ′r1
(t1) . . . , γ

′
rk+l (tk+l ) dt1 . . . dtk+l ,

and the sum on the right side is

∑
σ∈Sh(k,l)

∫
�k+l

γ ′σ(r1)
(t1) . . . γ

′
σ(rk+l)(tk+l )dt1 . . . dtk+l .
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The equivalence of the two formulas is given by the standard decomposition of
�k ×�l into (k + l)-simplices,

�k ×�l = {(t1, . . . , tk+l ) | 0 < t1 < . . . < tk < 1, 0 < tk+1 < . . . < tk+l < 1}
=

⊔
σ∈Sh(k,l)

{
(tσ (1), . . . , tσ (k+l)) | 0 < t1 < . . . < tk+l < 1

}
.

��
Note in particular that this implies the signature terms are not independent.

For example, the shuffle formula says that S2,1(�) = S1(�)S2(�) − S1,2(�).
Thus computation of all signature terms, even truncated to a finite level, results
in redundant information. Basis sets for Lie series exist [37], and the set of Lyndon
bases have been considered for signature computations [35, 36]. Further pertinent
results related to Lie series can be found in [37].

Another property of central importance in data analysis is continuity of the
signature map. Let k ∈ N, then define the map πk : T (RN) → T k(RN) to be
the projection to the kth tensor level. Additionally, we equip T k(RN) with the norm

|P |k :=
√ ∑
i1,...,ik

|P i1,...,ik |2, for all P =
∑
i1,...,ik

P i1,...,ikXi1 ⊗Xik .

Recall that BV (RN) is equipped with the 1-variation norm defined in Eq. (2). With
respect to these two norms, we obtain the following continuity result.

Proposition 2 ([18]) Suppose �1, �2 ∈ BV (RN) and L ≥ maxi=1,2 |�i |1−var .
Then, for all k ≥ 1, there exist constants Ck > 0 such that

|πk (S(�1)− S(�2))|k ≤ CkL
k−1|�1 − �2|1−var.

Additional analytic and geometric properties of the signature, along with appli-
cations to rough paths is found in [18].

2 Applications to Time Series Analysis

The signature provides a faithful embedding of bounded variation paths into the
formal power series algebra of tensors. By considering the truncated signature at
some level L ∈ N,

SL(�) = 1+
L∑
k=1

∑
I=(i1,...,ik )

SI (�)Xi1 ⊗ . . .⊗Xik ,
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we obtain a finite feature set {SI (�)}|I |≤L for a multi-dimensional time series,
whose length does not depend on the length of the time series. One may draw paral-
lels between the signature representation of a path and various series representations
of functions such as Taylor series or Fourier series. However, there are two important
differences:

1. The set of Taylor series and Fourier series coefficients are linearly independent
functionals, and provide a minimal set of features to describe functions. However,
as described in the previous section, the full collection of path signatures S(·) is
not independent and includes redundant information, though there do exist bases
for the signature such as the Lyndon basis [35].

2. Series representations of functions is linear, whereas the path signature is highly
nonlinear. On the one hand, nonlinearity of the signature may capture nontrivial,
discriminatory aspects of paths with fewer features than a linear representation.
However on the other hand, nonlinearity causes the inversion problem of finding
a path with a given signature to be significantly more difficult. A general method
for continuous paths is given in [29], and another method for piecewise linear
paths is given in [28]. An algebraic-geometric approach to the problem was
recently established in [1].

The feature set obtained from the truncated signature has recently been used
in a variety of machine learning classification problems. Early examples include
applications to financial time series [22] and handwritten character recognition [41].
Other examples include classifying time series of self-reported mood scores to
distinguish between bipolar and borderline personality disorders [2], and classifying
time series of different brain region volumes to detect diagnosis of Alzheimers [30].
The surveys [12, 26] further discuss these applications, along with different ways to
transform the time series such that the path is better suited for signature analysis.

The path signature feature set has also been successful in situations where the
data isn’t naturally a path. This is the case in [13] in which the path signature is
used in conjunction with persistent homology to build a feature set for barcodes,
a topological summary of a data set. Barcodes have no standard description as a
vector of fixed dimension, and this method provides such a description, allowing
techniques from topological data analysis to be used with standard machine learning
algorithms. The proposed pipeline consists of the the following compositions

Met
PH−−→ Bar

ι−→ BV (RN)
SL−→ R〈〈X〉〉.

The mapPH : Met → Bar refers to the persistent homology functor, which assigns
a barcode to the input data represented by a metric space (such as a point cloud in
Euclidean space) [19]. The barcode can then be transformed into a path in Euclidean
space by the transformation ι, and finally the truncated signature SL is computed.
Several transformations ι from barcodes to paths are considered in the paper, and
several are applied in this pipeline resulting in state-of-the-art performance on some
standard classification benchmarks.
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These applications demonstrate the utility of using path signature terms for
classification tasks. However, as posited in the opening discussion, the power of
topological tools lies in their interpretability. Thus, we now turn our attention to the
question of how path signatures provide encode human-understandable properties
of multivariate time series. We begin with the notion of signed area and cyclicity,
which is a way to study lead-lag relationships between time series in the absence
of periodicity. This weak structure is difficult to capture with classical methods
for time series analysis, which rely on the regularity of the parameterization to
decompose the time series. To address this dificulty, Baryshnikov [4] suggested the
use of path signatures to characterize cyclicity. Next, we consider how the second
level signature terms can be viewed as a measure of causality.

2.1 Cyclicity and Lead-Lag Relationships

We begin by explicitly computing the first two levels of the path signature. Again,
we consider a collection of N simultaneous time series γi : [0, 1] → R, viewed as
a path � ∈ PRN . By definition, we can compute

Si(�) =
∫ 1

0
γ ′i (t)dt = γi(1)− γi(0),

Si,j (�) =
∫ 1

0
Si(�)(t)γ ′j (t)dt =

∫ 1

0
(γi(t)− γi(0))γ ′j (t)dt.

The second level signature terms of a path in R
2 are shown as the shaded areas

in the following figure, where solid blue represents positive area, and hatched red
represents negative area.

The third panel suggests that the linear combination 1
2 (S

i,j (�) − Sj,i (�)) encodes
some information intrinsic to the path �.

Definition 6 Let α : [0, 1] → R
2 be a continuous closed curve defined by α(t) =

(α1(t), α2(t)) and x = (x1, x2) ∈ R
2\im(α). We can rewrite α(t) in terms of polar
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coordinates α(t) = (
rα,x(t), θα,x(t)

)
centered at x where

rα,x(t) = |α(t)− x|, θα,x(0) = tan−1
(
α2(0)− x2

α1(0)− x1

)
,

and θα,x(t) is defined via continuity. The winding number of α with respect to x is

η(α, x) = θα,x(1)− θα,x(0)

2π
.

Proposition 3 Suppose � ∈ PRN , and let �̃ = (γ̃1, . . . , γ̃N ) be the concate-
nation of � with a linear path connecting �(1) to �(0). In addition, let �̃i,j =
(γ̃i(t), γ̃j (t)). Then

Ai,j (�) := 1

2

(
Si,j (�)− Sj,i (�)

)
=

∫
R2
η(�̃i,j , x)dx

which is called the signed area.

Proof We begin by assuming �(0) = 0 by translation invariance. Explicitly, we can
write the components of �̃ as

γ̃i(t) =
{
γi(2t) t ∈ [0, 1

2 ]
(−2t + 2)γi(1) t ∈ [ 1

2 , 1] .

Then, we have

Ai,j (�̃) = 1

2

∫ 1

0
γ̃i(t)γ̃

′
j (t)− γ̃j (t)γ̃

′
i (t)dt

= 1

2

∫ 1
2

0
γi(2t)γ ′j (2t)− γj (2t)γ ′i (2t)dt

+ 1

2

∫ 1

1
2

((−2t + 2)γi(1))
(−2γj (1)

)− (
(−2t + 2)γj (1)

)
(−2γi(1)) dt

= 1

2

∫ 1

0
γi(s)γ

′
j (s)− γj (s)γ

′
i (s)ds + 0

= Ai,j (�).

Finally, by applying Stokes’ theorem, we get

Ai,j (�̃) = 1

2

∮
�̃

xidxj − xjdxi

=
∫
R2
η(�̃i,j , x)dx.

��
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In the third figure above, blue corresponds to a winding number of 1 whereas
red corresponds to a winding number of −1, resulting in the same interpretation as
the formula. More generally, it was shown in [5] that all moments of the winding
number of the curve �̃− �̃(0) can be computed by linear combinations of signature
terms of �, and conversely that the first four terms of logS(�) can be expressed
using only the function η(�̃ − �̃(0), x).

The appearance of the winding number suggests that path signatures should
be useful in studying periodic time series. However, reparamerization-invariance
means that the signature naturally captures the broader and increasingly important
class of cyclic time series. Cyclic time series are those which can be factored through
the circle

� : [0, 1] φ−→ S1 f−→ R
N

where φ is an orientation-preserving parametrization of the process. Cyclic phe-
nomena arise naturally in a plethora of fields. Some simple examples include
physiological processes such as breathing, sleep, the cardiac cycle, and neuronal
firing; ecological processes such as the carbon cycle; and control processes involv-
ing feedback loops. Despite their repetitive nature, very rarely are such processes
truly periodic, or even quasi-periodic, except to a coarse approximation.

One question of interest when studying cyclic processes is whether there exists a
lead-lag relationship between two or more signals; such a relationship may indicate
causality, or simply provide a predictive signal. Consider the two pairs of time series
�a = (γ a1 , γ

a
2 ) and �b = (γ b1 , γ

b
2 ), shown on the left in the following figure. These

two time series are chosen such that �b is simply a reparametrization of �a , so there
exists an orientation-preserving φ : [0, 1] → [0, 1] such that �b = �a ◦ φ.
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Perhaps the most common method for detecting lead-lag relationships in time
series � : [0, T ] → R

2 is the unbiased cross-correlation, defined by

r(�)(td ) = 1

T − td

∫ T

0
γ1(t)γ2(t − td)dt,

where T is the total length of the time series and �(t) = 0 when t /∈ [0, T ]. The
unbiased cross correlation of both sets of time series are shown on the top right.
The cross correlation of �a has a clear periodic structure of its own, suggesting that
the presence of a cyclic process in which one signal leads the other. The distance
between maxima provides an estimate of the period of the two signals, and the
phase-shift an estimate of the time-delay between γ a1 and γ a2 . However, the cross
correlation of �b is irregular, and though it attains a large value near td = −0.4,
this is clearly not the primary scale on which the system is demonstrating cyclic
behavior – indeed, a constant scale doesn’t exist.

However, since �b is a reparametrization of �a , they will have the same signed
area A1,2(�a) = A1,2(�b). Indeed, the curve traced out by (γ1, γ2), shown in
the bottom right, which winds around counter-clockwise four times, indicating the
four “events” in each time series. The positive signed area suggests a lead-lag
relationship for both sets of time series; this equivalence arises because the path
signature depends only on ordered, simultaneous measurements, rather than the time
between measurements.

In general, we can apply such an analysis to multidimensional time series by
calculating the signed area between every pair of time series. In the context of
sampled data, this computation boils down to the dot product of vectors, so is
computationally feasible even for large systems, and the additivity of the integrals
over partitions of domains means the measure can easily be implemented for
streaming data.

Definition 7 Let � ∈ PRN represent N simultaneous time series. The lead matrix
of � is an N × N skew-symmetric matrix with entries

(A)i,j = Ai,j (�).
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The matrix characterizes pairwise lead-lag behavior among a family of simul-
taneous time series. This method has been applied to the study of fMRI data,
distinguishing between patients with tinnitus and those with normal hearing [42].
The skew-symmetric nature of this matrix lends itself to analogies with covari-
ance matrices, however whereas the covariance matrix measures undirected and
temporally independent relationships between variables, the lead matrix measures
temporally directed relationships between variables.

Of course, computing the signed area of the entire time series will only provide
sensible lead-lag information if this behavior persists throughout the entire time
interval. In many scenarios, this is not the case. For example, in gene regulatory
networks there are cycles of activity initiated by irregular, external chemical signals.
Different signals may induce different cycles of behavior, which may even have
inverse lead-lag relationships, so integration across the entire time domain will
provide negligible signature. Similarly, in an experimental environment we may
perturb a system, necessarily leading to non-stationarity in the observed behavior,
in which case the interesting signal would be the change in relationships acorss
different epochs. Such controlled perturbations are, in particular, necessary for
rigorous causality inference.

For example, consider the synthetic time series � = (γ1, γ2, γ3), as shown on the
left column of the figure. We wish to detect whether or not there exist any lead-lag
cycles that occur on a time scale that is small compared to the entire interval of the
time series. Thus we perform signed area computations along a sliding window of
the time series. We begin by convolving the time series with a narrow Gaussian as
a smoothing preprocessing step to reduce noise. Next, we compute the three signed
areas A1,2, A2,3 and A1,3 along a sliding window of length t = 0.1.

To test statistical significance, we use a time shuffled null model, created by
randomly permuting the elements of the time series within each component, and
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performing the same analysis (smoothing and sliding window signed area) on the
shuffled time series. This is repeated 1000 times to generate a null distribution for
the signed area curve of each component. The shaded portion of the signed area plot
represents the 3σ confidence intervals in the third column panels.

While formal analysis of the probabilities requires a model of the underlying time
series, we can empirically infer that a lead-lag relationship exists if the signed area
is outside the confidence interval consecutively for a long sequence of consecutive
time points. Thus, we likely we have an event with positive A1,2, in which γ1 leads
γ2, and also an event with negative A2,3, in which γ3 leads γ2.

This example demonstrates how the path signature may be used to detect lead-
lag relationships in a model-free setting. The generality of the path signature can
be exploited in other ways, and we describe a different interpretation of the second
level signatures in terms of causality in the next section.

2.2 Causality Analysis

One of the fundamental steps in understanding the function of complex systems
is the identification of causal relationships. However, empirically identifying such
relationships is challenging, particularly when controlled experiments are difficult
or expensive to perform. Three of the most common approaches to causal inference
are structural equation modelling, Granger causality, and convergent cross mapping.
Like most approaches, these suffer from stringent assumptions that may not hold
in empirical data. In order to understand these limitations, we first outline these
methods, then describe how the second level signature terms can be applied as
an assumption-free measurement of potential influences in observational data, and
explore some examples of their use.

We follow our previous notation and let �(t) = (γ1(t), . . . , γN(t)) denote a
collection of N simultaneous time series. In the following examples, we consider
whether γ1(t) causally effects γ2(t); the rest of the time series should be interpreted
as measured external factors.

Structural equation modelling (SEM) [23, 40] was one of the earliest develop-
ments in causal inference. It has more recently been recast into a formal framework
by Pearl [33] in which causal relationships can be determined. The fundamental
operating principle of SEM is that causal assumptions are codified as hypotheses
in the form of a directed graph, called a causal diagram. The nodes represent all
variables of interest, and directed edges represent possible causal influences. Note
that the crucial information in such a diagram is the absence of edges.
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Given this causal diagram, the structural equation most commonly used in
practice for time series assumes linearity, Gaussian errors and stationarity [7, 25]. It
can be viewed as a combination of linear SEM and a vector autoregressive (VAR)
model,

�(t) =
n∑
i=0

βi�(t − i)+ U(t)

where βi is a matrix of effect sizes for a given time lag, and U is a vector of random
Gaussian variables which represents error. The causal assumptions are encoded in
βi , which has a zero entry for every directed edge that is omitted from the causal
diagram. The goal is then to estimate the parameters βi based on empirical data to
determine whether or not causal influences exist.

Another measure of causality in common use is Granger causality [21], which
explicitly accounts for the temporal nature of causality, and is often used with time
series data. It operates based on two main principles.

1. (Temporal precedence) The effect does not precede its cause in time.
2. (Separability) The causal series contains unique information about the effected

series that is otherwise not available.

Let A ⊥⊥ B | C denote that A and B are independent given C and let Xt =
{X(s) | s ≤ t} denote the history of X(t) up to time t .

Definition 8 The process γ1(t) is Granger non-causal for the series γ2(t) with
respect to � = (γ1(t), γ2(t), γ3(t)) if

γ2(t + 1) ⊥⊥ γ t1 | γ t2 , γ t3
for all t ∈ Z; otherwise γ1(t) Granger causes γ2(t) with respect to �.

The idea behind this definition is that γ1 does not causally influence γ2 if future
values of γ2 are independent to all past values of γ1, conditioned on past values of
γ2 and any external factors γ3.

A measure of Granger causality is determined by a comparison of predictive
power [6]. Let � = (γ1, γ2, γ3) and �̃ = (γ2, γ3), and we assume that these time
series are modeled by a VAR process. To test the criteria of independence in Granger
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causality, we fit two VAR models

�(t) =
n∑
i=1

Ai�(t)+ U(t), (5)

�̃(t) =
n∑
i=1

Ãi�̃(t)+ Ũ(t). (6)

Prediction accuracy of either model is determined by the variance of the residual
var(U(t)). Thus, the empirical notion of Granger causality is defined by

Cγ1→γ2 = ln
var(Ũ(t))

var(U(t))
.

The separability assumption is untrue in many situations. Prominent examples
are deterministic dynamical systems with coupling between variables such as in a
feedback loop. This is clear from Taken’s theorem.

Theorem 4 ([39]) Let M be a compact manifold of dimension m. For pairs (φ, y),
where ψ : M → M is a diffeomorphism and the observation function y : M → R

is smooth, it is a generic property that the map # : M → R
2m+1 defined by

#(x) =
(
y(x), y(ψ(x)), y(ψ2(x)), . . . , y(ψ2m(x))

)

is an embedding.

Here we treat M as an invariant manifold of a dynamical system evolving
according to a vector field V , and the diffeomorphismψ corresponds to the flow of
V with respect to negative time −τ . The observation function is usually taken to be
a projection map πi on to the Xi coordinate. In this context, Taken’s theorem states
that the manifold M is diffeomorphic to reconstructions via the delay embedding
#i using any of the projection maps πi , assuming they are generic. Thus, if two
variables Xi and Xj are coupled in the dynamical system, then information about
the state of one variable Xi exists in the history of another Xj .

The final approach to causal inference that we describe takes advantage of
this property of dynamical systems. The method of convergent cross mapping
(CCM) was developed by Sugihara [38] and later placed in a rigorous mathematical
framework [16]. The motivation behind CCM is to understand the causal structure
of an N dimensional time series �(t) which is a trajectory of an underlying
deterministic dynamical system

γ ′i (t) = Vi(γ1, . . . , γN).

A component γ1(t) causally influences component γ2(t) if the γ2 component of the
vector field, V2(X) has a nontrivial dependence on γ1. The idea is that if such a
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nontrivial dependence exists, then one can predict the states in M1 based on the
information in M2. Prediction accuracy should increase as we include more time
points in �(t), and the convergence of prediction accuracy is used as the indication
of causal influence.

The three methods of causal inference surveyed here were established based on
different notions of causality, and are thus applicable in different scenarios. How-
ever, the practical implementations of SEM and GC depend on strong assumptions
such as linearity, stationarity and Gaussian noise, which often do not hold for
empirical data. Moreover, SEM requires a priori knowledge about the underlying
process which may not be well established for complex data sets. CCM moves
beyond linear and stationary assumptions to study complex nonlinear systems, but
still depends on a dynamical systems model.

We propose the path signature as a model-free measure of causality, in which our
only assumption is that of temporal precedence of causal effects. Namely, we wish
to detect the observed influence between the various components in our time series.
We do not claim that observed influences are truly causal. Omitted external factors
may confound observed variables, and various true causal pathways may result in
spurious influences.

This approach is motivated by the equation for the second level of the signature,
in the case where γi(0) = 0 for all components i,

Si,j (�) =
∫ 1

0
γi(t)γ

′
j (t)dt.

Here the term γi(t) should be thought of as the distance from the mean of the path
component. In practice, this is done by translating each component of the path such
that it has mean 0, normalizing the time series to have maximum value one (either
separately or as a group, depending on the intended application), and appending
γi(0) = 0 at the beginning of each time series.

With this context, the integrand can be viewed as a measure of how the magnitude
of γi(t) influences the change in γ ′j (t). By integrating over the entire path, we obtain
an aggregate measure of the influence of γi on the change in γj over the given
time interval. As such, the second order signatures provide a measure of potential
observed influence, indicating possible causal relationships between variables using
only observations of time series, without any prior assumptions. Of course, this
method will not be able to distinguish between true and spurious causal relations
(due to confounders, for example). However, such caveats would necessarily apply
to any system in the absence of a model; thus, in addition to providing a coarse
measure of causality, one can view this method as a preprocessing step for the
model-based methods described above.

We close with a final example, considering the case that the system is known
or suspected to be non-stationary. In this setting, a global measure of influence is
inappropriate, as we are often interested in the change in such structure when the
system changes modes. Fortunately, it is straightforward to modify the signature
measure to detect temporally localized influences. This is done by studying the
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derivative of the signature, which is simply given by the integrand

(Si,j )′(�)(t) = γi(t)γ
′
j (t).

Geometrically, this is the instantaneous area of the arc at the origin of the (γi, γj )-
plane swept out by the pair of time series. If this measure has large magnitude on an
interval, it suggests suggests that one of the series is strongly influencing the other
during that epoch.

We demonstrate this method using a familiar example of dynamics which exhibit
mode-switching. Consider the time series �(t) = (γ1(t), γ2(t), γ3(t)), which
represents a portion of a discretized solution to the Lorenz equations

γ ′1(t) = σ(γ2(t)− γ1(t)),

γ ′2(t) = γ1(t)(ρ − γ3(t))− γ2(t),

γ ′3(t) = γ1(t)γ2(t)− βγ3(t),

where we have taken the parameters σ = 10, ρ = 28, and β = 8/3. The equations
are solved using the built-in ode45 function in MATLAB. For preprocessing, each
component has been translated so that it has mean 0, and an additional point has
been appended to the beginning of the time series so that it starts at the origin. Each
component is individually normalized so that sup(γi(t))− inf(γi(t)) = 1.

In the following figure, all six second-level signature derivative terms are shown
on the left, with plots of the path projected onto the corresponding plane. Note that
the time axis has arbitrary units due to reparametrization invariance. As with the
previous example, we use a time shuffled null model in which the same analysis is
performed on the shuffled time series. The null distribution is generated by repeating
this procedure 1000 times. The shaded portion of the signature plots correspond to
the 3σ confidence intervals.

The upper and lower bounds of the confidence intervals are outlined with red
and green lines respectively. The time points at which the the signature derivative
is either above or below the confidence interval are considered significant, and are
respectively colored red or green in the plot on the right.

We observe the expected result in the first row: the signature derivative picks
out sections of the plot in which γ1 is positive (negative) and γ2 is increasing
(decreasing). The opposite trend of sections in which γ1 is positive (negative) and
γ2 is decreasing (increasing) is seen in the green time points.
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3 Generalizations and Outlook

We have seen that path signatures provide a natural feature set for studying
multivariate time series. In addition, we have discussed ways to view the second
level signature terms in order to understand the path signature in an interpretable
manner. In this section, we outline two directions for generalizations of these ideas
to more complex settings, which will be further discussed in forthcoming work by
the authors.

The first direction is to consider the full Chen cochain model Chen(PRN),
alluded to in Sect. 1 and further discussed in Appendix 3, which is a subcomplex of
the de Rham complex of differential forms on PRN . The iterated integrals described
thus far are the 0-forms in this cochain model, and we have seen that these cochains
describe properties of individual points of PRN .

Integration of the 1-forms of Chen(PRN) along paths in PRN , interpreted as
parametrized families of time series, provides information about such a family.
To draw an analogy, consider the case of differential forms on R

N . The 0-forms
are simply functions, which provide information about individual points in R

N ,
while integration of 1-forms provide information about paths in R

N . For example,
integration of dxi along a path tells us the displacement in the xi coordinate.

The simplest example of a 1-form inChen(PRN) is generated by a single 2-form
on R

N . We follow the construction in Definition 11 to obtain our desired 1-form.
Suppose ω = dxi ∧ dxj , and suppose α : I → PRN is a family of paths.

Associated to such a family is the map α : I × I → R
N , defined by α(s, t) =

α(s)(t). The pullback of ω with respect to α is

(α)∗(ω) =
(
∂αi

∂s

∂αj

∂t
− ∂αi

∂t

∂αj

∂s

)
ds ∧ dt .

The 1-form in Chen(PRN) with respect to ω, viewed under the plot α is defined to
be

(∫
ω

)

α

=
(∫ 1

0

∂αi

∂s

∂αj

∂t
− ∂αi

∂t

∂αj

∂s
dt

)
ds.

We can think of this expression as the pullback of the 1-form
∫
ω along α. Thus,

integrating over the family of paths corresponds to integrating over s, and we obtain

∫
α

(∫
ω

)
=

∫ 1

0

∫ 1

0

∂αi

∂s

∂αj

∂t
− ∂αi

∂t

∂αj

∂s
dt ds.

Note that the integrand is the determinant of the Jacobian of αi,j = (αi , αj ).
Therefore, integration of

∫
ω along a family of paths yields the area of the region

αi,j (I
2), as shown in the figure.
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Although the information in
∫
ω may seem elementary, this example produces

the simplest 1-form by Chen’s construction, analogous to the first level signature
terms Si . The idea is to mimic the construction of the path signature, and construct
iterated integral forms out of a 2-form ω ∈ A2

dR(R
N) and several 1-forms ωi ∈

A1
dR(R

N) in different permutations to acquire more sophisticated properties of these
families of paths. In fact, by considering the p-forms in Chen(PRN), we can study
multiparameter families of paths in a similar manner.

The second direction is to consider spaces more general than PRN . Namely,
we can think of the path space as the mapping space PRN = Map(I,RN), and
consider iterated integral cochain models for more general mapping spaces. In fact,
Chen’s definition of the path signature was not restricted to paths on R

N , but rather
paths on differentiable manifoldsM . The definition of the path signature is the same
as Definition 1, except we replace the standard 1-forms with a collection of forms
ω1, . . . , ωm ∈ A1

dR(M). Most of the algebraic properties from Sect. 1 still hold for
path signatures in PM . In the following theorem Cr denotes r-times continuously
differentiable.

Theorem 5 ([10]) Let M be a Cr manifold with r ≥ 2, and suppose ω1, . . . , ωm ∈
A1
dR(M) such that they span the cotangent bundle T ∗M at every point. Then if

�1, �2 ∈ PM are irreducible piecewise-regular continuous paths such that�1(0) =
�2(0) and S(�1) = S(�2), then �1 is a reparametrization of �2.

This is the analogous statement of Theorem 2 but for PM rather than PRN . This
theorem states that the path signature for manifolds is still a faithful representation
of paths. Thus, it provides a complete reparametrization-invariant feature set for
multivariate time series that naturally lie on a manifold. For example, time series of
phases of a collection of oscillators would be a path on a toroidal manifold. Another
example is the time series of states of some dynamical system, which may be a
trajectory on an invariant manifold.

We can generalize further and consider mapping spaces Map(Y,M), where Y is
a topological space such that conn(M) ≥ dim(Y ). Here, conn(M) is the connectivity
of M , the largest non-negative integer n so that πn(M) is trivial. In this case,
there exists a generalized iterated integral cochain model for the mapping space,
which is developed in [20, 32]; without this restriction, the mapping space may be
disconnected resulting in an incomplete cochain model. This setting would allow for
the study of data which is naturally modeled by elements of such mapping spaces.
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Possible examples include vector fields over an embedded manifold M ⊂ R
N ,

which can be modelled by the mapping space Map(M,RN).

Acknowledgements D.L. is supported by the Office of the Assistant Secretary of Defense
Research & Engineering through ONR N00014-16-1-2010, and the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) PGS-D3.

Appendix: Path Space Cochains

Chen’s formulation of a cochain model begins by defining a de Rham-type cochain
complex AdR on a general class of spaces called differentiable spaces, generalizing
the usual differential forms defined on manifolds. Path spaces are examples of
differentiable spaces, and thus are associated with such a de Rham cochain complex.
By defining iterated integrals using higher-degree forms on R

N , rather than the 1-
forms used in Definition 1, we obtain forms on PRN rather than functions. Finally,
he shows that the forms generated by iterated integrals form a subcomplex of AdR,
that is, in fact, quasi-isomorphic to AdR. A detailed account of this construction is
found in [11], and a more modern treatment can be found in [17].

Smooth structures are defined on manifolds by using charts to exploit the well-
defined notion of smoothness on Euclidean space. Charts can be viewed as probes
into the local structure of a manifold. However, as homeomorphisms of some
Euclidean space of fixed dimension, charts are a rather rigid way to view local
structure as they are both maps into and out of a manifold. Differentiable spaces
relax this homeomorphism condition, and only require its plots, the differentiable
space analog of a chart, to map into the space. Baez and Hoffnung [3] further discuss
these ideas, along with categorical properties of differentiable spaces.

Definition 9 A differentiable space is a set X equipped with, for every Euclidean
convex set C ⊆ R

n with nonempty interior and for any dimension n, a collection of
functions φ : C → X called plots, satisfying the following:

1. (Closure under pullback) If φ is a plot and f : C′ → C is a smooth, then φf is a
plot.

2. (Open cover condition) Suppose the collection of convex sets {Cj } form an open
cover of the convex set C, with inclusions ij : Cj ↪−→ C. If φij is a plot for all j ,
then φ is a plot.

3. (Constant plots) Every map f : R0 → X is a plot.

It is clear that any manifold is a differentiable space by taking all smooth maps
φ : C → M to be plots. We obtain a canoncial differentiable space structure on
PM by noting that, given any map α : C → PM , there is an associated adjoint
map α : I × C → M defined by α(t, x) = α(x)(t). Consider the collection of all
maps α : C → M for which the adjoint α is a smooth map, which clearly satisfies
the first and third conditions. To obtain a collection of plots on PM , we additionally
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include all maps α : C → PM such that the hypothesis of the second condition is
true.

Definition 10 A p-form ω on a differentiable space X is an assignment of a p-form
ωφ on C to each plot φ : C → X such that if f : C′ → C is smooth, then
ωφf = f ∗ωφ . The collection of p-forms on X is denoted Ap

dR(X), and the graded
collection of all forms on X is AdR(X).

Linearity, the wedge product, and the exterior derivative are all defined plot-wise.
Namely, given ω,ω1, ω2 ∈ AdR(X), λ ∈ R, and any plot φ : C → X,

• (ω1 + λω2)φ = (ω1)φ + λ(ω2)φ ,
• (ω1 ∧ ω2)φ = (ω1)φ ∧ (ω2)φ , and
• (dω)φ = dωφ .

Therefore, AdR(X) has the structure of a commutative differential graded
algebra, and we may define the de Rham cohomology

H ∗
dR(X) := H ∗(AdR(X))

of differentiable spaces.
From here forward, we will focus on the case of forms on PRN , for which there

is a special, easily understood class of forms defined using iterated integrals. Much
of what we explicitly construct can be lifted to paths in manifolds of interest,or to
more general mapping spaces, and will be discussed in forthcoming work by the
authors.

Definition 11 Let ω1, . . . , ωk be forms on R
N with ωi ∈ A

qi
dR(R

N). The iterated
integral

∫
ω1 . . . ωk is a ((q1 + . . .+ qk)− k)-form on PRN defined as follows. Let

α : C → PRN be a plot with adjoint α : C × I → R
N . Decompose the pullback of

ωi along α on C × I as

α∗(ωi)(x, t) = dt ∧ ω′i (x, t)+ ω′′i (x, t)

where ω′i , ω′′i are qi-forms on C × I without a dt term. Then, the iterated integral is
defined as

(∫
ω1 . . . ωk

)

α

=
∫
�k

ω′1(x, t1) ∧ . . . ∧ ω′k(x, tk) dt1 . . . dtk.

Consider the conceptual similarities between this definition, and the one given in
Definition 1. In the language of our present formulation, SI (�), as given in Eq. (1),
is the iterated integral where ωl = dxil viewed through the one-point plot α� :
{∗} → PRN defined by α�(∗) = �.
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Definition 12 Let Chen(PRN) be the sub-vector space of forms on PRN gener-
ated by

π∗0 (ω0) ∧
∫
ω1 . . . ωk ∧ π∗1 (ωk+1)

where

• ωi ∈ AdR(R
N), for i = 0, . . . , k + 1,

•
∫
ω1 . . . ωk is the iterated integral in the previous definition, and

• π0, π1 : PRN → R
N are the evaluation maps at 0 and 1 respectively.

Theorem 6 ([11]) The complexChen(PRN) is a differential graded subalgebra of
AdR(PR

N).

This theorem is proved by showing that the Chen(PRN) is closed under the
differential and the wedge product. As we will not make use of the details, we
refer the reader to [11] for further discussion of the differential, noting only that the
additional forms π∗0 (ω0) and π∗1 (ωk+1) are required for closure. The wedge product
structure is analogous to the shuffle product identity in Theorem 3, and is proved
in a similar manner. Note that the wedge product structure for 0-cochains is exactly
Theorem 3.

Given m forms ωi ∈ Aqi
dR(R

N) and σ a permutation of the set [m], we denote by
εσ,(qi) ∈ {−1, 1} the sign such that

ω1 ∧ . . . ∧ ωm = εσ,(qi)
(
ωσ(1) ∧ . . .∧ ωσ(m)

)
.

As the notation suggests, εσ,(qi) depends on both the permutation and the ordered
list of the degrees (qi).

Lemma 2 Let ωi ∈ Aqi
dR(R

N) for i = 1, . . . , k + l. We have the following product
formula:

∫
ω1 . . . ωk ∧

∫
ωk+1 . . . ωk+l =

∑
σ∈Sh(k,l)

εσ,(qi)

∫
ωσ(1)ωσ(2) . . . ωσ(k+l).

(7)

Theorem 6 and the following theorem show that the subcomplex of iterated
integrals Chen(PRN) is a cochain model for PRN .

Theorem 7 The two commutative differential graded algebras, AdR(PR
N) and

Chen(PRN), have the same minimal model as RN .

Returning our focus to iterated integrals as functions, we see that the SI are 0-
cochains in this model, constructed via pullback and integration. Indeed, consider
the evaluation map evk : �k × PRN → (RN)k defined by

evk((t1, . . . , tk), �) := (�(t1), . . . , �(tk)) .
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Then, SI is the image of ⊗k
l=1dxil under the composition

A1
dR(R

n)⊗k
ev∗k−→ Ak

dR(�
k × PRN)

∫
�k−−→ Chen0(PRN).
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Prediction in Cancer Genomics Using
Topological Signatures and Machine
Learning

Georgina Gonzalez, Arina Ushakova, Radmila Sazdanovic,
and Javier Arsuaga

Abstract Copy Number Aberrations, gains and losses of genomic regions, are a
hallmark of cancer and can be experimentally detected using microarray compar-
ative genomic hybridization (aCGH). In previous works, we developed a topology
based method to analyze aCGH data whose output are regions of the genome where
copy number is altered in patients with a predetermined cancer phenotype. We
call this method Topological Analysis of array CGH (TAaCGH). Here we combine
TAaCGH with machine learning techniques to build classifiers using copy number
aberrations. We chose logistic regression on two different binary phenotypes related
to breast cancer to illustrate this approach. The first case consists of patients with
over-expression of the ERBB2 gene. Over-expression of ERBB2 is commonly
regulated by a copy number gain in chromosome arm 17q. TAaCGH found the
region 17q11-q22 associated with the phenotype and using logistic regression we
reduced this region to 17q12-q21.31 correctly classifying 78% of the ERBB2
positive individuals (sensitivity) in a validation data set. We also analyzed over-
expression in Estrogen Receptor (ER), a second phenotype commonly observed in
breast cancer patients and found that the region 5p14.3-12 together with six full
arms were associated with the phenotype. Our method identified 4p, 6p and 16q as
the strongest predictors correctly classifying 76% of ER positives in our validation
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data set. However, for this set there was a significant increase in the false positive
rate (specificity). We suggest that topological and machine learning methods can be
combined for prediction of phenotypes using genetic data.

1 Introduction

The cancer genome is characterized by chromosome instability and the formation
of chromosome aberrations [41]. Copy number aberrations, that is amplifications
and deletions of genomic regions, are particularly relevant in tumor development
because they may house proto-oncogenes and tumor suppressor genes. Aberrations
containing these genes can be used as prognosis tools [1, 11, 13, 43] but they
may be difficult to identify because they are usually accompanied by many
passenger aberrations and because they may be hidden by experimental noise.
Experimentally the number of copies of the genome can be measured using array
comparative genomic hybridization platforms (aCGH) and sequencing (DNAseq)
[34]. A number of statistical methods have been proposed to detect copy number
changes, these include [6, 12, 18, 23, 28, 29].

In previous works, we proposed a topology based method to identify candi-
date driver chromosome aberrations, called Topological Analysis of array CGH
(TAaCGH). TAaCGH is different from other methods in that it: (1) does not
perform a single segmentation of the data but a sequence of segmentations, (2)
uses relationships between consecutive probes to determine significance of genomic
fragments, (3) identifies copy number changes associated with a specific phenotype,
and (4) allows to detect single [3, 15] and some co-occurring copy number
aberrations [2].

The next step in the development of TAaCGH is determining to what extent the
identified genomic regions can be used as patient classifiers. In genetic association
studies, machine learning techniques like logistic regression, random forests or
support vector machines are often used for classification and feature selection
[20, 24, 25, 48, 50]. However, several issues arise that make predictive models
challenging for microarray data. For example, data usually consist of a much
larger number of co-variates (genotypes) than observations (patients) and copy
number data contain numerous highly correlated neighboring probes (co-variates).
Additionally, some traits are known to be regulated by many interacting genetic
regions located across the genome. Adding a complexity penalty to the loss
function (regularization) or using methods such as group Lasso [32] that takes
into consideration the correlation among features when assigning the penalties, are
some of the approaches used to address these issues; but many of these approaches
continue to be affected by correlation bias [48].

In this analysis we introduce a predictive model for binary traits using the
output of TAaCGH [3] as a starting set of candidate co-variates. We tested this
approach on two data sets consisting of breast cancer patients with different clinical
characteristics. Data from [21] was used as a training set and data from [10] as
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a validation/test set. Here we report our results on two clinical characteristics:
over-expression of ERBB2 (denoted by ERBB2+) and of the estrogen receptor
gene (ER+). In the ERBB2+ study, TAaCGH found the region 17q11-q22 to be
significantly associated with this phenotype, but not with other molecular subtypes
like luminals or basals. The region of the genome originally consisted of two
sections, when using them as co-variates on data from [21] only, one section was
enough for prediction; shrinking the relevant area to 17q12-q21.31 and obtaining
a sensitivity of 64% (specificity= 96%). When tested in the validation set [10]
we obtained sensitivity of 78% (specificity= 90%). These results suggest that this
section of the genome, which contains the gene ERBB2, discriminates better the
true negatives than the true positives. This is most likely due to the fact that over-
expression of ERBB2 is not always regulated by a copy number change [9, 51].
In the case of ER+, TAaCGH found section 5p14.3-12 and arms 4p, 5q, 6p, 10q,
16p and 16q in the training set. These regions were validated by either SIRAC
[29] or through our validation data set [10]. Our logistic regression study identified
4p, 6p and 16q as the best predictors. Interestingly none of these arms contains
the Estrogen Receptor gene (ESR1) suggesting that copy number changes do not
regulate the expression of this gene in breast cancer. This model for ER+ had
a sensitivity of 79% (specificity= 79%). When we validated the model on [10],
we obtained a sensitivity of 79% (specificity= 52%). Reduction on the specificity
might be due to biological differences or differences in the structure between the
training and the validation data sets. Based on our results, we suggest that the
proposed version of TAaCGH, extended via topological signatures as classifiers,
can further provide a framework for other one-class classification methods, and that
its expanded capabilities may be useful for analyzing other phenotypes and genetic
interactions.

2 Methods

2.1 Data

Array Comparative Genome Hybridization (aCGH) data measure the difference in
the number of DNA copies between a test and a reference sample for regions along
the genome. These data are therefore commonly presented as a log-transformed
ratio of the two quantities. A log-transform value greater than a threshold > 0
indicates an amplification of the genome, while negative numbers signal deletions.
Since the physical position along the genome is known for each probe; the log2 ratio
is mapped back to the genome defining what we call the patient’s CGH profile.



250 G. Gonzalez et al.

2.1.1 Simulation Data

We used simulations to estimate the statistical properties of TAaCGH and of our
proposed classification method. We simulated a series of experiments on data
sets containing 100 profiles (50 tests and 50 controls); each profile was aimed at
recreating a section of the genome with 50 probes. Copy number values for probes
in the control group and for probes in the test group that did not belong to a
chromosome aberration were drawn from a normal distribution N(μ = 0, σCtrl).
The value of σCtrl ∈ {0.2, 0.6} was fixed in any given simulation. Each simulated
copy number aberration was determined by three parameters: the mean and standard
deviation from a normal distribution N(μ, σ) and the length λ, in probes, of the
aberration. For the first, we considered μ = 1 and σ as the test group, having
aberration’s length λ ∈ {5, 10, 25}. Additionally, and motivated by the fact that
the predictor variable is not always present in the test group, we also allowed the
number of aberrant profiles within the test group to vary. We called this parameter
mix. In our simulations mix ∈ {20, 40, 60, 80%}. In each simulation we tested
for specificity and sensitivity of the method for a predetermined combination of
parameters μ, σ, λ,mix.

2.1.2 Horlings Data Set

As in previous studies, we used the data set published by Horlings and colleagues
[21, 22]. BAC Microarrays covered the entire genome with a spacing average of
1 Mb and each BAC clone was spotted in triplicate on every slide (Code Link
Activated Slides, Amersham Biosciences). This sample contained a total of 66
patients, 14 were ERBB2+ and 38 were ER+. Both phenotypes were determined
by clinical diagnosis. The control set consisted of: patient profiles belonging to the
remaining cancer patients with ERBB2− (for the ERBB2+ phenotype), and patient
profiles for the ER− (for the ER+ phenotype).

2.1.3 Climent Data Set

This data set [10] was used as a validation set. Arrays were printed on UCSF Hum.
Array 2.0, similar to the Horlings data set, had an average coverage of the genome
of 1 Mb. Preprocessing of the data can be found in [3]. The data set contained
161 patients diagnosed with a stage I/II lymph node-negative breast cancer and
with available ER status. Since the ERBB2 status was not reported in the original
publication, we classified 9 patients as ERBB2+, those having a copy number
change > 1 (in log scale) at the clone DMPC-HFF#1-61H8 which contains the
ERBB2 gene. The ER+ set consisted of 101 patients and the ER− set consisted of
60 patients.
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2.2 Computational Topology Methods

2.2.1 Foundations of Topological Data Analysis

Our approach is based on the methods developed in persistent homology which we
briefly review. A key concept is the mapping of the data into a point cloud, from
which simplicial complexes can be derived; And by doing so, obtain structures that
capture the shape and geometry of the data.

Let P ⊂ Rd denote our point cloud and d(p, p′) the pairwise distance between
points p,p′ in P . This data structure, consisting of a point cloud P and pairwise
distances is used as an input for what is called the Vietoris-Rips (VR) filtration. The
VR-filtration of a point cloud is determined by the filtration parameter (commonly
denoted by ε) that defines the sequence of simplicial complexes that are used for
analyzing the data. Therefore, for any value of the filtration parameter ε ≥ 0, we
define VRεKP to be the simplicial subcomplex of the complete complex KP that
contains only simplices whose vertices are less than ε apart. Formally, let σ ⊂ P be
a subcollection of points (p1, . . . , pm). Restricting the indices i and j to {1, . . . ,m},
σ is a simplex in VRεKP if d(pi, pj ) < ε for all i, j.

If τ is a face of the simplex σ , then the set of all pairwise distances between
vertices of τ belongs to the set of pairwise distances of σ ’s vertices, so VRε is a
simplicial complex. Practically, in order to construct a filtration we need to ensure
that for δ > ε, we have VRεKP ↪→VRδKP because if all pairwise distances are
less than ε, they are also less than δ.

Next, define the function gVR : KP → R as follows: gVR(σ) =
max

p,q in σ

{d(p, q)} for any simplex σ in KP ; g is monotone since for σ ≺ τ , we

get gVR(σ) ≤ gVR(τ) simply because the maximum is taken over a larger set. The
sublevelset of g at the natural number n is defined by Sn(g) = {σ ∈ K | g(σ) ≤ n}.
The Vietoris-Rips filtration around P ⊂ Rd is the sublevelset filtration of gVR .

Assuming that pairwise distances between points in P are denoted by 0 ≤ ε1 ≤
· · · ≤ εN , we get the filtration

VRε1KP ↪→VRε2KP ↪→ · · · ↪→VRεNKP = KP . (1)

Since the complete complex KP contains as many simplices as there are subsets
of P , its cardinality is 2#P . The Vietoris-Rips filtration is never constructed all
the way up to εN . A description of efficient algorithms for constructing Vietoris-
Rips filtrations may be found in [52]. Most persistent homology software packages
(Perseus [35, 38], Gudhi [47], Eirene [19], Ripser [5]) are based on these algorithms.

This construction has many advantages since it only requires knowledge of
pairwise distances that are easily computable for many data sets. Once an increasing
family of simplicial complexes around the data points has been built one can record
the change of topological features such as connected components, holes, etc., as the
filtration parameter is increased, see Fig. 1. Formally, to each simplicial complex K
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Fig. 1 Two stages of the Vietoris-Rips filtration of the (blue) point cloud as the radius of filtration
increases are shown in the first two pictures. This illustrates that no single filtration value captures
both the smaller and larger loops

one can associate a collection of homology groups, Hd(K), where the range of d is
determined by the highest dimension of simplices of K .

Homology of a simplicial complex can be computed in the following way. Notice
that the vertices of any simplex σ can be represented as a d-tuple (v0, . . . , vd) in
ascending order of vertices. A d-dimensional chain is a R-linear combination of
simplices and they form so-called d-dimensional chain group Cd(KP ) ofKP . Next,
the boundary ∂d of σ is a d−1-chain formed by a collection of (d−1)-dimensional
proper faces of σ obtained by removing a single vertex. Since ∂d defines a linear
transformation Cd(KP ) → Cd−1(KP ) the subspace determined by its kernel is
called the d-dimensional cycle group Zd(KP ), while (d−1)-dimensional boundary
group Bd−1(KP ) is the image. The d-dimensional homology group of a simplicial
complex KP is defined as Hd(K) = Zd (K)

Bd(K)
, that is elements of homology are cycles

but two cycles that differ by a boundary are considered to be the same.
Persistent homology is to filtrations what homology is to simplicial complexes

[39]. Homology is functorial; that is, it assigns algebraic objects to simplicial
complexes, and algebraic maps to maps of simplicial complexes. In particular, the
inclusions between complexes of a filtration induce maps between these homology
groups of each level of the filtration. All together, from the filtration (1) we obtain
the persistence module:

−→ Hd(VRε1KP )
φ1→2
d−→ Hd (VRε2KP )

φ2→3
d−→ · · · φ

(N−1)→N
d−→ Hd (VRεNKP )

The p-persistent d-dimensional homology group of the subcomplex VRεmKP

is the quotient of cycles Zd (VRεmKP ) in VRεmKP by the boundaries
Bd (VRεm+pKP ) in VRεm+pKP :

Hp

d (VRεmKP ) = φm→(m+p)(Zd(VRεmKP ))

φm→(m+p)(Zd(VRεmKP )) ∩ Bd(VRεm+pKP )
.
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The intuition behind this construction is simple: any element x in the d-dimensional
homology group of VRεmKP includes into the d-dimensional group of VRεm+pKP

by a sequence of maps on homology induced by inclusions. In general, VRεm+pKP

contains more simplices than VRεmKP , so the inclusion of x might be filled out
by higher dimensional simplices in which case it becomes a boundary, and dies.
In this way, we assign to each element x of Hd(VRεmKP ) a unique interval
[bx, dx) where the birth bx ≤ m denotes the first time x appeared in homology
and the death dx > m the time it became trivial in homology. The collection
of persistence intervals for all homology generators is called the d-dimensional
persistence diagram of the filtration (1). The difference (dx − bx) quantifies the
persistence of x across the filtration. The d-dimensional Betti number of VRεmKP

counts d-dimensional persistence intervals which contain the value m.
The collection of homology groups and their ranks, however, are not completely

useful by themselves when analyzing data. Hence persistence-based summaries of
data are required. Summaries include bar codes or persistence diagrams [39], Betti
curves [3], and persistence landscapes [7].

In this paper we combine the zero-dimensional persistence with the sliding
window approach. The zeroth Betti number, β0, counts the number of connected
components of a topological space. The Betti curve gives us a way to keep track of
the number of connected components through the filtration. We will consider β0s
across the filtration as described in Eq. (1), to obtain the Betti curve β0(ε). Betti
curves play a central role in the method TAaCGH (see Sect. 2.2.2).

2.2.2 Topological Analysis of Array CGH (TAaCGH)

TaACGH is designed to identify chromosome aberrations associated with a given
phenotype and its key steps (I, II) are illustrated in Fig. 2. To achieve this goal
the input data needs to include two sets of profiles, one for each phenotype.
TaACGH subdivides chromosomes into overlapping sections that are circularized
and analyzed independently of each other. A point cloud is associated with each
section of the aCGH profile by means of a sliding window algorithm that maps
consecutive copy number measurements along the genome onto a single point.
The process is described in Fig. 3 [15]. In our previous studies we investigated,
through computer simulations, how the size of the window affects our results; we
found that a window of size= 2 captures the information given by larger window
sizes while being computationally more efficient. Furthermore, pairs of consecutive
points estimate the norm of the first derivative of the aCGH profile. Next, TaACGH
uses the standard filtration algorithm to associate a sequence of Vietoris-Rips (VR)
complexes to the point cloud. Traditionally, persistent homology has focused on
topological features of the point cloud that persist through the filtration [16];
TAaCGH, on the other hand, uses information of all features that are born during
the filtration even if they do not persist. An example is shown in Fig. 1 where



254 G. Gonzalez et al.

Fig. 2 Topological data Analysis for array CGH data (TAaCGH) full methodology to classify a
patient for a binary phenotype. TAaCGH finds regions in the genome relevant to discriminating
between different phenotypes. Each patient is evaluated for those regions in the genome and
the information from all of them is used to derive a classification model using machine learning
algorithms
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Fig. 3 Algorithm to transform an aCGH profile into a zeroth Betti curve. (a) A simulated aCGH
profile with 30 probes consisting of gains in copy number in the second half of the region. Probes
are plotted in consecutive order along the genome according to their base pair (bp) position and
against their Log2Ratio from aCGH. A selected pair of consecutive probes has been labeled as
{pi, pi+1} in blue with coordinates (18,1.08) and (19,1.04) respectively. (b) Point cloud associated
with the profile from A with a window size equal 2. The set {Log2Ratioi }ni=1 will define a point
cloud with n points (here n = 30) formed by coordinates (Log2Ratioi , Log2Ratioi+1), thus
mapping Log2Ratio information from two consecutive points in A to one point in B. The last and
first probes will be considered within one window (Log2Ration, Log2Ratio1). With this point
cloud design, two consecutive gains will map to the diagonal in the first quadrant while noise will
cluster around the origin. The blue diamond corresponds to the pair of probes {pi , pi+1} in A with
coordinates (1.08, 1.04) which correspond to the Log2Ratio from pi and pi+1 respectively. (c)
Zeroth Betti curve from the point cloud in B applying at each step an incremental value of 0.3 for
the filtration parameter ε

the data set has two holes at different scales, one of which would traditionally be
dismissed.

In order to retain the information about the birth and death of topological features
throughout the filtration TAaCGH uses Betti curves. In the algorithm, the Betti
curve for each patient (see C in Fig. 3) is calculated using the software jPlex [44],
the average of all Betti curves for patients in each group computed, and the a
verage Betti curves compared [15]. Sections of the genome for which statistically
significant differences are found are considered aberrant. However, comparing Betti
curves does not capture all aberrations. For instance, the only difference between
a point cloud associated with a gain or loss of a whole chromosome arm and the
control arm is that the first is shifted from the origin. To detect this sort of large
scale aberration we included a test that identifies the displacement of the center of
masses of the point clouds between the two populations [3] (See step I in Fig. 2).

2.2.3 Using Machine Learning for Patient Classification

Predicting the phenotype for each patient from the copy number aberration profile
is a supervised classification problem, and to address it we followed steps III
and IV described in Fig. 2. In genomic problems often the number of training
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examples is small compared to the number of features. Additionally, copy number
data contain highly correlated probes. Thus, starting with a subset of aberrant
sections that are relevant to the phenotype under study is helpful for building
reliable machine learning models. TAaCGH uses as initial co-variates those arms
and aberrant sections classified as significant on steps I and II in Fig. 2. Next,
TAaCGH determines whether or not a given aberration is present in a selected
patient. The process is repeated for all patients in a training set and for all the
significant sections as well as chromosome arms with displacement in the center
of mass (step III). This creates a set of binary variables as candidate predictors
for the classification model. The algorithm to generate the model can be chosen
from a variety of machine learning techniques, including logistic regression, random
forests, neural networks, and support vector machines. In this paper, we chose to
illustrate TAaCGH using logistic regression (step IV). We explain the algorithm in
detail next.

During section detection TAaCGH uses an overlapped design (see chromosome
ideogram in step II of Fig. 2). For any given set of significant overlapping sections,
we consider the subsetK of non-overlapping ones that covers the exact same regions
as the original set. We denote the resulting Betti curves as βT est0,k , βCtrl0,k , with k ∈ K
after averaging the β0 curves for section k for both patient groups (Test and Control).
Next, we classify patients according to the “similarity” between their Betti curve
and the Betti curves of the Test and Control groups (βT est0,k , βCtrl0,k ) (see blue and
red curves in Fig. 4) while leaving out the patient i that is being classified. The
“similarity” between Betti curves is measured as follows:

SSGk,i =
∑
ε

(β0,k − βG0,k)
2 (2)

Fig. 4 β0 curve from a patient against averaged β0 curves for Test and Control groups for the
significant section in chromosome 17q for ERBB2 phenotype. The blue solid line is (βT est0,k ) and

the red dashed line is (βCtrl0,k ). Left: Black pointed line for the β0,k curve from patient 8 belonging
to ERBB2+ who will be classified for this section of 17q as positive. Right: Black pointed line for
the β0,k curve from patient 37 who does not belong to ERBB2+ and that after this procedure will
be classified as negative for this section in arm 17q
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where G ∈ {T est, Control}. Indicator variable ISk,i registers the presence or

absence of an aberration in section k for the ith patient: ISk,i = 1 if assigned to the
test group (aberrant) and 0 otherwise:

ISk,i =
{

1, if SST estk,i < SSCtrlk,i

0, if SST estk,i ≥ SSCtrlk,i

(3)

Figure 4 illustrates the process of assigning the value to ISk,i . Both panels show
averaged Betti zero (β0) curves for Test (blue) and Control (red) groups. Panel on
the left shows the β0 curve for a patient (black) that is classified as belonging to the
Test group (ISk,i = 1) and panel on the right shows the β0 curve for a patient that is

classified as belonging to the Control group (ISk,i = 0).
Our choice of similarity metric in Eq. (2) is derived from the test statistic used in

TAaCGH to detect aberrant regions [3]. According to computer simulations in [14]
this metric, the square of the L2 norm, achieves the best results in terms of detection.
Other metrics explored in [14] include a metric focusing on relative differences
between Betti curves and a weighted metric granting a heavier influence to persistent
features (see Table 6 for more details).

One proceeds similarly when using the center of masses (CM) to classify patients
(See III in Fig. 2). If we denote by A the set of all significant arms detected by
TAaCGH and a ∈ A. The confidence interval for the CM of the Control group is
computed using the mean and standard deviation estimated by TAaCGH. If the value
of the center of masses of the patient’s point cloud, xai , falls outside the interval, then
the value of the binary variable ICMa = 1 for i; and= 0 otherwise. More specifically,

• If the CM for the arm a ∈ A is a gain

ICMa,i =
{

1, if xai > μ+ tασ/
√
n , with n− 1 d.f.

0, Otherwise
(4)

• If the CM for the arm a ∈ A is a deletion

ICMa,i =
{

1, if xai < μ− tασ/
√
n , with n− 1 d.f.

0, Otherwise
(5)

where xai =
∑

probes

xai /na and na is the number of probes in arm a.
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We use this information to build a logistic regression model to classify patients
for the phenotype given by:

logiti = ln(
πi

1− πi
) = Intercept+

∑
k∈K

wkI
S
k,i +

∑
a∈A

waI
CM
a,i ; i = 1, . . . , n (6)

were n is the number of patients. Using the predicted value of πi , we selected a
threshold of πi ≥ 0.5 as our classification criterion for occurrences.

The output of TAaCGH can be directly used to create the full model. However
a refinement called, model selection is necessary to prevent overfitting. In the work
presented here we used two common stepwise methods called forward addition and
backward deletion, both available in R [42]. Forward addition starts with the null
model and adds covariates until the best model is found. Backward deletion on the
other hand starts with the full model and removes covariates until the best model
is found. At each step, stepwise methods use a specific criterion to measure the
change in the goodness of fit by adding or removing a covariate. The most common
criteria are the Akaike Information Criterion (AIC) and the Bayesian Information
Criteria (BIC), both defined below. Both criteria consider a penalty associated with
the number of covariates included in the model discouraging overfitting. In the
following expressions

AIC := 2k − 2ln(L̂)

BIC := ln(n)k − 2ln(L̂)

k is the number of parameters in the model, n is the number of cases in the data set
and L̂ is the maximum of the likelihood function for the model. Smaller values of
AIC or BIC indicate a better fit of the model. BIC uses a heavier penalty in the
inclusion of parameters than AIC. Though, the difference between the two criteria
lies in their objective. AIC looks for the best model for the sample size at hand,
while BIC assumes there is a true model, independent of n, that generated the data.
In this case, one must be careful when the sample size is too small (n/k ≤ 40), since
BIC selects the true model if n is large enough and can be quite biased otherwise
[8]. As our data sets are small, we focused on AIC but also visited BIC.

Once the model is selected, we measure its goodness-of-fit using sensitiv-
ity=TP/(TP+ FN) and Specificity=TN/(TN+ FP) where TP, FP, TN and FN are
the number of True Positive, False Positive, True Negative and False Negative
predictions respectively. These and other common terms used in machine learning
are available in Table 7 in a form of a Confusion Matrix.

To estimate the bias and confidence intervals for the coefficients in the regression
model we used the Jackknife method. Jackknife estimates the coefficients while
leaving one (or more) patient(s) out of the sample and recomputes the coefficients
of the model. In this work, we used Jackknife delete-one estimation. By repeating
this process multiple times, one obtains a set of coefficients from which to estimate
the standard error and bias of the coefficients proposed in the model. The Jackknife
estimation of the coefficients is then the average of the coefficients across all
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repetitions. In other words, if θ̂[i] are the coefficients obtained in the logistic
regression after omitting the ith observation, then the Jackknife estimator for the
coefficients is:

θ̂J ack = 1

n

n∑
i=1

θ̂[i] (7)

the standard error is then estimated by [17]:

ˆSE(θ)Jack = (
n

n− 1

n∑
i=1

(θ̂[i] − θ̂J ack))
1/2 (8)

3 Results

3.1 Computer Simulations of TAaCGH

An exhaustive simulation study to estimate the statistical properties of TAaCGH was
presented in [3]. Here we extended this study by applying TAaCGH to data sets in
which the percentage of Test cases presenting an aberrant chromosome was variable
(mix). We performed two studies to estimate the effect of mix on the detection of
copy number aberrations. First we tested the detection of copy number aberrations
by the Betti curves (Step II in Fig. 2) and then tested the performance of TAaCGH
to classify each profile for a specific section (Step III in Fig. 2). As expected, our
results show that mix plays a crucial factor in detection (Fig. 5). When the sample
included at least 60% aberrant profiles in the test group, the sensitivity was 100%.
However when mix decreased to 40 and 20% then the sensitivity also decreased to
83.3% and 41.7% respectively. When the effects of the ratio between the mean value
of the aberration (μ) and the standard deviation (σ ) in the data set were explored in
[3], sensitivity was found to be close to 100% in a scenario where mix was 100%
(with a minimum of λ = 5 aberrant probes). In a mixed environment we expect
that the noise will have a larger impact in the detection of aberrations. Sensitivity
on all experiments (μ = 1, σ = 0.2) was 95.8%. From them, only 1 experiment
failed to be detected (with mix = 20%). The sensitivity value dropped to 66.7%
when (μ = 1, σ = 0.6); in this case, all experiments with a mix = 20% failed to
be detected. Yet, all experiments with a mix of 60 or 80% were fully detected. The
size of the aberrant region λ also played an important role, having a sensitivity of
75, 81.3 and 87.5% when the value of λ increased from 5 to 10 and 25 probes (out
of 50). As before, experiments with mix of 60% or more were fully detected even
when only 5 probes were aberrant. Results are shown in Fig. 5.

In the second set of simulations we tested the performance of our method at
classifying each profile (Step III in Fig. 2). In this case, mix of aberrant profiles in
the Test group had a strong impact in the goodness of fit. For instance, when σ = 0.2
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Fig. 5 Sensitivity from simulations on detection using β0 curves for a different mix of cases with
aberrations in the test group. Solid blue is the percentage of cases when detection was successful
with (μ = 1, σ = 0.2), and patterned purple is the percentage of cases from the simulation when
detection was successful for (μ = 1, σ = 0.6)

Table 1 Sensitivity (TPR) and specificity (SPC) for patient classification with β0 curves

M = 1 20% mix 40% mix 60% mix 80% mix 100% mix

σ = 0.2 50% 70% 56% 80% 65% 88% 78% 94% 98% 97%

σ = 0.6 49% 55% 54% 64% 60% 71% 73% 75% 76% 79%

Total 50% 63% 55% 73% 63% 80% 76% 78% 87% 88%

TPR SPC TPR SPC TPR SPC TPR SPC TPR SPC

and all patients were aberrant (mix = 100%), the sensitivity (and specificity)
were 98% (and 97%) respectively. Even though our model had 100% detection
for significant sections when mix was 60% or more, sensitivity (and specificity)
decreased to 65% (and 88%) for the same parameters. As expected, the difference
between the mean (μ) of the aberration and the standard deviation (σ ) in the data set
also had an impact in the performance. For instance, when all samples in the Test
set were aberrant, the sensitivity (and specificity) went from 81 (and 94) to 70%
(and 75%) when σ changed from 0.2 to 0.6. By looking at the difference between
sensitivity and specificity, one can tell that the method is better at classifying the
negatives than at detecting the positives. This difference is even more dramatic for
a smaller standard deviation (σ = 0.2). Results are summarized in Table 1.

Additionally we explored the performance of a single binary predictor (denoted
by I ) in two-class classification, where I = 1 indicates the presence of the attribute
related to the predictor variable and I = 0 the absence of it. Whether the case
belongs or not to the phenotype of interest is denoted by the also binary variable Y .
We identified three interlinked factors with a considerable impact in sensitivity and
false positive rate FPR = 1−specificity:

1. The penetration of the predictor (I%), defined here as the percentage of cases
for which the predictor variable is equal to 1 (I = 1). In Fig. 6 we compare
sensitivity and FPR for different levels of penetration: I%= 20%, I% = 35% and
I%= 50%.
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Fig. 6 Sensitivity against false positive rate for different binary predictors (I ) in an univariate
classification model. Three different scenarios for penetration of the predictor: I% = 20% is
shown in green dotted lines, 35% in purple dashed lines and 50% in black solid lines. The chart
also shows how sensitivity and FPR behaves for 2 different levels of the false omission rate (FOR),
5 and 30%. Each trend was created by decreasing by 10 points Diff= PPV− FOR until Diff= 0.A
desirable target for combinations of FPR and sensitivity is shown with a green square. Suitable
predictors fall in the green square

2. The False Omission Rate (FOR = FN/(FN + TN)), which is the relative
abundance of cases with the phenotype of interest (Y = 1) within the group of
cases lacking the attribute from the predictor (I = 0).

3. The Difference in relative abundance of cases with the phenotype of interest (Y =
1) between the group of positive (I = 1) and negative (I = 0) predicted values,
defined as Diff=PPV− FOR where PPV = T P/(T P + T N).

Figure 6 shows the trade between sensitivity and false positive rate for differ-
ent binary predictors when used as the only variable in a classification model.
Sensitivity increases as the penetration of the predictor (I%) increases. However,
the difference (Diff) in the relative abundance of the response variable with the
phenotype of interest between the two groups (I = 1 and I = 0) needs to be
large for the model to be useful. For instance, when the penetration is I%=20%,
the difference should be of 40% points to make it to the green square, which is
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a reasonable target combination of sensitivity and FPR; and when penetration is
I% = 50% a difference of 80 points is needed.

3.2 A Logistic Model for ERBB2+ Breast Cancer

Over-expression of the gene ERBB2 at chromosome 17q, is in many cases a
consequence of a copy number gain at the location of the gene. TAaCGH identified
four sections in chromosome 17q , ranging from 17q11.1 to 17q22 (25.4 to 57.3
Mbp) [3], that were significant for ERBB2+ patients. As two of the four sections
overlapped, thus redundant, we selected only those two that were mutually exclusive
and covered the whole region. We denoted them as 17q.s2 to refer to section 2 of
chromosome 17q ranging from 32.5 to 43.3 Mbp, and 17q.s4 to refer to section
number 4 ranging from 44.1 to 57.3 Mbp. Each patient was classified as aberrant
or non-aberrant for both sections and associated with the indicator variables IS17q.s2

and IS17q.s4 described in step III of Fig. 2. Stepwise logistic regression (Sect. 2.2.3)
was used to determine whether both sections contributed to patient classification
for the phenotype (Full model available in Table 9). After model selection, only
IS17q.s2 was kept. This selection is in agreement with the metrics provided from our
simulations and available in Table 8. More importantly, section 17q.s2 contains the
probe associated with the ERBB2 gene and the region of analysis is reduced to
17q12 to q21.31 (32.49 to 43.3Mbp). Lastly, we used Jackknife delete-one logistic
regression to build the following model for the ERBB2+ class phenotype:

ln(
πi

1 − πi
) = −2.3+ (3.8)IS17q.s2,i (9)

The bias and 95% confidence intervals for this model are given in Table 2.
Predictions with the logistic regression model for ERBB2 produced a sensitivity

of 64% (specificity= 96%), which was expected considering that only one predictor
is being used. The model assigned all individuals being positive in the predictor to
one of the classes of the binary response phenotype (Table 3). It is possible that
the low detection of positives is related to a high mix of non-aberrant profiles (see
Fig. 7).

We used the Climent data set [10] as validation set. Using the leave-one-out
approach, each patient in the Climent data set was classified for the section (17q.s2)
used in the model produced with Jackknife with Horlings data set. This resulted
in a sensitivity of 78% (specificity= 90%). As before, the model is assigning all

Table 2 Horlings Jackknife coefficients for ERBB2+
Bias ŝe CIlower CIupper

Intercept −1.457611 0.544941 −2.433660 −2.174616

IS17q.s2 1.779060 1.174625 3.533827 4.092198
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Table 3 Frequencies for ERBB2 against significant sections for TAaCGH with β0

ERBB2 ERBB2

Horlings 0 1 Climent 0 1

IS17q.s2 = 0 50 5 FOR= 9% IS17q.s2 = 0 159 2 FOR= 1%

IS17q.s2 = 1 2 9 PPV= 82% IS17q.s2 = 1 17 7 PPV= 29%

IS17q.s4 = 0 44 5 FOR= 10% IS17q.s4 = 0 152 5 FOR= 3%

IS17q.s4 = 1 8 9 PPV= 53% IS17q.s4 = 1 24 4 PPV= 14%

Left: Results for Horlings data set. Right: Results for Climent data set. False Omission Rate
(FOR= FN/(FN+TN)) and Positive Predictive Value (PPV=TP/(TP+ FP) are displayed at the
right of each contingency table

Fig. 7 Two profiles from phenotype ERBB2+ with copy numbers for arm 17q with ERBB2 gene
located at 38.2 Mbp. Section 17q.s2 delineated by dashed red lines and section 17q.s4 delineated
by pointed black lines. Left: a clearly non-aberrant profile with ERBB2+ phenotype (patient 153).
Right: an aberrant profile (patient 308)

positive individuals from the predictor as positive for ERBB2. Again, the section in
arm 17q discriminates better ERBB2 negatives than positives. In the validation data
set the sensitivity increased from 64 to 78%. However, this might be due to the small
number of ERBB2 positives in the data set (see Table 3). The complete confusion
matrix for both data sets is available in Table 10.

3.3 A Logistic Regression Model for ER+ Breast Cancer

Estrogen Receptor positive tumors are histochemically characterized by a high level
of receptors for the estrogen hormone. The abundance of this receptor is regulated by
the gene ESR1, located in chromosome 6q [4]. In the clinical data from the Horlings
data set, status for ER was available and we used TAaCGH to find those aberrant
regions associated with it. TAaCGH found section 5p14.3-12 to be significant by
Betti curves and arms 2p, 4p, 4q, 5q, 6p, 10q, 14q, 16p and 16q to be significant by
the center of masses (see Table 5). We then classified all patients for section 5p14.3-
12 and arms 4p, 5q, 6p, 10q, 16p and 16q, corresponding to regions validated with
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Table 4 Confidence Intervals for the final model with logistic regression in ER+ for Horlings
data set

Bias ŝe CIlower CIupper

Intercept 3.689472 1.2639078 1.588530 2.189342

ICM4p −3.344529 1.3628681 −3.668999 −3.021145

ICM6p −3.967659 0.9211887 −1.762679 −1.324782

ICM16q −1.168885 1.1641565 1.788329 2.341724

Predictions with the logistic regression model gave a sensitivity of 79% (specificity= 79%)

the Climent data set; and associated them with their indicator variables ICM4p , IS5p,

ICM5q , ICM6p , ICM10q , ICM16p and ICM16q (Step III from Fig. 2). We finally proceeded to step
IV and used the indicator variables as co-variates in modeling. We first created the
full model for which results can be found in Table 11. As described in the methods
section, the data set used to build the model had a smaller number of ER negatives
(28) than positives. Following the widely adopted guidelines of a minimum of 5 to
10 Events Per predictor Variable (EPV) [40, 49], we set up to use no more than 3
predictors (EPV= 28/3). Thus, we applied stepwise model selection to reduce the
number of predictors resulting in the same model with both AIC and BIC criteria.
Results are shown in Table 12. The selected model consists of three covariates:
ICM4p , ICM6p and ICM16q . Interestingly, the covariates selected using stepwise regression
were in full agreement with the numbers associated with the relevant factors found
through our simulations. Table 15 shows that the strongest predictor is ICM4p since
it is the one with the highest difference between PPV and FOR and is the second
with the smallest penetration of the predictor. We then used Jackknife delete-one to
estimate the bias and confidence intervals:

ln(
πi

1− πi
) = 1.9− (3.3)ICM4p,i − (1.5)ICM6p,i + (2.1)ICM16q,i (10)

with the bias and confidence intervals shown in Table 4 for α = 0.05.
Next we used our model on the validation data set which, as indicated in the

methods section, consists of 101 patients with phenotype ER positive from a total
of 161 for which the phenotype was available. It resulted in a sensitivity of 79%
(specificity= 52%). However, there was a considerable drop in the specificity of
the model, perhaps due to the very different frequencies that can be observed
in Table 14, or because of a mix with aberrant profiles in the negative Estrogen
Receptor group. The complete confusion matrix for both data sets is available in
Table 13.
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Table 5 Results from ER phenotype in Horlings data set and validation with SIRAC, GISTIC [6]
and Climent data set after applying TAaCGH for β0

ER positive

Arm TAaCGH SIRAC GISTIC TAaCGH

5p 5p14.3-12 5p15.33-13.2

16p 16p Arm (+) 16p Arm (+)

16q 16q Arm (−) 16q12.1(−) 16q Arm (−)

16q22.1-23.3 (−)

Horlings Horlings Horlings Climent data set

data set data set data set (Validation)

ER negative

Arm TAaCGH SIRAC GISTIC TAaCGH

2p 2p Arm (+)

4p 4p Arm (−) 4p15.31 (−) 4p15.2(57%) (−) 4p Arm (−)

4q 4q Arm (−)

5q 5q Arm (−) 5q33.1 (−) 5q32(50%) (−) 5q Arm (−)

6p 6p Arm (+) 6p33-21.1 (+)

10p 10p15.1-14 (+)

10q 10q Arm (−) 10q23.33-24.2 (−) 10q23.32(43%) (−)

12q 12q13.12-13.2 (−)

14q 14q Arm(−)

Horlings Horlings Horlings Climent data set

data set data set data set (Validation)

When known, gains are marked with a plus sign (+) and deletions with (−). GISTIC does not
signal amplifications and deletions by phenotype. Instead, for the regions considered aberrant by
GISTIC, the percentage of cases for the phenotype is provided if it is higher than 35%

4 Discussion

In this paper we have used topological signatures to build regression models on
a binary response variable. In our proposed approach, we first use TAaCGH to
identify regions of the genome that are associated with selected phenotypes. For
instance, in previous studies we identified copy number changes associated with
specific breast cancer molecular subtypes [3]. In this study, we expand this analysis
by first estimating the statistical properties of TAaCGH when the number of aberrant
profiles in the test set changes (i.e. mix percentage). As expected the sensitivity and
specificity of TAaCGH decreases, especially when only 20% of the Test sample has
the aberrant region and the copy number value is not very different from the standard
deviation (μ = 1 and σ = 0.6). Second, we developed new algorithms to determine
whether a patient has an aberration or not. In our proposed method, we compare the
Betti zero curve of the patient with those of the Control and the Test group after the
patient was removed from the corresponding category. We found that when (μ = 1
and σ = 0.2) and all profiles in the test group are aberrant the sensitivity is 98% but
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it decreases steadily as the proportion of aberrant profiles decreases. For instance,
for mix with 60% aberrant profiles the sensitivity was found to be 65%. Detection
also decreases as the standard deviation gets closer to the value of the copy number.
For example, for values μ = 1 and σ = 0.6 detection is only 76%. On the other
hand, the method has strong specificity. To build the logistic model, we followed
standard protocols on statistical genetics and associated a binary variable to each
chromosome aberration, with a value equal to 1 if the aberration was detected by
TAaCGH in the patient profile and 0 otherwise.

At the introduction of this paper we mentioned some challenges for modeling
microarray data such as a large number of co-variates in comparison with the
number of samples and highly correlated neighboring probes. TAaCGH reduces
dimensionality by creating sections from the genome and by transforming the data
within those sections into a point cloud. The structure of the point cloud encodes the
correlation between neighboring probes, however, by using topological signatures
of the point cloud we strongly believe that are reducing the correlation bias. In this
paper, we do not focus on the detection of genetic interactions across the genome
associated with a particular phenotype. In [2] we illustrated how the first homology
group can be used to detect these interactions.

Models were fine tuned using two standard stepwise protocols from model
selection: forward addition and backward deletion. In consideration of the size
of our data sets, AIC criterion was used during the process. Bias and confidence
intervals for coefficients were estimated using Jackknife. The method was tested on
two breast cancer examples: ERBB2+ patients and ER+ patients.

ERBB2+ tumors are characterized by over-expression of the gene ERBB2.
Over-expression of the gene ERBB2 is commonly associated with a copy number
gain in the region containing the gene in the arm 17q . We showed that TAaCGH
detected this region in ERBB2+ patients [3]. This region originally consisted of
four significant overlapping sections, but we kept only the two mutually exclusive
ones covering the same region (See chromosome ideogram in Fig. 2). After logistic
regression we were able to reduce the region to only one (17q12-q21.31) where the
probe for the ERBB2 gene is located. This single co-variate classified successfully
78% of the ERBB2+ patients (sensitivity) from our validation data set. Increasing
the complexity of the model, like including co-ocurring aberrations, could improve
further the sensitivity.

We expanded our previous results to include cancer positive for Estrogen
Receptor (ER+). These tumors grow faster than other tumors but may be susceptible
for treatment [37]. Using TAaCGH, we identified the full set of co-variates and
confirmed with the displacement of the center of mass most regions reported in
the initial study by SIRAC [29]: 4p, 5q, 6p, 10q and 16q. Our method did not
confirm 10p15.1-p14 nor 12q13.12-q13.2. We also detected and validated with our
independent data set two additional regions that have been reported as relevant for
breast cancer elsewhere: a section from chromosome 5p (p14.3-p12) previously
reported with association with ER [27, 46] detected with β0 homology, and arm
16p [31, 33] detected by the displacement of the CM which is a common CNA
associated with breast cancer [33].
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TAaCGH also detected 2p, 4q and 14q; three arms not reported by SIRAC or
GISTIC, nor confirmed by the Climent data set, but reported in the literature as
connected to breast cancer like 4q25-26, 4q33-34 [45], oncogenes BCL11A[26] at
2p16.1, MYCN [30, 36] at 2p24.3 and RAD51L1 from 14q24.1 Complete results
are available in Table 5. Interestingly, Arm 6q containing gene (ESR1) was not
significant with TAaCGH nor reported by SIRAC; suggesting that copy number
changes do not regulate the expression of this gene in breast cancer.

Some CNAs that are common to ER+ and ER− might not be detected by
TAaCGH, as the method focuses on what makes them different. Some of these
however can be detected with other methodologies, such as GISTIC [6]. For instance
1q23.3 was detected as amplification by GISTIC. The aberration was present in 68%
of the ER+ patients. However, it was also present in 68% of the ER− patients which
might explain why it was not detected by TAaCGH. Complete results for GISTIC
in Horlings data set are available in Table 16.

After determining whether patients had an aberration or not we built the logistic
model using only 4p, 6p and 16q after stepwise selection. The model correctly
classified 76% of ER+ cases in our validation set (sensitivity). However, there was
an unexpected drop of 27 points in the specificity between the validation set and the
training data set for which the specificity was originally 79%. From our simulations
we learned that having mix with less than 60% of aberrant profiles and a high
standard deviation could be one of the causes for low detection. Interestingly, in
a previous study Toloşi and Lengauer [48] achieved 69.6% accuracy with Climent
data set (the data we use for validation) using Lasso Logistic Regression with
supervised Feature Clustering to control for correlation bias. In their final model
they use 195 clusters of probes. Our method resulted in a similar accuracy of 68.9%
using 3 sections and a simpler model.

In conclusion, by using the topological signature associated with a phenotype,
TAaCGH provides a innovative approach to reduce the high dimensionality charac-
teristic in genomics and detect genome fractions that are relevant for differentiation.
The classification expansion of TAaCGH to determine patients as positive or
negative for specific aberrant regions, allows us to use the signal from the fragments
as input for modeling and prediction. More importantly, the new classification
capabilities of TAaCGH provide a framework to use in combination with other
machine learning tools beyond logistic regression like random forests and support
vector Machines, among others. Eventually, the choice of the modeling tool depends
on the data at hand. Our previous work [3] illustrates a phenotype with four different
cancer molecular subtypes. We are currently exploring a natural extension in which
we are combining the topological signatures, both of copy number for single
aberrations, detected by β0, and of co-occurring aberrations detected by β1 [2],
together with other clinical and genotype variables as input for prediction methods
(algorithms).
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5 Software

TAaCGH can be obtained by contacting Javier Arsuaga directly: e-mail:
jarsuaga@ucdavis.edu.
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Appendix

See Tables 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, and 16.

Table 6 Four different metrics comparing the average Betti curves from the patients in the
control group (βCtrl0,ε ) against the average for the test group (βT est0,ε ) using filtration parameter ε
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After simulations for these metrics, DeWoskin [14] found that the best results are provided by
SS1. SS1 corresponds to the square of the L2 norm, SS2 measures the difference between the
areas of both curves, SS3 uses relative differences before finding the area under the curve and
SS4 is similar to SS2 but assigns heavier weights as the filtration parameter increases

jarsuaga@ucdavis.edu
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Table 7 Confusion Matrix: true negatives (TN), false negatives (FN), false positives (FP) true
positives (TP), specificity (SPC), sensitivity (TPR), false omission rate (FOR) and positive
predictive value (PPV)

True condition True condition

Predicted Negative= 0 Positive= 1

Negative= 0 TN FN FOR

true negative false negative = FN
Predicted Negative = FN

TN + FN

Positive= 1 FP TP PPV

false positive true positive = TP
Predicted Positive = TP

FP + TP
SPC TPR Diff

= TN
Condition Negative = TP

Condition Positive = PPV− FOR

Table 8 Three factors with
heavy impact in the relevance
of the variables to become
good predictors

t

Horlings I% FOR Diff Climent I% FOR Diff

IS17q.s2 17% 9% 73 IS17q.s2 13% 1 28%

IS17q.s4 26% 10% 43 IS17q.s4 15% 3 14%

The indicator variables listed corresponds to the
validated (with SIRAC and Climent data set) sig-
nificant sections and arms after applying TAaCGH
to the Horlings data set (left) for ERBB2+ phe-
notype. The same metrics are provided for the
variables from the Climent data set (right). I%:
The penetration of the predictor; that is, the per-
centage of cases equal to 1. False Omission Rate
(FOR= FN/(FN+TN)) tells the abundance of pos-
itive cases from the response variable (phenotype)
within the set of cases where the characteristic from I

is absent (I = 0). The Difference (Diff) between the
Positive Predictive Value (PPV=TP/(TP+TN))) and
FOR: Diff=PPV−FOR, represents the difference in
the abundance of the positive response variable (Y =
1) between the two groups formed by the values of
the predictor (%Y = 1 when I = 0 vs %Y = 1 when
I = 1)

Table 9 Full logistic
regression model for ERBB2
phenotype: sensitivity= 64%,
specificity= 96%

Coefficients Estimate Std. error Z-value Pr(>|z|)

Intercept −2.4830 0.5279 −4.704 2.56e−06

IS17q.S2 3.2795 1.0224 3.208 0.00134

IS17q.S4 0.9136 0.9269 0.986 0.32428
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Table 10 Accuracy and confusion matrix for the final logistic regression model for ERBB2+
phenotype created with Horlings as training data set and tested with the Climent data set

Horlings Climent

Predicted ERBB2− ERBB2+ ERBB2− ERBB2+
Negative TN= 50 FN= 5 TN= 159 FN= 2

Positive FP= 2 TP= 9 FP= 17 TP= 7

SPC= 96.2% TPR= 64.3% SPC= 90.3% TPR= 77.8%

ACC= 89.4% ACC= 89.7%

True negatives (TN), false negatives (FN), false positives (FP), true positives (TP), specificity
(SPC), sensitivity (TPR) and accuracy (ACC= (TP+TN)/total)

Table 11 Full logistic
regression model for ER+
phenotype: sensitivity= 84%,
specificity= 75%

Coefficients Estimate Std. error Z-value Pr(>|z|)

Intercept 3.7001 2.2017 1.681 0.09284

ICM4p −3.3548 1.0639 −3.153 0.00162

IS5p 0.1725 0.7881 0.219 0.82670

ICM5q −0.6384 0.9797 −0.652 0.51466

ICM6p −1.5036 0.7977 −1.885 0.05944

ICM10q −1.3610 1.0661 −1.277 0.20174

ICM16p −0.3021 0.9322 −0.324 0.74589

ICM16q 1.8620 0.9510 1.958 0.05025

Table 12 Logistic regression
model for ER+ after forward
and backward stepwise
selection

Coefficients Estimate Std. error Z-value Pr(>|z|)

Intercept 1.8842 1.0225 1.843 0.065359

ICM4p −3.3343 0.9377 −3.556 0.000377

ICM6p −1.5420 0.7234 −2.132 0.033038

ICM16q 2.0582 0.9258 2.223 0.026214

Table 13 Accuracy and confusion matrix for the final logistic regression model for ER+
phenotype created with Horlings as training data set and tested with the Climent data set

Horlings Climent

Predicted ER− ER+ ER− ER+
Negative TN= 22 FN= 8 TN= 31 FN= 21

Positive FP= 6 TP= 30 FP= 29 TP= 80

SPC= 78.6% TPR= 78.9% SPC= 51.7% TPR= 79.2%

ACC= 78.8% ACC= 68.9%

Notation: True negatives (TN), false negatives (FN), false positives (FP), true positives (TP),
specificity (SPC), sensitivity (TPR) and accuracy (ACC= (TP+TN)/total)
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Table 14 Frequencies for ER against significant CM and sections for TAaCGH with β0

ER ER

Horlings 0 1 Climent 0 1

ICM2p = 0 7 22 FOR= 76% ICM2p = 0 34 68 FOR= 67%

ICM2p = 1 21 16 PPV= 43% ICM2p = 1 26 33 PPV= 56%

ICM4p = 0 2 26 FOR= 93% ICM4p = 0 16 57 FOR= 78%

ICM4p = 1 26 12 PPV= 32% ICM4p = 1 44 44 PPV= 50%

ICM4q = 0 3 14 FOR= 82% ICM4q = 0 18 40 FOR= 69%

ICM4q = 1 25 24 PPV= 49% ICM4q = 1 42 61 PPV= 59%

IS5p = 0 18 13 FOR= 42% IS5p = 0 32 33 FOR= 51%

I s5p = 1 10 25 PPV= 71% I s5p = 1 28 68 PPV= 71%

ICM5q = 0 4 15 FOR= 79% ICM5q = 0 16 47 FOR= 75%

ICM5q = 1 24 23 PPV= 49% ICM5q = 1 44 54 PPV= 55%

ICM6p = 0 7 25 FOR= 78% ICM6p = 0 35 75 FOR= 68%

ICM6p = 1 21 13 PPV= 38% ICM6p = 1 25 26 PPV= 51%

ICM10q = 0 3 8 FOR= 73% ICM10q = 0 24 46 FOR= 66%

ICM10q = 1 25 30 PPV= 55% ICM10q = 1 36 55 PPV= 60%

ICM14q = 0 4 12 FOR= 75% ICM14q = 0 16 43 FOR= 73%

ICM14q = 1 24 26 PPV= 52% ICM14q = 1 44 58 PPV= 57%

ICM16p = 0 20 17 FOR= 46% ICM16p = 0 5 32 FOR= 87%

ICM16p = 1 8 21 PPV= 72% ICM16p = 1 55 69 PPV= 56%

ICM16q = 0 11 4 FOR= 27% ICM16q = 0 22 21 FOR= 49%

ICM16q = 1 17 34 PPV= 67% ICM16q = 1 38 80 PPV= 68%

Left: Horlings data set. Right: Climent data set. Notation: False Omission Rate
(FOR= FN/(FN+TN)) and Positive Predictive Value (PPV=TP/(TP+FP)
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Table 15 Three factors with heavy impact in the relevance of the variables to become good
predictors

Horlings Climent

I% FOR Diff I% FOR Diff

ICM2p 56% 76% −33 ICM2p 37% 67% −11%

ICM4p 58% 93% −61 ICM4p 55% 78% −28

ICM4q 74% 82% −33 ICM4q 64% 69% −10

IS5p 53% 42% 29 IS5p 60% 51% 20

ICM5q 71% 79% −30 ICM5q 61% 75% −20

ICM6p 52% 78% −40 ICM6p 32% 68% −17

ICM10q 83% 73% −18 ICM10q 57% 66% −5

ICM14q 76% 75% −23 ICM14q 63% 73% −16

ICM16p 44% 46% 26 ICM16p 77% 87% −31

ICM16q 77% 27% 40 ICM16q 73% 49% 19

The indicator variables listed corresponds to the validated (with SIRAC and the Climent data set)
significant sections and arms after applying TAaCGH to the Horlings data set (left) for the positive
Estrogen Receptor (ER+) phenotype. The same metrics are provided for the variables from the
Climent data set (right). Notation: I%: The penetration of the predictor; that is, the percentage of
cases equal to 1. False Omission Rate (FOR= FN/(FN+TN)) tells the abundance of positive cases
from the response variable (phenotype) within the set of cases where the characteristic from I is
absent (I = 0). The Difference (Diff) between the Positive Predictive Value (PPV=TP/(TP+TN))
and FOR: Diff= PPV− FOR, represents the difference in the abundance of the positive response
variable (Y = 1) between the two groups formed by the values of the predictor (%Y = 1 when
I = 0 vs %Y = 1 when I = 1)
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Table 16 Regions detected
as amplified or deleted by
GISTIC [6]; a standard
methodology used to detect
anomalies in copy number

Arm Aberration type ER negative ER positive

1q Amplification 1q23.3 (68%) 1q23.3 (68%)

1q41 (54%) 1q41 (66%)

3p Deletion 3p14.3 (57%)

3q Deletion 3q27.2 (46%)

4p Deletion 4p15.2 (57%)

5q Deletion 5q32 (50%)

7q Amplification 7q34 (46%)

8p Deletion 8p23.2 (57%) 8p23.2 (47%)

8q Amplification 8q24.11 (64%) 8q24.11 (68%)

10q Deletion 10q23.32 (43%)

12p Amplification 12p13.33 (36%)

13q Deletion 13q14.11 (64%) 13q14.11 (61%)

17q Amplification 17q23.1 (45%)

17q Amplification 17q24.3 (36%) 17q24.3 (39%)

18q Deletion 18q12.2 (36%)

GISTIC does not compare between two phenotypes, therefore it
doesn’t provide what differentiate them. However, it is informa-
tive to look at those not detected with our method because they
could be common ground for different cancer phenotypes. In an
effort to associate the aberrations from GISTIC to a phenotype,
we computed the proportion of aberrant profiles within ER+ and
within ER− for each of the regions detected by GISTIC. Here
we report only aberrant regions when present in at least 35% of
the cases
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Topological Adventures in Neuroscience

Kathryn Hess

Abstract This survey consists of a brief overview of recent work at the interface of
topology and neuroscience carried out primarily by a collaboration among the Blue
Brain Project, the Laboratory for Topology and Neuroscience, and the Laboratory
of Neural Microcircuity at the EPFL. The articles surveyed concern the algebraic
topology of brain structure and function, and the topological charaterization and
classification of neuron morphologies.

1 Introduction

Over the past decade, and particularly over the past 5 years, research at the interface
of topology and neuroscience has grown remarkably fast, as a perusal of the
online bibliography [13] maintained by Chad Giusti makes clear. In this article I
briefly survey two quite different applications of topology to neuroscience in which
members of my lab have been involved over the past 4 years: the algebraic topology
of brain structure and function, and topological characterization and classification
of neuron morphologies.

In collaboration with the Blue Brain Project at the EPFL, we have applied
algebraic topology to clarifying the link between neural network structure and its
emergent function. Taking the direction of synaptic transmission into account, we
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associate a directed graph and thus an ordered simplicial complex to any network
of neurons [27]. Applying this approach to the Blue Brain’s digital reconstruction
of a piece of rat neocortex revealed intricate, highly organized topological structure:
surprisingly numerous directed cliques of neurons that form nontrivial homology
classes, which provide a framework for the emergence of correlated neural activity.
Correlated activity in response to stimulus conjoins synaptically connected neurons
into functional directed cliques and homology classes whose evolution over time
creates a mathematical signature for information processing.

In another collaboration with the Blue Brain Project [16], motivated by the
desire to automate classification of neuron morphologies, we designed a topological
signature (called the Topological Morphology Descriptor or TMD) of any tree
embedded in R

3 that is computable in linear time and overcomes the limitations
of standard methods based on morphometrics, i.e., various scalar descriptors, such
as maximum branching angle, mean branch length, etc. The TMD takes into account
the overall shape of the embedded tree, while reducing computational cost by
discarding very small fluctuations. It takes as input the set of branch points and
leaves of the tree, partially ordered by distance to the root, and produces a barcode,
in which each bar encodes when a branch is first detected and when it merges with
a larger subtree. We showed that the TMD of tree shapes can be used effectively to
assign a reliability measure to different proposed groupings of random and neuronal
trees.

In a follow-up article to [16], we showed that the TMD enabled us to perform
an objective classification of pyramidal cells (PCs) in the rat neocortex, based only
on the shape of their dendrites (the “input tree” of a neuron) [17]. Until now, there
has been no consensus on the number of morphologically different types of PCs in
the neocortex, due to a lack of agreement on the subjective classifications of neuron
types based on expert analyses of their shapes. We also provided a solution to the
more challenging problem of determining whether two similar neurons belong to
different types or to a continuum of the same type. Our topological classification of
PCs has the advantage of being stable and not requiring expert input.

Another recent development that I will unfortunately not be able to cover
here concerns topological detection of network dynamics. Understanding how
network dynamics emerges from the dynamics of individual neurons is one of the
fundamental challenges of neuroscience, which has so far been tackled primarily by
methods from graph theory, statistical mechanics, and dynamical systems. In [2] we
developed a method, based on persistent homology, to analyze the spatio-temporal
structure of network dynamics in terms of topological features fundamentally
different from those applied in traditional analyses. We demonstrated the efficacy of
our method by simulating four different dynamical regimes in three small artificial
neural networks over a range of parameters and showing that a machine learning
classifier trained on our selected topological features accurately predicts the regime
of the network it was trained on and can generalize to networks not presented during
training.

I assume throughout this survey that the reader has working knowledge of
elementary algebraic topology [22] and of persistent homology [6, 12].
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2 The Algebraic Topology of Brain Structure and Function

2.1 The Blue Brain Project

The Blue Brain Project was founded by Henry Markram at the EPFL in 2005, with
the ultimate goal of building a digital model of the human brain that would be
as biologically accurate as computationally possible, based on data collected over
many decades in labs around the world [20]. Since the human brain is comprised of
hundreds of billions of neurons, connected with hundreds of trillions of synapses
(which transmit signals between neurons), the Blue Brain Project first started
building digital models of the rat brain, which has instead hundreds of millions
of neurons, connected with hundreds of billions of synapses, as a warm-up exercise.

Given the immense, multi-scale complexity of the brain, building a digital
reconstruction that is accurate enough to be worth the effort might seem to be a
fool’s errand. Since the brain is characterized by a very high degree of organization
and considerable redundancy, however, by choosing carefully what we measure
in the brain, it is possible develop a good model, without having to measure and
reproduce every little detail.

In 2015 the Blue Brain team published their first validated digital reconstruction,
of a microcircuit approximately 0.5 mm in diameter in layers 1 through 6 of the
somatosensory cortex of a 14-day-old rat [21]. Taking into account both anatomy
and electrophysiology, the reconstruction enables simulation of both spontaneous
and evoked neuronal activity. The reconstruction of the microcircuit is based
on biological parameters including thickness of the six layers, the proportions
and densities of different types of cells in the various layers, precise neuron
morphologies, explicit connection probabilities between specific pairs of neurons,
and biologically motivated organizing principles. Reflecting the randomness of
nature, the reconstruction algorithm comprises stochastic elements.

The Blue Brain team constructed 42 digital microcircuit models, with ∼ 31,000
neurons each, forming∼ 8 million connections consisting of∼ 37 million synapses,
based on biological parameters from five individual rats: seven instantiations per rat
and seven constructed based on average parameters. To validate their models, the
Blue Brain team reproduced in silico numerous in vitro and in vivo experiments that
had not been taken into account in the reconstruction, without parameter tuning.
Details of the reconstruction can be found on the Neocortical Microcircuit Portal
[25].

The digitally reconstructed microcircuit has successfully enabled the study of
emergent structural and functional properties of large networks of neurons, such
as the roles of the layers, neuron types, and types of connections in modulating
the states of the network and the effect of calcium concentration on network
dynamics. As a team of topologists, the goal of our research was to apply the
mathematical tools we know well to providing a quantitative description of global
network structure and function in the microcircuit. Algebraic topology provides a
particular mathematical filter through which to look in order to discern the order and
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organization in the brain’s structure and function. Applying topological tools is the
next natural step after graph theory, which has already proved useful in analyzing
the connectome [14, 29], especially since topology is the mathematics of proximity
and connectivity and of “local to global” phenomena.

2.2 Directed Flag Complexes

Since chemical synapses impose a prefered direction of communication between
neurons, a network of neurons is naturally represented by a directed graph (digraph),
in which the vertices correspond to neurons and the directed edges to directed
connections between neurons. (For a connection between neurons to provide reliable
signal transmission, it must consist of several synapses.)

Let G = (V ,E, τ : E → V × V ) be a digraph, with vertex set V and edge set
E, where τ is the function assigning to each edge the ordered pair of its source
and target. We assume that G is loop-free (i.e., there are no edges e for which
the source is the same as the target) and has no double edges (i.e., τ is injective);
these conditions hold for the directed graph representing a network of neurons. The
directed flag complex associated to G is the (ordered) simplicial complex S of which
the set of 0-simplices is V , and for n ≥ 1, the set Sn of n-simplices is

Sn =
{
(v0, . . . , vn) | ∀ 0 ≤ i < j ≤ n, ∃ e ∈ E such that τ (e) = (vi, vj )

}
,

i.e., the n-simplices of S correspond to directed (n+ 1)-cliques of G (Fig. 1).

Remark 1 The directed cliques of G can be characterized equivalently as the acyclic
cliques of G, and as the cliques of G such that every subclique admits exactly one
source and one sink.

2.3 Structural Insights

Computing the directed flag complex of the digraph representing each of the
42 digital reconstructions, we observed, for example, that the dimension of each
flag complex was either 6 or 7, and that they all had several tens of millions of
2- and 3-simplices. To ascertain the significance of these results, we made the
same computations for three null models (Fig. 2). One control was entirely non-
biological: we generated five Erdős-Rényi random graphs with the same number
of vertices and the same average connection probability (∼0.8%) as one of the
“average” microcircuit reconstructions, called Bio-M. For the other two controls,
the Blue Brain team constructed circuits starting from the same 3D model neurons
as the Bio-M circuit, but connected the neurons differently. In the first case, they
applied a well known, random connectivity rule known as “Peters’ Rule” [24], while
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Fig. 1 (a) Three examples of digraphs and (b) their associated directed flag complexes. (From
[27])

the second involved connecting the neurons according to the distance-dependent
connection probabilities between different morphological types of neurons, derived
from experimental work. The second method of determining connectivity, which
is analogous to that obtained from the average overlap of neuronal arbors [28],
captures the general biological features of connectivity between different types of
neurons [26], rather than explicit pairwise connectivity between specific pairs of
neurons, as determined by the overlap of their specific arbors.

In every null model there were far fewer simplices in dimensions larger than
1 than in the Bio-M circuit, with the difference between the Bio-M circuit and
the null models increasing dramatically with dimension. To determine whether
high-dimensional directed simplices exist in actual neocortical tissue, 55 multi-
neuron patch-clamp experiments on up to 12 neurons at a time in actual slices of
somatosensory cortex of a 14-day-old rat were performed in the Laboratory for
Neural Microcircuity, revealing a remarkable number of simplices of dimensions
up through 4. The Blue Brain team then carried out in silico versions of these
experiments on the reconstructed microcircuit, observing a similar distribution of
4- , 3- , and 2-simplices, though with a smaller ratio of 3- and 4-simplices to 2-
simplices than in the actual tissue, confirming that neocortical tissue is rife with
high-dimensional directed simplices and suggesting that the degree of organization
in the neocortex is even greater than that in the digital reconstruction (Fig. 3).



282 K. Hess

Fig. 2 Simplex counts in each dimension of the directed flag complex associated to the digraphs
representing the BioM microcircuit (blue), the Erdős-Rényi model (green), the Peters’ Rule model
(red), and the “general biological” model (yellow). Since the number of simplices is orders of
magnitude smaller in higher dimensions, the insert provides a zoom into these counts. (From [27])

When we wrote [27], we were unable to compute the Betti numbers (mod
2) of the flag complexes of the 42 reconstructed microcircuits, other than those
in dimensions 0 and 5 (the homological dimension of the complexes), as our
computational tools were not equal to the challenge of computing the homology
of such complexes with tens of millions of simplices. The computations that we
were able to carry out, in particular comparison of the 5th Betti number and the
Euler characteristic of the 42 flag complexes, strongly hinted that our topological
computations were capturing important biological information (Fig. 4), as the
complexes arising from the same set of biological parameters clustered together,
with relatively little overlap between clusters.

We were able to confirm this hunch a few months after [27] was published,
when Daniel Lütgehetmann wrote the code for Flagser [19], a software tool based
on Uli Bauer’s Ripser [3], which is capable of computing Betti numbers of very
large flag complexes. Using Flagser, he computed all the Betti numbers (to within
a small margin of error in dimensions 2 and 3) of all 42 flag complexes, revealing
a fascinating clustering phenomenon: plotting the second Betti number against the
third leads to unambiguous clustering of the complexes by identity of the rat that
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Fig. 3 (a) Simplex counts
from 55 multi-neuron
patch-clamp experiments,
patching up to 12 neurons
simultaneously. (b) Simplex
counts from 100,000 in silico
patch-clamp experiments.
(From [27])

provided the biological parameters (Fig. 5). In other words, topology preserves and
reflects biology: the biological differences among the five rats are strongly enough
reflected in the flag complexes to enable separation among them, and the various
instantiations of the microcircuit for a chosen individual rat are “topologically
close”.
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Fig. 4 Plot of 5th Betti number against the Euler characteristic of each of the 42 reconstructed
microcircuits, colored by rat type. (From [27])

Fig. 5 Plot of 2nd Betti number against the 3rd Betti number of each of the 35 microcircuits
reconstructed based on parameters from individual rats, colored by rat type. (With thanks to
D. Lütgehetmann)
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2.4 Functional Insights

Given the structural insights provided by topology, it is natural to wonder whether
the topology of the microcircuit shapes its electrical activity. Measuring the
correlation in spiking behavior of pairs of connected neurons during evoked activity
provided a first inkling of the functional importance of directed cliques in the
digraph representing a microcircuit.

For any edge e in the digraph representing a microcircuit, let de denote the
maximal dimension of a simplex in the directed flag complex to which e belongs,
and let ce denote the Pearson correlation between the spike trains (i.e., the time
series of action potentials emitted) of the neurons that are the vertices of e. We
observed that the greater de is, and the closer to the sink of the simplex the edge e
is, the higher the correlation ce is (Fig. 6). Moreover, if de ≤ 2, then ce is actually
lower than the average correlation of a pair of connected neurons across entire
microcircuit. Furthermore, the greater the number of simplices of dimension de to
which an edge e belongs, the higher the correlation ce is, as long as de ≥ 3 (Fig. 7).

Further topological insights into network function were supplied by analyzing
how the microcircuit reacted to a variety of input stimuli. We encoded activity
in the digitally reconstructed microcircuit as a time series of subgraphs of the
structural digraph (i.e., the digraph representing the microcircuit), from which we
then obtained a time series of directed flag complexes and thus a time series of
whatever topological invariant might be relevant.

Given a recording of spontaneous or evoked neural activity in the microcircuit,
we constructed this time series as follows. We separated the neural spikes into 5 ms
time bins and formed in each bin the subgraph consisting of all vertices and of

Fig. 6 Plot of maximal dimension of a simplex to which an edge belongs against the mean
correlation of the spike trains of the neurons at its vertices, as function of the position of the
edge in the simplex: penultimate to ultimate vertex (red), any edge in the simplex (blue), initial to
second vertex (green), and initial to terminal (purple). The dotted line indicates the average over
all connections in the network. (From [27])
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Fig. 7 For each dimension, a plot of the number of maximal simplices of that dimension to which
a connection belongs against the mean correlation of the spike trains of the neurons at its vertices.
(From [27])

“active edges,” defined according to the following Transmission-Response Rule,
which was formulated based on a probabilistic analysis of neuron spiking [27]. In
the digraph corresponding to the nth time bin, there is a edge from neuron j to
neuron k if and only if:

1. there is an edge in the structural digraph from neuron j to neuron k;
2. neuron j spikes in the nth time bin; and
3. neuron k spikes at most 10 ms after neuron j .

We applied the Transmission-Response Rule to quantifying and characterizing
the activity in the Bio-M reconstruction after simulated input of nine different
stimuli (30 trials per stimulus), obtaining markedly different topological signatures
of the processing of the various stimuli (Fig. 8). Plotting the first Betti number β1
against the third Betti number β3 over time (and across trials) for each stimulus,
we observed, however, a clear uniformity in the overall “swoosh” shape of the
graph (Fig. 9). Starting ∼ 50 ms after the initial stimulus, the first Betti number
β1 increases rapidly, then, just as it begins falling again, the third Betti number
β3 begins increasing rapidly, until it hits a maximum, immediately before all the
activity in the network dies away. A higher degree of synchrony in the input stimulus
was reflected in a greater “amplitude” of the swoosh, while the swooshes associated
to all of the stimuli had similar centers-of-mass along the β1-axis.

To determine the effect of biology on the topological signature of activity, we
again employed the Transmission-Response Rule, this time for a fixed stimulus
applied to one instantiation of the microcircuit for each of the five individual rats.
The resulting plots of β1 against β3 display strong similarities across individuals:
the same characteristic pattern of increasing topological complexity, followed by
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Fig. 8 Time series of various topological metrics (number of 1-simplices, 1st Betti number, 3rd
Betti number, and Euler characteristic), in response to the nine different stimuli. Results from 30
trials of each stimulus. (From [27])

an abupt collapse after attaining maximum complexity (Fig. 10). We did observe,
however, strikingly different amplitudes and centers-of-mass along the β1-axis of
the swooshes, a reflection of biological variability.

2.5 Perspectives

We are currently investigating how the topology of the microcircuit shapes synaptic
plasticity, i.e., the change in “weight” of synapses in response to activity in the
network of neurons to which they belong. Plasticity expands the range of dynamical
behaviors of the network and thus its information-processing capacities and is
considered by most neuroscientists to be the substrate of learning and memory.

The Blue Brain Project has built and implemented on a supercomputer at
Argonne National Laboratories a mathematical model of plasticity that parametrizes
all excitatory-to-excitatory synapses in the Blue Brain microcircuit (80% of all
synapses). They have recorded and analyzed variations in synaptic weights over
roughly 20 min of simulated biological time during both spontaneous network
activity and network activity driven by a sequence of stimuli.
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Fig. 9 A plot of the 1st Betti number against the 3rd Betti number over time and across trials, for
three stimulations of various degrees of synchrony (S5b most synchronous and S30b least). (From
[27])

Fig. 10 A plot of the 1st Betti number against the 3rd Betti number over time and across trials,
for the five individual rats. (From [27])
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The microcircuit can be represented at any time step of the plasticity process as
a weighted, directed graph, where the vertices represent the neurons, the directed
edges represent the connections (each comprising several synapses) between neu-
rons, and the weights of the connections are determined by the synaptic weights.
It is therefore natural to represent the output of these plasticity simulations as time
series of weighted, directed graphs, to each of which we can then apply persistent
homology, giving rise to time series of various persistent invariants (persistence
diagrams, Betti curves, etc.). We have so far obtained promising preliminary results,
indicating that these methods enable us to quantify and characterize the effect of
plasticity on the network to a greater extent than simply computing its effect on the
distribution of weights. We discern moreover a very clear difference between the
effects of spontaneous and driven activity.

We are also working on developing a better understanding of the functional
implications of the topological structure we have discovered in the microcircuit.

3 An Objective Topological Descriptor of Neuron
Morphologies

The classification of neuron morphologies, in all their tremendous diversity, is an
important and challenging problem in neuroscience, in particular since it is has
been shown that neuron shape influences function [9, 11, 30, 31]. The input to in
vitro morphological classification consists of 3D digital reconstructions of neuron
morphologies [15], i.e., for each neuron, a set of points in R

3 sampled along each
branch of the neuron, together with information about which points are contiguous.

From a digital reconstruction, one can compute various standard morphometrics
(i.e., numerical shape descriptors), such as the number of branches, the total length,
the maximum radial distance from the the soma (cell body) of the neuron, the
maximum angle between the branches, the mean branch order, and the mean
asymmetry. As illustrated by Fig. 11, these morphometrics do not suffice even to
distinguish properly among the three significantly different “subtrees” of the neural
branching structure: the basal and apical dendrites and the axon. More generally, it
has been shown that subjective classifications of neuron morphologies by experts in
the field can vary from expert to expert and even from 1 day to another for the same
expert [10].

In [16] we introduced a topological fix to this problem, enabling objective
classification of neuron morphologies. We associated to each neuron morphology
a topological signature in the form of a persistence diagram (PD), established its
stability with respect to slight errors of the digital reconstruction, and then studied
populations of neurons by statistical analysis of the associated sets of PD.
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3.1 The Topological Morphology Descriptor

Given a tree embedded in R
3, the Topological Morphology Descriptor (TMD) is

a PD that encodes the overall shape of the tree, coupling the topology of the
branching structure of a tree with the embedding in R

3. It is not a complete
invariant, but a simplification that retains enough information to perform well
in discrimination tasks. For statistical purposes, we study associated persistence
images [1] or persistence landscapes [4, 5], constructed so as not to underestimate
the importance of small branches.

The input to the TMD consists of a pair (T , f ), called a TMD-pair, where T is
a rooted tree with root R and set N of nodes, and f : N → R≥0 is a function such
that f (R) < f (n) for all n ∈ N � {R} all n ∈ N (e.g., radial distance from R,
if T is embedded in R

3). We observed in [16, SI] that every TMD-pair arises from
a rooted tree embedded in R

3, where the function on the nodes is given by radial
distance from the root.

To see this, suppose that (T , f ) is any TMD-pair. Since f (R) < f (n) for all
n ∈ N � {R}, we can assume without loss of generality that f (R) = 0. Since N is
finite, the image of f is a finite subset {0, a1, . . . , am} of R≥0. Define an embedding
of T into R

3 as follows. Fix an injection h of N into R
3 such that h(R) = 0 and

such that h
(
f−1(ai)

)
is contained in the sphere of radius ai about the origin for all

1 ≤ i ≤ m. For every adjacent pair of nodes n1, n2 ∈ N , consider the line segment
in R

3 between h(n1) and h(n2). Since a finite union of line segments is compact,
small perturbations of the interiors of the line segments enable us to remove any
intersections, defining an embedding of the edges of T into R

3.
Let (T , f ) be a TMD-pair. Let N = B ∪ L be the set of nodes of T , where B is

the set of branch points and L the set of leaves. While our algorithm does not forbid
branch points of degree 2, in our biological examples all branch points are of degree
at least three. For each b ∈ B, let Lb denote the set of leaves of the subtree of T
with root at the branch point b. Let v : N → R be the function defined by

v(n) =
{

max{f (l) | l ∈ Ln} : n ∈ B,
f (n) : n ∈ L.

We order the children of any node of T by their v-value: if n1, n2 ∈ N are siblings,
then n1 is younger than n2 if v(n1) < v(n2).

The algorithm that produces the TMD of a TMD-pair (T , f ) proceeds as follows
(Fig. 12). It is initialized by creating a set A of active nodes, originally set equal
to L, and starting with an empty barcode. For each leaf, the algorithm proceeds
iteratively along the unique path to the root R. At each branch point b, one removes
from A all of the children of b, replaces them by b itself, and adds one bar to the
barcode for each child of b except (any one of) the oldest. Each child removed from
A corresponds to a path from some leaf l to b, which is recorded in a persistence
barcode as a bar [f (b), f (l)] or [f (l), f (b)], if f (b) ≤ f (l) or f (l) ≤ f (b),
respectively. These operations are applied iteratively to all the nodes until the root
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R is reached, at which point A contains only R and a leaf l for which f is maximal
among all leaves, which is recorded in the barcode as a bar [f (R), f (l)]. We usually
represent the result of the TMD by the PD associated to the barcode obtained by
the algorithm above. Note that this PD can have points both above and below the
diagonal.
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For the purpose of statistical analysis, we can convert the TMD of a pair (T , f )
into an unweighted persistence image (UPI), slightly modifying the definition in
[1]. Points close to the diagonal, which correspond to short branches, would be
minimally weighted in the usual weighted persistence image, but are important for
the discrimination of the neurons. Given a PD X, the first step of constructing the
associated UPI is to smooth out the PD, by computing the sum of Gaussian kernels,
centered at the points of X, giving rise to a function ρ : [0,∞)2 → R. One then
discretizes the sum, dividing [0,∞)2 into a pixel grid, and assigning to each pixel
the integral of ρ over it. This process gives rise to a matrix with real coefficients,
enabling computation of the mean, median, standard deviation, etc., of set of UPIs.

3.2 Properties of the TMD

We showed that the output of the TMD was stable in terms of the bottleneck distance
with respect to the small errors that are most likely to arise when creating the digital
reconstruction of a neuron: mistakes in determining the precise coordinates of a
node, and omission or addition of small branches (Fig. 13). These reconstruction
errors translate into four possible types of perturbation of the pair (T , f ).

Definition 1 ([16]) Let (T , f ) be a TMD-pair and ε > 0 a real number. An
elementary ε-perturbation of (T , f ) is a TMD-pair (T ′, f ′) obtained from (T , f )

by one of the following operations.

1. T = T ′, f (R) = f ′(R), and for all n �= R, |f ′(n)− f (n)| < ε.
2. T ′ is obtained from T by gluing a branch with single leaf l to a node n of T . The

restriction of f ′ to the nodes of T is equal to f , while |f ′(l)− f (n)| < ε.
3. T ′ is obtained from T by adding an internal node b to an existing edge in T , with

incident nodes n1 and n2, and a branch at b with single leaf l. The restriction of f ′
to the nodes of T is equal to f and |f ′(b)− f ′(l)| < ε. Moreover, if f ′(b) does
not lie between f (n1) and f (n2), then |f ′(b)−f (n1)| < ε or |f ′(b)−f (n2)| <
ε.

4. T ′ is obtained from T by removing a branch with incident nodes b ∈ B and l ∈ L
such that |f (b)− f (l)| < ε. The function f ′ is the restriction of f to T ′.

A TMD-pair (T ′, f ′) is said to be an ε-perturbation of (T , f ) if (T ′, f ′) is obtained
from (T , f ) by performing a finite number of operations of type (1) on a subset of
the set of nodes of T , and then performing a finite number of operations of types
(2), (3), and (4) on the resulting tree, such that every branch that is present in T ′ but
not in T is a leaf.

Our stability result can then be precisely formulated as follows.

Theorem 1 ([16, SI]) Let (T , f ) be a TMD-pair, and let ε > 0. If (T ′, f ′) is an
ε-perturbation of (T , f ), then the bottleneck distance between the TMDs of (T , f )
and of (T ′, f ′) is at most 3ε.
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Fig. 13 An illustration of the small errors that can occur in the process of digital reconstruction of
neurons. (From [16])

We explored experimentally the effect of the varying f for trees embedded in
R

3, comparing radial distance from the root, path distance (within the embedded
tree) from the root, distance from the root within a projection on a fixed plane, and
branch order (Fig. 14). The last of these was the only choice of f that led to a highly
significantly different PD and persistence image.

We validated the TMD as a classifier of branching structures by applying it to
sets of random binary trees embedded in R

3, created by software developed within
the Blue Brain Project, where we varied the depth of the tree (Td ), the branching
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Fig. 15 The parameters of
our random tree generation.
(From [16])
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angle (Ba), the degree of randomness of branch writhe (Dr , a parameter in the
construction of the path between two adjacent nodes as a simple random walk), and
the branch length (Bl , the number of steps in the walk between two nodes) (Fig. 15).
Random trees that are generated with the same set of parameters have similar shapes,
but are not identical, due to the stochasticity of simple random walks.

We evaluated how well the TMD could cluster sets of random trees for which
three of the parameters were fixed and one parameter took on one of three possible
values. We assigned each tree to the cluster that minimized the bottleneck distance
between the tree’s TMD and the TMDs of the trees in the cluster. We cross-validated
our method by generating 100 trees for each group, divided into five subsets of 20
trees each. The accuracy of the TMD varied from 88 ± 9% (when varying Ba) to
99± 1% (when varying Dr ) (Fig. 16).

As a toy biological case, we applied the TMD to an interspecies comparison of
neurons from cats, dragonflies, fruit flies, mice, and rats (Fig. 17). The differences
between the neuron types are visually obvious, but we wanted to test whether the
TMD could cluster the neurons by species. We applied methods of supervised
classification, a machine learning technique in which a sample labeled dataset
(training set) is first presented to the algorithm. The algorithm then attempts to
predict the labels of the elements of a test set, which has not been presented
previously. The accuracy of the classifier is defined to be the proportion of correct
predictions. The classifier we used, a decision tree, was trained on the unweighted
persistence images associated to the TMDs of the various neurons. The neuronal
trees of the five types were accurately (84%) separated by species. Moreover, the
classifier was quite reliable (>70% accuracy) even for small training sets containing
only 25% of the whole dataset. The results are presented in a so-called confusion
matrix, which indicates whether a classifier is frequently mislabeling one type as
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Fig. 16 An example of classification of random trees, showing the associated heat map and
dendrogram. (From [16])

another (Fig. 18). The (i, j)-coefficient of the matrix is the percentage of cells
determined to be of type j by experts (or known to be of type j ), while the classifier
predicts that they are of type i.

3.3 Objective Classification of Rat Pyramidal Cells

In [17], we applied the TMD to a considerably more ambitious and interesting
classification problem. Our goal was to check the expert classification of rat pyra-
midal cells against the TMD classification of their apical dendrites, using a variety
of distances between the TMDs for cross-validation and perhaps reclassification.
Pyramidal cells (PCs) have a roughly triangular soma that has dendrites emanating
from its base (the basal dendrites) and from its apex (the apical dendrites). Basal
dendrites do not reach very far in general, while apical dendrites typically extend
towards the cortex surface (called the pia) and terminate in a tuft of numerous small
branches. Apical dendrites play an important role in integrating streams of input to
the neocortex to influence the spiking of PCs.

Experts classify PCs by visual inspection of the cells. The subjectivity of visual
inspection has at times led to disagreement among experts concerning classifications
of PCs, despite the experience of the experts [10]. Our goal was therefore to create
an objective classification scheme for a consistent definition of neuronal types, in a
supervised or unsupervised manner. In the supervised case, we considered the expert
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Fig. 18 An augmented confusion matrix associated to the interspecies TMD comparison. Below
the diagonal are pairwise confusion matrices and above the diagonal are the results of subtracting
one persistence image from another. Dark purple is high and white is low. (From [16])

classification, which we verified or disproved based on objective measurements.
In case of disagreement, we applied an unsupervised method (a Support Vector
Machine [23]), starting from a random classification and reassigning labels based
on objective measurements until the classifier converged to a stable clustering.

3.3.1 Methods

We began by sorting the PCs according to the cortical layer in which the soma
lies, as determined during the reconstruction process (Fig. 19). We then applied the
TMD to their apical dendrites, to obtain an classification in each layer based on
the persistence images, as in the interspecies comparison above. We next trained an
objective supervised classifier on the labels proposed by experts for neurons in a
fixed layer and computed its accuracy, i.e., the proportion of TMD-labels that agree
with the label determined by the supervised classifier. We then repeated the process
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Fig. 19 A schematic view of rat PCs, sorted by layer. (From [17])

for a set of randomized labels with the same cardinality as the number of expert-
determined cell types in that layer. When the expert-based classification accuracy
was significantly higher than that of the randomized classification, it was accepted.
If not, we redefined the cell types according to their TMD profiles, as explained
below.

When a mismatch between the TMD-classification and the expert-proposed cell
types arose, it was due either to a difference in features unrelated to the branching
of the neurons and thus not captured by the TMD (e.g., the so-called “horizontal”
PCs in layer 6, in which the apicals extend horizontally, rather than vertically)
or to human error in the expert classification. In the latter case, we applied our
reclassification method.

When reclassification was required, we computed the accuracy of the new
classification using different distances from that used in the original comparison
of TMD-classification versus expert classification, to avoid over-fitting. Instead,
we expressed the accuracy of the TMD-based reclassification in terms of several
possible distances between PDs (bottleneck distance, Wasserstein distances, sliced-
Wasserstein distance [7]), persistence landscape distances [4], and distance between
signatures [8]. Though these distances are not entirely independent of the distance
between persistence images, they capture other properties of the PD, rendering the
evaluation of the TMD-reclassification more impartial. The reclassification accuracy
is then the average accuracy given by each the distances considered.

To better take into account the position of neurons in space when reclassifying,
we associated to each digital reconstruction a set of TMD-pairs (T , fν), for ν one
of 300 evenly distributed unit vectors in R

3, where fν is the scalar product with
ν. For each notion of distance considered and each ν, we computed the accuracy
of the reclassification, then aggregated across possible values of ν, giving rise to
what we called concatenated distances. The accuracy of the classification for each
orientation, layer, and choice of distance is displayed in Fig. 20.

For most distances, with the notable exception of that for persistence images,
the classification based on the amalgamation across orientations outperformed most
individual orientations. Since the distance between persistence images was most
accurate for the biologically relevant orientation towards the pia, and the average
classification accuracy over all the distances considered validated the classification
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Fig. 20 Illustrations of the accuracy of various distances across layers and orientations. (From
[17]). (a) Summary of accuracy results per topological distance. (b) Ranking of topological
distances from best ‘1’ to worse ‘10’
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accuracy based on persistence images, we deduced that applying persistence images
and the distance determined by orientation towards the pia yields a meaningful
classification of the pyramidal cells.

3.3.2 Results

In all cortical layers other than layers 3 and 5, the TMD-based and expert-
based classifications agreed. In layer 3, though the overall accuracy of the expert
classification was high (86%), there was still a relatively high level of confusion
between two of the classes. Upon visual inspection of the cells in those classes, their
structural differences were not readily apparent either. Reclassification by TMD led
to a different clustering of the neurons in the two expert-determined classes into
two new classes, with more clearly defined structural differences (small versus large
tufts) and only one ambiguous cell (Fig. 21).

The expert classification of PCs in layer five included two classes, L5_TPC_A
and L5_TPC_B, that did not agree with the TMD-based clustering, as the TMD

Fig. 21 Reclassification in layer 3. (a) and (b) Representatives of the expert-designated classes
and of the TMD-determined classes, respectively; (c) and (e) Confusion matrices for the expert-
designated classes and for the TMD-determined classes, respectively; (d) and (f) Overlap between
the expert-designated classes and the TMD-determined classes, respectively. (From [17])
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Fig. 22 The TMD-gradient between the expert-designated classes L5_TPC_A and L5_TPC_B.
(From [17])

detected no significant differences between the two classes. Reclassification by
TMD made it clear that there is a gradient of branching structures across these two
classes, rather than a clear separation into two distinct types (Fig. 22).

3.4 Perspectives

We have recently reverse-engineered the TMD in order to create synthetic neuron
populations with morphometric characteristics that provide excellent matches to
natural populations of neurons collected in laboratories [18]. Our preliminary
results are very promising, providing excellent matches to natural populations.
The importance of this work is due to the need of the Blue Brain project for a
wide variety of digital neurons to populate their digital reconstructions of brain
microcircuits.

The TMD enables us also to make quantitative interspecies comparisons of
neuron populations. So far, we have compared populations of mouse, rat, and human
pyramidal cells, establishing rigorously that rat neurons are not simply scaled-up
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mouse neurons and (less surprisingly probably) human neurons are not scaled-up
mouse or rat neurons. We intend to refine this study, to quantify more precisely
these interspecies differences.
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Percolation on Homology Generators
in Codimension One

Yasuaki Hiraoka and Tatsuya Mikami

Abstract This paper introduces a new percolation model motivated from polymer
materials. The mathematical model is defined over a random cubical set in the
d-dimensional space R

d and focuses on generations and percolations of (d − 1)-
dimensional holes as higher dimensional topological objects. Here, the random
cubical set is constructed by the union of unit faces in dimension d − 1 which
appear randomly and independently with probability p, and holes are formulated by
the homology generators. Under this model, the upper and lower estimates of the
critical probability phole

c of the hole percolation are shown in this paper, implying
the existence of the phase transition. The uniqueness of infinite hole cluster is also
proven. This result shows that, in the supercritical phase, p > phole

c , the probability

Pp(x
∗ hole←→ y∗) that two points in the dual lattice (Zd)∗ belong to the same hole

cluster is uniformly greater than 0.

1 Introduction

1.1 Background

Percolation theory has its origin in applied problems. One of the most famous
mathematical formulations is the modeling of immersion in a porous stone, which
is expressed by the bond percolation model as follows. Let Ld = (Zd ,Ed ) be the
d-dimensional cubical lattice, where Z expresses the set of integers and Z

d and E
d
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are the sets of vertices and bonds (or edges) over the d-dimensional integer lattice,
respectively (see Sect. 2.1). For a fixed p ∈ [0, 1], each bond in L

d is assumed to be
open randomly with probability p, and closed otherwise, independently of all other
edges. Open bonds correspond to interstices randomly generated in the stone, and
the probability p means the proportion of the interstices in the stone.

In this model, the percolation probability θbond(p) = Pp(|C(0)| = ∞) has been
extensively studied. Here, Pp expresses the probability measure constructed as the
product measure of those from all bonds, and C(0) ⊂ L

d denotes the connected
component containing the origin in the subgraph which consists of all open bonds.
The percolation probability θbond(p) increases as the probability p increases, and
it has been of great interest in the critical probability pbond

c (d) = inf{p : θbond(p)

> 0}.
For d ≥ 2, it is easy to show that 0 < pbond

c (d) < 1. This implies that the bond
percolation model possesses two phases p > pbond

c (d) and p < pbond
c (d) called

supercritical and subcritical phases, respectively and the phase transition occurs at
the critical probability pbond

c (d). One of the most remarkable properties showing the
phase transition is formulated as follows.

Theorem 1.1 If p > pbond
c , then there exists c := c(p) > 0 such that

Pp(x
bond←→ y) ≥ c for any x, y ∈ Z

d . (1)

If p < pbond
c , then there exists σ := σ(p) > 0 such that

Pp(x
bond←→ y) ≤ e−σ‖x−y‖1 for any x, y ∈ Z

d . (2)

Here, we denote by x
bond←→ y the event that two vertices x, y are connected

by some open paths. Theorem 1.1 shows that the probability Pp(x
bond←→ y)

behaves differently between the two phases. The estimate (1) in the supercritical
phase follows from the uniqueness of the infinite cluster, which we will explain
in Sect. 2.1. The exponential decay (2) is immediately follows from the result by
Menshikov [16]. Note that Theorem 1.1 implies that these two phases are also
defined in terms of whether or not an infinite cluster exists. If all clusters are finite
in the supercritical phase, estimate (1) cannot hold. On the other hand, estimate (2)
in the subcritical phase shows that clusters cannot be large and must be finite. We
refer to [8] for more details about the bond percolation.

Recently, a new type of percolation phenomenon is pointed out in the study
of polymer materials [11]. In that paper, they study the generating mechanism of
craze formations appearing in the uniaxial deformation of polymers (Kremer-Grest
model) by molecular dynamics simulations. Then, they found by applying persistent
homology that a large void corresponding to a craze of the polymer starts to appear
by the process of coalescence of many small voids. Namely, this paper suggests
that “percolation of nanovoids” is the key mechanism to initiate craze formations,
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comparing to the other possibilities such as direct growing of some selected small
voids.

On the other hand, higher dimensional models defined over the cubical lattice
L
d = (Zd ,Ed ) have also been studied recently in random topology [10, 17]. In

their model, k-dimensional elementary cubes (a product of k intervals with length
one) are assumed to be open with probability p. From the construction, it naturally
includes the bond percolation model mentioned above. Then, some topological
properties of the resulting random cubical set are studied and, in particular, the paper
[10] shows several limit theorems on higher dimensional homology of the random
cubical set. These results are regarded as higher dimensional generalizations of the
classical studies on connected components in random graphs [4], which correspond
to zero-dimensional topological objects.

We note that the bond percolation model explained above (and most percolation
models studied in probability theory so far) focuses on the infinite clusters of
connected components. However, in view of the recent progress of random topology
(e.g., [3, 13]), it is natural to consider a new type of percolation model which directly
deals with higher dimensional topological objects.

In this paper, we introduce a higher dimensional percolation model, called hole
percolation, motivated from the craze formation of polymer materials. While the
classical bond percolation theory mainly studies clusters of vertices (i.e., zero-
dimensional objects), our model focuses on clusters of holes as higher dimensional
topological objects. More precisely, we use homology generators in codimension
one for representing the holes, and then study infinite clusters of those holes, which
model the percolation of nanovoids in polymer materials.

Historically, the paper [1, 7] uses the plaquette percolation model, which is
almost equivalent to the models studied in [10, 17]. In particular, the paper [1]
studies a homological property of randomly obtained plaquettes. We remark that,
although our hole percolation model is constructed based on the setting in [10] and
refers to the homological property of hole generation, the main interest in our model
is the behavior of clusters of holes, and hence is different from the one in [1].

1.2 Main Results

Our mathematical model is briefly explained as follows (see Sect. 2 for details). In
the d-dimensional cubical lattice L

d , we assume that each unit cube in dimension
d − 1 called face is open with probability p and closed otherwise, independently
of all other faces. For a configuration ω of faces, we focus on the homology
in codimension 1 of its realization K(ω), i.e., Hd−1(K(ω)). Each generator of
Hd−1(K(ω)) corresponds to a bounded component of Rd \ K(ω), which we call
“hole”, and we study the percolation of holes.

To that aim, we define the so called hole graph, that is, the vertices consist
of holes and the edges are assigned for adjacent holes. Then, in the same way
as the bond percolation model, we define the percolation probability θhole(p) :=
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Pp(|G0∗(ω)| = ∞) and the critical probability phole
c := inf{p ∈ [0, 1] : θhole(p) >

0}, where G0∗(ω) is a fixed connected component of the hole graph. We call this
model the hole percolation model in this paper.

Under this setting, we first give estimates of the critical probability phole
c and,

in particular, we show that 0 < phole
c < 1 (Theorem 2.4). This implies that there

exist two phases even in the hole percolation model. To find an upper bound of
phole
c , we use the dual lattice (Ld)∗, which is obtained by shifting L

d to the vector
(1/2, . . . , 1/2). There is a natural bijective correspondence between faces in R

d and
dual bonds transversely intersecting each other. Under this bijection, we assume that
each dual bond is open if and only if the corresponding face is closed, leading to the
bond percolation model in (Ld )∗ with probability 1− p. Then, it can be shown that
the holes in R

d correspond to the finite clusters in (Ld )∗. Under this relation, the
generation of holes is studied via finite clusters in the dual bond percolation.

Moreover, we show the analogues of the estimate (1) in Theorem 1.1 of the

probability Pp(x
bond←→ y) in the supercritical phase. For the bond percolation

model, the uniqueness of the infinite cluster plays an important role to prove the
estimate (1) in Theorem 1.1. Namely, if two vertices belong to infinite clusters, then
those two vertices are connected by an open path in the unique infinite cluster, and

thus, the probability Pp(x
bond←→ y) is bounded below, independently on the distance

of x, y. Following this strategy, we show the uniqueness of the infinite cluster in
the hole percolation model (Theorem 2.5), and prove the analogues statement in
Theorem 2.6.

We also discuss differences between the bond and hole percolation models. A
significant difference, which makes difficult the analysis of shapes and sizes of hole
graphs, is that the generation of holes cannot be decided in the bounded area. We
observe how this difficulty influences properties of the hole percolation model.

The paper is organized as follows. In Sect. 2, we introduce the setting of the
hole graph and show the main theorems. In Sects. 3 and 4, we prove two main
theorems: the estimate of the critical probability and the uniqueness of infinite
cluster, respectively. In Sect. 5, we state the other properties of the hole percolation
model and carefully discuss the difference between the hole percolation model and
the classical one.

2 Model and Main Theorems

2.1 Preliminaries

We denote by ‖ · ‖p the Lp-norm, and by |G| the number of vertices of a graph G.
Assume d ≥ 1. Let Zd be the set of all vectors x = (x1, x2, . . . , xd) with integer
coordinates, and we define

E
d = {〈x, y〉 : x, y ∈ Z

d, ‖x − y‖1 = 1}
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as the set of edges. We call the pair L
d = (Zd ,Ed ) the d-dimensional cubical

lattice. We define the sample space � := {0, 1}Ed and the σ -field F of � generated
by finite-dimensional cylinder sets.1 For p ∈ [0, 1], define the probability measure
Pp on (�,F) as the product measure $e∈Ed μe, where μe is the measure on {0, 1}
such that μe(1) = p. We denote by Ep(·) the expectation with respect to Pp . For a
sample ω = (ωe : e ∈ E

d) ∈ �, called a configuration, we say a bond e ∈ E
d is

open (resp. closed) if ωe = 1 (resp. 0).
For a configurationω, let K(ω) ⊂ L

d be a subgraph which consists of Zd and all
open bonds in ω. We denote by C(x) the cluster at x, i.e., the connected component
of K(ω) containing the vertex x, and we write C(0) the cluster at the origin. For the
number |C(0)| of vertices, which is a random variable, we define the percolation
probability as

θbond(p) = Pp(|C(0)| = ∞).

We also define the critical probability as

pbond
c (d) = inf{p : θbond(p) > 0},

which is the critical point of p for which θbond(p) > 0. It is one of the great interests
of percolation theory to find or estimate pbond

c (d).

Remark 2.1 We can easily see pbond
c (1) = 1. For d = 2, Harris [9] proved that

θbond(1/2) = 0, and Kesten [14] proved that pbond
c (2) = 1/2 .

Remark 2.2 For any dimension d ≥ 1, we can easily check

pbond
c (d + 1) ≤ pbond

c (d).

Indeed, by embedding L
d into L

d+1 in a natural way as the projection of L
d+1

onto the subspace generated by the first d coordinates, an infinite cluster at the
origin in L

d can be regarded as one in L
d+1. Hence, together with Remark 2.1, we

have an upper bound pbond
c (d) ≤ 1/2 for d ≥ 2. For a lower bound, we use [8,

Theorem 1.33] and obtain

1

2d − 1
≤ pbond

c (d)

for d ≥ 1. It follows from these inequalities that 0 < pbond
c (d) < 1 for d ≥ 2, which

implies that there are two phase (supercritical p > pbond
c and subcritical p < pbond

c )
in the bond percolation model.

1A finite-dimensional cylinder set is a set {ω ∈ � : ωei = εi, i = 1, 2, . . . , n} for some n ∈ N,
e1, . . . , en ∈ E

d and εi ∈ {0, 1}.
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We introduce one more quantity, which will be used in Sects. 5.3 and 5.4. The
number of open clusters per vertex is defined by

κ(p) = Ep(|C(0)|−1).

The following theorem justifies this definition.

Theorem 2.1 Suppose 0 ≤ p ≤ 1. The number Kn of open clusters of B(n) :=
{x ∈ Z

d : ‖x‖∞ ≤ n} satisfies

1

|B(n)|Kn −→ κ(p),

almost surely.

Remark 2.3 A natural alternative model to bond percolation model is the site
percolation model, where each site (or vertex) in L

d assumed to be open randomly
with probability p ∈ [0, 1], independently of all other sites. The critical probability
psite
c (d) of the site percolation model on L

d is also defined in the same way as the
bond model.

Remark 2.4 The bond and site percolation model are naturally extended to ones
defined on the general connected infinite graph G.

We denote by x
bond←→ y the statement that two vertices x, y ∈ Z

d belong to the
same cluster, and by Nbond∞ the number of infinite clusters of K(ω). For x ∈ Z

d , let
τx : � −→ � be the transformation τxωe = ωe+x (e ∈ E

d ). Then τx is measure
preserving on (�,F, Pp) and (�,F, Pp, τx) is ergodic. Since the event {Nbond∞ = k}
is translation-invariant for k ∈ N ∪ {∞}, i.e., τx{Nbond∞ = k} = {Nbond∞ = k},
Pp(N

bond∞ = k) is equal to either 0 or 1. Naturally, the value of k with Pp(Nbond∞ =
k) = 1 depends on the choice of p. Clearly k = 0 in the subcritical phase. Aizenman
et al. [2] showed that k is equal to 1 when p satisfies θbond(p) > 0.

Theorem 2.2 (Aizenman et al. [2]) If θbond(p) > 0, thenNbond∞ = 1 almost surely.

We remark that this theorem includes the statement that θbond(pbond
c ) > 0 implies

Nbond∞ = 1 almost surely, though the positivity of θbond(pbond
c ) is not shown. Next,

we review the FKG inequality [8, Theorem 2.4], which plays an important role
in percolation theory. For the purpose of applying to our model introduced in the
next section, we formulate this theorem in a slightly more general setting than [8,
Theorem 2.4], yet its proof is similar.

For the general setting, we replace E
d with an at most countable set S and we

consider the product space (�,F, Pp) similarly defined over S. Then, there is a
natural partial order on �, given by ω ≤ ω′ if and only if ωs ≤ ω′s for all s ∈ S.
A random variable X on (�,F) is called increasing if X(ω) ≤ X(ω′) whenever
ω ≤ ω′, and an eventA is called increasing if its indicator function IA is increasing.
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Remark 2.5 The event A ∈ F is increasing if and only if both ω ≤ ω′ and ω ∈ A

imply ω′ ∈ A.

The FKG inequality is expressed as follows.

Theorem 2.3 (FKG Inequality) If X and Y are increasing random variables on
(�,F, Pp) such that Ep(X

2) <∞ and Ep(Y
2) <∞, then

Ep(XY) ≥ Ep(X)Ep(Y ).

Remark 2.6 If A,B ∈ F are increasing events, then we may apply the FKG
inequality to their indicator functions IA and IB to find that

Pp(A ∩ B) ≥ Pp(A)Pp(B).

Theorem 2.2 and the FKG inequality imply the estimate (1) in Theorem 1.1.

Proof (Proof of Theorem 1.1 (1)) If p > pbond
c , then there exists the unique infinite

cluster almost surely and we obtain

Pp(x
bond←→ y) ≥ Pp(|C(x)| = ∞, |C(y)| = ∞).

We may apply the FKG inequality to the increasing events {|C(x)| = ∞}, {|C(y)| =
∞} to find that the right hand side is bounded below by

Pp(|C(x)| = ∞)Pp(|C(y)| = ∞) = θbond(p)2 > 0,

which does not depend on x, y ∈ Z
d . ��

Throughout this paper, we use the following notations. The d-dimensional dual
lattice (Ld )∗ is the lattice obtained by translating the d-dimensional cubical lattice
by the vector (1/2, . . . , 1/2), that is, the pair (Ld )∗ = ((Zd )∗, (Ed )∗) of (Zd )∗ :=
{x∗ = x + (1/2, . . . , 1/2) : x ∈ Z

d } and (Ed )∗ := {〈x∗, y∗〉 : ‖x∗ − y∗‖1 =
1, x∗, y∗ ∈ (Zd )∗}.

For n ∈ Z≥0, let B(n) be the box {x ∈ Z
d : ‖x‖∞ ≤ n} and B̃(n) be {x∗ ∈

(Zd )∗ : ‖x∗‖∞ < n}. For a subset V ⊂ Z
d , the boundary of V , denoted by ∂V ,

is the set of vertices in V which is adjacent to some vertices in Z
d \ V . An edge

e = 〈
x, y

〉 ∈ E
d is called a boundary edge of H ⊂ L

d if either x or y is the vertex
of a subgraph H . For a subgraph S ⊂ L

d , we denote by �S the set of all boundary
edges of S.
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2.2 Hole Graph

In this and next subsection, we introduce our model which is a higher dimensional
generalization of the usual percolation models. First, in this subsection, we define a
hole graph, which corresponds to a chain of nanovoids in the craze formation.

Here we briefly review the concept of cubical set, which is used for defining our
percolation model. We refer to [12] for more details. An elementary interval is a
closed interval I ⊂ R of the form I = [l, l + 1] or I = [l, l] for some l ∈ Z. An
elementary interval I is said to be nondegenerate (resp. degenerate) if I = [l, l+ 1]
(resp. I = [l, l]). An elementary cube in R

d is a product Q = I1 × I2 × · · · × Id of
elementary intervals, and the dimension of Q is defined as

dimQ := #{1 ≤ i ≤ d : Ii is nondegenerate}.

Denote by Kd
k the set of all elementary cubes in R

d with dimension k. X ⊂ R
d is

called a cubical set if X can be written as a union of elementary cubes. Note that an
infinite union of elementary cubes is also included in our definition of cubical sets
although it is not in [12]. The dimension dimX of X is defined as

dimX := max{dimQ : Q ⊂ X}.

We now introduce hole graphs. In this paper, a face in R
d means an elementary cube

with dimension d − 1. A hole graph is constructed from a cubical set consisting of
faces. Given a cubical set X with dimension d − 1, a finite graph Gn(X) is first
constructed by restricting to the n-window �n := [−n, n]d ⊂ R

d in the following
way. Let

R
d \ (X ∩�n) = D0 �D1 � · · · �Dβn

be the unique decomposition of the complement Rd \ (X ∩ �n), where D0 is an
unbounded connected domain and Di is a bounded connected domain for each i =
1, 2, . . . , βn.

Remark 2.7 βn is the (d−1)-th Betti number ofX∩�n. There is a natural bijective
correspondence between the generators of the homology group Hd−1(X ∩ �n) -
K
βn of X∩�n in dimension d− 1 and the bounded connected componentsDi (i =

1, 2, . . . , βn).

We call each connected domainDi (i = 1, 2, . . . , βn) a hole. Then the graphGn(X)

is defined as follows. Its vertex set is the set of holes, and two vertices are adjacent
if and only if they share common boundary faces. That is, for two holes D,D′, we
define D � D′ if there exists a face Q ∈ Kd

d−1 such that Q is in the boundary
of D,D′. The graph Gn(X) defined above clearly increases with the radius n. We
define the hole graph of the cubical set X as the limit G(X) :=⋃

n∈NGn(X).
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Fig. 1 d = 2. The cubical set
X (black) and the induced
hole graph (blue)

Note that we often think of a hole graph as an embedded figure into R
d , though

the hole graph itself is an abstract graph induced by a cubical set. To detect the
location of holes, we make use of the dual vertices. In this paper, we sometimes
regard a hole D as a subset of (Zd)∗, that is,

D = {x∗ ∈ (Zd )∗ : x∗ ∈ D} ⊂ (Zd )∗. (3)

We denote by Gx∗(X) the connected component of the graph G(X) containing the
holeD with x∗ ∈ D. If there is no such D, we set Gx∗(X) = ∅. For x∗, y∗ ∈ (Zd )∗,
we write x∗ hole←→ y∗ if Gx∗ = Gy∗ , that is, x∗ and y∗ are connected by a hole path
(Fig. 1).

2.3 Face Percolation

In this subsection, we introduce the face percolation model which will be used for
representing random generations of holes. Let d ≥ 2. In the context of percolation
theory, this model is regarded as the site percolation model on the graph with the
vertex set Kd

d−1, and the adjacency relation of two faces Q, Q′ is defined as

Q ∼ Q′ def⇐⇒ Q ∩Q′ ∈ Kd
d−2. (4)

As a sample space, we take � := {0, 1}Kd
d−1 and F to be the σ -field of subsets

of � generated by finite dimensional cylinder sets. The probability measure Pp
is the product measure $Q∈Kd

d−1
μQ, where μQ is the measure on {0, 1}, given by

μQ({1}) = p. We denote the “origin” of Kd
d−1 byQ0 := [0, 0]×[0, 1]×· · ·×[0, 1].

We also denote by C(Q) the connected component of faces including Q, where the
connection is followed from (4). Similar to the ordinary bond percolation model, we
define the percolation probability and the critical probability as

θ face(p) := Pp(|C(Q0)| = ∞),

pface
c (d) := inf{p : θ face(p) > 0},

respectively, where | · | denotes the number of faces.
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Remark 2.8 For d = 2, a face simply means a bond, implying pface
c (2) =

pbond
c (2) = 1/2 from Remark 2.1.

In this paper, we estimate the critical probability of the face percolation model in
R
d for d ≥ 2 as follows.

Proposition 2.1 For d ≥ 2, it holds that

1/(6d − 7) ≤ pface
c (d).

Proof We first show that the number of faces adjacent to one face is equal to 6(d −
1). Fix an arbitrary face Q = I1 × I2 × · · · × Id . Without loss of generality, we can
assume that only I1 is degenerate. For a face Q′ = I ′1× I ′2×· · ·× I ′d adjacent to Q,
we see

Q ∩Q′ = (I1 ∩ I ′1)× (I2 ∩ I ′2)× · · · × (Id ∩ I ′d ) ∈ Kd
d−2. (5)

We count the number of possible Q′ as follows.

• Suppose that I ′1 is degenerate. It follows from (5) that I1 = I ′1 and only one of
(I2∩I ′2), . . . , (Id∩I ′d ) is degenerate. For the degenerate (Ii∩I ′i ), I ′i must intersect
with either left or right end of Ii , since both Ii and I ′i are nondegenerate. For other
coordinates, we clearly see that Ij = I ′j . Therefore, we have (d−1)×2 = 2(d−1)
different possible Q′.

• Suppose that I ′i is degenerate for some i �= 1. Then, only (I1 ∩ I ′1) and (Ii ∩ I ′i )
are the degenerate intervals of Q ∩Q′. From the same discussion as above, each
I ′1 and I ′i has 2 combinations, and the other coordinates coincide. Therefore, we
have (d − 1)× 2× 2 = 4(d − 1) different possible Q′. ��

Thus the number of possible adjacent Q′, is 6(d − 1). Then Proposition 2.1 follows
immediately from standard lemma [8, Theorem 1.33], stating that for a connected
infinite graph G with maximum degree �, the critical probability psite

c (G) for site
percolation on G is bounded below as

psite
c (G) ≥ 1

�− 1
.

Proposition 2.2 For d ≥ 2, it holds that

pface
c (d + 1) ≤ pface

c (d).

Proof Consider face percolation on R
d+1 with probability p ∈ [0, 1], and define

a face Q = I1 × I2 × · · · × Id in R
d to be open if and only if the face Q̃ :=

I1 × I2 × · · · × Id × [0, 1] in R
d+1 is open. This induces face percolation on R

d

with probability p. In this situation, if the two faces Q,Q′ in R
d are adjacent, so are
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Fig. 2 d = 2. Faces on R
3

(gray) and on R
2 (thick)

Fig. 3 The case of (a) and
(b)

the corresponding faces Q̃, Q̃ in R
d+1 (see Fig. 2). Indeed,Q∩Q′ ∈ Kd

d−2 implies

Q̃ ∩ Q̃′ = Q ∩Q′ × [0, 1] ∈ Kd+1
d−1. Thus pface

c (d + 1) ≤ pface
c (d). ��

From Remark 2.8 and Proposition 2.2, we obtain the estimate pface
c (d) ≤ 1/2 for

any d ≥ 2.
We now construct the hole graph over face percolation model. For a configuration

ω ∈ �, we denote by K(ω) its realization into R
d , i.e., a cubical set K(ω) :=⋃

Q:open Q with dimension d − 1. We simply denote G(K(ω)) and Gn(K(ω)) by
G(ω), Gn(ω), respectively. We set the origin 0∗ = (1/2, . . . , 1/2) and define the
percolation probability and the critical probability as

θhole(p) := Pp(|G0∗(ω)| = ∞),

phole
c := inf{p : θhole(p) > 0},

respectively. We call this model the hole percolation model.

Remark 2.9 We show that the event {|G0∗(ω)| = ∞} is increasing. Suppose that
an open face Q is added to a configuration ω. If Q does not contribute to the hole
generation, the induced hole graph cannot be changed. If not, we easily see that the
possible changes of the induced hole graph are given as follows (see Fig. 3):

(a) a vertex is divided into two vertices and a connecting edge, or
(b) a new vertex is generated.

Note that these cases cannot obstruct the event {G0∗(ω) = ∞} though the graph
structure is changed. From this, we can see that the percolation probability θhole(p)

defined above is an increasing function of p (see [8, Theorem 2.1] for the proof).
Thus, for the critical probability phole

c , we have the following relation:

θhole(p)

{
= 0, if p < phole

c ,

> 0, if p > phole
c .



318 Y. Hiraoka and T. Mikami

From now on, we will denote by (�,F, Pp) the probability space of the face
percolation model with probability p.

2.4 Main Theorems

In this subsection, we show the main theorems. First, we estimate the critical
probability phole

c of the hole percolation model as follows.

Theorem 2.4 For any dimension d ≥ 2, it holds that

pface
c (d) ≤ phole

c (d) ≤ 1− pbond
c (d).

Remark 2.10 It immediately follows from Proposition 2.1 that phole
c is in the open

interval (0, 1). For d = 2, it follows from Remark 2.8 that

1/2 ≤ phole
c (2) ≤ 1− 1/2 = 1/2,

hence phole
c (2) = 1/2.

The other main theorem we prove is an analogue of Theorem 2.2.

Theorem 2.5 Suppose d ≥ 2. Let N∞ be the random variable which counts the
number of infinite hole clusters, and suppose θhole(p) > 0. Then, N∞ = 1 almost
surely.

Remark 2.11 Similarly to the case of the bond percolation model, it is clear that
(�,F, Pp, τx) is ergodic. Since the event {N∞ = k} is translation invariant for
k ∈ N ∪ {∞}, there exists k ∈ N ∪ {∞}, depending only on p, such that Pp(N∞ =
k) = 1. Theorem 2.5 states that k must be 0 or 1, which implies

N∞ =
{

0, if p < phole
c ,

1, if p > phole
c ,

almost surely.

Theorem 2.5 also implies the analogue of the estimation (1) in Theorem 1.1 in the
supercritical phase. Note that the FKG inequality (Theorem 2.3) can be applied
to the probability space (�,F, Pp) of face percolation and the increasing event
{|Gx∗| = ∞}.
Theorem 2.6 If p > phole

c , there exists c := c(p) > 0 such that

Pp(x
∗ hole←→ y∗) ≥ c for any x∗, y∗ ∈ (Zd )∗.
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Proof If p > phole
c , then there exists the unique infinite hole cluster almost surely

and we obtain

Pp(x
∗ hole←→ y∗) ≥ Pp(|Gx∗| = ∞, |Gy∗| = ∞)

for any x∗, y∗ ∈ (Zd)∗. We may apply the FKG inequality to the increasing events
{|Gx∗| = ∞}, {|Gy∗| = ∞} to find that the right hand side is bounded below by

Pp(|Gx∗ | = ∞)Pp(|Gy∗| = ∞) = θhole(p)2 > 0,

which does not depend on x∗, y∗ ∈ (Zd )∗. ��
Remark 2.12 In the subcritical p < phole

c , it is easy to show that the probability

Pp(x
∗ hole←→ y∗) converges to 0 as ‖x∗ − y∗‖1 −→∞. Indeed, it is clear that

Pp(0∗
hole←→ x∗) ≤ Pp(0∗

hole←→ B̃(n))

for 2n ≤ ‖0∗ − x∗‖1. Since Pp(
⋂

n{0∗ hole←→ B̃(n)}) = θhole(p) = 0, the right hand
side converges to 0 as n −→∞.

3 Estimates of the Critical Probability

3.1 Bond Percolation on the Dual Lattice

In this subsection, we explain the main idea for the proof of Theorem 2.4. Let e∗ ∈
(Ed )∗ be a dual bond given by

e∗ = 〈
x∗, x∗ + (0, 0, . . . ,

i

1̌, . . . , 0)
〉

for some x∗ = ((x∗)1, . . . , (x∗)d) ∈ (Zd)∗, and let the face Qe∗ ∈ Kd
d−1 be defined

by

Qe∗ =[(x∗)1 − 1/2, (x∗)1 + 1/2] × [(x∗)2 − 1/2, (x∗)2 + 1/2]×

· · · ×
i

ˇ[(x∗)i + 1/2] × · · · × [(x∗)d − 1/2, (x∗)d + 1/2].

Note that Qe∗ is a unique face intersecting e∗ (see Fig. 4).
We define the configuration of dual bonds in (Ld )∗ as

e∗ ∈ (Ld)∗ : open ⇐⇒ Qe∗ ∈ Kd
d−1 : closed . (6)
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Fig. 4 d = 3. Dual bonds
(black) and the intersecting
face (gray)

Fig. 5 Finite clusters in the
dual lattice (black) and faces
constructing holes (red)

This induces bond percolation on (Ld)∗ with probability 1−p. From now on, when
we consider face percolation, dual bond percolation is also considered by (6).

When d = 2, as we may expect from Fig. 5, the hole constructed by open faces
corresponds to the finite cluster on (Ld)∗.

We prove this correspondence in general dimension d ≥ 2.

Proposition 3.1 The holes bijectively correspond to the finite dual clusters in
(Ld )∗. Moreover, under this bijective correspondence, two holes D, D′ are adjacent
if and only if the corresponding finite clustersC∗, (C∗)′ share some boundary edges,
i.e., �C∗ ∩�(C∗)′ �= ∅.

Face Dual lattice

Hole Finite cluster

Adjacency of holes Sharing some boundary edges of two finite clusters

It follows from Proposition 3.1 that the problem of hole generation can be studied
as the problem of the bond percolation process.

For a dual vertex x∗ ∈ (Zd )∗, we denote its occupied cell Bx∗ ⊂ R
d by

Bx∗ := $d
i=1[(x∗)i − 1/2, (x∗)i + 1/2].
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Then for a dual bond e∗ = 〈
x∗, y∗

〉
, it is easy to see

Qe∗ = Bx∗ ∩ By∗, (7)

and the interiors of two different occupied cells do not intersect.
For a dual cluster C∗, we denote the union of occupied cells by BC∗ =⋃
x∗∈C∗ Bx∗ .
For the proof of Proposition 3.1, we show the following lemma.

Lemma 3.1 Let C∗ be a dual cluster in (Ld )∗. Then,

∂BC∗ =
⋃

e∗∈�C∗
Qe∗ . (8)

Proof Let a ∈ R
d be an arbitrary point in Qe∗ for some e∗ ∈ �C∗. We can set

e∗ = 〈
x∗, y∗

〉
for some x∗ ∈ C∗ and y∗ /∈ C∗. From (7), a must be in Bx∗ ∩ By∗ , in

particular a ∈ BC∗ . For any ε > 0, the ε-open ball B(a; ε) centered at a intersects
the interior of By∗ . Since the interior of By∗ is disjoint with BC∗ , we see a ∈ ∂BC∗ .

Conversely, suppose a ∈ ∂BC∗ . Then there exists x∗ ∈ C∗ and y∗ /∈ C∗ such
that a ∈ Bx∗ ∩ By∗ . We write

a = (a1, a2, . . . , ad),

x∗ = ((x∗)1, (x∗)2, . . . , (x∗)d),

y∗ = ((y∗)1, (y∗)2, . . . , (y∗)d).

Since a is on some faces, at least one element of a1, a2, . . . , ad is an integer.
Suppose that ai1, . . . , aik (1 ≤ i1 < · · · < ik ≤ d) are integers. Then we can
write

aij = (x∗)ij ± 1/2 = (y∗)ij ± 1/2

for j = 1, . . . , k, and

ai ∈ ((x∗)i − 1/2, (x∗)i + 1/2) ∩ ((y∗)i − 1/2, (y∗)i + 1/2)

for the other coordinates. Note that any coordinate of a dual vertex is a half integer.
Thus we obtain

(x∗)ij = (y∗)ij or (x∗)ij = (y∗)ij ± 1

for j = 1, . . . , k, and

(x∗)i = (y∗)i
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for the other coordinates. Consider the coordinates l1, . . . , lm for (x∗)li �= (y∗)li .
Then, we may write

(y∗)lj = (x∗)lj + slj ,

where slj is equal to ±1. Let the sequence x∗ = (z∗)1, (z∗)2, . . . , (z∗)m = y∗ of
dual vertices be as follows.

(z∗)j+1 = (z∗)j + (0, 0, . . . ,
lj

ˇslj , . . . , 0).

Then, a ∈ B(z∗)j for any (z∗)j . Let (z∗)j be the dual vertex satisfying (z∗)j ∈ C∗
and (z∗)j+1 /∈ C∗. Then e∗ := 〈

(z∗)j , (z∗)(j+1)
〉

is the edge of �C∗ and from (7),
we see that a ∈ Qe∗ . ��
We give the proof of Proposition 3.1.

Proof (Proof of Proposition 3.1) Let C∗ be a finite cluster in (Ld )∗. First, by using
Lemma 3.1, we show that any vertices in C∗ belong to the same hole. Note that for
each boundary edge e∗ ∈ �C∗, the corresponding face Qe∗ is open.

Take an arbitrary dual vertex x∗ ∈ C∗. Let γ be a path from x∗ to infinity, i.e.,
a continuous map γ : [0,∞) −→ R

d with γ (0) = x∗ whose image is unbounded.
Then, we have

t ′ := inf{t : γ (t) /∈ BC∗} <∞

since BC∗ is bounded.
Let us check that γ (t ′) ∈ ∂BC∗ . The continuity of γ implies γ (t ′ − 1/n) −→

γ (t ′) as n −→ ∞. Since γ (t ′ − 1/n) ∈ BC∗ and BC∗ is closed, γ (t ′) is in BC∗ .
Moreover, for any ε > 0, there exists δ > 0 such that

|t − t ′| < δ  ⇒ ‖γ (t)− γ (t ′)‖2 < ε.

From the definition of t ′, there exists t such that t ′ ≤ t < t ′ + δ and γ (t) /∈ BC∗ . For
this t , we see ‖γ (t) − γ (t ′)‖2 < ε and then, B(γ (t ′); ε) ∩ (Rd \ BC∗) �= ∅. Thus
we have γ (t ′) ∈ ∂BC∗ .

From Lemma 3.1, we obtain

γ (t ′) ∈ ∂BC∗ =
⋃

e∗∈�C∗
Qe∗ .

This implies that the path γ must hit some face in K(ω), since Qe∗ is open for
e∗ ∈ �C∗. Thus we see that x∗ is in a bounded connected component of Rd \K(ω),
i.e., a hole. From the connectedness of C∗ and the fact that open dual bonds and
open faces must be disjoint, vertices in C∗ must belong to the same hole, say DC∗ .
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Next, let us check that C∗ �→ DC∗ is bijective. We construct the invertible map
D �→ C∗. For a hole D, it must have a dual vertex x∗. For this x∗, the dual cluster
C∗(x∗) ⊂ (Ld )∗ including x∗ is finite, since the existence of an infinite path from
x∗ contradicts the boundedness of D. It is sufficient to check that C∗(x∗) = C∗(y∗)
for two vertices x∗, y∗ ∈ D. Suppose on the contrary C∗(x∗) �= C∗(y∗). Since
x∗, y∗ ∈ D, there exists a path γ : [0, 1] −→ R

d in D such that γ (0) = x∗ and
γ (1) = y∗. Similarly to the above discussion, we can show that γ must intersect
∂BC∗(x∗) = ⋃

e∗∈�C∗(x∗) Qe∗ . This means that γ must hit some open face, which
contradict the condition that γ is in D. Clearly, we can see D = DC∗(x∗) for this x∗.
Therefore, C∗ �→ DC∗ is bijective.

Under this bijective correspondence, suppose that two finite dual clusters C∗1 , C∗2
share a dual boundary e∗. From the above discussion, we see that the corresponding
holes DC∗1 , DC∗2 are constructed by the faces which correspond to the boundary
edges of C1, C2, respectively. Therefore, ∂DC1 and ∂DC2 share the face Qe∗ . This
means the holes are adjacent. Similarly we can see that if two holes are adjacent, the
corresponding finite clusters share some boundary edges. ��

We apply Proposition 3.1 to the hole percolation model.
Note that by Theorem 2.2, the infinite cluster in (Ld )∗ is uniquely determined,

say I ⊂ (Ld )∗ (if there is no infinite cluster, I ⊂ (Ld)∗ is assumed to be ∅). Let us
define the subgraph (Ld )∗ − I ⊂ (Ld )∗ as follows:

• Vertex set: {x∗ ∈ (Zd )∗ : x∗ does not belong to I }
• Edge set: {e∗ ∈ E

d : e∗ belongs to neither I nor �I }
Namely, (Ld)∗ − I is the graph defined by removing the graph I and its incident
edges from (Ld )∗.

Let us observe the shape of a hole graph by using the definition (3), regarding
a hole as the subset of Zd . From Theorem 2.2 and Proposition 3.1, a dual vertex
x∗ ∈ (Ld)∗−I belongs to a finite dual cluster almost surely, and thus x∗ is included
in some hole. On the other hand, from Proposition 3.1, a dual vertex x∗ in some
hole must in a finite dual cluster, and thus in x∗ ∈ (Ld)∗ − I . Therefore, it follows
that x∗ ∈ (Zd )∗ belongs to the hole graph if and only if x∗ ∈ (Ld )∗ − I . Roughly
speaking, if we ignore the shape of each hole and their adjacency, the “external
appearance” of the hole graph coincides with (Ld )∗ − I .

In more detail, the following lemma shows the relation between clusters of a hole
graph and connected components of (Ld )∗ − I .

Lemma 3.2 Hole clusters bijectively correspond to the connected component of
(Ld )∗ − I . Moreover, under this correspondence, a hole cluster is infinite if and
only if the corresponding connected component is infinite.

Hole graph (Ld )∗ − I

Cluster Connected component

Infinite cluster Infinite connected component
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Fig. 6 (a) The configuration of dual bonds, (b) the induced hole graph (blue), and (c) (Ld )∗ − I .
Here I is the red graph, with the arrow indicating a path to infinity

Note that the right hand side of the above table only refers to (Ld)∗ − I ⊂ (Ld )∗,
and does not consider whether the remaining bonds in (Ld )∗ − I is open or not.
Figure 6 shows the relation between (Ld )∗ − I and its induced hole graph.

Proof We first prove the following claim.

(A) Two dual vertices x∗, y∗ in (Ld )∗ − I belong to a same connected component
if and only if the holes D, D′ with x∗ ∈ D, y∗ ∈ D′ belong to a same cluster
of the induced hole graph.

For two dual vertices x∗, y∗ which belong to a same connected component in
(Ld )∗ − I , there exist holes Dx∗ and Dy∗ which include x∗ and y∗, respectively,
because of the uniqueness of the infinite cluster (Theorem 2.2). Take a path from x∗
to y∗ in (Ld )∗ − I

x∗ = x∗0 , e∗1, x∗1 , e∗2 . . . , e∗n, x∗n = y∗,

where each x∗i is a vertex of (Ld )∗ − I . Let Dx∗i be the hole including x∗i . Then for
i = 0, 1, . . . n−1, we can seeDx∗i = Dx∗i+1

orDx∗i � Dx∗i+1
. Indeed, ifDx∗i �= Dx∗i+1

,
then the face Qe∗i+1

is open, and it is a common boundary of Dx∗i and Dx∗i+1
. Choose

the different holes along the path, we obtain

Dx∗ � Di1 � . . . � Dik � Dy∗ .

This means that Dx∗ and Dy∗ belong to the same cluster.
Now we check the other direction. First, we assume D � D′. For two dual

vertices x∗, y∗ with x∗ ∈ D, y∗ ∈ D′, respectively, we can take a path

x∗, e∗1, . . . , e∗i , e∗Q, f ∗1 , . . . , f ∗j , y∗,

where e∗1, . . . , e∗i and f ∗1 , . . . , f ∗j is the dual bonds in D, D′, respectively, and e∗Q
is the dual bond which corresponds to a common boundary face Q of D and D′.
Clearly, e∗1, . . . , e∗i and f ∗1 , . . . , f ∗j is the bonds in (Ld )∗−I . Since both end vertices

of eQ are in D, D′, eQ also belongs to (Ld )∗−I . Thus x∗ and y∗ belong to the same
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connected component. By transitivity, it also holds for general two holes D, D′ in
the same cluster of the hole graph.

From the claim (A), we can construct the bijection between hole clusters and
connected components in (Ld )∗ − I .

For a connected component in (Ld)∗ − I , let us take its vertex x∗. From
Theorem 2.2, there exists a hole Dx∗ including x∗. We set the corresponding hole
cluster as the one including Dx∗ . The claim (A) ensures well-definedness of this
correspondence. Conversely, given a hole cluster, take its hole D and a vertex x∗ in
D. We set the corresponding connected component in (Ld)∗−I as the one including
x∗. Again the claim (A) also ensures well-definedness, and hence we see that these
are inverses of each other. ��

3.2 Estimates of the Critical Probability

In this subsection, we give the proof of Theorem 2.4. First, we introduce the
notations which will be used later. Let X ⊂ R

d be a cubical set constructed of
only faces. We say that X encloses the subset V ⊂ (Zd )∗ if and only if we may
choose faces Q1,Q2, . . . ,Qk of X such that V is included in a bounded domain of
R
d \ (⋃k

i=1 Qi).
Intuitively, it may seem to be true that pface

c ≤ phole
c . Indeed, if there exists an

infinite path of holes, we may expect that the faces of the holes also make an infinite
path. However, there is a counterexample shown in Fig. 7. The key point of the proof
for pface

c ≤ phole
c is to check that the case like Fig. 7 cannot influence the value of

phole
c . For this, we give the following lemma, which states that holes do not tend to

be large.

Lemma 3.3 If p < 1− pbond
c (d), then

Pp({K(ω) encloses B̃(n)}) −→ 0

as n −→ 0.

Proof Suppose p < 1− pbond
c (d). Since 1− p > pbond

c (d), there exists an infinite
dual cluster almost surely. Fix a dual vertex x∗ ∈ (Ld )∗ of the infinite dual cluster.
For sufficiently large N ∈ N, we find x∗ ∈ B̃(N) and K(ω) does not enclose B̃(N)
(see Fig. 8).

Fig. 7 A cubical set (black)
and the induced hole graph
(blue). The hole graph is
infinitely connected while all
face clusters are finite
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Fig. 8 The infinite cluster in
the dual lattice (red), B̃(N)
(dotted), and faces in K(ω)
(thick)

Thus, we obtain

Pp(
⋂
n∈N
{K(ω) encloses B̃(n)}) = 0,

which implies the statement of the lemma. ��
Next, we prove Theorem 2.4.

Proof (Proof of Theorem 2.4) The upper bound follows from Lemma 3.2. Indeed,
suppose 1− pbond

c < p. Then 1− p < pbond
c and that implies there exist no infinite

dual clusters almost surely. This means that the hole graph consists of one infinite
cluster spreading in R

d .
We show the lower bound by using Lemma 3.3. Suppose that a sample ω ∈ �

satisfies |G0∗(ω)| = ∞. Then the following occurs:

For any M ∈ N, there exists a face cluster C such that

(1) |C| ≥M (2) C encloses 0∗

Let us denote this event byA. Then it suffices to show that Pp(A) = 0 for p < pface
c .

For n ≥ 0 and m ≥ 1, we denote by Am,n the event that

Am,n := {there exists a face cluster C such that

(1) |C| ≥ m (2) C encloses B̃(n) and 0∗}.

Then Am,n is nonincreasing with respect to n, m, respectively. Since
⋂

m Am,0 = A,
it suffices to show that

lim
m→∞Pp(Am,0) = 0. (9)

Fix arbitrary ε > 0 and suppose p < pface
c (d). Then, we have

1− p > 1− pface
c (d) ≥ 1/2 ≥ pbond

c (d),
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where the second inequality follows from Proposition 2.2 and pface
c (2) = 1

2 , and the
last inequality follows from Remark 2.2. From Lemma 3.3, we can take an integer
N independently from m such that

Pp(Am,N) ≤ Pp
({K(ω) encloses B̃(N)}) < ε.

For this N , if the event Am,0 \ Am,N occurs, then there exists a face cluster C
intersecting �N = [−N,N]d such that |C| ≥ m. Therefore we obtain

Pp(Am,0 \ Am,N) ≤
∑

Q⊂�N :face

Pp(|C(Q)| ≥ m)

= |�N |Pp(|C(Q)| ≥ m).

Here, we denote by |�N | the number of faces in �N . Since p < pface
c , the last

expression converges to 0 as m −→ 0. Thus, for large enough m, we obtain

Pp(Am,0 \ Am,N) < ε

and thus, we obtain

Pp(Am,0) ≤ Pp(Am,N)+ Pp(Am,0 \ Am,N) < 2ε,

which completes the proof of (9). ��
Remark 3.1 Suppose d = 2. Since phole

c = 1/2 (see Remark 2.10), θhole(p) = 0
for p < 1/2. Moreover, from the proof of Theorem 2.4, we may have θhole(p) = 1
whenever θbond(1 − p) = 0. From Remark 2.1, we see θbond(p) = 0 for p ≤ 1/2.
Thus, θhole(p) is determined as follows:

θhole(p) =
{

0, if p < 1/2,

1, if p ≥ 1/2.

Furthermore, from the proof of Theorem 2.4, we also see that for p ≥ 1/2, the hole
graph consists of one infinite cluster, spreading in R

d .

4 Uniqueness of the Infinite Hole Cluster

We give the proof of Theorem 2.5 in this section. Note that from Remark 2.11,
the number of infinite clusters is the function of p. Clearly, when p = 1, the hole
graph consists of one infinite cluster, and θhole(p) = 0 when p = 0. Let us suppose
0 < p < 1 in this section.
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Let us first study the case d = 2. From Remark 3.1, the uniqueness holds for
p ≥ 1/2. For p < 1/2, we have already seen θhole(p) = 0. Thus, Theorem 2.5
holds for d = 2.

In this section, we prove Theorem 2.5 for d ≥ 3.
Let the random variable Mn be the number of infinite hole clusters intersecting

B̃(n). Let the random variable Nn(1) (resp. Nn(0)) be the number of infinite hole
clusters when the faces in �n are set to be open (resp. closed). First, we show that
the number N∞ of infinite hole clusters should be 0, 1 or∞.

Lemma 4.1 If 1 ≤ k <∞, then Pp(N∞ = k) = 1 implies k = 1.

Proof Clearly, when p = 1, the hole graph consists of one infinite cluster and we
find k = 1. When p = 0, the hole graph is ∅. We suppose 0 < p < 1 in this proof.
Suppose Pp(N∞ = k) = 1. We have

1 = Pp(N∞ = k) =
∑
An

Pp(N∞ = k | An)Pp(An),

where An is a cylinder set determined by the configuration of all faces in �n. The
right hand side is the sum over all the configurations of faces in �n. Since the
number |�n| of faces in �n is finite and 0 < p < 1, Pp(An) is strictly positive.
Thus for any An, Pp(N∞ = k | An) must be equal to 1. In particular, when An is
the case that “all faces in �n are open”, we obtain

1 = Pp(N∞ = k | An)

= Pp(N∞ = k and An)/Pp(An)

= Pp(Nn(1) = k and An)/Pp(An)

= Pp(Nn(1) = k),

where we used the independence of Nn(1) and An. Similarly, we have

1 = Pp(Nn(0) = k),

and thus,

1 = Pp(Nn(1) = Nn(0) = k).

We may see that Nn(1) = Nn(0) < ∞ implies Mn ≤ 1, where we use the
assumption k < ∞. Indeed, if on the contrary Mn ≥ 2, the number of infinite
hole clusters must decrease by opening all the faces in �n, which contradicts
Nn(1) = Nn(0) <∞. From the relation

{N∞ ≤ 1} = {∀n : Mn ≤ 1} =
⋂
n

{Mn ≤ 1}
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and continuity of measures, we obtain

1 = Pp(Mn ≤ 1) −→ Pp(N∞ ≤ 1)

as n −→ ∞. This implies Pp(N∞ ≤ 1) = 1 and completes the proof of
Lemma 4.1. ��
From Lemma 4.1, Pp(N∞ = k) = 0 for 2 ≤ k < ∞. Thus it is sufficient for
Theorem 2.5 to show that infinite hole cluster is not infinite. To this aim, we need
two more lemmas. The first one is also used to show the uniqueness of infinite bond
clusters (for the proof, see [8, Lemma 8.5]).

Let us give the notations for the lemma. For a set Y with |Y | ≥ 3, a 3-
partition $ = {$1,$2,$3} of Y is a partition of Y into exactly three non-empty
sets $1,$2,$3. We say that two 3-partitions $ = {$1,$2,$3} and $′ =
{$′1,$′2,$′3} are compatible if there exists an ordering of their elements such that
$1 �$2 ⊂ $′3. The lemma is expressed as follows.

Lemma 4.2 Let Y be a set with |Y | ≥ 3, and P be a set of 3-partitions of Y . If any
two 3-partitions in P are compatible, then |P| ≤ |Y | − 2.

Before giving the second lemma, we again set the notations. Let us say that x∗ ∈
(Ld )∗ is a trifurcation if:

1. there exists a hole which includes only x∗, say Dx∗ ,
2. Dx∗ belongs to an infinite hole cluster I , and
3. the graph I − Dx∗ obtained by deleting the vertex Dx∗ and its incident edges

from I consists of exactly three infinite clusters.

We denote by Tx∗ the event that x∗ ∈ (Zd)∗ is a trifurcation. The second lemma is
as follows.

Lemma 4.3 Assume d ≥ 2, then Pp(T0∗) = 0.

Proof Let K ⊂ G be a cluster of the hole graph G. Assume that x∗ ∈ K ∩ B̃(n) is
a trifurcation. Then K is infinite and the deleted graph K −Dx∗ consists of exactly
three infinite clusters, say K1,K2,K3. Then x∗ induces a 3-partition $(x∗) :=
{Ki ∩ ∂B̃(n + 1) : i = 1, 2, 3} of K ∩ ∂B̃(n + 1). Moreover, for two trifurcation
x∗, y∗ ∈ K ∩ B̃(n), we show that $(x∗) and $(y∗) are compatible (see Fig. 9). We
set

$(x∗) := {Ki ∩ ∂B̃(n+ 1) : i = 1, 2, 3},
$(y∗) := {K ′i ∩ ∂B̃(n+ 1) : i = 1, 2, 3},

respectively. Without loss of generality, we may assume K1, K ′1 includes y∗, x∗,
respectively. It is sufficient to see that

[K ′2 ∩ ∂B̃(n+ 1)] ∪ [K ′3 ∩ ∂B̃(n+ 1)] ⊂ K1 ∩ ∂B̃(n+ 1),
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Fig. 9 $(x∗) = {A,D, (B,C)} and $(y∗) = {(A,D), B,C}

which can be reduced to the following relation as the graphs

K ′2 ∪K ′3 ⊂ K1.

From the definition of a trifurcation, the graph K ′2 ∪K ′3 ∪Dy∗ is an infinite cluster,
which does not include Dx∗ . From the setting of $(x∗), it must be included in one
of Ki (i = 1, 2, 3). Since it includes Dy∗ , we can see K ′2 ∪K ′3 ∪Dy∗ ⊂ K1.

Here, we can see

#{x∗ ∈ K ∩ B̃(n) : trifurcation} = #{$(x∗) : x∗ ∈ K ∩ B̃(n) : trifurcation}.

By using Lemma 4.2, the right hand side is bounded above by |K ∩ ∂B̃(n+ 1)|. We
take the sum over all clusters K ⊂ G intersecting B̃(n+ 1), to find that

#{x∗ ∈ B̃(n) : trifurcation} ≤ |∂B̃(n+ 1)|,

which can be written as

∑

x∗∈B̃(n)
ITx∗ ≤ |∂B̃(n+ 1)|.

Then we take the expectation to find that

|B̃(n)|Pp(T0∗) ≤ |∂B̃(n+ 1)|.

By letting n −→∞, this gives us Pp(T0∗) = 0. ��
By using Lemma 4.3, we give the proof of Theorem 2.5.
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Proof (Proof of Theorem 2.5) From Lemma 4.3, it is sufficient to show that
Pp(N∞ = ∞) = 1 implies Pp(T0∗) > 0.

Since Pp(Mn ≥ 3) −→ Pp(N∞ ≥ 3) = 1 as n −→∞, there exists n such that

Pp(Mn ≥ 3) ≥ 1/2.

Suppose Mn ≥ 3. We now show that we can make 0∗ a trifurcation by changing the
configuration of faces in �n properly (see Fig. 10).

First, we can take three dual vertices a∗i (i = 1, 2, 3) ∈ B̃(n + 1) satisfying the
following conditions:

(a) a∗i ’s are included in distinct infinite hole clusters, and
(b) each a∗i is adjacent to B̃(n).

From condition (a), we can see a∗i and a∗j are not adjacent for i �= j (if not, they
must be in the same hole cluster). We also take three paths πi of the dual lattice such
that

(c) each πi connects between 0∗ and a∗i in B̃(n) (i = 1, 2, 3), and
(d) they repel each other, i.e., for any i �= j , x∗ ∈ πi \ 0∗ and y∗ ∈ πj \ 0∗ are not

adjacent.

Denote by Ii (i = 1, 2, 3) the infinite hole cluster including a∗i . We change the
configuration of faces in �n as follows:

(i) For each vertex of πi , all nearest faces are open,
(ii) the faces in the boundary of �n are open whenever they are included in Ii (i =

1, 2, 3), and
(iii) other faces are all closed. ��

Then 0∗ becomes a trifurcation. Indeed, we can see that 0∗ satisfies conditions
1 and 2 of the trifurcation. Let us check the third condition. Now, in �n, Ii ’s are
connected only atD0∗ . On the outside of�n, from the assumption (a) of a∗i , there are
no holes connecting different Ii ’s. It remains to rule out the case that there appears
a new hole constructed by faces both inside and outside of �n by the process (i)–

Fig. 10 The configuration of Mn ≥ 3 (left) and 0∗ is a trifurcation (right)
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(iii). From the assumption d ≥ 3, the dual vertices in B̃(n) \ π1 ∪ π2 ∪ π3 are all
connected, and the new faces do not contribute to make such holes.

Finally, we show that

Pp(T0∗) ≥ Pp(Mn ≥ 3)min{p, 1− p}|�n| > 0,

where we denote by |�n| the number of faces in �n. This contradicts Pp(T0∗) =
0, and completes the proof of Theorem 2.5. Let ωn ∈ $Q⊂�n:face{0, 1} be a
configuration of faces in �n. We denote by T0∗(ωn) the event that 0∗ becomes a
trifurcation when the configuration in �n are set to be ωn. For a configuration ω,
we also denote by ω|�n ∈ $Q⊂�n:face{0, 1} the restriction of ω to the faces in �n.
Then we may write

Pp(T0∗) =
∑
ωn

Pp(T0∗(ω
n) and ω|�n = ωn),

where the right hand side is the sum of all configurations in �n. Since the events
T0∗(ωn) and {ω|�n = ωn} are independent, the right hand side of this equation is
bounded below by

∑
ωn

Pp(T0∗(ω
n))Pp(ω|�n = ωn) ≥ min{p, 1 − p}|�n|∑

ωn

Pp(T0∗(ω
n)). (10)

From the above discussion, we have {Mn ≥ 3} ⊂ ⋃
ωn T0∗(ωn), and thus, the right

hand side of (10) is again bounded below by

Pp(Mn ≥ 3)min{p, 1− p}|�n| > 0.

Remark 4.1 Grimmett et al. [6] study percolation of finite clusters in the bond
percolation model; they focus on whether the random subset X := {x ∈ Z

d :
|C(x)| <∞} of Zd has an infinite connected component or not. By combining with
uniqueness of the infinite connected component ofX [6, Theorem 4.3], Theorem 2.5
immediately follows from Lemma 3.2, though we prove it directly in this paper.

5 Other Properties of Hole Percolation

5.1 The Right Continuity of θhole(p)

For bond percolation on L
d , the percolation probability θbond(p) has some proper-

ties of continuity as follows.

Proposition 5.1 θbond(p) is right continuous on the interval [0, 1].
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Proposition 5.2 θbond(p) is left continuous on the interval (pbond
c , 1].

We prove the analogue of the continuity for the hole percolation model, by using
the similar technique used in the case of bond percolation.

Proposition 5.3 θhole(p) is right continuous on [0, 1] \ {1− pbond
c }.

Remark 5.1 Clearly θhole(p) is right continuous at p = 0 since phole
c > 0. In the

interval (1−pbond
c , 1], from the proof of Theorem 2.4, we can see θhole(p) = 1 and

in particular θhole(p) is right continuous.
For p = 1− pbond

c , we easily see

θhole(p) is right continuous at p = 1− pbond
c

⇐⇒ θhole(1− pbond
c ) = 1.

This is equivalent to

θbond(pbond
c ) = 0. (11)

Indeed, similarly to the proof of Proposition 2.4, we can see that (11) implies
θhole(1− pbond

c ) = 1. If θbond(pbond
c ) > 0, then we find

θhole(1− pbond
c ) ≤ Ppbond

c
(there exists a hole including 0∗)

= 1− θbond(pbond
c ) < 1.

Yet (11) is proven only when d = 2 and d ≥ 19.

In order to prove Theorem 5.3, we use the following lemma.

Lemma 5.1 For each n, Pp(0∗
hole←→ ∂B̃(n)) is continuous at p ∈ (0, 1− pbond

c ).

We can easily see Proposition 5.3 from the lemma.

Proof (Proof of Proposition 5.3) From Remark 5.1, it is sufficient to show that
θhole(p) is right continuous at p ∈ (0, 1− pbond

c ).

Take p0 ∈ (0, 1 − pbond
c ). Clearly, θhole(p) = limn→∞ Pp(0∗

hole←→ ∂B̃(n)).

The function Pp(0∗
hole←→ ∂B̃(n)) is continuous at p0 from Lemma 5.1, and non-

increasing with n. Thus θhole(p) is upper semi-continuous. Since θhole(p) is non-
decreasing with p, thus θhole(p) is right continuous at p0. ��
Remark 5.2 For the case of bond percolation, it is easy to see that Pp(0

bond←→
∂B(n)) is continuous. Indeed, since the event {0 bond←→ ∂B(n)} depends only on the

configuration of bonds in B(n), Pp(0
bond←→ ∂B(n)) is polynomial with p. Therefore,

Proposition 5.1 can be shown as above.
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Let us turn to the proof of Lemma 5.1. Unlike the case in Remark 5.2, the event

{0∗ hole←→ ∂B̃(n)} depends on outside of any fixed box because a hole can be
constructed through the outside. Here, we use Proposition 5.4 [8, Theorem 8.21],
which states that finite bond clusters in the supercritical phase are less likely to be
large. In the context of hole percolation, this proposition states that holes cannot be

large. We use this fact and approximate the event {0∗ hole←→ ∂B̃(n)} by some local
events.

Proposition 5.4 Let (�,F, Pp) be the probability space for bond percolation
model with probability p. Let Gn be an event defined by

Gn := {0 bond←→ H(n) and |C(0)| <∞},

where H(n) = {x ∈ Z
d : x1 = n}. Then, for pbond

c < p < 1, there exists γ (p) > 0
such that

Pp(Gn) ≤ e−γ (p)n.

Moreover, we can take γ : (pbond
c , 1) −→ R>0 satisfying the condition that

inf
p∈[α,β] γ (p) > 0

for any pbond
c < α < p < β < 1.

From this proposition, we will prove Lemma 5.1.

Proof (Proof of Lemma 5.1) Fix arbitrary p ∈ (0, 1 − pbond
c ) and take pbond

c <

α < 1− p < β < 1. We set the following events:

A := {0∗ hole←→ ∂B̃(n)},
Ak := {0∗ hole←→ ∂B̃(n) even if all faces in R

d \�k are set to be closed}.

Then Pp(Ak) is a polynomial with respect to p since Ak depends only on the
configuration of faces in �k , and thus continuous. Moreover, from

A1 ⊂ A2 ⊂ A3 · · · ⊂
⋃
k

Ak = A

and the continuity of measures, we have Pp(Ak) −→ Pp(A) as k −→∞.
We show that this convergence is uniformly on 1 − p ∈ [α, β], which leads to

the continuity of Pp(A) at p. Clearly, we can see

Pp(A)− Pp(Ak) = Pp(A \ Ak).
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If the event A \ Ak occurs, then in the dual lattice, there exists some x∗ ∈ ∂B̃(n)

which belongs to a finite dual cluster intersecting ∂B̃(k). Thus, we obtain

Pp(A \Ak) ≤
∑

x∗∈∂B̃(n)
Pp(x

∗ dual←→ ∂B̃(k), |C(x∗)| <∞). (12)

Here, x∗ dual←→ ∂B̃(k) implies that there exists an open dual path connecting between
x∗ and some dual vertex y∗ with ‖x∗ − y∗‖∞ ≥ k − n. Thus, the right hand side
of (12) is bounded above by

|∂B̃(n)|Pp(0∗ dual←→ ∂B̃(k − n), |C(0∗)| <∞) (13)

Let F1, . . . , F2d be the list of 2d surfaces of B̃(k − n). Then (13) is again bounded
above by

|∂B̃(n)|Pp(
2d⋃
i=1

{0∗ dual←→ Fi} ∩ {|C(0∗)| <∞})

≤ 2d|∂B̃(n)|Pp(0∗ dual←→ F1, |C(0∗)| <∞)

≤ 2d|∂B̃(n)|e−σ(k−n),

where σ := inf1−p∈[α,β] γ (1 − p) > 0. This completes the proof of uniform
convergence Pp(A) −→ Pp(Ak) for 1− p ∈ [α, β]. ��

5.2 Left Continuity of θhole(p) in the Supercritical Phase

For the proof of Proposition 5.2, the uniqueness of infinite clusters (Theorem 2.2)
plays an important role. In this paper, we obtain the analogue theorem (Theorem 2.5)
in the previous section. We will prove the following proposition by using the similar
idea of the proof of Proposition 5.2.

Proposition 5.5 θhole(p) is left continuous on the interval (phole
c , 1].

Note that from Lemma 3.2 and Theorem 2.5, the number of infinite connected
components in (Ld )∗ − I is also at most 1. Remark that we focus on the infinite
cluster I , and ignore the configuration of dual bonds in (Ld )∗ − I .

In Sect. 2.3, we adopt the probability space (�,F, Pp) of the face percolation
model for a fixed probability p. For the proof of Proposition 5.5, however, we need
to compare the configurations in different probability. Now we use the technique
of “coupling” of random variables in order to consider configurations in different
probability on the same probability space.
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Proof We set the collection of independent random variables (XQ : Q ∈ Kd
d−1)

on a probability space (�̃, F̃, P̃ ) indexed by Q ∈ Kd
d−1, each having the uniform

distribution on [0, 1]. For p ∈ [0, 1], we define ηp ∈ � = {0, 1}Kd
d−1 as

ηp(Q) =
{

1, if XQ < p,

0, otherwise,

which gives the face percolation model with probability p. Let I∗(ηp) ⊂ (Ld )∗ be
the infinite cluster in (Ld )∗ induced by ηp and we set Hp := (Ld )∗ − I∗(ηp). We
denote by Hp(x

∗) the connected component in Hp including x∗. From Lemma 3.2,
we obtain the following relation:

|Hp(0∗)| = ∞ ⇐⇒ |G0∗| = ∞,

∃x∗ ∈ (Zd )∗ such that |Hp(x
∗)| = ∞ ⇐⇒ G has an infinite cluster.

Remember that Hp and Hp(0∗) do not have anything to do with whether or not the
dual bond in (Ld)∗ − I∗(ηp) is open. Note also that, from the definition of ηp, Hp

and Hp(x
∗) is increasing with p.

Under this setting, we have

θhole(p) = Pp(|G0∗| = ∞) = P̃ (|Hp(0∗)| = ∞).

Take arbitrary p > phole
c . Proposition 5.5 is equivalent to the equality

lim
π↗p

P̃ (|Hπ(0∗)| = ∞) = P̃ (|Hp(0∗)| = ∞). (14)

From the continuity of measures, the left hand side of (14) is equal to

P̃ (∃π < p such that |Hπ(0
∗)| = ∞).

From the monotonicity of Hp(0∗), we can easily see {∃π < p such that |Hπ(0∗)| =
∞} ⊂ {|Hp(0∗)| = ∞}. Thus, it is sufficient to show

P̃ ({|Hp(0∗)| = ∞} \ {∃π < p such that |Hπ(0∗)| = ∞}) = 0. (15)

Suppose |Hp(0∗)| = ∞. Let us take α with phole
c < α < p. From Theorem 2.5,

there exists a dual vertex x∗ such that |Hα(x
∗)| = ∞ almost surely. Theorem 2.5

also implies Hα(x
∗) ⊂ Hp(0∗) almost surely. (If not, for this p, there exist

two infinite connected components, Hp(0∗) and the one including Hα(x
∗). This

contradicts the uniqueness of the infinite hole cluster.) Thus, we can take a dual
path 0∗ = x∗0 , x∗1 , x∗2 , . . . , x∗n = x∗ in Hp(0∗). For each i = 0, . . . , n − 1, we can
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take the faces such that ηp(Q) = 1 which construct the hole including x∗i , since
x∗i ∈ Hp(0∗). We denote these faces by Q(i,1), · · · ,Q(i,mi ). Let π be

π := max{α,XQ(i,j)
: i = 0, . . . , n− 1, j = 1, . . . ,mi}.

Then α ≤ π < p since XQi,j < p. For this π , we have Hα(x
∗) ⊂ Hπ(x

∗)
and Hπ(x

∗) includes 0∗. Thus we have |Hπ(0∗)| = ∞. This completes the proof
of (15). ��

5.3 The Number of Vertices in the Hole Graph

In this subsection, we study the number of vertices in the hole graph. From
Remark 2.7, the number of vertices in the hole graph Gn restricted to �n is equal
to the Betti number βn(X) of X ∩�n in dimension d − 1. It is shown by the paper
[10] that βn(X)/|B̃(n)| converges to a certain constant as n −→ ∞. Here, we give
the explicit value of this limit by using the function κ(p), which we reviewed in
Sect. 2.1.

Proposition 5.6 Let |Gn(ω)| be the number of vertices in the restricted hole graph
Gn(ω). Then,

lim
n→∞

|Gn(ω)|
|B̃(n)| = κ(1− p),

almost surely.

Proof Note that under the correspondence between dual bonds and faces, |Gn| is
equal to the number of finite clusters of the dual lattice whose vertices are all in
B̃(n). For x∗ ∈ (Zd )∗, let us define the two random variables fx∗ , gx∗ as follows:

fx∗(ω) = |C∗(x∗)|−1,

gx∗(ω) =
{ |C∗(x∗)|−1, if C∗(x∗) ⊂ B̃(n),

0, otherwise,

respectively. Clearly, we see

∑

x∗∈B̃(n)
gx∗(ω) = |Gn(ω)|

and from the ergodic theorem [15, Proposition 2.2], we obtain almost surely

lim
n→∞

1

|B̃(n)|
∑

x∗∈B̃(n)
fx∗(ω) = κ(1− p)
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We show that the same equality holds even if we replace fx∗ by gx∗ . Since

|fx∗(ω)− gx∗(ω)| =
{
|C∗(x∗)|−1, if x∗ bond←→ ∂B̃(n+ 1),

0, otherwise,

we obtain
∣∣∣∣∣∣

∑

x∗∈B̃(n)
fx∗(ω)−

∑

x∗∈B̃(n)
gx∗(ω)

∣∣∣∣∣∣
≤

∑

x∗∈B̃(n)
|fx∗(ω)− gx∗(ω)|

≤
∑

x∗∈B̃(n): x∗ bond←→∂B̃(n+1)

|C∗(x∗)|−1

≤
∑

x∗ bond←→∂B̃(n+1)

|C∗(x∗)|−1.

The last summand is equal to the number of cluster intersecting ∂B̃(n+1), and thus
bounded above by |∂B̃(n+ 1)|. Therefore,

1

|B̃(n)|

∣∣∣∣∣∣
∑

x∗∈B̃(n)
fx∗(ω)−

∑

x∗∈B̃(n)
gx∗(ω)

∣∣∣∣∣∣
≤ |∂B̃(n+ 1)|

|B̃(n)| −→ 0

as n −→∞. This completes the proof of Proposition 5.6. ��

5.4 The Size of Holes

Though a hole graph is constructed from elementary cubes, its structure may be
much more complicated than a subgraph of (Ld)∗. Indeed, for example, the degree
of the hole graph can be unbounded since the “size” of holes are unbounded. In
this subsection, as a first step in studying the structure of a hole graph, we give a
proposition about the average size of holes. Here, we define the size size(D) of a
hole D as the number of dual vertices in D, i.e.,

size(D) := #{x∗ ∈ (Zd)∗ : x∗ ∈ D}.

Proposition 5.7

lim
n→∞

1

|Gn(ω)|
∑

D∈Gn(ω)

size(D) = 1− θbond(1− p)

κ(1− p)
,

almost surely.
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Note that the function κ on the right hand side is the same as the one which we used
in Sect. 5.3. The left hand side represents the average of size of holes in G(ω).

Proof It suffices to prove that

lim
n→∞

1

|B̃(n)|
∑

D∈Gn(ω)

size(D) = 1− θbond(1− p),

almost surely. Indeed, together with Proposition 5.6, we obtain almost surely

1

|Gn(ω)|
∑

D∈Gn(ω)

size(D) =
⎛
⎝ 1

|B̃(n)|
∑

D∈Gn(ω)

size(D)

⎞
⎠

(
1

|B̃(n)| |G
n(ω)|

)−1

−→ 1− θbond(1− p)

κ(1− p)

as n −→∞. For the indicator function I{C(x∗)⊂B̃(n)}, we easily see

∑

x∗∈B̃(n)
I{C(x∗)⊂B̃(n)} =

∑
D∈Gn(ω)

size(D).

Moreover, from the ergodic theorem [15, Proposition 2.2], we obtain almost surely

lim
n→∞

1

|B̃(n)|
∑

x∗∈B̃(n)
I{|C(x∗)|<∞} = 1− θbond(1− p).

Thus, similar to Proposition 5.6, let us show that the same equality holds even if we
replace I{|C(x∗)|<∞} by I{C(x∗)⊂B̃(n)}. It suffices to show

lim
n→∞

1

|B̃(n)|

∣∣∣∣∣∣
∑

x∗∈B̃(n)
I{C(x∗)⊂B̃(n)} −

∑

x∗∈B̃(n)
I{|C(x∗)|<∞}

∣∣∣∣∣∣
= 0. (16)

Fix arbitrary ε > 0. Since

lim
l→∞Pp(l ≤ C(0∗) <∞) = Pp(

∞⋂
l=1

{l ≤ C(0∗) <∞}) = 0,

we may take sufficiently large l ∈ N such that

Pp(l ≤ C(0∗) <∞) < ε.
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We fix this l. Clearly, we have

1

|B̃(n)|

∣∣∣∣∣∣
∑

x∗∈B̃(n)
I{C(x∗)⊂B̃(n)} −

∑

x∗∈B̃(n)
I{|C(x∗)|<∞}

∣∣∣∣∣∣

= 1

|B̃(n)|#{x
∗ ∈ B̃(n) : |C(x∗)| <∞ and x∗ bond←→ ∂B̃(n+ 1)}.

The right hand side can be decomposed as

1

|B̃(n)|#{x
∗ ∈ B̃(n− l) : |C(x∗)| <∞ and x∗ bond←→ ∂B̃(n+ 1)}

+ 1

|B̃(n)|#{x
∗ ∈ B̃(n) \ B̃(n− l) : |C(x∗)| <∞ and x∗ bond←→ ∂B̃(n+ 1)}.

(17)

The first term of (17) is bounded above by

1

|B̃(n)|#{x
∗ ∈ B̃(n) : l ≤ C(x∗) <∞}.

From the ergodic theorem [15, Proposition 2.2], it converges to Pp(l ≤ C(0∗) <∞)

as n −→ ∞ almost surely. Thus, for sufficiently large n, the first term is bounded
above by

Pp(l ≤ C(0∗) <∞)+ ε < 2ε.

The second term of (17) is bounded above by

1

|B̃(n)| |B̃(n) \ B̃(n− l)| −→ 0

as n −→∞. This completes the proof of (16). ��

6 Conclusions

In this paper, we introduced the hole percolation model, and gave the estimates
for the critical probability of this model. Moreover, we proved the uniqueness of
the infinite hole cluster and showed the estimate of the connectivity probability

Pp(x
∗ hole←→ y∗). Then, in view of the classical percolation models, the following



Percolation on Homology Generators in Codimension One 341

Fig. 11 The 1-skeleton X of
the unit cube

problems will be important to obtain further understandings of the hole percola-
tion.

• An estimate of the convergence velocity P(x∗ hole←→ y∗) −→ 0 as ‖x∗ −
y∗‖1 −→ ∞ in the subcritical phase is yet to be given. For classical bond
percolation model, the exponential decay of Theorem 1.1 (2) is Menshikov’s
theorem.

• It should be clarified whether the inequality phole
c (d) ≤ 1 − pbond

c (d) in
Theorem 2.4 is strict phole

c (d) < 1−pbond
c (d) or not. If it is strict, this implies that

there exist both an infinite hole cluster and an infinite dual bond cluster almost
surely for phole

c (d) < p < 1 − pbond
c (d). This means the existence of an infinite

hole cluster which does not cover the whole Rd . By combining with Lemma 3.2
and [6, Theorem 1.1], we obtain this strictness for d ≥ 19. Moreover, with the
work of Fitzner-van der Hofstad [5, Theorem 1.6], it can be extended to d ≥ 11.
Yet it has not been shown for 3 ≤ d ≤ 10.

It should also be remarked that our hole percolation model, which is introduced
as a higher dimensional percolation model, is limited to holes defined by homology
generators in codimension one. From the viewpoint of theoretical generality, it
is desirable to introduce other types of percolation models which can also deal
with clusters of holes defined by homology generators in arbitrary codimension.
However, one of the difficulties of the strategy introduced in this paper is that there
is no canonical correspondence between the “k-dimensional holes” of a random
cubical set and the homology generators in dimension k except for k = d − 1.

For example, let us consider the bond percolation model in L
3 and focus on the

one-dimensional holes (i.e., loops) in the random graph. Then, it is easily observed
that there is no natural bijective correspondence between loops and homology
generators in dimension one. Figure 11 shows the one-dimensional skeletonX of the
three-dimensional unit cube. Although rankH1(X) = 5, there is no natural choice
of 5 representative loops in X.
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Hyperplane Neural Codes and the Polar
Complex

Vladimir Itskov, Alexander Kunin, and Zvi Rosen

Abstract Hyperplane codes are a class of convex codes that arise as the output of a
one layer feed-forward neural network. Here we establish several natural properties
of stable hyperplane codes in terms of the polar complex of the code, a simplicial
complex associated to any combinatorial code. We prove that the polar complex of
a stable hyperplane code is shellable and show that most currently known properties
of hyperplane codes follow from the shellability of the appropriate polar complex.

1 Introduction

Combinatorial codes, i.e. subsets of the Boolean lattice, naturally arise as outputs
of neural networks. A codeword σ ⊆ [n] def= {1, . . . , n} represents an allowed
subset of co-active neurons, while a code is a collection C ⊆ 2[n] of codewords.
Combinatorial codes in a number of areas of the brain are often convex, i.e. they
arise as an intersection pattern of convex sets in a Euclidean space [17, 20, 24].
The combinatorial code of a one-layer feedforward neural network is also convex,
as it arises as the intersection patterns of half-spaces [13, 25]. It is well-known
that a two-layer feedforward network can approximate any measurable function
[11, 19], and thus may produce any combinatorial code. In contrast, the codes of
one-layer feedforward networks are not well-understood. The intersection lattices of
affine hyperplane arrangements have been studied in the oriented matroid literature
[1, 2, 4]. However, combinatorial codes contain less detailed information than
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oriented matroids, and the precise relationship is not clear. We are motivated by
the following question: How can one determine if a given combinatorial code is
realizable as the output of a one-layer feedforward neural network?

We study stable hyperplane codes, codes that arise from the intersection patterns
of half-spaces that are stable under certain small perturbations. The paper is
organized as follows. Relevant background and definitions are provided in Sect. 2.
In Sect. 3, we establish a number of obstructions that prevent a combinatorial code
from being a stable hyperplane code. In Sect. 4, we show that all but one of the
currently known obstructions to being a stable hyperplane code are subsumed by
the condition that the polar complex of the code, defined in Sect. 2.3, is shellable.
Lastly, in Sect. 6 we show how techniques from commutative algebra can be used to
computationally detect the presence of these obstructions.

2 Background

2.1 Stable Hyperplane Codes

We call a collection U = {Ui} of n subsets Ui ⊆ X of a set X an arrangement
(U,X). Note that we do not require that

⋃
i∈[n] Ui = X.

Definition 1 For σ ⊆ [n], let AU
σ denote the atom of (U,X)

AU
σ

def=
(⋂
i∈σ

Ui

)
\
⋃
j �∈σ

Uj ⊆ X, where AU
∅

def= X \
⋃
i∈[n]

Ui.

The code of the arrangement (U,X) is defined as

code(U,X)
def= {σ ⊆ [n] such that AU

σ �= ∅} ⊆ 2[n].

A realization of a code C is an arrangement (U,X) such that C = code(U,X). The
simplicial complex of the code, denoted �(C), is the closure of C under inclusion:

�(C) def= {τ | τ ⊆ σ for some σ ∈ C}.

Note that for C = code(U,X), the simplicial complex of the code is equal to the
nerve of the corresponding cover:

�(code(U,X)) = nerve(U)
def=

{
σ ⊆ [n] |

⋂
i∈σ

Ui �= ∅

}
.

A natural class of codes that arises in the context of neural networks is the class
of hyperplane codes [13]. A hyperplane is a level set H = {x ∈ R

d | w · x−h = 0}
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of a non-constant affine function. An oriented hyperplane partitions Rd into three
pieces: Rd = H+ �H �H−, where H± are the open half-spaces, e.g. H+ def= {x ∈
R
d | w · x − h > 0}.

Definition 2 A code C ⊆ 2[n] is a hyperplane code, if there exists an open convex
subset X ⊆ R

d and a collection H = {H+
1 , . . . , H

+
n } of open half-spaces such

that C = code({H+
i ∩ X},X). With a slight abuse of notation, we denote this

arrangement of subsets of X by (H,X), thus code(H,X) = code({H+
i ∩X},X).

Hyperplane codes are produced by one-layer feedforward neural networks [13],
where the convex set X is often the positive orthant Rd

≥0. A well-behaved subset
of hyperplane codes are the stable hyperplane codes. Informally, these are codes
that are preserved under small perturbations of the hyperplanes and the convex set
X. These perturbations correspond to perturbations of the parameters of the neural
network [25], i.e. the vectors (wi, hi) ∈ R

d × R in our context. Thus, we restrict
our attention to the class of stable hyperplane codes.

Definition 3 An arrangement (H,X) is stable if X is open and convex, and the
hyperplanes have generic intersections in X, that is, ifX∩Hσ

def= X∩⋂i∈σ Hi �= ∅,
then dimHσ = d − |σ |.

We call a code C a stable hyperplane code if there exists a stable arrangement
(H,X) such that C = code(H,X).

Stable arrangements are robust to noise in the sense that all atoms have nonzero
measure.

Lemma 1 If (H,X) is a stable arrangement, then every nonempty atom AU
σ of the

cover U = {
H+
i ∩X

}
has a nonempty interior.

Proof Let Aσ be a nonempty atom of the stable arrangement (H,X) and consider
a point x ∈ Aσ . Let τ = {j | x ∈ Hj } index the set of hyperplanes on which x

lies. Then x has an open neighborhood V inside X ∩ (⋂i∈σ H
+
i ) ∩ (

⋂
j �∈σ∪τ H

−
j ).

By genericity, the set {wi | i ∈ τ } is linearly independent. Therefore, there exists
some v ∈ R

d such that wi · v < 0 for all i ∈ τ . For sufficiently small ε > 0,
y = x + εv ∈ V ; therefore for any i ∈ τ,

wi · y − hi = wi · (x + εv)− hi = wi · εv < 0,

and thus y ∈ X ∩ (⋂i∈σ H
+
i ) ∩ (

⋂
j �∈σ H

−
j ), which is the interior of Aσ . ��

Example 1 The code C1 = {1, 12, 123, 2, 23} is a stable hyperplane code; a
realization is illustrated in Fig. 1a. To avoid notational clutter, we adopt the
convention of writing sets without brackets or commas, so the set {1, 2} is written
12.
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12

3

(b)(a)

1 2

3

H+
2H+

1

H+
3

1 12
2

23
123

X

Fig. 1 (a) Stable arrangement (H, X) with atoms labeled by their corresponding codewords. (b)
The polar complex �(code(H, X)), defined in Sect. 2.3

2.2 Bitflips and Stable Hyperplane Codes

The abelian group (Z2)
n acts on 2[n] by “flipping bits” of codewords. Each generator

ei ∈ (Z2)
n acts by flipping the i-th bit, i.e.

ei · σ def=
{
σ ∪ i if i /∈ σ
σ \ i if i ∈ σ.

This action extends to the action of (Z2)
n on codes, with g ·C = {g ·σ | σ ∈ C}. The

group (Z2)
n also acts on oriented hyperplane arrangements. Here each generator ei

acts by reversing the orientation of the i-th hyperplane:

ei ·H+
j

def=
{
H+
j if i �= j

H−
j if i = j.

One might hope that applying bitflips commutes with taking the code of a
hyperplane arrangement, but this is not true for arbitrary hyperplane codes.

Example 2 ConsiderH+
1 ,H

+
2 ,H

+
3 ⊆ R

2, withH+
1 = {x+y > 0},H+

2 = {x−y >
0}, and H+

3 = {x > 0}, illustrated in Fig. 2a. By inspection, C2 = code(H,R2) has
codewords {∅, 1, 13, 123, 23, 2}. Meanwhile,

code(e3 ·H,R2) = {3, 13, 1, 12, 2, 23,∅} = e3 · code(H,R2) ∪ {∅}.

The extra codeword appears because after flipping hyperplane H3, the origin no
longer belongs to the same atom as the points to its left, and thus produces a new
codeword, see Fig. 2b.

Nevertheless, the group action does commute with taking the code of a stable
hyperplane arrangement.
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(a)

H+
1

H+
2

H+
3

1 13

123

232

(b) 3

13 1

12

223

H+
3H+

1
H+

2

(c)
12

3

1 2

3

(d) 3

13
1

12

2
23

Fig. 2 (a, b) The action of (Z2)
n does not necessarily commute with taking the code of a non-

stable hyperplane arrangement. (c) The polar complex �(code(H, X)) for the arrangement in
panel (a) is an octahedron missing two opposite faces. (d) A stable realization of code(e3 ·H, X),
obtained from panel (b) by translating H3 to the left

Proposition 1 If (H,X) is a stable arrangement, then for every g ∈ (Z2)
n, (g ·

H,X) is also a stable arrangement and

code(g ·H,X) = g · code(H,X). (1)

Proof Since the action of (Z2)
n does not change the hyperplanes Hi (only their

orientation) nor the set X, the stability is preserved. By Lemma 1, each atom
of (H,X) has a nonempty interior; this interior is not changed by reorientation
of the hyperplanes. Thus, atoms are neither created nor destroyed by reorienting
hyperplanes in a stable arrangement; only their labels change, and code(g ·H,X) =
g · code(H,X). ��

2.3 The Polar Complex

The invariance (1) of the class of stable hyperplane codes under the (Z2)
n action

makes it natural to consider a simplicial complex whose structure is preserved by
bitflips. The simplicial complex of the code is insufficient for this purpose: for any
nontrivial code C ⊆ 2[n] with a nonempty codeword, the simplicial complexes of the
codes in the (Z2)

n-orbit of C will include the full simplex on n vertices, regardless
of the structure of �(C).
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We denote by [n] def= {1, . . . , n} and [n] def= {1, . . . , n} two separate copies of the
vertex set. Given a code C ⊆ 2[n], define the polar complex, �(C), as a pure (n−1)-
dimensional simplicial complex on vertex set [n] � [n] with facets in bijection with
the codewords of C.

Definition 4 Let C ⊆ 2[n] be a combinatorial code. For every codeword σ ∈ C
denote

!(σ)
def= {i | i ∈ σ } � {ī | i �∈ σ } = σ � [n] \ σ

and define the polar complex of C as

�(C) def= �({!(σ) | σ ∈ C}).

Continuing Example 1, the polar complex of C1 = {1, 12, 123, 2, 23} is given
by �(C1) = �({12̄3̄, 123̄, 123, 1̄23̄, 1̄23}). It is depicted in Fig. 1b as a subcomplex
of the octahedron. The polar complex �(2[3]) consists of the eight boundary faces
of the octahedron; generally, the polar complex of the code consisting of all 2n

codewords on n vertices is the boundary of the n-dimensional cross-polytope.
The polar complex of code C2 in Example 2 is depicted in Fig. 2c. Note that it

follows from Theorem 4 that C2 is not a stable hyperplane code, due to the structure
of �(C2). In contrast, while Fig. 2b depicts a non-stable arrangement, the code of
that arrangement has a stable realization depicted in Fig. 2d.

The action of the bitflips (Z2)
n on the boolean lattice induces an action on the

facets of the polar complex, so that g · !(σ) = !(g · σ). In particular, �(g · C) =
g ·�(C), and the complex �(g ·C) is isomorphic to �(C). The Stanley-Reisner ideal
of �(C) is closely related to the neural ideal, defined in [9]; this will be elaborated
in Sect. 6. Moreover, in the case of stable hyperplane codes, �(C) has a simple
description as the nerve of a cover:

Lemma 2 If C = code(H,X) is the code of a stable hyperplane arrangement, then

�(C) = nerve({H+
i ∩X,H−

i ∩X}i∈[n]) (2)

Proof Consider a maximal face !(σ) ∈ �(C). By Lemma 1, Aσ has nonempty
interior given by X∩⋂

i∈σ H
+
i ∩

⋂
j �∈σ H

−
j , hence !(σ) ∈ nerve({H+

i ∩X,H−
i ∩

X}i∈[n]). Likewise, if F is maximal in the complex nerve({H+
i ∩X,H−

i ∩X}i∈[n]),
the subset consisting of unbarred vertices in F is a codeword as the corresponding
atom is nonempty. ��
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3 Obstructions for Hyperplane Codes

Here we describe several major hyperplane obstructions, the properties of a
combinatorial code that are necessary for it to be realized by a stable hyperplane
arrangement.

3.1 Local Obstructions and Bitflips

A larger class of codes that arises in the neuroscience context are the open convex
codes [7–9, 13]. A code C ⊂ 2[n] is called open convex if there exists a collection
U of n open and convex sets Ui ⊆ X ⊆ R

d , such that C = code (U,X). Not every
combinatorial code is convex. One obstruction to being an open convex code stems
from an analogue of the nerve lemma [3], recently proved in [6]; see also [21].

Recall the link of a face σ in a simplicial complex � is the subcomplex defined
by

linkσ�
def= {ν ∈ � | σ ∩ ν = ∅, σ ∪ ν ∈ �}.

When σ �∈ code(U,X), yet σ ∈ nerve(U), the subset Uσ
def=⋂

i∈σ Ui is covered by
the collection of sets

{
Uj ∩ Uσ

}
j �∈σ . It is easy to see that in this situation,

linkσnerve(U) = nerve({Uj ∩ Uσ }j �∈σ ),

see e.g. [7, 8, 13].

Definition 5 A pair of faces (σ, τ ) of a simplicial complex � is a free pair if τ is a
facet of �, σ � τ , and σ �⊆ τ ′ for any other facet τ ′ �= τ . The simplicial complex

delσ�
def= {ν ∈ � | ν �⊇ σ }

is called the collapse of � along σ , and is denoted as � ↘σ delσ�. If a finite
sequence of collapses of � results in a new complex �′, we write � ↘ �′. If
�↘ {}, we say � is collapsible.

Note that the irrelevant simplicial complex {∅}, consisting of a single empty face,
is not collapsible, as there is no other face properly contained in ∅. However, the
void complex {} with no faces is collapsible.

Lemma 3 ([6, Lemma 5.9], [21]) For any collection U = {U1, . . . , Un} of open
convex sets Ui ⊂ R

d whose union
⋃

i∈[n] Ui is also convex, its nerve, nerve(U), is
collapsible.

Corollary 1 ([6, Theorem 5.10]) Let C = code(U,X) with each Ui ⊆ X ⊆ R
d

open and convex. Then linkσ�(C) is collapsible for every nonempty σ ∈ �(C) \ C.
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The last observation provides a “local obstruction” for a code C being an open
convex code: if a non-empty σ ∈ �(C) \ C has a non-collapsible link, then C is
nonconvex. It had been previously known (see, for example, [13, Theorem 3]) that
linkσ�(C) is contractible under the hypotheses of Corollary 1. Since collapsibility
implies contractibility but not vice versa, we refer to a face σ ∈ �(C) \ C with
non-collapsible link as a strong local obstruction; if linkσ�(C) is non-contractible,
we refer to σ as a weak local obstruction.

Half-spaces are convex, thus local obstructions to being a convex code are also
obstructions to being a hyperplane code. Therefore Proposition 1 implies a much
stronger statement. Not only are local obstructions in C forbidden, we must also
exclude local obstructions in g · C for all bitflips g ∈ (Z2)

n, since g · C is also a
stable hyperplane code. We make this precise below.

Definition 6 Let g ∈ (Z2)
n and τ ⊆ [n] be a pair such that linkτ�(g · C) is not

collapsible (respectively, contractible) and τ /∈ g · C. Then (g, τ ) is called a strong
(resp. weak) bitflip local obstruction.

Theorem 1 (Bitflip Local Property) Suppose C is a stable hyperplane code. Then
C has no strong bitflip local obstructions.

Proof Halfspaces are convex, thus C has no strong local obstructions. By Proposi-
tion 1, g ·C is a stable hyperplane code for all g ∈ (Z2)

n. Hence, g ·C has no strong
local obstructions. ��

The nomenclature of “weak” and “strong” local obstructions signifies that a code
with no strong local obstructions has no weak local obstructions, but generally not
vice-versa. In particular, a stable hyperplane code also has no weak bitflip local
obstructions.

Example 3 The code C3 = {∅, 2, 3, 4, 12, 13, 14, 23, 24, 123, 124} is realizable
by open convex sets in R

2 (see Fig. 3), and thus it cannot have local obstructions to
convexity. Flipping bit 2 yields

e2 · C3 = {2,∅, 23, 24, 1, 123, 124, 3, 4, 13, 14}.

Fig. 3 An open convex
realization of C3 with
X = R

2

U4

U2

U1 U3
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The new simplicial complex �(e2 · C3) has facets 123 and 124. The edge 12 is not
in the code and link12�(e2 · C3) is two vertices; therefore, (e2, 12) is a bitflip local
obstruction and C3 is not a stable hyperplane code.

It is worth highlighting an essential feature of the polar complex that makes it
a natural tool for studying hyperplane codes, in light of the bitflip local property.
For every g ∈ (Z2)

n, the simplicial complex �(g · C) is isomorphic to an induced
subcomplex of �(C): Let σ denote the support of g and define

�(C)|([n]\σ)�σ def= {F ∈ �(C) | F ⊆ ([n] \ σ) � σ }.

Then �(C)|[n]\σ�σ ∼= �(g · C), with the isomorphism given by “ignoring the bars,”
i.e. i �→ i for i ∈ [n] \ σ and j �→ j for j ∈ σ . Thus we can find bitflip local
obstructions directly in the polar complex as follows.

Proposition 2 Let C ⊆ 2[n] be a code, g ∈ (Z2)
n with σ its support, and let

τ ⊆ [n]. Then (g, τ ) is a bitflip local obstruction for C if and only if

g · τ � [n] \ g · τ �∈ �(C) and linkg·τ�(C)|([n]\σ)�σ is not collapsible.

Proof Note that g · τ � [n] \ g · τ �∈ �(C) if and only if τ �∈ g · C. The complex
�(C)|([n]\σ)�σ is isomorphic to �(g · C), and

linkτ�(g · C) ∼= linkg·τ (�(C)|([n]\σ)�σ ).

Hence, the conditions of the proposition are equivalent to the conditions of
Definition 6. ��

3.2 Spherical Link Obstructions

Here we introduce another obstruction that can be detected via the polar complex of
stable hyperplane codes. We use the following notation to aid our discussion. For a
face F ∈ �(C), we write F = F+ � F− to denote the restrictions of F to [n] and
[n]. The support of F is F = F+ ∪ F−, the set of (barred or unbarred) vertices
appearing in it.

For stable arrangements (H,X), Lemmas 1 and 2 allow us to translate between
faces of �(code(H,X)) and convex subsets of X as follows: The face F = F+ �
F− ∈ �(C) corresponds to the open convex set

RF = X ∩
( ⋂
i∈F+

H+
i

)
∩
( ⋂

j∈F−
H−
j

)
.
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Note that for a facet F = σ � ([n] \ σ) of the polar complex, RF is precisely the
interior of the atom Aσ . In addition, it is easy to see that linkF�(C) = �(C′) for
some C′ ⊆ 2[n]\F . Therefore, we consider the topology of the covered subset of RF .
We show the positive and negative halfspaces indexed by the complement of F will
cover either all of RF or all but a linear subspace of RF . The following proposition
describes the combinatorics of the nerve of this cover.

Proposition 3 Let (H,X) be a stable arrangement, and let RF be a nonempty
region with |F | < n. Then ({H+

i ∩RF }i �∈F ,RF ) is a stable arrangement. Moreover,
the nerve({H+

i , H
−
i }i �∈F ) is either collapsible or is the polar complex of the full

code on the vertices [n] \ F , i.e. nerve
({H+

i , H
−
i }i �∈F

) = �
(
2[n]\F

)
.

Proof Denote ν
def= [n] \F . First we verify the arrangement ({H+

i ∩RF }i∈ν, RF ) is
stable. The region RF is open and convex, and intersections of hyperplanes in RF
lie in X, so they already satisfied the genericity condition.

Consider Hν∩RF ; if it is empty, then the union of the positive and negative open
half-spaces indexed by ν is all of the convex set RF , and so by Lemma 3 the nerve
is collapsible. If Hν ∩RF �= ∅, by stability, we have dimHν = d−|ν|. In this case,
the linear independence of {wi | i ∈ ν} ensures all of the 2|ν| intersection patterns
of halfspaces, i.e. the nerve is �(2ν) = �(2[n]\F ). ��
Definition 7 Let F ∈ �(C) be a non-maximal face such that linkF (�(C)) is neither
collapsible nor linkF (�(C)) = �(2[n]\F ). We call F a sphere link obstruction.

By Lemma 2, we have linkF�(C) = nerve({H+
i ∩ RF ,H

−
i ∩ RF }i �∈F ). This,

together with Proposition 3, imply

Theorem 2 (Sphere Link Property) Suppose C is a stable hyperplane code. Then
C has no sphere link obstructions.

Example 4 Continuing Example 2, we consider the polar complex �(C2) for the
non-stable arrangement (H,X) in Fig. 2a. This complex is illustrated in Fig. 2c.
The face ∅ is a sphere link obstruction: link∅�(C2) = �(C2), and this complex
is neither the complex �(2[3]), which would have 8 facets, nor is it collapsible.
Therefore, C2 is not a stable hyperplane code.

3.3 Chamber Obstructions

The intuition behind the third obstruction in this section concerns maximal hyper-
plane intersections. If a collection {Hi}i∈σ of hyperplanes intersects in a point
(dimHσ = 0), then that point has fixed position relative to other hyperplanes. In
particular, there cannot be two distinct regions defined by the other hyperplanes that
contain that point. More generally, if Hσ �= ∅ is a maximal non-empty intersection,
then it intersects only one atom of the arrangement {Hj }j �∈σ of the remaining
hyperplanes.
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Definition 8 The geometric chamber complex of a hyperplane arrangement H
relative to an open convex set X, cham(H,X), is the set of σ ⊆ [n] such that
Hσ ∩X �= ∅. By convention,H∅ = R

d so ∅ ∈ cham(H,X) for all (H,X).
The combinatorial chamber complex of a code C, denoted cham(C), is given

by the set of σ ⊆ [n] such that there exists T ∈ �(C) with T = [n] \ σ and
linkT �(C) = �(2σ ). We call such a subset T a chamber of σ .

Both cham(H,X) and cham(C) are simplicial complexes: the former because
for any i ∈ σ , Hσ\i ⊇ Hσ ; the latter because if linkT �(C) = �(2σ ) then
linkT∪i = �(2σ\i ). For stable hyperplane codes, the facets of these simplicial
complexes correspond to maximal hyperplane intersections.

Example 5 Returning to the stable code C1 from Example 1, the maximal
faces of cham(C1) are 2 and 13. This is because link13̄(�(C1)) = �(2{2}) and
link2(�(C1)) = �(2{1,3}). By inspection, these are also maximal faces of the
geometric chamber complex cham(H,X) for the arrangement in Fig. 1a.

Proposition 4 For a stable arrangement (H,X), the associated chamber
complexes coincide, cham(H,X) = cham(code(H,X)). Moreover, for C =
code(H,X), each facet σ of cham(C) has a unique chamber T ∈ �(C).
Proof Let (H,X) be a stable pair and set C = code(H,X). Suppose σ ∈
cham(H,X), so Hσ ∩ X �= ∅. Then, for any atom Aτ of the arrangement
({H+

i ∩X}i �∈σ ,X) such thatHσ∩Aτ �= ∅, the set T = τ�([n] \ σ) \ τ is a chamber
of σ , hence σ ∈ cham(C). For the reverse containment, suppose σ ∈ cham(C) has
chamber T . Then

�(2σ ) = linkT �(C) = �(code({H+
i ∩ RT }i �∈σ , RT )),

meaning the hyperplanes {Hi}i∈σ partition RT into the maximal number of regions,
i.e. it is a central arrangement. Thus Hσ ∩ RT �= ∅ and therefore Hσ ∩X �= ∅ and
σ ∈ cham(H,X).

Now consider σ a facet of cham(C). Because C = code(H,X), the intersection
of hyperplanes Hσ ∩ X does not meet any other hyperplanes inside X. Therefore,
it is interior to only one atom of the arrangement ({H+

j }j �∈σ ,X); the face in �(C)
corresponding to this atom is the unique chamber T . ��

We reformulate Proposition 4 into our third and final obstruction to hyperplane
codes.

Definition 9 Let σ ⊆ [n] be a maximal face of cham(C) such that there exist two
faces T1 �= T2 ∈ �(C) with linkT1�(C) = linkT2�(C) = �(2σ ). Then we call σ a
chamber obstruction.

Theorem 3 (Single Chamber Property) Suppose C = code(H,X) is a stable
hyperplane code. Then C has no chamber obstructions.

Example 6 The code C3 from Example 3 also has a chamber obstruction, in the
form of σ = {1, 2}. There are two faces {3̄, 4} and {3, 4̄} with link in �(C3) equal to
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the full polar complex on {1, 2}. One can check that this is maximal in cham(C3),
creating a chamber obstruction.

4 The Main Results

Our main results consist of showing that (1) the polar complex of a stable hyperplane
code is shellable and (2) shellability of �(C) implies C has none of the obstructions
thus far considered, except possibly the strong bitflip obstruction. First, we define
shellability.

Definition 10 Let � be a pure simplicial complex of dimension d and F1, . . . , Ft
an ordering of its facets. The ordering is a shelling order if, for i > 1, the complex

�({Fi}) ∩�({F1, . . . , Fi−1})

is pure of dimension d − 1. A simplicial complex is shellable if its facets permit a
shelling order.

A shelling order constructs a simplicial complex one facet at a time in such a
way that each new facet is glued along maximal faces of its boundary. The facets of
�(C) correspond to codewords of C, thus a shelling order of �(C) corresponds to
an ordering of the codewords. We explicitly construct such an order in Sect. 7.1 to
prove Theorem 4.

Theorem 4 Let C ⊆ 2[n] be a stable hyperplane code. Then �(C) is shellable.

It turns out that the structure of shellable polar complexes does not allow for
many of the obstructions thus far considered.

Theorem 5 Let C ⊆ 2[n] be a combinatorial code such that �(C) is shellable.
Then,

1. C has no weak bitflip local obstructions,
2. C has no sphere link obstructions, and
3. C has no chamber obstructions.

Theorem 5 is proven in Sect. 7.2. Note the conclusion of Theorem 5.1 refers to
weak local obstructions, highlighting the gap between the notions of collapsibility
and contractibility.
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5 Discussion

Hyperplane codes are a special class of convex codes that naturally arise as the
output of a one-layer feedforward network [13]. Hyperplane codes are a proper1

subclass of the open convex codes. We set out to find obstructions to being a
hyperplane code, while focusing on stable hyperplane codes. There are two reasons
for primarily considering the stable hyperplane codes: (1) they are ‘generic’ in
that they are stable to small perturbations, and (2) they allow the action of the
group of bitflips (Z2)

n. The second property makes it natural to consider the polar
complex �(C) of a code, because the combinatorics of the polar complex captures
all the bitflip-invariant properties of the underlying stable hyperplane code. We have
established the following relationships among the properties of the polar complex
of the code. The necessary conditions for C being a stable hyperplane code,

�(C) is shellable ⇐ C is a stable

hyperplane code
 ⇒

⎧⎪⎪⎨
⎪⎪⎩

C has no strong bitflip obstructions,

C has no sphere link obstructions,

C has no chamber obstructions.

We have also established that almost all currently known necessary conditions
follow from the shellability of the polar complex:

�(C) is shellable  ⇒

⎧⎪⎪⎨
⎪⎪⎩

C has no weak bitflip obstructions,

C has no sphere link obstructions,

C has no chamber obstructions.

Note that the shellability of the polar complex implies the lack of weak bitflip
obstructions, while a stable hyperplane code lacks strong bitflip obstructions. It is
currently an open problem if the gap between the strong and the weak versions of the
local obstructions is indeed a property of shellable polar complexes. Alternatively,
codes with shellable polar complexes may also lack the strong bitflip obstructions.
An example of a code whose polar complex is shellable, but has the strong bitflip
obstruction2 would provide a negative answer to the following open question: Is
shellability of the polar complex equivalent to the code being a stable hyperplane
code?

What makes a code a stable hyperplane code is still an open question. It seems
likely that the shellability of the polar complex is not the only necessary condition
for a code to be a stable hyperplane code. From a computational perspective,
deciding if a given pure simplicial complex is shellable is known to be an NP-hard
problem [14]. This likely means that answering the question of whether a given code

1See e.g. Example 3 and Fig. 3.
2In particular, the appropriate link in Definition 6 is contractible, but not collapsible.
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is produced by a one-layer network may be not computationally feasible. Ruling
out that a given code is a hyperplane code may be less computationally intensive
however, as it can rely on computing the Betti numbers of the free resolution of the
Stanley-Reisner ideal of the polar complex, as illustrated in the following section.

6 Algebraic Signatures of a Hyperplane Code

Given a code C, how can we rule out that C is a stable hyperplane code? In this
section, we show how the tools from computational commutative algebra can be
used to detect sphere link obstructions via Stanley-Reisner theory.

6.1 The Neural and the Stanley-Reisner Ideal

The connections between neural codes and Stanley-Reisner theory were first
developed in [9], and later expanded upon in [10, 12], and [16]. The key observation
is that a code C ⊆ 2[n] can be considered as a set of points in (F2)

n, and
the vanishing ideal IC of that variety is a “pseudo-monomial ideal” with many
similarities to a monomial ideal. In this section, we show that this connection can
be made more explicit via the polar complex.

First, we state necessary prerequisites about the neural ring. Let F2 denote the
field with two elements, and consider the polynomial ring R

def= F2[x1, . . . , xn]. A
polynomial f ∈ R can be considered as a function f : 2[n] → F2 by defining f (σ)
as the evaluation of f with xi = 1 for i ∈ σ and xi = 0 for i �∈ σ . Polynomials of
the form

xσ (1− x)τ
def=

∏
i∈σ

xi
∏
j∈τ

(1− xj ),

where σ, τ ⊆ [n], are said to be pseudo-monomials. Note that the pseudo-monomial
xσ (1−x)[n]\σ evaluates to 1 if and only if the support of x equals σ ; such a pseudo-
monomial is called the indicator function of σ .

Definition 11 ([9]) The vanishing ideal of a code C ⊆ 2[n] is the ideal of
polynomials that vanish on all codewords of C,

IC
def= {f ∈ R | f (σ) = 0 for all σ ∈ C}.

The neural ideal of C is the ideal generated by indicator functions of non-
codewords,

JC
def=

〈
xσ (1− x)[n]\σ | σ /∈ C

〉
.
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The boolean ideal of C is the ideal generated by the boolean relations, pseudo-
monomials with σ = τ = i,

B def= 〈xi(1− xi) | i ∈ [n]〉 .

Lemma 4 ([9, Lemma 3.2]) Let C be a neural code. Then IC = JC + B.

Pseudomonomials in the vanishing ideal IC correspond to relations of the form⋂
i∈σ Ui ⊆⋃

j∈τ Uj among sets in any cover realizing C.

Lemma 5 ([9, Lemma 4.2]) Let C = code(U,X) be a combinatorial code. Then

xσ (1− x)τ ∈ IC ⇐⇒
⋂
i∈σ

Ui ⊆
⋃
j∈τ

Uj ,

where by convention
⋂

i∈∅ Ui = X and
⋃

j∈∅ Uj = ∅.

In particular, the generators of B correspond to the tautological relations Ui ⊆
Ui . The neural ideal records the non-tautological relations.

Definition 12 ([9]) A pseudo-monomial f ∈ JC is said to be minimal if there is no
other pseudo-monomial g ∈ JC that divides f . The canonical form of JC, denoted
CF(JC), is the set of all the minimal pseudo-monomials in JC.

The elements of the canonical form correspond to the minimal nontrivial
relations

⋂
i∈σ Ui ⊆ ⋃

j∈τ Uj . We will see that the canonical form of JC and the
Boolean relations also corresponds with the generating set of the Stanley-Reisner
ideal of �(C). We make these relationships explicit in Lemma 6 and Corollary 2.

The Stanley-Reisner correspondence associates to any simplicial complex on n

vertices an ideal generated by square-free monomials in a polynomial ring in n

variables [26]. The construction of the polar complex is seen to be particularly
natural when considering its associated Stanley-Reisner ideal. For the unbarred
vertices, we set the corresponding variables via i �→ xi ; for the barred vertices,
we associate ī �→ yi . The Stanley-Reisner ideal of �(C) is the ideal in S

def=
F2[x1, . . . , xn, y1, . . . , yn] generated by the squarefree monomials indexed by non-
faces of �(C).

Definition 13 Let C ⊆ 2[n] be a combinatorial code. The Stanley-Reisner ideal of
the polar complex is given by

I�(C) = 〈xσ yτ | σ � τ �∈ �(C)〉 ⊆ S.

Example 7 Consider the code C1 = {1, 12, 123, 2, 23} from Example 1. The
corresponding variety in F

3
2 is {100, 110, 111, 010, 011}with canonical form given

by

CF(JC1) = {(1− x1)(1− x2), x3(1− x2)}.



358 V. Itskov et al.

The polar complex of C1 is given by

�(C1) = �({12̄3̄, 123̄, 123, 1̄23̄, 1̄23}).

The minimal nonfaces of �(C1) are {11̄, 22̄, 33̄, 1̄2̄, 2̄3}. This gives the Stanley-
Reisner ideal

I�(C1) = 〈x1y1, x2y2, x3y3, y1y2, x3y2〉.

The first three monomials in this list correspond to the Boolean relations, while the
last two can be compared to the canonical form.

The intuition intimated by Example 7 holds true in general.

Lemma 6 For any nonempty combinatorial code C ⊆ 2[n], the Stanley-Reisner
ideal of the polar complex is induced by the canonical form and the Boolean
relations. That is,

xσ yτ ∈ I�(C) ⇐⇒ xσ (1− x)τ ∈ IC. (3)

and so

I�(C) = 〈 xσ yτ | xσ (1− x)τ ∈ CF(JC) 〉 + 〈 xiyi | i ∈ [n] 〉. (4)

Proof Consider a square-free monomial xσ yτ ∈ S. By definition, xσ yτ ∈ I�(C) if
and only if σ �τ is a nonface of �(C). The set σ �τ is a nonface of �(C) if and only
if any codeword in C which contains σ is not disjoint from τ , that is, C satisfies the
following property:

for all α ∈ C, σ ⊆ α  ⇒ α ∩ τ �= ∅. (5)

If C satisfies (5), the pseudomonomial xσ (1 − x)τ vanishes on all of C, as xσ

evaluates to 0 on any codeword not containing σ , and (1 − x)τ evaluates to 0 on
any codeword not disjoint from τ , e.g. any codeword containing σ . Conversely, if
xσ (1−x)τ vanishes on all of C, every codeword that contains σ must not be disjoint
from τ , so C satisfies (5). Therefore, xσ (1−x)τ ∈ IC. Thus we have established (3)
and (4) follows, as any pseudomonomial in IC is divisible either by xi(1 − xi) for
some i, or by an element of the canonical form CF(JC). ��

The following is an immediate corollary of Lemmas 5 and 6.

Corollary 2 Let C = code(U,X) ⊆ 2[n] and I�(C) the Stanley-Reisner ideal of the
polar complex of C. Then

xσyτ ∈ I�(C) ⇐⇒
⋂
i∈σ

Ui ⊆
⋃
j∈τ

Uj .
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6.2 Sphere Link Obstructions and Multigraded Free
Resolutions

In Sect. 3.2, we showed that link!(�(C)) is either empty, collapsible, or is isomor-
phic to a sphere of dimension n− |!| − 1 when C is a stable hyperplane code. One
consequence of this fact is that if a stable hyperplane realization of C exists, then a
lower bound on the dimension of the realizing space is

d ≥ max
!∈�(C)

{
(n− |!|) | link!(�(C)) ∼ Sn−|!|−1

}
.

However, this may not be the true lower bound.

Example 8 Consider the code C = {∅, 1, 2, 3} consisting of four words; this can
be realized by hyperplanes in R

2 as in Fig. 4. Still, the polar complex �(C) has
facets 123, 123, 1̄23̄, 123, which has spherical links only at ! = {ī, j̄ } for i �=
j ∈ {1, 2, 3}. This might lead us to infer that the minimal realizing dimension is
n− |!| = 3 − 2 = 1; however, it is easy to prove that it is impossible to realize by
hyperplanes in R

1.

Another consequence of the sphere link property (Theorem 2) relates to algebraic
properties of the Stanley-Reisner ring. The dual version of Hochster’s formula
relates the multigraded minimal free resolution of the Stanley-Reisner ideal to the
simplicial homology of the corresponding complex. A full exposition of minimal
free resolutions is beyond the scope of this article, so we give a brief description
and direct the reader to [23, Chapter 1] for more information.

The multidegree of a monomial
(∏n

i=1 x
ai
i

∏n
j=1 y

bj
j

)
∈ S is the vector of

exponents (a, b) = (a1, . . . , an, b1, . . . , bn) ∈ N
2n. When the exponents are all 0

or 1, we identify the multidegree with its support as a subset of [n]�[n]. The coarse
degree of a monomial is the sum of the exponents

∑n
i=1 ai +

∑n
j=1 bj ∈ N. For a

homogeneous ideal I ⊂ S, a minimal free resolution of S/I is an exact sequence
of free modules that terminates in S/I → 0. Each module in the minimal free
resolution of S/I can be multigraded so that each map in the resolution preserves
multidegree. The multigraded Betti number of S/I , βi,σ = βi,σ (S/I), is the rank
of the free module in position i in the free resolution and with multidegree σ .

Fig. 4 (a) Realization of
C4 = {∅, 1, 2, 3} in R

2.
Though sphere link
dimension is 1, minimal
realization dimension is 2.
(b) The polar complex �(C4).
The only non-collapsible
links are of the form
linkij �(C)

(a)

U1

U2

U3

(b)

12

3

1 2

3
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Importantly for our purposes, these Betti numbers can be explicitly computed with
Macaulay2 [15] and similar computational algebra software.

Lemma 7 (Hochster’s Formula, Dual Version [23, Corollary 1.40]) For �(C)
the polar complex of a code C ⊆ 2[n] and ! a face of �(C),

βi+1,!c (S/I�(C)∨) = dimk H̃i−1(link!�(C); k).

Here!c = ([n]�[n])\! denotes the complement of! in the vertex set of�(C), and
�(C)∨ denotes the Alexander dual simplicial complex, �(C)∨ def= {Fc | F �∈ �(C)}.

We use this lemma to detect sphere link obstructions.

Proposition 5 Let C be a stable hyperplane code with polar complex �(C). Then,
βi,σ (S/I�(C)∨) = 0 for all i ≥ 1 except:

{
β1,!c(S/I�(C)∨) = 1 if ! is a facet.

βn−|!|+1,!c (S/I�(C)∨) = 1 if link!�(C) ∼ Sn−|!|−1.

Proof Inserting i = 0 and ! a facet into the dual version of Hochster’s formula
yields

β1,!c(S/I�(C)∨) = dimk H̃−1(link!�(C); k).

The right-hand side is equal to 1, since the link of a facet is the irrelevant simplicial
complex, which gives a generator of (−1)-homology. This gives the first equation
from the Proposition.

Setting i = n− |!| and ! a face of �(C):

βn−|!|+1,!(S/I�(C)∨) = dimk H̃n−|!|−1(link!c�(C); k).

The right-hand side is 1 precisely when the link is a sphere of the right dimension.
In all other cases, the link is collapsible (Proposition 3) or equal to the void complex
(links of non-faces), so the reduced homology is zero. ��

This proposition provides an algebraic signature of stable hyperplane codes.

Example 9 We again consider the code from Example 3. First, we translate into
its polar complex �(C3), which has eleven facets for its eleven codewords. Then
we compute the Stanley-Reisner ideal of its Alexander dual, and the Betti numbers
associated to a minimal free resolution (e.g. using Macaulay2).

The table below is a condensed representation of the Betti numbers of I�(C3),
where the (i, j)-th entry is βj,i+j under the coarse grading.
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i

j
0 1 2 3 4

0 1
1
2
3 11 16 6
4 1 2
5 1

The value of β1,4 counts the codewords, which are facets of �(C). The remaining
entries of row 3 indicate links with the appropriate dimension. Rows 4 and 5, under
the multigrading, point to the following nonzero Betti numbers:

β2,234134 = 1, β3,2341234 = 1, β3,1234134 = 1, β4,12341234 = 1.

Note that the multigrading of each Betti number corresponds to the link of
its complement; specifically, 234134 �→ 12̄, 2341234 �→ 1, 1234134 �→ 2̄, and
12341234 �→ ∅. These entries give us the following sphere link obstructions to
�(C3) being the polar complex of a stable hyperplane code.

1. link12̄�(C3) = �({34̄, 3̄4}), which has two connected components and hence
nontrivial reduced homology of rank 1.

2. link1�(C3) = �({234, 2̄34̄, 234, 234̄, 23̄4}) ∼ S1, which has the wrong
dimension.

3. link2̄�(C3) = �({134, 1̄34̄, 134, 134̄, 13̄4}) ∼ S1, which also has the wrong
dimension.

4. link∅�(C3) = �(C3) has nontrivial homology, but C3 �= 2[4].

Each of these indicates the presence of a sphere link obstruction. Thus, C cannot be
a stable hyperplane code.

7 Proofs of Theorems 4 and 5

Here we present the proofs of Theorems 4 and 5.

7.1 Shellability

The proof of Theorem 4 is organized as follows. First, we prove it in the special
case X = R

d . To extend the proof to the general case, we prove stable hyperplane
codes can be realized by a pair (H,P) with P the interior of a convex polyhedron
with bounding hyperplanesB such that (H∪B,Rd ) is a stable arrangement. Lastly,
we use links to consider P as a region in R

d , reducing to the special case.
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To prove the special case of Theorem 4, we use the following equivalent
definition of a shelling order (see, for example, [26, Chapter III]).

Definition 14 Let � be a simplicial complex and F1, . . . , Ft an ordering of its
facets. The ordering is a shelling order if the sequence of complexes �i =
�({F1, . . . , Fi}), for each i = 2, . . . , t , satisfies the property that the collection
of faces �i \ �i−1 has a unique minimal element, denoted r(Fi) and called the
associated minimal face of Fi .

Lemma 8 If (H,Rd ) has generic intersections, then �(code(H,Rd )) is shellable.

Proof Let C = code(H,Rd ) with k = |C| the number of codewords. Without
loss of generality, the wi defining the hyperplanesHi are unit vectors that span R

d .
Recall the notation

RF =
⋂
i∈F

H+
i ∩

⋂

j̄∈F
H−
j

for F ∈ �(C). Our proof proceeds by induction on d , the ambient dimension. An
example of the d = 2 case is illustrated in Fig. 5.

The base case d = 1 is straightforward and guides the intuition for the general
case. We order the codewords of C in a natural way based on their atoms, and show
the corresponding ordering of facets of �(C) is a shelling order. Each half-space
H+
i is defined by an inequality of the form x > hi or −x > hi (i.e. wi = ±1

for all i). Each atom Aσ has nonempty interior (aσ , bσ ) with aσ = hiσ for some
iσ ∈ [n], with one exception, where aσ = −∞. Order the codewords σ1, . . . , σk
in increasing order of aσ . This is a shelling order: when we add facet !(σ) to our
simplicial complex, this is the first time a facet contains iσ if wi = 1, otherwise
it’s the first time a facet contains iσ . In other words, σ is the first codeword in this
order which contains i if wi = 1 or the first codeword which does not contain i if
wi = −1; all later atoms lie on the same side of the hyperplane Hi . Thus, every
facet of �(C) has an associated minimal face and this ordering is a shelling order.

Now consider d > 1. Denote by �(H) the set of points where d hyperplanes
intersect. We choose a generic “sweep” direction, a vector u ∈ R

d which satisfies
the following properties:

(i) u is not in the span of any (d − 1)-element subset of {w1, . . . , wn}.
(ii) For every pair of distinct points x, y in �(H), u is not in the orthogonal

complement (x − y)⊥.

Such a u exists because we exclude finitely many subsets of measure zero from R
d .

We use u to define a sliding hyperplaneH(t) and its corresponding “discovery time”
function m : C→ R ∪ {−∞},

H(t) = {x ∈ R
d | u · x − t = 0}

m(σ) = inf{u · x | x ∈ Aσ }.
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In the d = 1 case, m(σ) = aσ and thus induces a total order on codewords. For
the d > 1 case, the goal is once again to use m to order the codewords. To do this,
(1) we order the codewords with m(σ) = −∞ inductively, then (2) we show m is
injective on the remaining codewords, and lastly, (3) we show every facet has an
associated minimal face.

(1) By construction, H ∪ {H+(t)} is a stable arrangement in R
d for all but

finitely many values of t , specifically, the values where H(t) contains a point
in �(H). Let t0 be a constant less than all of these values (see Fig. 5a
for an illustration). Property (i) ensures H+

i ∩ H(t0) �= ∅ for all i, so in

particular L def= {H+
i ∩ H(t0)} is a stable arrangement in H(t0) ∼= R

d−1.
By inductive hypothesis, �(code(L,H(t0))) is shellable. Each nonempty atom
of the arrangement (L,H(t0)) is the intersection of an atom of (H,Rd ) with

(a)

H+(t0)H+
1

H+
2

H+
3

(d)

12

3

3

(b)

H+
1

H+
2

H+
3

H+(t5)

(e)

12

3

3

(c)

H+
1

H+
2

H+
3

H+(t6)

σ6

e3 · σ6

e1 · σ6

(f)

12

3

1 2

1 2

1 2

3

Fig. 5 An example of the shelling order construction in the d = 2 case. (a) The atoms discovered
at time t0, i.e. the atoms Aσ with m(σ) = −∞. Note the four atoms of (H,R2) which intersect
H(t0) partition it into four intervals. (b) As t increases, H(t) slides to the right, encountering atoms
one at a time. The shaded atom is newly discovered. (c) Uniqueness of r(!(σ6)) follows because
e3 · σ6 and e1 · σ6 have already been discovered. (d–f) The inductive step and next two steps of
the shelling order. The associated minimal face is highlighted with a large mark (panel (d)) or a
dashed line (panels (e, f)). (d) The polar complex �(code(L,H(t0))). Ordering the four codewords
discovered in panel (a) from top to bottom yields r(123) = 3. (e) Facet 123 is added when H(t)

contains the intersection H1 ∩H2 (panel (b)), thus r(123) = 12. (f) Atom A12 is discovered when
H(t) contains H1 ∩H3 (panel (c)). Thus r(123) = 13
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H(t0), and the corresponding codewords are precisely those with m(σ) = −∞.
Thus, we have an ordering for these codewords which is an initial segment of a
shelling of �(C) (Fig. 5d).

(2) Let σ ∈ C be a codeword with m(σ) > −∞. The function f (x) = u · x
is minimized along a face of the (closure of) polyhedron R!(σ); property (i)
ensures this face is a vertex, which is an element of �(H). Property (ii) ensures
f |�(H) is injective. Therefore, m induces a total order on codewords σ with
m(σ) > −∞. Let σ1, . . . , σk be the ordering of codewords of C obtained
appending this ordering to the order from (1). We will show each facet has
an associated minimal face to complete the proof.

(3) Denote �i
def= �({σ1, . . . , σi}) for i = 1, . . . , k. From (1), r(!(σi)) is defined

whenever m(σi) = −∞. So, let σi be a codeword with ti = m(σi) > −∞,
meaning there is a vertex of R!(σi) minimizing f . This vertex is an element
of �(H), i.e. it is the intersection Hαi of d hyperplanes (see Fig. 5b, c). For
F ∈ �(C) and α ⊆ [n], we denote

F |α def= F ∩ (α � α),

the subset of F with support α. We claim r(!(σi)) = !(σi)|αi (see Fig. 5e, f).
The region R!(σi )|αi is a cone supported by H(ti), so this is the first codeword
in our order with this exact combination of “on” and “off” vertices indexed by
αi . Thus, !(σi)|αi ∈ �i \ �i−1.

Now consider F = !(σi)|β ∈ �i \ �i−1. Suppose, for the sake of
contradiction, β �⊇ αi , that is, there is some 	 ∈ αi \ β. Then F ⊆ !(e	 · σi).
Note e	 ·σi ∈ C since, by genericity, all 2d possible regions around the pointHαi

produce codewords. However, since H(ti) intersects the interior of R!(e	·σi),
we have m(e	 · σi) < m(σi) and therefore !(e	 · σi) ∈ �i−1. We reach a
contradiction, as this implies F ∈ �i−1. Therefore, r(!i) = !i |αi is the unique
minimal face in �i \ �i−1. This completes the proof. ��

We now prove that a stable hyperplane code is a subset of codewords of a stable
hyperplane arrangement in R

d .

Lemma 9 If C is a stable hyperplane code, then C can be realized by a stable pair
(H,P) such that P = ⋂

j∈[m] B
+
j is an open polytope with bounding hyperplanes

B such that H ∪ B has generic intersections in R
d .

Proof Let (H,X) be a stable pair realizing C. By Lemma 1, we can perturb the
hyperplanesH to an arrangementH ′ while preserving the atoms of the arrangement
(H,X), i.e. code(H ′,X) = code(H,X). Thus, C has a realization (H ′,X) such
that H ′ has generic intersections outside of X as well.

Applying Lemma 1 again, we can choose a point pσ in the interior of AH ′
σ for

every σ ∈ C. Let P be the interior of the convex hull of the set of points {pσ |
σ ∈ C}; by perturbing the points slightly we may assume P is full-dimensional.
Let B = {B+n+1, . . . , B

+
n+m} denote the bounding hyperplanes of this polytope, i.e.
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P = ⋂n+m
j=n+1 B

+
j . Since P ⊆ X, we conclude code(H ′,P) ⊆ code(H ′,X). Since

we chose a points pσ for every codeword of C, σ ∈ C implies AH ′
σ ∩ P �= ∅

and therefore code(H ′,X) ⊆ code(H ′,P). Thus we have C = code(H ′,P) and
(H ′,P) is a stable arrangement.

The hyperplanes in H ′ ∪B do not necessarily have generic intersections. Again,
we apply Lemma 1: one can perturb each hyperplane in B to hyperplanes B′,
so that these hyperplanes have generic intersections, yet the appropriate code is
preserved, i.e. C = code(H ′,P) = (H ′,P ′), where P ′ is the open polyhedron
P ′ =⋂

B∈B ′ B+. This completes the proof. ��
We extend Lemma 8 to the general case with the following standard lemma [5].

Lemma 10 ([5, Proposition 10.14]) Let � be a shellable simplicial complex. Then
linkσ� is shellable for any σ ∈ �, with shelling order induced from the shelling
order of �.

Proof of Theorem 4 By Lemma 9, C can be realized as C = code(H,P) with

P =
n+m⋂
j=n+1

B+j

an open polyhedron such that the arrangement H ∪ B has generic intersections in
R
d . Set C′ = code(H ∪ B,Rd), a code on vertex set [n +m]. By Lemma 8, �(C′)

is shellable. Set F = {n+ 1, . . . , n+m} ∈ �(C′). Then we have

linkF�(C′) = �

⎛
⎝code

(
H,

n+m⋂
j=n+1

B+j
)⎞⎠ = �(C).

By Lemma 10, as the link of a shellable complex, �(C) is shellable. ��

7.2 Obstructions Following from Shellability

In general, shellable simplicial complexes are homotopy-equivalent to a wedge sum
of spheres, where the number and dimension of the spheres correspond to the facets
with r(F ) = F in some shelling order [22]. First we prove a stronger version of this
statement for the polar complex of a code, which will be used throughout the proofs
of all parts of Theorem 5. Note the condition of this lemma is intrinsic to the polar
complex of the code and does not rely on any particular realization.

Lemma 11 If �(C) is shellable, then either C = 2[n] or �(C) is collapsible.
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Proof We induct on the number of codewords of C. Let F1, . . . , Ft be a shelling
order of �(C), with σ1, . . . , σt the corresponding order of codewords in C. For
ease of notation, let C′ = {σ1, . . . , σt−1} denote the first t − 1 codewords in
this shelling order. By construction, �(C′) is shellable. Because it has one fewer
codeword than C, it cannot be the full code and therefore, by inductive hypothesis,
�(C′) is collapsible.

By definition, r(Ft ) is the unique minimal element of the collection �(C)\�(C′)
and hence the only facet that contains r(Ft ) is Ft . If r(Ft ) � Ft , then (r(Ft ), Ft ) is
a free pair, and �(C)↘ r(Ft) �(C′) which is collapsible.

In the case r(Ft ) = Ft , we claim we must have C = 2[n]. Suppose not, for the
sake of contradiction, and let τ ∈ 2[n] \ C. Note �(2[n] \ {τ }) is homeomorphic to a
closed (n−1)-ball (as it is a sphere missing top-dimensional open disc). Since �(C′)
is a collapsible subcomplex of a simplicial complex, �(C) is homotopy-equivalent
to the quotient space �(C)/�(C′) (see [18, Proposition 0.17 and Proposition A.5]).
Because r(Ft ) = Ft , the boundary of the simplex�({Ft }) is contained in �(C′), and
therefore �(C)/�(C′) is homotopy equivalent to Sn−1. We reach a contradiction, as
�(C) ⊆ �(2[n] \ {τ }), but there is no embedding Sn−1 ↪→ R

n−1 (see, e.g. [18,
Corollary 2B.4]). Therefore, in this case we have C = 2[n]. ��

To prove Theorem 5.1, we need one more lemma. Note that this lemma concerns
with contractibility of certain subcomplexes, hence it can only be used to show C
has no weak local obstructions.

Lemma 12 ([8, Lemma 4.4]) Let � be a simplicial complex on vertex set V . Let
α, β ∈ � with α ∩ β = ∅, α ∪ β � V , and linkα(�|α∪β) not contractible. Then
there exists α′ ∈ � such that (i) α′ ⊇ α, (ii) α′ ∩ β = ∅, and (iii) linkα′(�) is not
contractible.

Proof of Theorem 5.1 Assume that the polar complex �(C) is shellable. To show
that C has no weak local obstructions, first suppose τ ∈ �(C) and linkτ�(C) is
not contractible. We will show τ ∈ C. Note that �(C) = �(C)|[n]�∅, thus we
apply Lemma 12 to the pair α = τ � ∅, β = ([n] \ τ ) � ∅ in the polar complex
�(C): there exists a face T ∈ �(C) such that (i) T = T + � T − ⊇ τ � ∅, (ii)
T ∩ (([n] \ τ ) � ∅) = ∅, and (iii) linkT �(C) is not contractible. Statements (i)
and (ii) together imply T + = τ . Statement (iii) together with Lemma 11, implies
linkT �(C) = �(2[n]\T ). Therefore this link contains the facet F consisting of all
barred vertices in [n] \ T . Thus T ∪F = τ � [n] \ τ is a face of �(C) and therefore
τ ∈ C; hence τ cannot be a local obstruction.

For any g ∈ (Z2)
n, the above argument extends to g ·C verbatim, since �(g ·C) =

g · �(C), and g · �(C) is also shellable. Thus, C has no bitflip local obstructions. ��
Proof of Theorem 5.2 Links of �(C) are polar complexes of a code on a smaller set
of vertices, and links of shellable complexes are shellable (Lemma 10). Therefore,
we can apply Lemma 11 to conclude linkF�(C) is either collapsible or �(2[n]\F )
for any F ∈ �(C). Thus, no face F can be a sphere link obstruction. ��
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We use one final lemma to prove Theorem 5.3, which concerns faces of simplicial
complexes with collapsible links.

Lemma 13 Let � be a simplicial complex with α ∈ � such that linkα� is
collapsible. Then �↘ delα�.

Proof Let (σ1, τ1), . . . , (σk, τk) be the sequence of free pairs along which �1 =
linkα� is collapsed (in particular, σk = ∅), resulting in the sequence of simplicial
complexes

linkα� = �1 ↘σ1 �2 ↘σ2 · · · ↘σk �k+1 = {}.

Consider the sequence (σ1 ∪ α, τ1 ∪ α), . . . , (σk ∪ α, τk ∪ α) in �. We claim, (σ1 ∪
α, τ1 ∪ α) is a free pair: σ1 ∪ α � τ1 ∪ α and τ1 ∪ α is a facet of �. If σ1 ∪ α ⊆ τ ′
for some facet τ ′, then τ ′ \ α is a facet of linkα� which contains σ1, hence τ ′ = τ .
This argument can be repeated for the pair (σ2 ∪ α, τ2 ∪ α) in delσ1∪α�, and so
on, to show that this is a sequence of free pairs in �. Thus, we have a sequence of
collapses

�↘σ1∪α · · · ↘σk∪α delσk∪α�.

Since σk ∪ α = α, we have �↘ delα�. ��
Proof of Theorem 5.3 Assume the polar complex �(C) is shellable. We demon-
strate that if σ ∈ cham(C) has more than one chamber, then σ is not maximal.

Suppose T1 �= T2 are chambers of σ , that is

linkT1�(C) = linkT2�(C) = �(2σ ).

We will proceed by induction on k = |T1 \ T2| > 0. Since T1 = T2 = [n] \ σ , k is
the number of indices where one Ti has a barred vertex and the other does not.

For the base case k = 1, suppose T1 \ T2 = i. Then

linkT1∩T2�(C) = �(2σ∪{i})

so σ ∪ i ∈ cham(C) and σ is not maximal.
Now suppose |T1 \ T2| = k > 1. We produce a face F such that linkF�(C) =

�(2σ ) and |T1 \ F | < k, giving the induction step. Let T = T1 ∩ T2, and consider
linkT �(C). This is a shellable subcomplex of �(2[n]\T ); denote its corresponding
code by C′. Let T ′1 = T1 \ T and T ′2 = T2 \ T ; by design these are disjoint with
|T ′1 \T ′2| = |T ′1| = |T ′2| = k and linkT ′i �(C

′) = �(2σ ) for i = 1, 2. Because they are
disjoint, starT ′1 �(C

′) ∪ starT ′2 �(C
′) is a suspension of �(2σ ), making it homotopy

equivalent to S|σ |.
Consider a face F ′ ∈ �(C′) such that F ′ = T ′1. By construction, linkF ′�(C′)

is a subcomplex of �(2σ ). If linkF ′�(C′) �= �(2σ ), then the link is collapsible by
Lemmas 10 and 11; Lemma 13 implies that �(C′) collapses to delF ′�(C′).
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There are 2k − 2 faces F ′ �= T1, T2 with F ′ = T1. If none of these F ′ had
linkF ′�(C′) = �(2σ ), this would lead to a contradiction: we would have a sequence
of collapses

�(C′)↘ starT ′1 �(C
′) ∪ starT ′2 �(C

′).

Since �(C) is shellable, by Lemma 11 it is homotopy equivalent to Sn−1 or is
contractible. Collapsing preserves homotopy type, so we reach a contradiction.

Therefore, for one of these F ′ we must have linkF ′�(C′) = �(2σ ). Thus
linkF ′∪T �(C) = �(2σ ) and so we have another face in �(C) whose link yields
�(2σ ), namely F = F ′ ∪ T . Since |T1 \ F | < k, by induction σ is not maximal in
cham(C). Therefore, if σ is maximal in C, it must have a unique chamber, and thus
C has no chamber obstructions. ��
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Analysis of Dynamic Graphs
and Dynamic Metric Spaces
via Zigzag Persistence

Woojin Kim, Facundo Mémoli, and Zane Smith

Abstract We overview recent work on obtaining persistent homology based
summaries of time-dependent data. Given a finite dynamic graph (DG), one
first constructs a zigzag persistence module arising from linearizing the dynamic
transitive graph naturally induced from the input DG. Based on standard results, it is
possible to then obtain a persistence diagram or barcode from this zigzag persistence
module. It turns out that these barcodes are stable under perturbations of the input
DG under a certain suitable distance between DGs. We also overview how these
results are also applicable in the setting of dynamic metric spaces, and describe a
computational application to the analysis of flocking behavior.

1 Introduction

Given a static finite metric space (X, dX), hierarchical clustering method finds a
hierarchical family of partitions that captures some multi-scale features present in
the dataset. These hierarchical families of partitions are called dendrograms (see
figure below) and from a graph theoretic perspective, they are planar, hence their
visualization is straightforward.
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We now turn our attention to a problem of clustering of dynamic data. We model
dynamic datasets as time-varying graphs or time-varying finite metric spaces. Then,
in order to summarize the evolution of their clustering features over time, we study a
simple generalization of dendrogram which we call formigram (see figure below)—
a combination of the words formicarium1 and diagram. Whereas dendrograms are
useful for modeling situations when data points aggregate along a certain scale
parameter, formigrams are better suited for representing phenomena when data
points may also separate or disband and then regroup at different parameter values.

One motivation for considering this scenario comes from the study and characteri-
zation of flocking/swarming/herding behavior of animals [4, 19–21, 31, 34, 37, 38],
convoys [24], moving clusters [25], or mobile groups [22, 39].

In contrast to dendrograms, formigrams are not always planar, so more sim-
plification is desirable in order to easily visualize the information they contain.
We do this by associating zigzag persistent homology barcodes/diagrams [9] to
formigrams. We prove that the resulting signatures turn out to be (1) stable to
perturbations of the input dynamic metric space and (2) still informative. The so
called Single Linkage Hierarchical Clustering method [23] produces dendrograms
from finite metric spaces in a stable manner: namely, if the input static datasets are
close in the sense, then the output dendrograms will also be close [11]. This result
is further generalized for higher dimensional homological features [14].

1.1 Overview of the Results in [26]

The work in [26, 29] was motivated by the desire to construct a well-defined
summarization tool of clustering behavior of time-varying metric data, which will
be said to be dynamic metric spaces (DMSs). In [26], we introduced a method to
summarize DMSs into , formigrams, Reeb graphs, which eventually enables us

1A formicarium is an enclosure for keeping ants under semi-natural conditions [40].
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to produce clustering barcodes derived from DMSs. We now review some main
concepts from that paper.

Throughout this paper X and Y are non-empty finite sets. We denote the set of
real numbers and the set of non-negative real numbers by R and R+, respectively.

Definition 1 (Dynamic Metric Spaces) A dynamic metric space is a pair γX =
(X, dX(·)) whereX is a non-empty finite set and dX : R×X×X→ R+ satisfies:

(i) For every t ∈ R, γX(t) = (X, dX(t)) is a pseudo-metric space.
(ii) There exists t0 ∈ R such that γX(t0) is a metric space.

(iii) For fixed x, x ′ ∈ X, dX(·)(x, x ′) : R → R+ is continuous.

We refer to t as the time parameter.

Condition (ii) above is assumed in order rule out redundant points in X. The
details pertaining to DMSs can be found in Sect. 2.

Main Result (Stable Summarization Process of DMSs/DGs into Barcodes)
Let γX = (X, dX(·)) and γY = (Y, dY (·)) be any two (tame) DMSs over non-
empty finite sets X and Y , respectively. The DMSs γX, γX can be summarized into
dynamic graphs GX,GY (Sect. 3) and into formigrams θX, θY and into barcodes
dgm(θX), dgm(θY ) (Sect. 4), respectively in order. Moreover, there exist the dis-
tances ddynM

I , d
dynG
I , dF

I , dB for DMSs, dynamic graphs, formigrams, and barcodes
respectively, satisfying the following inequalities (Theorems 5, 6, and 7) (Fig. 1):

2 ddynM
I (γX, γY ) ≥ 2 ddynG

I (GX,GY ) (1)

≥ 2 dF
I (θX, θY ) (2)

≥ dB (dgm(θX), dgm(θY )) . (3)

Fig. 1 Summarization
process of a DMS. A DMS,
which is represented as a
dynamic point cloud in the
first row over the time axis, is
converted into a dynamic
graph, into a formigram, and
eventually into a barcode

t

t
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We remark that the final lower bound can be computed in polynomial time [9,
18, 33]. Also, we emphasize that given any two dynamic graphs (which are not
necessarily derived from DMSs), not only one can quantify the behavioral difference
between the dynamic graphs by computing ddynG

I but also one can summarize the
dynamic graphs into formigrams and in turn barcodes with a guarantee of stability
by virtue of the second and the third inequality above.

In the rest of the paper, we recall the notions that are necessary for understanding
the main result above, without trying to describe the entire scope of the methods and
results obtained in the original papers. Omitted proofs can be found in [26]. Also,
in [27], one can find a direct way to summarize DMSs into formigrams with the
same stability as above, but without passing through dynamic graphs. A publicly
available software tool for the computation of formigrams can be found in [30].
Also, we remark that another stable method to encode the time-evolving topological
features of DMSs, the so-called spatiotemporal persistent homology, has recently
been proposed [28] with a publicly available software tool [16].

2 Dynamic Metric Spaces (DMSs)

We introduce various examples of DMSs and the λ-slack interleaving distance for
DMSs. Details and omitted proofs can be found in [26].

2.1 Examples of DMSs and Tameness

In this section we introduce definitions pertaining to our model for dynamic
metric spaces (DMSs) as well as some examples of DMSs. In particular, tameness
(Definition 3) is a crucial requirement on DMSs, which permits transforming DMSs
into DGs, formigrams, Reeb graphs, and eventually barcodes.

Example 1 (Examples of DMSs)

(i) Given a finite metric space (X, d ′X), define the DMS γX = (X, dX(·)) where
dX(·) is the constant function on its first argument equal to d ′X. We refer to
these as constant DMSs.

(ii) Another family of examples is given by n particles/animals moving continu-
ously inside an environment � ⊂ Rd where particles are allowed to coalesce.
If the n trajectories are p1(t), . . . , pn(t) ∈ Rd , then let P := {1, . . . , n} and
define a DMS γP := (P, dP (·)) as follows: for t ∈ R and i, j ∈ {1, . . . , n}, let
dP (t)(i, j) := ‖pi(t)− pj (t)‖, where ‖ · ‖ denotes the Euclidean norm.

(iii) Another example of a DMS is given by the following construction: Let ψ :
R → R+ be any non identically zero continuous function. Then, for any finite
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metric space (X, d ′X) consider the DMS γ
ψ
X = (X, d

ψ
X (·)) where for t ∈ R,

d
ψ
X (t) := ψ(t) · d ′X.

We now introduce a notion of equality between two DMSs.

Definition 2 (Isomorphic DMSs) Let γX = (X, dX(·)) and γY = (Y, dY (·)) be
two DMSs. We say that γX and γY are isomorphic if there exists a bijection ϕ :
X→ Y such that ϕ is an isometry between γX(t) and γY (t) across all t ∈ R.

We finish this section by introducing a notion of tameness of DMS which will
ultimately ensure that the clustering barcodes of DMSs are well defined. First, we
define tame functions f : R → R: a continuous function f : R → R is tame, if
for any c ∈ R and any finite interval I ⊂ R, the set f−1(c) ∩ I ⊂ R is empty or
has only finitely many connected components. For instance, polynomial functions
(in particular, constant functions) and Morse functions on R are tame.

Definition 3 (Tame DMSs) We say that a γX = (X, dX(·)) is tame if for any
x, x ′ ∈ X the function dX(·)(x, x ′) : R → R+ is tame.

2.2 The λ-Slack Interleaving Distance Between DMSs

The main goal of this section is to introduce a [0,∞)-parametrized family{
d

dynM
I,λ

}
λ∈[0,∞)

of extended metrics for DMSs. Each metric in this family is

a hybrid between the Gromov-Hausdorff distance and the interleaving distance
[8, 13] for Reeb graphs [17]. Specifically, we have a stability result with respect
to the most stringent metric (the metric corresponding to λ = 0) in the family
(Theorem 5). We begin with introducing new notation:

Definition 4 Let ε ≥ 0. Given any map d : X × X → R, by d + ε we denote the
map X ×X→ R defined as (d + ε)(x, x ′) = d(x, x ′)+ ε for all (x, x ′) ∈ X ×X.

Definition 5 Given any DMS γX = (X, dX(·)) and any closed interval I ⊂ R,
define the map

∨
I dX : X × X → R+ by

(∨
I dX

)
(x, x ′) := mint∈I dX(t)(x, x ′)

for all (x, x ′) ∈ X ×X.

Given any map d : X×X→ R, let Z be any set and let ϕ : Z→ X be any map.
Then, we define ϕ∗d : Z × Z→ R as

ϕ∗d(z, z′) := d
(
ϕ(z), ϕ(z′)

)

for all (z, z′) ∈ Z × Z.

We establish a method for interconnecting any two DMSs via a tripod, which has
been utilized for constructing a distance between filtered spaces [32] and a distance
between Reeb graphs [3].
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Definition 6 (Tripod) Let X and Y be any two sets. A tripod R between X and Y
is a pair of surjections from another set Z to X and Y , respectively. Namely, R can

be expressed as the diagram R : X ϕX�−−− Z
ϕY−−−� Y.

Definition 7 (Comparison of Functions via Tripods) Consider any two maps d1 :
X×X→ R and d2 : Y×Y → R. Given a tripodR : X ϕX�−−− Z

ϕY−−−� Y between
X and Y , by d1 ≤R d2 we mean ϕ∗Xd1(z, z

′) ≤ ϕ∗Y d2(z, z
′) for all (z, z′) ∈ Z × Z.

For any t ∈ R, let [t]ε := [t − ε, t + ε].
Definition 8 (λ-Distortion of a Tripod) Fix λ ≥ 0. Let γX = (X, dX(·)) and

γY = (Y, dY (·)) be any two DMSs. Let R : X
ϕX�−−− Z

ϕY−−−� Y be a tripod
between X and Y such that

for all t ⊂ R,
∨
[t ]ε

dX ≤R dY (t)+ λε and
∨
[t ]ε

dY ≤R dX(t)+ λε. (4)

We call any such R a (λ, ε)-tripod between γX and γY . Define the λ-distortion
disdyn

λ (R) of R to be the infimum of ε ≥ 0 for which R is a (λ, ε)−tripod.

For λ > 0, disdyn
λ (R) in Definition 8 takes into account both spatial and temporal

of theR between γX and γY (see examples in [26, Section 9.3]). Also in Definition 8,
one can check that if R is a (λ, ε)-tripod, then R is also a (λ, ε′)-tripod for any
ε′ > ε.

Now we introduce a family of metrics for DMSs. An example will be provided
right after the definition.

Definition 9 (The λ-Slack Interleaving Distance Between DMSs) For each λ ≥
0, we define the λ-slack interleaving distance between any two DMSs γX =
(X, dX(·)) and γY = (Y, dY (·)) as

d
dynM
I,λ (γX, γY ) := min

R
disdyn

λ (R)

where the minimum ranges over all tripods between X and Y . For simplicity, when
λ = 0, we write ddynM

I instead of ddynM
I,0 . If ddynM

I (γX, γY ) ≤ ε for some ε ≥ 0, then
we say that γX and γY are ε-interleaved or simply interleaved.

By Definition 9, it is clear that for all λ > 0, ddynM
I,λ ≤ d

dynM
I . We call any DMS

γX = (X, dX(·)) bounded if there exists r > 0 such that the distance between any
pair of points in X does not exceed r across all t ∈ R.

Theorem 1 ([26, Theorem 9.14]) For each λ ≥ 0, ddynM
I,λ is an extended metric

between DMSs modulo isomorphism. In particular, for λ > 0, ddynM
I,λ is a metric

between bounded DMSs modulo isomorphism.
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Fig. 2 The interleaving condition. The thick blue curve and the thick red curve represent the
graphs of ψ0(t) = 1+ cos(t) and ψ1(t) = 1+ cos(t + π/4), respectively. Fixing ε ≥ 0, define a
function Sε(ψ0) : R → R by Sε(ψ0)(t) := mins∈[t]ε ψ0(s). The thin curves below the thick blue
curve illustrate the graphs of Sε(ψ0) for several different choices of ε. Note that for ε ≥ π/4 -
0.785, it holds that Sε(ψ0) ≤ ψ1

We remark the following: (1) For λ > 0, ddynM
I,λ generalizes the Gromov-

Hausdorff distance ([26, Remark 11.28]): For any λ > 0 and for any two
constant DMSs γX ≡ (X, dX) and γY ≡ (Y, dY ), we have λ

2 · ddynM
I,λ (γX, γY ) =

dGH((X, dX), (Y, dY )). See [26] for more details. (2) The metrics ddynM
I,λ for different

λ > 0 are bilipschitz-equivalent ([26, Proposition 11.29]).

Example 2 (An Interleaved Pair of DMSs) This example refers to Fig. 2. Fix the
two-point metric space (X, dX) =

({x, x ′}, ( 0 1
1 0

))
and consider two DMSs γ ψ0

X =
(X, d

ψ0
X ) and γ

ψ1
X = (X, d

ψ1
X ) as in Example 1(iii) where, for t ∈ R, ψ0(t) =

1 + cos(t), ψ1(t) = 1 + cos(t + π/4). Then, γ ψ0
X and γ ψ1

X are ε-interleaved if and
only if for i, j ∈ {0, 1}, i �= j , and for all t ∈ R, Sε(ψi)(t) := mins∈[t ]ε ψi(s) =(∨

[t ]ε d
ψi
X

)
(x, x ′) ≤ d

ψj
X (t)(x, x ′) = ψj (t). In fact, this inequality holds if and

only if ε ≥ π/4, and hence ddynM
I

(
γ
ψ0
X , γ

ψ1
X

)
= π/4.

We finish this section with a discussion of the computational complexity of
d

dynM
I . A DMS γX = (X, dX(·)) is said to be piecewise linear if for all x, x ′ ∈ X,

the function dX(·)(x, x) : R → R+ is piecewise linear. We denote by SX the set of
all breakpoints of all distance functions dX(·)(x, x ′), x, x ′ ∈ X.

Theorem 2 (Complexity of ddynM
I ) Fix ρ ∈ (1, 6) and let γX and γY be piece-

wise linear DMSs. Then, it is not possible to compute a ρ-approximation to
d

dynM
I (γX, γY ) in time polynomial in |X|, |Y |, |SX|, and |SY |, unless P = NP .

The theorem above suggests that computing the lower bound for ddynM
I given by

the main result in Sect. 1 is a pragmatic approach to comparing DMSs.

3 Dynamic Graphs (DGs)

In this section we recall the notion of DGs and the interleaving distance between
DGs. Details and omitted proofs can be found in [26].
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3.1 Definition of DGs

Recall that a multiset is a generalized notion of a set in that a multiset allows
multiple instances of the multiset’s elements (but the order of the elements does
not matter). For example, {x, x, y} is a multiset. We define dynamic graphs as a
model for time-varying graph theoretic structures. For a set X, let pow(X) be the
power set of X and let

pow2(X) =
{
X′ : X′ is a multiset consisting of elements in X with

∣∣X′∣∣ = 2
}
.

Note that given any graph GX = (X,EX), its edge set EX is an element of
pow

(
pow2 (X)

)
.

Definition 10 (Dynamic Graphs) A dynamic graph (DG) GX over X is a pair of
maps

VX(·) : R → pow(X) and EX(·) : R → pow
(
pow2 (VX(·))

)
,

satisfying the conditions below. By crit(GX) we denote the union of the set of points
of discontinuity of VX(·) and the set of points of discontinuity of EX(·). We call the
elements of crit(GX) the critical points of GX. We require GX = (VX(·), EX(·)) to
satisfy the following:

(i) (Self-loops) For all t ∈ R and for all x ∈ VX(t), {x, x} ∈ EX(t).

(ii) (Tameness) The set crit(GX) is locally finite.2

(iii) (Lifespan of vertices) for every x ∈ X, the set Ix := {t ∈ R : x ∈ VX(t)}, said
to be the lifespan of x, is a non-empty interval.

(iv) (Comparability) for every t ∈ R, it holds that

VX(t − ε) ⊂ VX(t) ⊃ VX(t + ε) and EX(t − ε) ⊂ EX(t) ⊃ EX(t + ε)

for all sufficiently small ε > 0.

In plain words, a DG is a graph that is subjected to a sequence of updates such
as addition/deletion of vertices/edges (see Fig. 3 for an illustration). We remark that
the ‘self-loops’ condition of Definition (i) is introduced for purely technical reasons
since it helps ease notation in defining a distance between DGs in Sect. 3.2. Also,
Definition 10(iii), (iv) together implies that the lifespan of vertices in a DG are non-
empty closed intervals. Also, Definition 10(iii) implies that the lifespan of edges in
a DG are a (possibly empty) union of closed intervals.

2To say that A ⊂ R is locally finite means that for any bounded interval I ⊂ R, the cardinality of
I ∩ A is finite.
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Fig. 3 An illustration of a specific dynamic graph suppressing all the self-loops (see Defini-
tion 10 (i)). Different shapes of vertices indicate their different birth times in the dynamic graph

We specify the notion of isomorphism in the class of DGs:

Definition 11 (Isomorphism for DGs) Two DGs GX = (VX(·), EX(·)) and GY =
(VY (·), EY (·)) are isomorphic if there exists a bijection ϕ : X→ Y such that for all
t ∈ R, VX(t) = ϕ (VY (t)) and {x, x ′} ∈ EX(t) if and only if {ϕ(x), ϕ(x ′)} ∈ EY (t).

In words, the map ϕ serves as a graph isomorphism between GX and GY for all time.

3.2 The Interleaving Distance Between DGs

The main goal of this section is to recall the notion of the ε-smoothing of DGs, as
well as a (pseudo) metric on the collection of DGs.

Let GX = (X,EX) be any graph and let Z be any set. For any map ϕ : Z → X,
the pullback GZ := ϕ∗GX of GX via ϕ is the graph on the vertex set Z with the
edge set EZ =

{{z, z′} : {ϕ(z), ϕ(z′)} ∈ EX

}
.

Definition 12 (Pullback of a DG) Let GX = (VX(·), EX(·)) be a DG and let Z
be any set. For any map ϕ : Z → X, the pullback GZ := ϕ∗GX of GX via ϕ is a
DG over Z defined as follows: for all t ∈ R, GZ(t) is the graph on the vertex set
VZ(t) = ϕ−1 (VX(t)) with the edge set EZ(t) =

{{z, z′} : {ϕ(z), ϕ(z′)} ∈ EX(t)
}
.

In order to define the interleaving distance between DGs, we first establish a
method for interconnecting any two DGs via a tripod (Definition 6).

Definition 13 (Comparison Between Two DGs via a Tripod) Let GX =
(VX(·), EX(·)), GY = (VY (·), EY (·)) be any two DGs and let R : X

ϕX�−−−
Z

ϕY−−−� Y be any tripod between X and Y . We write GX
R−→ GY if for all t ∈ R,

ϕ∗XGX(t) is a subgraph of ϕ∗YGY (t), i.e. the vertex set and the edge set of ϕ∗XGX(t)

are subsets of those of ϕ∗YGY (t), respectively.

In Definition 13, GX
R−→ GY implies that for all t ∈ R, any function f : X → Y

satisfying {(x, f (x)) : x ∈ X} ⊂ ϕY ◦ ϕ−1
X gives rise to a graph morphism from

GX(t) to GY (t). However, the converse is not true in general. See the example below.

Example 3 Let X = {x} and Y = {y, y ′}. Let GX = (VX(·), EX(·)) and GY =
(VY (·), EY (·)) be the constant DGs defined as follows: For all t ∈ R, VX(t) = {x},
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EX(t) = {{x, x}}, VY (t) = {y, y ′}, and EY (t) = {{y, y}, {y ′, y ′}}. Since X is

singleton, there exists the unique map ϕ : Y → X. Consider the tripod R : X ϕ
�−−−

Y
idY−−−−� Y . Then, it is not true that GX

R−→ GY , whereas for every t ∈ R, any
function f : X→ Y is a graph morphism between GX(t) and GY (t).

As an ingredient for defining our distance between DGs, we introduce the notion
of ε-smoothing of DGs for ε ≥ 0. The intuition is that ε-smoothed-out DGs will be
oblivious to ephemeral disconnections between their vertices.

Definition 14 (Time-Interlevel Smoothing of DGs) Let GX = (VX(·), EX(·)) be
any DG.

(i) Let I ⊂ R be an interval. We define
⋃
I

GX :=
(⋃
t∈I

VX(t),
⋃
t∈I

EX(t)

)
.

(ii) Let ε ≥ 0. The ε-smoothing SεGX of GX is defined as follows:

SεGX(t) =
⋃
[t ]ε

GX for t ∈ R.

The time-dependent graph SεGX introduced in Definition 14(ii) is indeed a DG,
i.e. SεGX satisfies all the conditions in Definition 10 [26, Proposition 6.7].

Definition 15 (Interleaving Distance Between DGs) Any two DGs GX =
(VX(·), EX(·)) and GY = (VY (·), EY (·)) are said to be ε-interleaved if there
exists a tripod R between X and Y such that

GX
R−→ SεGY and GY

R−→ SεGX.

We call any such R an ε-tripod between GX and GY . The interleaving distance
d

dynG
I (GX,GY ) between GX and GY is defined as the infimum of ε ≥ 0 for which

there exists an ε-tripod between GX and GY . If there is no ε-tripod between GX and
GY for any ε ≥ 0, then we declare ddynG

I (GX,GY ) = +∞.

Theorem 3 ([26, Theorem 6.10]) d
dynG
I in Definition 15 is an extended pseudo

metric on DGs.

The following theorem is analogous to Theorem 4.

Theorem 4 (Complexity of ddynG
I [26, Theorem 6.11]) Fix ρ ∈ (1, 6). Then, it is

not possible to compute a ρ-approximation to ddynG
I (GX,GY ) between DGs in time

polynomial in |X|, |Y |, |crit(GX)|, and |crit(GY )|, unless P = NP .

Theorem 4 is proved by showing that the computation of the Gromov-Hausdorff
distance between finite metric spaces is amount to the computation of the interleav-
ing distance d

dynG
I between DGs. Theorem 4 indicates that computing the lower

bound for ddynG
I given by the main result in Sect. 1 is a realistic approach to

comparing DGs.
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3.3 From DMSs to DGs

In this section we propose a method to turn tame DMSs into DGs. Then, in turn,
those DGs can be summarized further by converting them into formigrams and
barcodes (see Fig. 1) according to the method we will establish (Proposition 2).

By Met we mean the category of finite metric spaces with 1-Lipschitz maps [12].
Also we consider the category Graph of graphs defined by specifying its objects and
morphisms:

• Objects: pairs GX = (X,EX) consisting of a vertex set X and an edge set
EX, where EX is a collection of two-point multisets consisting of points in X.
Specifically, for any x ∈ X, the multiset {x, x} can be included in EX, implying
the existence of the self-loop at x in GX. However, there can be no multiple edges
that connect the same two vertices.

• Morphisms: given any graphsGX = (X,EX) andGY = (Y,EY ) over vertex sets
X and Y respectively, a map f : X → Y will be said to be a graph morphism if
{x, x ′} ∈ EX implies {f (x), f (x ′)} ∈ EY .

Definition 16 (The δ-Rips Functor) For δ ≥ 0, we define the δ-Rips graph functor
R1
δ : Met → Graph as follows: for any finite metric space (X, dX), R1

δ(X, dX) is
the graph on the vertex set X with the edge set EX =

{{x, x ′} : dX(x, x ′) ≤ δ
}

(note
that by definition every vertex x of the graph R1

δ (X, dX) has the self-loop {x, x} in
EX).

Recall the concept of tame DMSs from Definition 3. The following proposition
establishes that the Rips graph functor turns a tame DMS into a DG.

Proposition 1 (From DMS to DG [26, Proposition 9.5]) Let γX be a tame DMS
over X and let δ ≥ 0. Then, by defining R1

δ(γX)(t) := R1
δ(γX(t)) for t ∈ R, R1

δ (γX)

is a DG over X.

The following theorem corresponds to the first inequality of the main result in
Sect. 1:

Theorem 5 (R1
δ is 1-Lipschitz) Let γX = (X, dX(·)) and γY = (Y, dY (·)) be any

tame DMSs. Fix any δ ≥ 0. Consider the DGs GX := R1
δ (γX),GY := R1

δ (γY ), as in
Proposition 1. Then,

d
dynG
I (GX,GY ) ≤ d

dynM
I (γX, γY ).

Proof The proof can be completed by checking that for any ε ≥ 0, any (0, ε)-
tripod R between γX and γY (Definition 9) is also an ε-tripod between GX and GY

(Definition 15). ��
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4 Formigrams

The goal of this section is to recall the construction of certain dendrogram-like
structures that are able to represent the clustering information of time-varying metric
spaces, graphs/networks, or point clouds. This leads to formigrams [27]. Also, we
will investigate (1) how formigrams can be summarized into simpler signatures, and
(2) how DGs can be summarized into formigrams.

4.1 Formigrams and Their Summarizations

In this section we define rigorously. Also, a method to summarize a formigram into
its Reeb graph, and its barcode will be introduced in an intuitive way. Refer to [26]
for the relevant details.

4.1.1 Formigrams

We begin with introducing notation of . Given any non-empty finite set X, we call
any partition P of a subset X′ of X a sub-partition of X (in particular, any partition
of the empty set is defined as the empty set). In this case we call X′ the underlying
set of P .

Definition 17 (Collection of (Sub-)partitions) Let X be a non-empty finite set.

(i) By Psub(X), we denote the set of all sub-partitions of X, i.e.

Psub(X) := {
P : ∃X′ ⊂ X , P is a partition of X′

}
.

(ii) By P(X), we denote the subcollection of Psub(X) consisting solely of partitions
of the whole X.

Given P,Q ∈ Psub(X), by P ≤ Q we mean “P is finer than or equal to Q”, i.e.
for all B ∈ P , there exists C ∈ Q such that B ⊂ C.

In order to represent the diverse clustering behaviors of dynamic datasets we
need a concept of sub-partition valued map. In particular, these sub-partition valued
map should be defined in a more flexible way than dendrograms or treegrams which
are prevalent tools static metric spaces/networks [11, 36]. Here we suggest a “zigzag
like” notion of dendrograms that we call formigram.3 Unlike dendrograms, we allow
(sub-)partitions to become finer sometimes as the time parameter increases, but
require that partitions defined by a change only finitely many times in any finite
interval. We provide an example with an illustration after the definition.

3The name formigram is a combination of the words formicarium and diagram.



Analysis of Dynamic Graphs and Dynamic Metric Spaces via Zigzag Persistence 383

Fig. 4 (a) The Reeb graph of
θX enriched with the labels
from Example 4. Note that
crit(θX) = {2, 6, 10, 15, 17}.
(b) The barcode dgm(θX) of
θX. For each t ∈ R, the
number of blocks in θX(t) is
equal to the number of
intervals containing t in
dgm(θX)

2 6 10 15 17
(A)

2 10 15 17

16 7

(B)

Definition 18 (Formigram) A formigram over a finite set X is any function θX :
R → Psub(X) such that:

(i) (Tameness) the set crit(θX) of points of discontinuity of θX is locally finite. We
call the elements of crit(θX) the critical points of θX.

(ii) (Interval lifespan) for every x ∈ X, the set Ix := {t ∈ R : x ∈ B ∈ θX(t)},
said to be the lifespan of x, is a non-empty closed interval,

(iii) (Comparability) for every point c ∈ R it holds that θX(c − ε) ≤ θX(c) ≥
θX(c+ ε) for all sufficiently small ε > 0.4

Definition 18 generalizes both the definitions of dendrogram and treegram.
Specifically, a formigram over a finite set X can have an element x ∈ X that
disappears at some t ∈ R, in contrast to dendrograms or treegrams. Also, if θX
is right-continuous on the whole R, then θX(t) can only get coarser as t increases,
just as dendrograms/treegrams. Just as in the case of dendrograms/treegrams, we
can also graphically represent formigrams by drawing their Reeb graphs, see Fig. 4
for the intuition.

Example 4 Let X = {x1, x2, x3} and define a formigram θX over X as follows:
θX(t) = {X} for t ∈ (−∞, 2] ∪ [17,∞), θX(t) = {{x1, x2}, {x3}} for t ∈ (2, 6],
θX(t) = {{x1}, {x2}, {x3}} for t ∈ (6, 10) ∪ (15, 17), and θX(t) = {{x1}, {x2, x3}}
for t ∈ [10, 15]. See Fig. 4.

4If θX is not continuous at c, then at least one of the relations of θX(c − ε) ≤ θX(c) ≥ θX(c + ε)

would be strict for small ε > 0. But if c is a continuity point of θX , then θX(c − ε) = θX(c) =
θX(c + ε) for small ε > 0.
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4.1.2 Summarizing a Formigram

As Fig. 4a indicates, any formigram has its underlying geometric structure, the
Reeb graph of the formigram. This Reeb graph can be further summarized into
its barcode, capturing the length of the loops and branches in the formigram. See
Fig. 4b for the barcode of the Reeb graph drawn in Fig. 4a. An exact algorithm to
obtain the Reeb graph of the formigram and in turn the barcode of the Reeb graph
is described in [26].

4.2 From Formigrams to Reeb Graphs, and to Barcodes

In the same spirit as Definitions 9 and 15, defining the notion of ε-smoothing
operation on formigrams leads to the interleaving distance dF

I between formigrams
[27], [26, Section 6.2]. Interestingly, the distance dF

I generalizes the Gromov-
Hausdorff distance restricted on the class of ultrametric spaces ([27, Theorem 2],
[26, Proposition 11.4]), which leads to the conclusion that the cost for computing
dF

I is high [27, Theorem 3], [26, Theorem 11.5].
On the other hands, there exist the well-known distances, the interleaving

distance dReeb
I between Reeb graphs [17] and the bottleneck distance dB between

barcodes/persistence diagrams [15]. The simplification/summarization process of a
formigram θX into its Reeb graph Reeb(θX) and in turn into the 0-th levelset barcode
L0 (Reeb(θX)) [10] of Reeb(θX) is stable:

Theorem 6 ([26, Proposition 11.9], [7, Theorem 4.13], [5]) For any two formi-
grams θX and θY over X and Y respectively, we have:

2 dF
I (θX, θY ) ≥ 2 dReeb

I (Reeb(θX),Reeb(θY )) ≥ dB (L0 (Reeb(θX)) ,L0 (Reeb(θY ))) .

We remark that L0 (Reeb(θX)) andL0 (Reeb(θY )) above coincide with dgm(θX)
and dgm(θY ) in inequality (3) in Sect. 1, respectively. The reason for using dgm(θX)
and dgm(θY ) in Sect. 1 is that computing the Reeb graphs Reeb(θX) and Reeb(θY )
are not mandatory for obtaining the barcodes dgm(θX) and dgm(θY ) in practice.

Also, since computing dReeb
I is known to be hard [6, 17], the only metric that can

be computed in polynomial time is the bottleneck distance dB in the above inequality
[9, 18, 33].

4.3 From DGs to Formigrams

In this section we describe the process that associates a (certain) formigram to any
DG. Recall the category Graph from Sect. 3. By Sets we mean the category of sets
with set maps as morphisms.
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Definition 19 (Path Component Functor π0 : Graph → Sets) Given any graph
GX = (X,EX), define the partition π0(X,EX) := X/ ∼ of X where ∼ stands
for the equivalence relation on X defined by x ∼ x ′ if and only if there exists a
sequence x = x1, x2, . . . , xn = x ′ of points in X such that {xi, xi+1} ∈ EX for
each i ∈ {1, . . . , n − 1}. In words, the relation ∼ on X is the transitive closure of
the adjacency relation of the graph GX.

Note that any graph morphism f : GX = (X,EX)→ GY = (Y,EY ) induces a
set map π0(f ) : π0(GX)→ π0(GY ) sending each block B ∈ π0(GX) to the unique
block C ∈ π0(GY ) such that f (B) ⊂ C.

We can turn any DG into a formigram:

Proposition 2 Let GX = (VX(·), EX(·)) be a DG. Then, the function π0(GX) :
R → Psub(X) defined by π0 (GX) (t) = π0 (GX(t)) for t ∈ R satisfies all the
conditions in Definition 18, therefore it is a formigram.

Proof Since any DG GX satisfies Definition 10(ii), (iii), and (iv), π0(GX) necessar-
ily satisfies Definition 18(i), (ii), and (iii). ��

DGs are mapped into formigrams via the path connected functor π0 (Defini-
tion 19) in a stable manner:

Theorem 7 (π0 Is 1-Lipschitz) Let GX = (VX(·), EX(·)) and GY =
(VY (·), EY (·)) be any two DGs. Let π0(GX) and π0(GY ) be the formigrams defined
as in Proposition 2. Then,

dF
I (θX, θY ) ≤ d

dynG
I (GX,GY ).

By virtue of Theorems 7 and 6, any DG can be summarized into its clustering
barcode with a guarantee of stability.

5 Computational Experiments [29]

The webpage https://research.math.osu.edu/networks/formigrams/ contains the
videos on four distinctive flocking behaviors and the description of a computational
experiment which aims at classifying these flocking behaviors by analyzing their
clustering barcodes. In what follows we describe this experiment in details.

5.1 Boids Model: Creating Synthetic Flocking Behaviors

In order to generate various flocking behaviors, a slightly modified code for [1,
35], a shorthand for ‘bird-oid objects’ referring to bird-like object, is utilized. In
this flocking model, the behaviors of individual entities are governed by tuning the

https://research.math.osu.edu/networks/formigrams/
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following parameters in the real interval [0, 1]: separation (preference of entities
to not be too close to each other), alignment (tendency of an entity to synchronize
its velocity to that of its neighbors), and cohesion (tendency to move toward the
average position of neighbors/flockmates). By s, a, c, we will refer to the separation,
alignment, and cohesion parameters, respectively. Once these parameters are fixed
(together with some auxiliary parameters such as the number n of entities in a flock),
then the simulation of a flocking behavior is initiated on a flat 2-dimensional torus
with a random initial configuration of the entities.

5.2 Generation of Flocking Behaviors

The number of entities in a flock is fixed as n = 40, and a certain connectivity
parameter δ > 0 is also fixed. This connectivity parameter is the one for specifying
the δ-Rips functor in Definition 16. Four distinctive parameter settings (s1, a1, c1),
(s2, a2, c2), (s3, a3, c3), and (s4, a4, c4) are set up, which generate four distinctive
flocking behaviors in appearance in the simulation (see the aforementioned web-
page for the videos of these flocking behaviors). For each parameter setting, 20
repeats of the simulation are run with a random initial configuration for each
simulation. Note that all these flocking behaviors can be regarded as dynamic
metric spaces with the time-varying metric inherited from the ambient space, the
flat torus. Therefore, by the main result in Sect. 1, each of flocking behavior can be
summarized into its clustering barcode. Since 20 times of the simulation are run for
the four parameter settings (si , ai , ci ), i = 1, 2, 3, 4, 80 clustering barcodes are the
outcomes of the summarization process.

5.3 Classification of Flocking Behaviors

In order to compute the 80 clustering barcodes, the software Dionysus [2] was
utilized (to compute zigzag persistence). These barcodes can be ordered by denoting
them byDi for i = 1, . . . , 80, so that the first 20 barcodes are the outcomes from the
parameter setting (s1, a1, c1) and the next 20 barcodes Di , i = 21, . . . , 40 are the
outcomes from the setting (s2, a2, c2) and so on. In particular, the (80× 80)-matrix
B = (bij )1≤i,j≤80 of the bottleneck distance can be defined as bij := dB(Di,Dj ).
The single linkage hierarchical clustering (SLHC) and the multidimensional scaling
(MDS) methods are carried out by making use of the matrix B as an input: In brief,
both of these methods visualize how a set of points in a metric spaces are distributed.
The 80 barcodesDi , i = 1, . . . , 80 are regarded as 80 points in the space of barcodes
equipped with the bottleneck distance. Notice that if the 80 barcodes form four
clusters according to their parameter settings in the outcome of the SLHC and the
MDS, it indicates that the clustering barcodes are faithful signatures of the flocking
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Fig. 5 The MDS plot on the plane with the input matrix B. Each point stands for a barcode Di ,
i = 1, . . . , 80. The four types of the points (squares, circles, stars, triangles) correspond to the
four parameter set-ups (si , ai , ci ), i = 2, . . . , 3, respectively. The points of the same types are
considerably well clustered. In particular, the 20 circles form a highly tight cluster

Fig. 6 The dendrogram out of the SLHC method with the input matrix B. Along the horizontal
axis, the indices 1, 2, 3 and 4 are located and they stand for the clustering barcodes Di , i =
1, . . . , 80 with the indication of the parameter set-up (si , ai , ci ), i = 1, 2, 3, 4. Observe that the
points of the same index are fairly well clustered. Noticeably, the barcodes corresponding to the
parameter set-up (s2, a2, c2), are tightly clustered as in the MDS plot in Fig. 5

behaviors from which they originate. Interestingly, both of the outcomes from the
SLHC and the MDS are plotted in Figs. 5 and 6.
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Canonical Stratifications Along Bisheaves

Vidit Nanda and Amit Patel

Abstract A theory of bisheaves has been recently introduced to measure the
homological stability of fibers of maps to manifolds. A bisheaf over a topological
space is a triple consisting of a sheaf, a cosheaf, and compatible maps from the stalks
of the sheaf to the stalks of the cosheaf. In this note we describe how, given a bisheaf
constructible (i.e., locally constant) with respect to a triangulation of its underlying
space, one can explicitly determine the coarsest stratification of that space for which
the bisheaf remains constructible.

1 Introduction

The space of continuous maps from a compact topological space X to a metric space
M carries a natural metric structure of its own—the distance between f, g : X →
M is given by supx∈X dM[f (x), g(x)], where dM is the metric on M. It is natural
to ask how sensitive the fibers f−1(p) over points p ∈M are to perturbations of f
in this metric space of maps X→M. The case M = R (endowed with its standard
metric) is already interesting, and lies at the heart of both Morse theory [10] and the
stability of persistent homology [1–3].

The theory of bisheaves was introduced in [9] to provide stable lower bounds
on the homology groups of such fibers in the case where f is a reasonably tame
(i.e., Thom-Mather stratified) map. The fibers of f induce two algebraic structures
generated by certain basic open subsets U ⊂ M—their Borel-Moore homology
HBM• (f−1(U)) = H•(X,X − f−1(U)) naturally forms a sheaf of abelian groups,
whereas their singular homology H•(f−1(U)) naturally forms cosheaf. If M is a Z-
orientable manifold, then its fundamental class—let’s call it o ∈ Hm

c (M)—restricts
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to a generator oU of the top compactly-supported cohomology Hm
c (U) of basic

open subsets U ⊂ M. The cap product [8, Sec 3.3] with its pullback f ∗(oU) ∈
Hm
c (f

−1(U)) therefore induces group homomorphisms

HBM
m+•(f−1(U))−→H•(f−1(U))

from the (m-shifted) Borel-Moore to the singular homology over U. These maps
commute with restriction maps of the sheaf and extension maps of the cosheaf by
naturality of the cap product. This data, consisting of a sheaf plus a cosheaf along
with such maps is the prototypical and motivating example of a bisheaf.

Fix an arbitrary open set U ⊂ M and restrict the bisheaf described above to
U. We replace the restricted Borel-Moore sheaf with its largest sub episheaf (i.e.,
a sheaf whose restriction maps on basic opens are all surjective), and similarly, we
replace the restricted singular cosheaf with its largest quotient monocosheaf (i.e., a
cosheaf whose extension maps on basic opens are all injective). It is not difficult to
confirm that even after the above alterations, one can induce canonical maps from
the episheaf to the monocosheaf which form a new bisheaf over U . The stalkwise-
images of the maps from the episheaf to the monocosheaf in this new bisheaf form
a local system over U—this may be viewed as either a sheaf or a cosheaf depending
on taste, since all of its restriction/extension maps are invertible. The authors of [9]
call this the persistent local system of f over U. The persistent local system of f
over U is a collection of subquotients of H•(f−1(p)) for all p ∈ U and provides
a principled lower bound for the fiberwise homology of f over U which is stable
to perturbations. For a sufficiently small ε > 0, let Uε be the shrinking of U by ε.
For all tame maps g : X→M within ε of f , the persistent local system of f over
U restricted to Uε is a fiberwise subquotient of the persistent local system of g over
Uε .

The goal of this paper is to take the first concrete steps towards rendering this
new theory of bisheaves amenable to explicit machine computation. In Sect. 2 we
introduce the notion of a simplicial bisheaf, i.e., a bisheaf which is constructible
with respect to a fixed triangulation of the underlying manifold M. Such bisheaves
over simplicial complexes are not much harder to represent on computers than the
much more familiar cellular (co)sheaves—if we work with field coefficients rather
than integers, for instance, a simplicial bisheaf amounts to the assignment of one
matrix to each simplex σ of M and two matrices to each face relation σ ≤ σ ′,
subject to certain functoriality constraints—more details can be found in Sect. 2
below.

On the other hand, bisheaves are profoundly different from (co)sheaves in certain
fundamental ways—as noted in [9], the category of bisheaves, simplicial or other-
wise, over a manifold M is not abelian. Consequently, we have no direct recourse
to bisheafy analogues of basic (co)sheaf invariants such as sheaf cohomology and
cosheaf homology. Even so, some of the ideas which produced efficient algorithms
for computing cellular sheaf cohomology [5] can be suitably adapted towards the
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task of extracting the persistent local system from a given simplicial bisheaf. One
natural way to accomplish this is to find the coarsest partition of the simplices of M
into regions so that over each region the cap product map relating the Borel-Moore
stalk to the singular costalk is locally constant. This idea is made precise in Sect. 3.

Our main construction is described in Sect. 4. Following [11], we use the
bisheaf data over an m-dimensional simplicial complex M to explicitly construct
a stratification by simplicial subcomplexes

∅ =M−1 ⊂M0 ⊂ · · · ⊂Mm−1 ⊂Mm =M,

called the canonical stratification of M along the given bisheaf; the connected
components of each Md − Md−1, called the canonical d-strata, enjoy three
remarkably convenient properties for our purposes.

1. Constructibility: if two simplices lie in the same stratum, then the cap-product
maps assigned to them by the bisheaf are related by invertible transformations.

2. Homogeneity: if two adjacent simplices σ ≤ σ ′ of M lie in different strata, then
the (isomorphism class of the) bisheaf data assigned to the face relation σ ≤ σ ′
in M depends only on those strata.

3. Universality: this is the coarsest stratification (i.e., the one with fewest strata)
satisfying both constructibility and homogeneity.

Armed with the canonical stratification of M along a bisheaf, one can reduce the
computational burden of building the associated persistent local system as follows.
Rather than extracting an episheaf and monocosheaf for every simplex and face
relation, one only has to perform these calculations for each canonical stratum.
The larger the canonical strata are, the more computationally beneficial this strategy
becomes.

2 Bisheaves Around Simplicial Complexes

Let M be a simplicial complex and let Ab denote the category of abelian groups.
By a over M we mean a functor

F : Fc(M)→ Ab

from the poset of simplices in M ordered by the face relation to the abelian category
Ab. In other words, each simplex σ of M is assigned an abelian group F(σ ) called
the stalk of F over σ , while each face relation σ ≤ σ ′ among simplices is assigned
a group homomorphism F(σ ≤ σ ′) : F(σ ) → F(σ ′) called its restriction map.
These assignments of objects and morphisms are constrained by the usual functor-
laws of associativity and identity. A morphism α : F → G of sheaves over M is
prescribed by a collection of group homomorphisms {ασ : F(σ )→ G(σ )}, indexed
by simplices of M, which must commute with restriction maps.
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The dual notion is that of a under M, which is a functor

F : Fc(M)op → Ab;

this assigns to each simplex σ an abelian group F(σ ) called its costalk, and to each
face relation σ ≤ σ ′ a contravariant group homomorphism F(σ ≤ σ ′) : F(σ ′) →
F(σ ), called the extension map. As before, a morphism α : F → G of cosheaves
under M is a simplex-indexed collection of abelian group homomorphisms {ασ :
F(σ ) → G(σ )} which must commute with extension maps. For a thorough
introduction to cellular (co)sheaves, the reader should consult [4].

2.1 Definition

The following algebraic-topological object (see [9, Def 5.1]) coherently intertwines
sheaves with cosheaves.

Definition 1 A around M is a triple F = (F,F, F ) defined as follows. Here F is a
sheaf over M, while F is an cosheaf under M, and

F = {Fσ : F(σ )→ F(σ )}

is a collection of abelian group homomorphisms indexed by the simplices of M so
that the following diagram, denoted F(σ ≤ σ ′), commutes for each face relation
σ ≤ σ ′:

F(σ )

Fσ

F(σ≤σ )
F(σ )

Fσ

F(σ ) F(σ )
F(σ≤σ )

(The right-pointing map is the restriction map of the sheaf F, while the left-pointing
map is the extension map of the cosheaf F.)

2.2 Bisheaves from Fibers

The following construction is adapted from [9, Ex 5.3]. Consider a map f : X→M
whose target space M is a connected, triangulated manifold of dimension m.
Let o be a generator of the top compactly-supported cohomology group Hm

c (M).
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Our assumptions on M imply Hm
c (M) - Z, so o ∈ {±1}. Now the inclusion

st σ ⊂ M of the open star1 of any simplex σ in M induces an isomorphism on
m-th compactly supported cohomology, so let o|σ be the image of o in Hm

c (st σ)
under this isomorphism. Since f restricts to a map f−1(st σ)→ st σ , the generator
o|σ pulls back to a class f ∗(o|σ ) in Hm

c (f
−1(st σ)). The cap product with f ∗(o|σ )

therefore constitutes a map

HBM
m+• f −1(st σ) (st σ)

∗(o|σ )

H• f −1

from the Borel-Moore homology to the singular homology of the fiber f−1(st σ).
We note that the former naturally forms a sheaf over M while the later forms a
cosheaf; as mentioned in the Introduction, the above data constitutes the primordial
example of a bisheaf.

3 Stratifications Along Bisheaves

Throughout this section, we will assume that F = (F,F, F ) is a bisheaf of abelian
groups over some simplicial complexM of dimensionm in the sense of Definition 1.
We do not require this M to be a manifold.

Definition 2 An F-stratification of M is a filtration K• by subcomplexes:

∅ = K−1 ⊂ K0 ⊂ · · · ⊂ Km−1 ⊂ Km =M,

so that connected components of the (possibly empty) difference Kd −Kd−1, called
the d-dimensional strata of K•, obey the following axioms.

1. Dimension: The maximum dimension of simplices lying in a d-stratum should
precisely equal d (but we do not require every simplex in a d-stratum S to be the
face of some d-simplex in S).

2. Frontier: The transitive closure of the following binary relation ≺ on the set of
all strata forms a partial order: we say S ≺ S′ if there exist simplices σ ∈ S

and σ ′ ∈ S′ with σ ≤ σ ′. Moreover, this partial order is graded in the sense that
S ≺ S′ implies dim S ≤ dim S′, with equality of dimension occurring if and only
if S = S′.

3. Constructibility: F is locally constant on each stratum. Namely, if two simplices
σ ≤ τ of M lie in the same stratum, then F(σ ≤ τ ) and F(σ ≤ τ ) are both
isomorphisms.

1The open star of σ ∈M is given by st σ = {τ ∈M | σ ≤ τ }.
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Remark 1 It follows from constructibility (and the fact that strata must be con-
nected) that the commuting diagram F(σ ≤ σ ′) assigned to simplices σ ≤ σ ′ of
M depends, up to isomorphism, only on the strata containing σ and σ ′. That is,
given any other pair τ ≤ τ ′ so that σ and τ lie in the same stratum S while σ ′
and τ ′ lie in the same stratum S′, there exist four isomorphisms (depicted as dashed
vertical arrows) which make the following cube of abelian groups commute up to
isomorphism:

F(σ )

∼

F(σ≤σ )

Fσ
F(σ )

∼

Fσ

F(σ ) F(σ )
F(σ≤σ )

F(τ )
F(τ≤τ )

Fτ
F(τ ) Fτ

F(τ )

∼

F(τ )
F(τ≤τ )

∼

These vertical isomorphisms are not unique, but rather depend on choices of paths
lying in S (from σ to τ ) and in S′ (from σ ′ to τ ′).

Example 1 The first example of an F-stratification of M that one might consider is
the skeletal stratification, where the d-strata are simply the d-simplices.

Since we are motivated by computational concerns, we seek an F-stratification
with as few strata as possible. To make this notion precise, note that the set of all
F- stratifications of M admits a partial order—we say that K• refines another F-
stratification K′• if every stratum of K• is contained inside some stratum of K′•
(when both are viewed as subspaces of M). The skeletal stratification refines all the
others, and serves as the maximal object in this poset; and the object that we wish
to build here lies at the other end of this hierarchy.

Definition 3 The canonical F-stratification of M is the minimal object in the poset
of F-stratifications of M ordered by refinement—every other stratification is a
refinement of the canonical one.

The reader may ask why this object is well-defined at all—why should the poset
of all F-stratifications admit a minimal element, and even if it does, why should that
element be unique? Taking this definition as provisional for now, we will establish
the existence and uniqueness of the of M via an explicit construction in the next
section.
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4 The Main Construction

As before, we fix a bisheaf F = (F,F, F ) on an m-dimensional simplicial complex
M. Our goal is to construct the canonical F-stratification, which was described in
Definition 3 and will be denoted here by M•:

∅ =M−1 ⊂M0 ⊂ · · · ⊂Mm−1 ⊂Mm =M.

We will establish the existence and uniqueness of this stratification by constructing
the strata in reverse-order: the m-dimensional canonical strata will be identified
before the (m − 1)-dimensional canonical strata, and so forth. There is a healthy
precedent for such top-down constructions that dates back to work of Whitney [12]
and Goresky-MacPherson [7, Sec 4.1].

4.1 Localizations of the Face Poset

The key ingredient here, as in [11], is the ability to localize [6, Ch I.1] the poset
Fc(M) about a special sub-collection W of face relations that is closed in the
following sense: if (σ ≤ τ ) and (τ ≤ ν) both lie in W then so does (σ ≤ ν).

Definition 4 Let W be a closed collection of face relations in Fc(M) and let W+
denote the union of W with all equalities of the form (σ = σ) for σ ranging
over simplices in M. The localization of Fc(M) about W is a category FcW(M)

whose objects are the simplices of M, while morphisms from σ to τ are given by
equivalence classes of finite (but arbitrarily long) W -zigzags. These have the form

(σ ≤ τ0 ≥ σ0 ≤ · · · ≤ τk ≥ σk ≤ τ ), where:

1. only relations in W+ can point backwards (i.e., ≥),
2. composition is given by concatenation, and
3. the trivial zigzag (σ = σ) represents the identity morphism of each simplex σ .

The equivalence between W -zigzags is generated by the transitive closure of the
following basic relations. Two such zigzags are related

• horizontally if one is obtained from the other by removing internal equalities,
e.g.:

(· · · ≤ τ0 ≥ σ0 = σ0 ≥ τ1 ≤ · · · ) ∼ (· · · ≤ τ0 ≥ τ1 ≤ · · · ) ,
(· · · ≥ σ0 ≤ τ1 = τ1 ≤ σ1 ≥ · · · ) ∼ (· · · ≥ σ0 ≤ σ1 ≥ · · · ) ,
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• or vertically, if they form the rows of a grid:

σ ≤ τ0 ≥ σ0 ≤ · · · ≥ σk ≤ τ

= ≤ ≤ ≤ =

σ ≤ τ ′0 ≥ σ ′0 ≤ · · · ≥ σ ′k ≤ τ

whose vertical face relations (also) lie in W+.

Remark 2 These horizontal and vertical relations are designed to render invertible
all the face relations (σ ≤ τ ) that lie in W . The backward-pointing τ ≥ σ which
may appear in a W -zigzag serves as the formal inverse to its forward-pointing
counterpart σ ≤ τ—one can use a vertical relation followed by a horiztonal relation
to achieve the desired cancellations whenever (· · · ≥ σ ≤ τ ≥ σ ≤ · · · ) or
(· · · ≤ τ ≥ σ ≤ τ ≥ · · · ) are encountered as substrings of a W -zigzag.

4.2 Top Strata

Consider the subset of face relations in Fc(M) to which F assigns invertible maps,
i.e.,

E = {(σ ≤ τ ) in Fc(M) | F(σ ≤ τ ) and F(σ ≤ τ ) are isomorphisms}. (1)

One might expect, in light of the constructibility requirement of Definition 2, that
finding canonical strata would amount to identifying isomorphism classes in the
localization of Fc(M) about E. Unfortunately, this does not work—the pieces of
M obtained in such a manner do not obey the frontier axiom in general. To rectify
this defect, we must suitably modify E. Define the set of simplices

U = {σ ∈ Fc(M) | (σ ≤ τ ) ∈ E for all τ ∈ st σ },

and consider the subset W ⊂ E given by

W = {(σ ≤ τ ) ∈ E | σ ∈ U}. (2)

Thus, a pair of adjacent simplices (σ ≤ τ ) of M lies in W if and only if the sheaf F
and cosheaf F assign isomorphisms not only to (σ ≤ τ ) itself, but also to all other
face relations encountered among simplices in the open star of σ . For our purposes,
it is important to note that U is upward closed as a subposet of Fc(M), meaning
that σ ∈ U and σ ′ ≥ σ implies σ ′ ∈ U .

Proposition 1 Every simplex τ lying in an m-stratum of any F-stratification of M
must be isomorphic in FcW(M) to an m-dimensional simplex of M.
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Proof Assume τ lies in an m-dimensional stratum S of an F-stratification of M. By
the dimension axiom, S contains at least one m-simplex, which we call σ . Since S
is connected, there exists a zigzag of simplices lying entirely in S that links σ to τ ,
say

ζ = (σ ≤ τ0 ≥ σ0 ≤ · · · ≤ τk ≥ σk ≤ τ ).

By the constructibility requirement of Definition 2, every face relation in sight
(whether≤ or ≥) lies in E. And by the frontier requirement of that same definition,
membership in m-strata is upward closed, so in particular all the σ•’s lie in U .
Finally, since σ is top-dimensional and τ0 ≥ σ , we must have τ0 = σ . Thus, not
only is our ζ a W -zigzag, but it also represents an invertible morphism in FcW(M).
Indeed, a W -zigzag representing its inverse can be obtained simply by traversing
backwards:

ζ−1 = (τ ≤ τ ≥ σk ≤ τk ≥ · · · ≤ τ0 ≥ σ ≤ σ).

This confirms that σ and τ are isomorphic in FcW(M), as desired. ��
Given the preceding result, the coarsest m-strata that one could hope to find are

isomorphism classes of m-dimensional simplices in FcW(M).

Proposition 2 The canonicalm-strata ofM• are precisely the isomorphism classes
of m-dimensional simplices in FcW(M).

Proof Let σ be an m-simplex of M. We will show that the set S of all τ which are
isomorphic to σ forms an m-stratum by verifying the frontier and constructibility
axioms from Definition 2—the dimension axiom is trivially satisfied since σ ∈ S.
Note that for any τ ∈ S there exists some W -zigzag whose simplices all lie in S,
and which represents an isomorphism from σ to τ in FcW(M). (The existence of
these zigzags shows that S is connected.) So let us fix for each τ ∈ S such a zigzag

ζτ = (σ ≤ τ0 ≥ σ0 ≤ · · · ≥ σk ≤ τ ),

and assume it is horizontally reduced in the sense that none of its order relations
(except possibly the first and last ≤) are equalities. Thus, all the σd ’s in ζτ lie in U .
Upward closure of U now forces simplices in st σk , which contains st τ , to also lie
in S. This shows that S satisfies the frontier axiom, because any simplex of M with
a face in S must itself lie in S. We now turn to establishing constructibility. Since
σ is top-dimensional, we know that τ0 = σ , so in fact the first ≤ in ζτ must be an
equality. Consider the bisheaf data F(ζτ ) living over our zigzag:

F(σ ) F(τ0) F(σ0) · · · F(τk) F(σk) F(τ )

F(σ ) F(τ0) F(σ0) · · · F(τk) F(σk) F(τ )
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(All horizontal homomorphisms in the top row are restriction maps of F, all
horizontal homomorphisms in the bottom row are extension maps of F, and the
vertical morphism in the column of a simplex ν is Fν .) By definition of W (and the
fact that σ = τ0), all horizontal maps in sight are isomorphisms, so in particular
we may replace all left-pointing arrows in the top row and all the right-pointing
arrows in the bottom row by their inverses to get abelian group isomorphisms
φτ : F(σ ) → F(τ ) and ψτ : F(τ ) → F(σ ) that fit into a commuting square
with Fσ and Fτ . Now given any other simplex τ ′ ≥ τ lying in S, one can repeat the
argument above with the bisheaf data F

(
ζτ ′ ◦ ζ−1

τ

)
to confirm that

F(τ ≤ τ ′) = φτ ′ ◦ φ−1
τ and F(τ ≤ τ ′) = ψ−1

τ ◦ ψτ ′ .

Thus both maps are isomorphisms, as desired. ��

4.3 Lower Strata

Our final task is to determine which simplices lie in canonical strata of dimension
< m. This is accomplished by iteratively modifying both the simplicial complex
M =Mm and the set of face relations W = Wm which was defined in (2) above.

Definition 5 Given d ∈ {0, 1, . . . ,m−1}, assume we have the pair (Md+1,Wd+1)

consisting of a simplicial complex Md+1 of dimension ≤ (d + 1) and a collection
Wd+1 of face relations in Fc(M). The subsequent pair (Md,Wd) is defined as
follows.

1. The set Md is obtained from Md+1 by removing all the simplices which are
isomorphic to some (d + 1)-simplex in the localization FcWd+1(M).

2. To define Wd , first consider the collection of simplices

Ud = {σ ∈ Fc(Md) | (σ ≤ τ ) ∈ E for all τ ∈ std σ };

here std σ is the open star of σ in Md (i.e., the collection of all τ ∈Md satisfying
τ ≥ σ ), while E is the set of face relations defined in (1). Now, set

Wd = Wd+1 ∪ {(σ ≤ τ ) | σ ∈ Ud and τ ∈ std σ }.

Proposition 3 The sequence M• described in Definition 5 constitutes a filtration
of the original simplicial complex M by subcomplexes with the property that
dimMd ≤ d for each d ∈ {0, 1, . . . ,m}.
Proof Since Mm =M is manifestly its own m-dimensinal subcomplex, it suffices
by induction to show that if Md+1 is a simplicial complex of dimension≤ (d + 1),
then the simplices in Md ⊂ Md+1 constitute a subcomplex of dimension ≤ d . To
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this end, we will confirm that the differenceMd+1−Md satisfies two properties—it
must:

• contain all the (d + 1)-simplices in Md+1, and
• be upward closed with respect to the face partial order of Md+1.

Since every (d + 1)-simplex is isomorphic to itself in FcWd+1(M) via the identity
morphism, the first requirement is immediately met. And by definition of Wd+1, if
an arbitrary simplex σ of Md+1 is isomorphic to a (d + 1)-simplex in FcWd+1(M),
then so are all the simplices that lie in its open star std+1 σ ⊂ Md+1. Thus, our
second requirement is also satisfied and the desired conclusion follows. ��

The structure of the sets W• from Definition 5 enforces a convenient monotonic-
ity among morphisms in the localization FcW•(M).

Lemma 1 For each d ∈ {0, 1, . . . ,m}, there are no morphisms in the localization
FcWd (M) from any simplex σ in the difference M−Md to a simplex τ of Md .

Proof Any putative morphism from σ to τ in FcWd (M) would have to be
represented by a Wd -zigzag, say

ζ = (σ ≤ τ0 ≥ σ0 ≤ · · · ≤ τk ≥ σk ≤ τ ).

Note that all face relations appearing here, except possibly the first (σ ≤ τ0),
must lie in Wd by upward closure. Since σ ∈ M −Md , it must be isomorphic
in FcWi (M) to an i-simplex in Mi for some i > d . But the very existence of a
zigzag representing such an isomorphism requires the bisheaf F to be constant on
the open star sti σ , meaning that (σ ≤ τ0) must lie in Wi ⊂ Wd . Thus, all the face
relations (≤ and ≥) encountered in ζ lie in Wd , whence ζ must be an isomorphism
in the localization FcWd (M) (with its inverse being given by backwards traversal).
But now, τ would also be isomorphic to some i-simplex in FcWi (M) with i > d ,
which forces the contradiction τ �∈Md . ��

Here is our main result.

Theorem 1 The sequence M• of simplicial complexes described in Definition 5
is the canonical F-stratification of M. Moreover, for each d ∈ {0, 1, . . . ,m}, the
canonical d-strata of M• are isomorphism classes of d-simplices from Md in the
localization FcWd (M).

Proof We proceed by reverse-induction on d , with the base case d = m being given
by Proposition 2. So we assume that the statement holds up to (d+1), and establish
that the canonical d-strata must be isomorphism classes of d-simplices from Md in
the localization FcWd (M). Let S denote the isomorphism class of a d-simplex σ∗ in
Md . We will establish that S satisfies all three axioms of Definition 2.

• Dimension: clearly, S contains a simplex σ∗ of dimension d; moreover, since
dimMd ≤ d , all simplices of M with dimension > d lie in M −Md . None of
these can be isomorphic in FcWd (M) to σ∗ without contradicting Lemma 1.
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• Frontier: it suffices to check antisymmetry of the relation ≺: there should be no
simplices σ ≤ σ ′ with σ ∈ M −Md and σ ′ ∈ S. But the existence of such
a σ ≤ σ ′ would result in a Wd -zigzag from σ to σ∗, which is prohibited by
Lemma 1.

• Constructibility: it is straightforward to adapt the argument from the proof of
Proposition 2—given simplices τ ≤ τ ′ both in S, one can find Wd -zigzags from
σ∗ to τ and to τ ′ which guarantee that F(τ ≤ τ ′) and F(τ ≤ τ ′) are both
isomorphisms.

To confirm that the strata obtained in this fashion are canonical, one can re-use the
argument form the proof of Proposition 1 to show that a simplex which lies in a d-
stratum of any F-stratification is isomorphic in FcWd (M) to a d-simplex from Md ,
meaning that the strata can not be any larger than these isomorphism classes. ��

Finally, we remark that since the sets W• defined in Definition 5 form a sequence
that increases as d decreases, the set of Wd -zigzags is contained in the set of Wd−1-
zigzags and so forth. Therefore, successive localization of Fc(M) about these W•’s
creates a nested sequence of categories:

FcWm(M) ↪→ FcWm−1(M) ↪→ · · · ↪→ FcW1(M) ↪→ FcW0(M).

And thanks to the monotonicity guaranteed by Lemma 1, isomorphism classes of d-
simplices from Md in FcWd (M) are stable under inclusion to FcWi (M) for i ≤ d ,
since no simplex of Mi can ever become isomorphic to a simplex from Md −Mi

in this entire sequence of categories. Consequently, we can extract all the canonical
strata just by examining isomorphism classes in a single category.

Corollary 1 The d-dimensional strata of the canonical F-stratification of M are
isomorphism classes of d-simplices from Md in FcW0(M).
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Inverse Problems in Topological
Persistence

Steve Oudot and Elchanan Solomon

Abstract In this survey, we review the literature on inverse problems in topological
persistence theory. The first half of the survey is concerned with the question of
surjectivity, i.e. the existence of right inverses, and the second half focuses on
injectivity, i.e. left inverses. Throughout, we highlight the tools and theorems that
underlie these advances, and direct the reader’s attention to open problems, both
theoretical and applied.

1 Introduction

In recent decades, success in machine learning has revolved around the study of non-
linear feature extraction and non-linear models. This paradigm uses large training
sets and increased processing power to produce highly flexible models with ever
increasing prediction accuracies. However, there is an emerging awareness among
machine learning researchers and end-users that these non-linear techniques can
be very hard to interpret. Often, the mapping from the input (data) space to the
target (modeling) space is so complex that it is virtually impossible to predict
what simple transformations in the target space might mean for real-world data,
if they can be given any interpretation at all. Similarly, it is possible for slightly
different input data sets to produce wildly divergent models. As prediction accuracy
is only one part of the data analysis pipeline, many researchers are now studying
the hard mathematical problems underlying the explainability and interpretability
of machine learning algorithms.

The focus of this article is on Topological Data Analysis (TDA), which provides a
set of feature extraction and modeling algorithms built around ideas and techniques
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Fig. 1 We are initially given a data set, such as a point cloud. From this, we derive a filtered
topological space, using the Vietoris-Rips complex, Čech complex, α-complex, etc. We then apply
the homology functor to these topological spaces, obtaining a persistence module that can be
represented as a barcode. Finally, for machine learning applications, there are methods of turning
barcodes into feature vectors. Part of this figure has been adapted from [22, Fig. 6]

from algebraic topology and metric geometry, and is particularly well-suited to
studying data sets of complex shapes. Because of its origins in abstract mathematics,
it is a prime candidate for modern research in explainability. In the following
sections, we survey the work done in the TDA community on two topics of
considerable interest: the preimage problem, and discriminativity.

The central invariant of TDA is persistent homology, which maps an input shape
to a descriptor consisting of a set of intervals on the real line (called a barcode).
The persistent homology pipeline is outlined in Fig. 1, which is explained in further
detail in the background section.

As it turns out, persistent homology provides provably stable descriptors, i.e.
similar shapes are always mapped to similar sets of intervals. Insofar as explain-
ability is concerned, it is natural to ask if every such descriptor corresponds to
an input shape, and if so, how that shape might be approximated (the preimage
problem). This is the focus of Sect. 3, which considers positive preimage results for
a variety of data types: model data, point clouds, and function-valued data. Another
important question is that of injectivity: whether it is possible for two distinct shapes
to produce identical descriptors, so that the resulting feature vectors cannot be used
to distinguish between them. In Sect. 4, we outline what is known about injectivity
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in the context of persistent homology, and consider two enriched feature-extraction
models for which positive injectivity results have been proven.

As the reader may notice in the course of the following survey, explainability is
not an accidental feature of the TDA framework, but an essential component of its
philosophy. However, because TDA must often interface with traditional machine
learning algorithms in practice, this survey is not independent of its analogues in
the study of kernel machines and neural networks. Conversely, there is evidence
that techniques of TDA can be used to study interpretability in other areas of data
science, see [5, 10, 24] for examples. Thus, there is a promising two-way dialogue
between researchers studying explainability in traditional machine learning and
TDA.

Note As this is still an emerging topic in TDA, we need clarify that this
survey is targeted at researchers working in applied topology and computational
geometry. Otherwise, interested readers should have a working knowledge of
elementary algebraic topology and homology theory (consult the appropriate
chapters in [23, 26] for a good introduction), as well as the essentials of commutative
algebra (chapter 2 of Atiyah and McDonald’s book [1] is an excellent reference).
For an introduction to the themes and tools of topological data analysis, the reader
can consult the articles of Ghrist [19] and Carlsson [4]. Lastly, a more formal and
comprehensive treatment can be found in the texts by Edelsbrunner and Harer [16],
Ghrist [21], and Oudot [28].

2 Background

We now introduce definitions and constructions necessary for the rest of the survey.
For us, persistence will be a functor from the categoryRTop to the category k-Mod.

Definition 1 We define the category of R-filtered topological spaces RTop to be
the functor category from the poset category (R,≤) of ordered real numbers to
the category Top, whose objects are topological spaces, and whose morphisms
are continuous maps. Additionally, throughout this paper, we stipulate that these
continuous maps be set inclusions (following the TDA literature). Morphisms of R-
filtered topological spaces are then natural transformations between such functors.

Put concretely, an object X of RTop is a family of topological spaces X(r)

indexed by r ∈ R, with set inclusions X(r ≤ s) : X(r) ↪→ X(s) for all r ≤ s ∈ R.
A morphism of R-filtered topological spaces X and Y is a family ψ of continuous
maps, ψ(r) : X(r) → Y (r), with ψ(s) |X(r)= ψ(r) for r ≤ s. Equivalently, we
assert that the following square commutes.

X(r) X(s)

Y (r) Y (s)

X(r≤s)

ψ(r) ψ(s)

Y (r≤s)
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A rich source of examples of R-filtered topological spaces stems from point
clouds (see Fig. 1). There are various ways to obtain an object in RTop from a
point cloud X, with one of the most common being the Vietoris-Rips complex.

Definition 2 Let X ⊂ R
d be a point cloud. The Vietoris-Rips (VR) filtration

VR(X) is a filtration on the full simplex on the set X (i.e. the simplex of dimension
|X| − 1). For r ∈ R, the subspace (V R(X)) (r) consists of those simplices of
diameter ≤ r . We will call the diameter of a simplex τ its appearance time in this
filtration.

One can also obtain R-filtered topological spaces by using real-valued functions.

Definition 3 Let X be a topological space, and f : X → R a continuous, real-
valued function. We will write (X, f ) to denote the R-filtered topological space
consisting of the sublevel sets of f ,

(X, f )(r) = {x ∈ X | f (x) ≤ r}.

Definition 4 We now define the category of persistence modules k-Mod to be the
functor category from the poset category (R,≤) to the category Vect of vector
spaces over a fixed field k. Morphisms of persistence modules are then natural
transformations between such functors.

Put concretely, an object M of k-Mod is a family of vector spaces M(r) indexed
by r ∈ R, together with linear maps M(r ≤ s) : M(r)→ M(s) for all r ≤ s ∈ R.
These linear maps are required to satisfy the following compatibility axioms:M(r ≤
r) = idM(r), andM(r ≤ t) = M(s ≤ t)◦M(r ≤ s) for r ≤ s ≤ t ∈ R. A morphism
ψ of persistence-modules M and N is a family of maps ψ(r) : M(r) → N(r)

making the following square commute for all r ≤ s.

M(r) M(s)

N(r) N(s)

M(r≤s)

ψ(r) ψ(s)

N(r≤s)

We define the persistence map as follows.

Definition 5 Let X be an R-filtered topological space. The associated degree-
d persistence module M has the degree-d singular homology group M(r) =
Hd(X(r); k) at each index r ∈ R, and the morphism M(r ≤ s) : M(r) → M(s)

induced in homology by the inclusion X(r) ↪→ X(s) for each r ≤ s ∈ R.
We will use the notation PHd(X) = M to indicate that M is the degree-d
persistent homology of X. When our R-filtered topological space is the sublevel
set filtration induced by a continuous real-valued function on a topological space,
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f : T → R, we will write PHd(T , f ) for the resulting persistence module; this is
called functional persistence in the literature.1

For the remainder of the survey, we will omit any reference to the choice of field
k, except when it is necessary to be explicit.

When computing homology in multiple degrees, we will want to keep track of
all the resulting persistence modules at once. The appropriate algebraic object is a
graded persistence module.

Definition 6 A graded persistence module M = ⊕
i∈NMi is the direct sum of

a family of persistence modules indexed over the natural numbers, together with
the labeling that records which factor is associated to which number.2 The graded
persistence module associated to an R-filtered topological space X is then

PH(X) =
⊕
i∈N

PHi(X)

Though persistence modules are not vectors, they still live in a metric space.
Indeed, the category k-Mod comes equipped with an extended pseudo-metric: the
interleaving distance dI .

Definition 7 An ε-interleaving of persistence modules M and N consists of two
families of morphisms, f (r) : M(r) → N(r + ε) and g(r) : N(r) → M(r + ε),
making the following four diagrams commute for all r ≤ s.

M(r) M(s)

N(r + +

M(r≤s)

f (r) f (s)

N(r+ ≤s+

N(r) N(s)

M(r + +

N(r≤s)

g(r) g(s)

M(r+ ≤s+

r(M)r(M + 2

N(r +

f (r)

M(r≤r+2

g(r+
r(N)r(N + 2

M(r +

g(r)

N(r≤r+2

f (r+

Intuitively, one can think of such an interleaving as an approximate isomorphism
of persistence modules. Indeed, a 0-interleaving is exactly an isomorphism.

1Throughout the survey, we will use capital letters such as X and Y to refer to elements of both
RTop and Top. It will always be made clear, either explicitly or from the context, which one is
intended.
2Note that the grading here happens in the category of abelian groups, rather than in the category
of modules. That is, the grading does not come with a multiplicative structure.
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Definition 8 The interleaving distance dI between M and N is the infimum of
values ε for which an ε-interleaving exists. It satisfies the triangle inequality but
can be zero between non-isomorphic modules, or equal to infinity.

The category of persistence modules is abelian, which, among other things,
allows one to take direct sums of persistence modules, defined pointwise.

Definition 9 Let M and N be a pair of persistence modules. We define their direct
sum M⊕N to be the persistence module with vector spaces (M⊕N)(r) = M(r)⊕
N(r) and maps (M ⊕N)(r ≤ s) = M(r ≤ s)⊕N(r ≤ s) for any r ≤ s.

An indecomposable persistence module is one that cannot be written as the sum
of two nonzero persistence modules. Examples of such modules include the interval
persistence modules kI , defined as follows. Given an interval I ⊂ R, let kI be such
that kI (r) = k for r ∈ I and has rank zero otherwise, and that kI (r ≤ s) = idk for
r ≤ s ∈ I and is the zero map otherwise.

The category k-Mod contains some wild objects that are difficult to work with.
Thus, it is necessary to restrict our attention to a class of well-behaved persistence
modules which suffices for practical applications:

Definition 10 We say that a persistence module M is pointwise finite-dimensional
(pfd) if each vector space M(r) is finite dimensional.

The following theorem asserts that every pfd persistence module has a particu-
larly simple decomposition into indecomposables, and highlights the important role
played by interval modules in the theory of persistence.

Theorem 1 ([12]) Every pfd persistence module is isomorphic to the direct sum of
interval modules. Moreover, the decomposition is unique up to isomorphism and
reordering of the terms.

From Theorem 1, we see that pfd persistence modules admit a complete invariant:
the barcode formed by the collection of intervals involved in the direct sum
decomposition of the module. More generally, we call a barcode any multi-set of
intervals. This terminology comes from plotting the intervals along a common axis,
as in Fig. 1.

The space of barcodes has a natural metric: the bottleneck distance dB , defined
as follows.

Definition 11 An ε-matching between multi-sets of intervals I and J is a bijection
between subsets I′ ⊆ I and J′ ⊆ J such that if the interval [a, b] = I ∈ I′ is
matched with the interval [c, d] = J ∈ J′ then max{|a− c|, |b− d|} ≤ ε, and such
that any interval in I\I′ or J\J′ has diameter at most 2ε. The bottleneck distance
between barcodes is the infimum of values ε for which there exists an ε-matching
between them.
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Persistent homology enjoys a variety of stability theorems. We recall here three
of the most fundamental ones:

Theorem 2 (Algebraic Stability [2, 7, 8]) For a pair M of N of pfd persistence
modules with barcodes B(M),B(N), the interleaving distance bounds the bottle-
neck distance.

dB(B(M),B(N)) ≤ dI (M,N)

In fact, the above inequality is an equality, a result known as the isometry
theorem, cf. [8, 25].

Theorem 3 (Geometric Stability [9]) Let X and Y be totally bounded metric
spaces whose VR complexes have degree-i persistence modules M and N respec-
tively. If we let B(M) and B(N) denote the respective barcodes of these persistence
modules, and dGH(X, Y ) denote the Gromov-Hausdorff distance between these
spaces, then

dB(B(M),B(N)) ≤ 2dGH (X, Y ).

Theorem 4 (Functional Stability [8, 11]) Let X be a topological space, and let
f, g : X → R be two functions whose sublevel sets have finite-dimensional
homology groups. Then (X, f ) and (X, g) give rise to pfd functional persistence
modules M and N with

dB(B(M),B(N)) ≤ ‖f − g‖∞.

In the remainder of the survey, we will slightly abuse notation and write
dB(M,N) in place of dB(B(M),B(N)).

3 Persistence and Right Inverses

3.1 Persistent Moore Spaces

In this section, the input shapes of interest are R-filtered topological spaces. Before
addressing the existence of right inverses for persistent homology, let us review
what is known for the usual (non-persistent) homology functor. It is a standard fact
that homology admits a right inverse, in that every finitely-generated abelian group
arises as the singular homology of some topological space X:

Theorem 5 For any finitely generated graded abelian group G = ⊕
i∈NGi such

that G0 is free and nontrivial, there is a topological space X such that Hi(X;Z) ∼=
Gi for all i ∈ N.
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Fig. 2 The space X above is
built using wedge sums and
disjoint unions of Moore
spaces. By construction, we
have H0(X;Z) ∼= Z

3,
H1(X;Z) ∼= Z⊕ Z/2Z,
H2(X;Z) ∼= Z, and
Hi(X;Z) = 0 for all i ≥ 3

Let us review the proof of this classical result, which proceeds by constructing
topological spaces realizing increasingly varied groups in each degree i > 0
separately. These spaces are called Moore spaces, and we refer the reader to Sect. 3.2
(in particular Example 2.40) in [23] for a background discussion. See also Fig. 2 in
this paper for an illustration of the construction.

For the trivial group Gi = 0, an appropriate Moore space is the one-point space
Xi = {∗}, which has trivial homology in all positive degrees. For the infinite cyclic
group Gi = Z, we can take Xi = S

i , the i-dimensional sphere. For a finite cyclic
group Gi = Z/nZ, we can glue the boundary of the disc D

i+1 to the sphere S
i

by a map of degree n. In either case we get a space Xi with degree-i homology
isomorphic to Gi and with trivial homology in the other positive degrees.

To realize an arbitrary finitely generated abelian group Gi , we rely on the fact
that such a group decomposes as a (finite) direct sum of cyclic groups:

Gi
∼=

ni⊕
j=1

Gi,j , where each Gi,j is cyclic. (1)

Additionally, we make use of the following connection between direct sums of
homology groups and wedge sums of spaces3:

∀k > 0, Hk(
∨
α∈A

Xα;Z) ∼=
⊕
α∈A

Hk(Xα;Z). (2)

3This connection holds provided that the basepoints are chosen in such a way that they form good
pairs with their associated spaces, which is the case here since all our spaces are CW-complexes.
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This gives us a way to realize our group Gi : given its decomposition (1) and a
collection of Moore spaces Xi,j realizing the cyclic summands Gi,j , we take as our
Moore space the wedge sum Xi =∨ni

j=1 Xi,j , which by (2) has degree-i homology
isomorphic to Gi and trivial homology in the other nonzero degrees.

Finally, coming back to our initial graded group G, we work with all homology
degrees i > 0 at once and take the wedge sum

Y =
∞∨
i=0

Xi =
∞∨
i=0

ni∨
j=1

Xi,j ,

which by (2) again has degree-i homology isomorphic to Gi for each i > 0. Since
the whole space Y is path-connected by construction, its degree-0 homology is
isomorphic to Z, so to complete the proof of Theorem 5 we take X to be the disjoint
union of Y with r − 1 copies of the one-point space, where r > 0 is the rank of the
free group G0.

Transitioning to the case of (singular) persistent homology, we have the following
right-inverse theorem, where degree 0 again plays a special role:

Theorem 6 Given a graded pfd persistence module M =⊕
i∈NMi , if the barcode

decomposition of M has a right-infinite interval in degree 0 that contains all the
other intervals in the barcode (including all degrees), then there is an R-filtered
topological space X with PH(X) =M .

Mirroring the construction in the non-persistent case, we begin by realizing
single interval modules in a single homology degree, then we work our way up
in complexity (see Fig. 3 for an illustration). To that end, we introduce the concept
of persistent Moore space for an interval module:

Definition 12 Given a homology degree i > 0 and an interval I ⊆ R, the persistent
Moore space S

i
I is the following R-filtered topological space, where the notation

r < I (resp. r > I ) means that r is less than (resp. greater than) every element of I:

S
i
I (r) =

⎧⎪⎪⎨
⎪⎪⎩

∅ r < I

S
i r ∈ I

D
i+1 r > I

Implicit in this formula is the fact that the boundary of the (i + 1)-disk is glued to
the i-sphere by the identity map.

The persistent homology of SiI in degree i is isomorphic to the interval I -module,
while it is trivial in the other nonzero degrees. This construction thus produces an
R-filtered topological space (persistent Moore space) realizing any interval module
in any fixed homology degree i > 0.
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Fig. 3 In this figure, we construct persistent Moore spaces in each degree separately, and then
glue them together to produce a right inverse for the entire graded persistence module

In order to extend the construction to arbitrary pfd persistence modules, we use
Theorem 1 to decompose any such module M into interval summands:

M ∼=
⊕
j∈J

kIj .

Then, given a fixed homology degree i > 0, for every interval summand kIj we take
a copy XIj of the corresponding persistent Moore space S

i
Ij

. In order to combine
these spaces and realize the direct sum of their corresponding interval modules, we
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choose a fixed basepoint on each copy of the sphere S
i and build a filtered version

of the wedge sum, denoted by
∨

j∈J XIj and defined as follows:

∀r ∈ R, (
∨
j∈J

XIj )(r) =
∨
j∈J

XIj (r), (3)

with the convention that X∨∅ = ∅∨X = X. Note that there are natural inclusions
XIj ′ (r) ↪→ ∨

j∈J XIj (r) for every j ′ ∈ J and r ∈ R, so (3) yields a well-
defined filtered space. Moreover, it turns out that the isomorphism in (2) is given by
the direct sum of such inclusions, therefore, by functoriality of homology, Eq. (2)
induces an isomorphism between the degree-i persistent homology of the filtered
wedge sum (3) and the persistence module

⊕
j∈J kIj ∼= M .

As in the non-persistent setting, the graded version of this construction works
exactly the same way, by considering all homology degrees i > 0 at once and
taking the appropriate filtered wedge sum of persistent Moore spaces. This yields
an R-filtered space Y whose graded persistent homology is isomorphic to a given
graded pfd persistence module M , except possibly in degree 0.

Notice that the degree-0 persistent homology of Y is isomorphic to a single
interval module kI0 , since by construction at each index r ∈ R the space Yr is either
empty or path-connected. More precisely, I0 is the smallest right-infinite interval
containing all the intervals in the barcode decomposition of M in degrees i > 0.
Recalling now our assumption that the barcode of M has a right-infinite interval
I ′0 in degree 0 that contains all these intervals (and therefore also I0), we want to
change the filtered space Y so that its degree-0 barcode now has a single interval
equal to I ′0 while its degree-i barcodes remain unchanged for all i > 0. This is done
simply by taking the filtered wedge sum of Y with the filtered one-point space

Pr =
{
∅ r < I ′0
{∗} r ∈ I ′0

Finally, we can further change Y into a filtered spaceX that has the same barcode
decomposition as Y in degrees i > 0 and that acquires the missing intervals from
the degree-0 barcode of M . To do so, we take disjoint unions of Y with filtered one-
point spaces, giving rise to degree-0 bars with the appropriate left endpoints. We
then specify, for each bar I , the corresponding right endpoint by gluing in a filtered
edge that connects the one-point space associated with I to the central connected
componentY . We leave the details of this step as an exercise to the interested reader.

Remark 1 Our construction of persistent Moore spaces is a simplified version
of the one introduced by Lesnick [25, Sect. 5.4]; in exchange for dismissing the
assumption that the spaces be compact, Lesnick’s filtration arises from a real-
valued function on a topological space. Moreover, Lesnick goes on to demonstrate a
stronger result: for any pair of pfd persistence modules M,N and for any homology
degree i, there exists a common topological space X and a pair of maps γM, γ N :
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X → R, such that PHi(X, γ
M) ∼= M and PHi(X, γ

N) ∼= N . Lesnick further
shows that the distance d∞(γM, γ N ) between the maps can be made arbitrarily
close to the distance dI (M,N) between the persistence modules.

3.2 Point Cloud Continuation

We have seen that the mapPH : RTop → k-Mod is surjective. However, data often
takes the form of point clouds: finite subsets of Rd . The techniques of persistence
homology can be applied to filtered spaces derived from these point clouds, such as
their Vietoris-Rips (VR), Čech, or α-filtrations. It is then natural to ask about the
right-inverse problem for point clouds. Namely:

• For i ≥ 0, does every persistence module arise as the degree-i VR/α-complex
persistence of a point cloud?

• If a given persistence module does comes from a point cloud, can that point cloud
be computed effectively?

The first question has a negative answer. To give a simple example, every zero-
dimensional homology class of the VR filtration of a point cloud is born at zero,
and hence any persistence module containing an interval summand born after zero
cannot come from the zero-dimensional persistence of a point cloud. In general, it
is unknown how to determine which persistence modules come from point clouds.
However, the second question, that of computation, can sometimes be answered in
the affirmative, at least locally, by using a continuation method.

The approach adopted in [17] is the following. One is given an initial point cloud
P together with the persistence moduleM = PH(VR(P)) induced in homology by
its VR filtration. One then specifies a target persistence module M ′ that is believed
to be (close to) the persistence module of some unknown point cloud P ′. The idea
is then to use the Newton-Raphson method to make successive adjustments to P ,
incrementally bringing its persistence module closer to M ′, as in Fig. 4.

Fig. 4 Modifying a
persistence module via point
cloud continuation
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To justify this approach, one must first make sense of the persistent homology
algorithm as an actual function, with a well-defined domain and co-domain. To do
this, let us consider the following segmentation of the VR persistence algorithm:

1. A point cloud X of n points in R
d , ordered as x1, · · · , xn, can be associated with

a vector in R
nd .

2. An ordering of the pointsX gives rise to a lexicographic ordering on the powerset
2X, which allows us to associate a filtered simplicial complex on X with a vector
in R

2n−1 (we ignore the empty simplex).
3. There is a map S : R

nd → R
2n−1 that sends an ordered point cloud to its

associated filtered simplicial complex. The real value associated to each simplex
is its appearance time in the VR filtration, which is half the distance between its
furthest pair of vertices (their corresponding edge is called the attaching edge of
the simplex).

4. There is a permutation π on the set of simplices on X, depending on the ordering
of their appearance times (and the lexicographic ordering, to break ties), that
orders simplices via the pairing coming from persistent homology. That is, a
simplex giving birth to a homological feature is followed by the simplex that
kills that same feature, except for the first simplex, a vertex giving rise to the 0-
dimensional homology class with infinite persistence. There is a corresponding
linear map Rπ : R2n−1 → R

2n−1 that applies this permutation to the standard
basis vectors.

5. There is a projection map P : R2n−1 → R
m, which kills off all pairs with zero

persistence. This corresponds to a barcode with k bars, where m = 2k − 1 (the
infinite bar corresponds to a single simplex). As with Rπ , the map P depends on
the point cloud X.

6. Taken all together, on the fixed point cloud X of n points in R
d , the persistence

map agrees with the map P ◦ Rπ ◦ S : Rnd → R
m.

To show differentiability of the persistence map at X, the key observation is that
it agrees with the map P ◦ Rπ ◦ S in a neighborhood of X (they will certainly not
agree on all of Rnd ). However, there is a caveat: if the pairwise distances in X are
not all distinct, then, for another point cloud X′ arbitrarily close to X, it is possible
that the pairing of critical simplices may be different, and indeed the appropriate
permutation and projection maps may be different from Rπ and P . To address this
problem, Gameiro et al. assume that the point cloud X is in VR-general position:

• Condition A: All of the points in X are distinct.
• Condition B: All of the appearance times of edges are distinct. Equivalently, all

the pairwise distances between points are distinct.

Condition B ensures that the ordering on simplices coming from their appearance
times is stable in a small neighborhood of X in R

nd , as appearance times of edges
are continuous functions of distances between the points. This means that the
permutation π for X in the above pipeline will give the correct pairing for nearby
point clouds X′; similarly, the projection P forX will also drop the zero persistence
pairs for X′. Thus, in a small neighborhood of X, the persistence map agrees with



418 S. Oudot and E. Solomon

the same map P ◦ Rπ ◦ S. As linear maps, Rπ and P are clearly C∞ differentiable.
The chain rule tells us that P ◦ Rπ ◦ S will be C∞ differentiable if S is. For a pair
of points x, y in R

d , S assigns their corresponding edge E an appearance time of
r(x, y) = 1

2 ‖x − y‖. This has partial derivatives

∂r

∂x
= 1

2

x − y

‖x − y‖ ,
∂r

∂y
= 1

2

y − x

‖x − y‖
Condition A above guarantees that this derivative is defined, and indeed that

r(x, y) is C∞. Moreover, since every simplex in our VR filtration appears with
a certain attaching edge, and since condition B ensures that this attaching edge
remains the same for nearby point clouds, we know that all components of the map S
are C∞. Thus, since the persistence map agrees with P ◦ Rπ ◦ S in a neighborhood
of X, it, too, is C∞. However, this is not sufficient for the implementation of the
standard Newton-Raphson method, which requires the Jacobian of the map to be
invertible. To cope with this, the authors use a slightly modified iteration scheme
based on the (Moore-Penrose) pseudo-inverse of the Jacobian. We remind the reader
that the pseudo-inverseA† of a matrix A is characterized by the following axioms:

AA†A = A

A†AA† = A†

(AA†)T = AA†

(A†A)T = A†A

If A has SVD decomposition A = V!WT then we have A† = W!†V T , where
!† is obtained from ! by inverting the nonzero diagonal elements.

Theorem 7 ([17], Corollary of Proposition 4.2) When m = nd , the iteration
scheme described above converges to a point cloud X′. Moreover, when the
Jacobian of the persistence map has full rank at X′, we may conclude that
PH(VR(X′)) = M ′, the target persistence module.

3.3 Functional Optimization and Continuation

In [29], Poulenard et al. consider the following problem, similar to that studied
in [17]. One is given a simplicial complex X and a real-valued function fα :
X → R which depends on a continuous parameter α. The persistence module
M = PH(X, fα) is then stored as a multi-set of intervals {(bi, di)}i . Finally, there
is a real-valued functional F which takes this multi-set as input. For example, this
functional might record the distance between M and a target module N . Our goal
is to optimize the functional F as a function of the parameter α, with the challenge
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being that the pipeline from α to F incorporates the procedure of taking persistent
homology. Thus, when applying the chain rule, it will be necessary to differentiate
the endpoint values bi and di with respect to α, which is not clearly defined. Using an
argument similar to, and often simpler than, that of [17], Poulenard et al. show how
to locally associate such an endpoint value with a fixed vertex vi ∈ X, so that the
derivative ∂bi/∂α or ∂di/∂α that shows up in the chain rule is locally replaced with
∂f/∂α |vi . This allows one to locally define the gradient ∇αF, and so approximate
an optimum via gradient descent.

In the case of minimizing the distance between M = PH(X, fα) and a target
persistence module N , Poulenard et al. do not provide any convergence guarantees
analogous to Theorem 7. For other applications, they prove and make use of another
inverse-type result in applied topology.

Definition 13 For a simplicial complex X, let F(X) be the space of real-valued
functions onX. For a pair of simplicial complexesX and Y , a function T : X→ Y 4

induces a pullback linear transformation TF : F(Y )→ F(X) via precomposition.

Theorem 8 (Thm. 1 in [29]) An invertible linear functional map TF : F(Y ) →
F(X) corresponds to a continuous bijective point-to-point map T : X → Y if and
only if both TF and its inverse preserve pointwise products of pairs of functions, and
moreover both TF and its inverse preserve the persistence modules of all real-valued
functions. In other words:

dB(PH(Y, f ), PH(X, TF (f )) = 0, ∀f.

Note that preservation of products ensures that TF corresponds to a point-
to-point map, whereas preservation of persistence modules guarantees that the
underlying map is continuous.

Let us illustrate one application of Theorem 8: improving continuity in functional
maps. Poulenard et al. pick as functions fi the characteristic functions of certain
connected components of Y , and define an energy on the space of linear functional
maps {TF : F(Y )→ F(X)}:

E =
∑
fi

dB(PH(Y, fi ), PH(X, TF (fi))

Theorem 8 implies that, if all connected components are taken in the above sum,
and a zero-energy minimizer TF exists for the resulting functional, it corresponds
to a continuous point-to-point map T : X → Y . Optimizing this energy requires
parametrizing the space of linear functional maps, which can be done using
eigenfunctions of the Laplace-Beltrami operator to produce bases for F(X) and

4These functions are defined on the underlying spaces of X and Y , and are not necessarily assumed
to be continuous.
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Fig. 5 (a) A noisy functional map between two shapes converted to a point-to-point map. (b) The
same map after topological optimization to improve continuity. The colors encode the x-coordinate
function on the target shape and its pull-back on the source. Reproduced from [29, §6]

F(Y ), and taking derivatives with respect to persistence modules, which they have
already locally defined. As one can see in Fig. 5, this can be used to upgrade poor
initial correspondences between shapes to more continuous alignments.

4 Persistence and Left Inverses

In what follows, the shapes of interest are metric spaces, and injectivity is considered
up to isometry. This presents a challenge for the existence of a left inverse to
standard persistent homology invariants (functional, VR, α-filtration, etc.), which
are generally not sensitive enough to capture all this geometric data. The following
examples demonstrate some of the ways in which persistence maps can fail to be
injective.

• Rotating and translating a point cloud in R
d does not affect the persistent

homology of its VR filtration (the same is true for the α- or Čech filtration).
• The persistent homology of the VR or α-filtration of a point cloud can also be

preserved by non-isometries. Consider the three-point metric space Pθ obtained
by taking the vertices of the triangle in Fig. 6. For any choice of θ ∈ [π/2, π],
the persistence module of its VR filtration is the same (idem for the α- or Čech
filtration).

• Injectivity can also fail for intrinsic metric spaces. Indeed, the persistence module
of the Čech filtration is identical for every geodesic tree, see e.g. Lemma 2 in [18].
The same fact holds for the VR filtration, as shown in Appendix A of [27].

• In [13], Curry characterized the fiber of the persistence map for functions on the
unit interval, describing precisely which functions produce the same persistence
module. However, in most settings, this is a hard, open problem.

These examples suggest that, to produce discriminative invariants using persis-
tence, we must capture more information than a single persistence module.
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2
1 1

Fig. 6 A family of non-isometric point clouds with the same persistence module

4.1 Extrinsic Persistent Homology Transforms

In [32], Turner et al. propose the Persistent Homology Transform (PHT). The input
to the PHT is a subanalytic compact subset M of Rd . For every direction v ∈ S

d−1,
one considers the function fv : M → R, given by fv(x) = v · x (see Fig. 7). The
output of the PHT is then the map PHT (M) : Sd−1 → k-Mod, sending a unit
vector v to the persistence module PH(S, fv).

Another, simplified invariant considered in [32] is the Euler Characteristic
Transform (ECT). This is similar to the PHT, but instead of recording the sublevel-
set persistence of the functions fv , one computes their Euler Characteristic curves:

EC(fv)(t) = χ({x ∈ M | fv(x) ≤ t})

If one writes {R→ Z} for the space of integer-valued functions on the real line,
then this transform is the map ECT (M) : Sd−1 → {R → Z} that sends a unit
vector v to the function EC(fv). The codomain of the map ECT (M) lives in a
Hilbert space, making it amenable to methods in classical statistics and machine
learning. Indeed, Turner et al. show how to use the ECT to turn a set of meshes
into a likelihood model on the space of embedded simplicial complexes. More
precisely, they prove that, for d = 2, 3, both of these transforms are injective, and

Fig. 7 The map fv

M
d 1

v



422 S. Oudot and E. Solomon

hence provide sufficient statistics for probability measures on the space of linearly
embedded simplicial complexes. Moreover, they provide an explicit algorithm to
reconstruct M from PHT (M).

Recent work of Ghrist et al. [20] and, independently, of Curry et al. [14], using
ideas of Schapira [30], demonstrates the injectivity of the ECT in all dimensions, and
for the larger class of subanalytic compact sets. Because the Euler Characteristic
curve of the functions fv can be derived from their persistence module, this, in
turn, implies the injectivity of the PHT. These proofs of injectivity use the theory
of constructible functions and Euler-Radon transforms, circumventing the involved,
constructive arguments used in [32]. Following [14], we introduce the necessary
definitions and outline the proof below.

LetX be a real analytic manifold, and writeCF(X) for the space of constructible
functions on X. These are Z-valued functions whose level sets are subanalytic and
form a locally finite family.

Definition 14 For a function φ ∈ CF(X), we define its Euler integral to be

∫
X

φ(x)dχ =
∑
m∈Z

mχ({x ∈ X | φ(x) = m})

Definition 15 A morphism f : X → Y of real analytic manifolds induces a
pullback map f ∗ : CF(Y ) → CF(X) defined by (f ∗φ)(x) = φ(f (x)) for
φ ∈ CF(Y ).
Definition 16 A morphism f : X → Y of real analytic manifolds induces a
pushforward map f∗ : CF(X) → CF(Y ) defined by (f∗φ)(y) =

∫
X
φ 1f−1(y) dχ

for φ ∈ CF(X).
These operations, taken together, allow us to define the following topological

transform.

Definition 17 Let S ⊂ X × Y be a locally closed subanalytic subset of the
product of two real analytic manifolds. Let πX and πY be the projections from
X × Y onto each of its factors. The Radon transform with respect to S is the group
homomorphism RS : CF(X) → CF(Y ) defined by RS(φ) = (πY )∗[(πX)∗(φ)1S]
for φ ∈ CF(X).

Schapira [30] provides the following inversion theorem.

Theorem 9 (Thm. 3.1 in [30]) Let S ⊂ X × Y and S′ ⊂ Y × X define a pair of
Radon transforms RS : CF(X)→ CF(Y ) and RS ′ : CF(Y )→ CF(X). Denoting
by S and S′ the closure of these subsets, suppose that the projections πY : S → Y

and πX : S′ → X are proper. Suppose further that there exists χ1, χ2 ∈ Z such that,
for any x ∈ X, the fibers Sx = {y ∈ Y : (x, y) ∈ S} and S′x = {y ∈ Y : (y, x) ∈ S′}
satisfy the following criterion:

χ(Sx ∩ S′x) =
{
χ1 if x = x ′

χ2 if x �= x ′
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Then for all φ ∈ CF(X),

(RS ′ ◦ RS)(φ) = (χ1 − χ2) φ + χ2

(∫
X

φ dχ

)
1X

In particular, if χ1 �= χ2 then the scaling term in (RS ′ ◦ Rs) is constant and
nonzero. To take advantage of this theorem, [20] define a Radon transform that
can be computed using the ECT, and then find an appropriate “inverse” Radon
transform.

Let X = R
d and Y = AffGrd , the affine Grassmanian of hyperplanes in R

d . Let
S ⊂ X × Y be the set of pairs (x,W), where the point x sits on the hyperplane W .
Letting 1M be the indicator function of a bounded subanalytic subset M ⊂ R

d , and
π1 and π2 the projections of X × Y onto X and Y respectively, we compute:

(Rs1M)(W) = (π2)∗[(π∗1 1M)1S](W)

=
∫
(x,W)∈S

(π∗1 1M)dχ

=
∫
x∈M∩W

dχ

= χ(M ∩W)

To see that χ(M ∩W) can be computed from the ECT, let W be defined by some
unit vector v and scalar t , i.e. W = {x : x · v = t}. Then, using the inclusion-
exclusion property of the Euler characteristic:

χ(M ∩W) = χ({x ∈ M : x · v = t})
= χ({x ∈ M : x · v ≤ t} ∩ {x ∈ M : x · (−v) ≤ −t})
= χ({x ∈ M : x · v ≤ t})+ χ({x ∈ M : x · (−v) ≤ −t})
− χ(M)

= ECT (M)(v, t) + ECT (M)(−v,−t)− ECT (M)(v,∞),

where ECT (M)(v,∞) is defined to be lim
t→+∞ECT (M)(v, t), which converges to

χ(M) when M is bounded.
Thus, if the Radon transform RS is injective, so is the ECT, as if ECT (M) =

ECT (M ′) for a pair of subanalytic subsets M,M ′ ⊂ R
d then RS1M = RS1M ′ .

What remains to be shown, then, is that RS is indeed injective. We take S′ ⊂ Y ×X

to consist of pairs (W, x) where x lies on the hyperplane W . To apply Theorem 9,
we consider the intersection of fibers in S and S′. For a fixed x ∈ X, Sx = S′x ⊂ Y is



424 S. Oudot and E. Solomon

the set of hyperplanes passing through x, which is homeomorphic to the projective
space RPd−1, which has Euler characteristic

χ1 = χ(Sx ∩ S′x) = χ(RPd−1) = 1

2
(1+ (−1)d−1)

For a pair of distinct points x �= x ′, the intersection of fibers Sx ∩ S′
x ′ ⊂ Y

consists of all hyperplanes intersecting both of these points, a subset homeomorphic
to RPd−2. Thus

χ2 = χ(Sx ∩ S′x ′) = χ(RPd−2) = 1

2
(1+ (−1)d−2)

By Theorem 9,

(RS ′ ◦ RS)(1M) = (−1)d−11M + 1

2
(1+ (−1)d−2)χ(M)1Rd

Thus, if RS1M = RS1M ′ , then, composing with RS ′ and applying the above
formula and rearranging terms, we obtain:

(−1)d−1(1M − 1M ′) = 1

2
(1+ (−1)d−2)(χ(M ′)− χ(M))1Rd

The right-hand side is a constant function, and so the left-hand side must be too.
The difference of two non-zero indicator functions is constant precisely when it is
equal to zero, so that 1M = 1M ′ and hence M = M ′, demonstrating injectivity.

4.1.1 How Many Directions Suffice?

The injectivity results of [20, 32] require us to compute the PHT or ECT for every
vector on the sphere S

d−1. Thus it is natural to ask if injectivity can be obtained
with only finitely many directions. We should clarify that we are not asking for
finitely many fixed directions to distinguish an infinite family of shapes. Rather, we
would like to know if the identity of a given subanalytic set S can be inferred by
computing and comparing the PHT or ECT along a finite sequence of directions,
with these directions being chosen in real time. There are two positive results in
this vein, both restricted to the case of simplicial complexes, rather than arbitrary
subanalytic sets.

The first result is that of [3], specifically for the case of planar graphs. They
demonstrate how to use three directions on the circle S1 to determine the location of
the vertices of a planar graph S. The first two direction vectors are (1, 0) and (0, 1),
and the third direction can be computed using the persistence modules derived from
the first two. If S has n vertices, this vertex-localizing algorithm runs in O(n logn)
time. Once the locations of the vertices are identified, one tests for the existence of
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an edge between pairs of vertices by using another three persistence modules (the
directions of which are derived from the locations of the vertices). This pair-wise
checking for edges introduces a quadratic term into the running time:

Theorem 10 (Thm. 11 in [3]) Let M be a linear plane graph with n vertices. The
vertices, edges, and exact embedding of M can be determined using persistence
modules along O(n2) different directions.

The second result, proved in [14], applies to finite, linearly embedded simplicial
complexes S ⊂ R

d for any dimension d . However, their bound on the number of
directions is not simply a function of the number of vertices in S, but also of its
geometry. In particular, it depends on the following three constants.

• d—the embedding dimension.
• δ—a constant with the following property: for any vertex x ∈ M there is a ball
B of radius δ in the sphere S

d−1, such that for all v ∈ B the Euler curve of fv
changes values at t = v · x. If one works with the PHT instead of the ECT, the
analogous requirement is that the persistent homology coming from fv has an
off-diagonal point with birth or death value v · x. These conditions ensure that
the vertex x is observable for the ECT or PHT in some simple set of positive
measure. Put geometrically, it ensures that S is not “too flat” around any vertex.

• k—the maximum number of homological critical values for fv for any v ∈ S
d−1,

i.e. values at which the Euler characteristic of a sublevel set changes (assuming
this quantity is finite). If one works with the PHT instead of the ECT, one
considers homological critical values instead, where the homology of a sublevel
set changes.

They show the following finiteness result:

Theorem 11 (Thm. 7.1 in [14]) For either the ECT or the PHT, let M ⊂ R
d be

a linearly embedded simplicial complex, with appropriate constants δ, k as in the
prior description. Then there is a constant�(d, δ, k) such thatM can be determined
using �(d, δ, k) directions of the chosen transform.

The proof of this theorem is a multi-part algorithm, where the data computed
at each step is passed forward as input to the next step. To begin, they show that,
for a fixed d , an upper bound on k and a lower bound on δ provide a bound on the
total number of vertices in M (Lemma 7.4 in [14]). They then show that, given any
sufficiently large collection of δ-nets on the sphere, the resulting set of directions
can be used to determine the location of the vertices in M (Proposition 7.1 in [14]).
With the location of the vertices identified, one defines the following hyperplane

arrangement in R
d :W(V ) =

[⋃
(v1,v2)∈{V×V−�}(v1 − v2)

T
]
, where V is the vertex

set ofM , and where� is the diagonal in V ×V . That is, W(V ) is the union of all the
hyperplanes inRd orthogonal to the differences of pairs of distinct vertices in V . The
connected components of Sd−1 ∩ (

R
d \W(V )

)
are the (d − 1)-dimensional strata

of the stratification of the sphere induced by W(V ). The crucial observation to be
made is that any two directions in the same top-dimensional stratum induce the same
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ordering on the simplices of M . Thus, given the ECT or PHT for any one direction
in a stratum, it is possible to parametrize the ECT or PHT for all the other directions,
provided the locations of the vertices V are known (Lemma 5.3, Proposition 5.2 in
[14]). Thus, after identifying the set V in the prior step, computing the hyperplane
arrangement W(V ), and picking a test direction in each top-dimensional stratum,
one has enough data to deduce the ECT or PHT on all of Sd−1∩ (

R
d \W(V )

)
, and,

by continuity, on the entire sphere S
d−1. Since the ECT or PHT on the full sphere

determines the simplicial complex M by prior injectivity results, we can ultimately
deduce M itself. The total number of directions needed in this procedure is

�(d, δ, k) =
(
(d − 1)k

(
2δ

sin(δ)

)d−1

+ 1

)(
1+ 2

δ

)δ

+O

(
dk

δd−1

)2d

The proofs in both [3] and [14] rely heavily on the simplicial complex structure of
M , and there are presently no finiteness results known for more general subanalytic
sets.

4.1.2 Sample ECT Code

The author E. Solomon maintains a small GitHub repository with Python code for
computing and comparing Euler Characteristic Transforms of 2D images [31]. The
code samples the ECT along a finite set of directions for each image, and sets the
distance between images to be the sum of the L2 norms between smoothed Euler
curves in matching directions. The choice and number of directions, smoothing
parameter, and resulting classifier all have an impact on the prediction accuracy,
although this is not well understood on a theoretical level at the moment. See Fig. 8.

4.2 Intrinsic Persistent Homology Transform

The PHT and ECT transforms of the prior section apply to shapes embedded in R
d .

In [27], Oudot and Solomon propose an intrinsic topological transform, the IPHT.5

This transform uses the extended persistence of a real-valued function f : X→ R.

Definition 18 Let (X, dX) be a compact metric space. For each basepoint p ∈ X,
consider the “distance-to-the-basepoint” function fp(x) = dX(p, x), and define
#X(p) to be the extended persistence of the pair (X, fp). We define IPHT (X) to
be the image of #X, which, because #X is continuous (a corollary of Theorem 4),
is a compact subset of barcode space B.

5This invariant is called the Barcode Transform in that paper, but the name proposed above is
clearer and fits better with existing literature.
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Fig. 8 Left: greyscale image
of a handwritten letter in the
Devanagari alphabet, used in
many North Indian
languages. Right: the ECT of
the above letter, taken in the
direction v = 〈1, 1〉.
Superimposed on the ECT is
a smoothed version, obtained
via convolution. Images
reproduced from [31]

It would seem that the appropriate analogue of the PHT of a subanalytic set M ,
as a map PHT (M) : Sd−1 → B, would be the map #X : X → B. However, the
map #X has two shortcomings. Firstly, it requires us to keep track of the space X as
the domain of the map, when one would prefer a transform that allows us to discard
the initial space X. Secondly, there is no simple way of comparing #X and #Y for
distinct metric spaces X and Y . This problem is resolved by taking IPHT (X) to be
the image of #X, so that it sits in a common ambient space for any choice of X.

So far, the IPHT has largely been studied in the context of compact metric graphs,
these being metric spaces arising from the shortest-path-metric on a weighted graph.
In [15], Dey et al. propose the persistence distortion distance dPD on the space of
compact metric graphs MGraphs.

Definition 19 ([15]) Let dBH denote the Hausdorff distance on the space of compact
subsets of the barcode space B induced by the Bottleneck distance. Then for any
pair X,Y ∈ MGraphs, define the persistence distortion distance dPD(X, Y ) =
dBH (IPHT (X), IPHT (Y )).
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G

H

Fig. 9 In this figure, the lengths of the small branches are all equal to 1, the lengths of the middle-
sized branches are all equal to 10, and finally both central edges have length 100. For every middle-
sized branch inX there is a corresponding branch in Y with the same number of small branches, not
necessarily on the same side. The barcodes for points on matching branches are the same. Similarly
the barcodes for points along the central edges of X and Y agree. Thus BT(X) = BT(Y ), but X
and Y are not isomorphic

Dey et al. [15] show that dPD is related to the Gromov-Hausdorff distance dGH
as follows: dPD(X, Y ) ≤ 18dGH(X, Y ) (see their Theorem 3 and the remark
after their Theorem 4). In other words, the IPHT is a Lipschitz map on the space
of metric graphs. In [6], Carrière et al. extend this result to a local Lipschitz
property on the space of compact geodesic spaces. Dey et al. also show in [15]
that dPD is computable in polynomial time (see their Theorem 26), provide an
algorithm to do so, and conduct some preliminary experiments. Most relevant for
our study of inverse problems, they demonstrate the existence of non-isometric
graphs X and Y with IPHT (X) = IPHT (Y ). Oudot and Solomon [27] provide
another (simpler) example of such a pair of graphs, see Fig. 9 (coming from their
Counterexample 5.2). This implies that the IPHT is not an injective invariant on
the space MGraphs, and that dPD is only a pseudometric.

The pair of graphs X and Y in Fig. 9, as well as the pair of graphs in [15], have
nontrivial automorphism groups. If X has a nontrivial automorphism φ ∈ Aut(X),
then #X(x) = #X(φ(x)) for all x ∈ X. This implies that the map #G : G →
IPHT (G) is not injective, and hence we cannot recover the topological type of X
from that of IPHT (X). In part, this can help explain the failure of injectivity of the
IPHT . Now, Oudot and Solomon demonstrate that #X can fail to be injective even
if Aut(X) is trivial (Fig. 6.1 in [27]), so that injectivity of #X is a stronger condition
than Aut(X) being trivial. This motivated them to propose that the IPHT might be
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injective on the set INJ# of graphs for which #X is injective.6 They prove that this
is indeed the case:

Theorem 12 (Thm. 5.4 in [27]) The IPHT is injective up to isometry on the set
INJ# .

The proof of Theorem 12 is based on the following pair of observations. On
the one hand, Theorem 4 implies that for any pair of points x, x ′ in a metric
graph X, dB(#X(x),#X(x

′)) ≤ dX(x, x
′). On the other hand, it is possible to

show that for every x ∈ X there exists a constant ε(x), such that if x ′ ∈ G

is another point with dX(x, x
′) ≤ ε(x), then dB(#X(x),#X(x

′)) ≥ dG(x, x
′).

Taken together, these inequalities demonstrate that #X is a local isometry, i.e.
for dG(x, x ′) ≤ ε(x), we have dB(#X(x),#X(x

′)) = dX(x, x
′). Now, if #X is

injective, it is a homeomorphism onto IPHT (G) (as its domain is compact and its
codomain is Hausdorff). This implies that IPHT (X) is homeomorphic to X. If we
consider the intrinsic path metric d̂B on IPHT (X) defined using the Bottleneck
distance, the local isometry result then implies that (IPHT (X), d̂B) is globally
isometric to (X, dX). Thus, when #X is injective, we have an explicit procedure for
recovering X from IPHT (X), providing us with a left inverse.7

The remainder of the paper demonstrates the extent to which the set INJ# is large
or generic. For the Gromov-Hausdorff topology, they prove the following:

Proposition (Prop. 5.5 in [27]) The set INJ# is Gromov-Hausdorff dense in
MGraphs. ��

The proof of this proposition is constructive: it demonstrates how to take a metric
graph X and insert many small branches along its edges so as to break any local
geometric symmetry, forcing the map # to become injective (see Fig. 10).

In contrast, they show that every Gromov-Hausdorff open set admits a pair of
non-isometric metric graphs X and X′ with IPHT (X) = IPHT (X′) (Propo-
sition 5.3 in [27]), so that the IPHT cannot be injective on a Gromov-Hausdorff
generic (open and dense) subset of MGraphs. The proof of this result relies on
finding an initial pair of non-isometric graphs with the same IPHT, shrinking them
down, and gluing them to any other metric graph Y . In the Gromov-Hausdorff
metric, the graphs X and X′ that result from this gluing will be close to Y , and
hence to each other, and it is not hard to show that IPHT (X) = IPHT (X′).

This suggests that the Gromov-Hausdorff topology is too coarse for studying this
inverse problem, so the authors consider a finer topology on MGraphs, the fibered
topology:

6Curry et al. make use of a similar genericity assumption when using the image of the ECT as
invariant: that every direction vector produces a distinct Euler curve [14, Def. 6.1].
7Note that when #G is not injective, the set of continuous paths between points x and x′ cannot
be identified, via the map #X , with the set of continuous paths from #X(x) to #X(x

′). Thus, the
local isometry result does not extend to a global isometry for the induced path metric.
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Fig. 10 A graph X, drawn in
black, with short thorns of
distinct lengths, drawn in red,
attached along its edges. The
resulting graph X′ is called a
cactification of X in [27]

p

Ip

Definition 20 (Def. 5.8 in [27]) For every combinatorial graphX = (V ,E), the set
of metric structures onX can be identified with the Euclidean fan R

E
>0/Aut(X): one

uses a vector in R
E
>0 to assign edge weights, quotienting out by the automorphism

group of X to identify vectors of edge weights that produce isometric graphs. By
restricting the focus to combinatorial graphs without valence-two vertices (which
can be added to, or removed from, a graph without changing its topology), and by
considering all possible combinatorial graphs satisfying this condition, one obtains
a bijection γ between MGraphs and the set � =

⊔
X=(V ,E)

R
E
>0/Aut(X). Equipping

each Euclidean fan with the topology induced on the quotient by the L2 metric, one
can then give � the disjoint union topology. Passing through the bijection γ−1, one
obtains a topology on MGraphs called the fibered topology, as it decomposes that
space into a countable family of disjoint open sets (the fibers).

This fibered topology arises naturally when considering probability measures on
MGraphs defined as mixture-models, where one first selects one of (countably
many) combinatorial graphs X = (V ,E) and then chooses edge weights with a
Borel measure on R

E
>0 with density with respect to Lebesgue measure.

A lengthy combinatorial argument (Sect. 10 in [27]) demonstrates that if #X fails
to be injective for some metric graph X, the set of edge lengths in X is linearly
dependent8 over Z. Taking the contrapositive of this statement, one deduces that
if the set of edge lengths in a graph X is linearly independent over Z, then #X

is injective. This linear independence condition is open and dense in the topology
induced by the L2 metric on each fiber RE

>0/Aut(X), and hence on all of MGraphs
in the fibered topology. The authors thus conclude with the following injectivity
result:

Theorem 13 (Thm. 5.9A in [27]) There is a subset U ⊂ MGraphs containing
Inj# on which the IPHT is injective, and which is generic in the fibered topology.

8To be precise, this only holds for graphs with at least three vertices, and for which there are no
self-loops. A similar statement holds for the remaining cases, which is the focus of Sect. 11 in [27].
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Oudot and Solomon also provide stability and injectivity results for a metric-
measure version of the IPHT (Theorems 4.2 and 5.9B in [27]). They also prove the
following Gromov-Hausdorff local injectivity result.

Theorem 14 (Thm. 5.7 in [27]) For every metric graph X ∈ MGraphs there is
a constant ε(X) > 0, such that if Y is another compact metric graph with 0 <

dGH(X, Y ) < ε(X) then dBH (IPHT (X), IPHT (Y )) > 0.

5 Conclusion

The results explored in this survey form a preliminary but promising line of research
into explainability from the topological point of view. Looking forward, there are a
number of mathematical and data- theoretic challenges to be overcome:

• Characterizing the fiber of the persistence map for various families of spaces,
such as spheres or point clouds, along the lines of [13].

• Developing continuation methods that allow the number of points in the point
cloud, or the combinatorial structure of the simplicial complex, to vary over the
course of the optimization.

• How to best choose a set of direction vectors when implementing the PHT or
ECT in practice.

• Finding the appropriate formulation of the IPHT that best extends to higher-
dimensional intrinsic spaces, and investigating the associated injectivity prop-
erties (or lack thereof).

• Formulating the IPHT in terms of other families of functions defined on a metric
space. For example, the barcodes arising from eigenfunctions of the Laplacian
on metric simplicial complexes and manifolds.

• Studying the problem from the algorithmic point of view, including efficient
implementations, bounds on complexity, etc.

• As of the writing of this survey, little is known about the statistics of the topo-
logical transforms and constructions detailed above. For example, the question
of hypothesis testing has not been rigorously investigated.

Continued work by mathematicians, statisticians, and computer scientists will
hopefully help address these questions, and bring the ideas discussed in this survey
and their applications to maturity.
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Sparse Circular Coordinates via
Principal Z-Bundles

Jose A. Perea

Abstract We present in this paper an application of the theory of principal
bundles to the problem of nonlinear dimensionality reduction in data analysis. More
explicitly, we derive, from a 1-dimensional persistent cohomology computation,
explicit formulas for circle-valued functions on data with nontrivial underlying
topology. We show that the language of principal bundles leads to coordinates
defined on an open neighborhood of the data, but computed using only a smaller
subset of landmarks. It is in this sense that the coordinates are sparse. Several data
examples are presented, as well as theoretical results underlying the construction.

1 Introduction

The curse of dimensionality refers to a host of phenomena inherent to the increase
in the number of features describing the elements of a data set. For instance,
in statistical learning, the number of training data points needs to grow roughly
exponentially in the number of features, in order for learning algorithms to
generalize correctly in the absence of other priors. A deeper manifestation of the
curse of dimensionality is the deterioration of the concept of “nearest neighbors”
in high-dimensional Euclidean space; for as the dimension increases, the distance
between any two points is roughly the same [18]. One of the most popular priors
in data science is the “low intrinsic dimensionality” hypothesis. It contends that
while the apparent number of features describing each data point (e.g., the number
of pixels in an image) might be large, the effective number of degrees of freedom
(i.e., the intrinsic dimensionality) is often much lower. Indeed, images generated at
random will hardly depict a cat or a natural scene.
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Many dimensionality reduction schemes have been proposed in the literature
to leverage the “low intrinsic dimensionality” hypothesis, each making explicit or
implicit use of likely characteristics of the data. For instance, Principal Component
Analysis [10] and other linear dimensionality reduction methods, rely on the
existence of a low-dimensional linear representation accounting for most of the
variability in the data. Methods such as Locally Linear Embeddings [19] and
Laplacian EingenMaps [2], on the other hand, presuppose the existence of a
manifold-like object parametrizing the underlying data space. Other algorithms,
like Multidimensional Scaling [11] and Isomap [22], attempt to preserve distances
between data points while providing low-dimensional reconstructions.

Recently, several new methods for nonlinear dimensionality reduction have
emerged from the field of computational topology [6, 17, 21]. The idea being that
if the underlying space from which the data has been sampled has a particular
shape, then this information can be used to generate appropriate low-dimensional
representations. The circular coordinates of de Silva, Morozov, and Vejdemo-
Johansson [6] pioneered the use of persistent cohomology as a way to measure
the shape of a data set, and then produce circle-valued coordinates reflecting the
underlying nontrivial topology. Their algorithm goes as follows. Given a finite
metric space (X,d)—the data—and a scale α > 0 so that the Rips complex

Rα(X) := {σ ⊂ X : σ �= ∅ and diam(σ ) < α}

has a nontrivial integer cohomology class [η] ∈ H 1(Rα(X);Z)— this is determined
from the persistent cohomology of the Rips filtration R(X) = {Rε(X)}ε≥0—a linear
least squares optimization (of size the number of vertices by the number of edges
of Rα(X)) is solved, in order to construct a function fη : X −→ S1 ⊂ C which,
roughly, puts one of the generators of H 1(S1;Z) ∼= Z in correspondence with [η] ∈
H 1(Rα(X);Z).

1.1 Our Contribution

Two drawbacks of the perspective presented in [6] are: (1) the method requires a
persistent cohomology calculation, as well as a least squares optimization, on the
Rips filtration of the entire data set X. This is computationally expensive and may
limit applicability to small-to-medium-sized data. (2) once the function fη has been
computed, it is only defined on the data points fromX used for its construction. Here
we show that these drawbacks can be addressed effectively with ideas from principal
Z-bundles. In particular, we show that it is possible to construct circular coordinates
on X from the Rips filtration on a subset of landmarks L ⊂ X, Proposition 4, with
similar classifying properties as in [6], Theorem 3, and that said coordinates will
be defined on an open neighborhood of L containing X. We call these functions
“sparse circular coordinates”.
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1.2 The Sparse Circular Coordinates Algorithm

Let us describe next the steps needed to construct said coordinates. The rest of the
paper is devoted to the theory behind these choices:

1. Let (X,d) be the input data set; i.e. a finite metric space. Select a set of landmarks
L = {	1 . . . , 	N } ⊂ X, e.g. at random or via maxmin sampling, and let

rL := max
x∈X min

	∈L d(x, 	)

be the radius of coverage. In particular, rL is the Hausdorff distance between L
and X.

2. Choose a prime q > 2 at random and compute the 1-dimensional persistent
cohomology PH 1(R(L);Z/q) with coefficients in Z/q , for the Rips filtration
on the landmark set L. Let dgm(L) be the resulting persistence diagram.

3. If there exists (a, b) ∈ dgm(L) so that max{a, rL} < b
2 , then let

α = t ·max{a, rL} + (1− t)
b

2
, for some 0 < t < 1

Let η′ ∈ Z1(R2α(L);Z/q) be a cocyle representative for the persistent cohomol-
ogy class corresponding to (a, b) ∈ dgm(L). If t is closer to 1, then the circular
coordinates are defined on a larger domain; however, this makes step (5) below
more computationally intensive.

4. Lift η′ : C1(R2α(L);Z) −→ Z/q = {0, . . . , q − 1} to an integer cocycle
η ∈ Z1(R2α(L);Z). That is, one for which η′ − (η mod q) is a coboundary
in C1(R2α(L);Z/q). An explicit choice (that works in practice for a prime q
chosen at random) is the integer cochain:

η(σ) =
⎧⎨
⎩
η′(σ ) if η′(σ ) ≤ q−1

2

η′(σ )− q if η′(σ ) > q−1
2

5. Choose positive weights for the vertices and edges of R2α(L)—e.g. all equal
to one—and let d+2α : C1(R2α(L);R) −→ C0(R2α(L);R) be the (weighted)
Moore-Penrose pseudoinverse (solving weighted linear least squares problems)
for the coboundary map

d2α : C0(R2α(L);R) −→ C1(R2α(L);R)

If ι : Z ↪→ R is the inclusion, let

τ = −d+2α
(
ι ◦ η) and θ = (ι ◦ η) + d2α (τ )
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6. Denote by τj ∈ R the value of τ on the vertex 	j ∈ L, and by θjk ∈ R the value
of θ on the oriented edge [	j , 	k] ∈ R2α(L). If we let

ϕj (b) = |α − d(	j , b)|+
N∑
k=1
|α − d(	k, b)|+

where |r|+ = max{r, 0}, r ∈ R

and Bα(	k) denotes the open ball of radius α > 0 centered at 	k ∈ L, then the
sparse circular coordinates are defined by the formula:

hθ,τ :
N⋃
k=1

Bα(	k) −→ S1 ⊂ C

Bα(	j ) < b �→ exp

{
2πi

(
τj +

N∑
k=1

ϕk(b)θjk

)} (1)

If X is a subspace of an ambient metric space M, then the Bα(	k)’s can be taken
to be ambient metric balls. This is why we call the circular coordinates sparse;
hθ,τ is computed using only L, but its domain of definition is an open subset of
M which, by construction, contains all of X.

1.3 Organization

We start in Sect. 2 with a few preliminaries on principal bundles, highlighting
the main theorems needed in later parts of the paper. We assume familiarity
with persistent cohomology (if not, see [16]), as well as the definition of Čech
cohomology with coefficients in a presheaf (see for instance [14]). Section 3 is
devoted to deriving the formulas—e.g. (1) above—which turn a 1-dimensional
integer cohomology class into a circle-valued function. In Sect. 4 we describe how
to make all this theory applicable to real data sets. We present several experiments in
Sect. 5 with both real and synthetic data, and end in Sect. 6 with a few final remarks.

2 Preliminaries

2.1 Principal Bundles

We present here a terse introduction to principal bundles, with the main results
we will need later in the paper. In particular, the connection between principal
bundles and Čech chomology, which allows for explicit computations, and their
classification theory via homotopy classes of maps to classifying spaces. The latter
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description will be used to generate our sparse circular coordinates. We refer the
interested reader to [9] for a more thorough presentation.

LetB be a connected and paracompact1 topological space with basepoint b0 ∈ B.

Definition 1 A pair (p,E), with E a topological space and p : E −→ B a
continuous map, is said to be a fiber bundle over B with fiber F = p−1(b0), if:

1. p is surjective
2. Every point b ∈ B has an open neighborhood U ⊂ B and a homeomorphism

ρU : U × F −→ p−1(U), called a local trivialization around b, so that p ◦
ρU (b

′, e) = b′ for every (b′, e) ∈ U × F .

The spaces E and B are called, respectively, the total and base space of the
bundle, and p is called the projection map.

Definition 2 Let G be an abelian topological group whose operation we write
additively. A fiber bundle p : E −→ B is said to be a principal G-bundle if:

1. The total space E comes equipped with a fiberwise free right G-action. That is,
a continuous map

· : E ×G −→ E

satisfying the right-action axioms, with p(e · g) = p(e) for every pair (e, g) ∈
E ×G, and for which e · g = e only if g is the identity of G.

2. The induced fiberwise G-action p−1(b)×G −→ p−1(b) is transitive for every
b ∈ B in the base space.

3. The local trivializations ρU : U × F −→ p−1(U) can be chosen to be G-
equivariant: that is, so that ρU(b, e · g) = ρU(b, e) · g, for every (b, e, g) ∈
U × F ×G.

Two principal G-bundles pj : Ej −→ B, j = 1, 2, are said to be isomorphic, if
there exists a G-equivariant homeomorphismΦ : E1 −→ E2 so that p2 ◦ Φ = p1.
This defines an equivalence relation on principal G-bundles over B, and the set of
isomorphism classes is denoted PrinG(B).

Given a principal G-bundle p : E −→ B and a system of (G-equivariant) local
trivializations

{
ρj : Uj × F −→ p−1(Uj )

}
j∈J , we have that

ρ−1
k ◦ ρj : (Uj ∩ Uk)× F −→ (Uj ∩ Uk)× F

is a G-equivariant homeomorphism whenever Uj ∩ Uk �= ∅. Since the G-action on
E is fiberwise free and fiberwise transitive, then ρ−1

k ◦ ρj induces a well-defined
continuous map

ρjk : Uj ∩ Uk −→ G j, k ∈ J (2)

1So that partitions of unity always exist.
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defined by the equation

ρ−1
k ◦ ρj (b, e) = (b, e · ρjk(b)) , for all (b, e) ∈ (Uj ∩ Uk)× F. (3)

The ρjk’s are called the transition functions for the G-bundle (p,E) correspond-
ing to the system of local trivializations {ρj }j∈J . In fact, these transition functions
define an element in the Čech cohomology of B. Indeed, for each open set U ⊂ B

let Maps(U,G) denote the set of continuous maps from U to G. Since G is an
abelian group, then so is Maps(U,G), and if V ⊂ U is another open set, then
precomposing with the inclusion V ↪→ U yields a restriction map

ιU,V : Maps(U,G) −→ Maps(V ,G)

This defines a sheaf CG of abelian groups over B, with CG(U) := Maps(U,G),
called the sheaf ofG-valued continuous functions on B. It follows that the transition
functions (2) define an element ρ = {ρjk} ∈ Č1(U;CG) in the Čech 1-cochains of
the cover U = {Uj }j∈J with coefficients in the sheaf CG. Moreover,

Proposition 1 The transition functions ρjk satisfy the cocycle condition

ρj	(b) = (ρjk + ρk	)(b) for all b ∈ Uj ∩ Uk ∩ U	 (4)

In other words, ρ = {ρjk} ∈ Ž1(U;CG) is a Čech cocycle.

If {νr : Vr × F −→ p−1(Vr)}r∈R is another system of local trivializations with
induced Čech cocycle ν = {νrs} ∈ Ž1(V;CG), and

W = {Uj ∩ Vr}(j,r)∈J×R

then one can check that the difference ρ − ν is a coboundary in Č1(W;CG). Since
W is a refinement for both V and U, it follows that the G-bundle p : E −→
B yields a well-defined element pE ∈ Ȟ 1(B;CG). Moreover, after passing to
isomorphism classes of principal G-bundles we get that

Lemma 1 The function

PrinG(B) −→ Ȟ 1(B;CG)
[(p,E)] �→ pE

is well-defined and injective.

This is in fact a bijection. To check surjectivity, fix an open cover U = {Uj }j∈J
for B, and a Čech cocyle

η = {ηjk} ∈ Ž1(U;CG)
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Then one can construct a principal G-bundle over B with total space

Eη =
⎛
⎝⋃
j∈J

Uj × {j } ×G

⎞
⎠/

(b, j, g) ∼ (
b, k, g + ηjk(b)

)
, b ∈ Uj ∩ Uk

(5)

and projection

pη : Eη −→ B

taking the class of (b, j, g) ∈ Uj × {j } ×G in the quotient Eη, to the point b ∈ B.
Notice that if ηj : Uj ×G −→ Eη sends (b, g) to the class of (b, j, g) in Eη, then
{ηj } defines a system of local trivializations for (pη,Eη), and that η = {ηjk} is the
associated system of transition functions. Therefore,

Theorem 1 The function

Ȟ 1(B;CG) −→ PrinG(B)
[η] �→ [Eη]

is a natural bijection.

In addition to this characterization of principal G-bundles over B as Čech coho-
mology classes, there is another interpretation in terms of classifying maps. We
will combine these two views in order to produce coordinates for data in the next
sections.

Indeed, to each topological group G one can associate a space EG that is
both weakly contractible, i.e. all its homotopy groups are trivial, and which comes
equipped with a free right G-action

EG×G −→ EG

The quotient BG := EG/G is a topological space (endowed with the quotient
topology), called the classifying space of G, and the quotient map

j : EG −→ BG = EG/G

defines a principal G-bundle over BG, called the universal bundle. It is important
to note that there are several constructions of EG, and thus of BG, but they all have
the same homotopy type. One model for EG is the Milnor construction [13]

EG := G ∗G ∗G ∗ · · · (6)

with G acting diagonally by right multiplication on each term of the infinite join.
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The next Theorem explains the universality of j : EG −→ BG. Given a
continuous map f : B −→ BG, the pullback f ∗EG is the principal G-bundle
over B with total space {(b, e) ∈ B × EG : f (b) = j (e)}, and projection map
(b, e) �→ b. Moreover,

Theorem 2 Let [B,BG] denote the set of homotopy class of maps from B to the
classifying space BG. Then, the function

[B,BG] −→ PrinG(B)
[f ] �→ [f ∗EG]

is a bijection.

Proof See [9, Chapter 4: Theorems 12.2 and 12.4]. ��
Theorem 2 implies that given a principal G-bundle p : E −→ B, there exists a
continuous map f : B −→ BG so that f ∗EG is isomorphic to (p,E), and that the
choice of f is unique up to homotopy. Any such choice is called a classifying map
for p : E −→ B.

3 From Integer Simplicial Cohomology to Circular
Coordinates

For an arbitrary topological group G, the Milnor construction (6) produces an
explicit universal G-bundle j : EG −→ BG, but the spaces EG and BG tend
to be rather large. Indeed, they are often infinite-dimensional CW-complexes. For
the case G = Z we have the more economical models EZ - R and BZ - S1 ⊂ C,
with Z acting on R by right translation: R× Z < (r,m) �→ r +m, and projection

p : R −→ S1

r �→ exp(2πir)

Since Z is discrete, then Z-valued continuous functions on B are in fact locally
constant, and hence CZ is exactly the sheaf of locally constant functions with values
in Z, denotedZ. Combining the definition of the Čech cohomology group Ȟ 1(B;Z)
with Theorems 1 and 2, yields a bijection

lim←−
U
H 1(N(U);Z) ∼=

[
B, S1

]
(7)

where the limit is taken over all locally finite covers U of B, ordered by refinement,
and the groups are the 1-dimensional simplicial cohomology with Z coefficients of
the associated nerve complexesN(U). The goal now is to produce an explicit family



Sparse Circular Coordinates 443

of compatible functionsH 1(N(U);Z) −→ [B, S1] realizing the isomorphism from
(7). This is done in Theorem 3, and an explicit formula is given by (11).

To begin, let {ϕj }j∈J be a partition of unity on B dominated2 by U = {Uj }j∈J ,
fix a 1-cocycle η = {ηjk} ∈ Z1(N(U);Z), and define for each j ∈ J the map

fj : Uj × {j } × Z −→ R

(b, j, n) �→ n+∑
	

ϕ	(b)ηj	
(8)

Since U is locally finite, then all but finitely many terms in this sum are zero. Note
that Z acts on Uj ×{j }×Z by right translation

(
(b, j, n),m

) �→ (b, j, n+m), and
that fj is equivariant with respect to this action: fj (b, j, n+m) = fj (b, j, n)+m.
If b ∈ Uj ∩ Uk , then we have that

fk(b, k, n+ ηjk) = n+
∑
	∈J

ϕ	(b)(ηk	 + ηjk)

= n+
∑
	∈J

ϕ	(b)ηj	

= fj (b, j, n)

and hence the fj ’s can be assembled to induce a continuous map f̃η : Eη −→ R on
the quotient space defined by (5); here η = {ηjk} ∈ Z1(N(U);Z) is regarded as a
collection of constant functions ηjk : Uj ∩Uk −→ Z. To be more explicit, f̃η sends
the class of (b, j, n) in Eη to fj (b, j, n) ∈ R. Since each fj is Z-equivariant, then
so is f̃η, and hence it descends to a well defined map fη at the level of base spaces

fη : B −→ S1 ⊂ C

Uj < b �→ exp

(
2πi

∑
k

ϕk(b)ηjk

)
(9)

Lemma 2 The map fη classifies the principal Z-bundle pη : Eη −→ B.

Proof Let us see explicitly that the map fη is well defined; in other words, that the
value fη(b) ∈ S1 is independent of the open set containing b. Indeed, let j, 	 ∈ J

be so that b ∈ Uj ∩ U	. We contend that ϕk(b)ηjk = ϕk(b)(ηj	 + η	k) for every
k ∈ J . If b /∈ Uk , then the equality is trivial since ϕk(b) = 0; if b ∈ Uk , then
Uj ∩ Uk ∩ U	 �= ∅ and ηjk = ηj	 + η	k since η is a cocycle. Therefore

∑
k

ϕk(b)ηjk = ηj	 +
∑
k

ϕk(b)η	k

2That is, so that support(ϕj ) ⊂ closure(Uj ) for all j ∈ J .
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and given that ηj	 ∈ Z, then exp

(
2πi

∑
k

ϕk(b)ηjk

)
= exp

(
2πi

∑
k

ϕk(b)η	k

)
.

Finally, let us check that taking the pullback f ∗η R of the universal Z-bundle

exp(2πi ·) : R −→ S1 yields a principal Z-bundle isomorphic to pη : Eη −→
B. Indeed, since fη ◦ pη = exp

(
2πif̃η

)
, then

(
f̃η, fη

) : (pη,Eη, B) −→(
exp(2πi ·),R, S1

)
is a morphism of principal Z-bundles, and the result follows

from [9, Chapter 4: Theorem 4.2]. ��
Theorem 3 Let ι : Z ↪→ R be the inclusion and

ι∗ : H 1(N(U);Z) −→ H 1(N(U);R) (10)

the induced homomorphism. Given η ∈ Z1(N(U);Z) and τ ∈ C0(N(U);R), let
θ = ι#(η) + δ0τ . Denote by τj ∈ R the value of τ on the vertex j ∈ N(U),
and by θjk ∈ R the value of θ on the oriented edge [j, k] ∈ N(U); in particular
θjk = −θkj , and θjk = 0 whenever {j, k} /∈ N(U). If

hθ,τ : B −→ S1 ⊂ C

Uj < b �→ exp

{
2πi

(
τj +∑

k

ϕk(b)θjk

)}
(11)

then hθ,τ is a classifying map for the principal Z-bundle pη : Eη −→ B.

Proof Since fη is a classifying map for Eη, by Lemma 2, then it is enough to check
that fη and hθ,τ are homotopic (see Theorem 2). For b ∈ Uj we have that

fη(b) = exp

(
2πi

∑
k

ϕk(b)ηjk

)

= exp

(
2πi

∑
k

ϕk(b)(θjk + τj − τk)

)

= exp

(
2πi

(
τj +

∑
k

ϕk(b)(θjk − τk)

))

= ντ (b) · hθ,τ (b)

where ντ (b) = exp

(
−2πi

∑
k

ϕk(b)τk

)
. Since ντ factors through R:

ντ : B −→ R −→ S1 ⊂ C

b �→ ∑
k

ϕk(b)τk �→ exp

(
−2πi

∑
k

ϕk(b)τk

)
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then ντ is null-homotopic, hence fη is homotopic to hθ,τ , and the result follows. ��
Remark 1 We note that the relation θ = ι#(η) + δ0τ from Theorem 3 implies
that the cochain τ ∈ C0(N(U);R) encodes the degrees of freedom in choosing
a cocycle representative for the class ι∗([η]) ∈ H 1(N(U);R), and thus defining the
classifying map hθ,τ : B −→ S1. This choice will be addressed in the discussion
about Harmonic Smoothing in Sect. 4.6.

4 Persistent Cohomology and Sparse Circular Coordinates
for Data

In this section we show how the theory we have developed thus far can be applied
to real data sets. In particular, we explain and justify the choices made in the
construction outlined in the Introduction (Sect. 1.2). Let us begin by fixing an
ambient metric space (M,d), let L ⊂M be finite, and let

Bα(	) = {b ∈ M : d(b, 	) < α} , α ≥ 0, 	 ∈ L
Bα = {Bα(	)}	∈L
L(α) =

⋃
Bα

The formulas derived in the previous section, specially (9), imply that each cocycle
η ∈ Z1(N(Bα);Z) yields a map h : L(α) −→ S1. The thing to notice is that h is
defined on every b ∈ L(α); thus, given a large but finite set X ⊂ M—the data—
sampled around a continuous space X ⊂ M, one can select a much smaller set of
landmarksL ⊂ X and α > 0 for whichX ⊂ L(α). The resulting circular coordinates
h : L(α) −→ S1 will thus be defined on all points of X, though only the landmark
set is used in its construction. As we alluded to in the introduction, this is what we
mean when we say that the coordinates are sparse.

4.1 Landmark Selection

In practice we select the landmarks L ⊂ X either at random, or through maxmin
sampling: Given N ≤ |X| and 	1 ∈ X chosen arbitrarily, assume that 	1, . . . , 	j ∈
X have been selected, 1 ≤ j < N , and let

	j+1 = argmax
x∈X

min
{
d(x, 	1), . . . ,d(x, 	j )

}
(12)

Following this inductive procedure defines a landmark set L = {	1, . . . , 	N } ⊂ X

that is in practice well-separated and well-distributed throughout the data. However,
it is important to keep in mind that this process is prone to choosing outliers.
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4.2 The Subordinated Partition of Unity

As for the choice of partition of unity {ϕ	}	∈L dominated by Bα , we can use that the
cover is via metric balls, and let

ϕ	(b) = |α − d(	, b)|+∑
	′∈L

|α − d(	′, b)|+ where |r|+ = max{r, 0}, r ∈ R (13)

See [17, 3.3 and Fig 6.] for other typical choices of partition of unity in the case of
metric spaces, and coverings via metric balls.

4.3 The Need for Persistence

Even if the landmark set L correctly approximates the underlying topology of X,
the choice of scale α > 0 and cocycle η ∈ Z1(N(Bα);Z) might reflect sampling
artifacts instead of robust geometric features of the underlying space X. This is why
we need persistent cohomology. Indeed, a class [η] ∈ H 1(N(Bα);Z) which is not
in the kernel of the homomorphism

H 1(N(Bα);Z) −→ H 1(N(Bα′);Z) , 0 < α′ < α

induced by the inclusion N(Bα′) ⊂ N(Bα), is less likely to correspond to spurious
features as the difference α − α′ increases. Note, however, that the efficient
computation of persistent cohomology classes relies on using field coefficients. We
proceed, following [6] and [17], by choosing a prime q > 2 and a scale α > 0
so that (1) H 1(N(Bα);Z/q) contains a class with large persistence, and (2) so that
the homomorphismH 1(N(Bα);Z) −→ H 1(N(Bα);Z/q), induced by the quotient
map Z −→ Z/q , is surjective.

4.4 Lifting Persistence to Integer Coefficients

As stated in [6], one has that:

Proposition 2 Let K be a finite simplicial complex, and suppose that q ∈ N does
not divide the order of the torsion subgroup of H 2(K;Z). Then the homomorphism

ι∗q : H 1(K;Z) −→ H 1(K;Z/q)

induced by the quotient map ιq : Z −→ Z/q , is surjective.
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Proof This follows directly from the Bockstein long exact sequence in cohomology,

corresponding to the short exact sequence 0 Z Z Z/q 0.
×q ιq

��
More generally, let {Kα}α≥0 be a filtered simplicial complex with

⋃
α≥0

Kα finite.

Since each complex Kα is finite, and the cohomology groups H 2(Kα;Z) change
only at finitely many values of α, then there exists Q ∈ N so that the hypotheses of
Proposition 2 will be satisfied for each q ≥ Q, and all α ≥ 0. In practice we choose
a prime q at random, with the intuition that for scientific data only a few primes are
torsion contributors.

Let Z/q = {0, 1, . . . , q − 1} and for η′ ∈ Z1(Kα;Z/q) let η ∈ C1(Kα;Z) be
defined on each 1-simplex σ ∈ Kα as:

η(σ) =
⎧⎨
⎩
η′(σ ) if η′(σ ) ≤ q−1

2

η′(σ )− q if η′(σ ) > q−1
2

(14)

Thus, η takes values in
{
− q−1

2 , . . . , 0, . . . , q−1
2

}
⊂ Z and it satisfies (η mod q) =

η′. For the examples we have observed, the cochain defined by (14) produces an
integer cocycle. One of the reviewers of an earlier version of this paper remarked
that this is not always the case; the outlined procedure tends to fail (in real
world-examples) when the cohomology computation involves division by 2. As
highlighted in [6, 2.4], solving a Diophantine linear system can be used to fix the
problem.

4.5 Use Rips, Not Nerves

Constructing the filtered complex {N(Bα)}α≥0 can be rather expensive for a general
ambient metric space (M,d). Indeed, the inclusion of an n-simplex into the nerve
complex is predicated on checking if the intersection of n+1 ambient metric balls is
nonempty. This is nontrivial on curved spaces. On the other hand, the Rips complex

Rα(L) = {σ ⊂ L : diam(σ ) < α} , α ≥ 0

provides a straightforward alternative, since we can use that

Rα(L) ⊂ N(Bα) ⊂ R2α(L)

for every α ≥ 0. Here is how. Let q > 2 be a prime so that

ι∗q : H 1(Rα(L);Z) −→ H 1(Rα(L);Z/q)
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is surjective for all α ≥ 0, and let

j : H 1(R2α(L);Z/q) −→ H 1(Rα(L);Z/q)

be the homomorphism induced by the inclusion Rα(L) ⊂ R2α(L). Moreover, let
η′ ∈ Z1(R2α(L);Z/q) be so that [η′] /∈ Ker(j), and fix an integer lift

η ∈ Z1(R2α(L);Z)

That is, one for which η′ − (η mod q) ∈ Z1(R2α(L);Z/q) is a coboundary, e.g.
(14).

The diagram below summarizes the spaces and homomorphisms used thus far:

η ∈ H 1(R2α(L);Z/q) H 1(R2α(L);Z) [η]

H 1(N(Bα);Z/q) H 1(N(Bα);Z) [η]

H 1(Rα(L);Z/q)

j

ι∗q

ι∗
Z

ι∗q

Since the diagram commutes, then [η] is not in the kernel of ι∗
Z

, and hence we obtain
a nonzero element ι∗

Z
([η]) = [̃η] ∈ H 1(N(Bα);Z). This is the class we would use

as input for Theorem 3.

4.6 Harmonic Smoothing

The final step is selecting an appropriate cocycle representative (refer to Fig. 1 to
see why this matters)

θ̃ ∈ Z1(N(Bα);R)

for the class ι∗([̃η]) ∈ H 1(N(Bα);R), see (10). Again, since one would
hope to never compute the nerve complex, the strategy is to solve the
problem in Z1(R2α(L);R) for ι#(η), and then transfer the solution using
ι#
R
: C1(R2α(L);R)→ C1(N(Bα);R).
Inspecting (11) reveals that the choice of θ̃ which promotes the smallest total

variation in hθ̃ ,̃τ , is the one for which the value of θ̃ on each 1-simplex of N(Bα) is
as small as possible. Consequently, we will look for the cocycle representative

θ ∈ Z1(R2α(L);R)
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of ι∗([η]), which in average has the smallest squared value3 on each 1-simplex of
R2α(L). That said, not all edges in the rips complex Rε(L) are created equal. Some
might have just entered the filtration, i.e. d(	j , 	k) ≈ ε, which would make them
unstable if L is corrupted with noise, or perhaps X ∩ (

Bε/2(	j ) ∪ Bε/2(	k)
)

is a
rather small portion of the data, which could happen if 	j and 	k are outliers selected
during maxmin sampling.

These observations can be encoded by choosing weights on vertices and edges:

ωε : L× L −→ [0,∞) , ε ≥ 0 (15)

where ωε is symmetric for all ε > 0, it satisfies

ωε′(	, 	
′) ≤ ωε(	, 	

′) , for ε′ ≤ ε

and ωε(	, 	′) = 0 only when 0 < ε ≤ d(	, 	′). Here ωε(	, 	) is the weight of 	, and
ωε(	, 	

′) is the weight of the edge {	, 	′}. For instance, one can take

ωε(	, 	
′) = |ε − d(	, 	′)|+

but we note that we have not yet systematically investigated the effects of this
choice. See [20, Apendix D] for a different heuristic.

It follows that ωε defines inner products 〈·, ·〉ε on C0(Rε(L);R) and
C1(Rε(L);R), by letting the indicator functions 1σ on k-simplices (k = 0, 1)
σ ∈ Rε(L) be orthogonal, and setting

〈1σ , 1σ 〉ε = ωε(σ ) (16)

Using 〈·, ·〉ε , for ε = 2α, we let β ∈ B1(R2α(L);R) be the orthogonal projection
of ι#(η) onto the space of 1-coboundaries, and define

θ = ι#(η)− β (17)

A bit of linear algebra shows that,

Proposition 3 The 1-cocycle θ defined by (17) is a minimizer for the weighted least
squares problem

min
φ∼ι#(η)

∑
σ

ω2α(σ ) · φ(σ)2 (18)

Here the sum runs over all 1-simplices σ ∈ R2α(L), and the minimization is over
all 1-cocycles φ ∈ Z1(R2α(L);R) which are cohomologous to ι#(η).

3That is, we use the harmonic cocycle representative for appropriate inner products on cochains.
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Similarly, and if

d2α : C0(R2α(L);R) −→ C1(R2α(L);R)

denotes the coboundary map, then we let

τ ∈ Ker(d2α)
⊥ ⊂ C0(R2α(L);R)

in the orthogonal complement of the kernel of d2α, be so that d2α(τ ) = −β. Hence
τ is the 0-chain with the smallest norm mapping to −β via d2α. Consequently, if

d+2α : C1(R2α(L);R) −→ C0(R2α(L);R)

is the weighted Moore-Penrose pseudoinverse of d2α (see [3, III.3.4]), then

τ = −d+2α(ι#(η)) and θ = ι#(η) + d2α (τ ) (19)

This is how we compute τ and θ in our implementation. Now, let

τ̃ = ι#
R
(τ ) ∈ C0(N(Bα);R)

θ̃ = ι#
R
(θ) ∈ Z1(N(Bα);R)

If we were to be completely rigourous, then τ̃ and θ̃ would be the cochains going
into (11); this would require the 1-skeleton of the nerve complex. However, as the
following proposition shows, this is unnecessary:

Proposition 4 For all b ∈ Bα(	j ), and every j = 1, . . . , N , we have that

exp

{
2πi

(
τ̃j +

N∑
k=1

ϕk(b)θ̃jk

)}
= exp

{
2πi

(
τj +

N∑
k=1

ϕk(b)θjk

)}

That is, we can compute sparse circular coordinates using only the Rips filtration
on the landmark set.

Proof Since N(Bα) and R2α(L) have the same vertex set, namely L, then τ̃ = τ as
real-valued functions on L. Moreover, for all k = 1, . . . , N we have that

ϕk(b)θ̃jk = ϕk(b)θjk

for if b /∈ Bα(	k), then both sides are zero, and if b ∈ Bα(	j ) ∩ Bα(	k), then the
edge {	j , 	k} is in both R2α(L) and N(Bα), which shows that θ̃jk = θjk . ��
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5 Experiments

In all experiments below, persistent cohomology is computed using a MATLAB
wrapper for Ripser [1] kindly provided by Chris Tralie (http://www.ctralie.com/).
The Moore-Penrose pseudoinverse was computed via MATLAB’s pinv. In all
cases we run the algorithm from the Introduction in Sect. 1.2 using the indicated
persistence classes, or linear combinations thereof as made explicit in each example.

5.1 Synthetic Data

5.1.1 A Noisy Circle

We select 1000 points from a noisy circle in R
2; the noise is Gaussian in the

direction normal to the unit circle. Fifty landmarks were selected via maxmin
sampling (5% of the data), and circular coordinates were computed for the two most
persistent classes η1 and η2, using (19) as input to (11)—this is the harmonic cocycle
column—or (9) with either η1 or η2 directly—the integer cocycle column. We show
the results in Fig. 1 below. Computing persistent cohomology took 0.079423 s (the
Rips filtration is constructed from zero to the diameter of the landmark set); in
each case computing the harmonic cocycle takes about 0.037294 s. This example
highlights the inadequacy of the integer cocycle and of choosing cohomology
classes associated to sampling artifacts (i.e., with low persistence). From now on,
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Fig. 1 A noisy circle. Left: persistence diagrams in dimension 0 (blue) and 1 (red) for the Rips
filtration on the landmarks. Right: Circular coordinates from the two most persistent classes η1
(top row) and η2 (bottom row). The columns indicate if the harmonic or integral cocycle was
used. The dark rings are the landmarks. The colors are: the domain of definition for the circular
coordinate (gray), and its value on each point (dark blue, −π , through dark red, π). Please refer to
an electronic version for colors

http://www.ctralie.com/
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we only present circular coordinates computed with the relevant harmonic cocycle
representative.

5.1.2 The 2-Dimensional Torus

For this experiment we sample 1000 points uniformly at random from the
square [0, 2π) × [0, 2π), and for each selected pair (φ1, φ2) we generate a point(
eiφ1 , eiφ2

) ∈ S1 × S1 on the surface of the torus embedded in C
2. The resulting

finite set is endowed with the ambient distance from C
2, and 100 landmarks

(i.e., 10% of the data) are selected through maxmin sampling. We show the
results in Fig. 2 below, for the circular coordinates computed with the two most
persistent classes, η1 and η2, and the maps (11) associated to the harmonic cocycle
representatives (19). Computing persistent cohomology for the Rips filtration on the
Landmarks (from zero to the diameter of the set) takes 0.398252 s, and computing
the harmonic cocycles takes 0.030832 s.

5.1.3 The Klein Bottle

We model the Klein bottle as the quotient space

K = S1 × S1/(z,w) ∼ (−z,w)

and endow it with the quotient metric. Just like in the case of the 2-torus, we sample
1000 points uniformly at random on (the fundamental domain [0, π)×[0, 2π) of)K ,
and select 100 landmarks via maxmin sampling and the quotient metric. Below in
Fig. 3 we show the results of computing the persistent cohomology, with coefficients
in Z/13, of the Rips filtration on the landmark set (left), along with the circular
coordinates corresponding to the most persistent class (right).
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Fig. 2 The torus. Left: Persistence in dimensions 0 and 1 for the Rips filtration on the landmark
set. Center and Right: the landmark set is depicted with dark rings, and the colors correspond to
the circular coordinates computed with (the harmonic representatives from) the two most persistent
classes η1 (center) and η2 (right). Please refer to an electronic version for colors
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Fig. 3 Circular coordinates on the Klein bottle. Left: Persistence with coefficients in Z/13 for
the Rips filtration on the landmark set. Right: Circular coordinates computed from the harmonic
representative from the class η with largest persistence. Dark rings indicate landmarks, and the
colors (dark blue through dark red) are the angular values of the circular coordinate on each data
point. Please refer to an electronic version for colors

5.2 Real Data

5.2.1 COIL 20

The Columbia University Image Library (COIL-20) is a collection of 448 × 416-
pixel gray scale images from 20 objects, each of which is photographed at 72
different rotation angles [15]. The database has two versions: a processed version,
where the images have been cropped to show only the rotated object, and an
unprocessed version with the 72 raw images from 5 objects. We will analyze the
unprocessed database, of which a few examples are shown in Fig. 4 below.

Regarding each image as a vector of pixel intensities in R
448×416 yields a set

X with 360 points; this set becomes a finite metric space when endowed with the
ambient Euclidean distance. Below in Fig. 5 (left) we show the result of computing
persistence (this time visualized as barcodes) for the Rips complex on the entire
data set (0.293412 s). Each one of the six most persistent classes η1, . . . , η6 yields
a circle-valued map on the data hj : X −→ S1, j = 1, . . . , 6. Multiplying these
maps together, using the group structure from S1 ⊂ C, yields a map h : X −→ S1.
We do this at the level of maps, as opposed to adding up the cocycle representatives,
because there is no scale α at which all these classes are alive. We also show in Fig. 5
(right) an Isomap [22] projection of the data onto R

2, and we color each projected
data point with its h value.

As we show in Fig. 6 below, a better system of coordinates for the data (i.e. one
without crossings) is given by the computed circular coordinate of each data point,
and the cluster (computed using single linkage) to which it belongs to.
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Fig. 4 Some examples from the unprocessed COIL20 image database
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Fig. 5 COIL-20 unprocessed. Left: persistence of the Rips filtration. Right: Isomap projection
colored by circular coordinate

5.2.2 The Mumford Data

This data set was first introduced in [12], with an initial exploration of its underlying
topological structure done in [5], and then a more thorough investigation in [4].
The data set in question is a collection of roughly four million 3 × 3-pixel gray-
scale images with high-contrast, selected from monochrome photos in a database of
4000 natural scenes [8]. The 3× 3-pixel image patches are preprocessed, intensity-
centered and contrast-normalized, and a linear change of coordinates is performed
yielding a point-cloud M ⊂ S7 ⊂ R

8. The Euclidean distance in R
8 endows M

with the structure of a finite metric space. Following [4], we select 50,000 points at
random from M and then let X be the top 30% densest points as measured by the
distance to their 15th nearest neighbor. This results in a data set with 15,000 points,
which we analyze below.

We select 700 landmarks from X via maxmin sampling, i.e. 4.7% of X, and
compute persistence for the associated Rips filtration. This takes about 2.2799 s and
the result is shown in Fig. 7.

Each bar in the barcode yields a class ηj , which we order from largest (η1)
to smallest (η5) persistence. Below in Fig. 8 we show the circular coordinates



Sparse Circular Coordinates 455

Fig. 6 COIL-20 unprocessed: clusters vs circular coordinates
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´3

Fig. 7 Barcodes from persistence on the Rips filtration of the landmark set L ⊂ X

associated to the classes η2, η1 + η5 and η3 + η4, respectively. Each of the three
panels shows a scatter plot of X ⊂ R

8 with respect to the first two coordinates,
dark rings are the selected landmarks, and the colors (dark blue through dark
red) are the circular coordinates corresponding to the indicated persistence classes.
The computation of each cocycle representative takes about 7.1434 s, so the entire
analysis is less than 25 s.

These three circular coordinates allow us to map the data set X into the 3-
dimensional torus T 3 = S1 × S1 × S1, which we model as the 3-dimensional cube
[−π, π] × [−π, π] × [−π, π] with opposite faces identified. We show in Fig. 9
below the result of mapping the data into T 3.

As we can see from the scatter plot, these three coordinates provide a faithful
realization of the data in the three circle model proposed in [4]. Below in Fig. 10 we
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Fig. 8 Circular coordinates for the points in X ⊂ R
8, plotted according to their first two

coordinates, and colored by the circular coordinates associated to each one of the classes η2 (left),
η1 + η5 (center) and η3 + η4 (right)

Fig. 9 Scatter plot in the 3-torus (left) for X, along with two 2-d projections (center, left). The
horizontal line on the xy plane is a circle (the primary circle), and each one of the four V -shaped
curves in T 3 is a hemisphere of a (secondary) circle

show some of these image patches in their T 3-coordinate to better illustrate what
the actual circles are.

6 Discussion

We have presented in this paper an application of the theory of principal bundles to
the problem of finding topologically and geometrically meaningful coordinates for
scientific data. Specifically, we leverage the 1-dimensional persistent cohomology
of the Rips filtration on a subset of the data (the landmarks), in order to produce S1-
valued coordinates on the entire data set. The coordinates are designed to capture
1-dimensional topological features of a continuous underlying space, and the theory
on which the coordinates are built, indicates that they classify Z-principal bundles
on the continuum.

The use of bundle theory allows for the circular coordinates to be sparse, which
is fundamental for analyzing geometric data of realistic size. We hope that these
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Fig. 10 Image patches from
X, plotted at their location in
the 3-torus, according to the
computed circular
coordinates

0z

y

0

x

0

coordinates will be useful in problems such as the analysis of recurrent dynamics
in time series data (as in [23, 24] or [7]), and nonlinear dimensionality reduction as
indicated in the Experiments Sect. 5.

An interesting direction from this work is the question of stability and Lipschitz
continuity of sparse circular coordinates. The main theoretical challenge is to
determine how the edge and vertex weights on the Rips complex can be used to
stabilize the harmonic cocycle representative with respect to an appropriate notion
of (hopefully Hausdorff) noise on the landmark set. We hope to address this question
in upcoming work.
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Same But Different: Distance
Correlations Between Topological
Summaries

Katharine Turner and Gard Spreemann

Abstract Persistent homology allows us to create topological summaries of com-
plex data. In order to analyse these statistically, we need to choose a topological
summary and a relevant metric space in which this topological summary exists.
While different summaries may contain the same information (as they come from
the same persistence module), they can lead to different statistical conclusions
since they lie in different metric spaces. The best choice of metric will often be
application-specific. In this paper we discuss distance correlation, which is a non-
parametric tool for comparing data sets that can lie in completely different metric
spaces. In particular we calculate the distance correlation between different choices
of topological summaries. We compare some different topological summaries for a
variety of random models of underlying data via the distance correlation between
the samples. We also give examples of performing distance correlation between
topological summaries and other scalar measures of interest, such as a paired
random variable or a parameter of the random model used to generate the underlying
data. This article is meant to be expository in style, and will include the definitions
of standard statistical quantities in order to be accessible to non-statisticians.

1 Introduction

The development and application of statistical theory and methods within Topo-
logical Data Analysis (TDA) are still in their infancies. The main reason is that
distributions of topological summaries are harder to study than distributions of
real numbers, or of vectors. Complications arise both from the geometry of the
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spaces that the summaries lie in, and, more importantly, from the complete lack of
nice parameterised families which one could expect the distributions of topological
summaries to follow. Even when the distribution of filtrations of topological spaces
is parametric, topological summaries do not necessarily preserve distributions in
any meaningful way, so the resulting topological summaries will generally not be
in the form of a tractable exponential family. Effectively none of the methods from
basic statistics can be directly applied, at least not without significant caveats and
great care. We should instead turn to the world of non-parametric statistics, in which
the methods are usually distribution-free and can sometimes be applied to random
elements lying in quite general metric spaces.

A quintessential example of the challenges faced when improving the statistical
rigour in TDA is that of correlation. The Pearson correlation coefficient is the
correlation, the “r-value”, taught in every introductory course on statistics. However,
it is only defined for real-valued functions, and inference involving Pearson
correlation often assumes the variables follow normal distributions. It is very much a
method from parametric statistics. It measures the strength of the linear relationship
between normally distributed random variables. Here the parametric families are
the normal distributions with the mean and covariance as the parameters, and the
correlation coefficient is a straightforward function of the covariance matrix. The
Pearson correlation is very useful and appropriate if the distributions are normal.
However, that is a very big “if”; and one that will rarely hold for topological
summaries.

Thankfully for practitioners of TDA, correlation as a concept is not defined by
the formula of the Pearson correlation coefficient, but rather should be thought of
more philosophically as some quantity measuring the extent of interdependence
of random variables. This research is the result of a treasure hunt within the field
of non-parametric statistics for an appropriate notion of correlation applicable
to topological summaries. Our finding was distance correlation. Effectively it
considers the correlations between pairwise distances (appropriately recentred)
instead of the raw values. This makes it applicable to distributions over any pair
of metric spaces.

Distance correlation is a distribution-free method and exemplifies a non-
parametric approach. It can detect relationships between variables that are not
linear, and not even monotonic. If the variables are independent, then the distance
correlation is zero. In the other direction, if the metric spaces are of strong negative
type, then a distance correlation of zero implies the variables are independent. This
is true for any joint distribution. In contrast, we can only conclude from a Pearson
correlation coefficient of zero that the variables are independent if we assume that
the joint distribution is bivariate normal.

There are two take-home messages. The first is that distance correlation is
a useful tool in the statistical analysis of topological summaries. The current
exposition serves as an introduction to the potential of distance correlation for
statistical analysis in TDA. In Sect. 6 we outline some further opportunities that
distance correlation can offer. The second message is the simple observation that
the choice of topological summary statistic matters. A responsible topological
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data analyst should carefully consider which is the most appropriate topological
summary. A better choice is one where the pairwise distances better reflect the
differences of interest in the raw data. This will be domain- and application-specific.
There may be other considerations for the choice of topological summary in terms
of the statistical methods available, computational complexity and inference power,
but this is beyond the scope of this discussion.

2 Background Theory

We summarize the relevant basic concepts from TDA, the statistical analysis of
topological summaries, and of metric spaces of strong negative type.

2.1 Topological Summary Statistics

TDA is usually concerned with analysing complex and hard-to-visualize data. This
data may have complicated geometric or topological structure, and one creates a
family of topological spaces which can then be studied using algebraic-topological
methods in order to reveal information about said structure. We call a family of
spaces (Ka)a∈R such that Ka ⊂ Kb whenever a ≤ b a filtration. The inclusion
Ka ⊂ Kb for a ≤ b induces a homomorphism Hk(Ka) → Hk(Kb) between
the homology groups. The persistent homology group is the image of Hk(Ka)

in Hk(Kb). It encodes the k-cycles in Ka that are independent with respect to
boundaries in Kb, i.e.

Hk(a, b) := Zk(Ka)/(Bk(Kb) ∩ Zk(Ka)). (1)

where Zk and Bk are, respectively, the kernel and the image of the k’th boundary
map in the given homology theory.

Under very general assumptions on the filtration, and assuming one works with
coefficients in a field, persistent homology is fully described by two equivalent
representations: the barcode and the persistence diagram. The barcode is a collection
of intervals [b, d) each representing the first appearance (“birth”), b, and first
disappearance (“death”), d , of a persistent homology class. This collection of
intervals satisfies the condition that for every b ≤ d , the number of intervals
containing [b, d) is dim(Hk(b, d)). The corresponding persistence diagram is the
multi-set of points in the plane with birth filtrations as one coordinate and death
filtrations as the other.1

1We will consider only persistent homology with intervals with finite death.
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A summary statistic is a object that is used to summarise a set of observations,
in order to communicate the largest amount of information as simply as possible.
Simple examples in the case of real-valued distributions include the mean, the
variance, the median and the box plot. Many summary statistics in TDA are created
via persistent homology. We have a filtration of topological spaces built from our
observations, and by applying persistent homology we can summarise this filtration
in terms of the evolution of homology. Notably, one creates a summary from a single
complex object, whether it be a point cloud, a graph, etc.

There are now a wide array of topological summaries that can be computed
directly from a persistence diagram or barcode. Each of these is a different
expression of the persistent homology in the form of a topological summary statistic.
The practitioner wanting to perform statistical analysis using topological summaries
needs to choose which type of summary to represent their data with, as well as
the metric on the space where that summary takes values. For some of these
different topological summaries there are parameters to choose which play roles like
bandwidth, and some depend on a choices like norm order (for us, p ∈ {1, 2,∞})
akin to choosing p in the Lp distance for function spaces. In addition, there are
topological summaries not based on persistent homology, such as simplex count
functions.

In this paper we will consider a range of different topological summaries and
distances defined on them, namely:

• Persistence diagrams, with Wasserstein distances for p = 1, 2,∞
• Persistence landscapes [4], with Lp distances for p = 1, 2,∞
• Persistence scale space kernel [19] for two different bandwidths, with L2

distances
• Betti and Euler characteristic curves, with Lp distances for p = 1, 2
• Sliced Wasserstein kernel [6] distance

Note that all of these topological summaries can be computed from the persis-
tence diagram and that with the exception of the Betti and Euler curves, which
collapse information, they all are distance functions of the information provided in
the original persistence diagram. In this sense they are the “same”. It is merely the
metric space structure that is different.

It is worth noting that the above list is by no means an exhaustive list of
topological summaries. Other examples include the persistent homology rank
function [21], the accumulation persistence function [3], the persistence weighted
Gaussian kernel [12], the persistence Fisher kernel [13], using tangent vectors
from the mean of the square root framework with principal geodesic analysis [1],
using points in the persistence diagrams as roots of a complex polynomial for
concatenated-coefficient vector representations [9], or using distance matrices of
points in persistence diagrams for sorted-entry vector representations [7]. Notably,
most of these are functional summaries with an L2 metric or lie in a reproducing
kernel Hilbert space. Analogous arguments to those for the persistence scale space
discussed later could be used to show that many of them lie in metric spaces of
strong negative type as a corollary of being separable Hilbert spaces.
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2.2 Distance Correlation

A random element is a map from a probability space � to a set X. Its distribution
is the pushforward measure on X. Given two random elements X : � → X and
Y : �→ Y, one can consider the paired samples (X, Y ) : �→ X×Y. This has a
joint distribution on X×Y. The marginal distributions for this joint distribution are
the pushforwards via the projection maps onto each of the coordinates. An important
notion in statistics is whether two variables are independent. This occurs precisely
when the joint distribution is the product of the marginal distributions.

The most common measure of correlation between two random variables is the
Pearson correlation coefficient. It is defined as the covariance of the two variables
divided by the product of their standard deviations. For paired random variables
X,Y , the Pearson correlation coefficient is defined by

ρX,Y = E[(X −X)(Y − Y )]
σXσY

,

where X,Y are the means of X and Y , σX, σY their standard deviations, and E

denotes expectation. Note that if X and Y are independent, then E[(X − X)(Y −
Y )] = E[(X − X)]E[(Y − Y )] = 0. This implies that a non-zero correlation is
evidence of a lack of independence, and hence the variables are related somehow
(though possibly only indirectly).

The Pearson correlation is designed to analyse bivariate Gaussian distributions.
In this case, a correlation of 0 implies that the variables are independent. Fur-
thermore, Pearson correlation determines the ellipticity of the distribution. We can
calculate the Pearson correlation for more general distributions, but in that case it
detects linear relationships, and nonlinear relationships can be lost. Some examples
of the Pearson correlation coefficient are illustrated in Fig. 1. Any test using
the correlation coefficient (such as significance testing) depends on the bivariate
Gaussian assumption.

In parametric statistics we make some assumption about the parameters (defining
properties) of the population distribution(s) from which the data are drawn, while
in non-parametric statistics we do not make such assumptions. Given the lack of
parametric families of topological summary statistics, it makes sense to consider
non-parametric methods. One option when studying real-valued random variables
which are not normally distributed, or when the relationship between the variables
is not linear, is to use the rankings of the samples. It should also be mentioned
that such ranking correlations are designed to detect monotone relationships,
which—although more general than the linearity of Pearson’s correlation—is still
a significant restriction. There are multiple ways to measure the similarity of the
orderings of the data when ranked by each of the quantities. The most common
is the Spearman rank correlation method, which is the Pearson correlation of the
ranks. Alternatives are Kendall’s τ and Goodman and Kruskall’s γ , which measure
pairwise concordance. We say that a pair of samples is concordant if the cases are
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Fig. 1 These examples demonstrate how distance correlation (bottom) is much more useful than
Pearson correlation (top) when the joint distribution is not a multivariate Gaussian. The figures are
taken from [8, 17]

ranked in the same order for both variables. They are reversed if the orders differ.
We drop any pair of samples where the values in either of the variables is equal. We
then define

τ := Ns −Nd

Ns +Nd
and γ := Ns −Nd

n(n− 1)/2
,

whereNs is the number of concordant pairs, Nd is the number of reversed pairs, and
n is the total number of samples. The only difference between these rank correlations
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is the treatment of pairs with equal rank; τ penalises ties while γ does not. While
these methods are distribution free, they are not suitable to be directly applied to
topological summaries as the summaries do not lie in spaces with an order. We
cannot rank the samples, and thus we can not apply tests that use the ranks.

A new, non-parametric alternative is to work with the pairwise distances. Given
paired samples (X, Y ) = {(xi, yi) | i = 1, . . . , n}, where the xi and yi lie in metric
spaces X and Y, respectively, we can ask what the joint variability of the pairwise
distances is (i.e. how related dY(yi, yj ) is to dX(xi, xj )). The statistical tools of
distance covariance and distance correlation are apt for this purpose. The notion
was introduced in [23] for the case of samples lying in Euclidean space.

Distance correlation can be applied to distributions of samples lying in more
general metric spaces. It can detect relationships between variables that are not
linear, and not even monotonic, as can be seen in Fig. 1. There are strong theoretical
results about independence. If the variables are independent then the distance
correlation is zero. In the other direction, if the metrics spaces are separable and
of strong negative type then distance correlation of zero implies the variables are
independent. This is discussed in more detail in Sect. 2.3.

In contrast, we can only conclude from Pearson correlation coefficient being zero
that the variables are independent when we can assume that the joint distribution
is bivariate normal. This difference between Pearson correlation and distance
correlation is illustrated with real valued random variables in Fig. 1.

The formal definitions follow.

Definition 1 Let X be a random element taking values in a connected metric space
(X, dX) with distribution μ. For x ∈ X we call E[dX(x,X)] the expected distance
of X to x, and denote it by aμ(x). We say that X has finite first moment if for any
x ∈ X the expected distance to x is finite. In this case we set D(μ) := E[aμ(x)].
For X with finite first moment we define its doubly centred distance function as

dμ(x, x
′) := dX(x, x

′)− aμ(x)− aμ(x
′)+D(μ).

It is worth observing that dμ is not a distance function. Lyons showed [14] that
aμ(x) > D(μ)/2 for all x as long as the support of μ contains at least two points.
This implies dμ(x, x) < 0 for all x.

Definition 2 Let X and Y be metric spaces. Let θ = (X, Y ) be a probability
distribution over the product space X × Y with marginals μ and ν such that X
and Y both have finite first moment. We define the distance covariance of θ as

dcov(θ) =
∫
dμ(x, x)dν(y, y

′)dθ2((x, y), (x ′, y ′)).

The distance variance is a special case where have two identical copies as the
joint distributions θX = (X,X). Here we have

dvar(θX) =
∫
dμ(x, x

′)2dθ2((x, x ′)),
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which is always non-negative, and zero only in the case of a distribution supported
on a single point.

The distance correlation of θ = (X, Y ) is defined as

dcor(X, Y ) = dcov(X, Y )√
dvar(θX) dvar(θY )

.

Remark 1 There are some variations of notation with regard to whether to include
a square root in the definition of distance covariance and correlation. In the
introduction of distance correlation in [23], the authors restricted their analysis to
Euclidean spaces. Euclidean spaces are metric spaces of negative type, and such
spaces have the property that the distance correlation is always non-negative. They
could thus define the distance covariance as

√∫
dμ(x, x)dν(y, y ′)dθ2((x, y), (x ′, y ′)).

We will follow the notation of [14] and use dCov to denote the square root of dcov,
i.e.

dCov(X, Y ) = √
dcov(X, Y ) =

√∫
dμ(x, x)dν(y, y ′)dθ2((x, y), (x ′, y ′)).

We will also use dVar as the square root of the distance variation and dCor to denote
the square root of the distance correlation, i.e.

dCor(X, Y ) = dCov(X, Y )√
dVar(X) dVar(Y )

= √
dcor(X, Y ).

In the simulations and calculations involving topological summaries, it turns out that
all the values of the distance correlation are non-negative, even for those involving
spaces that are not of negative type.

Given a set of paired samples drawn from a joint distribution, we can compute
a sample distance covariance. This is an estimator of the distance covariance of a
joint distribution from which the paired samples was taken.

The estimation of the distance correlation of a joint distribution by sample
distance covariances is reasonable. In other words this means that if θn is the
sampled joint distribution from n i.i.d. samples of θ then dcov(θn) → dcov(θ)
as n → ∞ with probability 1. See Proposition 2.6 in [14]. This justifies the
approximation of the distance correlation via simulations. This is particularly
important when dealing with distributions for which there is no closed expressions,
which is usually the case when dealing with topological summaries.
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The following procedure computes the sample distance covariance between
paired samples (X, Y ) = {(xi, yi) | i = 1, . . . , n}, which we denote dcovn(X, Y ):

1. Compute the pairwise distance matrices a = (ai,j )i,j , b = (bi,j )i,j with ai,j =
dX(xi, xj ) and bi,j = dY(yi, yj ).

2. Compute the means of each row and column in a and b as well as the total means
of the matrices. Let āi and b̄i denote the row means and āj and b̄j the column
means. Let ā and b̄ denote the total matrix means.

3. Compute doubly centered matrices (Ak,l)k,l and (Bk,l)k,l with Ak,l = ak,l− āk−
āl + ā and Bk,l = bk,l − b̄k − b̄l + b̄

4. The sample distance covariance is

dcovn = 1

n2

n∑
k,l=1

Ak,lBk,l

Note that the matrices A and B have the property that all rows and columns sum
to zero.

2.3 Metric Spaces of Strong Negative Type

As straightforward application of the definition shows that the distance correlation
of a product measure is always zero. To see this, observe that when θ is a product of
θX and θY , then

dcov(θ) =
∫
dμ(x, x

′)dν(y, y ′)dθ2((x, y), (x ′, y ′))

=
∫
dμ(x, x

′)dθ2
X(x, x

′)
∫
dν(y, y

′)dθ2
Y (y, y

′).

By construction of dμ and dν , we have
∫
dμ(x, x

′)dθ2
X(x, x

′) = 0 =∫
dν(y, y

′)dθ2
Y (y, y

′). The converse of this statement holds under conditions on
the metric spaces the distributions are over (not the distributions themselves).

Definition 3 A metric space (X, d) has negative type if for all x1, . . . , xn ∈ X and
α1, . . . , αn ∈ R with

∑
i αi = 0

n∑
i,j=1

αiαjd(xi, xj ) ≤ 0. (2)

For spaces of negative type it is always true that the distance covariance is non-
negative [14]. We have further nice properties when the metric space is of strong
negative type.
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Definition 4 A metric space has strict negative type if it is a space of negative type
where equality in (2) implies that the αi are all zero. By extending to distributions of
infinite support we get the definition of strong negative type: A metric space (X, d)
has strong negative type if it has negative type and for all probability measures
μ1, μ2 we have

∫
d(x, x ′)d(μ1 − μ2)

2(x, x ′) ≤ 0.

Lyons [14] used the notion to characterize the spaces where one can test for
independence of random variables using distance correlation.

Theorem 1 (Lyons et al. [14], 2013) Suppose that X and Y are separable metric
spaces of strong negative type and that θ is a probability measure on X×Y whose
marginals have finite first moment. If dcov(θ) = 0, then θ is a product measure.

This means that given paired random variable (X, Y )with joint distribution θ , we
can test for independence by computing dcov(θ) and decide they are independent
if dcov(θ) = 0, and not independent if dcov(θ) > 0. The challenge is then how
to implement such a test given a sample distance correlation. We expect the sample
distance correlation to be non-zero even when the variables are independent.

There is a range of spaces that are proven to be of strong negative type, including
all separable Hilbert spaces.

Theorem 2 (Lyons et al. [14], 2013) Every separable Hilbert space is of strong
negative type. Moreover, if (X, d) has negative type, then (X, dr ) has strong negative
type when 0 < r < 1.

A list of metric spaces of negative type appears as Theorem 3.6 of [16]; in
particular, this includes all Lp spaces for 1 ≤ p ≤ 2. On the other hand, Rn with
the lp-metric is not of negative type whenever 3 < n <∞ and 2 < p <∞.

The distance correlation still contains useful information even when the spaces
are not of strong negative type. It is just more powerful as a test statistic when
the spaces are of strong negative type. This is analogous to how the Pearson
correlation coefficient still can be evidence of a relationship between two variables
even when the joint distribution is not Gaussian. Here the Pearson correlation
coefficient is detecting linear relationships. It is an open problem to characterise
which relationships are, and which are not, detected by the distance correlation in
spaces that are not of strong negative type.

Distance correlation lends itself to non-parametric methods. One possibility
is to combine it with permutation tests to construct p-values for independence.
Permutation tests construct a sampling distribution by resampling the observed data.
We can permute the observed data without replacement to create a null distribution
(in this case a distribution of distance correlation values under the assumption that
the random variables are independent). The use and exploration of permutation tests
in relation to distance correlation is beyond the scope of this paper. We direct the
interested reader to Sect. 6 for more details.
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3 A Veritable Zoo of Topological Summaries, Some of Which
Are of Strong Negative Type

Persistent homology has become a very important tool in TDA. Certainly there
are many choices that are made in any persistent homology analysis, with much
of the focus being on the filtration. In this paper we want to highlight another
choice, namely the metric space structure to put on the topological summary of
choice. Examples include persistence diagrams with bottleneck and Wasserstein
distances, persistence landscapes or rank function with an Lp distance, or one of the
many kernel representations. The choice of which topological summary we use to
represent persistent homology, and the choice of metric on this space of topological
summaries, will affect any statistical analysis and will influence whether or not the
summary captures the information that is of relevance to the application.

For spaces of strong negative type, distance correlation is known to have the
additional nice properties. As a rule, functional spaces with an L2 metric and
those lying in a reproducing kernel Hilbert space are of strongly negative type.
This implies that the Euler characteristic and Betti curves with the L2 metric are
of strong negative type, and that the space of persistence scale shape kernels is
of strong negative type. In this section we will characterise which of the spaces
of persistence landscapes are of strong negative type and show that the space of
persistence diagrams is never of strong negative type. The main results are as
follows.

Theorem (Theorem 3) The space of persistence diagrams is not of negative type
under the bottleneck metric or under any of the Wasserstein metrics. ��
Theorem (Theorem 4)

(a) The space of persistence landscapes with theL2 norm is of strong negative type.
(b) The space of persistence landscapes with the Lp norm is of negative type when

1 ≤ p ≤ 2
(c) The space of persistence landscapes with the L1 norm is not of strong negative

type, even when restricting to persistence landscapes that arise from persistence
diagrams.

(d) The space of persistence landscapes with the L∞ norm is not of negative type,
even when restricting to persistence landscapes that arise from persistence
diagrams.

It is an open question as to whether the sliced Wasserstein metric is of strong
negative type; if it is separable then it will be.
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3.1 Betti and Euler Characteristic Curves

Some of the first topological summaries often considered for parameterised families
of topological spaces ({Ka}) are the Betti and the Euler characteristic curves, which
we denote by βk : R → N0 and χ : R → Z. These are integer valued functions
with βk(a) = dimHk(Ka) and χ(a) = χ(Ka). From the point of view of barcodes,
one thinks of βk(a) as the number of bars that contain the point a. The Euler curve
is then the alternating sum of the Betti curves, χ(a) = ∑∞

k=0(−1)kβk(a), as one
would expect.

Clearly the Betti and Euler curves contain less information than the persistence
diagrams; in particular, the Betti curves can be thought of as encoding point-wise
homological information without considering the induced maps Hk(a)→ Hk(b).

Since βk andχ are functions, we can consider functional distances between them.
In this paper we consider both L1 and L2 distances. Since L2(R) is a separable
Hilbert space, it is of strong negative type. In comparisonL1(R) is of negative type,
but not of strict negative type (see [14]). For an explicit counterexample, the reader
can modify the one used for the p = 1 case in Sect. 3.3.

3.2 Persistence Diagrams

Persistence diagrams are arguably the most common way of representing persistent
homology. A persistence diagrams is a multiset of points above the diagonal in the
real plane, with lines at ±∞ in the second coordinate.

In what follows, let R2+ = {(x, y) ∈ R
2 | x < y} be the subset of the plane

above the diagonal � = {(x, x) | x ∈ R}, and let L±∞ = {(x,±∞) | x ∈ R}
denote horizontal lines at infinity.

Definition 5 A persistence diagram X is a multiset in L∞∪L−∞ ∪R
2+ ∪� such

that

• The number of elements in X|L∞ and X|L−∞ are finite
•

∑
(xi ,yi)∈X∩R2+(yi − xi) <∞

• X contains countably infinite copies of �.

For our purposes, it suffices to consider persistence diagrams with only finitely
many off-diagonal points.

Let D denote the set of all persistence diagrams. We will consider a family of
metrics which are analogous to the p-Wasserstein distances on the set of probability
measures, and to the Lp distances on the set of functions on a discrete set. R2+
inherits natural Lp distances from R

2. For p ∈ [1,∞) we have ‖(a1, b1) −
(a2, b2)‖pp = |a1 − a2|p + |b1 − b2|p and ‖(a1, b1) − (a2, b2)‖∞ = max{|a1 −
a2|, |b1 − b2|}.
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With a slight abuse of notation we write ‖(a, b)−�‖p to denote the shortest Lp

distance to � from a point (a, b) in a persistence diagram. Thus

‖(a, b)−�‖p = inf
t∈R ‖(a, b)− (t, t)‖p = 2

1
p−1|b − a|

for p <∞, and ‖(a, b)−�‖∞ = inft∈R ‖(a, b)−(t, t)‖∞ = |y−x|/2. Both L−∞
and L∞ inherit natural Lp distances from the Lp metric on R, i.e. ‖(−∞, b1) −
(−∞, b2)‖p = |b1 − b2| and ‖(a1,∞)− (a2,∞)‖p = |a1 − a2|.

Given persistence diagrams X and Y , we can consider all the bijections between
them. This set is non-empty due to the presence of� in the diagrams. Each bijection
can be thought of as providing a transport plan from X to Y . One defines a family
of metrics in terms of the cost of the most efficient transport plan.

For each p ∈ [1,∞), define

dp(X, Y ) =
⎛
⎝ inf
φ:X→Y
bijection

∑
x∈X

‖x − φ(x)‖pp
⎞
⎠

1/p

and

d∞(X, Y ) = inf
φ:X→Y
bijection

sup
x∈X

‖x − φ(x)‖∞.

These distances may be infinite. Indeed, if X and Y contain a different number of
points in L∞, then dp(X, Y ) = ∞ for all p.

In theory, for every pair p, q ∈ [1,∞] one can construct a distance function of
the form

inf
φ:X→Y

(∑
x∈X

‖x − φ(x)‖pq
)1/p

with p and q potentially different. Some of the computational topology literature
uses a family of metrics dWp where p varies but q = ∞ is fixed. The families
{dp} and {dWp } share many properties. The metrics dp and dWp are bi-Lipschitz
equivalent, as for any x, y ∈ R

2 we have ‖x − y‖∞ ≤ ‖x − y‖p ≤ 2‖x −
y‖∞, implying dWp(X, Y ) ≤ dp(X, Y ) ≤ 2dWp(X, Y ). Any stability results (i.e.
results pertaining to the change in persistence diagrams due to perturbations of the
underlying filtration) for {dp} or {dWp } extend (with minor changes in the constants
involved) to stability results for the other.

We feel that the choice of q = p is cleaner in theory and in practice. The
coordinates of the points within a persistence diagram have particular meanings; one
is the birth time and one is the death time. They are often locally independent (even
though not globally so). For example, if we have generated our persistence diagram
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from the distance function to a point cloud, then each persistence class has its birth
and death time locally determined by the location of two pairs of points, which are
often distinct. Whenever these pairs are distinct, moving any of these four points will
change either the birth or the death but not both. The distinctness of the treatment of
birth and death times as separate qualities may seem more philosophically pleasing
to the reader in the setting of barcodes.

Unfortunately, the geometry of the space of persistence diagrams is complicated
and statistical methods not easy to apply. For example, there are challenges even
in computing the mean or median of finite samples (see [25, 26]). Given this it
is perhaps not surprising that the space of persistence diagrams is not of negative
type (let alone of strong negative type) under the bottleneck or indeed any of the
Wasserstein metrics. Although this has been indirectly mentioned or suggested
before (notably in [6, 19]), we include here explicit counterexamples.

Theorem 3 The space of persistence diagrams is not of negative type under the
bottleneck or any of the Wasserstein metrics. ��
Proof We will construct two different counterexamples; one for small p and one
for large p. Note that the bottleneck metric is the Wasserstein metric with p = ∞.

For small p, consider the two separate unit squares formed by the points
a1, b1, c1, d1 and a2, b2, c2, d2 in Fig. 2. Each persistence diagram will be a union
of a pair of corners sharing an edge in one of the squares, together with a pair of
corners diagonally opposite on the other square. We then choose the weights (the
α’s in inequality (2) ) to be 1 if the off-diagonal points are diagonally opposite in
the rightmost square, and −1 if they are diagonally opposite in the leftmost square.
A list of the diagrams is in Table 1.

Fig. 2 The off-diagonal
points used in the persistence
diagrams in the
counterexample for p ≤ 2.4

c1 d1

a1 b 1
e1

c2 d2

a2 b 2
e2
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Table 1 Counterexample
showing that the space of
persistence diagrams with Wp

is not of negative when
p < ln(2)/ ln(4/3)

Diagram Off-diagonal points Weight

x1 {a1, b1, a2, d2} 1

x2 {a1, c1, a2, d2} 1

x3 {b1, d1, a2, d2} 1

x4 {c1, d1, a2, d2} 1

x5 {a1, b1, b2, c2} 1

x6 {a1, c1, b2, c2} 1

x7 {b1, d1, b2, c2} 1

x8 {c1, d1, b2, c2} 1

y1 {a1, d1, a2, b2} −1

y2 {a1, d1, a2, c2} −1

y3 {a1, d1, b2, d2} −1

y4 {a1, d1, c2, d2} −1

y5 {b1, c1, a2, b2} −1

y6 {b1, c1, a2, c2} −1

y7 {b1, c1, b2, d2} −1

y8 {b1, c1, c2, d2} −1

The off-diagonal points come from Fig. 2.
The weight column refer to the α’s in
inequality (2)

We have the following distance matrix for the within-group distances, i.e. the
symmetric matrix with entries (dp(xi, xj ))i,j = (dp(yi, yj ))i,j :

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 21/p 21/p 21/p 21/p 41/p 41/p 41/p

21/p 0 21/p 21/p 41/p 21/p 41/p 41/p

21/p 21/p 0 21/p 41/p 41/p 21/p 41/p

21/p 21/p 21/p 0 41/p 41/p 41/p 21/p

21/p 41/p 41/p 41/p 0 21/p 21/p 21/p

41/p 21/p 41/p 41/p 21/p 0 21/p 21/p

41/p 41/p 21/p 41/p 21/p 21/p 0 21/p

41/p 41/p 41/p 21/p 21/p 21/p 21/p 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This implies that

8∑
i,j=1

dp(xi, xj ) =
8∑

i,j=1

dp(yi, yj ) = 32 · 21/p + 24 · 41/p,

and similarly

8∑
i,j=1

dp(xi, yj ) =
8∑

i,j=1

dp(yi, xj ) = 64 · 21/p.
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The sum of interest, using the weighting in Table 1, is

8∑
i,j=1

dp(xi, xj )+
8∑

i,j=1

dp(yi, yj )−
8∑

i,j=1

dp(xi, yj )−
8∑

i,j=1

dp(yi, xj )

= 64 · 21/p + 48 · 41/p − 128 · 21/p

= 48 · 41/p − 64 · 21/p.

Now 48 · 41/p − 64 · 21/p > 0 exactly when p < ln(2)/ ln(4/3). This thus shows
that the metric space of persistence diagrams with Wp is not of negative type when
p < ln(2)/ ln(4/3).

We will now construct a counterexample for space of persistence diagrams under
p-Wasserstein distance with p ≥ 2.4. We will construct our counterexample with
persistence diagrams containing points listed in Fig. 3. This has separate squares
with unit edge length that are sufficiently far apart. We will have two sets of
persistence diagrams, X and Y , and we will be giving a weight of 1 to all the
persistence diagrams in X and a weight of −1 to all the persistence diagrams in
Y .

c1 d1

a1 b 1
e1

c2 d2

a2 b 2
e2

C1 D1

A1 B1
E1

C2 D2

A2 B2
E2

Fig. 3 The off-diagonal points used in the persistence diagrams in the counterexamples for p ≥
2.4
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Table 2 Distances dp(x, x′) for x ∈ X and x′ = {A1, A2, e1, e2}
Same Share an Diag. opp. Example No. of such

corner edge corners diagram x ∈ X dp(x, x
′)

2 0 0 {A1, A2, e1, e2} 1 0

1 1 0 {A1, B2, e1, e2} 4 1

1 0 1 {A1,D2, e1, e2} 2 21/p

0 2 0 {B1, C2, e1, e2} 4 21/p

0 1 1 {B1,D2, e1, e2} 4 31/p

0 0 2 {D1,D2, e1, e2} 1 41/p

The off-diagonal points are those shown in Fig. 2

Each persistence diagram in X will have four off-diagonal points; one corner
point from each of the squares labelled with upper case letters, and e1 and e2. An
example is {A1, B2, e1, e2}. There are a total of 16 such persistence diagrams.

Each persistence diagram in Y will have four off-diagonal points; one corner
point from each of the squares labelled with lower case letters, and E1 and E2. An
example is {c1, c2, E1, E2}.

For every pair of persistence diagrams (x, y) ∈ X × Y we have dp(x, y) =
81/p/2. This implies that the total between-group pairwise distance is 32·16·81/p/2.

To compute the within group distances we first observe that the symmetry of the
counterexample ensures that the sum of distance

∑
x∈X dp(x, x ′) is the same for all

x ′ ∈ X and that this is also the same as
∑

y∈Y dp(y, y ′) for all y ′ ∈ Y . This means
we can compute for a fixed x ′ ∈ X. We can split the remaining x ∈ X into cases
depending on how many of the off-diagonal points in the persistence diagrams are
the same as that in x ′, are on the same edge of the corresponding square as that in
x ′, or are diagonally opposite corners of the corresponding square. We describe this
distribution in Table 2, giving example persistence diagrams.

Using this table, we calculate
∑

x∈X dp(x, x ′) = 4+ 6 · 21/p + 4 · 31/p + 41/p.
To prove this is a counterexample we need to show that

32 · (4+ 6 · 21/p + 4 · 31/p + 41/p)− 32 · 16 · 81/p/2 > 0.

This is equivalent to 4 + 6 · 21/p + 4 · 31/p + 41/p > 8 and by diving through by
81/p this is equivalent to the condition that

4(1/8)1/p + 6(1/4)1/p + 4(3/8)1/p + (1/2)1/p > 8. (1)

Now λ1/p is an increasing function in p, when λ < 1 and p > 1. Thus for all
p ≥ 2.4 we know (1/8)1/p ≥ (1/8)1/2.4 > 0.42, (1/4)1/p ≥ (1/4)1/2.4 > 0.56,
(3/8)1/p ≥ (3/8)1/2.4 > 0.66 and (1/2)1/p ≥ (1/2)1/2.4 > 0.74. Together these
imply that

4(1/8)1/p+6(1/4)1/p+4(3/8)1/p+ (1/2)1/p > 4 ·0.42+6 ·0.56+4 ·0.66+0.74 = 8.42

and (1) holds for all p ≥ 2.4. ��
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When performing computations with Wasserstein distances, we used the approx-
imate Wasserstein distance algorithm implemented in Hera [11]. The algorithm
computes the distances up to arbitrarily chosen relative errors, that we set very low.

3.3 Persistence Landscapes

Recall that H∗(a, b) := Z∗(Ka)/(B∗(Kb) ∩ Z∗(Ka)) is the vector space of non-
trivial homology classes inH∗(Ka) that are still distinct when thought of as elements
of H∗(Kb) under the induced map H∗(Ka) → H∗(Kb). For a ≤ b let βa,b =
dim(H∗(a, b)). We can think of β•,• as a persistent version of the ordinary Betti
numbers. Indeed, βa,a is the Betti number of Ka . Notably, persistent Betti numbers
are non-negative integer valued functions. Furthermore, when a ≤ b ≤ c ≤ d , then
βa,d ≤ βc,d . We can construct the persistence landscape as a sequence of functions
which together completely describe the level sets of these functions.

Definition 6 The persistence landscape of some filtration is a function λ : N×R→
R, where R = [−∞,∞] denotes the extended real numbers, defined by

λk(t) = sup{m ≥ 0 | βt−m,t+m ≥ k}.

We alternatively think of the landscapes as a sequence of functions λk : R → R

with λk(t) = λ(k, t).

Since persistence landscapes are real-valued functions, we can consider the space
of these functions with the Lp norm

‖λ‖pp =
∞∑
k=1

‖λk‖pp

for 1 ≤ p ≤ ∞.

Theorem 4 The following are true for the space of persistence landscapes under
different Lp norms:

1. p = 2: It is of strong negative type.
2. 1 ≤ p ≤ 2: It is of negative type.
3. p = 1: It is not of strong negative type, even when restricting to persistence

landscapes that arise from persistence diagrams.
4. p = ∞: It is not of negative type, even when restricting to persistence landscapes

that arise from persistence diagrams.



Same But Different: Distance Correlations Between Topological Summaries 477

Proof

1. The space of persistence landscapes with the L2 norm is a separable Hilbert
space. Applying Theorem 2 shows it is of strong negative type.

2. As discussed in [4], these function spaces are Lp function spaces. From
Theorem 3.6 in [16] we know that these are of negative type when 1 ≤ p ≤ 2.

3. The space of persistence landscapes with L1 norm is of negative type but not of
strong negative type. We can construct a counterexample using only distributions
of landscapes that arise from persistent homology. To this end it is sufficient to
provide appropriate barcodes, each with finitely many bars, as every such barcode
can be realised. Let

X1 = I[0,1) ⊕ I[3,4), Y1 = I[0,1) ⊕ I[1,2),

X2 = I[1,2) ⊕ I[2,3), Y2 = I[2,3)) ⊕ I[3,4).

Since all the bars in each barcode are disjoint, only the first persistence landscape
in non-zero.

Let PL(Z) denote the persistence landscape of Z, and d1 the metric induced
by the L1 norm.

We have d1(PL(X1),PL(X2)) = 2 = d1(PL(Y1),PL(Y2)) and d1(PL(Xi),

PL(Yj )) = 1 for all i, j . If we weight X1 and X2 by 1, and the Y1 and Y2 by −1,
then the weighted sum from inequality (2) is 0, which means that the space of
persistence landscapes with L1 norm is of non-strict negative type.

4. For p = ∞ the space of persistence landscapes is not of negative type. We can
construct a counterexample using only distributions of landscapes that arise from
persistent homology. Again we do to this via barcodes. Let

X1 = I[0,2) ⊕ I[6.5,7.5) ⊕ I[8.5,9.5) ⊕ I[10.5,11.5)

Y1 = I[0.5,1.5) ⊕ I[2.5,3.5) ⊕ I[4.5,5.5) ⊕ I[6,8)
X2 = I[2,4) ⊕ I[6.5,7.5) ⊕ I[8.5,9.5) ⊕ I[10.5,11.5)

Y2 = I[0.5,1.5) ⊕ I[2.5,3.5) ⊕ I[4.5,5.5) ⊕ I[8,10)

X3 = I[4,6) ⊕ I[6.5,7.5) ⊕ I[8.5,9.5) ⊕ I[10.5,11.5)

Y3 = I[0.5,1.5) ⊕ I[2.5,3.5) ⊕ I[4.5,5.5) ⊕ I[10,12).

Since all the bars in each barcode are disjoint, only the first persistence landscape
is non-zero.

It is straightforward to compute the L∞ distances between the corresponding
persistence landscapes. Let PL(Z) denote the persistence landscape of Z, and
d∞ the metric induced by the L∞ norm. We see that d∞(PL(Xi),PL(Xj )) =
1 = d∞(PL(Yi),PL(Yj )) when i �= j and d∞(PL(Xi),PL(Yj )) = 0.5 for all
i, j . If we weight each of the Xi with 1 and the Yi by −1 we get the desired
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counterexample showing that the space of persistence landscapes with the L∞
distance is not of negative type. ��
Persistence landscapes computations were performed using the persistence

landscapes toolkit [5].

3.4 Persistence Scale Space Kernel

The persistence scale space kernel is a modification of scale space theory to a
persistence diagram setting. Extra care is needed to consider the role of the diagonal.
The idea is to consider the heat kernel with an initial heat energy of Dirac masses at
each of the points in the persistence diagram with the boundary condition that it is
zero on the diagonal. The amount of time over which the heat diffusion takes place
is a parameter. More formally, it is defined in [19] as follows.

Definition 7 Let δp denote a Dirac delta centered at the point p. For a given finite
persistence diagram D with only finite lifetimes,2 we now consider the solution
u : R2+ × R≥0 → R of the partial differential equation

�xu = ∂tu in R
2+ ×R>0,

u = 0 on ∂R2+ × R≥0 = �× R≥0,

u =
∑
p∈D

δp on R
2+ × {0}.

The solution u(•, t) lies in L2(R
2+) whenever D has finitely many points. It

has a nice closed expression using the observation that it is the restriction of the
solution of a PDE with an initial condition where below the diagonal we start with
the negative of the Dirac masses over the reflection of the points in the diagram
above the diagonal. For x ∈ R

2+ and t > 0 we have

u(x, t) = 1

4πt

∑
(a,b)∈D

(
exp

(−‖x − (a, b)‖2

4t

)
− exp

(−‖x − (b, a)‖2

4t

))
.

The metric for the space of persistence scale shape kernels is that of L2(R2+).
The closed form for the persistence scale space kernel allows a closed form of the
pairwise distances in terms of the points in the original diagrams. In particular for

2When analyzing real data, one often cones off the space at some more or less meaningful
maximum filtration so as to avoid infinite intervals.
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diagrams F and G and fixed σ > 0, this distance can be written in terms of a kernel
kσ (F,G), where

kσ (F,G) = 1

8πσ

∑
(a,b)∈F

∑
(c,d)∈G

(
exp

(−‖(a, b) − (c, d)‖2

8σ

)
− exp

(‖(a, b) − (d, c)‖2

8σ

))

and the corresponding distance function is

d(F,G) = √
kσ (F, F ) + kσ (G,G)− 2kσ (F,G).

Since L2(R2+) is a separable Hilbert space, this metric is of strong negative type.

3.5 Sliced Wasserstein Kernel Distance

The sliced Wasserstein distance between persistence diagrams, introduced in [6],
works with projections onto lines through the origin. For each choice of line,
one intuitively computes the Wasserstein distance between the two projections
(a computationally much easier problem, being a matching of points in one
dimension), and then integrates the result over all choices of lines. More formally
the definition in [6] is as follows.

Definition 8 Given θ ∈ R
2 with ‖θ‖2 = 1, Let L(θ) denote the line {λθ :

λ ∈ R}, and let πθ : R
2 → L(θ) be the orthogonal projection onto L(θ).

Let D1 and D2 be two persistence diagrams, and let μθi =
∑

p∈Di
δπθ (p) and

μθiΔ =
∑

p∈Di
δπθ◦π( 1√

2
, 1√

2
)
(p) for i = 1, 2. Then the sliced Wasserstein distance

is defined as

SW(D1,D2) = 1

2π

∫
S1

W(μθ1 + μθ2Δ,μ
θ
2 + μθ1Δ)dθ

where the 1-Wasserstein distance W(μ, ν) is defined as infP∈$(μ,ν)
∫ ∫

R×R |x −
y|P(dx, dy) where $(μ, ν) is the set of measures on R

2 with marginals μ and ν.

It was shown in [6] that the sliced Wasserstein distance is conditionally sem-
inegative definite on the space of finite and bounded persistence diagrams. This is
equivalent to the condition of being of negative type. It is an open question as to
whether it is of strong negative type.

In [6], the authors construct a kernel with bandwidth parameter σ > 0 in the
standard way (see [27]), namely

kσ (D1,D2) = exp

(− SW(D1,D2)

2σ 2

)
.
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It being a kernel in the sense that

kσ (D1,D2) = 〈φ(D1), φ(D2)〉H
for some function φ into a Hilbert space H, one obtains a distance function dkSW
with

dkSW(D1,D2)
2 = kσ (D1,D1)+ kσ (D2)− 2kσ (D1,D2).

If this reproducing kernel Hilbert space H is separable, then the space of persistence
diagrams with dkSW will be of strong negative type. This separability property is an
open question.

In our computations, we always projected onto ten equidistributed lines.

4 Distance Correlation Between Different Topological
Summaries

The differences between the metrics used can dramatically affect the statistical
analysis of a data set. It is important to choose a summary such that the domain-
specific differences in the input data that are of interest are reflected in the distances
between their corresponding topological summaries.

The key idea in this section is to take the same object, for example generated
through a random process, and then to record different topological summaries of it.
As we have seen, this gives us different metric space structures on the data. We then
compare the pairwise distances using distance correlation.

We consider a variety of more or less standard or well known families of random
cell complexes and their filtrations, as well as some non-random data.

4.1 Erdős–Rényi

We constructed the weighted version of 100-vertex Erdős–Rényi random graphs,
which is to say we endow the complete graph on 100 vertices with uniform
random independent edge weights. The flag complexes of each of these are then the
filtrations we consider. We generated 100 such filtrations to sample the distribution
of degree-1 persistent homology of such complexes. An example persistence
diagram is shown in Fig. 4. We then computed the distance correlation between
the different topological summaries, with the result shown in Fig. 4.

The persistent homology computations were performed using Ripser [2].
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Fig. 4 A typical degree-1 persistence diagram (left) and the sampled square root of distance
correlation (dCor) between different topological summaries for Erdős–Rényi complexes (right)

4.2 Directed Erdős–Rényi

A directed analog of the flag complex of undirected graphs was introduced in [18].
To construct such flag complexes, we generated 100 instances of the independently
random uniform weights on the complete directed graph on 100 vertices (taking
“complete directed graph” to mean having opposing edges between every pair
of vertices), and computed the corresponding filtrations and degree-1 persistent
homology of directed flag complexes using Flagser [15]. An example persistence
diagram is shown in Fig. 5. We then computed the distance correlation between the
different topological summaries, with the result shown in Fig. 5.

4.3 Geometric Random Complexes for Points Sampled on a
Torus

For this dataset, we randomly sampled 500 points independently from a flat torus
in R

4 by sampling [0, 2π)2 uniformly and considering the image of (s, t) �→
(cos s, sin s, cos t, sin t). We then built the alpha complex over this set of points.
This was performed 100 times to construct samples of the distribution of persistent
homology in degree 1 for such complexes. An example persistence diagram is
shown in Fig. 6. We then computed the distance correlation between the different
topological summaries, which is shown in Fig. 6.
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Fig. 5 A typical degree-1 persistence diagram (left) and the sampled square root of distance
correlation (dCor) between different topological summaries for directed Erdős–Rényi complexes
(right)

Fig. 6 A typical degree-1 persistence diagram (left) and the sampled square root of distance
correlation (dCor) between different topological summaries (right) for alpha complexes built from
random points clouds sampled from a flat torus lying in R

4



Same But Different: Distance Correlations Between Topological Summaries 483

The computations of alpha complexes and persistent homology for this dataset
were done using GUDHI [24].

4.4 Geometric Random Complexes for Points Sampled from a
Unit Cube

For this dataset, we uniformly randomly sampled 500 points independently from
the unit cube [0, 1]3. We then constructed the alpha complex over this set of points.
This was performed 100 times to sample the distribution of persistent homology for
such complexes. An example persistence diagram is in Fig. 7. We then computed the
distance correlation between the different topological summaries which is shown in
Fig. 7.

For this particular dataset, we also computed a very non-topological summary
based on the same underlying complex, namely the counts of 1-simplices (#1 in
Fig. 7). These were considered as “count curves” in the obvious way, and endowed
with theL1 andL2 metrics. They, unsurprisingly, correlate little with the topological
summaries.

The computations of the alpha complexes and persistent homology for this
dataset were done using GUDHI [24].

Fig. 7 A typical degree-1 persistence diagram and the sampled square root of distance correlation
(dCor) between different topological summaries for alpha complexes built from random points
clouds sampled from the unit cube
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4.5 Observations About the Distance Correlation in These
Simulations

The first general comment is that the sampled distance correlations for the topo-
logical summaries split these different simulations into two groups; one group
contains the directed and undirected Erdős–Rényi filtrations, and the other group of
simulations contain filtrations built from random point clouds either on the flat torus
on is the unit cube. This is not too surprising as the both the ER filtrations represent
completely random types of complexes without correlations on the filtrations values.
In contrast, for filtrations built on point clouds there are geometric constraints which
imply correlations between the filtration values on neighbouring simplices. This in
turn affects the observed topology.

For both the persistence diagrams and the persistence landscapes sampled, the
distance correlations were computed for p = 1, 2 and ∞. In all of the simulations,
the metrics from p = 1 and p = 2 of the same topological summary generally have
high distance correlation, but they are quite different from the p = ∞ version of that
same topological summary. This is particularly pronounced in the ER and directed
ER filtrations. In fact here the distance correlation between diagrams and landscapes
with p = 1 and p = 2 is higher than the distance correlation between bottleneck
distances and p-Wasserstein distances for p = 1 or p = 2, and similarly for
landscapes. One explanation is that in the completely random scenario we can have
more extremal persistent homology classes and these extremal persistent homology
classes dominate the p = ∞ metrics more that in the p = 1 and p = 2 metrics.

Another observation is that overall we see high correlation between the Sliced
Wasserstein distances and the Wasserstein (p = 1 or p = 2) distances. Perhaps not
surprising since both are geometrically measuring similar quantities with a pairing
process of points involved in both distances (though the pairing potentially varying
between slices in the Sliced Wasserstein).

5 Distance Correlation to Another Parameter

Instead of considering the correlation between two distances of topological sum-
maries, one may want to consider the correlation between a metric on topological
summaries and some real number relating to the underlying model. The real number
may for example parameterise the underlying model, or it may be some function of
the model that has domain-specific meaning. We will here consider only parameters
and functions with codomain in (intervals in) R, and consider that space as a metric
space equipped with the absolute value distance.

For brevity, we will from now on refer also to the value of certain domain-
specific functions on the underlying model as “parameters”, even though they
strictly speaking are not (see for example the case of elevation data below, where
terrain smoothness will incorrectly be referred to as a parameter of the landscape).
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We will also use the letter P to denote the parameter space as a metric space with
the absolute value distance.

We can use distance correlation to quantify how well the distances between
some topological summaries relate to the differences in the parameter. The varying
performances of the different topological summaries in correlating to the parameter
highlights how the choice of topological summary has statistical significance.

5.1 Parameterised Interpolation Between Erdős–Rényi and
Geometric Complexes

Our parameter space is now [0, 1]. Each sampled filtered complex with parameter
γ ∈ [0, 1] is built by sampling 100 points X = {x1, . . . , x100} i.i.d. uniformly
from the unit cube [0, 1]3, and sampling the entries of a symmetric matrix E ∈
R

100×100 i.i.d. uniformly from [0, 1]. We endow a complete graph on 100 vertices
with weights wi,j for each pair 1 ≤ i < j ≤ 100 by letting wi,j = Ei,j with
probability γ and wi,j = ‖xi − xj‖ with probability 1 − γ . The filtered complex
generated is then the flag complex of this graph. Observe that this is a (Vietoris–
Rips) version of the random geometric complex considered before when γ = 0,
and the Erdős–Rényi complex when γ = 1.

A correlation between the parameter space and a given metric on a topological
summary is then a measure of how well that metric detects the parameter.

For this experiment, we let γ take the 100 equally spaced values from [0, 1],
including the endpoints. These distance correlations are displayed in Table 3. The
higher the distance correlation, the better the topological summary reflects the effect
of the parameter γ . We see that generally the function distances between Betti
curves, Wasserstein distances and bottleneck distances between and the function
distances between persistence landscapes had a higher correlation, all with a dis-

Table 3 (Square roots of)
distance correlation between
topological summaries and
the parameter γ

Topological summary dCov(•,P)
Persistence scale space kernel, σ = 0.001 0.96

1-Wasserstein 0.95

β1 with L1 0.95

β1 with L2 0.95

2-Wasserstein 0.94

Persistence landscape with L∞ 0.94

Persistence scale space kernel, σ = 0.01 0.93

Persistence landscape with L2 0.92

Persistence landscape with L1 0.92

Sliced Wasserstein kernel, σ = 1 0.66

Persistence scale space kernel, σ = 1 0.60

Sliced Wasserstein kernel, σ = 0.01 0.40
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Fig. 8 The digital elevation model near Trondheim, Norway. Each filtration we construct is based
on one of 64 1000 × 1000 sub-blocks of this DEM

tance correlation greater than 0.9. This illustrates that these topological summaries
would be good choices if we wish to do learning problems or statistical analysis with
regards to this parametrised random model, such as parameter estimation. We also
see the importance of the choice of bandwidth with dramatic effect on the distance
correlation of the persistence scale space kernel and the Sliced Wasserstein kernel.

The persistent homology computations were performed using Ripser [2].

5.2 Digital Elevation Models and Terrain Ruggedness

As a simple example of “real world” data, we considered digital elevation model
(DEM) data for a 50 km by 50 km patch around the city of Trondheim, Norway.3

The DEM data set maps elevation data with a horizontal resolution of 10 m × 10 m
and a vertical resolution of about 1 m, and as such provides a terrain height map.
Figure 8 shows the DEM our data was based on.

3The data was provided by the Norwegian Mapping Authority [10] under a CC-BY-4.0 license.
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The data can, at the aforementioned horizontal resolution, be considered as a
5000× 5000 integer-valued matrix Z, where each entry is interpreted as the height
above a reference elevation in the vertical resolution unit. Each filtered complex we
consider comes from 1000× 1000 block in Z. The blocks overlap up to 50%, and
we keep a total of 64 blocks. Each block is then considered as a two-dimensional
cubical complex with the elevation data as the height filtration on the 2-cells.

The terrain ruggedness indicator (TRI) is an extremely simple measure of local
terrain ruggedness that is widely employed in GIS and topography [20]. The TRI
itself is a real-valued function defined on each map point/pixel, and a high value
indicates a locally more rugged terrain. We simplify the measure even further by
averaging the TRI for the whole map chunk considered, thus assigning a single real
number to each map chunk. It is this number that will play the role of one parameter
assigned to each of the 64 map chunks considered, which we will call TRI. The
results are shown in Table 4.

Another natural metric that can be defined on the raw data (the 1000 × 1000
chunks) itself is the actual geodesic distance between the centers of the chunks. We
also computed distance correlations between the metrics on topological summaries
and this geodesic distance, although one must remember that it is perhaps not
reasonable to expect a high correlation here; indeed, topographies with topologically
highly interesting height functions may exist on a coastline, and thus be very close
topologically trivial terrain. The results in Table 4 are therefore quite surprising.

The cubical complex persistent homology calculations were doing using
GUDHI [24].

Table 4 (Square roots of) distance correlation between elevation topological summaries and the
terrain ruggedness index and the geodesic distance

Summary (topological, apart from first two) dCor(•,TRI) dCor(•, dgeodesic)

TRI 1 0.72

dgeodesic 0.72 1

Bottleneck 0.62 0.52

2-Wasserstein 0.92 0.74

Persistence scale space kernel, σ = 1 0.74 0.64

Persistence scale space kernel, σ = 10 0.75 0.63

Persistence landscape with L1 0.73 0.61

Persistence landscape with L2 0.72 0.59

Persistence landscape with L∞ 0.62 0.52

Sliced Wasserstein kernel, σ = 1 0.44 0.55

Sliced Wasserstein kernel, σ = 0.01 0.44 0.55

β1 with L1 0.75 0.65

β1 with L2 0.77 0.63
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6 Future Directions

Non-parametric statistics is a fruitful area for ideas and inspiration for methods that
can be applied in conjunction with TDA. There are already a variety of options
that only use pairwise distances, including null-hypothesis testing, clustering,
classification, and parameter estimation. In all these cases, we would expect that
distance correlation would be a good estimator for similarity of statistical analyses.

We can perform null hypothesis testing with topological summaries via a
permutation text with a loss function a function of the pairwise distances (see
[22]). Intuitively, when there is a high distance correlation, the pairwise distances
are correlated and the corresponding loss functions should be similar for each
permutation of the labels. This implies we should expect that the p-values given a
sample distribution should be close, at least with high probability. It may be possible
to show that the power of the null hypothesis tests are close. An experimental and
theoretical exploration of this relationship is a future direction.

We can also think of considering a modification of the permutation test for
independence using distance correlation (instead of Pearson correlation). This
can then be applied to topological summaries. One can get a p-value that for
whether two variables are independent by permuting the coupling of the variables
but keeping the marginal distributions the same. A high ranking of the distance
correlation for the original joint distribution would indicate that the variables are not
independent, with high probability. Exploring the power of this is a future direction
of research.

Another non-parametric method is parameter estimation using nearest neigh-
bours. One method for estimating a real valued parameter which is unknown on
a particular sample, but is known on a training set, is to take a weighted average of
the values of the parameter on the training set with the weighting dependent on the
pairwise distances from the sample of interest to those in the training set. We would
expect better estimation when the distance correlation between the samples and the
parameter of interest is high. Future directions for research can include experimental
and theoretical results along these lines with respect to topological summaries. In
particular, we would expect that we should be able to create confidence intervals
for the parameter, dependent on the distance correlation. This is also an area where
we should expect similar statistical analysis when the samples have high distance
correlation.

Completely analogous to the above comments, clustering methods using pairwise
distances should have similar results when the sets of samples have high distance
correlation and future work could explore this with respect to topological sum-
maries.
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Certified Mapper: Repeated Testing
for Acyclicity and Obstructions
to the Nerve Lemma

Mikael Vejdemo-Johansson and Alisa Leshchenko

Abstract The Mapper algorithm does not include a check for whether the cover
produced conforms to the requirements of the nerve lemma. To perform a check
for obstructions to the nerve lemma, statistical considerations of multiple testing
quickly arise. In this paper, we propose several statistical approaches to finding
obstructions: through a persistent nerve lemma, through simulation testing, and
using a parametric refinement of simulation tests. We propose Certified Mapper—a
method built from these approaches to generate certificates of non-obstruction, or
identify specific obstructions to the nerve lemma—and we give recommendations
for which statistical approaches are most appropriate for the task.

1 Introduction

The Mapper model has found widespread use since its initial creation [18, 22]. It
is one of the two primary techniques in Topological Data Analysis. Topological
Data Analysis derives much of its analytical power from three principles: coor-
dinate invariance—topological properties do not depend on a particular choice of
coordinates; deformation invariance—topological properties capture aspects of data
that remain after deformations; and compressed representation—representations
in Topological Data Analysis produce summary statistics with a high degree of
compression from the original dataset, while still retaining important features within
the data. The Mapper model produces an abstract simplicial complex that captures
simplified versions of the topological features present in the dataset, as viewed
through the lens of a filter function that describes what types of separation are
important for the user’s perspective on the data.
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The choice of filter function here is an important part of the craftsmanship
in using Mapper. While a well-chosen filter function can be highly effective in
emphasizing parts of the structure of the data, often one goes into a Mapper
analysis not knowing what a good choice of filter function may be. Even after
choosing a filter function, whether or not the model produced is a completely
accurate representation of the full dataset, or in which ways the model fails to retain
topological features will not be apparent from the resulting complex alone.

In this paper, we develop a post-hoc statistical method for examining a Mapper
complex for fidelity of shape: a method for detecting to what extent topological
features of the Mapper complex correspond to topological features of the source
shape. In order to properly produce this method, we also study the hitherto
unexplored area of repeated hypothesis testing in persistent homology.

There has been significant recent work on the theoretical and statistical under-
pinnings of the Mapper algorithm—focused on its relation with its limiting space,
the Reeb space [8, 19]: where Mapper produces a nerve complex over a covering,
the Reeb space collapses all fibers to their connected components.

Given a point cloud (or topological space) X, a function f : X → R
d

and an open cover U = {U1, . . . , Um} of R
d , the pullback cover f−1U =

{f−1(U1), . . . , f
−1(Um)} can be refined by splitting each cover element into its

connected components to an open cover π0f
−1U of X. We define the Mapper

complex to be the Nerve complex Nπ0f
−1U of this open cover. With some

similarities, we define the Reeb space of the pair X, f to be the quotient space
X/ ∼f by the equivalence relation that sets x ∼f y if f (x) = f (y).

Most of the theoretical work on Mapper in the past years [7, 8, 10, 19] has
focused on the extent to which the Mapper complex approximates the Reeb space.
In practical use of Mapper, filter functions are often not themselves well motivated.
Instead the most common choices use generic dimensionality reductions, such
as PCA coordinates, so that the Mapper complex gives a more generic view of
the shape of X. With the generic filter functions in widespread practical use, a
reasonable question is to what extent the Mapper complex approximates X itself.
Since Mapper is defined as the nerve of a covering, its relationship to the Nerve
lemma is a natural avenue to study the relation between Mapper and the full space
X.

When comparing Mapper covers to the Nerve lemma requirements, we observe
that the Mapper complex only requires connected components in the cover elements,
and includes neither any conditions on any cover element intersections nor any
conditions on higher-dimensional topological structures. These choices, while
essential to make Mapper a practical algorithm, mean that the construction has no
guarantees for producing a good cover in the sense of the Nerve lemma.

The Multi-Nerve Mapper construction by [8] introduces checks for connected
components in the cover element intersections: producing a semi-simplicial set
rather than a simplicial complex, Multi-Nerve Mapper collapses all cover element
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intersections Ui0 ∩ · · · ∩ Uid into their connected components. It is not clear to the
authors whether there are any implementations available for Multi-Nerve Mapper,
nor the computational complexity of Multi-Nerve Mapper. Multi-Nerve Mapper
also does not address the possible existence of higher-dimensional topological
structure within cover element intersections.

It is not difficult to construct cases where the Reeb space and the Mapper complex
both miss topological structure in X because the topological structure is carried
by higher-dimensional features either in cover elements or in their intersections.
We show one example of the cover element case in some detail in Fig. 3. For an
example of where the higher-dimensional features are present in cover element
intersections, we may consider the Mapper complex generated from a sphere with a
simple height function, with just two intervals in the cover U. Each cover element
is homeomorphic to a disk, and the intersection is a cylinder—all three consist of
a single connected component, but the structure of the sphere is missed since it is
encoded in the one-dimensional structure of the cover intersection. This is what we
should expect from this case, and it produces a complex fully consistent with the
Reeb space. It does not, however, capture the full topological structure of X, and
with this choice of filter function we should not expect to be able to.

With both of these examples, we have the benefit of knowing X in some detail
and seeing first hand the structure that is missed. We would point out that this is
not something that can be relied upon in general: there are no indications in either
the Mapper computation, the Multi-Nerve Mapper computation or the computation
of a Reeb space that there is additional topological structure not caught by the
function. A user of either algorithm would not have any indications of the Reeb
graph failing to correspond to the original space X. Equipped with information
about an obstruction, the user could change the choice of filter function to get a
better approximation of X.

Any use of a nerve construction invites a comparison to the Nerve lemma: if the
cover constructed is good—if all cover element intersections are contractible (or
acyclic for a homological version), then the nerve complex is homotopy (homology)
equivalent to the full space. Multi-Nerve Mapper comes quite close to finding
such a good cover: by construction it ensures that the 0-dimensional topological
features agree. In this paper we propose that the gap can be closed by checking
the topological structure of each intersection of cover elements: an obstruction to
representing X will show up as higher topological features in a cover element
intersection. Such a feature witnesses the failure of the Mapper cover from being
a good cover, and an absense of obstructing features provides a certificate of quality
for the Mapper cover and complex.

We propose several potential methods to check whether a Mapper cover is in fact
a good cover in the sense of the Nerve lemma, and compare their performances on
synthetic and real data.
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1.1 Main Results

In this paper, we

1. Introduce Certified Mapper—a computationally verified absense of obstructions
to the Nerve lemma for a Mapper complex

2. Define obstructions to a Mapper certificate
3. Prove that a separation condition suffices to use the Persistent Nerve Lemma

(Theorem 3) to produce a certificate (or an obstruction)
4. Suggest several methods for statistical testing where the separation condition

is not fulfilled. Among the suggested methods, we provide explanations for the
methods that fail, and power analysis and validation for the methods that succeed.

From the methods we suggest for statistical testing, a strong recommendation
emerges: using our Method 4 with a test statistic constructed as a Z-score normal-
ization of the maximum barcode lengths from cover element intersection.

A Certified Mapper analysis—Mapper with a certificate of non-obstruction—
brings additional surety of fidelity of shape to the Mapper analysis, through the
applicability of nerve lemmata to the Mapper cover.

1.2 Structure of This Paper

We will start by reviewing the most important theory, discussing various formula-
tions of the Nerve Lemma in Sect. 2.

In Sect. 3, we introduce the idea of a Mapper certificate and its obstructions. We
describe a first possible approach drawing on the persistent homology nerve lemma
proven in [14].

Since obstructions are witnesses to the failure of acyclicity, or the presence of
non-trivial persistent homology classes, we study several possible approaches to
statistical testing for acyclicity in Sect. 4. The need to test all intersections means we
will be testing repeatedly towards the same underlying hypothesis—which means
we need to control for repeated testing. Since a single obstruction is enough to
withhold a certificate, we need to control the Family-Wise Error Rate (FWER), and
we propose several different methods for testing for acyclicity while controlling this
rate.

To validate our methods and evaluate their statistical power, we present exper-
iments on simulated data. To illustrate the complete workflow, we use both an
illustrative synthetic dataset and a real world dataset. These computations are all
described in Sect. 5 and carried out in Sect. 6.
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2 Nerve Lemmata and Topological Background

Mapper fundamentally works by constructing an open cover and producing its nerve
complex as output. As such, it is immediately interesting to see the role of the nerve
complex of a cover as it shows up in the Nerve lemma and its variants.

The classical Nerve lemma is a statement about homotopy equivalence, and has
weakened versions for homological or persistent homological settings.

Definition 1 An open cover U = {Ui} of a space X is a collection of open subsets
Ui ⊆ X such that

⋃
i Ui = X.

The Nerve NU of an open cover is a simplicial complex with the index set of U
as its vertices and a simplex [i0, . . . , id ] when the intersection Ui0 ∩ · · · ∩ Uid �= ∅
is nonempty.

A good cover is an open cover such that each cover element and each cover
element intersection is topologically simple.

What constitutes a good cover changes slightly between different versions of
the Nerve lemma: for the homotopy version, each cover element intersection is
contractible (homotopy equivalent to the one-point topological space); for the
homology version, each cover element intersection is acyclic (all reduced homol-
ogy groups vanish) and for the persistent homology version each cover element
intersection is ε-interleaved with the empty complex.

Theorem 1 (Nerve Lemma) Let X be a topological space and U = {Ui} a
cover of X. If U is a good cover—each non-empty intersection Ui1 ∩ · · · ∩ Uik

is contractible—then X is homotopy equivalent to the nerve complex NU.

The homotopy conditions and statement can be relaxed to a homological nerve
lemma.

Theorem 2 (Homological Nerve Lemma) Let X be a topological space and U =
{Ui} a cover ofX. If U is a good cover—each non-empty intersectionUi1 ∩· · ·∩Uik

is acyclic—then H∗X is isomorphic to H∗NU.

Acyclic means the homology is isomorphic to the homology of the one-point
topological space. Govc and Skraba [14] proved a persistent homology nerve lemma.
We will be using this in Sect. 3.

This paper concerns itself with persistent homology in several extents: as a tool
from Topological Data Analysis in its own right, but also fundamentally as a way
of quantifying acyclicity in a point cloud. To explain what the persistent homology
nerve lemma means, and also to provide necessary background for our exploration
of statistical testing with persistent homology in Sect. 4, we will provide the core
definitions needed for both persistent homology and for ε-interleaving—the main
way that we compare different persistent homology results with each other. For a
more accessible introduction to the field, we refer to [6].
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Definition 2 In persistent homology literature we define a simplicial complex X

filtered by a function f : X → R as a family of R-indexed subcomplexes Xt =
f−1((−∞, t]).

Filtered simplicial complexes are often defined by giving the structure of Xt

separately for each t such that for any s < t there is an inclusion map Xs ↪→ Xt . In
these cases, the filtration function is left implicitly defined. The parameter t of the
filtered complex is often referred to as time.

Two common sources of filtered simplicial complexes are the Čech and the
Vietoris-Rips complexes of a point cloud. Given a point cloud X = {x1, . . . , xN },
we define

• The Čech complex of X as ČtX = N{Bt(x)}x∈X: for the parameter value t , the
Čech complex is the nerve of the union of t-balls around the data points.

• The Vietoris-Rips complex of X as VRtX containing a simplex [x0, . . . , xd ]
whenever all pairwise distances d(xi, xj ) < 2t .

For these constructions, the parameter t is also often referred to as the radius of
the complex.

If U = {Ui} is a cover of a point cloudX, then we write Č∗U for the collection of
Čech complexes {Č∗Ui}, and VR∗U for the collection of Vietoris-Rips complexes
{VR∗Ui}.

Applying the homology functor to a filtered simplicial complex, we get the
persistent homology of the filtered complex X∗. Persistent homology gives rise
to a persistence module: a persistence module M∗ is a family of R-indexed vector
spaces such that if s < t , then there is a linear map ι : Ms → Mt .

Two R-indexed vector spaces V∗ and W∗ are said to be ε-interleaved if there are
families of maps ft : Vt → Wt+ε and gt : Wt → Vt+ε such that ft+ε ◦ gt = ι :
Wt → Wt+2ε and gt+ε ◦ ft = ι : Vt → Vt+2ε .

Fundamental to the practice of persistent homology is the visualization and
analysis of persistence modules through barcodes: there are coherent basis choices
across all the Vt in a persistence module V∗ so that the persistence module
decomposes into a direct sum of interval modules I(b,d). An interval module I(b,d)
is a 1-dimensional vector space for all t ∈ (b, d) and 0-dimensional outside this
interval, and has identity maps between component vector spaces wherever possible.
In persistent homology, these interval modules correspond to individual topological
features. The time b is usually referred to as the birth time of the topological feature
and d as the death time. We will call their difference d − b the lifespan of the
topological feature.

Suppose X is a filtered simplicial complex, with filtration given on vertices as
a function f : X → R, extending to simplices by f ([v0, . . . , vd ]) = max f (vj ).
Then for any cover U of X we can introduce a filtration function to the Nerve
complex, setting: [14]

f̂ ([i0, . . . , id ] = min{f (v) : v ∈ Ui0 ∩ · · · ∩ Uid }
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This definition introduces each simplex into the nerve at the earliest time that
intersection is non-empty.

Theorem 3 (Persistent Homology Nerve Lemma) Let X be a filtered simplicial
complex and U = {Ui} a cover of X. If U is an ε-good cover—the persistent
homology of each non-empty intersection Ui1 ∩ · · · ∩ Uik is ε-interleaved with
the empty complex—then persistent HnX is 2(n + 1)ε-interleaved with persistent
HnNU.

We will be using Theorem 3 in Sect. 3 to construct our first approach to Certified
Mapper: by measuring how far the individual cover element intersections are from
the empty complex, we can quantify how far the Mapper complex is from a “real”
representation of X.

3 Obstructions and Certified Mapper

If the good cover condition of the nerve lemma fails, then the topology can
change arbitrarily much: hidden topological features can both create and remove
topological structure when passing from X to NU. With Certified Mapper—with
the computational verification of the conditions for a good cover—we can establish
the extent to which a particular Mapper complex approximates the original space
X. Certified Mapper is a collection of certificates in each homological dimension of
the complex. Each such certificate is the result of failing to find obstructions to the
good cover for a single homological dimension, and can be produced either by using
Theorem 3 and its extension in Theorem 4, or by the statistical methods introduced
in Sect. 4.

For each of these nerve lemmata, locating any one cover element intersection
where the corresponding good cover condition is not fulfilled produces an obstruc-
tion to the equivalency produced by that nerve lemma. A lack of obstruction could
be taken as an indication that a topological description of the nerve complex is an
appropriate description of the original space.

Definition 3 An obstruction in dimension d is a significantly persistent k-
homology class in a d − k + 1-fold intersection of cover elements.

A certificate in dimension d for a Mapper cover is a documented absence of
obstructions in dimension d .

The persistent homology nerve lemma produces our first method for detecting
and quantifying obstructions. Key to using this is the construction of a filtered
simplicial complex on the point cloud X using its cover elements Ui .

We define two (not necessarily disjoint) point clouds X,Y to be ε-separated if

min
x∈X\Y
y∈Y\X

d(x, y) > ε
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Theorem 4 If a point cloud X is covered by sub-point clouds U = {Ui} such that
each pair of cover elements Ui,Uj are ε-separated, then the Čech (Vietoris-Rips)
complex with radius at most ε ofX is covered by the Čech (Vietoris-Rips) complexes
with radius at most ε on the cover elements.

Proof If a simplex [x0, . . . , xd ] is in the Čech (Vietoris-Rips) complex of X, but
not in any one complex of a cover element, then there are vertices x, y and cover
elements Ui,Uj such that x ∈ Ui \ Uj and y ∈ Uj \ Ui . Hence, if the cover
is ε-separated, such an obstructing simplex can only occur at a radius greater
than ε. ��

We say that a Čech (or Vietoris-Rips) complex X∗ has stabilized in dimension
n at a radius ε if for any ε′′ > ε′ > ε, the induced map on homology H∗(Xε′) →
H∗(Xε′′ ) is an isomorphism.

Corollary 1 If a point cloud X is covered by sub-point clouds U = {Ui} such that:

1. each pair of cover elements Ui,Uj are ε-separated
2. each cover element intersection is ε-acyclic
3. all Čech (Vietoris-Rips) calculations stabilize by the radius ε

then persistent n-homology of Čech (Vietoris-Rips) complex of X is 2(n + 1)ε-
interleaved with persistent n-homology of NČ∗U (NVR∗U).

Hence, if the point cloud is embedded in R
d , then the complexes are 2(d + 1)ε-

interleaved across all homological dimensions.

Proof The corollary follows from Theorem 3 and Theorem 4.
Theorem 3 tells us that if we have an ε-good cover of a filtered simplicial complex

then the persistent homology of the complex is 2(n + 1)ε-interleaved with the
persistent homology of the filtered nerve complex.

Since we are starting with a cover of a point cloud by sub-point clouds, the
theorem is not immediately applicable: we need to ensure that the Čech (Vietoris-
Rips) complex of X is covered by the Čech (Vietoris-Rips) complexes of the cover
elements. By Theorem 4, this follows from requiring ε-separation of the cover
elements and by requiring that the Čech (Vietoris-Rips) calculation need not go
beyond a radius of ε. The condition of ε-separation is provided by Condition 1 of
this corollary, and the condition of finishing time for the calculation is provided by
the stabilization in Condition 3.

Further, Theorem 3 asks that the cover is ε-good: that each intersection of cover
elements is ε-interleaved with the empty complex. This requirement is listed in
Condition 2.

Since the point cloud cover generates an ε-good simplicial complex cover, the
interleaving follows. If the point cloud is embedded in R

d , only homology up to
degree d is relevant, and thus 2(d + 1)ε is an upper bound on the interleaving
distances. ��
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4 Statistical Acyclicity

If the conditions of Theorem 4 or Corollary 1 are not fullfilled, more work needs
to be done to quantify obstructions. The point cloud from each cover element
intersection Ui0 ∩ · · · ∩Uid will have to be separately evaluated for acyclicity. In the
following sections we will propose and evaluate a number of possible approaches
to statistical testing and quantification of obstructions. Ultimately, we will find
one strongly recommended method, and a few properties that disqualify otherwise
promising ideas.

The detection of acyclicity, or of obstructions to acyclicity, is possibly one of
the most fundamental questions of Topological Data Analysis. As such it has been
approached in the literature several times. Notably, [12] provide confidence intervals
for persistence diagrams, either as boxes in the diagram or through marking a region
along the diagonal as noise and considering any observations outside this region as
signal. The methods described there focus on building the confidence intervals from
the structure of the data itself, while we choose here to pick a global model of
acyclicity to use as a null model, and to compare against.

An inviting statistical approach may decide on a numeric invariant for measuring
acyclicity—persistence length of the most persistent feature of reduced homology,
or some symmetric function in the sense of [1] or a tropical symmetric function
[16]—and measure whether the invariant produced by the coverU of the point cloud
X is significantly larger than the invariants produced by simulating complexes using
some model of persistent homologically trivial barcodes.

This produces a first naïve method for testing acyclicity in a point cloud:

Method 1 (Generic Simulation Test of Acyclicity) Given a point cloud X, an
invariant γ : {Point clouds} → R, and a null model M of random point clouds, we
may reject the null hypothesis of acyclicity in favor of non-acyclicity by:

1. Draw M1, . . . ,MN−1 from M
2. Compute all γ (Mj ) and γ (X).
3. Sort all these N values, and let r be the rank of γ (X).

We may then reject the null hypothesis at a level of p = N−r+1
N

.

Bobrowski et al. [5] observe that uniformly sampled points in a cube have small
largest persistence lengths, and conjecture that the persistence ratios (d/b for a
persistent homology class that appears at time b and vanishes again at time d) are
normally distributed. This suggests that one useful null model for trivial random
point clouds would be a uniform distribution on the bounding box of the point cloud
we compare against.

Tradition in persistent homology suggests max d−b, and [5] suggests max d/b as
useful invariants for measuring acyclicity. Both of these invariants have a tendency
to vary in scale between different homological dimensions, but for the ratio invariant
there is a conjecture that it follows a normal distribution.
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The ratio invariant is not defined for homological dimension 0, a case not
studied by Bobrowski et al. [5]. This means that it would not be able to identify
0-dimensional homology classes in testing. During preliminary studies, the ratio
invariant provided no noticable difference between simulations with signal and
simulations without.

When testing for a good cover, however, there is one point cloud for each simplex
in the nerve complex—and since even one single rejection forms an obstruction
to the nerve lemma, we need to control for the family-wise error rate (FWER:
probability of a single false rejection) rather than the false discovery rate (FDR:
expected proportion of false rejections). To adequately handle these error rates
we will need more intricate methods than Method 1: we need to either apply an
appropriate control method for FWER, or find a new concept of an appropriate
statistic so that the simulation test no longer suffers from repeated testing issues.
We will explore candidates for more adequately controlling for FWER in Methods 2
and 3, and candidates for changing the simulation statistic in Method 4.

4.1 Null Models

All simulation based methods rely on being able to draw random point clouds from
a null model M, that models what a contractible space should look like.

From the work in [5] we know that uniform distributions tend to have very short
persistence intervals, while the work in [2] suggests that multivariate normal random
data would tend to produce quite large persistence intervals by the weight of the tails
of the distribution.

Based on this we would suggest that an equal number of points sampled
uniformly from a shape derived from the point cloud we are trying to match would
be an appropriate model. This agrees with long standing traditions in the statistics
of point processes, as described for instance by Ripley [21]. The point process
most commonly taken to represent Complete Spatial Randomness is a Poisson point
process: pick the number of points by a Poisson process, then place them uniformly.
If you need to compare to an existing sample, spatial statistical methodologies often
suggest using the size of the sample as the size for your simulation.

Two shapes immediately suggest themselves for use: we could use a convex hull
or an axis-aligned bounding box as a container implied by the data. Both of these,
taken as is, will produce biased results since in both cases data points are on the
boundary of the region—an unlikely result in the case of sampling uniformly at
random, since the boundary has measure 0.

We do not know how to produce an unbiased enlargement of the convex hull.
For the bounding box, however, we can estimate the bounds a, b in each dimension
separately assuming that the points come from a null model of a uniform distribution
on some interval [a, b]. For coordinates x1, . . . , xN , such an unbiased estimator is
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given by

â = N ·min(xi)−max(xi)

N − 1
b̂ = N ·max(xi)−min(xi)

N − 1

4.2 Adjusting Thresholds: Bonferroni, Holm, Hochberg

A widely used family of methods for controlling FWER works by adjusting the
thresholds of rejection: to have an overall level of α for a hypothesis test, each
separate test out of a family of K tests is rejected at a level of kα/K for k some
constant depending on the aggregated p-values from the different tests.

Bonferroni correction, known to be overly conservative, uses the sub-additivity
of probability measures to suggest a constant k = 1. Improved versions include the
Holm step-down and the Hochberg step-up processes, both of which derive the k
multipliers used from a ranking of the p-values.

For these methods, the number N − 1 of simulations will be dependent on the
size of the nerve complex: with K cells and a desired level of α the simulation load
is on the order of K/α. For large covers, the increase in computational load quickly
becomes prohibitive.

With an acyclicity test that includes the sizes of the statistics used rather than
only their ranks, these correction methods become more accessible: if the non-trivial
topology produces a much larger invariant value than the null model, the p-values
involved in the correction procedures can shrink below 1/N .

4.2.1 Normal Approximation of Maximal Ratios

If we assume the conjecture in [5], the persistence ratios are normally distributed.
We can estimate the mean and variance of these persistence ratios from simulations,
and then compare the values directly to the corresponding normal distribution.

Though there is no reason to expect normality for the maximum difference
invariant, we could (and do) evaluate the same test built on that invariant as well.

Method 2 (Normal Test of Ratio Acyclicity) Given a point cloud X, and a null
model M of random point clouds, we may reject the null hypothesis of acyclicity in
favor of non-acyclicity by:

1. Draw M1, . . . ,MN−1 from M
2. Compute all γ (Mj ) and γ (X). Compute

μ =
∑

γ (Mj )

N − 1
S2 =

∑
(γ (Mj )− μ)2

N − 2
Z = γ (X)− μ

S
∼ N(0, 1)

We may then reject the null hypothesis at a level of p = 1− CDFN(0,1)(Z).
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4.2.2 Normal Approximation of Quantiles

Keener [17] gives an asymptotic normal distribution for quantiles of arbitrary
distributions (with differentiable distribution functions).

Theorem 5 Let X1, . . . , be iid with common cumulative distribution function F ,
let γ ∈ (0, 1) and let θ̂n be the *γ n, order statistic for X1, . . . , Xn (or a weighted
average of the *γ n, and the (γ n)).

If F(θ) = γ and F ′(θ) exists, is finite and positive, then

√
n(θ̂n − θ)⇒ N

(
0,
γ (1− γ )

F ′(θ)2

)

We do not know whether diagram invariants will follow a differentiable distribu-
tion function—but if it did, we could use several batches of simulations of the null
model to get a statistic with a known variance:

1. Given a point cloud X and simulations M2, . . . ,MN , we can calculate γ (X) and
all γ (Mj ).

2. By ranking all these values, we can find the quantile q of X in this simulated
batch. Then

√
N(γ (X)− F−1(q)) ∼ N

(
0,

q(1− q)

F ′(F−1(q))2

)

3. If we calculate another N simulations K1, . . . ,KN , and estimate the q quantile
K(q), we also know

√
N(γ (K(q))− F−1(q)) ∼ N

(
0,

q(1− q)

F ′(F−1(q))2

)

4. We can subtract one expression from the other to yield

√
N(γ (X)− γ (K(q))) ∼ N

(
0, 2

q(1− q)

F ′(F−1(q))2

)

5. If we calculate yet anotherN simulationsL1, . . . , LN and estimate the q quantile
L(q) we also have

√
N(γ (L(q))− γ (K(q))) ∼ N

(
0, 2

q(1− q)

F ′(F−1(q))2

)

6. Write V = 2 q(1−q)
F ′(F−1(q))2

. Then

√
N(γ (X)− γ (K(q)))

V
/

√
N(γ (L(q))− γ (K(q)))

V
= γ (X)− γ (K(q))

γ (L(q))− γ (K(q))
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is a quotient of two standard normal variables; this distributes as a T (1) random
variable.

Knowing the distribution of the ratio we can use the T (1) distribution to build a
hypothesis test:

Method 3 (Ratio T-Test of Quantile Acyclicity) Given a point cloud X, an
invariant γ : {Point clouds} → R, and a null model M of random point clouds,
we may reject the null hypothesis of acyclicity in favor of non-acyclicity by:

1. Draw M1, . . . ,MN−1 from M
2. Compute all γ (Mj ) and γ (X). Compute the rank r of γ (X) among all these

values. Write x = γ (X).
3. Draw M ′

1, . . . ,M
′
N and M ′′

1 , . . . ,M
′′
N . Write y for the rth value among the M ′∗

and z for the rth value among the M ′′∗ .
4. Calculate the test statistic

T = (x − z)

V
/
(y − z)

V
= x − z

y − z
∼ T (1)

We may then reject the null hypothesis at a level of p = 1− CDFT (1)(T ).

4.3 Empirical Distributions and Normalized Maximal
Persistences

Instead of driving down the p-values to comply with a classical control mechanism,
we may instead change perspective on the simulation testing. This approach was
developed in conversations with Sayan Mukherjee.

Many invariants of persistence bars differ with the overall scale of the point
cloud, so the invariants are not immediately comparable. If they were, however, then
the existence of an obstruction in the cover would be witnessed by the largest value
of an invariant. Therefore a joint test can be built on first making the invariants
comparable, and then doing a simulation test where in each simulation step the
largest invariant value is extracted.

To make persistence diagram invariants comparable, we suggest two potential
approaches for standardization:

1. If the invariant γ are (sufficiently close to) normally distributed, we can
studentize our invariant values separately within each local point cloud and its
simulated nulls.

2. We can use a non-parametric standardization method, such as histogram equal-
ization within each local point cloud and its simulated nulls.

Based on this we propose the following approach

Method 4 (Standardized Global Test of Acyclicity) Given a family of point
clouds X1, . . . , XK , an invariant γ : {Point clouds} → R, and a null model M
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of random point clouds, we may reject the null hypothesis of acyclicity in favor of
non-acyclicity by:

1. Draw M1
1 , . . . ,M

N−1
K from M.

2. Compute all ỹji = γ (M
j
i ) and x̃i = γ (Xi).

3. For each i ∈ [1,K], use ỹji to create a standardization method, (ie to calculate
mean and standard deviation for the studentization, or to calculate the empirical
CDF for histogram equalization) and standardize all ỹji to yji and standardize x̃i
to xi .

4. For each j ∈ [1, N − 1] calculate yi = maxj y
j

i . Calculate x = max xi .
5. Compute the rank r of x among x together with all the yi .

We may then reject the null hypothesis at a level of p = (N − r + 1)/N .

5 Experiments

To validate our suggested methods and compare their performances we perform
simulation tests on null model data input to verify the level of each correction
method, and with a single noisy circle input together with null model data input
for a power analysis of each method.

We use the null model of uniformly distributed points in a plane rectangle, and
for computational expediency we restrict our testing to two ambient dimensions.

Our simulations test for all combinations of:

• N ∈ {100, 500} (number of point clouds for each test)
• K ∈ {5, 10, 50} (number of simultaneous tests to control)

For each box, we draw uniformly at random

• Box side lengths in {0.1, 1, 10}
• Point counts for a box in {10, 50, 100, 500}
• For the power test: in one of the boxes, points on a circle with added multivariate

isotropic Gaussian noise with variance from {0.1, 0.25} fitted in a square box
with side lengths 1× 1.

The α-complex construction is topologically equivalent to Čech complexes
[4], and for speed in our simulations we choose to use the α-complex persistent
homology calculation in the R package TDA [11]. With simulations in place we
perform bootstrap evaluations of level and power of all combinations of:

• Methods 2, 3, 4 for controlling the FWER.
• FWER correction with Hochberg’s method, standardization with Z-score and

histogram equalization.

We will use the invariant γ (X) = max d − b of maximum bar length.
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We illustrate the process of computing a certification on a real world dataset in
Sect. 6.4.

6 Results

We divide our simulation study results into three components: first we examine
the suggestion of a T (1) distribution in Method 3. Next, we validate the FWER
control procedures by estimating the probability of false discovery on null model
data. Finally, we analyze the power of the proposed methods by attempting to detect
a single noisy circle in a family of null model data samples.

For the experiments, we precomputed 160,000 point cloud invariants. Since we
are working with point clouds in the plane, we computed in homological dimensions
0 and 1, and for each combination of box shapes and point counts as well as for
each noise level and point count combination, we generated 5000 point clouds. All
our subsequent results are based on drawing from these precomputed invariants at
random, matching box sizes and point counts when producing simulations to match
a particular point cloud.

6.1 Validation

The first claim to validate is the applicability of Theorem 5 to the numeric invariant
data we would be getting from persistence barcodes. We discover empirically that
for the test statistic T from Method 3, we get a better fit to the T (1) distribution
using the quantity 2T , based on 1000 simulated values. The T (1) distribution has
very heavy tails—as a result, the fit remains bad in the tails due to how commonly
too large results appear in simulations. We display plots (Fig. 1) for the central part
of the points, together with the line y = x in the QQ-plots to give a reference for
how a perfect fit would be expressed.

Next, we evaluate the empirical level of our proposed methods. From 100
simulations drawing from pre-computed barcode sizes, the null rejection rates for
null model data for our methods are summarized in Table 1. For each of the
simulations, a random number, between 2 and 50, of point cloud invariants were
drawn from the precomputed data. To each point cloud invariant, another 99 point
clouds with matching box sizes and point counts are drawn as a simulation test.
These 100 batches of 100 point clouds go through each of our proposed methods,
and rejection rates at confidence levels of 0.1, 0.05 and 0.01 are calculated.
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Fig. 1 QQ-plots and ECDF-plots for evaluating goodness of fit of 2T , with T the ratio from
Method 3 against the T (1) distribution. The very heavy tails of the T-distribution produce very
large outliers in the tails of the distributions: we have pruned the plots for readability here. The
fit to the T (1) distribution is still not good, after adding the factor of 2 (found empirically). We
cannot right now say why this factor was needed. Top row is the result from using the difference
invariant in homological dimension 0 and the bottom row is the difference invariant in homological
dimension 1

6.2 Power Estimation

For the power analysis we picked pre-calculated invariants from circles with a 1× 1
bounding box, with additive multivariate Gaussian noise with a standard deviation
of 0.1 and 0.25 respectively. For each of 100 simulations, one circle invariant was
picked, and another random number (between 1 and 49) of null model point cloud
invariants added. This collection of point clouds go through the same process of
generating 99 null model invariants for each, and run the collections through the
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Table 1 Rejection rates for null model and noisy circle data using the difference and ratio
invariants, and using the methods described above

Parametric Global

p < Normal test Log normal test Quantile T-test Z-score log Z-score Histogram Eq

Null model

0.01 0.34 0.09 0 0.04 0.01 0

0.05 0.54 0.21 0.04 0.11 0.12 0

0.10 0.67 0.23 0.06 0.15 0.17 0.01

σ = 0.1

0.01 0.97 0.83 0.02 0.9 0.82 0

0.05 0.97 0.86 0.06 0.95 0.84 0.02

0.10 0.97 0.86 0.13 0.96 0.86 0.1

σ = 0.25

0.01 0.65 0.37 0 0.28 0.28 0

0.05 0.82 0.52 0.01 0.5 0.42 0.02

0.10 0.85 0.55 0.04 0.58 0.49 0.07

The parametric methods are the methods that rely on an explicit distribution followed by a
FWER control method: method 2 with normal and log-normal distribution assumptions, and
method 3. The global methods refer to method 4 with either a normal Z-score, log-normal Z-
score or histogram equalization method for standardization. FWER control was performed using
Hochberg’s method [15]

10 50 100 500
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0.25

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
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x
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Fig. 2 Noisy circles as used by the power calculation. Top row, σ = 0.1 and bottom row σ = 0.25.
The plots have, from left to right, 10, 50, 100 and 500 points

described methods. The result of 100 simulations each at the two noise levels is
shown in Table 1.

Examples of the kind of circles we use for the power calculation can be seen in
Fig. 2.
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6.3 Simulated Data

To show an obstruction in action, we generated 250 random points on the cartesian
product of a cross with a circle:

X = (�[0, 1] ∪Δ′[0, 1])× S1 �(x) = (x, x) �′(x) = (x,−x)

The result is a 4-dimensional dataset in the shape of two pipes that intersect in
the middle.

A Mapper analysis using the first coordinate as a filter function, with 10 divisions
and a 50% overlap was calculated using TDAmapper [20]. The dataset and the
resulting Mapper analysis can be seen in Fig. 3.

For Certified Mapper, we used Corollary 1 and Method 4 with the null model
described in Sect. 4.1. To standardize we used Z-scores of log persistence lengths.

First, to use the Corollary, we would look for the maximum of lifespans and death
times in the data. This value comes out to 1.11. If the sections are 1.11-separated
this would show us that the Mapper graph and the Vietoris-Rips graph on the data
were 4.43-interleaved. This amount of separation is unlikely, since the bounding
box of the entire dataset comes out to 2 × 2× 1× 1 and sliced into 10 slices along
the first axis.

The Corollary conditions having failed, we turn to the probabilistic approach.
Using 99 simulations we get the distribution seen at the bottom of Fig. 3. From a
visual inspection, the dataset is a clear outlier—by ranking the maximal Z-scores
over each of the simulations, the dataset comes in at rank 100 for an upper-tailed
p-value of 0.01 (estimated using the (N − r + 1)/N estimate as given by Davison
et al. [9]).

With a significant result, we can find at least one obstruction by looking for a
node or edge with a large Z-score associated to its persistent homology. The largest
Z-scores within the real data is in the 20th of the simplices (in the ordering generated
by our enumeration) which works out to the simplex [7]. The corresponding data
points are graphed in Fig. 4.

6.4 Real World Data

We ran a Mapper analysis on Fisher and Anderson’s Iris dataset [3, 13]. Using
TDAmapper, we chose the Petal Length variable as our filter function and used
10 divisions with a 50% overlap. Next we used Certified Mapper to calculate
certifications with the method suggested by Corollary 1 and Method 4 standardized
using Z-scores of log persistence lengths. The resulting Mapper graph can be seen
in Fig. 5.

For the interleaving distance from Corollary 1, we calculate the joint maximum
of lifespans and death times in the data. This maximum comes out to 0.93. Since
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x ~ y z ~ w

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5
studentized log persistence

Fig. 3 Top left: the dataset in the x − y-plane. Top right: the dataset in the z − w-plane. Middle:
the Mapper graph produced. The ×-like shape is clearly captured by the Mapper analysis, but the
z−w circle is absent. Bottom: frequency curve of the maximal studentized log persistence lengths
for each of the 99 simulations in addition to the dataset itself. Marked in orange and with a vertical
line is the corresponding score for the dataset itself
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x ~ y z ~ w

Fig. 4 The data subset witnessing the obstruction of highest significance found in the intersecting
cylinders dataset

Species

setosa

versicolor

virginica

0.0

0.2

0.4

0.6

0 1 2 3 4
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Fig. 5 Top: Mapper analysis of the Iris dataset using Petal Length as a filter function. Bottom:
Density of Z-scores of log persistences from applying Method 4 to the Iris mapper graph. Marked
with a vertical line and a separate point, both in orange, is the maximum Z-score from the dataset
itself

we are using a single filter function, the Mapper complex is one-dimensional, so
the multiplier for Corollary 1 is 4 and the Corollary tells us that if the sections are
0.93-separated, then the persistent homology of the resulting filtered graph is 3.73-
interleaved with the true persistent homology of the original dataset.
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The Petal-Width variable has a total spread of 2.4, and our Mapper analysis uses
10 sections: a separation of 0.93 seems highly unlikely. Hence, the Corollary does
not apply and we are forced to look towards probabilistic certification.

Using Method 4, we calculated 99 simulations in addition to the true data. We
used the unbiased bounding box as a null model. Values were standardized using the
logarithm of the Z-score, as estimated on the simulated values. For each simulation,
the maximal log Z-score were selected across the Mapper graph. The distribution
of these values can be seen in Fig. 5. As the graph indicates, there is no significant
obstruction in the data, and by estimating an upper-tailed p-value as (N − r+1)/N
where r is the rank of the log Z-score from the dataset we get a p-value of 0.59.

7 Discussion

7.1 Multiple Testing Paradigms

The first idea we wish to adress is the T (1)-distribution of the quantile fraction
introduced for Method 3. As can be seen in Fig. 1, the fit is not particularly
convincing—certainly not for a direct fit to T (1)—in which case the line should
be a diagonal—but even after allowing for a rescaling of the test statistic, the fit is
not good.

Next we would like to discuss the various tests we proposed. We had parametric
tests—against a normal or against a T (1) distribution—for assuming a normal
distribution of the max(d − b) statistics; for assuming a normal distribution of the
log max(d − b) statistics, or for assuming the T (1) distribution for the observed
quantiles.

Using the normal distribution directly on the max(d − b) statistic performs quite
poorly: as can be seen in Table 1, this test rejects far too much for the null model:
false positives abound. The p-values for the null model come out to the range from
0.34 to 0.67—increasing the actual level by a factor of between 6.7 and 34.

Next, we consider the approach using a much more plausible normal approxima-
tion for log max(d − b); this is labeled Log normal test in Table 1. We see that the
level is far more reasonable here: the true level differs from the one suggested by
the normal distribution by a factor of between 2.3 and 9. As we look to the power
of this test, it performs reasonably well too—rejection rates around 0.80 for the low
noise case, and in the range between 0.37 and 0.55 for the higher noise case.

The quantile test starts out promising: the levels are even lower than the cutoffs
chosen—the test looks too conservative as long as we are looking to the null model.
However, with the heavy tails of the T (1) distribution, we can notice when we try
to measure power that this test simply does not reject at all. The distribution we
are comparing the test statistic with is so tail heavy that no values seem particularly
extreme.
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For Method 4, we see dramatically different results depending on which stan-
dardization scheme we choose:

The Z-score standardization performs well: all null rejection rates are somewhat
elevated from the chosen levels, and the power to recognize a signal when present
is good with low noise and still present at all with higher noise.

In Fig. 2, we show examples of the point clouds that the methods need to deal
with—the noise level of σ = 0.25 is quite large. The 100 point and 500 point
circles look quite true, but the 10 point and 50 point circles at σ = 0.25 are noisy
enough that it might not be a clear call whether or not to consider the signal to be
present at all. Based on this, one may consider powers around 0.5 to be quite decent
in the high noise case we use to measure power, and with both the Z-score based
normalizations, Method 4 shows up with decent levels and good powers.

The histogram equalization works atrociously however: just like with the quantile
T-test method, this method pretty much refuses to reject the null hypothesis no
matter what point clouds it sees. On further consideration, the reason why can be
seen: with histogram equalization, we are reducing the sizes of bar lengths back to a
ranking, so the same issues raised against Method 1 remain problematic for anything
that works with histogram equalization.

On the face of it, the Z-score based global methods and the normal approximation
for log max(d−b) seem to behave equally well—and any one of the three would be
a reasonable choice. The parametric log max(d − b) test has better power, while
the global tests have better levels. The Z-score global method has particularly
impressive power for the low noise case.

From all this, the recommendation we can see is to use the difference invariant
and Method 4 with the Z-score normalization. Doing this, noisier circles will be
slightly more difficult to detect, but if the signal is clean, the power of the test stays
high.

7.2 Certified Mapper

Mapper comes close, but not quite all the way, to the nerve lemmata that pervade
algebraic topology in general and persistent topology in particular. As proposed
and used, the Mapper algorithm comes with no guarantees beyond sheer luck
and stability under modifying parameters for fidelity between data shape and
Mapper complex shape. It is easy to see that hidden topological structure can both
introduce and hide homological features in the resulting Mapper complex, and if the
structure aligns orthogonally to the Mapper filter functions, there is no way to adjust
parameters to find the hidden structure.

We show an example of this in Fig. 3: an intersecting pair of cylinders in R
4,

with filter functions taken as projections onto the first variable. Here, the structure
of the two first variables—the figure X—is clearly seen in the Mapper graph,
whereas the tube shapes—the circles in the z-w-plane—are completely invisible
in the Mapper complex. Certified Mapper, through the statistical multiple testing
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methods we describe, produces a clear indication of the resulting obstruction: at the
bottom of Fig. 3 we clearly see the studentized log persistence of the intersecting
cylinders to be a far outlier as compared to the null model, and in Fig. 4 we can see
the shape most clearly illustrating an obstruction—the hidden z-w circle emerges
well recognizable.

From real data, using the well studied Iris dataset, we can see an example of
a lack of obstructions. Certified Mapper here confirms our prior belief that the
Mapper complex reflects the topological features of the dataset. The studentized log
persistence is close to the middle of the distribution of studentized log persistences
from the null model, giving no reason to believe any Mapper cover element or cover
element intersection to contain significant hidden topological features.

Mapper has found widespread use in industry, sometimes dealing with high
stakes data analysis tasks. While in practice Mapper usage often is measured on
the value of identified patterns, without fidelity of shape being taken as relevant to
the analysis, having a certified lack of obstructions to nerve lemmata would allow us
to claim the Mapper complex shape to be a reliable descriptor of the dataset itself. If
reliability of the Mapper analysis is critical to an application, the computational cost
of verifying a lack of obstructions using Certified Mapper can be a good tradeoff for
higher reliance on the results.

7.3 Recommendations

We recommend using Certified Mapper whenever fidelity of shape is important to
the Mapper analysis.

The persistent nerve lemma and Corollary 1 should be used whenever applicable
to issue a quantified certificate of non-obstruction.

Where Corollary 1 is not applicable, we recommend the certificate of non-
obstruction to be issued through a statistical method.

The uniformly distributed points in a bounding box seems to be a reasonable
null model. From [5] we know uniform distributions to have appropriately small
persistence, and the bounding box has an easily accessible unbiased estimator we
can use.

For the statistical approach to Certified Mapper we recommend the difference
invariant and Method 4 with the Z-score normalization.

8 Future Directions

In later work we plan to explore strategies to refine a Mapper cover to resolve any
obstructions found and produce a Certified Mapper complex.
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