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Abstract

Brain–computer interfaces (BCIs) have
emerged as a novel technology that bridges
the brain with external devices. BCIs
have been developed to decode human’s
intention, leading to direct brain control of
a computer or device without going through
the neuromuscular pathway. Bidirectional
brain–computer interfaces not only allow
brain control but also open the door for
modulating the central nervous system
through neural interfacing. We review the
concepts, principles, and various building
blocks of BCIs, from signal acquisition,
signal processing, feature extraction, feature
translation, to device control, and various
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applications. The performance assessment
and challenges of BCIs are also discussed.
Examples of noninvasive BCIs are discussed
to aid readers for an in-depth understanding
of the noninvasive BCI technology, although
this chapter is aimed at providing a general
introduction to brain–computer interfaces.
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4.1 Introduction

Brain–computer interfaces are a new technology
that could help to restore useful function to people
severely disabled by a wide variety of devas-
tating neuromuscular disorders and to enhance
functions in healthy individuals. The first demon-
strations of brain–computer interface (BCI) tech-
nology occurred in the 1960s when Grey Wal-
ter used the scalp-recorded electroencephalogram
(EEG) to control a slide projector in 1964 [1] and
when Eberhard Fetz taught monkeys to control
a meter needle (and thereby earn food rewards)
by changing the firing rate of a single cortical
neuron [2]. In the 1970s, Jacques Vidal devel-
oped a system that used the scalp-recorded visual
evoked potential (VEP) to determine the eye gaze
direction (i.e., the visual fixation point) in humans
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and thus to determine the direction in which a
person wanted to move a computer cursor [3,
4]. At that time, Vidal coined the term brain–
computer interface. Since then and into the early
1990s, BCI research studies continued to appear
only every few years. In 1980, Elbert et al. showed
that people could learn to control slow cortical
potentials (SCPs) in scalp-recorded EEG activity
and could use that control to adjust the vertical
position of a rocket image moving across a TV
screen [5]. In 1988, Farwell and Donchin [6] re-
ported that people could use scalp-recorded P300
event-related potentials (ERPs) to spell words on
a computer screen. Wolpaw and his colleagues
trained people to control the amplitude of mu and
beta rhythms (i.e., sensorimotor rhythms) in the
EEG and showed that the subjects could use this
control to move a computer cursor [7].

The pace and breadth of BCI research began
to increase rapidly in the mid-1990s, and this
growth has continued almost exponentially into
the present. The work over the past 20 years has
included a broad range of studies in all the areas
relevant to BCI research and development, in-
cluding basic and applied neuroscience, biomed-
ical engineering, materials science, electrical
engineering, signal processing, machine learning,
computer science, assistive technology, clinical
rehabilitation, and human factors engineering
[8–10].

The central goal of BCI research and devel-
opment is the realization of powerful new assis-
tive communication and control technology for
people severely disabled by neuromuscular disor-
ders such as amyotrophic lateral sclerosis (ALS),
stroke, spinal cord injury, cerebral palsy, mul-
tiple sclerosis, and muscular dystrophies. This
emphasis has been encouraged and strengthened
by increased societal appreciation of the needs
of people with severe disabilities, as well as by
greater realization of their ability to live enjoyable
and productive lives if they can be provided with
effective assistive technology. In addition, in re-
cent years a number of investigators have begun
to explore possibilities for developing BCIs for
the general population. These include systems
for enhancing or supplementing human perfor-
mance in demanding tasks such as image analysis
or continuous attention, as well as systems for

expanding or enhancing media access, computer
gaming, or artistic expression. Furthermore, BCI
technology has recently begun to be explored as
a means to assist in the rehabilitation of people
disabled by stroke and other acute events. This
chapter provides an introduction to the underlying
concepts and principles as well as the applications
of BCIs.

4.2 BCI Definition and Structure

4.2.1 What Is a BCI?

According to present understanding, the role of
the central nervous system (CNS) is to respond
to occurrences in the environment or in the body
by producing appropriate outputs. The natural
outputs of the CNS are either neuromuscular or
hormonal. Correspondingly, the natural inputs
of the CNS are from different sensory organs,
peripheral nerves, internal hormones, etc. A
brain–computer interface (BCI), which could
interact with the CNS bidirectionally, gives the
CNS new output that is not neuromuscular or
hormonal or provides new inputs to the CNS,
which could be direct stimulations to the CNS
by injecting physical energy, such as deep brain
stimulation (DBS), transcranial electrical stimu-
lation (TES), transcranial magnetic stimulation
(TMS), transcranial focused ultrasound (tFUS),
or other forms of brain signal modulation. A
BCI is a system that measures CNS activity and
converts it into artificial output that replaces,
restores, enhances, supplements, or improves
natural CNS output; it can also be considered as
a system to influence CNS activity and behavioral
performance by injecting physical energy such
as TES, TMS, tFUS, or direct brain signal
modulation and thereby changes the ongoing
interactions between the CNS and its external or
internal environment.

To understand this definition, one needs to
understand each of its key terms, starting with
CNS. The CNS is composed of the brain and the
spinal cord and is differentiated from the periph-
eral nervous system (PNS), which is composed of
the peripheral nerves and ganglia and the sensory
receptors. The unique features of CNS structures
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are their location within the meningeal coverings
(i.e., meninges), their distinctive cell types and
histology, and their role in integrating the numer-
ous different sensory inputs to produce effective
motor outputs. In contrast, the PNS is not inside
the meninges, does not have the unique CNS
histology, and serves primarily to bring sensory
inputs to the CNS and to carry motor outputs
from it.

CNS activity comprises electrophysiological,
neurochemical, and metabolic phenomena (such
as neuronal action potentials, synaptic potentials,
neurotransmitter releases, and oxygen consump-
tion) that occur continually in the CNS. These
phenomena can be monitored by measuring elec-
tric or magnetic fields, hemoglobin oxygenation,
or other parameters employing sensors on the
scalp, on the surface of the brain, or within the
brain. A BCI records brain signals, extracts par-

ticular measures (or features) from them, and con-
verts (or translates) the features into new artificial
outputs that act on the environment or on the
body itself. Alternatively, a BCI system could
also deliver physical energy directly to the brain
through transcranial electrical, magnetic, acoustic
stimulation or direct-current stimulation to the
brain (e.g., DBS or direct cortical stimulation),
to modulate the CNS to change the information-
processing patterns within the brain and affect
human behaviors.

Figure 4.1 illustrates the concepts of
bidirectional BCIs, either controlling a device by
the brain bypassing the common neuromuscular
pathways or modulating and affecting the brain
by injecting external physical energy.

A BCI output could replace natural output that
has been lost to injury or disease. Thus, someone
who cannot speak could use a BCI to spell words

Fig. 4.1 Schematics of bidirectional brain–computer in-
terface (BCI) systems. For a brain-to-device BCI, signals
produced by brain activity are recorded from the scalp,
from the cortical surface, or from within the brain. These
signals are analyzed to extract signal features (e.g., ampli-
tudes of EEG rhythms or firing rates of individual neurons)

that correlate with the user’s intent. These features are then
translated into commands that control application devices
that replace, restore, enhance, supplement, or improve
natural CNS outputs. For a device-to-brain BCI, neuro-
modulation can be exerted on the brain through physical
energy to modulate the CNS activity
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that are then spoken by a speech synthesizer [11]
or someone who has lost limb control could use
a BCI to operate a powered wheelchair [12] or
control a robotic arm [13, 14].

A BCI output could restore lost natural output.
Thus, someone with a spinal cord injury whose
arms and hands are paralyzed could use a BCI
to control stimulation of the paralyzed muscles
with implanted/attached electrodes so that the
muscles move the limbs [15, 16] or someone who
has lost bladder function from multiple sclerosis
could use a BCI to stimulate the peripheral nerves
controlling the bladder so as to produce urination.

A BCI output could enhance natural CNS out-
put. Thus, someone engaged in a task that needs
continuous attention over a long time (e.g., driv-
ing a car or performing sentry duty) could employ
a BCI to detect the brain activity preceding breaks
in attention and then produce an output (such as
a sound) that alerts the person and restores atten-
tion [17]. By preventing the periodic attentional
breaks that normally compromise natural CNS
output, the BCI enhances the natural output.

A BCI output could supplement natural CNS
output. Thus, someone controlling cursor position
with a standard joystick might employ a BCI to
choose items that the cursor reaches [18]. Or a
person could use a BCI to control a third (i.e.,
robotic) arm and hand [19]. In these examples, the
BCI supplements natural neuromuscular output
with another artificial output.

Lastly, a BCI output might possibly improve
natural CNS output. For example, a person whose
arm movements have been compromised by a
stroke damaging sensorimotor cortex might em-
ploy a BCI that measures signals from the dam-
aged areas and then excites muscles or controls
an orthosis that improves arm movement [20].
Because this BCI application enables the produc-
tion ofmore normalmovements, its continued use
might induce activity-dependent CNS plasticity
that improves the natural CNS output and thus
helps to restore more normal arm control.

The first two kinds of BCI application, re-
placement or restoration of lost natural outputs,
are the focus of most present-day BCI research
and development. At the same time, the other
three types of applications are drawing increasing
attention. Furthermore, a BCI changes the ongo-

ing interactions between the CNS and its exter-
nal or internal environment. The CNS interacts
constantly with the environment and the body.
These interactions comprise its outgoing motor
outputs along with its incoming sensory inputs.
Bymonitoring CNS activity and translating it into
artificial outputs that act on the environment or
the body, BCIs modify both CNS motor outputs
and sensory inputs (i.e., feedback). Devices that
only monitor brain activity and do not employ it
to modify the continuing interactions of the CNS
with its environment are not considered BCIs.

In addition to interacting with and control-
ling the environment by the brain, a BCI might
modulate brain signals through direct physical
stimulation such as TES, TMS, tFUS, and DBS
or through neurofeedback trainings. Convention-
ally, such device-to-brain interfacing systems are
referred to as neuromodulation approaches (see
Fig. 4.2 for the illustration of device-to-brain BCI
approaches) and will be treated comprehensively
in Chaps. 6, 7, and 8 for deep brain stimulation,
transcranial magnetic stimulation, and transcra-
nial electrical stimulation. In this chapter, we will
mainly focus on brain-to-device interfacing and
control.

4.2.2 Alternative or Related Terms

BCIs are also called brain–machine interfaces or
BMIs. The choice between these two synony-
mous terms is essentially a matter of personal
preference. One reason for using BCI rather than
BMI is that the word “machine” in BMI implies
a fixed translation of brain signals into output
commands, which does not match the reality that
a computer and the brain are essentially partners
in the interactive adaptive control that is required
for successful BCI, or BMI, function.

The terms dependent BCI and independent
BCI appeared in 2002 [10]. In accord with the
definition of a BCI, both employ brain signals to
control applications; however, they differ in how
they depend on natural CNS output. A dependent
BCI employs brain signals that depend on mus-
cle activity. The BCI developed by Vidal [3, 4]
used a VEP that depended on gaze direction and
therefore on the muscles that controlled gaze. A
dependent BCI is basically an alternative way to
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Fig. 4.2 A summary of invasive and noninvasive device-
to-brain BCI technologies (also called neuromodulation).
Invasive techniques include DBS, in which a lead is im-
planted into a deep brain structure, and cortical stimu-
lation, in which electrodes are placed on the brain sur-
face. Noninvasive techniques include transcranial mag-
netic stimulation (TMS), transcranial direct-current stim-

ulation (tDCS) via scalp sponge electrodes, or transcranial
focused ultrasound stimulation (tFUS) using pulsed ultra-
sound from a transducer on the scalp. These neuromodu-
lation approaches impact the brain by injecting physical
energy to modulate the neural activation and connectivity
within the brain. (From Edelman et al. [35], licensed under
CC BY 4.0)

detect messages conveyed by natural CNS out-
puts. Thus, it does not give the brain a new output
independent of natural outputs. Nevertheless, it
can still be very useful.

Contrastingly, an independent BCI does not
depend on natural CNS output; muscle activity is
not needed to generate the crucial brain signals.
Thus, in BCIs that measure EEG sensorimotor
rhythms, the user typically employs mental im-
agery to modulate sensorimotor rhythms in order
to produce the BCI output. For those who are
severely disabled by neuromuscular disorders,
independent BCIs are likely to be more effective.

The recent term hybrid BCI is used in two
ways [21]. It can be applied to a BCI that employs
two different types of brain signals (e.g., VEPs
and sensorimotor rhythms) to produce its outputs,
or it can be applied to a system that combines a
BCI output and a natural muscle-based output. In
this second usage, the BCI output supplements a
natural CNS output (as Fig. 4.1 illustrates).

4.2.3 The Components of a BCI

A BCI detects and measures features of brain sig-
nals that reveal the user’s intentions and translates
these features in real time into commands that
achieve the user’s intent or affect the user’s brain
state (Fig. 4.1). In order to do this, a BCI system

has four components: 1) signal acquisition, 2) fea-
ture extraction, 3) feature translation, and 4) de-
vice output commands or neurofeedback training
paradigm. Note that, besides these four traditional
BCI components, a direct physical energy might
be injected to interact with or affect the CNS (also
an approach called neuromodulation). A BCI also
has an operating protocol that specifies how the
onset and timing of operation or physical energy
injection is controlled; how the feature translation
process is parameterized, the nature of the com-
mands that the BCI produces, the neurofeedback
training that the BCI induces; and how errors in
translation are handled. A successful operating
protocol enables the BCI system to be flexible and
to serve the particular needs of each of its users.

The signal acquisition component measures
brain signals using a particular kind of sensor
(e.g., scalp or intracranial electrodes for electro-
physiological activity, functional magnetic res-
onance imaging for metabolic activity, etc.). It
amplifies the signals to enable subsequent pro-
cessing, and it may also filter them to remove
noise such as 60-Hz (or 50-Hz) power line inter-
ference. The amplified signals are digitized and
transmitted to a computer.

The feature extraction component analyzes the
digitized signals to isolate signal features (e.g.,
power in specific EEG frequency bands or fir-

https://creativecommons.org/licenses/by/4.0/legalcode
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ing rates of individual cortical neurons) and ex-
presses them in a compact form suitable for trans-
lation into output commands. Effective features
need to have strong correlations with the user’s
intent. Since much of the most relevant (i.e.,
most strongly correlated) brain activity is tran-
sient or oscillatory, the signal features most com-
monly extracted by present-day BCIs are EEG
or electrocorticogram (ECoG) response ampli-
tudes, power in particular EEG or ECoG fre-
quency bands, or firing rates of single cortical
neurons. To ensure the accurate measurement of
the chosen signal features, artifacts such as elec-
tromyogram (EMG) from cranial muscles need to
be avoided or eliminated.

The signal features are provided to the feature
translation algorithm, which converts them into
commands for the output device, that is, into
commands that achieve the user’s intent. Thus,
a decrease in power in a specific EEG frequency
band might be translated into an upward displace-
ment of a computer cursor, or a particular evoked
potential measure might be translated into the se-
lection of a letter to be added to a document being
composed. The translation algorithm should be
able to accommodate and adapt to spontaneous
or learned changes in the user’s signal features
in order to ensure that the user’s possible range
of feature values covers the full range of device
control and also to make control as effective and
efficient as possible.

The commands that the feature translation al-
gorithm produces are the output of the BCI or
the input of the brain, which has to be modulated
internally [17]. They go to the application and
there produce functions such as letter selection
[17], cursor control [18], robotic arm operation
[13, 14], wheelchair movement [12], etc. The
operation of the device provides feedback for the
user and thereby closes the control loop.

4.2.4 The Unique Challenge of BCI
Research and Development

As noted earlier, the natural CNS function is to
produce muscular and hormonal outputs that act
on the outside world or the body. BCIs give the

CNS entirely new artificial outputs derived from
brain signals. In essence, they ask the CNS, which
has evolved to produce muscular and hormonal
outputs, to produce entirely new kinds of out-
puts. Thus, for example, the sensorimotor cor-
tical areas, which normally act in combination
with subcortical and spinal areas to control mus-
cles, are now required instead to control specific
brain signals (such as neuronal firing patterns or
EEG rhythms). The fundamental implications of
this requirement become evident when BCI use
is considered in terms of two basic principles
that govern how the CNS produces its natural
outputs.

First, the task of producing natural outputs is
distributed throughout the CNS, from the cerebral
cortex to the spinal cord. No one area is entirely
responsible for a natural output. Actions such
as speaking, walking, or playing the piano are
produced by the integrated activity of cortical
areas, basal ganglia, thalamic nuclei, cerebellum,
brain stem nuclei, and spinal cord interneurons
and motoneurons. Thus, while the cortex usu-
ally initiates walking and monitors its course,
the rhythmic rapid sensorimotor interactions that
underlie effective walking are handled primarily
by circuits in the spinal cord [22]. The final re-
sult of this highly distributed CNS activity is the
proper excitation of the spinal (or brain stem)
motoneurons that activate muscles and thereby
produce actions. In addition, while activity in the
different CNS areas that are participating gener-
ally correlates with the action, the activity in a
particular area may vary considerably from one
performance of the action to the next. At the
same time, the coordinated activity in the many
areas involved ensures that the action itself is
stable.

Second, natural CNS outputs (such as speak-
ing, walking, or playing a musical instrument) are
acquired initially and maintained in the long term
by adaptive changes in the many CNS areas that
contribute to them. Throughout life, CNS neurons
and synapses change continually to master new
skills and to maintain those already learned [23,
24]. Referred to as activity-dependent plasticity,
this continuing change underlies the acquisition
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and preservation of both common skills (e.g.,
walking and talking) and special skills (e.g., ath-
letics, singing); and it is guided by its results.
For example, as muscle strength and body size
and weight change during life, CNS areas change
appropriately to maintain these skills. In addition,
the basic CNS features (i.e., its anatomy, phys-
iology, and plasticity mechanisms) that support
this ongoing adaptation are the results of evolu-
tion shaped by the need to produce appropriate
muscle-based actions.

Given these two principles that numerous CNS
areas participate in natural outputs and that adap-
tive plasticity occurs continually in all these ar-
eas, BCI use presents a unique challenge for the
CNS, which has evolved and is continually adapt-
ing to optimize its natural outputs. In contrast
to natural CNS outputs, which are produced by
spinal motoneurons and the muscles they control,
BCI-based CNS outputs are produced by signals
reflecting activity in another CNS area, such as
the motor cortex. Activity in the motor cortex
is normally one of the multiple contributors to
natural CNS output. But when its signals control
a BCI, this activity becomes the CNS output. In
sum, the cortex is given the role normally per-
formed by spinal motoneurons; that is, it produces
the final product, the output, of the CNS. How
well the cortex performs this new unnatural role
depends on how effectively the multiple CNS
areas that normally combine to control spinal
motoneurons (which are downstream in natural
CNS function) can instead adapt to control the
relevant cortical neurons and synapses (which are
largely upstream in natural CNS function).

The available evidence indicates that the
adaptations needed to control activity in the CNS
areas that produce the signals used by BCIs are
possible but as yet very imperfect. As a rule, BCI
outputs are much less smooth, rapid, and accurate
than natural muscle-based CNS outputs, and their
moment-to-moment and day-to-day variability is
disturbingly high. These problems (especially
poor reliability) and the different approaches to
solving them represent major challenges in BCI
research.

4.2.5 BCI Operation Depends
on the Interaction of Two
Adaptive Controllers
and the User Interface

Muscle-based CNS outputs are optimized to serve
the goals of the organism, and the adaptation re-
sponsible for this optimization takes place mainly
in the CNS. In contrast, BCI outputs can be op-
timized by adaptations in the CNS and/or in the
BCI itself. Thus, a BCI may adapt to the am-
plitudes, frequencies, and other basic character-
istics of the user’s brain signals; it may adapt to
improve the fidelity with which its output com-
mands match the user’s intentions; and it may
adapt to improve the effectiveness of CNS adap-
tations and perhaps to guide the CNS adaptive
processes.

In sum, a BCI introduces a second adaptive
controller that can also change to ensure that
the user’s goals are achieved. Thus, BCI usage
requires successful interaction between two adap-
tive controllers, the user’s CNS and the BCI. The
management of the complex interactions between
the concurrent adaptations of CNS and BCI is one
of the most difficult problems in BCI research. In
the past two decades, a majority of studies have
focused on either training subjects’ brain while
fixating the decoding algorithm after each ses-
sion’s calibration or adapting the machine learn-
ing algorithm in real time within each session
while minimizing subjects’ learning effort [25].
Until recently, studies of both invasive and nonin-
vasive BCI [26, 27] showed a piece of converged
evidence that subjects’ learning curve probably
benefits most from collaboration, adapting both
controllers, that is, the brain and the decoder
algorithm. Theoretical analysis also indicates that
adaptation of the BCI system should be at an ap-
propriate rate, not too slow nor too frequent [28].
Studies showed day-to-day variability in perfor-
mance using daily retrained decoder and non-
stable neural ensembles when tracking subjects’
performance from weeks to months [26]. Ors-
born et al. showed that beneficial neuroplasticity
could occur alongside mild and gradual decoder
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adaptation, yielding performance improvements,
skill retention, and resistance to interference from
native motor networks [26]. Similarly, in their
study, Perdikis and colleagues only recalibrated
the decoder of participants twice during the train-
ing periods in multiple months. Sufficient time
was provided to the subject to adapt their brain
rhythms to the fixed decoder. Besides the two
controllers, Perdikis et al. even argue for and eval-
uate the importance of the application interface,
which is one of the three pillars of a successful
BCI system besides the subject and the machine
learning algorithm. The effect of application in-
terface on BCI performance was rarely investi-
gated previously. Some of the previous studies
might assume that using more attractive or more
natural application interface would cause better
engagement of participants [14, 29–31], which
implicitly showed a similar idea along this line
[32]. Future investigations should consider the
application interface as an important factor to the
BCI performance. Various application interfaces
including control of physical apparatus [14, 33],
immersion of virtual reality [34], or switching
the stereotype of center-out trial-based task to
continuous tracking task [13] should be further
explored.

4.2.6 Choosing Signals and Brain
Areas for BCIs

Brain signals acquired by a number of different
electrophysiological and metabolic methods can
be used as BCI inputs for brain-to-device con-
trol. These signals differ in topographical res-
olution, frequency content, area of origin, and
technical needs. The major electrophysiological
methods as applied to BCIs are illustrated in
Fig. 4.3. They range from EEG with its centime-
ter resolution, to ECoG with its few millime-
ter resolution, to neuronal action potentials with
their tens-of-microns resolution. Each of these
electrophysiological methods has been used by
BCIs and deserves continued evaluation, as do the
metabolic methods such as functional magnetic
resonance imaging (fMRI) and functional near-
infrared imaging (fNIRs). Each has distinctive
advantages and disadvantages, while electrophys-
iological signals have gained wide adoption due
to its high temporal resolution and portability.

The role of neuronal action potentials (spikes)
as basic units of communication between neurons
suggests that spikes recorded from many neurons
could provide multiple degrees of freedom and
might therefore be the optimum signals for BCIs
to employ. In addition, the clear relationships
between cortical neuronal activity and normal
motor control provide logical starting points for

Fig. 4.3 Schematic of a
brain-to-device
brain–computer interface.
Signals are acquired from
the brain through the use of
internal or external stimuli.
A computer then decodes
these signals to interpret
the user’s goal and
translates the result into an
action of the output device.
Subjects can often observe
such effects and modulate
their brain signals to
accomplish the desired
task. (From Edelman et al.
[35], licensed under CC
BY 4.0)

https://creativecommons.org/licenses/by/4.0/legalcode
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BCI-based control of applications such as robotic
arms. On the other hand, the importance of CNS
adaptation for all BCIs and the evidence that
appropriate training can elicit multiple degrees of
freedom from even EEG signals suggest that the
difference between the BCI performance possible
with single neurons and that possible with EEG or
ECoGmay not be nearly as large as the difference
in their respective topographical resolutions.

The most important point is that questions
about signal selection are empirical questions that
can be answered only by experimental evidence,
not by a priori assumptions about the fundamental
superiority of one kind of signal or another. For
BCI usage, the crucial issue is which signals can
best indicate the user’s intent and serve the pur-
pose of applications, that is, which signals are the
best language for communicating to the BCI the
output that the user wants, to achieve the purpose
such a BCI is aimed at.

The choice of the optimum brain areas from
which to obtain the signals is also an empirical
question at the time. The work to date has fo-
cused largely on signals from sensorimotor au-
ditory, and visual areas of cortex. The BCI ca-
pacities of signals from other cortical or sub-
cortical areas are just beginning to be investi-
gated. This is an important aspect of BCI re-
search, particularly because the sensorimotor cor-
tices of many possible BCI users have been com-
promised by disease or injury, and/or their vision
may be impaired. Different brain areas may differ
in their adaptive capabilities and in other factors
that could affect their capacity to function as the
sources of BCI output commands. For example,
reconstructing speech from the neural responses
recorded from the human auditory cortex opens
up the possibility of a speech BCI to restore
speech in severely paralyzed patients [36, 37].
This new speechBCI is different from the conven-
tional P300 speller or SSVEP-based virtual key-
board which translates users’ visual attention into
characters, words, and sentences via special vi-
sual stimulus pattern [38–40]. These conventional
BCI spellers mainly decode brain signals from the
visual occipital cortex. However, the nascent field
of speech BCI directly decodes the brain signals
from the speech production areas in the temporal

lobe [37]. Due to the unique characteristics and
complexity of producing human languages, it is
not possible to do the experiments in animal
models. ECoG, which is vastly used in the clinical
setting, has a high temporal and spatial resolution.
The most common type of intractable epilepsy
is usually caused by the pathological change of
temporal lobe; however, a good number of these
patients with focal epilepsy in the temporal lobe
still preserve intact speech ability. Thus, ECoG-
based speech BCI could be developed and vali-
dated in this population [41]. The advancement
of speech BCI may benefit patients undergoing
ECoG recordings who cannot speak due to, for
example, brain stem stroke and cerebral palsy
[42]. Recent advancement of deep learning neural
network and its application in speech decoding
produce significant progress in decoding the flu-
ent speech directly from the brain signals [11, 36,
41]. The quick development of speech BCI may
be a vital option in clinical treatment for those
who have language disabilities.

4.3 Signal Acquisition

As discussed earlier, translation of intent into
action is dependent on the expression of the in-
tent in the form of a measurable signal. Proper
acquisition of this signal is important for the
functioning of any BCI. The goal of signal ac-
quisition methods is to detect the voluntary neural
activity generated by the user, whether the signals
are acquired invasively or noninvasively. Each
method of signal acquisition is associated with
an inherent spatial and temporal signal resolution.
The choice of the appropriate method to use in
a particular circumstance depends on striking a
balance between the feasibility of acquiring the
signal in the operating environment and the reso-
lution required for proper translation.

4.3.1 Invasive Techniques

The invasive acquisition of brain signals for use in
BCIs is primarily accomplished by electrophys-
iologic recordings from electrodes that are neu-
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rosurgically implanting either inside the user’s
brain or over the surface of the brain. The motor
cortex has been the preferred site for implanting
electrodes since it is more easily accessible and
has large pyramidal cells, which produce measur-
able signals that can be generated through simple
tasks such as actual or imaginary motor move-
ments. Other brain areas such as the supplemen-
tary motor cortex, parietal cortex, and subcortical
motor areas can also serve as candidate sites for
electrode implantation. Information from com-
plementary imaging techniques such as fMRI can
help determine potential target areas for a specific
subject [43]. fMRI measurement of the blood-
oxygenation level dependent (BOLD) response
has facilitated the determination of cortical areas
useful for the recording of brain activity and has
also been shown to provide reliable BCI control
across several cortical areas using different cog-
nitive tasks.

4.3.1.1 Intracortical
With chronic recording using implanted micro-
electrode arrays, the key factors for successful
recording are the spatial/temporal resolution of
the desired signal, the number and placement
of electrodes, and the functional lifetime of the
device. A growing number of electrode technolo-
gies have been developed to meet these require-
ments. Significant advancement has been wit-
nessed in intracortical BCIs research over the
past two decades, demonstrating brain-controlled
robotic arms in nonhuman primates [44, 45] and
human subjects [46, 47]. For a comprehensive
coverage of intracortical BCIs, see Chapter 5 in
this book.

4.3.1.2 Cortical Surface
A less-invasive approach, though still requiring
surgical implantation of the recording device,
is ECoG. This technique, in which an electrode
array is implanted subdurally over cortex, has
been used mainly in preparation for surgery in
people with epilepsy. As is the case for EEG
recording, this technique takes advantage of
the fact that most large cortical neurons are
orientated perpendicular to the cortical surface
and that locally synchronized activity within a

cortical column can sum to yield a detectable
signal. Subdural electrodes are closer to neuronal
structures in superficial cortical layers than EEG
electrodes placed on the scalp, and therefore, the
signals that they record have higher amplitude
(as well as a broader frequency bandwidth).
Whereas scalp electrode recordings represent
synchronized activity from a large number of
neurons and synapses over extended regions of
cortex [48], subdural recordings are sensitive
to smaller sources of synchronized neuronal
activity. Subdural recordings also have a higher
signal-to-noise ratio than scalp recordings and
have increased ability to record and study gamma
activity (i.e., activity >30 Hz). Since gamma
activity has been shown to be well correlated
with the surrounding single-unit activity recorded
by penetrating microelectrodes [49], ECoG
can yield an effective representation of the
underlying cortical electrical activity with less
invasiveness and more stability than penetrating
microelectrodes, albeit still invasive.

The standard clinical electrodes used for
ECoG monitoring in epilepsy patients typically
have diameters on the order of a few millimeters.
Although finer than scalp electrodes, this
dimension is still much larger than that of a
typical cortical column. Therefore, most studies
involving subdural ECoG use gross motor
movements to determine tuning parameters.
It was shown that overt movements as well
as motor imageries are accompanied not only
by relatively widespread mu and beta event-
related desynchronization (ERD), but also by
a more focused event-related synchronization
(ERS) in the gamma frequency band [50]. In
the first closed-loop ECoG-based BCI, study
subjects quickly learned to modulate high-
frequency gamma rhythms in motor cortical
areas and in Broca’s speech area to control a
one-dimensional computer cursor in real time.
Subsequent studies achieved two-dimensional
control of a computer cursor using the upper arm
region of motor cortex for one dimension and
the hand region of motor cortex for the other
dimension [51]. Other investigators explored
distinctly human traits such as speech and
language processing that cannot be analyzed
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in an animal model and have had success using
gamma activity from a speech network to control
a cursor in one dimension [52]. The subjects
used self-selected imagery to modulate gamma-
band activity at one or more specific electrodes.
This represents a new approach in ECoG-based
BCIs.

4.3.2 Noninvasive Techniques

There are many methods of measuring brain ac-
tivity through noninvasive means. Noninvasive
techniques reduce risk for users since they do
not require surgery or permanent attachment to
the device. Techniques such as EEG, magnetoen-
cephalography (MEG), fMRI, and fNIRS have
been used in noninvasive BCIs.

4.3.2.1 EEG
EEG is themost prevalent method of signal acqui-
sition for BCIs. EEG recording has high temporal
resolution: it is capable of measuring changes in
brain activity that occur within a few millisec-
onds. The spatial resolution of EEG is not as
good as that of implanted methods, but signals
from up to 256 electrodes can be measured at the
same time [53]. EEG is easy to set up, portable,
and inexpensive and has a rich literature of past
performance. The practicality of EEG in the lab-
oratory and the real-world setting is unsurpassed.
EEG recording equipment is portable, and the
electrodes can be easily placed on the subject’s
scalp by simply donning a cap. In addition, since
EEG systems have been widely used in numerous
fields since their inception more than 90 years
ago, the methods and technology of signal acqui-
sition with this modality have been standardized.
Finally, and most important, the method is nonin-
vasive.

Many EEG-based BCI systems use an elec-
trode placement strategy based on the Interna-
tional 10/20 system as detailed in Fig. 4.4. For
better spatial resolution, it is also common to use a
variant of the 10/20 system that fills in the spaces
between the electrodes of the 10/20 system with
additional electrodes. Nevertheless, EEG-based

BCI control with several degrees of freedom can
be achieved with just a few electrodes [18, 29].

Over the past few decades, EEG-based BCIs
have been widely investigated in healthy human
subjects, as well as in people with amyotrophic
lateral sclerosis (ALS) and in those with severe
CNS damage from spinal cord injuries and stroke,
resulting in substantial deficits in communication
and motor function.

Compared with invasive BCIs, EEG-based
BCI methods have the advantage of no surgical
risk, signal stability, and low cost. However,
since EEG represents scalp manifestation of
brain electrical activity from a distance, it
has a lower signal-to-noise ratio than many
invasive methods. The spatial resolution of
EEG is also reduced by the volume-conduction
effect [48]. Many noninvasive BCIs are based
on classification of different mental states
rather than decoding kinematic parameters as
is typically done in invasive BCIs. Various
mental strategies exploiting motor, sensory, and
cognitive activity detectable by EEG have been
used to build communication systems. In these
systems, typically one mental state corresponds
to one direction of control and four independent
mental states are generally required for full two-
dimensional control. Therefore, a substantial
period of training is typically required for users
to develop the skill to maintain and manipulate
various mental states to enable the control. This
can be quite demanding for users, especially
disabled users. Other investigators attempted
to directly decode the kinematic information
related to movement or motor imagery and
have reported success in revealing information
about the (imagined) movement direction and
speed from the spatiotemporal profiles of EEG
signals [54–56]. In a closed-loop experiment by
Bradberry et al. [57] using the direct decoding
of kinematic information, subjects were able
to attain two-dimensional control after a short
training (∼40 minutes).

It will also be important to develop better
understanding of the mechanisms of information
encoding in EEG signals. It has been demon-
strated that detailed kinematic information, not
simply gross mental states, is represented in the
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Fig. 4.4 Placement of electrodes for noninvasive signal
acquisition using EEG. This standardized arrangement of
electrodes over the scalp is known as the International
10/20 system and ensures ample coverage over all parts of
the head. The exact positions for the electrodes are at the
intersections of the lines calculated from measurements
between standard skull landmarks. The letter at each elec-
trode identifies the particular sub-cranial lobe (FP: Pre-
frontal lobe; F: Frontal lobe; T: Temporal lobe; C: Central

lobe; P: Parietal lobe; O: Occipital lobe). The number
or second letter identifies its hemispherical location (Z:
denotes line zero and refers to an electrode placed along
the cerebrum’s midline; even numbers represent the right
hemisphere; odd numbers represent the left hemisphere;
the numbers are in ascending order with increasing dis-
tance from the midline). (From [197], http://www.bem.fi/
book/, with permission)

distributed EEG signals [54–56]. Interestingly,
brain signals recorded on the scalp surface
and those recorded intracranially reveal similar
encoding models [58], suggesting that knowledge
gleaned from invasive BCIs could be transferred
to the understanding of EEG-based BCI signals.
This might further advance noninvasive BCI
technology and thereby possibly achieve
high degrees of control and reduce training
requirements.

Source analysis has been widely used to
estimate the sources of the brain activity that
produces noninvasively recorded signals such as

EEG [48]. The rationale behind this approach
is the linear relationship between current source
strength and the voltage recorded at the scalp.
Thus, one may estimate equivalent current
density representations in regions of interest
from noninvasive EEG or MEG recordings. He
and colleagues proposed to use such EEG-based
source signals to classify motor imagery states for
BCI purposes [59]. Such source imaging–based
approach has shown promising results based on
motor imagery paradigm [43, 60–63].

The use of source estimation in BCI applica-
tions involves increased computational cost due

http://www.bem.fi/book/
http://www.bem.fi/book/
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to the need to solve the inverse problem. On the
other hand, such source analysis transforms sig-
nals from sensor space back to source space and
can lead to enhanced performance due to the use
of a priori information in the source estimation
procedure [13].

4.3.2.2 MEG
MEG measures the magnetic induction produced
by electrical activity in neural cell assemblies.
The magnetic signal outside of the head is on
the order of a few femtoteslas, one part in 109

or 108 of the earth’s geomagnetic field. MEG is
commonly recorded using the SQUID (supercon-
ducting quantum interference device), in which it
is also necessary to provide shielding from exter-
nal magnetic signals, including the earth’s mag-
netic field. The SQUID MEG recording requires
a laboratory setting. A modern MEG system is
equipped with an array of up to ∼300 gradiome-
ters evenly distributed in a helmet shape with an
average distance between sensors of 1∼2 cm. Re-
cently the feasibility of a wearable MEG system
was reported for human use [64], although it is
a technology that is still under development and
currently quite expensive.

MEG has similarities to EEG. MEG and EEG
are, respectively, magnetic and electric fields pro-
duced by neuronal and synaptic activity. Both
methods sense synchronized brain activity. MEG
detects only the tangential components of a neural
current source, whereas EEG is sensitive to both
tangential and radial components. Importantly,
like EEG, MEG is also a noninvasive record-
ing technology. Studies using electrophysiologi-
cal source imaging techniques have located com-
mon cortical sources underlying the control pro-
vided by the EEG- and MEG-based BCIs [63,
65]. Meanwhile, other investigators reported that
kinematic parameters are similarly represented in
MEG and EEG recordings, since the key informa-
tion is embedded in the lower frequency ranges
[55]. Nonetheless, the high-frequency informa-
tion in MEG signals is being actively investigated
for neural encoding. Notably, it was found that
in human subjects who are planning a reaching
movement, the 70–90 Hz gamma-band activity

originating from the medial aspect of the poste-
rior parietal cortex (PPC) was synchronized and
direction-sensitive [66]. These results in human
subjects are compatible with the functional orga-
nization of monkey PPC derived from intracranial
recordings. From the viewpoint of BCI research,
these findings may suggest new approaches for
developing control signals utilizing such high-
frequency components inMEG, or in EEG aswell
[67].

A merit of using MEG is that magnetic fields
are less distorted by the skull layer than are elec-
tric fields. However, studies so far have shown
that the performance and training times for EEG-
andMEG-based BCIs are comparable [68]. In ad-
dition, the instrumentation necessary for MEG is
more sophisticated and more expensive than that
for EEG. These factors have tended to discourage
BCI research using MEG recording so far.

4.3.2.3 fMRI
Functional magnetic resonance imaging or func-
tional MRI (fMRI) [69–71] measures changes in
the blood flow (i.e., the hemodynamic response)
related to neural activity in the brain. It sam-
ples very large numbers of spatial locations span-
ning the whole brain and provides an ongoing
stream of information from the many measure-
ment points at the same time. Compared to prior
methods for acquiring brain signals, fMRI there-
fore provides measurements that are highly dis-
tributed and highly parallel, on the order of mil-
limeter resolution. For example, a modern MRI
scanner can currently sample from ∼216 spatial
locations per second, each location (i.e., each
voxel) with a dimension on the order of 3x3x3
mm. In fMRI, the same volume is sampled re-
peatedly at short, regular intervals (e.g., once
per second) using an imaging contrast, such as
the blood-oxygen-level-dependent (BOLD) con-
trast [72], that is sensitive to the hemodynamic
response. The intensities of BOLD contrast are
related to the changes in the deoxyhemoglobin
concentration in the brain tissue. When neurons
are activated, increases in blood flow are associ-
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ated with increases in local glucose metabolism
and increases in local oxygen consumption. The
changes in local deoxyhemoglobin concentration
are reflected in the brightness of the MRI image
voxels at each time point. It has also been re-
ported that a strong colocalization of fMRI acti-
vation and electrophysiological sources exist dur-
ing hand movement and motor imagery [43, 73].
fMRI imaging is thought to be quite safe. It does
not use an exogenous contrast agent. Typically,
it does not involve any invasive procedure, injec-
tions, drugs, radioactive substances, or X-rays. It
requires an instrument that provides a strong ex-
ternal magnetic field and radio-frequency energy
pulses.

fMRI images can be processed in real time
as they are collected, namely, as real-time fMRI
(rtfMRI) [74] so that the resulting information
is immediately available and can thus be used
for feedback purpose. For example, the mental
states inferred from the rtfMRI can be used to
guide a person’s cognitive process or a clinician’s
interventions in the case of psychiatric disorders.
The advantage of using fMRI for neurofeedback
is the high spatial resolution and deep penetration.
The direct sampling of three-dimensional volume
information in small voxels enables the detection
of activity in all areas of the brain, including
deep structures such as the amygdala. In con-
trast, EEG/MEG measurements near the surface
of the head are made far from these locations
and the spatial resolution for EEG/MEG source
imaging of deep brain activity is relatively lim-
ited. However, recent studies have suggested the
possibility of detecting deep brain activity from
EEG and MEG as validated from intracranial
recordings (see Chapter 13).

On the other hand, an essential limit of rtfMRI
or fMRI lies in its underlying mechanism: it mea-
sures changes in blood flow rather than neuronal
activity. The technique is therefore inherently in-
direct and noisy. Most importantly, there is an
intrinsic delay of several seconds in the response
of fMRI, no matter how fast the images can be
obtained. This means that the feedback given to
a subject is delayed by several seconds. This
could affect the usefulness of rtfMRI inmanyBCI
applications.

4.3.2.4 NIRS
Functional near-infrared spectroscopy (fNIRS) is
another noninvasive technique. It utilizes light in
the near-infrared range (700 to 1000 nm) to deter-
mine the oxygenation, blood flow, and metabolic
status of localized cortical regions. It is similar
to BOLD-fMRI in terms of the imaging contrast;
that is, it measures the hemodynamic response.
It can produce relatively well-localized signals
with a spatial resolution on the order of cen-
timeters, and it provides information related to
neural activity. However, since the images rely on
the shallow-penetrating photons, NIRS operates
effectively only for brain structures that are on
or near the brain surface. NIRS is also inherently
limited in its imaging contrast (i.e., hemodynamic
responses), which results in a temporal resolution
on the order of seconds and a delay of several sec-
onds for feedback. Thus, in terms of information
transfer rate, fNIRS-based BCIs are likely to be
less effective than BCIs based on electromagnetic
signals. Compared to fMRI, it stands as a com-
promise between imaging capability and practical
usability (i.e., fNIRS is inexpensive and portable).
Its flexibility of use, portability, and affordability
makeNIRS a viable alternative for clinical studies
and possibly for practical use.

4.3.3 Neural Signals Used by BCIs

4.3.3.1 Sensorimotor Rhythms
Electromagnetic recording from the brain at rest
exhibits endogenous oscillatory activity that is
widespread across the entire brain. As shown in
Fig. 4.5, this activity can be split into several
bands. This spontaneous activity consists mainly
of oscillations in the alpha-frequency band (8–
13 Hz), which is called the mu rhythm when
focused over the sensorimotor cortex and the
visual alpha rhythm when focused over the visual
cortex. This idling oscillation is thought to be
caused by complex thalamocortical networks of
neurons that create feedback loops. The synchro-
nized firing of the neurons in these feedback
loops generates observable oscillations. The fre-
quency of oscillations decreases as the number
of synchronized neurons increases. The under-



4 Brain–Computer Interfaces 145

Fig. 4.5 Various signal bands present in the EEG signal.
The delta band ranges from 0.5 to 3 Hz and the theta band
ranges from 4 to 7 Hz. Most BCI systems use components

in the alpha band (8–13 Hz) and the beta band (14–30 Hz).
The gamma band, which is just beginning to be applied in
BCI, is >30 Hz

lying membrane properties of neurons, the dy-
namics of synaptic processes, the strength and
complexity of connections in the neuronal net-
work, and influences from multiple neurotrans-
mitter systems also play a role in determining the
oscillations.

Other oscillations detected over the sensori-
motor cortex occur in the beta frequency band
(14–30 Hz) and in the gamma band (>30 Hz).
Together with the mu rhythm, these oscillations
recorded over sensorimotor cortex are called
sensorimotor rhythms (SMRs). They originate
in sensorimotor cortex and change with motor
and somatosensory function. These oscillations
occur continually during “idling” or rest. During
nonidling periods, however, these oscillations
change in amplitude and/or frequency, and these
changes are evident in the EEG or MEG. Task-
related modulation in sensorimotor rhythms is
usually manifested as an amplitude decrease in
the low-frequency components (alpha/beta band)
(also known as event-related desynchronization
(ERD) [75]). In contrast, an amplitude increase
in a frequency band is known as event-related
synchronization (ERS) [75]. For example, it
has been found that the planning and execution
of movement lead to predictable decreases in
the alpha and beta frequency bands [75]. Also,
as illustrated in Fig. 4.6, many studies have
demonstrated that motor imagery can cause
ERD (and often ERS) in primary sensorimotor
areas [75, 77–80]. Such characteristic changes
in EEG rhythms can be used to classify brain
states relating to the planning/imagining of
different types of limb movement. This is the
basis of neural control in EEG-based BCIs

using motor imagery paradigms. Studies have
demonstrated that people can learn to increase
and decrease sensorimotor rhythm amplitude
over one hemisphere using motor imagery
strategies and thereby control physical or virtual
devices [13, 14, 18, 29–31, 63, 81, 82].

4.3.3.2 Slow Cortical Potentials
Acompletely different type of signalmeasured by
EEG is the slow cortical potential (SCP) (see Fig.
4.7) that is caused by shifts in the depolarization
levels of pyramidal neurons in cortex. Negative
SCP generally reflects cortical activation, while
positive SCP generally reflects reduced activa-
tion. SCP occurs from 0.5 to 10 seconds after the
onset of an internal event and is thus considered
a slow cortical potential [83]. People can learn to
control SCPs and use them to operate a simple
BCI [84].

4.3.3.3 The P300 Event-Related
Potential

The P300 is an endogenous event-related poten-
tial (ERP) component in the EEG and occurs in
the context of the “oddball paradigm” [85]. In this
paradigm, users are subject to events that can be
categorized into two distinct categories. Events
in one of the two categories occur only rarely.
The user is presented with a task that can be ac-
complished only by categorizing each event into
one of the two categories. When an event from
the rare category is presented, it elicits a P300
response in the EEG. As shown in Fig. 4.8, this
is a large positive wave that occurs approximately
300 msec after event onset. The amplitude of the
P300 component that is inversely proportional to
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Fig. 4.6 Event-related desynchronization (ERD) and
event-related synchronization (ERS) phenomena before
and after movement onset. ERD/ERS is a time-locked
event-related potential (ERP) associated with sensory
stimulation or mental imagery tasks. ERD is the result
of a decrease in the synchronization of neurons, which
causes a decrease of power in specific frequency bands;

and it can be identified by a decrease in signal amplitude.
ERS is the result of an increase in the synchronization of
neurons, which causes an increase of power in specific
frequency bands; and it can be identified by an increase
in signal amplitude. (From Pfurtscheller and Neuper [76],
with permission, © 2001 IEEE)

Fig. 4.7 Slow cortical
potential (SCP) signals to
convey different intents.
SCPs are caused by shifts
in the dendritic
depolarization levels of
certain cortical neurons.
They occur from 0.5 to
10 seconds after the onset
of an internal event and are
thus considered a slow
cortical potential. (From
Kübler et al. [83], with
permission)
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the frequency of the rare event is presented. This
ERP component is a natural response and thus
especially useful in cases where either sufficient
training time is not available or the user cannot be
easily trained.

4.3.3.4 Event-Related Potentials
Exogenous event-related potentials (ERPs) are
responses that occur in the EEG at a fixed time
after a particular visual, auditory, or somatosen-
sory stimulus. The most common way to derive
ERP from EEG recording is aligning the signals
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Fig. 4.8 P300 ERP component. When the user sees ob-
jects randomly flashed on a screen, the P300 response
occurs when the user sees the flash of the object the user
is looking for (or wishes to select), while the flashes of
the other objects do not elicit this response. The amplitude
of the P300 component is inversely proportional to the
rate at which the desired object is presented and occurs
approximately 300 msec after the object is displayed. It
is a natural response and requires no user training. (From
Kubler et al. [83], with permission)

according to the stimulus onset and then averag-
ing them. The number of stimuli averaged typi-
cally range from a few (e.g., in BCI applications)
to hundreds or thousands in other neuroscience
research. ERPs are sometimes characterized as
“exogenous” or “endogenous.” In general, exoge-
nous ERPs are shorter latency and are determined
almost entirely by the evoking stimulus, while
endogenous ERPs are longer latency and are de-
termined to a considerable extent by concurrent
brain activity (e.g., the nature of the task in which
the BCI user is engaged).

ERPs are related to the ERD/ERS described
above. ERPs reflect in large part activity in the
ongoing EEG that is phase-locked by the stimuli.
Typically, after averaging, the ERP contains in-
formation about very low-frequency components
(i.e., <1 Hz). Other components are canceled out
in the process of averaging across repetitions, and
the information above 1 Hz is poorly represented.
An alternative way to characterize task-related
EEG signals is to examine the rhythmic activity
before averaging, in terms of power (ERD/ERS)

or phase. This method does not require averaging
and thus can be applied to single trials. Therefore,
it is useful for BCI control (although it is still
subject to the limitations of its signal-to-noise
ratio).

The ERP most commonly used in BCIs is the
visual evoked potential (VEP), which occurs in
response to a visual stimulus. One frequently used
VEP is the steady-state visual evoked potential
(SSVEP). SSVEPs and other VEPs depend on the
user’s gaze direction and thus require muscular
control. To produce such signals, the user looks at
one of the several objects on a screen that flicker
at different frequencies in the alpha or beta bands.
Frequency analysis of the SSVEP shows a peak
at the frequency of the object at which the user is
looking. Thus, a BCI can use the frequency of this
peak to determine which object the user wants to
select [86, 87].

4.3.3.5 Spikes and Local Field
Potentials

Both spikes and local field potentials are acquired
from microelectrodes implanted through invasive
techniques. Spikes reflect the action potentials
of individual neurons. Since the CNS appears
to encode information in the firing rates of
neurons, recording spiking activity may be
highly useful. Local field potentials (LFPs)
represent mainly synchronized events (largely
in the frequency range of <300 Hz) in neural
populations. The major sources of LFPs are
synaptic potentials (which are also the major
sources for EEG/MEG/ECoG). Other integrative
somadendritic processes, including voltage-
dependent membrane oscillations and after-
potentials following somadendritic spikes, can
contribute to LFPs. LFPs and their different
band-limited components (e.g., theta (4–7 Hz),
alpha, beta, gamma) are tightly related to
cortical processing. Gamma-band LFP activity
is especially tightly coupled to spiking activity.
Because LFPs reflect signals frommany neurons,
their spatial resolution (and possibly their
functional specificity) is lower than that of
spiking activity. See next chapter for BCIs using
intracortical recordings.
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4.4 Signal Processing

The goal of BCI signal processing is to extract
features from the acquired signals and translate
them into logical control commands for BCI ap-
plications. A feature in a signal can be viewed as
a reflection of a specific aspect of the physiology
and anatomy of the nervous system. Based on this
definition, the goal of feature extraction for BCI
applications is to obtain features that accurately
and reliably reflect the intent of the BCI user.

4.4.1 Feature Extraction

The goal of all processing and extraction tech-
niques is to characterize an item (i.e., the desired
user selection) by discernible measures whose
values are similar for those in the same category
but different for items in another category. Such
characterization is accomplished by choosing rel-
evant features from the numerous choices avail-
able. This selection process is necessary since
unrelated features can cause the translation al-
gorithms to have poor generalization, increase
the complexity of calculations, and require more
training samples to attain a specific level of accu-
racy.

In addition, even though a BCI user is able
to generate detectable signals that convey her or
his intent, signal acquisition methods also capture
noise generated by other unrelated activity in or
outside of the brain. Thus, it is important that
feature extraction maximize the signal-to-noise
ratio.

4.4.1.1 Artifact/Noise Removal
and Signal Enhancement

Artifact or noise removal plays an important
role in EEG-based BCIs. Since signals are often
captured across several electrodes over a series
of points in time, existing methods concentrate
on either spatial-domain processing or temporal-
domain processing or both. To minimize noise
in the signal, it is important to understand its
sources. First, noise can be captured from neural
sources when brain signals not related to the
target signal are recorded. Noise can also be

generated by non-neural sources such asmuscular
movements, particularly of the facial muscles.
This type of noise in EEG is especially important
as signals generated bymuscular movements may
have much higher amplitudes and can easily be
mistaken for actual EEG activity. The problem
is further complicated when the frequencies and
scalp locations of the non-neural noise and the
chosen EEG features are similar.

Typically non-CNS artifacts are the result
of unwanted potentials from eye movements,
EMG, and other non-neural sources. They are
often more prominent in the EEG than brain
signals. Simple instructions to the user to not use
facial muscles can help and trials that contain
such artifacts can be disregarded, but these
approaches are not always adequate to remove
such noise. Mathematical operations such as
linear transformations and component analyses
are also used for artifact removal.

After artifact removal, spatial filtering tech-
niques are useful for enhancing features with a
specific spatial distribution. In BCI systems that
use mu or alpha rhythms, the selection of spatial
filters can greatly affect the signal-to-noise ratio
[88]. A high-pass spatial filter such as the bipolar
derivation calculates the first spatial derivative
and emphasizes the difference in the voltage gra-
dient in a particular direction. The surface Lapla-
cian [89, 90] also acts as a high-pass filter and can
be approximated by subtracting the average of the
signal at four surrounding nodes from the signal at
the node of interest. It is the second derivative of
the spatial voltage distribution and thus is effec-
tively a spatial high-pass filter that emphasizes the
contributions from the neural areas closest to the
recording electrode (node of interest) [91]. Spline
functions can be used to more accurately estimate
the surface Laplacian from EEG recordings [92],
but in most BCI applications finite difference
estimates are used from EEG recordings in a few
electrodes due to computational efficiency.

Temporal-domain processing techniques are
also useful in maximizing the signal-to-noise ra-
tio. These methods work by analyzing the signal
across a period of time. Some temporal-domain
processing methods such as Fourier analysis re-
quire significantly long signal segments, while
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others such as band-pass filtering or autoregres-
sive analysis can work on shorter time segments.
Though all temporal-domain processing methods
work well during offline BCI analysis, some of
them are not as useful as spatial-domain process-
ing methods during online analysis because of the
rapid responses required.

4.4.1.2 Feature ExtractionMethods
The methods for extracting features depend
largely on the type of neural signals used in
the BCI and the characteristics associated with
the underlying neural process. For neural signals
representing mass responses of a large number of
neurons (EEG/MEG/ECoG), defining features by
spatial location is as important as defining them
by temporal/spectral characteristics. In order to
optimize the spatial information, the channels
used for BCI control are usually a selected subset
of a few channels. These can be selected with
methods such as principal components analysis
(PCA), common spatial pattern analysis (CSP)
[93], and independent component analysis (ICA)
[94], or based on a priori knowledge of the
functional organization of the relevant cortical
area(s). Electrophysiological source imaging
(ESI) methods have also been proposed as a
spatial deconvolution approach to extracting
spatial information about the features used in
a BCI [13, 59–63].

In order to define the temporal/spectral param-
eters of the chosen features, the neural signals
are usually subjected to time-frequency analysis.
Frequency-based features have been widely used
in signal processing because of their ease of ap-
plication, computational efficiency, and straight-
forward interpretation. Because these features do
not provide time-domain information, they are
not sensitive to the nonstationary nature of EEG
signals. Thus, mixed time–frequency representa-
tions (TFRs) that map a one-dimensional signal
into a two-dimensional function of time and fre-
quency can be used to analyze the time-varying
spectral content of the signals. A typical example
is the extraction of the ERD feature in senso-
rimotor rhythms, which can be obtained using
a traditional moving-average method (as shown
in Fig. 4.9), an envelope-extraction method (Fig.

4.10), or a TFR method based on wavelets (Fig.
4.11). Parametric approaches are also commonly
used to estimate the time/frequency features, such
as autoregressive (AR) modeling for stationary
signals and adaptive autoregressive modeling for
nonstationary signals, which are widely imple-
mented in online BCI systems due to their com-
putational efficiency. However, it is worth noting
that such parametric modeling approaches usu-
ally require predetermined parameters, such as
the model order [95], which can influence BCI
performance.

Neural network, especially deep neural net-
work (or deep learning), is attracting more and
more attention for feature extraction and feature
translation. An early effort was to use neural net-
works for classifying motor imagery tasks [96].
Several studies using deep learning approaches
showed moderate success on offline analysis of
existed public BCI data sets [97, 98]; however,
the effectiveness has to be further validated by
more extensive online experiments. On the con-
trary to the moderate success in conventional
BCI applications, the neural network approach
seems to be more successful in the speech BCI.
Angrick et al. designed a densely connected 3D
convolutional neural networks to reconstruct the
spoken words from ECoG signals in the auditory
cortex and obtained relatively high-quality speech
[41]. Akbari et al. used a deep neural network
to estimate the parameters of a speech vocoder
directly and achieve relatively high performance
on a digit recognition task [36]. Instead of directly
decoding the parameters of a speech synthesizer
from the ECoG signals, Anumanchipalli and col-
leagues used a two-stage approach to solve the
problem. They first decoded the articulatory kine-
matic features from the continuous ECoG sig-
nals by training a recurrent neural network. Then
they translated the kinematic features into the
acoustic sound via a general model, which map
the recorded speech into the movements of the
vocal-tract articulators via a recurrent neural net-
work by their previously accumulated data [11].
They showed successful reconstruction efficacy
in closed vocabulary tests, and human listeners
could identify and transcribe the reconstructed
speech. Further investigation is needed to delin-
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Fig. 4.9 Techniques used to extract ERD and ERS from
raw EEG signals. First, the raw EEG signal from each
trial is band-pass filtered. Second, the amplitude samples
are squared to obtain the power samples. Third, the power

samples are averaged across all trials. Finally, variability is
reduced and the graph is smoothed by averaging over time
samples. (FromPfurtscheller and Lopes da Silva [75], with
permission from Elsevier)

eate the sources of these successes, that is, due to
the deep learning algorithms or due to the use of
invasive ECoG signals (vs. EEG).

4.4.1.3 Feature Selection
and Dimensionality Reduction

Feature selection algorithms are used in BCI
designs to find the most informative features
for determining the user’s intent. This approach
is especially useful for BCI designs with
high-dimensional input data, as it reduces the
dimension of the feature space. Since a feature
selection block reduces the complexity of the
translation problem, higher translation accuracies
(i.e., higher accuracies of determining the user’s
intent) can be achieved.

As discussed by Blum and Langley [99],
feature selection techniques can be divided into
three major categories. In the first category, called
embedded algorithms, the feature selection is a
part of the translation (also called classification)

method. The feature selection procedure adds or
removes features to counteract prediction errors
as new training data are introduced. Embedded
algorithms, however, are of little use when there
is a high level of interaction among relevant
features.

In the second category, filter algorithms, spe-
cific features are selected prior to, and indepen-
dent of, the translation process. These algorithms
work by removing irrelevant features (those pro-
viding redundant data or contaminated by noise)
prior to training the translation technique. One
approach to filtering involves calculating each
feature’s correlation with the user’s intent and
then selecting a fixed number of features with the
highest scores. Another filtering approach derives
higher-order features based on features from the
raw data, sorts these higher-order features based
on the amount of variance they explain, and then
selects a fixed number of the highest-scoring fea-
tures.
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Fig. 4.10 Steps of feature extraction for sensorimotor
rhythms. It is difficult to detect a coherent component in
the raw EEG signal depicted in the top frame because there
is a lot of noise in the signal. The second frame shows the
signal after being processed through a surface Laplacian
filter that focuses on EEG components in a specific spatial
frequency range. As shown in the third frame, the signal
is then band-pass filtered to isolate the frequencies of
interest. The features become evident in the fourth frame
as they are extracted by using a grand averaging method
over a fixed bin or window size

The final category consists of wrapper algo-
rithms. Wrapper algorithms select features by
using the translation algorithms to rate the vi-
ability or quality of a feature set. Rather than
selecting a feature set based on the results of
the translation, these algorithms use the trans-
lation algorithm as a subroutine to estimate the
accuracy of a particular subset of features. This
type of algorithm is unique to a translation algo-
rithm and particularly useful with limited training
data.

For certain situations, existing signals are not
sufficient for high accuracy feature extraction.
Some methods introduce more signals to cap-
ture additional information about the state of the
brain (e.g., by using 56 electrodes where only 2
were previously used). For example, the increased
spatial data can be processed to derive common
spatial patterns. This is achieved by projecting
the high-dimensional spatiotemporal signal onto
spatial filters that are designed such that the most
discriminative information is inherent in the vari-
ances of the resulting signals [100].

4.4.2 Feature Translation

Translation techniques are algorithms developed
with the goal of converting the input features
(independent variable) into device control
commands (dependent variables) that achieve
the user’s intent [10]. Translation techniques
used widely in other areas of signal processing
are adapted to BCI technology. Ideally, the
translation algorithm will convert the chosen
features into output commands that achieve the
user’s intent accurately and reliably. Furthermore,
an effective translation algorithm will adapt so as
to adjust for spontaneous changes in the features
and will also encourage and facilitate the user’s
acquisition of better control over the features.

There are numerous types of feature transla-
tion algorithms. Some use simple characteristics
such as amplitude or frequency, and some use
single features. Some advanced algorithms utilize
a combination of spatial and temporal features
produced by one ormore physiological processes.
Algorithms currently in use include, but are not
limited to, linear classifiers, Fisher discriminants,
Mahalanobis distance-based classifiers, neural
networks (NN), support vector machines (SVM),
hidden Markov models, and Bayesian classifiers.
A thorough literature review for classification
algorithms of EEG-based BCI has recently
been carried out [101]. Lotte et al. summarized
the newly developed feature translation or
classification methods including the adaptive
classifier, matrix and tensor classifier, transfer
learning and deep learning besides the previously
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Fig. 4.11 Time-frequency representations (TFRs) of sen-
sorimotor rhythms during motor imagery. TFRs were re-
aligned at time = 0 s (dashed line) and the target times

were normalized to be 2 s (solid line). (From Yuan et al.
[63], with permission from IEEE, © 2008 IEEE)

commonly used linear classifier, nonlinear
Bayesian classifier, classifier combinations,
etc. [101]. The adaptive classifier seems to
provide superior performance to static ones
in general. This is intuitive since the EEG
signals are nonstationary signals and adaptive
approaches are better at tracking the changes in
the dynamic process than the static approaches.
However, since BCI systems are a two-learners
system, that is, the human and the machine, the
adaptation frequency might be critical. Either
too fast adaptation or too infrequent adaptation
might be detrimental to the BCI system [26–
28]. A good amount of comparisons between
adaptive and static classifiers in the literature is
offline analysis or comparison within a single
session. Thus, the superiority of using adaptive
classifiers in many studies probably does not
account for the learning process of subjects
[102]. More careful investigation has to be
conducted to clarify the conditions further when
adaptive classifiers improve both the subject’s
learning and the system’s performance. Transfer
learning and deep learning methods also show
improvements in certain cases, but their benefits
remain uncertain yet. Transfer learning might be
good when building a general model from a large
population of participants. It might decrease or
eliminate the tedious or costly training period.
Deep learning showed remarkable success in
the speech BCI recently; however, whether
it provides superior performance in more
general applications needs further investigation.
Particularly, the Riemannian geometry–based
method seems to work very well in a variety

of BCI paradigms including motor imagery,
ERPs, and SSVEP-based BCI. The covariance
matrix of EEG signals during the BCI task
contains abundant task-related information.
The Riemannian geometry–based methods map
the covariance matrix of EEG trials into the
geometrical space and the computation is in a
Riemannian manifold, which is a non-Euclidean
space [103]. The covariance matrix of EEG
signals could be treated as the notion of the
traditional basic data points. Thus, the ideas of
the center of mass and nearest neighbors could
be applied intuitively in the geometrical space.
The previous research result of the Riemannian
approach showed good robustness to noise [104].
Further investigations and especially under real-
time experimental settings are warranted to
validate the efficacy.

Whatever translation algorithm is used, the
outcomes of translation can be control commands
in two ways: continuous or discrete. The follow-
ing section details the difference between these
two ways of translation.

4.4.2.1 Continuous Feature Translation
In continuous feature translation, consecutive
output commands are generated continually
based on the features. Examples of this translation
are the kinematic parameters (arm position,
velocity, etc.) that control a prosthetic arm.
The features are usually derived from short-time
windowed signals and are then continuously fed
into the translation algorithm so that dynamic
outcomes are obtained for BCI control. A fixed
translation algorithm can be used for continuous
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feature translation. Algorithms that adapt can
often yield better performance. Due to the
demands of processing the features in consecutive
short-time windows, the choice of feature
extraction methods and translation methods
should favor those with less computational load,
which may not be those algorithms that perform
best in offline testing. However, the advantage
of using continuous translation is that it allows
the users to adjust their strategies in the course of
control. This is beneficial for learning by the user
as well as by the BCI.

4.4.2.2 Discrete Feature Translation
In contrast, discrete feature translation produces
periodic commands at fixed intervals. An exam-
ple of this type of translation is a BCI that uses
a P300 signal. A P300-based BCI will typically
issue a command every several seconds. Thus,
it is particularly suited for applications such as
word processing, which requires discrete letter
selections, and less suited for applications such
as multidimensional robotic arm control, which is
best implemented by a continuous series of output
commands.

4.5 Major BCI Applications

4.5.1 Replacing Lost
Communication

An important application for BCI technology is
providing a new method for communication so
that a person who has lost normal means of com-
munication can interact with his or her exter-
nal environment. Current BCIs are suitable for
environmental control (e.g., temperature, lights,
television), for answering yes/no questions, and
for simple word processing or e-mailing.

While such communication can be provided
through brain control, there are alternative op-
tions not involving neural signals. Those who
retain the control of only a single muscle can
often use this for communication. For example,
the electric activity associated with finger mus-
cles, eyebrows, or the diaphragm can be used to

build an alternative control channel that may be
faster and more accurate than current BCIs driven
by neural signals. Thus, BCIs are particularly
needed for users who lack all muscle control
or whose remaining control is easily fatigued
or otherwise unreliable. These people include
those who are nearly totally paralyzed but retain
cognitive function (e.g., people with advanced
ALS) and those who have movement disorders
that abolish useful muscle control (e.g., people
with severe cerebral palsy). Although people with
these disorders may have lost the ability to control
any muscle movement, their cognitive function
may still be intact and they may therefore have
the potential to control a BCI and use it to com-
municate. For these locked-in people, conven-
tional communication methods based on muscle
activity may have little to offer them so that
even the simplest BCI-based communication, like
the ability to say yes or no, can be extremely
valuable.

Thus far, most current BCI research has been
carried out in healthy subjects. A few studies have
been conducted to test the feasibility of BCI com-
munication in severely disabled people in labora-
tory settings or even in their homes. The transfer
of current BCI communication systems into use
by severely disabled people for useful purposes
faces several challenges. First, the disease states
that abolish voluntary muscle control may also
impair user control of the signal features used by
a BCI. For example, ALS may lead to loss of
cortical neurons, which might conceivably affect
generation or control of the sensorimotor rhythms
or evoked potentials used for BCI-based commu-
nication. Thus, it may be important to develop
diverse BCI systems that are based on various
types of neural signals so that more options can be
provided for different types of brain impairments.
Furthermore, damage to prefrontal cortex (e.g., in
multiple sclerosis, Parkinson’s disease, or ALS)
can impair attention and thereby adversely affect
BCI use. For these users, a long-duration training
protocol may be problematic. Thus, for these
users, BCI systems that require minimal train-
ing, such as SSVEP-based systems, may be most
suitable.
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4.5.2 Replacing Lost Motor
Function and Promoting
Neuroplasticity to Improve
Defective Function

Perhaps the highest degrees of control achieved so
far in BCI development is with neuroprostheses
developed for restoringmotor function. The state-
of-the-art in movement control is multidimen-
sional and point-to-point (and continuous) control
of a robotic arm. In humans, sensorimotor rhythm
modulation based on noninvasive EEG record-
ings has demonstrated three-dimensional control
of a computer cursor [81, 105] or continuous
real-time flight control of a virtual helicopter
[29, 31] or physical quadcopter [30], or real-
time operation of a powered wheelchair [12], or
continuous control of a robotic arm [13, 14]. A
direct decoding of three-dimensional movement
trajectory from human EEGs has also been re-
ported [54]. Such replacement of motor function
could be valuable for patients who suffer from
various degrees of paralysis. It is estimated that
there are currently over two million people in
the United States alone suffering from paralysis.
Additionally, every year there are approximately
12,000 new cases of spinal cord injury in the
United States. The list of causes of paralysis
is extensive and includes stroke, cerebral palsy,
ALS, multiple sclerosis, muscular dystrophies,
trauma, and other neurodegenerative conditions.
Many individuals suffer from permanent loss of
motor function. A neuroprosthesis, therefore, of-
fers an opportunity to get back a useful substitute
for normal motor control. While conventional
options based on limited muscle activity may
also provide such function, BCI-operated neuro-
prostheses could provide an embodied prosthetic
control that is directly related to the user’s in-
tention. For example, when users want to move
their arms, they could instead move a robotic arm
by communicating with the BCI their intention to
move their own arms. They would not have to use
different muscle activity, such as eye-blinking, to
move a robotic arm.

Another exciting possible application of BCI
technology is promoting neuroplasticity to restore
lost function. Studies have shown that training

for and using BCIs can lead to changes in neu-
ral activity that facilitate the use of prosthetic
devices, especially when combined with func-
tional electric stimulation (FES) [106, 107]. Such
learning-related changes are especially important
for people with brain injuries, such as those who
have suffered from stroke [20, 108]. In a study us-
ing MEG recordings, patients with chronic hand
hemiplegia after stroke successfully learned to
use motor imagery to control their sensorimotor
rhythms, and they were able to use a BCI to
control an orthotic device that opened and closed
their paralyzed hands [109]. As shown in Fig.
4.12, subjects’ performances steadily improved
as they learned to use the device. Comparison
between the early and late training stages re-
vealed enhanced sensorimotor rhythms in the ip-
silesional hemisphere, which was the hemisphere
used to control the device. Several randomized
controlled studies have indicated that assisting
movement with FES coupled to BCI use can
substantially improve upper-limb function in in-
dividuals who have been mildly to moderately
[110] or severely [20, 108, 111] impaired by
stroke. Studies with both invasive and nonin-
vasive BCIs also indicate that learning-related
changes can occur over days to months [26, 102].
Interestingly, once users have learned to operate
a neuroprosthesis with a BCI, they retain this
skill months later without intervening use [18],
suggesting a long-term learning-related change
in neural circuits. Thus, BCIs might be used to
help actually restore motor function by promot-
ing beneficial neuroplasticity in neuromuscular
pathways.

4.5.3 Supplementing Normal
Function

BCI technology may also be used to supplement
normal neuromuscular function. This is particu-
larly true when considering BCI applications for
use in the daily life of healthy individuals for the
purpose of enhancing quality of life or functional-
ity. One potential application is to aid navigation
by means of BCI use. Controlling a computer
cursor represents one such application aimed not
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Fig. 4.12 Patients with chronic hand hemiplegia after
stroke were trained to move a cursor on a screen via mod-
ulation of ipsilesional sensorimotor mu rhythm recorded
by MEG. Successful trials with the BCI resulted in the
opening or closing of the patient’s paralyzed hand via a
mechanized orthosis. This figure shows the results from
three patients. (a) The performance of these patients
across sessions indicates that the proportion of successful
trials increased over time. The statistical maps for the

correlations between sensorimotor mu rhythm amplitudes
from signals recorded from sensors above the ipsilesional
primary motor cortex, and successful performance at b
(early) or c (late) training time points demonstrate mod-
ulation of sensorimotor rhythms with BCI training. Red
and yellow colors identify areas where there was a high
degree of correlation. (d) Single axial MRI scans obtained
for each patient. Each patient’s lesion is highlighted in red.
(From Dimyan and Cohen [198], with permission, © 2011
Nature)

only at helping disabled people to gain control
of external devices, but also serving as a means
for healthy individuals to control external devices
without using normal neuromuscular channels.
Studies have shown promise in accomplishing
navigation in a virtual world, including moving
a computer cursor [18, 81], walking in a virtual
world [112], continuous real-time controlling of
flight of a helicopter in a three-dimensional vir-

tual campus [29, 31] or physical campus [30], and
recently, real-time controlling of a robotic arm
[13, 14].

A challenge in using BCI technology to sup-
plement normal function is the limited informa-
tion transfer rate compared with that of normal
muscular control. A healthy subject will prefer
manual typing over BCI use to accomplish that
task. BCI might provide an additional degree of
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freedom, such as a third arm control [19]. In
some certain cases, BCImight support some tasks
that need more than two hands and the accuracy
is not a critical issue; thus, it might be benefi-
cial to the healthy population. Nevertheless, BCI
technology controls may meet the need for cases
in which high information transfer rate is not
an essential factor and nonmuscular control is
desirable.

4.5.4 Augmenting/Virtualizing
Reality with BCI

The development of virtual reality (VR) and aug-
mented reality (AR) gives researchers better tools
in the end-user interaction [34, 113, 114]. The
combination of BCI with VR/AR might result in
better users’ embodiment and engagement. Espe-
cially in certain conditions such as stroke reha-
bilitation, VR/AR may play a unique and vital
role [115]. Patients who lose their ability to move
might struggle to perform motor imagination like
healthy participants [116]. In VR, an avatar is
easily created and the avatar might induce a per-
ception illusion of the body ownership in certain
conditions [117]. This included perception of im-
mersion might be facilitated to the neural rehabil-
itation since this change of perception alters the
underlying cognitive process. Bermudaz and col-
leagues used a first-person perspectiveVR in their
BCI system, and they combined a personalized
training in the virtual environment as well [118].
Their data showed users’ enjoyment and engage-
ment for the BCI-VR system in a group of healthy
subjects, although Coogan et al. [34] did not ob-
serve improved performance in a group of healthy
subjects with VR setting as compared to a tradi-
tional setting. In their studies, Johnson et al. [115]
showed a substantial improvement of behavior in
motor recovery when using BCI and VR in stroke
subjects. Although the combination of BCI and
VR seems promising in some applications such
as stroke rehabilitation, due to the few numbers of
subjects in previous literature, further studieswith
a larger scale of the subject population need to be
performed.

4.5.5 Providing Neurofeedback

Neurofeedback could be dated back with
experiments showing that humans could self-
control electroencephalographic signals in real
time [119]. An essential part of a typical BCI
system is providing neurofeedback, which
is then translated into a control command
interacting with a peripheral device such as a
computer cursor [18], a quadcopter [30], or
a robotic arm [14]. As a progenitor of BCI
technology, providing neurofeedback could be
used for self-modulating the psychophysiological
signals in the brain for self-regulation instead of
commanding peripheral devices [120, 121]. In
the research field of adaptive neurofeedback, the
brain activation is treated as the independent
variable and the behavior and thought are
treated as dependent variables. It could open an
exciting field of innovative treatment for patients
with psychopathological conditions such as
attention deficit disorder [17, 122], etc. The BCI
technology might enhance the cognitive function
of the aging population [123] or provide novel
approaches to improve the sustained attention
status, for example, providing a more sensitive
feedback signal such that users can learn to sense
upcoming attentional lapses earlier and prevent
them from manifesting in behavior [17].

The long-term effect of neurofeedback and the
transfer benefits in clinical treatment are still un-
known. Furthermore, the causal brain–behavior
relationship, which might help to understand the
underlying neural mechanism of neurofeedback,
is needed. Thus, further investigations of these
questions using a more rigorous experimental
design, for example, excluding the placebo effect,
should be performed [121].

4.6 Examples of EEG-Based BCI
Systems

With the growing kinds and combinations of sig-
nals, feature extraction methods, and translation
techniques, the number and variety of different
BCI systems are increasing rapidly [124]. Basic
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research typically starts using offline analyses,
where signal acquisition is followed by feature
extraction and translation as a separate step. This
type of BCI simulation allows researchers to re-
fine and test extraction and translation algorithms
before testing them in actual online use. On the
other hand, ultimately, any new BCI technique
needs to be tested online to assess its perfor-
mance.

A useful categorization of BCI systems is
external versus internal. External BCI systems,
also known as exogenous BCI systems, classify
based on a fixed temporal context in regard
to an external stimulus not under the user’s
control. These systems use brain signals evoked
by external stimuli, such as VEPs. These BCI
systems do not require extensive training but do
require a controlled environment and stimulus.
Internal BCI systems, also known as endogenous
BCI systems, on the other hand, classify based on
a fixed temporal context with regard to an internal
event. These systems use brain signals evoked by
tasks such as motor imagery and usually require
significant user training.

In another widely accepted BCI categorization
as proposed by Zander et al. [125], the BCIs
are categorized as active, reactive, and passive.
An active BCI is a BCI that derives its outputs
from brain activity that is directly consciously
controlled by the user, independently from exter-
nal events; a reactive BCI is a BCI that derives
its outputs from brain activity arising in reaction
to external stimulation, the user indirectly mod-
ulates that; a passive BCI is a BCI that derives
its outputs from arbitrary brain activity without
the purpose of voluntary control, for enriching a
human–computer interaction with implicit infor-
mation [125].

4.6.1 General-Purpose Software
Platforms for BCI Research

With the advances in BCI research and devel-
opment that have taken place during the past
decades, the number of laboratories conducting
BCI research has grown substantially. However,
when building new BCI systems, problems often

arise in trying to integrate hardware and software
from different sources. As more BCI paradigms
are proposed, it is very useful to have a general
software platform for comprehensive evaluation
of different BCI methodologies.

Such a general platform should readily support
different BCI methodologies and facilitate the
interchange of data and experimental protocols
[126].

BCI2000 Perhaps the most widely used general-
purpose software platform for BCI research is
BCI2000 (http://www.bci2000.org/). BCI2000
was developed and is being maintained by
the BCI laboratory at the Wadsworth Center,
New York State Department of Health, Albany,
New York, USA, in collaboration with the
University of Tübingen in Germany [127]. Figure
4.13 shows the overall structure of BCI2000.
It consists of four modules (Source, Signal
Processing, User Application, and Operator
Interface) that communicate with each other.
BCI2000 supports the incorporation of different
data acquisition hardware, signal-processing
routines, and experimental paradigms. BCI
researchers can use it to start their research
quickly and effectively. The se of BCI2000 is
free for academic and research institutions. A
detailed description of the BCI2000 software
platform and its practical applications can be
found in Schalk et al. [127].

OpenViBE It is another popular open-source
BCI platform that has grown fast in recent years
[128]. OpenViBE is a C++ based software
platform designed for real-time processing
of biosignal data. The key features of the
platform are (i) modularity and reusability. The
platform consists of a set of software modules
devoted to data acquisition, signal processing,
and visualization, as well as to the interaction
with virtual reality (VR). (ii) The platform is
designed for different types of users, including
BCI researchers, clinicians, VR developers, etc.
(iii) The platform operates independently from
different software targets and hardware devices.
(iv) The platform can be integrated with high-
end VR applications. Meanwhile, its graphical

http://www.bci2000.org/
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Fig. 4.13 BCI2000 design. BCI2000 consists of four
modules: Operator, Source, Signal Processing, and Appli-
cation. The Operator module acts as a central relay for sys-
tem configuration and online presentation of results to the
investigator. It also defines onset and offset of operation.

During operation, information (i.e., signals, parameters, or
event markers) is communicated from the Source module
to the Signal Processing to the User Application module
and back to the Source module. (From Schalk et al. [127],
with permission)

language for designing signal-processing chains
is attractive [129].

4.6.2 BCIs Based on Sensorimotor
Rhythms

Wolpaw and coworkers developed a BCI system
that allows users to control to move a computer
cursor in one, two, or three dimensions. The EEG
is recorded as the users actively controlled mu
and/or beta rhythm power (amplitude squared) at
one or several specific electrode locations over
sensorimotor cortex. The EEG power spectra are
calculated by an autoregressive method to gen-
erate the feature vector [18, 81]. This method
provides multidimensional control that is compa-
rable in speed and accuracy to that achieved to
date in humans with microelectrodes implanted
in cortex [130].

Pfurtscheller and coworkers developed a BCI
system that usedmu rhythmEEG recordingsmea-
sured over sensorimotor cortex. The rawEEG sig-
nals were filtered to yield the mu band (8–12 Hz)
and then squared to estimate the instantaneous
mu power. Five consecutive mu-power estimates
during ERD were combined to create a five-
dimensional feature vector that was classified us-
ing one-nearest neighbor classifier with reference
vectors generated by a learning vector quantiza-

tion (LVQ) method. LVQ is a vector quantiza-
tion method in which the high-dimensional input
space is divided into different regions with each
region having a reference vector and a class label
attached. During feature translation, an unknown
input vector is classified by assigning it to the
class label of the reference vector to which it is
closest [131].

He and colleagues investigated the possibil-
ity of using BCI control based on sensorimotor
rhythms for continuous navigation of an object
in a virtual three-dimensional world [29, 31],
or physical world [13, 14, 30]. Control signals
were derived from motor imagery tasks, and in-
telligent control strategies were used to improve
the performance of navigation. By using a con-
stant forward flying velocity, three-dimensional
navigation was reduced to two-dimensional nav-
igation, which allowed human subjects to fly
a virtual helicopter to any point in the three-
dimensional space [31]. Further studies have en-
abled human subjects to perform fast, accurate,
and continuous control of a virtual helicopter in
three-dimensional space [29]. In this BCI sys-
tem, the virtual helicopter’s forward-backward
translation and elevation controls were actuated
through the modulation of sensorimotor rhythms
that were converted to forces applied to the virtual
helicopter at every simulation time step, and the
helicopter’s angle of left or right rotation was
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linearly mapped, with higher resolution, from
sensorimotor rhythms associated with other mo-
tor imaginations. These different resolutions of
control allow for interplay between general intent
actuation and fine control as is seen in the gross
and finemovements of the arm and hand. Subjects
controlled the helicopter with the goal of fly-
ing through rings (targets) randomly positioned
and oriented in a three-dimensional space. After
establishing the technique, He and colleagues
further demonstrated that human subjects could
fly a physical quadcopter to any point in a 3-D
real world using control of EEG signals recorded
from scalp [30]. Figure 4.14 illustrates the study
design where a sitting subject performs multidi-
mensional control of the flight of a quadcopter to
fully explore an unconstrained 3-D space to any
target point in the 3-D space.

In another study, Meng et al. demonstrated
that healthy human subjects could operate a
robotic arm to reach and grasp objects in a
complex 3-D environment using only their
thoughts through motor imagination [14].

Using the combination of two sequential low
dimensional controls, efficient control of a
robotic arm for performing tasks requiring
multiple degrees of freedom was achieved.
Additionally, the participants maintained their
ability to modulate their brain rhythms to
control the robotic arm over multiple months.
It showed the potential of human operation of
prosthetic limbs using noninvasive EEG-based
BCI technology. Later on, Edelman et al. [13]
presented a noninvasive framework using EEG
to achieve the continuous control of a robotic
arm for random target tracking. Their continuous
pursuit task and associated training paradigm
promoted the participant’s engagement; this
enhanced engagement demonstrated nearly 60%
of behavioral improvement for traditional center-
out tasks andmore than 500% improvement in the
proposed continuous pursuit task. Additionally,
the noninvasive electrophysiological source
imaging approach further improved the BCI
control compared to the traditional technique in
sensor space. Such advances in the noninvasive

Fig. 4.14 A diagrammatic representation of an EEG-
based BCI system for control of a quadcopter. The bio-
electric signal generated from motor imaginations of the
hands is represented in the background of the figure. The
signal is acquired through the amplifiers in the subjects’
workstation where it is then digitized and passed to the
computer system. The raw signal is processed in real time
in the computer. Themovement of the quadcopter is driven

by the control signal, which is sent regularly through
WiFi. At the same time, a camera that is mounted in the
quadcopter sends the video images to the computer as
well. The subject adjusts control and adapts to the control
parameter of the system based on the visual feedback
from the video. Restoration of autonomy and the ability
to freely explore the world are the driving factors for the
development of the system. (From LaFleur et al. [30],
licensed under CC BY 3.0)
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Fig. 4.15 EEG BCI control of a robotic arm in humans.
By integrating both the user and machine learning aspects
of BCI technology, continuous control of a robotic arm
has been demonstrated using EEG source imaged signals.

Comparing BCI performance of robotic arm and virtual
cursor control demonstrated the ease of translating neural
control of a virtual object to a realistic assistive device
useful for clinical applications. (From Edelman et al. [13]
with Permission)

robotic arm control promise major impacts on
the eventual development and implementation of
neuroprosthetic limbs. Figure 4.15 illustrates the
BCI control of the robotic arm for continuous
tracking of a computer cursor from EEG source
imaged signals in human subjects.

4.6.3 BCIs Based on P300

The P300-BCI has now become one of the widely
used and successful BCI paradigms. The P300 is
a positive deflection in the ERP, with a latency
of 200 to 700 ms after stimulus onset (see Fig.
4.8). The response is elicited when subjects attend
to a sequence of stimulus events, including an
infrequently presented target (i.e., the “oddball”)
event. The P300 response is typically recorded
over central-parietal areas.

Most P300-BCIs use the visual P300 ERPwith
the row/column paradigm (RCP) [6, 38]. In the
RCP, a matrix (e.g., 6 × 6 cells) containing the
alphabet, numbers, and other items is presented
to the user for selection. The rows and columns
of the matrix flash in a random order (see Fig.
4.16). The subject attends to the desired item
letter and counts how many times the row and
column containing it flashes. Since P300 poten-
tials are prominent only in the responses elicited

by the target stimulus, the computer is able, after
a sufficient number of repetitions, to identify the
row and column that evoke a P300 response. The
item at the intersection of this row and column
is recognized as the target item, that is, the item
desired by the user.

P300-based BCIs have been tested in severely
disabled people [132]. Current research focuses
on improving system performance such as speed,
accuracy, consistency, and user comfort [133–
136]. Hong et al. [137] proposed a new type of
BCI speller (i.e., the N200-speller) that uses a
motion-onset visual ERP component. This sys-
tem has the advantage of lower luminance and
contrast thresholds and thus reduces the discom-
fort of bright stimuli.

4.6.4 BCIs Based on Visual Evoked
Potentials

Among noninvasive EEG-based BCIs, systems
based on visual evoked potentials (VEPs) have
been studied extensively. VEPs recorded over oc-
cipital areas are triggered by the sensory stimula-
tion of a subject’s visual field. VEPs reflect visual
information-processing mechanisms in the brain.
The stimulation of the central visual field evokes
larger VEPs than does peripheral stimulation. A
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Fig. 4.16 Classical visual P300-based BCI: the row/col-
umn paradigm. The rows and columns of the matrix flash
in random order. The infrequent event (i.e., the row or

column containing the item the BCI user wishes to select)
has a 1/6 probability of appearing

VEP-based BCI is a tool that can identify a target
on which a user is visually fixated via the analysis
of concurrently recorded EEG. In a VEP-based
BCI, each target is coded by a unique stimulus
sequence, which in turn evokes a unique VEP
pattern. To ensure reliable identification, VEPs
derived from different stimulus sequences should
be orthogonal, or near orthogonal, to each other
in some transform domain (e.g., the frequency
domain).

Stimulus sequence design is an important
consideration for an SSVEP-based BCI.
Depending on the specific stimulus sequence
(i.e., the modulation approach) used, current
SSVEP-based BCIs fall into four categories:
frequency-modulated VEP (f-VEP) BCIs [138,
139]; time-modulated VEP (t-VEP) BCIs [140,
141]; code-modulated VEP (c-VEP) BCIs [142];
and phase-modulated VEP BCIs (p-VEP) [87,
143].

As shown in Fig. 4.17a [144], each target
in a frequency-modulated (f-VEP) BCI flickers
at a different frequency. This generates a
periodic visual evoked response with the same
fundamental frequency as that of the flickering
stimulus, as well as its harmonics. Because the
flicker frequency of f-VEP BCIs is usually higher
than 6 Hz, the evoked responses from consecutive
flashes of the target overlap with each other.
This generates a periodic sequence of VEPs—a
steady-state visual evoked potential (SSVEP)—

which is frequency locked to the flickering
target. As such, f-VEP BCIs are often referred
to as SSVEP BCIs. Target identification can be
achieved through power spectral analysis. In past
decades, the robustness of f-VEP BCI systems
has been convincingly demonstrated in many
laboratory and clinical tests. The advantages of an
f-VEP BCI include simple system configuration,
little or no user training, and high information
transfer rate (ITR) (30–60 bits/min).

As shown in Fig. 4.17b [144], in time-
modulated VEP (t-VEP) BCIs, the flash
sequences of different targets are mutually
independent. This may be achieved by requiring
that flash sequences for different targets are
strictly nonoverlapping, or by randomizing the
duration of ON and OFF states in each target’s
flash sequence. The briefly flashed stimuli
elicit visual evoked potentials, which have short
latencies and durations.

In a t-VEP BCI, a synchronous signal must be
given to the EEG amplifier for marking the flash
onset of each target. t-VEPs are time-locked and
phase-locked to visual stimulus onset. Thus, since
the flash sequences for all targets are mutually
independent, averaging over several short epochs
synchronized according to the flash onset time of
each possible target will produce VEPs for each
possible target. Since foveal (i.e., fixation point)
VEPs are larger than peripheral VEPs, the target
producing the largest average peak-to-valley VEP



162 B. He et al.

Fig. 4.17 Examples of stimulations of VEP BCIs. (a)
Left: The stimulus sequences of an f-VEP-based BCI.
Targets flash at different frequencies. Right: The power
spectrum of the VEP derived from a target flickering at
10 Hz. (b) Left: The stimulus sequences of a t-VEP-based
BCI. Target flashes are mutually independent. Right: The
evoked response to a single stimulus. (c) Left: The stimu-

lus sequences of a c-VEP-based BCI. Right: A sample of
time course of the evoked response. (d) Left: The stimulus
sequences of a p-VEP-based BCI. The phase difference
between adjacent targets is 60 degree. Right: The phase
distribution of response signals from stimuli with different
phases. (Revised from Bin et al. [144] andWang et al. [40]
with permission)
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amplitude can be identified as the fixation target.
An accurate target identification in a t-VEP BCI
requires averaging over many epochs. Further-
more, to prevent the overlap of two consecutive
VEPs, t-VEP BCIs usually have low stimulus
rates (4 Hz). Thus t-VEP BCIs have a relatively
low information transfer rate (30 bits/min).

In a code-modulated (c-VEP) BCI, pseudo-
random stimulus sequences are used. The most
commonly used pseudorandom sequence in c-
VEP BCIs is the m-sequence. M-sequences have
an autocorrelation functions that are a very close
approximation to a unit impulse function and
are nearly orthogonal to its time lag sequence.
Thus, in c-VEP BCIs, an m-sequence and its time
lag sequence can be used for different stimulus
targets. Sample stimulation sequences and their
time course of evoked potentials are shown in Fig.
4.17c [144]. At the beginning of each stimulation
cycle, a synchronous signal, which provides a
trigger for target identification, is given to the
EEG amplifier. The template matching method is
generally used for target identification.

A c-VEP-based BCI system was developed
by Sutter in 1984. Bin et al. [142] described a
PC-based c-VEP BCI and tested it in five sub-
jects. The average information transfer rate (ITR)
reached 108 ± 12 bits/min, with a maximum of
123 bits/min for one of the subjects studied.

As shown in Fig. 4.17d [40], in a phase-
modulated VEP (p-VEP) BCI, several targets
flicker at the same frequency but with different
phases so that more targets can be presented
in less time. Jia et al. [143] proposed a coding
method using a combination of frequency and
phase information. With this method, they
developed a BCI system with 15 targets and
only three stimulus frequencies. Through the
optimization of lead position, reference phase,
data segment length, and harmonic components,
the average ITR exceeded 60 bits/min in a
simulated online test with ten subjects.

Wang et al. [40] and Bin et al. [144] summa-
rized the pros and cons of VEP BCIs. The ad-
vantages of VEP BCIs are their simplicity, lower
training time, and high information transfer rate.
The disadvantages of the system are the need
for good gaze control (which people with severe

neuromuscular disabilities may lack) and visual
fatigue from prolonged fixation.

The most significant progress in an SSVEP-
based BCI is the improvement of information
transfer rate (ITR) of the systems. Chen et al.
developed a new joint frequency-phase modula-
tion method in their SSVEP-based BCI speller
(see Fig. 4.18) to enhance the discriminability
between SSVEPs with a very narrow frequency
range. The system obtained an impressive high
ITR of 5.32bits/s or 319.2bits/min [145]. Nakan-
ishi et al. recently presented a novel data-driven
spatial filtering approach for SSVEP detection.
The ITR in this system was as high as 325 bit-
s/min [146].

4.6.5 BCIs Based on Auditory
Evoked Potentials

BCIs that use visual stimuli have been shown
to be effective as we discussed earlier. However,
some severely disabled people may have diffi-
culty using a BCI that requires good vision, due
to compromised vision or loss of eye movement
control. Nevertheless, even in severely paralyzed
patients, such as those suffering from ALS, hear-
ing is usually preserved. Thus, a BCI based on
auditory evoked potentials (AEP-BCI) becomes
an alternative paradigm.

AEPs are the brain’s response to external au-
ditory stimuli. Two types of AEP-based BCIs
have been explored. One uses auditory stimuli
as feedback in order to help subjects learn to
regulate their sensorimotor rhythms [147] or to
regulate the slow cortical potential [148]. The
second type of system uses an auditory “oddball”
paradigm [149, 150]. Most current AEP-based
BCIs use an “oddball” paradigm [149, 150]. As
in the case of the visual P300 described earlier in
this chapter, the auditory stimuli in auditory odd-
ball BCIs are divided into two types: frequently
presented non-targets and rarely presented tar-
gets. For example, spoken digits could comprise
a stimulus sequence. The digits would be pre-
sented in random order and used to represent the
possible selections. In the sequence, all the digits
would be standard non-target stimuli except for
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Fig. 4.18 Closed-loop system design of an SSVEP-based
BCI speller with high information transfer rate. (a) System
diagram of the BCI speller, which consists of four main
procedures: visual stimulation, EEG recording, real-time
data processing, and feedback presentation. The 5 × 8
stimulation matrix includes the 26 letters of the English
alphabet, 10 numbers, and 4 symbols (i.e., space, comma,
period, and backspace). Real-time data analysis recog-
nizes the attended target character through preprocessing,
feature extraction, and classification. (b) Frequency and
phase values used for encoding each character in the stim-
ulation matrix. The frequencies range from 8.0 to 15.8 Hz

with an interval of 0.2 Hz. The phase interval between two
neighboring frequencies is 0.35π. (c) Examples of spelling
characters “H” (15.0 Hz, 0.25π) and “I” (8.2 Hz, 0.35π)
with the BCI speller. An intertrial interval of 0.5 s is used
for directing gaze to a target before the stimulation matrix
starts to flash for 0.5 s. The 0.5-s-long EEG epoch with
a delay of τ (∼140 ms) to the stimulation is extracted
for target identification. The target character can be deter-
mined by the decoding algorithm based on the correlations
between the single-trial SSVEP and individual SSVEP
templates. (From Chen et al. [145] with permission)

one target stimulus, that is, the subject’s desired
choice. The subject is instructed to pay attention
to the target digit and perform a mental task when
the target digit is spoken (e.g., count each time
it is heard). The auditory ERPs in response to
the target stimulus are similar to those in visual
P300-based BCIs. An auditory spelling system
was proposed by Furdea et al. [149] and tested
with four ALS patients [151]. To compare a user’s
performance with the auditory and visual modali-
ties, a 5x5 visual support matrix was displayed to
the participants. Rows were coded with numbers
1–5, and columnswith numbers 6–10. The flashes

in a typical visual P300 speller were replaced
by spoken digits. As in a visual P300 speller,
the subjects using the auditory system were in-
structed to first select the row number and then
the column number containing the target letter.
The auditory system was first tested with healthy
subjects. Nine of 13 subjects achieved accuracies
above 70% [149]. In the study by Kubler et al.
[151], four ALS patients used the system and
performed above chance level.

Compared to the visual spelling system, users’
performance with the auditory speller was lower
and the peak latencies of the auditory ERPs were
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longer. However, for severely disabled people
with compromised vision or loss of eye move-
ment control, AEP-based BCIs might provide a
preferred way to communicate with the external
world and thus are worthy of further study. Re-
cently, the research has shown that the proper
training can improve the performance of the audi-
tory ERP-based BCI, specifically the information
transfer rate [152].

4.6.6 Hybrid BCI

The concept of hybrid BCIs was proposed to
further improve the performance of BCIs beyond
that of BCIs with a single approach [153]. The
hybrid BCIs fulfill the following criteria: the ac-
tivity should be directly acquired from the brain;
at least one of themultiple brain signal acquisition
modalities should be employed in acquiring such
activity; the signals must be processed in real-
time/online to establish communication between
the brain and the computer; feedback describing
the outcomes of the brain activity for communi-
cation and control must be provided.

Although BCI shows great promising applica-
tions in the healthy population, stroke patients,
ALS patients, etc., it still faces the challenge of
performance variation, relatively low information
transfer rate compared to the normal body func-
tion, to name a few. It is reasonable to combine the
users’ preserved body movements as one of the
control sources with the traditional BCI output to
fully benefit the daily use or daily rehabilitation
of the end users.

Hybrid BCIs can be configured in two ways:
(i) a combination of two different brain signal ac-
quisition modalities (e.g., EEG and fNIRS) [154,
155]; (ii) a combination of a brain signal acqui-
sition modality with one or more nonbrain sig-
nal acquisition modalities (e.g., EEG and EMG,
EOG, ECG) [156, 157]. Hong et al. presented a
comprehensive review of the recent development
in hybrid BCIs [158].

In addition to combining different signal ac-
quisition modalities, some hybrid BCIs are de-
signed by decoding multiple tasks using a single
modality. For example, SSVEP is combined with

motor imagery or P300-based tasks using EEG-
based signal detection [159].

The main objectives of hybrid BCI develop-
ment are (i) to increase the number of brain com-
mands for control applications; (ii) to enhance the
BCI classification accuracy; and (iii) to shorten
the brain command detection time. In fact, non-
brain signals in hybrid BCIs such as EMG and
EOG are useful either to increase the number of
commands or to remove motion artifacts in EEG
recordings to improve the classification accuracy
of the BCI system.

Hybrid BCI allows the potential patient
candidates to fully utilize their reserved body
movement such as EOG to enhance the imperfect
BCI performance by decoding their brain waves
[160]. Soekadar et al. demonstrated a group of
six naïve individuals performed independent
and self-initiated reaching and grasping activity
outside of the laboratory [161].

Hybrid BCIs are suited to both disable persons
and healthy people. For healthy individuals, hy-
brid BCIs can be useful in the environment with
multiple tasks utilizing several devices [162] or
entertainment [163]. Also, hybrid BCIs may give
better information about the mental workload and
fatigue, cognitive functions, and vigilance of a
person to avoid some accidents.

4.6.7 Attention-Based BCI

Attention-based BCIs could be implemented by
a covert attention or overt attention paradigm.
In a covert attention paradigm, the subject is
instructed to look at a centrally located fixation
point. The subject’s task is to follow another point
without overt eye movement. In contrast, in an
overt attention, the subject’s task is to use overt
eye movements while they attend to a moving
object.

In a conventional SSVEP BCI system, the
subject overtly directs attention to one of the
stimuli by changing his or her gaze direction.
The attended stimulus elicits enhanced SSVEP
responses at the corresponding frequency over
occipital brain areas. This kind of system is
considered a “dependent” BCI since muscle
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activity such as that producing gaze shifting
may be necessary. Therefore, it might not be
usable by people who have lost control of gaze
direction.

A large number of psychophysical and neuro-
physiological studies have shown that people can
covertly shift attention to different spatial loca-
tions without redirecting gaze. In addition, shift-
ing attention to one out of several superimposed
objects can improve behavioral performance (re-
action time and accuracy) and increase neuronal
responses compared to paradigms in which the
object is unattended. This covert attention could
be decoded and applied to build a BCI system
[164]. Kelly et al. [165, 166] reported a BCI based
on spatial visual selective attention. Two bilateral
flickers with superimposed letter sequences were
presented to the subjects. The subjects covertly
attended to one of the two bilateral flickers for tar-
get selection. Greater than 70% average accuracy
was achieved with this system. Zhang et al. [167]
explored a nonspatial visual selective attention-
based BCI. Two sets of dots with different colors
and flicker frequencies, rotating in opposite direc-
tions, were used to induce the perception of two
superimposed, transparent surfaces. Because the
surfaces flickered at different frequencies, they
elicited distinguishable SSVEPs. By selectively
attending to one of the two surfaces, the SSVEP
amplitude at the corresponding frequency was en-
hanced so that the subjects could select between
two different BCI outputs. This systemwas tested
in healthy subjects in a 3-day online training
program. An average online classification accu-
racy of 72.6 ± 16.1% was achieved on the last
training day. Tonin and colleagues used a covert
attention paradigm for a two-class classification
problem [168, 169]. The BCI system operated
based on covert visuospatial attention without
relying on any evoked responses. The mean on-
line accuracy across eight healthy subjects was
70.6 ± 1.5% and 88.8 ± 5.8% for the best sub-
ject. Previously, the covert attention was success-
fully used to build a one-dimensional online BCI
system.

A recent study demonstrated that decoding of
overt spatial attention might be more efficient
and show comparable one-dimensional and two-

dimensional BCI performance compared to the
conventional motor imagery–based BCI [105].
Furthermore, it was shown that overt spatial at-
tention and motor imagery could function inde-
pendently and simultaneously. Thus, a 3-D BCI
control is realized through the solely endoge-
nous modulation of attentions by simultaneously
performing both the overt spatial attentional and
sensorimotor rhythm modulations. Figure 4.19
illustrates high-dimensional cursor control BCI
via the combination of overt spatial attention and
motor imagery modulation. The use of hybrid
control signals allowed achieving as high as 12
targets, leading to a group average information
transfer rate of 29.7 ± 1.6 bits/min in nine human
subjects [105].

Visual selective attention-based BCIs have
thus far provided only binary control. However,
their performance with gaze independence
encourages further study, including the devel-
opment of a multiple-selection system. These
systems may be a good option for paralyzed
people who cannot control well gaze direction.
It might enable them to achieve control of a BCI
by employing covert attention shifts instead of
changes of gaze direction [170].

4.6.8 BCIs for Brain-to-Brain
Communications
and Interactions

BCI has been explored beyond the setting of
a single brain to computer/device. Babiloni
and colleagues have shown multiple brain
communications by simultaneous recordings of
EEG as revealed in functional connectivity that
existed among the multiple brains in a social
setting [171, 172]. Their work demonstrated
brain-to-brain communications and suggested
the possibility of multiple brain interactions.
An interesting approach integrating EEG BCI
with transcranial magnetic stimulation (TMS)
to realize brain-to-brain interface where EEG
BCI was used to decode the intent and TMS was
used to transmit the information into a brain
was reported [173, 174]. Recently, Rao and
colleagues showed brain-to-brain interactions in



4 Brain–Computer Interfaces 167

Fig. 4.19 Realization of 3-D BCI for cursor control via
the combination of overt spatial attention and motor im-
agery modulation. (a) A scene of the 8 target 3-D cursor

control task. The highlighted bar indicated the target to hit.
(b) A scene of the 12 target 3-D cursor control task where
the highlighted bar indicated the target to hit. (FromMeng
et al. [105] with Permission, © 2018 IEEE)

Fig. 4.20 Direct brain-to-brain communication and in-
teraction using BCI. Two participants (“Sender 1” and
“Sender 2”) each use an SSVEP BCI to convey infor-
mation about a collaborative task directly to the brain of
the third participant (“Receiver”). Information from each
Sender is transmitted over the internet to the Receiver’s

brain via a computer–brain interface (CBI) based on TMS.
After consciously processing the two inputs from the
Senders, the Receiver uses a BCI based on EEG to execute
an action in the task. (From Jiang et al. [175], licensed
under CC BY 4.0)

a social setting involving SSVEP BCI and TMS
for online transmitting and receiving information
and interacting [175]. In a computer-based game
setting, two senders each used an SSVEP BCI
to convey information to a third individual—
receiver—as coded by transcranial magnetic
stimulation (see Fig. 4.20). Such brain-to-brain
communications and interactions may represent
further applications, especially in the general
population.

4.7 BCI Performance Assessment
and Training

A BCI user controls brain signal features that the
BCI can recognize and translate into control com-
mands. The performance of BCIs can be affected
by the differences among users, by the varying
signal-processing abilities of the BCI systems, or
by the signal acquisition protocols used in the BCI
systems. In order to better understand the impact
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of these factors, researchers usually assess BCI
performance with respect to one factor at a time.

For example, for communication systems, the
traditional unit of measure is the amount of in-
formation transferred in a unit of time. There-
fore, the performance measure can be indicated
by bits per trial and bits per minute. This pro-
vides a tangible measure for making intra-system
and inter-system performance comparisons. For
other systems aimed at replacing motor function,
it is not only the attainment of the goal (i.e.,
reaching a target location) that matters, but also
how well the continuous trajectories are recon-
structed. Therefore, the performance measure can
be indicated by statistical measures for goodness
of fit, such as the coefficient of determination
(r2).

4.7.1 User Performance Assessment

The square of the Pearson product-moment corre-
lation coefficient (PPMCC) is denoted as r2 and
has been widely used in the assessment of BCI
user performance.

The PPMCC between two variables X and Y is
defined as the covariance of the two variables di-
vided by the product of their standard deviations:

ρX,Y = cov (X, Y )

σXσY

= E [(X − μX) (Y − μY )]

σXσY

(4.1)

where μx, μy, σ x, and σ y are the mean and stan-
dard deviation of X and Y, respectively.

Substituting estimates of the covariances and
variances based on samples gives the sample cor-
relation coefficient, commonly denoted by r:

r =

n∑

i=1

(
Xi − X

) (
Yi − Y

)

√
n∑

i=1

(
Xi − X

)2

√
n∑

i=1

(
Yi − Y

)2

(4.2)

where r ranges between +1 and − 1. Its square
(r2) then has a value between 0 and 1. A
value of r2 close to 1 indicates a strong linear

relationship between X and Y, whereas values
close to 0 indicate that there is very little linear
correlation.

In BCI systems, user performance can be de-
fined as the level of correlation between the user’s
intent and the brain signal feature(s) that the BCI
translates into its output commands.

4.7.2 System Performance
Assessment

Many different BCI systems have been studied.
They differ in inputs, outputs, translation algo-
rithms, and other characteristics. To compare and
evaluate the performance of different BCI sys-
tems, an objective measure is required. BCIs pro-
vide the capability of communication between
brain signals and external devices. Therefore, the
information transfer rate (ITR) has been used as
one of the primarymetrics to evaluate BCI system
performance.

Most current BCI systems translate the user’s
brain signal features into output commands by a
regression method or by a classification method.
The former has the advantage of requiring only
one translation function for each dimension of the
matrix of possible output commands, while the
latter requires additional functions as additional
output commands are added.

Currently, the most popular method for ITR
calculation was defined by Wolpaw et al. in 1998
[176] and discussed further in McFarland et al.
[177]. The definition is a simplified computa-
tional model based on the Shannon channel the-
ory under several assumptions. The measure of
ITR is the bit rate B (bits/symbol) as shown in Eq.
(4.3).

B = log2N + P log2P

+ (1 − P) log2 [(1 − P) / (N − 1)]
(4.3)

where N is the number of possible selections,
P is the accuracy (probability that the desired
selection will be selected), and B is the bits per
trial. If the execution time per symbol selection is
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T, then the bits per minute Bt can be calculated as
follows.

Bt = B∗ (60/T ) (4.4)

It is worth noting that the use of Eq. (4.3) and
Eq. (4.4) is conditional, because the following
assumptions were used in the derivation of Eq.
(4.3).

1. BCI systems are memoryless and stable trans-
mission channels.

2. All the output commands (i.e., selections) have
the same probability of selection (p(wi)= 1/N)

3. The translation accuracy is the same for all the
selections (p(yi/xi) = p(yj/xj)).

4. The translation error is equally distributed am-
ong all the remaining selections p

j �=i

(yj /xi) =
1−p(yi/xi )

N−1 .
5. The translation accuracy is above the chance

level.

The resulting ITR by Eqs. (4.3) and (4.4) de-
pends on both speed and accuracy. Figure 4.21
illustrates the relationship between accuracy and
bit rate for different numbers of selections.

In reality, r2 and ITR are just two factors that
can be used for BCI performance assessment.
Other factors important for BCI evaluation in-
clude invasiveness, training time, ease and com-
fort of use, cost, and others. The significance of

Fig. 4.21 Information transfer rate in bits/trial (i.e., bit-
s/selection) and in bits/min (for 12 trials/min) when the
number of possible choices (i.e., N) is 2, 4, 8, 16, or 32.
As derived from Pierce [195] (and originally from [196]),
if a trial has N possible choices, if each choice has the
same probability of being the one that the user desires, if
the probability (P) that the desired choice will actually be

selected is always the same, and if each of the other (i.e.
undesired) choices has the same probability of selection
(i.e., (1 – P)/(N – 1)), then bit rate, or bits/trial (B), is
B = log2N + P log2P + (1 – P)log2[(1 – P)/(N – 1)]. For
each N, bit rate is shown only for accuracy≥100=N (i.e.,
≥chance). (From Wolpaw et al. [10], with permission)
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these various factors may vary across different
BCI applications.

4.8 Future Perspectives

4.8.1 Expectations

BCI research and development evokes a great
deal of excitement in scientists, engineers, clin-
icians, and the public in general. This excite-
ment is largely in response to the considerable
promise of BCIs. With continued development,
they may replace or restore useful function to
people severely disabled by neuromuscular dis-
orders. In addition, BCIs might augment natural
motor outputs for pilots, surgeons, other profes-
sionals, or ordinary citizens for daily activities.
They might also give new opportunities and chal-
lenges to artists, athletes, and video-gaming en-
thusiasts. Furthermore, BCIs might also conceiv-
ably improve rehabilitation methods for people
with strokes, head trauma, and other devastating
disorders. At the same time, it is clear that this
exciting future can become reality only if BCI
researchers and developers address and resolve
problems in crucial areas including signal ac-
quisition, BCI validation and dissemination, and
reliability.

4.8.2 Signal Acquisition
and Processing

BCI systems depend on the sensors and the
related hardware that record the crucial brain
signals. Improvements in this hardware are
needed. EEG-based (noninvasive) BCIs should:
have electrodes that do not need skin abrasion or
conductive gel (i.e., so-called dry electrodes); be
small and portable; use comfortable, convenient,
and attractive mountings; be easy to set up; work
for many hours without needing maintenance;
work reliably in any environment; use telemetry
rather than connecting wires; and interface
easily with many different applications. Reliable
performance in all relevant environments
may be especially hard to ensure and should

therefore be a major research goal. The biggest
challenge for an EEG-based BCI maybe the
further development of signal processing and
machine learning techniques that can reliably
and accurately decode and delineate the intention
signals from relatively noisy EEG signals. This
would require innovations in machine learning,
signal processing, and classification algorithms,
as well as advancement in systems neuroscience
research.

BCIs that employ implanted electrodes (i.e.,
invasive BCIs) face a number of complex issues,
some of which are not yet fully understood. These
systems require hardware that: is safe and com-
pletely implantable; stays intact, functional, and
reliable for many years; records stable signals for
many years; transmits the recorded signals using
telemetry; is able to be recharged in situ (or has
batteries that last for many years); has external
components that are durable, comfortable, con-
venient, and unobtrusive; and interfaces readily
with a range of high-performance applications.
While considerable progress has been made in
the past several years, it is not yet clear which
possible solutions will be most successful, or how
successful they can be. Fundamental innovations
in sensor technology may be needed for invasive
BCIs to achieve their full promise.

4.8.3 Clinical and Practical
Validation

Various noninvasive and invasive BCIs are being
developed. As this work proceeds and BCIs start
to actually be used clinically, two key questions
must be addressed: how capable and reliable a
particular BCI can get; and which BCIs are the
best choices for a particular clinical or practical
purpose. To address the first question, each can-
didate BCI should be optimized and the limits
on users’ capacities with it should be determined.
Engaging the second question will require some
consensus among researchers concerning which
applications to use for comparing BCIs and con-
cerning how their performance should be mea-
sured. One obvious example is the question of
whether BCIs that use intracortical signals can
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perform better than BCIs that use ECoG signals,
or even EEG signals, and if their performance
justifies the necessary electrode implantation by
surgery. Formany people, invasive BCIswill need
to perform much better to be considered prefer-
able to noninvasive BCIs. Although the degree of
freedom for a neuroprosthetic control increased
from seven to ten [178, 179] and the informa-
tion transfer rate has increased dramatically for
invasive BCIs [180, 181] in the past few years,
significant improvement was also achieved for
noninvasive BCIs as well [13, 105, 145]. It is
as yet unclear whether they can do so. Contrary
to widespread expectations, the available data
seem not to provide a clear answer to this critical
question.

Furthermore, the widespread clinical usage of
BCIs by people with disabilities requires definite
validation of their real-life value in efficacy, prac-
ticality, and effect on the quality of life. Such
validation depends on multidisciplinary groups
able and willing to perform chronic studies of
real-life use in complex and frequently difficult
environments. These studies, which are just be-
ginning, are a critical step if BCIs are to achieve
their promise. The results of these studies could
also shape the development of BCIs for the gen-
eral population. The clear validation of BCIs for
functional rehabilitation after strokes or in other
disorders will be similarly demanding and will
necessarily entail direct comparisons with the
outcomes of conventional methods alone.

4.8.4 BCI Training

The effectiveness of a BCI depends on the capac-
ity of the user to produce brain signals that reflect
intent and that the BCI can decode accurately and
reliably into output commands that achieve that
intent [10, 32, 182]. Control of brain activity is
harder to achieve than control of motor activity
partly because the user can neither identify nor
discern the activity. The user can only compre-
hend EEG activity through the feedback received
from the BCI system. Different BCI systems use
different strategies to help users learn to control
the crucial brain signals.

Many BCIs ask the user to perform specific
cognitive tasks that generate recognizable EEG
components (i.e., components that the BCI can
decode into intent). Motor imagery tasks have
been the most widely used cognitive task. For
each selection, the user imagines or plans one
of the several motor movements (i.e., left- or
right-hand movement) based on visual or aural
cues. Research has shown that this generates brain
signals (e.g., from sensorimotor cortex) that can
be detected by EEG or fMRI [43, 63]. After sev-
eral training sessions, the user is usually able to
produce a specific pattern of signal features (e.g.,
amplitudes in specific frequency bands at specific
locations) by performing a specific cognitive task.

Other cognitive tasks can be used, such as
arithmetic (addition of a series of numbers), vi-
sual counting (sequential visualization of num-
bers), geometric figure rotation (visualization of
rotation of a 3-D object around an axis), letter
composition (nonvocal letter composition), and
baseline (relaxation). Studies have shown that
these tasks produce components detectable in the
EEG [56, 183, 184].

The EEG components produced by cognitive
tasks are vulnerable to the amount of direction
provided to the user. Motor imagery, for exam-
ple, is subject to issues such as first-/third-person
perspective, visualization of the action versus re-
trieving amemory of the action performed earlier,
imagination of the task as opposed to a verbal
narration, etc. Research has yet to prove whether
users can effectively control such fine details to
produce significant change in the components
they produce.

The major focus of BCI development thus far
has been to provide communication for severely
disabled people. It is possible that some poten-
tial users have disorders that are also cognitively
debilitating in ways that preclude their control
of signals from areas of the brain that may be
important for BCI control. The left hemisphere
of the brain, for example, is the center of activity
for tasks involving language, numbers, and logic,
while the right hemisphere is more active during
spatial relations and movement imagery. Users
need to be paired with the cognitive tasks that best
suit their capabilities.
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As indicated earlier, it is possible to discern
different cognitive tasks based on the EEG com-
ponents generated when the task is performed.
When using a set of cognitive tasks during train-
ing, the overlap of EEG signals can occur if the
tasks require similar skills or cortical areas. It is
important to choose tasks with contrasting EEG
components for easy discrimination.

Another factor to consider during training is
the particular EEG component to use. P300 re-
sponses, for example, require less training time
than that needed by a user learning to control sen-
sorimotor rhythms. As mentioned earlier, choos-
ing contrasting cognitive tasks accelerates train-
ing. It is also important to maintain consistent
training regiments to ensure that subjects retain
their ability to control their EEG components.

The tasks used in training carry forward into
general BCI usage. The method of training, there-
fore, is associated with the method of signal ac-
quisition. Neuronal activity generated by specific
cognitive tasks is focused in specific areas of the
brain. This allows signal acquisition to occur over
a few electrodes that encompass these areas.

Studies have suggested the use of mindful
meditation helps subjects to perform better in mo-
tor imagery paradigm BCI and learn faster [185].
Such mindful meditation may be considered as
preprocessing training as they prepare subjects
better for the motor imagery tasks, thus leading
to enhanced performance in the subsequent BCI
experiments.

4.8.5 Recognition of BCI Efficiency
and Inefficiency

Until now, the total number of human patients
recruited in the invasive BCI studies, especially
counting studies with implanted neural chips, is
still a small double-digit number. It is hard to say
whether every subject might be able to achieve
high performance yet. Most of the human BCI
studies are still using noninvasive recording tech-
nology due to its applicability to both the healthy
population and the general patient population (ex-
cept for those with clinical needs of implanting
electrodes). However, there is a certain proportion

of subjects who do not respond to certain BCI
modalities. The proportion of nonresponders for
the P300-based BCI [186] and SSVEP-based BCI
[187] is generally small, that is, less than 10%.
However, there is ample evidence to show that
there is a non-negligible number of subjects (esti-
mated around 20%–30%) who could not generate
reliable brain rhythms to be classified in sensori-
motor rhythm BCIs [188, 189]. They were named
as “BCI illiterate” previously. In recent years,
a lot of work has been done to find novel ap-
proaches improving the BCI performance in order
to reduce the number of BCI illiterates [185, 190]
or to investigate the factors that might predict the
performance of BCI users [188, 191, 192]. The
recognition of BCI efficiency and inefficiency is
an important issue. Because there might not be
a universal BCI paradigm that would be suit-
able for everybody, it is meaningful to find out
what kind of population is suitable for a certain
type of BCI technology. Thus, the BCI nonre-
sponders could be screened out for a particular
paradigm before more intensive experiments are
conducted. It would save both subjects’ and re-
searchers’ time and cost for an inappropriate BCI
technology [102]. On the other hand, exploring
the underlying factors or mechanism that might
affect the BCI performance would be vital to ad-
vance the development of BCI technology itself.
Blankertz et al. suggested that the idling sensori-
motor rhythm during resting state might be an im-
portant predictor of BCI system based on endoge-
nous motor imagination [188]. Grosse-Wentrup
and Scholkopf suggested that performance varia-
tionwithin subjects might be closely related to the
attentional networks in the gamma band (>40 Hz)
[191]. Further, understanding these factors will
help improve the recognition of the BCI ineffi-
ciency. Additionally, some other studies seek to
reduce the numbers of BCI illiterate by designing
various new paradigms. For example, Cassady
et al. recruited participants with/without mindful
meditation experience and found that the medi-
tation practitioners achieve similar good perfor-
mance in shorter training sessions, which sug-
gested that practicing meditation might facilitate
BCI skill acquisition [185]. Yao et al. applied
vibrotactile stimulations on subjects’ both wrists
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and asked the participants to either sense the vi-
bration or performing conventional motor imag-
ination. They found a significant improvement
in BCI performance when using the combina-
tion of sensation and motor imagery compared
to either using motor imagery or sensation alone
[190]. More recently, Meng and He investigated
the effect of training on BCI performance based
on motor imagery paradigm. Their results sug-
gested that training could improve subjects’ per-
formance quickly in three sessions of practice and
the improvement is particularly significant in the
group of low BCI performers, that is, participants
who might be recognized as BCI illiterate using
the conventional standard of 70% accuracy [102].
Therefore, the BCI inefficiency might be depen-
dent on a specific BCI paradigm and the subject
population. Future studies should carefully select
their population of subjects and specify their BCI
experimental design when determining the BCI
inefficient subjects.

4.8.6 Reciprocal Learning Between
theMachine and the Brain

BCIs provide the CNS with the chance to mas-
ter novel skills in which brain signals substitute
for the spinal motoneurons that produce natu-
ral muscle-based skills. Muscle-based skills rely
for their initial mastery and long-term preserva-
tion on continual activity-dependent plasticity in
many CNS areas, from the cortex to the spinal
cord. This plasticity, which can require practice
over many months or even years, allows infants
to learn to walk and talk, children to master
reading, writing, and arithmetic, and adults to
acquire many different athletic and intellectual
skills.

The acquisition and maintenance of BCI-
based skills, such as robust multidimensional
movement control, depend on comparable
plasticity [13, 14, 18, 29, 44, 81, 193]. BCI
operation requires the successful interaction
of two adaptive controllers, the CNS and the
BCI—continuous learning in machine learning
algorithms used in BCIs and in the CNS through
neuroplasticity. The BCI needs to adapt so that its

output commands correspond to the intent of the
user. Concurrently, the BCI needs to encourage
and facilitate CNS plasticity that improves the
reliability and precision with which the brain
signals encode the intent of the user. In summary,
the BCI and CNS need to work together to master
and maintain a partnership that is reliable in all
circumstances. The work required to realize this
essential partnership has just started. It engages
basic neuroscientific questions and may produce
valuable new insights into CNS function. Thus,
BCI research has importance for neuroscience
in general, independent of the practical uses that
are the primary focus of most BCI research and
development.

The fundamental importance of CNS adapta-
tion implies that the key problems in BCI research
are neurobiological. The principles that deter-
mine how the CNS masters, improves, and pre-
serves its natural muscle-based skills are likely to
be the best guide for designing BCI systems. CNS
control of actions is typically distributed among
multiple areas. While cortical areas may define
the goal and the broad outlines of an action, the
details (especially high-speed sensorimotor inter-
actions) are oftenmanaged subcortically. Further-
more, control is distributed in the CNS in accord
with the demands of the task. Piano playing can
require cortical control of every finger individu-
ally, while merely grasping an object may not do
so.

The performance of BCIs is also likely to
benefit from comparable distribution of control.
In this case, the distribution would be between the
BCI’s output commands (i.e., the user’s intent)
and the application that receives the commands
and then converts them into action. The most
effective distribution will probably vary with the
BCI and with the application.

The natural muscle-based CNS outputs are
products of the combined contributions of nu-
merous areas from the cortex to the spinal cord.
This reality suggests that BCI performance might
be improved and stabilized by employing signals
from more than one brain area and by employing
brain signal features that represent relationships
among different areas (e.g., coherences). By per-
mitting the CNS to operatemore in theway it does
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Fig. 4.22 Peer-reviewed BCI articles in the scientific
literature. Over the past 30 years, BCI research, which
was previously limited to a very few research groups,
has become an extremely active and rapidly growing
scientific field. The majority of research articles have

been published in the last 6 years. (The statistics is from
Web of Science Core Collection by using keywords brain
computer interface or brain machine interface, Language
English, Document Types: article. From 1980 to January
21, 2020)

in producing muscle-based actions, this approach
could substantially increase BCI reliability.

Lastly, the feedback that present-day BCIs
give their users is primarily visual and thus
relatively slow and often imprecise. Natural
muscle-based skills rely on multiple types of
sensory input (e.g., proprioceptive, cutaneous,
visual, auditory). BCIs that control applications
that produce complex high-speed movements
(e.g., limb movements) would benefit from
sensory feedback that is faster, more precise,
and more comprehensive than vision alone.
Work seeking to provide such feedback using
stimulators in cortex or elsewhere has begun
[194]. The best techniques will almost certainly
vary with the BCI, the application, and the
user’s disability (e.g., peripheral inputs may
not be useful in many people with spinal cord
injuries).

4.9 Conclusion

Numerous researchers throughout the world are
realizing BCI systems that some years ago might
have been considered science fiction. Figure 4.22

illustrates the publication years of peer-reviewed
BCI articles that have appeared to date according
to the Web of Science database by inputting the
keywords “brain–computer interface” or “brain–
machine interface” and shows that a majority of
all the articles ever published have appeared just
in the past several years. These BCIs use a variety
of different brain signals, recording techniques,
and signal-processing methods. They can operate
a wide variety of different applications, including
communication programs, cursors on computer
screens, drones, wheelchairs, and robotic arms. A
small number of people with severe disabilities
are already employing BCIs for simple commu-
nication and control functions in their everyday
lives. With improved signal acquisition hardware
and sensors, machine learning software, defini-
tive clinical and practical validation, and, better
integration of neuroscience with machine learn-
ing, BCIs could become a major new technology
for people with disabilities, and for the general
population as well.
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Homework

1. Answer the following questions about the
general aspects of BCI.
(1.1) Define brain–computer interface (BCI)

in your own words.
(1.2) Describe at least 3 examples of BCI

according to different signal resources
and explain their pros and cons.

(1.3) Describe what the unique challenges of
BCI research are.

(1.4) If youwant to decode people’s imagery
movement, which brain areas do you
want to choose in order to build an
EEG-based BCI?

2. Answer the following questions about the
BCI signal acquisition.
(2.1) What is the spatial resolution of nonin-

vasive techniques such as EEG, MEG,
and fMRI?

(2.2) What is the spatial resolution of inva-
sive techniques such as ECoG, multi-
unit recording?

(2.3) What is the temporal resolution of
noninvasive techniques such as EEG,
MEG, and fMRI?

(2.4) For EEG-based BCI, does increasing
the electrode number help to improve
the decoding accuracy of motor imagi-
nation? Why?

(2.5) Does the combination of different non-
invasive modalities help to improve the
decoding accuracy such as the simulta-
neous acquisition of EEG and fMRI?
Please explain why?

3. Answer the following questions about the
BCI feature extraction.
(3.1) What kind of features could be ex-

tracted to decode the event-related po-
tentials (ERP)?

(3.2) Is it possible to decode the ERP in
single trials? Please explain.

(3.3) What kind of features could be used
to decode the motor imagery–induced
sensorimotor rhythms?

4. Answer the following questions about the
SSVEP BCI.

(4.1) What is the limitation to use a computer
monitor as the display of the flicker in
a steady-state visual evoked potential
(SSVEP)–based BCI?

(4.2) Download one of the examples (shared
data, e.g., S1.mat, http://thubci.org/
en/index.php?s=/home/index/nr/id/
100/page/1.html) from the shared
data in the ‘Wang et al (2016). A
benchmark dataset for SSVEP-based
brain–computer interfaces. IEEE
Transactions on Neural Systems and
Rehabilitation Engineering, 25(10),
1746-1752.’ Plot the power spectrum
of electrode Oz from any one of the
40 targets in a single block and the
average from all of the six blocks.

5. Answer the following questions about the
motor imagery–based BCI.
(5.1) Download one of the examples (shared

data, e.g., S1_LR_20150130.mat)
from the shared data in [14] and
Readme file to learn the structure of
the shared data.

(5.2) Extract the multichannel signals
of each trial; calculate the average
feedback duration for the example
session.

(5.3) Calculate the average band power (8–
13 Hz) of channel C3 and C4 over all
of the left trials, respectively.

(5.4) Calculate the average band power (8–
13 Hz) of channel C3 and C4 over all
of the right trials, respectively.

(5.5) Compare the above average band
power for left trials and right trials.
Describe the difference.

6. What kinds of classification algorithms are
commonly used in the EEG–based BCI?

7. Answer the following questions about
robotic arm control using BCI.
(7.1) Please explain what are the pros and

cons to control a prosthetic or robotic
arm by using different types of nonin-
vasive BCI, such as SSVEP based and
sensorimotor rhythm based.

(7.2) What is the challenge for control of a
high degree of freedom (DoF) robotic
arm by noninvasive BCIs? Please de-

 http://thubci.org/en/index.php?s=/home/index/nr/id/100/page/1.html
 http://thubci.org/en/index.php?s=/home/index/nr/id/100/page/1.html
 http://thubci.org/en/index.php?s=/home/index/nr/id/100/page/1.html
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scribe your solution of controlling a
high DoF robotic arm.

8. Answer the following questions about BCI
applications.
(8.1) What BCI could be used as a tool?

Please describe at least three examples.
(8.2) Please describe how BCIs could

be used to induce tactile sensation
neurofeedback.

9. Answer the following questions about the
hybrid BCI.
(9.1) Please describe an example of the hy-

brid BCI.
(9.2) Please describe your solution of driv-

ing a wheelchair mounting with an as-
sistive robotic arm to help drinking and
eating via a hybrid BCI.

10. Answer the following questions about infor-
mation transfer rate of BCI.
(10.1) What is the state-of-the-art informa-

tion transfer rate (ITR) of different
types of noninvasive–based BCIs?

(10.2) Please describe a possible solution of
increasing the ITR of a noninvasive
sensorimotor rhythm–based BCI and
explain why it might work.

11. Answer the following questions about BCI
development.
(11.1) Please list three most important ques-

tions to be addressed in order to sig-
nificantly improve the field of BCI.

(11.2) Please discuss the potential of BCI
application in the clinical field.
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