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Abstract

Epilepsy is one of the most common neuro-
logical disorders globally, and the decrease in
quality of life associated with it includes –
among other things – fear and uncertainty over
when the next seizure would manifest itself.
The most common way to treat epilepsy is
by using antiepileptic drugs; however, around
30%of all patients develop refractory epilepsy,
where medication fails to control seizures, and
patients have to resort to surgical resection of
epileptogenic zones. While manual techniques
exist to detect epileptic seizures, and come up
with the appropriate regiment of antiepileptic
drugs, they are generally limited by the skill of
the human operator and can be applied only to
a particular application. Arguably, a better ap-
proach is to use machine intelligence to iden-
tify patterns in data unseen to the human eye
and perform identification of seizure states,
and medicine regiments in an automated ob-
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jective manner. In this chapter, we will dis-
cuss such machine learning algorithms. We
will explore the most widely used algorithms
and their variations – both in the context of
seizure prediction and detection (arguably the
most widely used application of machine in-
telligence in epilepsy), as well as in other
applications, such as antiepileptic drug effi-
cacy. We will also talk about common tech-
niques of feature extraction – particularly fo-
cusing on wavelet phase coherence and cross-
frequency coupling. While much of work has
been done to improve current machine learn-
ing algorithms in the context of epilepsy, chal-
lenges still remain to be solved, and potential
future directions for machine intelligence ap-
plications in epilepsy are discussed at the end
of the chapter.
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19.1 Introduction

Epilepsy is a dynamical disease, and its effects
are evident in up to 1% of the population, or over
60 million people worldwide. It ischaracterized
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by transient interruptions of brain function caused
by abnormal temporal and spatial coherent firing
of a neuronal population, often referred to as
a seizure, paroxysmal discharge, or ictal event
[1]. Beyond a number of comorbidities associated
with epilepsy, patients with epilepsy are usually
unable to predict when they will have a seizure
and thus are often unable to drive, have difficulty
engaging in the workforce, are at increased risk
of head injury due to seizure-related fall, and
typically carry a stigma associated with having
epilepsy. All of these factors contribute to a re-
duced quality of life in patients with epilepsy and
are largely attributed to the debilitating as well as
the unpredictable nature of seizures. Furthermore,
patients with refractory epilepsy are also at an ele-
vated risk of sudden unexpected death in epilepsy
(SUDEP), which might be preventable if one
could anticipate a seizure occurrence [2]. Hence,
there exists a need for monitoring systems that
detect preclinical seizure states in the EEG to alert
patients and caregivers to oncoming seizures.

The pathophysiology of seizures is an
enhanced cortical excitability, leading to
paroxysmal depolarization shifts, an enhanced
probability of hypersynchronous activity of small
neuronal networks, and an abnormal spreading of
this pathological activity along cortico-cortical
and cortico-subcortical neuronal connections [3,
4]. Thus, the common feature of antiepileptic
therapies is the reduction of any pathological
hyperactivity by either enhancing neuronal
inhibition or reducing excitation. Current
methods for seizure treatment include either the
use of antiepileptic drugs (AEDs) or surgical
removal of epileptic tissues. While usually the
first treatment option to be used, AEDs require
a regiment tailor-made for a given patient and
have a wide range of side effects associated with
them [5] – thus being able to predict whether a
given regiment of AEDs will be successful will
improve epilepsy therapy strategies.

In this chapter, we will describe EEG-based
machine learning approaches for classification
and detection of preclinical seizure states in
epileptic patients, as well as look at some other
applications of machine intelligence in context of
epilepsy.

19.2 Feature Extraction

All machine learning techniques rely on input
data to find underlying patterns and develop data-
based models. This input data consists of measur-
able quantities designated as features, and choos-
ing appropriate features is one of the main chal-
lenges in machine intelligence. Manual feature
selection and tuning is a task that can be time-
consuming and often requires expertise in the
application. Feature engineering is the process of
finding these features from our knowledge of the
origin of scalp EEG recordings and deciphering
the physiological and pathological basis of their
oscillations.

19.2.1 Rhythms of the Brain

Scalp EEG is a noninvasive recording method
that has been widely used by neurologists to
identify epileptiform activity in patients. Human
scalp EEG recordings are measures of electrical
fields with contributions from all transmembrane
currents in the brain. EEG reflects the summa-
tion and superposition of similarly oriented, syn-
chronous neuronal and glial electrical activity
favoring superficial sources rather than subcorti-
cal deeper structures [7]. The nature of volume
integration in the brain leads to spatial averaging
in EEG as compared to local field potential (LFP)
recordings which can pick out local activity [7].
Nonetheless, EEG signals show brain rhythms re-
lating to neuronal network effects and oscillations
with high temporal resolution, and temporal and
spectral analysis of these signals forms a large
and important set of features for machine learning
techniques.

As information in the brain is transmitted
using neural coding, spectral information or
rhythms at different frequency ranges recorded
in EEG have been the target for analysis in
perceptual binding and transient short- and long-
range coordination. The rhythms of the brain
were noticed by Penttonen and Buzsaki to show
frequency ranges at an arithmetic progression
on the natural logarithmic scale (Fig. 19.1) [6].
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Fig. 19.1 Brain rhythm
frequency range following
a logarithmic scale. (Figure
adapted from Penttonen
and Buzsáki [6])

Lower-frequency oscillations allow for longer
delays and communication between larger areas.
Higher-frequency oscillations facilitate acute
and spatially limited communication. These
oscillations are concurrent with one another
suggesting that the brain works at different time
scales [8].

While low-frequency oscillations (LFOs) are
important – e.g., the shape and synchronicity
of beta (13–30 Hz) waveforms was shown to
improve detection of Parkinson’s disease patho-
physiology in noninvasive recordings [9] – in
the past decade, higher frequencies have gained
prominence. High-frequency oscillations (HFOs)
are defined as frequencies in EEG ranging from
100 to 500 Hz. More specifically, HFOs rang-
ing from 100 to 150 Hz are described as ripple
and 250 to 500 Hz as fast ripple [10]. HFOs
have been identified occurring during interictal
epileptiform discharges (IEDs) with fast ripples
more restricted to seizure-onset zone. Jacobs et
al. showed analysis of HFO rate independent of
IEDs for identifying seizure-onset zone [10]. Fast
ripples during IEDs and in absence showed higher
sensitivity in finding the seizure-onset zone while
keeping a specificity value of 95%.

The challenge of using HFOs in EEG for high-
lighting the seizure-onset zone (SOZ) is that of-

ten there is an overlap between physiological
and pathological activity in the range of high-
frequency oscillations. Brazdil et al. showed a
higher specificity in locating the zone using fre-
quency ranges from 600 Hz up to 2000 Hz (see
Fig. 19.2) [11]. These very-high-frequency os-
cillations (VHFO) were shown to be present in
patients with focal epilepsy [12]. Patients whose
resected brain regions more closely corresponded
to EEG channels containing VHFOs showed sig-
nificantly better surgery outcomes indicating that
this may be a superior biomarker.

To examine the power of different spectral
bands, including the VHFOs, the Fourier trans-
form has enabled us to transform EEG recorded
signals from the time domain to the frequency
domain. The Fourier transform is given as

I {f (t)} = f̂ (ξ) =
∫ ∞

−∞
f (t) e−2πjtξ dt,

(19.1)

where ξ is the frequency in hertz. Applying it to
discrete data and using a finite window, the short-
term Fourier transform takes the form

F (ξ, k) =
N∑

n′=1

fkw
(
n′ − k

)
e−jξk, (19.2)
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Fig. 19.2 Localization of epileptogenic zone using
VHFO activity on iEEG data. Each vertical bar shows the
length of duration exceeding threshold in different ranges

of frequency bands (R ripple, FR fast ripple, VFR very
fast ripple, UFR ultrafast ripple). Stars identify selected
regions. (Figure taken from Bradzil et al. 2017)

where fk is the value of the signal at tk = kδt
and w(n

′ − k) is a window function. The wavelet
transform follows this transform using a wavelet
basis instead of a sinusoidal basis function.
Wavelets are a family of functions used as a basis
for wavelet transforms which have the property
of integrating to zero and are expressed as

W (s, n) =
N∑

n′=1

fn′ψ∗
[(

n′ − n
)
δt

s

]
, (19.3)

where ψ(s, n) is the wavelet function used with
scaling factors s and n. We can convert the scaling
factor s into frequencies by scaling the central

frequency of the mother wavelet by 1
/

s
. Con-

tinuous wavelet transform (CWT) is preferred
over short-time Fourier transforms (STFT) for
two distinct reasons. The chosen mother wavelet
of the CWT can better extract the preferred fre-
quencies of EEG signal which do not typically
follow sinusoidal functions, and the CWThas bet-
ter temporal resolution increasing with frequency.
Complex wavelet transforms are a type of CWT
which uses complex mother wavelets. The real

and imaginary wavelet coefficients can be used
to extract phase information of specific frequency
bands in EEG signals.

19.2.2 Wavelet Phase Coherence

Wavelet phase coherence (WPC) is a measure of
phase coherence that uses complex wavelet trans-
form to extract the phase information of different
frequency bands in EEG data. WPC describes
how the phases of two EEG signals change with
respect to one another within a time window.
Unlike other coherencemeasurement,WPC is not
related to the power of the frequency bands. The
relative phase difference �φ is extracted from
wavelet coefficients of two signals W1(s, τ ) and
W2(s, τ ), with s as the wavelet scaling coefficient
and τ as the time shift, as follows:

Δφ (s, τ ) = arctan
(

W ∗
1 (s, τ ) W2 (s, τ ) − W1 (s, τ ) W ∗

2 (s, τ )

W1 (s, τ ) W2 (s, τ ) − W ∗
1 (s, τ ) W ∗

2 (s, τ )

)

(19.4)
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where W∗ indicates the complex conjugate. The
relative phase coherence is then measured as the

ρ (s, τ ) = ∣∣〈ejΔφ(s,τ )
〉∣∣ (19.5)

and ranges from zero to one, with a value of
one indicating complete coherence or a constant
phase difference within a time window.

Wavelet phase coherence (WPC) of high-
frequency oscillations was shown by Cotic et
al. to be a useful feature in the localization of
the epileptogenic zone [13]. Although the power
of HFOs increased during seizures and could
roughly locate the epileptogenic zone, WPC was
better able to identify electrodes within this zone
as confirmed using ROC curve analysis.

19.2.3 Cross-Frequency Coupling

We have thus far introduced brain rhythms
and how different regions can show phase
coherence within specific frequency ranges.
Cross-frequency coupling (CFC) pertains to
the communication or brain code observed as a
function of two or more interacting frequencies.
Phase-amplitude CFC (PAC) has been observed
in humans under a variety of conditions [14].
PAC refers to the relationship where the phase
of a low-frequency oscillation modulates the
amplitude of a high-frequency rhythm. The
most popular example of PAC is the theta-

gamma code and its role in spatial memory
[15]. Distinct neural ensembles observed to
fire in the gamma range were encoded within
specific phases of theta cycles cued by positional
information and long-term memory. One of the
most common measures of PAC was developed
by Tort et al. [16]. A variation of the algorithm
uses complex wavelet transforms to extract phase
and amplitude information in contrast to using
band pass filtering with Hilbert transforms [17].
The amplitude of the high-frequency rhythm is
computed using (Fig. 19.3)

A
(
t̂ , fH

) = ∣∣Re
{
W

(
t̂ , fH

)} + j Im
{
W

(
t̂ , fH

)}∣∣ .
(19.6)

The phase of the low frequency can easily be
computed from the analytic wavelet transform
representation.

φ
(
t̂ , fL

) = arctan
Im

{
W

(
t̂ , fL

)}
Re

{
W

(
t̂ , fL

)} . (19.7)

The mean amplitude is normalized in order to
have an amplitude-independent measure of CFC

pj

(
t̂ , fH , fL

) =
〈
A

(
t̂ , fH

)〉
j∑N

k=1

〈
A

(
t̂ , fH

)〉
k

. (19.8)

The cross-frequency coupling index is then
computed as a measure of entropy normalized to
a uniform distribution.

Fig. 19.3 Example wavelet phase coherence between electrodes 1 and 5 during a seizure. (Adapted from Cotic et al.
[13])
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H
(
t̂ , fH , fL

) = −
N∑

j=1

pj

(
t̂ , fH , fL

)
log

(
pj

(
t̂ , fH , fL

))
(19.9)

ICFC

(
t̂ , fH , fL

) = log N − H
(
t̂ , fH , fL

)
log N

.

(19.10)

PAC has been used as a biomarker of both
physiological and pathological conditions. Guir-
gis et al. [18] showed PAC captured seizure dy-
namics and identified regions of interest for sur-
gical resection in seven patients (Fig. 19.4). Mod-
ulation of high-frequency oscillations by delta
activity showed higher specificity in selecting
the seizure-onset zone (SOZ) as compared with
regions determined by neurologists as well as
considering the Engel class of the patient (i.e.,
how seizure-free is the patient after the surgery;
EC I–IV denote a progressively worse surgical
resection outcome). Conversely, in Amiri et al.
[19], theta modulation of high-frequency oscil-
lations was shown to best identify seizure-onset
patterns.

19.2.4 Model Performance

Before a given machine learning algorithm can be
trained on a set of features, those features need
to be tested for reliability. Surrogate analysis is a
commonway to assess this reliability of nonlinear
measures and how they differ from noise and
inherent trends in the data. A common way to
create surrogate data, described by Theiler et al.
[20], is to shuffle phase while having an am-
plitude adjusted Fourier transform. This method
preserves spectral information while removing
the original temporal information. In the case
of cross-frequency coupling, surrogate analysis
consists of shuffling the phase information and
recomputing the CFC index. Although we might

Table 19.1 Selection of algorithm performance metrics

Sensitivity T P
T P+FN

Accuracy T P+T N
T P+T N+FP+FN

Specificity T N
T N+FP

F1 score 2T P
2T P+FP+FN

False-
positive
rate

FP
FP+T N

Precision T P
T P+FP

expect a uniform distribution when binning the
amplitude of high-frequency rhythms to phases
of low frequencies, there may be an inherent CFC
based on the noise of the data.

Once the machine learning model is created,
its performance needs to be evaluated. In case of
a two-state classification (e.g., seizure vs. non-
seizure), a number of metrics can be used; how-
ever, first we need to introduce the basic termi-
nology:

True positive (TP) – The algorithm has classified
and identified the state.

False positive (FP) – The algorithm has incor-
rectly identified the state (Type I error).

True negative (TN) – The algorithm has correctly
rejected the state.

False negative (FN) – The algorithm has incor-
rectly rejected the state (Type II error).

From these definitions, several metrics can be
established (see Table 19.1).

Sensitivity and specificity are commonly used
in evaluating algorithms’ performance in general
[21]; however, other metrics – especially false-
positive rate and accuracy – are also widely used.
While it is not necessary to show all of these met-
rics (some of them can be derived from others),
each measure offers different information on how
the algorithm performs. For example, high sen-
sitivity indicates a high probability of correctly
identifying the diseased state, and high speci-
ficity indicates a high probability of correctly
rejecting the diseased state. In classification tasks
with more than two classes (e.g., interictal, pre-
ictal, ictal EEG state classification), these mea-
sures can be used for each individual class in
a one-vs.-all approach – for example, interictal
vs. non-interictal, preictal vs. non-preictal, and
so forth.
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Fig. 19.4 Localization of epileptogenic zone using
phase-amplitude cross-frequency coupling of iEEG data.
Delta-HFO modulation index (MI) used along with

eigenvalue decomposition (EVD) to localize epileptogenic
zones in patients who underwent surgical resection with
varying outcomes. (Figure adapted from Guirgis et al.
[18])
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Fig. 19.5 (a) Example of receiver operating curve of three different models. (b) Area under the curve shows model A
as the best performing classification model. (Figure used with author’s permission)

These measures can be better visualized as
a receiver operating characteristic (ROC), which
is a plot of sensitivity against false-positive rate
while ranging over values of a parameter of an
algorithm with binary classification such as a
threshold [22]. ROCs explore the trade-off be-
tween high sensitivity and high specificity. We
can compare different classification models using
the area under the curve (AUC) and find the best
parameter to maximize sensitivity and specificity,
giving bias to meet the requirements of classifica-
tion problem (see Fig. 19.5).

19.3 Seizure Detection
and Forecasting

The ability to reliably detect, classify, and
forecast seizures in epileptic patients can
have a profound impact on state-of-the-art
therapies for epilepsy and patients’ quality of
life. Successful classification of EEG signals
into a number of states – such as interictal,
preictal, or potentially several seizure states –
can identify different epilepsy etiologies, predict
potential complications, and aid in classifying
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the severity of seizures. Being able to detect the
seizure early (as opposed to after the fact) or
even forecast the event before it happens can
provide an alert or therapeutic intervention for
epileptic patients. People with chronic epilepsy
report decreased quality of life and common
fear of future seizures due to uncertainty [23],
which an early warning system could reduce or
eliminate. However, the question whether reliable
seizure detection and, forecasting are possible has
long been left unanswered. While the difficulty
varies significantly based on the task (detection,
classification, or forecasting), the quality of data,
and the overall goal, it was only in the last decade
that computer algorithms became sophisticated
enough to be able to forecast epileptic seizures
with above chance accuracy (compare Mormann
et al. [24] and Kuhlmann et al. [25]).

The algorithms that enabled this breakthrough
belong to the area of machine intelligence, espe-
cially deep learning, that train on large amounts
of data to extract underlying features and patterns
which might not be noticeable to the human eye.
Generally machine learning algorithms can be
split into supervised and unsupervised learning;
in this section we will mostly focus on the former
category, while still presenting some examples of
clustering algorithms used for EEG signal classi-
fication. In supervised learning, the algorithm is
presented with a training set of inputs and corre-
sponding outputs, based on which it attempts to
infer an underlying input-output map – with its
performance evaluated on the never-before-seen
test set of data. Supervised learning could be fur-
ther broken down into two areas – classification
tasks with categorical outputs, such as seizure
detection, and regression tasks with numerical an-
swers, for example, predicting the duration of the
seizure. The former dominates epilepsy research,
as it is important to determine the current and
the next state the patient is in; so in this sec-
tion, we will exclusively focus on classification
algorithms. Another way supervised learning can
be divided is into linear models (e.g., logistic
regression and support vector machines) and non-
linear models (e.g., decision trees and deep neural
networks). We will first look at linear models
and how they are used in epilepsy research and

then at both tree-based methods and deep neural
networks.

19.3.1 Linear Methods

The underlying feature of all linear methods is
that, as the name implies, at the core they create
a boundary to distinguish between two or more
classes (in case of classification tasks) based on
some linear combination of input features. For
example, a logistic regression model applies an
activation function to an otherwise linear summa-
tion of inputs:

z = b + w1x1 + w2x2 + · · · = b + xTw

(19.11)

y ′ = 1

1 + exp (−z)
, (19.12)

where x is a vector of inputs, w is a weight
vector, and b is a bias term. In one case, logistic
regression was used for seizure prediction with
EEG data from 9 patients with an average of
320 days of recording and 116 seizures each
[26]. The signal energy features from four fre-
quency bands (8–16 Hz, 16–32 Hz, 32–64 Hz,
and 64–128 Hz) were used, and the algorithm
showed the average sensitivity for seizure predic-
tion of 0.55 and an average AUC of 0.79. The
authors have suggested to augment the logistic re-
gression by integrating patient-specific circadian
information, which increases average sensitivity
to 0.61.

On its own, logistic regression is only suited
for binary classification – e.g., whether an EEG
signal is a seizure or not. However, it can be
generalized to a multiclass classification using
softmax regression, where a softmax function is
used to calculate probability of every class occur-
ring given the input (and the class with the largest
probability is selected):

σ(z) = exp (zi)∑K
j=1 exp

(
zj

) . (19.13)
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One group utilized softmax regression in a so-
called mixture-of-experts model to classify EEG
signals into normal or epileptic using the Univer-
sity of Bonn dataset (Bonn dataset), which con-
sists of scalp EEG data obtained from five healthy
volunteers and five individuals suffering from
epilepsy [27]. A mixture-of-experts model con-
sists of a population of simple linear classifiers
(such as logistic regression) and a gating network
(which contains a softmax function). The gating
networkmixes outputs from linear classifiers, and
during training, it eventually learns to partition
inputs such that each classifier is an “expert” in
one subset of features. The model used features
such as mean, standard deviation, and average
power of wavelet coefficients from six distinct
frequency bands covering the entire range up to
86.8 Hz and showed an improvement over a basic
multilayer perceptron neural network (which we
will cover in more detail in a later section) with
an increased accuracy (94.5%), specificity (94%),
and sensitivity (95%).

Support vector machines (SVMs) are another
family of linear models, where the objective
is to find the optimal hyperplane separating
two classes by maximizing the space between
the closest points (or support vectors) of these
classes (see Fig. 19.6). A linear SVM is very
similar to the logistic regression and can be
adapted from Eqs. (19.11) and (19.12) to look
like this:

y ′ =
N∑
i

wiyik
(
xi , x

′) + b (19.14)

k
(
xi , x

′) = xT
i x

′, (19.15)

where y’ is the predicted class for the input x’and
k() is the so-called kernel. Kernels are a transfor-
mation of the (potentially nonlinear) feature space
associated with a classification problem. A linear
SVM is very similar to the logistic regression,
but has a few advantages over it, since SVM
(a) ensures that the found solution is as fair as
possible and (b) less sensitive to outliers com-
pared to logistic regression. In one case, Bonn
dataset was used to construct features such as
dominant frequency, mean of power spectrum,
and coefficient of variation [29]. These features
were fed into a linear SVM to classify the given
EEG signal as either normal or epileptic. The
authors found that while each individual feature
had about a 50% accuracy, combining the features
led to a 98% accuracy.

Furthermore, SVMs can be used to extend
linear modelling to a nonlinear domain, using
kernels such as:

polynomial : k
(
xi , x

′) = (
xT

i x
′ + 1

)d

(19.16)

radial basis f unction :
k

(
xi , x

′) = exp
(
−γ

∥∥xi − x ′∥∥2
)

.
(19.17)

This allows the capture of some of the non-
linear dynamics of the brain. One group used a
patient-specific radial basis function (RBF) SVM
on intracranial EEG data of 19 out of 21 patients
with epilepsy from Epilepsy Center of Univer-

Fig. 19.6 Hyperplane and support vectors (−1 and 1) in a two-class SVMwith linear, polynomial, and Gaussian (RBF)
kernels. (Figure adapted from Ben-Hur et al. [28])
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sity of Freiburg dataset (Freiburg dataset), us-
ing features based on correlation patterns and
space/time delays to forecast seizures [30]. SVM
outputs were also averaged over time to reduce
noise, and the resultant algorithm, depending on
alarm threshold values, had a sensitivity of 0.86–
0.95 and false prediction rate (FPR) of 0.03/h to
0.07/h. Additionally, the algorithm spent between
3% and 9% of time in the seizure warning state.
As feature selection is an important element of
designing seizure detection and forecasting algo-
rithms, another study used RBF SVM to test two
ways of identifying the most important features
for predicting seizures [31]. The authors used a
combined dataset of scalp EEG (sEEG) of 16
patients and intracranial EEG (iEEG) of another
8 patients to extract absolute and relative spectral
power from several frequency bands – delta (0.5–
4 Hz), theta (4–8 Hz), alpha (8–15 Hz), beta (15–
30 Hz), and gamma (30–128 Hz). They compared
a method of maximum difference of amplitude
distribution histogram (MDAD) between preic-
tal and non-preictal feature samples with mini-
mum redundancy maximum relevance (mRMR)
method and found that the former outperformed
in seizure prediction with average sensitivity of
75.8% and FPR of 0.1/h, while mRMR showed
sensitivity of 64.4% but marginally lower FPR.

Several studies have compared the perfor-
mance of different commonly used kernels for
SVM in the context of seizure detection and
forecasting using EEG data. In a work by Zhang
and Parhi [32], polynomial and RBF SVM
classifiers were compared using iEEG from
two patients and spectral power-based features
calculated from 10 frequency bands covering the
range from 3 Hz to 200 Hz. While RBF SVM
classifier showed slightly better performance for
predicting a seizure (AUC of 0.9985 compared
to 0.9795 of the polynomial SVM), the second
degree polynomial SVM classifier used fewer
number of features, potentially increasing the
computational efficiency of classification. Other
studies have compared the performance of
linear and nonlinear SVM classifiers. In Shiao
et al. [33], the authors found that both linear
and nonlinear SVMs can perform with similar
sensitivity and FPR (attributing it to a carefully

prepared training set), while another study
showed that when using permutation entropy
(a complexity measure based on neighboring
values in the time series), whether nonlinear SVM
outperformed linear one or vice versa depended
on the state associated with the EEG [34].

While SVMs show adequate results for EEG
classification, work is being done to further im-
prove their performance. In the study by Park et
al. [35], so-called cost-sensitive SVMs (CSVMs)
are proposed, which penalize misclassification of
preictal data higher than interictal data in an effort
to address the imbalance of preictal and interictal
samples in the training set. The authors used the
algorithm on the Freiburg dataset and found that
it achieved a sensitivity of 97.5% and a FPR of
0.27/h for seizure prediction. Another strategy to
improve SVM performance was to utilize a group
of different classifiers (an ensemble) each trained
with a different set of weights – using Bonn
dataset and extracted Teager energy among other
features. The algorithm achieved an accuracy of
98.72% for seizure detection [36].

As with many machine learning algorithms,
one concern with SVMs is that the algorithm will
overfit the training set, meaning that it will model
not just the underlying pattern of the data but also
the noise specific to the training set – reducing
its performance on the test set. In order to reduce
the chance of overfitting, regularization is used
where the weights or coefficients of the algorithm
are kept small, which discourages learning amore
complex model. While there are many ways to
accomplish that, in one study Kalman filters were
used to regularize SVM classifier on coefficients
of autoregressive models (AR) of EEG signals to
predict seizures, which achieved FPR of as low as
0.02/h [37].

19.3.2 Tree-BasedMethods

Another family of machine learning algorithms
are tree-based methods. A decision tree is a
flowchart-like structure, consisting of branches
and nodes, traversing which allows the algorithm
to make a conclusion about the class of a new data
point based on a recursive analysis of features
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Fig. 19.7 Example of a decision tree for classification.
(a) Sample training set with two classes. (b) Splitting of
the original space into decision tree nodes. (c) Probability

that a point belongs to either class in each node of the tree.
(Figure used with author’s permission)

associated with the data (see Fig. 19.7). In a
decision tree, the nodes represent a feature, the
branches connecting the nodes are a decision,
and a terminal node (or a leaf) is the probable
outcome. Thus, each path from the top of the
tree to the leaf is a classification rule which
the algorithm applies to the input vector. The
trees are constructed by a recursive algorithm of
binary splitting, which divides the training set
data into two along a feature based on some cost
function, with the goal of minimizing the cost.
By splitting the data along each feature to come
up with least-cost classification rules, decision
tree-based algorithms are able to successfully
capture nonlinear dynamics of the EEG signals
and have been used for seizure detection and
forecasting.

In one study, empirical mode decomposition
(EMD) has been used to separate scalp EEG sig-
nals from the Bonn dataset into mono-rhythmic
intrinsic mode functions (IMFs), and correspond-
ing features such as spectral peaks, entropy, and
energy of these IMFs were fed into a decision tree
algorithm for seizure detection [39]. The algo-
rithmwas able to achieve the accuracy of 95.33%,
sensitivity of 98%, and specificity of 97%. These

results were confirmed by a long-term seizure
advisory system, which was implanted into 15
patients with drug-resistant epilepsy for up to
24 months [40]. In that study, features from a
range of frequencies from 8 to 128 Hz, such as
average energy, Teager energy, and line length,
were used in a combination of decision tree and
k-nearest neighbors (an algorithm where a class
of a given data point is determined by plurality
vote of k of its neighbors) classifiers. The final
algorithm showed a patient-specific sensitivity of
54–100% with time spent in “high” alert state
of between 3% and 41%. While the algorithm
showed a large variability in performance de-
pending on the patient, it was one of the first
results from a long-term real-life patient trial
where the authors found little to no significant
reduction in clinical effectiveness after 4 months
of implantation. Several studies have also com-
pared decision trees to other machine learning
algorithms. In one, decision trees were compared
with SVM classifiers with various kernels (linear,
polynomial, RBF) and probabilistic neural net-
works (which will be briefly covered in the next
section) for seizure detection task using features
derived from intrinsic time-scale decomposition
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Fig. 19.8 Sample strategy for multistate classifier based on random forest. (Figure adapted from Jacobs et al. [38])

(ITD) – an adaptive data-driven method similar
to EMD to decompose a complex signal [41].
The authors found that decision trees performed
slightly better than the rest with accuracy of 96%,
sensitivity of 99%, and specificity of 99.5%. This
finding was confirmed by another study using
different set of frequency-related features and
an extended algorithm comparison, which found
decision trees to have average sensitivity of 99%
and specificity of 94% [42].

An iteration on the decision tree algorithm is
a logistic model tree, where each of the leaves
(terminal nodes) of the tree consists of a logistic
regression. Logistic model trees have been re-
ported to be accurate classifiers, combining high
performance with ease of interpretability [43].
In one study, they have been used on the Bonn
dataset for seizure detection and outperformed
both logistic regression and SVM, with an over-
all AUC of 0.988 (compared to 0.932 and 0.52,
respectively) [44].

In an effort to improve the performance of
decision trees, an ensemble technique of random
forest has been developed. As with real forests,
a random forest algorithm consists of a number
of trees (in this case, decision tree algorithms).
In a random forest, each decision tree has access
only to a random subset of features while making
the decision to split the node and a random subset
of training data points. The random forest, then,
takes a majority vote (for the classification task)
of all individual tree decisions as the final class.
The large number of classifiers with, ideally, low
correlation between any two trees results in the

low error rate of the random forest. Random
forest algorithms have been used extensively for
seizure forecasting (a sample strategy for random
forest use shown in Fig. 19.8). In the work by
Tzimourta et al. [45], energy coefficients, en-
tropy, and other frequency-based features were
extracted from Bonn and Freiburg datasets and
used with a random forest classifier achieving
accuracy of 95% with FPR of 0.21/h. In Donos
et al. [46], 11 time- and frequency-domain fea-
tures have been extracted from intracranial EEG
of 8 patients and fed into a random forest clas-
sifier, which showed 1.75 s median delays of
seizure prediction and 0.07/h FPR. As the authors
suggested, “For closed loop stimulation devices,
an early detection is necessary if termination of
epileptic activity prior to first ictal manifestations
is aimed at,” which the short median delay of
seizure-onset prediction enables. However, with
correct input feature selection, the time of ad-
vance seizure forecasting can be extended. In Ja-
cobs et al. [38], a global index of cross-frequency
coupling computed from scalp EEG was used
as an input to a multistage state classifier based
on random forest, and the algorithm achieved a
45 ± 16 second advance alarm with AUC of
0.934. Robustness of a classifier to input fea-
tures is also an important consideration, and in
the same study, the authors found that the per-
formance of random forest did not significantly
changewith reduced electrode ring configuration.

Random forest classifier has also been used for
seizure detection. As an example, in Zhang et al.
[47], a combination of variational mode decom-
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position (VMD; an extension of EMD technique,
with an advantage of decomposing a multicom-
ponent signal into a number of band-limited in-
trinsic mode functions non-recursively and syn-
chronously) andARwas used on the Bonn dataset
for feature extraction. These features were then
fed into a three-state random forest classifier,
which delivered an accuracy of 97.4%. In another
study, a random forest classifier was compared
with both SVM and an existing closed loop neu-
romodulation device for seizure detection and
showed better performance compared to the other
two strategies, while maintaining low detection
delay and good energy efficiency [48].

19.3.3 Deep Neural Networks

Artificial neural networks (ANN) are a large fam-
ily of machine learning algorithms inspired by
biological neurons. The simplest ANN is sys-
tem of multiple perceptrons, or individual artifi-
cial neurons which behave very similarly to the
logistic regression described in an earlier sec-
tion – the only difference being a slightly dif-
ferent activation function. In fact, unlike logistic
regression, ANNs can use any activation function,
and several have been commonly used. While
the activation function cannot be linear (other-
wise an ANN will collapse into a single per-
ceptron), both sigmoid (with range 0 to 1) and
hyperbolic tangent (with range−1 to 1) functions
have been used. More recently, rectified linear
unit (ReLU) and “leaky ReLU” functions have
been designed to improve upon some of the is-
sues with the sigmoid and tanh functions and are
defined as

f (z) =
{

z, z > 0
αz, z ≤ 0

, (19.18)

where α is zero for ReLU and a small value (e.g.,
0.01) for leaky ReLU. While these activation
functions have enjoyed wide adoption as typical
activations used in ANNs, a few other functions
have been occasionally used, such as a radial basis
function and a nonlinear cube function.

While on its own a perceptron is a linear classi-
fier, a system with multiple perceptrons arranged
in several layers becomes nonlinear. A typical
multilayer perceptron network (MLP, also called
a feedforward network) has at least three layers –
an input layer of features, a hidden layer, and
an output layer (a typical MLP is shown in Fig.
19.9). While the input layer has the same number
of units as input features, and the number of
units in the output layer is restricted by however
many classes there are in the classification task,
the number of hidden layers and units in each
layer is dependent on algorithm design. Too few
hidden layers/units lead to poor differentiation of
complex patterns in the data, while toomany units
can lead to overfitting, and too many layers can
make training time-consuming – so a careful con-
sideration forMLP parameters is necessary. In the
work by Sriraam et al. [50], a three-layer MLP
with 10 hidden units was usedwith spectral power
and energy features from scalp EEGof 20 patients
for seizure detection and achieved a sensitivity of
97.1%, specificity of 97.8%, and FPR of 1/h. In
Subasi and Erçelebi [51], a similar MLP with one
hidden layer and 21 hidden units was compared
with logistic regression using wavelet-extracted
features from 500 scalp EEG segments for seizure
classification, and it outperformed the latter al-
gorithm with an accuracy of 92% and AUC of
0.889. MLPs with more than one hidden layer
have also been used, for example, in the study
by Abbasi and Esmaeilpour [52], where a neural
network with two hidden layers (with 4 units in
the first and 5 units in the second hidden layer)
was used with wavelet-derived features from the
Bonn dataset and achieved 98.3% accuracy in
seizure detection.

While multilayer perceptron network is the
most common among the simpler ANN designs,
there are many iterations that attempt to improve
the algorithm’s performance. Probabilistic neu-
ral network (PNN) is a neural network with an
exponential as an activation function which com-
putes the distance from the test input to the train-
ing input vectors and produces a net output as a
vector of probabilities. PNNs are characterized
by fast training and have been compared with
decision trees and SVM classifiers in Martis et
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Fig. 19.9 Example of a multilayer perceptron with one hidden layer and four hidden units. (Figure adapted from
Acharya et al. [49])

al. [41] and Acharya et al. [42] showing compara-
ble accuracy, sensitivity, and specificity. Contin-
uous neural networks are ANNs where each unit
is described by ordinary differential equations
(ODEs), and in one case, they were trained on
Freiburg dataset as well as 90 scalp EEG trials,
and the overall correct classification percentage
was 97.2%, using features that, unlike most other
noncontinuous classifiers, take into account the
continuous nature of EEG signals [53]. Extreme
learning machines (ELM) are a generalized sin-
gle hidden layer MLP network where the param-
eters of hidden units (and not just the weights)
are randomly generated. A sparse ELM has been
shown to perform comparably to SVM classifiers
and traditional ANN on a seizure detection task
with accuracy of 98.4%, while requiring less stor-
age space and training time [54].

An early comparison of several types of artifi-
cial neural networks for EEG state classification
was shown in Costa et al. [55]. In the study, the
authors investigated (1) a traditional feedforward
network, (2) a radial basis function neural net-

work, (3) a layer-recurrent network (with a feed-
back loop around each layer), and (4) a distributed
time-delay network (where the output of a layer
also depends on past outputs) using energy-based
and complexity-based features extracted from the
Freiburg dataset. The comparison showed that in
a patient-specific task (i.e., both testing and train-
ing data came from the same patient), all of ANNs
showed great performance with accuracy of close
to 100% – with RBF network performing slightly
worse than others. However, when the systemwas
trained on one patient and tested on another, the
performance of ANNs dropped significantly.

Perhaps the two patients used for compari-
son had two drastically different epilepsy eti-
ologies (as the authors suggested), or there was
not enough data to properly tune ANNs to suc-
cessfully classify EEG signals across different
patients. However, it is equally likely that ANNs
used were unable to capture the full complexity
of the provided EEG signals. Deep learning is
a subfield of machine learning which is rapidly
gaining prominence due to the ability of deep



19 Machine Intelligence-Based Epileptic Seizure Forecasting 549

neural networks to better capture complexity as-
sociated with real-life data without the necessary
fine-tuned feature selection. While the precise
definition of what makes a neural network deep is
elusive, the generally accepted criterion is having
at least three hidden layers. An example of deep
neural network is the multilayer perceptron with
three hidden layers used with bispectral entropy
features for seizure prediction using intracranial
EEG data, where it achieved a test accuracy of
78.11% [56].

One specific class of deep neural network is a
convolutional neural network (CNN or ConvNet,
example shown in Fig. 19.10) which was inspired
by and is highly correlated with the organization
of the visual cortex [58] and has been extensively
used on image classification tasks. In general,
ConvNets consist of a feature learning stage and
a classification stage. The feature learning stage
is comprised of convolutional and pooling layers.
The former consists of filters or kernels, matrices
that convolve with the image (a spectrogram, a
matrix of wavelet coefficients, or a compilation of
EEG signals for seizure detection and forecasting
tasks) to extract spatial features and create a fea-
ture map. The latter, pooling layer, down-samples
the input data and reduces its dimensions, de-
creasing the necessary computational power as
well as extracting dominant features. Two types
of pooling layers exist – a max pooling returns
the maximum value from the subregion of the
data, while the average pooling returns the av-
erage of all values from the subregion. As max
pooling can also act as a de-noising filter, it is the
preferred choice when designing the CNN. Due
to existence of the feature learning stage, CNNs
require little preprocessing or manual feature se-
lection, unlike othermachine learning algorithms.
Features extracted from the input data are then fed
into the classification stage, which is typically a
multilayer perceptron trained for a classification
task.

Recently, convolutional neural networks have
been used for seizure prediction and EEG state
classification. In a work by Khan et al. [59], a
CNN with six convolutional layers (with max
pooling) and two dense (or MLP) layers was used
with wavelet-transformed scalp EEG signals for

seizure prediction and performed with sensitivity
of 87.8% and FPR of 0.142/h. In another study,
a sequence of short-time Fourier transforms was
used with a CNN with three convolutional layers
with max pooling and twoMLP layers for seizure
prediction with FPR of 0.06/h and sensitivity of
81.4% [57]. In both examples, a two-dimensional
convolutional neural networkwas used on, a spec-
trogram image; however, this need not be the
case. In Acharya et al. [49], for example, a one-
dimensional CNN with five convolutional layers,
five max-pooling layers, and three MLP layers
was used on a normalized EEG trace. The al-
gorithm was used to classify scalp EEG into
normal, preictal, and seizure states and achieved
an accuracy of 88.7%, sensitivity of 95%, and
specificity of 90%. On the other hand, in the study
by Wei et al. [60], a multichannel scalp EEG
data was fed into a three-dimensional CNN with
nine total layers, and the seizure detection per-
formance was compared with a two-dimensional
CNN and a SVM-based classifier. With average
accuracy of 92.4%, the 3-D CNN outperformed
the other two classifiers. Further comparison of
CNNs to other classifiers also showed that CNNs
outperformed SVM and logistic regression clas-
sifiers for seizure prediction [61] and achieved
zero-false-alarm seizure prediction in 20 out of
21 patients of the Freiburg dataset, while SVMs
only had 11 such predictions [62].

Another commonly used class of a deep neural
network is a recurrent neural network (RNN), de-
signed specifically for sequential data. RNNs take
as an input not only the current training/testing
example but also previous information they have
encountered – so they are said to have memory.
Adding this memory can be advantageous since
there is information in the sequence itself (e.g.,
the sequence of interictal → preictal → ictal
EEG states) that other ANNs cannot capture.
Recurrent neural networks for seizure prediction
were first used in 2000, when an RNN with one
hidden layer of between 10 and 15 units was
used with intracranial and scalp EEG of two
patients for seizure prediction [63]. Both EEG
time-series data and wavelet-decomposed spec-
tral bands were fed into the RNN which resulted
in up to 15 second early warning of seizure onset.
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Fig. 19.10 Example of a convolutional neural network, with three convolutional kernels, three max-pooling layers,
and two fully connected MLP layers. (Figure from Truong et al. [57])

More work has been done since with RNNs,
including classification of epileptic seizures using
wavelet energy and norm entropy as features,
resulting in average accuracy of 99.8% [64], and
using a recurrent cellular neural network (an
ANN with geometric arrangement of units with
the restriction that the communication is only al-
lowed between neighboring units) on EEG time-
series data to successfully detect 100%of seizures
with an average detection delay of 7.0 seconds
[65].

Regular recurrent neural networks have some
limitations on their memory, and improved RNNs
have been developed – namely, gated recurrent
unit (GRU) and long short-term memory (LSTM,
schematic shown in Fig. 19.11) networks.
Both networks have units which contain so-
called gates, mechanisms regulating the flow of
information and allowing the unit to learn which
data in the sequence is important to keep. These
gates improve the performance, for example,
when an LSTM network was used on frequency-
domain, time-domain, and cross-correlation
features extracted from scalp EEG for seizure
prediction [67]. The algorithm achieved average
sensitivity of 100% and a false prediction rate of
0.11/h – the authors also noted that increasing
the window of preictal data available to LSTM
reduced the FPR to as low as 0.03/h.

There has been some effort put into combin-
ing recurrent neural networks and ConvNets to
take advantage of both automated feature learning
and sequential memory in one algorithm. In one

study, a CNN-LSTM hybrid algorithm was used
on scalp EEG of 23 patients, with three frequency
bands covering 0–49 Hz and 2-D projection of
electrode placements as features [68]. The pro-
posed hybrid algorithm achieved sensitivity of
95–100%, FPR of 0.1/h for the same patient,
and 0.8/h for cross-patient trials. Furthermore, it
proved to be more robust to missing electrodes
than previous algorithms.

19.3.4 ImprovingModel
Performance

In the previous subsections, we have outlined the
main classes of machine learning algorithms used
for seizure detection and forecasting from in-
tracranial and scalp EEG signals. However, across
all types of algorithms, some strategies exist to
further improve classification performance. One
of the ways to improve algorithm performance
is through using ensemble techniques, where a
combination of weak learners is used to create
an overall strong learner with better performance.
We have briefly mentioned examples of ensemble
techniques before, such as random forests, or
ensemble of SVM classifiers in the work by Tang
and Durand [36]. Ensemble learning can also be
extended to ANNs and deep learning, such as
using three groups of five neural networks each
for three-way EEG signal classification, which
improved the performance by 10% compared to
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Fig. 19.11 Schematic of a long short-term memory unit for RNNwith internal gates for memory management. (Figure
from Yu et al. [66])

an individual ANN (98.78% vs. 88%) [69]. In
another study, an ensemble of so-called pyrami-
dal convolutional networks (CNNs with smaller
kernel size at each layer) was used with raw EEG
signals and achieved an accuracy of 99.1% for
epilepsy detection task [70].

Ensemble learning is not limited to using mul-
tiple copies of the same algorithm. In a work by
Abdulhay et al. [71], k-nearest neighbor, RBF-
SVM classifier, and naïve Bayes (a conditional
probability supervised learning method based on
Bayes’ theorem) classifiers were combined into
an ensemble model, and the performance for each
base classifier increased by around 3% for EEG
state classification. A large study of different en-
semble models for seizure forecasting in human
and canine epilepsy in an online competition was

done by Brinkmann et al. [72], where several of
the top 10 algorithms utilized ensemble learning
(see Table 19.2) and showed higher AUC than,
for example, a ConvNet; moreover, the first al-
gorithm improved its performance AUC by up to
10% compared to its base classifiers. In any en-
semble model, the final decision has to be reached
from the combination of individual classifiers –
one of the most widely used ways of determining
the final decision in a classification is a majority
vote. However, other ensemble methods exist,
such as weighted average, Platt scaling (combin-
ing all of the outputs into a probability distribu-
tion over all classes), or Bayesian combination of
classifiers.
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Table 19.2 Details of seizure forecasting classifiers

Selected features used Machine learning algorithm Ensemble method AUC

Spectral power, correlation,
distribution statistics, signal
variance

Generalized linear model;
SVM classifier; random
forest

Weighted average 0.82

Log spectral power,
covariance

SVM Platt scaling 0.8

Spectral power, correlation,
signal derivative

Neural network; k-nearest
neighbor

Bayesian combination 0.79

Spectral power, statistical
measures, covariance
matrices

SVM; generalized linear
model

Weighted average of rank scores 0.79

Spectral power, signal
standard deviation

Convolutional neural
network

N/A 0.78

Adapted from Brinkmann et al. [72]

Ensemble models are not the only strategy for
improving classification results – correctly select-
ing features to feed into a machine learning al-
gorithm is equally important. One way to reduce
the algorithm’s reliance on correctly selected fea-
tures is to utilize a CNN with its feature learn-
ing stage, which was covered earlier. Another is
to rely on unsupervised learning algorithms to
automatically identify useful features. Instead of
building an input-output map from a training set,
unsupervised algorithms find patterns in the data
without being provided the “correct” answers.
In one study, k-means clustering algorithm was
used for feature extraction from scalp EEG (Bonn
dataset) together with an MLP model to achieve
an overall accuracy of 98.3%, about 5–8% in-
crease compared to MLP used with manual fea-
tures [73]. K-means algorithm finds k number of
clusters, or collections of data points aggregated
together based on some similarity, by reducing
the in-cluster distance between every data point
and the center of the cluster. Another unsuper-
vised learning technique for feature extraction
is bag-of-words, originally developed for natural
language processing, where each feature vector (a
so-called bag) is described by the distribution of
unique features (“words”) – or how many times
each feature has appeared in the input. In the
study by Martinez-del-Rincon et al. [74], bag-of-
words technique was used with an SVM classifier
for seizure detection and showed an overall 10%
improvement in the F1 score over the second-

best ranked method, likely due to more linear and
discriminative feature space.

Careful consideration for the type of machine
learning algorithm and the feature selection is
necessary for good classification performance.
In Fig. 19.12, ROC curves show that even for
the same algorithm, using different features can
lead to vastly different AUC – in the example, a
random forest algorithm using time-based and co-
modulogram features led to an increase of 0.226
in AUC compared to power-based features [17].
Deep neural network-based unsupervised learn-
ing algorithms also have been used for feature
extraction. Autoencoders are a type of unsuper-
vised neural networks with two stages – an en-
coder and a decoder – which attempt to learn
an identity function by adjusting hidden layer(s)
such that the input and the output are as close
to each other as possible – in essence create a
reduced representation of the data which can be
used as features. The underlying type of neural
network used for an autoencoder can vary, for
example, in one study, a CNN-based autoencoder
feature learning was used with various classifiers
(SVM, decision tree, random forest, MLP) for
EEG state classification and showed more than
10% improvement in average accuracy compared
to other, non-machine-learning, feature extraction
techniques [75]. Another study used a stack of
two autoencoders to extract the features to the
extent that only a supervised learning softmax
function was needed, and it achieved accuracy of
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Fig. 19.12 ROC curves of different machine learning algorithms (SVM and RF) using varying sets of features, used
to predict AED treatment efficacy. (Figure from Colic et al. [17])

94% (around 15% points higher than the next best
method) and FPR of 0.05/h for seizure forecasting
[76]. A recent paper improved on that approach
by using a deep convolutional autoencoder cou-
pled with bidirectional LSTM and showed an in-
creased per-patient prediction accuracy of 99.6%
with false alarm rate of 0.004/h and prediction
time of 1 h prior the seizure onset [77].

Occasionally, in addition to feature selection,
unsupervised learning algorithms can also be
used for seizure prediction and forecasting in
their own right. K-means algorithm has been with
entropy-based features extracted from the Bonn
dataset for seizure detection and showed a 6%
higher accuracy with 97% less execution time
compared to the SVM classifier [78]. Another
type of unsupervised learning used for seizure
detection and forecasting is a hidden Markov
model (HMM) – a probabilistic algorithm used
to model a sequence of underlying hidden states
based on observable variables. A very common

example of an HMM is predicting the weather
state (rain, cloudy, sunny) based on the type of
clothes people wear without being able to look
outside. In context of EEG analysis, HMMs
can identify the underlying EEG state based
on some observable feature set. In a work by
Baldassano et al. [79], an autoregressive hidden
Markov model was used with intracranial EEG
recordings from six dogs with naturally occurring
epilepsy, and the method showed a reduced
false-positive rate compared to a previously used
random forest classifier with manually selected
features (0.0012/h vs. 0.058/h FPR) with an
average 12.1 second advance seizure detection.
In another study, an HMM with observable
states that were assumed to be a combination
of Gaussian distributions (a Gaussian mixture
model) was used with pediatric scalp EEG data
to predict seizures with sensitivity of 0.95 and
specificity of 0.86 [80].

It is evident from this section that a large
variety of machine intelligence algorithms have
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Table 19.3 Summary of strengths and weaknesses of a number of common machine learning algorithms

Algorithm Strengths Weaknesses

Logistic regression Output can be interpreted as probability
Easy to train

As a linear model, cannot handle
nonlinear relationships in the data

SVM Works well for nonlinear classification
Deals well with outliers

Hard to pick the right kernel
Memory intensive
Poor performance on noisy data

Decision tree Easy to understand and visualize
Require less data preprocessing

Can create complex trees that do not
generalize well

Random forest Improves the performance of decision
trees
Works well in high-dimensional feature
spaces

Output can be hard to interpret
Predictions are slow to create
Does not work well with sparse datasets

Deep neural networks Can learn complex input-output
mapping of the data
Can perform feature extraction
On large datasets generally outperform
most other algorithms

Require a lot of data
Computationally expensive
Very hard to interpret the resultant
classifier itself and the internal workings
of the algorithm

been used for seizure detection, classification,
and forecasting. While some studies and strate-
gies discussed above have compared their perfor-
mance to other classifiers, an astute reader can
notice that no one particular method has been
identified as the “gold standard” to be used for
EEG signal classification. In part, it is due to
the fact that EEG signals are inherently com-
plex due to their nonlinear, dynamic, and non-
Gaussian nature, making classification difficult.
Another reason is the so-called no free lunch
theorem which states that there is no one ma-
chine learning model that works best for every
problem due to underlying assumptions one has
to make during algorithm design. Deep convolu-
tional neural networks, for example, can perform
better than some other classifiers due to fewer
number of parameters and CNN’s property of
rotational and positional invariance; however, that
same invariance can prove detrimental when the
position or rotation of a feature is important.
Furthermore, deep learning models in general are
not very good at handling imbalanced data, a
situation frequently encountered in EEG signal
classification. With that in mind, some of the
strengths and weaknesses of machine learning al-
gorithms discussed in this chapter are presented in
Table 19.3.

19.4 Other Applications
of Machine Intelligence
with EEG

In the previous section, we have discussed at
length the application of several types of ma-
chine learning algorithms to seizure prediction
task. However, while these algorithms are effec-
tive, they are not the only approach – in one
case, effective connectivity of brain networks was
used for seizure prediction, achieving sensitiv-
ity of 80% and FPR of 0.33/h [81]. Another
area where machine intelligence performance is
steadily improving is seizure localization. In one
study, using intracranial EEG signals, an SVM
classifier was trained and tested on patients with
Engel class I to class IV outcomes, demonstrat-
ing superior performance in the class I patients
in Fig. 19.13 [82]. The classification using fea-
tures based upon both high-frequency and low-
frequency oscillations was best able to identify
channels suited for resection. This study demon-
strates a novel approach to region of interest
identification and provides a path for developing
tools to improve outcomes in epilepsy surgery
[17]. Another SVM classifier was used in iden-
tifying SOZ based on phase locking value (PLV)
[83]. The study showed that more than 96% of
electrodes identified as the SOZ were within the
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Fig. 19.13 SVM-classified region of interest channels
(shown in brown) coincide with resected area (shown in
gray) in a seizure-free patient (Patient A, EC I), while
in patients where SVM-identified channels are outside of

resected area, surgical resection resulted in poor control
of seizures (Patients B and C, EC III and IV, respectively).
(Figure from Dian et al. [82])

resected area in six seizure-free patients. In four
non-seizure-free patients, more than 31% of the
identified SOZ electrodes were outside the re-
sected area. Furthermore, in the same study the
outcome in non-seizure-free patients correlated
with the number of non-resected SOZ electrodes
identified. In the study by Tomlinson et al. [84],
an SVM classifier was used on iEEG data from 17
pediatric patients, and it was able to predict sur-
gical outcome using global synchrony and local
heterogeneity features with 94.1% accuracy.

Both random forest and SVM classifiers were
used to distinguish between resection and non-
resection areas of 94 patients, using interictal

magnetoencephalogram (MEG) recordings.
MEG is a technique very similar to scalp EEG,
though better suited to source localization, and
with features such as delta frequency power,
power ratio, and phase lag index extracted
from MEG data, both classifiers distinguished
the resection areas from non-resection areas
with 59.94% accuracy for SVM and 60.34%
for random forest (however, the above method
was not able to differentiate seizure-free from
not seizure-free patients) [85]. Overall, as with
seizure prediction, the accuracy of epileptogenic
source localization techniques varies based on
data modality and features selected. Although
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machine learning methods showed improvement
over manual SOZ identification, they are
still facing challenges to properly identify
epileptogenic sources especially in noninvasive
recordings due to low signal-to-noise ratio (SNR).

19.4.1 Prediction of Antiepileptic
Drug Treatment Outcomes

Frequently, antiepileptic drug (AED) treatments
produce inconsistent outcomes, so patients may
need to go through several drug trials until a suc-
cessful treatment can be found. There are dozens
of commonly used AEDs, and many more ex-
perimental drugs, available to treat the disorder.
Determining the efficacy of one drug for a spe-
cific patient often involves a trial-and-error pro-
cedure. There are 20–40% of epileptic patients
with drug-resistant epilepsy [86], though they
only become aware of this after having already
participated in numerous AED trials. Antiepilep-
tic drugs can also make the seizures worse and
more frequent, which are associated with numer-
ous side effects that can affect patients’ cognition
and functioning [87]. Unsuccessful drug trials
and delayed treatments highly impact patients’
quality of life and are expensive for both patients
and the health-care system. Determining a priori
the most effective treatment using machine learn-
ing methods would go a long way in improving
the lives of patients and reducing the financial
burden.

While using patients’ scalp or intracranial
EEG is the gold standard for epilepsy research,
sometimes it is easier to do preliminary
assessment on computer or animal models before
transitioning the methodology to humans. One
example of this is the use of rodent models of Rett
syndrome – a neurological disorder characterized
in part by neural network hyperexcitability
and spontaneous epileptiform-like discharges,
similar to epilepsy [88]. In Rett syndrome
model, an examination of different feature sets
showed that, like other classification tasks, the
selection of features is vital in achieving class
separation and thus has a profound effect on
determining treatment outcome [89]. In the

study by Colic et al. [17], the normalized power
feature projections did not show any clustering
by individual animal subjects and were the
least useful features in terms of separating
responders and non-responders, while ensemble
empirical mode decomposition (EEMD) time-
based and comodulogram features achieved the
best separability with distinct clusters for each
of the animal subjects. These features were then
usedwith both SVMand random forest classifiers
to predict treatment efficacy of an antiepileptic
drug, and the results showed that comodulogram
features (AUC 0.974) outperformed those of
EEMD time-based (AUC 0.918) and normalized
power (AUC 0.745) – see Fig. 19.12.

When the two machine learning methods were
evaluated to predict the treatment outcome of four
different AEDs, SVM was found to predict the
treatment outcome of outliers found in random
forest predictions (see Fig. 19.14). In the same
study by Colic et al. [17], random forest predic-
tion of treatment outcome for ganaxolone applied
on mouse 2 was close to 100%, when it should
have been closer to 0%, whereas SVMs predicted
44%. Similarly, for phenytoin, the prediction for
mouse 1was 84%when it should have been closer
to 0%, whereas SVMs predicted 59%. Generally,
SVMs estimated 90% or greater likelihood scores
only for successful treatments.

Patient variability is a serious challenge to se-
lecting treatments for epilepsy. Often antiepilep-
tic drug treatments are cycled through until an
effective treatment can be found, and with over
two dozen commonly prescribed AEDs available,
it can be a cumbersome process. There are certain
AEDs that have been found to be statistically
more likely to lead to a successful treatment out-
come, and it is those AEDs that typically are
tried first. However, the likelihood of a success-
ful treatment reduces with each round of AED
application [90], possibly due to patient desen-
sitization to AEDs which happens over time. By
indicating which patients would be unresponsive
to certain AEDs, and what AEDs are most likely
to be successful – using machine intelligence –
epileptologists could choose the most appropri-
ate therapy for the patient without unnecessary
testing of AEDs, and the treatment is more likely
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Fig. 19.14 Predicted likelihood of favorable treatment
outcome across four commonly used AEDs using SVM
and RF machine learning algorithms. Green bars indicate
the patient was successfully treated by specific AED,
and brown bars indicate unsuccessful treatment. (a) SVM

predictions accurately predicted treatment outcome for all
AEDs. (b) RFs had comparable prediction results, with
misclassifications for ganaxolone treatment for mice 2 and
4 and phenytoin for mouse 1. (Figure from Colic et al.
[17])

to show a positive improvement in a patient’s
quality of life.

19.5 Current Challenges
and Future Directions

In this chapter, we have focused on the use of ma-
chine intelligence for seizure detection and fore-
casting, and prediction of antiepileptic drug treat-
ment outcomes, as well as feature extraction and
selection to be used for machine learning algo-
rithms – including wavelet phase coherence and
cross-frequency coupling. While a lot of progress
has beenmade in the past several years to improve
EEG-based techniques with cutting-edge algo-
rithms, several important challenges still remain.
Frequently, EEG data (especially obtained from
scalp) is imbalanced, favoring one class (e.g. in-
terictal EEG state) over others, and characterized

by relatively low signal-to-noise ratio, which can
significantly impair a given classifier’s perfor-
mance – so any classifier should be designed to
be robust to high noise and class balance issues.
In situations where it is important to understand
how the classifier reached its decision, low inter-
pretability of machine learning algorithms (espe-
cially deep neural networks) might prove that it is
difficult to get the necessary insight.

Other major challenges of EEG-based ma-
chine learning algorithms include issues concern-
ing EEG data, namely amount of data, source of
data, accurate data labels, and artifacts. Due to
the constraints of human EEG acquisition, there
is typically a relatively small amount of heteroge-
neous data available for a particular task – usually
on the order of a couple of dozen to a couple
of hundred EEG segments from 5 to 20 patients.
While it might seem like a lot of data for manual
analysis, this amount of data could make it diffi-
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cult for machine learning algorithms (especially
deep networks) to achieve reliable and highly
accurate classification. One way to circumvent
this issue is to use a technique called transfer
learning, where a model trained in the domain
with a lot of general data (e.g., all of scalp EEG
available) is repurposed to a more specific task
(e.g., antiepileptic drug efficacy). This improved
the classifier’s performance, since the algorithm
can learn more basic features on a larger dataset.
One such strategy was used in Liang et al. [91]
where six available EEG datasets not related to
seizure prediction were used as auxiliary infor-
mation to a one dataset for seizure prediction and
found that the prediction performance improved.
A related issue is the source of EEG data – it is
easier to get the data for analysis from animal
models; however, one must be careful to ensure
that features or classes they identified are trans-
ferable to humans.

Sometimes, parts of the data are unlabelled,
or there is some uncertainty about how reliable
labels are. This poses an issue for the classifier,
since it is given incorrect or missing training
data. In this situation, so-called semi-supervised
learning techniques can be used, such as semi-
supervised version of extreme learning machines
(ELM) which, despite having unlabelled data,
outperformed a fully supervised ELM model
[92]. The most common issue with real-world
EEG signals is the presence of artifacts. Artifacts
in EEG can be very diverse, from not relevant
physiological signals (e.g., EMG, ECG) to
cable and electrode movement, environmental
interference, and recording equipment; they
can be present in multiple electrodes or only
in one and can be periodic or irregular. Most
of publicly available EEG datasets manually
remove artifacts ahead of time, which means
that algorithms trained on them will not perform
as well on the non-processed data. Islam et al.
[93] presented a thorough review of methods
for artifact detection and removal, but, in short,
artificial neural networks, SVM classifiers,
and k-means clustering can be used to detect
unwanted signals, while other techniques, such as
independent component analysis, EMD, wavelet

transform, and neural network-based algorithms,
have been used for artifact correction.

Specific uses of machine intelligence can also
have their unique challenges. As an example,
for seizure prediction, it can be complicated to
compare patient-specific algorithms that are in
the 95–100% sensitivity range. For one, patient-
specific algorithms require new training for ev-
ery new patient, so optimally cross-patient algo-
rithms should be prioritized. Another issue is the
potential discrepancy between reported bench-
marks and real-life expectations. For example, the
best seizure prediction algorithms report around
0.05/h false-positive rate, which appears low es-
pecially compared to previous methods. How-
ever, that translates to roughly one false alarm
every day. For some uses, such aswarning the per-
son about the upcoming seizure, this might not be
an acceptable rate; for others, such as neurostim-
ulation system, it might be within tolerance –
though long-term effects of routine daily neu-
rostimulation should probably be investigated.
Sometimes, parameters that normally are not a
main priority (such as the latency of the algo-
rithm or its energy efficiency) become crucially
important, as they are inmobile seizure prediction
systems. All these challenges – both general and
specific – are the reasons why a recent seizure
prediction system designed for a wearable device
achieved mean sensitivity of only 69% [94].

At their current stage, machine learning al-
gorithms can be used to augment existing tech-
niques, such as providing an opinion on the po-
tential location of the epileptogenic zone, or iden-
tifying seizures for further processing. While it is
not yet clear whether machine intelligence will
completely eliminate the need for manual inter-
vention, some future directions of EEG-based
algorithms can be suggested. One likely potential
development is integration of more probabilis-
tic modelling into machine learning algorithms.
Estimating seizure probability as a way to de-
tect seizures has already been investigated by
Kuhlmann et al. [95], a circadian probability as
subclassifier was used in Karoly et al. [26] for
seizure forecasting, andwe have briefly described
a probabilistic neural network in Sect. 19.3. A
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natural extension to all those is a Bayesian neu-
ral network (BNN) or Bayesian deep learning,
which, for example, was used recently with scalp
EEG for mental fatigue detection [96]. BNN is
a neural network that uses a prior probability
distribution on its weights in order to incorporate
uncertainty about the prediction. This gives an
advantage of BNN to work better on smaller
datasets, prevent overfitting, and give an overall
insight over how reliable the given prediction is.
Another way to incorporate probability into ma-
chine intelligence is to use restricted Boltzmann
machines (RBM). A Boltzmann machine (BM) is
a type of unsupervised fully connected stochastic
recurrent neural networkwith a visible input layer
and at least one hidden layer, while an RBM
has a restriction that connections can exist only
between layers. In context of EEG signals, one
interpretation is that the units in the visible layer
represent observable attributes, while the hidden
layer units act as nonlinear feature detectors, and
recently, an RBM-based technique has been suc-
cessfully evaluated for detection of epileptogenic
lesions [97].

Another potential development is the integra-
tion of genetic algorithms with machine learning
techniques to improve feature or hyperparameter
(a parameter with a value set before the learn-
ing process) selection. Genetic algorithm belongs
to a family of evolutionary computation algo-
rithms inspired by biological evolution – mir-
roring the biological inspiration between various
types of artificial neural networks. In short, the
genetic algorithm generates multiple candidate
solutions with various parameters and after some
training assesses their “fitness.” Each new gen-
eration of algorithms is produced by removing
less fit solutions and introducing small random
changes (mimicking biological concepts of muta-
tion and crossover) – this eventually creates a sub-
set of high-quality optimized solutions to a given
problem. A recent review thoroughly examined a
number of evolutionary computation algorithms
for EEG feature selection, including the genetic
algorithm [98], while another study found that
using genetic algorithm with an MLP for a major

depressive disorder classification task increased
accuracy and AUC by 10% [99]. In a work by
Mesejo et al. [100], an evolutionary computa-
tion algorithm was combined with an artificial
neuron-glia network (ANGN) – an extension of
a regular ANN to include longer-term dependen-
cies for weight adjustments which mirror effects
of astrocytes (dominant glial cells in the brain) in
biological neural networks. Astrocytes have been
shown to be involved in neuronal firing [101],
particularly that their activity has an effect on
neuronal codes similar to those seen in the human
brain [102]. These findings make astrocytes an
attractive target for more biologically inspired
machine learning algorithms. While in the study
by Mesejo et al. [100] the resultant algorithm
performed comparably to existing ANNs, intro-
ducing more biomimetic algorithms for machine
intelligence tasks could result in better perfor-
mance in complex problems.

One final direction of future development is
adapting alternative sequential models for EEG
analysis. Since EEG data is sequential in nature,
machine learning algorithms would benefit from
having memory to be able to capture existing
temporal dependencies within it. We have already
described several variants of recurrent neural net-
works – deep neural networks adapted for se-
quential data – and their use in seizure prediction
studies. One disadvantage of RNNs, however, is
that they require a lot of resources (time and
computational power) to train properly. Autore-
gressive feedforward models, such as a WaveNet
[103] or gated convolutional networks [104], are
being developed as an alternative to RNNs. In
autoregressive neural networks, instead of relying
on most of the history of the sequence for making
predictions, the model only uses the finite number
n ofmost recent inputs.While theoretically RNNs
should be more flexible, in practice, Bai et al.
[105] showed that autoregressive neural networks
outperform comparable RNNs in a wide variety
of tasks such as audio synthesis and machine
translation while also benefitting from signifi-
cantly easier and faster model training and pre-
diction.
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Homework

Conceptual Questions

1. Given the discussion of feature engineering
of both scalp and intracranial EEG data in
this chapter, describe some useful features for
seizure detection and prediction.

2. Given a relatively small dataset of 10 patients
with a selection of interictal, preictal, and
ictal recordings, a) suggest an approach to
divide the dataset into training and test sets,
and b) provide benefits and drawbacks of
leaving one or more patients entirely for the
test set.

3. For the same dataset as in previous question,
suggest what machine learning algorithm you
would use and why. Would your answer
change if a) it was only two classes; b)
the dataset contained 1000 patients; c)
the algorithm needs to perform EEG state
classification in real time.

4. What are common noise sources and artifacts
in EEG recordings? Suggest a few ways to
improve signal quality and eliminate these ar-
tifacts.

5. Frequently, EEG data is imbalanced, favoring
one class over others. How does that impact
classification performance? How would you
overcome this issue?

6. In this chapter, we have briefly covered several
network architectures where the targets are the
same as their inputs. Name two and explain
when you would likely use them.

Practical Analysis Questions

These questions are intended as introductory
guides to your own practical implementation of
the techniques outlined in this chapter.

For questions 7 and 8, use data from UPenn
and Mayo Clinic’s Seizure Detection Challenge

(available at https://www.kaggle.com/c/seizure-
detection).

7. Physicians and researchers working in
epilepsy often review large quantities of
EEG data to identify seizures, which in
some patients may be quite subtle and hard
to detect. Automated algorithms to detect
seizures in large EEG datasets with low false-
positive rates (FPR) and false-negative rates
(FNR) would greatly assist both clinical care
and preclinical research. Using a multilayer
perceptron, classify windows of human EEG
data as seizure or non-seizure. Use spectral
power features computed from 1 second
windows as inputs to the MLP (see figure
below). Divide the data into a training set
and a testing set using a ratio of 80% to
20%, respectively. Use the training set to
train the MLP and the testing set to find the
FPR and FNR. Compute an ROC curve and
the area under the curve to compare network
performance.
(a) Using a MLP with one hidden layer, and

gradient descent method with step size of
0.5, alter the number of units in the hidden
layer (5, 10, 40) and explore whether in-
creased number of hidden units will have
a positive effect on the network perfor-
mance. What are the pros and cons of
having more hidden units?

(b) Alter the number of hidden layer (no hid-
den layers, 1 hidden layer, or 2 hidden
layers) in the feedforward neural network,
using 10 units per hidden layer and gradi-
ent descent method with step size of 0.5.
Determine whether increased number of
hidden layers will have a positive effect
on the network performance. What are
the pros and cons of having more hidden
layers?

(c) Would you say that using a convolutional
neural network is preferable over using a
multilayer perceptron and why?

8. Using the same approach as in question 6,
explore the effect of training parameters.
(a) Learning Rate – Try different step sizes or

learning rates (lr = 0.1, 0.5, 1) using gra-

https://www.kaggle.com/c/seizure-detection
https://www.kaggle.com/c/seizure-detection
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dient descent training function on a neural
network with one hidden layer network
with 40 hidden units. Determine whether
large step size will always expedite learn-
ing.

(b) Momentum – Investigate the effect of mo-
mentum using a network with 1 hidden
layer (10 units) and gradient descent with
momentum (mc = 0.1, 0.5, 0.9). Deter-
mine whether a strong momentum term
will always expedite learning.

For questions 9 and 10, use data from
American Epilepsy Society Seizure Prediction
Challenge (available at https://www.kaggle.com/
c/seizure-prediction).

9. Responsive neurostimulation (RNS) presents
a possible therapy for abolishing seizures in
epileptic patients that are drug-resistant and
ineligible for surgery. Seizures that build and
generalize beyond the area of origin are very
difficult to abort; thus electrical stimulation
must be applied as early as possible. Using
the same algorithmic approach as in ques-
tion 6, train your system to predict epileptic
seizures in human patients. How does your
performance (in terms of the AUC metric)
compare to the seizure detection task as well
as results shown in Table 19.2? Explain your
results.

10. Suggest improvements to your seizure
prediction algorithm. Select a few im-
provements, and implement them to see
how much AUC is increased compared
to results in question 8. If you know that
sequential state changes are characteristic of
seizure episodes, how does that change your
suggested improvements?
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