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Abstract

The brain is an intricately structured organ
responsible for the rich emergent dynamics
that support the complex cognitive functions
we enjoy as humans. With around 1011 neu-
rons and 1015 synapses, understanding how
the human brain works has proven to be a
daunting endeavor, requiring concerted collab-
oration across traditional disciplinary bound-
aries. In some cases, that collaboration has
occurred between experimentalists and techni-
cians, who offer new physical tools to measure
and manipulate neural function. In other con-
texts, that collaboration has occurred between
experimentalists and theorists, who offer new
conceptual tools to explain existing data and
inform new directions for empirical research.
In this chapter, we offer an example of the
latter. Specifically, we focus on the simple but
powerful framework of linear systems theory
as a useful tool both for capturing biophysi-
cally relevant parameters of neural activity and
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connectivity and for analytical and numerical
study. We begin with a brief overview of state-
space representations and linearization of neu-
ral models for non-linear dynamical systems.
We then derive core concepts in the theory of
linear systems such as the impulse and con-
trolled responses to external stimuli, achieving
desired state transitions, controllability, and
minimum energy control. Afterward, we dis-
cuss recent advances in the application of lin-
ear systems theory to structural and functional
brain data across multiple spatial and temporal
scales, along with methodological considera-
tions and limitations. We close with a brief
discussion of open frontiers and our vision for
the future.
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17.1 Emergence in the Structure
and Function of Complex
Systems

In the observable world, some of the most
beautiful and most puzzling phenomena arise in
physical and biological systems characterized by
heterogeneous interactions between constituent
elements. For example, in materials physics,
heterogeneous interactions between particles in
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granular matter (such as a sand pile) constrain
whether the matter acts as a liquid (flowing with
gravity) or a solid (supporting load-bearing)
[1, 2]. In sociology, heterogeneous interactions
between humans in a society are thought to
be responsible for surges in online activity,
peaks in book sales, traffic jams, and correlated
spikes in demand for emergency services [3].
In biology, heterogeneous interactions between
computational units in the brain are thought to
support a divergence of the correlation length,
an anomalous scaling of correlation fluctuations,
and the manifestation of mesoscale structure
in patterns of functional coupling between
units, all features that allow for a diversity of
dynamics underlying a diversity of cognitive
functions [4,5]. The feature of these systems that
often drives our fascination is the capacity for
heterogeneous interactions to produce suprising
dynamics, in the form of drastic state transitions,
spikes of collective activity, and multiple
accessible dynamical regimes.

Because element-element interactions are
heterogeneous in such systems, traditional
approaches from statistical mechanics – such
as continuum models and mean-field approxima-
tions – fail to offer satisfying explanations for
system function. There exists a critical need to
develop alternative approaches to understand how
interactions map to emergent behavior. The need
is particularly salient in the context of neural
systems, where such an understanding could
directly inform models of neurological disease
and psychiatric disorders [6, 7]. Moreover, gain-
ing such an understanding is a prerequisite for
the well-reasoned development of interventions
[8], whether in the form of brain stimulation
[9, 10], pharmacological agents [11, 12], or other
therapies [13]. Technically, such interventions
in systems characterized by heterogeneous
interactions can be parsimoniously considered
as forms of network control, thus motivating
extensive recent interest in the utility of network
control theory for neural systems [8].

Despite the generic importance of understand-
ing how interactions map to emergent properties,
and the specific importance of understanding that
mapping in the human brain, progress toward that
understanding has remained surprisingly slow.

Some efforts have sought to develop detailed
multiscale computational models [14]. Yet such
efforts are faced with the ever-present quandary
that, in point of fact, “the best material model
of a cat is another, or preferably the same, cat”
[15]. Detailed models are difficult to construct
and intractable to analytic approaches, require ex-
tensive time to simulate, contain parameters that
are frequently underconstrained by experimental
data, and in the end produce dynamics that are
themselves difficult to understand or to explain
from any specific choices in the model. In con-
trast, approaches from physics consider natural
phenomena as if dynamics at macroscopic length
scales were almost independent of the underlying,
shorter length scale details [16]. A hallmark of ef-
fective physical theories is a marked compression
of the full parameter space into a few governing
variables that are sufficient to describe the observ-
ables of interest at the scale of interest. Interest-
ingly, recent theoretical work demonstrates that
such simple models are the natural culmination
of processes maximizing the information learned
from finite data [17].

Here we embrace simplicity by considering
the utility of linear systems theory for the under-
standing and control of neural systems comprised
of computational units coupled by heterogeneous
interactions. We begin by placing our remarks
within the context of quantitative dynamical mod-
els of neurons and their interactions, as well as
the spatial and temporal considerations inherent
in choosing such models. We will then turn to a
discussion of approximations to those dynamical
models, the incorporation of exogeneous control
input, andmodel linearization. Our treatment then
naturally brings us to a discussion of the theory of
linear systems, as well as their response to pertur-
bative impulses, and to explicit control strategies.
We lay out the formalism for probing state tran-
sitions, controllabilty, and the minumum control
energy needed for a given state transition. After
completing our formal treatment, we discuss the
application of linear systems theory to neural
systems, and efforts to map network architecture
to control properties. We close with a description
of several particularly pertinent methodological
considerations and limitations, before outlining
emerging frontiers.
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17.2 Quantitative Dynamical
Models of Neural Systems
and Interactions

Historically, many neural behaviors and mecha-
nisms have been successfully modeled quantita-
tively. Here we briefly describe several illustra-
tive examples of such models. The classic fun-
damental biophysical model of a single neuron

(Fig. 17.1, left) was developed by Alan Hodgkin
and Andrew Huxley in 1952 (see [18] for details).
The model is now known as the Hodgkin-Huxley
model. It treats a segment of a neuron as an elec-
trical circuit, where themembrane (capacitor) and
voltage-gated ion channels (resistors) are parallel
circuit elements. The time evolution of membrane
voltage, Vm, between the inside and the outside of
the neuron is given by

CmV̇m(t) = ḡKn4(t)(VK − Vm) + ḡNam
3(t)h(t)(VNa − Vm) + ḡl(Vl − Vm) + I (t),

whereCm is the membrane capacitance; ḡK, ḡNa,

and ḡl are maximum ion conductances for potas-
sium, sodium, and passive leaking ions; and I is
an external stimulus current, all per unit area. In
addition, VK, VNa, and Vl represent the reversal
potential of these ions. The variables n, m, and h

vary between 0 and 1 and model the ion channel
gate kinetics to determine the fraction of open
sodium (m, h) and potassium (n) channels:

ṅ(t) = αn(Vm(t))(1 − n(t)) − βn(Vm(t))n(t)

ṁ(t) = αm(Vm(t))(1 − m(t)) − βm(Vm(t))m(t)

ḣ(t) = αh(Vm(t))(1 − h(t)) − βh(Vm(t))h(t),

where the functions αi(Vm) and βi(Vm) are em-
pirically determined. These segments are then
spatially connected together, such that the prop-
agation of an action potential across a neuron is
modeled by a set of partial differential equations.
Due to the biophysical realism of variables and
parameters, this model can make powerful and
accurate predictions of neuron activity in different
environments and stimulation regimes [19–21].
Simplified versions of this model, such as the
FitzHugh-Nagumo model [22], can also produce
many of the same neuronal dynamics.

However, many complex behaviors of neural
systems arise from interactions between multiple
neurons. With four variables (membrane voltage,
gates) and even more parameters to model the
behavior of a single neuron, the space of models
to explore interacting neurons quickly becomes
intractable to both analytical and numerical

interrogation. An alternative approach is to
capture the simplest aspects of neural interactions
that are crucial for the phenomenon of interest.
Such was the approach taken by Warren
McCulloch and Walter Pitts [23], who developed
what would later become a canonical model of
an artificial neuron. In this model, each neuron i

at any point in time t exists in one of two states:
firing xi(t) = 1 or not firing xi(t) = 0. The
state of the neuron is determined by a weighted
sum of inputs from connected neurons j at the
previous time step. Then, neuron i in a system of
N neurons evolves in time as

xi(t + 1) = fi

⎛
⎝

N∑
j=1

wijxj (t)

⎞
⎠ ,

where wij is the strength of excitation (wij >

0) or inhibition (wij < 0) from neuron j to
neuron i and function fi is typically a threshold-
ing function (Fig. 17.1, center). Instantiations and
extensions of thismodel are used to study associa-
tive memory (Hopfield [24]), machine learning
(perceptron [25]), and cellular automata [26].

In many cases, the sheer number of neurons
and interactions renders even these simplemodels
difficult to study. A typical solution is to instead
model the average activity of a population of
neurons. This is the approach taken by HughWil-
son and Jack Cowan [27] in the Wilson-Cowan
model. Here, a group of neurons is separated into
excitatory and inhibitory populations, where the
fraction of cells firing at time t in each population
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Fig. 17.1 Schematic of neural models and controlling
perturbations at different scales. Here, the Hodgkin-
Huxley model describes the biophysical behavior of single
neurons (left) that may be excitatory (blue) or inhibitory
(gray). The artificial neuron models describe the sim-
plified weighted connections and binary states of many

neurons (center). The Wilson-Cowan model describes the
activity of large neural populations in a region (right)
or in a cortical column by modeling the excitatory and
inhibitory connections of each population. In each case,
a controlling perturbation (yellow) can affect the neural
system at different scales

is E(t) and I (t), respectively, that evolve in time
as

τeĖ(t) = −E(t) + (ke − reE(t))Se (c1E(t)

−c2I (t) + P(t))

τi İ (t) = −I (t) + (ki − riI (t))Si (c3E(t)

−c4I (t) + Q(t)) .

Here, c1, c2 > 0 represent connection strength
into the excitatory population, and c3, c4 > 0
represent connection strength into the inhibitory
population, re, ri are the refractory periods, and
Se, Si are sigmoid functions from the distribution
of neuron input thresholds for firing. Suchmodels
produce oscillations such as those observed in
noninvasive measurements of large-scale brain
activity (Fig. 17.1, right) in patients with epilepsy
[28].

In these and many other models, a common
theme is the tradeoff between realism and
tractability. We desire sufficient realism to study
crucial features of neural systems such as the
activity of each unit, the interaction strength
between units, the connection topology, and the
effect of external stimulation. We also desire
sufficient tractability (either to analytical or
numerical interrogation) to make consistent
and meaningful predictions about our neural
system by understanding relations between the
model parameters and the model behavior. In this
chapter, we will discuss one such model from the
theory of linear dynamical systems.

17.2.1 Spatial and Temporal
Considerations

When modeling neural systems, an immediately
salient consideration is the vast range of spatial
and temporal scales at which nontrivial – and
thus quite interesting – dynamics occur. It stands
to reason that the most relevant type of model
for understanding a given phenomenon depends
on the spatiotemporal scale at which that phe-
nomenon is observed. For example, consider the
fact that while it is generally known that cer-
tain sensory regions such as the visual cortex
are both anatomically linked to and functionally
responsible for sensory inputs, it is more diffi-
cult to assign a set of neurons that are neces-
sary for distributed cognitive processes such as
attention and cognitive control. Thus, biophysical
models at the level of single neurons may be
viable for simulating receptive fields in visual
processing, but may be less useful for studies of
task-switching or gating. Similarly, consider the
fact that a single neuron may fire every few mil-
liseconds, while human reaction times are on the
order of hundreds ofmilliseconds, and brain-wide
fluctuations in activity on the order of seconds.
Thus, the form of the model considered should
match the temporal scales of the behavior to be
studied.

From a modeling perspective, balancing these
considerations of spatial and temporal scales with
model realism impacts the category of model that
has the greatest utility. If one wishes to con-
sider small spatial scales, then a rather simplistic
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neuron-level model such as the McCulloch-Pitts
may be particularly useful, where each neural
unit has discrete states such that each neuron i

is either firing xi(t) = 1 or not xi(t) = 0. In
contrast, if one wishes to consider larger spatial
scales characteristic of distributed cognitive pro-
cesses, it may be more appropriate to consider
models in which each neural unit reflects the
average population activity of a brain region as
a continuous state, where xi(t) is a real number.
Similar considerations are relevant and important
in the time domain. For models that assume fairly
uniform delays in neuronal interactions such as
the McCulloch-Pitts, a discrete timemodel where
time evolves in integer increments may be appro-
priate. In contrast, if the timing of interactions
between neural units such as myelinated versus
unmyelinated axons is heterogeneous, a continu-
ous timemodel may be more suitable, where time
t is a real number.

In addition to affecting the definition of neural
activity and the nature of its propagation, these
considerations also affect the meaning of inter-
actions between units. In a neuron-level model
whose units reflect neurons, the unit-to-unit in-
teractions may represent structural synapses be-
tween neurons. In contrast, in a population model
whose units reflect average neural activity of a
brain region, unit-to-unit interactions may repre-
sent a summary measure of the collective strength
or extent of structural connections between re-
gions. Both types of connections can be empir-
ically measured using either invasive (staining,
flourescence imaging, tract tracing [29]) or non-
invasive (tractography [30]) methods. The spe-
cific type of interaction studied constrains the
sorts of inferences that one can draw from the
subsequent model, as well as the types of model-
generated hypotheses that one can test in new
experiments.

17.2.2 Dynamical Model
Approximations

Both here and in the following sections, we will
consider systems with both continuous state and
time. However, we note that the theory of linear
systems extends naturally to discrete time sys-

tems as well. We begin our formulation with a set
of N neural units, where each unit has an associ-
ated level of activity xi(t) that is a real number at
some time t ≥ 0 that is also a real number. Then
the collection of activity for all units into column
vector x(t) = [x1(t); x2(t); · · · ; xN(t)] is called
the state of our system at time t . For example, in
the Hodgkin-Huxley equations, our state vector
is x = [V ; n; m; h]. In many models including
Hodgkin-Huxley, the time evolution of the sys-
tem states can be written as a vector differential
equation:

⎡
⎢⎢⎢⎣

ẋ1(t)

ẋ2(t)
...

ẋN (t)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
ẋ(t)

=

⎡
⎢⎢⎢⎣

f1(x(t))

f2(x(t))
...

fN(x(t))

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
f (x(t))

,

where f , the vector of functions fi , determines
how the system states change, ẋ, at every partic-
ular state x. We can think of these equations as
generating a vector field, where at each point x,
we draw an arrow with magnitude and direction
equal to f (x). As an example, consider the fol-
lowing two neuron system x1, x2 that evolves in
time as:

ẋ1(t) = 2x2(t) − sin(x1(t))

ẋ2(t) = x2
1(t) − x2(t),

where the vector field and example trajectory
from initial state x(0) = [−0.3; −0.4] are shown
(Fig. 17.2, top). Note how at every point x1, x2

the above equation determines a vector of motion
ẋ that the system traces from the initial point.
This quantitative modeling of neural dynamics
allows us to study and predict the response of our
neural system to changes in interaction strength
or external stimulation.

17.2.3 Incorporating Exogenous
Control

While modeling intrinsic system behavior is al-
ready a broad topic of current research, there is
an increasing need for the principled study of
therapeutic interventions to correct dysfunctional
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neural activity. These interventions may take the
form of targeted invasive (deep bran stimulation)
or noninvasive (transcranial magnetic stimula-
tion) inputs, or more diffusive drug treatments.
Hence, in our modeling efforts, we also often
desire to incorporate the effect of some external
stimuli u1(t), · · · , uk(t). We collect these stimuli
into a vector u(t) = [u1(t); u2(t); · · · ; uk(t)]
and include their effect on the rates of change of
system states in our function:

⎡
⎢⎢⎢⎣

ẋ1(t)

ẋ2(t)
...

ẋN (t)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
ẋ(t)

=

⎡
⎢⎢⎢⎣

f1(x(t),u(t))

f2(x(t),u(t))
...

fN(x(t),u(t))

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
f (x(t),u(t))

.

As an example in our two-unit system, we can
apply an input to the first unit

ẋ1(t) = 2x2(t) − sin(x1(t)) + u(t)

ẋ2(t) = x2
1(t) − x2(t),

thereby changing our system of equations. We
plot the vector field and trajectory of our system
under some constant input u(t) = 0.5 (Fig. 17.2,
bottom). Notice how the control input changes
the trajectory and final state of our system by
modifying the vector field. Also notice that our
input only shifts the x1 component of our vectors
because we only stimulate x1. These abilities to
map neural interactions f to the full trajectory of
activity x(t) and to find control inputs u(t) that
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0 2
-0.5

0.5

-0.5 0.5
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0 2
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Fig. 17.2 Vector fields and trajectories, with andwith-
out control inputs. Example simple vector field of two
states with a particular trajectory from initial condition
x(0) = [−0.3;−0.4] (top left) in state space, with the

corresponding plot of each state over time (top right) and
the corresponding vector field and trajectory with control
input u(t) = 0.5 (bottom left) with corresponding states
over time (bottom right)
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drive our neural system to a desired final state
x(T ) are among the core contributions of linear
systems theory.

17.2.4 Model Linearization

While we have a quantitative framework for the
evolution of a controlled neural system, there
are no general principles for determining the full
trajectory x(t) or control input u(t) to reach a
desired final state for a general nonlinear system.

In systems of only a few neural units, there exist
several powerful numerical and analytic tools.
However, the study and control of large neural
systems is made difficult by our inability to know
how a stimulus will affect our systemwithout first
simulating the full trajectory. Further, for multiple
stimuli, the number of possible stimulus patterns
grows exponentially.

A special class of simplified systems called
linear systems circumvents this issue. In our state
representation, a linear system is described by

⎡
⎢⎢⎢⎣

ẋ1(t)

ẋ2(t)
...

ẋN (t)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
ẋ(t)

=

⎡
⎢⎢⎢⎣

a11 a12 · · · a1N

a21 a22 · · · a2N

...
...

. . .
...

aN1 aN2 · · · aNN

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎢⎣

x1(t)

x2(t)
...

xN(t)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
x(t)

+

⎡
⎢⎢⎢⎣

b11 b12 · · · b1k

b21 b22 · · · b2k

...
...

. . .
...

bN1 bN2 · · · bNk

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
B

⎡
⎢⎢⎢⎣

u1(t)

u2(t)
...

uk(t)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
u(t)

, (17.1)

that is characterized by the time evolution of any
state ẋi (t) being a weighted sum of current states∑N

j=1 aij xj (t) and external inputs
∑k

j=1 bijuj (t).
Here, aij is a real number that determines how
activity in state xj influences the rate of change
of state xi and bij is a real number that deter-
mines how external input uj influences the rate of
change of state xi . We see that our example two-
unit system is not linear, because the first state
ẋ1(t) depends on sin(x1(t)), and the second state
ẋ2(t) depends on x2

1(t), and is therefore a non-
linear system.

To transform the nonlinear system ẋ =
f (x,u), into a linear system ẋ = Ax + Bu,
we can create an approximate model of our
vector field about a particular constant operating
state x∗ and input u∗. We first evaluate the
dynamics at this operating point, f (x∗,u∗).
Then we approximate the vector field along
small deviations from this point by computing the
derivative of f (x,u) with respect to the states to
get matrix A and with respect to control inputs to
get matrix B:

A =

⎡
⎢⎢⎢⎢⎣

∂f1

∂x1

∂f1

∂x2
· · · ∂f1

∂xN
∂f2

∂x1

∂f2

∂x2
· · · ∂f2

∂xN

...
...

. . .
...

∂fN

∂x1

∂fN

∂x2
· · · ∂fN

∂xN

⎤
⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣
x=x∗,u=u∗

B =

⎡
⎢⎢⎢⎢⎣

∂f1

∂u1

∂f1

∂u2
· · · ∂f1

∂uk
∂f2

∂u1

∂f2

∂u2
· · · ∂f2

∂uk

...
...

. . .
...

∂fN

∂u1

∂fN

∂u2
· · · ∂fN

∂uk

⎤
⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣
x=x∗,u=u∗

.

Then, for states near x∗ and inputs near u∗, the
vector field is approximately

ẋ(t) = f (x,u) (17.2)

≈f (x∗,u∗)+A(x(t)−x∗)+B(u(t)−u∗).
(17.3)

A typical operating point for the input is u∗ =
0 corresponding to no input, because neural stim-
ulation is viewed as a perturbation to the natural
and unstimulated dynamics. A typical operat-
ing point for the state x∗ is a fixed point where
f (x∗,u∗) = 0, because then the evolution of our
system Eq. 17.2 only depends on deviations from
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the point, and not on its actual value. Finally, we
can write the linearized equation explicitly as a
function of these deviations through a change of
variables y(t) = x(t) − x∗:

ẏ(t) = ẋ(t) ≈ Ay(t) + Bu(t).

We will continue to use variable x instead of y
with the understanding that it represents devia-
tions from the fixed point. For example, in our
two-unit system, we can linearize about x∗

1 =
0, x∗

2 = 0, and u∗ = 0 to yield

[
ẋ1(t)

ẋ2(t)

]

︸ ︷︷ ︸
ẋ(t)

≈
[−1 2

0 −1

]

︸ ︷︷ ︸
A

[
x1(t)

x2(t)

]

︸ ︷︷ ︸
x(t)

+
[

1
0

]

︸︷︷︸
B

u(t).

We show the vector fields and trajectories for
both the nonlinear and linear equations without
control where u(t) = 0 (Fig. 17.3, top) and with
control where u(t) = 0.5 (Fig. 17.3, bottom)
from the same initial condition, and we notice
that in the neighborhood of x∗

1 = 0, x∗
2 = 0,

the field and trajectories are similar. Hence, by
linearizing our neural dynamics about x∗,u∗, we

-0.5 0.5
-0.5

0.5

-0.5 0.5
-0.5

0.5

-0.5 0.5
-0.5

0.5

-0.5 0.5
-0.5

0.5

Fig. 17.3 Vector fields and trajectories for a nonlinear
system and its linearized form. Example vector field of
two states with a particular trajectory from initial condition
x(0) = [−0.3;−0.4] for the uncontrolled nonlinear sys-

tem (top left), the uncontrolled linear system (top right),
the controlled nonlinear system (bottom left), and the
controlled linear system (bottom right)
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can preserve the behavior of our neural system at
state x(t) and inputs u(t) near this point while
enabling the use of powerful tools developed in
the next section.

17.3 Theory of Linear Systems

A useful model for therapeutic intervention in a
neural system should capture both how the activ-
ity over time depends on the connections between
neural units and how to change the activity in a
desired way through stimulation. Now that we
have a model that captures features of neural
activity and connectivity in a linearized form, we
will develop equations that yield precisely these
features. Specifically, we will first determine the

system’s response to control through mathemati-
cal relations as opposed to simulations. Then we
will use these principles to design stimuli that
optimally guide our system from some initial state
x(0) to some final state x(T ).

17.3.1 Impulse Response

First, we find the natural evolution of system
states from some initial neural state x(0) without
any external input. This task amounts to finding
the state trajectory x(t) that solves our dynamic
equation ẋ(t) = Ax(t). For scalar systems where
x(t) is not a vector, we are reminded of the
solution to ẋ = ax:

dx

dt
= ax differential equation,

1

x
dx = adt divide by x,

∫
1

x
dx =

∫
adt + c integrate both sides,

ln |x| = at + c

x(t) = Ceat solution to differential equation,

where the constant is the initial condition C =
x(0). We can prove that this solution satisfies
ẋ = ax by using a Taylor series of the exponen-

tial function eat = ∑∞
k=0

(at)k

k! . Taking the time
derivative of x(t) = eat , we see ẋ = ax:

d

dt
eat = d

dt

(
1 + at

1! + a2t2

2! + a3t3

3! + · · · + aktk

k! + · · ·
)

Taylor series of eat ,

= 0 + a

1! + 2
a2t

2! + 3
a3t3

3! + · · · + k
aktk−1

k! + · · · differentiate each term,

= a

(
1 + at

1! + a2t2

2! + · · · + aktk

k! + · · ·
)

factor out scalar a,

= aeat substitute Taylor series.

A matrix exponential is defined exactly the same
as above with eAt = ∑∞

k=0
(At)k

k! , and we again

show that the time derivative satisfies the vector
relation ẋ(t) = Ax(t):
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d

dt
eAt = d

dt

(
I + At

1! + A2t2

2! + A3t3

3! + · · · + Aktk

k! + · · ·
)

Taylor series of eAt ,

= 0 + A

1! + 2
A2t

2! + 3
A3t3

3! + · · · + k
Aktk−1

k! + · · · differentiate each term,

= A

(
I + At

1! + A2t2

2! + · · · + Aktk

k! + · · ·
)

factor out matrix A,

= AeAt substitute Taylor series.

Hence, we see that the following solution

x(t) = eAtx(0) (17.4)

satisfies our dynamic equation. Here, the matrix
exponential eAt is called the state transition ma-
trix, and Eq. 17.4 is called the impulse response
of our system. Hence, we can find the state at

any time T without solving for intermediate states
0 < t < T .

As an example in our linearized two-unit
model, to find the state of our system at T = 2
given an initial start at x(0) = [−0.3; −0.4], we
can use a software to numerically compute the
matrix exponential at time t = 2 and multiply by
our initial state Eq. 17.4

x(2) = e2Ax(0) =
[

0.1353 0.5413
0 0.1353

] [−0.3
−0.4

]
=

[−0.2571
−0.0541

]
,

which agrees with the simulation results
(Fig. 17.3).

17.3.2 Control Response

Next, we derive the system response from an
initial state x(0) to some controlling input u(t)

through some algebraic manipulation and calcu-
lus. We begin with our system equations ẋ(t) −
Ax(t) = Bu(t) and multiply both sides by a
matrix exponential

e−At ẋ(t) − e−AtAx(t) = e−AtBu(t).

Next, we see that the left-hand side is the re-
sult of a product rule where d

dt
(e−Atx(t)) =

e−At ẋ(t)−Ae−Atx(t), recalling that functions of
matrices can switch orders of multiplication, such
that Ae−At = e−AtA. Hence, we can write our
equation as

d

dt
(e−Atx(t)) = e−AtBu(t),

and integrate both sides from t = 0 to t = T to
yield

e−AT x(T ) − x(0) =
∫ T

0
e−AtBu(t)dt.

We note the matrix exponential at t = 0 becomes
e−A·0 = I from the Taylor series. Next, we move
the initial state x(0) to the right-hand side and
multiply by eAT :

eATe−AT x(T ) = eATx(0)+eAT

∫ T

0
e−AtBu(t)dt.

Finally we use the fact that eAT and e−AT are
inverses of each other where eAT e−AT = I ,
and we bring eAT into the integral to derive the
system’s response to control input:
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x(T ) = eAT x(0)︸ ︷︷ ︸
natural

+
∫ T

0
eA(T −t)Bu(t)dt

︸ ︷︷ ︸
controlled

.

(17.5)

Intuitively, we see that the first part of the re-
sponse, eAT x(0), is just the natural evolution of
our system from an initial state and that the sec-
ond part of the response is a convolution of our
mapped inputs,Bu(t), with the impulse response.
We will next take advantage of the convolution’s
property of linearity to draw powerful relations
between the state evolution, control input, and
system structure.

17.3.3 Linear Relation Between the
Convolution and Control Input

Previously, we focused on the evolution of a neu-
ral system in response to a known control input
u(t) in Eq. 17.5. However, our goal is to design
a control input that drives our neural system to
some desired final state that may stabilize an
epileptic seizure [31], or aid in memory recall
[32]. In this scenario, we fix the initial state
x(0) = x0 and the final state x(T ) = xT as con-
stants and rewrite Eq. 17.5 to move the variables
u(t) to the left-hand side and the constants to the
right-hand side:

∫ T

0
eA(T −t)B u(t)︸︷︷︸

variable

dt = x(T ) − eAT x(0)︸ ︷︷ ︸
constant

.

This formulation is a linear equation with a struc-
ture that is similar to a typical system of linear
equations used in regression, Mv = b, where v is
the variable, b is a constant vector, and matrix M

is the linear function acting on v. Here, the control
input u(t) is the variable, x(T ) − eAT x(0) is the
constant vector, and the convolution

L(u(t)) =
∫ T

0
eA(T −t)Bu(t)dt

is the linear function acting on our control inputs.
By linear function, we mean that for two control
inputs u1(t) and u2(t), if L(u1(t)) = c1, and

L(u2(t)) = c2, then a weighted sum of inputs
yields the same weighted sum of outputs, such
that

L(au1(t) + bu2(t)) = ac1 + bc2. (17.6)

This linearity allows us to treat solutions to
our control function problem the same as
solutions to our linear system of equations.
Specifically, suppose the control input u∗(t) is
a particular solution to our control problem such
that L(u∗(t)) = xT − eAT x0. Further, suppose
that inputs u1(t),u2(t), · · · are homogeneous
solutions such that L(ui (t)) = 0. If we construct
a control input that is the particular solution added
to a weighted sum of homogeneous solutions

u(t) = u∗(t)︸ ︷︷ ︸
particular

+
∑

i

ai ui (t)︸︷︷︸
homogeneous

,

then the convolution of this combined input yields
the desired output:

L(u(t)) = L
(
u∗(t) +

∑
i

aiui (t)

)

= L(u∗(t)) +
∑

i

L(aiui (t))

= xT − eAT x0 +
∑

i

ai0

= xT − eAT x0.

Hence, if we have a particular control input u∗(t)
that drives our system to a desired final state,
then the homogeneous control inputsui (t) give us
the flexibility to design less costly, more energy-
efficient inputs.

17.3.4 Controllability

For any system, we would first like to know if a
particular solution exists to the control problem
described above. A system is controllable if there
is a control input that brings our system from any
initial state to any final state in finite time. For
nonlinear systems, if we know that the input u∗(t)
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brings our system from the initial state 0 to some
final state xT , there is in general no way to know
what input will take our system to a scaled final
state axT .

In contrast, due to the linearity of our convolu-
tion operator, we know that a scaled input au∗(t)
will produce a scaled output L(au∗(t)) = axT .

Further, any N-dimensional vector can be written
as a weighted sum ofN linearly independent vec-
tors v1, v2, · · · , vN . Here, linear independence
means that no vector vi in the set can be written as
a weighted sum of the remaining vectors vj �=i . For
example, a column vector a = [a1; a2; · · · ; aN ]
can be written as the weighted sum

⎡
⎢⎢⎢⎣

a1

a2
...

aN

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
a

= a1

⎡
⎢⎢⎢⎣

1
0
...

0

⎤
⎥⎥⎥⎦

︸︷︷︸
v1

+a2

⎡
⎢⎢⎢⎣

0
1
...

0

⎤
⎥⎥⎥⎦

︸︷︷︸
v2

+ · · · + aN

⎡
⎢⎢⎢⎣

0
0
...

1

⎤
⎥⎥⎥⎦

︸︷︷︸
vN

,

where none of the vectors vi can be written as a
weighted sum of remaining vectors vj �=i . Hence,
our system is controllable if we can find input
functions u1(t), · · · ,uN(t) that reach N linearly

independent vectors L(u1(t)), · · · ,L(uN(t)),
because then we can always reach any final state
from any initial state through the weighted sum

xT − eAT x0︸ ︷︷ ︸
a

= a1 L(u1(t))︸ ︷︷ ︸
v1

+a2 L(u2(t))︸ ︷︷ ︸
v2

+ · · · + aN L(uN(t))︸ ︷︷ ︸
vN

,

through the control input u(t) = a1u1(t) +
a2u2(t) + · · · + aNuN(t). This information of
reachable states is encoded in the controllability
matrix

C = [
B, AB, A2B, · · · , AN−1B

]
, (17.7)

where the rank of this matrix (given by the num-
ber of linearly independent columns of C) tells
us how many of these N independent vectors can
be reached using control input. If this rank = N ,
then the system is controllable and can reach all
states. However, even if the rank < N , there still
exists a control input that drives the system from
x0 to xT if the vector xT − eAT x0 can be written
as a weighted sum of the columns of C. This set
of vectors spanned by the columns of C is called
the controllable subspace and the remaining set
of vectors the uncontrollable subspace.

As an example in our linearized two-unit sys-
tem, A, B, and C are written as

A =
[−1 2

0 −1

]
, B =

[
1
0

]
,

C = [
B, AB

] =
[

1 −1
0 0

]
,

which is not controllable, because the rank of C
is 1. To consider the controllable subspace, notice
that the columns of C only have non-zero entry
in the first row. Hence, the controllable subspace
contains any desired value of x1(T ), but excludes
all values of x2(T ). Intuitively, this loss of con-
trollability arises because x2 does not receive an
input, nor is it affected by x1. Hence, there is no
way to influence the activity of x2 in a desired
way.
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17.3.5 Minimum Energy Control

Once we know a system is controllable, we would
like to determine the control input function u(t)

that transitions our system from initial x0 to final
xT states. However, there are often limitations on
the input magnitude such as electrical and thermal
damage of neural tissue or battery life of chronic
implanted stimulators. Due to the system’s linear-
ity, we can find not only an input function but an
optimal one u∗(t) that minimizes input cost.

First, we must define a measure of the size of
our control input functions u(t). In many applica-
tions of electrical stimulation, the cost of control

scales quadratically with the input, such as with
resistive heating. This quadratic measure of size
is mathematically and intuitively defined using
the inner product. For N-dimensional column
vectors of numbers, a, the inner product is the
well known dot product

< a, a >= a2
1 + a2

2 + · · · + a2
N = a�a,

where a� is the transpose that turns column vec-
tor a into a row vector.We see that doubling a will
quadruple the inner product. For k-dimensional
column vectors of functions a(t) from time t = 0
to t = T , the inner product is similarly defined as

< a(t), a(t) >=
∫ T

0
a2

1(t) + a2
2(t) + · · · + a2

N(t)dt =
∫ T

0
a(t)�a(t)dt

that has the same quadratic relation. Hence, we
define the control energy as

E =< u(t),u(t) > . (17.8)

Now that we have a measure of how large an
input is, we wish to find a minimal input u∗(t)
that minimizes the control energy. This task is
analogous to a typical linear system of equations,
Mv = b, where we want to find v∗ that solves
the equation with the smallest cost < v∗, v∗ >.
Here, if M has full row rank where the rows of
M are linearly independent, then the minimum
solution is given by the equation for least squares
v∗ = M�(MM�)−1b. Here,M� is the transpose,
or adjoint of M .

This same principle holds for our linear system
L(u(t)) = xT − eAT x0, where we want to find
u∗(t) that solves the equation with the smallest

cost < u∗(t),u∗(t) >. However, while matrix
M inputs a vector of numbers v and outputs a
vector of numbers b, our linear function L inputs
a vector of functions and outputs a vector of
numbers. Hence, we need to carefully define the
adjoint of L; because L is not a finite matrix,
we cannot use L� to denote the adjoint. Instead,
we will use L∗ to denote the adjoint of L. In the
case of matrix M , the adjoint preserves the inner
product between inputs and outputs such that

< Mv, b > =< v, M�b >

(Mv)�b = v�(M�b).

Identically, for state transition x = eAT x0 −
xT , the adjoint of L preserves the inner product
between the vectors of input functions u(t) and
output numbers x as

< L(u(t)), x > =< u(t),L∗(x) >

(∫ T

0
eA(T −t)Bu(t)dt

)�
x =

∫ T

0
u�(t)(B�eA�(T −t)x)dt.
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Notice that the inner product on the left is over
vectors of numbers, while the inner product on
the right is over vectors of functions. Then, we
see that our adjoint is

L∗(x) = B�eA�(T −t)x

and takes as input a vector of numbers and outputs
a vector of functions. Then, just as our system
Mv = b, the minimum input u∗(t) is given by

u∗(t) = L∗(LL∗)−1(xT − eAT x0). (17.9)

Finally, through substitution into Eq. 17.8, we can
write the minimum control energy as

Emin = (xT − eAT x0)
�(LL∗)−1(xT − eAT x0).

(17.10)

In conclusion, we point out the crucially im-
portant term of the minimum energy, LL′, as the
controllability Gramian written as

Wc(T ) = LL∗ =
∫ T

0
eA(T −t)BB�eA�(T −t)dt.

(17.11)

First, we notice that this Gramian is only a func-
tion of the underlying neural relationships, A; the
matrix determining where the inputs are placed,
B; and time T . Next, we notice that Wc(T ) is
actually an N × N matrix and can therefore be
numerically evaluated and analytically studied.
Finally, we see that if our system begins at an
initial state of x0 = 0, then the minimum energy
can be written as

Emin = x�
T W−1

c (T )xT ,

where the role of neural interactions and stim-
ulation parameters on our ability to control the
system is fully encapsulated in the Gramian. This
ability to decouple the states xT from the neural
interactions and stimulation parameters A, B, T

is a powerful tool for studying and designing
control properties of neural systems.

17.4 Mapping Network
Architecture to Control
Properties

By formulating our neural system in a linear way,
we can solve difficult problems such as predicting
the system’s response to control, finding the set
of states that the system can reach, and designing
efficient input stimuli, without the need to try
every control input and simulate every trajectory.
Further, by directly mapping control properties
to neural activity and network architecture in
an algebraic way, we can study how features of
interaction patterns impact our ability to control
neural activity [8]. As an active area of research,
the variety of questions being asked and systems
being studied is very large, and require simul-
taneous innovations in experiment, computation,
and theory. In this section, we will describe a few
recent applications and advances.

17.4.1 Neuronal Control in Model
Organisms

While most neural systems are too large to em-
pirically measure activity and connectivity or to
analyze numerically, there do exist a few suffi-
ciently simple model organisms. Among these is
the worm Caenorhabditis elegans [33] with sev-
eral hundred neurons that can be recorded from si-
multaneously [34]. Even for such a small system,
it is difficult to map the functional form of how
activity in neuron i affects the activity in neuron
j . However, the presence or absence of connec-
tions between neurons in this organism, and by
consequence the presence or absence of elements
in the connectivity matrix A, is well known.

Advances in the study of structural control-
lability [35] allow us to ask questions about our
ability to control a system given only the bi-
nary presence or absence of edges. Colloquially,
this framework focuses on connectivity matrices
A where non-zero entries can only exist in the
presence of binary edges, and can be used to
determine whether the system is controllable
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for most values where an edge is present. Using
this framework, recent work has sought to deter-
mine whether the removal of certain neurons in
C. elegans will reduce structural controllability
[36]. Specifically, the modeling involves input
to the sensory receptor neurons as the control
input that is mapped to the system through a
matrix B and the connectivity between neurons
and muscle cells through a matrix A. Further, in-
stead of recording the activity of each neuron, the
motion of muscles was recorded. This framework
involves the appended control framework

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t),

where y(t) represents the states (muscles) that
are measured and C is the map from neurons and
muscles x(t) to the measured output [37]. Here,
the authors find that the ablation of a neuron not
previously implicated in motion, PDB, decreased
structural controllability, significantly reducing
ventral bias in deep body bends in C. elegans.

17.4.2 State Transitions in the
Human Brain

While neuron-level structural synapses map
most directly to functional relationships between
neurons, there are also well-characterized
structural connections between larger-scale brain
regions. These connections contain thick bundles
of myelinated axonal fibers that run throughout
the brain and are thought to play a crucial role in
coupling the activity of distant brain regions [38].
These fibers are resolved by measuring water
diffusion throughout the brain using magnetic
resonance [39] and tracing fibers along this
diffusion field using computational algorithms
[30]. The whole brain is typically divided into
hundreds to thousands of discrete brain regions
using a variety of parcellation schemes [40, 41],
and the strength of fibers between these regions
comprises the connectivity matrix A [42].

Such region-level study of brain dynamics has
led to the discovery of macroscopic functional
organization in the human brain at rest [43] and

during various cognitively demanding tasks [44].
Here, brain activity can be empirically measured
through methods such as magnetic resonance
imaging (blood oxygen level dependent) or elec-
trophysiology (aggregate electrical activity). Of
particular interest are large-scale functional brain
networks that display stereotyped changes in
activity patterns during tasks that demand certain
cognitive or sensorimotor processes [45]. Here, it
is thought that the brain uses underlying structural
connections to support circuit-level coordination,
as well as to guide itself to specific patterns of
activity using cognitive control [46, 47].

Recent work has begun formulating cognitive
control as a linear systems problem [46, 48–51],
where matrix A is the network of white matter
connections between brain regions, B represents
the regions that were chosen to be responsible
for control, and x(t) represents the activity of
each region over time. Specifically in [48, 50],
the authors quantify cognitive states as vectors
corresponding to activity in the brain regions
during cognitive tasks and compute the mini-
mum control energy Eq. 17.9 to transition be-
tween cognitive states for various sets of control
regions. Colloquially, if a set of regions requires
less input energy to transition between cognitive
states, then those regionsmay easily transition the
whole brain between these states along an optimal
trajectory given they are responsible for cogni-
tive control. Moreover, individual differences in
the minimal control energy are correlated with
individual differences in performance on cogni-
tive control tasks [52]. In complementary studies,
individual differences in controllability statistics
calculated for distinct regions of the brain are
correlatedwith individual differences inmeasures
of cognitive control assessed with common neu-
ropsychological test batteries [49, 51].

17.5 Methodological
Considerations and
Limitations

While the theory of linear systems is a powerful
quantitative framework for studying and control-
ling dynamical neural systems, there are several
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important caveats. Herewemention three: dimen-
sionality and numerical stability, model valida-
tion and experimental data, and the assumption
of linearity.

17.5.1 Dimensionality and Numerical
Stability

The benefit of studying linear systems is that
we take difficult and largely intractable ques-
tions of controllability and control input design
and greatly simplify them into algebraic prob-
lems of computing objects like the controllability
matrix Eq. 17.7 and the controllability Gramian
Eq. 17.11. However, these matrices scale quadrat-
ically with the number of neural units, and numer-
ical calculations and manipulations using these
matrices quickly face computational issues.

Most viable approaches to dealing with these
issues involve numerically representing the ele-
ments of our matrices and performing algebraic
operations. However, these representations are
imperfect, as it is impossible to completely rep-
resent irrational numbers such as π . Hence, the
matrices are truncated to numerical precision,
and this truncation error propagates with each
computation. Further, the propagation of error
tends to scale faster than the number of dimen-
sions. This issue is prevalent in the computation
of the state-transition matrix [53], as well as in
the calculation of the controllability Gramian and
its inverse. With the application of this theory
to high-dimensional neural systems, the study of
useful controllability metrics is an active area of
research [54].

17.5.2 Model Validation and
Experimental Data

A fundamental limitation for modeling any neural
system is the ability to empirically and accu-
ratelymeasuremodel parameters and variables. A
crucial parameter is the network of connectivity
encoded by our adjacency matrix A, where the
element in the i-th column and j -th row models
the effect of unit i on the rate of change of unit j .

While we typically use the structural connections
in synapses between neurons, or bundles of axons
between brain regions as a proxy for A, it is very
difficult to measure the true functional effect that
activity in unit i has on activity in unit j , partic-
ularly for large systems. This problem is exacer-
bated by further methodological limitations such
as the inability to resolve directionality of connec-
tions in diffusion tractography. Along these lines,
many statistical and autoregressive methods have
been developed to infer functional relationships
from recordings of neural activity [55–59] and
to use that inferred activity to better understand
control [60]. However, the degree of causality in
these methods as measured by true response to
external stimuli remains controversial.

Another such fundamental limitation is our in-
ability to fully measure every state of the system.
The state-space representation of our model re-
quires that every state is observed. However, it is
impossible to simultaneously record the activity
of every neuron in almost all biological systems,
although this recording has been achieved in suf-
ficiently simple organisms [34]. As a result of
only being able to observe a small subset of the
full state-space, these models of interactions may
become largely descriptive and phenomenologi-
cal in nature. In response, there is a continuing
effort to improve the spatial and temporal resolu-
tion of neuroimaging methods [61].

17.5.3 Assumption of Linearity

An inherent limitation is the lack of generality
in our linear approximation of the full nonlinear
neural dynamics. In response, there is a sizable
quantity of research studying the control prop-
erties of nonlinear dynamical systems [62]. An
interesting bridge between these two disciplines
exists in the theory of the Koopman or composi-
tion operator [63]. The underlying benefit of this
theory is that, while our system of equations may
evolve nonlinearly in time given the current set
of N states, there may exist a higher-dimensional
set of M > N state variables in which the dy-
namical system does evolve linearly [64]. While
the extension of linear systems theory to actually
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controlling this higher-dimensional system may
be limited, it remains a promising future area of
research.

17.6 Open Frontiers

Many exciting and open frontiers exist in the
study of brain network dynamics using linear
systems theory. Here we constrain our remarks to
three main topic areas, but freely admit that this
discussion is far from comprehensive. First, we
describe opportunities in the further development
of useful controllability statistics as well as in
the development of foundational theory linking
control profiles to the system’s underlying net-
work architecture. Second, we underscore the
need for a better understanding of how control is
implemented in the brain, how control strategies
might depend on context, and how control pro-
cesses could facilitate the effective manipulation
of information. Third, we describe the relevance
of the modeling efforts we discussed here for
our understanding of neurological disease and
psychiatric disorders as well as the development
of personalized and targeted therapeautic inter-
ventions for alterations in mental health.

17.6.1 Theory and Statistics

Linear systems theory has its basis in a rich liter-
ature stemming from now well-developed areas
of mathematics, physics, and engineering [65].
Yet, much is still unknown about exactly how
the network topology of a given unit-to-unit in-
teraction pattern impacts the capacity for control,
the trajectories accessible to the systems, and
the minimum control energy. Some preliminary
efforts have begun to make headway by using
linear network control theory to derive accurate
closed-form expressions that relate the connec-
tivity of a subset of structural connections (those
linking driver nodes to non-driver nodes) to the
minimum energy required to control networked
systems [66]. Further work is needed to gain an
intuition for the role of higher-order structures
(e.g., cycles) in the control of the networked sys-
tem and any dependence on edge directionality

[67]. Moreover, it would be fruitful in the future
to further develop a broader set of controllablity
statistics, extending beyond node controllability
[54], and edge controllability [68], to the control
of motifs [69]. Finally, throughout such investi-
gations, it will be useful to understand which fea-
tures of control are shared across networks with
various topologies, versus those features which
are specific to networkswith a particular topology
[70–72].

17.6.2 Context, Computations, and
Information Processing

Despite the emerging appreciation that linear sys-
tems theory has considerable utility in the study of
cognitive function, we still know very little about
exactly how control is implemented in the brain,
across spatial scales, and capitalizing on the unit-
to-unit interaction patterns at each of those scales.
Some initial evidence suggests that features of
synaptic connectivity – and particularly autaptic
connections – can serve to tune the excitability
of the neural circuit, altering its controllability
profile and propensity to display synchronous
bursts of activity [73]. Complementary evidence
also at the cellular scale demonstrates how in-
trinsic network structure and exogeneous stim-
ulus patterns together determine the manner in
which a stimulus propagates through the network,
with important implications for cognitive facul-
ties that require persistent activation of neuronal
patterns such as working memory and attention
[74]. There are interesting similarities between
these observations and evidence at larger spatial
scales, which suggests that the architecture of
white matter tracts connecting brain areas can be
used to infer the probability with which the brain
persists in certain states [75]. Such conceptual
similarities motivate concerted efforts to better
understand how the architecture of brain net-
works across spatial scales supports information
processing and cognitive computations and how
those processes and computations might depend
on the context in which the brain is placed. For-
mally, it would be interesting to consider context
as a form of exogeneous input to the system, in a
manner reminiscent of how we currently consider
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brain stimulation [8]. We speculate that such a
formulation of the problem could help to explain
a range of observations, such as the ability of
cognitive effort to suppress epileptic activity [76].

17.6.3 Disease and Intervention

The fact that controllability can depend on net-
work topology [66, 70] and can be altered by
edge pruning [77] suggests that it might also be
a useful biomarker in some neurological diseases
and psychiatric disorders, many of which are as-
sociated with changes in the structural topology
of neural circuitry at various spatial scales [6, 7].
Indeed, recent studies have reported differences
in controllability statistics estimated in brain net-
works of patients with bipolar disorder [78], tem-
poral lobe epilepsy [79], and mild traumatic brain
injury [50]. In a complementary line of work,
studies are beginning to ask whether the altered
controllability profiles of brain networks in these
patients could help to inform the development of
more targeted interventions for their illness, in
the form of brain stimulation [31, 80], pharma-
cological agents, or cognitive behavioral therapy.
Other efforts have begun to consider symptoms
of a given disease as a network and to identify
symptoms predicted to have high impulse re-
sponse in the patient’s daily life [81]. It would be
interesting in the future to determine whether the
linear systems approach could be useful in more
carefully formalizing that problem as a network
control problem, which in turn could be used
to determine which symptom to treat in order
to move the entire symptom network toward a
healthier state [82].

Homework

1. Linearize the following system about point
x∗

1 = 1, x∗
2 = −1, x∗

3 = 0,

⎡
⎣

ẋ1(t)

ẋ2(t)

ẋ3(t)

⎤
⎦ =

⎡
⎣

−x2
1(t) − 2x2(t) + x3(t) − 1

2x1(t) − 2x2
2(t) + 2x3(t)

x1(t)x2(t) − x3(t) + 1

⎤
⎦ .

and demonstrate that this point is a fixed
point where ẋ1 = ẋ2 = ẋ3 = 0.

2. Prove that the matrix exponential of A =[
a 0
0 b

]
is

eA =
[
ea 0
0 eb

]
,

using the Taylor series of the scalar and ma-
trix exponentials.

3. Prove that the system response to control

x(t) = eAtx0 +
∫ t

0
eA(t−τ)Bu(τ )dτ

satisfies the dynamical equation ẋ(t) =
Ax(t) + Bu(t) by substitution.

4. Prove that the convolution operator

L(u(t)) =
∫ T

0
eA(T −τ)Bu(τ )dτ

is linear according to Eq. 17.6; that is, if
L(u1(t)) = c1, and L(u2(t)) = c2, then
demonstrate thatL(au1(t)+bu2(t)) = ac1+
bc2.

5. Determine if the following system is control-
lable

⎡
⎣

ẋ1(t)

ẋ2(t)

ẋ3(t)

⎤
⎦ =

⎡
⎣

0 1 0
0 0 1
1 0 0

⎤
⎦

⎡
⎣

x1(t)

x2(t)

x3(t)

⎤
⎦ +

⎡
⎣

1
0
0

⎤
⎦ u(t),

by constructing the controllability matrix.
6. Determine for what value of a the system is

not controllable

⎡
⎣

ẋ1(t)

ẋ2(t)

ẋ3(t)

⎤
⎦ =

⎡
⎣

0 0 0
1 1 0
1 0 a

⎤
⎦

⎡
⎣

x1(t)

x2(t)

x3(t)

⎤
⎦ +

⎡
⎣

1
0
0

⎤
⎦ u(t),

by constructing the controllability matrix.
7. Derive the minimum energy equation

Eq. 17.10

Emin = (xT −eAT x0)
�(LL∗)−1(xT −eAT x0),
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by substituting the minimum input u∗(t) into
the control energy Eq. 17.8

E =< u(t),u(t) > .

8. Show that the controllability Gramian can be
written as

WC(T ) =
∫ T

0
eA(T −t)BB�eA�(T −t)dt

=
∫ T

0
eAτBB�eA�τ dτ,

using the substitution τ = T − t .
9. Show that the controllability Gramian for

system

A =
[
a 0
0 b

]
, B =

[
1 0
0 1

]

is

WC(T ) =
[ 1

2a

(
e2aT − 1

)
0

0 1
2b

(
e2bT − 1

)
]

10. Compute the minimum energy required for
the system

A =
[ 1

2 0
0 2

]
, B =

[
1 0
0 1

]
,

to transition from initial state x(0) =
[

0
0

]
to

final state x(T ) =
[

1
2

]
in time T = 1.
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