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Abstract

Deep learning, rooted in artificial neural net-
works, has received increasing attention in the
field of brain image analysis. In this chap-
ter, the pre-processing steps for brain images
and the fundamental concepts of deep neural
networks are first introduced. After that, four
typical types of deep neural networks used for
brain image analysis are elaborated, includ-
ing (i) convolutional neural networks (CNNs)
and the variants (i.e., fully convolutional net-
works and U-net), (ii) recurrent neural net-
works (RNNs) and the variant (i.e., long short-
term memory model), (iii) auto-encoder, and
(iv) generative adversarial networks (GANs)
and the variants (i.e., Pix2Pix GAN and Cycle-
GAN), aswell as their applications in brain im-
age classification, segmentation, registration,
and image synthesis/augmentation. In addi-
tion, several challenges and future research di-
rections of deep learning in brain image anal-
ysis are also pointed out.
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15.1 Background

The significant advances of neuroimaging
techniques have deeply reshaped modern neu-
roscience in recent decades, offering researchers
unprecedented opportunities to noninvasively
investigate the anatomy and functions of the
brain. The imaging-based measurements are
heralded more sensitive and consistent than
the traditional cognitive tests, thus critical for
the early diagnosis of brain disorders, e.g.,
Alzheimer’s disease (AD) and schizophrenia.

As a relatively new discipline withinmedicine,
neuroscience, and psychology, neuroimaging
falls into two broad categories: (1) structural
imaging, such as magnetic resonance imaging
(MRI), and (2) functional imaging, such as
functional magnetic resonance imaging (fMRI)
and positron emission tomography (PET).
Neuroimaging-based studies not only focus
on investigating how the brain is organized
around regions (such as local morphometry
and functions) but may also consider the

© Springer Nature Switzerland AG 2020
B. He (ed.), Neural Engineering, https://doi.org/10.1007/978-3-030-43395-6_15

433

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43395-6_15&domain=pdf
mailto:dgshen@med.unc.edu
https://doi.org/10.1007/978-3-030-43395-6_15


434 D. Shen et al.

connections between brain regions, in order to
identify imaging-based biomarkers for automated
diagnosis of brain diseases. Such tasks could be
very challenging, giving the highly non-linear
mapping between image-based observations
and diagnosis outputs. Recently this research
field significantly benefits from the emerging
deep learning techniques that have demonstrated
excellent performance in learning non-linear
function mapping in various tasks.

As part of a broader family of machine learn-
ing methods, deep learning models are generally
based on artificial neural networks. Even though
artificial neural networks were proposed in the
1950s, their development still suffered from some
limitations, such as lack of computing power,
lack of sufficient training data, and difficulty in
training deep networks. The rapid development
of deep learning in recent years can be attributed
to the enhanced computer capabilities of high-
tech central processing units (CPUs) and graphics
processing units (GPUs), the availability of big
data, and the novel algorithms for training deep
neural networks. Deep learning algorithms can
be supervised (i.e., learning with only labeled
data), semi-supervised (i.e., learning with both
labeled and unlabeled data), or unsupervised (i.e.,
learning with only unlabeled data) [1–3]. In par-
ticular, deep learning models such as convolu-
tional neural network (CNN), recurrent neural
network (RNN), auto-encoder (AE), and gener-
ative adversarial network (GAN) have rapidly
become a methodology of choice for analyzing
brain images in various applications [4,5], such as
brain image segmentation [6–8], brain image reg-
istration [9], brain disease diagnosis [10–12], and
brain image synthesis [13–15]. However, there
are several challenges for deep learning models
in dealing with neuroimages, as summarized be-
low:

(1) Small-sample-size problem. In the domain
of brain image analysis, deep learningmodels
generally suffer from the small-sample-size
problem, because there are millions of voxels
in each 3D volume and a very limited number
(e.g., tens or hundreds) of subjects/images for
model training. A popular solution is to locate
regions of interest (ROIs) in brain images

using prior knowledge or data-driven strate-
gies [10]. However, it is usually challenging
to define such ROIs in each 3D brain image.

(2) Missing data problem. The missing data
problem is usually unavoidable in the field
of brain image analysis (especially for multi-
modality applications) [15], because subjects
may lack some modalities (e.g., PET) due
to patient dropouts and/or poor data quality.
Conventional methods typically discard data-
missing subjects, but this will significantly
reduce the number of training subjects and
affect the robustness of the learned model.

(3) Spatiotemporal dynamics of the brain. Pre-
vious studies on brain functional connectiv-
ity have shown that the human brain is in-
trinsically organized into spatiotemporal dy-
namic interaction network [16, 17], demon-
strating remarkable spatiotemporal variabil-
ity over time in its function and structure [18,
19]. Hence, it’s essential to model the spa-
tiotemporal dynamics of brain images to im-
prove the performance of deep learning mod-
els.

To address these issues, various deep learning
models have been proposed for analyzing brain
images, resulting in promising results in different
applications. In the following, the pre-processing
steps for brain images and fundamental concepts
of neural networks will be first introduced in
Sect. 15.2. Then, four typical deep neural net-
works for brain image analysis will be presented
in Sects. 15.3, 15.4, 15.5, and 15.6. Section 15.7
presents the limitations of current deep learning
models and several possible future research
directions. Finally, Sect. 15.8 concludes this
chapter.

15.2 Image Processing and
Concept of Deep Learning

15.2.1 Brain Image Pre-processing

Brain images usually need to be pre-processed
so that the acquisition artifacts and undesired
tissues could be removed to better serve subse-
quent tasks. In the following, a typical pipeline
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to pre-process structural brain MR images is in-
troduced, since MRI is the most widely used
imaging modality to explore human brains. The
pipeline includes the steps of skull stripping, bias
field correction, intensity normalization, and spa-
tial registration [20]. Based on the characteristic
of the analysis task, some steps could be optional.

Skull stripping is used to remove non-brain tis-
sues fromMR images. The existence of non-brain
tissues, such as skull and eyes, could negatively
affect the algorithms for the subsequent segmen-
tation or diagnosis. Therefore, skull stripping is
used for pre-processing inmany brain image anal-
ysis models, including those deep learning-based
ones. Either under- or over-segmentation of the
brain will lead to inaccurate estimation of brain
tissues. A commonly used skull stripping method
is based on BET [21,22].

A common artifact seen in an MR image is
the smooth variation of signal intensity across the
image, called as bias field. This may be caused
by factors such as poor radio-frequency field uni-
formity and eddy currents driven by the switch-
ing of field gradients, etc. This intensity non-
uniformity is known as “bias field” which is the
low-frequency multiplicative noise in the images.
Many methods have been proposed for the bias
field correction by estimating both the uncor-
rupted image intensities and the spatially smooth
and multiplicative model of the bias field. Among
these methods, a typical representative is the non-
parametric non-uniform intensity normalization
(N3) algorithm [23].

MRI scans are acquired in arbitrary units, mak-
ing them not amiable for the comparison of the
same tissue across different studies of a same
subject or across different subjects. Such intensity
difference could make simple operations such as
thresholding difficult across images. Therefore,
intensity normalization is sometimes involved for
pre-processingMR images. Methods for intensity
normalization usually manipulate the histograms
of MR images so that they are aligned after the
normalization, i.e., the discrepancy between his-
tograms is minimized. However, pre-processing
images with intensity normalization needs to be
done carefully to avoid the elimination of critical
or discriminative information carried in image
intensities.

Spatial registration, which transforms images
into a common coordinate space, is often
needed when integrating multiple imaging
modalities/MR sequences for analysis. The trans-
formation could be linear (such as translation,
rotation, scaling and other affine transforms) or
non-linear, which could locally warp images to
match them. Image registration by itself is a big
category of research problems [24, 25].

Many off-the-shelf toolkits provide basic
tools for the pre-processing of brain images, for
example, FMRIB Software Library (FSL)1 and
Statistical Parametric Mapping (SPM).2 Such
pre-processing steps are often indispensable
in traditional non-deep learning-based models.
For deep learning models, despite their strong
capacity of learning highly non-linear function
mapping, they could still benefit from these pre-
processing steps to reduce the complexity of the
learning task, especially when there are only a
limited number of images for training.

15.2.2 Fundamentals About Neural
NetworkModels

Deep learning is rooted in artificial neural
networks. An artificial neural network consists
of multiple layers of interconnected processing
units, known as neurons. If the connections
between neurons do not form a circle, the artificial
neural network is feed-forward. The most
common class of feed-forward neural network is
known as multilayer perception (MLP). An MLP
has at least three layers, (1) an input layer, (2) a
hidden layer, and (3) an output layer, as shown in
Fig. 15.1. The network takes data from the input
layer, non-linearly transforms the data via the
hidden layer, and produces the prediction at the
output layer. In MLP, neurons in the neighboring
layers are fully connected, while neurons within
the same layer have no connection. Multiple
hidden layers can be stacked to increase the non-
linearity of the model.

Specifically, an MLP learns an embedding
function y = f (x;w), where x is the input, y

1https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
2https://www.fil.ion.ucl.ac.uk/spm/
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Fig. 15.1 A basic
multilayer perception
network (MLP)

Fig. 15.2 Common activation functions: sigmoid (left), hyperbolic tangent (middle), and rectified linear unit (right)

is the output, f = (fn ◦ fn−1 · · · ◦ f1)(x) is a
set of non-linear transforms parameterized by w,
and n denotes the number of layers. Usually, a
non-linear transform fi at the i-th layer takes the
form of fi = σi(wi

�fi−1), consisting of a linear
transform on the output of the previous layer fi−1

and a following non-linear activation function
σi . The linear transform matrix wi is called
the parameters or weights of the model, which
is automatically learned during training. The
commonly used activation function σi includes
sigmoid function, hyperbolic tangent function
(tanh), and rectified linear unit (ReLu), as shown
in Fig. 15.2.

Training and testing neural networks require
non-overlapped training and test datasets. The
training set consists of N paired input and
expected output samples {xi , yi}Ni=1. An MLP
is trained to minimize the difference between
its prediction and the expected output by
optimizing the loss function L. For example,
L = minw

∑N
i=1

1
N

‖ yi − f (xi;w) ‖2. The
optimal model parameters w∗ can be effectively
attained by a family of methods known as
“backpropagation.” The basic idea is to exploit
chain rule to first compute the gradient of the loss
function with respect to each model parameter
wij in w and then update wij using the direction
of gradient descent iteratively as

wt+1
ij = wt

ij − α
∂L(wt

ij )

∂wij

, (15.1)

Output layer

Hidden layer

Input layer

Fig. 15.3 An example for backpropagation

where α is the user-predefined learning rate and
t is the index of iteration. Repeating in this way,
the value of the loss function will be gradually
reduced until a certain stopping criterion can be
met. In the test stage, the test set (unseen in
the training stage) is simply fed forward through
the learned neural network model, using w∗ for
prediction.

An example for backpropagation Figure 15.3
shows an MLP consisting of an input layer with
two scalar input variables x1 and x2, a hidden
layer with the output h, and an output layer with
the output o. The loss function of the MLP is
L = ∑

i (oi − yi)
2, where yi indicates ground-

truth and

hi = f1(x1,i , x2,i; w1, w2) = w1x1,i + w2x2,i ,

oi = f2(hi) = w3hi.
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Solution Applying the chain rule, we have the
following solution

∂L
∂w3

=
∑

i

∂L
∂oi

∂oi

∂w3
=

∑

i

2(oi − yi)hi,

∂L
∂w2

=
∑

i

∂L
∂oi

∂oi

∂hi

∂hi

∂w2
=

∑

i

2(oi − yi)w3x2,i ,

∂L
∂w1

=
∑

i

∂L
∂oi

∂oi

∂hi

∂hi

∂w1
=

∑

i

2(oi − yi)w3x1,i .

Gradient descent computed in backpropa-
gation can be trained in three ways: (1) batch,
(2) stochastic, and (3) mini-batch. In gradient
descent, batchmeans the total number of samples
used to update the gradient in one iteration. A
large batch (e.g., the entire training set) may
even cause a single iteration to take a long
time to compute. On the contrary, stochastic
gradient descent (SGD) uses a single training
sample to calculate the objective loss and
update the gradient for each iteration. The
increased frequency of model update may
lead to faster learning in some problems, but
also bring noisy gradient estimation. Mini-
batch stochastic gradient descent (mini-batch
SGD) balances the full-batch training and SGD.
It splits the training set into small batches
and uses these small batches to calculate
objective loss and update the model. Mini-batch
SGD improves the efficiency of the full-batch
training and reduces the noise in SGD, which
is commonly used for training deep learning
models.

The following terms are related to mini-batch
training. Mini-batch size refers to the number of
training samples in one mini-batch used to update
the model. The number of epochs refers to the
times that the entire training set is passed forward
and backward through the neural network model.
The number of iterations refers to the number of
passes using the samples of the mini-batch size,
where each pass includes a forward pass and a
backward pass. For example, if the training set
contains 1,000 samples, and the mini-batch size
is 50, it then takes 20 iterations to complete one
epoch.

15.3 Convolutional Neural
Networks

MLPs have some drawbacks when they are used
for image processing. They use one neuron for
each input (e.g., a pixel in an image), and ev-
ery neuron connects to all neurons in the next
layer. This makes the parameters of the model
increase dramatically when the size of the image
is relatively large. Also, flattening an image to
MLP causes the loss of spatial information in
the image. Instead, convolutional neural networks
(CNNs) are the most commonly used deep learn-
ing models in medical image analysis. They are
biologically inspired variants of MLPs, utilizing
local receptive fields, weight sharing, and sparse
connectivity to preserve spatial information and
reduce the number of network parameters.

Receptive field Being 2D or 3D grids, images
form high-dimensional input to neural networks.
It is inefficient to fully connect a neuron with
every pixel/voxel in this case. Instead, as known,
pixels/voxels are mostly useful in the context of
their neighbors. Therefore, in CNNs, a neuron
is connected only to a local region of the input
grid. This input region is known as the recep-
tive field of the neuron. It can be described by
its centroid location and size. In CNNs, the re-
ceptive field can be increased by stacking more
layers.

Weight sharing At every layer in CNNs, filters
are applied to detect the presence of specific fea-
tures or patterns. These filters act on the receptive
field of the input image. The numbers within
each filter are called weights. Weight sharing
happens across the filters in a particular layer.
That is, when the filter moves through the image,
its weights do not change. The idea behind is that
if a detected pattern is important in a particular
region of the image, it may be important in other
regions of the image too.

Sparse connectivity In CNNs, filters are con-
volved with the input image to calculate the ac-
tivation of neurons. When the size of the filter,
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or equally the receptive field, is smaller than
the input volume, each neuron in the activation
map is only connected to a local region of the
input, leading to “sparse” (rather than “dense”)
connectivity across layers.

15.3.1 CNN Fundamentals

A CNN model consists of convolutional layers
interspersed with pooling layers, on top of which
are often fully connected layers as in standard
MLPs. A typical example of CNN, i.e., LeNet, is
shown in Fig. 15.4.

Convolutional layers In convolutional layers,
the input of the layer is convolved with stacks of
filters of predefined size. The weights of filters
are automatically learned by optimizing CNN
via backpropagation. Filters are also known as
convolutional kernels. The output of convolution
is the sum of element-wise multiplication
between pixels in the receptive field and weights
in the convolution filter, as shown in Fig. 15.5.

Each filter moves across all input locations via
a step called stride and uses the same weights
for convolution. This produces a feature map.
In other words, a feature map is formed by
units that share the same weights and bias in a
convolutional layer. The stack of filters produces
a tensor of feature maps. The feature maps
are further sent through a non-linear activation
function, such as ReLu (See Fig. 15.2), to model
non-linear mapping and produce activation
maps.

Pooling layers After convolutional layer, there
is typically a pooling layer to down-sample the
feature maps produced in the convolutional layer.
By pooling, each small region in a feature map
is summarized into a single value. There are two
common methods for pooling: max-pooling and
average-pooling. In max-pooling, a small region
is represented by the maximum value inside it.
In average-pooling, a small region is represented
by the average of all values inside it. Figure 15.6
illustrates the ideas of max-pooling and average-
pooling. The down-sampled feature maps could

Fig. 15.4 LeNet: an example of CNN

Fig. 15.5 Illustration of convolution operation in 2D.
When a filter is convolved with a local region (receptive
field) in the image, the element-wise multiplication be-

tween the weights in the filter and the pixel values in the
region is calculated, and these multiplications are summed
up to produce a value in the feature map
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Fig. 15.6 Illustration of
max-pooling and
average-pooling

feature map max-pooling average-pooling

0 3

3

0

00

0

1 2

2

3

3

8

5

1

5

3

85

3 1

42

2

be more robust to small changes in the positions
of the features. Therefore, pooling could give the
network model a certain degree of “translation
invariance.” Another way to down-sample feature
maps is to conduct convolution with the “stride”
larger than 1.

Fully connected layers When CNNs are
used for classification, following multiple
convolution-pooling blocks, there are usually
several fully connected (FC) layers that flatten
feature maps for prediction. FC layers are in
principle the same as the traditional MLP: every
neuron in one layer is connected to every neuron
in another layer. For example, in LeNet (see
Fig. 15.4), there are two FC layers on top of the
convolution-pooling blocks. The output of the
final FC layer is sent through a softmax function
to classify the image with probabilistic values
between 0 and 1.

Dropout Deep models may contain a large
number of parameters to learn, and they have
a lot of freedom to fit complex datasets. This
may lead to an overfitting problem, i.e., the
learned model fits well to the training data but
fails to generalize well to unseen test data. It is
known that the ensembles of neural networks
with different model configurations can reduce
overfitting. This can be achieved in a single
model by “dropout” (i.e., randomly dropping
out neurons during training). When a neuron
is dropped out, it is temporally removed from
the network with all its incoming and outgoing
connections. This leads to slightly different
network for each batch of training data, which
effectively reduces overfitting. Dropout takes
place only in the training stage, but not in the test
stage.

15.3.2 CNN Variants

Based on CNNs, many novel network architec-
tures have been proposed to enable the network
model to go deeper with less parameters and
better performance. For example, the residual
module [26] and inception module in [27] have
been proved effective in both general and medi-
cal image classification. Meanwhile, it is noticed
that when CNN models are used for prediction
at pixel level (e.g., segmentation and synthesis),
fully convolutional networks (FCNs) [28] without
using fully connected layers on top of convo-
lutional blocks demonstrate several advantages
over the traditional CNNs, such as allowing input
images with different image sizes and being more
efficient than patch-wise training for pixel-level
prediction. In the following, residual CNNs and
a typical FCN model called U-net [29] are intro-
duced, respectively, as well as different ways to
combine CNNs for analysis.

15.3.3 Residual Learning Based on
CNN

When neural networks go deep, they are expected
to become more powerful and better approxi-
mate complicated functions. However, it turns
out that they often encounter the gradient van-
ishing problem. That is, the gradient of the loss
function approaches zero, especially at the shal-
low layers (the layers closer to the input) during
backpropagation. In this case, we may observe
the performance saturates or even degrades when
more layers are added. To mitigate this problem,
the residual module is proposed. As illustrated
in Fig. 15.7, in the residual module, the inputs x
from the previous layers are directly connected
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with the output f (x) of the new convolutional
layers in the module, which is known as residual
connection. They are then added to approximate
the target output y. In other words, in common
CNNs, we directly learn the output y, while in the
residual setting we learn the difference (residual)
between the output and the input: f (x) = y −
x. In this way, the gradient of the input can be
better preserved, as x is transmitted by the identity
matrix without loss of information. The residual
modules can be stacked to form very deep neural
networks, such as ResNet (Fig. 15.8) that is able
to train up to hundreds or even thousands of layers
with compelling performance.

15.3.4 Fully Convolutional Networks
and U-Net

Common CNN models with fully connected
layers can be used for pixel-level prediction,
such as segmentation and synthesis. This is
usually conducted in a patch-wise manner,
i.e., the CNN takes image patch(es) extracted

Fig. 15.7 Illustration of the difference between the plain
layers (left) and the residual module (right)

around every pixel as input and predicts the
label of the patch centroid. Such approaches
have some potential disadvantages. First, fully
connected layers consist of predetermined
number of neurons, which constrains the size
of the input image. That is, all input images
have to be rescaled to the same size that is
predefined. Second, by flattening the feature
map output from a convolutional layer into a
fully connected layer, some spatial information
is lost. Third, predicting pixel label in a patch-
wise manner could be very time-consuming as
the prediction needs to go through pixels one by
one.

Recently, fully convolutional networks
(FCNs) [28] are proposed to better deal with
per-pixel prediction tasks and demonstrate
promising performance, especially in semantic
segmentation. Different from CNNs used in
patch-wise manner that predicts the label of
one pixel each time, FCNs can produce dense
outputs from the input images of arbitrary size.
For example, FCNs can generate segmentation
map that has the same size as the input image at
one shot, by concatenating convolutional layers
and deconvolutional layers. Deconvolution is
simply backward strided convolution. Similar
to convolutional layers that down-sample the
feature maps, deconvolutional layers upsample
the feature maps. Figure 15.9 illustrates the
deconvolution with 3 × 3 kernel using stride
one on the feature map with size 2 × 2.

A typical FCN widely used in medical image
analysis is U-net [29], as shown in Fig. 15.10. It
consists of the contracting and expanding paths.
The contracting path consists of convolutional
layers, while the expanding path consists of de-
convolutional layers. They share the same num-
ber of layers. Between these two paths, multi-
ple skip connections are used to link the corre-

Fig. 15.8 Network architecture of ResNet with 32 layers
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sponding convolutional and deconvolutional lay-
ers. Similar to the residual module, using the
skip connections, U-net can mitigate the common
gradient vanishing problem during the training
of deep learning models, as the gradient of the
deeper layers can be directly backpropagated to
the shallower layers via the skip connections.
Moreover, this structure allows U-net to acquire
multi-depth information of the input image. In
this way, it can preserve the contextual informa-
tion from the input as well as the spatial details

Fig. 15.9 Illustration of deconvolution (kernel size 3×3)
using stride one. The original input is only the 2 × 2 green
region, while the white region is filled with zeros

in the feature maps of shallow layers, forming a
hierarchy of visual clues.

15.3.5 Combination of CNNs

CNNmodels could also be combined sequentially
or in parallel for analysis. When combined
sequentially, the output of the preceding network
becomes the input of the successive network.
Such combination is often used to gradually
refine the output results. When combined in
parallel, the networks are used to process the
same input, and their outputs are integrated for
decision. Such combination is often used to
extract complementary features from the input
image. For example, a cascade of networks is
proposed (see Fig. 15.11) in [30]. It sequentially
combines CNNs to segment the regions of interest
from coarse to fine, including (1) segmentation
of whole tumor, (2) segmentation of tumor
core segmentation, and (3) segmentation of
enhancing tumor core. Each network takes
a fully convolutional network using dilated
convolutions [31] and residual connections. In
contrast, the work in [32] proposed a CNNmodel
(Fig. 15.14) that consists of two parallel CNN
pathways, each coping with a different receptive
field on the input image, to incorporate both the

Fig. 15.10 Illustration of U-net model. (Image courtesy to [29])
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Fig. 15.11 Illustration of Cascade Net. (Image courtesy to [30])

local and the contextual information for brain
tumor segmentation. Also, a multi-instance CNN
(MICNN) model with multiple parallel sub-
networks was designed in [33] for diagnosis
and prognosis of brain diseases, and each sub-
network was used to extract local patch-level rep-
resentations of an input image. These patch-level
features were further concatenated and fed into
several FC layers for brain disease identification.
In MICNN, each sub-network was corresponding
to a disease-associated location (defined by
anatomical landmarks) in the input brain MR
image, and these sub-networks share the same ar-
chitecture but with different network parameters,
learn specific features from local patches. This
method was further extended to be a multi-task
learning model in [11] for joint classification and
regression in brain MRI-based disease diagnosis.

15.3.6 CNN Applications to Brain
Image Classification and
Segmentation

CNNs have been applied to analyze brain im-
ages in a variety of tasks, such as mental disease
classification [10, 33], neuroanatomy segmenta-
tion [34], lesion/tumor detection and segmenta-
tion [32, 35], brain image registration [36, 37],
etc. In the following, some examples of CNNs
used for brain image classification, segmentation,
and brain network analysis are introduced, re-
spectively.

15.3.7 Brain Image Classification

With the capability of learning highly non-
linear and task-oriented features, CNNs have
been applied to diagnosing brain diseases, such

as Alzheimer’s disease (AD). Many methods
train CNN models to extract visual features
based on predefined anatomical landmarks,
such as hippocampus, for classification. These
approaches demonstrated improved diagnostic
accuracy over the conventional approaches using
handcrafted features. However, in these methods,
the localization of atrophy and the diagnosis
of diseases are treated separately. Different
from them, a hierarchically fully convolutional
network (H-FCN) was proposed to jointly learn
atrophy location and perform AD diagnosis [10].

The architecture of H-FCN is shown in
Fig. 15.12. It consists of four components:
location proposal sub-network, patch-level sub-
network, region-level sub-network, and subject-
level sub-network, aiming to learn features in a
hierarchical way. Specifically, co-registered brain
images were sent to the location proposal sub-
network to generate image patches distributed
over the whole brain. These image patches
were fed into patch-level sub-networks to output
patch-level features and patch-level classification
scores. After that, spatially neighboring patches
were then grouped into local regions, and their
patch-level outputs (features concatenated with
classification scores) were processed by the
region-level sub-networks to produce regional
features and regional classification scores. The
outputs of the region-level sub-networks were
eventually integrated by the subject-level sub-
network to classify each subject. The proposed
H-FCN demonstrated promising performance
when evaluated on two datasets, i.e., Alzheimer’s
Disease Neuroimaging Initiative 1 (ADNI-1)
and ADNI-2, that contain a large cohort of
subjects. Visual examples of discriminative
regions identified by H-FCN are provided in
Fig. 15.13.
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Fig. 15.12 Illustration of the hierarchically fully convolutional network (H-FCN) [10] for joint atrophy localization
and disease diagnosis. (Image courtesy to [10])

Fig. 15.13 Voxel-level AD heatmaps for discriminative patches automatically identified by H-FCN [10] in six different
subjects. Warmer color in each heatmap indicates higher discriminative capacity. (Image courtesy to [10])

15.3.8 Brain Image Segmentation

As mentioned, segmentation of tissues or lesions
in brain images could be conducted either by
patch-wise classification (predicting the label of
the patch centroid) or by FCN-based models that
directly generate dense output for segmentation
labels. DeepMedic [32] is a representative patch-
wise classification method for brain tumor seg-
mentation, with architecture shown in Fig. 15.14.
This method proposed a two-pathway 3D CNN
architecture to capture multi-scale features that
incorporate both the local and the contextual in-
formation to improve brain tumor segmentation.
As shown in Fig. 15.14, the inputs of the two
pathways are 3D patches at the same image lo-
cation but with different resolutions. The normal-
resolution one focused on the local information,
while the low-resolution one was extracted from
a down-sampled version of the image, providing

contextual information. Features extracted from
the two parallel pathways were concatenated and
processed by two fully connected layers to predict
the label of the patch centroid. Additionally, on
top of the CNNs’ soft segmentation maps, fully
connected conditional random field (CRF) model
was used for final post-processing. DeepMedic
model achieved top rankings in two brain le-
sion segmentation challenges ISLES2015 [38]
and BRAT2015 [39]. Example segmentation re-
sults are given in Fig. 15.15.

Rather than classifying the centroid of each
patch, another type of CNN-based segmentation
approaches directly produce dense outputs corre-
sponding to the segmentation labels. For exam-
ple, in [6], a 3D U-net architecture was proposed
for brain tumor segmentation (see Fig. 15.16).
Just like U-net, this model consists of a context
aggregation pathway to extract the abstract rep-
resentation of the input large 3D blocks and a
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Fig. 15.14 Network architecture of DeepMedic. The inputs of the two parallel pathways are centered at the same image
location but with different resolutions. (Image courtesy to [32])

Fig. 15.15 Brain tumor segmentation examples (eval-
uated on the training set of BRATS2015 dataset) by
DeepMedic [32]. Cyan indicates necrotic core; green in-

dicates edema; orange indicates non-enhancing core; and
red indicates enhancing core. (Image courtesy to [32])

localization pathway that localizes the structures
of interest based on combined features from shal-
low layers. The context pathway is constructed
by residual blocks, while the localization path-
way is constructed by deconvolutional blocks for
upsampling. Upon all convolution computation,
Leaky ReLu is used as the activation function
for non-linearity. The final output of the network
is the element-wise summation of the segmenta-

tion results at different layers in the localization
pathway. Meanwhile, the proposed model also
benefits from the objective function of Dice loss
as well as data augmentation. It achieves promis-
ing results on both BRATS2015 and BRATS2017
datasets. Figure 15.17 shows an example segmen-
tation result achieved by [6]. Moreover, based
on the segmentation mask, the work in [6] could
further extract imaging-based features (such as
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Fig. 15.16 Network architecture of [6]. (Image courtesy to [6])

Fig. 15.17 A visual example of brain tumor segmentation. (Image courtesy to [6])

shape and first-order statistics) for survival pre-
diction. Another state-of-the-art multi-scale FCN
method was proposed in [8] for segmentation of
perivascular spaces (PVSs) in brain images.

Furthermore, ensemble methods integrating
different segmentation networks (e.g., 3D
FCN [28], 3D U-net [40] and DeepMedic [32])
and trained with different loss functions and
normalization schemes could further improve
the segmentation performance over individual
models, as demonstrated in [41].

15.4 Recurrent Neural Networks

15.4.1 Recurrent Neural Networks
(RNNs): Basic Model

Traditional neural networks assume that all in-
puts (and outputs) are independent of each other.
But for many tasks, this assumption may not

hold. For example, the prediction of a word in a
sentence usually depends on which words came
before it. Recurrent neural networks (RNNs) ad-
dress this issue. RNNs are called recurrent be-
cause they perform the same task for every el-
ement of a sequence (with the output being de-
pended on the previous computations) and they
have a “memory” which captures information
about what has been calculated so far [42]. As
shown in Fig. 15.18 (with a fold and an unfold
structure), the basic RNN model consists of a
sequence of non-linear units, and at least one
connection of units forms a directed cycle. This
chain-like nature reveals that RNNs are intimately
related to sequences and lists. RNNs allow us to
operate over sequences of vectors: sequences in
the input, the output, or in the most general case
both.

A typical RNN consists of three types of lay-
ers (see Fig. 15.18): (1) input layer, (2) recurrent
hidden layers, and (3) output layer. The input
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Fig. 15.18 Architecture of the basic recurrent neural net-
work (RNN). Each x is an input example, U is the weight
matrix between the input and hidden layers, W is the
weight matrix between the previous and current hidden

units in the hidden layer, and V is the weight matrix that
connects the hidden and output layers. For simplicity, bias
terms are not shown in this figure

layers is a sequence of vector through time step t ,
i.e., {. . . , xt−1, xt , xt+1, . . . }, where xt is the input
vector. The input units are fully connected with
the units in the hidden layers via a weight matrix
U .

The hidden layers are connected with each
other through time via recurrent connections, and
W is the weight matrix between the previous
and current hidden units of the layer. With the
recurrent hidden layers, RNNs can obtain the
state space or “memory” as follows:

ht = σh(Wxt + Uht−1 + bh), (15.2)

where ht and ht−1 denote the hidden state at time
steps t and t − 1, respectively, bh is the bias
vector of the hidden units, and σh is the activation
function used in the hidden layer. The weight
matrices W and U are filters that determine how
much importance to accord to both the present
input and the past hidden states. The error they
generate will return via backpropagation and be
used to adjust their weights until error cannot go
any lower. Because the feedback loop occurs at
every time step in the series, each hidden state
contains traces not only of the previous hidden
state but also of all those that preceded ht−1 for
as long as memory can persist.

The output units are connected with the hidden
units via a weight matrix V , and the output can be
computed as follows:

ot = σo(V ht + bo), (15.3)

where σo and bo denote the activation function
and bias term of the output layer. To learn net-
work parameters (W ,U ,V , bh, bo), RNNs use
the backpropagation algorithm for network train-
ing.

15.4.2 Long Short-TermMemory
(LSTM)Model

Even though RNNs with recurrent connections
are capable of understanding sequential depen-
dencies, the backpropagation is usually time-
consuming and falls victim to exploding and
vanishing gradient during network training.
Thus, in practice, RNNs don’t seem to be able
to learn “long-term dependencies” from data.
Many methods have been designed to address
this problem. Among these methods, long short-
term memory (LSTM) network, introduced by
Hocheriter et al. [43], is the most popular and
efficient method, capable of learning “long-term
dependencies.”

As shown in Fig. 15.19a, a typical LSTM
model consists of a memory cell Ct , an input gate
it , an output gate ot , and a forget gate ft for the
time step t . The memory cell transfers relevant
information all the way down the sequence chain,
and these gates control the activation singles
from various sources to decide what information
to add to or remove from the memory cell. The
input gate it , the output gate ot , and the forget
gate ft of an LSTM at time step t are defined as
follows:
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Fig. 15.19 Architectures of (a) long short-term memory
(LSTM) network and (b) gated recurrent unit (GRU). Each
x is an input example, U is the weight matrix between the
input and hidden layers, W is the weight matrix between

the previous and current hidden units in the hidden layer,
and V is the weight matrix that connects the hidden and
output layers. For simplicity, bias terms are not shown in
this figure

it = σ(W ixt + Uiht−1 + bi),

ot = σ(W oxt + Uoht−1 + bo),

ft = σ(W f xt + Uf ht−1 + bf ),

(15.4)

where W ∗ and U ∗ are weight matrices from one
state to the corresponding gate and b∗ is the bias
term. Thememory cellCt is updated by forgetting
the existing memory and adding the new memory
content C̃t as follows:

Ct = ftCt−1 + it C̃t , (15.5)

where the new memory content C̃t is defined as

C̃t = tanh(W cxt + Ucht−1 + bc). (15.6)

As can be seen, the existing memory and the new
memory are modulated by the forget data ft and
the input data it , respectively. The hidden state is
finally computed as

ht = ot tanh(Ct ). (15.7)

Unlike conventional RNN models, LSTM is
able to decide whether to preserve the existing
memory by the above-introduced gates. Theoret-
ically, if LSTM learns an important feature from
the input sequential data, it can keep this feature
over a long time, thus capturing potential long-
term dependencies.

A popular LSTM variant, called gated recur-
rent unit (GRU), is introduced by Cho et al. [44].

It combines the forget and input gates into a
single “update gate.” It also merges the cell state
and hidden state, making each recurrent unit to
adaptively capture dependencies of different time
scales. The resulting model is simpler than stan-
dard LSTMmodels, with an illustration shown in
Fig. 15.19b. The activation ht in GRU at time step
t is linearly modeled as

ht = (1 − zt )· ht−1 + zt · h̃t , (15.8)

where the update gate zt and the candidate activa-
tion h̃t are defined as

zt = σ(W zxt + Uzht−1 + bz),

h̃t = tanh(W hxt + Uh(ht−1· rt ) + bn),
(15.9)

where the term rt = σ(W rxt + U rht−1 + br)

denotes the reset gate. The update gate decides
how much information to add and throw away,
and the reset gate decides how much previous
information to forget. Detailed comparisons be-
tween LSTM and GRU can be found in [45, 46].

15.4.3 RNN Applications to Time
Series Data Analysis

RNNs have shown their advantage in exploiting
the temporal information in various tasks, such as
disease diagnosis and object detection [12,47,48].
In the following, we introduce an example of
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RNN models used for brain image classification
based on time series data.

Brain functional connectivity (FC) extracted
from resting-state fMRI (RS-fMRI) has become
a popular approach for disease diagnosis, where
discriminating subjects with mild cognitive
impairment (MCI) from normal controls (HC)
is still one of the most challenging problems.
Dynamic functional connectivity (dFC) charac-
terizes “chronnectome” diagnostic information
for improving MCI classification, consisting of
time-varying spatiotemporal dynamics. In [12],
a fully connected bidirectional LSTM model
(called Full-BiLSTM) is designed to learn the
periodic brain status changes using both past and
future information for each brief time segment
(of blood oxygen-level-dependent signal of
distributed brain regions) for MCI identification.
The architecture of Full-BiLSTM is shown in
Fig. 15.20. As can be seen from this figure, the
outputs of every repeating cell are concatenated
into a dense layer (i.e., “concatenation layer”).
With this dense layer, one can abstract a common
and time-invariant dynamic transition pattern
from all the BiLSTM cells which may represent
a constant “trait” information of each subject.

The dense layer is followed by a softmax
layer to get the final classification result. The
proposed Full-BiLSTM method demonstrates
good performancewhen evaluated on a rigorously
built large-scale multi-site database (i.e., with
164 RS-fMRI scans from HCs and 330 scans
from MCIs), achieving an accuracy of 73.6% in
the task of MCI vs. HC classification.

15.5 Auto-encoder

The above-mentioned CNNs and RNNs can be
treated as supervised deep learning models, since
they require labeled data for network training.
However, the acquisition of these ground truth
labels needs massive human efforts from experts
and considerable time cost for manual annotation.
Therefore, many unsupervised deep feature learn-
ing models, such as stacked auto-encoder [7,49],
deep belief networks [50], and deep Boltzmann
machine [51], have been proposed to mitigate this
issue by using unlabeled training data. In addi-
tion, these unsupervised models learn imaging
features without knowing the exact analysis tasks
in advance and directly capture the visual clues

Fig. 15.20 Overview of the fully connected bidirectional LSTMmodel (Full-BiLSTM) for mild cognitive impairment
(MCI) classification. (Image courtesy to [12])
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that would be robust for different analysis tasks
from brain images. This means that, feature rep-
resentations extracted by unsupervised learning
methods could have good capacity of generaliza-
tion for the subsequent complex analysis. Among
them, the deep variants of auto-encoder (AE) [52]
have been widely applied to brain image analysis
and achieved promising results.

A typical auto-encoder (AE) model contains
an encoder to first transform the input into its
low-dimensional latent representation space and
a decoder to reconstruct the initial data from the
representation by closing the distance between
the input and the output. Once the models are
well trained, the latent representations can be
leveraged as the extracted features in the follow-
ing tasks. Originally, the AE model consists of
two layers for its encoder and decoder, respec-
tively [52]. The first layer maps the input data x to
its feature representation h by a specific function
h = σ(Wxx+bx), whereWx and bx are trainable
parameters and σ is an activation function. The
second layer decodes h to the output y by the
mapping y = σ(Whh + bh) with the parameters
Wh and bh. The AE is trained to minimize the
reconstruction loss to optimize parameters Wx ,
bx , Wh, and bh, as follows:

{Wx,bx,Wh,bh}
= arg min

{Wx ,bx ,Wh,bh}
∑

Distance(x, y).

Figure 15.21 illustrates the basic structure of
an AE model. With this structure, AE models
have at least two prominent advantages in feature
learning [53]. First, they can be applied as feature
extractors without any training labels, which fits

the medical cases where only scarce labeled im-
ages are available in clinic and research. Second,
the generated low-dimensional features largely
reduce the complexity of the learning task and
benefit the subsequent analysis.

However, due to the simple and shallow struc-
ture of the original AE models, they have limited
power to capture the complicated non-linear pat-
terns from the input data. To address this prob-
lem, deep stacked auto-encoders (SAEs) are con-
structed to improve the representational power.
Specifically, SAEs organize AEs on top of each
other by using the hidden features from one AE
as the input of the successive AE, as shown in
Fig. 15.22. Similar to training the original AE
models, SAEs could be trained by directly opti-
mizing the parameters of all layers at the same
time. However, this training approach could eas-
ily lead these parameters to be stuck in local opti-
mum, reducing the stability of SAEs. Therefore,

Fig. 15.22 SAE model

Fig. 15.21 Original AE
model
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a greedy layer-wise strategy is employed to train
SAEs [54]. It gradually optimizes the layers in
SAEs one by one: when training the l-th layer,
the former pre-trained l − 1 layers only need
fine-tuning. In this way, SAEs can benefit from
their deep architecture and derive the high-quality
hierarchical hidden patterns from the input.

In addition, to better apply SAEs to unsu-
pervised image feature extraction, the conven-
tional MLP layers in SAEs are replaced by 2D
or 3D convolutional layers as stacked convolu-
tional auto-encoders (SCAEs) [55]. By building a
symmetrical architecture of CNNs, SCAEs could
learn the localized features of image structures.
Furthermore, the pre-trained SCAEs can also be
used to better initialize a CNN model of the same
architecture before supervised learning.

15.5.1 AE Applications to Feature
Learning in Brain Image
Analysis

15.5.2 Brain Image Classification

As mentioned in Sect. 15.3.6, supervised
learning- based deep models are usually lever-
aged to classify MRI and PET images of patients
for early diagnosis and prognosis of Alzheimer’s

disease (AD) and its prodromal stage, i.e., mild
cognitive impairment (MCI). However, training
a high-quality deep model requires sufficient
labeled brain images which are not always
accessible. The work in [56] gives an SAE-based
approach to mitigate this issue. Figure 15.23
illustrates a diagram of the proposed approach
for brain image classification. Specifically, it first
extracts the traditional handcrafted features as the
low-level representations of input brain images.
Then, a deep SAE is trained to reconstruct
the low-level features in a greedy layer-wise
manner without using disease labels. After
this unsupervised learning, SAE can efficiently
discover the hidden representation of these target-
unrelated samples and be applied to initialize
another deep model for supervised classification.
This deep model is then fine-tuned by the labeled
samples to extract their deep features of brain
images. The extracted deep features and the
low-level features are concatenated to select the
best features for disease diagnosis. Finally, the
selected features are passed to a support vector
machine (SVM) model for AD/MCI diagnosis.
Figure 15.24 compares the diagnosis results by
separately using low-level features (LLF), SAE
features (SAEF), and the fused LLF and SAEF.
Since this work is among the first attempts to use

Fig. 15.23 An illustration
for AD/MCI diagnosis
in [56]. (Image courtesy
to [56])
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Fig. 15.24 Comparison of different feature extraction methods for AD, MCI, MCI converter (MCI-C), MCI non-
converter (MCI-NC), and healthy normal control (HC) classification. (Image courtesy to [56])

deep learning for feature representation in brain
disease diagnosis and prognosis in 2013, its SAE
is simply constructed with MLP layers rather
than convolutional layers. Thus, the extracted
SAEF performs worse than LLF in this case.
These reported results still validate that the use of
SAEF could improve the diagnosis performance
by only using traditional LLF.

15.5.3 Brain Image Registration

Deformable image registration, which aims to
register medical images to a target template
for anatomical alignment, is an important pre-
process for various brain image analysis tasks.
For more accurate registration, better features
should be extracted to reflect the intrinsic local
characteristics of both brain images and template.
To satisfy this target, [9] proposed a SCAEs
model to capture low-dimension anatomical
latent representations of brain MR images via
unsupervised feature learning. After training the
SCAE model in a greedy layer-wise manner, the
extracted deep imaging features from its encoder
could be directly utilized as the input of existing
image registration frameworks. Therefore, the
hierarchical features can be learned without using
manually annotated labels, and the constructed

SCAEs could be directly applied to different
types of medical images, such as 1.5-T MR and
7.0-T MR brain images. In [9], the SCAEs (for
extracting deep features) are cooperated with
the existing HAMMER registration framework,
denoted as “H+DP”. Another two registra-
tion approaches, i.e., image intensity-based
Demons [57] and handcrafted feature-based
HAMMER [58], are used to evaluate its effective-
ness. A visual example of their registration results
on 7.0-TMR brain images is shown in Fig. 15.25,
where the manually labeled hippocampus on
the template image and the deformed subject
hippocampi achieved by different registration
methods are indicated through red and blue
contours, respectively. As observed, H+DP
achieves most accurate registration results, while
Demons almost fails to register these 7.0-T MR
images. These results demonstrate the power of
feature representations learned by the SCAEs
model for brain image registration.

15.6 Generative Adversarial
Networks

The recent occurrence of generative adversarial
networks (GANs) has well tackled many
challenging problems in brain image analysis.
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Fig. 15.25 Typical registration results on 7.0-TMRbrain
images by Demons, HAMMER, and HAMMER with
SCAEs features (H+DP). Three rows represent three

different slices in the template, subject, and registered
subjects. (a) Template. (b) Subject. (c) By Demons. (d)
By HAMMER. (e) By H+DP. (Image courtesy to [9])

Fig. 15.26 Original GAN model

GANs have been used for a wide variety of
applications such as brain lesion detection and
segmentation, brain image registration, brain
image reconstruction and super-resolution, cross-
modality brain image synthesis, etc. GANs were
originally proposed as generative models for
unsupervised learning, which focus on learning
the distribution of given data and therefore can
generate new samples from the learned distribu-
tion. That is, given the input data x, GANs focus
on learning the probability P(x). This is different
from the discriminative models, such as CNNs
used for classification, which focus on classifying
the input data, i.e., learning P(y|x), where y
indicates class labels. The key idea of GANs is
adversarial training. It refers to the simultaneous
training of two agents in a GAN model, i.e., a
generator and a discriminator, with the goal of

one beating the other. Specifically, the generator
tries to produce fake samples that resemble the
real ones to fool the discriminator, while the
discriminator struggles to tell the fake samples
from the real ones. Through the competition,
both the generator and the discriminator could
improve their models for better performance.

15.6.1 Principle of GAN

In 2014, the original GANs were first proposed
for the generic image synthesis tasks [59]. Differ-
ent from the common CNN-based deep learning
models, a GANmodel consists of two agents, i.e.,
a generator G and a discriminator D, which are
trained by adversarial learning, as illustrated in
Fig. 15.26. Given a training set of real samples
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X with the distribution Pdata, the goal of the
generator is to learn an embedding function G(·)
that transforms the random inputs z (drawn from
the distribution Pnoise) to the output synthetic
images G(z) whose distribution matches the data
distribution Pdata. Meanwhile, the discriminator

D is trained to learn an embedding function D(·)
to maximize the probability of the correct label
assignment to discriminate the real and the fake
samples. The generator and the discriminator play
a two-player minmax game with the following
objective function

arg min
G

max
D

V (G, D) = Ex∼pdata(x)[log (D(x)] + Ez∼pnoise(z)[log (1 − D(G(z))], (15.10)

where the symbolE denotes mathematical expec-
tation.

In addition, prior information could also be in-
corporated via conditional GANs (cGANs) [60].

With the condition variable c, the objective of
cGANs becomes

arg min
G

max
D

V (G, D) =Ex∼pdata(x)[log (D(x|c)] (15.11)

+ Ez∼pnoise(z)[log (1 − D(G(z|c))].

When the prior information is an input image
x ∼ pdata(x), cGANs can be trained for paired
image-to-image translation. That is, generating
the corresponding image y ∼ pdata(y) with the
specific control from x. For example, when x is
an input brain image and y is the corresponding
segmentation map of x, the cGAN model can be
trained for segmentation tasks.

15.6.2 GAN Variants

15.6.3 Pix2Pix GANs

Many GAN models used in medical image
analysis [14, 61–63] follow the image translation
framework Pix2Pix proposed in [64] and achieve
promising results. As a cGAN model, given a
source image x, the generator G in Pix2Pix
produces an image G(x) that resembles the

real target image y. At the same time, the
discriminator D is trained to differentiate
between the fake image pair (x, G(x)) and the
real image pair (x, y). The training loss of the
generator G is as follows:

LG
cGAN = Ex∼Pdata(x)[log (1 − D(x, G(x)))

+ λl1Ex,y∼Pdata(x,y)[‖y − G(x)‖1],
(15.12)

where the first term in Eq. 15.12 is the common
adversarial loss of a generator as in the orig-
inal GANs. In addition, Pix2Pix also enforces
the pixel-wise similarity between the generated
image and the real image, as described in the
second term. Here ‖ · ‖1 indicates the l1 norm,
i.e., the average absolute pixel-wise difference
between G(x) and y. The hyper-parameter λl1 is
user-defined to balance these two terms.

The loss function of the discriminator D is
defined as

LD
cGAN = − Ex,y∼Pdata(x,y)[log D(x, y)]

− Ex∼Pdata(x)[log (1 − D(x, G(x)))]. (15.13)
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By minimizing Eq. 15.13, the discriminator D is
trained to assign the correct labels (0 or 1) to the
fake or the real image pairs.

As image generation and image discrimination
are trained together, the final loss function that
integrates the objectives of G and D becomes

LcGAN = LG
cGAN + LD

cGAN . (15.14)

In Pix2Pix, CNN architectures are used for
both the generator and the discriminator to extract
powerful deep features. Especially, the generator
uses a U-net-like architecture to utilize the hier-
archy of contextual information for image gen-
eration. The discriminator follows the common
CNNs used for classification.

15.6.4 CycleGAN

The Pix2Pix model transforms images between
two domains with one-to-one correspondence.

That is, the training data consists of paired im-
ages {x, y}, where x and y are the corresponding
samples in the two domainsX andY, respectively.
This requirement could be relaxed by cycle GAN
(CycleGAN) [65] that only needs unpaired train-
ing data to learn the mapping between images in
two domains, such as computerized tomography
(CT) andMR images. The needs of paired images
are eliminated by learning two mappings X → Y
andY → X simultaneously and enforcing a cycle
consistency loss during training. CycleGAN con-
sists of two generators – G to learn the mapping
X → Y and F to learn the mapping Y → X –
as well as two discriminators, DX to differentiate
x̂ = F(G(x)) from x and DY to differentiate ŷ =
G(F(y)) from y. The basic idea is illustrated in
Fig. 15.27. The objective function of CycleGAN
is as follows:

L(G, F, DX, DY ) = LG,DY ,X,Y
GAN + LG,DX,Y,X

GAN + λLG,F
cycle, (15.15)

where the first and the second terms are the ad-
versarial loss of GANs and the third term is the
cycle consistency loss, which is defined as

LG,F
cycle = Ex∼Pdata(x)[‖F(G(x)) − x‖1] + Ey∼Pdata(y)[‖G(F(y)) − y‖1]. (15.16)

As can be seen, the forward cycle x → G(x) →
F(G(x)) ≈ x should be able to bring x back.
Similarly, the backward cycle y → F(y) →
G(F(y)) ≈ y should be able to bring y back.
In this way, the samples x and y in two domains
do not need to have one-to-one correspondence in
CycleGAN.

15.6.5 GAN Applications to Brain
Image Analysis

15.6.6 Brain Image Synthesis

GANs have been widely used for brain image
synthesis either within the same imaging modal-
ity or across different imaging modalities. For

example, a 3D cGANmodel was proposed in [13]
to synthesize full-dose brain positron emission to-
mography (PET) images from the low dose ones.
PET imaging reveals the metabolism processes of
human and is widely exploited in clinics and re-
search. During PET scanning, radioactive tracers
are injected into the patient’s body for imaging.
Usually, a full dose of radioactive tracer is needed
to generate PET images of diagnostic quality. The
exposure to radiation inevitably brings healthy
concerns, especially for those patients who have
to undertake multiple scanning during their treat-
ment. On the other hand, lowering the dosage of
tracers could significantly reduce the quality of
PET images, as shown in Fig. 15.28. Therefore,
the work in [13] proposed to fill the gap between
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Fig. 15.27 Illustration of
CycleGAN for unpaired
image-to-image
translation. (Image
courtesy to [65])

Fig. 15.28 Comparison between a low-dose PET (L-
PET) image and its corresponding full-dose PET (F-PET).
(Image courtesy to [13])

the low-dose PET images and the full-dose ones
by using a 3D conditional GAN (cGAN) model.
The overview of the proposed method is given
in Fig. 15.29. It follows the Pix2Pix framework,
where the generator is a U-net-like structure and
the discriminator is a CNN-based classifier to
differentiate the real and the fake image pairs.
Different from Pix2Pix and many other cGAN-
based medical image synthesis models [61, 63,
66, 67] that use 2D slices of a PET image as
the input, the cGAN model [13] is completely
3D. It takes 3D patches of PET images as in-
put and processes them with 3D up- and down-
convolutions. In this way, it mitigates the problem
of discontinuous estimation across slices, which
is however often observed in 2D-based synthe-
sis models. A visual comparison of the results
using 2D and 3D cGAN models, respectively,
is given in Fig. 15.30. As shown, the full-dose
PET images synthesized by 3D cGAN show high
image quality in all three views. However, three
2D cGAN models only produce good results in
their corresponding trained views as indicated
in the red circles, but not along with the other
two directions since they lose the 3D structural
information during the synthesis.

GANs have also been intensively studied
for cross-modality brain image synthesis. For
example, when setting different scanning param-
eters, MRI can generate multi-modality images
(e.g., T1-weighted, T2-weighted, and FLAIR)
to reflect soft tissues with different contrast,
providing complementary information for disease
diagnosis [68] and treatment planning [69].
Cross-modality MR image synthesis is therefore
often needed to deal with the potential modality
loss in clinics so that the diagnosis could benefit
from the enriched information in the multiple
imaging modalities [70, 71]. Such tasks could be
more challenging than the synthesis within the
same imaging modality. Meanwhile, generating
the images of new modality is often not the end:
these images are expected to well preserve the
pathology that is critical for the subsequent
analysis. For example, when the brain images
contain tumors, the boundaries of tumors are
expected to be well depicted in the generated
images. To develop pathology-centered synthesis,
different regularization terms have been proposed
and embedded into the learning process of GANs
models. For example, the work in [14] proposed
edge-aware conditional GANmodels (Ea-GANs)
to enforce the preservation of edges for cross-
modality MR image synthesis to assist brain
tumor segmentation. In addition to enforcing the
pixel-wise intensity similarity as in Pix2Pix, Ea-
GANs also require that the edge maps extracted
from the synthesized images should resemble
those from the real images. These edge maps
are computed by the commonly used Sobel
filters. As shown in Fig. 15.31, the work in [14]
proposed two frameworks to incorporate the edge
maps, i.e., a generator-induced Ea-GAN (gEa-
GAN) and a discriminator-induced Ea-GAN
(dEa-GAN). In gEa-GAN, the edge maps are
incorporated into the generator side only, while
in dEa-GAN, the edgemaps are also introduced to
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Fig. 15.29 Framework of training a 3D conditional GAN (cGAN) to estimate the full-dose PET image from low-dose
counterpart. (Image courtesy to [62])

Fig. 15.30 Visual comparison between the results esti-
mated by 2D cGAN and the 3D cGAN in [62]. These 2D
cGANs are separately trained with the 2D slices from the

corresponding axial, coronal, and sagittal views. (Image
courtesy to [62])

the discriminator side, so that they participate the
adversarial training to help improve the synthesis
quality. As shown in Table 15.1, in a synthesis
task from T1-weighted MRI to FLAIR MRI, Ea-

GANs using the edge information outperformed
the 3D cGAN in both the whole image and the
tumor areas. This is consistent with the visual
comparison in Fig. 15.32.
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Fig. 15.31 Frameworks of Ea-GANs proposed in [14].
(Image courtesy to [14]). In gEa-GAN, the generator en-
forces the similarity between the real and the generated
images, as well as the similarity of their corresponding
edge maps. In dEa-GAN, the edge maps are also used to

train the discriminator to classify the triplets comprising
of the source-modality image, the real/generated target-
modality image, and the edge map of the corresponding
real/generated target-modality image

Table 15.1 Method comparison: synthesizing FLAIR-like images from T1-weighted images on the BRATS2015
dataset (mean)

Whole image Tumor part
Methods

PSNR NMSE SSIM PSNR NMSE SSIM

3D cGAN [72] 29.26 0.119 0.958 15.95 0.098 0.681

gEa-GAN [14] 29.55 0.115 0.960 16.37 0.090 0.697

dEa-GAN [14] 30.11 0.105 0.963 16.90 0.084 0.705

15.6.7 Brain Image Augmentation

Brain disease diagnosis benefits from multi-
modality imaging data that provides comple-
mentary information. For example, the structural
imaging MRI and the functional imaging PET
have been widely used for the diagnosis of
Alzheimer’s disease (AD). However, the missing-
modality problem often occurs in clinic, for
example, patients taking MRI scanning may
reject to also take PET scanning due to the
concerns about the cost. Such a problem also
exists in the widely used Alzheimer’s Disease

Neuroimaging Initiative (ADNI) database, which
limits the number of subjects available for the
research. A common practice to deal with the
missing-modality problem is to impute the
images of the missing modality. For example,
in [15], a 3D CycleGAN model was proposed
to impute the missing PET images by learning
the bidirectional mapping between MRI and
PET. Based on complete (after imputation) MRI-
PET pairs, a multi-modal multi-instance learning
method was further proposed for AD diagnosis.
The architecture of the 3D CycleGAN is shown
in Fig. 15.33. It consists of two generators to learn
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Fig. 15.32 FLAIR image synthesis from T1-weighted
MR images: visual comparison between the results esti-
mated by methods proposed in [14] and several competing

approaches. (a) Axial slices, (b) zoomed parts of axial
slices, (c) coronal slices, (d) zoomed parts of coronal
slices, (e) sagittal slices, and (f) zoomed parts of sagittal
slices

1 16 32

Real MRISynthetic PET

Synthetic MRI

32 16 8

RN
B

RN
B

RN
B

RN
B

RN
B

RN
B

1

RN
B

RN
B

RN
B

RN
B

RN
B

RN
B

1163232168

3232

ResNet Block (RNB)

1/0

1128643216 11 128 64 32 16

1/0

2

Real PET

3×3×3 Conv

7×7×7 Conv

3×3×3 Deconv

4×4×4 Conv

Addition

Fig. 15.33 The architecture of the 3D CycleGAN proposed in [15]. (Image courtesy to [15])

Fig. 15.34 Visual comparison on two subjects: synthetic PET images generated by 3D CycleGAN proposed in [15]
(top) vs. the corresponding real PET images (bottom). (Image courtesy to [15])

the mappings from MRI to PET and the mapping
from PET to MRI, respectively. Each generator
consists of three parts: encoding, transferring,
and decoding components. The encoding part
consists of three convolutional layers to extract
features in the source domain (e.g., MRI). The
transferring part is constructed by six residual

network blocks to transfer the features from the
source domain to the target domain (e.g., PET).
The decoding part contains two deconvolutional
layers and one convolutional layer to generate
images in the target domain. Examples of the
synthesized PET images are shown in Fig. 15.34.
By integrating image synthesis and disease
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diagnosis into a unified framework, this work
was further extended to a more advanced model
to generate disease-specific PET/MRI scans [73],
providing an exciting research direction for
synthesizing task-oriented neuroimages through
GANs.

15.7 Discussion

Even though deep learning has achieved record-
breaking performance in brain image analysis,
there are still several potential limitations to con-
sider.

First, deep learning models usually have a
very high computational cost for network training
because of the high dimensionality of input brain
images as well as the huge number of to-be-
optimized network parameters. Using GPUs with
higher computation power and designing models
in a parallel way can partly address this issue. It
is also interesting to perform dimension reduction
for input brain images, by defining regions of
interests in the brain (empirically or in a data-
driven manner) to reduce the negative influence
of uninformative regions [8].

Second, they generally require a large number
of training images for generating reliable models.
The latest success of GAN models in the syn-
thesis of neuroimages has brought new solutions
to the augmentation of training samples. Transfer
learning [33, 74], which can enable knowledge
sharing between related tasks/domains, is also
an interesting solution that reduces the need for
a large number of training samples required for
network training.

In addition, deep learning models have often
been described as “black boxes,” without explic-
itly articulating themselves in a certain way. In
many neuroimaging-based applications, it is of-
ten not enough to have a good prediction sys-
tem. To understand what intermediate layers of
convolutional networks are responding to, several
strategies have been proposed, such as deconvo-
lution networks [75], deep Taylor composition
backpropagation [76], and Bayesian deep net-
works [77]. It is desired to develop new strategies
to further understand deep learning methods in

brain image analysis, which could accelerate the
acceptance of deep learning applications among
clinicians and patients.

15.8 Conclusion

In this chapter, deep learning models and their ap-
plications to brain image analysis are introduced.
Specifically, four typical deep learning models
(i.e., CNN, RNN, AE, and GAN) and their appli-
cations (i.e., brain image segmentation, brain im-
age registration, neuroimaging-based brain dis-
ease diagnosis, and brain image synthesis) are
introduced. Limitations of current deep learning
models and possible future research directions are
also discussed. It is expected that deep learning
will have a great impact on brain image analysis.

Homework

1. In practice, we usually have only limited
number of brain images to train deep models
for analysis. Please explain the problem and
list at least two strategies to deal with this
situation.

2. Consider the following MLP model with two
hidden layers and the loss function shown in
Table 15.2. Please calculate ∂h1,i

∂w1,2
and ∂J

∂w1,2
.

3. What are the benefits to use CNN to analyze
brain images, compared with MLP?

4. What are the key difference and advantages
of the fully convolutional networks (FCNs)
over convolutional neural networks (CNNs)
in brain image segmentation (pixel-level pre-
diction)?

5. Please describe the network structure of U-
net. What are the benefits to use skip connec-
tions in U-net?

Table 15.2 AnMLP model with two hidden layers

Input x1,i , x2,i , where i = 1, · · · N and N is
the number of samples

Layer 1 h1,i = max(w1,1x1,i + w1,2x2,i , 0),
h2,i = max(w2,1x1,i + w2,2x2,i , 0)

Layer 2 pi = w5h1,i + w6h2,i

Loss J (p,w) = ∑
i (pi − yi)

2
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6. What’s the difference between RNNs and
CNNs? What is the advantage of LSTM over
RNN?

7. The auto-encoder (AE) model can extract
imaging features in an unsupervised manner.
What is the principle of AE?

8. What’s the purpose of using the generator and
discriminator in GANs?

9. What’s the advantage of CycleGAN over
GAN?

10. Please list possible deep learning models that
could be used for the following brain image
analysis tasks: (a) brain disease diagnosis,
(b) brain lesion segmentation, (c) brain net-
work analysis based on fMRI images, (d)
brain image transferring across modality, (e)
brain disease diagnosis without labeled train-
ing samples, (f) brain image generation with-
out paired training samples.
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