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Abstract

In this chapter, we present the physical and
physiological basics behind EEG and MEG
signal generation and propagation. We first
start by presenting the biophysical principles
that explain how the coordinated movements
of ions inside and outside neuronal cells
result in macroscale phenomena at the scalp,
such as electric potentials recorded by EEG
and magnetic fields sensed by MEG. These
physical principles enforce EEG and MEG
signals to have specific spatial and temporal
features, which can be used to study brain’s
response to internal and external stimuli.
We continue our exploration by developing
a mathematical framework within which EEG
and MEG signals can be computed if the
distribution of underlying brain sources is
known, a process called forward problem.
We further continue to discuss methods that
attempt the reverse, i.e., solving for underlying
brain sources given scalp measurements
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such as EEG and MEG, a process called
source imaging. We will provide various
examples of how electrophysiological source
imaging techniques can help study the brain
during its normal and pathological states.
We will also briefly discuss how combining
electrophysiological signals from EEG
with hemodynamic signals from functional
magnetic resonance imaging (fMRI) helps
improve the spatiotemporal resolution of
estimates of the underlying brain sources,
which is critical for studying spatiotemporal
processes within the brain. The goal of
this chapter is to provide proper physical
and physiological intuition and biophysical
principles that explain EEG/MEG signal
generation, its propagation from sources in
the brain to EEG/MEG sensors, and how
this process can be inverted using signal
processing and machine learning techniques
and algorithms.
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13.1 Introduction

13.1.1 Generation andMeasurement
of EEG andMEG

Although electrical activity recorded from the
exposed cerebral cortex of a monkey was re-
ported in 1875 [1], it was not until 1929 that
Hans Berger, a psychiatrist in Jena, Germany,
first recorded noninvasively rhythmic electrical
activity from the human scalp [2], which has
subsequently known as electroencephalography
(EEG). Since then, EEG has become an important
tool for probing brain electrical activity and aid-
ing in clinical diagnosis of neurological disorders,
due to its excellent temporal resolution in the
order of millisecond. The first recording of mag-
netic fields from the human brain was reported in
1972 by David Cohen at the Massachusetts Insti-
tute of Technology [3], which led to the develop-
ment of magnetoencephalography (MEG). Like
EEG, MEG also enjoys high temporal resolution
in detecting brain electrical activity. EEG and
MEG have become two prominent methods for
noninvasive assessment of brain electrical activ-
ity, providing unsurpassed temporal resolution, in
neuroscience research and clinical applications.

EEG and MEG are considered to originate
from, in principle, the same brain electrical activ-
ity, which are current flows caused by neuronal
excitation. The discharge of a single neuron or
single nerve fiber in the brain generates an ex-
tremely small electric potential or magnetic field,
which cannot be observed over the scalp due to
the background noise.

Instead, the externally recorded EEG and
MEG represent the summation of the electric
potentials and magnetic fluxes generated by
many thousands or even millions of neurons or
fibers when they fire synchronously [4]. In other
words, the intensities of EEG and MEG signals
are determined mainly by the number of neurons
and fibers that fire in synchrony. An anatomic
structure in the human brain, which favors the
neuronal synchrony and summation of electric
potentials or magnetic fields from neuronal
synchrony, is the cortex, which is also in the

vicinity to the scalp where electrical or magnetic
sensors are placed. Due to the separation of the
apical and basal dendrites in pyramidal cells, a
considerable distance exists between the current
sources and sinks, resulting in strong current
dipoles as perceived by EEG and MEG [5].
Additionally, these cells are arranged in parallel
to each other and perpendicular to the cortical
surface, in an arrangement referred to as the
palisade which constructively adds the effect
of smaller current dipoles from individual cells
together, to effectively constitute a strong current
dipole [6]. It is thus believed that EEG and MEG
predominantly detect synchronized current flows
in the cortical pyramidal neurons, which are laid
out perpendicularly to the convoluted cortical
sheet of gray matter [7]. This is schematically
shown in Fig. 13.1.

Dipole models are used more frequently (com-
pared to monopoles and multipoles [7, 8]) to
describe the underlying biophysics of neural ac-
tivity, as they provide an easier physical interpre-
tation of the underlying phenomenon and can be
viewed as an approximate discrete representation
of current density at a mesoscopic level. Fur-
thermore, the electromagnetic fields generated by
multipoles attenuate much faster with distance,
compared to dipoles, inadvertently resulting in
dipole fields dominating EEG and MEG mea-
surements [8, 9]. This is supported by the fact
that the distance between current sources and
sinks is almost neglectable as comparedwith their
distances to the locations where EEG and MEG
signals are being recorded.

The intensities of the scalp EEG range from
0 to 200 μV, which fluctuate mainly in the fre-
quency range of up to 50 Hz. The EEG recording
involves the application of a set of electrodes to
standard positions on the scalp. The most com-
monly used electrode placement montage is the
international 10–20 system, which uses the dis-
tances between bony landmarks of the head to
generate a system of lines which run across the
head and intersect at intervals of 10% or 20%
of their total length. Additional electrodes can
also be introduced according to expanded 10–
20 systems as proposed by the American EEG
Society. Most clinical EEG recordings are up to
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Fig. 13.1 Electrophysiological principles of current
dipoles. Macroscopic phenomena, such as the electric
potential recorded at scalp EEG or magnetic field recorded

at MEG sensors, are due to the summation of many
microscopic quantities such as postsynaptic potentials
of pyramidal cells

32 electrodes, while merits of high-density EEG
recordings have been reported by multiple studies
[4, 10]. A recent recommendation from the work-
ing group of the International Federation of Clini-
cal Neurophysiology suggests using 64 electrodes
or more for source imaging and localization [11].

The difficulty in recording magnetic fields
from the human brain is its strengths that are
weaker than couple of pico-Tesla (pT), which is
about 108 times less than the earth’s geomagnetic
field. MEG recordings were made available due
to the invention of a sensitive magnetic flux
detector, known as the superconducting quantum
interference device (SQUID) [7] (Fig. 13.2). The
frequency range ofMEG is similar to EEG, which
is between 0 and 50 Hz.

While most analysis performed in EEG and
MEG is within the 0–50 Hz band due to the high
concentration of energy within these bands, high-
frequency oscillations (HFOs) have been success-

fully detected and analyzed in scalp recordings
[12–14]. HFOs are typically observed in intracra-
nial recordings and can span a frequency band
of 30–600 Hz and are thought to be involved in
physiological processes such as attention, learn-
ing, and memory, as well as pathological pro-
cesses such as ictogenesis [13]. HFOs, typically
in the range of 80–250 Hz, have been ubiqui-
tously and reliably observed and reported in scalp
recordings, in the recent years [15, 16]. Not only
have these events been reliably detected in non-
invasive scalp measurements, but also HFOs are
traced back to the source space and shown to
correlate well with clinical findings determining
the seizure onset in epilepsy patients [15], en-
couraging researchers and clinicians to consider
HFOs as a potential biomarker for ictogenesis
[17]. While this view has been modified recently
[18], HFOs can be reliably detected in EEG and
MEG, emphasizing that broad spectral informa-
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Fig. 13.2 Schematics ofMEG instrumentation. A single-
channel axial gradiometer and associated SQUID inside a
dewar filled with liquid helium. The bottom depicts the
sensor array of a 306-channel MEG helmet where each
sensor unit contains two orthogonal planar gradiometers
and one magnetometer. (From [20], licensed under CCBY
4.0)

tion can be extracted in noninvasive recordings as
well [6].

In recording systems, while the number of
MEG sensors used is usually different from EEG,
the spatial coverage and layout of MEG sensors
are similar to those for EEG,which are distributed
over a surface in parallel to the scalp surface
(Fig. 13.2). MEG sensors are not necessary to
touch the scalp due to the magnetic permeability
of air, which is also different from EEG. On the
other hand, since the magnetic fields from the
human brain are extremely weak compared with
ambient magnetic fields, MEG recording systems
are much more complicated than EEG recording
systems. The SQUID system is commonly de-
signed not to be sensitive to uniform background
magnetic fields using gradiometers, and MEG
recordings are usually conducted in a magneti-
cally shielded room. Recently the feasibility of a
wearable MEG system was reported for human
use [19], although this technology is still under
development and is currently quite expensive.

In both EEG and MEG signals recorded over
the human head, the major constituents are those

contributed by spontaneous brain electrical activ-
ity and potentials and/or magnetic fields evoked
by external stimuli/events, known as the evoked
potentials and/or (magnetic) fields or event-
related potentials and/or fields (ERPs/ERFs).
Since external stimuli/events can be specifically
designed to evoke targeted functional areas, such
as visual, auditory, and somatosensory cortices,
associated measurements have thus been widely
practiced to study the functions of these areas.
Correspondingly, evoked potentials and/or fields
are the visual evoked potential/field (VEP/VEF),
auditory evoked potential/field (AEP/AEF),
and the somatosensory evoked potential/field
(SEP/SEF).

13.1.2 Spatial and Temporal
Resolution of EEG andMEG

Brain electrical activation is a spatiotemporal pro-
cess, which means that its activity is distributed
over three dimensions and evolves in time. The
most important merit of EEG and MEG is their
unsurpassed millisecond-scale temporal resolu-
tion. This feature is essential for resolving rapid
change of neurophysiological process, consider-
ing the typical temporal scale of neuronal elec-
trical events which is from one to several tens of
milliseconds. However, both EEG and MEG are
limited by their spatial resolutions.

The conventional EEG has limited spatial res-
olution mainly due to two factors. One factor is
the limited spatial sampling. A remarkable devel-
opment in the past decades is that high-resolution
EEG systems with 64–256 electrodes have been
commercially available. For example, with up to
124 scalp electrodes, the average inter-electrode
distance can be reduced to about 2.5 cm [10, 21].
The multichannel SQUID system was challenged
initially due to the complexity of superconduc-
tive coils that were necessary to be sensitive to
weak brain magnetic signals [7]. Nowadays, mul-
tichannel SQUID systems have been commer-
cially available too. The second factor is the head
volume conduction effect. The electric potentials
generated from neural sources are attenuated and
blurred as they pass through the neural tissue,
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cerebrospinal fluid, meninges, low-conductivity
skull, and scalp [9]. While the magnetic fields
are also suffered from the volume conduction
effect as for its attenuation and spatial smooth-
ness, MEG is practically unaffected by the low-
conductivity skull.

Advanced EEG and MEG imaging techniques
are highly desired in order to compensate for
the head volume conduction effect and enhance
the spatial resolution of scalp EEG and MEG.
The solutions of two separate but closely related
problems, EEG/MEG forward problem and
EEG/MEG inverse problem, are required for
imaging of brain electric activity based on
external potential and/or field measurements.

13.2 Electrophysiological
Mapping

13.2.1 EEGMapping

Due to the fast response of EEG/MEG to neu-
ral events, a major use of EEG/MEG signals
is to make observations in their time courses
[22, 23]. Plenty of temporal components have
been well defined and widely accepted in various
paradigms. For example, N100 component is a
negative-going deflection from baseline in AEPs
(its equivalent in MEG is the M100 [7]), which
peaks at the latency of about 100 ms after the
onset of an auditory stimulus. In VEP, multi-
ple temporal (either positive- or negative-going)
components at different latencies have been iden-
tified in a sequence after a visual stimulus. The
dynamics of these temporal components and their
latencies indicate the important information about
the timings and sequences of neuronal processes
in response to specific stimuli.

Other than time information, efforts have been
made to obtain spatial information with regard
to the underlying brain electrical activity. Figure
13.3 shows an example of scalp EEGmaps during
a binocular rivalry paradigm [22]. Strong coun-
terphase modulations are revealed in EEG maps
for attended rivalry, and the scalp EEG maps also
suggest occipital origin of sources responsible
for the scalp EEG during binocular rivalry. EEG

mapping is to visualize potential values from
different electrodes measured at the same time
instance on the scalp surface. Since EEG record-
ings can only be obtained in locations where
electrodes are placed, potential values in inter-
electrodes areas are usually interpolated, mainly
using linear methods, for higher-resolution vi-
sualization. The assumption behind linear inter-
polations is the smooth transition of potential
values among neighbored electrodes. However,
the accuracy of interpolations also depends on
the number of electrodes. Figure 13.4a, b illus-
trates an example of scalp EEGmaps interpolated
using measurements from 32 channels and 122
channels, respectively. The scalp EEG map in
Fig. 13.4a is smoother with reduced peak values
and sharper transitions than the scalp EEG map
from Fig. 13.4b. These problems are caused by
the low-density samples from a fewer number of
electrodes, which leads to large inter-electrode
distances. Nonlinear interpolations can also be
used, such as spline interpolation [24]. An ex-
ample of spline interpolation can be found in
applications where a continuous function of an
EEG map is necessary, such as for the calculation
of a surface Laplacian EEG map.

To illustrate EEG maps, two visualization
tools are usually used, contour lines, in which
each line connects isopotential points on
the scalp, or pseudo-colors (which are more
common), in which each color represents a
potential value. Figure 13.4 shows EEG maps
using pseudo-colors. Along the direction of
current flow within the brain source area
(indicated by the red arrow in figures), potentials
are positive. A symmetric negative pattern is
usually accompanied in the opposite direction
of current flow (Fig. 13.4a, b). Note that
EEG measurements are usually made against a
reference. While the symmetric pattern along the
direction of current flow always exists, whether
potential values are positive or negative also
depends on the selection of reference.

The scalp EEG maps in both Fig. 13.4a, b are
generated by a simulated current dipole source
(Fig. 13.4b, right column) via solving the forward
problem. A scalp EEG map generated by a small
brain source (modeled by a current dipole) can ex-
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Fig. 13.3 Time courses of scalp EEG power maps. These
scalp topographies show power at the tagged frequencies
at each electrode, as averaged over a group of subjects.
Seven maps were drawn for each 6 s epoch. In each of the
four panels, the upper row shows power for the aligned
eye’s frequency, and lower row shows power for the time-

locked signal from the other eye. Inset line graphs show
the results from occipital electrodes. Both line graphs
and topographies show strong counterphase modulations,
except in the unattended rivalry condition. (From Zhang et
al. [22] with permission)

tend about centimeters in diameters over the scalp
surface, which is caused by the so-called volume
conductor effect. Although the head volume con-
ductor effort causes a smoothed version of spatial
distribution of EEG corresponding to the brain
electric sources, EEGmapping represents an easy
and fast tool to assess the global nature of brain
electric activity (e.g., frontal lobe vs. occipital
lobe, see also Fig. 13.3 for visual events).

13.2.2 MEGMapping

The concept of MEG mapping is similar to EEG
mapping except that MEG signals are used in-

stead of EEG signals. In MEG, positive values
indicate the outflow of magnetic flux coming at
the recording sensor location and negative val-
ues indicate the inflow of magnetic flux at that
particular location. It is worthwhile to note that
MEG signals do not depend on references like
EEG and have different sensitivity profiles [25]
compared to EEG. Examples of MEG maps are
shown in Fig. 13.4b, c (the middle columns)
using the same simulated brain sources as for
EEG in the same figure. MEG maps also suffer
from the volume conductor effect. However, since
the magnetic permeability of the skull is simi-
lar to other brain tissues, the low-conductivity
skull layer affects MEG less. Another property
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a b

c

EEG 32 channels

EEG
20 uV

–20 uV

MEG
75 fT

–75 fT

EEG 122 channels MEG 152 channels current sources

Fig. 13.4 Simulated EEG data and MEG data under dif-
ferent conditions. (a) The scalp EEG map generated by
a tangential dipole using low-density 32 electrodes. (b)
The high-density scalp EEG (left) from 122 electrodes and

MEG (middle) from 151 sensors generated by a tangential
dipole on the cortical surface (right). (c) The high-density
scalp EEG (left) from 122 electrodes and MEG (middle)
from 151 sensors generated by a radial dipole on the
cortical surface (right)

of MEG is that it is not sensitive to radially
oriented cortical sources [7]. Figure 13.4 illus-
trates an example of MEG map generated by
a brain source on the ridge of a cortical fold
that is close to radial orientation. Its MEG sig-
nals are ten times less than MEG signals from
a tangential source (Fig. 13.4b). Both EEG and
MEG are less sensitive to deeper sources, with
MEG being notably insensitive to deeper sources
[26]. However, these structural limitations do not
necessarily mean EEG, and MEG cannot detect
any deep sources. Recent studies with concurrent
intracranial and EEG/MEG recordings have pro-
vided evidence to the contrary; electromagnetic
activity from subcortical regions in the thala-
mus, amygdala, and hippocampus was unequiv-
ocally recorded at EEG and MEG [27, 28]. See-
ber et al. showed that the envelope of alpha-
wave activity from sources as deep as the cen-
tromedian nuclei of the thalamus (direct electri-
cal recordings from deep brain stimulation elec-
trodes placed in these regions) can be recorded
in high-density scalp EEG recordings (256 chan-
nels) [27]. Furthermore, it was shown that these
activities can be traced back to deep source re-
gions by solving the inverse problem. Addition-
ally, Pizzo et al. showed that interictal spikes
observed by stereo-EEG (sEEG) electrodes im-
planted near the amygdala and hippocampus can
be detected in MEG recordings by means of blind

source separation techniques [28]. Additionally,
signals reaching the surface measurements from
these deep sources can still be localized to these
subcortical structures using source imaging tech-
niques [27, 28].

It is important to understand the difference
between EEG and MEG maps since both reflect
the common brain activity while each of them
has better sensitivity on different aspects of the
common brain activity. The electrical field gra-
dient reaches the highest along the direction of
current flow of the brain source (indicated by the
red arrow in figures), while the magnetic field has
the highest gradient across the direction of current
flow. Thus, the symmetric field pattern of MEG is
on the both side of the arrow, while the symmetric
field pattern of EEG appears on the tail and head
of the arrow. It is therefore expected that the trans-
verse features of brain sources are more precisely
estimated withMEG and the longitudinal features
of brain sources aremore precisely estimatedwith
EEG. Furthermore, MEG is not sensitive to radial
brain sources as discussed earlier, whereas EEG is
sensitive to brain sources of all orientations (e.g.,
comparing Fig. 13.4).

In summary, while the EEG and MEG map-
ping can provide spatial patterns about brain ac-
tivity on the scalp, they are limited by their inher-
ited low spatial resolution. The spatial locations
of those temporal components of interests can
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only be referred at the scalp surface according
to beneath lobular or sublobular organizations.
Significant improvement of spatial resolution of
EEG/MEG can be accomplished by source imag-
ing from scalp EEG or MEG.

13.2.3 Surface LaplacianMapping

In parallel to the development of the source imag-
ing methods to enhance spatial resolution of EEG
and MEG, another surface mapping technique,
surface Laplacian (SL), has been developed for
the similar purpose. The SL does not need to
solve the inverse problem as discussed below,
nor does it require a forward volume conductor
model. Instead, it applies a spatial Laplacian filter
(second spatial derivative) to compensate for the
head volume conduction effect and achieves high-
resolution surface mapping directly over the scalp
surface.

The SL has been considered as an estimate
of the local current density flowing perpendic-
ular to the skull into the scalp; thus it has also
been termed current source density or scalp cur-
rent density [29]. The SL has also been con-
sidered as an equivalent surface charge density
corresponding to the surface potential [30]. Com-
pared to the EEG source imaging approaches, the
SL approach does not require exact knowledge
about the source models and the volume conduc-
tor models and has unique advantage of reference
independence.

Since Hjorth’s early exploration on scalp
Laplacian of EEG [31], many efforts have
been made to develop reliable and easy-to-use
SL techniques. Of note are the developments
of spherical spline SL [29] and the realistic
geometry spline SL [24, 32]. Bipolar or tripolar
concentric electrodes have also been used to
measure the SL. He and colleagues proposed to
use the bipolar concentric electrode to record
the SL [30] under the assumption that the outer
ring of the concentric electrode would provide
reasonable estimate of the averaged potential over
the surrounding ring [30]. A tripolar concentric
ring electrode has also been used to measure
SL [33]. The SL has been widely used in

EEG-based brain-computer interface to improve
signal quality of measurements associated with
intentions.

13.2.4 Multivariate Pattern Analysis
of EEG andMEG Signals

The brain encodes the information it receives and
processes into neural codes, which, inadvertently,
manifest themselves as neural patterns of activity.
The neuronal activity, consequently, leaves an
electromagnetic footprint that gets picked up by
EEG and MEG [4]. A great deal of studies and
investigations are conducted to decode these pat-
terns and extract such information. Multivariate
pattern analysis or MVPA is the general term
used to describe the process of analyzing signals
gathered from many neurons and brain regions
to differentiate between different brain states to
ultimately understand how the brain encodes in-
formation [34]. MVPA can be thought of as su-
pervised learning, to put in machine learning lan-
guage, which learns spatial patterns of neuronal
activity over different cognitive conditions or ex-
ternal stimuli. This technique has been applied to
MEG and EEG measurements at scalp, prior to
solving the inverse problem [35], and at source
space, after solving the inverse [36]. MVPA can
be thought of as a systematic approach to map-
ping spatiotemporal neural activity to brain states
and cognitive conditions, in continuation of what
was discussed above.

MVPA is capable of detecting complex spatial
neural patterns as experimental conditions or ex-
ternal stimuli can be repeated many times to en-
sure the statistical integrity of the data. This tech-
nique has been applied recently toMEG and EEG
measurements for studying object recognition,
face perception, and memory [35]. These studies
not only benefited from spatially rich information
contained in EEG and MEG measurements but
also took advantage of the high temporal resolu-
tion of the aforementioned modalities to further
understand when different brain processes occur
in the brain with respect to each other; for in-
stance, Linde-Domingo et al. showed that during
seeing objects, low-level visual features could be
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decoded faster than high-level conceptual fea-
tures [35]. The reverse was true for associative
memory recall. Therefore, applying MVPA to
EEG and MEG could provide a spatiotemporal
decoding scheme which ultimately leads to the
better understanding of the brain.

13.3 EEG/MEG ForwardModeling

Given the known information on brain electric
source distribution (i.e., source models) and head
volume conduction properties (i.e., volume con-
ductor models), EEG and MEG forward prob-
lems determine the source-generated electric po-
tential and magnetic field (Fig. 13.4). Note that
while the EEG forward solution mainly refers
to electric potentials, such as the cortical poten-
tial or the scalp potential, it can also be other
metrics, for example, the surface Laplacian. In
MEG, the forward solution is usually referred
to as magnetic fields. Since magnetic fields are
vector fields, the forward solution can be referred
as a component of magnetic fields, such as ra-
dial or tangential component. Furthermore, since
most MEG systems use gradiometers, the MEG
forward solution can be magnetic gradient fields
or second-order gradient fields. Both EEG and
MEG forward problems are well defined and have
a unique solution, governed by the quasi-static
approximations of Maxwell’s equations, that is,
Poisson’s equation [8, 9, 37].

By solving the EEG and MEG forward prob-
lems, the relationship between neuronal sources
and external sensor measurements can be estab-
lished. In particular, for a given source distribu-
tion, EEG and MEG measurements and underly-
ing brain electric sources can be related by the so-
called transfer matrix or lead field matrix, which
is only dependent on the geometry and electrical
properties of the head volume conductor.

13.3.1 Source Models

Several source models have been proposed to
equivalently represent brain electric sources. The
primary bioelectric sources can be represented as

an impressed current density J, which is driven by
the electrochemical process of excitable cells in
the brain. In other words, it is a nonconservative
current that arises from the bioelectric activity of
nerve cells due to the conversion of energy from
chemical to electrical form [37].

The simplest brain electric source model is
a monopole source. In the monopole model, a
volume source with ignorable size is considered
as a point current source of magnitude Iv lying
in a conducting medium, with its current flow
lines radially directed in all directions. However,
in a living system, only a collection of positive
and negative monopole sources is physically re-
alistic as the total sum of currents is zero due
to electrical neutrality. The simplest collection
of monopole sources is a dipole, which consists
of two monopoles of opposite sign, but equal
strength, separated by an infinitely small distance.
In such a dipole model, its current flow lines start
from the positive pole of the source and end at the
associated negative pole. The dipole model is the
most commonly used model in EEG/MEG source
imaging techniques.

Until now, we have only considered the equiv-
alent source models for the impressed current
density, which are generated by excitable cells.
In order to solve the EEG/MEG source imag-
ing problems, a global equivalent source distri-
bution model should also be determined which
can account for the electric activity within the
entire brain. State-of-the-art source models usu-
ally consist of a source distribution to reflect the
distributed nature of electric sources associated
with neuronal excitation. Once such a source
distribution model is defined, the source imaging
solutions can only be searched over the space con-
fined to the distributionmodel, hence, also known
as the source space or solution space. Source
models, including the dipole model (which can be
viewed as a special case of a source distribution)
and the source distribution model, are generally
used for both EEG/MEG forward and inverse
problems. There are mainly two types of source
models, i.e., parametric dipole models [38] and
distributed source models [39–41]. The paramet-
ric dipole models use the ideal equivalent dipole
model (ECD) to represent focal electrical activity.
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In parametric dipole models, multiple ECDs are
also used to model multiple focal sources over
different brain regions. The distributed source
models are more suitable in characterizing ex-
tended sources in which the source space is rep-
resented by continuously distributed dipole ele-
ments over a volume (i.e., the brain) [39, 41] or a
surface (i.e., the cortical surface) [40].

The source models are not limited to model
electrical currents but may be electric potentials
over the cortical surface [21, 42] or within the 3D
brain volume [43].

13.3.2 Volume Conductor Models

The volume conductor models are developed to
model the human head, which sits between brain
sources and EEG/MEG sensors. In order to build
these models, the geometry and conductivity
or permeability profiles are crucial for EEG
or MEG. Early works used spherical head
models as closed solutions for EEG/MEG
forward problems. The single-sphere model
represents the simplest approximation of the head
geometry. The three-layer concentric spherical
model [44] has been well used to represent
compartments of the skin, the skull, and the
brain in head volume conductor. Such a model
was essentially developed to consider the skull
layer since it has significant low-conductivity
layer as compared with the skin and the brain.
An important development in the field was to
incorporate anatomic constraint into EEG/MEG
source imaging by developing approaches which
could take the realistic head geometry into
consideration. He et al. proposed the use of
realistic geometry head models for EEG source
localization by applying the boundary element
method (BEM) [38]. Hämäläinen and Sarvas
[45] further developed BEM-based approach to
model the head volume conductor for MEG/EEG
incorporating the low-conductivity skull layer
in addition to the scalp and brain. Several BEM
approaches have been developed to solve the head
forward problem using a multiple layer realistic

geometry model [45, 46]. Here, the multiple
layers again refer to the interfaces between the
skin, the skull, and the brain, which are similarly
represented in three-layer concentric spherical
model, but of realistic geometries. The realistic
geometries can be obtained by segmenting brain
tissues from magnetic resonance (MR) structural
images. In addition to the boundary element
method, the finite element method (FEM) has
also been used to model the head volume
conductor [47, 48] in which each finite element
can be assigned with a conductivity value or even
a conductivity tensor that represents different
conductivity values along different directions
in a 3D space (known as the anisotropy)
[49, 50].

While the aforementioned discussion applies
to MEG, as well, in practice, the volume conduc-
tor models for MEG are much simpler than those
for EEG. The major reason is that the perme-
ability profile for MEG is almost uniform for all
brain tissues including the skull. Thus, a volume
conductor model with realistic shape for the brain
may be sufficient for the forward calculation of
MEG signals [7]. In practice, one-sphere model
with a similar size to the subject’s head is used,
occasionally.

13.3.3 Forward Solutions

Once the volume source model and volume
conductor model are selected, the forward
solutions can be calculated uniquely. Here
we discuss two cases of forward solutions:
monopoles and dipoles in infinite homogeneous
medium.While these represent the simplest cases
for the calculation of forward solutions, which
might not be quite realistic in real applications,
it can help readers understand the concepts such
as the volume conductor effect. Other advanced
methods in calculating forward solutions, such
as piece-wise homogeneous realistic geometry
models or inhomogeneous realistic geometry
models, can be found in the literature [45, 48].
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If the volume conductor is infinite and homo-
geneous with conductivity of σ, the bioelectric
potential obeys Poisson’s equation under quasi-
static conditions [37]:

∇2Φ = ∇ ·
⇀

J i

σ
= −Iv

σ
(13.1)

Equation 13.1 is a partial differential equation
satisfied by the electric potential � in which Iv is
the source function. The solution of Eq. 13.1 for
the scalar function � for a region that is uniform
and infinite in extent is [37]:

Φ = − 1

4πσ

∫
V

(
1

r

)
∇ ·

⇀

J idv (13.2)

where r refers to the distance from the source to
the observation point. Since the source element

∇ ·
⇀

J i dv in Eq. 13.2 behaves like a point source,
in that it sets up a field that varies as 1/r, the

expression Iv = −∇ ·
⇀

J i can be considered as
an equivalent monopole source [8, 37, 51].

Using the identity ∇ ·
(

⇀

J i/r

)
= ∇ (1/r) ·

⇀

J i + (1/r) ∇ ·
⇀

J i and the divergence (or Gauss’s)
theorem, Eq. 13.2 can be transformed to [8]:

Φ = 1

4πσ

∫
V

∇
(

1

r

)
·

⇀

J idv (13.3)

Here, the source element
⇀

J i dv behaves like
a dipole source, with a field that varies as 1/r.
Therefore, the impressed current density may
be interpreted as an equivalent dipole source.
Although higher-order equivalent source models
such as the quadrupole can also be studied to
represent the bioelectric sources, the dipole
model has been so far the most commonly used
brain electric source model.

Similar to electric potential, the magnetic field
due to a monopole or dipole current source in
an infinite homogeneous medium can be derived
based on Poisson’s equation. Interested readers
can consult the details in [8].

If the three compartments (the brain, skull,
scalp) are considered and their surfaces are of
realistic shapes, it becomes a realistic geometry
piecewise homogeneous model. This is a reason-
able approximation for the electrical conductivity
profile of the human head modeling the scalp,
skull, and brain. The forward solution becomes
a sum of the electric potential/magnetic field in
the infinite homogeneous medium with a sec-
ond term that reflects the effect of conductivity
inhomogeneity between different compartments
[8]. The piecewise homogeneous model and its
solution can be generalized to more complicated
inhomogeneous model since an inhomogeneous
volume conductor can be divided into a finite
number of homogeneous regions. A boundary
element method algorithm [45] has been intro-
duced to accurately calculate electrical potential
and magnetic fields in piecewise homogeneous
head volume conductor model.

13.4 EEG/MEG Source Imaging

Given the known electrical potential or magnetic
field (e.g., scalp EEG or MEG measurement)
and head volume conductor properties, the
EEG/MEG source imaging reconstructs the
distribution of electric sources within the
brain (source space) corresponding to the
measured EEG/MEG (Fig. 13.5). A solution to
the EEG/MEG source imaging problem thus
provides desirable information with regard to the
brain electric activity, such as locations or extent
of current sources, which can be directly related
to the underlying neural activation. Although
the EEG/MEG inverse problem is technically
challenging, work conducted in the past few
decades has indicated that the EEG/MEG source
imaging problem can be solved with reasonable
resolution and accuracy by incorporating various
a priori information, such as anatomic constraints
on the sources [40, 41], on volume conductor
[38, 45], or functional constraints provided by
other imaging modalities such as functional MRI
[52–54].

EEG/MEG source imaging solutions require
a source model. The choice of source models
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Fig. 13.5 Schematic diagram of EEG/MEG electrophys-
iological neuroimaging. The scalp EEG/MEG is recorded
using multichannel data acquisition system. The realis-
tic geometry head volume conductor model can be con-
structed from the structureMRI of the subject, and the lead
field matrix can be modeled using numerical techniques

such as BEM or FEM, i.e., forward problem. By solving
the inverse source imaging problem, brain electric sources
are estimated over the cortex or throughout the brain
volume with substantially enhanced spatial resolution as
compared with scalp EEG/MEG. (From He et al. [4] with
permission)

depends on particular applications, while the pri-
mary goal of EEG/MEG source imaging prob-
lems remains the same: to find an equivalent
representation of brain electric sources that can
account for external EEG/MEG measurements.

13.4.1 Dipole Source Localization

The most commonly used brain electric source
model is the equivalent current dipole (ECD)
model, which assumes that the scalp EEG or
MEG is generated by one or a few focal dipole
sources. Each of the focal sources can bemodeled
by an ECD with six parameters: three location
parameters and three dipole-moment parameters.
InMEG, since it is less sensitive to radial sources,
parameter for radial orientation might be omitted,
which leads to five parameters for an ECD.

The simplest and representative ECD model
is the single moving dipole, which has varying
magnitude and orientation, as well as variable
location. The location of the single moving dipole

estimates the center of gravity of brain electric
activity, which can be informative for focal brain
activation, such as origin of focal epileptic activ-
ity. The multiple dipole model includes several
dipoles, each representing a certain anatomical
region of the brain. These dipoles have vary-
ing magnitudes and varying orientations, while
their locations could be either fixed or variable
(i.e., multiple moving ECDmodels). Due to finite
signal-to-noise ratio of the EEG/MEG record-
ings, the number of multiple dipoles that can be
reliably estimated is limited, usually nomore than
two dipoles in moving dipoles model [55].

Given a specific dipole source model, the
dipole source localization (DSL) solves the EEG
or MEG inverse problem by using a nonlinear
multidimensional minimization procedure, to
estimate the dipole parameters that can best
explain observed scalp potential or magnetic
field measurements in a least-square sense [38,
55–58]. Further improvement of the DSL can
be achieved by combining EEG with MEG data
which may increase information content and
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improve the overall signal-to-noise ratio [59,
60]. Generally speaking, there are two DSL
approaches. One approach is the single time-
slice source localization, in which the dipole
parameters are fitted at a time instance, based
on single time “snapshots” of measured scalp
EEG or MEG data [38, 58]. For example, scalp
potentials or magnetic fields at a single time-slice
could be controlled into column vector φ, each
row of which is electric potential or magnetic
field data recorded from one sensor. The problem
then is to find a column vector X, the collection of
potentials or magnetic fields at the same sensor
sites but generated by assumed sources inside the
brain. In practice, an initial starting point (also
termed seed point) is estimated, and then using an
iterative procedure, the assumed dipole sources
are moved around inside the brain (the source
space) in an attempt to produce the best match
between φ (measured scalp potential/field) and
ψ (scalp potential/field generated by X). This
involves solving the forward problem repetitively
and calculating the difference between measured
and estimated data vectors at each step. The most
commonly used measure is the squared distance
between the two data vectors, which is given by:

J =
∥∥∥∥

⇀

φ − ⇀

ψ

∥∥∥∥
2

(13.4)

where J is the objective function which is to
be minimized. From Eq. 13.3, it can be known
that the relationship between the dipole loca-
tion (r) and electric potential is nonlinear, and
thus the problem expressed in Eq. 13.4 needs to
be solved via nonlinear optimization. Different
methods could be applied to solve this nonlin-
ear optimization problem, such as the simplex
method [38], due to its simplicity and relative
robustness to local minima. The nonlinear nature
of DSL holds for MEG source localization, as
well.

Another approach is the multiple time-slice
source localization, also termed spatiotemporal
source localization, which incorporates both the
spatial and temporal components of the EEG
in model fitting [56]. In this approach, multiple
dipole sources are assumed to be fixed on un-

known locations inside the brain during a certain
time interval, and the variations in scalp potentials
or magnetic fields are due only to variations in
the strengths and orientations of these sources.
The dipole sources S can be related to the scalp
potentials or magnetic fields, denoted as �, by
the lead field matrix A, which is only dependent
on the head volume conductor properties and the
source-sensor configurations:

⇀

Φ = A
⇀

S (13.5)

Here, � is the N channels by T time-slices
EEG/MEG data matrix, and S is the M dipoles
by T time-slices source waveform matrix. The
task of the spatiotemporal DSL is to determine the
locations of multiple dipoles [56], whose parame-
ters could best account for the spatial distribution
as well as the temporal waveforms of the scalp
EEG/MEG measurement. Similar to Eq. 13.4, an
iterative procedure is needed to adjust source pa-
rameters with the aim to minimize the following
objective function:

J =
∥∥∥∥

⇀

Φ − A
⇀

S

∥∥∥∥
2

=
∥∥∥∥
(
I − AA+) ⇀

Φ

∥∥∥∥
2

(13.6)

where I is the identity matrix and A+ is the
pseudo-inverse of matrix A. At each iterative step,
locations and orientations of sources are updated
which subsequently causes the update of J. Once
the product between A and its pseudo-inverse
becomes close to I, optimal source locations and
orientations are found since the objective func-
tion is minimized. With the incorporation of the
EEG/MEG temporal information in the model
fitting, the spatiotemporal DSL is more robust
against measurement noise and artifacts than the
single time-slice DSL.

All DSL algorithms need an a priori knowl-
edge of the number and class of the underlying
dipole sources. If the number of dipoles is under-
estimated for a given model, then the DSL inverse
solution is biased by the missing dipoles. On the
other hand, if too many dipoles are specified, then
spurious dipoles can be introduced, which maybe
indiscernible from the true dipoles. Moreover,
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since the computational complexity of the least-
squares estimation problem is highly dependent
on the number of nonlinear parameters that must
be estimated, too many dipoles also add needless
computational burden andmay not lead to reliable
solutions.

In practice, the principal component analysis
(PCA) and multiple signal classification (MU-
SIC) algorithms have been used to approximately
estimate the number of field patterns contained
in the scalp EEG/MEG data [61]. For example,
the MUSIC algorithm scans through the 3D brain
volume (solution space) to identify sources that
produce potential patterns that lie within the sig-
nal subspace of the EEG/MEG measurements
[61]. To localize brain electric sources, a linearly
constrained minimum variance (LCMV) beam-
former approach [62] has been developed for
EEG/MEG source localization, by designing a
bank of narrow-band spatial filters where each
filter passes signals originating from a specified
location represented by a dipole within the brain
while attenuating signals from other locations.
Furthermore, statistical parametric maps based on
beamformers can be created by looking at output
changes of spatial filters’ comparing conditions,
such as between the resting and the task, over the
entire brain.

13.4.2 Cortical Potential Imaging

The cortical potential imaging (CPI) technique
employs a distributed source model, in which
the equivalent sources are distributed in two-
dimensional (2D) cortical surface, and no ad
hoc assumption on the number of source dipoles
is needed as in dipole source localization. This
group of techniques is mostly deployed with EEG
signals. Using an explicit biophysical model of
the passive conducting properties of a head, the
CPI attempts to deconvolve a measured scalp
potential distribution into a distribution of the
electrical potential over the epicortical surface
[21, 42, 63, 64].

The CPI techniques are of clinical relevance
because cortical potentials are invasively
recorded in current clinical routines for the

presurgical evaluation of epilepsy patients, which
is known as electrocorticography (ECoG). Work
on CPI has suggested the similarity between
measured ECoG signals and noninvasively
reconstructed cortical potentials [21, 42, 64]
which suggests the potential clinical application
of CPI in providing a noninvasive alternative of
ECoG. Correcting the smearing effect of the
low-conductivity skull layer, CPI techniques
offer enhanced spatial resolution in assessing
the underlying brain activity as compared to the
blurred scalp potentials. The CPI is also referred
to as downward continuation [21], in which the
electric potentials over the epicortical surface are
reconstructed from the electrical potentials over
the scalp surface.

State-of-the-art cortical potential imaging has
used a multilayer boundary element method ap-
proachwhich links the cortical potential and scalp
potentials via a linear relationship with inclu-
sion of the low-conductivity skull layer. By solv-
ing the inverse problem, cortical potentials were
estimated during somatosensory evoked poten-
tials [42] and interictal spikes in epilepsy patients
[64], which illustrate the potential clinical ap-
plication of CPI approach. The CPI approach to
estimate cortical potential maps can also be real-
ized with the finite element method (FEM) rather
than BEM [21]. A benefit of using FEM is that
it can handle local inhomogeneity and anisotropy
in electrical conductivity profile, which cannot be
handled by BEM. An example of such a tech-
nique has been implemented in Zhang et al. [48]
to reconstruct cortical potential distributions in
the existence of low conductive ECoG grid pads
in a configuration of simultaneous scalp EEG
and ECoG recordings. The reconstructed cortical
potentials were directly compared with recorded
ECoG signals from the same session.

13.4.3 Cortical Current Density
Source Imaging

While dipole source localization has been
demonstrated to be useful in locating a spatially
restricted brain electric event, it has a major
limitation in that its simplified source model may
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not adequately describe sources of significant
extent. Therefore, distributed current density
source imaging has been aggressively studied
in the past decades. Cortical current density
source imaging techniques are distinguished
from cortical potential imaging techniques in two
aspects: (1) it uses electrical current density as a
variable instead of electric potential; (2) the cor-
tical surface is convoluted which is different from
the epicortical surface used in cortical potential
imaging.

13.4.3.1 Cortical Current Density
Source Model

Unlike the point dipole source models, the
distributed source models do not make any ad
hoc assumption on the number of brain electric
sources. Instead, the sources are distributed in
two-dimensional (2D) sheet such as the cortical
surface or 3D volume of the brain. In this
section, we will discuss the current sources
distributed over the convoluted cortical surface
(Fig. 13.6), known as the cortical current density
(CCD) model [40, 53, 65–67]. The rationale in
implementing the CCD model is based on the
observation that scalp EEG and MEG signals are
mainly contributed by electrical currents flowing
through cortical pyramidal neurons along the
normal direction of the cortical surface [68]. The
cortical surface is highly folded (Fig. 13.6) and
has to be represented numerically in order to
conduct computations, such as calculating the
lead field matrix, over it. A common approach in
numerical representation of the cortical surface
is to triangulate the surface into many small
triangles, on which a current dipole is assumed
representing the cortical patch.

Since the CCD model is formed by a num-
ber of dipoles (usually several thousands), the
forward solution for the dipole is still applied
here. Assuming quasi-static conditions, and the
linear properties of the head volume conductor,
the brain electric sources and the scalp EEG/MEG
measurements can be mathematically described
by the following linear matrix equation:

⇀

φ = A
⇀

X + ⇀
n (13.7)

where
⇀

φ is the vector of scalp potential or mag-

netic fieldmeasurement,
⇀

X is the vector of current
source distribution,

⇀
n is the vector of additive

measurement noise, and A is the transfer matrix

relating
⇀

φ and
⇀

X. So the cortical current den-

sity source imaging is to reconstruct
⇀

X from
⇀

φ

with the known transfer function A, by solving
the inverse problem from Eq. 13.7. The same
relationship is also applied to volume current
density source imaging techniques, which will be
discussed later. Reconstruction problems in both
cortical current density and volume current den-
sity imaging techniques belong to distributed cur-
rent density imaging and can be solved with simi-
larmathematic algorithms andmethods. Thus, the
imaging estimation algorithms discussed below
apply to both cortical current density and volume
current density source imaging problems in gen-
eral.

13.4.3.2 Linear Inverse Filters
The aim of the distributed current density imaging
is to reconstruct source distributions from the
noninvasive scalp EEG/MEG measurements or,
mathematically speaking, to design an inverse

Fig. 13.6 An illustration of the cortical surface, segmented from MRI data of a human subject, in side, back, and top
views



394 B. He et al.

filter B, which can project the measured data into
the solution space:

⇀

X = B
⇀

φ (13.8)

This linear inverse estimation approach,
however, is intrinsically underdetermined,
because the number of unknown distributed
sources within the brain is usually much larger
than the limited number of electrodes/sensors
over the scalp. Additional constraints have to
be imposed in order to obtain unique linear
inverse solutions. Below we discuss different
imaging estimation solutions based on the
different selections of additional constraints or
assumptions. Readers may skip the following
detailed treatment of imaging estimation
techniques till Sect. 13.4.4, without affecting
the understanding of the concepts. The interested
reader can also refer to He et al. for a detailed
treatment of various source imaging estimation
algorithms [4].

General Inverse
The general inverse, also termed the minimum-
norm least-squares (MNLS) inverse, minimizes
the least-square error of the estimated inverse

solution
⇀

X under the constraint
⇀

φ = A
⇀

X in
the absence of noise. In mathematical terms, the
MNLS inverse filter BMNLS is determined when
the following objective function is minimized:

JMNLS =
∥∥∥∥

⇀

φ − A
−→
X

∥∥∥∥
2

(13.9)

For an underdetermined system, if AAT is non-
singular, we have:

BMNLS = AT
(
AAT

)−
(13.10)

where ()T and ()− denote matrix transpose and
matrix inversion, respectively. The general in-
verse solution is also a minimum-norm solution
among the infinite set of solutions, which satisfy
the scalp potential or magnetic field measure-
ments [39, 69].

However, when the rank of A is less than the
number of its rows,AAT is singular, and its inverse
does not exist. In such a case, the general inverse
can be sought by the method of singular value
decomposition (SVD) [70]. For an m×n matrix
A, its SVD is given by:

A = UΣV T (13.11)

where U = [u1, u2, . . . , um], V = [v1, v2, . . . , vn],

 = diag (λ1, λ2, . . . λp), λ1 > λ2 > . . . > λp,
and p = min (m, n). The vectors ui and vi are
the orthonormal eigenvectors of AAT and ATA,
respectively. The λi are the singular values of
matrix A, and 
 is a diagonal matrix with the
singular values on its main diagonal. Based on the
SVD of matrix A, the general inverse of matrix A
can be solved by:

A+ = V Σ−1UT =
p∑

i=1

1

λi

viu
T
i (13.12)

where ()+ is also known as theMoore-Penrose in-
verse or the pseudo-inverse. For the linear system
of Eq. 13.7, the inverse solution estimated by Eq.
13.12 is given by:

⇀

X = A+⇀

φ = V Σ−1UT
⇀

φ =
p∑

i=1

1

λi

vi

(
uT

i

⇀

φ

)

(13.13)

Truncated SVD
Although the general inverse leads to a unique
inverse solution with smallest residual error giv-
ing constraint in Eq. 13.9, it is often impractical
for real applications due to the ill-posed nature of
the EEG/MEG source imaging problem. In other

words, the small measurement errors in
⇀

φ can be
amplified by the small or near-zero singular val-
ues, leading to large perturbations in the inverse
solution.

A technique called truncated singular value
decomposition (TSVD) can be used to address the
issue of small single values in the general inverse,
which is simply carried out by truncating at an
index k < p in the evaluation of A+ given by Eq.
13.13 or mathematically [71]:
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BTSVD = V

−1∑
k

UT =
k∑

i=1

1

λi

viu
T
i (13.14)

The effects of measurement noise on the in-
verse solution are reduced because the significant
amplification effect from small singular values is
removed by truncating the k + 1 small singular
values. Meanwhile, the high-frequency spatial in-
formation contributed by the small singular val-
ues is also lost as a trade-off, which also leads
to smooth reconstructions of source signals. The
balance between the stability and accuracy of the
inverse solution is controlled by the truncation
parameter k.

Tikhonov Regularization
A common approach to overcome the numeri-
cal instability caused by the ill-posedness is the
Tikhonov regularization (TIK), in which the in-
verse filter is designed to minimize an alternative
objective function [72]:

JTIK =
∥∥∥∥

⇀

φ − A
⇀

X

∥∥∥∥
2

+ λ

∥∥∥∥G
⇀

φ

∥∥∥∥
2

(13.15)

where λ is a small positive number known as
the Tikhonov regularization parameter and G can
be identity, gradient, or Laplacian matrix, corre-
sponding to the zeroth-, first-, and second-order
Tikhonov regularization, respectively. The under-
lying concept of this approach is to minimize both
the measurement residual error and the inverse
solution (either source distribution, gradient, or
curvature) together with a relative weighting pa-
rameter λ, in order to suppress unwanted ampli-
fication of noise on small singular values in the
inverse solution. The corresponding inverse filter
is given by [72]:

BTIK = AT
(
AAT + λGGT

)−
(13.16)

It can be observed that large values of λ make
the solution smoother because the second term
in Eq. 13.15 dominates, while for a small value
of λ, the first term in Eq. 13.15 dominates, and
the influence from noise might not be sufficiently
suppressed if λ is too small. For instance, the

MNLS is a special case of the filter described in
Eq. 13.16, when λ = 0, explaining why MNLS
solutions are extremely sensitive to noise. In
summary, the Tikhonov regularization parameter
is used to balance the details in reconstructions
(lost because of the emphasis onG) and influence
from noise.

13.4.3.3 Regularization Parameters
As noted earlier, in order to improve the stability
of the source imaging problem, a free regular-
ization parameter λ in TIK [Eq. 13.15] or k in
TSVD [Eq. 13.14] is introduced and should be
determined. Proper selection of this parameter is
critical for the inverse problem to balance the
stability and accuracy of the inverse solution. In
theory, optimal regularization parameters should
be determined by minimizing relative error (RE)
or maximizing correlation coefficient (CC) be-
tween the true source Xtrue and the inversely re-
constructed source Xinv:

RE =

∥∥∥∥
⇀

Xtrue − ⇀

Xinv

∥∥∥∥∥∥∥∥
⇀

Xtrue

∥∥∥∥
(13.17)

CC =
⇀

Xtrue · ⇀

Xinv∥∥∥∥
⇀

Xtrue

∥∥∥∥ ·
∥∥∥∥

⇀

Xinv

∥∥∥∥
(13.18)

Unfortunately, in real applications, the true
source distribution is unknown, and alternative
methods that do not depend on a priori knowl-
edge of Xtrue should be used. Here we introduce
two types of methods in estimating regularization
parameters, while more methods can be found in
the literature [73].

L-Curve Method
Hansen [74] popularized the L-curve approach
to determine a regularization parameter. The L-
curve approach involves a plot, using a log-log
scale, of the norm of the solution, on the ordinate
against the norm of the residual, on the abscissa,
with λ or k as a parameter along the resulting
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Fig. 13.7 Illustration of the L-curve approach. By plot-
ting the norm of the inverse solution versus the norm of
the residual as functions of regularization parameter (λ or
k), an “L” shaped curve occurs, and the optimal parameter
is placed near the “corner” of the curve

curve. In most cases, the shape of this curve is in
the form of an “L,” and the λ or k value at the
corner of the “L” is taken as the optimal regu-
larization value (Fig. 13.7). At the corner, clearly
both ||X|| and ‖φ − Ax‖ attain simultaneous indi-
vidual minima that intuitively suggests an optimal
solution. A numerical algorithm to automatically
compute the site of the L-curve corner, when it
exists, has been given by Hansen and O’Leary
[75]. The algorithm defines the corner as the point
on the L-curve with maximum curvature.

Statistical Methods
Statistical methods have been proposed for the
regularization parameter determination. For ex-
ample, if the expectations of noise and measure-
ment are both available, the truncation parameter
of TSVD in Eq. 13.14 could be determined by
[71, 76]:

k = max
i

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

i|λ
2
i

λ2
1

≥
E

(∥∥∥⇀
n

∥∥∥2
)

E

(∥∥∥∥
⇀

φ

∥∥∥∥
2
)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(13.19)

Another popular method for choosing the reg-
ularization parameter is the generalized cross-
validation (GCV) method proposed by Golub et
al. [77]. The GCV technique is based on the sta-
tistical consideration that a good value of the reg-
ularization parameter should predict missing data
values; therefore, no a priori knowledge about the
error norms is required.

13.4.3.4 Interpretation of Linear
Inverse in Bayesian Theory

The linear solutions discussed earlier can also be
understood in a Bayesian perspective [78, 79].
Consider the forward problem in Eq. 13.7. From
Bayes’ theorem, the posterior probability for the
inverse solution x conditioned on the data φ is
given by:

P (x|φ) = P (φ|x) P (x)

P (φ)
(13.20)

which onewould like tomaximize as the posterior
probability for the inverse solution given the data.
P(φ| x)is the conditional probability for the data
given the inverse solution, and P(x) is a prior
distribution reflecting the knowledge of the statis-
tical properties of the source model. To maximize
the posterior probability, the cost function could
be formulated, usually, using the log-posterior
probability as:

x̂ = argmax
x

P (φ|x) P (x)

≡ argmax
s

(ln (P (φ|x)) + ln (P (x))) (13.21)

If Gaussian white noise with variance of σ 2 is
assumed, the likelihood is denoted by P (φ|x) ∝
e
− 1

2σ2
‖φ−Ax‖22 . If the prior distribution is given

by P(x) ∝ e−(θ f (x)), where θ is a scalar constant
and f (x) is a function of the inverse solution x,
by applying the log operation, the cost function
yielding the maximum a posteriori estimate could
be written as:

C(x) =‖ φ − Ax‖2 + λ · f (x) (13.22)

where λ = 2θσ 2. If f (x) = ‖Gx‖2
2, cost function

here is exactly same as the objective function (Eq.
13.15) obtained through Tikhonov regularization.

One benefit in discussing linear inverse solu-
tions in the Bayesian perspective is that the theory
can be extended to include the understanding of
some nonlinear inverse solutions. If f (x)= ‖Gx‖1,
the cost function becomes the objective func-
tion using L1-norm methods in the framework of
Tikhonov regularization. Furthermore, from the
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Bayesian theory, it is known that a Gaussian a
priori likelihoods, such as those implemented in
linear inverse methods, usually result in smooth
solutions, while an exponential a priori likeli-
hoods, such as those in nonlinear L1-norm meth-
ods, lead to sparse solutions. This explains the
characteristics of inverse source reconstructions
from both types of methods. Sparsity-enforcing
regularizations can also be cast as convex opti-
mization problems and can be solved efficiently
with accurate numerical techniques [80, 81].

The major advantage using the Bayesian the-
ory in developing different EEG/MEG inverse
solutions is that this framework provides the flex-
ibility to incorporate different a priori likelihoods
through f (x). For a more mathematical treatment
of Bayesian methods in source imaging, refer to
Sekihara and Nagarajan’s book [82].

13.4.4 Volume Current Density
Source Imaging

13.4.4.1 Challenges of the 3D Source
Imaging

Tremendous progress has been made during the
past decades for the 3D source imaging, in which
the brain electric sources are distributed in the 3D
brain volume. Similar to the CCD source imaging
problem, the 3D source imaging approach is also
based on a distributed source model, i.e., volume
current density (VCD) source model, and is im-
plemented by solving the linear inverse problem
as detailed in Sect. 13.4.3. The source space of
the VCD model usually consists of the entire
human brain, including the deep structure such as
hippocampus. Since the white matter is believed
of no generators for EEG/MEG, it can be removed
in some applications. A common approach in
numerical representation of the human brain is to
divide the brain volume into many small voxels.
Each voxel is modeled by a current dipole similar
as in the CCD source model. However, the orien-
tation of the dipole at each voxel is not fixed as in
CCD models. The dipole at each voxel is usually
decomposed into three orthogonal components
with each having fixed orientation. The selection
of orientations of these three components is usu-
ally dependent on the utilized coordinate system.

Then, the forward solution for VCD is the same
as the forward solution for CCD with the only
difference in the definition of source space. On
the other hand, the 3D source imaging approach
faces greater technical challenges: by extending
the solution space from 2D cortical surface to 3D
brain volume, the number of unknown sources
increases dramatically. As a result, the source
imaging problem is even more underdetermined,
and the inverse solution is usually smeared due
to regularization procedures. In addition, it be-
comes more important to retrieve depth infor-
mation of sources in 3D source imaging. While
the cortex can be modeled as a folded surface in
cortical source imaging approach so that sources
in sulci and gyri have different eccentricities,
deeper sources probably exist below the corti-
cal layer, such as in amygdala and hippocampal
formation.

13.4.4.2 Inverse Estimation Techniques
in Volume Current Density
Imaging

The most popular 3D linear inverse solution is the
minimum-norm (MN) solution, which estimates
the 3D brain source distribution with the smallest
L2-norm solution vector that would match the
measured data [39, 69]. It is equivalent to select
G as an identity matrix in Eq. 13.15. Different
regularization parameter selection techniques as
detailed in linear inverse filters can be used here
to suppress the effects of noise.

However, the standard minimum-norm
solution has intrinsic bias that favors superficial
sources because the weak sources close to the
sensors can produce scalp EEG/MEG with
similar strength as strong sources at deep
locations. To compensate for the undesired
depth dependency of the original minimum-
norm solution, different weighting methods have
been introduced. The representative approaches
include the normalized weighted minimum-norm
(WMN) solution [76, 83] and the Laplacian
weightedminimum-norm (LWMN) solution, also
termed LORETA [41, 84].

The WMN compensates for the lower gains of
deeper sources by using lead field normalization.
In the absence of noise, the inverse source esti-
mates can be given as:
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⇀

φ = AW−W
⇀

X (13.23)

The concomitant WMN inverse solution is
given by [76, 83]:

⇀

XWMN = WWTAT
(
AWWTAT

)−⇀

φ (13.24)

where W is the weighting matrix acting on the
solution space. Most commonly,W is constructed
as a diagonal matrix [76, 83, 84]:

W = diag (‖a1‖ , ‖a2‖ , · · · , ‖an‖) (13.25)

where A = (a1, a2, · · · , an). Thus, by using the
norm of each column of the transfer matrix as the
weighting factor for the corresponding position
in the solution space, the contributions of the
entries of the transfer matrix to a solution are
normalized.

The LWMN approach defines a combined
weighting operator LW, where L is a 3D discrete
Laplacian operator acting on the 3D solution
space and W is defined the same as in Eq. 13.24.
The corresponding LWMN inverse solution, or
the LORETA solution, is then [41, 84]:

⇀

XLWMN=(
WLTLW

)−
AT

(
A

(
WLTLW

)−
AT

)−⇀

φ

(13.26)

This approach combines the lead field nor-
malization with the spatial Laplacian operator,
thus giving the depth-compensated inverse solu-
tions under the constraint of smoothly distributed
sources.

Many variants of the minimum-norm solution
were also proposed, by incorporating a priori in-
formation as constraint in a Bayesian formulation
or by estimating the source-current covariance
matrix from the measured data in a Wiener for-
mulation. All these efforts were made to improve
certain aspects of 3D source imaging techniques;
however, they are not universally suitable for all
3D volume current density imaging applications.

In addition, both the MUSIC algorithm
[61] and beamformer techniques [62], which
have been discussed in sections for dipole
source localization methods earlier, can be used
to reconstruct 3D brain source distributions.
However, it should be noted that bothMUSIC and
beamformer techniques are scanning techniques,
which are not based on distributed source models.
Beamformer techniques utilize the spatial filter
designed for each scanned point in a 3D source
space, while the MUSIC algorithm computes
the correlation between field vectors originated
by a dipole at the scanned position against the
covariance structure of measurements.

Figure 13.8 shows an example of 3D source
imaging of seizure activities by using a combined

Fig. 13.8 Seizure onset zones (SOZs) and the source
time frequency representations estimated from a typical
seizure in two patients. The estimated SOZ (left and mid-
dle panels, 60% threshold, yellow to orange color bar)

is co-localized with surgically resected zones (shown in
green) in patients 1 and 2. (From Yang et al. [85] with
permission)
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approach consisting of independent component
analysis and LORETA [85]. Yellow color refers
to volume sources, and green color refers to surgi-
cally resected regions. The patients were seizure-
free after 1-year follow-up from the surgery.

Solving the inverse problem for 3D source
space using ECoG or sEEG measurements has
also been attempted [86–88]. Given the surge in
using sEEG recordings to determine the epilep-
togenic zone in epilepsy patients, such studies
indicate the value of using source imaging tech-
niques even with invasive recordings. Hosseini
and colleagues studied the potential advantages
and disadvantages of this approach and proposed
to combine scalp and intracranial EEG measure-
ments to eliminate the potential disadvantages
[88].

13.4.4.3 Nonlinear Inverse Techniques
Because the 3D EEG/MEG inverse problem is
highly underdetermined, the linear solutions ob-
tained by the minimum-norm inverse and its vari-
ants are usually associated with relatively low
spatial resolution. To overcome this problem, sev-
eral nonlinear inverse approaches have been in-
troduced to achieve more localized imaging re-
sults.

One recent popular method in reconstructing
focal sources is to solve the inverse problem using
the L1-norm instead of commonly used L2-norm
[89–93] on the penalty term of inverse solutions
in Eq. 13.15 or on the a priori likelihood function
in Eq. 13.22. The L1-norm methods prefer sparse
solutions since the L1-norm of a sparse solu-
tion vector is usually less than the L1-norm of a
smooth solution vector on the condition that both
generate the similar scalp EEG/MEG signals. On
the contrary, the L2-norm methods prefer smooth
solutions since the L2-norm of a smooth solution
vector is usually less than the L2-norm of a sparse
solution vector on the condition that both gen-
erate the similar scalp EEG/MEG. The L1-norm
methods, thus, providemuchmore focal solutions
and a more robust behavior against outliers in the
measured data [94]. However, the use of the L1-
norm requires solving a nonlinear system of equa-
tions for the same number of unknowns as the
L2-norm inverse approach; therefore, much more

computational effort is needed. Different nonlin-
ear optimization approaches have been suggested,
including the iteratively reweighted least-squares
method and the linear programming techniques
[81, 94, 95].

Imposing sparsity on the current density is
the direct result of using L1-norm regularization
terms or priors, which can lead to overly focused
solutions. On the other hand, such focal solu-
tions do not seem to be physiologically viable;
thus, recent studies have imposed the sparsity
priors on other mathematical domains such as
the wavelet transform [96, 97], spatial gradient
[98–100], and Laplacian of underlying current
densities or multiple mathematical domains [80].
These regularization priors encourage solutions
which are sparsely represented in those math-
ematical domains, which in turn determine the
solutions’ characteristics and features. For in-
stance, a solution sparsely represented in the spa-
tial gradient domain encourages piecewise ho-
mogeneous solutions [98]. These studies indicate
that by enforcing sparsity to transformations of
the current density, such as the spatial gradient,
as opposed to the current density, the obtained
solutions are not overly focused and demonstrate
more desirable and realistic features more in line
with our physiological intuitions.

A question that might be raised is that how
are such improvements possible, given the limited
measurements at hand? The reason lies in the fact
that sparse signals only contain a limited amount
of information, as such signals only contain a lim-
ited number of nonzero elements. Once a signal
itself, or its representation in another domain, can
be represented in a sparse fashion, this indicates
that its redundancies are discovered and, conse-
quently, fewermeasurements are needed to recon-
struct. Hence, with limited MEG or EEG mea-
surements, much better signal reconstructions can
be achieved. Furthermore, combining MEG and
EEG signals improves the performance of sparse
source imaging algorithms, as more measure-
ments are at dispense [67]. Figure 13.9 shows
widely distributed cortical sources from multiple
time points for face perception and recognition
obtained with the use of sparse source imaging
on combined MEG and EEG data. The spatial
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Fig. 13.9 Dynamic patterns of sparse source reconstruc-
tions using combined EEG and MEG within P100/M100
and P170/M170 components from a face recognition task.
(a) An EEG waveform from one channel (red electrode
shown registered with the head) and an MEG waveform
from one channel (green sensor), both of which show the

maximal difference between faces and scrambled faces.
(b) Cortical current density maps reconstructed within
P100/M100. (c) Cortical current density maps recon-
structed within P170/M170. (From Ding and Yuan [67]
with permission)

distributions of these cortical sources and their
temporal dynamics further revealed similarities
and differences at different stages of neural pro-
cesses for different conditions. Consistent spatial
patterns in the visual cortex between actual faces
and scrambled faces are observed during the time
window of P100/M100 for perception. During
N170/M170 for face recognition, it is observed
that bilateral fusiform (i.e., 150–160 ms) and
lateral ventral occipital regions (i.e., 160–175ms)
are more active to actual faces than scrambled
faces, which has been similarly reported using
fMRI data [101].

Through a different approach, a nonparametric
algorithm for finding localized 3D inverse
solutions, termed focal underdetermined system
solution (FOCUSS), was proposed by Gorodnit-
sky et al. [83]. This algorithm has two integral
parts: a low-resolution initial estimate of the

inverse solution, such as the minimum-norm
inverse solution, and the iteration process that
refines the initial estimate to the final focal
source solution. The iterations are based on
weighted norm minimization of the dependent
variable (similar as the weight process used in
weighted minimum-norm inverse solutions) with
the weights being a function of the preceding
iterative solutions. Similarly, a self-coherence
enhancement algorithm (SCEA) has also been
proposed to enhance the spatial resolution of
the 3D inverse estimate [102]. This algorithm
provides a noniterative self-coherence solution,
which enhances the spatial resolution of an
unbiased smooth estimate of the underdetermined
3D inverse solution through a self-coherence
process.

Following these lines of investigation,
Sohrabpour et al. proposed a new inverse source
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imaging technique that not only was capable
of imaging the location of underlying brain
sources using scalp EEG/MEG measurements
but also was capable of estimating the underlying
sources extent, i.e., size [81]. Determining
the size of underlying brain activity is of
particular importance in many applications
such as determining the seizure onset zone
in epilepsy patients, as such information is
necessary for optimizing treatments. One of
the features of this work was to use an iterative
re-weighting approach to, ultimately, eliminate
the need for applying thresholds to solutions
to separate background activity from desirable
signals. Sohrabpour et al. validated their proposed
technique by comparing it to clinical findings
derived from invasive measures (in addition
to comprehensive Monte Carlo simulations).
This approach has inspired other researchers
to introduce these ideas in Bayesian algorithms
as well [103].

In addition to applying L1-norms instead
of L2-norms, more elaborate mathematical
constructs, such as the mixed-norm, have also
been proposed [104]. The mixed-norm operator
is basically the generalization of the Lp-norm
to multiple dimensions of a high-dimensional
matrix, where each dimension can be measured
(or regularized) distinctly. One of the issues
associated with pure L1-norm estimates is that
the reconstructed time course of activity is
not smooth and random location of the cortex
gets activated for brief moments of time. In
order to alleviate this issue, mixed-norm was
introduced into source imaging algorithms. The
general intuition behind the mixed-norm operator
is that each dimension of a high-dimensional
matrix can be regularized uniquely to induce a
specific structure in the solution; for instance, the
spatial dimension might be regularized with an
L1-norm type regularization to induce sparsity
in the spatial domain where only a limited
number of sites get activated but an L2-norm
type regularization on the temporal dimension to
induce smooth activity over time.

13.4.5 Multimodal Source Imaging
Integrating Electromagnetic
and Hemodynamic Imaging

Until now, we only discussed the source
imaging problems and methods using single
modality data, such as EEG or MEG. Efforts
have been made to attempt to improve the
performance of EEG/MEG source imaging by
integrating electromagnetic and hemodynamic
measurements [54, 105]. Neuronal activity
elevates electrical and magnetic field changes
(the primary effects) as well as hemodynamic
and metabolic changes (the secondary effects).
The observation of electrical and magnetic
field changes is mainly made using EEG and
MEG, respectively, as what have been discussed.
Furthermore, both EEG and MEG have high
temporal resolution at sub-millisecond scale but
limited spatial resolution. On the other hand,
functional magnetic resonance imaging (fMRI)
[106–108], based on the endogenous blood
oxygenation level-dependent (BOLD) contrast
[109], is another well-established technique
in mapping human brain function (see Chap.
11 of this book). The benefit of fMRI is,
conversely, its high spatial resolution to the level
of millimeters but of slow response time and
thus low temporal resolution. In combination,
these two complementary noninvasive methods
would lead to an integrated neuroimaging
technology with high resolution in both space
and time domains that cannot be achieved by any
modality alone. Such superior joint spatial and
temporal resolution would be highly desirable
to delineate complex neural networks related
to cognitive function, allowing answering the
question of “where” as well as the question of
“when.” It can also permit delineation about
the hypotheses of top-down versus bottom-up
processing with the temporal resolution provided
by electrophysiology. The integration of EEG,
MEG, and fMRI is thus of significant interest
to provide enhanced spatiotemporal imaging
performance.

http://dx.doi.org/10.1007/978-3-030-43395-6_11
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Fig. 13.10 Illustration of multimodal imaging ap-
proaches based on the spatial and temporal integrations.
Waveforms of a typical EEG event-related potential and
a block-designed BOLD change are shown. Notice the

disparate temporal scales of the responses in the EEG and
BOLD fMRI signals. Also, responses of both modalities
are widely distributed in the brain. (From He et al. [105]
with permission, © 2011, IEEE)

As illustrated in Fig. 13.10, integration of
fMRI with EEG/MEG has been pursued in two
directions, which either relies on (1) the spatial
correspondence or (2) the temporal coupling of
fMRI and EEG/MEG signals. The first approach
of spatial integration typically utilizes the fMRI
maps as a priori information to inform the
locations of the electromagnetic sources [52,
65]. In these methods, fMRI analysis yields
statistical parametric maps with several fMRI
hotspots, which each constrains the location
of an equivalent current dipole or collectively
produces weighting factors to evenly distributed
current sources. With the spatial constrains, the
ill-posedness of the EEG/MEG inverse problem
is moderated, and continuous time course of
electromagnetic waveforms can be resolved from
the fMRI hotspots, thus allowing inferences about
the underlying neural processes [65].

A major limitation of the spatial integration
approach is that fMRI yields relatively static
maps compared to dynamic evolution of
electromagnetic signals, owing to the highly
different temporal scales in which the signals in
these two modalities are generated and collected
[54]. Additionally, the spatial difference between

the vascular and electrophysiological responses
may lead to fMRI displacement. Thus, the
mismatch between a single static fMRI map
and consecutive snapshots of EEG/MEG during
the same period can lead to biased estimates
such as the fMRI extra sources (seen in fMRI
but not EEG/MEG), the fMRI invisible sources
(seen in EEG/MEG but not in fMRI), and the
displacement sources (see detailed discussion
in [54]). New methods have been proposed
toward overcoming this limitation, by means
of a time-variant spatial constraint estimated
from a combination of quantified fMRI and EEG
responses [53] or estimating regionally fMRI-
informed models by allowing model parameters
jointly computed from electrophysiological
source estimates and fMRI data rather than
exclusively dependent on fMRI [110]. Examples
of applying EEG/MEG-fMRI integration in the
investigation of visual processing function have
demonstrated how the subtle spatiotemporal
dynamics revealed from electrophysiological
imaging were able to delineate the hypotheses
with regard to the underlying neural processes
[53]. Figure 13.11 [53] shows an example of time-
varying fMRI/EEG integration to mapping visual
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Fig. 13.11 fMRI-EEG multimodal neuroimaging. (a)
The pattern-reversal checkerboard visual stimulation, (b)
fMRI activation map with a corrected threshold p <0.01,
and (c) the global field power of VEP and the dynamic
cortical source distribution at three VEP latencies (76, 112,
212 ms after the visual onset) imaged from EEG alone

(1st row) or fMRI-EEG integration using our proposed
adaptive wiener filter (2nd row) and the conventional
90% fMRI weighted algorithm (3rd row). Both the source
images and the fMRI activation map are visualized on an
inflated representation of cortical surface. (From Liu and
He [53] with permission)

information processing pathways. In response to
the unilateral visual stimulation (Fig. 13.11a),
the activated cortical areas at the contralateral
hemisphere were revealed in the fMRI activation
map (Fig. 13.11b). The fMRI activation map
indicated a dorsal visual pathway covering V1,
V2, dorsomedial areas (such as V3 and V7),
intraparietal sulcus (IPS), as well as medial
temporal (MT) area (also known as V5). The
top row of Fig. 13.11c shows the time course of
global field power of VEP, which indicates three
VEP peak latencies (76, 112, and 212 ms). The
second through fourth rows of Fig. 13.11c show

the reconstructed contralateral CCD distribution
using three imaging algorithms, respectively.
From the CCD images reconstructed by only
using the VEP data, the dorsal pathway was
seen gradually extending from lower-tier visual
areas to high-tier visual areas. By using an
adaptive Wiener filter to integrate the fMRI and
EEG data, a consistent sequence of activities
was observed with a much enhanced spatial
resolution, showing the pathway starting from
V1/V2 and then V3/V3a and finally V5/V7 and
IPS. The observed cortical visual pathway was
generally in agreement with the well-known
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hierarchical organization of the visual system.
In contrast, the imaging results obtained by using
the conventional 90% fMRI-weighted approach
also had an improved spatial resolution compared
to the EEG-alone source imaging. However,
it shows a false positive source region in and
around V1/V2 at the latency of 212 ms, whereas
a more likely high-tier EEG source around V5,
observable from the EEG data, is missed.

On the other hand, the second approach of
temporal integration utilizes the EEG/MEG dy-
namic signatures in the time or frequency domain
to inform the statistical mapping of fMRI. These
quantities obtained from electromagnetic record-
ings are typically convolved with a canonical
hemodynamic response function and then corre-
lated to BOLD signals on a voxel-by-voxel basis
to identify the statistical fMRI maps correspond-
ing to the electromagnetic temporal signatures of
interests. In this way, the integration method can
recover the neural substrates by answering the
question of “where” in joint with the question of
“when.” An intriguing example is the study of
nonrepeatable effects in epileptic patients, i.e., the
interictal activities. Correlates of the dynamics
of interictal discharges with the BOLD have led
to insights into the problem of localizing the
epileptic foci from fMRI [111].

13.5 Getting Started
with Electrophysiological
Imaging andData Processing

EEG and MEG data processing and source
imaging algorithms have a far wider reach than
the research community. There are, fortunately,
many publicly available and free-of-charge
analysis toolboxes available on the internet. We
intend to introduce a few of the more popular
ones, in this section, merely as a guide to the
readers. This list is by no means a comprehensive
list of available EEG/MEG analysis toolboxes
available to date. All of the software and
toolboxes we introduce here are developed by
active research groups and include extensive
online tutorials and/or online help communities
and can be achieved freely on the web.

As mentioned in this chapter, EEG and MEG
signals need to be analyzed and pre-processed
before use. EEGLAB is one such toolbox particu-
larly specialized in time series analysis and blind
source separation techniques [112]. CARTOOL is
a toolbox tailored for topographical data analysis
and clustering, highly useful when performing
electrophysiological mapping studies (Sect. 13.2)
[113].

Subject-specific head models are necessary
for accurate reconstruction of sources, and these
models are usually built from subjects’ ownMRI,
when available. Some of the toolboxes designed
for this purpose include FreeSurfer [114],
BrainSuite [115], and BrainVISA anatomist
[116]. OpenMEEG can also be used to generate
subject-specific BEM models [117].

There are many toolboxes that specialize on
source imaging. Among these toolboxes, some
are capable of analyzing functional connectiv-
ity such as eConnectome [118], FieldTrip [119],
MNE [120], and Nutmeg [121], while some fo-
cus more on source imaging such as Brainstorm
[122].

The availability of these computational tool-
boxes means that students, researcher, and clini-
cians (and even interested members of the public)
can have easy access to these programs for learn-
ing purposes or to follow their own line of inquiry.

13.6 Discussions

The ultimate goal of the electrophysiological
source imaging is to image brain electric
activity with high resolution in both time and
space domains based on noninvasive EEG and
MEG recordings. Such noninvasive and high-
resolution brain mapping technique would
bring significant advancement in the fields of
clinical neurosurgery, clinical neurology, neural
pathophysiology, cognitive neuroscience, and
neurophysiology. For example, it will facilitate
epilepsy presurgical planning, noninvasive
localization, and delineation of the epileptic
zone in seizure patients; characterize the
brain dysfunction in schizophrenic, depression,
alcoholics, and Alzheimer’s patients; localize and
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image cortical regions contributing to cognitive
tasks; and even assist in neural decoding in brain-
computer interfaces.

During the past decades, numerous techniques
have been developed for brain electric source
imaging by solving the EEG and MEG forward
and inverse problems. Dipole source localization
is particularly useful for localizing descrete
focal brain electric sources, while the distributed
source imaging has the capability of imaging
spatially distributed sources and multiple areas
of activities, such as the 2D cortical imaging and
the 3D brain tomographic imaging. The choice of
using which inverse imaging approach depends
on the particular application, since each inverse
imaging algorithm has its own advantages and
limitations.

The major limitation of the dipole source
localization is that it requires a priori knowledge
on the number of dipole sources. The distributed
source imaging, on the other hand, makes no
assumption on the number of neural sources,
whereas it has to deal with a highly underde-
termined inverse problem. The cortical imaging
technique has the potential to compensate for
the head volume conduction effect and achieve
high-resolution mapping of cortical activities,
whereas the 3D neuroimaging approach has the
capability of retrieving the depth information of
the distributed brain electric sources. A recent
trend in the 3D distributed source imaging is
to use the realistic geometry volume conductor
model constructed from the MR or CT images of
individual subjects, throughwhich the anatomical
constraints become feasible and the obtained
results can be interpreted more meaningfully
and in line with clinical intuition. Another major
trend in the 3D neuroimaging is the development
of novel techniques that aim to overcome the
smoothing effect of the inverse imaging solution,
either by reducing the under-determination of
the inverse problem [43] or by some nonlinear
inverse approaches [80, 81, 83, 93, 104].

The performance of the distributed source
imaging depends on the linear inverse filter and
regularization technique being selected. The
regularization technique is critical to suppress
noise and obtain stable inverse solution. Although
many regularization techniques have been

proposed [71, 73, 77], none of them has been
demonstrated to be universal, and different meth-
ods should be considered depending on different
applications. On the other hand, different inverse
filters have been developed for specific applica-
tions based on various assumptions, such as the
presence or absence of noise, the availability of
statistical information on signal and noise, and
so on. Not surprisingly, more robust and accurate
inverse imaging solutions can be obtained by
incorporating more a priori information as con-
straints, for example, the anatomical constraint,
the temporal constraint, and the functional
constraint. The anatomical constraint can be
easily implemented by the co-registration of
EEG andMEG inverse imaging solutions with the
structural brain images obtained fromMR images
[40]. The temporal constraint can be achieved by
selecting an epoch of EEG or MEG data as input
to the inverse imaging procedure with assumption
that the underlying bioelectric sources remain
relatively invariant. The functional constraint has
shown great promise by combining the electro-
magnetic and hemodynamic imaging modalities
that were recorded using the same paradigm in
the same subjects [52, 53]. The rationale for this
multimodal integration is that neural activity
generating EEG and MEG signals increases
glucose and oxygen demands [123]. The growing
body of evidence suggests that there is close
spatial coupling between electrophysiological
signals and hemodynamic response [4]. However,
many technical challenges still exist, and caution
must be taken when interpreting multimodal
studies [124].

In conclusion, the electrophysiological source
imaging, by means of reconstructing the under-
lying brain sources from the EEG and MEG,
has great potential for noninvasively mapping
the brain activation and function, with high spa-
tiotemporal resolution. Despite many challenges,
with the integrated effort of algorithm develop-
ment, computer simulation, experimental explo-
ration, clinical validation, and the availability of
more powerful computing resources, it can be
confidently foreseen that the electrophysiological
source imaging will become an important neu-
roimaging tool for imaging neural abnormalities
and understanding the human mind.
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Homework

1. What is the Nyquist frequency? How is it
related to the sampling frequency of a band-
limited signal?

2. If we believe that our signals of interest in the
EEG/MEG recordings arewithin the 1–50Hz
frequency bands, what would be the mini-
mum sampling rate you propose that will al-
low the recovery of the full information con-
tent within this particular frequency band?

3. Could you think of a way to define the min-
imum number of EEG/MEG sensors neces-
sary to avoid aliasing the spatial frequency
content of surface recordings?

4. We only record from two EEG electrodes,
say C3 and C4, for two conditions A and
B. These two conditions are elicited when
stimuli A and B are presented to our exper-
iment subject. Each stimuli is presented 100
times, and the voltage recorded from C3 and
C4 at 100 ms poststimulus is recorded in a
vector, Vφ = [

φC3(100), φC4(100)
]T

where
φC3(100) and φC4(100) are the recorded sig-
nals from C3 and C4 electrodes at 100 ms
poststimulus, and is plotted below:

(i) How could you distinguish between
condition A and B if you were only
given Vφ?

(ii) Let us assume that Vφ under conditions
A and B has the same exact distribution
except that for condition A the distribu-
tion is centered around the point (1,1)T

and for condition B around the point
(−1,−1)T. Let us denote this probability
distribution with p(x, y) and also let us
assume symmetry with respect to origin,
that is, p(x, y) = p(−x,−y), and indif-
ference to input variables’ order, i.e.,
p(x, y) = p(y, x). Now if we want to fit
the line y − αx − δ = 0, such that any
point lying on one side of this line is
designated as condition A and the other
side as condition B, how should we find
(α, δ)?

(iii) Based on your answer in (ii), find the
optimal set of (α, δ), if any.

5. If we assume that a dipole is placed at coordi-
nates (x, y, z), the distance between the dipole
source and field space, (x ′, y ′, z′), is defined
as r =

√
(x − x ′)2 + (y − y ′)2 + (z − z′)2.

(i) Calculate ∇ (
1
r

)
, where ∇ is the

gradient operator defined as ∇f =(
∂f

∂x
,

∂f

∂y
,

∂f

∂z

)T
.

(ii) Calculate ∇′ ( 1
r

)
, where ∇′

is the gradi-
ent operator with respect to (x ′, y ′, z′),

i.e., ∇′f =
(

∂f

∂x ′ ,
∂f

∂y ′ ,
∂f

∂z′

)T
.

(iii) Show that ∇ (
1
r

) = −∇′ ( 1
r

)
.

6. Assuming that a current dipole is placed
at the origin of an infinitely homogeneous
space pointing toward the z-direction, i.e.,
(x, y, z)T = (0, 0, 0)T and J i = (0, 0, 1)T,
using Eq. 13.3:
(a) Can you calculate the potential field

generated by this dipole in any point
(x ′, y ′, z′)?

Hint.
∫
v

∇ (
1
r

)
.J i (x, y, z) dv =

∇ (
1
r

)
.J i , whereJ i is the current dipole

moment at the origin and∇ (
1
r

)
.J i is the

inner product of the dipole moment and
the gradient of the reciprocal of field
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point distance to dipole. This equality is
due to the fact that we assumed the dipole
source to be a point source at the origin.
This basically is the impulse response of
the Poisson’s equations, more generally
referred to as the Green’s function. The
inner product between vectors A = (Ax,
Ay, Az)T and B = (Bx, By, Bz)T is defined
as follows: A. B = AxBx + AyBy + AzBz.

(b) Assuming that the EEG sensor is located
at (0, 0, 1)T, what number would it read
as the potential (ideal conditions, noise is
nonexistent)?

(c) What if the sensor is located at (1, 0, 0)T?
(d) What if the sensor is located at (0, − 1,

0)T?
7. Repeat problem 6 to calculate the magnetic

field an MEG magnetometer would
sense at the same locations. Use (B =
μ

4π

∫ J i × ∇ (
1
r

)
dv) and the Green’s

function hint given before. The cross product
between vectors A = (Ax, Ay, Az)T and
B = (Bx, By, Bz)T is defined as follows:
A× B= (AyBz − AzBy,AzBx − AxBz,AxBy −
AyBx).

8. Based on problems 6 and 7, can you explain
[and provemathematically] why EEG signals
are less sensitive to tangential sources and
MEG signals to radial sources?

9. Let us simply assume that the lead field ma-
trix A, of an MEG recording system with two
recording channels and 3 possible sources, is
given as follows:
(i) Assuming that the given lead field

matrix models the relationship between
source current density and the magnetic
field in z-direction, what is the relation-
ship between the recorded magnetic
field (in z-direction) B at these sensors
and the current density S= (S1,S2,S3)T?
Assume ideal conditions where no
noise exists.

(ii) What would the MEG sensors record if
S = (1,1,1)T?

(iii) What if S = (2,−1,2)T?
(iv) What if S = (3,0,3)T?
(v) What if S = (1,1,1)T + t(2,−1,2)T,

(t∈ R)?
(vi) Can you calculate the null space of ma-

trix A, that is, all vectors x such that
Ax = 0?

(vii) Can you briefly explain why the inverse
problem is not unique? You can math-
ematically prove this using the concept
of null space of a matrix.

10. Combining Eqs. 13.5 and 13.8:
(i) Can you formulate the relationship be-

tween estimated, X, and true source, S?
(ii) Based on the relation derived in (i), what

should be the relationship between A
and B, for the estimated source to be
exactly the same as the true source?

(iii) Can linear methods, as studied in this
problem, ever truly estimate the true
source without any further priors or
assumptions?

11. Can you derive Eq. 13.16 from Eq. 13.15
by differentiating Eq. 13.15 and setting it to
zero?

12. Let us study the Bayesian approaches inmore
detail (Eqs. 13.20, 13.21, and 13.22). Let us
assume that φ = Ax +n and that n is a white
Gaussian noise, n ∼ N

(
0, σn

2
) :

(a) What is the probability distribution func-
tion (pdf) of n?

(b) What does p(φ| x) mean? Convince
yourself that p (φ|x) = p(n) ∝
e
− 1

2σn2 ‖φ−Ax‖2

.
(c) If we assume x ∼ N(0, σ s

2), what is p(x)?
(d) Using Bayes’ rule (Eq. 13.20), formulate

the posterior distribution p(x| φ).
(e) Define the likelihood of a distribution as

L(x) = ln p(x). Derive the posterior
likelihood calculated in (iv).
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(f) Formulate x̂ = argmax
x

L (x|φ) and

derive a similar formula to Eq. 13.15,
showing that weighted minimum-norm
(WMN) solutions are a form ofmaximum
a posteriori (MAP) estimators.

13. The L2-norm of a 2D vector, (x, y), is defined
as

√
x2 + y2, and the L1-norm is defined as

�x � + � y�. The level sets of norm functions are
closed curves partitioning the space to inside
and outside. On the other hand, some func-
tions, such as lines or hyperplanes, partition
the space to above and below.Wewill explore
the level sets of these functions in simple
cases and in a two-dimensional space. We
will examine how these simple functions can
be combined to form optimization problems,
in later questions.
(a) Can you plot

√
x2 + y2 = 1 and

|x| + |y| = 1?
(b) Can you plot and describe the set of lines

described by y + 2x = K0 for K0 ∈ R?
If K0 decreases, which direction will the
line move toward? What happens when
K0 increases?

14. Assuming x, y ≥ 0, how would you describe
the following optimization problem?
(a) argmin

x,y

(y + 2x)

Subject to |x| + |y| = 1 x, y ≥ 0
Hint. Basically, you want to minimize

K0 (where y + 2x = K0) for nonnegative
x, y with L1-norm of 1.

(b) Can you graphically depict this optimiza-
tion problem, by varying the values of
K0?

(c) Based on (b), can you propose a system-
atic way to solve this type of an opti-
mization problem? What are the optimal
values of x∗ , y∗ , and K0

∗ in this problem?
15. Repeat problem 6 for the following optimiza-

tion problem:

argmin
x,y

(y + 2x)

Subject to
√

x2 + y2 = 1 x, y ≥ 0
16. From problems 14 and 15, can you explain

why you would expect L1-norm regulariza-

tions to induce sparsity in the solution? Spar-
sity in case of a 2D signal means only 1
nonzero element!
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