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Abstract

Functional magnetic resonance imaging has
become a primary tool for psychological
and cognitive studies or preclinical brain
research. As a technique tomap brain function,
fMRI measures the blood oxygenation level–
dependent signal as a collective effect of
changes in cerebral blood flow, cerebral blood
volume, and cerebral metabolic rate of oxygen
following changes in neural activity. The
use of fMRI in combination with carefully
designed task paradigms has enabled scientists
to map perceptual, cognitive, or behavioral
functions onto brain regions and networks.
Spontaneous activity observed with fMRI in
task-free resting states has been used to reveal
intrinsic functional networks that collectively
depict the brain’s functional architecture
or connectome. Naturalistic paradigms for
fMRI are increasingly used to map brain
activation, address neural representation and
coding, and characterize brain networks
while humans are engaged in a realistic

Z. Liu (�)
Department of Biomedical Engineering, University of
Michigan, Ann Arbor, MI, USA

Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor, MI, USA
e-mail: zmliu@umich.edu

J. Cao
Department of Biomedical Engineering, University of
Michigan, Ann Arbor, MI, USA

and dynamic environment similar to daily
life experiences. In this chapter, we discuss
the principles, methods, and applications of
fMRI, with emphasis on its biophysical and
physiological basis, experimental designs and
analysis methods, and applications to human
and animal studies. Example data or results
from empirical studies are presented to help
illustrate methods or support scientific views.
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11.1 Introduction

To study how the brain works, it is desirable to
image neural activity throughout the brain while
being able to see every neuron and detect every
neuronal spike. This requires an imaging tech-
nique to have high spatial resolution, high tem-
poral resolution, and whole-brain coverage. Un-
fortunately, such a technique is unavailable to
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date for human brain imaging, in part because for
human applications it is also desirable to refrain
from using any invasive procedure.

Every technique has its pros and cons and
continues to progress on its own or in combina-
tion with other techniques [1]. Among all that
is currently available, functional magnetic reso-
nance imaging (fMRI) stands out with notable
advantages by providing sub-millimeter spatial
resolution, sub-second temporal resolution, and
whole-brain coverage. In the past three decades,
fMRI has undergone rapid development and has
become a primary tool for human psychological
and cognitive studies, as well as preclinical (ani-
mal) brain research.

In this chapter, we discuss fMRI with special
emphasis on its biophysical and physiological ba-
sis, experimental designs and analysis methods,
and applications to human and animal studies.
To facilitate discussions, we include, as relevant
examples, some data from our prior studies. In
addition, this chapter is not intended to serve as
a comprehensive literature review, and the ref-
erence list is only meant to provide additional,
but not inclusive, materials to guide interested
readers.

11.2 Magnetic Resonance
Imaging

As the name suggests, fMRI uses magnetic res-
onance imaging (MRI) to measure brain activity
and map brain functions. The physics underlying
MRI is nuclear magnetic resonance (NMR). It
describes the magnetic behavior of any atomic
nucleus that has an odd number of protons. Be-
cause the human brain has high water content, the
hydrogen atom (1H), which consists of a single
proton and carries a positive charge, is the most
abundant nucleus for MRI. Although other nu-
clei, e.g., 13C, 31P, 23Na, and 19F, are also visible
to MRI, fMRI is nearly all based on 1H MRI.
Hereafter, we refer to hydrogen atoms simply
as protons, unless they are explicitly specified
otherwise.

A proton spins about itself and creates a mag-
netic moment. It is perhaps convenient to think
of a spinning proton (or a spin in short) as a

Fig. 11.1 Hydrogen protons in the absence of external
magnetic field. (a) The spin of a single 1H generates a
small magnetic field −→μ . (b) Spins are randomly oriented

tiny magnet (Fig. 11.1a). Spins in a spatial ele-
ment, typically referred to as a voxel, form a spin
system. In the absence of any external magnetic
field, the spins in a spin system behave like many
small magnets oriented in random directions (Fig.
11.1b). The magnetic fields generated by individ-
ual spins sum to zero.

When an external magnetic field B0 is present
or applied, the spins in a spin system exhibit
a weak tendency to precess (i.e., a gyroscopic
motion) along the direction of the external field,
giving rise to very small net magnetization in a
direction parallel to B0 (Fig. 11.2). Such preces-
sion has a characteristic frequency ω0, called the
Larmor frequency, which is proportional to B0 by
a fixed ratio γ , called the gyromagnetic ratio. For
1H, the gyromagnetic ratio is 42.58 MHz/Tesla.
The precession (or Larmor) frequency is about
128 MHz for an MRI system operating under
a 3 Tesla static magnetic field, and it is about
300 MHz for 7 Tesla MRI. Under typical field
strengths, the precession frequency is always in
the radio frequency (RF) range. As a spin is pre-
cessing, it creates a rotating magnetic field in the
transverse plane, which is perpendicular to B0.
However, spins precess with random phases; as a
result, the sum of their transverse magnetization
is still equal to zero (Fig. 11.2).

For a spin system to generate detectable mag-
netic fields in the transverse plane, it needs to
receive a brief RF excitation – a rotating magnetic
field applied to the transverse plane by using an
RF transmitter (Fig. 11.3). When the RF excita-
tion uses the same frequency as the precession
frequency, i.e., on resonance, the spin system
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Fig. 11.2 Spins in an external magnetic field B0. Every
spin precesses at the same frequency but with a different
phase. More spins align parallel to B0 than antiparallel to

B0. Of the bulkmagnetization, the longitudinal component
is non-zero, but the transverse component is zero

Fig. 11.3 Spins given on resonance excitation. An RF
excitation B1 is an applied magnetic field rotating in
the transverse plane (left). The excitation flips the bulk
magnetization toward the transverse plane by a flip angle θ

effectively absorbs the energy from the excita-
tion and progressively synchronizes the phases
of individual spins while progressively reduc-
ing the longitudinal magnetic field. During the
course of the excitation, the bulk magnetization
that arises from the spin system is flipped down
toward the transverse plane while rotating about
B0 (Fig. 11.3).

Once the excitation is off, the longitudinal
magnetization progressively returns to its thermal
equilibrium, showing an approximately exponen-
tial recovery, namely, the longitudinal relaxation.
The recovery of longitudinal magnetization is
governed by a time constant T1. A shorter T1
means a faster longitudinal relaxation (Fig. 11.4).
In the meantime, the spin system progressively
desynchronizes the phases of individual spins.
During dephasing, the transverse component of
the bulk magnetization can be detected by an RF
receiver. The detected signal shows an approx-
imately exponential decay to zero, namely, the
transverse relaxation. The transverse relaxation

is also governed by a time constant, namely, T2
when the magnetic field is homogeneous within
the spin system or T2* when it is inhomoge-
neous. A shorter T2 or T2* means a faster trans-
verse relaxation (Fig. 11.4). As T1, T2, and T2*
are all tissue-specific properties, the signals de-
tected by the RF receiver can report various tissue
contrasts, depending on the pulse sequence used
to transmit, encode, and receive the RF signals
to/from spins in the brain.

For the scope of this chapter, it only covers the
basic physics ofMRI as the prerequisite for learn-
ing fMRI. For more comprehensive discussions
about MRI, we refer the readers to other materials
[2–4].

11.3 Blood Oxygenation
Level–Dependent Contrast

One type of tissue contrast observable with MRI
is blood oxygenation level dependent (BOLD)
[5]. In the brain, cerebral vasculature circulates
blood to supply oxygen, glucose, and nutrients.
Hemoglobin (i.e., red blood cell) is the primary
carrier of oxygen. Arteries deliver oxygenated
hemoglobin. Oxygen is extracted from capillar-
ies and consumed by brain tissues, creating de-
oxygenated hemoglobin. Veins drain the deoxy-
genated hemoglobin, along with other metabolic
products.

Hemoglobin is diamagnetic when oxygenated
but paramagnetic when deoxygenated [6]. With
only oxygenated hemoglobin, the magnetic
susceptibility of blood is nearly identical to that of
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Fig. 11.4 Longitudinal
(left) or transverse (right)
relaxation as an
exponential recovery or
decay characterized by a
time constant T1, T2, or
T2*

Fig. 11.5 Deoxygenated blood distorts the static mag-
netic field, but oxygenated blood does not. Deoxygenated
blood causes a shorter T2* than does oxygenated blood.

Large circles indicate blood vessels. Small circles indicate
oxygenated (red) or deoxygenated (blue) hemoglobin

brain tissue. As a result, a voxel that contains
blood and tissue tends to experience a homoge-
neous magnetic field. With only deoxygenated
hemoglobin, the blood susceptibility mismatches
the tissue susceptibility, distorting the magnetic
field into an inhomogeneous distribution.
The blood in a voxel includes a varying
mixture of oxygenated and deoxygenated
hemoglobin. Higher concentration of deoxy-
genated hemoglobin results in greater distortion
to the magnetic field and causes the spins in
the voxel to experience more distinct magnetic
fields such that they precess with more distinct
frequencies [7]. As a result, spins tend to run out
of synchronization faster, while faster dephasing
results in shorter T2* and faster transverse
relaxation (Fig. 11.5).

When reading out the T2*-weighted signal at
an echo time close to T2*, the signal magni-
tude is negatively dependent on the concentra-
tion of deoxygenated hemoglobin or positively
dependent on the concentration of oxygenated
hemoglobin. The latter has been more commonly
used for interpretation of fMRI and has been con-
ventionally termed as BOLD since a seminal pa-
per by Ogawa et al. [5]. In short, the BOLD signal
is higher when the concentration of oxygenated

hemoglobin increases or when the concentration
of deoxygenated hemoglobin decreases [8].

11.4 BOLD Response to Neural
Activity

Functional MRI uses the BOLD signal to localize
neural activity [9–11]. The precise relationship
between the BOLD signal and neural activity is
not fully understood and still under active re-
search. Nevertheless, evidence from prior studies
has shed light onto the biophysical basis and
physiological origin of the BOLD signal [12,
13]. Here, we discuss the understanding that has
received general consensus.

Neural activity requires energy and consumes
oxygen. Elevation of neural activity (or activa-
tion) triggers a cascade of metabolic and hemo-
dynamic events, collectively contributing to the
BOLD signal. As illustrated in Fig. 11.6, at an
activated region, more oxygen is extracted and
consumed, giving rise to an increase in the cere-
bral metabolic rate of oxygen (CMRO2). The
brain reacts to the increasing demand and con-
sumption of oxygen by actively dilating arterioles
and capillaries to allow more oxygenated blood
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Fig. 11.6 Neural activation causes oxygen consumption
to increase, arterioles to dilate, capillaries and veins to
expand, both blood flow and volume to increase, and
the BOLD signal to rise. Solid and dashed lines indicate
the blood vessels before and after neural activation, re-
spectively. OEF, oxygen extraction fraction, indicates the
fraction of oxygen extracted from the bloodstream and
supplied to brain tissue

to flow into the activated region. The upstream
increase in blood flow causes a passive expansion
of the downstream venioles or veins, similar to
draining water through a balloon [14]. As such,
both cerebral blood volume (CBV) and cerebral
blood flow (CBF) increase given elevated neural
activity.

Importantly, the increase in CBF overcompen-
sates for the increase in CMRO2 [15]. The brain
supplies more blood to deliver more oxygen than
is consumed by neural activity. This effect leads
to increase in the concentration of oxygenated
hemoglobin or decrease in the concentration of
deoxygenated hemoglobin, causing the BOLD
signal to increase. To capture this signal with
MRI, such pulse sequences as echo-planar imag-
ing [16] or spiral imaging [17, 18] are often used
for fast imaging with T2*-weighted contrast. Re-
cent advances in RF coils, pulse sequences, and
image reconstruction have contributed to further
acceleration to enable whole-brain fMRI within
1 s [19, 20].

How neural activity drives hemodynamic
changes (i.e., neurovascular coupling) is not
precisely understood [21]. Evidence suggests
that active dilation of blood vessels is not directly
controlled by neurons but mediated through
astrocytes [22]. Hemodynamic responses are
more driven by and coupled to synaptic inputs to
neurons, rather than spiking output from neurons
[23]. In part for this reason, the BOLD signal
is more observable in the brain’s gray matter

than in the white matter, although findings from
recent studies suggest the feasibility of using
BOLD fMRI to map white matter functions
[24–26].

11.5 Hemodynamic Response
Function

Although the physiological mechanism of neu-
rovascular coupling is not fully clear, models have
been derived from empirical data in an attempt to
mathematically describe the relationship between
neural activity and its resulting hemodynamic
response [23, 27, 28]. Neurovascular coupling is
considered as a linear time-invariant system, for
which neural activity is the input and vascular
response is the output. In line with the estab-
lished notion of linear systems, the model of
neurovascular coupling is often described as a
hemodynamic impulse response function, which
describes the system’s output given an impulse
input, i.e., a delta function. In literature, the hemo-
dynamic impulse response function is called the
hemodynamic response function (HRF). Despite
the omission of “impulse”, it is worth empha-
sizing that the HRF should be interpreted as the
vascular response to an impulse neural input.

The HRF is typically modeled as the sum of
two gamma functions. Many software tools for
fMRI analysis have implemented the HRF, e.g.,
the MATLAB-based SPM software. Parameters
that control the shape of the HRF include the
latencies and durations. With the default param-
eters, the HRF is called the canonical HRF (Fig.
11.7), in which the impulse response reaches the
positive peak at 5 s, returns to baseline (zero)
at 12 s, undershoots at about 15 s, and again
returns to baseline at about 25 s. Clearly, the HRF
is very slow and behaves like a low-pass filter
with an (arguably conservative) cutoff frequency
at 0.2 Hz. For this reason, the BOLD signal is
not rapid enough to follow fast modulation of
neural activity – a notable limitation of fMRI.
That said, the bandwidth of the BOLD signal
is still debatable, as recent findings demonstrate
the feasibility of detecting neurogenic BOLD re-
sponses as fast as 0.8 Hz [29, 30].
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Fig. 11.7 Canonical hemodynamic response function

11.6 Event-Related and Block
Design

The HRF can be used to predict how the BOLD
response should look like at a location engaged in
processing a stimulus (e.g., a flash of light) or per-
forming a task (e.g., tapping a finger). The BOLD
signal at each voxel can be compared with the
HRF predicted response. If they are similar, the
voxel is considered “activated”; otherwise, not.
This strategy to localize brain activations, known
as statistical parametric mapping [31], requires a
careful experimental design alongside a rigorous
statistical analysis. This section is focused on
the experimental design, and the next section is
focused on statistical analysis. We further confine
the context of discussion to stimulus processing,
while the same notion is readily generalizable to
task performance.

Recall that HRF is the BOLD response to an
impulse neural input. In other words, HRF itself
is the prediction of the BOLD response given an
impulse stimulus. A stimulus that lasts no more
than 2 s is brief enough to be considered as an
“event” or impulse, because HRF is slow and lasts
over 25 s. To measure the event-related response,
it is intuitive to design an experiment that includes
discrete stimuli applied for many repetitions.
Averaging the BOLD signal across the repeated
events excludes the event-unrelated signal or

noise and only yields the event-related response.
Since the BOLD response is slow, the response
to one event may overlap with the response to the
next event, if they are not adequately separated in
time. To avoid overlapping responses, the events
should be repeated with an interval greater than
25 s or longer. This design, however, is inefficient
because it has to prolong the experiment in order
to include a sufficient number of events to obtain
the event-related response with a high signal
to noise ratio. An alternative design is to repeat
events at random times such that the event-related
response can be obtained by deconvolution, while
the interval between adjacent events does not
have to be long [28, 32]. For this type of event-
related design, a specific strategy is to set the
event timing according to an M-sequence [33],
which is a pseudorandom sequence of ones and
zeros with one indicating the presence of an
event and zero indicating the absence of an
event. The fact that the M-sequence has zero
autocorrelation at any (non-zero) integer time
shift prepares a nice precondition for the ease of
deconvolution.

More common than the event-related design
is the block design. In a block-design paradigm,
stimuli are typically presented for a sustained pe-
riod (or block), followed by a resting (or control)
period that contains no stimulus (or only control
stimuli). The stimulus-on block alternates with
the stimulus-off block for multiple cycles. The
ON block is often designed to have the same
duration as the OFF block (but not always or nec-
essarily the case), such that the paradigm can be
described by a periodic boxcar function in which
1 means stimulus-on and 0 means stimulus-off.
Prediction of the BOLD response is derived by
convolving the boxcar function with the HRF.
Typically, the on or off block lasts around 30 s
such that the boxcar function has a characteristic
frequency close to the peak frequency of the
HRF in order to elicit the BOLD response with a
relatively high signal to noise ratio. If the boxcar
function has a much shorter period (i.e., a shorter
ON or OFF block), the spectral characteristics of
HRF limit the response amplitude and lower the
signal to noise ratio.
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11.7 BOLD Time Series Analysis

It follows that mapping brain activations is often
achieved by analyzing the time series of each
voxel with a model that depends on the experi-
mental paradigm and HRF [31]. Specifically, the
problem of activation mapping is formulated as
a hypothesis test addressed separately for each
voxel. For a given voxel, the null hypothesis is
that the voxel is not activated by the stimulus/task
paradigm; the alternative hypothesis is that it is
activated. Herein, “activation” means the ability
to predict the voxel time series with a response
model (or design matrix), while the predictability
is evaluated for statistical significance.

To elaborate, let us use a simple example in
which visual stimuli are presented in a block-
design paradigm (Fig. 11.8). This paradigm in-
cludes four resting blocks interleaved with three
stimulation blocks; the resting and stimulation
blocks are both 30 s. Given this paradigm, the
response model sets up a prediction as to how
the BOLD response should look like at a voxel
activated by the stimulation. As aforementioned,
the response model assumes that neurovascular
coupling is a linear time-invariant system that
can be described by the canonical HRF for every
voxel in the brain. Given this assumption, the
predicted response should look like a time series
that results from temporal convolution of the 30 s-
off-30 s-on boxcar function with the HRF.

Mathematically, let s(t) be the function with
which stimulation is applied, h(t) be the HRF,
and x(t) be the regressor used to predict the fMRI
response to the stimulation.

x(t) = s(t) ∗ h(t) (11.1)

The response model is simply a linear regres-
sion model, in which the same regressor is used to
explain the BOLD signal at every voxel, denoted
as yi(t) where i is the voxel index.

yi(t) = βix(t) + bi (11.2)

The bias term, bi, can be eliminated, if prepro-
cessing is applied such that both yi(t) and x(t) have
their average (over time) equal to zero.

To address how well yi(t) is predictable by
x(t), one can simply evaluate the temporal corre-
lation between yi(t) and x(t) and test its statistical
significance. The use of this simple correlation-
based method can be dated back to a seminal
paper by Bandettini et al., who were among the
first to use fMRI to map activations (with a motor
task) [9]. Although it is simple and effective, the
correlation-based activation assessment is not ap-
plicable when the response model includes mul-
tiple regressors.

The need to use multiple regressors may arise
in several scenarios. Perhaps the most intuitive
one is when the experimental paradigm includes
more than one type of stimuli. For example, we
can use visual stimuli selective for the magno-
cellular (M) visual pathway in one stimulation
block but the parvocellular (P) visual pathway in
another stimulation block (Fig. 11.9). Then we
need to include two regressors: one for M, x1(t),
and the other for P, x2(t). The response model
should be rewritten as below (note that the bias
term is eliminated by preprocessing as mentioned
earlier).

x1(t) = s1(t) ∗ h(t) (11.3)

Fig. 11.8 Typical
response model (bottom)
given an ON-OFF
block-design paradigm
(top)
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Fig. 11.9 Mapping magnocellular and parvocellular
pathways. (a) A block-design paradigm involves two types
of visual stimulation: one with high spatial frequency at
10 cycles per degree (c/deg) and low temporal frequency
at 1 Hz and the other with low spatial frequency at 1 c/deg
and high temporal frequency at 10 Hz, to selectively
activate the magnocellular (M) and parvocellular (P)

pathways in the visual system [34]. (b) The response
contrast between the M- and P-selective stimuli is shown
both on the cortical surface and in the brain volume.
The contrast map segregates the M and P divisions in
lateral geniculate nuclei (LGN) and their extensions onto
(presumably) the dorsal and ventral streams on the cortex

x2(t) = s2(t) ∗ h(t) (11.4)

yi(t) = βi1x1(t) + βi2x2(t) (11.5)

The regression parameters (or beta values) can
be estimated by least-squares estimation – an
established method that has been implemented
in many statistical analysis tools and has been
elaborated in many statistical textbooks. Herein,
we skip the details about the least-squares esti-
mation and refer the readers interested to existing
literature [31]. The estimated beta values, β̂i1

and β̂i2, can be further divided by their standard

errors, SE
(
β̂i1

)
and SE

(
β̂i2

)
, yielding the t

statistics and the p values used to evaluate sta-
tistical significance regarding the BOLD activa-
tion associated with each stimulation condition
or the contrast between conditions. See Fig. 11.9

for an example of using this strategy to sep-
arate the magnocellular and parvocellular divi-
sions of the visual thalamus (i.e., lateral genic-
ulate nuclei) and their extension onto the visual
cortex.

In another scenario, one may use multiple re-
gressors even when the experimental paradigm
only includes one type of stimulation. Let us
revisit how a regressor is defined. As in Eq.
(11.1), the regressor results from convolving the
boxcar function and the HRF, and it is assumed
to be identical across voxel. What if the HRF
is different from one location to another? This
question is valid because the HRF is heuristic and
neurovascular coupling may indeed vary across
different brain regions (between the gray matter
and the white matter, or between regions with
distinct vascular density).
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To accommodate the possible variation in
HRF, one can express the HRF at each voxel as a
Taylor’s series of the canonical HRF.

hi(t) = h(t) + αi1h
′(t) + αi2h

′′(t) (11.6)

Here, hi(t) is considered as a model of neu-
rovascular coupling specific to the i-th voxel, and
h

′
(t) and h

′ ′
(t) are the first and second derivative of

the canonical HRF. The coefficients, αi1 and αi2,
are unknown and assumed to be variable across
locations in order to account for spatial variation
in the HRF. Convolving the boxcar function with
this voxel-wise HRF generates three regressors in
the response model, as shown in Fig. 11.10.

x1(t) = s(t) ∗ h(t) (11.7)

x2(t) = s(t) ∗ h′(t) (11.8)

x3(t) = s(t) ∗ h′′(t) (11.9)

yi(t) = βi1x1(t) + βi2x2(t) + βi3x3(t) (11.10)

Note that the unknown coefficients, αi1 and
αi2, are considered as parts of the unknown beta
values, which can be estimated from data by us-
ing least-squares estimation as discussed earlier.
To evaluate the statistical significance, one only
needs to evaluate the significance of the model
as a whole (based on the F statistic) instead of
the significance of each regressor (based on the t
statistic), because all three regressors correspond
to a single stimulus condition.

Lastly, let us place the problem in a differ-
ent scenario, which has been overlooked in most
fMRI studies but should, arguably, be considered.
To understand this problem, let us recall that
the HRF is a model of neurovascular coupling,
describing how the neural response transforms to
the BOLD response, given the external stimuli.
Regressors used to predict the BOLD response
should consider how neurons may differentially
respond to the stimuli. In fact, evidence from neu-
rophysiological studies suggests neural responses
to a sustained period (e.g., 30 s) of stimulation
may manifest themselves as a transient response
at the onset of stimulation, a sustained response
across the entire period of stimulation, a slow
adaptation over the course of the stimulation pe-

Fig. 11.10 Multiple regressors resulting from convolving the boxcar function with the canonical HRF, its first-order
derivative, and its second-order derivative
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Fig. 11.11 Multiple
regressors resulting from
convolving sustained,
onset, offset, and
adaptation neural responses
with the HRF, given a
block-design paradigm

riod, a transient response at the offset of stimula-
tion, or a mixture of these response features [35]
(Fig. 11.11).

Equation (11.1) implies that we only consider
the possibility of sustained neural response,
which can be modeled as a boxcar function
identical to the function that describes the
stimulation. If we consider all four types of neural
response that reflect the aforementioned onset,
sustained, adaptation, and offset response, the
response model should be revised as below.

x1(t) = s(t) ∗ h(t) (11.11)

x2(t) = s(t)δ (t − onset) ∗ h(t) (11.12)

x3(t) = s(t)δ (t − offset) ∗ h(t) (11.13)

x4(t) = s(t)

(
1 − t − onset

offset − onset

)
∗ h(t)

(11.14)

yi (t) = βi1x1(t) + βi2x2(t) + βi3x3(t) + βi4x4(t)

(11.15)

Although this model is more complex, it ac-
commodates the variation of neural response and
likely localizes different types of responses to
different brain regions. See the example in Fig.
11.12.

The models discussed in this section are ap-
plicable to univariate analysis of BOLD time
series. Being univariate means that the model is
used to explain or predict the time series signal
observed at each single voxel. It is in contrast to
multivariate pattern analysis [36], for which the
focus is on the activity pattern that spans mul-
tiple (typically neighboring) voxels. Moreover,
the analysis discussed above is also limited to
the signal observed from each single subject. The
subject-level statistic can be used as the input to
a second-level statistical test for evaluating the
group-level significance.
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Fig. 11.12 BOLD activations corresponding to sustained, onset, offset, and adaptive responses to full-screen checker-
board stimulation in a block-design paradigm

11.8 Task fMRI for Functional
Mapping

Based on the aforementioned experimental
design and model-based analysis, fMRI has
been widely used for functional mapping or
localization. A function is exemplified by a
specific task or stimulus. For example, pictures
of human faces can be used as the visual
stimulus presented in an event-related or block-
design paradigm. The model-based time series
analysis can be used to map the stimulus-evoked
activation. The activation presumably highlights
the brain regions involved in face recognition.
One may also stimulate different body parts
and map the resulting activations in the brain.

This provides a way to localize the neural
representation of each specific body part (see Fig.
11.13 for an example) and to further reveal the
somatotopic organization. This strategy has been
highly effective in mapping sensory, motor, and
cognitive functions. The neuroscientific impact of
task-based fMRI is significant, perhaps surpass-
ing any prior method for functional mapping or
localization for its noninvasiveness, ease of use,
and high resolution. Clinical applications of task
fMRI, however, remain challenging and limited,
in part because interpretation of fMRI activations,
although established in terms of statistics, is not
straightforward as to how fMRI provides quan-
titative evidence to support neuropathological
diagnosis or treatment planning.
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Fig. 11.13 In rats, BOLD fMRI activations with electrical stimulation applied to the forepaw

The value of fMRI has been most recognized
for human psychological and cognitive sciences.
It is worth noting that fMRI is also increasingly
used in preclinical animal models. Animal fMRI
has its unique value. With animals, it is much
easier (and of less ethical concern) to combine
fMRI with other invasive procedures. Combining
fMRI with invasive neural recording or stimula-
tion is desirable to reveal the relationship between
fMRI and neurophysiology, uncover the physio-
logical mechanism of fMRI, guide neuromodu-
lation techniques for optimal effects on the brain,
and evaluate the interaction between the brain and
visceral organs, e.g., the gut. Therefore, animal
fMRI plays an important role in brain research
much beyond a backward translation from human
fMRI and continues to be an area under active
research.

11.9 Resting State fMRI

Even in the absence of any overt task, the brain is
still active with spontaneous activity observable
with BOLD fMRI [37]. The use of fMRI to mea-
sure and characterize brain activity in the resting
state is referred to as resting state fMRI. As the
name suggests, the resting state is not controlled
by any task. Spontaneous activity is not driven by
any predefined experimental paradigm, and it is
thus not predictable by any task model that bears

a simple functional interpretation. The statistical
parametric mapping as described earlier is not
readily applicable to resting state fMRI.

For resting state fMRI, an established method
is so-called the seed-based correlation. It begins
with selecting a region as the seed region and then
calculating the correlation between the BOLD
signal extracted from the seed region and the
BOLD signal from every other voxel in the brain.
The distribution of the resulting correlation coef-
ficients highlights where in the brain spontaneous
activity is temporally correlated with that at the
seed region. Since temporal correlation is simply
interpreted as functional connectivity, a term orig-
inally coined by Biswal et al. in his seminal paper
[38], the map of correlation to a seed region is in-
terpreted as a network, which includes all the re-
gions that interact with the seed region. This seed-
based correlation method is simple and effective
and has been widely used to evaluate functional
brain networks. To use this method, however, it
requires one to select a seed region, presumably
based on a specific question or hypothesis of
interest.What if one does not have any question or
hypothesis in mind? In this case, the seed region
is likely subject to a somewhat arbitrary choice.
In this case, such tools as InstaCorr implemented
in AFNI would be helpful, since it allows one to
explore any location as the seed region, while it
calculates and visualizes the seed-based network
nearly in real time.
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Alternatively, an entirely data-driven method
can be applied to uncover functional networks
all at once without necessarily selecting any seed
region as driven by a predefined hypothesis. Per-
haps the most established method of this type is
independent component analysis (ICA), or spatial
ICA to be more specific [39]. For ICA, all voxels
are considered altogether as elements of a high-
dimensional input variable (or vector), and every
time point is considered as a sample of this vari-
able. The goal of ICA is to identify around tens
of components, which are high-dimensional vec-
tors that are mutually independent, while pushing
their linear combination to be able to explain any
sample of the input variable. In other words, any
spatial pattern of resting state activity reflects an
unknown but linear mixture of some fixed spa-
tial patterns, each represented by an independent
component. Collectively, these independent com-
ponents capture the networks onto which voxels
are organized (see Fig. 11.14 for an example).
Learning algorithms to identify independent com-
ponents from data, e.g., the Infomax algorithm
[41], have been implemented in software tools,
e.g., MELODIC in FSL. When ICA is applied
to resting state fMRI data from a single sub-
ject, the resulting independent components can
be inspected to identify and remove artifacts from
signals in order to denoise the data. ICA can also

be applied to data concatenated across a group of
subjects, yielding group-level independent com-
ponents that reflect functional network patterns
consistent across subjects [42].

Although seed-based correlation and ICA are
seemingly distinctive methods, they often end up
with showing comparable spatial patterns [43].
These patterns are generally referred to as rest-
ing state networks and collectively depict the
brain’s functional organization, or brain connec-
tome [44]. It is worth noting the resting state
networks arising from spontaneous activity are
consistent with patterns of brain activation with
various tasks [45]. This consistency lends sup-
port to the functional relevance of resting state
networks. However, the specific function of a
resting state network is not always easy to elu-
cidate, since it may or may not be associated
with exteroceptive processes or human conscious
cognition, for which one may design a relevant
task for fMRI experiments. Some networks, such
as the default-mode network [46], are intrinsic
and preserved across brain states (wakefulness,
sleep, anesthetized) and across many species (rat,
monkey, human). Mapping resting state networks
has become a mainstream focus for fMRI and
holds the unique promise to facilitate further un-
derstanding and effective diagnosis of neurologi-
cal disorders.

Fig. 11.14 Resting state networks obtained by applying ICA to fMRI data in rats. (Data are from Cao et al. [40])
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11.10 Naturalistic Paradigm

Functional MRI is also increasingly used with
naturalistic paradigms. Unlike event-related or
block-design paradigms as discussed above, nat-
uralistic paradigms set up a behavioral context
much closer to our daily life experiences. For
example, a natural visual paradigm may require a
subject to watch a movie typically for 5–10 min-
utes. The movie often includes realistic scenes
and objects, human or animal activity, and so-
cial content. Such a movie attracts attention, en-
gages cognition, and activates the brain to a much
greater extent than otherwise overly simplified vi-
sual stimuli as used in conventional fMRI studies.
Similarly, a natural auditory paradigm may use
continuous music or speech as stimuli [47, 48].

Natural visual or auditory stimulation is
complex, because it involves many elements or
features entangled in space, time, and frequency.
Disentangling such features is seemingly
unapproachable. The model-based analysis as
used for event-related or block-design fMRI is
not readily applicable to fMRI data obtained with
naturalistic paradigms. Given natural stimuli,
the fMRI signal appears nearly as irregular
as spontaneous activity observed with resting
state fMRI. Seemingly, no tangible clue is easily
accessible to separate stimulus-driven responses
from spontaneous activity.

The dilemma is resolved, partially, with the
finding first reported by Hasson et al. In their
seminal paper [49], evidence reported suggests
that naturalistic stimuli, either a movie or an
audio story, elicit highly reproducible responses
within and across subjects. When a human sub-
ject watches the same movie twice (in two re-
peated sessions), the responses observed in the
first session and the second session are signifi-
cantly correlated for each voxel involved in pro-
cessing the information from the movie. When
two subjects watch the samemovie, the responses
observed from the first and second subjects are
also highly correlated for each activated voxel.
This finding lends support to a simple method
that allows us to map brain activation with natural
stimuli by evaluating the voxel-wise intra/inter-

subject reproducibility of the fMRI signal. The
high reproducibility is unique to the fMRI signal
during natural stimuli and not observable given
seemingly complex and irregular stimuli that are
perceptually meaningless [50]. This method is
robust, effective, and model-free, extending the
application of fMRI to ecologically relevant sce-
narios.

The fact that brain responses to natural
stimuli are significantly reproducible within and
across subjects can be utilized to map functional
networks engaged in processing natural stimuli.
For this purpose, we may use inter-session or
inter-subject functional connectivity analysis
[51]. Specifically, when a human subject watches
the same movie twice, we can choose a seed
region, extract its signal from the first session,
and calculate its correlation with the signal
from every voxel in the second session [52].
The inter-session functional connectivity is only
attributable to stimulus-driven responses instead
of spontaneous activity, which is unrelated to
stimuli and thus unlikely to be correlated between
two separate sessions. Similarly, one may apply
this analysis to data from two subjects watching
the same movie, yielding inter-subject functional
connectivity also indicative of stimulus-driven
functional networks.

The methods described above are compelling
because of their simplicity. Nevertheless, it
should be noted that the correlation-based mea-
sures of inter-subject/inter-session reproducibil-
ity reveal only where in the brain is involved
in processing natural stimuli, but not how an
activated voxel is involved or what information
it encodes. To answer these questions, we should
address the stimulus-response relationship (or
neural coding) at each voxel [53]. As mentioned
earlier, the complexity of natural stimuli requires
a model to be able to unpack the stimuli into can-
didate features, which are individually or collec-
tively represented by a voxel. Although it remains
to be fully developed, a promising method, as ad-
vocated in recent studies [54–56], is to use brain-
inspired deep neural networks as feature models
to address neural coding with natural stimuli.

The use of natural visual or auditory stimuli is
emerging as a new paradigm for fMRI. It places
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new challenges and opportunities for using fMRI
not only to assign functions to regions (functional
localization) but also to uncover the computa-
tional role of individual locations, regions, or
networks (i.e., neural coding or representation) in
a realistic and dynamic condition being one step
closer to our daily life.

11.11 Summary

To recap, we list the following points in sum-
mary.

• fMRI is based on MRI of hydrogen protons.
• Transverse relaxation following on-resonance

RF excitation depends on T2*.
• Hemoglobin is diamagnetic when oxygenated

but paramagnetic when deoxygenated.
• Increase in the concentration of deoxygenated

hemoglobin shortens T2*.
• The bold oxygenation level–dependent signal

is the vascular response to neural activity.
• Neural activation increases regional cerebral

metabolic rate of oxygen (CMRO2), triggers
vessel dilation, and increases regional cerebral
blood flow (CBF) and cerebral blood volume
(CBV).

• Increase in CBF overcompensates CMRO2

and raises the blood oxygenation level.
• Neural activation increases the BOLD signal.
• fMRI uses the BOLD signal to localize neu-

ral activations, despite the incomplete under-
standing of the BOLD mechanism.

• HRF describes neurovascular coupling as a
linear time-invariant system.

• HRF reflects the BOLD response to an im-
pulse neural response, or an impulse stimulus.

• Task fMRI typically uses event-related or
block-design paradigms.

• Tomap or localize activation, the BOLD signal
is compared against a response model derived
from the experimental paradigm and the HRF.

• A voxel is activated by a stimulus or task, if
its time series is predictable by the response
model.

• Resting state fMRI measures spontaneous
brain activity in the absence of any overt task.

• Seed-based correlation or independent compo-
nent analysis can be used to map resting state
networks.

• Brain activation evoked by naturalistic stim-
uli can be mapped by evaluating intra/inter-
subject reproducibility of the BOLD signal
observed during two separate sessions of the
same stimuli.

• Brain networks evoked by naturalistic stim-
uli can be mapped by evaluating intra/inter-
subject functional connectivity with the BOLD
signal observed during two separate sessions
of the same stimuli.

Homework

Please mark all the correct answers for each of
the following questions. Note that each ques-
tion may have one or more than one correct
answer.

1. Which of the following nuclei is the most
abundant for functional magnetic resonance
imaging?
(A) 1H
(B) 13C
(C) 31P
(D) 19F

2. Hydrogen protons spin at about 300MHz in a
7 Tesla MRI system. Which of the following
is close to the gyromagnetic ratio (MHz T−1)
of 1H spins?
(A) 42.6
(B) 6.53
(C) 40.1
(D) 11.3

3. Which of the following are true about on-
resonance RF excitation?
(A) It transmits an oscillating magnetic field

along the longitudinal direction.
(B) It transmits an oscillating magnetic field

in the transverse plane.
(C) It transmits an oscillating magnetic field

with a frequency that matches the Lar-
mor frequency of the target spin sys-
tems.
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(D) It transmits energy to be effectively ab-
sorbed by the target spin systems.

4. Which of the following contribute to
the blood oxygenation level-dependent
contrast?
(A) Cerebral blood flow
(B) Cerebral blood volume
(C) Cerebral metabolic rate of oxygen
(D) Myelin density

5. Which of the following regional changes oc-
cur accompanying local neural activation?
(A) Arterioles dilate
(B) Blood flow increases
(C) Oxygen consumption increases
(D) Blood oxygenation level increases

6. What happens when the concentration of
deoxy-hemoglobin increases?
(A) Transverse relaxation becomes faster
(B) Transverse magnetization decays faster
(C) Longitudinal relaxation becomes faster
(D) Longitudinal magnetization recovers

faster
7. Which of the following are TRUE about the

hemodynamic response function (HRF)?
(A) It indicates the hemodynamic response

given an impulse input stimulus
(B) It indicates the hemodynamic response

given a sustained block of input stimulus
(C) In HRF, the peak response delays from

the time zero
(D) In HRF, the peak response precedes the

time zero
8. How fast is the fMRI signal typically sam-

pled?
(A) Every millisecond
(B) Every second
(C) Every minute
(D) Every hour

9. To derive the response model (or design ma-
trix) for the BOLD time series analysis, one
needs to
(A) Convolve the stimulus paradigm with

the hemodynamic response function
(B) Multiply the stimulus paradigm with the

hemodynamic response function
(C) Add the stimulus paradigm with the

hemodynamic response function
(D) None of the above

10. In the block design, what would be a typical
block duration?
(A) 30 seconds ON vs. 30 seconds OFF
(B) 30 milliseconds ON vs. 30 milliseconds

OFF
(C) 30 minutes ON vs. 30 minutes OFF
(D) None of the above

11. Which of the following are TRUE about rest-
ing state fMRI?
(A) It is used to report instrumental noises

from the MRI scanner
(B) It is used to measure spontaneous brain

activity in the absence of overt tasks or
stimuli

(C) It is used to measure fluctuations in
membrane potentials around −70 mV

(D) None of the above
12. Functional connectivity as observed with

resting state fMRI refers to?
(A) Temporal correlations between the sig-

nals observed from different brain loca-
tions

(B) Anatomical connections between differ-
ent brain locations

(C) The relationship between neural and
vascular signals in the brain

(D) None of the above
13. When applied to resting state fMRI data,

independent component analysis
(A) Separates brain networks without speci-

fying a seed location
(B) Assumes brain networks are spatially

independent of one another
(C) Shows where in the brain is at rest
(D) None of the above

14. To map brain activations with a continuous
period of naturalistic stimuli, one can
(A) Calculate the voxel-wise correlation be-

tween the fMRI signals from a subject
during two repeated sessions of the same
stimuli

(B) Calculate the voxel-wise correlation be-
tween the fMRI signals from two sub-
jects during the same stimuli

(C) Use a response model derived from
convolving a boxcar function with the
canonical HRF
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(D) Calculate the seed-based correlation
based on the fMRI signals recorded
from a single session

References

1. B. He, Z. Liu, Multimodal functional neuroimaging:
Integrating functional MRI and EEG/MEG. IEEE
Rev. Biomed. Eng. 1, 23–40 (2008)

2. R.W.Brown, Y.-C. Cheng,M.E. Haack,M.R. Thomp-
son, R. Venkatesan, Magnetic Resonance Imaging:
Physical Principles and Sequence Design, 2nd edn.
(Wiley, Hoboken, New Jersey, 2014)

3. S.A. Huettel, A.W. Song, G. McCarthy, Functional
Magnetic Resonance Imaging, 3rd edn. (Oxford Uni-
versity Press, 2014)

4. Z.-P. Liang, P.C. Lauterbur, Principles of Magnetic
Resonance Imaging: A Signal Processing Perspective
(IEEE Press, 1999)

5. S. Ogawa, T.M. Lee, A.R. Kay, D.W. Tank, Brain
magnetic resonance imaging with contrast depen-
dent on blood oxygenation. PNAS 87(24), 9868–9872
(1990)

6. L. Pauling, C.D. Coryell, Themagnetic properties and
structure of hemoglobin, oxyhemoglobin and carbon-
monoxyhemoglobin. PNAS 22(4), 210–216 (1936)

7. K.R. Thulborn, J.C. Waterton, P.M. Matthews, G.K.
Radda, Oxygenation dependence of the transverse
relaxation time of water protons in whole blood at
high field. Biochim. Biophys. Acta 714(2), 265–270
(1982)

8. R. Turner, D. Le Bihan, C.T.W. Moonen, D. De-
spres, J. Frank, Echo-planar time course MRI of
cat brain oxygenation changes. Magn. Reson. Med.
22(1), 159–166 (1991)

9. P.A. Bandettini, E.C. Wong, S.R. Hinks, R.S. Tikof-
sky, J.S. Hyde, Time course EPI of human brain
function during task activation. Magn. Reson. Med.
25(2), 390–397 (1992)

10. K.K. Kwong, J.W. Belliveau, D.A. Chesler, I.E. Gold-
berg, R.M. Weisskoff, B.P. Poncelet, D.N. Kennedy,
B.E. Hoppel, M.S. Cohen, R. Turner, Dynamic mag-
netic resonance imaging of human brain activity dur-
ing primary sensory stimulation. Proc. Natl. Acad.
Sci. U S A 89(12), 5675–5679 (1992)

11. S. Ogawa, D.W. Tank, R. Menon, J.M. Ellermann,
S.-G. Kim, H. Merkle, K. Ugurbil, Intrinsic signal
changes accompanying sensory stimulation: Func-
tional brain mapping with magnetic resonance imag-
ing. PNAS 89(13), 5951–5955 (1992)

12. R.B. Buxton, The physics of functional magnetic
resonance imaging. Rep. Prog. Phys. 76(9), 096601
(2013)

13. S.-G. Kim, S. Ogawa, Biophysical and physiological
origins of blood oxygenation level dependent fMRI
signals. J. Cereb. Blood Flow Metab. 32(7), 1188–
1206 (2012)

14. R.B. Buxton, E.C. Wong, L.R. Frank, Dynamics of
blood flow and oxygenation changes during brain
activation: The balloon model. Magn. Reson. Med.
39(6), 855–864 (1998)

15. P.T. Fox, M.E. Raichle, Focal physiological uncou-
pling of cerebral blood flow and oxidativemetabolism
during somatosensory stimulation in human subjects.
PNAS 83(4), 1140–1144 (1986)

16. M.K. Stehling, R. Turner, P. Mansfield, Echo-planar
imaging: Magnetic resonance imaging in a fraction of
a second. Science 254(5028), 43–50 (1991)

17. G.H. Glover, Spiral imaging in fMRI. NeuroImage
62(2), 706–712 (2012)

18. D.C. Noll, J.D. Cohen, C.H. Meyer, W. Schneider,
Spiral k-space MR imaging of cortical activation. J.
Magn. Reson. Imaging 5(1), 49–56 (1995)

19. S. Moeller, E. Yacoub, C.A. Olman, E. Auerbach, J.
Strupp, N. Harel, K. Ugurbil, Multiband multislice
GE-EPI at 7 tesla, with 16-fold acceleration using par-
tial parallel imaging with application to high spatial
and temporal whole-brain fMRI. Magn. Reson. Med.
63(5), 1144–1153 (2010)

20. K. Setsompop, B.A. Gagoski, J.R. Polimeni, T.
Witzel, V.J. Wedeen, L.L. Wald, Blipped-controlled
aliasing in parallel imaging for simultaneous mul-
tislice echo planar imaging with reduced g-factor
penalty. Magn. Reson. Med. 67(5), 1210–1224
(2012)

21. N.K. Logothetis, What we can do and what we cannot
do with fMRI. Nature 453(12), 869–883 (2008)

22. G.C. Petzold, V.N. Murthy, Role of astrocytes in neu-
rovascular coupling. Neuron 71(5), 782–797 (2011)

23. N.K. Logothetis, J. Pauls, M. Augath, T. Trinath, A.
Oeltermann, Neurophysiological investigation of the
basis of the fMRI signal. Nature 412, 150–157 (2001)

24. Z. Ding, Y. Huang, S.K. Bailey, Y. Gao, L.E. Cutting,
B.P. Roger, A.T. Newton, J.C. Gore, Detection of
synchronous brain activity in white matter tracts at
rest and under functional loading. PNAS 115(3), 595–
600 (2018)

25. J.R. Gawryluk, E.L. Mazerolle, R.C. D’Arcy, Does
functional MRI detect activation in white matter?
A review of emerging evidence, issues, and future
directions. Front. Neurosci. 8, 239 (2014)

26. L. Marussich, K.-H. Lu, H. Wen, Z. Liu, Mapping
white-matter functional organization at rest and dur-
ing naturalistic visual perception. NeuroImage 146,
1128–1141 (2017)

27. G.M. Boynton, S.A. Engel, G.H. Glover, D.J. Heeger,
Linear systems analysis of functional magnetic res-
onance imaging in human V1. J. Neurosci. 16(13),
4207–4221 (1996)

28. G.H. Glover, Deconvolution of impulse response in
event-related BOLD fMRI. NeuroImage 9(4), 416–
429 (1999)

29. J. Cao, K.-H. Lu, S.T. Oleson, R.J. Phillips, D. Jaffey,
C.L. Hendren, T.L. Powley, Z. Liu, Gastric stimu-
lation drives fast BOLD responses of neural origin.
NeuroImage 197, 200–211 (2019)



348 Z. Liu and J. Cao

30. L.D. Lewis, K. Setsompop, B.R. Rosen, J.R. Poli-
meni, Fast fMRI can detect oscillatory neural activity
in humans. PNAS 113(43), E6679–E6685 (2016)

31. K.L. Friston, A.P. Holmes, K.J. Worsley, J.-P. Poline,
C.D. Frith, R.S.J. Frackowiak, Statistical parametric
maps in functional imaging: A general linear ap-
proach. Hum. Brain Mapp. 2(4), 189–210 (1994)

32. T.T. Liu, The development of event-related fMRI
designs. NeuroImage 62(2), 1157–1162 (2012)

33. G.T. Buracas, G.M. Boynton, Efficient design of
event-related fMRI experiments using M-sequences.
NeuroImage 16, 801–813 (2002)

34. A.M. Derrington, P. Lennie, Spatial and temporal
contrast sensitivities of neurones in lateral geniculate
nucleus of macaque. J. Physiol. 357, 219–240 (1984)

35. E. Duff, J. Xiong, B. Wang, R. Cunnington, P.T.
Fox, G. Egan, Complex spatio-temporal dynamics of
fMRI BOLD: A study of motor learning. NeuroImage
34(1), 156–168 (2007)

36. N. Kriegeskorte, R. Goebel, P.A. Bandettini,
Information-based functional brain mapping. PNAS
103(10), 3863–3868 (2006)

37. M.D. Fox, M.E. Raichle, Spontaneous fluctuations
in brain activity observed with functional magnetic
resonance imaging. Nat. Rev. Neurosci. 8, 700–711
(2007)

38. B. Biswal, F.Z. Yetkin, V.M. Haughton, J.S. Hyde,
Functional connectivity in the motor cortex of resting
human brain using echo-planar MRI. Magn. Reson.
Med. 34(4), 537–541 (1995)

39. C.F. Bechmann, M. DeLuca, J. Devlin, S.M. Smith,
Investigation into resting-state connectivity using in-
dependent component analysis. Philos. Trans. R. Soc.
B 360(1457), 1001–1013 (2005)

40. J. Cao, K.-H. Lu, T.L. Powley, Z. Liu, Vagal nerve
stimulation triggers widespread responses and alters
large-scale functional connectivity in the rat brain.
PLoS One 12(12), e0189518 (2017)

41. A.J. Bell, T.J. Sejnowski, An information-
maximization approach to blind separation and
blind deconvolution. Neural Comput. 7(6), 1129–
1159 (1995)

42. V.D. Calhoun, J. Liu, T. Adali, A review of group ICA
for fMRI data and ICA for joint inference of imaging,
genetic, and ERP data. NeuroImage 45, S163–S172
(2009)

43. K.R.A. Van Dijk, T. Hedden, A. Venkataraman, K.C.
Evans, S.W. Lazar, R.L. Buckner, Intrinsic functional
connectivity as a tool for human connectomics: The-
ory, properties, and optimization. J. Neurophysiol.
103(1), 297–321 (2010)

44. D.C. Van Essen, S.M. Smith, D.M. Barch, T.E.J.
Behren, E. Yacoub, K. Ugurbil, The WU-Minn hu-
man connectome project: An overview. NeuroImage
80, 62–79 (2013)

45. S.M. Smith, P.T. Fox, K.L. Miller, D.C. Glahn, M.P.
Fox, C.E. Mackay, N. Filippini, K.E. Watkins, R.
Toro, A.R. Laird, C.F. Beckmann, Correspondence of
the brain’s functional architecture during activation
and rest. PNAS 106(31), 13040–13045 (2009)

46. M.E. Raichle, The Brain’s default mode network.
Annu. Rev. Neurosci. 38, 433–447 (2015)

47. Y. Zhang, G. Chen, H.Wen, K.-H. Lu, Z. Liu,Musical
imagery involves Wernicke’s area in bilateral and
anti-correlated network interactions inmusicians. Sci.
Rep. 7(17066), 2017 (2017)

48. Y. Zhang, K. Han, R.M. Worth, Z. Liu, Connecting
concepts in the brain by mapping cortical represen-
tations of semantic relations. biorxiv, https://doi.org/
10.1101/649939 (2019)

49. U. Hasson, Y. Nir, I. Levy, G. Fuhrmann, R. Malach,
Intersubject synchronization of cortical activity dur-
ing natural vision. Science 303(5664), 1634–1640
(2004)

50. K.-H. Lu, S. Hung, H. Wen, L. Marussich, Z. Liu,
Mapping white-matter functional organization at rest
and during naturalistic visual perception. PLoS One
11(8), e0161797 (2016)

51. E. Simony, C.J. Joney, J. Chen, O. Losiksky, Y. Yeshu-
run, A. Wiesel, U. Hasson, Dynamic reconfiguration
of the default mode network during narrative compre-
hension. Nat. Commun. 7, 12141 (2016)

52. L.K. Lynch, K.-H. Lu, H.Wen, Y. Zhang, A.J. Saykin,
Z. Liu, Task-evoked functional connectivity does not
explain functional connectivity differences between
rest and task conditions. Hum. Brain Mapp. 39(12),
4939–4948 (2018)

53. T. Naselaris, K.N. Kay, S. Nishimoto, J.L. Gallant,
Encoding and decoding in fMRI. NeuroImage 56(2),
400–410 (2011)

54. M. Eickenberg, V.G. Gramfort, B. Thirion, Seeing it
all: Convolutional network layers map the function of
the human visual system. NeuroImage 152, 184–194
(2017)

55. U. Güçlü, M.A.J. van Gerven, Deep neural networks
reveal a gradient in the complexity of neural represen-
tations across the ventral stream. J. Neurosci. 35(27),
100005–110014 (2015)

56. H. Wen, J. Shi, Y. Zhang, K.-H. Lu, J. Cao, Z. Liu,
Neural encoding and decoding with deep learning for
dynamic natural vision. Cereb. Cortex 28(12), 4136–
4160 (2018)

http://dx.doi.org/10.1101/649939

	11 Functional Magnetic Resonance Imaging
	11.1 Introduction
	11.2 Magnetic Resonance Imaging
	11.3 Blood Oxygenation Level–Dependent Contrast
	11.4 BOLD Response to Neural Activity
	11.5 Hemodynamic Response Function
	11.6 Event-Related and Block Design
	11.7 BOLD Time Series Analysis
	11.8 Task fMRI for Functional Mapping
	11.9 Resting State fMRI
	11.10 Naturalistic Paradigm
	11.11 Summary
	Homework
	 References


